An Easy Course
In Programming The

By Ted Wadman and Chris Coffin
lllustrated by Robert Bloch

1
|

AN EASY COURSE

IN
PROGRAMMING THE HP-4i

By Ted Wadman and Chris Coffin

Tllustrated bg Robert Bloch

Grapevine Publications, Inc.

PO. Box |18
Corvallis, Oregon 97339
USA

©Cop3ri3h‘l: 1983, Grapeuine Publications, Inc.

All rights reserved. This book, or
portions of this book, may be
reproduced orﬂg with written permission,

Ninth Prin’cins ~March, 1989

3000QGQQQOQQOOOOQOQQOQ@09990@3-@9@0@9@@009@@

&

For reasons of brevitg and. c.\o.r?cB . the name
‘HP-41" hos been used. throughout this course
to dencte the “HP-4IC) “HP-4ICV) or the
“HP-HICX,” which are the complete names of the
hand held computers made by:

The Hewlett - Packard Company.

LJe extend our thanks to Hewlett-Packard
for producing such ‘cop*abuglitg products and

documentation.

Disclaimer: The material in this book is 5upplied without re.Pr“eser\’tai"tcn or
warranty of any kind. Grapevine Publications, Lnc. assumes no re.sponsibiliig
and shall have no liabili’ck\, consequential or otherusise, arising fromn the
use of any material in this book.

¢ C ¢ececeoecoccecococccoeceoedoocooococdccoccccoececoococccoooococcccccceeccccrcccocecoceece

You have an HP-4!

Now. . . what are you going todo with1t?

You bought an HP-4l because you were sure
that #t could do many th'ings. But you are not
quite sure how to program it to do those ’chings.

That's uhg You boughjc this book ... —

Lell, Bou're righ’c. The HP-4| can do many,
many things.

That's what is meant when it'’s called o
powerful machine. That doesn’t mean it can leap
tall buildings in a single bound, or predict the
future, or appreciate music. The HP-4l is not
a magic box. It is only a tool to help you
solve problems, and the reason it can be used
to solve so many different problems is that

it s very...

eeocccococooccoceccecoceoeccecccoeceoecccececcccecooococcccoccoccoccceccccoccccccoococe

P000

Think about it this way: you can build many
different things with a pile of bricks, but the
bricks themselves are very simple. They are the
fundamental bu'ilding blocks you use to build
(mg'thing you usant,

That's exactly what a computer like the HP-4|
really is: just a pile of bricks, so to speak.

By giving the computer instructions on how
to manipulate numbers and letters, you can
build the solution you are looking for, step-by-step,
brick-by-brick.

Now, when a bricklayer is finished, the building
looks large and complex and very impressive ... and
it is. The completed buﬂding is very useful as
well. But there’s no mystery about hows it was
done. You saus the bricklager putting the bricks
toge ther, one-bg-one.

That's how it ts with the HP-Al. It's just one simple |
brick after another. You just need to know how to put
the bricks ’together... . So, let’s mix some mortar. 2|

-6-

(MN1x, Ny 15, MW1x ..

eccoc0co0c000C0C0C00C00000000C00C00C00C0C0C0000C0C0C000COCE

)000

ﬂm)o THE BRICKS G0 TOTETHER 2

How does the HP-AI manipulate numbers and
letters for you?

In learning this, the first thing Yyou need. to
have is a Sood way to picture in your mind jusv‘:
how the computer stores and. keeps track of

numbers and letters in its continuous memory.

PICTURE IT LIKE THIS:

ALPHA - resicter

Digplay

"

Stack rtgisters

27 Data reﬂtsters
@6

o5
@4
@3
o2
]
e

I you know all about this al readg then Qo on

ahead to page I8 . Otherwise ... >

...8....

PATA RectsTRs =
LT vty
Just for convenience, we |——r
call numbers and letters .

) e A
“data,” and so it makes sense| C—1* — 1.
that a data register is a 05

o4

place to store data— numbers e o3
reqisters \

and. letters. pod

All of the data registers are the same size.
Each can hold one number or up to six letters
(but not both at the same time).

Data. re,gis’cers are numbered., star ting at
20. You'll use these numbers to refer to the
registers in the computer.

So how many data registers are there?

Llell, there’s only so much memory space
in the HP-4l. You can use some (or all) of it for
data registers - to store data. Then you can use

the remainder for storing programs - the

-qQ-

___€;€;@Q@-@@@-@@@C@é@C@ﬂf@'@i@ﬁ@@3@@@6@@@6&@-@@@@-@@@@(C_.

2000000900000000000000000000000000000000000

instructions that manipulo.te this data. You can
change the location of the boundarg between
data and program memory anstime, as 3ou’u see
later.

OLPHN-BEGISTER [—— ...

[bispla
This specia] r‘egis%er is what 5 e

he\ps to make the HP-4| an e.&per_‘-xgﬂg ..- e N

powergu.l tool. With the he,lp of
this register; the computer can

o3
02
o1

as well as numbers. 3 o

store and manipulate letters

Now, when we say lelters |, we really mean more than
just A to Z. Actually, we are regerrinﬂ to most of the
characters you can produce with a standard typewriter,
And, for this reason, we should start gﬂmg them
chamc%ers - ALPHA c}'nracjcer&

The ALPHA-register canhold only ALPHA characters,
It can hold up to 24 of these. BUT 1T CAN NEVER
HOLD ANY NUMBERS.

1f you see “12" in the ALPHA- register, this is simply
the numeral *1” sitting next to the numerd “Z. It mayas well
be “PK” They're all just characters. Theres nonumber
twelve in sight. And. it you ever try to get the HP-Al to

do arithmetic with ALPHA characters, it will refuse to do it.

eeeCO00CO0CO0C00CCOCCCO ececccéccececdcceoecececeeoeeececcececceccoc

90089

THE DISPLDY

] ALPHA-register

o o= o - -

R e

{Y Stack
X resisters

I

Peqistrs

You can think of the displag 0s o windows. When
you look at your computer and there is ncﬂ:hing in
front of this window, then you can look through this
window to see the contente of some reqister.

This window we call the displaH canbe “located”
over either the X- register or the ALPHA-register.
Then, if the window is clear, you see the contents
of one of those registers. But i5 there’s some%h'zng
“in front” of this window, then that is what Yyou

see when you look at the disp]ag. ugualls you
see the contents of the X*regis%er or the ALPHA-

-|2-

reﬂis’ter throu.gb, the d’lsPlalj window. Bu’c ﬁ's

possible to move the contents of any register into

the displag window so that it blocks your view
of the X- or ALPHA- regis’cer.

When you are looking at a number in, say, the
X-register; you can use the display to “block out’
part of your view of that register by fixing the
decimal places that you wish Yo see. [he ;i;g_plmj

does this by rounding the number, But remember,

the displo.vj does this screening just to shows you
the part of the number you want to cee. Lt does
not change the actual number as it sits in the
X-register.

13

©0Cc00CCC eoeeecocccececocccecceceoecoroeocroccococoooccccecccccoccoca

P00 0|

31K REGISTERS :

I | ALPHA- resister
= [vicplay
"
\“‘Q_ . "‘-;-f-- B — ’ ------ z
FEEN o e || ¢
Sden—ce. N " an [I Stack
RE ;'{!a"" X reqsters
S
= a — =
SN
] 2 :
o4
o3
Data o2
regxsters 2
1]

The stack registers are rea\\g just data reqisters.
They are the same size as the numbered data registers,
but they are named with letters (rather than numbers):

X, Y,Z, T, and L.

The reagon they are called “the stack” is because

they are stacked. on top of one another-

The stack registers are linked together in a special
way, and ’cheg are the most frequently used.
registers in the HP-4],

Por Quiz

. What's a dota r‘egister?

2. How many data registers are there s

3, What kind of reqister is the Z- regis’rer‘?

4. Hows many numbers can the ALPHA-regi ster
hold? How many ALPHA-characters?

5. If you looked. at your computer and. it read
“HELLO,” what register would. you be 1ookin3 at?

GIVE UD S b

-Is_

eceeo0CCOCOCOOCOCOCO0COCOCOOCOCOCOCCOCOCOCOCOOCOCOCOOCOCOCOCCOCOCOO

©00 0|

POV DNSWERS

.. A data register is a place tohold data. Tt can hold
one number orupto six ALPHA characters, but not
both at the same time (Review page ||)

2. The number of data. registers depend.s on the location
ot that boundary between data and program memory.
That boundary is something that you can adjust (Page q).

3. The Z—re.gister 15 one of the stack registers. 1t is
a data register; but it is named. with a letter to remind
you that it belongs to the stack - that collection of
5pecia”3 linked data resisters (page 14),

4. The ALPHA-register cannot hold any numbers.
That's why its called JALPHA"™= it can hold on(g ALPHA
characters. [t can hold up to 24 ALPHA characters
(page 11).

5. You may not be Imking at any requster Tts en’cirelg
possible to have "HELLO" in the display and nowhere
else (page 13).

-la_

How DD You DO 2

Do you feel that you have a good “mental picture”
of the differert parts of the memory and what they're

used. for ?

1§ S0, then... | g0 for it—

1§ not, then go back and. let it soak in a little bit more.
Re-read the pages that bounced off the first time.

Tt's worthit, even if it takes a couple extra minutes.

i@@@@@*@@G‘-@C‘-ECé'@ﬁﬁ@@@@@ﬁ@@@@@@@ﬁ@ﬁ@@@@@@@@@@@CC-"

P900|

Now that you knous where the computer stores
data, its time to learn how to get data into it in
the first place.

TOGGLE KEYS

The first th’ing to do, of course, is to turn on the

HP-4|. Press the [ON key at the upper left.

Question: LWhere's the [OFF keg?

Nice trs. r‘isht?

Answer: There is no [OFF keg. To turn off the
HP-4I, just press [ONl once again.

This kind of key is called a toggle key. If you
know all about toggle keys, move to the next page.

A toggle key is any key whose meaning
alternates betuseen two opposites (such as ON and
OFF, or RUN and STOP, e'l:c..).

Thus, if your computer is off, then the [ON key

means turn on, but if your computer is olreadnj

on, then the [ON keg means turn off.

....18-.

TO STORE SOME DA™

There are On'H two ways to keg data. into the HP-4.
. To enter numeric data (numbers), you just key them

in and they re stored. in the X—-regis%er: (Remember
the X—reg'zs’cer ? Tt's one of the stack rvegis)cers.) All
numeric data (all numbers) go into the X-register when
you first key them in.

For examp'e, o you want to store the number -1.23H5
in the X- reqister; just press LUl 21B1H]E] xS,

o

% P27,
0300 I,
E;::o, LSS ,,//,, “

2. All ALPHA data (a“_c}larac’cer‘s) go‘m‘l‘o the
ALPHA-register when you First key themin.

o L

Easy to remember; right? Let’s see...

..‘q_

00086

2900020|

Before you qo on, if the little word user appears
in your ciisp]ag, press the [USER! ke_\d.

Chal \enge: Enter the characters ABCDE into the
ALPHA- r‘eals’cer‘.

Solution: Rrese [AIPHA (A)[B[J[D[EI[APHA] .

SATISFIEDZ B 2
NO?

Think about it this uway:
Anﬂtime Jou press the [ALPHA keH before You

press any other keﬂ, you are ready to enter

characters into the ALPHA'regis’fer.

When you're finished with this entry, just

press the [ALPHA key once asa'in to restore the
compu’(er Yo its normal readiness Sor numeric

en’r.rg.

Notice that the [ALPHA key is a _'I;Qggl_e keH.

-20-

TFoNCTIONS

Now that you can picture how the HP-4| stores data
ard how You canget it into the cornpwl:er Yo start with,
1t's time to start %H’mking about how it combines data
and. moves data around. from one reqister to another:

Let's agree to cal| any of these "combining’ or

“mouing-arouncl” actions b&j one NaMme:

TFuneTions

A function 1s any action that the computer
takes ... pe riod.. If this is clear, qo on. —

ook , for examp'e, at the function called X<>Y.
(Say "X exchange X

As the name imp\ies : this function simp'uj exc‘*nrges the
contents of the X- and Y- registers, Thats k. XY
doesn't. do any arithmetic at all.

Now, the function + also does some’c}\'mg to the X- and.
Y-registers, but it combines, numbers as well as movi nq them
around. 1t puts the sum of these two regls*:ers nto the X- regxsjcef‘.

-21=

"':._@C(’;CGGCQCCCCCfC-C-ﬁCCJ:CJ-C-@C:C(;CZCe&ﬁ-(’)-ﬂ‘ﬁﬁ-CﬁCﬁiC‘&f@-ﬁQQ‘CC-Q.

Al told, the HP-4l has well over 10D different functions you

can choose $rom.

Question: There are On)H about 39 keys on the
keyboard.. How can we possibly use over 100 different
functions 7

If you know the answer, move on. 9

2000|

First, that gold key (called the "shift"key) allows you to
change the meaning of any key, if you press the gold. key
just Prior to pressing Ythe desired. keg. You dont have
to hold down this shift keg wl-\'zle you press the de.sirec[
key. Just think of the shift key as a “prefix” key. This
little feature virtual IH doubles the number of kegs as far

as the computer is concerned, Jjust as a typewriter

Chal\enge: Use the BEEP function to make the

compujcer beep at you.

Solution: (BEEP]

NO?BOBLEMS 2 S

T hink about it this way:
Theld kenj means jus’c that: when You press this

keg, you key the number 4 into the x-regis%e_r (or
it's part of another number you re keying in).

BUT, i?gou press the shift [l key before pressing
the @l key, then the computer will beep. And, sure

enough, written in gold Just above the 4 l(eH s the word
BEEP, Pressing the gald key will cause all the keys to
change their meanings to the functions written above
them in gold.

Notice the little word surr that appearsin your olisp]ag
whenever the \«egs have switched their me.anings.

Notice also that the shift keﬂ 15 a ’;Qgg\g keg.

-~ 23-.

oo ooccecoooooceccoecccoooccooccccroocccccocooccccroc000 e

2P000000000000000000000000000000000000000300°0

= T

YE 61 BUT, o

Even withthe chift keg, we ve accounted. for less

than 80 functions on the keﬂboar“c{.

What about the rest of them 2 How can we tell the
computer to pemcorm them ?

Well, we speH them. T his is one of the 3rea% %ln'mgs
about the HP-AI. Tts ALPHA capabilities allow you to

spe” out your instructions.

Chaﬂenge: Tell the computer o BEEPat you by

Spe||'m_q out the name of the function. Dont use
i BEEP].

Solution: IXEQ[ALPHA] REEP [ALPHA

First, find the XEQ] keH. That keg is the “execute’
key. (It you say the letters X-E-Q, they sound like
the word “execute,’ and XEQ is short enough to fit
on a keg.)

Whenever you press the [XEQ l«eg before any other

key, the computer is immediately alerted. Tt has just

..21.'..

been told that it is about 1o be asked to do somei'}'ling.

TRY Ir Now: [XEQ

To let you know that it is]Es’cening, the HP-4| r‘%poncLa
by putting the letters XEQ into the display (and Q&h_;;
the displag— not into the ALPHA- register or angwhere
else). So those letters are now in front of that
"window,” as we called it, and. any letters that you
keH in to follow XEQ will go into Q_[Ll_lj the djSPIQH.

Now you should see XEQ —_ in your display. The
computer 15 r“eadlj and. waiting for your command. lo
SPeH anHHning, you must be "IN ALPHA MODE." So
press the [ALPHA] key and be sure that the little word
APHA QPPEArS N the clisp)ag. (Whenever this ALPHA
annunciator appears n the disp\og, the kegs all dwange
their meanings — just as theydid with the P key-only
this time all the kegs become letter kegs. Fach keg
COrresponds to a c"ur‘ad:er, ard. these characters are
printed in blue on the front faces of the keys. Also, the

-.25_

©00000000000000€0000000000000000000000000000¢€

display window moves from in front of the X- register to
in front of the ALPHA-register.

‘The computer now knaws that you want to
"execute” a function and that you are Now going

to sPe” it och

o) IR

TR

DY)

So you re going Jct: keg in ’che wor‘cl BEEPD Bu{
wait a minute ! th_,j would you ever spell it out when

there 15 a keg taiting to be used for REEP?

In this case, of course, gou.’]l sPeN it because we told

you to spen it. True, it 1s more convenient 1o use one of
the keys, i you can. for this reason, Uoufll find that

the functions you use most often do have Legs ot f:heir

own.

But the point i, when Yo press a key you are telling

e 26-

Ted

the HP-4| to execute a function- just asif you had

spe”eci out that function name Using the [XEQG][ALPHA]
procedure. And the comPcher will r‘esponcl (-_’XO_CUB

the some in either cage.

So 90 ahead and '(63 in BEEP

Your displag should now be: XEQ BEEP_ | withthe
ALPHA annunciator still on. Turn that annunciator
off by pressing the [ALPHA] toggle key once again.

Ir BEEPS /

It's supposeci o beep. Whenever you §inish the
[XEQ|[ALPHA] . .. procedure bg furn}ng oFf the ALPHA
annunciator, you are ’ce\ling the compu%er “Heg, HR4|!

Im $inished)ce“'mﬁ you what todo— sodo it 1"

©000000CO00C0CCOC000C0C0O00CCO00C0CCOCCCCO000C0000COEC

00

Suppose nous that you have some messaae in the
display and you want to clear that'window” so that
you can look through it and. see the X-register or the
ALPHAwegis{:er (buk you dont want to olesfroﬂ the
contents of that reqister).

Question: How do Lyou. do it ?

Suppose, then, that you wish to dear the contents
of that register (Xor ALPHA).

Question: How do you do 117

Or what if you are \(Qging in a number Yo the
X- reais’:er ora st ring of ALPHA characters to the
ALPHA-reqister and you make a mistake (key the
wrong number or letter) ? How do you correct the
mistake without c\earing the entire contents of the

reqister and s?:ar%'ms over ?

Answer: The answer to all three of these %ues%ions:

USE THE KEY

I¢ all this is review, proceed topage 3|.

...28....

As you may have noticed b3 now, the onlg two
registers that the diplay “window” can’cover” (the
X-register and the ALPHA-register) are also the only
two into which you can oLirect\B key data. (Hmmm...)

So the [<=] (backarrow) ke.g must be allowed todo

several ’c\'tirgs.

[If you have somejcl\ing (a messaﬂe) in frort of the d'lsplaﬂ
window so that it is blocking your view of the X- or
ALPHA- register, and you want to clear that message

(and. only that message), then press [<1.

Under these circumstances, the <= means "clear

the Aisplatj onlg. !
2. It there's nothing "in front” of your display window,
so that you have a clear view of either the X- or ALPHA-

regis{er, then the &= keg means:

“Clear the X- register back to zero” if you re \ool«ing
at the X-regjister.

OR
"Clear the ALPHA- regisjc er " it you e looking at the
ALPHA- register.

...zq-

0000006000000 00000000000000600000000000000000

3. If 3ou‘re inthe process of \<e.\j'm9 in the di9its o
a number or the characters of an ALPHA string,

then the [= key meane: Delete the last digit or
character keged in.” In other words,

BACKSPACE !

Three different uses: Not bad for one little keﬂl

Also, notice that the gold function written
above the [« keg is CLX/A (clear X /clear ALPHA).
T his means that Bd[<=] will either clear the X-
register or the ALPHA- reqistes de pe.no\ing on where

the dlsp)aﬂ is located at the moment. P (=] will

a)mgs clear a register as well as the disp\ag, whereas

jus’c g mmj Nnot c_\ear a reaicher—-as N COses l ancl

3 above.

3@

So, on with more and more functions
How can anyone remember them all? And
how to spell them correctly ?
Suppose you forget that X<?Y has a |<el_.f ofits
own, and you want to spell it using the [XEQ][ALPHA]

procedure , but you can't remember how to spell

the name of this function, and Bou left your

Owners Handbook in Siberia?
Question: What do youdo?
a. Lump it
b. Cry

c. Panic

d. None, orall, of the above

D AR v{-tw:{' 'w"'r‘ smomod
)
X RN

A

Answer: | he answer is d with the "none of the

above “option. Instead, use [°d [CATALOG 3 (CAT
3), and then stop the lis%ing so that X<>Y shows in
the displag.

Nouw, if you alre.a.oll:j know all about this little

convenience, move ahead to page 3.

e ccecccceccecoeccececcecceccooecceccececcccceccoccececoeoccceecccccoocooco

31

e
e
| Ks)
e
e
e
K
1o
le
o
lo
| e
le
K
e
o
He
| e
e
e
le
1o
| &
Kl
le
o
Ko
le
e

o

Otheruwise, ... attend:

The CATALOG function tells the computer to run
briefly through an internal list. The third such list,
CATALOG 3, is a list of all the functions. One‘bB"
one, in alphabe]dca\ order, each function name is
brought, very brief 15, in front of the o(.isp|mj window.

Now, anytime the HP-4l is busilg oloins some’chinﬂ
automatically, and You want to stop it, chances are
that you can do so by pressing [RZSI. This keg is the
“run-stop” key, and its called that because its a
toggle key that alternates meanings betieen "run’ and “stop.”

Tf you've just executed CAT 3 (CATALOG 3) and
the computer is ri PPing down the list and you re
watching breq%h\essllj for XOY, relax.

First, you don't need anacute sense of timing to
get to the proper entry. 1§ you do choke under the
pressure and press [RZS] to soon, the list will stop,
of course. Put pressing again will re- start it,

Second, once you ve stopped the list, You can use

the (sing\rstep) and (back-step) keys to

..32'_

step forward or backward, one function name ata time,
through the list. You can get anywhere, using this
method,, in any CATAL 0G.

-33-

i@@@@ﬁ@@@-@@@@@ﬁ&@ﬁ@@@@ﬁﬁﬁ@@&6@?6&@@@6@&6@@0@6(}

000000000000000000000000900000000000000000 00,

Cthenge: Adjust the computer so that you will
see 9 digifs after the decimal point, wherever Fossibfe.

Solution: [%) [FIX] 9

OK ? Next page. —

NO ?
Remember, this is all that FIX does. You can FIX

from @ to 9 decimal places, as you wish.

Also, remember that no matler how many
decimal places you actually see, the computer still
“knows about” and works with all possible digits (10
al’cogefher).

he HP-4| merelg uses the displag (not any regisi'er)
to round as you specity when é@mnj you a number.

7, N

Now, remember when we Promised that you would be

able to decide how many regisfers the compu{'er would

have ?
It's time to learn haw to do this.

Challenge: Adjust the total number of data
registers in your computer to 2Q.

Solution: XEQ[APHA] ST ZE [ALPHA] @2 O.

O K ? Move ahead — peemmmm)

Lell then.... SI/ZE is jus)r another function— one
that demands a 'three-digi’c g_rgumgn%) rather than

the usual 2.
All that SIZE does is move the Par)ci%ion betueen

the last data regis{er and the .END. of program
memory. It moves this pqr’ri%ion so that you end up

with exadc]zj the number of data regis%ers You

rec%uesi:ed.

So, after you ask for 20 data reais’cers, you have 20
of them, name_lfj, dota reg'zs)ce,rs DD throucjh 19.

_35-.

€e000CO0COCOCOCOOCOCEOOCOCOCOOCROCOOCOOCOCOCOOPOOCOOOCCUODUODOCOROOTO

S B R 5 e 353

000000000000000000000000000000000000002000000

Challenﬂe: Recall the contents of data register @1 to
the X—regisi:e,r:

Solution: Rl @

o I§ ? Move to the next page.
&

TROUBLES 2

CL] is the recall key. Lhen Yyou press it, you tell the

HP-4| to recal| something to the X-register. The computer
responds bLJ Plac}ng the name of the function (RCL __)
in the displa}j. The two blanks bg RCL are the HP-Hls

way o{'asking you " what register ?" So, you keg In

211,

As soon as you have given it two digits, it takes ot
and does the job.

R ——

Cha\\enge: Store the contents of the X- regis’rer
into data reg'lsjcer Q2.

Solution: Q2

TOOEASY !>

This is the same idea as RCL— exac.H\d"‘ except
that you use the keﬁ (STO means "store”).

SN
D

/////

///%// 7
| vy

R %

SRR AR AN A R R R B e

Notice that, inmany ways, STO and RCL are a
"matched set.” RCL brings a copy of the contents
of the specified reqister to the X-register. STO sends
a copy of the contents of the X—regis)fer to the specif-ied

regi 5}'37‘. “ =

0000000 C0000000000000C00000C0CC000C00C0CEOCCOCO0

Ay e

Cha\lenﬂe: Recall the contents of the Z-register
to the X- reg; ster.

Solution: RCL[-] Z

YAWNING & Mo cheod mmemed>

NoT SO FAHST <
The part is no Problem, r‘igh‘l‘? But then

you have to tell the machine that the regis)cer

2000000000000000000909

number its expecl-ing (two digi’rs) 15 not 9o'mg to

appear. Youre goingtogive it a stack register instead.
To do thig, press the [: kelj. This changes the
dtsplaﬂ to RCL ST _ . Now the compu’cer 1S expec)c'mg

a STack reglsjcer name— a smgle. letter

Just press the |«e5 with the Z onit.

