
I MCr1E)

« IF HP'I1
T~[~ES~~ ~to

ENO::t ' RPl' STD •
• , l n0lJiilul .•• ! . ,,!:U!iI

William @.WicKes

-

I

~

4

~

4
4
~

~
4
~
~
4
4
'4
4
4
4
..
4

HP 41/HP 48 Transitions Program Disk

As a convenience for readers of HP 41/HP 48 Transitions who use or have access to an
IBM-compatible or MacIntosh personal computer, Larken Publications is offering a disk
containing all of the HP 48 programs described in the book. By downloading the pro­
grams individually or collectively from your computer to your HP 48, you avoid the
effort and errors of entering the programs manually from the calculator keyboard.

To order one or more of these disks, remove this page from your book, fill out the ord­
ering information below, and send it with your payment to:

Larken Publications
Department PC
4517 NW Queens Ave.
Corvallis OR 97330 USA

Make checks payable to Larken Publications (no charge or C.O.D. orders). -Foreign
orders must be paid in U.S. Funds through a U.S. bank or via international postal
money order.

Name

Address

City State Zip

Country

HP 41/HP 48 Transitions Program Disk $10.00

(Optional) Airmail postage
outside of USA, Canada, Mexico 1.00

TOTAL ~$ ______ _

Disk Type (check one): o IBM 5.25" o IBM 3.5" o MacIntosh 3.5"

HP 41 HP 48 Transitions

William C. Wickes

Larken Publications
4517 NW Queens Avenue
Corvallis, Oregon 97330

Copyright CI m C. Wickes 1990

All rights reserved. No part of this book may be reproduced, transmitted, or stored in
a retrieval system in any form or by any means, electronic, mechanical, photocopy­
ing, recording or otherwise, without the prior written permission of the author.

First Ed ition

First Printing, July, 1990

ISBN 0-9625258-2-0

Acknowledgements

I thank my wife, Susan, and my children, Kenneth and Lara, for their help in the
preparation of this manuscript. I am also grateful to Dennis York for his encourage­
ment and assistance.

4
4
4
4
4
•
4
4
4
•
4
4
4
4
4
4
4
41
41
41
,
41
~
t
t
t
41
t!
t!
f!

,

41

•
l

I

I

I

I

I

•

I

,

I

i
i

I

Dedicated to Carroll Alley, who got me my first HP 41, and has been a staunch supporter
• ever since.

c
<:
C:
(;
... '
'-..
~.
~
~~
(:\
c..
t..'
('

("
~
t'
("
{:'
~'

t~

~'

€'
t
.'

,

CONTENTS

1. Introduction • 1
•

2 1.1 Notation •
1.2 HP 41-to-HP 48 Evolution • • • • • • • • • • • • • • • 5

1.2.1 Other HP 41 Extensions 7
1.2.1.1 The Unlimited Stack 7
1.2.1.2 Algebraic Expressions 9
1.2.1.3 The Command Line 10
1.2.1.4 Variables 10
1.2.1.5 Programming 11

2. The HP 48 Stack • 13
2.1 Clearing the Stack • • • • • • • • • • • • • • • • • • 13
2.2 Rearranging the Stack • • • • • • • • • • • • • • • • • 15

2.2.1 Exchanging Two Arguments 15
2.2.2 Rolling the Stack 15
2.2.3 Copying Stack Objects 16
2.2.4 How Many Stack Objects? 18

2.3 Recovering Arguments • • • • • • • • • • • • • • • • 18
2.4 An Example of HP 48 Stack Manipulations • • • • • • • • • • 20

2.4.1 The Easy Way: Local Variables 23
2.5 The Interactive Stack • • • • • • • • • • • • • • • • • 24
2.6 Managing the Unlimited Stack • • • • • • • • • • • • • • 26

2.6.1 Stack Housekeeping 26
2.6.2 A Really Empty Stack 27
2.6.3 Disappearing Arguments 28
2.6.4 PostfIx Commands 29
2.6.5 Stack-lift Disable 31

2.7 The Meaning of ENTER • • • • • • • • • • • • • • • • 33
2.8 HP 48 Translations of HP 41 Stack Commands • • • • • • • • • 35

3. Variables • 37
3.1 Creating Global Variables • • • • • • • • • • • • • • • 38

3.1.1 DEFINE 39
3.1.2 Renaming Variables 39

3.2 Recalling Values • • • • • • • • • • • • • • • • • • 39
3.2.1 Recall From Stored Lists and Arrays 40

3.3 Altering the Contents of Variables 41 • • • • • • • • • • • • •
3.3.1 HP 48 Storage Arithmetic 41

3.3.1.1 Counter Variables 43
3.3.2 Additional Storage Commands 43

•
- 1 -

3.4 Purging Variables • • • • • • • • • • • • • • • • • • 44
3.5 Grouping Variables • • • • • • • • • • • • • • • • • 45
3.6 The VAR Menu • • • • • • • • • • • • • • • • • • • 46
3.7 Port Variables • • • • • • • • • • • • • • • • • • • 46

4. HP 48 Programming Principles • • • • • • • • • • • • • • • 49
4.1 Program Basics • • • • • • • • • • • • • • • • • • • 50

4.1.1 The « » Delimiters 51
4.1.2 The Program Body 51
4.1.3 Structured Programming 53
4.1.4 Comparing HP 48 and HP 41 Programs 56

4.2 Program Structures • • • • • • • • • • • • • • • • • 59
4.3 Tests and Flags • • • • • • • • • • • • • • • • • • • 60

4.3.1 HP 48 Test Commands 64
4.3.2 SAME = = and = , , 65

4.4 Conditional Branches • • • • • • • • • • • • • • • • • 66
4.4.1 The IF Structure 66

4.4.1.1 Command Forms of IF 67
4.4.2 The CASE Structure 69

4.5 Loops • 71
4.5.1 Definite Loops 71

4.5.1.1 Varying the Step Size 74
4.5.1.2 Looping with No Index 75
4.5.1.3 Exiting from a Definite Loop 76

4.5.2 Indefinite Loops 77
4.5.2.1 DO Loops 77
4.5.2.2 WHILE Loops 79

4.6 Error Handling • • • • • • • • • • • • • • • • • • • 80
4.6.1 The Effect of LASTARG 83
4.6.2 Exceptions 84

4.7 Local Variables • • • • • • • • • • • • • • • • • • • 86
4.7.1 Comparison of Local and Global Variables and Names 87

5. Program Development • • • • • • • • • • • • • • • • • • 91
5.1 Program Editing • • • • • • • • • • • • • • • • • • 91
5.2 Starting and Stopping • • • • • • • • • • • • • • • • • 92

5.2.1 The AnN key, DOERR and KILL 94
5.2.2 Single-Stepping 95

5.3 Input and Output • • • • • • • • • • • • • • • • • • 96
5.3.1 Input Prompting 97

5.3.1.1 Stack Entry 97
5.3.1.2 Command Line Entry 100
5.3.1.3 Custom Menus 103

• •
- 11 -

,

•

6.

5.4

5.3.2 Keystroke Input 104
5.3.2.1 KEY 104
5.3.2.2 WAIT 105

5.3.3 Output Labeling 105
5.3.3.1 Using Tagged Objects 107

• Key ASSIgnments • • • • • • • •
5.4.1 Clearing Key Assignments 109
5.4.2 Multiple Key Assignments 110
5.4.3 Recalling Current Assignments 110

Program Conversion • • • • • • • • •
6.1 Storage Registers • • • • • • • •

6.1.1 Indirect Storage 116
6.1.2 Storage Arithmetic 117
6.1.3 Block Moves 118
6.1.4 The Alpha Register 119

6.2 Replacing GTO • • • • • • • • •
6.2.1 Program Branches 122
6.2.2 Defmite Iteration 124
6.2.3 Indefinite Iteration 125
6.2.4 Reducing Program Size 127
6.2.5 Exits 128

6.3 An Example of Program Conversion • •
6.3.1 Alternate Translations 137

6.4 Command Equivalent Table • • • • •

Program Index • • • • • • • • • • •

Subject Index • • • • • • • • • • • •

...
- ill -

I

• • • • • • • • • • 108

• • • • • • • • • • 111
• • • • • • • • • • 113

• • • • • • • • • • 122

• • • • • • • • • • 131

• • • • • • • • • • 138

• • • • • • • • • • 145

• • • • • • • • • • 147

•
C' •
to,
t..
t
t
t'
t,
t
to.
t"
t~
t,
tl
t:,
t
t,
t~

t',
t,
t.'
t:
I'

t,
t'
.~

.'
t'
.'

I.'
I.'
t'
t'
....
t'

1. Introduction

The HP 41C, HP 41CV, and HP 41CX are generally recognized as the most successful
family of programmable technical calculators ever produced. Their combination of cal­
culator convenience with flexibility, customizability, and communications capability has
been unmatched by any other product at a comparable price since the HP 41C introduc­
tion in 1979.

Part of the HP 41's long-lasting popularity has derived from the absence of any new
products, from Hewlett-Packard or any other manufacturer, that add new hardware or
software features to the all-around capabilities of the HP 41. The HP 42S, for example,
is designed to execute HP 41 programs, much more quickly than the HP 41 itself, but
the HP 42S lacks the plug-in ports of the HP 41, so that all programs must be typed in
by hand. The HP 28S offers computation technology significantly advanced over that of
the HP 41, but like the HP 42S, the HP 28S is not extensible and has no input mechan­
ism other than its keyboard.

With the introduction of the HP 48SX, we see in many respects a rebirth of the HP 41.
With its plug-in memory card ports, extensive customization capability, and built-in
calculator-to-calculator and calculator-to-serial-device communications, the HP 48SX
offers all of the advantages of the HP 41, implemented on greatly superior hardware.
Furthermore, the HP 48SX incorporates the advanced software technology of the HP
28S. With the advent of the HP 48SX, the HP 41 has fmally been retired from
Hewlett-Packard's active product line. (Henceforth, for simplicity, we will refer gen­
erally to the HP 41 and HP 48, dropping the alphabetic product designators C, CV, SX,
etc., unless they are required in specific cases.)

Many HP 41 users may be a little apprehensive about adopting the HP 48 as the long­
awaited replacement for their HP 41's, because of the differences in calculation style
and programming language between the two calculators. This book is intended to help
you make the transition from the HP 41 to the HP 48, by reviewing their similarities
and differences. The general approach is to show how the HP 48 principles of opera­
tion are refmements or extensions of familiar HP 41 ideas. The book is not intended as
a complete treatise on HP 48 operation, but rather as a guide to translating your HP 41
problem-solving techniques onto the HP 48, so that you will have a comfortable basis
from which to explore the vast array of new computing resources that the HP 48 offers
to you. We will not study basic HP 48 operation or keystrokes, except as they relate to
the HP 41; it is recommended that you review the HP 48 owner's manual at least to
obtain a working knowledge of the HP 48 before or during your reading of this book.

-1 -

1.0 Introduction

The following summarizes the contents of each chapter:

1.

2.

3.

4.

5.

6.

Chapter

Introduction

The HP 48 Stack

Variables

HP 48 Programming
Principles

Program Development

Program Conversion

1.1 Notation

Topics

Introductory material, notation conven­
tions, HP 41 to HP 48 evolution.

Understanding and using the unlimited
stack.

Storing and naming objects on the HP 48.

HP 48 programming principles, condi­
tional structures, and local variables.

Constructing HP 48 programs with input
and output, halts, and prompts; key

• assIgnments.

Converting HP 41 programs to HP 48
programs.

Most calculator manuals use the term function to refer to any operation a calculator can
perform, programmable or not. Here we will use the more precise HP 48 terminology,
where function refers to specific mathematical operations, and the term operation is used
for general calculator actions. A programmable operation, i.e., one that has a name
that can be entered in a program, is called a command. Thus SIN is a command, but
[1iJ is an operation. We will use this terminology for HP 41 operations as well.

In order to help you recognize various calculator commands, keystroke sequences, and
results, we use throughout this book certain notation conventions:

•

• All calculator commands and displayed results that appear in the text are printed in
helvetica characters, e.g. DUP 1 2 SWAP. When you see characters like these, you
are to understand that they represent specific HP 41 or HP 48 operations rather
than any ordinary English-language meanings .

• Italics used within calculator operations sequences indicate varying inputs or results.
For example, 123 'REG' STO means that 123 is stored in the specific variable REG,
whereas 123 'name' STO indicates that the 123 is stored in a variable for which you

-2-

t)
t.·'
t)
(\

(:1

t)
(:
t)
t)
t)
t\
t)
t)
t,\
t)
()
t.'.
t ' , ,

•

t'
t:,
t~

t~
t.-
.~
'-..'

(~
t)

•
;

Introduction 1.1

may choose any name you want. Similarly,« program » indicates an unspecified
HP 48 program object; { numbers } might represent a list object containing numbers
as its elements.

Italics are also used for emphasis in ordinary text.

• Calculator keys are displayed in helvetica characters surrounded by rectangular
boxes, e.g. IENTERI, IFVAL! , or IEEXI. The back-arrow key looks like this: ~, and
the HP 48 cursor keys like these: 1 <11 , 1 C> 1 , U:SJ , and [Y] .

• A shifted key is shown with the key name in a box preceded by a shift key picture,
for the HP 41 shift key, and 1411 or Irl>l for the HP 48 left- and right-shift keys.

• HP 48 menu keys for commands available through the various menus are printed
with the key labels surrounded by boxes drawn to suggest the reverse characters you
see in the display, like these: ~SIGN~ or ~-Llsn .

Examples of calculator operations take several forms. When appropriate, we will give
step-by-step instructions that include specific keystrokes and show the relevant levels of
the stack, with comments, as in the following HP 48 sample:

Keystrokes:

123 IFNTERI 456 IT] 1 :

Results: Comments:

579 Adding 123 and 456
returns 579 to level 1.

HP 41 examples are presented in a similar manner, except that the four stack levels are
labeled X:, V:, Z: and T:.

For better legibility, we don't show individual letters and digits in key boxes--just 123
rather thanW[I]W. We do show key boxes for the multi-letter keys on the keyboard
and in menus.

In some HP 48 examples, a simple listing of the stack contents isn't adequate, so we use
an actual calculator-generated picture of the calculator display, such as this picture from
Chapter 5:

·3-

1.1

HOME}

er • •

Introduction

H'iP E=ASE

Some examples, however, are given in a more compact format than the keystroke exam­
ple shown above. These examples consist of a sequence of calculator commands and
data that you are to execute, together with results. The "right hand" symbol u is used
as a shorthand for "the calculator returns ... " In the compact format, the above addition
example is written as

123 456 + u 579

The 0 means "enter the objects and commands on the left, in left-to-right order, and
the calculator will give back--retum--the objects on the right." If there are multiple
results, they are listed to the right of the u in the order in which they are returned.
For example,

ABC ROT SWAP u B A C

indicates that B is returned to level 3, A to level 2, and C to level 1.

Because of the flexibility of the HP 48, there are usually several ways you can accom­
plish any given sequence, so we often don't specify precise keystrokes unless there are
non-programmable operations in the sequence. If there are no key boxes in the left-side
sequence, you can always obtain the right -side results by typing the left side as text into
the command line, then pressing when you get to the u symbol.

The u symbol is also used in the stack diagrams that are part of HP 48 program list­
ings. The stack diagrams show how to set up stack objects for execution of the pro­
gram, where the objects to the left of the 0' are the "input" objects, and the objects fol­
lowing the u are the program "outputs".

The most elaborate examples in this book are programs. Each program is listed in a
box, showing the actual steps that make up the program, and comments to help you
understand the steps. In addition, many program listings include a heading like this one

-4-

•
t
It
t
t
•
•
t
t
•
t
•
•
•
•
•
•
•
•
•
•
•
t
t
•
•
•
•
•
•
•
It
•
•
t
•
It
•
•
•
t

Introduction 1.1

from Chapter 6:

81 Sine Integral AF4C

level 1 I level 1

x SI(x)

The first line of the header shows a suggested program variable name, a brief descrip­
tion of the program, and the hexadecimal checksum for the program object. The rest of
the header is a stack diagram that shows the program's inputs and outputs.

1.2 HP 41-to-HP 48 Evolution
Many HP 41 owners who pick up an HP 28 or an HP 48 are taken aback to fmd that
the newer calculators depart in many important ways from the "standard" RPN design
that had remained essentially unchanged from the HP 35 through the HP 41CX. The
consistency of the standard design always made it easy for anyone to upgrade to a new
HP calculator, since the basic operating methods remained the same. Without this com­
forting familiarity, the 28/48-class of calculator may seem rather alien and forbidding to

• prospective users.

Actually, the HP 28 and HP 48 were specifIcally designed with the HP 41 as a model,
attempting to preserve and enhance the strengths of the HP 41 while remedying its
weaknesses. In particular, the most basic calculator operations--keyboard arithmetic-­
are maintained keystroke-for-keystroke from the old generation to the new. To add 1
plus 2, for example, you press IT] mIT], regardless of whether you are using
an HP 41, an HP 28, or an HP 48. For more complicated arithmetic, you can generally
use the same keystroke RPN approach on any of the three calculators. This basic com­
patibility serves as the anchor point from which you can explore some of the areas in
which the HP 48 differs from the HP 41.

The basic design philosophy of the HP 48 is to extend the calculator convenience and
flexibility of the HP 41 to a wider class of mathematical and logical quantities than the
HP 41 can handle. You know that the HP 41 is an excellent calculator for operations
on floating-point real numbers. It provides an RPN stack, which is demonstrably the
best interface for exploratory calculations. Its programming language is a straightfor­
ward encoding of keyboard steps, so you don't have to rethink a problem solution to
capture it as a program after you have performed it once manually. However, when you
stray out of the realm of ordinary numbers, the HP 41 begins to show its limitations.
For example, the HP 41 has no simple provision for complex numbers. Various HP 41
programs that deal with complex numbers usually use pairs of registers to contain a sin­
gle complex number. The four-level stack thus becomes a two-level complex number
stack, but this obviously has major limitations. Not only does the limited stack depth

-5-

1.2 Introduction

make calculations difficult, but even simple commands like + must be replaced with
complex number versions--ordinary + would add the real and imaginary parts of one of
the two stack numbers, rather than performing a proper complex addition.

The HP 48 deals with complex numbers in a much more straightforward way, by gen­
eralizing the design of the RPN stack so that each stack "register" (called a level) can
hold an entire complex number as readily as a real number. Commands like + examine
the stack to see what type of addition to perform--if the stack contains real numbers, a
real number sum is computed; if either of the summands is complex, a complex addition
is performed. To add the complex numbers 1 + 2i and 3 + 4i, the sequence is:

(1,2) (3,4) [±J

where complex numbersx+~ are entered and displayed as ordered pairs (x,y) in the HP
48. Note that the logical sequence is just the same as the real number example given
previously:

first-number second-number [±J .

In the HP 48, every real number operation that could sensibly be extended to complex
numbers is made to work uniformly with either type of number. This is what we meant
at the beginning of the section by "extend the calculator convenience and flexibility of
the HP 41 to a wider class of mathematical and logical quantities."

[The first calculator with built-in provision for complex numbers was the HP 15C, which
uses dual stacks to hold the real and imaginary parts of complex numbers for RPN
operations. A mode setting determines whether commands are applied to one stack or
both. The HP 15C also allows you to manipulate real and complex matrices on its
stacks. The even more general approach of the HP 28/HP 48 is a descendent of this
pioneering design of the HP 15C.]

The desire to intermix complex numbers and real numbers on the same stack requires a
more flexible stack design than that of the HP 41. On the HP 41, the stack is a per­
manent set of four registers--memory locations exactly big enough (7 bytes each) to con­
tain one floating-point number. Since a complex number is made up of two numbers, it
can't be stored in a single stack register, so complex number programs must resort to
clumsy substitutes such as using the stack registers in pairs. The HP 48 solves this prob­
lem by eliminating the fixed stack registers and using instead a dynamically configured
stack in which the entries on the stack can be of any size whatever. A internal system of
memory pointers keeps track of the order and sizes of the entries, and the memory used
by the stack grows and shrinks automatically as the stack contents change.

The generalized stack of the HP 48 is not limited even to numbers or arrays. The cal­
culator ('.an deal with a host of different kinds of objects: real and complex floating-point

-6-

()
t)
()
() 111
() 111
() -...
()
t)
t:
t:·
() ,.
t) 111

t..\ '
t ' I , '

•

t~ •
t:
t~
t
••
t.' ,

,

\

•

t'

t
t
t
t
t
t
•
•
•
•
t
•
•
•
•
•
•
t
•
• ,
•
•
•
•
•
•
~

•
t
t
t
•
•
•
•
•
•
•
•
•

Introduction 1.2

numbers, integers, arrays, text strings, pictures, physically dimensioned numbers--even
algebraic expressions and programs. Object is the HP 48 term for any "thing" that you
can put on the stack--when you see that term, just think of a number as the prototype of
an object. All of the different HP 48 objects can be manipulated on the stack, stored,
recalled, etc., using the same logic and keystrokes as real numbers. This makes learning
to use the HP 48 simple, since the methods used for ordinary numerical calculations can
also be used for much more complicated problems--problems that on the HP 41 either
require elaborate strategies, or can't be computed at all.

The HP 41 itself takes a small step towards a generalized stack with its ability to place
alpha data in stack registers. The fIxed size of the registers limits the individual alpha
data objects to a maximum of six characters, but the basic idea is the same as that on
the HP 48--you can move the alpha data around on the stack or store and recall the
data using the the same commands as you use for numbers.

The HP 48 carries this idea to greater extremes by allowing various operations to work
with many different object types. For example, consider the common programming task
of combining two text strings into a single string (concatenation). On the HP 41, with
the two strings initially represented as alpha data in the X- and Y-registers, you can
concatenate them by using the sequence

CLA ARCL X ARCL Y

This combines the two strings in the alpha register, but you have to activate alpha mode
to see the result, since the result is too long in general to return to a single stack regis­
ter. Also, you can't store the combined string without taking it apart again. On the HP
48, the entire operation is condensed into a single execution of +. + works for strings
the same way that it works for numbers: the two inputs are taken from the fIrst two
stack levels, and the sum is returned to level 1:

"ABC" "DEF" + u "ABCDEFG"

In this case the "sum" is the concatenation of the two strings. The flexibility of the
stack allows the inputs and the result to be strings of any size, so there is no need on
the HP 48 for a separate alpha register.

1.2.1 Other HP 41 Extensions
We have shown how the goal of "generalizing the HP 41" leads to the HP 48 idea of a
flexible stack that can hold a variety of objects as well as real numbers. In the following
we will show how similar considerations of HP 41 limitations lead to other facets of the
HP 48 design. In subsequent chapters we will study these topics in more detail.

-7-

1.2 Introduction

1.2.1.1 The Unlimited Stack
All HP RPN calculators prior to the HP 28 had a data stack limited to four registers.
The choice of four registers was actually derived from the limited memory of the HP 35,
rather from any profound analysis that said that four was somehow a "correct" number
for a stack. Later calculators like the HP 41 used RAM separate from the CPU for
their stacks, but kept the four-level stack for the sake of familiarity with their predeces­
sors.

The depth of the RPN stack determines the number of intermediate results that can be
retained during an extended calculation without recourse to any explicit store and recall
to non-stack memory registers. In computing the value of an algebraic expression, the
stack depth corresponds to the maximum number of open parentheses that can be main­
tained at one time. So-called "algebraic" calculators in the HP 35 to HP 41 era gen­
erally advertised some number of parentheses levels that they could handle; this was
their equivalent of a fIxed RPN stack depth. (Internally, all calculators use RPN, so the
algebraic calculators' parentheses levels really were a stack depth limitation.)

As a practical matter, the majority of common expressions likely to be evaluated on a
calculator can readily be managed with a four-level stack, as long as you are willing to
work through an expression from the inside out so as to avoid too many intermediate
results. However, given the abundance of RAM on current calculators, there doesn't
seem to be any reason to continue to impose an artifIcial limitation of four stack levels.
The purpose of a calculator is to automate as much of the calculation process as possi­
ble. Requiring you to inspect each expression before calculation in order to fInd a path
that doesn't overflow the stack is hardly consistent with that purpose. Moreover, if a
calculator is to work with symbolic expressions, it is quite impractical to limit the
number of nested parentheses. The HP 48 does not attempt to answer the question of
the "right" number of stack levelsnit simply does not limit the stack size at all.

The desirability of extending the stack does not come only from purely mathematical
considerations. Consider the HP 41 program loop command ISG. ISG requires an
argument that is a number of the form aaa.bbbcc, where the digits aaa are the loop
index, bbb is the stopping value of the index, and cc is the index increment. This struc­
ture has two obvious disadvantages: 1) the index and its increment must be integers,
limited in their numbers of digits, and 2) the argument must be assembled from the
individual numbers by dividing and adding; similarly, it must be taken apart to obtain
current values. Both of these problems would disappear if ISG could use three separate
stack arguments. But that is impractical in a four-level stack calculator, since whenever
ISG was executed, anything currently on the stack would have to be stored away to
make room for ISG's arguments.

A fIXed-depth stack also makes program development diffIcult, since you can't generally

-8-

,
~.
(.,

~.

t
t
t
t
t
t,
t:
t
t'
t.'
t
t" t "
t
(,

t '"
t',
t',
t. ,'~
~"
t'
t>
f'
t:\
~\

t'~
,.
t~

~
t:\ ,,'
€
f~
t~

t'~

f.~
t~
f}

~

•
~

•
•
•
•
~

~

•
~

•
•
•
•
•
•
•
•
• ,

I

I

Introduction 1.2

leave things on the stack when calling a subroutine--the subroutine will likely need the
stack for its own purposes. On the HP 48, you c.an write a subroutine without any
regard for the stack use of the programs that call it. A subroutine can be just like a
built-in command, in that it is entirely characterized by the number of arguments it
takes from the stack, and the number of results that it returns to the stack. (As a
matter of fact, most HP 48 commands do their computations on the same stack that you
use, sometimes pushing dozens or even hundreds of objects on and off the stack. This
doesn't matter, because any objects you have on the stack will still be there after you
execute a command, except for the command's arguments).

1.2.1.2 Algebraic Expressions
There is generally little doubt among RPN calculator users that the RPN approach
using a stack and postftx operations is easier and more efftcient for exploratory calcula­
tion than the so-called "algebraic" method used by other calculators. The algebraic
style attempts to reproduce more nearly the left-to-right calculation order of the com­
mon written form of algebraic expressions, but provides this familiarity at the cost of
flexibility. However, the advantage of RPN is hard to perceive for calculations that are
predetermined literal executions of written formulae, especially on a calculator with suf­
ftcient memory and display to show an entire formula as it is entered instead of a single
number or function at a time.

The HP 48 philosophy is that the RPN vs. algebraic debate is made irrelevant by the
availability of sufficient electronic resources--display and memory. The HP 48 is capable
of interpreting and executing algebraic expressions complete with prefix, infix, and post­
fix functions, and parentheses. But it does these calculations by means of an RPN stack,
and makes that same stack available to you so that you can save and reuse intermediate
results. You have the best of both worlds:

• If you know in advance the complete mathematical form of a calculation, you can
enter and evaluate it as an algebraic object.

• If you are working out the solution to a problem, and don't know in advance all of
the steps, you can work through the problem with an RPN approach, applying func­
tions to the results as they appear.

• In both cases, the results are held on the stack ready for use in further calculations.

The desirability of an algebraic capability becomes particularly obvious when applica­
tions like HP Solve or function plotting are considered. If you want to plot, for exam­
ple, x 3 -.sx2 + 4x- 6, you wouldn't want to have to translate it into the form of an HP 41
program:

-9-

1.2 Introduction

01 RCL X
02 3
03 YtX
04 RCL Y
05 2
06 YtX
07 5
08 *
09 -
10 RCL Y
11 4
12 *
13 +
14 6
15 -

Not only does it take considerable mental effort to write this program sequence, but the
fmal form is almost unrecogllizable as a representation of the original expression. Com­
pare it with the HP 48 algebraic object

'XA 3-5XA 2+4*X-6' ,
and you can immediately see the advantages of the HP 48 approach. Even better, the
HP 48 EquationWriter lets you enter or display the expression in a form even more
closely resembling the written form:

3 2
-5'X +4'X-6

1.2.1.3 The Command Line
In the HP 41, numbers are keyed directly into the X-register. Upon entry of a new
number, the previous contents of each stack register are automatically pushed up to the
next higher register. This design is again an economy from the early days of calculators
when memory was very limited. The effect on the stack while you are entering a
number is obviously a disadvantage--once you start a new entry, you lose the contents of

-10-

t:
t,
~:
t:
~.

t:
t:
t:
t:
t:\
t:
t:
t:
t.
t
t.
t'
t.
t'
t'
t'
t'
t
• t\
t'
t
t~ .
t
t'
t' ,
t\ ,
t'1
t.:,
t>
t.'
i'
t.'
t.'
t.'
~~

•
•
~

•
•
•
•
•
•
• ,
•
•
•
•
•
• ,
•
• ,
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

Introduction 1.2

the T-register. With this in mind, the HP 48 replaces the X-register entry system with a
much more flexible and powerful command line entry system. The command line lets
you enter objects as text, with many of the resources of a text editor: multiple lines, a
cursor that r.an be moved to any position, insert or replace modes, typing aids, etc. The
use of delimiters--special characters that identify the various HP 48 object types--reduces
the need for special editors for each type, and allows you to combine the entry of dif­
ferent types in a single command line. In effect, each command line that you enter is a
program intended to be executed immediately. The command line program can consist
of anything from a single number to be entered on the stack to an elaborate sequence
of commands and data.

1.2.1.4 Variables
To support extended calculations and data storage, the HP 41 provides storage registers
that can each contain a single number or alpha string. By using SIZE, you can select
the number of registers that are available, the remainder of memory then being reserved
for program storage.

Like the HP 41 stack registers, storage registers are of fixed size and therefore are awk­
ward for storing anything other than individual numbers or six-character text strings.
Furthermore, a register's designation by its register number does not provide any
mnemonic clues about the register's contents. To address these problems, the HP 48
replaces numbered registers with named variables. Each variable contains one object of
any type or size, and is identrned by a name up to 127 characters long. A variable's
name can therefore help to identify its contents--names such as LENGTH or FRE­
QUENCY are typical--making keyboard use easier and programs more legible than is
possible with numbered registers.

Named variables are also desirable for algebra operations. If you are trying to
represent the expression A + B + C in the calculator, you wouldn't want to have to write
it as RCL 01 + RCL 02 + RCL 03. In the HP 48, the expression is represented by the
algebraic object ' A + B + C', where A, B, and C are the names of variables. The
correspondence between the HP 48 representation and the original expression is obvious
and natural.

1.2.1.5 Programming
The HP 41 programming language is appealing because it is a natural extension of key­
board operations. A program consists of a sequence of numbered steps; in the simplest
cases, the steps represent the same keystrokes that you would use when making the
same calculation once by pressing keys. Recording the keystrokes as a program allows
you to replay them automatically whenever you wish.

-11 -

1.2 Introduction

HP 48 programming starts with the same basic model as the HP 41: a program is a
record of commands that you want to replay automatically. A HP 48 program looks
considerably different from an HP 41 program, primarily because the HP 48 doesn't
bother with line numbers. However, the sense of the programs is the same on the two
calculators. Consider a program sequence that computes [sin (3 cos 3O)VS. To perform
this calculation by hand, you would press the same keys on either calculator:

30 Icosl 3 0 ISINI 5 [lJ

On the HP 41, a program to perform this calculation translates each keystroke into a
numbered program line:

•

01 30
02 COS
03 3
04 *
05 SIN
06 5
07 /

On the HP 48, the equivalent program sequence matches the keystrokes even more
closely, because it's not disrupted by the line Dumbers:

30 COS 3 * SIN 5 /

The HP 48 dispenses with line numbers in order to display as much of a program as
possible on the screen while you are editing the program. Since the program steps
aren't numbered, you are free to move the cursor around the screen at will and insert or
delete objects.

The HP 41 and HP 48 start with the same general philosophy of translating keyboard
operations one-for-one into program steps, but diverge in their approach to program
branching (which is usually done only in programs). The HP 41 relies upon its GTO
command for all program jumps and loops, along with primitive conditional skips and a
very limited error trapping mechanism. This approach encourages the development of
convoluted, illegible programs (called "spaghetti code" in computer jargon). In contrast,
the HP 48 enforces a more organized program style by providing program structures such
as IF ... THEN ... ELSE and FOR. .. NEXT for conditional branches and loops--it does not
provide a GTO at all. These structures, together with an unlimited subroutine return
stack, make it possible to develop programs as series of self-contained modules, each of
which can perform a single understandable calculation and be labeled with a mnemonic
name. The resulting programs can then be read easily and modified or extended in a
straightforward manner.

-12-

t­
ti
C~
t;
t·
t
t:
t:
t';
t;.
t:
t:
t:
t:
t.'
t:
t.~

t.'c
t'
t;

I.'
t·
I.'
('
t\
.~

I.'
.'
t"
.'
f'
f'
f'
t'
.'
1.'-

-
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• ,
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

2. The HP 48 Stack

In an RPN calculator, the stack is the focus of most operations. It is the place where
the great majority of commands fmd their arguments and return their results. It's also
the primary and most efficient means for commands and programs to transfer data and
instructions so that small calculations can be linked together. In this chapter, we'll
describe the fundamental HP 48 stack operations and compare them with their HP 41
counterparts. For the most part we will use real numbers as example objects, but keep
in mind that all of the stack operations described here apply uniformly to any of the
various HP 48 object types.

