
L

L

L

L

L

L

L

HP-41
EXTENDED FUNCTIONS

MADE EASY

By
Keith
Jarett

L For the HP-41C, HP-41CV, and the New HP-41CX

L

HP-41

EXTENDED FUNCTIONS

MADE EASY

By Keith Jarett

© 1983, SYNTHETIX
P.O. Box 113

Manhattan 'Beach
CA 90266 USA

Library of Congress Card Catalog Number: 83-050952
ISBN: 0-9612174-1-3

This book may not be reproduced, either in whole or in part,
without the written consent of the publisher, except that the
programs contained herein may be reproduced for personal use.
Permission is hereby given to reproduce short portions of this
book for purposes of review.

Printed in the united States of America

PREFACE

DEDICATION
This book is dedicated to my wife, Catherine Van De Ros­

tyne, who could not have been more helpful and supportive.

ACKNOWLEDGEMENT
The most important contributions to this book were made

by Clifford Stern, who was the technical consultant throughout
its development. Clifford is one of a handful of "grand
masters" of HP-41 programming. He is probably more familiar
with the subtleties of the HP-41 operating system than any
other individual. Clifford wrote most of the very advanced
utility programs in Chapter 10, checked the book for technical
errors, and provided valuable suggestions for its improvement.

Other contributors to this book were Erik Christensen,
who wrote the text editor program and documentation that
appear in Chapter 8, Tapani Tarvainen and Gerard Westen, who
wrote the amazing key assignment program in Chapter 10, and
Alan McCornack, who wrote the mailing list program in Chapter ~
7 and provided many helpful suggestions during editing.

ABOUT THE AUTHOR
Keith Jarett has been addicted to Hewlett-Packard calcu­

lators since he bought an HP-45 in 1973 and wrote manual
keystroke programs for it. In 1980 and 1981, he coordinated
the development of 67 synthetic routines for the PPC ROM (see
Appendix C), a custom program module by and for HP-4l users.

He is currently a Systems Engineer in Hughes Aircraft's
Space and Communications Group. He graduated from Culver
Military Academy in 1972, received a B.S. degree in Electrical
Engineering from Cornell University in 1975, an M.S. in E.E.
from Stanford in 1976, and a Ph.D. in E.E. from Stanford in
1979.

For price information on this book, write to: SYNTHETIX,
P.O. Box 113, Manhattan Beach, CA 90266. Enclosed an ad­
dressed return envelope for faster reply. Dealer and distrib­
utor inquiries are welcome.

The material in this book is supplied without representation
or warranty of any kind. Neither the publisher nor the author
shall have any liability, consequential or otherwise, arising
from the use of any material in this book.

-ii- -

TABLE OF CONTENTS

INTRODUCTION ••• 1

"BUGS· ••• 3

HOW TO USE HP-41 EXTENDED MEMORY AND EXTENDED FUNCTIONS

Chapter 1: Saving Programs in Extended Memory •••••••••• 7
lAo Creating a Program File ••••••••••••••••••••••••••• 7
lB. The EMDIR function ••••••••••••••••••••••••••••••• 10
lC. using SAVEP and GETP ••••••••••••••••••••••••••••• ll
10. Advanced features of SAVEP ••••••••••••••••••••••• 15
lEo Advanced features or GETP, GETSUB, PCLPS ••••••••• 16
IF. Clearing a file from extended memory ••••••••••••• 19

Chapter 2: Saving Data in Extended Memory ••••••••••••• 23
2A. File Structure ••••••••••••••••••••••••••••••••••• 23
2B. SAVERX and the "working" file •••••••••••••••••••• 24
2C. GETRX and the register pointer ••••••••••••••••••• 25
20. The SEEKPT and RCLPT functions ••••••••••••••••••• 28
2E. SAVEX, GETX, SAVER, GETR, and CLFL ••••••••••••••• 28

Chapter 3: Text files in Extended Memory •••••••••••••• 33
3A. What is a text file? •••••••••••••••••••••••••••• 33
3B. Accessing data in text files •••••••••••••••••••• 36
3C. Insertion of data into text files •••••••••••••••• 37
3D. Deletion of data from text files ••••••••••••••••• 39
3E. POSFL, SAVEAS, and GETAS ••••••••••••••••••••••••• 41
3F. Viewing the contents of an ASCII file •••••••••••• 42
3G. Saving ASCII files on magnetic cards ••••••••••••• 44
3H. Additional text file functions on the HP-41CX •••• 5l

Chapter 4: More Extended Functions •••••••••••••••••••• 55
4A. Stack usage and input flexibility •••••••••••••••• 55
4B. ALPHA manipulation ••••••••••••••••••••••••••••••• 57
4C. Flag manipulations ••••••••••••••••••••••••••••••• 66
40. SIZE-related functions ••••••••••••••••••••••••••• 74
4E. Block operations ••••••••••••••••••••••••••••••••• 76
4F. Key assignment control ••••••••••••••••••••••••••• 8l
4G. Added functions on the HP-41CX ••••••••••••••••••• 89

EXTENDED MEMORY APPLICATIONS:

Chapter 5: A Program Byte Counter ••••••••••••••••••••• 97

Chapter 6: Data File Applications •••••••••••••••••••• 10l
6A. A Universal Root Finder ••••••••••••••••••••••••• 10l
6B. Numeric Differentiation ••••••••••••••••••••••••• lll
6C. A Universal Integration Program ••••••••••••••••• 12l

-iii-

Chapter 7: A mailing list program •••••••••••••••••••• 13l

Chapter 8: Text Editing on the HP-4l ••••••••••••••••• l4l

Chapter 9: An HP-16 Simulator program •••••••••••••••• 16l

Chapter 10: Synthetic programming •••••••••••••••••••• 169
l0A. What is Synthetic programming? •••••••••••••••• 169
l0B. Single-key execution of extended functions ••••• 170
l0C. The structure of extended memory ••••••••••••••• 178
l0D. A solution to the VERify bug •••••••••••••••••• ~183
l0E. A solution to the PURFL bug •••••••••••••••••••• 187
l0F. Executing programs in extended memory •••••••••• 189
l0G. Suspending/reactivating key assignments •••••••• 193
l0H. Saving key assignments in extended memory •••••• 194
101. Saving files on magnetic cards ••••••••••••••••• 199
l0J. Key assignments of synthetic functions ••••••••• 207
10K. "Crash n recovery tips •••••••••••••••••••••••••• 2l4

solutions to Problems •••••••••••••••••••••••••••••••••••••• 217

Appendix A: The VER and 7CLREG bugs ••••••••••••••••••••••• 22l

Appendix B: Execution times for extended functions •••••••• 223

Appendix C: HP-4l Books and Publications •••••••••••••••••• 227

Appendix D: Barcode for programs •••••••••••••••••••••••••• 23l

lIiiDEX •• 262

Index to programs •• 264

-iv- -

INTRODUCTION

The Extended Functions/Memory module, built into the new

HP-41CX and available separately for the HP-41C and CV, pro­

vides many new functions for your HP-41 1 • It also provides

127 additional registers of memory. Up to two Extended Memory

modules can be added, each of which contains 238 registers.

Thus, depending on how many Extended Memory modules you plug

in 2 to accompany your Extended Functions/Memory module, you

will have 127 to 603 registers of extended memory available.

Extended memory is an example of "off-line" storage.

Programs in extended memory are not directly usable; they must

first be brought into main, or "on-line", memory. Once in

main memory, programs can be modified or executed as needed.

Data can also be stored in extended memory.

In this respect, the operation of extended memory is

similar to that of the HP82104A Card Reader. The card reader

also has the capability to save programs and data outside main

memory. The most important differences between extended mem­

ory and the card reader are:

Card reader

Unlimited capacity

Manual operation

Long-term storage

Write-all, status,

data, program cards

Extended memory

Limi ted capacity (127 to 603 regs.)

Keyboard or program control

Short- to medium-term storage

(susceptible to MEMORY LOST)

Program, data, text file types

The extended memory equivalent of a magnetic card set is

\..- called a file. Just as there are different formats for mag­

netic cards (program cards, data cards, etc.), there are

different types of extended memory files. The three file

types are program, data, and text, also called ASCII 3 •

-1-

A program file, as the name implies, holds a program. A

data file holds one or more registers of data. A text, or

ASCII file holds a collection of character strings. These

file types will be introduced and explained in the first three

chapters where examples of their use will be given.

IThe Extended Functions/Memory module provides 47 functions.

The HP-41CX includes these 47 functions plus 14 more, for a

total of 61 extended functions.

2DO not plug in two Extended Memory modules one above the

other. The Extended Functions/Memory module can be plugged in

anywhere. Consult Section 1 of your Extended Functions/Memory

module Owner's Manual for details of which module configura­

tions are allowed. If you have only one Extended Memory

module, you should plug it into'port 1 or port 3 (top left or

bottom left as viewed from the top end of the calculator).

3!merican ~tandard fode for !nformation !nterchange --

a system for expressing character values in 7 binary digits.

Each character uses one byte (1/7 of a register) in the HP-41.

-2- -

·BUGS·

A "bug" is defined as any behavior of a function that is

either undesirable and unexpected or that is different from

what is described in the appropriate Owner's Manual. Because

of the incredible complexity of the internal programming in

the HP-41's Extended Functions ROM (~ead-2.nly-~emory), a few

bugs managed to survive the normal "debugging" procedure at

Hewlett-Packard. Under certain somewhat unusual circumstan­

ces, some of the extended functions can have unpleasant re­

sults, sometimes even MEMORY LOST.

If you have either an Extended Functions/Memory module or

a card reader manufactured before September 1983, you should

read this section before proceeding. Otherwise your HP-41

'- system is essentially free of bugs, and you may skip this

discussion for now.

This book gives full details and techniques to help you

prevent problems with any extended functions bugs that you may

have. In some cases, you can even repair the damage caused by

a bug after it "bites". The purpose of this brief summary is

to give you enough inf,ormation so that you can avoid trouble

'- until later in this book, where prevention and repair tech-

niques are explained in detail.

You should not fault HP for the existence of bugs. They

spend much time testing their work before releasing it in a

product, but no set of tests can cover all operating cond-

i tions. At some point testing has to end and production

begin. If you want perfection, you will have to wait a long

time.

Hewlett-Packard produces calculators and modules with

fewer problems than any other manufacturer. What few bugs

remain are simply the price for a product that is ahead of its

competition in performance and value.

-3-

There are three bugs in the early versions of the HP-41

Extended Functions/Memory module. Techniques presented in

this book will eliminate all problems with these bugs. Usual­

ly, preventative steps are described, but a repair procedure

is also possible for the most frequently occurring bug.

The first extended functions bug is that the SAVEP (save

program) and PCLPS (programmable clear programs) functions

must not be executed if the calculator is positioned in an

application module program, outside main memory. This is

covered in detail on pages 12 and 13. If you use the "XF"

program (Section 10B) to execute extended functions from the

keyboard, this problem will be automatically avoided.

The second bug is that the PURFL (purge file) function

sets up a dangerous situation in which a wrong move can lose

access to the entire contents of extended memory. Fortunate­

ly, synthetic programming techniques (Section 10E) can be used

to repair the damage. Other simple measures can help to

prevent the problem from occurring in the first place. For

more information on PURFL, refer to pages 19 through 21. In

case you have never heard of synthetic programming, Section

10A has a short description of what synthetic programming is

and how you can learn more about it.

The third bug is that the card reader's VER and 7CLREG

functions can alter the contents of extended memory. until

you read the full details in Appendix A, do not use VER when

an Extended Memory module is present in port 2 or port 4 or in

a combined module. The Extended Functions/Memory module can

be plugged in anywheJ:e without risk. A short synthetic pro­

gram in Section 10D will allow you to use VER without harming

extended memory.

The first two bugs listed above appear only in Revision

IB of the Extended Functions module. You can find out which

revision you have by executing Catalog 2 (press shift CATALOG

-4- -

2). Somewhere in the list of peripheral functions will appear

the message

-EXT FCN lB

-EXT FCN lC

or -EXT FCN 2C (HP-41CX only)

If the message goes by too fast, you can press R/S to inter­

rupt the listing, then use BST to get back to it. Revisions

lC and up are free of the SAVEP/PCLPS and PURFL bugs.

The third bug is actually due to the operation of the

card reader. It appears in all but the most recent card

readers. Check the revision number of your card reader by

running Catalog 2. If you see

CARD READER

CARD RDR lD

CARD RDR lE

or CARD RDR lF

then your card reader has the VER bug. If you have a revision

1G or higher, your card reader is free of this bug.

Note that the HP-41CX has no bugs in its extended func­

tions, but if you use it with an older card reader, you will

still have to avoid using the VER function until you read

Section 10D.

Now let's find out what extended memory is all about.

-5-

CHAPTER ONE

SAVING PROGRAMS IN EXTENDED MEMORY

lAo Creating ~ Program File

The most commonly used extended memory operations are

SAVEP (save program) and GETP (get program). These operations

save a program in extended memory and retrieve it from extend­

ed memory. To illustrate these functions, turn on your HP-41,

press GTO.. and key in the following program:

ill*LBL •. JNX· 12 * 22 RCL il3 33 Xt:il? 44 STO III 54 RCL 112
112 STO 113 13 STO 117 23 I 34 / 45 RCL 115 55 STI III
113 ASS 14 1IX 24 RCL il4 35 STt il2 46 STO 116 56 STI 114
84 5 15 STO 112 25 STO 115 36 RCL 81l 47 RCL 117 57 STI 115
85 + 16 STO 114 26 * 37 2 58 STI 116
86 XOY 17 STO 85 27 + 38 ST- 117 48*LBL III 59 RCL liS
87 STO 118 28 STO il4 39 * 49 Xt:Il? 611 RCL 114
88 W'? IS*LBL ilil 29 RCL il7 411 RCL 117 511 GTO illl 61 RCL 116
119 XO'l' 19 RCL 115 3il 4 41 Xt:y? 51 RCL 114 62 RCL III
III INT 211 eHS 31 I 42 GTO III 52 ST- 112 63 END
11 4 21 RCL il7 32 FRC 43 RCL 84 S3 RCL III SIl BYTES

If you see the message PACKING followed by TRY AGAIN, you will

need to reduce the SIZE to make more registers available for

this program. An alternative to reducing the number of data

registers allocated is to use the CLP function to clear one or

more programs (choose ones that are expendable or that you

have saved on cards or tape) to make space available.

When you are done keying in this program, GTO •• to pack

and attach an END to it. This is important to minimize the

space required to store the program in extended memory.

Another thing you should do before saving the program is to

execute each GTO (lines 42 and 59) at least once. This is

explained more fully on page 189.

To execute these lines, switch to RUN (non-PRGM) mode and

press GTO .042. Next press SST and hold the key down until

the program line appears in the display, then release the key.
When the display clears, you know that line 42 has been exe-

-7-

cuted. Next press

GTO.050

SST (hold until line 50 appears, then release).

The program is now ready to be saved in extended memory. The

procedure for saving a program will be described in section C

of this chapter.

Description of the "JNX" program

The "JNX" program computes Bessel functions of the first

kind of integer order, In(x), with eight-digit accuracy. This

program mayor may not be useful to you, but it is a good

example of the power of the HP-41. The Bessel function pro­

gram "JNX" will be used in Chapter 6, so you may wish to save

it on a magnetic card or the cassette drive before proceeding.

To test that your version of "JNX" is operating correctly, try

2 ENTERT 1.2 XEQ "JNX"

to calculate J 2 (1.2). The result should be 1.593490l84x10-1•

You may now skip to the beginning of the next section

(page 10) unless you are particularly interested in Bessel

functions. The following detailed discussion describes exact­

ly how the "JNX" program works.

Line-by-line analysis of "JNX"

The algorithm used by "JNX" is based on the recurrence

relation

J i-l (x) = (2m/x) J i (x) - J i+l (x)

The process starts with initial estimates

Jm(x) = Jm+l(x) = 1/2m, where m = 2*INT(max(n,x+5».

The recurrence relation is evaluated for decreasing values of

n, until n=0 is reached. During this process, the sum

-8-

is evaluated. Since this sum theoretically should equal 1, it

~ is used to normalize the previously computed value of In(x).

Now to the specifics of this program. The data register

"- usage of "JNX" is

re9:ister contents

00 n

01 I n (x)

02 normalization sum

03 x

04 J i (x) (starts at 112m)

05 J i+l (x) (starts at 112m)

06 In+l(x)
07 2i (starts at 2m)

Lines 01-17 of "JNX" initialize the data registers. The

LBL 00 loop computes Ji_l(x) from the previous estimates Ji(x)

and J i+l (x). This new estimate replaces the old J i (x) (line

28), while J i (x) replaces the old J i+l (x) (lines 24 and 25).

Lines 30-35 add 2J i _ l (x) to the normalization sum only if

i is odd (that is, if the fractional part of 2i/4 is 0.5).

Lines 37-38 decrement i (register 07) for the next time

through the loop. Then, if i=n, lines 43-46 save the current

values of Ji(x) and Ji+l(x) for later use. Otherwise these

lines are skipped over. Unless i=0 (lines 49-50) the LBL 00

loop is repeated, counting down one more step toward J 0 (x).