(Don't go into ALPHA mode to ge'}: the Z. The
computer has aJr“eadnj told you with "ST" that it is

expecting a letter)

- 38-

Cha“enge Recall the contents of data, r‘egts)(er Dl to
the X-regzsi'er but this ime don't use the [RCL] lcelj.

Solution: XEQ]

ALPHA

RCL

[ALPHA] @ |

nl\/l BL«‘Z‘, Right this Lay. T

Notice that this Procec(ure uses the exact same

format as when the [RCL]

kenj is used.

First tell the computer the name of the function

to execujce..

It then acknow\edges your re%uesf lolj Plac_ing that

name in the disp\aq. Then it pr‘omp{'s you for the

reqister (i.e., it prompts you for the argument of

the function).

PRESSING THE RO
[XEQ

LIKE PRESSING

ALPHA

...3q_

RCL

KEY 1S EXACTLY
[NPHA]

©000

9000000000200 0000000000000000000000009000000)

e R

Challenge: There is a RU(RDN: roll-down) function on
a key in the second row. There's also a R7 (roll-up)
function, but it's not on the keyboard . Execute the
function R/

Solution: XEGJ[ALPHA] R /* [ALPHA]

NO ‘Pp,omms? e on —>

The /character isn't Prin%ed in blue on any of the
keys, isit ? Ahbut turn the HP-Hl over.

That little gold picture of the keyboard wias put
there to he,lp you remember what the entire ALPHA
keﬁboard looks like.. This is what every lcey and every
shifted key means when the ALPHA annunciator ison.

The 7 character is accessed. b5 using the
shifted [N ke\lj.

qa

Chal lenge: Execute XY without pressing +he
XY \<e\j.

Solution: XEQ)ALPEA] X< >Y [ALPHA

Did you manage to find the < and > characters ?
Notice that the computer doesnt pause to prompt you
for an argumen't akter you have SPeHed the name. It
knows exactly what action 1o take and what registers

Py == s
P
WS

X

X
X

‘..

X
3 h‘\;\ AN

X

- v—_’__‘:_ 3
‘--621"‘---,‘%""' X 4\{. %
i T R fAUASAY ‘
AN "‘1" \ s
- ,;-; g mm\‘nﬁ‘(2
(R0 e
X R B

AR
;ﬂ:!’e QO

TR

eoeceococ000OOCCOOCOCOOCOCOOCOCOOO0OCOOCOOOCOOOCCOOOO0CEC

900000000000000000000000000000000000090000000)|

e A

Cha”enge: Execute X< L

Solution: [XEGQJ[ALPHA] X < > [ALPHA][-]
It you know all this , move ahead. -¥

MURKY WATERS <

"This functions name is just X<>, not X©L
(there's no X<>L in CAT 3).

So you must give the computer the function name
and let ijcgo i:lnrough its routine where it puts the
name in the display and asks you for the argument. All

it knows 1s that it is supposed o excjﬂange the contents
of the X-register with that of some other register.
But, jus)(like STOand RCL, it doesn't know which

regisker unti | You suppl}j the qrgumen%(E] L in this

case).

The X<> function is %o%a“g different from XV, The
XY function was provided because it is used so often.
(Yes, you can use the X<) function and spec'sz STack.
Y (@Y) a5 the argurrlenjc. Buk uh}j bother ?)

-qz-.

Chal |enge: Execute the function called X< @7? (X

less than or ecgual to 2ero ?).

Solution: XEQI[ALPHA] X < = @ 7 [ALPHA

.SNT“ G0 Wz Goto page 45, = mp
HEMNWY SEAS 2

Chances are that if you had ProHems with this one,

theg were:
l. The € notation (how to kegﬂ: in?).
2. How to keH in a @ character.

3. Forgetting the necessary " ?".

. Even if you checked the handj-dandg ALPHA
kegboar‘d on the back of your compu.{'er; you couldn 't
find a character that looks like <, could you ?
BUT, if you checked CAT 3 you found X<=@7(in
its proper Q|Phabe{-ic.a| order).

Notice that you dso find X£ @7, and this does
look. similar in your o\isp|ag to X$@7, but X£0Q7
means X# Q@7 (X not ectua] tozero?). | he # (not

-.L‘s..

00C00C0000000000000000000000000000000C0C0C00C0E

00,

ecLu.a} o) sign s on the kegboard.

2. Any of the numerals @ to 9, the decimal point,
and the sgmbols +,~,%, and / can be obtained by
pressing (in ALPHA mode, of course) the chift key
(gold keg) and then the corresponding key. The
ALPHA keﬂboard on the back shows this cje,ar‘lg.

3.Ifa c‘ues’cion mark were not a part of the function
name, then the ? would not appear in the CAT 3
entry for that function.

Don't forget — the HP-4] will not recognize any
function name that doesn’t ex_agit;' match the
function’s name as it appears in CAT 3.

'. '... LY .‘f
AN
(e

7 L)
S

il

_qq-

Cha”ense: Execute the function F&?C 22.

Solution: [XEQ) [ALPHA] S P [ALPHA] 22

N6 SWEBT 2 Next page =3
S\V‘Eb—l' 2 (Even mild damPness ?)

You ProbaHH 30% into trouble with:
. The "?”". Don't neglec%ii:.
2. The argument, 22 : When to)&95 itin?

REMEMBER! The name of the function is what
you tel) the HP-4l. Then it asks you Cor the
argument.

The name of this function is FS?C, as CAT 3
will show. So that is all you tell the compu{'er at

first.

hen it will pr‘omp‘c you for the argumen)c (22
in this case) with two cursors.

- qs-

cccoocecceceoeeccececeoececccecececceceeccecccceecocccccccnococoocococo

2000

C\n\‘enge: Compud:e the sine of 1 radians. (If

Hou ve never ho.d Qa i:rigonome?:rg course, '(:QQ_I Fr‘ee

to skip ahead to page 49.)

Solution: XEG)JALPHA] RAD [ALPHAI % [11] [SIN]

MO}@BL § Movetopage HB. ——

The HP-4] makes assumptions about the numbers

it's asked to work on. In this case, the assumption is
about the ang]e it works on with the SIN function.
I§ You see the little rao (radians annunciator) in the

display, that means the number in the X-register is in
radians as far as the HP-4] is concerned. 1§ you see
e , likewise, the computer assumes the number is in
grads. If you don't see any annunciator there, then the
computer is assuming degrees.

You can change what your computer assumes by executi g the
qppropria’ce g—uncjcion"RAD GRAD or DEG. For this ProHem,
you, execute RAD. Then you brmg 17 into the X- reatsi'er
with the Pl function ([T keg) Nouw, if you Press [SIN]
you should get SIN (m), which is zero.

-q&-

BUTW)I‘! You didn't get zerol 7?1

What s wrong? SIN(®) is zero.

The Prob\em here is that you didn't take the
sine of T (Smj what 7). You took the sine of
3.141592654. That is not . Thats almost 1. Thats
the first |@ digi%s of 1T.

But 11 has an infinite number of digii—s (o.ccor'cling
to the latest information). There is no way that any
computer can ever take the sine of exou:’c\H T, because
o computer can only work with so many digits.

The Poin% of ol this is not to %uibble about m, but
to remind you that the HP-41 keeps 1@ digits (which is
usually more than enough) of any number.

So, no matter how exact you know an answer should
be (mathematical ly speaking), the computer uses |0
digijcs of each number involved , and therefore, the last
digit of the final answer may vary from your expectations.
This limitation is characteristic of all computers, but you

wil| seldom need to consider this at all.
-.Lr?-.

ec00OCO0COeO0COOOCOOCOOCOCOCOCCOCOCOCOCOCCOPOCOCCOCCOCCOCOCCECLRCRCECCOCODCQODCOTCE

200 0

Cha“enge:—)ﬁke the inverse cosine (or "arc-cosine’) of

the number‘tjou go% as a result Sor SIN(n). Then
tel| the computer to return its assumption to DEGrees.

Solution: [[€0sT] (or [XEQ]ALPRA] ACOS [ALPHA)} then
XEQ|[ALPHA| DEG [ALPHA]

Satistied? Next page. ———

el

Notice that the name of this function (as it appears n

CAT 3) is different than the sgmbo] used for it on the keg.
Notice the answer you So%: .570796327. This is

“almost zm,” Whichis correct, because the cosine of

‘almost = Tt ” radians is “almost zero, and You had. " almost

2zero” to beg'm with.
o 2
0 : _ oy
77077 11)T e \%A}J N\
)T 50)N\ 4

Notice how the radians annunciator disappeared when you
executed DEG. The calculation was done while the HP-4) was,

stil assuming radians, but nous itis assum'mﬁ olegrees.
-qe-—

Cha“enge: Rt “TAKE 5" into the ALPHA-regisl'er.

SPACE

Solution: [AtPHA] TAKE

5

[ALPHA]

Just checking to see if you remember how to put
ALPHA data. into the ALPHA- register (as opposed to

spelling a function name in the display).
I¥ you're hazy at all, go back and review page 20.

(mark. your place here),

£
X 0.0, 9%,
oS NN,
AN
R 2 B

SV,
£

i
e

ecgceloeccoccecceccocoeccececceceoeececcececooceccoecccccoccocecceccceccccccceooceeccocecoe

9900|

Challenge: Look ot the contents of data
register @2 without using the RCL function at all.

Solution: [ie] VIEW] Q2
CL‘EAB ? Step this way. >

Mub ? Well, VIEW is a “clever” function.

I pu’cs a copy of the contents of the indicated.
register into the display only.

In other words, VIEW puts those contents “in
front” of the display “window, so you can no longer

see “’chr'oughn the “window” into the X- resis’cer.

~-50-

Challenge: Put the contents of dataregister D3 into the
A_PHA—regis’ter.

Solution: [ALPHA] (] [ARCY (D3 [ALPHA
17 THIS Is%lj HAT " roeon —.
“NVEWHAT S

It happens that when you are in ALPHA mode (that is- when
the computer is in ALPHAmode), not dllof the keys change
their meanings to ALPHA characters, Some of them
change to different functions, and some of them don't
c,hange atall, The Handrj-damlg ALPHA keﬂboard onthe
back of the HP-4| shows these functions in white.

The function you just executed is "ALPHA-recall,” ARCL.
Now, put the HP-Hl back into ALPHA mode to see Lhat happened.

Notice that the contents of register @3 were added
to the characters that were dready in the ALPHA- register
(no.me\»j, TAKE 5).

-5]-—

SR

@ e¢c¢ododcccoceoocoeeececceccecceoeccecoceoeccccecooeecccoceccccccrocccooccccooooo e

r; use the
J'us?: like many other functions.

-] X [ALPHA]
ste
} the same way whenever you see the computer

ARCL
-52-

[™™
hth
—-—-——.—-.—,

for

to spec'nclj a stack reg

int L

ARCL needs an argument,

treat

\
Y

’

?
Remember,
imal po

A

N, -, =

!

LA A5

LT , Iiil / .
? 2 1

A ey i

X fy
i ; Py~ e
WIJ : iy gy
A
; / 4 7

Cha”enae: Recall the contents of the X- register to

the ALPHA- regis’cer.
L

:
O
yO

dec
You
P"O

Nwﬂwmm CCO0CCOS cecCoCoO0COCOCCOcCcCeccCceoeceoeccceececcecceceocceecece ee

Cha“enge Arr‘ange %.hings so that you are looking ot the
contents of the ALPHA- register... without bemg in
ALPHA mode.

Solution: [XEQJ{ALPHA] AV/T1EW/ (ALPHA

QU'ESTI A ? No?—s

YES?

Just like the VIEW function, AVIEW fills the
displanj so that the register behind the "window” is no
longer visible, The only difference between VIEW
and AVIEW is that AVIEW uses the contents of the
ALPHA- register (VIEW uses the contents of data
regis%ers— indu.ding the stack regi sters),

Because there is no doubt about which register AVIEW
S using, it doesn’t need an argumen{.

Also, notice that AVIEW is onthe ALPHA kegboar‘d.
You can execute it that way (However, the kegboard
function could not be used to solve the challenge as we
posed it Tryit and you'll see uhg.)

...53.-

©0e00000000000000CCC0000000000000000C000CCO0OE

Cha“enge: Add, thatis, gpp_egdl the characters “ABC”
1o those a\readﬂ inthe ALPHA- regis{en

Solution: [ALPHA] [, A B(C [AtPrA

APPEND is a |<e5 on the ALPHA keyboard (because
it pertains to the ALPHA-regisfer). When You prese
the APPEND key, the HP-4[is instructed to “pretend”
that you are sudclenlg in the middle of an ALPHA
data en’crH —as if you had just ente red. the currert
contents of the ALPHA- regisier.

Then, you can add characters simply by spelling

them out , or you can delete characters, one-bg-one,

. k

Uust ng e L QH .

% e R o S e iy T A T R R A A] Tl N ot

s » - %Y o o, T e g, P, M T M M oy G T, e = .y N
R R R R Ao RS R
X R WM
R O
N > A

‘ O .

=
@,

N

©0000000000009000000000000000000000000000000|

..5].'-

Cha”enge: Key the number |, 0@, QQQ into the
X-register without using the (1] or (@ (zero) keys.

Solution: [EEX] (€

EEX] means " enter exponent,” and it is used to express

numbers in powers o 10.
So, 10°=]%10°= |, 000, 20D (note the six zeros),
and this represents the amount of money, indollars,
that we plan on making bxj writing this book..
For ancther exarnphszJ .35 x1072=0.00135, and
you would kenj it in as (1] (] (31 [5] [EEX] [3] [CHT)

Notice that when you press before any
number keg (as in the above solution), the computer

puts a one (1) in for you. The keystrokes [TIEEXI[e

are the same as jus?: EEX|lS].

One more fhing: You may sometimes see a number
like 8.2 %1% written as 8.2 E &, (The E <tands
for “exponen)c.“)

-.55_

0000 CCO0CCOCOCOCODOCOCOOCOEOCOCOQCOCOCOCOCCOCECEOCOOCDOCOQCCOCQCQCOC CC

Notes

l. The only way o tell the HP-Al that you are
spedifying a funclion name- rather Ehan simply
keying in a bunch of characters to the ALPHA-
register=is to vse the [XEQ[key.

O533093099'@0@90@99@9999393@93QQQ@Q@QQQQQQOQQ@E

So, Hou've seen some kel_.js{:roke combinations, and
the keys are already getting some individual

Personali‘cies.

But let's talk ’curkea, here.

No calculator is worth its weigH: in

Penci\ lead. if You can't use it effective IH
just todo arithmetic. So...

oeeoeCCcOoCO0OCCOCECECOCOCOCOCCCOCCOCCCCOCOCCOOCCOCCOCPCCOCCOCCCOCQOCCOCODCOCCOCE

OUVVE GOT

Y’fb

OUR

IR
Prle,
2

e PRI
AN
e
2

&

>

TR
LA
W

Tt e
P

P

S
<X

-

RS

ﬁ;“g‘
P,

Y
A

¢

N
/

"-‘
A
L

8
2

“

T
<
.

v

s

\'\“
>
%

o
/

o

X
S

NS

AN \e
7

S,
¥

%
R

e

=
//,
%
\\

BRI

7
’

P AT
SR
s

i

\ .,

SR
SN
/ _
A,

-

P

-

/

7
/<
.

’

F i

P

™
’

e
#

ol A

‘.aooo X)
‘e ¢
bR,
.. ‘\)

. _.i.w.*o.-&a\..__\ﬂx
b x@oo\ %oo.moo "
e

,u,.. A5 X0) 9 ..f u%_.wsw‘.\

X
v .\
ﬁw K
(f

W
toﬁo %%w%&

’
*,

-58-

The stack is a special set of five data reqisters that
is found on most HP calculators. This stack is what
makes HP calculators so much eosier to use than the
other leading brands. The main reason HP calculators
are easier to use is that when njou’re dot nq \engfhg
calculations, your intermediate results get saved Sor
you automaticall Ys thug you aren'’t forced to use

parentheses to 3r'md ’c\wrough a b'ig,?o’c, hairy ectuajdon.

So, hows does 1t work ? Ue”, the Ouwner's Handbook
often refers to a block diagram that locks like this:

CE R

R

r X-<N-

This 1s an excellent way topicture the stack inyour
mind,so we will use this method,too. Also, let s aqree.
that ,unless we epecifically mention the L-reqister,
we will be referring to the X, Y; Z, and T-registers when
we use the word. " stack.”

.-Sq-.-

©e000000000000000000000000000000000000C00CECO

0000600000000 06 &3 ? ? 3 : é*@g@@}‘@@@%*@3333333%5@’333”}3

Now, as you remember (from page 19), WHENEVER
you key in a number; you are keyingit into the X-requster.

ALL NUMBERS ARE KEYED INTO THE X-REGISTER

Once xjou’ve put a number into the X-register,
THEN you can store it or add it | etc.

Chal\enﬂe: Set up the %-,Y-, 7, andT*regis%ers

as g‘O\ |ows.

- W - -

- - e e e e am e

o
0
X<N -

Solution: 8 ENTER 6.9 [ENTER] |2.4 [ENTER|3.9

Nous, i Ypu thoroughly understand this, and you
trulﬂ want to skip a fine discussion of ENTER| and,
LCLX, then go ahead to pooe of.

OT‘I'I‘EME —

_beu

So, what is the famous [ENTER] key © Uell, before we
get to that, there is a certain thse we'll need to

"STACK-LIFT

Stack-lift is the process by which each of the

values in the stack get lifted. one notch.
/ To never -never land (gone §or good)

Tl i P,) DN T
74 N S - Z
]

Notice that the original value in ‘cheT-register 15
gone Cor 9ood after a stack-lift.

TN T

oecoeocecoococececcecocceococoecoccececceccecocorococcecccecocececcceececccecnc

©000

“But when does this stack-lift happen? How do I
know whether it's going to happen when 1 keB ina
number ?”

Well, it the stack-lift does occur when you key in
a number, that means it was read_lj"anci-able to do
0. We say stock-lift was “enabled.”

But, if the stack doesn't lift when you ke:_.] ina
number, then we say stack-lift was “disabled.’

So, the cgues’cion Hou're rea”i.j asking 1s: Howdo I

know when stack-1ift is enabled and when it is
disabled (i.e., when the stack is @d% to lift and. when
it's not) P

You should use this rule: There are only tuwo things
you will commonly do to the computer to DLSable
stack-lift. Those are:

press
or press [CLX],

Now we're reoclﬂ to discuss ENTER], ——>

-b2~

“So, the ENTER function leaveg stack-li§t
DISabled, rig}ﬂ: ? What else does itdo?”
[t does two things (in this order):

. First, it pe:_{qtma a stack-lift.

2. Then, it disobles stack-lift.

Look at the first tuwo steps inour solution.

____?g___T ____2;___1- ____?_b___T
P |Z . _|Z ___fa_Z
o De _|Y Lt |Y .8 __|Y

Pa X 8 X 8 X

L s 8 T, ENTER) —)

(? means: “We don't know what's in there , and we don't care)

The Sirst s}:ep 1s 1o keB-'m the number 8. No mHstErH,
risht ? It goes into the X- register.

Now, when we press ENTER], a stack-lift is
gr?ormgd (regard|ess of whether stack-lift was
enabled or disabled). So our stack is lifted. That
is, a copy of the 8B is sent to the Y—regisi‘er; and,
the other values are bumped up one notch.

-63-

0000000000000 000C0000000000C0C0CC0000000CCCO0CE

000000000000000000000000000900200000000000000

Now, [ENTER] also disables stack-lift, so that if the
next step is one where a number is recalled or
keyed in to the X-register, the stack won't lift.
The value %rmeﬂg in the X- register just gets

replaced bﬂ the new value, and the other

r‘egis)cers aren't touched.

% T L BT
e _ |2 .t _|Z
8.y 8y
8 Ix 649 |x
b g J
Watch once again:
s T ”___'Z;“_‘T P T ______'?_9___1-
R v+ 12 | __Ta |2 S 4
S |Y L Tw 1Y o 1Y .8 __ Y
Ta oK B X 8 X 6.9 |X
L —';8 31 :ENTER:—~JL—‘)@.CI\I
Think about it this Lay: ENTER| makes o copy of the

X—-regis)cer in the Y—regis{-er and bwnps everﬂt}winﬂ
else up one notch (lifts the stack). But that value in
the X-register is a sitting duck if the next step

pemcormecl s a recall (RCL) or the keging'm of another

numben

..6].‘-.-

Here is a complete diaﬁram of the solution to the

last cha“ense. Stu.dlj it until Hou'r‘e com¥ortable

with the ENTER function.

____?_gt___T ____?_5. _______ ? h‘___T _____:_b___
I 4 __ e | __ta__|Z | __Pa___
P Y | __fa___ 8 |Y __.8___
0 |X 8 8 X e.9
— 8 — I 64—
[Za T [2a_ T [__Z 8 _1T [._.8___
.. 8__|Z .8 __ | __e.3_|<Z L _eq__
| _e.q_|Y BT O I (R I 2.4 1Y I H
6.4 |x 2.4 A | x 39

X =< N —

> <N -

...65_

C

Cco0COCOCOOCOOPOCOOOCOOOOOCCOCOOOOPOPDOOPRODOCOCCPODOCOCPOPODPOCODCOCE

00|

While we're on the subject of disobhng stack-lift,

let's mention [CLX

CLX also does two Hnings.

| Tt replac:es the number in the X—re.sis?:er

with a 2ero — without o\is’cw‘birB angt'hirs

else.

2. Tt disables stack-lift.

So, both ENTER and CLX |eave stack-lift
disabled. But Ehezj both do very different things

before that:

ENTER disturbs the whdle stack..

CLX disturbs

SRS NN

ENTER and CLX are the on|5 two commonl
functions that leave shack-lift dicabled.

S

-bb—

Your stack should ook like this:
-
_eAa |z
T
3.9 X

Cha\lenge: Rep)ace the 6.9 inthe Z—register‘ with
a 5.5.

So,ution Here's _ngof many solutions: (R
X<>Y] [CLX X<» Y] XEGQ][ALPHA] R7? [ALPHA

?IECE OF CQKET\}H a bigger piece (poge 69).

So here are more useful functions for

nnnipu\ating the stack, right ?

Look at the stack diagmms on the next page
and observe how these functions a::cornplis\'\
their task. It will be easy Sor you to see why
we cal| them r‘oll-up”(RT), “rol]-down” (RY) , ard
“X exchanse Y (XOY).

©000

200 0|

Bo v [3A W .39 b L3 .7
__e.4_|Z 8.2 _|Z | _8.2_|Z 8.2 _|Z
2.4 _ Y - T I A 2.4 1Y 12,49 _|Y
3.9 |X 12.4 [X 0.9 X Q.0 |X
— R —7 L oy —7| ;CLx,-—i‘
21 T 0 . 8.2]T
__B.@ |z 8oz | 5.5 |2
I2A_ Y __S8.5_ Y L 2.4 Y
J 5.5 |X 12.4 |X 2.9 - iX
5.5 71 ,.__TI__, RT__.J

Remember, RT is not on the kel.jboard)so you use
the (XEQI[APHA] | procedure.
Now, what would ha.Ppen iF you Pressecl Q2
ofter EX? What would the stack look like after
you keged in .57

Llell, pressing [ST0] @2 wsould store @.@ in
reqster Q2 ard leave stack-lift enabed . After
keging in 5.5, the stack would look like this:

8.0 T
I B
.22 |Y

585 |X

Since @2 leaves stack-lift endbled, the stack
would lift when you keyed in 5.5. Every common
function except ENTER and CLX leaves stadk-lift enabled.

-68-

Your stack is now set up like this:

L. 50 T
.55 _1Z
124 1Y

349 |X

Cho“enge: Let's reverse the order of the values
in the stack.

Solution: There are many ways to accomp]is)n

this, the most straight?orward of which is
P"'Obab\ﬂz RY XOY RYXOVYIRY.

I§ this settles well with you, move on ahead.
Otheruwise, follow the step-bnj- step solution belous;
then take a break. When you return, re-read. from

a couple anes back.
8.0 |T | _ 3.4_|T (39 v [B&5_]
L DS Z __8.0_|z 8.0 |z __29_12
2.4 |y [_5.5_|Y 128 Y | _8.2_|Y
349 |X 1.4 |X 5.5 X 2.4 |X
L m Fhs AT o Ly 'rJ

124 T [IRA_T .39 T

| _5.5_|Z __5.5_|Z ILE ke B 4

_3.49_ly L|L.8@ |y [_55_1Y

! 8.2 |x .9 |x 8.0 |X

D
R4 — Tl 0 V] o T Rnaill R,L.h_j

LS

ecco0CoooOooCcOoCocooccecoPooccccocooo o000 ODPPODPDOCPODPOCOPRDCOERCR B

0090

Your stack is set-up like this:

3.9 T
| _12.4 |Z
| _S5.5_ Y

8.2 |X

Question: What is the value in the Y-register
oSter you press Lt ? The T-regisi:er?