The HP 48 stack consists of series of numbered levels, each of which contains one object
of any type. The stack is always filled from the lowest level up, so that there are never
any empty levels between full ones. ENTER always moves new objects from the com­
mand line into level 1, pushing previous stack objects up to higher levels. Most com­
mands remove their argument objects from the lowest levels, whereupon the objects in
higher levels drop down. The only exceptions are some of the stack manipulation com­
mands, which can move objects to or from arbitrary stack levels. There is no limit on
the number of objects or levels of the stack; you can enter as many objects as available
memory will permit.

The HP 48 provides an extensive Syt of stack manipulation commands, some per­
manently assigned to keys, and the rest contained in the stack menu (IPRGI~STK~). All
of the stack menu operations are programmable commands, which means that you can
execute them by pressing the appropriate keys or by spelling their names into the com­
mand line. Most stack operations can also be executed by using the interactive stack
menu, described in section 2.5.

Table 2.1 on the next page lists the stack operations found on the keyboard and in the
stack menu. The individual operations are explained in subsequent sections.

2.1 Clearing the Stack
Perhaps the most common stack operation is "clearing" one or more objects, either to
discard unnecessary objects so that others are moved to lower levels, or just to clear the
decks for a new calculation. The latter is accomplished by CLEAR, which removes the

•
entire contents of the stack in a single operation. CLEAR is usually executed from the
keyboard 0 r I> IlelR I); a well-designed HP 48 program does not execute CLEAR because
that might destroy stack objects needed by a second program that called it.

There are three commands for removing a specific number of objects from the lowest-

-13-

2.1

Stack Clearing

Reordering Arguments

Copying Objects

Counting Objects

Object Recovery

The HP 48 Stack

Table 2.1. UP 48 Stack Manipulations

Operation

DROP
DROP2
DROPN
CLEAR

SWAP
ROT
ROLL
ROLLD

DUP
OVER
PICK
DUPN

DEPTH

LASTARG
LAST STK

Action

Discard the level 1 object
Discard the objects in levels 1 and 2
Discard the fIrst n objects
Discard all stack objects

Exchange the objects in levels 1 and 2
Rotate the level 3 object to level 1
Rotate the level n object to level 1
Rotate the level 1 object to level n

Copy the level 1 object
Copy the level 2 object
Copy the level n object
Copy the fIrst n objects

Count the number of objects on the stack

Return the arguments used by the last command
Restore the stack to its state before ENTER

numbered stack levels: DROP, DROP2, and DROPN. The basic command is DROP,
which removes the object in levell, and "drops" the remaining stack objects one level
to flll in the empty level. Each DROP discards another object, and the stack drops one
level.

DROP and CLEAR correspond to the HP 41 commands CLX and CLST, respectively.
However, as we will discuss further in section 2.6.2, the HP 41 and the HP 48 differ
considerably in their concepts of a "clear" stack. CLX clears the X-register, and CLST
the entire stack, by replacing the contents of those registers with zeros. CLX is primarily
intended for replacing the contents of X with a new value. By disabling stack lift, the
zero CLX enters can be overwritten by a following entry. The HP 48 takes a simpler
approach: DROP discards the level 1 object and doesn't replace it at all. Since the HP
48 has no stack-lift disable, the next entry always replaces the dropped object.

CLST is of very limited value in the HP 41, serving only to provide a "supply" of zeros.
HP 48 CLEAR, on the other hand, removes all objects from the stack, and recovers the

-14-

&,

•
&,
.,
.,
.:
t,
t,
t,
t.
t,

I.
t:
I,

•
I:
,~

t.:.
t.-

•

t:
t
t~
t'
t'
I'
t'
t'
t"
t'
t'
t'
t'
t'
t'
('-
- ..

•

The HP 48 Stack 2.1

associated memory.

DROP2 and DROPN are equivalent to repeated execution of DROP. DROP2 does just
what its name implies: it removes two objects, from level 2 and levell, then drops the
remaining objects down two levels to fill in. The closest HP 41 equivalent to DROP2 is
the sequence CLX RDN CLX RDN.

DROPN drops n objects in addition to a number n in level 1 (so actually n + 1 objects
are dropped--see section 2.2.4 for a discussion of stack depth parameters). Notice that
although DROPN appears abbreviated as §DRPN§ in menus, its correct name in a pro­
gram is DROPN.

•

2.2 Rearranging the Stack
Dropping objects from the stack is not always the appropriate action when you need
access to objects in higher-numbered stack levels--you may also need to preserve the
low-numbered objects. In such cases, you need to employ stack rearrangement com­
mands to change the order of the objects.

2.2.1 Exchanging Two Arguments
The simplest form of stack rearrangement is the exchange of the positions of the objects
in levels 1 and 2. On the HP 41, this is accomplished by X<>Y, which is renamed to
SWAP on the HP 48. SWAP is used for switching the arguments for a two-argument
command, or more generally for changing the order in which the levelland 2 objects
may be used. SWAP is easy to illustrate:

A B SWAP u B A.

2.2.2 Rolling the Stack
A stack "roll" is an exchange of stack positions involving objects in two or more stack
levels. One object is moved to or from level 1, and other objects move up or down
together to make room for it.

The concept of a stack roll is simple on the HP 41: you move all of the stack register
contents by one level, up for roll up (Rt), and down for roll down (R~ or RDN). The
object that spills off the top or bottom of the stack is moved to the other end. Thus, on
the HP 41:

-15-

2.2 The HP 48 Stack

Register Register contents
Before After Rt After RI

T: t z x
Z: z y t
Y: y x z
X: x t y

Which way is "up" and which is "down" depends on how you picture the stack. HP cal­
culator manuals have always pictured the stack with the X-register at the bottom, so that
"up" means towards Y, Z, and T in that order. "Roll up" means x goes to Y, y to Z, z
to T, and t rolls around to X.

The HP 48 provides a more general roll up/down capability with ROLL (roll up) and
ROLLO (roll down). These work analogously to Rt and RI, respectively, but you must
specify the number of stack levels you want to roll by placing the number in level 1.
Each command drops the number from the stack, then rolls that number of the remain­
ing stack objects. So 4 ROLL is equivalent to HP 41 Rt, and 4 ROLLO is the same as
RI:

Level Stack Contents
Before After 4 ROLL After 4 ROLLO

4: t z x
3: z y t
2: y x z
1 : x t y

Although ROLL and ROLLO move several objects at once, the primary purpose of these
commands is still focused on level 1:

• n ROLL means "bring the nth level object to level 1." That is, ROLL retrieves a pre­
viously entered or computed object that has been pushed up the stack by subsequent
entries.

• n ROLLO means "move the level 1 object to level n." ROLLO moves the level 1
object "behind" other objects that you want to use first.

SWAP and ROT (rotate) are one-step versions of ROLL. SWAP is equivalent to 2
ROLL; ROT is the same as 3 ROLL. 0 ROLL and 1 ROLL do nothing.

2.2.3 Copying Stack Objects
One of the strengths of RPN calculators is their ability to make copies of an object on
the stack, so that you can reuse it without having to store the object in a data register or

-16-

ti
Co,
t;
~,'

t.
t,
t;
t.~

t.:
t~
t:
t:
t,
t.
t ..
t:.
t>
t ' , .

t;

t,
•. '
t'
t'

•
t.'
t'
t'
t'
t'
t.'
t,
t

,

•

t'
t'
f' ,
f'~

The HP 48 Stack 2.2

variable. The simplest example of this facility is the HP 48 command DUP, which
makes a second copy of the object in levell, pushing the original copy to level 2, and all
other stack objects up one level. The HP 41 counterparts of DUP are RCL X and
ENTERt, although the use of the latter command is complicated by its extra feature of
disabling stack lift.

The HP 48 also lets you copy a block of stack objects with DUPN. The sequence n
DUPN, where n is a real integer, makes copies of the first n objects on the stack. The
order of the objects is preserved; for example

X Y Z 3 DUPN a X Y Z X Y Z.

DUP2 is a one-command version of 2 DUPN:

X Y DUP2 a X Y X Y.

In some cases it is desirable to copy an object that is not in levell, by bringing a copy
to level 1 while leaving the object in its original position relative to other objects. In the
HP 48, this combination of ROLL, DUP, and ROLLD is represented by PICK, the gen­
eral purpose stack copy command. PICK works like ROLL, returning the nth level
object to levell, but it leaves the original copy behind. The original therefore ends up
in level n + 1:

w X YZ 4 PICK a W X Y Z W.

DUP is the same as 1 PICK, and OVER is a one-step version of 2 PICK:

X Y OVER a X Y X.

Generally, you use PICK and ROLL when you are carrying out a complicated calculation
entirely with stack objects. When you need to use a certain object repeatedly, you use
PICK to get each new copy of the object. For the final use of the object, use ROLL
instead of PICK; then you won't leave an unneeded copy around after the calculation is
complete.

The HP 41 analogs of n PICK are RCL X, RCL Y, RCL Z, and RCL T, which are
intended for making copies of stack numbers (without disabling stack lift). Note that
RCL T is equivalent to Rt, since the original contents of T are pushed off the stack.

-17-

2.2 The HP 48 Stack t.

2.2.4 How Many Stack Objects?
Several HP 48 stack commands require you to supply an argument that specifies how
many stack levels the command will affect. Because this argument is always taken from
level 1, you might be uncertain about what the argument should beushould you count
levell, which contains the argument? The answer is noualways count the stack levels
you need before the count is entered into level 1.

For example, suppose the stack looks like this:

4: D
3: C
2: B
1: A

To roll D to levell, execute 4 ROLl. But notice that at the point when ROLL actually
executes, the stack is:

5: D
4: C
3: B
2: A
1: 4

Here D is actually in level 5. But don't try to compensate for this by using 5 as the
argument to ROLl. ROLL removes its argument from the stack before it counts levels
for the roll. All other similar commands, such as DUPN, PICK, ROLLD, -LIST, etc.,
work the same way.

DEPTH, which returns the number of objects currently on the stack, works in conjunc­
tion with this class of commands. The count returned by DEPTH does not include
itself--it counts the objects before the new count object is pushed onto the stack. (Every
time you execute DEPTH, the depth increases by one.) Thus DEPTH ROLL rolls the
entire stack, DEPTH -LIST packs up all the stack objects into a list, etc.

2.3 Recovering Arguments
HP 41 LASTX recovers the X-register argument used by a previous command, for two
general purposes:

1. To allow you to re-use the same argument for a new command.

-18-

t.
&.
t.
&:
&,
t.
&~

&.
a,
a.
t.
t:
.:
.'

.:

.'

t ..
I:
t.
t>
t ' .

•

I'
t'
t' .
t.' .
•••
.' .
.'
t' .
t' .

,
j

The HP 48 Stack 2.3

2. To help you reverse the effect of an incorrect command, by applying the inverse of
the command to the same argument.

These two purposes are split into separate operations on the HP 48:

1. The capability of recovering an argument for reuse is provided by the LAST ARG
command. It is important to note, however, that whereas HP 41 LASTX returns
only the X-register argument, LASTARG returns all of the arguments used by
most recent command--up to five arguments. (No built-in HP 48 command uses
more than four arguments, but the lASTARG system provides for up to five for
the sake of library commands. Commands like DUPN or ARRY, which appear to
use an indefmite number of arguments, are considered for this purpose to use only
one argument, which is the number or list in level 1 that specifies the number of
stack levels that are involved.)

The arguments saved by HP 48 commands are kept in a special area of memory
that is only accessible via LASTARG, rather than in an L-register that is almost an
extension of the stack as in the HP 41. Also, a wider variety of HP 48 commands
use stack arguments than is the case in the HP 41, so that the objects returned by
LASTARG change more frequently in the HP 48. For example, DROP and SWAP
both affect LASTARG, whereas HP 41 CLX and X<>Y do not affect the L­
register. Only HP 48 commands like STD or HEX, that use no arguments at all,
leave the LAST ARG objects unchanged.

2. The use of HP 41 LASTX in recovering from incorrect commands is replaced in
the HP 48 by the ILAST STKI (last stack--not programmable) operation. At the start
of ENTER, a copy of the entire stack is saved. When all of the objects processed
by ENTER have completed execution, you can cancel the stack effects of the
objects by pressing 1<101 !lAST STKI. This discards the new stack and replaces it
with the stack contents saved by ENTER.

3. The HP 48 I LAST CMol operation offers a third method for object re-use that does
not have a direct analog on the HP 41. The HP 48 saves each command line as it
is used, keeping up to four at any time. The saved command lines can be
retrieved by pressing ILAST CMol one or more times. Once an old command line is
reactivated, you can edit it or re-use it unchanged.

The objects saved for recovery by LASTARG, ILAST STKI, and ILAST CMol can consume a
substantial amount of memory if the objects are numerous or large. In some cases, this
use of memory can actually prevent you from carrying out various operations. For this
reason, the HP 48 gives you the option of disabling any or all of these features (and also
the command stack), by means of the appropriate keys in the 1<l,IIMOOESI menu. You
can also enable or disable LAST ARG by respectively setting or clearing flag - 55.

-19-

2.3 The HP 48 Stack

Two notes:

• Disabling LAST ARG prevents commands that error from returning their arguments
to the stack. This makes it harder to recover from an error, and also affects the
design of error traps (section 4.6).

• If there is insufficient memory available to save the current stack for LAST STACK,
the HP 48 shows the error message No Room for LAST STACK, and automatically
disables ILAST STKI. This last step is necessary, since you would otherwise be unable
to do anything--including trying to free some memory. All commands would fail as
the HP 48 tries to save the stack rust.

2.4 An Example of HP 48 Stack Manipulations
The following illustrates the use of several of the HP 48 stack commands. By following
the steps, you can observe how to copy, move, and combine stack objects.

• Example. Write a program that computes the three values

P+A+B
P + B·F + AIF
P + B/F + AF,

leaving the results on the stack. Assume that P is in level 4, A in level 3, B in level 2,
and F in level 1.

• Solution:

« 4 ROLLO 3 OUPN 3 OUPN + +
8 ROLLO 7 PICK * SWAP 7 PICK
I + + 5 ROLLO 4 PICK
I SWAP 4 ROLL * + +

»

To help you understand this program, we will show the stack contents at each step,
using using symbolic names throughout the calculation.

Steps: Results:

(Start) 4: 'P'
3: ' A'
2: 'B'
1 : ' F'

-20-

t
t
•
t
t
t
t
t,
t
t
• ,
•
•
•
t
•
• ,
•
•
t·
t'
e

,

t'
,

t,
.'
."
.'
••
.'
."
.'
.'
t·
a' -..

•

The HP 48 Stack 2.4

4 ROLLO 4: ' F'
3: ' p'
2: 'A'
1 : 'B'

30UPN 7: ' F'
6: ' P'
5: ' A'
4: 'B'
3: ' P'
2: ' A'
1 : 'B'

30UPN 10: 'F'
9: ' P'
8: ' A'
7: ' B'
6: ' P'
5: ' A'
4: ' B'
3: ' P'
2: ' A'
1 : ' B'

+ + 8: ' F'
7: 'P'
6: ' A'
5: 'B'
4: ' P'
3: ' A'
2: 'B'
1 : 'P+ (A+B)'

• 8 ROLLO 8: 'P+(A+B)'
, 7: ' F'
I 6: 'P' ,

5: ' A' ,
4: ' B'
3: ' P'
2: ' A'
1 : ' B'

-21-

--.....
,
~,

2.4 The HP 48 Stack t,
~ .
•

7 PICK 9: 'P+ (A+ B)' t.
8: 'F' ~.
7: ' P' ~.
6: 'A' .'
5: 'B' .'

4: 'P' t.
3: ' A' t.
2: 'B' .:
1 : ' F'

•
* SWAP 7 PICK 9: 'P+ (A+ B)' t.

8: ' F' t.
7: ' P'
6: ' A'

*: 5: ' B'
4: 'P' t'
3: 'B*F'
2: ' A' ...
1 : ' F'

-
/ + + 6: 'P+ (A+ B)' t'

5: ' F' t-
4: ' P'
3: ' A' t:
2: 'B'
1 : 'P + (B*F +A/F)'

5 ROLLO 6: 'P+ (A+ B)'
5: 'P+ (B*F +A/F)'
4: ' F' .~
3: ' P' .'
2: ' A'
1 : 'B'

4 PICK 7: 'P+(A+B),
•

6: 'P+ (B*F +A/F)' t 5: ' F'
4: ' P'
3: ' A'
2: 'B'
1 : ' F'

-22-

I

,

"

,

,

,

,

,

,
•

,
•

,
•

\ ,
•

The HP 48 Stack

/ SWAP

4 ROLL

* + +

6:
5:
4:
3:
2:
1 :

6:
5:
4:
3:
2:
1 :

3:
2:
1 :

2.4.1 The Easy Way: Local Variables

'P+(A+B)'
'P+ (B*F +A/F)'

' F'
'P'

'B/F'
' A'

'P+(A+B)'
'P + (B*F +A/F)'

'P'
'B/F'

, A'
, F'

'P+(A+B)'
'P+ (B*F+A/F)'
'P+ (B/F +A*F),

2.4

The preceding example illustrates the use of 48 stack manipulation commands, but it
does not necessarily represent the best way to solve the problem. Keeping track of
numerous objects on the stack takes considerable care when you are writing or editing a
program. In general, manipulating objects on the stack in a purely RPN manner yields
the most efficient programs. However, there are other programming techniques that
are easier and produce more legible programs.

If you were writing the above program on the HP 41, you could not carry out the exam­
ple using only the stack, since as many as ten stack levels are needed. You would have
to store the initial values in registers, then recall each to the stack as it is needed in the
calculations. You can do the same thing in the HP 48, using variables instead of regis­
ters (Chapter 3), but this has the disadvantage of cluttering up user memory with a lot
of variables, which you mayor may not need after the program is fmished. The cleanest
method is to use local variables.

Using local variables, the solution to the problem in the preceding section is represented
by the program object listed below. In the program, the sequence - p a b f takes the
four initial values off the stack and assigns them to local variables p, a, b, and f (here
we are using the convention of lower-case characters for local names). The rest of the
program computes the three results, then discards the local variables. The obvious

-23-

2.4 The HP 48 Stack

advantage of this method is that you can write the program "instantly," since the pro­
gram so closely resembles the written form of the expressions you are trying to com­
pute. The use of local variables is explored in detail in section 4.7.

« ... p a b
« 'p+a+b'

'p+b*f+ajf'
'p+bjf+a*f'

»
»

2.5 The Interactive Stack

f
EVAL
EVAL
EVAL

In the HP 41, the easiest way to see the objects in the Yo, Z-, and T-registers is to roll
the stack up or down. However, that has the disadvantage of changing the positions of
the stack contents, so that you have to remember to restore the original state if you
want to continue with a calculation. A less disruptive method is to use VIEW, which
replaces the normal X-register display with a temporary display of the specified register.
On the HP 48, rather than rolling the stack around, you can copy any object to level 1
without disrupting the rest of the stack, and then drop it to restore the original stack.
Furthermore, the HP 48 also provides the interactive stack, which lets you view any stack
object by scrolling the display up the stack. The interactive stack also lets you rearrange
the stack by applying stack commands to objects in various levels selected by a pointer
rather than a stack level argument.

The interactive stack is activated by pressing [K] when there is no command line or at
most a single-line command line active, or by pressing ~ ISTK ~ (in the 1<r,IIEDITI menu)
when there is a multi-line command line. The interactive stack menu appears, and the
colon in the level 1 indicator 1: changes to a triangle pointer, to show that the level 1
object is currently selected:

0[ME}

4:
3:
2:
1.,
ECHO VIEW

"Ex le"
Ttl

3.1415926535
PICK FiOLL FiOLLD ~LI:S:T

-24-

t,
t
t
t
t.
t
t
t
t.
t,
t
t
t.
t
t
t:
,
t
t,
t
.'
.'
.'
t' ,
t' ,

,

, ,

, ,

, ,

,

,

,

The HP 48 Stack 2.5

Note that the stack is redisplayed in single-line format, so that four stack levels can
appear in the display. Pressing CKJ moves the selector to level 2; pressing the key
repeatedly moves the arrow to the top of the stack display and then begins scrolling
objects from higher levels into the window. 1 <l, 1 [1;] moves up four levels; 1 ri> 1 [1;] moves
the arrow to the highest stack level. You can also move the arrow down using [5[] , 1<l11
[5[], and ~[5[].

"Selecting" an object consists of moving the arrow to point at it; the stack level number
of the selected object is then an implicit argument for the stack operations that appear
in the menu. For example, to move the object in level 5 to levell, you press CKJ five
times (or CKJ and 1<l,ICKJ, then press ~ROLL~. This is equivalent to executing 5 ROLL,
but is easier because the very act of moving the pointer up to level 5 to see where the
object is not only automatically activates a menu containing ROLL, but also saves you
from having to enter the 5.

The other operations in the interactive stack menu are reasonably self-explanatory, with
a few observations:

• ~ECHO~ is for copying an object to the command line when you want a new copy of
the object, either to modify it to make a new object, or to embed it in a command
line sequence. It differs from EDIT or VISIT in that the new command line object
does not replace the original stack object.

• ~ removes the selected object from the stack. It is equivalent to n ROLL DROP.

• ~KEEP~ discards all stack objects in levels above the selected object. It is intended
for manual stack cleanup, and has no programmable equivalent since generally it is
not a good idea for a program to discard objects that might have been on the stack
before it began execution. It is, however, easy to write a program to replicate
~KEEP~ :

KEEPN

...

objects

« -LIST - temp

«CLEAR temp»

OBJ- DROP
»

Keep N Objects

level 1 I ...

n n objects

Combine n objects in a list, save as temp.

Clear the stack, return the list.

Put the saved objects back on the stack.

Executing n KEEPN discards all stack objects in levels above level n.

-25-

4DB5

2.6 The HP 48 Stack

2.6 Managing the Unlimited Stack
In our review of HP 48 stack manipulation commands, we have described the differ­
ences between the HP 48 commands and the similar commands provided by the HP 41.
In addition to these individual command differences, there are also several general
aspects of the use of the HP 48 stack that will require some adjustment if you are used
to the HP 41-style stack. In the following sections, we will outline some of the significant
differences in stack management between a four-level stack and an unlimited one.

2.6.1 Stack Housekeeping
The obvious key difference between the HP 48 and HP 41 stacks is that the HP 48 stack
can contain an unlimited number of objects, whereas the HP 41 and all other previous
RPN calculator stacks have been limited to four registers. An important advantage of
the unlimited stack is that objects are never lost by being pushed off the end of the
stack when a new object is entered. This is also a mild disadvantage--if you don't clear
objects from the stack when you're through with them, more and more objects will pile
up. This not only wastes memory, but can even slow down execution, since the calcula­
tor has to keep track of all of the stack objects. It can also be distracting to see old
objects appear in the display when you've long since forgotten their purpose.

A general recommendation for HP 48 stack management is to clean up the stack after
you have finished a calculation. By all means pile up as much as you want on the stack
while you are working through a problem--that is the stack's purpose. But when you're
finished, empty the stack. You can do this either at the beginning or the end of each
calculation. We recommend the latter, since at that point you will best remember what
each object is, and whether it's all right to throw it away.

"Clean up the stack" doesn't always mean to drop every object, or to use CLEAR. You
may very well want to keep certain objects, by storing them in variables, or by using the
interactive stack to delete individual objects. Notice that the STO command removes
the object being stored from the stack, reducing the number of objects on the stack.

Occasionally you may need to interrupt one ongoing keyboard calculation in order to
perform another, but wish to resume the suspended work later. In this case it is not
appropriate to clear the stack with CLEAR to provide an empty stack for the new calcu­
lation. You could take the trouble to save each object in a variable, but this can be
tedious, and doesn't guarantee that you can reconstruct the stack order of the objects.
The solution is to preserve the entire stack in a single variable by combining the stack
objects into a list. This is easily accomplished with the interactive stack:

Irl>lUSJ §-LlSH IENTERI

Now you can store the list into a variable named OLDST (for example) by typing

-26-

C
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t.
t
t
t
t
t
f
t
t
•
t'
t'
t'
t'
t
t'
t'
.'
t,
t
t
.'
.'
L'

•

,

,

,

,

, .

, .
, ,

. ,
,

, I ,
\ .

,

The HP 48 Stack 2.6

, OLDST' ISTOI. This leaves the stack clear for new calculations. After completing any
number of subsequent operations, you can restore the old stack by pressing

IVARI '§OLDST'§ , IPRGI '§OBJ'§ ~.

(The DROP performed by ~ removes the object count returned by OBJ)

In a program, you can duplicate the above keystrokes with:

DEPTH ... LlST 'OLDST' STO

to save the stack, and

OLDST LIST ... DROP

• to restore It.

Another way of temporarily preserving the stack contents is to execute HALT (in the
IPRGI '§BRCH'§ menu). When a program (including the command line considered as a
programnsee section 2.8) is suspended by HALT, a new copy of the stack is saved which
is independent of any previous ones. This means that you can do anything you want to
the stack, including clearing it entirely or using I <I,III.AST STACKI , without affecting the
copy of the stack saved before the HALT. Then when you want to return to the original
saved stack, just press 1<IolicONTI followed by 1<I,IItAST STACKI.

2.6.2 A Really Empty Stack
An important property of the HP 48 stack not shared by other RPN calculators' stacks
is its ability to be empty. That is, when you clear the stack with DROP or CLEAR,
there's nothing left. If you try to execute a command that requires arguments, you'll get
an outright error--Too Few Arguments. The HP 48 makes no attempt to supply default
arguments.

On an HP 41, the stack is never empty. CLX puts a zero in the X-register; CLST (clear
stack) fills all four stack registers with zeros. This is handy if you happen to use a lot of
zeros in your calculations, but the primary reason that the HP 41 works this way is that
the stack registers are fIxed-size memory registers that are always present. "Clearing a
register" means resetting all the memory bits to 0, which is the internal representation
of the floating-point number zero.

Zero is not such an obvious choice for a default value in the HP 48, since the calculator

-27-

2.6 The HP 48 Stack

doesn't know what type of calculation you are doing. A null matrix, an empty string or
list, and the complex number (0,0) are just as good choices as floating-point zero,
depending on your current work. So the HP 48 avoids the problem by never supplying a
default. When the stack is empty, it's really empty.

You can turn this property to advantage. The following sequence adds all of the
numbers on the stack, no matter how many there are:

WHILE DEPTH 1 > REPEAT + END 'TOTAL" TAG

The sequence is an indefinite loop (section 4.5.2) that keeps adding (REPEAT +) as
long as there is more than one object on the stack (WHILE DEPTH 1 », then quits,
leaving the labeled total in level 1. This routine is useful when you must add a column
of numbers--you can enter all of the numbers onto the stack, use the interactive stack to
review the entries, then perform all of the additions at once. Notice that if an empty
stack were treated as if it were filled with zeros, there would be no way for the program
to know when to stop adding.

2.6.3 Disappearing Arguments
The HP 48 itself takes some steps to insure that unnecessary objects don't pile up on
the stack. In particular, most commands that use stack arguments remove those argu­
ments from the stack. You may fmd this surprising, but it is quite reasonable; for exam­
ple, you wouldn't expect the sequence 1 2 + to leave the 1 and the 2 on the stack as
well as the answer 3. But it may be a little disconcerting the first time you use STO on
the HP 48, to see the object you just stored disappear from the stack--especially by con­
trast with HP 41 STO, which leaves a copy of the stored object on the stack.

If commands did not remove their arguments from the stack, you would have to take
the trouble to drop them when you no longer need them. On the other hand, since HP
48 commands do remove their arguments, you must remember to duplicate them before
executing commands on those occasions when you want to reuse their arguments. The
HP 48 chooses this approach for these reasons:

• Consistency with mathematical functions. When evaluating expressions, you never
want mathematical functions to leave their arguments on the stack--otherwise, the
whole RPN calculation sequence would be disrupted.

• Stack "discipline." The fewer objects that are on the stack, the easier it is to keep
track of what they are.

• Efficiency. It's easier to duplicate or retrieve a lost argument than it is to get rid of
an unwanted one.

-28-

4
4
t
C
C
C
t
t
t
t
t
t
(

t
t
t
t
t
t
t
t
t
t
t
•
•
t
t
t
t'
t'
t
I'
t'
t·
t,
t,

\
"

I '0
, ,
, ,

•
I •

• •

, ,
• •

• ,

"

,
•

The HP 48 Stack 2.6

To illustrate the last point, consider obtaining a substring from a string:

"ABCOEFG" 3 4 SUB u "CO".

This sequence returns only the result string "CO"; the original string "ABCOEFG", and
the 3, and 4 that specify the substring are discarded. If you want to keep the original
string, add a OUP after the original string object:

"ABCOEFG" OUP 3 4 SUB u "ABCOEFG" "CO".

If SUB left its arguments on the stack, the original sequence would yield a fmal stack
like this:

In that case, to leave only the result on the stack, you would have to add 4 ROLLO 3
OROPN to the sequence. If you only want the two strings, you would have to add ROT
ROT OROP2. Either of these is more complicated than adding a OUP to the start of
the sequence.

When you use STO to preserve an intermediate result in the middle of a calculation,
you may prefer to keep the result on the stack so that you can continue the calculation.

, In this case, just execute OUP (press IENTERI if you're working from the keyboard)

•

,

•

before you enter the variable name for the STO. If you forget, the stored object is
always available by name in the VAR menu.

2.6.4 PostfIX Commands
The HP 48 feature that perhaps takes the most adjustment by HP 41 users is the exten­
sion of postfix syntax to commands that use a prefix form in the HP 41. A postftx com­
mand is executed after its arguments are entered; a preftx command, like HP 41 STO,
SF (set flag), FIX, etc., is specifted before its arguments.

For preftx commands, the "arguments" don't go on the stack at all. When you're work­
ing with a ftxed-depth stack, you can't afford to lose objects from the end of the stack
whenever you store an object or set the number of display digits. Instead, these HP 41
co~mands use a syntax that combines the argument with the command into a single
tlmt. For example, when you press ISTOI , the display shows STO __ , indicating that
STO expects an argument in the form of a two-digit number (which identiftes the data

-29-

2.6 The HP 48 Stack

register). You must then press two digit keys, following which the store is actuallyexe­
cuted. When you include STO in a program, the STO nn is treated as a single program
line.

One important reason for the HP 48 to abandon the prefix syntax is the inflexibility of
that form. In the HP 41, STO always requires a two-digit prefix, which is a nuisance on
a calculator with up to 319 data registers, since it limits direct storage to registers ()()
through 99. It's not so bad for FIX, SCI, and ENG, since a single-digit argument allows
you to specify all possible display formats. But since the HP 48 has 8-byte floating-point
nnmbers, you can display up to 12 mantissa digits, so that a 1-digit prefix syntax for
these commands is inadequate.

The HP 48 uses a postfix syntax for all of its commands, including those that correspond
to HP 41 prefix functions. This provides:

• Consistencynall commands work the same way. You don't have to remember which
commands are prefix and which are postfix.

• Flexibilitynno restrictions on the nnmber of digits or characters in the argnments.
FIX, SCI, ENG, SF, CF, etc., use floating-point numbers as arguments, so they are
not limited to one or two digits. STO, RCL, etc., work with variable names that have
any number of letters.

• Computed argumentsnargnments can be computed using any other HP 48 opera­
tions, as well as entered manually.

The last point means that there is no necessity in the HP 48 for "indirect" addressing as
it is defmed in the HP 41. Indirect addressing is the case for which a command argu­
ment is not contained as part of a prefix command syntax, but is stored in a register.
The number of the register is specified as the argument for the indirect form of the
command. For example, in the HP 41, the indirect command STO IND 01 means
"store the number in the X-register into the register specified in register 01." You use
indirect addressing when you don't know a command argument in advance, but must
compute it. This often occurs when you are working with a set of sequentially num­
bered data registers, as in matrix operations.

To reproduce the effect of indirect addressing in the HP 48, you can defme a variable
named INDEX (for example) to play the role of an index register. You store the name
of the indirectly referenced variable in INDEX. Then the sequence 'INDEX' RCL STO
is equivalent to STO IND 01 (where we have arbitrarily chosen register 01 to be the
index register) on the HP 41. Assuming that the object you want to store is already in
levell, executing 'INDEX' RCL puts the name stored in INDEX onto the stack, pushing
the first object to level 2. Then STO is ready to go, with its arguments correctly

·30·

,
t
t
t
t
t
t
t
t
t
t
t
(

t
t
t
t
t
t
t
t
t
t
t
t'
t
t
t
t
t,
t
t'
t'
t
t·
t,
t
t
f'
t'
.' .,.

,

,

\

\ ,

,

,
,

\

\

,

,

,

,
\

,

, ,

,

-

,

, ,
,

\

I

I

The HP 48 Stack 2,6

positioned on the stack.

You will probably fmd that there is no real need for this HP 41-style indirect addressing
on the HP 48, because it provides automatically indexed structures--arrays and lists. For
example, suppose you want to create a sequence consisting of the reciprocals of the
integers 1 through 10. On the HP 41, you might write a program as follows:

01 LBL"RECIP"
021.010
03 LBL 01
04 ENTERt
051NT
061/X
07 STO INO Y
08 RON
091SG X
10 GTO 01
11 END

Set up an index for 1 through 10.