When i=0 is reached,

imates of J 0 (x) and Jl(x).

registers 04 and 05 contain est­

Lines 51-52 adjust the sum for the

extra J 9 (x) term added at line 35. Then the normalization

factor is applied to all four Bessel function estimates. When

the program halts, the following results are in the stack:

re9:ister

T

Z

Y

X

contents

J 1 (x)

J 9 (x)

I n +l (x)

I n (x)

-9-

lB. The EMDIR function -- ----
Before saving the "JNX" program in extended memory, it is

advisable to check the status of extended memory. Press

XEQ ALPHA E M D I R ALPHA

EMDIR is the Extended ~emory DIRectory function. If you have

an HP-41CX, a shortcut is available. You can press

shift CATALOG 4

to request the extended memory directory.

If you haven't used extended memory yet, you will see the

message DIR EMPTY. If you have saved programs or data in

extended memory, note that each entry in the directory des­

cribes a "file", which is a set of extended memory registers

allocated to storing a program or a block of data. The file

description consists of three items: the file name, the file

type, and the file size.

The file name is a string of up to 7 characters. The

file type is designated by a single letter: P for program, D

for data, and A for ASCII (text). These are covered in Chap­

ters 1, 2, and 3, respectively. The file size is the number

of extended memory registers allocated. Actually, two more

registers per file are used for the file header. One header

register holds the file name, while the other holds file type,

length, and pointer codes. (Full details are given in section

10C.) Thus if you create a 12-register file, whether it be a

program file or any other type of file, the number of free

registers in extended memory will drop by 14.

You can check the number of extended memory registers

available by letting EMDIR run to completion. The number will

then appear in the X-register (raising the stack). This

number is always two less than the number of unused registers

left in extended memory, because the calculator automatically

subtracts the two registers that will be needed by the next

file created. Thus if EMDIR yields a register count of 53,

there are actually 55 unused registers, but the largest file

you can create is a 53-register file.

-10-

The EMDIR function is somewhat analogous to the CATALOG

1 function for main memory. Because of its usefulness, you

should consider assigning EMDIR to a key. Press

shift ASN ALPHA E M D I R ALPHA,

followed by the key of your choice. with an HP-41CX, the

extended memory directory can be interrupted, single-stepped,

and back-stepped in the same way as Catalog 1. with an HP-41C

or CV you cannot interrupt the extended memory directory.

Instead, you can "freeze" the display by pressing and holding

any key except R/S or ON. Release the key to resume the

listing. Press R/S to interrupt (terminate) the listing.

On the HP-41CX, there are two other functions that are

related to EMDIR. The EMROOM (extended memory room) function

returns the number of extended memory registers available for

data, just as does EMDIR when run to completion. The differ­

ence is that no directory is displayed. This makes EMROOM

more suitable than EMDIR for use in a program that creates

'- extended memory files. You can test the number of registers

available before trying to create a file, perhaps reducing the

'- requested file size to match the EMROOM.

Also on the HP-41CX is the function EMDIRX (extended mem­

ory directory -- file X). When you put a number n in X and

execute EMDIRX, the name of the nth file in extended memory

will be returned in the ALPHA register and the file type will

be returned to X as a two character string (PR, DA, or AS for

program, data, or ASCII files).

lC. Using SAVEP and GETP

To save the "JNX" program in extended memory, simply

press

ALPHA J N X ~LPHA

followed by

XEQ ALPHA S A V E P ALPHA

The display will blank for a few moments, except for the

annunciators, while the operation is performed.

-11-

This procedure for using SAVEP (save program) is similar

to the procedure that you will use for many other extended

memory operations. First you load the name of the program or

file into the ALPHA register, then you execute the function.

To check the results of your SAVEP operation, execute

EMDIR (or Catalog 4 for the HP-41CX). You should see:

JNX P0l2.

If it went-by too fast, you can try EMDIR again. On the HP-

41C or CV, holding down any key freezes the display until you

release the key. On the HP-41CX you an press R/S to halt the

directory and SST to step through it.

Another way to check the existence or size of an extended

memory file is to use the FLSIZE (file size) function. Just

put the file name in the ALPHA register and execute FLSIZE.

For the above example, you would press

ALPHA J N X ALPHA

XEQ ALPHA F LSI Z E ALPHA

The result should be the number 12 in the X register. This is

the size of the "JNX" file, exclusive of the 2 header regis­

ters that are needed by any extended memory file.

When you use FLSIZE, the result is the size of the named

file if it exists, or the error message FL NOT FOUND if the

named file does not exist. FLSIZE works the same for all

three types of files: program, data, and ASCII. If you ex­

ecute FLSIZE with the ALPHA register empty, the size of the

"working" file will be returned. The "working", or "current",

file is the last file that you referred to by name in an

extended memory function like SAVEP, or the file at which an

EMDIR display was terminated. More details on "working" files

will be given on page 20.

WARNING: (Revision IB only) When you use SAVEP, make sure

that the calculator is positioned in main memory, not in an

appl i ca ti on module's read-only memo-ry (ROM). Be espec i ally

wary when an application module (Math Pac, Standard Pac, etc.)

is plugged in. Even the printer (or the HP-IL module with the

-12- -

printer switch on) contains three programs, PRAXIS, PRPLOT and

PRPLOTP, in read-only memory. The "XF" program presented in

Chapter 10 guarantees that you will be in main memory when you

execute SAVEP. This warning does not apply to the HP-41CX,

nor does it apply to revisions lC and up of the Extended

Functions/Memory module.

To find out whether or not you are in an application

module program, start in RUN (non-PRGM) mode, press

shift RTN

and switch into PRGM mode. This moves you to line 00 of the

~ current program. If you see just

00

then you are in an application ROM program. You can press

shift CATALOG 1 or GTO ••

to get back to main program memory. I f you know the name of a

specific program in main memory, you can press

GTO ALPHA (program name) ALPHA

'-- This will also return you to main memory. Once in main memory

if you press

shift RTN PRGM

to move to line 00 of the current program, you should see

00 REG nnn

where nnn is the current number of free registers in main

program memory.

If you accidentally do a SAVEP while you are outside main

memory, do a PURFL(purge file - page 19) immediately. The

program file that SAVEP creates under these conditions is

likely to be quite large and is certain to be unusable. One

of these files can even lock up the calculator's keyboard if

you try to bring it into main memory.

Incidentally, if you want to transfer an application

module program to extended memory, you will have to do a COpy

first, to bring the program into main program memory.

'- This same warning against being outside main memory ap-

plies even more strongly to PCLPS (programmable clear programs

-13-

-- to be discussed on page 18). In the case of PCLPS, the

penalty for a mis-step is the dreaded MEMORY LOST. Once

again, this warning does not apply to the HP-41CX or to revi­

sions lC and up of the Extended Functions/Memory module.

Now let's retrieve the "JNX" program from extended mem­

ory. Make sure that the ALPHA register still contains "JNX",

then GTO •• and press XEQ ALPHA GET P ALPHA. Assuming that

you had sufficient program space available, you should now

have a second copy of "JNX" in main memory. Execute Catalog 1

and you should see LBLTJNX, END, LBLTJNX, and .END. REG xx as

the last items listed.

This illustrates the fact that GETP (get program) re­

trieves the designated program and places it between the last

END and the .END., even if this means that a program must be

overwritten. In particular, if you had not performed the

GTO •• to attach an END to the "JNX" program before saving it,

the GETP operation would have overwritten the old copy of

"JNX" with the new one, leaving only one copy instead of two.

You may wish to practice more with SAVEP and GETP, using your

own library of programs.

When they are assigned to keys, the functions SAVEP and

GETP provide single-keystroke equivalents of recording and

reading magnetic program cards. A typical application is

moving a program down to the bottom of Catalog 1 for faster

response when editing or PACKing. [When you insert an in­

struction or PACK a program that is located near the top of

Catalog 1, all lower programs in Catalog 1 must be shifted.

This slows the calculator's response noticeably.] Use SAVEP

to save the program, CLP to clear it from main memory, and

GETP to bring it back at the bottom of Catalog 1. Techniques

like this are useful, but the full power of SAVEP and GETP is

harnessed by using these instructions within your programs.

Before exploring this subject, you need to know a little

more about SAVEP and GETP.

-14-

\

10. Advanced features of SAVEP

The above examples might have led you to believe that a

program can only be saved in an extended memory file having

the same name as the program. with a little more effort, it

is possible to save a program under any file name you like.

Instead of just putting the program name (actually the name of

any Catalog 1 ALPHA label in the program) in the ALPHA regis­

ter, you can follow the program name with the desired file

'- name, using a comma as a separator. If you want to save the

current program, it is OK to omit the program name and simply

\..-. load ALPHA with a comma, followed by the file name.

[The current program is the one that appears when you

switch into PRGM mode. This is usually the program you ex­

ecuted most recently, unless you have pressed GTO •• or CATALOG

1, both of which can move you to a different portion of pro­

gram memory.]

The allowable ALPHA contents for SAVEP are as follows:

ALPHA contents

·program name"

·program name,file name"

result

The program containing an ALPHA

label of this name is saved in

extended memory in a file of the

same name.

"-'

The named program is saved in a

file of the designated name.

CAUTION: Do not leave a space

after the comma, unless you want

the space to become part of the

file name.

",file name· The current program is saved in

a file of this name.

Hote: Commas are not allowed in file names, since the comma

'- is interpreted as a name separator. File names cannot exceed

seven characters (any excess characters are ignored).

-15-

lEo Advanced features of GETP, including GETSUB and PCLPS

Unlike SAVEP, the GETP function operates differently when

it is executed as part of a program rather than from the

keyboard. Either way, GETP brings the program file named in

the ALPHA register into program memory, putting it just after

the last END in Catalog 1 and before the .END.. As in the

case of reading a program from cards, barcode, or cassette,

the program's ALPHA label key assignments will only take

effect if the GETP is performed in USER mode. (Any existing

conflicting key assignments are overwritten.)

When called from the keyboard, GETP sets the calculator

to the first line of the retrieved program. This makes it

convenient either to switch into PRGM mode and review the

program, or to press R/S and run the program.

When it is encountered in a running program, GETP reads

in the named program file and continues to run the original

program. An exception is made for the case in which the

original program was the last program in main memory. [The

last program in main memory is tne one that has the .END. as

its last line.] In this case, when the program file is read

in, the original program is overwritten. Clearly the original

program cannot continue to run. Instead, execution resumes at

the first line of the new program.

When you write a program that uses GETP, you must care­

fully plan the GETP operations so that no important programs

are accidentally overwritten. Often it is helpful to place a

note in the program's operating instructions, requiring that

the user either clear the last program in memory or to GTO ••

before running the program. It is good operating practice not

to GTO •• until you make sure either that the last program area

in main memory is blank (no lines other than the .END.) or

that it contains at least one ALPHA label. This precaution

will help prevent the annoying proliferation of excess ENDs in

Catalog 1.

A program can use GETP to load the subroutines it needs

-16-

from extended memory, each time overwriting the previously

used subroutine. This technique, called overlaying, is neces­

sary for very large programs when all the subroutines will not

fit into main memory at the same time.

The precautions needed when GETP is used may tempt you to

use GETSUB instead. The GETSUB (get subroutine) function is

almost the same as GTO.. followed by GETP. The difference is

that a new END is created even if the last program in ~ain

~£~~ ~~ blank. If you make a habit of using GETSUB, you

will soon find that your Catalog 1 is full of extra END's.

'- These END's will have to be deleted using the following proce-

dure:

I f you have an extra END with no ALPHA label preced ing it

in Catalog 1, the only way to get rid of it is to run Catalog

1 and interrupt it at the extra END. Then you can either

switch into PRGM mode and backarrow the END or you can ,press

XEQ ALPHA C L P ALPHA ALPHA ALPHA.

'- (When no program name is supplied, the CLP function clears the

current program.) If several ENDs are back-to-back, stop

Catalog 1 at the first one, switch into PRGM mode, and press

backarrow and SST alternately until a non-END line appears,

indicating that the entire group of ENDs has been deleted.

Whether GET SUB is executed from a program or from the

keyboard, the result is the same. The .END. is converted to

"'--" an END, the program file named in the ALPHA register is read

in, and a new .END. is added. Execution is not transferred to

the new program.

The only valid use of GET SUB is to retrieve a program

from extended memory when the last program in Catalog 1 has

the .END. as its last line, and you do not want that program

to be overwritten. This can occur when several program files

need to be read in from extended memory. The first file can

be read in using GETP, while GETSUB can be used for the subse­

quent files. This procedure avoids the creation of extra

END's. However, if the last program in Catalog 1 has a non-

-17-

permanent END, or if you do not want to save that program,

then use GETP rather than GETSUB.

Incidentally, if you are familiar with the card reader

functions, GETP is precisely analogous to reading in a program

card set, and GET SUB is almost analogous to executing the RSUB

card reader function. The difference is that RSUB only con­

verts the .END. to an END if you are in the last program in

main memory (the one that has the .END. as its last line).

When you are done using all the programs that were read

in, you can use the PCLPS (programmable clear programs) func­

tion to delete them. Just load the ALPHA register with the

name of the first program that you read in from extended

memory (the one tha t you read in with GETP, rather than

GETSUB). Then PCLPS will clear that program and all programs

follow~ l! in Catalog l. If the ALPHA register is clear,

the current program and all following programs will be

cleared. This will occur exactly the same whether PCLPS is

called from the keyboard or encountered in a running program.

Execution of the running program will continue after the

affected programs have been cleared.

WARNING: (Revision IB only) If the calculator is positioned

outside main program memory (in an application module program)

and the ALPHA register is not clear, executing PCLPS will give

MEMORY LOST, after a delay of several seconds for dramatic

effect. Refer to the SAVEP warning (page 12) for more de­

tails. The "XF" program in Section 10B has the incidental

benefit of preventing this problem from occurring.

Astute readers will notice that PCLPS has an exception

much like the one for GETSUB. PCLPS clears the named program

and all the programs following it. If the PCLPS function is

executed in a running program that is one of the programs

being cleared, execution will terminate at the .END •• How­

ever, if the PCLPS instruction was part of a subroutine, the

-18-

'--

.END. will be executed and interpreted as a RTN. Control will

return to the calling program which may no longer exist if you

did not plan things correctly. If the calling program does

not exist (due to the action of PCLPS), you will find yourself

outside the program area of the HP-41, in the I/O buffer and

key assignment registers which lie beyond the .END.. This

will occur regardless of which revision of extended functions

you have. Although synthetic programmers will relish the

possibilities, this situation should be avoided. If you are

unlucky enough to have this problem occur, just interrupt the

program (if it doesn't stop itself with an error of some

sort) then press

shift CATALOG 1 or GTO ••

to reposition the calculator to main program memory.

IF. Clearing ~ file from extended memory

Just as the CLP (clear program) instruction clears the

named program from main memory, the PURFL (purge file) func­

tion removes the named file from extended memory. The named

file can be a program, data, or ASCII file. After the file is

removed, extended memory is automatically packed to free the

space formerly used by the file. This operation is somewhat

similar to the packing performed by CLP.

\- WARNING: (Revision lB only) The PURFL function has one very

dangerous feature. After PURFL is executed, there is no

"working" file. If a working file is not quickly re-estab­

lished, the entire contents of extended memory can be rendered

inaccessible. Any instruction that operates on the working

file will destroy the extended memory directory if a working

file does not exist at the time the instruction is executed.

'- Then special techniques (Section l~E) are necessary to restore

the directory.

Note: If your Extended Functions module is a revision lB,
this "bug" can be useful. The sequence PURFL, RCLPT is a

-19-

quick and easy way to clear the extended memory directory

without disturbing main memory. This sequence should never be

used in a program, though.

The ·working· file , which is called the current file in

the HP-41CX Owner's Manual, is the last file used or created,

unless an EMDIR instruction (or CATALOG 4 on the HP-41CX) was

executed since then. When you run the extended memory direc­

tory on an HP-41C or CV, the last file displayed becomes the

working file. This is true regardless of whether the direc­

tory ran to completion or was interrupted. On an HP-41CX, the

working file changes only if you do not let the directory run

to completion.

The "working" file in extended memory is analogous to the

·working", or current, program in main memory. The current

program in main memory is the program which appears when you

switch into PRGM mode. All program-related operations which

do not specify an ALPHA label name operate on the current

program. Instructions like GTO .r.Hen, LIST 999, DEL 005, and

CLP ALPHA ALPHA all operate on the current program. In main

memory, the current program is selected one of two ways. It

is normally the program last accessed by a GTO "label" or XEQ

"label" instruction. However, if you subsequently execute

Catalog 1, the program at which Catalog 1 stops becomes the

current program. Thus by carefully choosing a point at which

to halt Catalog 1, you can select a current program without

having to spell out a GTO "label" instruction (if indeed the

program you want contains an ALPHA label).

Just like Catalog 1, EMDIR can be prematurely halted (by

pressing R/S) in order to select a working file. The other

ways to establish a working file are to create a new file or

to execute any instruction that refers to an existing file by

name.

Now suppose that you have just executed PURFL, but you

have not yet established a new working file. If you now ex-

-213-

ecute a function that operates on the working file, for exam-

"- ple FLSIZE with the ALPHA register empty, you will get the

message FL NOT FOUND. This is certainly reasonable, since

there was no working file to operate on. However, with a

revision lB Extended Function/Memory module, if you then exe­

cute an EMDIR, you will see the DIR EMPTY message. Your

',,-~ entire extended memory directory is gone!