Answer: ASter you press I, the stack looke

like this: 3.9 |
3.9

o — - —— — —

OK? Go To PAGE 72

The functions +, =, %, +, and y? opera)ce on the
X-ard Y- r‘egisters.T\'\at 15, the5 take the value in
the X- reqister and the value in the Y-register and
combine them as specified by the function.

The result S’CQBS in the X-regis’ce_r‘ and the

X <N -

stack “dmps.” The value in the Z- reg'zs%er drops
to the Y-register, and. the volue in the T~register
drops Yo the Z-reSister.

..-76_

Note that the value inthe T-register stays
the came.

The y* function is named so that it
telle You what it's o‘oir\g. From the name, you
can see that it raises the value in the Y-requster
1o the power of the value in the X- regis-‘cen If
2 is the value in the Yregister and 3is in the
X-regis’cer, Then pressing will return an 8
(Uhich is 22) to the X—register.

It would be nice if & and &) were named in

a similar mannern because in these functions,

the order of y and x is impor’con-l-. Thel=
function could be named. Y-x%, and the divide
function could be named. Yx, because these

names wowld be more descrip'l‘ive. But thot

1sn't how ﬂ’\eg 're named, so Just remember-:

=] means Y-X (the number in

the Y-register minus the number in the X—r“egs%er)'

=] means 7x .

©eCE0000000000000000000000000000000CC000C0C000OEC

Your stack is set-uP like this:
3.9 |T

3.9 |Z
12.4 |Y

13.5_|X anol\\jou’ve jus‘tcome

from the last chal lenge. (a couple pages back.).

Cha“erge: Wi thout touchins any of the
number kegs, get the 8.0 (that used to be
in the X- reaisi:er) back into the X- reais?:er.

Solution: [Ms] [LASTX]
Are you comfortable with the L- reqister Iy
Go to page 4.

Are you ’ch'mking,“ What-in- L is the L-FeSiSfBr?”
Llell, allow us to introduce you to this unique
member of the stack.

-

[
XA<N-

-T2~

2909292929292 920920929292092092092092092020092D920929209200209290299209292920992009090200209]

The L-register is where the last X-value is
automatically saved after the execution of many
rfunctions that operate on (or change) X. So,
if you wish to recover the last X-value, just
press [Pix] [LASTX],

Most functions that c,hange numbers (like +,
%, COS, v*,...) save x in the L—reaister'. But
functions that move numbers around (like STO,
RCL, XY, RT,...) donot save x in the
L- register.

In the Owner's Handbook, around page 25@,
there's a list of the functions which tells whether
the‘lj save x (the number in the X—reais’cer) in the

L-reSister‘. If Hou're wonolering about a parficu’ar
Functzon, tho.ts the place to look.

-73_

ecocecocecocoeceoceccceccocococccoccocccoeccoccecccocceccccecccceccccccocccoe

©9000000000000000000000000000000020000000000]

SR s D Rt B B A R e M i A T B AR b e B, At SO o . G0 B8, o oot < (T WRE RN i A s AT
. i B e)

Now we are going to supp}5 you with a few more
challenges to help you develop a'feel” for the stack.
It will take a little time before all the motions
become automatic. But now You know when to use
ENTER and when ENTER isn’t necessary. Flus,
you know that many intermediate answers are
automatical ly saved in the stack.

Take a few deep breaths, and relax before you
Proceeol. (A lotus position, someuwhere close to

the center of your livingroom, may be appropria)te

while uorkins the next few pages.)

/ 7
7

p 7
=
e

2

-
o

—7[..'_

Challenge: USin8 only the stack (no paper or

numbered data registers), calculate the answer:
3+ (EX7) - 72
F*(13*=5) (Looks tough, doesn’t it?)

Solution: 3,955395944

If you got that answer the first time and you
don’t want to look at the step-by-step solution
to this problem, then skip ahead to page 74.

©e6e0eo

ccoocCcoocoedeoecocceccoecCoecceccocococoeccoccecccoooecocccccooccccooco

33 ? 00 ? ‘? 3 >0 ?/33 533 33 = @w’g - 3,“% 43 3 3 /} 3 3 3333 ? 3 o : ? ‘3 3 ,3;3@3«}03

Cha\\enge: Evaluate /3+(5%7) =72

Solution: 3[ENTER] 5 ENTER] 7 [¥] [#] [&] 72[=
and the stack looks like this, step“bg-steP.

[2 T P T % |T T
L---.-?-l’-—_. < ..._._.?.9......_. Z ____?_"‘__... £ _..__%__.. Z
L __Pa _|Y 3 1Y o L._3__1Y L_.S5__1Y
3 X 3 X 5 X 5 X
33— ENTER]—L— § 7L — ENTER] — |
-
| Pa_|T | __Pa_|T [Pa T [_7a_]
.3 12 | _ Pa_ |2 |__ Pa_1Z | __%a_1Z
__5__|Y o Y | __Pa_|Y [__2a_|Y
$ 7 X 35 X 38 |X . l6 | X
41 > ¢ 2 + 31 5 W | i
______?a____ T [Pa T
| __Ta _|Z a2
_b.16__ Y ____—.?“_4:5__'_~ Y
v ¥ 7 4 X -05.84 | X

72— [= — 7

Notice that the stack lifts when you key in 74,
but it doesn't litt when you keg inthe 5 or the 7.
If You don't understand w\'\5 the stack lifts in one.
case ond doesn't in the other, review page 6b.

- 76_

Cha“enge: Coming from the last page, evaluate

/38 - (2
9 *(13*-5)
Solution: 9 ENTER] |3 (®4)LASE B¢
And the stack ? Well, it looks like this:
2 _|T _Pa T [3 _ T [_Za_]
T - R s 65.84_(Z _T65.84 |
T _ Y | _765.84[Y ik el ¥ .9 ___
V38~72 | X 9 X q X 13
72 |L Je L 72 L T2
— q— — R —— 13—
Do T [eS84]T [-e5.84]T [6584]
| _e5.84|Z . S | 765.84 |2 _65.84_
I N | { __leq 1Y I I) ¢ __—65.84_
169 X 5 X |64 X 476
R 13 |L 5L o4
X3 —7 | > 5 o Ly b2 s [_1;’
[
| -65.84 | T
| "65.84 |2
| 65.84 _ Y
-0.24 |X
v H76 | L
oy AR 3

We're 5howin3 ‘rounded -of¢” versions of the

numbers. |heres redl |5 1% digits in each register.

_7 '(..-

— X~<N-

> < N —

©eeccC ©C0CO0CO0COCCOCCOC ©0O oo oecocococecocOoOOoOOOPOCEOEC @ e

~-8l~

Answer; Uell, if you just did the chdllenge on this

page, then the L—reﬁister- cortains 4. DD,
However, if you are just skipping around for the bonus

po'm)c5> you are chea‘t'zng'. And we have no idea whats
in your L-register. You could try VIEW L (%l [VIEW

] L), then press to clear the olisplaH

“‘window. Nows, move on to the next page (except

you cheaters who are skipping around).

5 4191y T
AL A SLYHM

INOTLSANG SINOQ

'aGJaI IO"P FOY3 o Pt.m S/ agod o] >P’oq 05 ‘NON

"hhbSbESSh € St 4amsuo Az puo ¢

o

‘7 “UO I’.].T'l IOS

'Q.IT'IS'BJ '}SUI B\{Q o3 l.7]OP’O F"ION 398\.13“‘0\1:)

oo ccoeccocooeeccoecooecccoceoeccecroeoooceccocoococcoreccccecoveoccccocne

Cho.]\enge: Caleulate A. (¥5)*
B. (35)°

Solution: A. 3 [ENTERI5E3
B. 3 ENTERISE 3

Al

yx

gives Q.843

S5 gives @.216

Uh\j don't we press ENTER

after [£

? Would it

make a difference if we did. press [ENTER] ?

The reason we don't press

-

TER] here is because

ctack-lift is left enabled bB the [£] function. The
only difference that would result by pressing

ENTER) here is that we would have pressed an

unnecessary key. Thus, we wiould have wasted

an essential fraction-of-a-second of our lives

(not good). [ENTER leaves stack-lift disabled , so
the extra would have no effect on the

result.

-7q_

©ec0e00CCQCCOCCOCOCCOCOCCOOCCOCOCCCCOCOCOCCOCPCOCCOCCOCOCOCOCCOCPODOCOCQOCOCOUCQO

00 00

Challenge: Let's say that you have a list of 100
numbers that starts out 3.96, 5.12, 9.9, 10.67...,
and you need to divide each of these numbers by
HO (the same as mu|tfplain3 bH Q.025), Mal(ing use of
the fact that the T-register doesn't change when

the stack “drops,’ outline an easy way to accom,alish
this task.

Solution: First fill the stack with @.@25
(HQ@[%] ENTER ENTER]) then use this sequence:

| @.025|T | _@.025 |T | _©.2025|T | _©.2025|T
| @225 |2 | @ex5|z | @.ex5|z | ©.025]|Z
@025 |Y [@@s5|Y [e@.@25]Y [_e.eis]Y

3.96 |X @.299 | X @.200| X 511 |X

3967 — B— — (X — — 52—

__2.025 |T _@.025 |T | _©.225|T | _©.225 |T
__@.@e25 (Z _0.025 |Z | _©.225 |2 | ©.225 12 |
__@.ez25 |Y _@.225 |Y | _2.225 |Y __©.225 |Y

J L2128 x ®.000 | X q9.91 |X | @.2H48 | X

* Tl Y CLX T l_ q ql Tl $ * .———__T L————’ "o

Similarly, if you had a list of numbers that you
wanted to subtract 3 from, you could fill up the
stack with =3's and use[H.

-80_

. Without using the [ENTER]

as SUCl'I:

TEST

W
o7
X ~<N-

| ke!j , configure the stack

2. Using the numbers in the stack from the above

problem (don't key in any numbers), compute:

(3.5-2.2) +4.7
.6

3. Compute (45% COS (45°) (the little ® means

desrees T

EQ][ALPHA] DEG [ALPHA])

H, True or FOJSE.? The sequence CLX

CLX

%

CLX

Y,

CLX

%,

QD will egec’civelg clear the stack-
regisfer:s X,Y,Z, and T.

...8'..

o000 eccroccecoeccoccccoecceccceocrccocoocecoococccocccoccecccooccee0

P000

ANSWERS

|) .6 KOY]XGY] 3.5 [XEGI [APRA RADAPHA] 2.2

[sTo] @@ 4.7 is one possibi’ijcy.The trick here is
that the execution of almost any function cther
than ENTER or CLX) leaves stack-lift enabled.

Thus, when you do something like [XEQ] RAD (or
even press XEQ), then[=lto clear it away) the

compufer ASSUMES Hou’re done kegfng n the

Pr‘evious numbeg and stack-lift is enabled.

2) R EISIFFERAFRAR 7 AR () (ROYIEL- 3,9938

3) 45 (o8] %y [LASTX) (X 35 =l (7] = 3. 16883

Ll) False; CLX leaves stack-lift disabled , so the
zeros are not pushed up into the stack. Thou.gh

it's rarely necessary, you can clear the stack by
executing the function CLST, or you can dlear

it by pressing @ [ENTER)[ENTERJENTER),

- 82__.

Peview PBOBLEA)

You are given q list of 1@ data shown below,
and you, know from your previous studies of latin
that a datum is | piece of data. Your mission,
should you choose to accept it, is to run each

datum throu.gh the formula:
32+ (q“ ilﬁ:“r&)7(datum)z.

What keﬂstrol«es would HOU{ use each time ?

Data: 25, 44, 64, 12, 3, 9, 5, 26, 3|, 33

sl

C; oo ooccecococococcoecoccocoococcocccococooooocoecccoo0occeccceeea

Answer:FJsyF)q
I§ we run the §irst datum throu.gh these kegstrokas,

the sback looks like thie:

%) 44 [=] 7BJr0e 32+
(Whew!)

20009|

. Te T s |E Lo s M P T
2 _|Z % _|Z | __Ta__|Z B Y -
XY oo ta L¥ 625 _|Y __625 |Y
25 Ix ¢2.5 IX 25 |X 5 |X
P4 1L % It 25 |L 25 L
25— — X —IF — [tasx] — L—s [x]—7
pos
[fa_ T [_2a_ J7 [P T [Z__]T
| _625 _|Z ___%a _|2 | 625 |Z ___Ta__ 12
2 Y 6458 _ 1Y L Hh LAY __e25 _ 1Y
q X 45 |IX HY X .@23 |X
J[25 L q L q L g5 L
q—I L ¥]—L— 44 Tl *-’.————T]
(_
.fq__ T A 4 e N __fa__ T
| _625__ |Z R T . | __2a__ 12
.23 Y _625 Y M. N) | _731.4741Y
¥4 X 1170 |X 731.474 | X 32 X
vl 49 L 7 1L 170 L 170 | L
e
..__..:;.3_.._; Now, qo ahead and run each datum
_"""“:“q-—“ H [
[__Za Y ’c\nrough this sequence (that's nine more).
763,474 X ,
V32 v HINT: I§ you read ghead first, 501.1.“
+ find an easy, time—saving way to do this.

—aq—

2000

()
%
f‘:'
S
e
e

Wy
R
R A

RCT AR
G o

>

KX
5
",’3,4
SXAL
XK

<5

%

5
s
S
SO

7
X

)
X
-
(s,
AN

A
%
%

£X
:

...85_

e,
u....mw.v.;,n_.m 2
- /0 o 5 ‘_‘r.. Yy =
BRSO
ARRPRRORCTHRAR

ORRR
RO

0900000000000000000000000000000000000000200000|

In the Previeu pmb]em, you were faced with a list of
data. that you hod. to run, Piece-bb—-Piece : numl)er-bﬂ-numben
through a sequence of keﬁsjcmkes. The result that you
got from the keystroke sequence will deperd on the original
number: In otherwords, each unique number input to the
sequence of kegs’crokes will return a uniq’ue output.

The input is the number that enters a. process, and
the output is the number that results from that

process. In the above case, the process s the sequence

of kegsb*okes.
We could substitute the word " pmglr'ou'n"r for the

word “process,” because. what is a program but a
process that is carried out by you ard the computer ©
So the keystroke sequence is a program.

It may come as quite a shock 1o you when you realize
that you have o.]read}j created a program. The kegs%rol(e.
sequence you &euelope.A as a solution to the preview
problem is a program,

At the presenjc, thie program 1s recorded. in your
mind (and a couple. pages back), When You work. erouﬁh

_86-..

the Formula:

7
32+(24 (dotum)* |
first, you must ‘call up” the program in your mind and,

with the he]p of your gingers , work H’lrough 1t S’cep~bH—
step, s%arjc'mg with X3 and ending with .

BUT...
HERE IS A BETTER WAY.

LJHH clutter Lour mind. with the numerous kegs)croke

sequences requdred to resolve Yyour common mathematical
prob\ems? UHH not store thoge ke,gsi:_mlf._eg in the
continuous memory of the Power-f:u) HP-4| 2

GIVE It A

i) e

87

© ¢

Challenge: Key in a program that you can use to

solve the eciua’tion:

. 7 2
(oz.ﬂ:puf): 3L+ (q—’%ﬁ) (inpu’c)

Before we spell out the solution tothis challenge, we
will describe a couple of H’:ings that everyone should
know about program mode on the HP-4I.

PROGRAN) POINTER

First, we will describe the program pointer. This
pointer is Lshat the computer uses to remember
where it is in program memory. There is only one
program poin)cer‘, and the HP-4| alwags knows where
it is. The HP-4l users, however, are occasionallxj
unsure. of the pos'z)cion of the program Poin{‘er‘. But
this uncertainty is easilg remedied by geing into
program mode and looking at the disp)aﬂ.

LWhen Yyou Yurn on the HP-4l, it wakes Up N
what's called "RUN mode.” To put the HP-4| into
program mode, press [FRGM, To put the computer back.

into RUN mode, press PRGM] agoin., [PRGM) is a)coggle ketj.

..88...

Now, when the HP-4l is in program mode, you can
move the program pointer one step at a time in
either direction - forward or backward- by using
the [SST] or [BST) key. SST means “single-step,’
and BST means “back-step.”

The [key is the delete” keB in PRGM mode.
Pressing this key erases the line you're looking
at. DON'T CONFUSE [WITH [B5T) ! Notice
also that if you want to keyin CLX as a program

line, you must use [*is] [CLX] or [XEQI[ALPHA] CLX
ALPHA]_

In Senera}, to keB'm any program line, just
key it in. It will be inserted right after the line

you're looking at, and it becomes the new “line

you re Iooking at” (i.e., the program pointer

moves o the new line).

ececoécececececccecececcecceccoceccececeococcececcoccccecceccecccccccececeeccoce

2000

For now, you need to position the program pointer
to the end of program memory. The easiest way todo
this is just 1. The HP-4| will disp’aﬂ

PACKING for a short while.

SIZE
Next, Pu{' the HP-4| into program mode.. The disp]ag

shows: @@ REG nnn, where nnn 1s some two- or
three-digit number. The number nnn shows you
how mamj empty registers that you have dllocated
for proaramming. If nnn 1s QQ, you have. no room
allocated for stori ng program lines.

Go H’lrough this exercize to set the number of program
regisjce.rs to2@: First, XEQ "SIZE" Q0O (From NOW ON,
quote marks (") in keystroke and program)isl-ings mean
ATPHA, and they correspond. to the T in the display).

SIZE Q0@ means that yow have no memory
allocated to data reqisters. Get into RUN mode and press
STO] 0. You will get the message. NONEXISTENT. Data
register OO doesn't exist because it is not allocated. Try
STO @2. You get arother NONEXISTENT. You have

-90-

no memory allocated to data registers,

Go into program mode and the displmj will show
@O REG nnn. Since you have no memory allocated
to data registers, all Your memory is allocated to
program storage. For our purposes, set nnn eclual o
20 b\j the fol |owin3 sequence:

XEQ "SIZE" (nnn-20).

So, if nnn =046, you set the SIZE to 026.

s v e
LR

S A O e B e A AR AR e ke = >
}‘\m"} SRS s’««a‘*ﬁwﬁﬁ‘@“yﬂu e R

/ ,:\Z:Teg.;:yﬁ-%ni:;/‘:::-;f57‘-_-*‘ -

77
V. NENEA LS TEND
T

ik “

e s e s

THE PERWAVENT END,

Press the [S5T] |<e5. The disp\ag will ghow
.END. REG 20. This is the Permanenjc END of program
memory, This is the thing that you move around when

you XEQ "SIZE." The . preceding and wco“ouing
the permanent .END. distinguish it from a

regular program END (keep readlrg)

-q|

eeececooecececoecceccececcececcececceccecececceccccoecceccccccceccccocecceccecccceoe

200000000000000000000000000000000000030000 0

D

Your memory 1S now set up like this:

Pchram Memory
(0 empty registers)

- e A e A S R S W S

mm. — OEND-
pointer

Data regis’cers

(nnn-2-® of them)

Notice that the program pointer is Posiﬁoned to
the permane.nl: END. of program memory, and this 1s
what appears in the disp\qa. So, in oddition Yo the X-
and ALPHA-register; the display “window’ can be
pos'dtioned ower any line in program memary, as directed
bH the program pointer.

Nou, key in (] ©@@@. This moves the program
ponter back to line @@. The Jisplaj dows @D REG 20,

- qz-

Here is the solution to the preuiouslH posed

challenge; this is one program you can use to solve
the equation:

- 7
(output)= 32+ (ﬂ'zﬁ,@“) (input)®
(notice that this is the same equation we referred to in
the preview problem).

Be sure that your computer is in program mode !

Ke_g-in msplag
BL “"FIRST” @l LBLTFIRST
X% DL X2
LASTX @3 LASTX
X @4 SQRT
9 @5 9
% Q6 *
44 Q7 44
+ Q8 /
4 Q9 7
v @ Y7X
% | %
32 L B4
+ 3 +

Remember, the q}uofe marks around the FIRST in
line @I mean: press the APHA] key.

-qam

©000

00|

SOJ up to noLs, we ve shown that the oan thing You
have todo to writea program to solve the eq‘ua{ion:

(outpu’c 32‘*’(HLFAt) “"fm)()1

is to ¥igure out the kegs’crokes necessary to get an

answer, put the computer into program mode., key in

a label, and then go)chrough the kegsﬁd(es. Notice
that, except for the label at line @1, the keystrokes
for the program FIRST are identical to the
kegs)crokes origina\ 13 deue_lopecl to solve this e%ua‘?:}on
in the preview problem.

The LBL we put at line @I is important and it is
always goocl to put a LBL of more than one letter as
one line of any program. This allows you to access (call)
the program using GTO or XEQ. LBl's are
discussed. in more detail later. But, for now, remember

that o LBL of more than one letter should Ql!...&%&
be included ina program,

Finish off the program bﬂ Press'mg [GTOI][],
This p\aces o normal END (different than the

_qq-.

permanent .END.) at the end of the program FIRST.

And it positions the program PoinJcer to the end of

progmm me TT\OFB. ;

Your memory looks like this:

program

. —
POln’(e r S LE e s s

Frogram Memory
Note that the program FIRST

(17 empty registers) takes up about 3 registers of
PI"OSFCLFH memorﬂ.

LBLTFIRST

Line @ is always there as the
END first line of every program.

To run FIRST, put vour HP-4]

Data regi stere ito RUN mode, key in an input,
and. press “FIRST” Now 1t
(nr)n-z.@ of them) will be much easier o Sintah

. the Prob]exh on page 83.

o
@l
o

ecececcocooccococcoccecceaecccoeccoeccecocceccoccceccocccecceococcccecccocoo

Whenever you see the permanent .END. in your
display, your program pointer i positioned to the last
program in memory. There is only one .END. and it
appears at the end of the last program n memory,

There can be numerous normal END’s in memory.

The, normal END SQPO.T‘Q'IZES one P)"OSY‘OJT\ from OJ"\OH'\E.I"

program., If your program poinjcer 1S Posi%ioned to one
program and you want to jump to another program,
you have Yo call a Jabel in the other program.

-
/ y j ,.
e -~ ”

Ve

Sl
P I

TR R SRS SRSy
/s / / G SRR §\Q‘\;. AT
/ ! / D /@"/)“‘—.};7*’.: B T R

TENNRN

\ s
™,
\
%,
N
A D T RN

R T 5

\\ \ |
N
RN
s i
b
RN
\.
,__\\
A Y
5
SSASSSSS

©0200|

Question: Inrunmode, what are tuwo ways to position
the program Poin)cer to line Q@ of the current

Prograrn ?

Answer: [GT0][[] Q0 or [RIN

When you are Posi‘cioned to a program, you can
aluags move the Poin)oer to any line of that program bg

using the [GTO][: key sequence.—ﬂwis works regarciless

of whether you are in program mode or run mode. So,
if you want to go to line 20, keﬁ [cI[:] 2. Tofjo
to line 125, key [GTOI[]]] 25,

When youare in run mode, the [RTN] function sends

the program pointer- to line @@ of the current program,

// // /

75

iGCC@@ﬁ&@G‘@i‘ﬁﬁ@ﬁ@@@@*ﬁﬁﬁ?@f@ﬁ@e@@@&@@ﬁGG@@Q@@GCC‘C

200 0|

QuIiz

|, What are two Lays todetermine where the program
pointer is in program memory?

2. The formula for the wlume of a sphere is 3 R, where
R is the radius of the sphere. Write a program to compute
the volume of a sPhere given its radius. [hatis, write a
program to solve the equation: oud:Pch 3 *TT ™ (mpuﬂ

3. How many Permo.nen’c .END.’s are there in program
memory’?

H. What happens when you are n program mode, you ve
just Cinished keying in a program, the END is s}owins n
the d:splaﬂ, and. you, press the [SST] keg

5. What haPPens when you press [GTOI[*

ke

6. Write a program to take the value in register D3,
divide it bﬂ the value in register @4, and odd that

to 4 times the value in register Q2.
7 Trueor folse ? The clisplag “window" can be

posi’cioned on'g over the X- or ALPHA-register.

_qa-.

AMSWERS

. The first way to determine where the program pointer

s In programmemory is to press the [PReM I(EH to Pu’c the
HP-4| into program mode. The line number that is in the
displag is where the program pownter 1s.

There is another way that we haven 't mentioned
yet, and that is to press and hold down either the [SST)
l(eg or the [R78] |<e5. The line to which the program
pointer 1s positioned will appear in the clisp|aﬂ.Then,
after holding the keH down for a short while, a NULL
will appear in the display, to tell you that the. computer
will now :gr_q-g the command spec'z?'zed 55 the ke):’
you are holding down. So, the HP-HI wont perform
the SST or the R/S when you let up the key,

2. QILBLTVOL @H LASTX Q7 *
@2 3 Q5 / @8 PL
@3 Y/ X Q6 4 Q9 *

Lines @2 and @3 cube R, lines @4 and @5
divide R* bg 3, lines @6 and @7 multipla bﬂ 4,
and. lines @8 and @49 multiplﬂ by PI.