Copy the index.
Take the integer part.
Compute the reciprocal.
Store the reciprocal.
Discard the copy.
Increment the index.
Loop.

This program stores the 10 reciprocals into registers 01 through 10. An HP 48
equivalent is the following program RECIP. This program returns the reciprocals
together as the elements of a list object.

RECIP

« 1 10

FOR x
x INV

NEXT
10 -LIST

»

=
Compute 10 Reciprocals

I level 1

{ reciprocals }

Put loop parameters on the stack.

Start a loop with x as the index.

Compute the reciprocal of x.

Loop.
Pack up the 10 reciprocals into a list.

Notice that in the HP 48 program, you can keep each successive reciprocal on the stack,
whereas on the HP 41 you have to fmd a block of unused registers big enough to hold
the separate results.

2.6.5 Stack-lift Disable
"Stack lift" is the RPN calculator process in which entering a new object "lifts" the pre-

•
VlOUS contents of the stack into higher levels. In the HP 41, certain operations tem-
porarily disable stack lift, so that a subsequent a no-argument operation which returns a

-31-

2.6
, , Tt:!e HF 48 Stack

I , , , :

r~sult to the stafk qve~lrit7:s the cpnt~11ts pf the ~-r~gist7:r ~th the res~lt r~th~r' than
lift~ng ~he ~tac~. This feafure~ wqich origin~\y dpriv~d ffom th~ m~mory li'llit~tio~s of
t~c ~U'st ¥P~ ~cul~tor~ ~~ h~s c~rried oyer VIto lat~r Pfod~cts, is ~ot pre~pnt in *e
HP 48. '

The purposp of stllick-lift Pisaple centers aroun4 th~ beha\jorof C;;LX in a qllle-\ine
, , I , I I I , I I"", I, 'I I , '

di~pla}: c,!Jculator,. The fIrst ~PN ca\cul'!tor~ wpre ch,¥'act~rized py very liUlite~
, ' I , ' I I " I , I I ' I ,I "I" I , '

~elIlory. Tl;J.ey cou~d ~pt <iftor~ thp l~mry of havtlllg ~ separ~te ~egi~ter for ~igi~ enp')',
so JtlWlj.ber~ Were ~eyed diJ'ectly into ~he *~register. psually you dOIft ~ant to qveryvrite

I " I , ,,' ,I I ,,' I ,~ ,I I I. I I. I I" '

the qumper rurefhdy in X;, so the calcul~tor~ proyid7:d t~at ~ntr)l of a npw puIItber "lifts"
th~ exi~tin~ st~ck 5ontpnt~ int~ hipe~ re~step. ~~O\y su po~c that XOU ~tart to enter' a~
lilcoqect Illul}lber, al}d sfart pre~sm~ @] t~ re~ove it. ~psiqer ~hat shguld haIJpe~ if
you prel>S t~e back:·arrpw too Jllany tinies, at least on~e ~fter the lasf renlaining Ui!Prt of

,I ,,. I I. I, I ,I I, I I, ,,',' I " , ,. I,

tqe n~wl~ eny:re9 nll;mbei'. yo~ wopldIl;~t want that to ~rasp th~ nqmb~r t~at ~yas preyi-
pusly ~ the X-register~ so L~ ! wa~ de~igned t? st9P e~as~g ~, this c~se ~l1d just ent~r a
z~ro il;1to the X-r~gi~fer. But siIJ,ce ~hat zerp h~s npthipg tp do with ~th your c~lcul~­
fion, an~ wjll ~ost likdy Nst be ~ t~~ wfhY, ~he ~en~ en~ll')' ~s cguplpd ~ith a stack~lift
di~able. The pext nu~ber Y~)l e~ter ove . wr~tes ~he pha~to~ zero. For si~ilar re~son~,
CLX wo~ks ~he ~amp w~y (~Illd, in fact, ~ on the HP 41 just perfonps ~LX)lVhel1 digtt
en~ry i~ n~t ac~ive 1.
WIty d?esq~t qLX just drop t~e s~ack? Tpe ~s~er !j; a psy~holpgi~al q{le. M~ny peo~
p'e, espefially if they're us~d t~ ~gebraic cal~ulafors (w~ich ~ical'y requife you to
pre~:s tqe c~ear lcey to ~tart ne~1 calcul~tio~s), like the se~~e 9£ "~cle~n ~'ate'~ s~gge~ted
by a zpro. ~ altern(,\tive mi~t pe to show III blank disIllay, but then yqu ~ouldn't kno~v
If'the clli1cu\ator 'w,!s tllrneli op. ~ltho~g~ wtth ,!n ~PN 'sta!Ck ,1's llever n~cessary to
, , I ' I I , I I , I " I I, I" I , I, , , I I I

clear 3iJtlytping to begin a ne~ C(,\lculati~p, a zero ~ thf dil>play w~en you start i~le~s
, , I ,,, ", I ' , , I , I , I I , , I ' , I , I , I ' , , '

~Ptr~l>iv~ th~{i sgme othpr ~1rUD~er ~pat you mi~lt Il;pt reco~ni~.
..

The HP 48 elipin~tes the need fpr ~tac~.lift di~able bX prpviding a cpm~an~ lipe,
wh~re you can entfr ap objec~ wit\1out di~tur~ing ¢he j;tadt d~rin entl')'. Si~fe ~n orjecl
lil the cOJll~and line is f10t ~n ~~le ~tac~, yqu ~n ~pan~on it (. 0 .. , pr ~ repeate~ly
to empty t~e lipe) wit~out haWtg to l~ave a ~ro as ~ pl~ceqoldpr op t~e stflck: F~rth~
ermo~'e, if yqu ~ant to get rid of an qbject t~at's alrpady 0,/ thf: stllick, you, Cllll u~e
DR9P (~.)~ w~ch ~iso/ds th~ ob~ect ~d dnws the fem~in~g 9pjects qr1' t~,~ s~ack
on,e leyel. '

I , , '

Tqe I-fP 41 c~mIItand~ th~t dlsable s~ack~lift are ENTE~ t, 9J(, ~ +" a~~ ~:-. The fir~t
two cOlIlmapds ,ea~h sprve d~a1 IJurppses" C;LXca~ be used either tq e~lni~ate an
uny,anted pUlIlber frq~ t~e ~¢acf,or ju~~ to ent~r ~i zero. ENTERr acts ~ithe~ t~ ter~
rpin~te qigit entry, ~r t~ cgpy ~he X-regisy:r ifIto ¥. On the HP 48, the twp r?les of
each of th~se gper~tiofls ~e sppa~ate4, a~ shqwn in Table 2.2 in ~ectlon 2.8. Thp Hf 4~

-32 .. ,
"

,
t
•
t

,

I
~,
t

•
t

•
t

, ,

I
t , ,
t
• t
••
t

,

t
~,
t
,
t

• t1
,

t
~;
t,

•

· ,

,
,

•

·
I

·
I

,

,

· , t,

(,

.,. · .

2.6

~llmp.atipn com~l~~s ~ + lIDd iE - disable stack-lift in order to return a running count
of the nllIllber of 4ata poipts lhat have been accumulated to the X-register, while allow­
~g ypu to o~erwrite the c01l;nt Wth the next data entry if you wish. The HP 48 uses its
display'~st~tusare~ to ~hOf{ bpth the last data point and the count when k+ is executed
froin the ST A.T I)1enl,l, sp that it does not need to disturb the stack. Furthermore, the

" I I I I I

J~st~poipt q~spl~y i~ a ~rop'er~ of ~he ~enu. rather th~ any individ~al c~mmand like
k + so that the promptmg informatIon IS available any time the menu IS actIve.

, " I ' " ' , , , , , I

~/1 ~4e ~/Ief.ln~n~ of ENTER
The unmi~taklj:ble hallmark of RPN calculators has always been the double-wide key
IENTEBTI tIiat YOll sep instead qf an algebraic calculator'S I = I key. That familiar key
(mipus the arww) is still the focal point of the HP 48, but its action has been extended

I ' ,I , I " ' I

~ong wit~ otper lIP 28/18 gene~alizations of traditional calculator RPN .
. . .

In all RP~~ ci!!1culators in,c:luqrng the HP 48, the fundamental purpose of ENTER is to
I " I " I , I I ,

terD)inate opject entry. In pre:HP 28 calculators, the only objects that can be entered
" , ' , ,I ,

directly oQto the /itaclc are real numbers, so that terminating entry means only turning
I I , I '", , , ,

?ff qigit ent. tl)ode and le~lVing the completed number in the X-register. In these cal-
cu~ato~s, ENTEfuJ popips ~pe fontents of the X-register into Y, and disables stack-lift.
lJowf'ver"thi~ secon~ rqle qf ENTER t really has no necessary connection with the first;

,,,,,, ,," I

it just ilappens to be t4e way it was first designed on the HP 35, and has remained ever
I I , , I I ' I I

since on tIP FPti calcul"tor~ until the arrival of the HP 28C.
" I ,I ' I , ' I

I~ th9 Hf ~. E~ITER rf'taips t~e basic action of terminating entry and entering new
pbje~ts. Howewr, because the HP 48 replaces ordinary calculator digit entry with a

, '.. I , " , ' '

~ojDmand lin~ that ~an eontain any number of objects and commands, ENTER can
~vo~e ~lmqllt apy 9f t~e c~1culator's capabilities as well as just entering numbers onto
the st~~k. (T~e seconfiary ro~~ of duplicating the object in level 1 is provided separately
~Y th~ cqrnD)an4 Dyr. To pre~erve more keystroke consistency with HP 41-style calcu­
latqll's, the HP 48 IEN"T:EIlI key executes DUP if you press it when no command line is

. ,

Pfesept. ¥ Ou. shpuld,recolmize this as only a keyboard convenience, not a property of
ENTER itself.)' .. ,cry

The ba* dpfin,tiol) of fhe 1IP 48 operation ENTER is:

Takf' th~ text in the c011'lmand line, check it for co"ect object syntax, then
treat if as (J prrgra,m a,nd ((Xecute the objects defined there.

I ' I ' I ,

::v.'hi~ is a Illuc~ .. elapor<lted version of the old "terminate-digit-entry and enter a number
ollto. f~e Ilta~lc," put ~n sin1ple 9'ses, it amounts to the same thing. If you press a series
~f 4lgIt ke¥s, t~en [ENTERI , y~u will end up with a number in level 1. The same key

, '"

-33-

2.7 The HP 48 Stack

sequence on an HP 41 yields the same result, except that the number is also copied into
the Y-register.

On the HP 41, you can also terminate digit entry by pressing any key other than a digit
key. In effect, the non-digit key first terminates digit entry then executes its own key
definition. But it is not correct to say that the key performs ENTERt, because no
second copy of the number is created, nor, in general, is stack-lift disabled. In the HP
48, however, many keys do literally execute ENTER, then their own defmitions. This
feature, called implicit ENTER, is provided for keystroke similarity with previous RPN
calculators, and for keystroke efficiency. Pressing the IENTERI key itself is called explicit
ENTER.

An example of the use of implicit ENTER is the sequence IT] IENTER! [2J IT]. This
adds the 1 and the 2, just as it always has in HP RPN calculators. At the time you
press IT] , the 2 is still in the command line; the implicit ENTER performed by IT] puts
the 2 on the stack before the addition is performed.

Note, however, that the sequence IT] IENTER! [2J IENTER! IT] does not give the same
results on an HP 41 and on the HP 48. The second ENTER on the HP 41 duplicates
the 2, so that the IT] adds 2+2 and leaves the 1 in the Y-register. In general, when you
key in a number, then press IENTER!! n times, you get n + 1 copies of the number (up to
four). On the HP 48, the same sequence produces only n copies--the first IENTER! moves
the number from the command line into level 1; each subsequent press executes DUP
once and makes one copy of the number.

In general you can use ENTER on the HP 48 pretty much the same as you would on the
HP 41, that is, after every data object that you key inn explicitly by pressing IENTER! , or
implicitly by pressing a command key. To make use of the many-objects-at-a-time capa­
bilities of the command line, just think of the command line as a "instant" program.
You write this program, execute it, and purge it all in one operation.

-34-

" t
\)
t:
t
,'.
t

" t\
t.
,
t:
I
t
t,
t

" t'
t
,
t'
t
,
t
t,
t
•
•
t'
t
•
•

•
t
•

•
•

•

,

,

,

, ,

I

,

[

The HP 48 Stack 2.7

2.8 HP 48 Translations of HP 41 Stack Commands
Table 2.2 lists the nearest HP 48 equivalents of the HP 41 stack manipUlation com­
mands.

Table 2.2. HP 41 and HP 48 Stack Commands

HP 41 Command Purpose

CLX Remove last entry
Enter a 0

CLST Clear the stack
Enter four O's

X<>Y

Rt

RDN

ENTER!

LASTX

RCLX

RCLY

RCLZ

RCL T

Exchange X and Y

Roll up four levels
Roll up the entire stack

Roll four levels down
Roll down the entire stack

Terminate digit entry

Duplicate X into Y

Recover last argument
Correct an error

Copy X

CopyY

CopyZ

T

-35-

Nearest HP 48 Equivalent

DROP
o

CLEAR
o DUP DUP2

SWAP

4 ROLL
DEPTH ROLL

4 ROLLD
DEPTH ROLLD

[ENTERI or any delimiter
or separator character
DUP

LASTARG
[<1.., [[LAST STACKI

DUP

OVER

3 PICK

4 PICK

&
,
~
t
t
,
t
~
t.
t
t
t.
t
..
t
t
t.
t,
t
t
t,
t.
t.'"
t.
t­
t
t
t
t
t
t
t
I'
t
t'
t
t
t
t'
t
t'

-
•
•

i ,
•

I.

3. Variables
The HP 48 stack evolved from the ftxed-size number registers of the HP 41 and its
predecessors into a more flexible mechanism for working with objects of varying types
and sizes. For similar reasons, the HP 48 replaces the HP 41's data registers with a
general storage system in which objects are stored in named variables. Variables are
similar to stack levels in that each holds one object of any type. But whereas the stack
levels are numbered, and the order of stack objects is important, HP 48 variables are
named with words, and their order is unimportant. A name is the means by which you
access the object stored in a variable, and it also serves to label the variable, acting as a
mnemonic form of register "number." With numbered registers, you must keep a men­
tal or written record of what is stored in each register. By choosing appropriate variable
names, you can substantially reduce the need for such records on the HP 48.

There are three kinds of HP 48 variables: global, local, and port variables. The discus­
sion in this chapter focuses on global variables, which are most closely related to HP 41
storage registers. Local variables are "local" to specifIc programs; they are discussed in
section 4.7. Port variables (backup objects) play a role similar to that of HP 41
extended memory registers, with the added advantage that the memory cards that con­
tain the port variables can be used for data exchange between calculators and for
archival storage.

In HP 48 terminology, a variable is "a combination of a name object and any other
object that are stored together in memory." Looking at each part of this deftnition:

• A combination ... A variable has two parts, the name and the other object. You can
visualize a variable as a labeled box--the name is the label, the other object is the
content of the box. The label is permanent, but you can change what is stored in the
box.

• of a name ... You always refer to a variable by its name. The name ftlls the role of
the storage register number in the HP 41.

• and any other object ... The contents of a variable can be any single object, of any size
or complexity. You can only store one object in a variable, but if you want to store
more, you c.an combine any number of objects into a list, then store the list in a vari­
able.

• that are stored together ... The name and the object are in fact contiguous in memory,
but it is the logical combination that is signiftcant, not the details of the storage .
•

• In memory. Global variables are all stored in a portion of memory called user
memory, or VAR memory in connection with the IVARI key. User memory can be
organized into a directory system similar to that used on personal computers, by
storing objects called directories. A directory is a collection of variables that is itself

-37-

3.0 Variables

an object, which you can put on the stack or store in a variable. The home directory
is a built-in, permanent directory that contains all global variables including other
directories.

HP 48 variables are an electronic realization of mathematical variables. In an expres­
sion like x +2, you understand that x stands for some specific quantity (the value of x).
The implication is that at any time you can substitute the value for the symbol, and actu­
ally carry out the calculation prescribed by the expression. In the HP 48, name objects
are the symbols for variables. Executing a name replaces the symbol with the variable's
value, which is the object stored in the variable.

You can only use an object stored in a variable by means of the variable's name. For
this reason, it is often convenient to blur the distinction between names and variables by
using the terms interchangeably, particularly in a mathematical context. We speak, for
example, of the variables in an equationnactually, only the names are literally present in
the equation. A /ollllal variable in the HP 48 is a name for which no variable exists.
The name potentially represents a value of some kind; the value becomes defmite when
you store an object in the variable.

Also, in many situations it is convenient to refer to the object stored in a variable by the
name of the variable. For example, if you create a program object, then store that pro­
gram in a variable Damed PROG, you can say that you have named the program
"PROG." Strictly speaking, this is not correct since the program has an existence
independent of any name (for instance, you can recall the program object to the stack,
where it is nameless). What you have done is associated the program and the name by
combining them into a variable. The association may be temporary, or you may keep it
indefinitely; but as long as it is current it makes sense to refer to the program simply as
PROG rather than as "the program stored in the variable named PROG."

3.1 Creating Global Variables
HP 41 data registers are created by SIZE, which reserves memory for a specified
number of registers. Newly created registers initially contain the real number zero as a
default value. You can not create or delete individual registers; commands that "clear"
a register actually store a zero there. You also can not store in a register that has not
been previously created by SIZE.

The HP 48 has no analog to HP 41 SIZE. A new variable is created automatically by
the act of storing an object, when the name specified does not correspond to any exist­
ing variable. Global variables are created one at a time by the command STO, which
takes a name and one additional object as its arguments. STO moves the object from
the stack to the home directory (or the currently active subdirectory), where it and the

-38-

t
t
t
t
t
t
t
t
(

t
t
t.
I'
t
t
t
t
t'
t'
t
t

&.
... ~
t
t
t
t
t
t
t
t
t~

f­
t'
t,
t
t
f:"
•
f:
- .

•

I

I

Variables 3.1

name are added to the current set of variables that appear in the VAR menu. HP 48
variables have no particular object type associated with them; you might create a vari­
able initially with one type of object, but later you can store any other type of object
into the same variable.

STO expects to frod the name of the target variable in levell, and the object to store in
level 2. This means that the order of entering the variable name and executing STO is
reversed from HP 41 style in which you press ISTol before entering the register number.
Furthermore, you must quote the variable name in single quotes ("ticks") " when you
enter it; this causes the name to go onto the stack rather than recalling or executing the
contents of an already existing variable with that name. To store 25 in a variable X, for
example, you execute 25 'X' STO. If you forget the quotes and execute 25 X STO, you
will most likely see an error message, since X will be executed rather than entered as a
name, before the STO is executed. (If you know that there is no current variable X,
then you can omit the quotes, since executing the name of a non-existent variable just
returns the name back to the stack. This can save you a keystroke when you're creating
a new variable.)

3.1.1 DEFINE
An alternate method of creating variables is provided by the command DEFINE 0<1.,1
IDEFI), which you can use to make simple numerical assigllments. For example, to store
10 in a variable X, execute 'X= 1 0' DEFINE. In general, DEFINE expects an equation of
the form name = value in level 1; it stores the object value in a variable name. If you
have selected numerical evaluation mode (set flag -3, or use the key in the 1<1.,1
IMODESI menu), value can be an expression--DEFINE evaluates the expression to a single
object before storing it.

3.1.2 Renaming Variables
There is no direct way to change the name of a variable. However, you can easily move
the contents of a variable to a new variable with a different name by executing

'old-name' 'new-name' OVER RCL ROT PURGE SWAP STO

The order of these operations ensures that there is only one copy of the stored object
present at a time.

3.2 Recalling Values
There are two ordinary ways to "recall" the value of a variable:

-39-

3.2 Variables

• Execute the variable's name. You can do this by pressing the VAR menu key labeled
with the name, by typing the name (without quotes) into the command line, or, if the
Dame is already in levell, by executing EVAL. Executing a global name executes the
object stored in the named variable. Unless the stored object is itself a name, or a
program, this just recalls the object to the stack. For example, if you have stored the
number 25 in a variable named X, pressing [K] IENTERI returns the number 25 to
level!.

• Use RCL. 'name' RCL returns the object stored in the variable name to the stack,
without executing the object. RCL is primarily used for variables that contain pro­
gram, names, and directory objects, in cases where you just want to put a copy of the
stored object on the stack. For other types of objects, RCL has the same effect as
simple execution of a variable's name, which requires fewer steps.

Recalling a variable's value by executing its name rather than using RCL follows directly
from the mathematical meaning of a variable. For example, when you evaluate the
expression A + B, you translate it into RPN order and execute the sequence A B +. In
the HP 48, you can do literally that; with the values 10 and 20 stored in variables A and
B, executing A B + returns the sum 30. You don't write expressions like "RCL A +
RCL B", so there's no compelling reason to include the RCL's in the RPN form.

The diminished role of RCL in the HP 48 explains why it is relegated to a shifted key
position. Even when you do want to use RCL, it is often more convenient to use the
VAR menu keys; pressing Irt>1 followed by the menu key for a variable executes RCL. If
you have trouble remembering that RCL is the right-shift and STO is the left-shift,
notice that RCL is in the right-shift position above the ISTOI key on the keyboard. The
left-shift position is DEFINE, which is an alternate form of STO.

3.2.1 Recall From Stored Lists and Arrays
The commands GET and GETI allow you to recall individual elements from arrays and
lists stored in variables, without having to recall the entire object to the stack. For GET,
the stack use is

object index GET ILT element,

where index specifies the element to retrieve:

• For a list or a vector, the index is either a real number or a list containing one real
number.

• For an array, the index is either a real number representing the element number,
counting in "row order" (left to right, top to bottom), or list of two real numbers
representing the row and column numbers of the element.

-40-

t.
t
t.)
t
t
t..
t'
t:
t.
t
ti
t'
t
t
t
t
t:
t'
t,

t
t,
t·
t·
t,
t,
t,
t,
t~
.j
t j
t~
t'
t
t
t,
.~
t
t'
t
t.:

,

,
, ,

1

1 .

Variables 3,2

The object in the above sequence can either be a list or an array, or the name of a vari­
able in which a list or an array is stored. Thus,

{A Be} 2 GET

or

u 'B' ,

{A B C} '0' STO '0' 2 GET u 'B'.

GETI is designed for sequential recall of the elements in a list or array, and returns the
object or its name, and the index incremented to the next element, as well as the
recalled element. The general form of GETI is

object index GETI u object index+ element,

where object and index are the same as for GET, and index+ is the same as index except
that its value is incremented to represent the next element. Thus,

{A Be} 2 GETI u {A Be} 3 'B' ,

If index points to the last element, GETI returns either 1, { 1 }, or { 1 1 } for index + , as
appropriate to cycle back to the fIrst element. GETI also sets flag - 64 when this occurs,
or clears the flag otherwise, so that a program can easily determine when it has come to
the end of a list or an array.

3.3 Altering the Contents of Variables
The most straightforward means of changing the contents of a variable is to store a new
object into the variable using STO. However, there are a number of commands that let
you compute a new value for a variable from its current value, without having to recall
the stored object to the stack. These commands, found in the Irt>1 MEMORY menu, are
modeled on the HP 41 storage arithmetic commands ST +, ST -, ST*, and ST f.

In addition to storage arithmetic, the HP 48 array commands CON, ION, ROM, and
TRN can be applied to arrays stored in variables. PUT and PUTI are the storing coun­
terparts of GET and GETI, allowing you to alter individual elements in a stored list or
array.

3.3.1 HP 48 Storage Arithmetic
Storage arithmetic commands let you combine a number in level 1 with a number stored
in a variable, without having to recall the latter to the stack. For example, 25 'X'
STO+ adds 25 to a number stored in X. More generally, STO+, STO-, STO*, and

-41-

3.3 Variables

STO/ use a syntax similar to that of STO:

object 'name' SToe,

where the e stands for any of the symbols +, -, *, or f. However,

, name' object STOe

is also allowed. Either sequence combines the object in level 2 with the object stored in
the variable name, leaving the result stored in the same variable. The object and the
name are dropped from the stack. The two objects that are combined do not have to
be numerical; any object types that are suitable for the corresponding stack arithmetic
will work with the storage arithmetic commands. Note that the order of the object and
the 'name' on the stack is important:

• object 'name' STOe computes

+

(new value) = (stack object)
-

*
(old value).

/

In this case, STOe is equivalent to

DUP RCL ROT SWAP e SWAP STO.

If X has the value 1, then 3 ' X' STO - stores 2 in X.

• 'name' object STOe computes

(new value) = (old value)

Here STOe is equivalent to

+
- (stack object).
* /

OVER RCL SWAP e SWAP STO.

With 1 stored in X, 'X' 3 STO- stores -2 in X.

You can understand these two choices by realizing that the storage arithmetic

-42-

t
t
t.
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t'
t'
t
t 1

t ~

t .
t -
t
t
t
t
t
t,

.'
t ~'.
t, ,
• I,
.' 1 .. ,
.' {
t L ,
t ' L. ,
t -
6'

Variables 3.3

commands combine a named object with a stack object in the same manner as if you
replaced the name on the stack with the named object, then executed the stack com­
mand.

There is an ambiguity in this design when both stack arguments are name objects. In
this case, the HP 48 interprets the level 1 name as the variable name; this arbitrary
choice to match the sense of the arguments for STO was made as an easy-to-remember
rule. Thus with the list { CD} stored in variable B, 'A' 'B' STO+ returns the list {
A CD} to B (rather than adding or concatenating the name B to the contents of A).
The rule does mean that you can not use STO+ to concatenate a name to the end of a
list stored in a variable.

3.3.1.1 Counter Variables
INCR and DECR are specialized forms of STO+ and STO- that make it easy to use a
global or local variable as a simple counter. INCR adds 1 to a real number stored in the
variable specified by a name argument; DECR subtracts 1. Both commands return the
result value to the stack. Thus 'name' INCR is equivalent to the sequence 'name' DUP
1 STO + RCL, but executes about twice as fast.

INCR and DECR can be used in conjunction with program branch structures to replace
many HP 41 uses of ISG and DSE.

3.3.2 Additional Storage Commands
In addition to the four storage arithmetic commands, the HP 48 has three storage com­
mands that alter a stored number or array without requiring any stack argument other
than the variable name. In each case, the result replaces the original object:

SNEG negates the stored object.

SINV computes the reciprocal of a stored number or square matrix.

SCONJ computes the complex conjugate of the stored object.

Like the four storage arithmetic commands, these commands are provided to save keys­
trokes and/or program memory when compared to the equivalent stack object com­
mands used in conjunction with STO and RCL. However, the single-argument com­
mands are particularly useful for arrays. Because their mathematical operations are
applied to the stored arrays "in place" --replacing the stored values as the computation
proceeds, the storage commands offer the most memory-efficient method of finding the

• •
negative, mverse, or conjugate of an array. If, for example, you recall an array from a
variable to the stack, then invert it, you will need enough memory to hold both the
stored array and its inverse at the same time. By inverting the array in place with SINV,

-43-

3.3 Variables

you only need enough room for the original array.

Similar considerations apply to certain array commands that work equally well when you
replace the array on the stack with the name of a variable containing an array:

CON converts an arbitrary array into a constant array (all elements are the same),
where the constant number is specified on the stack.

IDN converts a square matrix into the identity matrix.

TRN transposes and conjugates an array.

RDM redimensions an array according to the dimensions specified by a list of one
or two real numbers. Note that RDM can change the total size of an array if
the new dimensions correspond to more or fewer elements than are in the
original array.

PUT and PUTI allow you to store individual elements into an existing array or list, using
a syntax similar to that of GET and GETI (section 3.2.1).

For example,

{A Be} 2 'D' PUT u {A DC}.

Here the target list itself is on the stack. The target can also be identified by name:

'MAT' { 3 3 } 25 PUTI LT 'MAT' { 3 4 }

stores the number 25 in the 3-3 element of a matrix stored in the variable MAT, and
leaves the name and the incremented index (here assumed to indicate the 3-4 element)
on the stack.

3.4 Purging Variables
In section 2.6.2, we discussed the differences between an "empty" stack in the HP 48,
and a "clear" stack in the HP 41. Similar considerations apply to HP 48 variables com­
pared with HP 41 storage registers.

In the HP 41, when you reserve memory for a certain number of storage registers using
the SIZE command, the registers are "created" each with the initial value zero. This
choice of a default value is often convenient, such as for cases where you wish to use a
register as a counter or an accumulator that starts at zero.

An HP 48 variable, on the other hand, doesn't exist until you create it with STO.

·44·

t
t
t
t
t
t
t
t
(

t
t
t
t
t
t
t
t
t
t
t
t,
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t,
t
t
f'
t'
t - '

•

•

-"

.~ ' ..

Variables 3.4

Furthermore, when you remove a variable with PURGE, it is entirely deleted from
memory. If you try to execute 'name' RCL, when no variable with that name exists, you
get a Undefined Name error message, the analog of the HP 41 NONEXISTENT mes­
sage. Because variables can hold any objects, not just numbers, there is no such thing
as a "clear" variable--no empty version of a purged variable left in user memory. You
can certainly store zero in a variable if you want to use it as a counter or accumulator,
but in general, the real number zero is no better choice as a default value than any
number of other objects--an empty list, a null matrix, etc.

The ordinary use of PURGE follows the syntax 'name' PURGE. This sequence removes
the variable called name from user memory. If the VAR menu is active, with the name
label showing in the display, you will see that label disappear, and the other labels move
over to fill in the vacant position. As an added convenience, you can execute PURGE
with a list of names: { namel namez ... nomen} PURGE simultaneously removes the
variables name!> namez, ... , nomen. An easy way to purge several variables is to press
IVARI ill , then press the menu key for each variable you wish to purge, followed by
IENTERII""I • The IENTERI turns off program-entry mode so that 1<l-,llpURGEI exe­
cutes PURGE rather than just adding the command name to the command line.

3.5 Grouping Variables
An advantage of numbering rather than naming variables is that a number scheme
makes it easy to index the variables and to "group" variables into logical blocks. For
example, the HP 41CX includes two commands for manipulating a blocks of registers:
REGMOVE copies the contents of one block of registers into another; REGSWAP
exchanges the contents of two blocks. There are two general purposes for these com­
mands:

1. To save the contents of a block of registers in a second block, so that a new pro­
gram can use the original registers without destroying the fust program's data.

2. To allow you to write programs that access data in a specific block of registers,
then use those programs with different sets of data stored elsewhere in the calcu­
lator without having to rewrite the programs. For example, a program might use
data in registers 0 through 9. You could have alternate data in registers 10 - 19,
20 - 29, 30 - 39, etc. Prior to each execution of the program, you would use
REGSWAP or REGMOVE to move one of the alternate data blocks into registers
0-9.

There are no direct equivalents for these commands in the HP 48 (see section 6.1.3).
T.he flexibility of HP 48 variables allows you to achieve the above two purposes by using
different approaches:

-45-

3.5 Variables

1. By making variable names unique to each program, there is never any reason for
conflict between programs trying to use the same variables (unless the programs
are deliberately exchanging data via variables). Better yet, you can use local vari­
ables (section 4.7) for temporary storage that is guaranteed to be unique to a pro­
gram, without worrying at all about two programs using the same variable names.

2. All of the data used by a program can be combined in a list (or in an array if all
of the data are real or complex numbers). By writing the program to use a list as
an input, you can easily supply alternate data sets by choosing different lists, each
of which can be stored in an appropriately named variable.

3.6 The VAR Menu
The VAR menu is a visible and operational listing of the contents of user memory--the
current collection of global variables. When you create a variable, its name automati­
cally appears in the VAR menu; when you purge a variable, its name disappears from
the menu. Pressing a VAR menu key automatically executes the name that appears in
the menu label above the key. Also, pressing a left-shifted menu key stores an object
from the stack into the specified variable; the right-shifted menu key recalls the variable
contents.

New variable names are always added to the beginning of the menu, the left end of the
ftrst menu level that appears when you press IVARI. In this sense, the VAR menu is a
"last in, ftrst out" arrangement similar to the stack (except that executing a name
doesn't remove it from the menu). "First out" also means "found ftrst." When a name
is executed, the HP 48 searches user memory for the corresponding variable, starting
with the newest variable and continuing in the reverse order of creation.

You can reorder the variables in the menu at any time by using ORDER. ORDER takes
a list of names, and moves the variables in user memory so that the order of names in
the VAR menu matches the order in the list. Variables not named in the list remain in
their current order, following those variables that were named. If you have a lot of vari­
ables in user memory, you can obtain a slight improvement in a program's execution
speed by using ORDER to move the variables named in the program to the start of the
VAR menu.

3.7 Port Variables
A port variable is a named object stored in a portion of memory configured to be
separate from main global variable memory. One such region, called port 0, always
exists in main RAM. If you have a plug-in RAM card, its memory can be merged as
part of main RAM, or can be designated as separate, in which case it is called port 1

-46-

(

t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t ...
t..
t ..
t­
t
t
t
t'
t
t
t
t
t
t
I:
I:
I:
t,

I

\

, .

I

,

I

•
•
•

\

1

Variables 3.7

RAM or port 2 RAM according to the card slot in which it is inserted.