There are several ways to alleviate the problem with

~ PURFL if you have a revision lB Extended Functions/Memory

module. Your first line of defense is to make a habit of

, ,-.

executing EMDIR or otherwise establishing a new working file

immediately after using PURFL. This includes any uses of

PURFL in your programs. Your second defense is to ask your­

self "Have I defined the correct working file?" before any

instruction that operates on the working file. Where an

instruction that can operate on either the named file or the

working file is to be used in a program, you can precede it by

the steps ALENG (alpha length -- see page 63) and l/X to make

sure that the ALPHA register is not empty. Lastly, a short

program called "PFF" (purge File Fix) in Section 10E permits

the damage to be repaired after the fact. This program cont­

ains some synthetic instructions which cannot be keyed in by

~ normal means, but barcode for the program is provided in

Appendix D. Once again, this problem with PURFL does not

'--. occur with the HP-41CX or with revisions lC and up of the

Extended Functions/ Memory module.

One more detail about SAVEP deserves to be mentioned. If

you save a new version of a program that is already saved in

extended memory, the old file will automatically be purged and

the new version will be added at the end of the extended

'- memory directory. Knowing this ahead of time may save you a

few moments of panic when you run the directory. You can

retain the old program file if you choose to use a different

name for the new program file (see page 14).

-21-

,-

\

CHAPTER TWO

SAVING DATA IN EXTENDED MEMORY

2A. File structure

Saving data in extended memory requires a few more steps

than saving a program. Rather than simply saving the data, we

must first create an empty data "file" in extended memory in

which to save the data. Figure 2.1 shows the structure of

such a file. This structure is the same for all three types

of files (program, data, and text), except that that the

information within the file is organized differently. For

program and text files, each register equals 7 bytes.

FILE HEACER {

DATA 0

2

3

FLSIZE -1

BOTTOM OF PRECEDING FILE

FILE NAME

FILE SIZE, TYPE, POINTERS

•
•
•

TOP OF NEXT FILE

Figure 2.1. Register Usage for an Extended Memory File
Header information is available through FLSIZE, EMDI R, etc.

-23-

To make the examples in this chapter easier to follow,

use the following short routine to pre-load the data registers

with values that are the same as the register numbers. Data

register 00 gets the value 9, register 01 gets 1, and so on,

until a NONEXISTENT register is encountered.

01 LBL "PRELOAD"

02 1

03 ENTERT

04 ENTERT

05 ENTERT

06 CLX

07 LBL 01

08 STO IND X

First load the stack with l's

for repeated addition.

Start with X=0.

09 +

Store X in register number X.

Add 1.

10 GTO 01 Go back to line 07.

11 END

2B. The SAVERX function and the "working" file

Suppose you want to save the contents of data registers 2

through 9. If you were using magnetic cards, you would key in

2.009 XEQ "WDTAX".

To save these registers in extended memory you must first

create a data file of at least 8 registers. There is no

instruction analogous to SAVEP that creates the file and

transfers the data in one operation.

Let's name the data file "ABC". Press

ALPHA ABC ALPHA

to name the file, then

8

to designate the file size, followed by

XEQ ALPHA C R F L D ALPHA (create file -- data)

to create an empty 8-register file. The CRFLD (create file

data) instruction expects the file name in the ALPHA register

and the file size (the number of data registers in the file)

in X. CRFLD clears the registers in a file as it is created.

-24-

Execute EMDIR and you should see

ABC 0008

as the last entry in the directory. To save the contents of

registers 2 through 9 in the "ABC" data file, press

2.009 XEQ "SAVERX"

(press XEQ ALPHA S A V E R X ALPHA).

The SAVERX (save registers designated by X) function

'- accepts a number in the X-register of the form bbb.eee. A

block of data registers beginning with register number bbb and

ending with register number eee is transferred to the

"working" data file in extended memory. The "working" file is

the last file used or created, unless an EMDIR or PURFL was

executed. When you run the extended memory directory, the

working file becomes the file at which you stopped the direc­

tory. On the HP-41CX, if you let the directory run to

completion, the working file is left unchanged. On the HP-41C

or CV, letting the directory run to completion selects the

last file in the directory as the working file.

2C. The GETRX function and the register pointer

If you have been thinking ahead, you might suspect that

""-- the sequence 12.019, XEQ "GETRX" would retrieve the 8 numbers

and place them in data registers 12 through 19. As logical as

""-- this may seem, it is not the case. If you try this sequence,

you will get the error message END OF FL. Some explanation

is in order.

A data file in extended memory can be very large. A

single such data file can be used to save several blocks of

\....... data. Furthermore, you need not retrieve the entire file at

once. Small blocks of data or even single registers can be

\....... retrieved from a data file. The price for this flexibility is

that a pointer is required to specify where in the data file

you wish to store or retrieve data. without a pointer it

would be. impossible to guarantee that GETRX would retrieve the

-25-

right block of data.

But if a pointer is necessary, why didn't we have to set

it up before doing the SAVERX operation? Normally it is

necessary to set up the pointer, but in that case, the "ABC"

file had just been created. A newly created file has a poin­

ter that is automatically initialized to zero, meaning that

any SAVE or GET operations are performed beginning at register

1iJ, the first register of the file. [Registers in an extended

memory data file are numbered starting with 1iJ, just as the

data registers in main memory are numbered.] Therefore the

sequence 2.1iJ1iJ9, SAVERX stored the contents of data registers 2

through 9 into the first 8 registers (and only 8 registers) of

the "ABC" data file. This sequence had the additional unob­

served effect of advancing the pointer from IiJ (the first

register) to 8 (one past the last register in the file). Any

further operations such as GETRX will give the END OF FL error

message until the pointer is re-set.

To set the pointer, we use the SEEKPTA function. The

SEEKPTA (seek pointer for the file named in ALPHA) function

simply sets the pointer to the value specified in X. The file

name should also be specified in the ALPHA register. If the

ALPHA register is clear, SEEKPTA will operate on the working

file. Each data file has its own pointer, stored in one of

the file's two header registers. A SEEKPTA on one file will

not affect the pointer for another file.

For example, suppose we want to retr ieve the former

contents of data registers 4 through 7 from the data file

"ABC" and place these four values in data registers 11 through

14. Figure 2.2 illustrates this operation. Note in Figure

2.2 that the former contents of data register 4 reside in the

third register of the file "ABC". Therefore we press

ALPHA ABC ALPHA 2 XEQ ALPHA SEE K PTA ALPHA

to set the pointer value to 2, the third register of the file.

Once this is done we simply press

ll.1iJ14 XEQ ALPHA GET R X ALPHA

-26-

to retrieve the data. Use RCL to check that registers 11, 12,

~ 13, and 14 contain the same values as registers 4, 5, 6 and 7.

DATA FILE "ABC" DATA REGISTERS
REGISTER

0 f02 fOO ROO
POINTER:

f03 fOl ROl

BEFORE
--2 f04

GETRX • •
3 f05 • •
4 f06 • •
5 f07 flO RlO

AFTER --6 f08 f04 R11
GETRX

7 f09 f05 R12

f06 R13

f07 R14

f 15 R15

• • •
Figure 2.2. Effect of the Sequence: "ABC" 2 SEE KPTA 11.014 GETRX.

The GETRX (get registers designated by X) function ac­

cepts a number in the x-register of the form bbb.eee, desig­

nating the data register block in which the retrieved data is

to be placed. GETRX retr ieves the des igna ted number of data

registers from the working extended memory file, starting at

the current register of the file. GETRX also advances the

register pointer to the first register beyond the block that

was retrieved from extended memory.

SAVERX, like GETRX, advances the register pointer to the

first register beyond the block that was written into extended

memory. In fact, this automatic advancing of the register

pointer is common to all data file SAVE and GET functions.

-27-

The RCLPTA (recall pointer for file named in ALPHA)

function provides an easy way to check the current value of

any file's pointer, in case you do not remember it. Just put

the file name in ALPHA and execute RCLPTA, and the pointer

value will be recalled to X. If ALPHA is clear, RCLPTA will

operate on the working file. As for any RCL operation, the

stack will be lifted unless the RCL was immediately preceded

by an ENTERT, CLX, or similar stack lift-disabling operation.

As an example of RCLPTA, let's now check the pointer.

Since you just recalled registers 4 through 6 of the "ABC"

file, if you execute

RCLPTA

the result should be 7.

!i£: RCLPTA is a convenient way to select a file to be the

working file without altering the contents of the file.

2D. The SEEKPT and RCLPT functions

The SEEKPT (seek pointer) function operates identically

to SEEKPTA, except that the operation of setting the pointer

is performed on the "working" file, rather than the file named

in ALPHA. If you are sure which file is the ·working" file,

SEEKPT saves a few steps. Otherwise use SEEKPTA.

The same advice applies to using SEEKPT in a program. If

a preceding step of the program established the correct

"working" file, it is OK to use SEEKPT. If not, use SEEKPTA.

The RCLPT (recall pointer) function is a version of

RCLPTA that operates on the working file. Use it instead of

RCLPTA when you are sure which file is the working file.

2E. More data file functions: SAVEX, GETX, SAVER, GETR, CLFL

The SAVEX (save X register) function transfers the con­

tents of the X register to the working file, which must be a

data file, in extended memory. The current pointer value

designates which register of the data file is used. After the

-28- -

value is saved, the pointer value is increased by 1. For

example, to store the value 15 in the third register (register

number 2) of the data file, press

2 XEQ "SEEKPT"

15 XEQ "SAVEX"

The pointer value is now 2+1 = 3, so that a second SAVEX

instruction would store X in register 3 of the file. This

automatic incrementing of the register pointer with SAVEX is

'- extremely useful. You can write a program that computes one

result each time through a loop, with a single SAVEX instruc-

'-- tion to store the result:

"filename"

CLFL or CRFLD

LBL "1

(CLFL will be covered on page 31)

(insert steps here to compute result)

'-- SAVEX

GTO "1
.\"..... There is no need to mess around with register pointers or ISG

counters for storage. If you need a counter for the computa-

tion, you may be able to use RCLPT as a built-in counter. If

you like, you can even let the END OF FL error condition

terminate the computations. This makes for a very simple

program structure.

The GETX (get current register, transfer to X) function

is the inverse operation of SAVEX. The current register of

\"..... the working file is retrieved and brought into X. The regis-

ter pointer is increased by 1, and the stack is lifted to

accommodate the retrieved data, just as for RCL.

For example, to retrieve the number 15 from register 2 of

the "ABC" data file (which should still be the working file if

you have been following along with the examples), press

2

SEEKPT

GETX

-29-

The result should be 15 in the X register. The register

pointer is changed from 2 to 3, as executing RCLPT will re­

veal. Just as for SAVERX, this automatic pointer incrementing

makes it convenient to use GETX inside a loop.

The SAVER (save registers) function transfers all the

data registers to the file named in ALPHA, or to the working

file if ALPHA is empty. Unlike SAVEX and SAVERX, SAVER total­

ly ignores the register pointer. Data register 00 goes into

register 0 of the file, data register 01 goes into file regis­

ter 1, and so on. Unfortunately, although SAVER does not use

the pointer, it does change it! The pointer is left just

beyond the last register written into the file.

If the extended memory file is not large enough to hold

all the data registers, SAVER displays an END OF FL error

meesage and refuses to transfer even a single register. This

feature, which cannot be overridden by flag 25, limits the

usefulness of SAVER.

Unless the current SIZE precisely matches the amount of

data that you have to save (and does not exceed the FLSIZE of

the selected data file), you should consider using SAVERX

rather than SAVER to avoid wasting space in extended memory.

Of course, you can always reduce the SIZE to match the number

of data registers you want to save. For example, to save data

register 00 through 23, use the sequence

24

PSIZE

"file name"

SAVER

The PSIZE (programmable SIZE -- see page 75) function reduces

the SIZE to 24, throwing out the data beyond register 23. The

rest of the data is then saved by SAVER. However, this tech­

nique really isn't much easier than

-30- -

-file name"

9

SEEKPTA

.923

SAVERX

but it may be preferred for some applications.

The GETR (get registers) function is far more useful than

'-- SAVER. GETR retrieves data beginning with register 0 of the

named file (the working file if ALPHA is empty), and places it

in data registers 9fiJ and up. Unlike SAVER, GETR will not give

an END OF FL error message if the file is smaller than the

current SIZE. GETR will stop either when the file runs out of

registers or when the current SIZE is used up. This means

that recalling an entire data file is as simple as

-file name"

GETR

'- perhaps followed by a REGMOVE or a REGSWAP instruction (see

pages 76 to 79) to move the data to a different block of

registers if you didn't want it to start at register 09.

Like SAVER, GETR ignores the pointer but sets it to the

END OF FL position, 1 register beyond the last register re­

trieved.

The CLFL (clear file) function clears the contents of a

data file; that is, it sets all the registers to zero. The

register pointer is also set to zero so that you can immedi­

ately begin using SAVE instructions to store data in the file.

Just put the file name in ALPHA and execute CLFL. A typical

application for CLFL is initialization before re-using an

existing data f~le. Since data files are cleared when they

'- are created, you do not need to use CLFL on a newly-created

data file.

'- If a file name is not present in ALPHA when you execute

CLFL, a NAME ERR message will appear. CLFL will not operate

-31-

on the working file. However, like the other file-handling

functions, CLFL does make the named file the working file. If

you attempt to use CLFL to clear a program file, a FL TYPE ERR

will result. Program files can only be replaced with a new

program (using SAVEP) or purged entirely.

The PURFL (purge file) function eliminates the named file

from extended memory, freeing its registers for other uses.

Like CLFL, it must have a valid file name in ALPHA. See page

19 for an important WARNING about PURFL.

On the HP-4lCX, the RESZFL (resize file) function changes

the size of an existing data or text file. RESZFL operates

only on the working file. Use RCLPTA with the desired file

name in ALPHA, or use any other means to select the desired

file as the working file. Then put the new FLSIZE in X and

execute RESZFL. If you decrease the file size, the highest

numbered registers will be eliminated. If there is nonzero

data in these registers, the calculator will give a FL SIZE

ERR message. You can override this protective feature by

specifying the negative of the desired FLSIZE in X.

As you have seen, extended memory is much more flexible

in storing data than the card reader. Extended memory allows

easy access to individual registers of data, and to sub-blocks

of registers within a block of saved data. This provides a

convenient method to analyze large data bases without tying up

all your data registers. You can pullout the numbers as

needed, in blocks or one by one.

The full power of extended memory data files will be il­

lustrated in Chapter 6 with the application programs "SOLVE",

"DERIV", and "INTEG". These programs use extended memory to

guard their data while a user-supplied program is called to

evaluate a function f (x).

-32-

CHAPTER THREE

TEXT FILES IN EXTENDED MEMORY

3A. What is ~ text file?

Twelve of the 47 functions provided in the Extended

Functions/Memory module and 14 of the 61 HP-41CX extended

functions deal exclusively with text files. This chapter

explains how ASCII files are used and how they provide power­

ful new string handling capability. If none of your appli­

cations involve long ALPHA strings, you may wish to skip this

chapter for now.

Prior to the advent of extended memory, dealing with

character strings on the HP-4l was cumbersome. Strings had to

\.....- be broken up into segments of 6 characters or less, because

the ASTO operation cannot fit more characters into a register.

~ Extended memory offers a new way to deal with strings

that does not require that a string be broken into register-

sized pieces. Instead, the str ings are stored unbroken in an

extended memory text, or ASCII, file. [The terms "text file"

and "ASCII file" are used interchangeably in this book, as

they are in HP's documentation.] Each string, or record, can

be up to 254 characters long. The number of different strings

that you can have in a single text file is limited only by the

size of extended memory. As for a data file, you must specify

the number of registers to be allocated when you create an

ASCII file. This number must be at least:

Nregisters = INT[(Nrecords+Ncharacters+7)/7],

where Nrecords is the maximum number of records you will need,

and Ncharacters is the maximum number of characters that will

be stored. The +7 accounts for one end-of-file byte (see

section l0C) and rounding up. For example if you wish to

-33-

store 29 names of at most 25 characters each, you will need

Nregisters = INT [(29+29*25+7)/7] =INT (75.29) = 75 regs.

It is a good idea to use a somewhat larger number than needed

when creating an ASCII file in case your storage needs grow.

The Extended Functions Module Owner's Manual suggests adding

29% to your best estimate of the number of characters to be

stored, and dividing the result by 7. If you have an HP-41CX,

you need not be as cautious, because the RESZFL (resize file)

function makes it easy to increase the file size later. Two

programs presented in section G of this chapter give a similar

file resizing capability to the HP-41C and CV.

Just as extended memory data files have a pointer to the

current register, text files have a pointer to the current

record. In addition, text files have a pointer to the current

character position within the record. The record pointer rrr

and the character pointer ccc are combined into a single

decimal number rrr.ccc for all pointer operations like SEEKPT

(setting the pointer values) and RCLPT (reading the current

pointer values).

To illustrate these points, let's try an example. We

will need a 25-register text file called "NAMES". Make sure

that there are at least 25 registers available for data in

extended memory. To do this, execute EMDIR and let the direc­

tory run to completion. On the HP-41CX you can use the EMROOM

function or CATALOG 4 instead of EMDIR for this purpose. The

number in X is then the number of registers available for data

in extended memory. Then, to create the "NAMES" file, press

25 ALPHA N A M E S ALPHA XEQ ALPHA C R F LAS ALPHA.

The usage of the CRFLAS (create file -- ASCII) function is

very similar to the usage of CRFLD (create file -- data). You

put the file name in ALPHA, the number of registers in X, and

-34- -

execute "CRFLAS".

After you have created the text file called "NAMES", the

next step is to use the APPREC (append record) instruction to

load some data into it. Suppose you want to store the three

names:

record number

o
1

2

name

RICHARD NELSON

ROGER HILL

JOHN MCGECHIE

The name-storing process is simple. Just load a name into the

ALPHA register and XEQ "APPREC". The APPREC function adds a

new record to the working text file by appending the entire

contents of the ALPHA register to the file. The pointer is

advanced to one character beyond the last character appended.