-qq-w

ecoccoecoececcceccececeoececcocoooccoececcoceoecccecoocecccceeccececcecocecccceccococe

00|

3. One.

4. The program Poin’cer moves to line @l of your
program (trﬂ it).

5. The computer puts o normal END statement on any
program in memory that doesn't already have an END.
Then the program pointer moves to the .END. of
program memory.

6. Ol LBL"QU @5 4

@2 RCL @3 Q@6 RCL 02

@3 RCL A Q7 %
QH / o8 +

1. False; the displa3 “window” can be situated. over
any Ine In program memory,as well.

-100-

2000

~1Q]~

A

BELS
D
NCHING

LA
BRA

ot Sl i s e e oW R e T i B Sl s DM GRS o (B (W e RN, BPASERAR R, for i £ M,

The HP-HI uses labels as points of access to a
program. So, whenever the program pointer is
jumping more than one line in program memory, it
is headed for a lobel. LJhen uou want to run the
program “FIRSY,” you keg in the command
XEQ “FIRSL” This causes the program pointer to
qo zipping through program memory in a systematic
Sochion, searching Sor the label “FIRSIL” Lhen
this label is located, the computer beging
program execution at that line.

Question: True or false P When ’cheg emerge

from the womb, most people knows the difference
between a globa] label ard a local label.

Answer: False, .

.. next ctues-}:ion Iy

Next Question: Which of the §o”owing are
local labels and which are Sloba} labels ?

%]
02
@3

| BLTFIRST

LBL @l

BL B

@4 LBL "Q
@5 LBL 99
Qo LBL ™99

Answer: @2, D3, and @5 are local labels.
The rest are g\oba\ labels.

I You know all about labels, Pr‘oceed to Page .

B e L

-103-

ceccoocoocoeccccooceedcoccooccoocecoococoocoooocccoo0c 0 €

LARELS

There are tuwo types of labe\s-—global labels
and local labele. Global labele are used for
jumping between programs. Local labels are used
for jumping within a program. LBL"FIRST is a
g\obal label. You can alwayg tell a g\obcﬂ label by the
little T that shows in the display (7 for “text”)
right before the letters in the label.

GLOBAL LLABELS

A global label consists of one to seven ALPHA
characters. However, the single letters A th ro%h
Janrd a t\-wrou.gh e are reserved as local labels.
But almost every other k&Bband character
or combination of characters is allowed as

o global label.

GLOBAL LABELS CAN BE ACCESSED
XOM ANYWHERE IN PROGRAM MEMORY.

-~ |@4~

LOCAL LABELS

The most important thi ng to remember about
local labels is that they are local. The only time
the HP-4| can "see” a local label is when the
program Poin)cer 15 posiﬁoned to the program
that contains that label. Tf there is an END

statement between the program po'injcer ond. a
local label, the HP-4] il never find that label.

Cha\lenge: Write a program that will start at
zero and. count con{inuouslg (pausing at each number)

until it is sjtopped by Pressing.

Answer: (GTO..)
@l LBLTCOUNT @5 |
Q2 @ Qo +
@3 |BL @l @7 GTO Q|

OHPSE. « (mm o pse memm)

With line @7 (GTO®I) in your disp\a5, press 1%
The permanent .END. should show up in your
clisplawj. This means that the program with

~105-

0C0C000C000C0C0C00CO0C0CO00000CC000C0C000000C00CCOC0EC

200000000000000000000000000000000000009000000

LBLTCOUNT is the last program N memory.
LBLTCOUNT is a gl_g_tla_l label. LBL @l isa
local label. Prese B ICAT) |, You will see that
LBL'COUNT s the last entry in your program
ca)ca\og (CAT 1). Only g\obo\ labels and END
statements ghow-up in this ca‘ka\og. LBL @1 does
not appear in CAT | because it is a local label.
Get out of program mode and then press
XEQ]"COUNT." It works! Line @2 loads a zero into

the X—reais’cer. Line @3 serves as the beginning

of the loop. Line @4 momentari lj disp)ags the

contents of the X- register, lines @5 and Q6
add | to the X-regjister, ard line @7 serds the
program Poinfer up Yo line @3 to re Pem‘. the ’oop.
This gives the effect of count; ng-

S‘l:op the program (Rzg)). KEH in 5, and restart
the program by pressing XEQ @l. The program

starts courrEinS at b,

-l@6~

Now press [R/S] to stop the program; then press
[GTOl [:][}]. Key in |2 to the X-register; and

restart the program by Presslﬁ XEQ @I

WALT & M1

Question: Uhﬂ did we get a NONEXISTENT

when we tried to XEQ @I? LBL @l existed.
just a second aso!

Answer: It still exists , even as you are

reo.oling this. But pressing GIo)|-]L: Pu.’c an
END on the COUNT program and moved the
program Poinfer' Yo the .END. of program

memory Since LBL @l is a local label, the

computer can no \onaer “see” LBL Q.
LHENEVER THERE IS AN END STATEMENT

BETWEEN THE PROGRAM POINTER AND A
L OCAL LABEL, THE HP-4] WILL NOT BE
ABLE TO FIND THAT LOCAL LABEL.

-107-

0e00C0

033039093999030@993@990009090099093099999393@

LJe can move the program pointer to the globo.l
label COUNT l:)_l.j Pressing (G10]) " COUNT.”

Now there's no END statement between the
program poirtter and LBL @I, s0 press XEQ .

The program starts Encremen{‘irg the X—register‘
once again (~Clever, these natives).

A

<7

WHY USE A 61L.0BAL LABEL?
Use a Slobal label at least once in every program

and at any pont inaproararn that You want to be
able to access from ancther program.

You can call a global label from anywhere in program
memory, by using GTO or XEQ. If you do call @
Slobal label, using a GIO or XEQ statement,and the
program PoinJcer doesn't have to jump over an END
statement to get to that global label, then you may
be using Slobol labels incorrecﬂg.

Global labels take up lots of memory space , so 1t
is best to use them conservativel y.

Also, when the HP-4I searches for a 8|oba| label, it
starts at the Permaneni: .END. and searches backwards,
one at a time, through your list of global labels. Tt can
take a.while to §ind a S,Obal label , especio“\tj if your
memory is chock-full of globo.l labels.

Also, the HP-4I alwaus has to search $or Slobol
labels, whereas with local labels, it may o\r'eadj“know"
hows Sar to fump to get there.

109

ceceeecceccececececcecoececoececccececceccecccccceecccccceccccccceccccccccococe

200 90,

Wiy USE 3 LOCAL LAbELZ

Use local labels to make jumps within a program. A

program that uses local labels to make internal jumps
will run faster and take up less memory than would
that same program i§ it used g\oba\ labels for

internal jumps:

let's say that at the top of one of your programs
you have the g\obal label PRGM| and , at line 10, you
want to jump to the top of the program. Don't use
GTO "PRGMI. Instead put o numeric local label

(like |BL @3) after LBLTPRGM! and use GTO @3.
You ac’cua”g save memory by do’mg this, and the

final program will run faster.

-,
AL LA
iy ;

s X /
& X% LILIp

K NIRRT
N, so.s.-m

0 s o9,
NSNS

ON &6TO AV XEQ

We've mentioned GTO and XEQ statements, but

we haven’t clarified. when you would use a. GTO in
a program and when you would use an XEQ.

GTO(go to) and. XEQ (execute) statements
are both used for branch'mg Yo somewhere else
in program memory The difference between GTO
ond XEQ is best explained by referring to the
two programs belows:

Q| LBL™SONG @l LBL™TN
@2 GTO™TN @2 TONE 9
@3 BEEP @3 END

@4 TONE @

@5 BEEP

@6 TONE H

@r BEEP

@8 TONE 8

@9 END

egeoeecooocececceecceceeccecccecececcececoecececececececcecccceecceccoocecece

2000000000000000000000000009000000000000000 0|

Challenge: Ke5 in the two programs on the

previous page.

Solution: With your HP-Alin program mede,

k635 the @o”oming: GTOIL - |-
<g%§3rokes Dt.s_plgg
[%] CBLI[ALPRA] SONG [ALPHA Q| [BLTSONG
.| [GTO|[ALPRA] T N [(ATPRA @2 GTIOTTN
=) [BEEP] @3 BEEP
xea)[APrA] TONE [APrA) Q @4 TONE @
[, [BEEP @5 BEEP
xEQ] [AlPHA] TONE [ACPHA] 4 @6 TONE 4
%) [BEEP @7 BEEP
[XEQIALPHA] TONE [ALPRA] 8 Q8 TONE 8
(Now press [ETOLIL] or [XEQ “END.)
%% [IBL [APRA] TN [APHA @l BLTTN
XEG] [ALPHA] TONE [APHA] 9 @2 TONE 9
%] €|
PRGM (Se‘t out of proqram mode)

If you get a NO ROOM or TRY AGAIN message,
you'll have to set a smoller GIZE (fewer dota

registers means mare program memorg) or cear

away some programs, using the CLP function.

~Hz=

Now, run the program SONG (XEQ “SONG").
Note that alﬂ‘\ough you keged in all those TONE

statements, all you ge’c is one note. Put your
computer into program mode. The d’isplc% shows
QOREG nm, So what happened when you ran
the program SONG™?

Lell, what \r\oppened is this: [he computer
started executing at LBLTSONG, but since the
second line of that program was GTOTTN, it

ju.mped to LBLTTN and followed those instructions.

When it 90% to the END statement in the TN
program, it stopped. So the GT0 at line @2 of
SONG was like a $ork in the road.

Thate what a GTO statement is- a fork in the
road. It's no temporary sight-seeing trip. It's a
heavy commitment.

When the pointer jumps to the specified label,
it ?orge’cs all about where it jumped from, and. it
just forges on, following whatever instructions it

encounters.
- I !3-

ccoocececceoceccecococccococeoeccoccococccococecccocococcooccoccccoce

20009|

C ha“enge: Now, 9P back arnd d'nrge line @2 of the
SONG program to XEQ T TN.

Solution:
PRoM] (Get into program mode)
w] [6TO) [] [APHA) SONG [APHA] (Move the pointer
to the SONG arogmm;)
[SST] (Move to line @2)
<] (Delete this line))
XEQ] [ALPHA] TN [APHA] (Key in the new line 02)
PRGM] (Get out of program mode..)

Now execute SONG.

This time , it does alot more, doesn’tit ¢

And if you listen, you'll hear TONE 9 (high pitch)
before the first BEER The pointer jumps to
the TN program, sourds the TONE 4, and then
returns to the point it branched from inthe
SONG program, to continue on from there.

Houw did it know to dothis™?

Well, that's what XEQ reall Yy means: “Start

-{I4~

from this point, search for this label, and when
you find it, follow Your nose '!:hroush the
instructions after it UNTIL you encounter

either a RTN statemertt or the END of a program.

From there, you must return direc*l:lg back to
this point (do not pass GO) and continue on
from here.”

Note that even when you pressed the kegs
to XEQ“SONG,’ you were telling the compucter
this same thing.

But when you gave this instruction, it wasn't

doing angthing_ at the time (just sitting around)
5o, when the program Poin)cer reaches the END
statement at line @9, it returns and takes up
where it left off- doirg nothing- It stops!

Also, you can think of all the functions as
having built-in RTN statements. So, after
performing them, the HP-Hl returne to what
it Las do'mg previoue.lg, whether it was l‘unn'tng

a. program orjusl sitting around.

©eccoeoocoococcccecceccecoeccecccoeccoeccococcoecceccoceccocccocccccoccocooo0ceca

9000|

So, all the functions are just one-step side-trips.
In fact, that's what any XEQ reallyis. Its a
side - trip that ’cempomrilg branches execution
to ancther place until a RTN or END is

encountered.

And, no matter how twisted the path gets,
the computer can even remember its path back
*through 6 “lc,lgertsn o§ XEQ's , like this:

Q| LBLTPILE
Q2 XEQ 02
@3 RIN

Q4 LBL 02
@5 XEQ @03
Q6o RTN

Or LBL 03
@8 XEQ &4
@9RIN

O LBL ©H

| XEQ @5
2 RTN

3 LBLO@5
H XEQ @6
5RIN

b LBL 06 A mess, righ’t ?

{ BEEP
SEND But the XEQ

never %rgets]

~llo~

Dear ALPHA,

Yes, but sometimes L want my
programs to branch and cometimes
I don't. It all depends on the numbers

that come up as results.
What should I1do ?

5 i.sned;
Ann Bivalent

Dear Ann B.,

READ ON—>

=11-

EC‘C’-C‘-C-C’-CGCC’-Gﬁ(’:@@G@C«'GC}CJ(’.‘-‘@G@@@@@GGG@GCOGC&C-CC!CC-C*

Gl
VK Wﬁ// |

i NN s \

i
Tl

) W f

~118-

Stop and think for a moment about the design
of this book:

We, the authors, wanted to write a self- paced
instruction manual on programming the HP-4l. The
keﬁ Phrase here is SELF-PACED: We don't know
how fost you learn details or concepts. So we
had to write a book that would satishy students

of either extreme - slows and methodical or quick

and intuitive-and everyone. in betuseen.

So we wrote a ngl_’oim book.

Review a bit: In the §iret section, we hadto
assume that some readers were not 5e’c Samiliar
with the computer’s stack logic, ALPHA-reqgister;
or function execution. But to dlow for those
who did knows these concepte already, we put a
little message here ond there, saying, in effect:

“If you alreoclj knows all this stuff, skip ahead

to page xx." S

~119-

oo cccecooceccoecoocoecccccococccceccecocococeccoccce Qmi

03 3 33 9 @g ® o 9 Qo 99@ _g 9 9 9 99 @_ Q p 99390 99 @@9 3 :3 - 3@9 3 9 @u

AR R R D SRR R L S e T e e B Bk T B SREESINGAIRS AT s R0, R DT Rl Bt AL R Boodime M)) Kt bt SN et T8 T
v _—— e e AT

So a person can fird exactly where in the baok
he or she needs to be in order to start learning-
in a very short search- no matter how fast or slows
his or her lenrn’mg 1S.

This s called so‘virg the ‘general case; that is,
where your learn'mg habits were unknown, but where
those very habits could always qualify you Sor one
of the provided options.

But howdid we Proviole Yhose. opi:ions?

Well, we acked questions of you, the student,
and then we gave you directions based upon
your ansuwers.

This is called “conditional testing’ because
we test You with a question, ard. the
instructions we gwe you afterwards are
conditional (’cheB depend) UpON Ypusr answer o
the test.

~120~

e have a very powerful tool here in conditional
testing, These tests can help make programs (or
books) flexible enough to accommodate a wide
varie’cl:l of cases (or students).

The HP-Hl has functions that are conditional
tests. [he conditional test Sunctions are all those
that contain question marks (?) as part of their
Sunction names. These functions all work smilarly;

1§ the answer to the question acked g ues,’
then the cornpu)cer‘ continues, Per?or‘m'zng the
next program step, et<.

But, ¥ the answer o the qQuestion i “no,”
then the computer skips the step immediate)g

ceceoo0c0CO00COCOOOCOCOECOCOCOCCOCOOCOCOCOCOCOCECOCCOCCCOCOOCCOCOCORECOCOQCOCOCOCEO

20000000000000000000000000000000000

2000 2000

lLet’s try anexample.

Remember that little program called “COUNT”
(on page 105) 2 You k23ed that in and ran it as a
demonstration of howa GTO statement ard
a label can be used to form a conﬁnuouslxj loop'mﬂ

program. That version o5 COUNT will just keep

aoing unctil you stop t.

But suppose we try this:

Cha”enge*. Use a conditional test to c}'nr\ge
the program <o Yhat 1t will count up to a. certain

number (5&5 |10) and then autormaticall Y stop.

Solution:

Ol LBL'™COUNT

0210

a3 ST10 00
H O

@5 LBL 0|
06 PSE

@7 RCL OO

08 X=Y7?

@9 STOP (RzE)
® RDN ([®R)
||
1+
3 GTO 0l
H END

Plain er\ough? Move o page. 125.

d F & B

Not ultra-lucid? Stu.dg it abit....

Q| LBL "COUNT
02 10
03 STO 00

After the label, we store the number 1@ in
register DQ. LJhen the computer gets o 10, vse
want 1t to s%op counting-

H O

LJe want to start the count value at zere.

05 (BL Ol
Q6 PSE
@7 RCL @0
08 X=Y7?
09 STOP

After pausing to display the current count
value in the X-register, the progrom recalls a
copy of the enciing value (10) to the X-regzs‘hen
which bumps the current count value to the
Y-register.

Then , atline 08, the conditional test acks
the question,” Ls the value in the X-reaister

=23~

000000000000 C0000000C000C0000C000C0C00000CCOCO0CO0OC

eclual to the value in the Y- reqister T

I§¥ the answer to this question is “NO” (as
]ong as the current count value in the Y—regis’cer
hasn’t reached. |@ yet), then the STOP sratement
will be skipped. The computer will go on to
perform lines 10 ’chroug\n 12, which add. | to
the current counter value and, ot line 13, it
will go to the top of the loop (LBL Q1) and
continue.

However, when the count valug hag reached.
10, the answer o the test is “YES, so the
STOP statement is performed to halt the program.

Notice some’ching about this program: You can
change the |en3th of the count simpl Y by
changing lines @2 and O@H.

~124-

Bonus Question: Suppose you want the program
To count up to the number You keB n r'zghi'

beSore you run it. How do you do this?
waubaud Yy und roh 240439
ur iy nof anjon senayoym aKYs M Q@ OLS
Y3 UdY | 7@ AU RI[3(emsuy snuog

So, we've used a conditional test to make
the COUNT program more Flexible. In this case,
the test compared the value in the X-register
with that in the Y-register.

But there's another kind of corditional test
that doesnt have an\thft nq to do with the
X-register. This test s called a flag conditional
Yest.

BioHT..
.. WHATS D FLAG 2

a

-|125-

jCCiC’-C‘CCJ@Eﬁ@C}C@GCGC‘@GC«@&GCC'—(ZGC-CGGCC-GC'CCC()CC‘CCCC

©9000|

Funny you should ask , because that's the next
topic.

Simphj put, a flagis an indicator which has
jus{: two Possible. values : Set or Clear. (Call it
true-or-false, up-or-down, yes-or-no, |-or-0,
us-or - them, whatever you want.)

These indicators - these Hags“ are stored off
by themselves, not in data registers. There are56
ﬂags inall, and you can check any of them to see
if thevj re set or clear. But thereare only 30
that you can change if you don't ltke what you see.
The other 26 are controlled b5 the HP-4|.

And out of the 30 you can control, only ||
(Ho.gs @0-10) mean nothing Yo the computer.
The other 19 flage each instruct it todo SaTle'!.'H!fS.

For example, if you clear flag 26, you are
te||ing the HP-4l to turn off its beeper, <« that
it will no |onSer sound BEEP's and TONE s,

-126-

So you have 11 flags whose meanings you
can determine bg the way you, use them in
your programs.

Challenge: Suppase the one PSE (pause)
ctatement in the latest COUNT program is not
long enough for some. users, and you want to
qwe them more time to view each number. So you
decide to let the user choose one or tuwoe PSE’s,

as Sollows:

I§ the user kegs N a gggativg number as
the upper limit of the count, this will be
Yaken to mean that two PSE’s are desired.
Otherwise, i5 a Pos‘itive number is kezjecl in, onhj
one PSE 1o desired. (In either case, the count
will be dis’o!aged in positive numbers. |he
nego&ive sign jus% means: - two pavses, p}ease.“)

&OT THAT 2

Use a §laq to he\p you solve this one

-127-

cececoedceecoccecoceoecececcceceoeccocecceccecoccorcocecccoccccocococccccoccccoe

20009 0|

Solution: Here's one

Ol LBL"COUNT
02 CF 00

03 X<O7

Q4 SF 00

05 ABS

Qo STOQO

or @

08 LBL @l

09 PSE

1@ FS? 00

L\JQS:

| PSE

2 RCL Q0
I X=Y"?
4 STOP

5 RDN

6 |

7 +

8 GTO 0l
9END

SEE How THIS WoRks ¢

Then skip ahead to page 13l

OTHERWISE ... —>

-128-

@l LBL "count
@2 CF 00

Remember, when Yyou execute COUNT; the
value in the X*regisﬁ:er tells the HP-HI both hows |on3
to keep counting and whether to pause once or tuice
in each loop.

So, of ter the label, the first thing o do is o clear
the Flag we're qoing to use. Then we knows the §laq
was inttially clear; and i we §ind. that it is set later in
the program, we know it was set by the program-not
Pr"'ior‘ to runn'ing the program. This is cdled

Ko s3e]° o

03 X<~
Q4 Sk 00

Next, we test to see i the walue inthe X-register
is negative, using the conditional test X<@7? (Is the
value inthe X-register less than zero?) 1§ YES, do
line @4 and continue. I§ NO, gkip line @4 and

continue.

So, if the inputt value is negative (which means

-129-

cceooofoeccoccooecceccceoecccdcoecceccocecccceoceocoocecooocooeccccoocc000 0 e

0900000000292 029929299292090920000) ? “Z% 29 ‘? 2009290000 “’? | 2000 ’3

that two pauses are desired), then flag OY) qets set.

05 ABS
Qb STO. 00

Here, we store the absolute value of the input

number (this is the “positive version” of that number)
in r‘eg'zs{er @0. This will be the ending count
value = the upper limit.

From here, the rest of the program proceeds
as usual, except For one minor chonge. At line
99, we have our pause: @9 PSE, but look at
lines 10 and I1.

10 FS? 00
I PSE

Here's where we use our flag. The second pause
is executed on\3 if the answer o the Flog
conditional test is “YES.” This works out just
right because flag 00 was set if the input
was negative, and a negative input meant “tuo

pauses, plecLse.'n

=130~

_U_UOQQ0_._U00000@0;@1@@0@@0@@0@00@@@0@00000@@00000_

\m N
\w.\t \m,.brm
§' 3 § 3
s
% o 3
Lo 27
o v 8
g = ..hm
,mw n.“.,.m
P 0§ ¢
= O @ > K _
— O .l.mw.__._\\\v- o
3'= %_nmu. ;
3 . oo S SO ONEZTI
2 5 3’ ¢
2P0 &2
2 L v s g
W Y= LB
EREEL
S\m\m\t
3 _
mawt\M.@
S % ¢ 85 4
L 8% v g
Hm\wNo m.n..v
| -
g Zo L | |

P ‘1‘:4

Loo? COUNTERS

Now we're Soing to take a lock at a very convenient
pair of functions that cando two useful things at once.
. They can Provide a counter for program loops.
2. They can allows exiting from loops after a given
number of aycles.
The two functions are 195G and DSE which mean:
“Increment ard S_kip if Greater than,’

and
“Decrement and ‘S'klP % _E_Clqu S Toas

Heﬂ each demand an arsumen‘l: - a data rEB'Lsfer
number or stack resis’cer‘ letter — because theB
oPerate on the numnber contained in the named

register.

Heges WA HAPPENGS...

~182-

When the computer is told to ISG @2 (Sor e.xample))
it does the ‘f'ol\ouingz
. It looks ot the number in register @2,
Par’cicularlr:j at the integer portion (the portion
to the left of the decimal Po'm't) , and. the first
five digits of the fractional portion.

Let’s suppose the number in register QL is:
271.95712

2. It takes the digits inthe 4™ and 5™ decimal
places (here they are | and 2) and makes a. number
out of them: 12 (twelve).

3. It adds (Increments) this news number to the

i!ﬁ.%@! portion of the or'ts'ina\ number.

2(+12=39 so the new number is:

39.05712 in resis’cer Q2.

4, Finallnj, the HP-HI makes a little comparison. It
takes the integer portion (34) and compares it to the
number that appears in the §irst three decimal
places (@57 ‘}igtﬂ- seven). Then, if the 'Lnfeger‘

-133-

¢gcoccecoecococoeccecececececcececceccoccoceccceccceceeccccccococcoocoecococec

20009

portion is Greater, the line following 156 @2 would
be Skipped.
Thus the name: Increment and Skip i Greater than.
186
This all sounds pretty complicated, but let’s try
some more examples,and you can start thinking about:

it Jike this:

Questior: “ What number should T store in
register Q0 so that rePeateol executions of 15G @@
will he,lp me to count From 1@ to 27 bij 37"

Answer: 10.02703

Question: What number chould go there to
count from @ to 9 b\j I’s P

Angwer: 0.0090| or Q09| or
QD900 or .09
As you can see, because the most common way
of coun’cing 15 bﬁ I's, the increment is assumed *o
be | if the forth and §ifth decimal Places are zero.

-134-

Now, the ISG and DSE functions don't $orma

program loop all by themselves. Theg still need labels
ard GJIO’s and all that. For example, how would

you write a program loop Yo count from zero Yo
nine , b\j one's 7

@l LBLTTRYIT

02 .09

03 LBL Q|

@L’ ISG X (remember how to ke_., this in?)