Port RAM plays a role much like that of extended memory in the HP 41. Extended
memory lets you store data and programs for which there is not room in main RAM;
however, the store/recall process is more complicated. HP 48 port RAM has important
improvements over HP 41 extended memory:

• Objects are stored in port variables, which have properties very much like main
memory global variables.

• Objects can be executed while they are stored in port variables. This means in par­
ticular that you can execute a program without having to copy it into main memory
as you must on the HP 41.

• Plug-in RAM cards have batteries, so that you can remove the cards without loss of
their contents. This makes the cards useful for memory archiving, and for informa­
tion transfer between calculators.

A port variable is, like a global variable, a combination of name and an object stored
together. Actually, the name and object are stored inside yet another object, called a
backup object (similar to the way variables are stored inside of directory objects). In
addition to the name and object, a backup object contains a checksum and a (memory)
length, which the calculator uses at various times to verify that the backup object's con­
tents are valid. In some circumstances (for example, when you restore an archived copy
of main RAM from a personal computer), you can see a backup object on the stack, but
usually backup objects remain in port memory where you store and recall their contents.
We use the term port variable to refer to those contents, in order to stress the similarity
of access to that of global variables. (The HP 48 Owner's Manual does not use this
term, preferring to speak only of backup objects. This, however, can lead to confusion
between the backup object itself and the object that is stored in it.)

Access to the contents of port variables is provided by means of port-names, which are
ordinary global names that are tagged with a port number 0, 1, or 2. If you execute 123
LENGTH STO, the number 123 is stored in the global variable LENGTH .. To store the
Dumber instead into a port variable in port 0, you use

123 :O:LENGTH STO.

RCL, EVAL, and PURGE also work with port-names. Furthermore, for these last three
commands, you can also use a "wild-card" port designator, the character "&" ([gJ 1<3,1
IENTERI). Executing :&:LENGTH RCL searches port 2, port 1, port 0, and fmally global
variable memory, until it fmds a variable LENGTH, then returns its contents.

-47-

3.7 Variables

Because port variables are primarily intended for archiving objects, the HP 48 deli­
berately makes it a little more difficult to change their contents than is the case for glo­
bal variables:

• You can't use STO to store a new object in an already existing port variable. You
must first use PURGE to remove the existing variable.

• You cannot purge a port variable while its contents are in use. "In use" means that
the object has been copied to the stack, is stored in a local variable, or is part of a
running or halted program. Thus if you want to purge a port variable, while keeping
a copy of the stored object, you must not only recall the object before purging, but
you must also store the copy somewhere other than on the stack before the purge
will succeed. (You can also copy the object to the stack and execute NEWOB, which
creates a new copy that is independent of the original stored version.)

Attempting to break either of these two rules results in the Object in Use error mes­
sage.

-48-

-
(•

t
t
t
t
t
t
t
t
t
t
t
t
t
t •

t
t ,

t ,

t 1

I t.
j t

t.
t
t
•
..
t
..
t:.

-

4. HP 48 Programming Principles

The simplest kind of calculator programming consists of "keystroke capture," in which
sequences of keystrokes are recorded in calculator memory instead of being executed
immediately. The keystrokes are the same as those you would use if making a calcula­
tion once. Each set of recorded keystrokes is called a program, and can be replayed
automatically any number of times. The fIrst programmable hand-held calculator, the
HP 65, was programmable in this style, and subsequent HP calculators have preserved
the same general approach even as their programming capabilities increased.

The appeal of keystroke-capture, of course, is that once you learn the manual operation
of a calculator, you don't need to learn anything new in order to program it. (Here we
use the term manual operation to indicate the interactive use of the calculator where
you press keys to select each individual operation.) However, a calculator's ability to
execute a sequence of steps rapidly makes it practical to carry out calculations that
would be too extensive or complicated to perform with simple manual operations. For
this reason, even the HP 65 augmented its keystroke-capture programming with addi­
tional programmable operations that have little purpose in manual operation, such as
logical tests, branches, and labels. The HP 41 provides the same set of program control
commands as the HP 65, with the addition of a few more conditional tests such as ISG,
DSE, and flag operations.

The HP 48 takes a different approach to the idea of keystroke capture programming.
As we noted earlier (section 2.8), the HP 48 command line can contain any sequence of
commands and objects, which are executed together when you press IENTERI. You can
perform a calculation either by pressing a series of immediate-execute command keys,
or by pressing Ir!>IIENTRVI fIrst, accumulating the commands in the command line, then
pressing IENTERI --obtaining the same results either way. Entering a command into the
command line delays its execution so that you can execute it as part of a sequence of
other commands and objects; but this is just what programming is. In effect, the com­
mand line is a program that you write and execute immediately. All that is required is a
means of saving the command line/program so that it can be re-executed repeatedly.
This is provided by means of program objects.

Creating an HP 48 program object consists of entering a sequence of objects and com­
mands enclosed within« »delimiters. These program delimiters instruct the calcu­
lator to combine the objects and commands into a program object that is entered unexe­
cuted onto the stack. You can then name the program by storing it in a variable. By
doing so, you effectively extend the calculator's command set, since you can subse­
quently use the variable name just as you would a built-in command. Imagine, for
example, that you have created two program objects named DOTHIS and DOTHAT.

·49·

4.0 Programming Principles

Then if you want to create a program that performs both of the tasks done by DOTHIS
and DOTHAT, you just enter « DOTHIS DOTHAT », perhaps naming it DOBOTH.
This process is unlimited--you can use DOBOTH as an element of another program.
DOTHIS and DOTHAT themselves may be combinations of other programs' names. As
a matter of fact, the HP 48 commands that you use in your programs are themselves
programs written the same way, stored in the calculator's permanent memory (ROM).

We are using the term sequence to mean a series of objects and commands that are exe­
cuted in order. However, there are also command line and program entries that are not
objects, so we need to extend our definition of sequence for subsequent discussions to be
any series of objects and other program entries that can "stand alone," and can consti­
tute a program by itself if surrounded by« » delimiters. A sequence can be an
entire program, or part of a program.

The non-object "entries" are program structure words, such as FOR, DO, -, END, etc.
These are not objects, because you can't put them on the stack or execute them indivi­
dually. You can only use them in certain specific combinations, like FOR ... NEXT, or
IF ... THEN ... END. A complete combination, including the objects between the program
structure words, is called a program structure.

For example, in

« 1 2 IF A THEN B C END 0 »

1 2 is a sequence, B C is a sequence, and 1 2 IF A THEN B C END 0 is a
sequence. IF, IF A, and IF A THEN are not sequences, because they contain incom­
plete program structures--you can not enter these by themselves without obtaining a
Syntax Error message.

4.1 Program Basics
The basic structure of an HP 48 program is very simple:

« program body ».

The « and » are the program object delimiters that serve to identify this object as a
program. Program body is the sequence of objects and program structures that make up
the logical and computational definition of the program.

-50-

t
t
t
t
t
t
t
t,
t ,j

t·
t.­
t~
ti
t,
t,
t,
t,
t,
t·
ti
tl
t ~

t ,
"

tl
(~
(,
t,
t ;

"

t1
t 1

t 1

f]
t'i
t 1

t 1

(:J
(1

(1
(1
f~

I

Programming Principles 4.1

4.1.1 The« » Delimiters
The « and » that surround HP 48 programs serve a dual purpose. First, they are the
delimiters that identify an object as a program. When you enter a program into the
command line, the« tells the HP 48 to create a program object from all of the objects,
commands, names, etc., that follow, up to the next matching ». For every «, there is
always a »; the » ends the definition of the program started by the preceding «.
When the HP 48 displays a program object after it has been created, the « and »
identify the object to you as a program.

The second role of these delimiters is to postpone execution of a program sequence.
When « is encountered in program or command line execution, it is interpreted by the
HP 48 to mean "put the following program object on the stack." This behavior of «
allows you to include programs within other programs:

« object » EVAL

executes object, but

« « object » » EVAL

leaves the program« object » on the stack.

The 1« 1 and I» 1 keys are the closest analog the HP 48 has to the more traditional pro­
gram mode keys you fmd on other calculators (IPRGMI on the HP 41). On the HP 48,
instead of pressing a program-mode key to start program entry, you press 14,11« »1 ,
which enters a pair of program delimiters into the command line. The key also activates
program-entry mode, indicated by the PRG annunciator, in which pressing a command
key types the command's name in the command line instead of executing the command.
Pressing IENTERI after entering the program's objects terminates program entry, and
enters the program object on the stack. You can even think of 1 <1111« »1 as a pro­
grammable PRGM key, since you can include those delimiters in programs, allowing pro­
grams themselves to enter new programs.

4.1.2 The Program Body
The body of an HP 48 program, that is, everything between the « and the », can con­
sist of any combination of objects and program structures:

• Data objects;

• Quoted names, which go on the stack like data;

• Unquoted names--which act like user-defmed commands' ,

-51-

4.1 Programming Principles

• Commands;

• Program structuresnloops, conditionals, and local variable structures.

In general, when a program is executed, all of the items from the above list that consti­
tute the program body are executed sequentially. The nominal order of execution is
start-to-finish, or "left-to-right, top to bottom" in the command line order in which the
program was entered originally. Within a program structure, there may be repetitive
loops or conditional jumps. Of course, there's nothing remarkable about this program
flOWn any programming language exhibits similar orderly execution.

The simplest programs are those which contain no program structures. Such programs
contain only objects to be executed one after the other, starting with the first object
after the «, and ending with the last object just before the ». Such programs are very
easy to create: all you do is

1. Press the I <lo 11« »1 key;

2. Press the keys for, or spell out, the objects you want the program to execute, in
the same order used when you perform the calculation manually; then

3. End the program entry by pressing IENTERI •

4. To name the program, enter a name (quoted) and press ISTDI. You can consider
the resulting variable as a named program.

To "run" a named program, you execute the program's name, either by pressing the
appropriate VAR, CST, or LIBRARY menu key, or by typing the name into the command
line and pressing IENTERI. If the program itself is in levell, you can run it by executing
IEVALI.

Examples:

1. « 1 2 3 » 'P123' STO creates a program named P123 that enters
the numbers 1,2, and 3 onto the stack. The equivalent HP 41 program is

01 LBL "P123"
02 1
03 ENTERt
04 2
05 ENTERt
06 3
07 END

-52-

('
(I
(I
(tI!
(II!
(I!

(.II!

(Ii!!

(!'

to ..
t"l
t,1
t ,~

t .~
•. , .. '"

t ,I

t,
t .!

t i'1
., t ·

t .~

t 1

t-,
t ' ,
t 1
t .J
t
t
t
t
t
t
t
t
f
t
.',

I

I

l

l

Programming Principles 4.1

2. « 2 / SIN » 'HSIN' STO creates a program named HSIN, that
returns the sine of 1/2 times the number in level 1. On the HP 41:

01 LBL "HSIN"
02 2
03 /
04 SIN
05 END

3. « + + SO » 'SUMSO' STO creates SUMSO, which adds three
numbers from the stack and squares the result. The HP 41 version:

01 LBL "SUMSO"
02 +
03 +
04 Xt2
05 END

You can alter the basic start-to-fmish execution flow of programs by adding program
structures that defme branches and loops. Branches are forward jumps in a program,
that cause program sequences to be skipped. Loops contain backward jumps, which
cause program sequences to be repeated one or more times. These structures are
described later in this chapter.

Notice that HP 48 ENTER never appears in a program, unlike HP 41 ENTERt. As we
discussed in section 2.8, HP 48 ENTER means "execute the command line," which has
no meaning in a program. When you enter consecutive numbers into a program, just
use a space to separate them. For other types of objects, their delimiter characters
serve to separate the objects--no space is necessary before, after, or between delimiters.

4.1.3 Structured
A property of HP 48 programs that is common among many computer languages, but
may be unfamiliar to HP 41 programmers, is their well-determined "entrance" and
"exit." That is, in any HP 48 program there is only one pointnthe first object after the
«--where execution can begin. Similarly, there is only one exit, or point at which a
program completes execution. A diagram to represent the execution flow in and out of
an HP 48 program is very simple:

IN ---..; « Body » OUT

-53-

4.1 Programming Principles

Contrast this diagram with one that illustrates a possible program flow in an HP 41 pro­
gram:

... steps ...

LBL 01

... steps ...

GTO 03

... steps ...

LBL02

... steps ...
-I

END

There is no restriction on the number of entrances and exits in an HP 41 program. The
principal program entries that make this possible are labels and GTO commands. A
GTO (go to) is an unconditional jump to a label with no return. With labels and GTO's,
program execution can jump around from program to program, in and out of portions
of programs, or round and round within a single program. At first glance (and more, if
you're used to programming this way), this capability seems like an advantage. You
may wonder why the HP 48 does not provide the same capability.

The answer is that the HP 48 is designed for strnctured programming. Structured pro­
gramming consists of writing small programs as building blocks, or modules, from which
bigger programs are assembled as series of subroutine executions. A subroutine is a
program that is executed, or called, from within another program, and which returns to
the original calling program when it is finished. Bigger programs themselves may
become subroutines for even bigger programs, and so on. Each program, at every level,
has a single entrance and exit; there is no jumping in and out of programs at intermedi­
ate points. Structured programming has the following advantages:

• Programs are easy to write. Each program can be designed to fulfill a single task,
and can thus consist of relatively few steps. If a program gets too long, you just

-54-

'I
t,
t,
t
ti
t
t
t
tl
t
t
t
t I'

t
t
t"
t
t
t
t
t
t,
t
t
t·
t
t
t·
t,
t~
t,
.' " 'I."

Programming Principles 4.1

divide it into smaller programs .

• Programs are easy to decipher. By choosing meaningful names for subprograms,
you can read a program almost as text. For example, a program might look like

this:

« GETINPUT DOMATH
IF TOOBIG
THEN DISCARD
ELSE SAVE
END

» •

It is easy to understand what this program does. It gets input (GETINPUT), then
does some calculations (DO MATH) on that input. Next, it checks a result to see if
it's too large (IF TOOBIG); if so, it discards the result (THEN DISCARD), otherwise
saves it (ELSE SAVE). At this level, you can see the overall structure of the pro­
gram. To see more detail, you can examine the individual subroutines. For exam­
ple, TOOBIG must be a program that tests one or more of the results returned by
DOMATH, and returns a tnte flag (see section 4.3) if the results are too big accord­
ing to some criterion. TOOBIG might be something like this:

« DUP2 + LIMIT > » •

This program makes copies of two numbers in levels 1 and 2, then adds them and
tests to see if the sum is greater than the value of LIMIT (which might be a number,
or another calculation to perform, etc.).

• Programs are easy to alter. In the above example, you can completely change the
internal definition of TOOBIG, without worrying about the main program. All you
have to do is ensure that TOOBIG works the same from an external point of viewuit
must take the right number of objects from the stack, and return the right number,
etc. Similarly, you can change the value of LIMIT from a specific number to a pro­
gram that computes a result, without any change in the design of TOOBIG.

In a programming language that permits GTO's into the middle of a program, any
modification of a program must ensure that the correct entry conditions are met at
any point at which execution can start. This is especially difficult to manage in
languages like BASIC, where a GTO can jump to any line in a program, with no
label or other indication to remind the programmer that execution may start at that
line.

-55-

4.1 Programming Principles

• Programs can be written without any regard to the internal behavior of programs
that call them, or programs that they may call. All that matters about a program is
its input and output, not the steps that it uses in its execution.

The last point is a key concept in HP 48 structured programming. A program is defmed
externally only in terms of its input and output:

1. The number and type of objects it takes from the stack;

2. The number and type of objects it returns to the stack;

3. The variables that it uses;

4. Flags that are tested or changed.

From the point of view of one program calling another as a subroutine, the first pro­
gram doesn't have to care at all about how many stack levels or additional subroutine
returns are needed by the subroutine. It just has to be sure to provide the correct
inputs for the subroutine, and know where to fmd the results returned by the subroutine
(usually on the stack). A program that calls a subroutine can also depend on having
program execution return to it after the subroutine is fmished, no matter how many
other sub-subroutines are called by the subroutine.

4.1.4 Comparing HP 48 and HP 41 Programs
HP 41 programs have this general form:

01 LBL A
02 program line
03 program line
...
nn RTN (or END)

HP 41 programs aren't required to start with a label, but it is most common to include a
label as the first step, and to start execution at the beginning of a program, by using that
label. Programs always finish with a RTN or an END. A single program may contain
multiple RTN'sudifferent programs are separated by END's.

If you match up the parts of HP 41 and HP 48 programs, you may observe that:

• The HP 41 line 01, and the label that marks the start of a program, are replaced in
the HP 48 by the « delimiter.

-56-

tJ
t)~

t,
t~
(,

t,
t~

tl
(I

t
(I
(\

t\
(;

t
('

t
t
t
,
t
t·
t
.'
t
.'
t
t
t,
t'
t
t'
t
, . I

t
t, ,
t,
t -,
t~

I

.'~

Programming Principles 4.1

• The program steps or lines that make up an HP 41 program body are replaced by
the objects that defme the HP 48 program .

• The END, or last line of an HP 41 program, which acts as a subroutine return when
the program is called as a subroutine, is replaced by the HP 48 » delimiter.

HP 41 program lines or steps are always numbered. The line numbers help show the
program flow unambiguously, and are useful in moving a program counter to specific
points in a program for editing or single-stepping. The line numbers are artificial in the
sense that they are not stored as part of a program (they are created as needed as part
of the program mode display), and have nothing to do with a program's execution while
it is running. All program branching is accomplished by GTO's or XEQ's to labels that
are explicit program lines.

HP 48 programs have no line numbers. Whether this is an advantage or a disadvantage
is a matter of taste. Since line numbers have no purpose during execution, showing
them as part of a program can be considered as a superfluous complication. On the
other hand, in a large program, line numbers om help you keep track of where you are
looking in a program. The HP 48 does not show line numbers to permit more con­
venient editing of a program, and to permit the display of as many objects as possible
on the screen at any time during editing.

Up to a point, you can write HP 41 programs in structured form, by avoiding the use of
GTO's. Of course, you can't eliminate GTO's entirely, because the HP 41 doesn't pro­
vide any program structures in the HP 48 sense. But you can preserve a structured
form by avoiding intertwined branches and loops. For example, to treat the program
sequence

01 LBL 01
02
•••

98 ISG 00
99 GTO 01

as a "structure," you must make sure that there are no labels between the LBL 01 and
the GTO 01, so that program execution can never jump into the middle of the sequence.

The fixed size stacks available on the HP 41 makes truly structured programming in the
style of the HP 48 rather difficult. The HP 41 has only a 6-level subroutine return
stack, so that any time you write one program that calls another, you must verify that
the subroutine does not itself call other routines (and so on), to such an extent that the
return stack overflows and execution never returns to the original program. The four­
register data stack produces a similar limitation: a program can't arbitrarily leave data

·57·

4.1 Programming Principles

on the stack when calling a subroutine, in case the subroutine uses so many stack levels
that the calling program's data gets pushed off the stack. After writing a program, if
you later decide to modify one of its subroutines, you may also have to change the cal­
ling program if the new version of the subroutine uses an additional stack register.

Structured programming is not just a matter of programmer style in the HP 48--you
have no option. The HP 48 won't let you write an unstructured program. There is no
GTO command, and all branching and looping is accomplished by means of well-defmed
structures.

Table 4.1 matches various programming concepts in the HP 41 with their analogs in HP
48 programs. All of these topics are discussed in subsequent sections.

Table 4.1. HP 41 and HP 48 Programming Analogs

HP41

Program mode
Program file
Global label
Local label
Line number
GTO label
Subroutines
XEQ label
RTN
END
ISG, DSE

Flag 25 error handling
Test and Skip

PROMPT
STOP

HP48

Alpha-entry mode, command line
Program object
Program name
None
None
None
Named programs
Execute by name or EVAL
»
»
DO ... UNTIL. .. END
WHILE ... REPEAT...END
FOR ... NEXT
FOR ... STEP
START ... NEXT
START ... STEP
IFERR. .. THEN ... ELSE ... END
IF ... THEN ... ELSE ... END
CASE ... THEN ... END ... END
PROMPT
HALT
INPUT
I~IICQNTI

-58-

~)

t.'
t)
t .f

t,
t­
til
t ,Ii

til
t "
t­
tl"
t~

t t'

t",
t··
t · ,

t .. ,
• •

t,
t;·~

t­
t'j
t ' .

"il!

t'1
t'i
t ii
t'.
t'i
(:'4
(~4

I'~
('J
(''1

('~

~ '''"
('J

"'" •

f

f

; ,

,

I

,

Programming Principles 4.2

4.2 Program Structures
A simple HP 48 program consisting of a sequence of objects can be broken into two or
more programs at any point in the sequence. For example, the program

« 5 * 6 + 10 - »

is equivalent to the two programs

« 5 * » « 6 + 1 0 - »

executed consecutively.

A program structure is a program sequence that can not be broken into stand-alone sec­
tions. For example, the program

« ... X '2*><+3' »

can not be divided like this:

« ... X » « '2*><+3' » •

The fIrst part would give a Syntax Error message if you entered it. Similarly, you can't
break

« 1 5 FOR n n SO NEXT »

• mto

« 1 5 FOR » « n n SO NEXT » .

The FOR and the NEXT must be in the same program.

Program structures are defIned by program structure words. These words are special
command line words that do not represent objects, but cause other objects to be com­
bined into structures. The structure words always appear in specillc combinations that
derme complete structures. Table 4.2 lists all of the HP 48 program structures and their
uses.

Before studying the various program structures further, we need to describe HP 48 test
commands and flags, which are key concepts in understanding the execution of program
structures.

-59-

4.2 Programming Principles

Table 4.2. HP Program Structures

Structure ~

IF ... THEN ... ELSE. .. END Conditional

CASE ... THEN ... END ... END Conditional

START... NEXT jSTEP Definite Loop

FOR index ... NEXT jSTEP Indexed Definite Loop

DO ... UNTIL...END Indefinite Loop

WHILE ... REPEAT ... END Indefinite Loop

Typical Use

Program decisions

Selecting among
multiple choices.

Execute a sequence a
specified number of

• hmes.

Execute a sequence once
for each value of an
index.

Repeat a sequence until
a condition is satisfied.

While a condition is
satisfied, repeat a
sequence.

- ... names ... procedure Local Variable Structure User-dermed functions.

IFERR ... THEN ... ELSE. .. END Error trap

4.3 Tests and Flags

Creating local variables.

Handling expected and
unexpected command
errors.

A calculator program "asks a question" by executing a test command. A test command
is any command that in effect returns "true" or "false" as a result, which then can be
used to choose a particular program branch to execute. The HP 48 differs from the HP
41 in that HP 48 tests return stack results called flags, whereas HP 41 test commands
include immediate branching based on the test result.

In HP 48 terminology, the word flag has a dual meaning. One meaning is the tradi­
tional one inherited from the HP 41, where a flag is one of a group of numbered

-60-

~J
(1
()l

()
('"
(f

(.
(,'
(.~

t:"
('I.
(.If

t)
tl
til
t\ll
()II

till!
til
tt
til
('iI

ttl
(ia1
('oil

(ii
(\i
f ;.
(i.1

f'~

t'il
(\1
(~i

I '\I

f '.i
.. \ "'" ~ ,~

r

!

I

Programming Principles 4.3

memory locations that are used to store logical true or false values. A "memory loca­
tion" in this context is just a binary bit; if the bit is 1, the flag is true; if it is 0, the flag is
false. A user flag is one that can be set (made true), cleared (made false), or tested by
by means of commands. A system flag is one reserved for use by the calculator operat­
ing system, and which can only be tested by the user, not set or cleared. The HP 41 has
56 flags, of which those numbered above 29 are system flags that can only be tested in
programs. The HP 48 has 128 flags, numbered from -64 to +63; all can be set or
cleared as well as tested. In both the HP 41 and the HP 48, some of the flags represent
modes, such as the angle mode and the beeper enable/disable. Changing the state of
one of these flags changes the corresponding calculator mode, and vice-versa.

The HP 48 introduces a second meaning to flag that has no equivalent in the HP 41.
An HP 48 flag can be a true/false value independent of any number memory location.
Specifically, a flag is represented on the stack by a real number, so that flags can be
used as arguments or returned as results by commands. The HP 48 conventions for real
number values used as flags are:

• As arguments to commands, 0 means false; any non-zero real number means true .

• When a command returns a flag result, 0 again means false; the value 1 means true.

With these ideas in mind, we can make the following definitions:

Test:

Logical operator:

Conditional:

A command that returns a flag to the stack. Examples: SAME,
= =, FS?

A function that makes a logical combination of two flags (AND,
OR, XOR), or inverts a flag (NOT), and returns a new flag.

A program structure that includes a structure word that uses a
flag as an argument, and causes a program branch according to
the flag's value. HP 48 conditionals are CASE ... END,
IF ... THEN ... {ELSE ...) ... END, DO ... UNTIL. .. END, and WHILE ...
REPEAT ... END.

In the HP 41, all test commands combine a test and a branching operation. If the test
•
IS true, one choice of branch is made; if false, another choice is made. For example,
when a test such as FS? (flag set?) or X= Y? is true, the program line immediately fol­
lowing the test is executed. If the test isfalse, that next line is skipped.

In the HP 48, a test and the corresponding conditional branch are separate operations.
To permit this separation, a test command returns its result as a (real-number) flag on
the stack, which can then be manipulated like any other stack object. Consider a typical
test command, >. > compares real numbers in levels 1 and 2: if the number in level 2

-61-

4.3 Programming Principles

is greater than that in level 1, > returns 1 (tlUe); it returns 0 (false) if the level 2
number is equal or smaller. For example, to compare the values of X and Y in a pro­
gram, you can use the sequence

X Y >.

This returns 1 (tlUe) if X is greater than Y, or 0 (false) otherwise.

In a conditional structure, one particular structure word actually makes the branch deci­
sion, taking a flag from the stack for this purpose:

• the THEN in IF ... THEN ... (ELSE ...) END (section 4.4.1).

• the THEN in CASE ... THEN ... END ... END (section 4.4.2)

• the END in DO ... UNTIL...END (section 4.5.2.1).

• the REPEAT in WHILE. .. REPEAT ... END (section 4.5.2.2).

But note that you can include any number of intervening objects and commands
between the point at which the flag is put on the stack, and the structure word that uses
the flag for a branch decision. This separation of tests and decisions makes possible the
use of logical operators to combine flags. For example, the logical operator AND takes
two flags from the stack and returns a true flag if both of the original flags are tlUe, and
a false flag otherwise. The sequence

X Y > Y Z > AND

returns troe only if X is greater than Y, and Y is greater than Z. Furthermore, since the
logical operators and most tests (except SAME) are functions, you can rewrite the above
sequence in a more legible manner:

'X>Y AND Y>Z' -NUM.

The -NUM converts the algebraic expression into a real number suitable for use as a
flag. It is not necessary if the symbolic expression is used as an argument for a
conditional--the conditional automatically performs the numerical evaluation of the

• expreSSIon.

Suppose you want to write a program that returns the sum of two numbers if they are
both greater than or equal to 1, and otherwise returns the difference. In HP 41
language, the program might look like this:

·62·

(J
(,'1
(,
()
()
(1
()
()I

(,'
t),

t:·
t,~

t:r
t~
t\~

t"

t \'
t' .~
t'~
t' J
t~ ~
t' ,~
t' ,"
f' ,
f'
t'
t,
t.' .

•

Programming Principles 4.3

01 lBl"SUMOIFP'
02 1
03 X>Y? Is the second number < I?
04 GTOOl If so, go to lBlOl.
05 RON If not, check the other number.

06 X<>Y
07 Rt
08 X>Y? Is the first number < 11
09 GT002 If so, go to LBL 01.
10 RON Drop the 1.
11 + Add the two numbers.
12 RTN
13 lBl02 The first number is < 1.
14 RON
15 X<>Y Restore the original order.
16 Rt
17 lBlOl One or both numbers are s 1.
18 RON Drop the 1.
19 - Compute the difference.
20 RTN

In this program, there are separate tests and separate branches for each of the two
numbers. The two branches have to be to different destinations (LBL 01 and LBL 02)
because the stack is in a different configuration at the time of the tests. In the
equivalent HP 48 program, the tests are logically combined before any branching is
done:

«

»

DUP2
IF

1 > -
SWAP 1
AND

THEN +
ELSE -
END

> -

Makes copies of the two numbers.

Test the fIrst number.
Test the second number.
Are both tests true?
... then add.
... otherwise subtract.

Notice how easy it is to read the HP 48 program compared to the HP 41 version. The
two tests are right next to each other between the IF and the THEN. The two possible
branches then follow immediately after the AND that combines the tests. You can also
write this program using local variables and an algebraic expression, using the IFTE
function (section 4.4.1.1):

« - x y 'IFTE (x>l AND y>l, x+y, x-y)' »

-63-

4.3 Programming Principles

You can think of HP 48 user flags as a kind of variable: the flag number is the variable
name, the number 1 or 0 is the value. FS? plays the role of RCL for a user flag--it
transfers the flag value to the stack. You use SF and CF to store the values 1 and 0,
respectively, into a user flag. There's no single command to store a stack flag directly
into a user flag, but the sequence

IF SWAP THEN SF ELSE CF END

will accomplish that, where the flag number is initially in level 1 and the new flag value
is in level 2.

One consequence of using real numbers as flags for conditionals is that it is easy to test
a real number to see if it is zero. In the sequence

IF X 0 THEN A ELSE BEND,

the 0 1= is superfluous; you can rewrite the sequence as

IF X THEN A ELSE BEND.

4.3.1 HP 48 Test Commands
The HP 48 test command set is comparable to that found in the HP 41 and most other
languages: it consists of numerical and text comparisons for equality, inequality, and
order, plus user flag tests. But it is important to emphasize the difference in the argu­
ment order for the HP 48 tests compared with their HP 41 counterparts.

The order of test arguments in the HP 48 is chosen to be consistent with the argument
order for other HP 48 functions: the arguments are entered onto the stack in the same
order as they appear in algebraic expressions. For example, consider the "greater-than"
operator>. In an expression, "is A greater than B?" is written as "A> B". A is the
first argument, reading left-to-right; B is the second. The comparison is trne if the first
argument is greater than the second. If you rewrite the infix operator> in RPN, the
expression becomes A B >, which indicates that A is entered into the stack before B.
When > executes, A should be in level 2, and B in level 1.

This is the reverse of the order of HP 41 tests. X> Y? in the HP 41 means "is X (level
1) greater than Y (level 2)?" Therefore, when translating HP 41 programs to the HP
48, you must be careful to use the opposite tests in cases where the order of arguments
• •
IS Important.

-64-

'J
t}
tJ
()
t .~

t)
()
()
t)
t)
t)
()
t)
(" .

t .1

t\
t ' . , .

•

t,,:
t~'

t'" '
t\l~
t'
ti
t~,

t 'f
t'
t~

(".

t~

t~
t~

t'
f'
t'
f'
t'
I'
t'
t'

,

\

Programming Principles 4.3

Table 4.3. HP 48 and HP 41 Test Commands

HP 48 Test Meaning HP 41 Equivalent

< Less than? X>Y?
< Less than or equal to? X>=Y? -
> Greater than? X<Y?
::- Greater than or equal to? X<=Y? -
- - Equal to? X=Y? --
* Not equal to? X*Y?
SAME Object same? X=Y?
FS? User flag set? FS?
FC? User flag clear? FC?
FS?C User flag set?--clear FS?C
FC?C User fla clear? --clear FC?C

4.3.2 SAM E, = =, and =
It is important to distinguish carefully between the three HP 48 commands SAME, = =,
and =, which may appear to have similar meanings. The first point to note is that = is
not a test command, so it is fundamentally different from the other two commands,
which are tests. = is a function that creates an equation from two expressions. Its exe­
cution does not return a flag; in symbolic evaluation mode, it does nothing other than
evaluate its arguments. In numeric evaluation mode (including using -NUM) it is
equivalent to subtractions (-), returning the numerical difference of the two sides of
the equation.

= =, on the other hand, is a test, and always returns a flag when executed. = = is pri­
marily intended for ordinary numerical equality comparisons. You can use = = in alge­
braic expressions as an infix operator, just like <, >, etc. = = and = must have dif­
ferent names to distinguish their quite different meanings, and to prevent ambiguity
within algebraic expressions. You can think of A = 8 as an "assertion," whereas A = = 8
is a "question."

SAME is very similar to = =; in many cases you can use them interchangeably. Other
than the fact that SAME is an RPN command that is not allowed in algebraic objects,
the two commands differ only in the manner in which they deal with algebraic and
binary integer objects:

• = = operates on algebraic objects like any other function, returning a symbolic result
when appropriate. SAME compares the original objects themselves, always returning
a flag. Thus, '1 +2' 3 = = returns the expression '1 +2= =3' (which evaluates to a

-65-

4.3 Programming Principles

tlUe flag), whereas '1 +2' 3 SAME returns afalse flag.

• When comparing binary integers, = = ignores leading zeros and compares only the
numerical values, so that the relative word size of the two integers does not matter.
For SAME to return a true flag, the two integers must have the same wordsize as
well as the same value.