'- The following sequence of operations loads the three names:

"RICHARD NELSON" XEQ "APPREC"

"ROGER HILL" XEQ "APPREC"

"JOHN MCGECHIE" XEQ "APPREC"

Each quote mark (") indicates that the ALPHA key must be

pressed.

Loading ALPHA data into a text file is much easier than

storing it in data registers. The APPREC function handles up

to 24 characters, rather than the 6 that ASTO can handle.

Just to store the name "RICHARD NELSON" in data registers

requires 5 instructions: ASTO 01, ASHF, AS TO 02, ASHF, AS TO

03. This is clearly very cumbersome compared to a single

APPREC instruction. It becomes even more cumbersome if the

string is reconstructed or needs to remain unchanged in ALPHA

(add CLA, ARCL 131, ARCL 132, ARCL (33).

Ease of loading is by no means the only advantage of

using extended memory text files to hold ALPHA data. The real

power of text files lies in their data access, insertion, and

deletion capabilities.

-35-

3B. Accessing data in text files

There are two functions that recall data from a text

file. These are ARCLREC (alpha recall record) and GETREC (get

record). As its name implies, ARCLREC recalls characters from

the working text file, starting at the current pointer loca­

tion, until the ALPHA register is full or the end of the

record is reached. The character pointer is advanced to one

position beyond the last character recalled. The ARCLREC

function sets or clears flag 17 (the "record incomplete" flag)

to indicate whether or not more data remains in the record.

ARCLREC works like ARCL, in that it appends the recalled

characters to any existing characters in the ALPHA register.

The GETREC (get record) function is precisely equivalent

to the sequence CLA, ARCLREC.

As an example, suppose you want to review the data in the

"NAMES" file, which should still be the working file since you

just created it. The sequence

o SEEKPT

GETREC AVIEW

shows you the contents of the first record, "RICHARD NELSON".

If you then try the sequence

ARCLREC AVIEW

the result will be "RICHARD NELSONROGER HILL". Whoops! We

forgot to do a CLA before the ARCLREC. Most of the time, you

will find that GETREC is handier to use than ARCLREC, because

GETREC automatically clears the ALPHA register before recal­

ling the record. The ARCLREC function will be useful for

those special instances in which the contents of a record are

to be attached to a message.

In the preceding example, the ARCLREC function was able

to fit the entire record being recalled into the ALPHA regis­

ter, so flag 17 was cleared. If the record had not fit into

the ALPHA register, ARCLREC would have set flag 17 to indicate

that more data remained in the record. When you write a

program that prints strings from text files, you will use

-36-

sequences that test flag 17. For example:

(record number)

SEEKPT Set pointer to the beginning of the record

LBL 01

GETREC Recall 24 characters of the record

ACA (or OUTA) Send chars. to printer, but do not print yet

FS? 17 If record is incomplete, get 24 more chars.

GTO 01

PRBUF Otherwise print the accumulated string.

Some HP-IL peripherals automatically make use of the status of

flag 17 after ARCLREC or GETREC. If flag 17 is set, the

normal carriage return/line feed is suppressed so that the

rest of the record may be included on the same line.

3C. Insertion of data into text files

Suppose you want to change the first name record from

"RICHARD NELSON" to "RICHARD NELSON, FOUNDER OF PPC". The

first thing you must do is to set the record pointer to zero,

which is the first record of the file. If you have done

nothing to designate a different working file, the "NAMES"

file is still the working file. The sequence

o SEEKPT

'- will therefore set the pointers to character 0 (the first

character) of record zero (the first record).

'- The APPCHR (Append characters) instruction appends the

contents of the ALPHA register to end of the current record,

ignoring the character pointer. The pointer is advanced to

the end of the current record, one position beyond the charac­

ter appended. Unlike APPREC, APPCHR does not create a new

record. To make the desired change to record 0, press

", FOU.NDER OF PPC" XEQ nAPPCHR"

~. You can use the sequence

o SEEKPT

GETREC AVIEW

GETREC AVIEW

-37-

to check your results. This is much easier than using ARCL,

APPEND, and ASTO to modify a string stored in data registers.

The next example of insertion uses the IHSCHR (insert

character) instruction. The goal is to change the first

record from "RICHARD NELSON, FOUNDER OF PPC" to "RICHARD J.

NELSON, FOUNDER OF pPC". This requires inserting the charac­

ters "J. " ahead of the "N" in "NELSON".

Before the INSCHR instruction can be successfully used,

you must tell the HP-4l exactly where to insert the charac­

ters. In this example, that means that the record pointer

must be 0 (the first record) and the character pointer must be

8, corresponding to the 9th character, "N". INSCHR always

inserts the contents of ALPHA ahead of the current pointer

location and advances the character pointer by the number of

characters inserted. As with the other data insertion func­

tions, the pointer ends up one position past the last charac­

ter inserted. The sequence

.008 SEEKPT

"J." INSCHR (don't forget the space)

performs the insertion of the middle initial "J.". Use

o SEEKPT

GETREC AVIEW

GETREC AVIEW

to check your results. The sequence that would be required to

do this insertion using ARCL and ASTO instructions defies

description!

The final example of text file insertion is the addition

of a new record in the middle of an existing file. The func­

tion IHSREC (insert record) is provided for this purpose.

Analogously to INSCHR, INSREC inserts a new record ahead of

the current record pointer, loading it with the contents of

ALPHA. INSREC also advances the pointer to the end of the new

record, one position beyond the last character.

As an example of the INSREC function, try inserting the

-38-

name "CLIFFORD STERN" between "ROGER HILL" and "JOHN

MCGECHIE". Since the insertion is to be made ahead of the

third record (record number 2), the sequence is:

~ 2 SEEKPT

"CLIFFORD STERN" XEQ "INSREC"

The POSFL (position in file) instruction, described on page

41, makes it easy to insert characters or records in the right

place relative to any selected string of characters in a file.

First you use POSFL to find the string before which the inser­

tion is to be made, then you use INSCHR or INSREC as needed.

3D. Deletion of data from text files

Continuing the previous example, we have:

record number

o
1

2

3

name

RICHARD J. NELSON, FOUNDER OF PPC

ROGER HILL

CLIFFORD STERN

JOHN MCGECHIE

Suppose you want to delete the last record of the file, record

number 3. The function needed for this operation is DELREC.

The DELREC (delete record) function deletes the current

record (as designated by the record pointer) from the working

text file. DELREC does not change the record pointer, but it

does zero the character pointer. To delete record number 3,

'- the sequence is

3 SEEKPT

DELREC

To check the result, use GETREC (the record pointer is still

3). You should get an END OF FL error message, indicating

that record 3 no longer exists. If you had deleted record

number 1, records 2 and 3 would have moved up to become the

new records 1 and 2, respectively. Incidentally, both DELREC

and INSREC deal with only a single record. If you need to

insert or delete several records at one point in a file, you

may need a short looping sequence containing DELREC or INSREC.

-39-

Now suppose you want to delete the string ", FOUNDER OF

PPC" from record 9. The DELCHR (delete character) function

deletes characters starting from the current pointer position.

The number of characters to be deleted is specified by the

integer part of the number in the X register. If this number

is larger than the number of characters from the current

pointer position to the end of the record, the deletion is

only performed up to the end of the record. The record and

character pointers and X register are left unchanged by -/

DELREC. For this example, the sequence

0.917 SEEKPT

16 DELCHR

performs the deletion of ", FOUNDER OF PPC". The comma was

the 18th character (character number 17) of record 9. The

number of characters to be deleted was 16. Actually, since

you were deleting all the remaining characters of record 9,

you did not have to count the number of characters to be

deleted. The number 99 would have served as well as 16; you

only needed a number at least as big as the number of charac­

ters remaining in record 9.

To clear the entire contents of a text file without

deleting the file itself, use the CLFL (clear file) instruc­

tion, with the file name in the ALPHA register. CLFL needs a

file name, and will not operate on the working file. The

named file becomes the working file, and the number of records

is set to zero. This is useful to initialize an existing text

file for re-use as if it were a new file. The CLFL instruc­

tion is the same one that clears data files.

To delete the text file itself and free its extended

memory registers for other uses, put the file name in ALPHA

(this is not optional) and execute PURFL (purge file). For

more details on PURFL, including an important WARNING, see

page 19.

-40-

3E. Miscellaneous text file operations

'- POSFL, SAVEAS, GETAS

The POSFL (position in file) function searches the wor-

,,-. king text file, starting at the current pointer position, for

a string that exactly matches the contents of the ALPHA regis-

ter. This string is not allowed to span more than one record;

it must be fully contained in a single record. If the search

is successful, the pointer is moved to the first character of

'- the string and the new pointer value is placed in the X regis­

ter. If the search is not successful, no error message is

'- displayed, but the number -1 is placed in X. Thus, if you are

using the POSFL function in a program, a simple X<0? instruc­

tion will tell you if the string was not found.

POSFL can work in combination with DELCHR or DELREC to

delete strings or records, or in combination with INSCHR or

INSREC to insert new strings or records.

The stack usage of POSFL is quite unusual. On the HP-

'- 41CX, the stack is raised and LASTX is not disturbed. This is

just as it would be if RCLPT were executed at the point where

the match was found. On the HP-4lC or CV, POSFL works this

way only if the string is found. If you are using an HP-41C

or CV and the string is not found, POSFL overwrites the X

register with the number -1 and places the former contents of

X in LASTX.

Let's try an example. Suppose you want to locate the

last name "HILL" in the "NAMES" file. This is easy to do.

Just press

o SEEKPT

ALPHA space H ILL ALPHA

POSFL

The result should be 1.005, indicating that the space charac-

\,.... ter before "HILL" is character number 5 of record 1. The

space character was used to ensure that "HILL" was not found

.'-..- as a first name or as a string embedded within another name.

-41-

The SAVEAS (save ASCII file) and GETAS (get ASCII file)

functions are usable only if you have an HP-IL mass storage

device, such as the HP 82161A Digital Cassette Drive. These

functions are described in the Extended Functions/Memory Mod­

ule Owner's Manual.

If you plan to make heavy use of ASCII files, an HP-IL

mass memory device will be very useful. Through SAVEAS and

GETAS, it provides a convenient way to permanently save your

ASCII files. If you need to merge the contents of two ASCII

files, which SAVEAS and GETAS are not meant to do, you can use

the programs presented in Section 3G.

3F. Viewing the contents of ~ ASCII file

The program "VAS" (view ASCII file) presented here will

display the entire contents of a text file, one record at a

time. It uses a few of the extended functions that are ex­

plained in Chapter 4, so you will have to read that chapter

before you try to understand how "VAS" works.

To view a text file, put the file name in the ALPHA

register and execute "VAS". If a printer is attached, turned

on, and enabled (flag 21 set), the ASCII file contents will be

printed out. Otherwise they will be displayed. The LBL 10

subroutine performs this "print or display" operation. It is

an excellent application for the RCLFLAG and STOFLAG extended

functions (see page 66).

Here is a typical printout from "VAS":

RECORD il:
THIS EXA"PLE ILLUSTRRTES

THE PRIHTOUT/DISPLAY PR
ODUCED BY YRS.
RECORD 1:
SHORT RECORDS USE 1 LINE
RECORD 2:
LOHGER RECORDS SPILL OYE
R IHTO TWO OR "ORE LIHES
RECORD 3:
EHD OF FL

-42-

If you want to list only a part of the file, put a record

~ counter in X in the ISG format (bbb.eee, where bbb is the

starting record and eee is the last record to be viewed). Put

"-- the file name in ALPHA and execute "PVAS" (partial view

ASCII) •

"-

One error trap is included in "VAS" and "PVAS". If you

get the DATA ERROR message at line 05, you should load a file

name into ALPHA and press BST and R/S. This error trap is

intended to prevent you from losing your extended memory

directory if you have a revision lB Extended Functions/Memory

module and you just used PURFL. With ALPHA clear, the SEEKPTA

instruction would operate on the working file, causing disas­

ter (see page 19) if there were no working file.

·VAS·/·PVAS· program listing

81tLBl ·Y~S" 89tLBl 81 18 :. 26 GTO 81 34 IlYIEIl
82 .9 18 ·RECORD • 19 XEQ 19 27 RTIl 35 STOFLAG

11 UISTX 36 RDIl
93+lBL ·PY~S· 12 lilT 28tLBL 92 28tLBl 19 37 FS?C 25

94 AlEIlG 13 RCLFLAG 21 GETREC 29 SF 25 38 FC? 21
85 llX 14 CF 29 22 XEQ 18 38 PRA 39 PSE
86 RDIl 15 FIX 9 23 FS? 17 31 RClFl~G 49 END
87 INT 16 ARCL Y 24 GTO 82 32 FS?C 21
98 SEEI(PTA 17 STOFLAG 25 ISG l 33 FC?C 25 89 BYTES

Line-by-line analysis of "VAS"/"PVAS"

Line 02 provides a default record counter of 0.900 for

"VAS", so that all records will be displayed. Lines 04 and 05

constitute the error trap that detects an empty ALPHA register

(length of the string in ALPHA = 9). You may delete these two

lines if you have an HP-41CX or a revision lC and up Extended

Functions/Memory module. Lines 97-08 set the pointer to the

beginning of the first record to be viewed. The LBL 01 se­

quence forms the message "RECORD n:" in the ALPHA register.

Then XEQ 10 (line 19) displays or prints the string.

-43-

The LBL 02 sequence uses GETREC to recall 24 characters.

Then an XEQ 10 prints or displays the string. If flag 17 is

set, indicating an incomplete record, another GETREC is done.

Otherwise the record counter is incremented (line 25). The

GTO 01 instruction causes the same process to be performed to

print the next record. When the counter reaches its limit,

the GTO 01 is skipped and the RTN is executed instead. When

"VAS" is used, termination will be caused by an END OF FL

error stop at line 21. This is normal.

3G. Saving text files on magnetic cards

If you have a card reader, the program "WAS" (write ASCII

file) presented here can be used to write a text file into the

data registers, from which a WDTAX (write data registers

designated by X) instruction transfers the information to

magnetic cards. The "RAS" (read ASCII file) program performs

the reverse operation. These programs have only one con­

straint: the text file should not contain any null characters

(decimal code 0 -- see page 62). This is not a ser ious con­

straint since null characters are not ordinarily used.

To use "WAS", simply put the file name in ALPHA and XEQ

"WAS". The file name must be provided to avoid an error stop

at line 03. This error trap is intended to prevent the FLSIZE

instruction from wiping out your extended memory directory if

you just used PURFL. If you get the DATA ERROR message, you

should load a file name into ALPHA and press BST and RIS. The

"WAS" program will make sure that the SIZE is sufficient to

hold all the data, using the PSIZE (programmable SIZE) extend­

ed function to increase the SIZE if necessary. The PSIZE

function will be explained on page 75. If you get a NO ROOM

error stop at line 20, you will have to either delete some

programs to make more space or use the "PWAS" (partial write

ASCII) program described below. The number in X at this error

stop indicates the required SIZE for this "WAS" operation.

-44-

When the card reader prompt RDY 01 OF nn appears, you may

either insert the card to be recorded or you may press R/S

!~ice to avoid recording a card. When "WAS" is finished, a

number of the form 0.nnn is in the X register. This number

indicates that a representation of the text file data resides

in data registers 00 through nnn. The total number of data

registers used is nnn+l, while the number of tracks used to

record the data is 1+INT(nnn/16).

To use "RAS", put the file name in ALPHA (not optional)

and XEQ "RAS". Supply data cards at the prompt or press R/S

twice if the file representation already resides in the data

reg isters. The "RAS" program automatically knows where the

data ends. You don't need to specify a number of registers.

The "WAS" and "RAS" programs are very helpful in dealing

with a problem commonly encountered with ASCII files. Suppose

you have created an ASCII file of 50 registers and have star­

ted to load your data into it. All of a sudden, you get the

END OF FL error message. The file is ful11 It would appear

that you have to purge this file, create a new, larger one,

and start re-entering data from the beginning. But wait1 You

can use "WAS" to write the file contents into data registers

before you purge the file. Then, after you create the larger

file, you can use "RAS" to re-load the data into the new file.

This saves a lot of work.

On the HP-41CX, the RESZFL (resize file) function can be

used for this purpose instead of "WAS" and "RAS". First

select the file you want to resize as the working file. You

can do this by interrupting the extended memory directory or

by naming the file and executing FLSIZE or RCLPTA. Then put

the desired file size in X and execute RESZFL. RESZFL allows

you to increase or decrease the size of the working file, as

long as no records would be lost by the file size reduction.

Caution: Even if you put a different file name in ALPHA,

RESZFL will still resize the working file. You should run

Catalog 4 (EMDIR) after using RESZFL to check the result.

-45-

If you want to record only part of a text file on cards,

put a record counter of the form bbb.eee in x, the file name

in ALPHA, and execute "PWAS" (partial write ASCII). Records

starting with bbb and ending with eee will be copied into the

data registers, and onto magnetic cards if you so choose.

This is helpful when insufficient SIZE is available for "WAS",

or when you are merging parts of two different text files.

If you want to replace part of the data in a text file

with data from cards, you can use the "PRAS" (partial read

ASCII) program. Put a record control number in x, the file

name in ALPHA, and execute "PRAS". The records from bbb to

eee will be deleted and replaced by the data from cards or

from the data registers. If you want to append records to the

end of a file, use a record control number xx.9, where xx is

greater than the number of records in the file , and 900-xx is

greater than the number of records to be added. To find out

the number of records in the file, see problem 3.1 on page 53.