05 GTO @

06 END

How about from @ to 100 b}j He?

@l LBL "LJORKS

02 .100H

03 STO 02

@4 LBL @I

05 ISG D2 (Nete:oa resers toa data register
Qo GTO @l (Note: @i resers toaLBL)

@7 END

ceCcoeecocoecccocecoecoococeccoOoeeccceeceo é_ C000C éﬁ,:&,:@; ¢ €L. © e é;@é € €

200 0

How about a loop that counts down From 200 to
29 b3 7P

@l LBLTOKIDOKI
Q2 200.202907
@3 LBL @5

@4 DSE X

05 GT0O 05

Q6 END

Now, these don’t pause to displag anH’chinS, but
they all work the same way. Let’s look at the last
case: | he number that's being decremented. is

200.02901.

The first time through the loop, DSE X subtracts
($rom 200 to ae‘t 193. Then it compares, this
193 0 29. Since 193 is not _E_ctual to (or less than)
29, no skipping takeg Plaoe. The GTO @5 s
performed, and. around we qo agoin.

Nows the number in the X-register is 193.02997.
So DSE X subtracts 7 from 193 1o Set 186. But
186 is still greater than 29,0 no skip. And here we
go again, arounrd and arourd the loop, sub%mc‘cing

-136~

and comPor-ing A

Fino“vj, the value in the X-register has been
reduced Yo 32.02907. This time, when DSE X
decrements this X-value by 7, we get:

25.92997.

Well, 25 is less than 29, so the skip ke
place. The GIO s skipped, the loop is exited , and
thate all she wrote.

Remember:

ISG means Lncrement (add) and, _Q_kip 3§ Greater
than.

DSE means Decrement (subtract) and Ski p 35
ﬁqual Yo or less than.

~1371-

000000000000 CCE0C0000C0O00O0C0000CC00C0CC0C000OEC

2000

Well, you knew it was coming, <o let s get on with

1it.... Go for broke!

Cha“enge: Rewrite the COUNT program just once
more (this is the last Yime — Ues, we Prom'ise)._

Rewrite it so that it uses 19G. The ending value
should still be specified in the X-register (neaatives
still mean an extra pause), but the amount of the
increment should be in the Yreqgister.

So i Yyou want to count to 39 blj 3's with tuwe

pauses, Jdou‘” kezd in 3[ENTER] 39|

cng) [xeqd “COUNT.”

Solution: (one of many po ssibilities)

Ol LBLTCOUNT
@2 CF 00

Q3 X<Q7?

Q4 SF 00

05 ABS

6 | E3

or /

Q8 XOY
@9 | ES

o /

| +

2 ST000
13 LBLOI
4 RCL QO

5 INT
o PSE
(FS? 00
8 PSE
9 ISG 00
20 GTOQ|
21 END

See how it works? Then exit, stage right (to page 1)
Want a closer look ? OK, next pooe. —>

-138..

Nows the first ive steps of the program are nothing
new, right?

@l LBL'COUNT
Q2 CF Q0

Q3 X<Q7?

04 SFOD

@5 ABS

We test $or a negative number and adjus% § \OBQ)@
accomlinglg. I we're counting to 34 b5 J's,0s stated
N the c\wo“enge, ﬂag @ Lould be set Sor o pauses.

Q6| E3
or /

Now, instead of s’torirg the eno\ing value, we are
qoing to use it to create the index number $or con)crol\'mﬂ
the 15G loop. As you recall, the enrding value inthe
16G loop 15 the irst 3&'15&% Yo the righet or the decimal
point.

So we divide the given erding value, 39 | btj [0,11)
(e, by X1 or | E3, all the same thing). This moves
the 39 over to those 3 decimd ploces just tothe r"tgh%
of the decimal ot 3% [ES=.02 .

-139-

Ce0000000000000000000000000000000000CC0C0CCCOC

©000

08 XOY
9 | ES
10 /

Next, we e.xc_ho.nse the contents of the X and
Y- reqisters so that we can horse around a bit with
the increment wvalue. Since the increment value in
an ISG index number is aways found at the
fourth and §ifth decimal Places, we have 1 divide
bg 100,00 to move it there. Qur examp]e ncrement
was 3. So, 3+ 1E5=,00003.

|+

12 STO 00

So now we sum the contents of the X and Y- requsters,

039 +.00003=0.03923

And, THAT looks like an index number thot will
help us courtt from @ to 39 by 3's. So we store
1t in reqister 09, readg to use as our counter:

Nows, there's only one page left in this section,and
we're doing the best we can to keep oW $rom ge&ing

bored . While we'?e on the subiect o boredom, have uow

-140~

ever tried hand\e’c’terlng an entire book like thig™?
Boy, the things Peop\e will do for money!

So, where were we?

13 LBL @ 16 PSE
14 RCL 0@ It FS? 00
15 INT 18 PSE

Here,we start the \oop with a label. Then,we
recall the current counter value, lop ofF the
fractional Por'}:ion with the INT Sunction, and
do the usual charade with the PSE's.

19 195G 09
20 GTO 0|
2l END

And here’s the Pagy??: That 1SG Q0 wiill
increment our counter eoch time 'Ehr'ough , test 1t
and decide (correctly,or course) when to skip the
GTO @I, thus ENDing the count.

-I41-

ee¢ecocccecoccoocoooecocoocococcocoococoococcoccocooococcccccccco0c0eo @

s\

.

b AR - \
I"I“'&‘““' =,
Il B ?
“ F-:-‘?‘.{!'o‘oi;’-fm ,’4 ”
]
[R g P

5

==

“ >

iy -

KR LN _-;:" -t e
A

< }qs-

¢coccccoeccocooccocoocccoocccceccceccceccocoroeecocccerococoroccrcoooceocccrpcecocccceece € c

&

009|

In the “naked program” section, you took a series
of ke5strokes and turned them into a program. Nouw,
let’s see how to make programe more “$riendly; via
the ALPHA mode.

The HP-4I gives you the co.pabili’cg to make
programs user-Friend\S with a little “Q\P Srom ALPHA
strings and built-in functions suchas PROMPT, AVIEW,
and. ARCL. Ue'll qo into gory detail about these
built-in functions in a little bit. Now, let's discuss
ALPHA strings.

ALPHA strings are messages, or; in some cases,
just a collection or str-ms o characters*THIS
IS AN ALPHA STRING TIME=7" TIME=2PM:
‘BLARNEY~ are all ALPHA strings. You can use them
in your programs to prompt for input, label your
output, or even to tell you what's oping on N the
program while it's running.

In program mode, your HP-41 will always
displa5 ALPHA strings with a little T Preceding
them. The only Plas:e this little 7 (text mark) will

-|44-

appear is preceding ALPHA strings and. global ALPHA
labels. Ke.BinS in an ALPHA etring as a program line
is just like keying ALPHA data into the ALPHA-
reqister: press (ALPHA, key the ALPHA string, then
press |ALPHA] again, 5 you have trouble, review
pages 39 to 49.

In the “naked program’ section, you developed a

program to solve the equation:

OUTPUT= 32+ (C” INAT)(INPUT)

The program to solve 1t was this:

@I LBLTFIRST Q6 % |l %
X7 2 07 44 12 32
Q3LASTX 08/ 3 +
04 SQRT A7 H END
05 9 10 Y7X

To run the program, you key in a value of INPUT
(Jet’s use INPUT= Ll), then you press |XEQ ALPHA
FIRST [ALPHA], and out pops the value for QUTPUT
(32.03 if your display is set to FLX 2).

~ 145~

cecoooCceccocoooococcoecooocecccecerecocooocccecccoeocccooccccoccoococceeco00000o0ce

©900|

5imp|e enough to remember, r"igh'i:? But, what if
you shelved the program for a while and. didn’t
use it ? Then six months down the road, you needed
to use it agpin, but you Forget hous it worked.. Thats
where ALPHA strings step in. They make the
program help Yyou remember how to use it.

Cho.“enge: let's put a few ALPHA strings into
the program labeled. FIRST, Insert afeus program
lines so that the program will prompt for an input
by displaying “INPUT="7" and label the output with
‘OUTPUT = nn.nnn” where the n's represent the

numerical answer.

Solution:

@l LBLTFIRST @6 SQRT
Q2L TINPUT=? @7 9
@3 PROMPT @8 x
Q4 X72 a9 4
@5 LASTX 1@ /

6 TOUTPUT=
7 FIX3

8 ARCL X

9 AVIEW
20END

<~
~
X

O & W~ —
+ W X
P

I§ you know all about this, turn to page [H9,

“146-

GoRY DETAILS

Okag, it’s tha timBe'.oMPT

PROMPT is used in a program to stop the proomam
and displ ay whatever is in the ALPHA-reg'zs’cer at
the time. In the program FIRST, it will stop and
disP\QB “INPUT=7. That’s your cue to key in the
value Sor INPUT (’crg H). To have the program
start running again, press R/Sl. The program
Wil then use the value A just exad]g like it did.
before you put in the prompt. PROMPT does not
change the stack or the actual calculation of the
program. [t just halts the program for some

information. 1The HP-4] qoes on its merry way as

S0ON as UOU Press lﬁ CL

ARCL recalls from a register the contents of
that register and joins it to the end of whatever
S OJreac:I}j in the ALPHA- register, You can spec:i?\:s
either a numbered res'zs%er or a stack reqister. (IS

e i T i

00

You have trouble |<e5irg in ARCL X or ARCL.Z | turn
to page 38.) In the program FIRST, we used
ARCL X to odd the contents of the X-register
the contents of the ALPHA-reqister, which was

QUTPUT=.
MWIEW

AVIEW displaﬂs the contents of the ALPHA-register
Then, inthe program FIRST, the END stops the
program. So, ” the final displa}j ($5or INPUT=4) looks
like this: OUTPUT=32.03I"

Now, ansj’cime you want to run the program
FIRST, all you need to do is load it into your HP-4,
(if it's not already in there) and. prese [XEQ (ALPHA] F
IRST [ALPHA], The program will tell you what it
needs ; then it wsill label and cﬁSp\ag the ansuer
for you.

Hows much friendlier can upu ogt?

-j48-

GORY DPETAILS Ix

Ln order 1o be anexpert with ALPHA mode onthe
HP-41, you have o knowa few more thinge. You have
0 know when to use CLA and when it isn't necessary
to use CLA. You have to know how to add things %o
the ALPHA-regis’cer without des%rogin_g what's in
there a)reaol3. You have to know how o
Programma‘}:icalla turn ALPHA mode on and of5. And
you have to know hows to store and retrieve par% or
all of the ALPHA-register-

If you a]read5 know all theee ’ch'mgs, then Sk'ip
ahead o page 154.

CLY,ARCL, Avp I

You know that when you're in RUN mode and you
press the [APHA] key, then press a letter key, whatever
was inthe ALPHA- register prior to pressing the
letter key is cleared away. So, whenever you just
click imto ALPHA mode, it isnt necessary to clear
the contents of the ALP HA-register before you start

-149-

@CcCCO0CCoCcOCOCOoCCECOCOCCeCPOCECEOCOCPOCPECEOCPOCOCPOPPOCPOCPOPPOEOEQOCOCPOCODCOCCROCCORODCOCCROCCODOECE

290000000000000009000000000000000000000000000

-ESPing. It's cleared au*bomq%ica”g.

The same 1s true n programs. That i, unlese
you make an effort to preserve the contents of
the ALPHA-register, a. program line that is an
ALPHA string will completely replace what's in the
ALPHA-register. So it’s not necessary to use CLA
before an ALPHA string.

BuT:

I§ you want to preserve the contents of the
ALPHA-register and add. a character or string o
characters o those con)cen)cs, then you have Yo use the
APPEND character (F) as the §irst character of the.
add ition.

The ARCL function s a kind of “aPPending“ function.
The Pmsramline: ARCL 14 s like saying “take the contents
of register and append. it to the contents of ALPHA.”
ARCL gluays odds onto whatever is in the ALPHA-
regist&r at the time. So, i§ Yo want the ALPHA-
register clear before You ARCL some‘ch'ing > Yo hawe
w use CLA.

-150-

let’s clear the ?os with some chal lenaes.

Challenﬂe: Write a
inpu‘c with the messoae

program that will Pr‘ompf Sor an
*AMOUNT ?”, then o\'\splajj

that input in the ‘Fo\lowing format: $amourt CREDIT,

5o i?gou input a 5, ituill disp\o.B $5.00 CREDIT.

And if you ir\Pu’[a ll,.ﬁ' u’i\ldisplaﬂ $12.00 CREDIT.

Solution:
@| LBLTPR Q6 ARCL X
@2 TAMOUNT? @7 "+ CREDIT
@3 PROMPT 08 AVIEW
04 7% @9 END
05 FIX 2

Line @2 replaces whatever is in the ALPHA- register
with the ALPHA s’cr'mg “AMOUNT ?”, Line @3 halts
the program and. disP\qtls the contents of the ALPHA-

register.

After you keg in the amount (o the X- register

of course) and press |

R/S), line @QH replaces the

s’cr'ing“AMOUNT?”wi’ch the strinauﬁ Lines @5 and

-I81-

¢ecccecoceccecececeeacoceecececcceccccocecceecoecococcecocccaca

©0000000000000000000000000000000000003000000

i 0 e SRR SR AN Rk L LR B R e S, RS SR L M e ol ; [Prackto, Ads AN I s B oneesse el (L |
' — | ettt

Q@6 odd the contents of the X-reqister to the
ALPHA-register in the FIX 2 format. Line @7
adds a_space and. the Lord “CREDIT to the
ALPHA-reSister‘ (the APPEND character is found
on Yhe shifted K key in ALPHA mode). And

line @8 disp|a5s the message.

}I” 7)) mmu)jl')n

mﬁ "‘)‘}wﬁf) »))))

/ D720 7
TS » 9y /
/ LR
/. == -
7 LB =
7 A ' ‘/’ o/ 7 s i .-/ =
) i AN #7047 e
ﬂ TP Gt 2z 2\ L
: }'{-‘5 AT PRI el o’ 7 %%
% 7/%% Z
\| P .

Cho.llenge. Change the program PR so that if
You inpuk a 5 at the promp"t AMOUNT ?, , it
will dlSP\QH 5.0@ FEET.

Solution:
LWURONG RIGHT
ol LBLTPR Q! LBL PR
@2 TAMOUNT ? @2 TAMOUNT ?
@3 PROMPT @3 PROMPT
OH FIX 2 Q4 FLX 2
05 ARCL X @5 CLA
% "+ FEET 06 ARCL X
@07 AVIEW Q7 '+ FEET
@8 END 08 AVIEW

@9 END

The point here is that, because ARCL X adds
the contents of the X-register o whatever is
in the ALPHA-register, o CLA needs to be
inserted before the ARCL X o get the right
dlsp\wj In the prev:.ous version, line @4 (™$)
replaced the sirmg 'AMOUNT? that was alreacl_xj in
the ALPHA- -reguster. So you didn’t need a. CLA.

-153-

©ecococCocoocCcccCccCcoOococcocococcocCcccoococodococcccccoocdoceccccecccoococconco

3‘333333)33’330‘}‘)33333?3993333)333’333’333‘33“3)33

ASTO avp BSHF

. ———

ASTO stores the §irst six characters in the
ALPHA-register into a specified register. ASHF
shifts everS’ching in the ALPHA- regisi:er‘ SX spaces
to the JeSt (it lops of¥ the first sixcharacters).

Challenge: Writea program that §ills the ALPHA-
register with the letters A through X (24 letters),
then stores these letters inregistere @l to 04,
then Promp’cs the user for an input (INPUT= ?”),
the stores the square-roct of that input in reqister
DD, then restores the letters A throus\n X to
the ALPHA-register. (This i onJI:lqdriH.)

Solution:
O LBLTFUTILE

08 ASTO 03

@2 "ABCDEFGHLJKLMNO @9 ASHF

03 TFPQRSTUVWX
Q4 ASTO ol

05 ASHF

Qo ASTO 02

@7 ASHF

-154~

@ ASTO @4
| TINPUT=?
2 PROMPT

3 SGRT

|4 STO 00

—

5 ARCL @l 8 ARCL QH
o ARCL 02 19 AVIEW
7 ARCL @3 20 END

6or 112 MEXT PAGE—>
NEEP SOMNE ExPLAMATION?

The first 10 lines store the letters A ’c}iroush X in

data registers 0l thmu.gh QH (six letters per register).

Don’t ?orge’c the APPEND character (F) in line @3.
Lines through 14 prompt for an input and ctore

its square- root in regis?:er 0Q. And the restof the
program brings the letters A through X back into the
ALPHA-reSis%er* and disPlcujS them.

Bonus Question: Uh5 don’t we need a CLA
between lines 14 and 157

Uy} W FlP'OBJlD GJI_LR?!UD Mo sal{snd Puo 1335 }B’a.a
YHATY 342 Siis Rpaeidwes oy | uersiSau-y 1y
U3 O1UT Pyonaiq 3q | 1M SuRRILIOY Jmog -hyuaryy £0

|0303 © 1SI9333] 9 PPO | M ST1DYY h N0 0 YI0S Mouy 3
aemmaq V1D © pesu :gluop oM :Jemsuy snuog

~1856-

0009|

AON A OFF

AON ina program will turn on ALPHA mode.
AOFF turns it off.

I+ a program stops with ALPHA-mode on, then
the display “window” will be sitting over the ALPHA-
reqister rather than the X-requster. So, as long as
this window is clear you will see the contents of the
ALPHA- register.

AON and ACFF, a\ong with STOP are handg
functions when prompting Sor alphanumeric input.
With these functions, for example, a program can

ask you a yes-or-no cluestion,ard You can respond

with Y or N for an answer.

Jfwxd:xorl
T e / =% 7 7
/ (k] » 777 //// 7 /' /?';
' ’/ ///7
,_

!/l/m,,, (ot NN a7 7 /
/ m@’* ‘Wm’é%

ATEW AMp FLAG 21

In programs FIRST and FUTILE (poges 464 154),
when the computer encountered the AVIEW
instruction, 1t désp|a3€d the contents of the
ALPHA-ro_Sis%er‘ and s@g@d. Ac‘hua“g, in both.
programs, there wasn't much choice, since AVIEW
was the last executable statement. But suppose

you had AVIEW's scattered ?:Hroucj\out the prtamm?
Lbould. it stop dt every AVIEW encountered?
(QUESTIONS, QUESTIONS)

In a program, when an AVIEW is encountered,
the status of flag 2| determines whether the
program halts or continues. [f ﬂag 2l is set, AVIEW
will cause the running program to s’top and. disp\o.5
what's in the ALPHA-register: Then [RZS] has to be
Pressed to continue the program. I¥ ‘HOLS 2l is clear,
AVIEW will cause the contents of the ALPHA"rtSis{er
to be displagecl while program execution continues,

1 you have a Prin’ter, Sou,'ll want to S’tuc\g

-157-

cceccoocoecccoocccdococcoecooeccoocecorvooovceccoeoecccecooeocoococcccocococcoo e

more abouk ﬂqg 2l ﬂag 55, and AVIEW. But since
we are dealing only with the computer itsel§ (no
extra attachments), the above explanation is all
we can o¥Ser.
When ?\aﬂ 2] is set, AVIEW acts like PROMPT,
Heavy seas ™ Calm them with this example:

&l LBL"CALM 08 TONE 2
02 "THIS IS AVERY 09 TONE @

@3 "+ SHORT ONE 0 CLD
4 AVIEW | 25
@5 TONE 9 2 SQGRT
0o TONE 9 3 END
7 TONE 5

With program CALM keyed in to your pP=4y],
set §l°‘3 21 (SF 2[), clear the X-register; and run
the program (KEQ)“CALM"). You should see the
displa\j: THIS IS AVERY SHORT ONE. But
what hoppened to the song? And where is the 5
that should be in the display when the program
stops 7

Well, because 'ﬂasll was set , the HP-4

-158

stopped when it encountered the AVIEW instruction
ot line Q4. Put yowr HP-4l into program mode,
ard. Hou.‘\\ see that it's waiting pa’cienH)j at
line @5.

Nous, with ?lag 2| cleared (CF 21), run CALM.
You'll cee the ALPHA c[isp]aﬂ-. THIS IS AVERY
SHORT ONE. T hen Hou’H hear the tune, and then
the program will finish with a 5 in the X-register:

To borrow a roble phrase and twist it or our
purposes: To set or not to set §lag 2]? That is
the question.

You can write programs so that their actions
alepenci on the status of -@\og 2l.

Incidentally, the VIEW function behaves
the came as AVIEW in its dependence on ﬂo.g 2l.

ceo0oecocoocooccococoedcococdcccococcecococcccocoococococcoooeecccooeoca

Ngte_s
160

INDIBECT
ADDRESSING-

; W
% it P
W
?”
g

/ . ,/ AU,

7 il)7 iz

200909

So, what is all this stuf¥ - “indirect addressing?”
What's wrong with direct, addressirg (whatever
that is)?

Well, here’s how it works:

Picture a baghful young man who is going on a
Hind date. Of course, he called a da’c'ing service
that caters especia|!5t0 sh5 people. ThereSore, he
was not given the address of the Young lng , because
this is much too personal to divulge to just anyone.
Instead, he was told the address of her brothers
home. There (1% he meets with the brother's
approva! , of course) he would be given her actual
address.

The dcd:ing service hag told him md_).[eg)d_!’ how
to get to his date's home: He was told what
address to g to in order to obtain her address.

“leZ-

Now, at the risk of remouing a bit of romance,
the instruction from the da’dng service is like a
RCL IND instruction — like RCL IND @@, for
example.

The brother’s oddress is @0.(He “lives” in
register @Q.) The number in register QD is the
address of the young \odg.

Question: But houws do you keg in RCLIND @I ?

Answer: RC] [Fi] Q]

Whenever you want to specigg an indirect

address, press thel’

V777777777 7777777777

L 7 77

Z &

77777 7 7

pzrrrrrer77777

eococo0cCoooooccccoooococcoccocoooocccecccocccooccceccocoooocccccoco0o0oo000c00co0co0eo

©000)

Chanense: Set up your HP-4| so that the value
in the X-register is 29.7 and the value in register
Ol is 3. Now, if you execute the function:

STOIND Q! |, what hoppens?

Answer: The computer will store the number

29.7 into resis’ter Q3.

EAS(? 0K —>

A little shakg?(_rha’c 's OK - blind dates tend
to be a bit shaky at first.)

Here's what happens:

STO IND Ql says: “STORE the value inthe
X-register into the register whose address is
indicated by the contents of register @l.”

So, the HP-Al takes a copy of the 29.7 thats
sitting in the X- register and goes to look at
register Ql. There it finds the number 3. Then
it knows where o put the 29.7-into register @3.

- 164~

Let’s trg another-...

Chal |er18e: Starting with the results $rom
the first try and using indirect ocldressing

onl Y, store the number 29.7 into register 00,

Solution: @
RCL IND @]
STOINDY

NO ?30'31:5&6 7
PROBLEMS 2 WATCH -

First, we keHeci a @ into the X- register.

Then we performed RCL IND @l which places
29.7 into the X-register (1 iﬁ:ing the @ into the
Y-register). Here, the indirect o.dciressing works
exactly as it did in the first example ~ only it does
a. RCL instead of a STO.

Then comes STOIND Y, A copy of the contents
of the X- register is stored into the register indicated, bﬂ the
Y-regisber: That indicated reqister is Q0.

=15~

2000|

CETTINVG THE Hhe OF It ¢

Also, keepin mind. that indirect addressir\g works
Sor other functions besides STO and RCL.

In fact, it works for all the functions listed on
pages |97 and 198 of the Ouwner’s Handbook..

For example, Suppose 4ou have a program with

26 sections (each with a numeric label and a RTN
statement) - one for each letter of the alphabet.
Each section is supposed to do some calculation
about how much space and. ink each letter requires
on a certain type of printer. The program might look.

ke this: @l LBLTLETTERS
@ LBL 0
RTN
[BL @2
RTN
LBL 03

-leb~

[BL 25
RTN
[BL 26
END

Each of these sections will do a differert
caleulation, but for each input (each letter), there's

onlg one section that aPplies.

Question: What's an easy way to tell the HP-4|
to choose the proper section for a given letter ?

Answer: K95 in the number of the letter you want

(1 Sor A, 2 for B, ..., 26 $or Z) and then use:
XEQ IND X.

UNDERSTAND 2 —>

No? Watch what happens:

Let's sayyou want to caleulate oll this good stuft
Sor the letter K.

You would l(Elj in the number |l (K is the eleventh
letter, righ’c?),

Now, when you use XEQ IND X this tells the HR4
to “execute the section whose label is indicated. in
the X~—re8'zs’cer. " Tn the X- register, it §inds the number
I, s0 it executes the section with LBL |l.

167~

eecoéccoceoccooceecccoocecoccocoeccecececececcececcccecccccoccccocccoococvoocoo e

0200/

Remember that the numeric labels in the Jagt
example are local labels, so the program pointer would

have to be positioneol to the program LETTERS before
the HP-4l could §ind them.