4.4 Conditional Branches
4.4.1 The IF Structure
Many programming problems require a program to make simple decisions: "If this is
true, do that--otherwise do something else." On the HP 41, this is most commonly han­
dled by the combination of a test command followed by a GTO: if the test is true, the
GTO is executed, so that execution jumps to a label; otherwise, execution continues
immediately after the GTO. The HP 48 approach to this kind of branching is embodied
in the IF stlUcture, a program structure that has the general form:

IF test-sequence THEN then-sequence ELSE else-sequence END

You can read this structure as "if test-sequence is tlUe (returns a true flag), then execute
then-sequence and jump past the END. If false, skip the then-sequence and execute else­
sequence."

The ELSE else-sequence portion of the structure is optional; for cases where "do some­
thing else" is just "do nothing," you can use:

IF test-sequence THEN then-sequence END,

which translates to "If test-sequence is tlUe, execute then-sequence; otherwise, skip past
the END."

• Example. Test a user flag specified by its number in level 1, and display YES if the
flag is set, or NO if it is clear:

IF FS?
THEN 'YES"
ELSE "NO"
END
1 DISP

This sequence is very easy to read, more so than the equivalent HP 41 sequence, in

·66-

(l
~

()
t)
()
(';

()
()
t}
tJ
t)
()

t)
{I'
t}
(I

t'
ti­
t~
t' , '

t'..\
(" I 1'\

t~ ,
(' ,

,

(
' i
" \

t ;, {
t~· {
t ' I.

I \

(' t
t'l-
(,J

, \

~,l .. ,; \

t ,l
; \-

(,,1 , \,

t'~-t
J f i \

Programming Principles 4.4

which GTO's and LBL's break up the visual flow:

01 FS? INO X IF the flag is set... •

02 GTO 00
03 "NO" ELSE "NO"
04 GTO 01
05 LBL 00
06 'YES" THEN "YES"
07 LBL 01
08 AVIEW

• Example. Order two numbers so that the smaller one is returned in levell, the
greater in level 2.

Here the HP 41 has the advantage of simplicity, since no GTO is required, and the test
does not remove the stack arguments:

The HP 48 version:

DUP2
IF <
THEN SWAP
END

01 X>Y?
02 X<>Y

Copy the two numbers.
Test if the first is less than the second.
If so, switch the numbers.

Because it is THEN that actually removes a flag from the stack and makes the branch
decision, the position of the IF in the sequence that precedes THEN is unimportant:

1 2 IF
1 2 >
IF 1 2

> THEN ... , and
IF THEN ... , and
> THEN ... ,

all produce the same result. You can choose to position the IF wherever you want to
make a program the most readable. (The most memory-efficient form has a single
object between the IF and the THEN. Thus of the three forms above, the first uses the
least memory.)

4.4.1.1 Command FOims of IF
An alternate means of achieving IF structure branching is provided by the IFTE and 1FT
commands. For these commands, the various sequences included in an IF structure are
entered as stack arguments, either as single objects or as programs. That is,

-67-

4.4 Programming Principles

test-sequence « then-sequence » « else-sequence » IFTE

is equivalent to

IF test-sequence THEN then-sequence ELSE else-sequence END.

Similarly,

test-sequence « then-sequence » 1FT

is equivalent to

IF test-sequence THEN then-sequence END.

To use IFTE, you put a flag in level 3, an object (usually a program) representing the
then-sequence in level 2, and an object representing the else-sequence in level 1. IFTE
tests the flag; if the flag is tnle (non-zero), the else-sequence is dropped, and the then­
sequence is executed. If the flag is false (zero), the then-sequence is dropped, and the
else-sequence is executed. 1FT works much the same way: the flag must be in level 2,
and a then-sequence in level 1. If the flag is tlUe, the then-sequence is executed, other­
wise it is dropped.

• Example. Split a real or a complex number into its real and imaginary parts.

RG-R Real/Complex-to-Real 8A8F

level 1 I level 2 level 1

x u x 0

(x,y) u x Y
J

« DUP TYPE Get the input type.
« C-R » Complex case (type *' 0).

0 Real case (type O)-just push zero on the stack.

IFTE Execute appropriate choice.

»

(RTOP takes advantage of the fact that a real number is object type 0, which is the
same as a false flagna complex number is object type 1, which is the same as a true
flag.)

There is no particular advantage within a single program to using 1FT or IFTE rather
than the corresponding IF structure, so which form you use is mostly a matter of taste.

-68-

(" ..
()
()
()
()
()
()
()
()
()
()
()
t)
()
t}
(\

()
(),

t)
t:
()
(:t-.
t:
(}

t,~

t)
t~
("

t~

tt
t~ ,
t~ ,
('

t,'
(' ,

(' ,

f'"
(;~
('-{
• .J

Programming Principles 4.4

However, the RPN command forms have an advantage for more sophisticated program­
ming: their use allows you to place the test-sequence, the then-sequence, and the else­
sequence in separate programs or program structures. If you use an IF structure, all
must be contained in the same program.

IFTE is actually a function, which means you can use it in algebraic objects as well as in.
programs. It is a prefIx function of three arguments:

IFTE(test-expression, then-expression, else-expression)

Notice that the arguments are in the same order as the stack arguments when IFTE is
executed as an RPN command. All three arguments are ordinary expressions. Test­
expression is evaluated, and its value is interpreted as a flag. If the flag is !me, then­
expression is evaluated; if the flag is false, else-expression is evaluated. Typically, the
test-expression contains a comparison operator, so that evaluation automatically returns a
flag .

• Example. 'IFTE(X>O,X, 1-X)' returns X if X>O, and 1 -X otherwise.

1FT has no algebraic form. This is because algebraic objects must return a result when
evaluated--an algebraic conditional can't "do nothing" if the test flag is false.

4.4.2 The CASE Structure
The IF structures described in the previous section are convenient for branching that is
based on a single test to select between two choices. While it is possible to handle any
more elaborate combinations of tests and choices with "nested" IF structures, the
overall structure can get rather convoluted (although certainly less so than equivalent
HP 41 programs). For more straightforward handling of multiple tests and choices, the
HP 48 provides the CASE s!mcture, which has the following general form:

CASE
test-sequence! THEN then-sequence! END
test-sequence2 THEN then-sequence2 END
•

•

•

test-sequencen THEN then -sequencen END
else -sequence

END

-69-

4.4 Programming Principles

You can read the CASE structure as "execute test-sequence!> test-sequence2, etc., until
one test-sequence returns flue. Then execute the corresponding then-sequence, and skip
to past the [mal END. If no test-sequence returns true, then execute else-sequence.

• Example. The program COUNT4 is a simple four "bin" counting routine.

COUNT4 Count in 4 Rflnges 1A23

level 1 I level 1

x D"

...,..
« CASE

DUP 0 < THEN 1 END Range 1 if x<O.

DUP 0 -- THEN 2 END Range 2 if x = O. --
1 s THEN 3 END Range 3 if O<xs 1.

4 Other tests failed, so x must be greater than

1 (range 4).

END

'COUNTS' SWAP DUP2 Make two copies of the vector name and the

index.

GET 1 + PUT Get the element, add 1, put it back.
»

COUNT 4 tests an argument x to see in which of four ranges its value lies. The total in
each range is stored in the four-element vector COUNTS. The elements of the vector
represent these ranges:

Element
1
2
3
4

Range
x<O
x=O

O<x:51
x>l

Another way to make a multi-case choice is to create a list of programs, then select one
of the programs from the list according to an index. For example, this sequence takes a
real number from the stack, and executes a name corresponding to the number:

{ ONE TWO THREE FOUR FIVE}
SWAP
GET
EVAL

-70-

List of name choices.
Put the index in level 1.
Get the indexed choice.
Execute the selected name.

~)

(~
(,I

()
(!

()
(';

t}
t:
(:
(,

t :'
t
t}
t~

.~i

t:,
()
t:
(' >

, . -
()
t.·
t)
t'~

()
('
t~

tJ

('

(1
('

t'
t'
f'
t·\
t'
.":
.. '-

Programming Principles 4.5

4.5 Loops
A loop is a program structure containing a sequence that is executed more than once.
In a definite loop, the number of repeats is known in advance. In an indefinite loop, exe­
cution of the loop repeats until some specified condition is met.

4.5.1 Definite Loops
The most common form of definite loop is one in which a calculation is performed once
for each value of an index which is incremented by steps between start and stop values.
On the HP 41, this is commonly achieved by using ISG ("increment and skip if greater")
or DSE ("decrement and skip if equal"). These commands use start, stop, index and
step values combined into a single decimal "control number" of the form iiiii.fffcc:

• iiiii is the index, which is an integer of up to five digits. Its initial value is the start
value.

• fff is the three-digit integer stop value.

• cc is the two-digit integer step size. If it is omitted, the default step size is one.

The control number is stored in a stack or data register. This scheme has an advantage
over the HP 48 approach described below in that all three of the loop parameters are
available as long as the register containing the control number is undisturbed, although
it takes some calculation to extract the various parts of the control number (and to
create it in the first place).

The HP 48 uses the FOR ... NEXT and FOR ... STEP strnctures for definite looping, in
which the start and stop values are supplied as stack arguments, and the index is stored
in a named local variable. The following examples show equivalent HP 41 and HP 48
sequences:

Task

Execute a sequence ten times.

HP 41 Sequence

1.010
STO 01
LBLOl ,
sequence
ISG 01
GTO 01

-71-

HP 48 Sequence

1 10
START

sequence
NEXT

4.5

Task

Sum the integers between the
values stored in variables (regis­
ters) R05 and R06.

HP 41 Sequence

RCL06
1000
/
RCL05
+
STO 01
o
LBL 01
RCL01
INT
+
ISG 01
GTO 01

Programming Principles

HP 48 Sequence

o R05 R06
FOR n

n +
NEXT

C.)
()
t)
()
(')

t)
t)

t)
t)
t:
(}
t:
t)
t.:
t;
t'
.:

The HP 48 FOR"NEXT loop is designed to repeat execution of a program sequence t~,
several times, making use of an index that is incremented by 1 at each iteration of the

(~ sequence. The general form of a FOR"NEXT loop is: .

start stop FOR name sequence NEXT,

where

• start is the initial value of the index.

• stop is the [mal value of the index.

• FOR identifies the start of the structure; it removes the start and stop values from
the stack.

• name is the name of the (local) variable that contains the index.

• sequence is any program sequence, which can contain any number of uses of name.

• NEXT is the structure word that identifies the end of the sequence. It increments
the index by one, then tests its value against the stop value to determine whether to
repeat the sequence.

You can read a FOR"NEXT loop as "For each value from start through stop of an
index named name, execute the sequence that ends with NEXT."

• Example. Compute the sum of the squares of the integers from 1 through 100.

·72-

t"1-
t' ..
t.' -
t"
t'
t'
~"
I'
t'·
t' ,
t'
t'
I'
t' .
t'
t' ,
f' ,-
t'1-

. I ~

Programming Principles

• Solution. The easiest method on the HP 48 is to use the summation function L:

'L{I=1,100,I A 2)' EVAL

An equivalent program to illustrate the FOR ... NEXT loop is:

o
1 100
FOR n

n SO +
NEXT

Initialize the sum.
Start and stop values.
Begin a loop using index n.
Square the cunent index and add to sum.
Increment n by 1. If ns 100, loop again.

Executing this sequence returns the answer 338350.

An HP 41 program to make the same calculation looks like this:

01 1.100 Control number.
02 0 Initial value of sum.
03 lBlOO Start of loop.
04 RelY Recall the control number.
05 INT Current integer.
06 XI2 Square it.
07 + Add to the sum.
08 ISGY Increment the control number.
09 GTOOO Repeat if < 100.

Some observations:

4.5

• Start and stop are not part of the FOR ... NEXT program structure. FOR expects to
take two numbers from the stack, but those numbers can be entered or computed at
any time in advance of the FOR, as long as they are in levels 1 and 2 when the FOR
executes. Start and stop can either be real numbers or algebraic objects that FOR
can evaluate to real numbers.

• The start and stop values are removed from the stack by FOR. They are not accessi­
ble afterwards; if a program needs their values for other purposes, it should copy
them or store them in variables before executing the FOR.

• The index is kept in a local variable identified by the name that immediately follows
FOR. You can return the current value of the index by executing its name. You can
also change the value of the index after the loop has started, by storing a real
number into the local variable. The naming and use of the index variable are sub­
ject to the same restrictions as local variables created by - (section 4.7). After the
loop is finished, the index variable is automatically purged.

-73-

4.5 Programming Principles

• The name following a FOR is not part of the sequence that is repeated. For exam­
ple,

1 10 FOR n n NEXT

puts integers 1 through 1 0 on the stack, but

1 10 FOR n NEXT

does nothing.

• The sequence between FOR name and NEXT always executes at least once, even if
the specified stop value is less than the start value.

• The start and stop values don't have to be integers. NEXT always increments the
index by 1; the loop will repeat as long as the index is less than or equal to the stop
value.

.5 .6 FOR n sequence NEXT

executes sequence once, with n = .5.

• The combination FOR name acts like a single operation when you single-step the
FOR.

4.5.1.1 Varying the Step Size
The FOR .. STEP program structure is a variation of FOR .. NEXT, that allows you to
increment the loop index by amounts other than one, including negative values. A
FOR .. STEP structure looks like this:

start stop FOR name sequence STEP.

Start, stop, name, and sequence play the same roles as in FOR .. NEXT loops. The struc­
ture word STEP plays a similar role to NEXT, but allows you to control the amount by
which the index is incremented (or decremented). STEP takes a real number step value
from level 1, and adds it to the current value of the index. Then:

• If the step value is positive, the loop repeats if the index is less (more negative) than
or equal to the stop value.

• If the step value is negative, the loop repeats if the index is greater (more positive)
than or equal to the stop value.

Note that since STEP takes a number from the stack, sequence must end with the step
value on the stack (the step value doesn't have to be the same each time).

-74-

"1
()
C)
()
c.',
C)
C)
C)
C)
t:
C)- ,
(} ,

t} ,
t) ,
t , i , ,

, i

t '; , · '

• ' , , '
•

t "
I ,

•

t,: ,
t>
t' \
I ' i ,

.~ I , ; ,
t ' I • ,
.' . '" \

I

Programming Principles 4.5

• Example. The program DFACT computes the double factorial n !!=n (n - 2)(n - 4) ... 1,
• • where n IS an mteger.

DFACT

« 1

SWAP 2

FOR m

m *
-2 STEP

»

An HP 41 version:

01 LBL "DFACT"
02 .00102
03 +
04 1
05 LBLoo
06 RCL Y
07 INT

08 *
09 DSEY
10 GTO 00
11 END

4.5.1.2 Looping with No Index

Double Factorial 605F

level 1 I
n

level 1

n!!

Initialize the product.

Loop from n down to 2.

m is the index.

Multiply the product by m.

Decrement m by 2. Repeat if

m~2.

Control word: start at X, stop at 1, decrement by 2.
Initial product.
Start of loop.
Recall control word.
Current integer
Multiply times current product.
Decrement the integer.
Repeat if integer> 1.

In some circumstances, there is no need for an index when a program sequence is to be
repeated a fixed number of times. In such cases, you can use START in place of FOR.
START...NEXT and START...STEP are the same as FOR ... NEXT and FOR ... STEP,
respectively, except that the loop index is not accessible. The index name that must fol­
low FOR is not used with START (if a name does follow START, it is just treated as part
of the loop sequence, and has nothing to do with the loop index).

• Example. The program VSUM sums the n elements of a vector.

-75-

4.5 Programming Principles

VSUM Sum Vector Elements ACDS

level 1 I level 1

[vector 1 a sum

« OBJ- OBJ- Put the elements on the stack, with the

number of elements in level 2, and a 1 in

level 1.

SWAP OVER - Loop start and stop values for n -1 addi-

tions.

START + NEXT Execute + n -1 times.

»

4.5.1.3 Exiting from a Definite Loop
Definite loop structures are designed to repeat a predetermined number of times. Since
the HP 48 has no GTO command that can cause program execution to jump out of a
loop before it has completed the specified number of iterations, you should ordinarily
use an indefinite loop (section 4.5.2) for calculations where you don't know in advance
how many iterations .are needed. However, the indefmite loops don't provide an
automatic index like that in FOR ... NEXT /STEP loops, so for some problems you may
fmd it more convenient to use a definite loop with a contrived exit rather than an inde­
finite loop where you have to provide your own index.

All you have to do to cause a loop to exit before the prescribed number of iterations is
to store a number greater than or equal to the stop index value into the index variable.
In loops with a positive step size, an obvious choice for an exit value is MAXR, the larg­
est number that the HP 48 can represent, although you have to be sure to convert the
symbolic constant into a real number. For loops with a negative step, you can use
-MAXR.

Typically, the exit from a defmite loop is taken as the result of a test. The general form
of such a loop is as follows:

start stop
FOR n sequence

IF test
THEN MAXR -NUM 'n' STO
END

NEXT

This structure executes sequence for every value of n starting with start, and ends when

-76-

')
()
t)
t)

t"
t)
t)
t)
t)
t:·
t;
t~1
t)
t)
t)
t~

.\
t ' . I ,

•

t ' . I ,
•

t' :

t\ '
t '" ,

I

t ' , , 1
,

t "
o ,

Programming Principles

either n is greater than stop, or test returns a true flag.

N

• Example. Determine the value of N for which L n 2 ~ 1000.

o 1 10000
FOR n

n sa +
IF DUP 1000 >
THEN n

MAXR -NUM 'n' STO
END

NEXT

n=l

Initial value of sum; start and stop values.
Loop index is n.
Increment the sum.
Is the sum ~ l000?
The current value of the index is N.
Set the index past the stop value.

Executing this sequence returns the sum 1015, and the value 14 for N.

4.5.2 Indefinite Loops

4.5

An indefinite loop is a loop where the number of iterations is not determined in
advance. Instead, the loop repeats indefinitely until some exit condition is satisfied.
The HP 48 provides two program structures for indefinite looping, the DO loop and the
WHILE loop. The primary difference between the two structures is the relative order of
the test and the loop sequence. In a DO loop, the sequence is performed first, then the
test; in a WHILE loop, the test is performed first.

4.5.2.1 DO Loops
The basic form of a DO loop structure is:

DO loop-sequence UNTIL test-sequence END.

Loop-sequence is any program sequence. Test-sequence is a second program sequence,
which must leave a flag on the stack. END removes the flag; if the flag is false (zero),
execution jumps back to the start of loop-sequence. If the flag is trne (non-zero), execu­
tion proceeds with the remainder of the program after the END. You can read a DO
loop as:

"Do loop-sequence repeatedly, until test-sequence is trne."

The equivalent HP 41 form is as follows:

·77-

4.5 Programming Principles

LBLOO Start of loop-sequence.
•

•

•

Test Reverse "UNTIL"
GTOOO

where Test is any of the HP 41 test commands.

In HP 48 programs the position of the UNTIL between DO and END is unimportant.
That is, the division of the program steps into loop-sequence and test-sequence is only a
matter of program legibility. Both loop-sequence and test-sequence are executed at each
iteration of the loop, so it doesn't matter where you put the UNTIL. We recommend
that you use the UNTIL to isolate that portion of the program that constitutes the logical
test --the program steps which produce the flag that signals whether or not to repeat.
The portion that precedes the UNTIL should be the part of the loop that computes the
results used by the remainder of the program (after the END).

To reverse the sense of the test, that is, to make a loop that repeats until a test is false,
you can either substitute an opposite test command (> for <, Fe? for FS?, etc.), or
insert a NOT immediately before the END:

• Example.

DO loop-sequence UNTIL test-sequence NOT END.

co 1
Compute L 5'

n=l n

• Solution: The sequence below sums terms of the form n -5, until two consecutive
sums are equal. Executing the sequence on the HP 48 returns 1.03692775496, after
183 iterations.

0 'N' STO Initialize a variable N as a counter.
0 Initialize the sum.
DO Start of loop.

DUP Copy the old sum.
'N' INCR Get the (incremented) counter.

-5 A + Addn -5.

SWAP New sum in level 2, old in level 1.
UNTIL Start test-sequence.

OVER -- True if old sum = new sum (leaves only new --
sum in level 1)

END Re peat if test was tlUe, otherwise done.

-78-

")
()
t)
t)
("

t)
t)
t)
t)
t:,
t)

t}
t3
t}

t ' , , , ,

~. ; ... }-'.

t ' ,
, ;

t' ~

t' \
i' ,
t\
i' 1
t' \
t' ,
t'
i'
t'
t' ;,-
t' {
t" {
.,-~

Programming Principles 4.5

• HP 41 verSIOn:

4.5.2.2 WHILE Loops
In a WHILE loop, a test sequence is defined in the first part of the structure:

WHILE test-sequence REPEAT loop-sequence END.

Here again loop-sequence is any program sequence, and test-sequence is any sequence
that returns a flag. REPEAT removes the flag; if the flag is true, the program executes
loop-sequence, then loops back to test. If the flag is false, loop-sequence is skipped, and
execution proceeds with the remainder of the program after the END. You can read a

. WHILE loop like this:

"As long as test-sequence is true, keep repeating loop-sequence."

Note that the position of the REPEAT is important (unlike the case for UNTIL), since it
marks the division between the test-sequence, which is executed at every iteration, and
the loop-sequence, which is not executed on the fmal iteration.

To reverse the sense of the WHILE test, that is, to make a loop that repeats while a
test is false, you can either substitute an opposite test (> for <, FC? for FS?, etc.), or
insert a NOT immediately before the REPEAT:

WHILE test-sequence NOT REPEAT loop-sequence END.

• Example. The program GCD fmds the greatest common divisor (GCD) of two
•
mtegers m and n. GCD repeatedly computes r = m modn; if each successive r is non-

-79-

4.5 Programming Principles

zero, it replaces n with r, m with n, and repeats. When r is fmally zero, the value of n is
the Gen.

On the HP 48:

GCD

level 2

« WHILE

DUP2

MOD

DUP 0

»

REPEAT

ROT DROP
END

ROT DROP2

HP 41 version:

01 LBL "GCD"
02 LBLOO
03 RCL Y
04 RCL Y
05 MOD
06 X*O?
07 GTOOO
08 RON
09 END

n

Greatest Common Divisor

level 1 I
m

level 1

GCD(n,m)

Beginning of test-sequence.

Make 2 copies of m and n.

Compute r = m moon

Test T'~O.

If true, do the following:

Replace m and n by new values.

Loop back and repeat the test-sequence.

Leave n in level 1.

Make copies of m and n.
Compute r = m moon
If r* 0, try again

The HP 41 version is shorter than the HP 48 program, because it does not need to
remove the successive values of m from the stack--the four-level stack ensures that they
don't pile up as they would on the HP 48.

4.6 Error Handling
The action of the HP 41 when an error occurs during program execution is controlled
by flag 25. If that flag is clear, any error causes program execution to to halt. However,
if the flag is set, program execution continues after an error, but:

• the erroring command is aborted, and the state of the HP 41 is preserved as it was
before the command was executed, including the stack contents;

-80-

')
()
()
t)
(,

()
()
()
t)
.' , .•
()
t';
t)
t)
t)
C)
()
()
t)
t\ '
t ' ,

•

t -'
t~ \
t' \
t' \
.6' \
,. I

t' (
t' 1

t' \
t' \
t ' \ . r
t' \
t' 1
t' \
t' {
.' {
" l

Programming Principles 4.6

• flag 25 is cleared.

An error trap in an HP 41 program generally consists of setting flag 25 in advance of the
execution of a suspect command or command sequence, then having the program
branch afterwards according to the state of flag 25. If the flag remains set, then no
error occurred. If the flag is clear, an error did occur and the program must react
accordingly.

The HP 48 provides considerably more sophisticated error handling tools than the HP
41. As on the HP 41, an action on the HP 48 that produces an error beep and an error
message display also normally causes any current program evaluation to stop. However,
by means of the IFERR structure, programs ('.an intercept any errors (except Out of
Memory) and continue execution. The lFERR structure has the following general form:

IFERR error-sequence THEN then-sequence ELSE nonnal-sequence END,

where the three sequences are arbitrary program sequences. You can read an lFERR
structure as:

"If any error occurs during the execution of error sequence, then execute then­
sequence and continue execution after the END. If no error occurs, skip then­
sequence and execute nO/mal-sequence, and continue on after the END."

There does not have to be a nOimal-sequencenthe ELSE nonnal-sequence is optional:

IFERR error-sequence THEN then-sequence END

executes then-sequence if an error occurs during error-sequence, but does nothing special
otherwise.

The HP 41 analog to an HP 48 IFERR structure is a program sequence like this:

SF 25
command
FC?C 25
GTO 01
nonnal-sequence
GT002
LBL 01
then-sequence
LBL02
• • •

-81-

error "sequence".
"IFERR"

"THEN ... "

"END"

,;
4.6 Programming Principles t,)

t:·
Advantages of the HP 48 system are flexibility, in that the e"or-sequence can contain

t':
one or more objects; and legibility--when you read a program it is easy to identify the
various sequences because they are set off by the IFERRfTHEN/ELSE/END structure
words. Furthermore, you can easily nest HP 48 error traps, which is difficult on the HP t j
41 because there is only one error-ignore flag. t:,

t,' , •

t:

• Example. Compute sinx/x, where x is a stack argument, using an IFERR structure to
handle the undefmed result error condition at x = o.

DUP SIN SWAP IFERR / THEN DROP2 1 END

This sequence returns 1 for an argument of zero. Here the "protected" e"or-sequence
is just the single command /. The analogous HP 41 program is:

01
02
03
04
05
06
07
08
09
10
11

ENTERt
SIN
X<>Y
SF 25

/
FS?C 25
GT002
RDN
RDN
1

•

LBL02

No error?

Discard the zeros.
Return 1.

It's important in an HP 41 program to clear flag 25 as soon as an error-sequence has
finished, to prevent inadvertently masking the effects of some later unanticipated error.
On the HP 48, this is not a concern, since the IFERR structure is very specific about
the extent of the error-sequence.

t}
t-,
t;
t!
t.:,
t~
t:
t\ '
t' ,
t ..
t, ,

t:'
t' ~
t' ,
t' ,
t' 1

The position of the IF structure word in the sequence preceding THEN in an IF struc- t' 1

ture is unimportant because it is THEN that actually makes the branch decision. How- t' ~
ever, the position of IFERR in an IFERR structure is significant; the IFERR and the

IFERR A B THEN intercepts errors in A and B, whereas A IFERR B THEN traps errors t' 1

occurring only in B. The jump to the then-sequence happens immediately upon the t' I
error; any remaining steps preceding the THEN are skipped. Thus if an error occurs in ,1
A in the structure IFERR ABC THEN D END, B and C are not executed--execution 1
jumps from the point in A where the error occurred directly to D. t' 1

ecause t e reactton to an error IS usu y spec lC to a parttcu ar error, It IS genera ya t,
, 1

-82-

,

,

,

,

I

Programming Principles 4.6

good idea to keep the e"or-sequence short, containing as few as one object if possible.
Then there is no ambiguity about which object caused the error, and no part of the
sequence that will be skipped. Of course, even a single object may cause different types
of errors. To sort out such possibilities, you can use the ERRN command to return the
error number of the most recent error, and ERRM to return the text of the error mes­
sage. For example, suppose that a program adds two arguments. The addition can fail
either because the stack is empty, or because the arguments are of the wrong type. The
following IFERR structure can deal with either problem:

IFERR +
THEN ERRN

IF #513d = =
THEN GETMORE
ELSE ERRM ABORT

END
END

Get the error number.
Is it error 513 (1'00 Few Arguments)?
Use GETMORE to get more arguments.
If the arguments are the wrong type, return
the error message as a string.

4.6.1 The Effect of LASTARG
The design of an IFERR structure must take into account whether last arguments
recovery is active at the time an error occurs. If LASTARG is enabled, the arguments of
the command that errors are restored to the stack. If LAST ARG is disabled, the argu­
ments are discarded. The sinx/x example in the preceding section assumes that
LAST ARG is enabled. The DROP2 in the then-sequence is intended to discard the two
zeros that cause the division error, and which are restored by the error system. If
LAST ARG is disabled, the DROP2 is inappropriate because the two zeros are not
returned after the error.

Since in most cases it is preferable for programs to work correctly regardless of the
state of LASTARG, IFERR structures should include steps to determine whether
LAST ARG is active or not and to act accordingly. Flag - 55 provides programmable
control of LASTARG. A program can test the flag to determine if LASTARG is enabled
or disabled, or it can set or clear the flag itself. These options allow two general
approaches for designing error traps:

1. Set or clear flag - 55 in the program before the error trap, then write the IFERR
structure accordingly. Returning to the SiDX/X example, either

-55 CF DUP SIN SWAP IFERR / THEN DROP2 1 END

or

-55 SF DUP SIN SWAP IFERR / THEN 1 END

-83-

4.6 Programming Principles

will work. This method has the disadvantage that it may alter the state of flag
- 55 and thus affect other programs that may depend on the flag. As a rule, any
program that does depend on flag - 55 or any other flag should itself set the flag
the way it wants, so this should not be a major limitation. (You can preserve the
state of the LASTARG flag, and all other flags, by executing RCLF, keeping the
resulting list on the stack or in a local variable, then using it with STOF at the end
of a sequence that alters the flags.)

2. Include a conditional in the then-sequence that can react to the current state of
flag - 55 without altering it. For example,

4.6.2 Exceptions

DUP SIN SWAP
IFERR /
THEN

IF -55 FC?
THEN DROP2
END
1

END

A mathematical exception is a condition encountered in the execution of certain func­
tions for which you are given a choice of how subsequent execution should proceed.
You can treat an exception as an execution-halting error, or have the calculator supply a
default result and continue normally. In both the HP 41 and the HP 48, you make your
choice by means of the various exception action flags, which are flag 24 on the HP 41
and flags - 20, - 21, and - 22 on the HP 48.

The HP 41 recognizes only one type of exception, the Out of Range exception, which
occurs when a mathematical result is larger than the maximum HP 41 number
9. X 1099 • The corresponding exception action flag is flag 24; if this flag is
clear, such an overflow produces an error. If the flag is set, the maximum value
±9. X 1099 is returned.

HP 48 exception action flags act analogously to HP 41 flag 24. The state of each of
these flags determines whether the corresponding exception results in an error, or
returns a default result with no error.

A typical HP 48 exception is division by zero. The behavior of / when the divisor is
zero is controlled by flag -22, the infinite result action flag. If flag -22 is clear (the
default setting), division by zero is treated as an error, causing the Infinite Result error.
However, if flag - 22 is set, no error is reported, and one of the values

-84-

C.)
('I

.-1

()
t)
t:1

tJ
t)
t)
t)
t:
t}
t~,

tl
t)
t)
t')
t',
()
t}
t\
t\
t .. '
t.,' .
t · .

•

t' ,
t' 1

.' ~

.' ~
t'1
t'1
t' 1
.' 1
t, ~
f' ~
t' I

\

,

I

\

\

\

\

Programming Principles 4.6

±9. E499 (± MAXR) is returned, which are the HP 48's best representa-
tions of ± <Xl. The sign of the result is determined by the sign of the dividend.

The choice to error or to supply a default generally depends on whether the exceptional
condition is expected. For example, if you don't anticipate that a program might cause a
division by zero, it is better to clear flag - 22 so that the program will halt and report
the error. On the other hand, if you know that the division-by-zero situation can hap­
pen, and that ± MAXR is a good approximate result that lets a calculation proceed to
meaningful results, then setting flag - 22 is a good choice.

An HP 48 program can detect when an exception occurs even when the action flag is
clear and execution does not halt. Flags - 23 through - 26 act as signal flags--when an
exception occurs, the corresponding signal flag is set automatically. For example, flag
- 26 is set by an infinite result exception. Therefore, a program ('.an clear flag - 26,
carry out a calculation with flag - 22 set, and still determine if a division by zero
occurred by testing flag - 26.

In addition to the infinite result exception, the HP 48 also recoguizes two other excep-
• ttons:

• Overflow (action flag -21, signal flag -25). Overflow occurs when a function
returns a result that is finite, but larger than the HP 48 can represent, such as
FACT(2000). With flag -21 clear (the default setting), overflowing functions return
±9.99999999999E499. An overflow is not the same as an infinite result, for which
the correct value is ±<Xl rather than a too-large fmite number.

• Underflow (action flag -20, signal flags -24 and -23). Underflow occurs when a
function returns a result that is not zero but smaller in absolute value than 1 E - 499
(MINR), the smallest non-zero number that the HP 48 can represent. If flag -20 is
clear (the default setting), any underflowing function returns zero as its default
result. Since zero has no sign, two signal flags are used: flag - 24 is set to indicate
that the function underflowed from the negative side of zero; flag - 23 set indicates
underflow to ~ small positive number.

Note that 0+0 is not an exception. That result is mathematically undefined--it is neither
an overflow nor an infinite result. There is no appropriate default result to supply, so
the HP 48 always reports the Undefined Result error and halts execution. You can, of
course, create your own exception handing by using an IFERR structure to trap this
error.

HP 41 flag 24 is closest in effect to HP 48 flag -21. However, the HP 41 does not dis­
tinguish between infinite and fmite-but-too-Iarge results. For example, TAN(900) and
EXP(2000) are both treated as the same out-of-range exception. Moreover, division by

-85-

,

4.6 Programming Principles

zero on the HP 41 always returns DATA ERROR--this error can only be trapped by a
flag 25 error branch. In converting HP 41 programs to the HP 48, therefore, you can't
just use HP 48 flag -21 or -22 to act as HP 41 flag 24. If, for example, you set HP 48
flag -22 to match HP 41 flag 24 in preventing TAN (90°) from producing an error, the
HP 48 then does not report an error for division by zero, which the HP 41 always does.