Line-by-line analysis of "WAS" /"PWAS"/"RAS"/"PRAS"

Lines 02 and 03 make sure that the ALPHA register is not

empty, so that the FLSIZE function at line 05 will not operate

on the "working" file (which might not exist). See page 63

for an explanation of the ALENG function. If you want to be

able to use "WAS" and "RAS" with the "working" file, you may

delete lines 02, 03, 95, and 96. If you have a revision IB

Extended Functions/Memory module, see page 19 for an explana­

tion of the risk you take by deleting these error traps.

Lines 05 through 18 calculate the number of data regis­

ters needed to store the representation of the text file.

This representation is best shown by an example. Suppose you

have the text file:

record number

o
1

2

name

RICHARD J. NELSON

ROGER HILL

CLIFFORD STERN

-46-

~
·WAS·/·PWAS·/·RAS·/·PRAS· pEogEam listing

',,-

'"'-, 81tLBL 'iU~S" 46tLBL 82 89tLBL 84 132 CF 25

02 ALENG 47 Rt 98 ISG Z 133 CLX

83 1IX 48 Rt 91 ACOS 134 SF 86

'- 84 SIZE? 49 IISTO IHD X 92 GTO 83 135 lllSTX

85 FLSIZE 58 ISG X 136 6

',--- 86 7 51 X<8? 93tLBL "RIIS'

87 * 52 I~TO 84 94 GF 85 137tlBL 89

88 APPREC 53 ALEHG 95 ALEHG 138 CLA

\........ 09 DELREC 54 11 96 1IX 139 ARCl IHD Z

18 RCLPT 55 ASHF 97 CLFL 148 ALEHG

11 5 56 X(=Y? 98 .9 141 X=8?

'--- 12 * 57 GTO 82 99 SIGH 142 FC? 86

13 4 58 RDH 188 GTO 88 143 X(8?

14 + 59 5 144 RTH

\....- 15 + 68 X(Y? 181+LBL 'PRAS' 145 FC? 86

16 6 61 FS? 17 182 CF 85 146 APPCHR

\.....-
17 / 62 GTO 81 183 ALEHG 147 FC?C 86

13 IHT 63 GTO 82 184 \IX 148 CLA

19)0i"1 i85 RDH 149 FS? 85
, 28 PSIZE 64tLBL 83 186 EHTERt 158 IHSREC
"-,

21 8.9 65 LIISTX 187 IHT 151 FC? 85

22 EHTERt 66 Rt 188 SF 25 152 APPREC

\...- 23 GTO 08 67 CLII 189 SEEKPHl 1~3 X'Y?

68 ASTO IHD ii 118 FC? 25 154 SF 86

'-
24+LBL 'PWIlS' 69 IHT 111 GTO 87 155 X'i'?

25 IlLEHG 78 I E3 156 FC? 85

26 \IX 71 / 1l2tLBL 86 157 GTO 18

',-- 27 X<>i' 72 SF 25 113 DELREC 158 RDH

28 SIZE') 73 IoIDTAX 114 FC? 25 159 RCLPT

29 2 7+ CF 25 115 GTO 87 168 IHT

......... 38 - 75 RTH 116 ISG Y 161 ISG X

31 1 E3 117 GTO 86
32 I 76+LBL 84 118 CF 25 162+LBL 89

\.....- 33 XOY 776 163 SEEKPT

78 Rt 1l9+LBL 87

',--- 34+LBL 8ij 128 APPREC 164+LBL 18

35 EHTERt 79+LBL 85 121 DELREC 165 RDH

36 IHT 88 DSE Z 122 RCLPT 166 ISG Z

37 SEEKPTA 123 XOY 167 ACOS

38 SF 25 81tLBL 85 124 SF 25 168 FS? 86

39 DSE L 82 CUi 125 SEEKPT 169 ISG Y

'--- 83 IIRCL IHB Z 126 CF 25 178 GTO 89

48tLBL 81 84 RDH 127 X(Y1 171 EHD

\...-
41 GETREC 85 ALEHG 128 SF 85
42 FC? 17 86 X=Y?
43 ISG L 87 GTO 85 129+LBL 88 291 BYTES

......... 44 Fe? 25 88 DSE L 138 SF 25
45 GTO 83 131 RDTA

........

-47-
'~

The representation of this file generated by "WAS" would be:

data register contents

"RICHAR"

01 "0 J. N"

02 "ELSON"

03 "ROGER "
04 "HILL"

05 "CLIFFO"

06 "RO STE"

07 "RN"

08 '''I (empty string)

The end of each record is marked by a string of less than 6

characters. This end-of-record marker will be an empty string

if the number of characters in the record is a multiple of 6.

An empty string at the beginning of a new record (register 08

in this example) signifies the end of the file.

This particular representation of the text file repre­

sents a good compromise between speed and register utiliza­

tion. Further packing of the data is practical only by using

synthetic programming techniques (see Section 101).

The number of data registers needed to represent a text

file depends on the file size N (in registers) and on the

number of records R in the file. The program needs to compute

an upper bound on the number of data registers needed, so that

it can adjust the SIZE to be large enough. The worst possible

case is when the first R-l records are 6 characters each,

meaning that they each take 2 data registers, and the last

record uses all the remaining space in the file. In this

case, a lengthy computation shows that the total number of

data registers needed to store the text file data cannot

exceed:

0= 2(R-l)+l+INT((7(N-R)+10)/6

= INT ((7N+5R+4)/6) •

-48-

In "WAS", line 05 computes the file size N, while lines 08-10

'~ compute the number R of records in the file. This latter

computation requires that there be up to 8 spare character

~ positions in the text file, so that a record consisting of the

file name can be temporarily appended without running into the

END OF FL.

Lines 19 and 20 compare the maximum number of data regis­

ters required with the current SIZE, and resize if necessary.

All of these registers will probabl~ not be used, but this is

part of the price for user convenience. Line 21 sets the

default record counter (0.9) so that all records will be

written.

The LBL 00 sequence sets the pointer to the beginning of

the first record designated. Flag 25 is set so that the

GETREC on line 41 will not halt the program.

The LBL 01 loop fetches a record from the file. If the

END OF FL is encountered, the GETREC clears flag 25 and causes

the GTO 03 branch to be taken. Otherwise the LBL 02 loop is

used to store the ALPHA register contents in 6-character

pieces.

First the leftmost 6 characters are stored in register

00. Line 43 increments the record counter in LASTX once for

each new record retrieved. Lines 53-57 return to LBL 02 to

store another 6 characters if 12 or more characters were

present in ALPHA before the ASHF at line 55 removed the 6 that

were just stored. If 12 or more characters were not present,

then at most one more ASTO will be needed before the next

GETREC. If 5 or fewer characters were present, the record is

complete and has already been stored. In this case, line 60

causes the GTO 01 to be executed.

If more than 5 characters were present, another AS TO

'- operation will usually be needed. The only exception occurs

when flag 17 is set, indicating that GETREC retrieved 24

-........-- characters but did not reach the end of the record. In this

case, the last 6 of these 24 characters have just been ASTO'd

-49-

and we do not want to store a blank end-of-record marker. So

the flag 17 test on line 61 sends us back for more characters

from the current record. If flag 17 is not set, the record is

complete and we do need an end-of-record marker (which will

contain 0 to 5 characters). The GTO 02 instruction at line 62

takes care of this case.

LBL 03 marks the beginning of the termination procedure

that occurs after the END OF FL is reached by GETREC or after

the ISG L on line 43 reaches a skip condition. The end-of­

file marker (a blank string) is stored in the current data

register, so that "WAS" will know where the "RAS" data ends.

Then the number 0.nnn is constructed for the use of WDTAX

(write data registers designated by X).

The "RAS" program begins by checking that the ALPHA

register is not empty. The named text file is cleared, which

automatically sets its pointer to record 0. The default

record counter of 9.9 is placed in LASTX by the SIGN instruc­

tion. "PRAS" starts similarly, but the file is not cleared.

If the SEEKPTA on line 109 fails, the program assumes that the

new records are to be appended, and no records need to be

deleted. Otherwise the LBL 06 loop deletes the number of

records requested by the record counter that was originally

placed in X. Flag 25 is tested in case you specified too many

records and END OF FL is encountered. Flag 05 is set at line

128 if the first designated record is within the file, rather

than at or beyond the end of the file. This means that INSREC

will be used later instead of APPREC.

At LBL 08, the cards are read in (if desired), and flag

06 is set, indicating that the next register to be read begins

a new record. The value 0 in Z (line 133) is the initial

register pointer, the value in Y (line 135) is the ISG record

counter, and the 6 in X (line 136) is to be used for ALENG

comparisons. When the length of a data register string is

less than 6, the end of a record has been reached.

-50-

-

The LBL 139 loop first gets a string of IiJ to 6 characters

from the current data register. If the length is IiJ and flag

136 is set, indicating that this register is supposed to begin

a new record, then the RTN at line 144 terminates "RAS".

Otherwise, if flag 136 is clear, the APPCHR function at line

146 adds the ALPHA contents to the current record. If flag 136

is set, APPREC or INSREC is executed, depending on flag 135, to

use the ALPHA contents to start a new record. If the string

length was not exactly 6 characters, then flag 06 is set to

indicate that the next string recalled will start a new rec­

ord. Lines 155-164 advance the pointer to the next record if

flags 05 and 136 are set, so that the next INSREC will put the

next record in the right place. The register counter in Z is

then incremented so that the next register can be recalled.

3H. Additional text file functions ~ the HP-41CX

The HP-41CX includes two additional functions dedicated

to text files. The first of these is ASROOM (ASCII file

room). ASROOM returns the number of bytes avai lable in the

named file, or the working file if ALPHA is clear. If you

have a file to which you will not be adding information fre­

quently, you can use the following sequence to minimize its

usage of extended memory registers:

(file name)

FLSIZE Gives the number of registers allocated

ASROOM Gives the number of bytes free

7

/
INT Number of registers free

Number of registers in use

RESZFL Resize to minimum.

If you have an HP-41C or CV, you can use ·WAS" and "RAS"

to reduce the file size to the minimum, but you will have to

use the following short routine to duplicate the ASROOM func-

-51-

tion in the preceding sequence:

01 LBL "ASROOM"

02 ALENG

03 l/X

04 RDN

05 FLSIZE

06 7

07 *
08 0

09 SEEKPTA

10 +
11 SF 25

12 LBL 01

13 CLA

14 GETREC

15 ALENG

16 -

17 FC? 17

18 DSE X

19 FS? 25

20 GTO 01

21 END

These lines are an error trap for the

PURFL bug. You may remove them if

you have Revision lC or higher.

Number of registers in named file.

Go to beginning of file.

Total number of bytes in file.

Prevent error stop at line 14.

Subtract the number of characters

in this record.

Subtract one byte for each record,

one byte at the end of file.

Repeat if END OF FL is not reached.

This routine gives the true ASROOM as long as there are no

null bytes in the text file.

The second HP-41CX text file function is ED (edit). The

ED function is described fully in the HP-41CX Owner's Manual,

and the description is too lengthy to repeat here. When you

execute ED, the keyboard is redefined to allow easy motion

through the file as well as insertion and deletion of data.

If you have an HP-41C or CV, Chapter 9 presents a text

editor program called "TE" that, while slower than ED, con­

tains all its features plus a few more. You will find "TE" or

ED quite helpful for creating and modifying text files.

-52-

PROBLEMS (Solutions follow Chapter 19)

3.1. write a short sequence of instructions to determine how

many records there are in a text file (assume that the file is

the working file).

3.2. write a short program to print an entire text file, one

record to a line (unless the record overflows the print line).

~ Assume that the file name is in the ALPHA register at the

,
"-'

start of the program.

-53-

CHAPTER FOUR

MORE EXTENDED FUNCTIOBS

Not all the functions built into the Extended Functions

module or built into the HP-41CX extended functions are di-

rectly concerned with using extended memory. sixteen of the

47 functions (25 of 61 for the HP-41CX) provide operating

'- system enhancements that aid immeasurably in dealing with

ALPHA strings, flags, blocks of data, and key assignments.

'- One function, GETKEY, has the potential to allow complete

customization of the keyboard under control of a program.

This is demonstrated in the application programs in Chapters

7, 8, and 9.

4A. Stack Usage and Input Flexibility

There is one important difference between extended func-

~ tions and normal built-in (Catalog 3) functions that is not

mentioned in the Owner's Manual. Most of the extended func­

tions that use an input from the X register just leave the

input in X when they are done (X<>F, POSA, POSFL, and GETKEYX

are the only exceptions). Except for POSA, POSFL, and GETKEYX

they do not even copy X into LASTX. In this respect, extended

functions are much more similar to indirect functions like

ARCL IND X than they are to direct functions like l/X.

This difference in stack usage is easy to deal with in

your programs once you are aware of it. At worst you will

need an extra roll-down instruction here and there to get rid

of a used function input. At best you will be able to make

use of the fact that LASTX is not disturbed by keeping a loop

counter there.

Those extended functions that bring a result into X work

just like RCL. The stack is raised unless a CLX, ENTER1, or

other stack lift disabling function was just executed. There

are two exceptions to this rule. The first exception is POSA,

-55-

which overwrites X and saves the previous value of X in LASTX.

The second exception, which only applies to the HP-41C or CV,

is POSFL. On the HP-41C or CV, when POSFL does not find the

string, X

in LASTX.

41CX, the

is overwritten and the previous value of X is saved

If the string is found, or if you are using an HP­

stack is raised and LASTX is undisturbed.

Another feature common to the extended functions is that

they ignore any digits in X beyond those normally required.

Often this means that the fractional part of X is ignored.

For example, if you want to use STOFLAG to restore the status

of flags 36-39, the number in X can be 36.39xxxxxx, where the

digits xxxxxx can be nonzero. A case in which this character­

istic of the extended functions can be helpful can be found on

page 31. There, the sequence

nfile name"

o
SEEKPTA

.023

SAVERX

was mentioned as a way to save data registers 0 to 23 in a

data file. Because data file pointers are always integers,

the SEEKPTA instruction would have ignored any fractional part

of the number in X. Thus you could have used the sequence

"file name"

.023

SEEKPTA

SAVERX

which is one step and one byte shorter. An additional unex­

pected benefit is that the SEEKPTA function is actually faster

with .023 in X than it is with 0 in X. It is not often that

situations like this arise, but if you keep in mind this input

flexibility of the extended functions, you will be able to

write more efficient programs.

Another input flexibility feature of the extended func­

tions is that negative numbers are usually treated as if they

-56-

were positive numbers. The exceptions are AROT, to be dis-

''-...- cussed in section B of this chapter, and the HP-41CX functions

RESZFL (resize file, pages 32 and 45) and GETKEYX (page 99).

These last two functions use the sign of X as a flag to

override an error trap and to select a different mode of

operation, respectively. One possible benefit of this sign-

ignoring feature is that negative pointer values are treated

as if they were positive. You can thus simulate a "decrement

'- and skip if less than zero" instruction by using a negative

integer with an ISG instruction. Incrementing a negative

number decrements its absolute value.

4B. ALPHA manipulation

A "bare" HP-41C or CV has very limited alphabetic capa­

bility. with just a 24-character ALPHA register and a primi­

tive set of alpha operations (append, ASTO, ARCL, ASHF, etc.),

its alpha capabilities are well-suited to message displays but

inadequate for much more.

Extended memory adds the ability to store text files

(collections of ALPHA strings) and adds instructions for sel­

ectively changing, recalling, or finding a string. Moreover,

there are six ALPHA-related functions in the set of extended

functions which operate directly on the contents of the ALPHA

register rather than on strings within an text file. These

'......... six functions, ALENG, ANUM, AROT, ATOX, POSA, and XTOA, add

significant capability, but still do not permit extensive

ALPHA processing.

If you remember that the HP-4l is not intended to be

capable of word processing, you will realize that its ALPHA

capabili ties, especially with the addition of extended func­

tions, are more than adequate for its l2-character display.

The AROT (ALPHA rotate) function rotates the contents of

'- the ALPHA register leftward by the number of character posi­

tions specified in X. A negative number in X produces a

-57-

rightward rotation. The absolute value of X must be less than

256, or a DATA ERROR message will result.

The primary use of AROT is to bring a selected character

to one end of the string in ALPHA. For example, a selected

character brought to the left end of ALPHA can be decoded by

the ATOX function (see below). A single character that has

just been appended to the right end of ALPHA can be moved from

its initial position at the end of the string to a position at

the front of the string by the sequence 1, CHS, AROT.

The AROT function does not drop the stack or disturb

LASTX. The number of positions rotated remains in X, so you

will usually have to follow AROT with a RDN instruction.

The function XTOA (X to ALPHA) appends a single character

to the rightmost part of ALPHA. This character is designated

by a decimal number from 0 to 255 in X. This decimal number

is called the ASCII (American Standard Code for Information

Interchange) equivalent of the character. The correspondence

of display and printer representations to the decimal ASCII

code is shown in the table on pages 60 and 61.

If ALPHA already contains 23 or 24 characters, TONE 7 is

sounded. This warning tone is sounded even if XTOA is used in

a program, unless flag 26 is clear. If X contains alpha data,

XTOA will act like ARCL X, appending the characters to the

right end of ALPHA. It is better to use ARCL X in this case

because its meaning is more clear in a program listing. The

stack is not dropped by XTOA, nor is LASTX updated.