//,// 7 A
oL

:j 77

// ;/f //
7 ﬁ_w /

/' e
P i ﬁ'f{{/{(ﬂ /7
Z ///W/ﬁ |
/ / // 7

B s
e ”// " /; 77
_ 747
(-~
O // s
AL //(f 177 ; 4
é 77
/R »
: —

Also, you can execute ALPHA labels indirectly
b3 ASTO rmS the characters of the label in a data
or stack register and then using XEQ IND, with
that register as the argument. The ALPHA labels

here are limited to a maximum of six charactere

because that's all Lou can store in a register-
(Ungor’cuna’cdg, there is no XEQ IND ALPHA

function, so you must store the label ina register first.)

-168-

As a good firalexample, here's a ...

Chal \enge: LUrite a short program (10 steps or
less) that stores the integers @ through 19 in
r‘egis’ters Q@ through 19, r‘espec:’cive.lﬂ.

Solution: Here's one way o do it:

Ol LBL'FILL @ STO IND X
02 .0 19 07 RDN

@3 LBL 06 08 156G X

@4 ENTER 09 GTO @6
05 INT |@ END

If you have the SIZE set below 020 data
regisfers, 5ou’|| Se‘t a NONEXISTENT if you run this
program, because you will not have enough data
registers. Change line @2 or change the SIZE and it
should work.

I§ you were able Yo write this program without
\ooking at the solution, qo to page |13,

If it was a struggle, 90 to the next page —

-169-

céeccecoecocoocceccoceccocoeecoocccoecocceccocccococcccoccooccocceecccopcocecec

0099|

Ol LBLFILL
2 .019

First, after the \abel, we put the number.@19
into the X-register. This is going tobe the index
number for the ISG loop, and it's also going to
act as an index for indirect storage. (Remember;
D19 is the same as 0.0 19 and, as an I1SG index,
it also acts the same as @.019Q1)

@3 LBL Q6
Now we put in a local label at the head of the
repeating loop. Notice that everytime the label is

reached, the index number must be in the X-res'tsfer.

Q4 ENTER
Inside the loop, the firet ’d’\ing todo is to make a
copy of the index number inthe Y-register.

@5 INT
Next, we extract the integer Por’cion of the index
number in the X-register. For example, if that number

-170~-

.........

is 0.019, the INT function produces the number @
in the X-recyster.

0o STO IND X
Here's the e.\e_gan{ part: STO IND X says “store
a. copy of the value in the X-register into the register-
indicated bg the X—reg'is’ter. " 1§ that number is @
then @ gets stored in register @0. I it's 19, it
gets stored in register [4. So the very number
you wartt to store is also the one that tells the

ComPu’(er where to store it!

Bonus Question: Lhat would hqppen i5 we used.
STOINDY at line @b P

€10°G =(TTb'G)=(G) =G 5S21ppr 241put v sy
(FoyR P “uossAN ANyesod Y3 puv) oo ’uonJod

sebout s hjuo suspisuos buissauppo 3esput

g 15t Ay Ut 5 Foym Jo Uoigtod Jsbaiwy
a2 $0 fidon v suroue saysibaa-y By | bunp swos ayz
fipooxe op |[3S p{om wedboud 8y | :1amsuy Snuog

-171-

©C000¢C

0900

Now to wrap things up:
@7 RDN .
We bring the unmolested version of the index
back down from the Y-register to the X-register:

28 155G X
29 GT0 Q6
1@ END

Now we increment this index and,as You
remember from the “Decisiormaking in Programs’
section, the new in’ceger portion of the index is
compared o the Tirst three digits of the fractional
por tion., I the integer Porjcion is greater, then
GTO @6 is skipped, and we're done. Buz, if the
integer portion is less, then there's no skipping
and. GTO Qo sends the program poirtter back to
LBL @6) with the new}g—'mcr—emen’tei ndex siH‘ing
in the X—-regis’cer‘.

)

~172~

ST o <4
FREECRS

e
o

?4“-

=113-

ecceoecccocoocdcoecoeodceccocoooccoceocccooocccrorococooocccrocrooccoooocvoeov0oc

909000000200 0009000290092000000920000000P20000000009

At this point in the easy programming course,
you know the following:

l. You know how to execute any function given the
name of that function. You are no longer confused,
by the “name” of a function and. the “argument’
of a function (page 45).

L. You know how to picture in your mind the
memory structure (data registers, program
memory, stack registere, disp\a\j, ALPHA- register)
of the HP-4] (page 8).

3. You know how the stack works (Paaes 58-80).

4. You know the difference between keying ALPHA
data into the ALPHA- register and keying a
function name into the dis]:ﬂag. Both of these
things are done in ALPHA mode , but ’cheH are
completely different (pages 25, 56, I44-145).

3. You knous that when we're discussing programming
and we use quote marks ina keystroke listing,
those quote marks mean: press the [ALPHA key.

-174-

6. You know when your computer is in RUNmode,
and. when it’s in program mode. You know how
to Se’c from one mode to the other (po.ge 88).

7. You know (with a little con‘tempicd:ion) how to
go from an equation to a sequence of l«agstms
to a simPle , linear (one time 'through) program.
You know that you can use a program like this
to run great hordes of data through an equation
by simply entering the datalas input) and

pressing the [R8] key (Page 93).

8. You knousabout ALPHA prompts and AVIEW
and using ALPHA data ina program (Poges I47-159).
9. You know that certain functions are " yes or no’
questions (like X=@7?) and that if the answer to
these questions is no, the followsing line in the

program will not be executed (Page_ 121).
10. You know that you canuse these conditional
test functions as a basis for making decisions

in a program (Pages 122 -125).

-175-

ecoco0eCccCcoocccoccCccCcocccececdccecoceecccooreccceocecoccocovececcoccocccece

200000000000090000000000000000000000000000009

[l. You knows about program bro.nc_hing. You. know
when to use a GTO statement and. when to

use an XEQ statement. You know when to use

o 3\oba| label and when Yo use a local label

(pages 102t 116).

12. You know whot a “'oop" is in a program and. hous

t0 concii’dona”a branch out of a loop (pages 135 vo l4]),

13, You know how to move around. in program memory.
You. know how to use the CAT | function to
position the program pointer to any Slobal labe)

or END in program memory. You know what RTN
does in RUN mode. You know how to use the

GTO @ function and you know what GTO L[

does (Pases 33,1@6, 97-100).
14, You have a Sood ?eel'mg for what § \ags are and.

how o use them (page 126 to I31).
15. Youw know how to turn the HP-4| off without

pressing the

ON

REa] “ OFF)

keg (Hint: |

~17e~

[6. You know that nowhere inthe balconﬂ scene
does Juliet wonder uwhere Romeois (Actll, sceneii)

LJell, anyway, you know all these i:h'inss Plus
a few others. So it’s time to delve into the
purpose of this book ... program o\evelopmen?:
(You didn’t know you were still reading the
introduction, did Bou?).

Qur first cha\lenge will be a ?a&rlg common
application. Checkbook balancing is somethinﬂ
that most of us have had experience with (ot
least the attempt is familiar). So toqether; we
can develop a fairly extensive checkbook- balancing

program to incor porate many aspects of HP-H|

©e00C0O0CO0CCO0OO0OCOCOCOCCOOOCOCOCOCOCOCOCOOCOCCOCOCCRCROCCCOCCOCCRCREOCCCOCCOCOCEGE

002000 9

Cha”ense: There are three mo:'jor steps to
balancing your checkbook.. LJrite down these
three steps.

Solution:
. Find the balance from the last time you,
balanced your checkbook..
2. Add all the deposits and. interest since that

time. Record the balance requ’cing Crom each
addition.

3. Subtract al| checks and charges. Record the
balance §rom each check or charge.

After performing the above three steps, your
checkbook wsill be balanced. Basically, what we've

done here is defined the process by which we
balance our checkbooks, in terme that are easy
for us to understand.

You could take this list of three checkbook.
balancing steps, hand it to one of your friends,
and, they could follow it with no problem.

-'78—

In a sense, our checkbook—balancing program
is complete. We understand the problem, and
with these three steps, Lie ve developeci a

solution, or program to handle the problem
WELL, THAT WAS EASY !

Question: What would happen if you were to

exp\o&n a recipe to a smallchild (Hto (years o\d)
in the following manner?

“Get a cup of flour, cup shor i:en'mg,
“2 teaspoon salt, a tab)espcon of sugar: Then
cut the shortening into a mixture of the flour
salt, and sugar; until the chunks are about the
size of peas. Next, add a couple tablespoorls of

cold water and blend with a fork (not too much).

Shape the d.ou.gh into a ball, and roll it out and
VOILA ! Pie crust (w).”

Answer: T he child would be dumb$ounded.

o l"q—

ece0c00CCOCCCOCCO ceoecoooececoeoocoooccooooocCcoCcooo0c0o0cC0OOOOCCOO

0008

Never theless, this isthe way we think. As we
d.eve.lop and gain experience in life, many of the
details of daﬂ—-to-dag tasks become automatic -
theaj r*e%uir‘e no consclous thousht. Driving a car s
a prime example of details becoming automatic
(especio.113 a car witha standard transmission).

It takes patience and. effort to explain
something to asmall child. We actual lg have to
slow down gur thinking process and, anal5ze each
step.

1% Yyou were explainins our pie crust recipe to
a small child, the §irst step of the recipe would,
Probablﬂ translate into someihing like this:
“Now listen, here is a one-cup measure (note
the visual aid.). Go over to the flour can and
scoop out one cup of flour. You'll have to use
this knife to level of§ the top so you have
exactla one cup of flour.” So you. see, it takes
more words and more effort to explain a

process to a small child, because a. child’s
-180-

thinking process is less cemplex than ours.

The “thinking process” of the HP-A (or of any
computer) is far less comp]ex than even that of
a small child. In order to program the HP-4)
to do atask , we first have to e,xpand the
steps by which we do ’things into many more
steps, each much simpler. In other words, we
have to translate our complex thinking process
into simple terms that the HP-Al understands.

-181-

eeoecececoeccececoeceecececcecoeocecoccceccoecccocccoccocccoccccceeccccoococeec

2000

Challenge: Rewrite the three Checkbook-balo.ncins
steps in terms that are closer to the way the HP-4|
“thinks.”

Solution:

l. Prompt for initial balance

2. Store imitial balance in a numbered, reqister.

3. Frompt for the input of either o check, charae,
deposi%:, or interest.

4. If the input is a check or charse , subtract it
from the balance.

5. If the input is a.deposit or interest, add it to
the balance.

6. D'zsplag the new balance.
. Go back to step 3.

Your solution to this %uestion may vary
considerablg from ours. Here is where you start to
deve|oP your own prosramming techni%ue.
Everyone will approach a solution inaslig\n’clg

differernt manner. However, §or this first program,
182~

it may be easiest for you to follow Fairlxjclose(g to
our development techn'chLLe..

You can see that what was three general steps
has evolved. into seven more detailed steps. Each
of these seven steps carries a simpler concept than
each of the original three. And each of these

seven steps “sounds closer” to the langua.se of

the HP-4I.

A

;f7 . :%:— /I’., ’._':%d‘ I,“.'-'Q
10 W/ | &

-183-

i@-CCOOOGO’OC«OGGGOGOGGOGCGGOOOGGOCC'QOOC‘C&GOOGCCO

P0000000000000000000000000000000900000000090 0|

Cha”enge.: EcLu.iP]oed with the Previoue seven
steps, cieuelop an HP-4| program to balance

your checkbook.,
Solution:

@! |BL"CHKBK || CHS
@2 FIX 2 12 LBL D
@3 SF 27 13ST+ 00
o4 "INITIAL BAL? 47BAL=9%
@5 PROMPT I5 ARCL 00
06 STO 00 16 PROMPT
Q7 LBL QI 17 GTO 0)
08 TAMNT?C,D,E I8LBL E
@9 PROMPT 19RCL 00
10 LBL C 20CF 27

21 END
I§ this make sense toyou, head to page 191.

I§ Hou’re even sligh’clg confused, that'’s gooci.
A completely unexplained list of HP-4l code
should be confusing

What follows is an explanation of the thought
process that is req)uired to go from the seven

-lsq-

steps in Enslish on page 182 to the 2| lines of HP-4|
code that appear on page. |84,

First, don’t expect to start at the top of the
list. The order of the steps will reflect the order
that i:hings are done in the Com}olei:ec[program.
But that doesn’t mean youre going to start
developins the program at step ¥

The first t}{ms to do is to search thmuﬂh the
list Sor the s’ceps that are most sisrﬁ‘;icant to the
program. Basical ,H , What Hou’re Iook'mg for are the
steps that look like ’chea will require the most work.
You will develop these steps first and then clesign the
rest of the program around them.

In our list of seven s%:efas, steps Hond 5 are the
oan steps that will require some type of calculation
and some ’c\jpe of decisiomnakingz

H If the input 15 o check or charge, subtract it
from the balance.

5. If the input is adef:osi% or interest , add. it to
the balance.

-185-

eccoecoceccoccoecccOcecccooocecocccccocooocccccccccccoccocco @

200909

Looking at steps “4 and.b, You cansee that the
HP-4| will have to treat an inpm_ in one of two ways,
o\epenoling on whether it is a check or a daposii.
Now, it boils down to this: one way or ancther, you
are goina to have to tell the HP-4) whether You
are inputting a check or a deposit.

There are many ways to tell this to the HP-4I.
We feel the easiest way is to have one key to press
for a check or c,harBe and another key §or a deposit
or interest.

LJe notice (b!j observing some of the programs in

the Standard Applications book) that it is
possib]e, 55 us'mg local-ALPHA labels and USER

mode, to design our program so that one keg

(say the [€ key) con mean a check or charge, and

another kea (the [0 keB) can mean a dp.posit or

interest.
So, when the pProgram 15 complete , We want to

be able to keH in an amount, press the €] key,
and have the HP-4| treat that amount like a check

-!86-

(that is, subtract that amount from our balance)
Likewise, we want to be able to keH In an amount,

press the [D key, and. have the HP-4l treat that
amount like a deposit.

The only difference between the woy a check
is treated and the way a. deposit is treated is that
a check is subtracted. from the \:x:Jo.m:eJ while a
deposit is added. to the balance. Other than that,
the program should treat a check the same as a
deposit.

Now everuone remembers that adciing the
negative o§ a number to someihing 1$ just like
subtmcting that number. That is,

a-b=a+(b)=(-b)+a=-b+a .

So, when we press the IC keS, if the HP-4|
just puts a negative sign on the amount we keyed
in, then treats it like a deposit, that chould do
the trick !

-‘81-

ececoecocococcecococcecdeccccoceeccccceoecocccococeccoccocoococccccoe

2000000000000000000000000002000000000000900000

LJith all this in mind,, we can sketch out o routine
to handle steps A and 5 of our list:

LBL C
CHS
LBL D

RCL BALANCE
+

STO NEW BALANCE
Of course, there are no “"RCL BALANCE " or
*STO NEW BALANCE” functions on the HP-4I.

But we havent designated a storOSe register
for keeping the balance yet. By using this method,
we can organize our ’chough’cs in a language that
is close to what the HP-H| uses but is still easi15
understood bg us.

The six lines above will qust about take care of
steps 4 and 5 of our list. Let’s put those steps
on the back burner for a second,and look at the others.

—_—

-188-

Cha”enge: Translate step | (Pr‘omlo’c for initial
balance) into HP-4l’eze.

Solution: "INITIAL BAL?
PROMPT
That was easy, The Jine TINITIAL BAL? will
place those ALPHA characters into the ALPHA-
register. [hen, as Yyou krow, PROMPT will halt

program execution after vCiHinS the olisplag with

the message in the ALPHA-register.

Siep 2 (store initial balance) is also an easy one
to translate. It just requires that you Pick Q
number (we chose @@) and use that register. So
step 2 becomes: STO Q.

S’ce,P3 translates much like stepl. All we need to
do s think of aneffective message (pregerab)\aj less
than |12 characters, so the d‘zspla5 doesn’t scroll),
and put- a PROMPT ofterit. So step 3 becomes:

TAMNT? C,D
PROMPT

-lsq..

eccoco0ccoocOCCcOoCcOCCcCEeCcOOCOCCOOCCOCCOCCOCOOOCCOCOCCOCCOCCOCCOCCOCCOCQOCOCOCCOCTO

R "]

The message that we chose reminds the user that
an amount needs to be keHed in and.that either the
c keB (check) or the [@ keg (deposit) should.be
Pressea{.

Chal lenae: Translate step 6 into HP-4) code.
Solution: T"BAL=$%

ARCL 00
PROMPT

The first line is just a text message. The second
line appends the number in register D0 to the
contents of the ALPHA-register. And, as you
know, the PROMPT causes program execution

to halt with the contents of the ALPHA-register
in the disp\aB.

-190-

Cha”enge: Go back and look at the routine we
sketched out to handle steps 4 and 5 of our list.
Rewrite these six lines into HP-4l'eze. (Remember;
reqister OO contains the balance.)

Solution:
LBL C LBL C
CHS CHS
LBL D - LBL D
RCL 00 ST+ 00
+
STO QO

Since we are concerned thatan updad:ed balance be
maintained onlyin register 00, we canuse the
ST+ (store-plus) Sunction to add the deposit (or
the negative amount of the check) to register Q0.

The sequence RCL@D: +; STO @0 would do
dmost the same thing, except it would leave the
upciated balance in the X"reﬂis%e.r as well.

1~

©000000000000000C0000CC00000C00000000C00COC0CCOOE

] {”’INITIAL BAL?
PROMPT

2. {STO Q@

) %*AMNT? C,D
" (PROWPT

LBL C

CHS

lBL D
ST+ 00

é"'BAL=$
6.

4andb

ARCL 00
PROMPT

-192-

UP to now, the program looks like this:

T Go back to steP 3,
Le 've translated six of the seven steps into

HP-4] code. The seventh step is obvious|5 qoing
to be a GTO statement. But first we have to
insert a LBL at the top of step 3, so the final

routine looks like this: 2

Ol LBL "CHKBK 10 LBL D
@2 "INITIAL BAL? Il ST+ 0@

03 PROMPT 12 "BAL=$%
P4 STO 00 13 ARCL 00
@5 LBL Ol 4 PROMPT

06 AMNT? CD 15 GTO 0

07 PROMPT |6 END

@8 LBL C

@9 CHS

So we've developed our first complete program,
right? Well, not real ly. Once we've finished.
coding a problem for the HP-HI, we should take a
look at it to see if there's ang’c.hing that we have
assumed. about the status of the compufer ($lags,
displazj status, etc.)- thinss we should. establish
at the beginrfmg of the program.

In other words, we have to initialize the
status of the HP-Al so that the program wuill
alwags run cor‘r‘ec?:lg. If e use some § lags in the

program, and we need those flags tobe clear initial ly,
we should have the program clear them.

ol - g

eceooococooeccccecceococoecoccocoodococorocecoeecdccrecoooccccoccoooo00occ0v0oe

keys. The

C

In the CHKBK program,, we use local ALPHA-
labels. So, when the computer is in USER mode
and the program Fbin'bel' 1S }oosi'):ioned Yo this program,
those labels will be assigned to their respec’cive

k35 becomes XEQ C, for example.

Therefore, it the computer is not in USER mode,
the program will not work. So we initialize USER
mode by inserting a OF 27 after the first line

of the program. “Set § lag 2{" means “turn on
USER mode.” Now the program will turn on USER

D00 f;% ’E & s ‘3 S99 ”3) f’? “"‘3 D00 "3 ”3 D90 “3 | fg 900000090000

mode.
@l LBL "CHKBK 0 CHS
02 SF27 | LBLD
@3 TINITIAL BAL? (2 ST+ 00
4 PROMPT 3 "BAL=9%
05 STO 00 4 ARCL 00
%t LBL 0l 5 PROMPT
@7 TAMNT ? C,D 6 GTO O
08 PROMPT 7 END
29 LBL C

Now, what other imProvemen'ts can we make ?

-194-

How about this?

Since we're dealing with dollars and cents,
the program should set the display to show only two
decirmal p]aces.

Also, besides the check (IS) keg ard the depos'z't
(o) key, it would be nice i there was an exit (E)
key by means of alocal ALPHA-label. Then, when
you're all done balancing your checki nq book, you
could press the [E key to RCL the final balance

to the X—r‘esis%:er and send the program Poirﬁcer‘
Yo the END of the program.

C hal |en8e: Make t}\e above improve ments to
the

e -

AN
C SR
SER

ecccoCocodocececcceeccocecececooccccocecoocceoeeccococccrceccoceccceceeccccceccooc

3 ”3 } - 3 @ ° 3 - 033 0% 3 @3}@ 993 ? ? ? ”9 7? ’? 933? &3%3%‘??3?3 43 3 323 3 2 . 3(3

Solution:

@! [BLTCHKBK

aibae REG
23 SF 27 4 TBAL=%
04 TINITIALBAL? |5 ARCL 00
05 PROMPT 6 PROMPT
26 STO 00 17 GTO O
o7 LBL @l » |8 LBL E
@8 'AMNT? C,D,E (9 RcL 00
@9 PROMPT 20 CF 27
10 LBL C 21 END
I) CHS

* This sets the displo.% to show two decimal P)ac&c..
w Bl E just recalls the final balance into the
X—regis’cer ard turns off USER mode. (We 40:'50'?:

to mention turnins of§ USER mode.) Uhenr
youre all done balancing your checkbook, press the

3 |<e5.

196~

Cha”enge: Let's say that every check you write
corries a $0.25 charge. Moali?g the program to

take care of this charse.

Solution:

@1 LBL"CHKBK 3 CHS
Q2 FIX 2 4 1BL D
@3 Sk 27 5 ST+ 00
Q4 TINITIAL BAL? 16 "BAL=%
05 PROMPT 7 ARCL @0
% STO 00 8 PROMPT
or LBL O 19 GTO Q|
08 "AMNT?(C,D,E 20LBL E
29 PROMPT 2| RCL 00
10 LBL C 22CF 27

* || ,25 23END

*» |2 +

* Lines || and 12 make up the modification. T here’s

a Problem with this, however, Now the [€

keg can

handle only checks. I£ your bank. charges you, say,
$3.00 a month, plus 25 cents for each check,
there's no straishtforuard way to deduct the

$3.00 charge. If you kQH in 3 and press

-197-

Q) the

eooecoccocecoececcececdoecoeccececcecceccoccoccoccccecroeoccccceceececcococ

program will deduct $3.25 from yowr balance.
To remedy this problem, wie can {ust insert a

LBL ¢ (little'e") ofter line 12. Then $or checks

J

you can press the [l key, and for straight charges,

you can press Bris] (€],

So the comp]ete program looks like this:
@l LBL "CHKBK 13 LBL ¢

02 FIX 2 9 LS
03 Sk 27 5LBL D
Q4 "INITIAL BAL? le ST+ 00
@5 PROMPT 7 "BAL=%
0o STO @0 8 ARCL 00
07 LBL @l 9 PROMPT
@8 "AMNT? C,D,E 20GTO 0|
29 PROMPT 21 LBL E
0 LBL C 22 RCL 00
| w5 23CF 27
2 + 24 END

e Iqa..

¥ T P T O T MM T L Y - R e RS

The next program we wil | deve\oP is @ program to
convert feet, inches, and, sixteenths of aninch into
feet and decimal fractions of feet, and vice versa.
For example, | foot © %6 inches will be converted.
to [.515025 feet,and. 1.515625 feet wuill be
converted to |foot 6 e inches.

The calculations involved. in this program wil| be
pretty simple. The main emphasis of this program
will be the format of the input and. output. We
have to develop a reasonable way to tnput feet,
inches, and. sixteenths of an inch!

Now, it would be best if we could 1«35 in one
number to represent all three units (feet, inches,
16™°). Let's develop a format Sor input of three
different ‘Ehings with one number, —

-199-

eco0o00O00COCOCOOCOOOC0CO0C0O0OCOCOCOCEOCOCO0COCOCOCOOCOCECOCOCOC0EGEC

00090

Chal\enae: Convert 3 hours, 26 minutes, and
14 seconds into hours and. decimal Sractions of hours.

Solution: 3.26!14 xEa] “HR™ displags 3.43722

So, 3 hours, 26 minutes, and |4 seconds is equal
to 3.43722 hours. The point here is that §or certain
functions on the HP-A|, one number can represent
different things. The HR (HOUR) Sunction looks
at the number inthe X- register as meaning hours,
minutes, and seconds in the form HH.MMSS. The
HH means “number of H:mu‘s,n the MM meang,
“number of minutes,” and. the 55 meang “number of

seconds.” | here are onl y two Pla.ces reserved. for
minutes, because the number of minutes will never
exceed. 6@ (that's an hour),and. fractions of minutes
are expressed. in seconds. (However, there are
actually more than two Places reserved. for seconds,
I§ you want to ke.H in 57 24 seconds, you would k85
in Q05775 because 34=0.75. The §raction of a

second is keyed in after the whole seconds.)
~200-

In the lost dm”enge. , one number represerrts hours,
minutes, and seconds. Inthe program we'’re

developing, we want one number to represent
feet, inches,and sixteenths of an inch.