4.7 Local Variables
The HP 48 variables and their associated names that you see in the VAR menu are
referred to as global variables and names. The term global implies that these variables
can be accessed by any program, or from the command line. The HP 48 also provides
variables that are associated only with individual procedures. The use of these local
variables and the corresponding local name objects is a very useful and powerful pro­
gramming technique.

It is possible, with the "unlimited" stack provided by the HP 48, to carry out an arbi­
trarily complicated calculation on the stack without any use of variables to store inputs,
intermediate results, or fmal outputs. The fastest and most efficient computation is usu­
ally achieved in this manner. However, it is not always program execution efficiency
that is paramount, but rather the overall "throughput" of the problem solving process.
If a calculator is easy to program, you can usually get a result in less total time even if
the program itself may execute more slowly than if you developed a solution in an effi­
cient but arcane style. Thus while you can write a HP 48 program that is a marvel of
structure and efficiency by using only stack objects, the time and skill required for you
to keep track of everything on the stack during program development may be too high a
price for the result. In short, there is often a compelling advantage to assigning names
to objects to simplify the programming process.

At fIrst glance this seems to imply the use of global variables that are created by STO,
are available at any time, and appear automatically in the VAR menu. However, while
global variables are fme for "permanent" data and procedures, they are not as attractive
for storing intermediate results. They stay around indefinitely, so that you have to
remember to purge them to avoid cluttering up the VAR menu and to conserve memory.
Furthermore, you have to be careful when you create a variable in one program to avoid
using the same name as that used by 3!lother program, unless you deliberately intend
the two programs to share a common variable.

HP 48 local variables are a means for saving intermediate data and results that is inter­
mediate between using the stack exclusively and using global variables. Local variables
exist only in a context defmed by the program structure that creates them; therefore
there is no question of name conflicts with global variables or other procedures' local
variables. Also, when the defIning structure has completed evaluation, all of its local

·86·

~)

()
C)
t)
t:,
t,
t '!

t\
t:
t:
t "
t
t
t.
t
t~

t'
t'
t'
t,
t'
t
t·
t ..
t'
t
('

t'
t'
t'
t'
t'
t'
t
t,
t
f'
t,
t' ,

'"

,

,

,
\

\
•

,

,
\

I
\

1
1
\

I ,
I
\

Programming 4.7

variables are automatically purged.

There are two methods by which you can create local variables. The primary method is
by means of local variable strnctures, which use the program structure word to create
local variables. In addition, the FOR. .. NEXT jSTEP loops described in section 4.5.1 use
a local variable to store the current value of the loop index. Although the index variable
is used for a special purpose, it is otherwise the same as a local variable created by ,
with the same applicable commands and restrictions. In the remainder of this section,
we will concentrate on local variable structures.

A local variable strncture starts with the structure word (called "arrow," or just "to")
followed by one or more local names, and then by a program or an algebraic object
referred to as the defining procedure. The closing delimiter (' or ») that ends the
defining procedure also marks the end of the structure:

.... name 1 name 2 • • • namen «program» , or

.... name 1 name 2 • •• namen 'algebraic' .

The primary purpose of local variables is to provide a means of manipulating by name
the stack arguments used by a procedure. You can think of the as meaning "take
objects from the stack and give them the following names; then evaluate a procedure
defined using the names." Note that the procedure is evaluated, even though it is
entered between quote delimiters ' , or « ».

.... takes objects from the stack and matches them each with one of the names that fol­
lows the The number of objects taken is determined by the number of names that
are specified. The end of the series of names is marked by the delimiter ' or « that
starts the derming procedure. The objects are matched in the order in which they
appear in the stack; the object in the highest stack level goes with the first name; the
object in level 1 is matched with the last name. A local variable is created for each of
the names, with the local name as its variable name, and the matching object as its
value. For example,

1 234 abc d

creates the local variables a with the value 1, b with value 2, c with value 3, and d with
value 4.

• Example. Compute the five integer powers x through x 5 of a number x in level 1.
This first method does not use any variables except a loop index:

-87-

4.7

« 2 5

FOR n
n 1 - PICK

n A

NEXT
»

Powers 2 through 5.

Loop with index n.

Programming Principles

Get a copy of the number.

Raise to the nth power.

This is not a very complicated program. It is fast and efficient, because it uses only
stack operations to obtain copies of the input number. The sequence n 1 - PICK is
needed to return a new copy each time around because when the index is n, the original
number has been pushed to level n -1 by the growing stack of computed powers.

The program looks easy to write, but you do need a little thought to figure out where
the input number will be on the stack at each iteration, and what stack operations are
required to return a copy of the number. You can avoid the mental gymnastics by writ­
ing the program to remove the number from the stack at the outset, and name it with a
local name:

« ~ x Store the number as x.
« X 2 5 Powers 1 through 5.

FOR n Loop with index n.

x n A Computexn •

NEXT Repeat.
»

»

The latter program is slightly longer than the previous version, but the time it takes you
to write it should be less because there is no effort required to keep track of the input
number on the stack. Any time the program needs the number, it just executes the
local name. The lesson of this simple example becomes more important as the com­
plexity of the programmed calculation increases, to the point where using local variables
can make the difference between success and failure in the development of a program.

You can use local variable structures at any point in a program, not just at the begin­
ning as in the example. The program CINT illustrates the use of a local variable to
name an intennediate result. CINT computes the radius of a circle inscribed in a trian­
gle, where the lengths of the sides of the triangle are specified on the stack. The for­
mula is:

-88-

t)
t)
t)
t:
t:
t}
t
t·
t)
ti
t.\
t'

tt
t '\
t;
t,
t·
t:
t1
t
t'
t'
t'
t'
t'
f'
t'
t,
I
I
t
I
I'
f'

,

I ,

Programming

r = [s(s-a)(s-b)(s-c)]~
s

where a, b, and c are the lengths of the sides, and s = Yz(a + b + c).

CINT == Circle in a Triangle

level 3 level 2 level 1 I level 1

a b c r

3EBE

«-abc

« '(a+b+e)/2' EVAL - s

'V (s*(s -a) *(s-b) *(s -ellis'

Name the lengths of the sides.

Compute and save s.
Compute r.

» End of local variable structure.

»

4.7.1 Comparison of Local and Global Variables and Names

4.7

Local names and variables are very similar to ordinary names and variables, but there
are some important differences:

• Global variables are stored in a permanently established portion of memory we call
VAR memory because of its relation to the IVARI key, or user memory because it is the
primary storage place for user-created objects. Local variables are stored in dynami­
cally created "local memories," each of which is a segment of memory that acts like
an independent VAR memory assigned to a particular procedure. When the pro­
cedure has finished evaluation, the associated local memory is deleted, including all
of its local variables.

• Local names are a different object type (7) from global names (6). This is how the
HP 48 system knows whether to fmd the variable corresponding to the name in VAR
memory (global variables) or in a temporary local memory. When the HP 48
attempts to fmd a local variable, it searches the most recently created local memory
first, then previous local memories in reverse chronological order, until it finds a
variable matching the specified name.

• Executing a local name recalls to level i the object stored in the corresponding local
variable, without executing the object. This means that if you store a program in a
local variable, to execute that program you must execute the variable name followed
by EVAL (or -NUM). The EVAL is not necessary for programs stored in global vari­
ables, since execution of a global name does automatically execute the stored object.

• Most commands that can work with tOlmal global variables (names with no associ­
ated variables) do not accept local names as arguments: a, f. TAYLR, DRAW, ISOL,
QUAD, ROOT.

-89-

4.7 Programming Principles

• You ('.(In not delete a local variable with PURGE.

• Local names can be the same as HP 48 command names (except for single-character
algebraic operator names like +, -, *, etc.). You can use local names i and e, but
you should be careful not to use these names when you also want to use the sym­
bolic constants i and e.

Occasionally you may encounter a local name for which the associated local variable no
longer exists. For example, a defining procedure may leave the name of a local variable
on the stack after it completes evaluation.

« 1 - x « 'x' » »

leaves the local name 'x' on the stack after evaluation, but the corresponding local vari­
able x that was given the value 1 is gone. You can not successfully execute this "formal
local variable"--EVAL returns the Undefined Local Name error. You should try to
avoid leaving left-over local names on the stack or in algebraic objects that result from
symbolic calculations, to avoid confusion later.

-90-

c:
t.' ,
..
" ,
...
t.
t..
t
t
t:
t
t:·
t

" t'
t'
tJ..
t:..
t,.;
t..
t~

t
i'
t'
I
t
I'
t'
t~

" I
I
t
I' !
I' ,l
f'-,

5. Program Development

In the preceding chapter we described the nature of HP 48 programs, including the pro­
gram structures that provide for branching and looping. In this chapter, we will study
certain topics in program development, including program editing and debugging, and
HP 48 mechanisms for input and output to and from a program's users.

5.1 Program Editing
Unlike the HP 41, the HP 48 does not have a specific "program mode" for entry or
editing of programs. A program is created as a stack object using the command line,
then named by storing the new object in a variable. Similarly, to make any alteration to
an existing program in order to correct an error, optimize execution, or add features,
you must edit a program the same way you edit any other objectnin the command line.
That is, you use EDIT or VISIT to create a text version of the program in the command
line, use the facilities of the command line to make the changes you desire, then press
IENTERI to replace the old copy of the program with the new one. Re-entering the entire
program this way ensures that objects and program structures are entered correctly.

The advantages of the HP 48 program editing approach are:

• The same editing methods apply to all HP 48 object types, so that you don't have to
learn special techniques for each object type .

• No changes you make during an edit are "fmal" until you press IENTERI. If you
change your mind while you are editing a program, you can just press IAITNI to can­
cel the edit and leave the program intact.

On the other hand, there are two important disadvantages:

• For a large program, it can take a substantial amount of time for the HP 48 to
translate the entire program object into its text form, and, when you're done editing,
to build the new program from the command line text.

• During the execution of ENTER, there must be memory available for as many as
three versions of the program (the original, the command line text, and the new ver­
sion) simultaneously. This restricts the size of the program that you can edit.

The latter disadvantage is the most serious, because it can happen that there isn't
enough memory to permit any changes to an existing program, even if the changes don't
increase the fmal size of the program. Both disadvantages dictate that you keep pro­
grams small, typically less than a few dozen objects each. If a program starts to get too
big as you develop it, break it up into smaller subprograms that are executed by a short

·91·

5.1 Program Development

main program. Even though this costs a little more memory for the subprogram names
and variables, the smaller programs will be editable when a big single program is not.

5.2 Starting and Stopping
As we have discussed in previous sections, HP 48 programs are highly structured, and
each has only a single entrance and exit. This fact makes starting and stopping an HP
48 program a different proposition from the simple run/stop capability of other calcula­
tors. On the HP 41, for example, you can stop a running program at any time by press­
ing IRISI. When that key is pressed, the program halts after the currently executing
step, and returns control to you. You can use IGTOI to move the program counter to
another line or label, or run another program, etc. When you press IRISI again, program
execution resumes from wherever the program counter happens to be.

In the HP 48, if a program is to stop and be able to be restarted, it must include a
HALT or PROMPT command in its definition. You can stop any program by pressing
IA ITN I , but as you will see below, that terminates execution of the currently executing
program and cancels pending returns to any other programs that may have called that
program. (In more precise terms, the return stack is cleared, and the normal stack
display and keyboard are reactivated.) HALT and PROMPT are the HP 48 versions of
HP 41 STOP and PROMPT, respectively. PROMPT is the same as HALT (or STOP)
with the addition that it displays a specified message in the display (in the status area,
on the HP 48). HP 48 CONT (continue) is a programmable command which produces
an effect similar to pressing on the 41--except that CO NT has no effect unless there
is a program suspended. In the HP 41, always causes program execution to resume
from wherever the program counter happens to be.

When either HALT or PROMPT is executed, the program containing the command is
suspended. The HALT annunciator turns on in the status display area on to remind you
that there is a program awaiting completion. The keyboard is activated, and all calcula­
tor operations work normally. The HP 48 can maintain this state indefinitely--it behaves
as if you had started up another calculator "inside" the halted program. This suspended
calculator environment even has its own stack save (for 1<r,1 II ''.ST STACK I), which is
separate from the stack copy made before the suspended program was started. The cal­
culator operates in the suspended environment until you execute CO NT, whereupon the
suspended program resumes execution at the object following the HALT or PROMPT.

You can "nest" suspended program environments one within another without limit
(other than available memory). While one program is halted, you can run another pro­
gram that itself halts and sets up another calculator environment with its own saved
stack, and so on. When you execute CONT, the latest suspended environment is
deleted, including the stack copy saved in that environment. When a program completes

-92-

()I
C,.
C~
()II

c,.
t:w
()I

t"
(Ii

eli
•

(:, ..
t)
t­
t~
t~

t " . ,r

t j<l

('~\

t)·\

t · , \ ,'. .
•

t" :1

(>,~

t
, I
i \

C. ~ \
t ~ 1
t'1 1
t~ l
t,
t
t·
t
t' -
t ."

,
. ,

•••• _-.l.

I
,
I

!

•

Program Develop' nent 5.2

execution, pressing I<I,IILAST STACK I immediately afterwards restores the stack that was
saved by the ENTER that started the program. To illustrate, enter the following pro­
gram and name it A:

Then:

« CLEAR 1 2 HALT 3 4 » 'A' STO

Keystrokes:

~ICLRI 'X' 'Y'

IENTERI

A IENTERI

~ICLRI

I <I, IlcmlT!

2:
1 :

2:
1 :

2:
1 :

2:
1 :

4:
3:
2:
1 :

Results:

'X'
'Y'

1
2 HALT annunciator is on.

1

The program has put 1 and
2 on the stack, and halted .

2 "AST STACKI restores the
stack cleared by the last
CLEAR.

1
2
3
4 The program A resumes,

pushes 3 and 4 onto the
stack, and is finished.

-93-

5.2

I<I,IUAST STACKI 2:
1 :

'X'
'Y' Back to the original environ­

ment; the last ENTER in
this environment was the
one that started the pro­
gram A. Thus II AST STACK I
restores the stack as it was
before that ENTER.

5.2.1 The ATTN key, DOERR and KILL
As the A TIN (Attention.,) letters below the I ON I key suggest, this key is your means for
getting the "attention" of the calculator. When you press IAtTNI , you tell the calculator
to stop what it is doing: stop all operations, procedures, etc., clear any special displays,
reactivate the keyboard, and show the standard stack display. This is a "gentle"
interruption--stored variables are not affected, the stack is preserved, and the saved
stack, command line stack, and last arguments are left intact. The procedure return
stack is cleared, however, which means that programs interrupted bylAlTNI can't be con­
tinued.

When a program is suspended (by HALT), IA1TNI acts as above, but preserves the
suspended environment. That is, any suspended programs (and all of the associated
saved stacks) are unaffected by IAlTNI. This is a reassertion of the statement that all
ordinary calculator operations can be carried out while a program is suspended without
affecting the suspended program--IAITNI is considered "ordinary" in this sense.

IATTNI is treated by the calculator as an error, error number zero, except that it is
"silent." There is no error beep or error message, but otherwise it halts execution like
any other error, and you can intercept this error with an error trap (section 4.6). A run­
ning program can even abort itself by executing 0 DOERR, which acts exactly as if the
IATTN I key were pressed. 0 DOERR is a particular case of the general form n DOERR,
which executes the system error n. Such deliberate errors, unless trapped, act the same
as inadvertent errors--the HP 48 beeps and displays the appropriate error message. A
program might execute DOERR when it has intercepted an error but decides to abort
anyway (using, for instance, ERRN DOERR to display the error message), or when it
deliberately wants to error and use a built-in error message. If no built-in error mes­
sage is suitable, you can supply your own error message with "message" DOERR, where
"message" is a string object that specifies the error message. Usually this is done in
combination with an IF structure, such as

IF all-is-lost THEN "Give Up" DOERR END.

-94-

~.

('\
(I

()
(:
t,
t "
t·
t.
t:
t,
t
t·
t
t
t.;
t
t>
t·
t'
t
t·
t' .
t. '
t , , , .

II
(' I

t' \
t, ,
t' {
t' {
I'{
t' ~ ..
t~
t ~
t {.
to. t
t't
.+
~oJ

5.2

Like IA'lTNI, DOERR works in the current suspended program environment--if there are
any suspended programs, they are unaffected by DOERR. The only command that does
affect suspended programs is KILL. KILL is an extended form of DOERR that not only
terminates the current program, but also clears all suspended programs and turns off
the HALT annunciator. All of the temporary saved stacks associated with the suspended
program environments are deleted. You can use KILL in a program, but that is a rather
drastic thing to do, since in general a program can not "know" what other programs are
suspended when it is executed. It is better to use DOERR in a program, then execute
KILL manually if needed. Most likely, your most frequent use of KILL will be to clear
some half-fmished program that you have been single-stepping, once you have found the
problem you have been seeking.

5.2.2 Single-Stepping
The ~SST~ (single-step) key found in the IPRGI~CTRL~ (program control) menu is a com­
bination of CONT and HALT that lets you step through a program one object at a time.
HP 48 single-stepping differs from that on the HP 41 in several important respects:

• You can't single-step an HP 48 program unless it is suspended--it must be executed
from its beginning and halted prior to single-stepping. On the HP 41, using the IGTOI
key, you can begin single-stepping anywhere in a program .

• Every HP 41 program step is self-contained, so every single-step operation is
independent of what precedes or follows it. On the HP 48, certain program struc­
tures, such as IFERR sequences or local variable assignments, execute together as a
single step.

• The HP 48 allows you either to execute a named subroutine as one step, or to
single-step through the subroutine. The HP 41 only allows the latter.

• There is no back-step (BST) on the HP 48.

To understand the mechanics of HP 48 SST, you can picture it as the equivalent of
pressing 1q.,llcONTI with a HALT temporarily inserted immediately after the next object
in the program. From this model, you can see that in order to single-step a program, it
must be suspended. There are two ways to suspend a program for this purpose. The
easiest way is to put the program or its name on the stack, and press ~DBUG~ (also in
the program control menu). This begins execution of a program but halts it immedi­
ately, before executing the fust object in the program. If you want instead to begin exe­
cuting a program and halt it at a point other than the beginning, you must fust edit the
program and insert a HALT at the desired point, then execute the program and wait for
it to stop. (You can also use IPROMPTI , as long as you include a prompt string argu­
ment.) In either case, once the program is halted, you can use to execute each
successive object in the program. At each ~SST~ press, the HP 48 executes the next

-95-

5.2 Program

object in the suspended program, then halts and suspends the program again. To help
you keep track of where you are in the program, each object is displayed in the top
display line as it is executed (that display may be overwritten if the executed object
affects the display). You can also preview the next object without executing it by press­
ing §NEXH (which displays the next one or two objects in the program).

In some cases, it is desirable to step through subroutines of a program--other programs
that are executed by name within the main program. This is accomplished by using
§SSTI§ (single-step "down") when you encounter a subroutine's name instead Of§SST§ .
While single stepping a subroutine, you can press I ~ IlcONTI to complete execution of
the subroutine, and resume single-stepping in the main program. Pressing I <I,llcONTI in
the main program, or single-stepping its fmal », completes execution of the program
and clears the suspended program environment.

Another consequence of the behavior of SST as a one-step CO NT is that each SST
clears the current suspended program environment, then creates a new one after the
step. This means that you can't cancel any stack effects of the object that was single­
stepped by pressing 1<I,luAST STACKI--the saved stack present before the SST is deleted
by the SST.

Some additional notes about HP 48 SST:

• An IFERR structure is treated as a single object by SST. That is, when you press
§SSH at an IFERR, the entire IFERR ... THEN ... ELSE ... END structure is executed. If
an error occurs between IFERR and THEN, the then-sequence between THEN and
ELSE is executed; otherwise the else-sequence (if it is present) between ELSE and
END is executed. The next §SSH will single step whatever object follows the END.
If you want to step through individual parts of the IFERR structure, you must insert
HALT(s) within the structure.

• If a single-stepped object causes an error, the error is reported normally, but the sin­
gle step execution does not advance. If you press § SSH again, the HP 48 will
attempt to execute the same object again. This gives you a chance to fix whatever it
is that causes the error, such as a missing stack argument, then proceed with single­
stepping.

• At any time while you are single-stepping a program, you can return to normal exe­
cution of the remainder of the program by pressing 1<I,llcONTI.

5.3 Input and Output
In any RPN calculator, the stack is the basic input/output mechanism in programs as
well as in manual operation. You can enter a program's input data as stack objects,

-96-

,:
,-
,
c~
,
t
t,
t
t,
t.
t·

t
t
t.
t.
t,

t
t
t

" t'
t
t
t,
t:
.'
" I'

, ,

,

, ,

,

Program Development 5.3

execute the program, then read its results from the stack. It is common, however, for
programmers to simplify matters for program users by providing visual or audible
prompting for input, and labels for output. In the HP 41, prompting is generally accom­
plished using PROMPT, which halts program execution and displays the alpha register to
show the prompt message. A program can also use PROMPT to label its output, with
sequences like this:

01 "I " vaue=
02 ARCLX
03 PROMPT

This leaves the string value =x in the display, where x is the output value, here assumed
to be in the X-register.

This same simple prompting and labeling can be done on the HP 48, but that calculator
also provides several more elaborate methods for input and output.

5.3.1 Input Prompting

5.3.1.1 Stack Entry
The HP 48 PROMPT command (§PROM§ in the !PRG! §CTRL§ menu) is a straightfor­
ward analog of the corresponding HP 41 command. It is designed to display a one- or
two-line message in the status area, which serves to prompt a program user to enter
data or perform other calculator operations before resuming program execution. The
message is displayed in the medium font in the status area, where it will persist until the
next ENTER. For example, the following sequence instructs the program user to enter a
value for X, then to resume program execution by pressing !<llIiCONT! :

"Enter X, then CONT" PROMPT.

Executing this sequence yields a display like this:

Enter-

4:
3:

• •

, en

o til hi L"l :t ... a

-97-

5.3 Program Development

PROMPT expects to fmd a string object in level 1 representing the the prompt message.
If the message contains no newline characters, it is displayed in display line 1, and line 2
is automatically blanked. To display a message that spans lines 1 and 2, you must
include a newline character at the line break:

yields

• •
• •
• •
• •

"Enter X,
then press CONT" PROMPT

er ,
press CONT

H'iP

Each line of a message string should normally be 22 or fewer characters; if either is
longer, the fIrst 21 characters of that line are displayed with an ellipsis ""." in the right­
most character position.

For multi-line text or graphical prompts, you can use DISP, LCD, or PVIEW followed
by FREEZE and HALT. The general steps are as follows:

1. Create the prompt. For text displays, this consists of one or more string objects,
each of which is to be displayed in one medium-font display line. For graphical
displays, the prompt can be a graphics object (grob) on the stack, or you can use
the plotting screen (PI CT).

2. Display the prompt.

• DISP displays a single line of text, where the text is specilled by a string object
in level 2, and the display line by a real integer 1 - 7 in level 1. Normally, you
precede one or more DISP's with CLLCD (CLear LCD), which blanks the
status and stack areas of the display (lines 1 through 7) .

• LCD blanks the stack and status display areas, and displays a grob (level 1) in
the upper left corner of the display. The largest grob that can be displayed
this way is 131 X 56; if the argument grob is larger in either direction, it is

-98-

t:
.. "
(,
t,
t
t,
tl
t,
t,
t
t';
t
t.
t'
t.
t,
t.
t
ii
t. i
t, ,

t' 1 .. ,
'I
t.
ti
t
t.')
t' I

t'
t.
t.'
t'
t'

•
.'

&.'

Program DevelOpl116nt 5.3

cropped to 131 x 56 .

• PVIEW displays the plotting screen. You must specify the coordinates of the
plot that are to be placed at the upper left corner pixel of the display, by enter­
ing a complex number (x,y) for the scaled coordinates, or a list { #x #y } con­
taining the pixel numbers. In the common case where the PICT grob is the
same size as the LCD (131x64), the appropriate argument for PVIEW is { #0
#0 }.

3. "Freeze" the display. Normally, when a program halts, the calculator automati­
cally redisplays the status area, stack, and menu labels, wiping out any special
displays a program might have made. You can prevent the automatic display
update by executing FREEZE, with a real integer argument that specifies which
display areas are to remain unchanged. The status area, stack area, and menu
labels are individually frozen by 1 FREEZE, 2 FREEZE, and 4 FREEZE, respec­
tively; other values up to 7 freeze the two or three areas that "sum" to those
values. Thus 3 FREEZE freezes the status and stack areas, and 7 FREEZE freezes
all three areas.

4. Halt the program, using HALT .

• Example. The following program sequence creates an input prompt for a quadratic
equation solution.

QUADP -LCD Display the quadratic equation.
"Enter a, b, and c;" 4 DISP Display ftrst text line.
"Press CONT" 5 DISP Display second text line.
3 FREEZE Freeze status and stack areas .

....;H...;.:A...:.:L;:.:T:....-_________ Su~nd J!!o am execution.

Here QUADP is a global variable containing a graphics object representing the qua­
dratic equation. The graphics object is created with the following sequence:

'a*x'2+b*x+c=0' 0 -GROB {#Od #15d} {#65d #32d} SUB

o -GROB turns the algebraic object into a grob showing the equation in Equation­
~riter form; SUB trims the grob down to a minimum size (66 X 18) to show the equa­
tIon.

-99-

5.3

Executing the prompting sequence yields the following display:

2
a I~ +b 1~+c=0
Enter a
Press C

b NT'
and c;

Prompting displays created with DISP, PVIEW, and LCD may be more elaborate than
those produced by PROMPT, but they only persist until the next key press.

5.3.1.2 Command Line Entry
The advantage of the stack entry methods described in the preceding section is that a
program user has access to the HP 48 stack and any of the calculator's facilities when
entering the input needed by the program. However, this access can also be a disadvan­
tage, in circumstances where it is not desirable for the user to be able to alter stack con­
tents, stored objects, etc. For these situations, the INPUT command provides for com­
mand line entry, for which the program can specify display prompting, initial command
line contents and cursor position. INPUT automatically activates program entry mode, so
that the user is restricted to object entry only. When INPUT executes, program execu­
tion is suspended, prompt text replaces the stack display, and the command line is
activated. After entry, IENTERI resumes program execution with the object following
INPUT in the current program.

INPUT requires two arguments. A string in level two specifies a prompt that appears in
the medium font in the stack display area; this prompt persists during keystroke entry,
until terminates the INPUT operation. You C.(In create a multi-line prompt by
including newlines in the level 2 string. The level 1 argument can also be a string, which
is used as the initial contents of the command line. For example, the following
sequence prompts for a new value for a variable X:

"Enter X:" X STD STR INPUT OBJ.... 'X' STO

Here we have used the current value of X as the initial contents of the command line.
When the sequence is executed with 100 stored in X, the following display appears:

-100-

~.

t·
(

t
t
(

t
t\
t, '
t·
ti
t .
t .
t .
t .
t. '
t
t
t:
f '
ti..l
t·i
t ...
t -'
t:
t ' ,

t' ,
t' .
t \ 1

t ,
-

t ~
t" J

t" .=
t
t .~

f =
t· ~

t.' -:
t=

Program Developlilent

er
]0

• •

5.3

PFiG

t·1 it T Fi E:itSE

At this point, you can edit the current value, or press IAlTNI to clear the command line
and type a new value for X. (If you press IATINI again, or any time the command line is
empty, the program is aborted.) Pressing IENTERI returns the contents of the command
line to level 1 as a string object, and the program resumes execution with OBJ-.

In the example, the command line initially contains the level 1 string argument, with the
insert cursor ¢ at the end of the string; upon IENTERI, the command line string is pushed
as is onto the stack. For additional control over the INPUT command line, you can use
a list as the level 1 argument. The list can contain one or more elements (the order
does not matter):

• To specify the initial command line text, include a string object (if this is the only
element, then you can use the string object by itself as in the preceding example).
The string may contain newlines, to produce a multi-line entry. If no string is speci­
fied, the command line will initially be empty .

• To place the cursor at a particular position in the command line, include a real
integer to specify the character position, counting from the start of the command
line (and including newlines in the count). Character number 0 specifies that the
cursor is to be placed at the end of the command line (to the right of the last char­
acter). Alternatively, you ('.an use a list {row column} that specifies the row (counting
from the top down) and column (counting from the left) position for the cursor.
Column number 0 indicates that the cursor is to be placed at the end of the specified
row; row 0 specifies the last row of the command line. If no cursor position is speci­
fied, the cursor will be placed at the end of the command line.

You can also use the cursor position object to select replace entry mode, in which
typed characters overwrite the characters at the cursor. This is done by entering a
negative character or row number. Positive numbers specify the default insert mode.

• To activate the command line in algebraic-program entry mode (ALG PRG), include
the name ALG.

-101·

5.3 Program

• To activate alpha-lock, include the name 0:.

• Since the command line contents are returned to the stack as a string, the INPUT
normally does no syntax checking on the string following IENTERI. However, if you
include the name V (for verify), the string is checked for valid object syntax. If there
is a syntax error, the HP 48 beeps and reactivates the command line with the
highlighted error position, just as with ordinary command line entry. This is useful
when you are using INPUT to enter objects in their standard form, i.e. you follow
INPUT with OBJ- to convert the result string to objects. If you don't use the V
option and an entry has invalid object syntax, OBJ- will error and abort the pro­
gram. The V option allows the HP 48 to catch such errors before the program
resumes.

Note that the symbols 0:, ALG, and V are entered into the INPUT strings as name
objectsnwithout any delimiters. However, these names are not executed, so it doesn't
matter if you have variables with those names.

• Example. In the following sequence, spaces within strings are marked by'"'' charac­
ters for clarity.

"Enter temperature
Aand pressure" Two-line prompt string.
{ ":Temp:A

:Press:'" Initial command line text.
{ 1 o } Cursor at end of fIrst line.
V

}
INPUT Stop for input.
OBJ- Convert entered text into ob·ects.

Executing this sequence yields the following display:

HOME]-
er elYJpera ure

and pressure
: TeIYJp: ..
: Press:

H\'P

-102-

PFiG

, l

(.\ 1

(1
(1

C 1

(,1
(1

('} 1

t 1

C 1

(, 1

t 1

t~ 1

t) 1

(1

t 1

C 1

C 1
,. 1

(•
t ~

(, 1

t '
t 1

t 1

C 1

C' 1
C' 1

t' 1

t j

I j

t j

,'j
t' ,
t j

t' .j
t· j

" j
t 1
.' .~

5.3

The cursor is at the end of the first row, following the tag :Temp: that indicates that a
temperature should be entered. After entering the temperature, pressing [2J moves the
cursor to the second row, following the :Press: tag. For example, these keystrokes

300_ 1<!,lluNITSl lNXTl HEMP§ § K § [Y']
100000_ l<!,lluNITSl INXTl § PA §

lENTERl

return the tagged object :Temp:300_K to level 2, and :Press:100000_Pa to level 1.
Here the primary purpose of the tags is to indicate the command line order of the
entries; the fact that the resulting stack objects are tagged will not interfere with any
subsequent program calculations.

5.3.1.3 Custom Menus
In some cases, a program requires you to make a choice of action rather than to enter
data. It is possible, of course, to use data to make a choice, as in "enter 1 to do this, or
2 to do that." An alternative method is to use custom menus, where a program halts
and allows the user to press a menu key to indicate a choice and resnme program exe­
cution. Consider this example:

"Choose left or right" Prompt text.
{ { "LEFT" « 1 SF CONT » } First menu key definition.

{ "RIGHT"« 1 CF CONT » } Second menu key definition.
}
TMENU Create the temporary custom menu.
PROMPT St~ for in ut.

Executing this sequence produces the following display:

Choose left or right
• •
• •
• •

1 :
LEFT F:IGHT

Now the user presses either §LEFT§ or §RIGHT§ , upon which the program resnmes, with
flag 1 set if "LEFT" was chosen, and clear if "RIGHT" was chosen. This program illus­
trates two HP 48 programming facilities:

-103-

5.3 Program Development

• TMENU (Temporary Menu). This command is the same as MENU, except that its
menu list does not replace the contents of the CST variable, so that the menu it
creates is generally not recoverable once you change menus ~ II.AST MENUI will
recover it, when it was the menu immediately preceding the current one).

• Programmable CONT. When CONT is executed in a program, the program contain­
ing it is immediately terminated, and the most recently halted program resumes exe­
cution. In the above example, pressing ~ lEFT~ executes the program« 1 SF
CONT ». This sets flag 1, then resumes the main program that was halted by
PROMPT. Note that if there is anything following the CO NT in the ~lEFT~ program,
it does not get executed.

This kind of choice is commonly implemented on the HP 41 by means of local labels,
which are automatically assigned to the top-row keys. You can even provide primitive
key labels by displaying single characters in the display above the label keys.

5.3.2 Keystroke Input
The input methods outlined so far all suspend program execution indefinitely to wait for
object entry; a special terminating key press (e.g. IENTERI or I <l-JIICONTI) is required to
resume program execution. The HP 48 also provides two commands for entry of indivi­
dual keystrokes while a program continues executing: KEY and WAIT.