The XTOA function can be used to construct ALPHA strings

containing non-keyable characters such as parentheses and

ampersand. For example, the following sequence creates the

string "X(l)= " in the ALPHA register:

"X"
40

XTOA

"t-l"

-58-

1

+

(note that these two steps make use of the

fact that XTOA does not drop the stack)

XTOA

"r= 11

An ARCL instruction and an AVIEW can then be used to append a

number and display the message. XTOA can also be used to form

strings containing lower case or special printer characters,

although the printer's ACCHR function does the same thing.

Except for a-e, these characters will appear as starbursts in

the display. This is due to the limitations of a l4-segment

display.

If the contents of the string are known ahead of time,

synthetic programming techniques allow you to put a text

instruction in your program that contains any such special

characters. This is much more efficient than using XTOA. See

page 29 of "HP-4l Synthetic Programming Made Easy". XTOA is

best suited to appending one or two characters to ALPHA, where

'- the actual character to be appended depends on the result of a .
computation in the program. This technique is used in the

base conversion portion of the "HP-16" program in Chapter 9.

The ATOX (ALPHA to X) function is almost the inverse of

XTOA. XTOA converts a decimal number to a character that is

appended at the right end of the ALPHA register. In contrast,

'- ATOX converts the character at the left end of the ALPHA

register to the corresponding decimal code. The stack is

'-' raised, but LASTX is not affected.

In addition to its primary use for decoding a character

from ALPHA, ATOX is often used simply to delete a character

from the ALPHA register. An AROT operation can be used to

move any desired character to the front of the string in

'- ALPHA, where ATOX can remove and decode it.

'- (continued on page 63)

-59-

decimal display printer decimal display printer

code char char code char char

1.3 (null) - 32 (space) (space)

1 ~ 33

2 I :1. 34

3 I <:- 35 ±l t

4 ::. Q; 36 § $

5 T f, 37 ,~ '"
" "

6 ; r 38 " • '" ~

7 I + 39

8 I i!. 40

9 I !J 41

11.3 I • 42 * '"
11 E i. 43 .:-

12 , OJ 44

13
,

t. 45 ..
14 II " 46

15 I f 47 , ,

16 I B 48 0 11

17 I Q 49

18 I b 50 2 2

19 II A 51 :3 3

20 I q 52 L.j 4

21 I R 53 5 5

22 I ii 54 5 6

23 I 0 55 -.
7 ,

24 I ,) 56 B S

25 II 0 57 g 9

26 I U 58

27 I E 59

28 I I! 60 L.. {

29 t ~ 61 ---
30 I £ 62

,
-'

31 I I 63 '? ?

-61.3-

"-
decimal display printer decimal display printer

'--- code char char code char char

'-- 64 [? ~ 96 T

65 R A 97 01 a
'-] b b 66 B 98

67 r C 99 c c
'--

L..

68 TI
D 190 d d JJ

\.......- 69 E E 101 t.. e

70 F F 192 I
'- 71 G G 103 I '"

72 H H 194 I h
.\.....

73 T 195 I ... I

'--
74 J J 106 I

75 ~: K 107 I k

76 I L 108 I '-- L..

77 r1 1'1 199 I II

\..... 78 .. H 110 I n ..
79 n

0 u 111 I 0

........ 80 P P 112 II p

81 n
Q 113 II ~ 41

I....-
82 R R 114 II r

I....- 83 5 S 115 II s

84 T T 116 I

I....- 85 U U 117 I u

86 I, Y 118 I \I •
'-- 87 II •• \I 119 II II

88 v
X 120 I " x

'- 89 y 121 I y y

90 ..,
Z 122 II z

'-
L-

91 r 123 II ... L..

I....- 92 , , \ 124 II
93 , 125 • t -'

I....- 94 /' t 126
~ L-

95 127 ~- f-
I....-

-61-
\.....

Notes to ASCII character table

If you are using an HP-IL printer, decimal codes 9, 10,

and 27 have a different meaning. Code 9 generates a "line­

feed" character, code 10 generates a "carriage return", and

code 27 generates an "Escape" character. The "Escape" charac­

ter signifies that the following characters constitute a spe­

cial control message to the printer. This message is not

printed. Escape mode is exited automatically when enough

control characters have been received to complete a valid

command sequence.

The decimal codes 128-255 give starbursts (all segments

lit) in the display. The printer characters for codes 128-255

are the same as those for 0-127, respectively, except for the

three special HP-IL printer codes.

Decimal code 0 gives a "null" character, which is not

related to the NULL message when a key is held down too long.

Unless you do a lot of synthetic programming, you will proba­

bly never use a null character. Read Appendix C of the Exten­

ded Functions/Memory module Owner's Handbook for a complete

summary of the strange behavior they can exhibit.

Character number 255 has a few strange properties as

well. When it is displayed as part of the ALPHA register, it

appears as a starburst. However, when you AS TO a string that

contains this character and then display the ASTO'd string,

what you see in the display will be misleading. The decimal

255 character and any characters that follow it will be invis­

ible. If you have a revision IB Extended Functions/Memory

module, you must observe another caution involving decimal 255

characters: do not store more than 6 consecutive decimal 255

characters in a text file. You risk losing that file and all

subsequent files the next time you purge a file closer to the

beginning of extended memory. This is because the HP-4l uses

a register of 7 of these characters to mark the last occupied

register of extended memory. This caution does not apply to

the HP-4lCX or to extended functions revisions lC and up.

-62-

(continued from page 59)

The ALENG (ALPHA length) function computes the number of

characters in the ALPHA register, from 0 to 24. This number

is placed in the X register, while the former contents of X,

Y, and Z, are raised to Y, Z, and T. LASTX is unchanged.

For example, suppose you want to check whether the ALPHA

register is empty and branch to LBL 99 if it is. The sequence

ALENG

X=0?

GTO 99

will accomplish this. If you just want to generate an error

message if ALPHA is empty, you can use the sequence

ALENG

l/X (gives DATA ERROR if X=0).

Another use for ALENG is to determine how many ASTO and ASHF

operations are needed to store a long ALPHA string. Since

each ASTO stores 6 characters (and ASHF then removes these 6

characters), we can divide the initial length by 6 and round

up to the next highest integer to determine how many ASTO's

will be needed. Another approach is to check the length after

each ASHF and continue as long as the ALPHA register is not

empty.

An advanced application of ALENG is to aid in rotating

strings containing null characters. If a null character is

rotated to the front (leftmost part) of a string, it will

disappear. The only way you can tell that this happened is to

'- check the ALENG before and after the rotation to see whether

it decreased. Unless you do a lot of synthetic programming

(see section l0A), you probably will not use ALENG this way.

But now, when you see ALENG preceding and following AROT in a

synthetic program, you will know why.

The function POSA (position in ALPHA) accepts a decimal

'- character code in X. It then searches the string in ALPHA,

from left to right, for the first occurrence of the specified

-63-

character. A position code is returned to the X-register,

overwriting the character code. The character code is saved

in LASTX. POSA, POSFL (page 41), and GETKEYX (page 90) are

the only extended functions that alter LASTX.

The position code returned by POSA is an integer from 0

to 23. A value of 0 indicates a match at the first (leftmost)

character of ALPHA, while a value of 23 indicates a match at

the 24th character. If no match is found, the value -1 is

placed in X. These rules for the position code may seem

strange, but they are designed with a specific application in

mind. If you want to locate a particular character and bring

in to the front of ALPHA, you can use the very simple sequence

(character code)

POSA

X<0?

SF 99

AROT

(If the character is not found,

then display "NONEXISTENT")

The located character can then be removed by an ATOX. If you

have separator characters in the ALPHA register, POSA, AROT,

and ATOX working together can find the separators, remove

them, and prepare the ALPHA register for each separate string

to be processed.

As an example of POSA, suppose you have someone's name in

the ALPHA register in the standard form Wfirstname lastname",

and you want to change it to the form "lastname, firstname".

The following sequence should do the trick:

"ROGER HILL" (for example)

"r' ..
32

POSA

AROT

ATOX

Place a comma and space after last name

Decimal code for the space character

Locate the space after "ROGER"

Bring it to the front of the string

Delete the space.

The POSA function has a second mode of operation that

allows the ALPHA register to be searched for a string of 1 to

-64-

6 characters. Instead of putting a decimal character code in

'- x, you can ASTO a string there. For example, try the follow­

ing:

"FGH" (press ALPHA F G H ALPHA)

ASTO X (press ALPHA shift STO • 6 ALPHA)

"WXYXABCDEFGHIJ"

POSA (XEQ ALPHA P 0 S A ALPHA)

The result should be 9, indicating that the string "FGH"

begins at the 10th character of ALPHA. Note that the string

"FGH" is still available in LASTX if you need it.

In this second mode, POSA is very similar to the POSFL

function (page 41). Because it is not limited to 6-character

substrings or 24-character strings, the POSFL function is far

more useful than POSA for substring searches. However, for

single character searches, either by decimal code or single­

character substring, the POSA function is often simpler to use

than POSFL.

The ANOM (ALPHA number) function is a near-inverse to

ARCL. The primary use of the ARCL (ALPHA recall) function is

to append a number to the ALPHA reg i ster. The ANU M function

extracts a number from the ALPHA register. For example, if

the ALPHA register contains the string IA=452", executing ANUM

'- will put the result 452 into the X register. The stack is

raised and LASTX is not affected.

ANUM searches the ALPHA register from left to right,

returning the first legitimate number found. This is affected

by commas and periods in ALPHA, and the status of flags 28 and

29. When the ALPHA register contains one or more periods or

commas, things start getting complicated. First, the period

and comma are interpreted according to the status of flags 28

and 29. If flags 28 and 29 are set, a period is interpreted

as a decimal point and a comma as a digit separator. If flag

28 is clear and 29 is set, a comma is interpreted as a decimal

-65-

point and a period as separator. This is the standard Eur­

opean notation. If flag 29 is clear, digit separators (comma

if flag 28 set, period if flag 28 clear) are treated as alpha

characters. Therefore if the number "12,003.05" is in ALPHA

and you execute ANUM with flag 28 set but flag 29 clear, the

result will be 12. Because flag 29 was clear, the comma was

regarded as a character, splitting the number into two parts.

For most applications, you should try to avoid this problem by

making sure that flag 29 is set before you use ANUM. One more

caution: if you use ANUM with a nonstandard number format in

ALPHA, the results may not be what you intended. For example

"-34-" XEQ "ANUM" yields the positive result 34. The second

negative sign cancelled the effect of the first. Also, two or

more numbers separated only by + or - symbols will be inter­

preted as a single number.

PROBLEMS

4.1. write a 4-step sequence to append a character to the left

end of the ALPHA register.

4.2. Write a short sequence to ASTO the ALPHA register con­

tents without wasting any registers on empty strings.

4.3. Write sequences to delete n characters from ALPHA:

a) from the left, and b) from the right.

4.4. Modify the above "lastname, firstname" rotation sequence

to handle a possible middle initial.

4C. Flag Manipulations

The extended functions provide three new functions that

are very helpful in controlling the status of flags. Most

important of these are RCLFLAG and STOFLAG.

Consider the following situation. You are writing a

program that needs to round or display a result in a certain

format, for example FIX 2. You would like the program to be

-66-

able to restore the original display format before returning

control to the user. Before the advent of extended functions,

this seemingly simple task was very difficult to do. Elabor­

ate flag testing was needed at the start of the program to

determine the original display setting. Then, after the dis­

play setting was changed, additional complicated operations

were needed to restore the original setting.

The availability of the RCLFLAG (recall flags) and

STOFLAG (restore flags) functions eliminates all this diffi­

culty. You simply use RCLFLAG to recall the flag setting

before changing the display, then use STOFLAG to restore the

original flag status. A typical instruction sequence might

look like this:

RCLFLAG

"AMT= $"

FIX 2

ARCL 01

AVIEW

STOFLAG

Places a flag-equivalent string in X

Uses the string to restore flags.

The LBL 92 subroutine of Chapter 7's "NAP" program is an

'- example of this technique. Now for some details about the

RCLFLAG and STOFLAG functions.

The RCLFLAG (recall flags) function recalls to the X­

register an unintelligible alpha string that represents the

current status of flags 0 to 43. Like a standard RCL instruc­

tion, RCLFLAG raises the contents of X, Y, and Z into Y, Z,

and T, unless it is immediately preceded by an ENTERT, CLX, or

other stack lift disabling operation. LASTX is not changed.

The alpha string formed by RCLFLAG can be stored in a

data register or kept in the stack. The only use of this

string is to later restore some or all of the original flag

status by using STOFLAG.

-67-

The STOFLAG (restore flags) function has two modes of

operation. The one illustrated in the above example is the

simpler mode. Simply put the RCLFLAG alpha data into X, and

execute STOFLAG. The original status of flags 0 to 43 (as of

the time RCLFLAG was executed) is restored.

STOFLAG's second mode of operation permits selective

restoration of the previous flag settings. To use this mode,

put the RCLFLAG alpha string in the Y register, and a number

of the form bb.ee (not bb.eee) in X. Then, when you execute

STOFLAG, the block of flags from flag number bb to flag number

ee (including bb and ee) will be restored to their original

status. To restore a single flag, put the flag number bb in

X.

This second mode of operation allows you, for example, to

restore just the display setting, just the general-purpose

flags, or just the triginometric mode. To restore only the

display setting, you would use a sequence like:

RCLFLAG

STO 05

RCL 05

36.41

STOFLAG

Save the original flag settings

in data register 05

(display-altering program steps)

Bring back the RCLFLAG string

Flags 36-41 control the display setting

Restores flags 36-41 only.

Using RCLFLAG and STOFLAG, it is possible to have several

sets of flag settings appropriate to different sections of a

program. Each flag setting can be stored in a separate data

register in the form of a RCLFLAG alpha string. Each section

of the program can then simply use RCLFLAG to establish its

flag settings, rather than having to deal with the flags

individually. This should noticeably speed program execution.

-68-

.\..:.,.

Another application of RCLFLAG/STOFLAG is the following

~. short routine that will print the contents of the ALPHA regis­

ter if the printer is turned on and enabled (flag 21 set), or

AVIEW and PSE otherwise. This is superior to a simple AVIEW

because:

1) It does not halt if flag 21 is set but the printer is

turned off, and

2) It does not force you to wait for a slowly scrolling

display if the printer is in use.

This sequence was used in the "VAS" (view ASCI I file) program

of section 3F. Here it is as a program, "PVA" (print or VIEW

ALPHA) :

01 LBL "PVA"

02 SF 25

03 PRA Attempt to print ALPHA

04 RCLFLAG

05 FS?C 21 Clear flag 21 for later AVIEW

06 FC? 25 If print was not successful,

07 AVIEW or if flag 21 was clear, then AVIEW.

08 STOFLAG Restore flags

09 RON

10 FS?C 25 If print was not successful,

11 FC? 21 or if print was disabled,

12 PSE then PSE after the AVIEW.

13 END

Yet another RCLFLAG/STOFLAG application allows you to

obtain FIX/ENG display format by setting flags 40 and 41.

This display mode looks like a normal FIX format until the

number in X becomes large or small enough that an exponent is

needed. Then the ENG mode takes over. Just put a number from

o to 9 in X, and execute "FEX" to set FIX/ENG mode with the

specified number of digits displayed to the right of the most

significant digit.

-69-

101 LBL "FEX"

102 ENG 10

103 RCLFLAG

104 FIX IND Y

lOS X<>Y

106 RDN

107 41

108 STOFLAG

109 RT
110 RT
11 END

FIX/ENG INDirect X

Set flag 41

Set flag 410 and select the

correct number of digits

Set flag 41 (others unchanged)

Put the stack back in order.

The third flag-related function is X<>F (X exchange

flags). This function treats general-purpose flags 1010 through

107 as a "mini-register", and performs an exchange with that

register. This "mini-register" can only hold integer numbers

from 10 to 255 inclusive. Therefore any fractional part of X

is discarded before the exchange is performed, and the sign of

X is ignored. In effect, the X<>F function incorporates the

sequence ABS, INT as its first two steps, except that LASTX is

not altered. In fact, the sequence X<>F, X<>F can be used to

perform ABS, INT on a number up to 255 without altering the

stack or LASTX. No DATA ERROR message is given by X<>F unless

INT(ABS(X» is larger than 255.

The power of X<>F is that, like STOFLAG and RCLFLAG, it

gives you the ability to maintain several sets of general­

purpose flags in data registers.

After an X<>F is performed, the settings of flags 1010

through 107 express, in binary form, the former value of X. If

you are mathematically inclined, the formula is

7

former X L:
i=1O

where f i 1 if flag i is set, 10 if flag i is clear.

-70-

In this binary representation, flag 0 has the value 1, flag 1

has the value 2, flag 2 has the value 4, and

equivalence can be represented in tabular form.

shown below gives the binary representation of

number 133.

flag value current

number if set set? value ---
00 1 Y 1

01 2 N 0

02 4 Y 4

03 8 N 0

04 16 N 0

05 32 N 0

06 64 N 0

07 128 Y 128

Total: 133

so on. This

The example

the decimal

As a simple example of the usefulness of X<>F, suppose

you have a program that starts by clearing flags 00 through 03

and setting flags 04 and 05. Rather than use the sequence

CF 00

CF 01

CF 02

CF 03

SF 04

SF 05 (12 bytes)

one can use the sequence

48

X<>F

(flag 04 = 16, flag 05

(4 bytes).

-71-

32)

If you were not familiar with the binary equivalence, you

could have verified that 48 was the correct number as follows:

o
X<>F

SF 04

SF 05

X<>F

This clears flags 00 through 07,

a very useful technique.