Cha”enge: Express 4feet, 8%e inches ina format
similar to the HH.MMSS format.

Solution: 4.08@09 (FF. 1ISS)

This is the input format that we'll use inour
conversion program. LWe will keg in feet, inches, and
sixteenths of an inch, using’d’te Sorm FF. IISS.
Here, FF means “number of Seet,” 11 means “number
of inches, and 55 means “number of sixteenths.”
Tuo places each are reserved or the inches and the
sixteenths. T his makes good sense, because there
will be,at most, || and. e inches (.1115) in any

froction of a Soot.

-201-

eceO0cOCOOCOOCOCOOCECOOOCOCOOCOCOCOOCCOCOOCOOOOCOOOCOCOCOCOCOCOCCOCCOCESC

Challenge: Sketch down the genera) steps
req)uired to convert aninput of the form FRIISS
(feet, inches, sixteenths) to feet and decimal
fraction of a foot (we'll represent the output

format blj FF. ﬂ??)

-202-

Solution:

. Get the input

2. Take the integer portion and,
save it. | his is the number of
whole feet. Also, save the
fractional portion.

3. MultiP|5 the fractional
portion bﬂ 10Q.

4. The integer Portion o¥ that
result is the number of whole
inches, and the fractional
portion is the number of sixteenths
divided by 100.

5.Divide the fractional part bS .92

0. Divide the number of inches
bg 12, and add up all the parts.

“Visual Aid”
FE 1155

[FFLITSY]

FF ([1.59

FATILSS]

FEID L
FH 2] e

34

(. The result ec%uals the sum FF+i + %

-203~

eeococcocoeccoecoccococcooccocceccccocceoecccoecoccccccocccccv0ecnc ©0¢C

2000

What we re shooting for in the solution is this:

First, we want to save the FF qu?.‘ o5 the nput
because this ic the number of whole feet , and. we
don’t need. to change this in the final answer

Next, we need to get the number of inches
(I1) and divide this b3 12 (there are 12 inches
na ?wt).Then we have to get the number of
sixteenths and divide it b}j 192 (12 %16), since

there's 192 sixteenths-of-an-inch in a foot.

™ME HML BESULT:

IT . SS
FF;*‘;T"’FFZ

-/

/ /

5

/
/ /s S
/ S rd

oSS

/ p
‘)}

P TS

/ _.'/ ’ ;"

)) f_q
/ST ’

/é//// ;/// // 9 ,///) /
1/////////// VAR 4

.-’f(]

/ ’, 7V
;//// v TGNl 7
T s o

b7 /.
s

2/

-204-

Cha\\ense'. Sketch down the steps recbuirecl. to take
an input of feet and decimal fractions of feet
(FF.$55§5---) and convert it to feet, inches, and
sixteenths of an inch.

Solution:
. Get input of FF.§§5F:--.
2. Save the integer portion, FF.
3. Multiply the fractional portion by 12 and save
the integer portion of the result, II.
4, Multiply the remaining fraction by l6, $S. (Let's
leave fractions of sixteenths just like fractions of

seconds.)
5. Save the result inthe X-resis’cer in the form
FF.ITSS (FF+E5+ 555).

-205-

©0 00 eceeceoecoecececcececcoececcecccecceccoecerocecceccccococceccocooccccccccoccceecec

2000000000000000000000000000000000000030000 0

Let’s run an arbi’crarg tnput ’chrough these steps
to see if ’cheg work. Trg, for example, 14.9 feet.
First, save the integer Por"l:ion, |4, Then, multip’H
.4 by 12 toget 10.8 and , again, save the integer-
portion. So far we have |4 feet, 10 inches ,and
8 tenths of an inch. To convert the 8 tenths to
sixteenths, mu’tip’g the .8 bg 6. This Sives 12.80
so the final result is [Hfeet, |0 *®*%¢ inches. S

our Seneml idea seems to work.

From the way thi ngs are working out, it looks
like we are going to develoP two independen’c
programes. One of these programs will take an input
of the form FF.IISS and return feet and. decimal
Sractions of feet. The other program will take an
input in the form FF.£§§5+: and return it inthe
form FF.I15S, These two programs will be a
matched pair of functions much like the HR (hour)

and HMS (hours, minutes, seconds) Sunctions.

~206~

Let’s call this pa'zr‘ of functions FT and FIS.

. LBLTFT
2. Get inpui:of FF.IISS

3. Save the integer portion: FF.

g ! Mu|t1pl5 the fractional portion bﬂ 100:(11.59.

5. Save the integer portion: [11).

6. Divide the Sractional portion by 1.92:

7. Divide the inches by 12:(].
8. Result= FF+33 + =
QLEND of FT

0.LBL "FIS

. Get input of FF. §§¢¢---.
2.5ave the whole feet:|FF

5.Result = FF+&& + 1555

0.END of FIS

-207~

55

192].

11

3 Multiply the fractional portion b3 12
4. Multiplg the r‘emaining {raction bg lo:

ogcocoecececocoeococcecccecececoeccececcocccoccoccceccccccoccocccocccccceccoceeo

200

0292020920009 00909920929200090099200920909090009202000999 9

.

e e s et il]

Cha“enge: At this point, you should be able to
toke the list of sixteen steps fromthe previous page
and convert them to HP-Al program lines. Give it a
try and see if you can come up with a workable
program. It's possible o do all the calculations
using only the stack registers.

Solution:

@I LBLTFT — Assume the X-resister containg FF, IISS
@2 INT — Separate the whole feet

@3 LASTX —Get back FF.IISS

i _}Multipxs by 100: I1T. 5§
@7 INT - Separate 1I

28 LASTX — Get back 11.5%

29 FRC — Separate .SS

: IO l;‘-'l?. :} f:":%* \'%5;: ¢ Convert siateenths to decimal.
12 XoY - Get I1

* 1% 4 &L: convert inches to decimal

4/ -j

:: : 3 Result= FF+ 3+ 32

17 RTN — END of FT routine

I8 LBLTFIS — Agsume X-resis’ter contains FF.§§5¢..-

19 INT — Separate whole feet: FF

20 LASTX — Get back FF.§¢¢---

2l FRC ~ Separate §ractional feet:.§655---
;:: ':' :} Mu\tipls ba A

24 INT — Separate the number of inches: I1
25 LASTX
26 FRC
27 le

3
29 | E2 E‘i

Get remainina fraction

N\ultip\B bl_.j 16: S5

I1+ 1%

Result= FF+ Ho*%ﬁo? = FF+ 50

35 END — END of FIS

-209-

e ccoeoecceccecoccoeceoeccocecccoccocecccooceccccceccecccoococooccooo0co0 e

2909092092992 9290909209202092009209290900920900920209209200092029000200000009

The program we've developed here is the ‘no frills”
version. | here are no ALPHA prompts or displags,
no beeps or tones. For conversion routines, the
“no §rills” version is u.suanﬂ the best way togp.

To convert, say , 13 Seet 9 %o inches Yo Seetand
decimal fractions of feet, all Yyou have Yo dois ke3 in
13,090+ XE&]“FT”. The result comes back in the
X-register:

The RTN statement at line |7 just means ‘ stop”
(Le., return to the kegboqrcl), in this case. But, using
this RTN instead. of a STOP allows you to call
this routine as a subroutine from other programs.

To convert 12, 77673 Seet to feet, inches, and.
sixteenths of an inch, just keyin 12, 776773 XEQ]
“FIS". The END at line 35 will cause program

execution to haltin this case, but it will act osg

a RTN if the routine is called as a subroutine.
By the way, you would have to have an extremely

accurate ruler to determine that somethi nq was

exac)clg 2. 77073 Seet \ongl

~2l0-

Le could snaz up this routine a bit by addins some
ALPHA messaqes and. making use of the numeric
entry Flog (flag 22) for repetitive entries. The
snazzed-up version could. look someﬂ'\ing like this:

@) LBLTFT

03 PROMPT
Q4 CF 22
05 LBL 02
Qo FIX 4
Q@7 INT

08 LASTX
Q9 FRC

10 1E2 (EEX2)
%

|Z INT

13 LASTX
(4 FRC

15 1.92

lo /

17 XOY

18 12

19 /

20 +

2l +

(02 TINPUT FE.ILSS

22 CLA

23 ARCL X
247+ FEET
25 AVIEW
20 RTN

27 F&?C 22
28 GTO 02
29 LBL *RLS
30 FIX @

3l CF 29
32 TINPUT FEET
33 PROMPT
34 CF22

35 |LBL @3
36 INT

37 LAST X
38 FRC
3912

HO »*

41 INT

42 LASTX

43 FRC

44 lo

45 x¢

6 CLA

HT ARCL Z
48 THFT

49 ARCLY
50 T+

51 ARCL X

S2 7/ 16 IN
53 |E2

Ry /

55 +

5 1E2

57 7

S8 +

59 AVIEW
b0 RTN

bl FS?C 22
62 GTO 03
63 END

That CF 28 at line 3l clears away the decimal
point in the FIX® formaY. (CF 24 also suppresses

commas that divide up big numbers.)

Don't forget the b signe at lines 2H, 48, 50, and 52.

-lll-.

oGeoccoeCOCOOCOCCOCOCCCOCCOCCCCOCCOCCOCOCCCOCCGROCCCOCCCOCCOCOCOCCCCOCOCOCCCTO

00000000000000090000000000000000000000000009

As you can see, the sna.zzed-up version of the
program is considemb)g \or\ger‘. Whether this version
1s easter to use clepends on several Uﬁngs. s you
on]H use a program once ina blue moon, thenit's best
to keep the |on8er, “riendlier” version around.. But
it you use a program ?re.abuen’dg, then it's best to
streamline the program so that it's {ust amatter of
keging in_ a number or two and executing the r‘igh’c_
labe|. ALPHA prompts and elaborate output methods
in short, Fre%uentlﬂ used. routines jus’c become
redundant and inconvenient. (LJe 've marked these
additions with bracets.)

A neat feature of the snazzed-up version that
doesn’t appear in the originol routine is the capabﬂitg
for repeating the same routine by keying in a new

input and pressing [RZS]. For example, let's say we
have six entries of feet, inches, and sixteenths

that we want to convert to feet. —

v L7 by

(1)4 feet |1 %e inches

(2)5 feet 2 inches

(3) 9 feet 4% inches
(4) 1] $eet 11 Yo inches

(5) 9% inches
(6) 7feet % inches

The keystroke. solution using the §irst routine would

look some’chins like this:

KEYSTROKES

4.1105 XEa] “FT”
5.02 XeEq] “FT”
9.0408 KEQ] “FT"

1.1113 XEQ “FT”
D312 EQ]“FT”

7. 0014 XEq] “FT"

DISPLAY

4.9427
5.1667

9.3750
11.9844
0.8125
1.0729

Whereas, using the second routine, the keystroke
solution would. look like this:

XEQ f!FT n

4.1105
5.02

q.0408 R75
111113 Rz
L0912 R/5
7. 0014 R75]

- 2'3-

INPUT FF.IISS
4.94927 FEET
5.1667 FEET
9.375Q FEET
11.9844 FEET
0.8125 FEET
1.0729 FEET

©00C0000000000000000000000000000000000000C0CCC

200090

The second. routine requires fewer kegstrokes Sor

repe’citive conversions. When you ke3 tna humber,
ﬂaa 22 is set. S0 when you then press [R75), the
GTO @2 is executed. and. the FT conversion is nepea‘tei.

Also, notice that if you don't keg in a. number

before pressing

R/S

, the pr‘evious result will be

converted back into feet, inches, and sixteenths.

7

Challenge: Incorporate the feature of easy
repetition from the steps on page 2l into the streamlined”
version on page 209, You will have to make use of
?Ias 22. The end result will be a quick, easy-to-use
routine with no ALPHA prompts or displags.

-214-

Solution:

Ol LBL'FT
02LBL 0l
03 INT
Q4 LASTX
05 FRC
06| E2
a7 *

08 INT
09 LASTX
-RC
M2

/
XOY
2

4
-
e

AT —

8 CF 22

9 RTN

20 FS?PC 22
21 GTO @l
22 LBLTFIS
23 LBL 0L

24 INT
25 LASTX
20 FRC
27 12
28 *

29 INT

30 LASTX

3l FRC

32 16

33 %

341 E2

35 /

36 +

31 | E2

8 /

39 +

40 CF 22

Hl RTN

42 FS?C 22
43 GTO 02
44 GTO 0ol
45 END

ecoco000c000COOCOCOOCOCOCOCOCO0COCO0COCOCOCCOCCO0COOCOCOCOCOCC C

200090

The §inal program that we will developisa program
to evaluate a table of X-and Y-values for an equation
that you program into the HP-A.

Most of us have done this before in an old a\Sebra
class, Back in algebra , they called it Smphmg an
equation or Po’c’cms an equation. LJe start with
some equation ltke:

Y= X*+5X,

Now these Y's and Xs don't have ang’ching to
do with the X- and Y-registers on the HP-4l. We
could. eo.sﬂg rewrite this equation as:

B=A*+5A or (OUTPUT)=(TNPUT)™ 5*(INPUT).

But, because it's common to talk about equations
arcxphe.d onthe X and Y axis, we'll use the original
Y=X*+5X. lJhenever we mean the X-register, we'll
write “the X-reaister:“ Otheruwise, X means the
variable number X in the equation.

Anyway, to plot the equation Y= X*+5X, we
would start at, say, zero and. plug in a. bunch of

values for X to see what Yvalue each X gives.
-2lb~

We would Senera’ce_ a table that looks like this:

For X equu.a‘ to Y equals
@ %
l b
2 14
3 24
- =k
-2 "o

For X e%qu to qullgglﬁ
-3 "6
-4 4
5 @
6 b
ol § |4
-8 2R

Then we could take these poire and plot them
on a 8ra|o|n with the X-value Plo{’ced horizon)ca\lg
ond the Y-value plot’ce.d veri:ic_allg.

8,29

AY
[Graph of Y= X*+5%

(3,24)

CcceocoCOoCoOoCCCOOCOCOOEOCOCCOOCOCOCOCOPOCOOOCCOCOCCCCOCODERQOCOCCCCOTCE

~218-

uation
that we can plot the gmph of any eq
SO

into the HP-4l.

8 4
Th rogram e develop will Senerai:e the
ep

pairs,

we PFOSI"O.M

Chanense: Lrite a routine to do the e%ua’c.ion:

Y=4X3-|2X+5

or

OQUTPUT=4»(INPUT)?- 12%(INPUT) + 5.

Solutiors

@l LBL TFUNKI 08
@2 STO 10 09 *
@3 3 Q -
H Y/X | 5
@5 4 2 +
Qb * 3
@7 RCL IO

If this “thro

T 7z,
:/ ity 7 / 74 '_,l i

; =T
A

o iy '.‘;‘-"%:'3‘
A T 58,
.. s ‘)\" ?
ANeS
0

eecocooecococceccoccocecoececcceccccocceccoccccooceccoccecceoecceccc © ¢

Cha“ense: USing the FUNKI routine, calculate
aset of X,Y pairs starting at X=@ and increasing
by 0.25 each time,up to 2 (that's 9 pairs). Pay
close attention to the motions that you go through,
because the program you deve?op 15 Soins todo
the same thing.

Solution:

For Xe x \nga;gls_ For X eq)@,l to m!gl&
Y 5 .25 -2.1815
0.25 2.0625 1.50 0.5000
0.50 ~0.5000 | {5 64315
@.75 “2.8125 2.00 13.0000
.00 ~3.0000

OK? ™= >

All it amounts 1o is this: To get the first Y-value,
keg in @ XEQ] “FUNK] and the HP-4I will return
5.0000. So the Hirst X,Y pair is 0,5. To qet
the second. Y-value, keyin .25 XEQl “FUNKI ” and
the HP-4l will return 2.0625, etc.

~220-

Challenge: Write out , step bS step, what you
just did onthe last page , as if You were
explainins the process Yo a Sriend.

Solution: Uell, let’s see....

., I read the problem and. saw that I was
supposed o use the FUNKI routine to generate
a table of X,Y pairs. I was to begin at X=0,
end at X=2, cmd'mcrease_}:% Q.25 eoch time.
So 1 was told the name of the program with which

to evaluate the Y-values, the bgiinniqg Xvalue,
the gﬂdin\c_xr X-value, and the increment.

2. 1 started ot the beginming X-value.

3. 1 ran this current Xvalue throush the FUNK]
routine to get Y.

4. T wrote down this X, Y pair.

5.1 added the increment (0.25) to X.

6.1 checked to see if this news currerd X-value
was greater than 2. If it wasn't, 1 repeo.’ced
steps 3 throu.gh o. I§ it was, 1 s’copPeA.

-221-

eeecoooeccoecocceccecocceccococcecccececooccceccceocccocccceccccccccceccccooe

Question: LWhat are the six steps Yhat a
program would have to Per?orm o do what you
did. on page 220 (two pages back)?

Answer:

., Promp't for the name of the program for which
Hou’re generating X, Y pairs (FUNKI), theb%'gm'mg
X-value (0), the endin% Xvalue (2), and the
increment value (@.25). Store them all.

L. Start at the beginning X-value.

3. Run this current Xvalue thr‘ouah the named
program (FUNK” to Se't Y.

4, DisplaH the currert X,Y pair.

5 Add the increment to the current Xvalue to
get a new current X-value.

0. Check to see if this news current X value is
greater than the ending X-value. If it isn'’t,
repeat steps 3 throush 6. If itis, stop.

See what we're getting at? These six steps are

ne,arlg the same as those on the Pr'evious pace-
222

The general steps that You take to c.omple'te
o process are cluite similar to the steps a program
has to take to complete the same process.

Since the program we're developing serves to
generate points for Plotiing the Sraph of an
e%uahon , let S agree to ca\ ’chts Program “POINTS ;

Nou, :’cs just @ matter of expmdmg %he qeneral
steps on the last page into HP-4I program lines.
It's Probablg best, in this POINTS program, to
start expand‘ing at step .

Let's agree to store the reciuired data as
follows: reqister @0 - Name of function to plot

reqister 0l - Beginn'ms X-value
register @2 - Ending X-value

register D3 - Increment value

-223..

eccoc0c0000COO0OOCOCOO0O0C0O00000O00O0COO000000COCOOOCOE

-ﬁﬂg ?'giéf§ﬁgﬁ§i§ﬁ§:§m§ﬂ§ éf§'§M§M§T§ﬁéi§ﬁ§;3m§-gmésgw@f§féméi§?éi§féféﬁgiéméﬁéméiﬁuémé'

Cha\lenae: Expand step | on page 222. into
HP-4I program lines.

Solution:

"NAME? "END X7

AON PROMPT

STOP STO 02

AOFF "INCREMENT?
ASTO 00 PROMPT
"BEGIN X7 STO @3
PROMPT

STO ol

Notice the method we use to prompt for ALPHA
data. This method stops the program with the
computer in ALPHA mode. So, all you have to do
1S speH the name and press.

Also, remember that a data register can hold
a moxtimum of six characters. So the Slobo.l
label of the program You're plotting can be a

maximum of Six characters long.

-224-

Step 2 merela reminds us that,the first time
through, the beg'mn'mg X-value will be the
current Xwvalue. So, let’s aluags maintain the

current X-value in regis’cer Q\.

Challense: Expand step 3 (page 222)

Solution: LBL O
RCL @l (currert X value)
XEQ IND @0

Not clear ?

Look at it this Lay: When you were Senero.’cing
the table of X,Y pairs manuanﬂ » You would. establish
a current X-value in the X-reais’ce.r, and then you
would XEQ “FUNKI” to get the Y-value. The POINTS
program has Yo qo ’chr-oush this same process.

RCL @1 brings the current Xvalue into the
X-—reais’cer.

XEQ IND @0 says look at the program name

226~

C

©000|

U

in res'lster @0 and. XEQ thot program. ¥
We put the LBL @l at the top becouse step o

mentions re’cu.rning to s’cep 3.

Cha\lenge: Expond step 4.

Solution: "FOR X=
ARCL Q! (current Xvalue)
AVIEW
PSE
TY=
ARCL X (current Y-value)
PROMPT

Cha\lenae: Expand step 5 into HP-4l code.

Solution: RCL @3 (increment)
RCL @l (current Xvalue)
+

STO @l (new X-value)

Cho.”enge: Expand step .

Solution: RCL @2 (ending Xvalue)
RCL @1 (current X-value)
)(<= Y? (X&Y?)
GT10 QI
END

i@CC-C-‘GG(DO006’00060&@0@0606@0&000C’C!CGGOC‘-CCCGCCC’

Chal lenSe: Put it all together under the Slobal
label ‘POINTS.

Solution:

@l LBLTPOINTS 18 XEQ IND 00
02 "NAME? 19 "FOR X=
@3 AON 20 ARCL @
@4 STOP 2| AVIEW
@5 AOFF 22 PSE

Qo ASTO 00 23 "Y=

@7 "BEGIN X7 2H ARCL X
08 PROMPT 25 PROMPT
@9 STO @l 26 RCL @3
|0 "END X? 27 RCL @l
|1 PROMPT 28 +

12 STO @2 29 STO 0|
3 TINCREMENT? 30 RCL @2
4 PROMPT 31 RCL O
5 510 @3 32 X<=Y7?
6 LBL 0l 33 GTO ol
(RCL @l 34 END

-228~

Now, s the program finished ?

Have we used. any flags ? Have we assumed
angthing about the machine prior to runr\'mS the
program thot may not be true?

Lell, at line 2| we've used. an AVIEW statement
and because we use a PSE statement after it,
we have assumed that AVIEW is not going to
halt program execution. But remember, if ‘F\Qg

)

2l is set, AVIEW wiill stop program execution.

So, we should insert CF 2| enrlH in the program:

Ol LBLTPOINTSI3 "INCREMENT?25 ARCL X
202 "NAME 4 PROMPT 26 PROMPT
@3 AON 55T003 77 RCL @3
Q4 STOP *le CF 2| 28 RCL @l
@5 AOFF |7 LBL Ol 29 +

0 ASTO @@ 18 RCL 0| 30 STO @l
@7 "BEGIN X? 19 XEQ IND @@ 3| RCL 02
@8 PROMPT 20"FORX= 32 RCL @l
09 STO @I 2]l ARCL @I 33 X<=VY7
10 "END X? 22 AVIEW 34 GTOQI
Il PROMPT 23PSE 35 END

12 STO @2 247Y=

-nq-

©e000000COCOC0CCOCOC0OCOCOCOCOCCOCCCOCCCOCCOCCOCCCOCOOCCOCCOCOODOODODODPOPODCOCCOCCOTO

2 e e

Your $inal mission (should you choose to accept
it- and vdoufci better! You've come toofar to give
Up now): Generate a table of X,Y pairs for the
equation: Y=4X3-|2X+5, with X
beginning ot ~2.2 , ending at 0.4, and.
increasing by 0.2 each time.

Solution:

For X ec!’ua] to quuals For X eqvgal to Yequals
2.2 ~11.1920 0.8 2.5520
2.0 ~3.0000 0.6 11,3360
-1.8 3.2720 0.4 9.5540
.6 7.8160 0.2 1.3680
-4 0.8240 0.0 5.0000
“1.2 2.4880 Q.2 2.6320
-1.0 3.0000 Q.4 0 .4560

>

-230-

Kegs’crokes Displa
xea] “POINTS” NAME?
FUNKI [R75] BEGIN X?
2.2 lcHS|(R/S END X
0.4 R75] INCREMENT @
2 Ris FOR X=-2.2000
Y=-11.1920
RIS FOR X=-2.0000
Y=-3.0000
R/S FOR X="1.8000

No’(hing Yo it, r?g\n)c?
This 15 what's meant szq friendl program: It
leaves little doubt about what to do.
l

Tt looks like ou are nows a ?riend\B Pr03rammer.

Did you save any of the champagne from Pase"r?

; p KO0, G2 : /
; ¥ L %
‘ﬂ- . .‘." EN
74 AN
X '-.V.t:';‘!.*:‘-‘. P AN ; @ B

ococo00CcCOOCOEOOOEOOOEOCOCCCOCOCCOOEO

©000000000000000¢C

<§"%§%g?gigﬁéw%;?;?5%émémé;;g?éﬁéméwé;%;i§i§wé;€5;giéiémé;%;i%ﬂgiémE;;étgméwég%gjéiémé;€§ﬁ§w%;?§ﬁ§

APPENDLX

OoN Usrl\/c‘f
MA :Vw) LS

- Diagnoszs of Problems

-Statistical Functions
- Fun facte to know and tell

=232~

The manuals you received with your HP-4l are some
of the best Hou’“ find. anguhere. But like most books,
their benefits are most cbvious when you read them,
thoroughlg, cover to cover, including the examples
and. their solutions.