5.3.2.1 KEY
When you press an HP 48 key, a code representing that key is entered into a special
memory location called the key buffer. When the HP 48 is otherwise idle, it checks the
key buffer to see if any key codes have been entered. If so, it removes the codes one at
a time (in the same order in which they were pressed), then performs whatever opera­
tions are associated with the keys. This two-stage key processing is responsible for the
HP 48's "type-ahead" capability, whereby up to 15 keystrokes can be stored in the
buffer while the busy annunciator is on.

Programs can check and act on the contents of the key buffer by executing KEY. KEY
attempts to remove the oldest keycode from the key buffer. If it succeeds, it returns a
two-digit keycode rp to level 2 and a tnte flag (1) to level 1. The first digit r of the key­
code is the keyboard row of the key; s is the column. If there are no entries in the key
buffer, KEY returns only a false flag (0) to levell, and no keycode. Note that the key­
code does not include a key plane (shift) digit like that used by ASN (section 5.4; see
also WAIT, below); a shift key acts like any other key in this case and returns a two-digit
code.

By using KEY, programs can accept keyboard input, on a key-by-key basis, without

·104-

(

(
(

t
t
(

t , , ,

(I

t 1

t 1

t 1

t 1

t 1

t 1

t 1

t 1

t 1

t 1 ..
t' 1

(,
•

t 1

t 1 ,

t' 1
,

t 1

t 1

t 1
•

t 1 ,

I' i ,

t 1 ,

t ~

t ,
t j

t ~
t, ,

•

t
,
>

t' j

t 1
~

t' .~
>

t .~
~

... -,.j

Program 5.3

actually halting execution. Typically, this is done with a simple DO loop:

DO UNTIL KEY END

executes indefinitely until a key is pressed, then returns the keycode. A more elaborate
use of KEY is illustrated by the program PSE listed on the next page, which simulates
the number entry method of the HP 41 command PSE. PSE waits for up to 1 second;
if a key is pressed during that interval, the 1 second wait is started over. If the key is a
numeric key (digits []J through []] ,IEEXI, 8 , or GJ), the key value is appended to a
number string. ~ removes the last digit; all other keys (except I ON I) are ignored.
When one second passes without any key press, PSE looks at the entered string; if it is
not null, PSE converts it to a number in level 2 and returns a 1 (flUe) to level 1. If no
keys were pressed at all, PSE returns 0 (flUe). You can easily modify PSE to accommo­
date more keys (including alpha keys if you want to emulate HP 41 PSE more com­
pletely) by adding key tests and actions to the CASE structure in the program.

5.3.2.2 WAIT
The WAIT command is designed to produce a simple pause in program execution. x
WAIT produces a pause of x seconds, during which program execution does not proceed,
but the display is not changed and no key entry is processed (the key buffer will still
accumulate key codes). A common application of WAIT is to display messages or other
pictures while a program is running. If your program shows a series of messages, you
can put a WAIT after one or more of the display commands to ensure that the message
remains visible long enough to be read conveniently.

It is also possible to make WAIT pause program execution indefinitely, by using 0 or -1
as its argument. For 0, the current display is not affected by WAIT; for -1, the menu
labels are updated to reflect the current menu. In either case, execution resumes only
when a key is pressed, then returning the corresponding key code to level 1. The key­
code returned by WAIT is a three-digit code rc.p like that used by ASN (section 5.4),
where r is the key row, c the column, and p the key plane. Note that 0 or -1 WAIT
only terminates when a "complete" key is entered, either a non-shift key by itself or
such a key preceded by one or more shift keys.

5.3.3 Output Labeling
As mentioned previously, the primary method of labeling output on the HP 41 is to
append a computed result to an alpha register string, then display the alpha register.
The HP 48 equivalent of this method is to append a computed object as text to a string
object that contains the labeling text, then use DISP to display the complete string. The
next program SLABEL illustrates the HP 48 method; it makes a labeled display of an
object in level 2, using a string from level 1 plus an "=" that the program supplies. A

-105-

5.3

0'

=0'

« CLLCD ""

»

WHILE
o
TIME
WHILE

TIME OVER - .0001 <
IF KEY

THEN 4 ROLLO
3 DROPN 1 DUP 0

END
REPEAT
END DROP

REPEAT
- key
«

CASE
{ 92 82 83 84 72 73 74 62 63 64 }
key POS DUP

»
END

THEN 47 + CHR + END
DROP
'key= =53' THEN "E" + END
'key= =85' THEN "-" + END
'key= =93' THEN "," + END
'key= =55'
THEN DUP

IF SIZE 2 <
THEN DROP ""
ELSE 0 OVER SIZE

1 - SUB
END

END
500 .2 BEEP

END
DUP 4 DISP

IF DUP SIZE
THEN STR- 1
ELSE DROP 0
END

-106-

x 1
o

with an empty string.
going as long as keys are pressed.
means no key press.
the time.

Look for keys while
less than one second has passed,
and no key is pressed.

key was pressed, so process it.

Repeat if a key was pressed.
Save the key code.

Digit key?
Append the digit.

an "E" if the key is EEX.
a "_".
a".".

Backspace.

If < 2 characters ...
... then replace with null string;
... else remove the last character.

for any other key.

Show the current string.

Go get another key.
there was an entry ...

return false.

(,

« ..
t
t
t
(
t,
("

t
t
t .
t
t
t
t
t
t
t,
t
t
t
t
t'
t
t
t
•
t'
t
•

,

•
t
t
t

•

•
t .
t , -

,

t -:

Program Development 5.3

copy of the object is left in level 1.

SLABEL output Labeling Utility FD9B

level 2 level 1 I level 1

object "label" Il7 object

« .. - .. + Append" = " to the label string . -
OVER Copy the object.

+ Append the object text to the label string.

CLLCD 1 DISP Gear the LCD and display the string.

3 FREEZE Preserve the object display.
»

There is a myriad of possible variations of SLABEL; for example, the program could
take the display line number as an additional argument rather than always using line 1.
Or, the program could be extended to split its output over more than one line when the
label plus result object are too long to fit on a single line.

5.3.3.1 Using Tagged Objects
Another approach to labeling output objects is to use tagged objects. A tagged object is
a combination of any object with a tag, which is a text descriptor for the object. The tag
serves to label the object while it is on the stack. The text does not interfere with any
operations that might be applied to the object--the operations ignore the tag. For exam­
ple,

: First: 1 :Second:2 + IT 3.

The tags :First: and :Second: are removed by +, which adds the 1 and the 2 to return 3.

Tagged objects are entered into the command line or programs with the tag text sur­
rounded by :: delimiters, followed by any object. The command -TAG allows you to tag
an object after it is created, for output labeling purposes. The tag is represented by a
string or name in level 1; the object to be tagged is taken from level 2:

The tag remains attached to an object until you apply any operation to the object other
than a simple stack operation such as DUP or SWAP. This also includes storing the
object to a global variable, although storing to a local variable or a port variable does
not remove the tag.

-107-

5.4 Program Development

5.4 Key Assignments
An important strength of the HP 41 is its ability to redefme its keyboard so that one or
more keys can execute user programs instead of their default operations. In the HP 48,
this capability is refmed and extended so that you can assign any object to any key,
including any of the shifted key variations.

Like the HP 41, the HP 48 allows you to turn a "USER" mode on or off; when this
mode is "on", any user key assignments are active and replace the default key defini­
tions. 14,IIUSRI behaves as a shift key similar to ~:

• Pressing 1<l,lluSRI once modifies only the next shifted or unshifted key. The 1USR
annunciator appears in the status area while that next keystroke is pending.

• Pressing 1<l,lluSRI twice consecutively turns on USER mode, and the keyboard is
redefmed according to user key assignments. The 1 USR annunciator changes to
USER.

• Setting flag -61 eliminates 1USR mode, so that a single press of 1<l,lluSRI turns
USER mode on or off.

You can also turn USER mode on or off in a program by setting or clearing flag - 62
(similar to HP 41 flag 27).

The HP 48 command ASN for making a single key assignment is modeled on the HP
41CX command PASN: ASN takes the object to be assigned to a key from level 2 (the
alpha register for PASN), and a keycode number rc.p from level 1. As usual, the digit r
is the key row, c is the column, and p is the plane (shift). Thus

, ABC' 34.3 ASN

assigns the name ABC to I ~ I I (row 3, column 4, shift 3--ffi.

On the HP 41, ASN is an interactive operation in which you specify the assignment
command by spelling it out in alpha mode, and specify the key by pressing it. The fol­
lowing program ASN41 provides a similar interactive key assignment method for the HP
48. First it uses INPUT to prompt you to enter an object into the command line (you
can press IATTNI to cancel the new assignment). When you press IENTERI , ASN41
displays (Press a key), and waits for a key press (using 0 WAIT). After the key press,
the display shows the key code for one second, and the assignment is complete. If you
press ENTER at the first prompt without entering any object, any current key assign­
ment for the designated key is cleared.

·108·

('I
(,-
(t
t,
tt
(.
tal
t­
t,
t~

t·
t·
t·
t"
t·
t·
t·
t·
ttl
(

t
t
t'
t
t
t
t
t'
t
t
t
t
f
t
t
t
t
t
t~

Program

ASN41 ASN HP 41-style

« RCLF STD - 55 CF

»

"Assign:" DUP {V }

IFERR INPUT
THEN 3 DROPN

ELSE
IF DUP "" SAME
THEN "(Oear)" SWAP
ELSE "{" OVER + STR- 1 GET

END
3 ROLLD + 3 DISP
"To:" DUP 5 DISP
.. (Press a key)

" 6 DISP
IFERR 0 WAIT
THEN DROP 91
END
SWAP OVER + 5 DISP
.... 6 DISP

IF OVER "" SAME
THEN DELKEYS DROP

ELSE ASN
END 1 WAIT

END STOF

5.4.1 Clearing Key AsSignments

C8A7

Save current modes, activate STD
and LASTARG.
Prompts for definition object.
Enter definition.

If A TIN, then quit.
Otherwise, proceed.

If no entry,
then show (Oear);

else convert entry to an object.

Show the object.
Prompt for a key.
Newline at end to clear line 7 .

Wait for a key.
If ATIN, then keycode 91.

Show the keycode.

If definition is null,

clear the key definition;

else make the assignment.
Pause to make the display visible.

Restore old modes.

5.4

To remove a single key assignment from the USER keyboard, you use the command
DELKEYS with a keycode argument re.p. In addition to this simple case, DELKEYS can
also work with the following arguments:

• The (global or local) name S (for System). With this argument, DELKEYS deac­
tivates the default key assignments; that is, all keys not specifically defmed by ASN
or STOKEYS are inactive in USER mode. Such keys merely beep when pressed.
Clearing the default assignments is appropriate when you want to lock out key
actions not specifically required by a program. The HP 48 itself does this at times-­
for example, when the interactive stack is active, only the menu keys plus a few other
keys have any effect.

-109-

5.4 Program Developt'l£nt

• A list of key codes, in which case DELKEYS clears the assignments for the all of the
specified keys. The list may also contain at its start the name S, in which case the
system default assignments are deactivated along with the listed keys.

5.4.2 Multiple Key Assignments
You can also make several HP 48 key assignments at once by using STOKEYS. This
command takes as its single argument a list of object pairs, where each pair consists of
an object to be assigned followed by a keycode fe.p. For example,

{ ABC 34.3 DEF 42.1 } STOKEYS

assigns ABC to 1ri>I!EvALI and DEF to Icosi. Furthermore, you can include the name S
by itself at the start of the list to reactivate the system default assignments for unas­
signed keys, which you might have cleared with DELKEYS.

5.4.3 Recalling Current Assignments
RCLKEYS recalls all current key assignments, for editing or storage. The key data is
returned as a list of object pairs like that used by STOKEYS. If the list includes the
name S at its start, this indicates that the system default assignments are active for unas­
signed keys in USER mode.

-110-

,
,
,
,
,
,
,
(

t
,
,
,
t
,
l
,
,
t
t
t,

,
t " ,
, · ,

t • ,

'1
t ,~

t •

1

t ,
•

t
t i

t -, ,
•

t -, ,

t
t -

t -•
·

t -

t -

t -• ,

t ~ • • -

6. Program Conversion

The last step in the process of adapting from the HP 41 to the HP 48 is converting pro­
grams that you have written for the HP 41 to the HP 48. Unfortunately, there is no
magic prescription for this, short of adding an HP 82210A HP 41CV Emulator Applica­
tion Card, which can automatically translate and run many HP 41 programs on the HP
48. This card, however, leaves programs in their HP 41 language form, so that you can­
not easily modify the programs to take advantage of the HP 48's full capabilities. Here
we will consider the problem of converting HP 41 programs into the HP 48 RPL
language.

Because the HP 41 and the HP 48 both use RPN logic, you might expect that an HP 41
to HP 48 program conversion could be done easily line-by-line. However, although that
approach is possible, it turns out not to be very easy:

• Many HP 41 programs make use of the four-level stack limit, and the automatic
replication of the T-register contents. These uses are often hard to notice in HP 41
program listings unless they are carefully documented.

• There are significant differences in program control commands between the two cal­
culators.

• A line-by-line translation will not take advantage of the HP 48's power and ease of
• programmmg.

To demonstrate the last point, consider a program that finds the roots of a quadratic
equation ax 2 + bx + c = 0, where the coefficients a, b, and c are entered on the stack.
The listing on the next page shows an HP 41 program to perform this calculation,
together with an almost line-for-line translation into HP 48 language. This program
returns the real part and imaginary part of the first root to the HP 41 T -register (HP 48
level 4) and Z-register (3), respectively, and the real and imaginary parts of the second
root to Y (2) and X (1).

While the HP 48 version runs perfectly well, it does not make good use of the HP 48's
resources. For example, the HP 48 handles complex numbers as easily as real numbers;
thus there is no reason to test for the negative square root case, nor to return the real
and imaginary parts of the roots separately. Also listed on the next page is a more effi­
cient HP 48 program. The second version is only 1/3 as large as the first HP 48 pro­
gram (57.5 bytes versus 170 bytes), and runs 50% faster (.09 seconds versus .14
seconds).

·111·

6.0

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Program Conversion

HP 41 and HP 48 Quadratic Equation Programs

HP41
LBL"OUADR"
RCLZ

/
X<>Y
RCLZ

/
2

/
CHS
STOOO
Xt2
X<>Y
-
CF 01
X<O?
SF01
ABS
SORT
STO 01
RCLOO
X<>Y
FS? 01
GTOOO
+
0
LBLOO
RCLOO
RCL 01
CHS
FS?C 01
RTN
+
0
END

x = a.
X = c' = cia.
X = b.
X = a.
X = bla.

Comments

X = b' = b!2a.

ROO = -b'.

Flag 01 set indicates complex roots.

R01 = Vlrl.
b' .

If complex case, then root is b' + iV Irl.

Real case: real part is b' + V r.
Imaginary part is O.

b' .

Vlrl·

If complex case, then root is b' - iV Irl.

Real case: real part is b' - V r.
Imaginary part is O.

HP48
«
3 PICK

/
SWAP
3 PICK

/
2

/
NEG
DUP 'B' STO
SO
SWAP
-
1 CF
IF DUP 0 <
THEN 1 SF END
ABS
V
DUP 'R' STO
B
SWAP
IF 1 Fe?

THEN +
o
END
B
R
NEG
IF 1 Fe?C

THEN -
o END
»

Better HP 48 Quadratic Equation Program

«

»

3 PICK /
SWAP ROT 2 • / NEG
DUP SO
ROT - V
DUP2 +
3 ROLLD -

-112-

abc
a b cia
cia -b!2a
cia -b!2a b2/4a 2

-b!2a V[(b!2a)2 -cia]
-b!2a V[(b!2a)2-cla] Xl

Xl X2

t.!
tl
tl
t.
tl
t·
t
C iii-
t
t
t Ii!

til
t I'

t·
ti
ttl!
t ~

t·
(,i

("
t..II
~.

~
tit
(il

(~

t ..
t ~

tJ
tl
ti
til
t :"i

t 1

t 1

tl
t1
t1
til
t1

Program Conversion 6.0

The preceding examples illustrate that even when a HP 41 program is easily translatable
line-by-line into HP 48 language, you generally obtain superior HP 48 programs if you
start from a program's definition or algorithm rather than from the HP 41 program list­
ing. This is particularly true when the program in question is primarily a representation
of an algebraic expression, since the HP 48 has a wealth of capabilities for expressions,
for which the HP 41 has no equivalent. In the case of the current example, the
mathematical algorithm for the roots x is the formula

-b±v'b2 -4ac
•

2a
x =

Using HP 48 local variables and algebraic objects, it is easy to translate the algorithm
• mto a program:

« a b c

- a b c Name the arguments.
« '(-b+ V (b A 2-4*a*c))/(2*a)' EVAL xl

'(-b-V (b A 2-4*a*e))/(2*a)' EVAL X2
»

»

This version is longer (151 bytes) and slower (244 seconds) than the optimized RPN
version listed previously, primarily because it performs many of the arithmetic opera­
tions twice, once in each algebraic expression. However, because it corresponds so
closely to the quadratic formula, it is very easy to create, and correspondingly easy to
understand or modify later--virtues which often outweigh any advantages of speed or

• program SIZe.

In some 41-to-48 translation cases, you may not have a clearly defmed program algo­
rithm and so must work from the HP 41 program listing. Or, you may wish for other
reasons to keep a HP 48 program as similar as possible to its HP 41 equivalent. In the
remainder of this chapter, we will show how to reproduce various HP 41 program con­
structs on the HP 48, and conclude by listing the closest HP 48 equivalents to HP 41
commands.

6.1 Storage Registers
As described in Chapter 3, the HP 48 replaces HP 41-style storage registers with named
variables. In many translation cases, it is adequate to replace HP 41 register references
with individual HP 48 variables named, for example, ROO, R01, etc. However, you will
generally fmd the translation task easier if you set up a single HP 48 variable to
represent HP 41 register memory. The variable, which we'll call REG41 here, should
~ntain a list, each element of which plays the role of a single register. To manage the
list, you need an analog of the HP 41 SIZE or (PSIZE) command:

-113-

~J
·f

6.1 Program Conversion () .

SIZE41 Oeate or Resize Register List OC31

level 1 I level 1

n U'

« - n Save the new size as n.
« 'REG41'

IF DUP VTYPE 5 *' Check current REG41.

THEN { } OVER STO Store initial null list.

END EVAL SIZE n - Size change.

CASE DUP 0 > Cunent REG41 too big?

THEN DROP REG41 1 n SUB END Shrink to size n.

DUP 0 < Cunent REG41 too small?

THEN NEG 1 -LIST 0 CON Vector of zeros.

OBJ- OBJ- DROP -LIST Change to a list.

REG41 SWAP + Concatenate zeros to register list.

END

DROP REG41 Current REG41 just right.

END 'REG41 ' STO Replace previous REG41.
»

»

(Notice that if REG41 does not already exist in the current directory, but does exist in a
parent directory, a new REG41 is created in the current directory, with the same con­
tents as that in the parent directory for the register range requested for SIZE41.)

With REG41 defmed, it is straightforward then to devise HP 48 translations of HP 41
STO and RCL, as shown by the programs RSTO and RRCL listed on the next page.
Using these programs, you can convert HP 41 register store and recall operations to HP
48 equivalents, with the simple requirement that the order of operation and register
number appears reversed:

STO 55 becomes
RCL 27 becomes
RCL X becomes

55 RSTO
27 RRCL
'X' RRCL

'Y', 'Z', and 'T' are also valid arguments for RSTO and RRCL.

·114-

t'l­
t:1
(I
tit
(.
(­
ttl
t ..
ttl
t ',,,
(II"

t'"
t,
t"
t
t,
t"
t
tlf
t i.

t '· " ,

t'lt
f .~-

f " -
t· -
f+
f{
f' -
t~

f' -

Program Conversion

RSTO Register STO

level 2 level 1 I
object n

« IF DUP TYPE 0 = =

THEN 'REG41' SWAP 1 + 3 PICK PUT

ELSE
{« »

« SWAP DROP OUP »

« ROT DROP DUP 3 ROLLO »

level 1

object

Data register?

Must be a stack register.

For STO X.
STOY.

STO Z.

B6A2

« 4 ROLL DROP DUP 4 ROLLO » STO T.

»

}

{XYZT}

ROT POS
GET

EVAL
END

List of possible STO cases.

List of STO programs.

Which argument?

Get the corresponding STO

program.

Do the store.

RRCL Register RCL 9764

level 1 I level 1

n object

« IF DUP TYPE 0 = =

»

THEN 'REG41, SWAP 1 + GET
ELSE

{ DUP

OVER
« 3 PICK »

« 4 PICK »

}

{XYZT}

ROT POS
GET

EVAL
END

-115-

Data register?

Do register RCL.
Must be a stack register.

For RCLX.
RCL Y.

RCLZ.
RCL T.

List of possible RCL cases.

List of RCL programs.

Which argument?

Get the corresponding RCL pro­

gram.

Do the recall.

6.1

6.1 Program Conversion

The next two programs emulate HP 41 CLRG and CLRGX.

CLRG Clear Registers 1038

"T

« REG41 SIZE 0 CON Make a vector of zeros the same
size as REG41.

'REG41' STO Replace old registers.
»

CLRGX Gear Registers by X 162E

level 1 I level 1

bbb.eeecc D" bbb.eeecc

« DUP DUP
IP 1 + bbb+l.
SWAP FP 1000 * eee.cc.

DUP IP 1 + eee.
SWAP FP 100 * cc.

3 ROLLD
FOR n Loop from bbb + 1 to eee + 1.

'REG41, n 0 PUT Zero nth register.
DUP

STEP
DROP

»

6.1.1 Indirect Storage
The following programs reproduce HP 41 indirect storage operations:

RSTOIND Register Store Indirect 09Al

level 2 level 1 I level 1

object n D" object
..,.

« RRCL RSTO
»

-116-

t
(
(.
(:­
(.•
t,.

, ,

(.
«.
t
t
«
«
t
(

t­
(­
(.
(.
(~

t

t
t'
t
t,
t
t
f
t
f
(

t
t
(
(
(
(

,

• '.0/-'

Program Conversion 6.1

RRCLIND Register RCL Indirect F6B2

level 1 I level 1

n a object

« RRCL RRCL

»

6.1.2 Storage Arithmetic
The four HP 41 storage arithmetic commands STO+, STO-, STO*, and STOj
correspond to these HP 48 programs:

STOPLUS HP 48 Register STO + EE19

level 2 level 1 I level 1

object n a object

« DUP2 RRCL SWAP + SWAP RSTO DROP
»

STOMINUS HP 48 Register STO - D121
===

level 2 level 1 I level 1

object n object

« DUP2 RRCL SWAP - SWAP RSTO DROP
»

STOTIMES HP 48 Register STO. 4580

level 2 level 1 I level 1

object n object

« DUP2 RRCL SWAP • SWAP RSTO DROP
»

-117-

6.1 Program Conversion

STODIVIDE HP 48 Register STO/ 501F

level 2 level I I level I

object n D' object

« DUP2 RRCL SWAP / SWAP RSTO DROP
»

6.1.3 Block Moves
The next two programs are based on the HP 41CX REGSWAP and REGMOVE com­
mands (see also section 3.5). These commands use a control number of the form
sss.dddnnn, where sss is the number of the ftrst register of a block of nnn registers
called the source, and ddd is the number of the ftrst register of a block of the same size
called the destination. REG MOVE copies the contents of the source registers to the des­
tination block; REGSWAP exchanges the contents of the two blocks.

The HP 48 program REGSWAP does not attempt to reproduce the behavior of the HP
41CX command for the case where the source and destination blocks overlap, i.e.
I sss-ddd I <nnn. The HP 41CX owner's manual tells you to avoid this case, although

the command does not error. On the HP 48, the higher-numbered block is copied to
the lower-numbered position, then the original lower-numbered block is copied to the
higher-numbered position.

REGMOVE Register Move

level I I level I

sss.dddnnn sss.dddnnn

« DUP DUP IP 1 + First element of source.
First element of destination.

Number of registers.

»

SWAP FP 1000 * DUP IP 1 +

SWAP FP 1000 *

~ sss ddd nnn Save list parameters.
« REG41 1 ddd 1 - SUB List prior to source.

REG41 sss DUP nnn + l' - SUB Source list.
REG41 ddd nnn + OVER SIZE SUB List after destination.

+ + Assemble new list.
'REG41' STO Replace old list.

»

-118-

A782

'J
<,
"
" (,P
,!11
,JI
'JII
• ill ,,/
,~

'JI
(~
(,I
(iii

(""
« ~i
(,ti

("
,;"
t;o'
,.
(­
tll!
(c4

t ;
t ';

"

t ' "
, \,

t
t,
t'~

t':::

, ,

!

.
•

\

Program Conversion 6.1

REGSWAP Register Swap 9ECB

level 1 I level 1

sss.dddnnn U' sss.dddnnn

« DUP DUP IP 1 + First element of source.

SWAP FP 1 ()()() * DUP IP 1 + First element of destination.

SWAP FP 1 ()()() * Number of registers.

3 ROLLO DUP2

IF > THEN SWAP END Ensure source < destination.

DUP 4 PICK + First element past destination.

3 PICK 5 ROLL + First element past source.

- sss ddd end mid Save list parameters.

« REG41 1 sss 1 - SUB List prior to source.

REG41 ddd end 1 - SUB + Concatenate destination block.

REG41 mid OVER SIZE SUB Intermediate list, with source

block replaced.

DUP 1 ddd 1 - SUB Int. list prior to destination.

REG41 sss mid 1 - SUB + Concatenate original source block.

SWAP end OVER SIZE SUB Intermediate list from end of des-

tination block.

+ New list.

'REG41' STO Replace old list.
»

»

It is possible to write more memory efficient versions of the above programs, where
REG41 is copied to the stack, expanded into its elements using OBJ"', and the register
contents are moved individually with stack manipulations. However, such versions
would generally be significantly slower than those listed here.

6.1.4 The Alpha Register
The HP 48 has no need for an alpha register like that of the HP 41, since the HP 48 can
handle text strings of any size as stack objects. For purposes of HP 41 program conver­
sion, you can designate a HP 48 variable (here called ALPHA) to act as an alpha regis­
ter. Executing the program CLA listed next initializes an empty alpha "register" for the
HP 48; an HP 41 program line "text", which replaces the alpha register contents with
text, is then reproduced on the HP 48 with "text" ENTERCl.

-119-

6.1

CLA

« nn 'ALPHA'
»

ENTERa

« DUP

'ALPHA'
»

SIZE

STO

Clear ALPHA

STO

Enter Text

level I

"text"

DUP 24 - SWAP SUB

Program Conversion

FOF1

6F27

I

Limit to 24 characters.

Store in ALPHA.

~('.

('
C1
CI
('J'

.'

C'
C'"
C1
C)'
C\
C,'
C.r
C",
e,
Ii
II
(,t'

\' assume that a variable containing a string object already exists; the programs could .
check this upon each execution, but this would generally slow execution. t:

APPEND Append Text

level I I
"text"

« ALPHA SWAP + ENTERa
»

ARCL AlphaRCL

level I I
n 17

« RRCL APPEND
»

-120-

4E98

level I

A4D5

level I

'T

t~

c..­
t·.
C·it
t~

(.i

C'
C "
C.,,;
t>
t'
t
C·
1-
C'
t~

I'
e '. -
".

Program Conversion 6.1

ASTO AlphaSTO 9069

level 1 I level 1

n U'

« ALPHA 1 6 SUB First 6 characters.

SWAP RSTO Store in register n.

»

ASHF Alpha Shift 9149

« ALPHA 7 OVER SIZE SUB Remove first six characters.

ENTERa Store in ALPHA.
»

AROT Rotate Alpha Register 2014
"T

« ALPHA OUP 2 OVER SIZE SUB End of string.

SWAP 1 1 SUB Get first character.

+ ENTERa Restore rotated string.
»

ATOX AlphatoX CBE5

I level 1

U' n

« ALPHA OUP NUM Get first character number.

SWAP 2 OVER SIZE SUB ENTERa Remove first character from

ALPHA.
»

-121-

6.1 Program Conversion

XTOA XtoAlpha 4500

level 1 I level 1

n D' n

« ALPHA OVER CHR APPEND DROP
»

6.2 Replacing GTO
One of the major tasks in converting an HP 41 program into the HP 48 language is
replacing program jumps using GTO into HP 48 program structures. If a HP 41 pro­
gram is sufficiently convoluted, this task may be difficult--again, it might be easier to
return to the program's basic conceptual algorithm rather than attempting a line-by-line

• converSIOn.

The uses of GTO can generally classified as conditional and unconditional. In a condi­
tional GTO, the GTO is executed or not according to the result of a program test:

• When the GTO is (logically) forward, to a new part of the program, we refer to this
as a program branch--the program splits into two paths.

• A conditional GTO that jumps backwards, to repeat execution of a sequence one or
more times, is called iteration.

• GTO's may be used to provide one or more exits from iteration loops.

Unconditional GTO's are used primarily to minimize program size through reuse of
code common to more than one part of a program; and for exiting from an iteration
loop.

We will consider the HP 48 representation of each of these uses of HP 41 GTO in the
next sections.

6.2.1 Program Branches
Figure 6.1 illustrates the typical structure, of an HP 41 program conditional branch. The
test is any HP 41 test command, such as FS? or X> Y? Test commands have the pro­
perty that if the test is true, the next program step is executed, and if false, the next step
is skipped. The most general branching is obtained when the test is followed by a GTO;
for any other command, the test command effectively performs the GTO itself by condi­
tionally skipping the next step.

-122-

.)
t:,
C:
tj
CI ,

t\
C:
.>
t~
fi
fi
t~

c."
f.
().

t.\
fl­
U
t)
t.
t.
t.
t\
t.~
('it
t'",
1'«
ta
la
til
I~
I~
I~
frr-
t~
.. '--"

Program Conversion 6.2

test

GTO 01 'false)

(trne)
false-sequence

GTO 02

LBL01

trne-sequence

LBL02

rest

END

Figure 6.1. HP 41 Conditional Branching

On the HP 48, the equivalent of the HP 41 program in the Figure 6.1 is an IF structure
(section 4.4.1):

IF test THEN tme-sequence ELSE false-sequence END rest .

• Example. This HP 41 routine tests a nnmber in the X-register, taking its absolute
value and setting flag 01 if it is negative, or clearing flag 01 otherwise:

01 X<O?
02 GTO 01
03 CF 01
04 GTO 02
05 LBL 01
06 ABS
07 SF 01
08 LBL 02
09 END

·123·

6.2 Program Conversion

The HP 48 equivalent is

IF DUP 0 < THEN NEG 1 SF ELSE 1 CF END

6.2.2 Dermite Iteration
Definite iteration is the repeated execution of a program sequence a predetermined
number of times. In HP 41 programs, this is commonly achieved by the use of ISG or
DSE witha register containing a number iii.fffcc that controls the iteration. iii is the ini­
tial (or current) value for a counter, fff is the [mal value, and cc is the counter incre­
ment. A typical program sequence is shown in Figure 6.2.

iii.fffcc

STOnn

LBL 01

steps
(iii$fff)

ISG nn

(iii>fff) GTO 01

continue

Figure 6.2. HP 41 Definite Iteration

The HP 48 provides the FOR. .. N EXT and FOR ... STEP structures for definite iteration.
The HP 48 translation of the above HP 41 program is

iii fff FOR name ... steps... cc STEP

• For the special case of cc = 1, use NEXT in place of 1 STEP .

• To perform a DSE loop on the HP 48, use a negative cc with STEP, and add one to
fff, since DSE does not iterate whenfff=iii.

A local variable name contains the loop counter; its value can be recalled (by evaluating
name) or changed (by storing into name) while the loop is executing.

-124-

I
I

I

I ,

I

I

Program Conversion

n
• Example. For an argument n, compute the Slim ~ n 2 •

i=l

HP 41 Version:

01 lBl"SUMSO" nisinX.
02 1000
03 /
04 1
05 + Control number l.n.
06 0 Initial value for sum.
07 lBl01 Start of iteration loop.
08 RelY Recall control number.
09 INT Extract current counter.
10 XI2 Square it.
11 + Add to sum.
12 ISG Y Increment counter.
13 GT001 Iterate.
14 END Sum is in X.

HP 48 Version:

SUMSO Sum of Squares

level I I level I

n u sum

«0 Initial value for sum.

1 Initial value of counter.

ROT Final value of counter

FORi Start of iteration loop.
• SO + Add j2 to sum. I

,

NEXT Iterate.
»

Notice that the HP 48 version also works with non-integer n.

6.2.3 Indermite Iteration

6.2

751F

Indefinite iteration is iteration where you don't know in advance how many repeats are
necessary. Instead, a program sequence is repeated until a condition is met. On the
HP 41, such a sequence is typically delimited at the start by a label, and at the end by a
test command followed by a GTO to the label:

-125-

6.2 Program Conversion

LBL 01
-j

steps
(true)

test

(false) GTO 01

continue

Figure 6.3. HP 41 Indefinite Iteration

Similar iteration is obtained on the HP 48 by using a DO loop (section 4.5.2.1):

DO steps UNTIL test NOT END continue

The NOT is included in the HP 48 sequence so that the test has the same sense as in the
HP 41 program. In the HP 41 case, the iteration continues while the test is true; the HP
48 DO loop normally repeats as long as the test is false, but the use of NOT reverses
the test result.