The result of this sequence is 48. This shows that the number

48, when followed by X<>F, will set flags 04 and 05, while

clearing the others.

If it were important in the above example to preserve the

status of flags 06 and 07, you could have used this sequence:

o
X<>F

64

/
INT

LASTX

*
48

+

X<>F

Recalls the flag status

Flags 96 and 07 are now in the

one's and two's digits

These two steps add in the number

to set flags 04 and 05.

Further analysis of this sequence is left as an exercise.

When you understand it, you will be able to ~ully utilize

X<>F. But do not be misled into using X<>F everywhere. For

instance, in the example just shown, a simple set of six

instructions to clear flags 00-03 and set flags 94-05 saves

two bytes over the X<>F method!

-72-

PROBLEMS

4.5. Write a sequence of instructions that evaluates the

function
f(x) = SIN(PI*x)

PI*x

The SIN function must be evaluated in RADian mode, but the

original trig mode is to be restored.

4.6. Write a sequence to activate FIX/ENG mode without chang­

ing the currently selected number of digits (flags 36-39).

Synthetic Programming applications of RCLFLAG and STOFLAG

When a printer is attached, program execution is slowed.

The amount of slowing can be reduced if you synthetically

clear flag 55. Flag 55 will only remain clear as long as the

program continues to run. Once it stops, flags 55 and 21 will

both be set. The following short sequence, developed by Steve

Wandzura, clears flag 55 without disturbing any other impor­

tant flags:

RCLFLAG

SIGN

STO d

X<> L
STOFLAG

RDN

stores flags in LASTX, sets X=0.

clears all flags.

brings flags back to X.

restores flags (up to 43).

restores the stack (except T).

The exact format of the ALPHA string generated by RCLFLAG

is, in hexadecimal,

IF Ff ff ff ff ff ff,

where the f's denote flag information, corresponding to flags

o to 43, left to right. The flags are shifted one-and-a-half

bytes to the right from their normal position in the flag

'- register. The extra half-byte shift can be useful in advanced

synthetic programming applications.

-73-

4D. SIZE-related functions

Two of the extended functions allow you to check and

adjust the SIZE under program control. This is a powerful new

capability that, before the introduction of the extended func­

tions module, was available only through synthetic programming

techniques.

The SIZE? (SIZE finder) function finds the number of data

registers currently allocated and places that number in the X

register. So, for example, if you set a SIZE of 020, and then

you execute SIZE?, the result will be the number 20 in X. The

stack is lifted just as for a RCL operation.

The SIZE? function is the classic example of an essential

operating system function that the designers left out of the

original HP-4l. If you have used an HP-4l without extended

functions, you know this already. How many times have you

wanted to check the current SIZE before starting a program or

manual data entry? The usual procedure was to try several RCL

operations in an attempt to get an approximate idea of what

the first NONEXISTENT register is. This procedure could be

automated by programs like this simple but slow one:

01 LBL "SZFIND"

02 CLX

03 SF 25

04 LBL 01

05 RCL IND X

06 FC? 25

07 RTN

08 RDN

09 1

10 +

11 GTO 01

12 END

These 2 lines set X=0, set flag 25

to avoid stopping at line 05.

Attempt to recall a register.

If the register was NONEXISTENT,

the value in X is the SIZE.

Add 1 to the register number.

then try the next one.

The SIZE? function is incomparably faster than this approach,

and much more practical too. You might use it often enough to

-74-

warrant assigning it to a key, but even if you do not, it is

quickly accessible by the key sequence

XEQ ALPHA S I Z E ? ALPHA

The PSIZE (programmable SIZE) function does the same

thing as SIZE, except that it does not give the familiar

three-underscore prompt. Instead, the SIZE is adjusted to

equal the value in X. PSIZE can be used in a running program,

even in a sixth-level subroutine, without any adverse effect

on the program's operation. This means that you can write

programs and subroutines that automatically increase or de­

crease the SIZE as necessary.

The following short sequence of instructions checks

whether the current SIZE is sufficient for a specific purpose,

and uses PSIZE to increase the SIZE if necessary.

(required SIZE)

SIZE?

X<>Y

X>Y?

PSIZE

Another variation provides an audible warning of the

impending PSIZE operation, in case the user of the program

wants to press R/S to prevent resizing:

(required SIZE)

SIZE?

X>Y?

GTO 01

TONE 9

X<>Y

PSE

PSIZE

LBL 01

-75-

4E. Block operations

The extended functions REGMOVE and REGSWAP allow you to

copy, exchange, or rotate blocks of data registers. The HP-

41CX adds the function CLRGX, which clears a block of data

registers. If you have an HP-41C or CV, a short "block clear"

program does the same job.

The REGMOVE (register move) function accepts an input of

the form sss.dddnnn in the X register. Executing REGMOVE

copies a source block of nnn data registers beginning at

register sss to a destination block of nnn data registers

beginning at register ddd. If nnn is zero, one register is

copied. REGMOVE does not alter the stack or LASTX. As an

example, the sequence

6.'''3HJ03 REGMOVE

copies a block of 3 registers. The source block is registers

06, 07, and 08, while the destination block is composed of

registers 01, 02, and 03.

To make the examples easier to follow, first set the SIZE

to 020 and run the "PRELOAD" program from page 24. This will

"tag" all your data registers. When you press

XEQ "PRELOAD"

the value 0 is stored in register 00, 1 in register 01, and so

on. The value in each register matches its number.

As a simple example of REGMOVE, press

3.007006 XEQ ALPHA REG M 0 V E ALPHA.

This will cause registers 03-08 (a 6-register block) to be

copied into registers 07-12, as shown on the next page.

-76-

register: 03 04 05 06 07 08 09 10 11 12

start: 3 4 5 6 7 8 9 HJ 11 12

8

7

6

5

4

3

result: 3 4 5 6 3 4 5 6 7 8

The intermediate steps shown in this diagram are invisible to

you. They are included so that you can visualize how the

copying process is implemented. Where there is no entry, the

register contents are not changed at that step.

The REGSWAP (register swap) function exchanges the con­

tents of two blocks of data registers. Like REGMOVE, it

accepts a number of the form sss.dddnnn in X, where sss de­

notes the beginning of the source block, ddd denotes the

beginning of the destination block, and nnn denotes the number

of registers in each block. If nnn is zero, the HP-4l assumes

that you want nnn=l and it swaps only registers sss and ddd.

The stack and LASTX are unchanged.

The internal programming of REGSWAP interchanges one pair

of registers at a time. If sss<ddd, the highest numbered

register is swapped first and the lowest numbered register is

swapped last. If sss>ddd, the lowest numbered register is

moved first and the highest numbered register is moved last.

This internal order of operations is the same for REGSWAP as

it is for REGMOVE. Normally you would not need to know in

what order these operations are performed. However, if the

source and destination blocks overlap, the order of operations

-77-

affects the result. As an example of REGSWAP, try this:

XEQ "INIT"

3.007006 XEQ "REGSWAP"

The following diagram shows how the register exchange is

performed.

register: 03 04 05 06 07 08 09 10 11 12

start: 3 4 5 6 7 8 9 10 11 12

12 8

11 7

10 6

9 5

12 4

11 3

result: 11 12 9 10 3 4 5 6 7 8

As you can see, REGSWAP can really scramble the registers when

there is a significant overlap of the two blocks. This fea­

ture can be turned to an advantage, however, in constructing a

"block rotate" function. Consider the following example.

Press

XEQ "PRELOAD" (initializes the registers)

4.003009 XEQ "REGSWAP"

The internal steps in the register swap are as shown on the

next page. Because 4 is greater than 3, the swap proceeds

from low to high numbered registers.

-78- .-

register: 03 04 05 06 07 08 09 11 12

start: 3 4

4 3

5

result: 4 5

5

3

6

6

6

3

7

7

7

3

8

8

8 9

3

9 3

10

9 10

10

3

11

11

11

3

12

12

12

3

3

The result is that the block of 10 registers from 03 to 12 is

rotated one register downward. If you had pressed

3.004009 XEQ "REGSWAP"

the 10-register block would have been rotated upward one

register. This result can be easily generalized.

To rotate a block of nnn registers beginning at register

sss, use the REGSWAP input

sss.(sss+l) (nnn-1)

(sss+l) .sss(nnn-1)

to rotate upward 1 register, or

to rotate downward 1 register.

If you want to rotate a block of n registers by r registers

upward or downward, you may be able to accomplish the desired

result with a single REGSWAP instruction. If the number r

'- divides n evenly (without a remainder), use

sss. (sss+r) (nnn-r) to rotate upward r registers, or

(sss+r) .sss(nnn-r) to rotate downward r registers.

-79-

The CLRGX (clear registers designated by X) function on

the HP-41CX accepts an input of the form bbb.eeeii in the X

register, where bbb is the first register to be cleared, ii is

the increment between registers to be cleared, and registers

beyond eee are not to be disturbed.

If ii is not supplied (ii=9), then a default value of

ii=l is assumed, so that registers from bbb up to and inclu­

ding eee are cleared. If you are familiar with the ISG (in­

crement and skip if greater than) instruction on the HP-4l,

these rules will not be new to you. For example, to clear

registers 04 through 98, you would press

4.008 XEQ ALPHA C L R G X ALPHA

To clear registers 91, 03, 05, 07, and 09, you would press

1.00902 XEG ALPHA C L R G X ALPHA

Actually it is a very rare application in which you need to

use a nonzero value of ii. One example would be when you have

stored a matrix, one entry per register, in a block of data

registers. Nonzero values of ii allow you to selectively

clear one column or the diagonal elements.

CLRGX leaves its input in X and does not disturb LASTX.

If you have an HP-41C or CV, it is easy to write an

instruction sequence to clear a block of registers. The

following very simple program will clear a block of data

registers beginning at register bbb and ending with register

eee. Just put the number bbb.eee in X and execute "BC" (block

clear).

01 LBL"BC"

02 SIGN Stores bbb.eee in LASTX

03 CLX The value 0 is to be stored.

04 LBL 03

05 STO IND L Clear the register.

06 ISG L Increment the counter.

07 GTO 03

08 END

-80-

If you plan to clear large blocks of data registers, you can

'--- use the faster program "BCE" (block clear using summation

registers) that uses the CLE function to clear 6 registers at

.",--,.

a time. To clear 100 registers, "BC" uses 13 seconds, while

"BCE" takes less than 4 seconds. To use "BCE", just put the

bbb.eee control number in X and execute "BCE".

BCE program listing

IlltLBL "en:" IlStLBL III 14 nSE X 19tLBL 113
112 6 E-S 1l9W: 21l STO IMD Y
113 + Hi ~REG IMD ,: IStLBL 112 21 ISG Y

114 EREG IMD X 11 ISG X 16 LASTX 22 GTO 113
115 ISG X 12 GTO III 17 - 23 EMD
116 X<8? IS Il
117 GTO 112 13tLBL 112 44 BYTES

PROBLEM

4.7. Write a short program to rotate a block of nnn registers

starting at register sss upward by rrr registers (downward if

rrr is negative). At the start of the program, assume that

sss is in X, nnn is in Y, and rrr is in Z. Use only the stack

and LASTX. (I tis not as easy as it looks.)

4F. Key assignment control

Two extended functions, CLKEYS and PASN, enhance your

ability to control USER mode key assignments. Another extend­

ed function, GETKEY (plus GETKEYX on the HP-41CX), allows your

program to "read" the keyboard, providing the ultimate in

redefinition of the keyboard.

First a few words about key assignments. The ability to

assign a function to a single key is one of the features that

distinguishes the better programmable calculators. The HP-65

and HP-67 programmable calculators had a top row of keys

-81-

labeled A through E (the shifted top row was labeled a through

e). At the touch of one of these keys, you could execute a

section of the calculator's program that began with the corre­

sponding label (A-E or a-e).

The HP-41 is a major advance over its predecessors in key

assignment capability. The HP-4l's USER mode allows virtually

every key to be redefined with an assignment of a global label

or a function. (Global labels are those labels that appear in

Catalog 1, while functions appear in Catalog 2 or Catalog 3.)

Also, to maintain compatibility with the HP-67 and HP-97, the

top row of keys can access local labels A-E (unshifted) and

a-e (shifted) in the current program. In addition, the un­

shifted second row can access local labels F-J. This will

work as long as no global label or function is assigned to the

key in question. This automatic label search feature is

described under "Local labels" in the HP-41 Owner's Handbook.

If a key in the top row, shifted or unshifted, or in the

second row, unshifted only, is pressed in USER mode, and if no

global label or function is assigned to that key, a search is

begun. If the corresponding local label (A through J or a

through e) is found in the current program, the calculator

starts executing the program at that point. Hold the key down

to preview its function.

Incidentally, because this local label search can take a

relatively long time, it is often useful to assign the X<>Y

and RDN functions to their own keys. This assignment has

higher priority than a local label, so no label search is

performed. The response time to these keys in USER mode is

noticeably improved.

The PASN (programmable ASN) function works almost like

the ASN (assign) function does from the keyboard. Recall that

when you use ASN, you have to enter ALPHA mode and spell out a

function name. It's the same with PASN, except that you spell

the function name out in the ALPHA register before you execute

-82-

PASN. With ASN, you designate the key to which the function

is to be assigned by actually pressing the key after spelling

out the function name. If you hold that key down for a mo-

~ ment, a keycode appears in the display. This keycode is a

two-digit number. The first digit is the row number of the

key (1 through 8), while the second digit indicates the column

(1 through 5). It is this row/column keycode that you have to

put in the X register before executing PASN.

The ASN function can be used to manually clear a key of

its assignment. You just press ALPHA ALPHA for the function

'- name. When no function is named, the HP-41 assumes that you

want the key to be free of any assignment. Once again, PASN

works similarly. Just make sure the ALPHA register is empty,

put the row/column keycode in X, and execute PASN.

Summarizing: to use PASN, load the ALPHA register with

the name of the function to be assigned, put the row/column

keycode in X, and execute PASN. The specified function will

'- be assigned to the designated key. If the ALPHA register is

empty, the designated key will be cleared of its assignment.

These instructions apply identically whether PASN is an in­

struction in a program or whether it is executed from the

keyboard.

The PASN function lets you write programs that make key

assignments.

text files.

like INSREC

For example, suppose you had a program to update

It could prove quite helpful to have operations

(insert record) and DELREC (delete record) assign-

ed to keys, even though these functions may not be useful

enough to keep assigned to keys all the time. The answer is

to use PASN at the beginning of your program to assign these

functions to convenient keys. At the end of the program you

~ can use PASN again, with the ALPHA register empty, to clear

the assignments.

The short routine listed at the top of the next page was

written by Alan McCornack. It clears the top row (unshifted

-83-

only) of any function or global label key assignments. This

technique can be easily extended to meet your needs for se­

lected key assignment clearing.

01 LBL "CT" (clear top row)

02 CLA

03 11.015 ISG counter for keycodes 11 to 15

04 LBL 05

05 PASN Clear key x.

06 ISG X

07 GTO 05

08 END

The CLKEYS (clear keys) function clears all USER mode key

assignments of global labels or functions. Note that when you

use CLKEYS to delete global label and function key assign­

ments, local label pseudo-assignments (keys A-J and a-e) will

no longer be masked by the presence of any higher-priority

global label and function assignments.

CLKEYS is a drastic solution to problems of conflicting

key assignments. In most cases you are better off using PASN

to clear or reassign individual keys. Section l0G has an even

better method.

Here is a typical application of PASN and CLKEYS. Sup­

pose you have two different sets of key assignments that you

1 ike to use with your HP-41, depend i ng on wha t you are us i ng

it for. You can write two programs, one to set up each set of

assignments. Each program would have this general form:

LBL"KBl"

CLKEYS

"function 1"

(keycode 1)

PASN

(keyboard 1)

Eliminate previous assignments

-84-

"function 2"

(keycode 2)

PASN

"function 3"

(keyode 3)

PASN

END

since PASN, like ASN, will overwrite any assignment already

made to the designated key, you may find that CLKEYS is un­

necessary here, especially if several assignments for the

different keyboards are the same functions, or use the same

keys. If you want to selectively clear keys of assignments,

include a sequence like

CLA

(keycode 1)

PASN

(keycode 2)

PASN

etc.

in the "KB1" program.

The third extended function that is related to key as­

signments is GETKEY. This is a very special function that is

perhaps more powerful than any other extended function, as you

will see in Chapters 8 and 9.

The GETKEY (get keycode) function is an entirely new type

.~ of function for the HP-41. When you execute GETKEY as part of

a program, the calculator pauses for up to 10 seconds waiting

-85-

for you to press a key. If a key is pressed, the row/column

keycode for that key is placed in the X register. If no key

is pressed within 10 seconds, the number 0 is placed in X. In

either case, the stack is raised and LASTX is not disturbed.

If you want the program to keep waiting until a key is

pressed, a simple loop will do the job:

LBL 00

GETKEY

X=0?

GTO 00

As long as no key is pressed, this program segment will keep

looping. To avoid raising the stack each time the GETKEY is

unsuccessful, you can use a RON instruction between LBL 00 and

GETKEY.

Unlike PASN, the GET KEY function has keycodes for the 4

mode switches. For GETKEY, these keys are assigned a row

number of Iif. The ON key has a keycode of 1 and the ALPHA key

has a keycode of 4. Remember that these keycodes only appear

as results from GETKEYi they will not work with PASN.

When you use GETKEY, avoid sequences like this:

LBL 00

GETKEY

GTO 00

The omission of the X=0? test causes an "infinite loop". But

you can't stop this one by just pressing R/S. After all, R/S

is just key 84. Even pressing the ON switch won't stop it.