Yes , but that can qet pretty tedious, righ’c?
True, few people really enjoy reading technical
manuals. So part of the aim of this book was to
Provide a basic tutorial guide so that you would be
free to use the Provided manuals more as references
than as instructional materials.

Obviously, we couldn’t cover all the details
contained in the HP-Al manuals. So now we'll give
you a few tips on using those books as reference
manuals:

Got a problem? Is the computer doing someth'tng
weird ? Maﬁbe an error messose? Or are you
looking for a certain function or a certain way to

do something? Where do you look for the ansuwers?

..233-.

00000 COOCCCOCCOCOCOCOCOOCCCOCOCCOCOCCOC0CCCC0CCECOQO®EOOCOCCOCO

B e —

LJell, what part of the computer does the problem

involve ?

If pressing certain keys ges unexpected results,
look in the index under kegs,“) kegboard,” or key
assignments.” If all else fails, look in Appendix B of
the owner's handbook , under “Maintenance and
Service.”

Be glad when you get an error message. The
message will always lead. you qbuicklg to the problem:

*First, if the message oppears dw'ir\g a ru.nn'lng
program, you can determine what coused. the error
bH switching into program mode: |he program line
in the d'ispla3 1s the one that caused. the error.

* 1# the message is one that you've never seen
before, you can look it up in the index. It will appear
in blue letters in the index. Also, you can a\uags
look under “Errors” or “Error messages.”

o If you need to find out about a certain function,

the best place to lock is in the chaded function
index immedia’ce\g ‘f'ol\ouins the main index. There
-.23‘_‘-

you will find, in alphabe’cical order, a brief
descrip’cion-and. a page reference-of each standard

function.

Now, if Hou're uri’cing a program,and you need.
to do some kind. of calculation or manipulation,
and. you don't know what functions o use:

*Js it an ALPHA mo.nipu\ation? (Look under
ALPHA.)

o]s it a stack manipulation?(l.o& under stack.)

*[s it a conditional test, or a £|_q8 manipulation.

*Does it involve program lo_o_;irlg, or mo.Bbe uou
want touse indirect addressing, or branching ?
* Are uou cornfused. with any Proce.ol.ure dore
n program mode (PRGM)?
* Do you need information on subroutines ?
°Are you having trouble using labels effectively?

Not surprising?g, the rule of thumb is to look up
the answer according to the nature of the
problem. All we're doing here is listing some of

=235~

eecoccdocoeococccoocecccoeoeccceceocooooccorococorocceocoocoecceoocooccccooccccccccococe

the key words and phroses you can look up in the
manual s index,

As another (Perhops %uicker) alternative, once
Bou're ?air\tj familiar with your compuier‘, You
can refer to the “Operating Manual-A Guide
For the Experienced. User.”

This booklet summarizes, in brief, the main
points you need. to know to prograrm your HP-4I.
Some of the fine points not covered in the main
manual are here, too- certain keystroke
shortcuts and programming hints.

Also, one of the handiest parts of this book is the
function index (s’car’cing on page 52), which lists each
function, its memory usage, and its effect upon
the stack (\Lg,_r% impor'tan‘\:).

Finallg, we come to the “Standard Applica’cions”
book: This is a collection of programs for you to
keH in and run- main13 to qwe you Prac’tice at
keging in programs, and. to pr‘ovide you with
examples of working programs.

-236-

Be sure to read the ini‘roduc’corg pages before
sto.rtins in on the programs. These pages contain
good information, and. theg tend to answer the
questions you would otherwsise have upon encount-
ering certoun program lines.

BH the way, when we refer to page numbers in
the owners handbook, we are reFerring to the
“HP-4IC/HICV Owner s Handbook and Programming
Guide” thot was printed by HP in September of
1980. If the page numbers that wse 've referred to
send you on a wild, goose chase in your manual,
you'll have to re.lg on that maonual's index For

direction.

" = 3 fou

eéeocooccecocecececcecocoececoecoeccoccocccecccccocroccoocccccoccccccccococee

000 9|

THE STATISTICAL FuneTioNS

If at some time you have the urge to use statistics

to try to prove something, you will $ind pages 99-10H
of the Owner’s Handbook helpful.

Here are a few added comments:

. REMEMBER, the statistical registers are movable.
Thend are not guaranﬁed to be registers =16, except
after a MEMORY LOST. You adjust the location
of this block by using the 2REG function to specify
the location of the first register wn this block.

2. All 6 of these registers must be allocated data
resis’cers. Otherwise, the execution of any
statistical function will result in a NONEXISTENT,

3. 2+ and 2~ are functions that disable stack lift.

4, The statistical functions 2+, 2-, MEAN, and SDEV

always operate on both X ard Y data,, regardless
of whether you are interested. in just the X-values.

For this reason, you may encounter an OUT OF
-238-

RANGE error when you attempt SDEV, if you haven't
been paying attention to the Y-register at all. When
this happens, it's because the computer has been
Fai’chfu.llg o.ccumula’cing Y-data right along with
your X-data. And it is Possible to have data
that produces an error with SDEV (see page

256 of the Owner’s Handbook).
The cure is simple: LJhen you use CLY to start

your accumulation, press @ [ENTER], Then just
proceed. as usual.

5. When you accumulate o set of X,Y data pairs,
you can fit a stroight line to them according to

the formula:

Y=A+BX.
You can compute the values A and B b'd using
the values in the statistical registers and. these
formulae:

nEXY-3XSY _ZY-BSX
B-RAR=AGY end A= 1T

-239-

eceoco000cO0OCOCOCOCCOOOCOOOCOOOCOCOOOCOCOC0OO0OOCOCOCOQCOCOOCOECC

K
©
l®
©

Notice that page 42 of the Standard Applications
Book shows the relationship between A, B, X, and
Y for computing the equations of 4 different
tﬂpes of curves,

FoN TACISTO Kvow IV TELL

There are some functions in c.atalog 3 that
ceem clever enough, but theﬂ seem to lack
prac’c'ico.l uses... not sol!

It's just that these uses may not appear
obvious to the casual observer. So, as a pub)ic
service, we thou.ght we d. poin’c them out—alons
with a Sew other handy tidbits.

To wit:

. If you want to write a program with several
different sections, where these sections moy
be used in any order, chances are 800d that
you will ¥ind it convenient to use local-label
key assignments.

Study, for example, the Financial Calculations

-240~

program on page 33 of the Standard App)icaflons

Handbook .
See also: pages 33 and 34 of the “Guide
for the Experienced User.”
2. Notice the section on page 8 of the “Guide
for the Experienced User;” called “Single Key

Parameter Specif ication.”

All this means is that anytime you are keging
in a function that demands a numerical arsumen%:
from | to 1O (indusive), you can enter that
argument with a sinsle key.

This is not a bis deal. But, it is convenient
because 5ou’ Il soon find that you are c.onstantlﬂ
using registers | to 10, ﬂass | to 10, LBL's | to
|0, and even SIZE’s from | to 1Q.

3.“I need to find the seventh root of a number,
but there’s only a square-root key! lhat should
Ido?”

LJell, the first thing to do in any such

emergency 15 to remain calm.
241

o000 O0COCOOCOOCOCEOOOCOOCCOCOCOCOCOOCOCOCOCCOCEOOCCOCOCOCOEOCOCROCOCOCEGEO®E

200 9

Now, it happens that when you take the n*"
root of a number, what 3ou’re reannd o{oing s

raising that number to the ‘n pouser.
T =117
To compute this:

|| ENTER] 7[5 Bis]) —— |, 4]

So, the seventh root of || is just 1l raised to
the % pouwser.

Remember that ket‘l

4.LN; LOG
Just what are 'osari’cl'\ms?
Simply put, the logarithm of a aumber; N, is
the power to which you must raise another
number (called the base, B) to arrive at N itself:

If you say “L is the 103 in base B of the number
N,” you are really saying:

B=N

-242-

The LN function uses the base B=2.71828I828,
which s the first 10 digits of a number that some
people call “e.”

The LOG function uses the base B=10.

Notice the shifted functions on the [LN] and

LOG kelds are (€] and [10*) respectivels. These

functions are the anti ogari}:hmg_ that
correspond. to the logarithms on the unshifted
keys.
5. MOD
What’s this good. for?

Lell, Suppose you are ’crﬂing to giaure out
what time of dmj your astronaut friend will
will re-enter the earths atmogphere if he/she
reached orbit ot |40@ hours, to beg'm a 65-
hour orbit.

First , you odd: |4 ENTER] 65 [—— T749.

So, re-entry will occur at 7900 hours ofter

midnig‘rﬁ: of the launch date.

-.2‘,[3-

©ccoo0OCCoeCcOCOoOoCOOCOCoOoO0OcCcOo0oc0ocooccccocoooococopcpc00000000 @

SR O A

&%% 200 0 ‘.(3 000000806 - ppeg—— 3@@333@@@%3@ W% % 3 % @3@ é § "23 %

But, what time of clmj s that ?
Use the MOD function and the foct that
there's 24 hours in a dag to determine the

time of re-—en)cr»d:
24 [XEq) [AtPRA] MOD [ALPHA] —~— 7

Your friend will re-enter the atmosphere at

700 hours (7 am.).
So, MOD is handtj for f inding the remainder

of divisions. [t's gr‘eat for problems ir\volving

regulo.r cxdc.lic intervals of time or position.

Take note of how it works with nega‘l:ive

numbers...!

6. FRC; INT

LJhat qood are these ?

Lell, as an example suppose you have more
numbers to store than you have registers to put
them in.

I§ you know hou many dig'i’cs these numbers will
have, then you can solve the storage problem b5

- 244~

combining two numbers as ore.

For example, you could combine the numbers

32 and 0 bﬂ using 32.96, or combine the
numbers | and |7 to Set .I7.

Here, the in’ceger portion of the number would
represent the first of the pair, and the fractional

Portion would represent the second..

To retrieve the original pair of numbers from
the “hybrid” number, you would use:

FRC and INT.

Can you see how ?

U.sing INTon 32.006 produceg 32.00.
Using FRC on 32.06 Produ.c.es Q. 00.
Then multiphding by 100 gives ©. 00.

A /

(Remember our FT and FIS routines, too-

page 209).

=245~

00060

(. Remember!
You'll never gel‘: the HP-4| to tell you
numericaHH that the sine of 1 radians is zero or

that (VZ)*= 2.000000000.

This is because it can never work with w7

or with VZ or with any other number with an
infinite number of digits (onlud @ digi)cs, aluaHs).

o

- The best it can do (which is quite adectuate) is
GIN(3.141592654) =-4.100000000 * 10" and
(I.414213562)*=1.999999999. This is accurate

and consistent.

8. HMS; HR; HMS+; HMS -

These 4 functions are used for calculations
involving Hours, Minutes, and. Seconds , or decimal
HouRs (i.e., for time). But notice that ’cheg work
just os well with degrees , minutes, and seconds

(i.e. , angle%).

q. qugs: Certain flags are useful in writing
nicely polished programs: ———

=246~

FLAG 2|: Although this is used main]3 to control
a printer, it can determine when the VIEW and
AVIEW functions halt program execution (and
when they don’t).

FLAGS 22 and 23: You can use these to
write programs where the user has a choice
whether to respond to a prompt with a data
input, or with jus’c a [R/S] or with some other
command. (For an example, see the Financial

Calculations program in the Standard Applications
book..)

FLAGS 24 and 25: Error—ignore ﬂags are handﬂ

in_ preventing unforeseen inputs from stopping
execution due to computation errors.

FLAG 27: This lets you turn on (or ofF) USER
mode in a running program.

FLAGS 28 and 29: With these Flags, you can get
European notation (CF 28), and remove the decimal
point and olisi’c separators if, Sor example, you want to
ARCL integers only.

-241-

eecoCeCcoCcOCCCCOCCOCECEOOCEOCCCOCCCCOCCECCPOPOCEOOOCECOCCCOCCOCCOCOCOCCOCCO®TOC

0099299099209 0099929999 ¢ 9@’3-’30339-@@9@@@0@@@@@3039955

Here are two other great books on your HP-41 You won't want to miss them!

Using Your HP-41 Advantage:
Statics for Students

This is a book written especially for all you engineer-
ing students out there (and it was written by engineer-
ing graduates)! You know how tedious it can be to
solve all those 2-dimensional free-body static equilib-
rium problems, right? Well, what would you say to a
program that will do it for you on your HP-41? You’d
say, “Tell me more!”

All right, picture this:

* You start with the problem you’re trying to solve,
drawn, as always, with some 2-dimensional
coordinate system established.

* You identify and key in all known forces and
moments — and their directions (in your choice of
rectangular or polar coordinates).

* You ask the calculator to solve for up to three
unknowns (the sum or resultants of the total X- and
Y- Forces and the Z-Moment).

And it’s easy to build and add on to your description
of your structure, with the points and Knowns editor.
So don’t waste any more of your time trying to figure
out where you dropped a digit; let the HP-41 and the
Advantage module do your crunching for you. This
book comes with complete program listings and bar
code for both the HP-41CV and the HP-41CX, so it’s
ready when you are!

Computer Science On Your HP-41
Using the Advantage Module

Here's an ingenious idea: You take one of the most
popular programmable calculators of all time (the HP-
41), and you program it to imitate another calculator
— o you don't need to carry both!

In a program that he likes to call his “16E,” Com-
puter Science instructor Ed Keefe has achieved a
remarkable emulation of Hewlett-Packard’s HP-16C
“Computer Scientist” calculator. So if you need the
kind of digital “bit-crunching” power that the HP-16C
delivers — but you have only an HP-41 — then here’s
your answer (and if you do happen to have an HP-16C,
then see below for the book written specifically for
that, too)!

The program in this book will let the HP-41 do
virtually anything that the HP-16C can do. You'll
learn about:

¢ Word Size and how to set it

¢ Integer arithmetic

¢ 1’'s and 2’s Complements & Unsigned formats
* Logical Operators * Masks

¢ Bit clearing, setting, shifting and rotating

¢ Programming

And you'll see how to customize the HP-41 keyboard
to make the emulator as easy to use as possible. So
solve your digital logic problems right there on your
trusty HP-41. This is a program that really does it.

Here's a list of all our other books:

* An Easy Course In Using The HP-42S
* An Easy Course In Using The HP-14B
¢ The HP-14B Pocket Guide: Just In Case
* An Easy Course In Using The HP-328
* An Easy Course In Using The HP-228
¢ An Easy Course In Using The HP-28S
¢ An Easy Course In Using The HP-27S
* An Easy Course In Using The HP-17B

* The HP-17B Pocket Guide: Just In Case

¢ An Easy Course In Using The HP-19B

* The HP-19B Pocket Guide: Just In Case

* An Easy Course In Using The HP-16C

* The HP Business Consultant Training Guide

¢ An Easy Course In Programming The
HP-11C And HP-15C

An Easy Course In Using The HP-12C

The HP-12C Pocket Guide: Just In Case

(Use next page to order any of these books.)

Grapevine Publications, Inc.
P.O. Box 118
Corvallis, OR 97339-0118

To Order:

Call our Toll-Free Line for the location of the GPI dealer nearest you, OR charge the books to VISA or Mastercard, OR
F'ill out this Order Form and return it to: Grapevine Publications, P.O. Box 118, Corvallis, OR 97339

copies of An Easy Course In Using The HP-42S8 @$22.00ea.= $
copies of An Easy Course In Using The HP-14B @$22.00ea.= $
copies of The HP-14B Pocket Guide: Just In Casecccune.......@ $ 5.00ea.= $
copies of An Easy Course In Using The HP-32S @$22.00ea.= $
copies of An Easy Course In Using The HP-228 @ $22.00ea.= §
copies of An Easy Course In Using The HP-19B @$22.00ea.= $
copies of The HP-19B Pocket Guide: Just In Caseccccecvveveennee.. @ $ 5.0002.= §
copies of An Easy Course In Using The HP-17B @ $22.00ea.= $
copies of The HP-17B Pocket Guide: Just In Casec.cocvcu.....@$ 5.0002.= $
copies of The HP Business Consultant (HP-18C) Training Guide@ $22.00 ea.= $
copies of An Easy Course In Using The HP-12C @$22.00ea.= $
copies of The HP-12C Pocket Guide: Just In Caseccccceeeee.... @ $ 5.0002.= $
copies of An Easy Course In Using The HP-28C @ $22.00ea.= $
copies of An Easy Course In Using The HP-28S @ $22.00ea.= $
copies of HP-28S Software Power Tools: Utilities @$18.00ea.= $
copies of HP-28S Software Power Tools: Electrical Circuits @$1800ea= $
copies of An Easy Course In Using The HP-27S @$22.00ea.= $
copies of An Easy Course In Programming The HP-41 @$22.00ea.= $
copies of Computer Science on Your HP-41 (Using the Advantage Module)... @ $15.00 ea.= $
copies of Using Your HP-41 Advantage: Statics For Students @$12.00ea.= $
copies of An Easy Course In Programming The HP-11C and HP-15C@ $22.00ea.= $
copies of An Easy Course In Using The HP-16C @$22.00ea.= $

(Prices valid through February 5, 1989) Subtotal = $

SHIPPING INFORMATION: plus
For orders less than $16.00 ADD$1.00 $
or
For all other orders — Choose one: Post Office shipping and handling..........ADD $ 200 §
(allow 2 weeks for delivery) or

(allow 7-10 days for delivery)

TOTAL AMOUNT;: > $
PAYMENT:
Your personal check is welcome. Please make it out to Grapevine Publications, Inc. Or:
Your VISA or MasterCard #: Exp. date:
Your signature: Phone: ()
Name
Shipping Address
Note: UPS will not deliver to a P.O. Box! Please give a street address for UPS delivery.
City State Zip
Call Our 24-Hr. Toll-Free Number:

(In Oregon: 754-0583)

ecoocOCocCcoCCcoOocCcoooOocecccooceccccoccoccoccrocccoococcocccccc000000ccccc0occcco0coce

-EDITORILAL -

LJe hope you liked the design of this book.
LJe have used simple languo.ge, cartoons,
and an “un-compact” format, because this
ls still the easiest way for anyone to learn
from a book. There is no need to resort to
a lot of technical jargon to explain programming.

I§ you have any comments or have noted
any errors (although there’s no possible way

that we made ang), please write to us.

In the making of this book, wse cer’cain?H
wanted to help you learn about the HP-4|. Tt is

an excellent machine and You will appreciate

it even more as you learn more about it.

But beHonci help'mg you learn, we wanted to
reassure you that computer programming is
not some cult of technobabble, explicable
onh:! Yo child prodigies, sci-§i buffs,

engineers, mathematicians, and persons

=250~

surrounded bg mist and butterflies. angbocia
who can learn to read and. write can \earn about
proSramming.

Lle have watched, with Srowing concern, the
crescendo of media hype over “high tech” and
"persona} computers," ond it seems much too
easy for teachers, parents, and other mortals to
be led to believe that they or their children
will somehow be left behind if they don't join
the mad rush to “get into” computers, either
vocaiionallg or avoca’ciono.lly.

Computers are indeed very useful tools, and
theg are becoming a common part of our lives.
But, this doesn’t mean that the world is rushing
you b':] just because you don't own one. people
have quite enough worries for themselves and
their children without the addition of such an
artificial burden of guilt.

Ancl above Qn, when you Find HourselF in ’che

midst of some over-inflated, buzz-word egos,
~251-

eeococceccoccoccoceccococooeoccocceccceccoccoccecccoccoccocceccceocccoccooceco

i ©

maintain your confidence. It is no crime to
prefer plain Enslish, or to take more time in
learning to write a program. In fact, there is no
crime in being more interested in, say,
Sardening tools than in computing tools. Each
tool has its place and purpose. And, with the
help of good sense and patience, each will bear
fruit,

Ted Wadman (K. 57%

June 1983

TABLE OF CONTENTS

(SUST IN CASE YOU WANT TO BRUSH UP)

CONTENTS PAGE

*An E053 Course In Progmmmins

The HP—L” Cover

OUhodunit @

.Settins the Scene LI

*Hows to picture your HP-H|- - vvvemeeennnss 8
Data I"CSiﬁth& q
ALPHA- resister 1]
DisP\qs 12
Stack resigters R L]
QRUILL ** vs 0 v oe oo tnsasesesscessssosnasascaes 15

*Keying data into the HP-4|-------ovvvvenn. 18

*Functions_and the keyboard -« -+ v-e- - 2|
Boid v co cvvsntsoeccestrcnrcnenenesee e s 22
PN i o oie 0 @ o e R WS R R R e 24
2= 28
[CATEBRY Do v oo s o0 diiih B0 0 om s wia s 6 saio & 508 o 5 5 5 3
ALPHA characters on the kesbmrd 4o
Function names vs. function arqumentg ::---- H2
Functions on the ALPHA keyboard, - «+:cevevveee 5

-253-

©000000C00CCCOCEEOCCC0C0OCCOCO0C0CQ0CQC0COCCOECCOOCCCEOCOCCOCCCOCEC

CONTENTS PAGE
* You've got o know your stack: e 58
Stack-lifg-s-- - ¢ e o s e s s e s s e e eeeese e 6\
.................................... 63
.................... ® s s s s 000 s 00 ses e 66
Arithmetic in the stack *cccccrrrresrtcsiacen 70
The L-resister T2
Exer-cise 71{
o The nqked Prosram 8 5
The Prosrgm pomter 88
BIZE «+ « st vt c i et i sttt bt s e e 90
JEND, * tcctsrtsnnnnseanesoaannonesessan, ql
ETOME s svovsvsasantssvessassosessasrse q2
LI DY = v 500 »iscn v s me 3 i & wow 0 i 8 @ w8 0 8 e Q4
END ve. END, **«vc¢vtsvraccoacnconsarssnsns 96
Quu_ qg
o| abels and branching T T rea— 10|
Gl*al vs. l“ﬂl 1“52!5 qu
Uh‘_" usé a slobal label:* - s e 109
Uh5 use a local label » =+ scr s e e cucnan, 110
VSIOEG]: ¢+ s s tes s v asr e ams it e i
*Decisionmaking in programe - v |18
Conditional testins 120
Flags and how touse them = =« « s s s rer e vece e e 126
Looping with ISG and DSE -+ ¢+ v v rec e e 132

-.25]1 -

CONTENTS PAGE
.AlPhanumerics 1n Progmms ILIg
ALPHA strinsg qu
PIROREEY i socnis o0 wirn vk w R e e e R e e 147
.................................. N7
................................... 148
R R R R 14q
@ a'nd ASHF --------------------------- |5q
AN 80l BOBE w5 s v 5563 wca s Kiv@ s nn s Vnva 156
and ;I“B s vonns omimies wvs wvsonssassn 157
.Ind;rec.}' addl‘ess'ing A8 e O o M e AN R 1)
Uil‘h "'Qa“hl"i S e e e B lba
R R W 16b
+PROGRAM DEVELOPMENT -+ -+ o-oo-- 73
REVIGW ¢ 2 *2 ¢ s ee s oevcvarocavsscosensososanse l"l..l
Balancing o checkbook. « « « = + = et e v tu et i, 177
Decimal fractions to/from inches and sixteenths - - (49
Plotting points from an equation « -« «+ o v e een 2e
'Appendix: On using the manuals----------- - 232
Smtistical Emtims 2 38
Fun facts toknowand tell- - - ¢ o0t 240
[] Urite to us 2 qu
o Editorial G e /] 5@

00

Use this cover flap as a bookmark

or, to see the title on the front spire,
ruck it inside the front cover. Lyhen
Bou\r‘e using the book Fold it inside
the back cover to get it out of the Ly,

i

s
%
=
Q
S
¢)!
>
Z
=
Q
g
=
A
=
as
S
am
o
=

.....
SEher

This incredibly frie
the power and sophig
Ing, conversational s
dation out of learning
former Hewlett-Pack
jargon-free approac
subject. And if a das
rations are added, the
EASY and ENJOYAE

Packed with examg
zes, this self-paced by
all the ins and outs o
RAMMING THE HP-4
calculator. Come alg
yourself using your ¢

This book

FROM THE
B GRAPEVT)

922347

This incredibly friendly book will help you discover and understand
the power and sophistication within your HP-41 calculator. Its refresh-
ing, conversational style and unique, readable format take the intimi-
dation out of learning to program your calculator. The authors, both
former Hewlett-Packard support engineers, realize that a relaxed,
jargon-free approach is the best possible way to present a technical
subject. And if a dash of humor along with some clever cartoon illust-
rations are added, then learning to program your HP-41 becomes both
EASY and ENJOYABLE!

Packed with examples, review questions, explanations and fun quiz-
zes, this self-paced book lets you work along at your own rate, learning
all the ins and outs of programming. “AN EASY COURSE IN PROG-
RAMMING THE HP-41" is the easiest and fastest way to master your
calculator. Come along on this Easy Course, and you'll soon find
yourself using your calculator like an expert!

This book applies to the HP-41C, the HP-41CV,
and the ultimate: the HP-41CX.

TR, [m
GRM\/INKE, .PUBLICBTION\S, INC TSRS

92234T ISBN 0-931011-09-Y4

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