00 1
• Example: Compute the sum L .4 .

;=1'

In order to stop after a finite number of terms are accumulated, the programs below
compute successive terms until the current sum no longer changes when a new term is
added. This yields results that are approximately accurate to the full numerical preci­
sion of the calculators--l0 places on the HP 41 and 12 places on the HP 48. This kind
of stopping criterion does not always ensure full accuracy, depending on how rapidly the
series converges. If the convergence is slow, the remaining terms in the sums that are
not accumulated may in fact be large enough to affect at least the last decimal place of
the programs' results.

·126-

I

I

Program Conversion 6.2

HP 41 Version:

01 LBL"SUM4"
02 0 Initial value for i.
03 0 Initial value for sum.
04 ENTER! Copy initial value.
05 LBL01 Start of iteration loop.
06 RDN Discard old sum.
07 X<>y
08 1
09 + Increment counter.
10 ENTER!
11 ENTER!
12 -4
13 Y!X Next tenn.
14 RCLZ Old sum.
15 + New sum.
16 RCLZ Old sum.
17 X*Y Did the sum change'?
18 GT001 Then iterate.
19 END Sum is in X.

HP 48 Version:

SUM4 Sum Founh Powers 2589

I levell

a sum

-or
« 0 Starting value of n.

0 Initialize sum.

DO Start of iteration sequence.

SWAP 1 + Increment n.
•

DUP -4 A Next tenn.

3 PICK + New sum.

ROT OVER

UNTIL -- Keep going until sum (n + 1) !!! sum (n). --
END SWAP DROP Drop n.

»

6.2.4 Reducing Program Size
The primary purpose of an unconditional GTO on the HP 41 is to save program
memory by allowing two or more program sequences to jump to a common
destination--the reverse of a program branch. Here is a prototype HP 41 program

-127-

6.2

where two parts of the program branch to a common point:

01 LBL "FIRST"
02 first 1

...
30 firstn
31 GTO "COMMON"
...
55 LBL "SECOND"
56 second1
...
80 secondm
81 LBL "COMMON"
82 common 1

...
99 commonp

Program Conversion

Program lines such as "first 1" are intended to represent arbitrary sequences of program
steps. The line numbers are also unimportant.

On the HP 48, you must write FIRST, SECOND, and COMMON as separate program
objects, where COMMON is used as a subroutine by the fIrst two programs:

« first 1 ... firstn COMMON» 'FIRST' STO

« second 1 ... secondm COMMON » 'SECOND' STO

« common 1 ... commonp » ' COMMON' STO

The HP 48 "style" has the advantage that any program module, which may consist of a
series of objects or a decision or loop structure, has only one entrance and one exit.
This makes it simple to test modules independently, then combine them into larger
modules, and so on. This style is also recommended for the HP 41, although its limited
return stack requires you to use some care when you break up programs into subrou-
• tmes.

6.2.5 Exits
HP 41 iteration loops that have more than one exit may use a GTO in the middle of the
iteration sequence to jump out of the loop. These naturally are conditional jumps, since
an unconditional jump out of an iteration loop would defeat the design of the iteration.
A prototype program is shown in Figure 6.4.

-128-

t:'
(',

~.

()
()
()
()
()
t)
(,"
t)
(,
(,I'

t)
t}c
t)
ty

t'r'
()to

t.\.
tJi
t.:­
U
t ' .

. ~"

t
" .
II';

t\.
t " •
t'~·

t~,·

t ;.'
t ','
t>
t' ,
t' ,
t' ,
t' ,
t' ,
t'~

t-'-,
t~~

, . ,

Program Conversion 6.2

iii·fffcc

STOnn

LBL 01

... steps ...

test
(trne)

GTO 02 'false)

... more steps ...
(iii>fff)

ISG nn

GTO 01
(iiis,fff)

LBL02

continue ...

Figure 6.4. HP 41 Definite Iteration with an Exit

On the HP 48, you can't jump out of a FOR loop except at the STEP or NEXT. To
reproduce the HP 41 structure in Figure 6.4, you must use a conditional branch within
the loop, where the exit branch store the stop value in the loop counter so that STEP
will not repeat the loop:

...
III

fff
FOR x

steps
IF test
THEN fff . x' STO
ELSE

more steps
END
cc

STEP

Start value.
Stop value.
Start of loop.

Exit test.
Store fff in counter.

End of conditional.
step size

100 1
• Example. Compute ~ m' where m is a positive number. For this purpose, we will

n=on
use a definite loop, but the loop will exit if addition of a term yields no change in the

-129-

6.2 Program Conversion

sum.

HP 41 Version:

01 lBl "I NVPOW'
02 STOOl Save n.
03 1.1 Loop control number.
04 ST002 Save control number in R02.
05 0 Initial value of sum.
06 lBlOl Start of loop.
07 RClOl n.
08 RCl02
09 INT m
10 CHS -m.
11 Y,X Next term
12 RClY Current sum.
13 + New sum.
14 X=Y? No change?
15 GT002 ... then exit.
16 ISG 02 ... otherwise loop if n< 100
17 GTOOl
18 lBl02
19 END

HP 48 Version:

I NVPOW Sum of Inverse Powers BSD4

levell I levell

m D' sum
,-

« - m Save the power argument.
« 0 Initial value for sum.

1 100 Loop limits.

FOR n Loop with index n.

DUP Copy the sum.

m n NEG A Compute the next tenn.

+ New sum.

SWAP OVER

IF -- Compare new and old sums. --
THEN 100 'm' STO If the same, then exit.

END

NEXT Next iteration.
»

»

-130-

(I
"

(J
()
()
(J
()
()
()
()
(-,

()
()
()
(,

()
()
()
()

(;.
t)
"')
')'
4,1
(),

C)
C ,t
()
()
C)
t!
()
t~~
t,; -
t:
t'
ti
t"
t i '
t'~
'-1~

Program Conversion 6.3

6.3 An Example of Program Conversion
To demonstrate the process of converting HP 41 programs to the HP 48, we will
translate the "Sine, Cosine, and Exponential Integrals" program from the the HP 41
High Level Math solution book. This program calculates the integrals defmed as fol­
lows:

Sine Integral:

which may be found from the infinite series

. _00(_1tX2n+1. ,
Sl (x) - n~o (2n + 1) (2n + 1).

Si (-x) = -Si (x)

Cosine Integral:

x . f cost-1 Ct (x) = 'Y + lnx + dt,
o t

computed from

00 1 n2n

n =1 2n.

Ci(-x) = Ci(x)-hr forx>O

where 'Y = 0.5772156649 (Euler's constant).

Exponential Integral:

x t ~ n

Ei (x) = f e dt = 'Y + lnx + L -"x'---
-00 t n=1 n·n!

for x>O.

The solution book notes that for Si(x) and Ci(x), the accuracy of the program output

-131-

6.3 Program Conversion

decreases as x increases; for x""'20, results are accurate only to the second decimal
place. Furthermore, for sufficiently large x, the terms of the sum for Ei(x) will overflow
the floating-point number range of the calculator, causing a program-halting error. Our
HP 48 translations of the programs do not attempt to improve upon these limitations;
our focus is on the translation process rather than on the programs themselves.

Here is the solution book program listing:

01 LBL "SI" 40 CHS
02 SF 27 Ini tialize. 41 STO 00
03 STOP 42 1
04 LBLA Si(x) 43 STO 02
05 ST002 44 0
06 STO 03 45 STO 01
07 Xt2 46 LASTX
08 CHS 47 XEQ 01
09 STO 00 48 "G"
10 1 49 GTO 00
11 STO 01 50 LBL 01
12 RCL 02 51 LN
13 "S" 52 .5772156649
14 LBL 00 Loop to add terms. 53 +
15 RCL 00 54 RTN
16 RCL 01 55 LBL C Ei(x)
17 1 56 STO 03
18 + 57 STO 00
19 / 58 1
20 LASTX 59 STO 02
21 XEQ 02 60 0
22 X'I'Y 61 STO 01
23 GTO 00 62 RCL 00
24 GTO 04 63 XEQ 01
25 LBL02 Common subroutine 64 LBL03
26 1 65 RCL 00
27 + 66 RCL 01
28 STO 01 67 XEQ 02
29 / 68 X'I'Y
30 RCL02 69 GTO 03
31 * 70 "E"
32 STO 02 71 LBL04 Display routine.
33 RCL 01 72 FIX 2
34 / 73 "H<"
35 + 74 ARCL 03
36 RTN 75 "I-> ="
37 LBL B Ci(x) 76 ARCLX
38 STO 03 77 AVIEW
39 Xt2 78 END

-132-

('
(J
()
(JI
(J
e,
e)l
()I

('
(:­
()I
()1I

()1!
(}I

()I!

()II
()II

(M
()I
t)1

t.k
t'k
t~~

t~

t "
t' ,
t "
t "
t'~
t~~

I

!

i

i _
f' '. . ,

Program Conversion 6.3

The listing contains very few comments, so it provides a good test case for attempting a
line-by-line translation.

The flrst step in the translation process is to identify the program's subroutines and
represent them in the HP 48 as individual program variables. In the above program, the
subroutines start at lines 14 (LBL 00), 25 (LBL 02), 47 (LBL 01), and 71 (LBL 04). The
last of these is used as a common exit for all three integral programs, but on the HP 48
you must call the exit program as a proper subroutine without using GTO (section 6.2).

Here are the four subroutine translations:

LBLOO LBL 00 Subroutine EB49

level 1 I level 1

Initial Sum u Sum
.,.

« DO Start of loop (LBL (0).

DUP Extra copy of current sum.

0 RRCL 15 RCL 00

1 RRCL 16 RCL 01

1 17 1

+ 18 +

/ 19 /
LASTARG SWAP DROP 20 LASTX

LBL02 21 XEQ 02

UNTIL

DUP ROT -- 22 X",Y --
END 23 GTO 00

»

LBL01 LBL 01 Subroutine FDA8

level 1 I level 1

x u LN(x) +"y
r • « LN 51 LN

.5n2156649 52 .5n2156649
+ 53 +

» 54 RTN

-133-

6.3 Program Conversion

LBL02 LBL 02 Subroutine 1FDC

«1 261

+ 27 +
1 RSTO 28 STO 01

/ 29/
2 RRCL 30 RCL02

* 31 *
2 RSTO 32 ST002

1 RRCL 33 RCL 01

/ 34/
+ 35 +

» 36 RTN

LBL04 LBL 04 Subroutine E308
..,..

« 2 FIX 72 FIX 2

"I (" APPEND 73 "}-I< "

3 ARCL 74 ARCL3
It) =" APPEND 75 "I-> ="

'X' ARCL 76 ARCLX

AVIEW n AVIEW
» 78 END

The remainder of the translation consists of converting the main programs. First note
that the program starts with the sequence SF 27 STOP. This initializing routine only
serves to turn on HP 41 USER mode, to take advantage of the automatic assignment of
LBL's A through E to the HP 41's top row of keys. There is no corresponding automatic
assignment of HP 48 keys; instead, you can use the following initializing routine:

SICOS Sine, Cosine, & Exponential Integrals 87FC

« { SI CI EI} TMENU Set up a temporary custom menu.
»

The translations of the three main programs are as follows:

-134-

(

(}J
(J
(~1I

()I
()I
()I
()I

()
()

Program Conversion 6.3

SI Sine Integral BC56

level! I level!

x a::7 Si(x)

« 2 RSTO 05 ST002
3 RSTO 06 ST003
SO 07 Xt2
NEG 08 CHS
0 RSTO 09 STOOO
1 10 1
1 RSTO 11 STO 01
DROP2 Discard unneeded stack objects.

2 RRCL 12 RCL02
"S" ENTERa 13 "SO
LBLOO 14 LBLOO
LBL04 24 GT004

»

CI Cosine Integral AB46

level! I level!

x 117 CI(x)

« 37 LBL B
3 RSTO 38 ST003
DUP Replaces LASTX in line 46.
SO 39 Xt2
NEG 40 CHS
0 RSTO 41 STOOO
1 42 1
2 RSTO 43 ST002
0 440
1 RSTO 45 STO 01
3 DROPN Drop unneeded objects.
LBL01 47 XEa 01
"en ENTERa 48 "C"
LBLOO
LBL04 49 GTOOO

»

·135·

6.3 Program Conversion

EI Exponential Integral 7624

level 1 I level 1

x D' EI(x)

« 55 LBLC

3 RSTO 56 ST003

0 RSTO 57 STOOO

1 581

2 RSTO 59 ST002

0 600

1 RSTO 61 STO 01

3 DROPN Drop unneeded objects.

0 RRCL 62 RCLOO

LBLOl 63 XEO 01

DO 64 LBL03

DUP Extra copy of current sum.

0 RRCL 65 RCLOO

1 RRCL 66 RCLOl

LBL02 67 XE002

UNTIL

DUP ROT -- 68 X,*Y --
END 69 GT003

"E" ENTERa 70 "E"

LBL04 71 LBL 04 (XEO 04)
»

The trickiest aspect of the translation of these programs from the HP 41 to the HP 48 is
accounting for the effects of the four-level HP 41 stack, with its automatic duplication of
the contents of the T -register when the stack drops, compared with the unlimited HP 48
stack. For example, in the HP 41 program, the loop at LBL 00 assumes that the current
value of the sum is in the X-register at the beginning of each iteration. This is automat­
ically provided because the initial copy is pushed up into the T -register during the
course of the loop, and even though one copy is used in line 25, another is available to
restart the loop thanks to the T-register duplication. This is not obvious from the pro­
gram listing; you have to step through the execution to determine just what stack objects
are expected at LBL 00. On the HP 48, the extra copy of the current sum is provided
by inserting a DUP immediately following the DO in the subroutine LBLOO.

-136-

Program Conversion 6.3

6.3.1 Alternate Translations
The fact that the translated HP 48 programs listed above have execution times roughly
the same as the corresponding HP 41 programs indicates that the strategy of making
near-literal translations using the HP 48 simulations of HP 41 registers is not a particu­
larly efficient approach. The HP 48 programs sacrifice the HP 48's strengths in the
interest of HP 41 program similarity. In this section, we will show alternate approaches
that do not attempt to match the HP 41 programs line-for-line, working instead directly
from the program function definitions.

In the particular example of the sine, cosine, and exponential integrals, you can avoid
programming altogether by making use of the HP 48's numerical integration capabilities
combined with HP Solve. To evaluate the sine integral, for example, you need only to
store the following expression as the current equation (EQ):

, f(O,X,SIN(T) /T,T)'

When you press Irt>IISQLVEI to activate the HP Solve variables menu, you will observe
menu keys for X, T, and EXPR=. Since T is the variable of integration, its value has no
meaning in this context and you can ignore it. Then to evaluate Si(9.8), for example,
first select radians mode by pressing 1<l,IIRAOI if necessary, then

9.8 -x-- -- -- - ~EXPR=~ Irt>II-NUMI u 1.66756961685

Here we have assumed that standard (STD) display mode is active, which specifies 12-
digit accuracy for the integral. Also note that by setting flag - 3 to activate numeric
evaluation mode, you can omit the -NUM after each press of~EXPR=~.

Using the built-in integration facility of the HP 48 is the easiest way to compute the sine
integral, but not necessarily the fastest. The version of SI listed on the next page is an
implementation of the series approximation using appropriate HP 48 methods, which
(lms much faster than any of the versions listed previously.

·137-

6.3 Program Conversion

SI Sine Integral AF4C

level 1 I level 1

x

« DUP SIGN SWAP ABS

o - x n
« X

DO
'n' INCR

-1 OVER A

SWAP 2 • 1 +
x OVER A

SWAP DUP I • •
/ •
OVER +

UNTIL
DUP ROT ----

END

•
»

»

6.4 Command Equivalent Table

SI(x)

Remember the sign of x.

Initial value of sum.

Increment n.
(_l)n

2n +1

x 2n +!

(2n + 1)(2n + I)!

Next term .

Newsum.

New sum = old sum?

Multiply by the sign of x .

Table 6.1 starting on the next page lists each HP 41C/CV ICX command for which
some corresponding HP 48 equivalent or replacement can be identified. For each HP 41
command the most closely related HP 48 command is listed, plus, where relevant, a
"literal" HP 48 replacement that is either a short program sequence or one of the HP
48 programs listed in the preceding sections of this chapter.

·138·

'1
(1
(1-

" <!
"
"
" Cy
(
(
(

c

(
(

(/
(,
,
(:
(
(

(>

(~
(1
t:
t'
(~
,:
t>
t:'
t~

Program Conversion 6.4

Table 6.1. HP 48 Replacements for HP 41 Commands

HP41 HP48 HP48 Remarks

Command Command Literal

f-~ + ~ ISee section 6.1.4.

IHP 48 + also accepts complex and + +
~ ne lts.

- HP 48 - also accepts complex and -
~

* * HP 48 * also accepts complex and

~
I I HP 48 I also accepts complex and

~
1/x INV HP 48 I NV also accepts complex

and array ~ts.

10'X ALOG HP 48 ALOG also accepts complex

~
ABS ABS HP 48 ABS also accepts complex

and~~ents.

ACOS ACOS 48 ACOS also accepts complex
array arguments, and returns

results for x >1.

ADATE DATE ° TSTR 5 12 SUB APPEND
ADV CR
ALEN SIZE [ALPHA SIZE
ANUM STR- IALPHA STR- IAssumes the entire alpha string

~ a valid number.
AOFF
AON For alpha entry, use I NPUT with

In ARCL

the a ~ See section 6.1.4.
ARCLn 'name' RCL ISee section 6.1.4.
AROT IAROT See section 6.1.4.
ASHF SUB IASHF See section 6.1.4.
ASIN ASIN HP 48 ASIN also accepts complex

arguments, and returns complex
results for x >1.

ASTOn 'name'STO [n ASTO See section 6.1.4.
ATAN ATAN HP 48 ATAN also accepts complex

~ ATiME TIME DATE SWAP TSTR 14 22 SUB
~END

ATIME24 TIME RCLF -41 SF SWAP ATIME IATIME as defined above.
STOF

-139-

6.4

HP41 HP48
Command Command

ATOX NUM
AViEW DISP

BEEP BEEP

CFn InCF
CHS NEG
CLA

..9:Q.. +CLLCD

CLK12 -41 CF

CLK24 -41 SF
CLKEYS 10 DELKEYS
CLKT
CLKTD
CLOCK -40 SF
CLRALMS
CLRG PURGE
CLRGX PURGE
CLl: CLl:

CLST CLEAR
CLX DROP or 0
COS COS

D-+R D-+R
DATE DATE

DATE + DATE +
DDAYS DDAYS
DEC DEC
DEG DEG
DMY -42 ~F
DOW TSTR

DSE DECR
END »

ENGn n ENG
ENTER! DUP
E!X IEXP

HP48
Literal

+ 1 DISP 1
FREEZE

CLA

CLRG
CLRGX

~SWAP + "0" + &+R

[0 TSTR 1 3 SUB
1 "SUNMONTUEWEDTHUFRISA T"
ISWAP p~s 1 - 3

-140-

(J
Program Conversion <J

Remarks

See section 6.1.4.

Use combinations of BEEP's to
!I>l"()()~ce audible signals like HP 41
BEEP.

See section 6.1.4.

-t

See section 6.1.
See section 6.1.
HP 48 statistics data is kept in the
[variable LDAT.

-t
ISee section 2.6.2.
See section 2.6.2.
HP 48 COS accepts complex argu-
ments.

section 6.2.2.
section 4.1.1.

HP 48 ~is 0-11.

HP 48 EXP accepts complex argu-
ments.

()
(J
(J
()
()
(J
()
()
()
()
(J
()
()
()
()
()
()
t)
t.J
c.J!
d
t)
t)
t)

t..­
t)
t.'IiI
<­
tJIi
t
t.'~~

t~i

t'i
t'l
t~
(~

t.'
~'

,
,

I

!

I

I .

•
I

•
•

Program Conversion

HP41 HP48
Command Command

EtX-1 EXPM1

FACT ! or FACT

FC?n nFC?

FC?Cn n FC?C

FS? n n FS?

FS?Cn n FS?C

GETKEY o WAIT

GETKEYX

GRAD GRAD

GTO

HMS ~HMS

HMS+ HMS+

HMS- HMS-

HR HMS~

INT IP

ISG INCR

LASTX LASTARG

LBL

LN LN

LN1+X LNP1

LOG LOG

MDY -42 SF
MEAN MEAN
MOD MOD
OCT OCT

OFF OFF
ON

P-R

PASN STOKEYS
PCLPS PURGE
% %
%CH %CH
PI 1T

6.4

HP48 Remarks
Literal

HP 48 x! is r(x+ 1

HP 48 flags are numbered
-64sns63

HP 48 flags are numbered
-64sns63

HP 48 flags are numbered
-64sns63

HP 48 flags are numbered
-64sns63

See section 6.2.

See also FLOOR, CEIL.

See section 6.2.2.

See section 2.3.

See section 6.2.

HP 48 LN accepts complex argu-
ments.

HP 48 LOG accepts complex argu-
ments.

OVER SWAP MOD

R~B ~STR lOVER SIZE SUB
"dO + OBJ~ B~R

-l
-16 SF SWAP ~V2 -16 CF
V~ SWAP

ASN41 See section 5.4.

OVER SWAP %

OVER SWAP %CH

1T ~NUM

-141-

6.4

HP41 HP48
Command Command

POSA p~s

PROMPT PROMPT

PSE WAIT

PSIZE
RI ROLL
R-D R-D
R-P

RAD RAD
RCL RCL
RCLALM RCLALARM

RCLFLAG RCLFLAGS

RDN ROLLD

REGMOVE
REGSWAP

RND RND
RTN »

SCI n n SCI
SDEV SDEV
SETDATE -DATE

SETIME -TIME
SFn nSF

~+ Ii+
~- ~-

~REGn 'name' STO~

~REG? RC~

SIN SIN

SIGN SIGN

SIZE
SIZE?

Iv SORT

ST+ STO+
ST- STO-

ST* STO*

HP48
Literal

lALPHA SWAP P~S

~
ROLl

-16 CF SWAP -V2 -16 SF
!V- SWAP

RRCL

4 ROLLD

REGMOVE
REGSWAP

12 RND

SIZE41
REG41 SIZE 1 GET

~
STOMINUS
STOTIMES

-142-

Program Conversion

Remarks

section 5.3.2.1.

section 6.1.

See section 6.1.

HP 48 alarm parameters returned
las a list.

HP 48 flags represented by a list~
two~

I See section 6.1.3.
See section 6.1.3.

HP48 ~is 0-12.

HP 48 flags are numbered
-64sns63

HP 48 SIN accepts complex argu-
ments.

ments.

I See section 6.1.
See section 6.1.
HP 48 V also accepts complex
I arguments, and returns complex
results for~ real3 Iments.

See section 6.1.2.
See section 6.1.2.

See section 6.1.2.

'..l

(J
<l
(1.
(.1
<,
(J
(J
(J
()
()
(J
()
<,
(J

('
()
(~I

()
()
()1
()I
()I
(;­
(>1

<:­
t~1
()iI
()I
()II
()I

(]I

tji

t: i

t'i
t~'i
t'l
t.~1

t " ..
• •

•

t.' '.
~'.

Program Conversion 6.4

HP41 HP48 HP48 Remarks

Command Command Literal

ST ~ STODIVIDE See section 6.1.2.

STOn 'name'STO See section 6.1.

SToFi.AG STOF

STOP HALT See section 5.2.

T+X -TIME TIME HMS+ -TIME

TAN TAN HP 48 TAN(9O") is an infinite
exception. TAN also works with

~
TIME TIME

TONE BEEP

VIEWn DISP In RRCL 10 CHR + 1 DISP 1
FREEZE

XI2 SO HP 48 SO also accepts complex

~
X=O? -- DUP 0 ---- --

X*O * DUP 0 *
X<O? < DUP 0 <

X<=O? s DUP 0 s

X>O? > DUP 0 :> -
X=Y? -- DUP2 ---- --
X*Y * DUP2 *

~ of HP 41 and HP 48 tests is X<Y? > DUP2 >
reversed.

X<=Y? :> DUP2 :> I Sense of HP 41 and HP 48 tests is - -
I reversed.

X>Y? < DUP2 < Sense of HP 41 and HP 48 tests is
reversed.

~ X=NN? n -- RRCL OVER -- -rs;- section 4.3.1. -- --
X*NNn * RRCL OVER * See section 4.3.1.
X<NN? n < RRCL OVER SWAP < ISee section 4.3.1.
X<=NN? n s RRCL OVER SWAP s ~ section 4.3.1.
X> =NN? n :> RRCL OVER SWAP :> See section 4.3.1. - - 1&e section 4.3.1. X>NN? n > RRCL OVER SWAP >
X<> n RCL DUP RRCL 3 ROLLD RSTO

DROP
X<>F RCLF RCLF LIST-DROP 64 STWS

DUP SRB SLB 4 ROLL +
SWAP 3 ROLLD 2 -LIST STOF

X<>Y

XEOname

-143-

6.4 Program Conversion

HP41 HP48 HP48 Remarks
Command Command Literal

XTOA CHR XTOA See section 6.1.4.

XYZALM STOALARM HP 48 alarm parameters entered
a list.

y,X A

HP 48 A accepts complex argu-
~ts.

-144-

APPEND
ARCL
AROT
ASHF
ASN41
ASTO
ATOX
CI
CINT
CLRG
CLRGX
COUNT4
DFACT
Eln
ENTERa
GCD
I NVPOW
KEEPN
PSE
RG-R
RECIP
REG MOVE
REGSWAP
RRCL
RRCLIND
RSTO
RSTOIND
SI
SICOS
SIZE41
SUM4
SLABEL
STODIVIDE
STOMINUS
STOPLUS
STOTIMES
SUMSQ
VSUM
XTOA

Program Index

Append Text
Alpha RCL
Rotate Alpha Register
Alpha Shift
HP 41-style Key Assignments
Alpha STO
Alpha to X
Cosine Integral
Circle in a Triangle
Clear Registers
Gear Registers by X
Count in 4 Ranges
Double Factorial
Exponential Integral
Enter Text
Greatest Common Divisor
Sum of Inverse Powers
Keep N Objects
HP 41-like PSE
Real/Complex-to-Real
Compute 10 Reciprocals
Register Move
Register Swap
Register RCL
Register RCL Indirect
Register STO
Register Store Indirect
Sine Integral
Sine, Cosine, & Exponential Integrals
Create or Resize Register List
Sum Fourth Powers
Output Labeling Utility
HP 48 Register STO/
HP 48 Register STO-
HP 48 Register STO +
HP 48 Register STO.
Sum of Squares
Sum Vector Elements
X to Alpha

-145-

120
120
121
121
108
120
121
135
89

116
116
70
75

136
120
80

130
25

105
68
31

118
118
115
116
115
116

134, 138
134
114
127
106
117
117
117
117
125
75

122

(I'
()
(?

,

O'i 0',
()I!

(J~
(')It
()t

, I

= 65
- 87
« » 49,51
algebraic 9
->ARRY 19
ASN 108
ASN41108
assignments, key 108

multiple 110
ATIN94
backup 37
branch 122
CASE structure 69
CF64
change variable name 39
clear stack 14
CLEAR 13
CLRG 116
CLRGX 116
CLST 14
column number 40
command line 32
compact format 4
CON 41
CON 44
conditional branch 122
CONT 95,104
contents 37
control number 71, 124
copying stack objects 16
CST 104
custom menus 103
DEFINE 39
definite iteration 124
definite loop 71, 76
deleting suspended programs 95
delimiters 10, 51
DELKEYS 109
design philosophy 5
directory 37

home 38
disappearing arguments 28
DISP 98
display, freeze 99

messages 97
DO loopn
DOERR 94
DROP 14

Subject Index

DR0P215
DROPN 15
DSE 71,124
DUP 17
DUPN 19
EDIT 91
editing 91
ELSE 66
else-sequence 66
empty stack 27
END 66
ENTER 33, 53

explicit 34
implicit 34

ERRM 83
ERRN 83
error handling 81
error trap 81
error sequence 83
EVAL47
exception 84
exception action flags 84
exchange of arguments 15
exits 122, 128
explicit ENTER 34
VAR menu 46

-147-

flag 60
exception action 85

FOR 72
formal variable 38
FOR .. NEXT loop 72
FOR . .sIEP 74, 87
four-level stack 8
FREEZE 99
freeze display 99
FS 64
function 2
GET 40,41
GETI 40, 41
global name 38
global variables 37
grob 98
GTO 54, 66, 122
HALT 92,95
helvetica 2
home directory 38
HP 15C 6
HP 281

Subject Index

HP 41 programs 56
HP 41 to HP 48 evolution 5
HP 4251
ION 41, 44
IF 66
IF structure 66, 123
IFERR structure 81, 83, 96
1FT 67,68
IFTE 67, 68
implicit ENTER 34
in place operations 43
indefinite iteration 125
indefinite loop 71, 76, 77
index 72
index for GET 40
indirect addressing 30
indirect storage 116
infinite result action flag 84
INPUT 100
input and output 96
interactive stack 24
ISG 8, 71, 124
italics 2
iteration 122

definite 124
indefinite 125

KEY 104
key, assignments 108

buffer 104
code 104, 105
fonnat 3
menu 3
shifted 3

keystroke-capture 49
KILL 95
labels 54
LASTCMO 19
LAST MENU 104
LAST STACK 92, 96
LAST STK 19
LASTARG 19, 83
LASTX18
-LCO 98
local name 86
local variables 37
logical operator 61
loop 71

definite 71, 76
0077
indefinite 71, 76, 77
index 73,87
sequence 77, 78, 79

-148-

mathematical variables 38
MENU 104
multiple key assignments 110
name 74

global 36
local 86
port 47

NEWOB48
NEXT (sst) 96
normal-sequence 81
notation 2
NOT 79
object in use 48
object 6
ON k-~:' -
operation 2
OROER46
output labeling 105
OVER 17
overflow 85
PASN 108
PICK 17
port 046
port variables 37
port-names 47
postfIX syntax 29
program delimiters 49
PROMPT 92, 97
PURGE 45, 47, 48
PUT 41, 44
PUTI41,44
PVIEW98,99
quoting a variable 39
RCL 47,64
RCLF 84
RCLKEYS 110
ROM 41, 44
recalling key assignments 110
registers 37, 113
rename variable 39
REPEAT 79
right hand 4
ROLL 16
ROLLO 16
ROT 16
row number 40
SAME 65
SCONJ 43
sequence 4, 50, 72, 74

normal 81
else 66
error 83

Q
()
()
()
C)
()I
()
C)

-
~.-.

~d)-, -', ,

, ;"

()
tJI
("
('I

CI
()II
(~
(:\1

-

-

loop n, 78, 79
test66,n, 78,79

SF 64
signal flags 85
single-step 95
SINV 43
SIZE 44
SNEG43
SST 95
SSTl96
stack, four-level 8

empty 27
start 72
SI'ART...NEXT 75
SI'ART ... SIEP 75
step 74
STO 38, 48
STO+ 41
STOF84
STOKEYS 110
stop 72, 73, 74
storage 41
structured programming 54
subroutine 54
suspended program 92
SWAP 15,16
syntax 33
system flag 61
tagged objects 107
test 60, 61
test argument order 64
test command 60
test-sequence 66, n, 78, 79
THEN 66
TMENU 104
TRN 41, 44
type-ahead 104
unconditional GTO 127
underflow 85
unlimited stack 26
UNTIL 78
user flag 61
user memo!), 37, 46, 89
USER mode 108
variables 113

global 37
local 37, 86
mathematical variables 38
port 37, 47

VARmenu 86
VISIT 91
WAIT 105

-149-

WHILE loop n, 79
wild-card 47
X<>Y 15

Subject Index

•

HP 41/HP 48 Transitions

The HP 48SX Scientific Expandable Calculator Is the
helr·apparent of the HP 41. which dominated the
field of programmable calculators for ten years. The
new calculator combines the flexibility and custom·
Izabl1lty of the HP 41 with the revolutionary compu--tatlonal capabilities of the HP 28$, making an
extraordinarily powerful personal tool.

The HP 48SX is fundamentally an RPN calculator,
which provides a fammar basis from which you as
an HP41 user can learn the features of the HP48SX.

However, there are many differences in style and methodology between
the two calculators, which together with the enormous range of HP
48SX facUities may present a barrier as you attempt to master the HP
48SX. In HP 41/HP 48 Transitions, Dr. Willfam Wickes describes the
logical evolution from the HP 41 to the HP 48SX, showing how many of
the HP 4BSX's actions are natural extensions and enhancements of fami­
liar HP 41 operations. The book shows how your HP 41 procedures
and methods can be adapted to the HP 48SX, including stack manipula­
tions, storing and retrieving data, programming, and program conver­
sions.

Dr. Wickes is the author of HP-28 Insights, the definitive book on HP 28
principles and methodology. HP 41/HP 48 Transitions is based on the
HP 41 material In that book, and is the precursor to HP 48 Insights, a
more complete treatise on the priniclples and applications of the HP 48.
Dr. Wickes also wrote Synthetic Programming on the HP·41C, which has
been a standard in HP 41 advanced programming since 1981.

Chapter Headings:

1. Introduction
2. The HP-28 Stack

3. Variables
4. HP 48 Programming Principles
5. Program Development

6. Program Conversion

ISBN O·9625258-2.(J

•

1
13
37
49
91

111

• •

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