One way to stop it is to take out the batteries. A better way

is to press and hold the R/S key, press the ON key, release

the R/S key, and release the ON key. The best bet is to make

sure that you have a normal way out of any GETKEY loop.

With GETKEY, a program can simulate the local label

assignment feature on all 35 unshifted keys. What is more,

-86-

the program can do this without worry of conflict with other

.~ key assignments and without the necessity of setting USER

mode. The interpretation of each key can even change within ~

\

program.

The most commonly used type of sequence with GETKEY is:

LBL 00

RDN

GET KEY

X=0?

GTO 00

XEQ IND X

RTN or GTO 00

LBL 11

RTN

LBL 12

RTN

END

If no key was pressed,

then try again.

Execute a subroutine corresponding

to the key that was pressed.

This portion of the program displays

results or does other operations

that are the same for all keys.

This section is executed if the key

at row 1, column 1 was pressed.

This section is executed if the key

at row 1, column 2 was pressed.

Use a LBL for each key that you

want your program to respond to.

This sequence waits until a key is pressed, then executes

whatever program steps follow the corresponding numeric local

label. For example, if you were to press the backarrow key,

the HP-4l would look for LBL 44 (row 4, column 4) and start

executing that portion of the program as a subroutine. If you

want more keys to have functions, just add the corresponding

-87-

numeric labels to the program, followed by sequences that do

whatever you want the key to do.

USER mode key assignments do not conflict with GETKEY,

because the GETKEY function temporarily pre-empts them, just

as it pre-empts the on/off and mode selection keys. GETKEY

can function as another level of custom key assignments.

Here is a simple example of how GETKEY can be used. This

sequence prompts for a YES/NO response. Either R/S or "Y"

(the multiplication key) is accepted as a YES response; any

other key is assumed to be a NO response.

"message"

SF 25

LBL 00

AVIEW

GETKEY

RON

GTO INO T

RTN

LBL 71

LBL 84

CF 25

RTN

Put keycode in stack register T

(NO response drops into here)

(YES response goes here)

(R/S response goes here)

The GTO INO T instruction branches back to LBL 00 if no key

was pressed, or to LBL 71 or 84 if the "Y" or R/S key was

pressed. Otherwise there is no LBL corresponding to the

keycode. This causes a NONEXISTENT error which clears flag

25. Execution then drops into the NO response sequence.

-88-

-

-

\.

This GETKEY technique implicitly requires, as do most

uses of GETKEY, that there be no extraneous local LBL's that

have keycode-like numbers. This means that within this pro-

gram, the following LBL's are not allowed, except where such a

LBL is needed as the object of the GTO IND instruction:

01 02 03 04 (the rocker switches)

11 12 13 14 15 (row 1)

21 22 23 24 25 (row 2)

31 32 33 34 35 (row 3)

41 42 43 44 (row 4)

51 52 53 54 (row 5)

61 62 63 64 (row 6)

71 72 73 74 (row 7)

81 82 83 84 (row 8)

Of course, you can violate this constraint in your programs if

you do not mind invalid results when an illegal key is pressed

in response to a GETKEY prompt.

This kind of YES/NO response testing technique is used in

\- the mailing list program in Chapter 7. Two more response

options are added, but the principle is the same. A much more

.\,....- elaborate example of GETKEY is given in Chapter 9, where a

program is presented that simulates the single-key base con-

version functions of the HP-16 calculator.

4G. Added functions on the HP-41CX

The HP-41CX includes 14 more extended functions than the

'- Extended Functions/Memory module for the HP-41C or CV. Six of

these functions have already been described: EMROOM (page 11),

EMDIRX (page 11), RESZFL (pages 32 and 45), ED (page 52),

ASROOM (page 51), and CLRGX (page 80). The remaining eight

-89-

functions, GETKEYX, IREG?, X<NN?, X<=NN?, X=NN?, XtNN?,

X>=NN?, and X>NN? will be described in this section.

The GETKEYX (get keycode, wait X seconds) function is an

extended version of the GETKEY. A number in X up to ±99.9

specifies the number of seconds that the calculator will wait

for a key to be pressed when you execute GETKEYX. If X is

less than 9.1 the calculator will do its best, but you may get

a wait that is slightly longer than you requested. GETKEYX

returns a keycode to the Y-register (not the X-register) and a

character code to the X-register, as explained below. The

interval that was specified in X is saved in LASTX, while the

former contents of stack registers Y and z are raised to z and

T, respectively.

If you press an unshifted key within the specified time,

the keycode is placed in the Y-register. If you press the

shift key, the key code 31 (row 3, column 1) is not returned

as it would be if you had used GETKEY. Instead, the calcula­

tor restarts the specified interval and waits for another key

to be pressed. When you press the second key, the negative of

its keycode is placed in the Y register. This feature lets

you "GET" shifted keys as well as unshifted keys.

If the specified time interval expires before a key is

pressed, the value zero is placed in Y to indicate that no key

was pressed.

The value returned to the X register depends on the ALPHA

mode status (flag 48) and on which key is pressed. If ALPHA

mode is on (flag 48 set) and you press a key (or shift plus

another key) which corresponds to a character, the ASCI I

equivalent of the character is returned to X. This makes it

simple to create a copy of the selected character in the ALPHA

register--just use a single XTOA instruction.

If ALPHA mode is off (flag 48 clear) when you use

GETKEYX, ASCII codes are returned only for the digit keys, the

radix (decimal point) key, and the CHS key. Once again, this

-90- -

code enables you to create a copy of the selected key in the

~ ALPHA register simply by using XTOA. If the key pressed does

not correspond to an ALPHA character (ALPHA mode on), the

value zero is returned to the X register.

\
'-

If you specify a negative time interval in the X register

for GETKEYX, the calculator will not wait until the key is

released, as it normally would. Instead, execution will re-

sume as soon as electrical contact is made. Thus a sequence

like this:

LBL 01

-.1

GETKEYX

RDN

X;l0?

GTO 01

will continue to loop as long as any key is held down. It is

not very likely that your applications will lead you to use

this feature of GETKEYX, but if you must use it, there is a

possible problem you should be aware of. Although the GETKEYX

instruction will indeed read the proper key code, releasing

the key causes the normal function to be executed. For all

but the ON and R/S keys, nothing will happen because the

program is running. In contrast, releasing the ON key will

shut off the calculator, and releasing the R/S key will halt

the program. Thus when you execute GETKEYX with a negative

number in X, avoid pressing the R/S or ON keys unless you are

done using the program.

Here are two sample applications for GETKEYX. The first,

~ "VREG" (view register), views a selected register for as long

as the corresponding key is held down.

-91-

"VREG" program listing

111*LBL "YREG' 89 CHS 19 - 28 GETKEY>':
82 CF 21 18 GETKm: 28 X<iP 29 RDII

11 SIGII 21 ClX 38 Xt8?
83.lBl 81 12 X()Y 22 VIEW IIID X 31 GTO 83
84 "REG?' 13 X=8? 23 .1 32 GTD 81
85 AOII 14 GTO 82 24 CHS 33 END
86 AVIEW 15 X=Y? 25 SIGII

16 RTII
87*lBl 82 17 LASTX 26*lBl 83 57 BYTES
88 18 18 64 27 XO l

When you run "VREG", the prompt "REG?" appears, requesting a

register selection. The "A" key selects register 01, the "B"

key selects 02, and the "z" key selects 26. Press the ON key

twice to quit the program.

Here is a brief explanation. The first GETKEYX loop de­

tects when a key has been pressed. I f the keycode is 01 (the

ON key), a RTN stops the program. (Releasing the ON key turns

off the calculator, and pressing it the second time turns the

calculator back on.)

If the keycode is not 01, the ASCII code is retrieved

from LASTX and adjusted by subtracting 64. This converts "A"

to 01 and "z" to 26. The next two lines replace negative

values by zero. Then the selected register is VIEWed. The

second GETKEYX loop simply continues to loop as long as a key

is held down. When the key is released, the zero keycode

causes a branch back to LBL 01 at the top of the program,

where the REG? prompt is regenerated.

Another, more straightforward application of GETKEYX is

to permit selection of a key for an assignment needed by a

program. For example, suppose you have a base conversion

program that makes assignments of the functions MOD, INT, and

FRC to USER mode keys. In section 4F you learned how the PASN

function can be used to make key assignments under program

control. The GETKEYX function lets the user of the program

-92-

.....;

'''-..

'",-

select keys for these assignments "in real time", as the

program is running, without having to go to the trouble of

figuring out the keycode. A typical program might use a

structure like this:

"MOD"

XEQ 99

"INT"

XEQ 99

"FRC"

XEQ 99

LBL 99

"I- KEY? "

AVIEW

HI

LBL 013

GETKEYX

X<>L

X>Y?

GTO 130

RON

6

CHS

AROT

ASHF

RON

PASN

RTN

The LBL 99 subroutine prompts

the user to press a key, uses

GETKEYX to get the key code, then

uses PASN to make the requested

assignment.

Note the spaces before and after KEY?

Display message requesting a key.

Get the keycode in Y.

If keycode <10, try again.

These five steps remove the 6 characters

II KEY? II from the ALPHA register.

Keycode is now in X.

Make the requested key assignment.

The IREG? (summation register finder) function on the

HP-41CX gives the currently selected location of the summation

register block, a block of 6 registers used by the calculator

-93-

for the E+, E-, MEAN, and SOEV statistical operations. The

Catalog 3 function EREG selects a starting register for this 6

reg ister block. When you execute E REG?, the number returned

is the same as the last location selected by EREG, or 11 if

you have not executed EREG since the calculator was last

cleared. The stack is raised and LASTX is undisturbed.

The functions of the 6 registers of the summation regis­

ter block are as follows:

REREG ? Ex

REREG?+l E x2

REREG ?+2 EY

REREG ?+3 Ey2

REREG ?+4 EXy

REREG?+S n

The primary application of the EREG? function is to

recall data from the statistical registers regardless of where

those registers are located. For example, the sequence

2

EREG?

+ E REG? in L

RON E REG? + 2 in T

RCL INO T Ey

RCL INO L Ex

simulates the HP-67/97 function RCLE , bringing the sum of y

values into the Y register and the sum of x values into the X

register. You can modify this sequence to recall any of the

six registers in the EREG block for your calculations.

The remaining six functions on the HP-41CX, X(HN?,

X(=NN?, X=NN?, X;fNN?, X>=NN?, and X>NN?, allow you to compare

the contents of X with any other register. The location of

the other register is designated in Y. If you are familiar

-94-

~.

.---

with indirect functions, these functions are effectively "X

compare indirect y" functions. To use one of these six func­

tions, for example X>=NN?, just put a register number in Y

(from 0 up to SIZE?-l) and press

XEQ ALPHA X shift J = N N ? ALPHA

[Instead of a register number, Y can contain alpha data desig­

nating a stack register: HZ", "T", or "L". "X" and "y" will

work, but they are not useful.] The result will be displayed:

\- YES if the contents of X are greater than or equal to the

contents of the register specified in Y, NO otherwise.

If you use one of these instructions in a program, the

YES or NO display will not appear. Instead, the instruction

that follows will be executed only if the result is YES,

otherwise it will be skipped. This operation conforms to the

standard "do if true" rule for all test instructions.

~ One important feature distinguishes these six comparison

functions from their Catalog 3 counterparts. These indirect

'___ comparison functions allow you to compare alpha data as well

as numeric values. Strings are compared on the basis of ASCII

codes. The effect is the same as if you used AT OX to compare

the strings character by character from left to right, stop­

ping at the first position that revealed a difference between

the strings. The ASCII code ordering of alpha strings is

similar to normal lexicographic ordering except that:

1) numeric and punctuation characters are less than alpha-

'- betic characters, and

2) lower case characters are greater than uppercase charac-

terse

For more deta i Is on ASCI I code order i ng, see the ASCI I

~. equivalence table on pages 69 and 61.

The "ALSORT" (alphabetic sort) program listed on the next

~ page will sort a block of registers from register bbb to

register eee, inclusive, in increasing order. It uses a

-95-

simple bubble-sort algorithm. Just put the number bbb.eee in

X and execute "ALSORT".

"ALSORT" program listing

81tLBL "ALSORT" 11 RCL X 21 GTO 83 32 GTO 1:12
1:12 EHTERt 12 RCL Z 22 X(> IHD Y
83 ISG Y 13 lNT 23 STO IND L 33tLBL 83
84 :«8? 14 + 24 FS?C 86 34 Rt
85 RTN IS DSE X 2S GTO 1:13 35 Rt
86 lHi 16 X<8? 26 RDN 36 ISG Y
87 I E3 17 SF 86 27 ABS 37 GTO 81
88 i 18 RCL INIi L 28 RCL IHD :~ 38 EHIi

89tLBL III 19tLBL 82
29 DSE Y
38 FS? 53

18 GF 86 28 X}=HH? 31 SF 1:16 71 BYTES

Because the X>=NN? function is used for the comparisons, the

"ALSORT" program will sort either numeric or alpha data (or

both). The bubble sort algorithm is quite simple. In BASIC

it might look something like this:

For i = bbb + 1 to eee

For j = i-I to bbb by -1

If Rj+l > Rj' go to new i

Else interchange (Rj+l,Rj)

Next j

new i: Next i

In the "ALSORT" program, LBL 01 starts the i loop, which uses

an ISG counter of the form i.eee. LBL 02 starts the j loop

which uses a DSE counter j.(bbb-l). If you want to trace the

stack usage of "ALSORT", it may be helpful to know that at LBL

01, the important stack contents are

X=0.(bbb-l) and Y=i.eee

At LBL 02, the stack contains:

L=j+l, X=Rj+l' Y=j.(bbb-l), Z=0.(bbb-l), and T=i.eee.

-96-

CHAPTER FIVE

A PROGRAM BYTE COUNTER

The HP-41 Owner's Manual mentions that the byte is the

basic unit of program memory, and that each instruction in a

program occup ies one or more bytes. I n fact, the Owner's

Manual gives a tabular summary of the byte count for each

different type of instruction.

If you have an HP-41CX and you want to know how many

bytes one of your programs occupies, you can just execute

CATALOG 1 and press R/S to halt it at the END of the selected

program. The number at the right side of the display indi­

cates the number of bytes of main memory that the program

currently occupies. If the last line of the program is .END.,

you will need to press GTO •• to give the program its own END.

No byte count is supplied with the .END ••

If you have an HP-41C or CV and you want to know how many

bytes one of your programs occupies, you could refer to the

tabular summary in your Owner's Manual and count the bytes by

hand. Dividing by seven and rounding up gives the number of

registers required to hold the program. Naturally this manual

~ counting procedure seems like a waste of time when you have a

powerful tool like the HP-41 at your disposal.

'- with the Extended Functions/Memory module, you can auto-

-
mate the byte counting procedure. The short utility routine

"CBX" (Count Bytes using XMemory) presented here does the

whole job. First "CBX" saves your program in extended memory,

creating a new program file (unless that program was already

saved in extended memory). Then "CBX" performs a RCLPT in­

struction which, for a program file, returns the program's

byte count to the X register. Finally, "CBX" clears the

temporary program file it created. If your program was al­

ready saved in extended memory, the file is not cleared.

-97-

After "CBX" gets the byte count, it computes the number

of program registers required. This number would be equal to

the FLSIZE, except that there is one extra byte in the file

for the program's checksum (see page 181). So sometimes the

number of program registers needed is one less than the

FLSIZE.

Instructions for "CBX" -----
1. Make sure the program you want to count has a non-perma-

n e n tEN D· (n 0 t the • END.) as its 1 a s t 1 i n e , and t hat the

program is packed. These are the same things you should

do before saving a program in extended memory, in order

to minimize the space used.

2. Load the ALPHA register with the name of the program for

which you want a byte count. This name must not conflict

with the name of an existing data or ASCII file.

3. Execute "CBX" (Press XEQ ALPHA C B X ALPHA).

4. If the program was already saved in extended memory, the

result will appear very quickly. The byte count will be

in X, and the number of program registers will be in Y.

To see the number of program registers, press X<>Y or RDN

(roll down).

5. If the program was not already saved in extended memory,

"CBX" will take a few seconds longer to get the result.

First an extended memory directory will appear. About

half a second after the directory is finished, the byte

count appears in X, with the register count in Y. To

speed things up, you may interrupt the directory display

and restart the "CBX" program by pressing R/S twice.

"CBX" Example 1:

Count the number of bytes in "CBX" itself.

Solution:

Load the ALPHA register with the program name "CBX".

Then XEQ "CBX". The result should be a count of 52 bytes in

-98-

X, and a count of 8 registers in Y. If "CBX" was not packed

'--- or if it did not have a nonpermanent END attached to it, your

count may be slightly larger.

·CBX· program listing

81tLBL 'CSX' 87 SIIYEP 13 CLD 18 +

82 SF 25 88 RCLPT 14 RDN 19 7
83 RCLPTII 89 ·uCBX· 28 /
84 FS?C 25 1Il PURFL 15tLBL 81 21 INT
85 GTO 81 11 EHTERt 16 RCL X 22 XOY

86 'hueSX" 12 EltDIR 17 6 23 END 52 BYTES

Line-by-line analysis of "CBX"

At the start of "CBX", the ALPHA register should contain

the name of the program for which the byte count is desired.

Line 03 will return the byte count if the program is

~ already saved in extended memory. If the program was not

already in extended memory, the RCLPTA instruction will cause

~ flag 25 to be cleared. Line 04 clears flag 25 and branches to

LBL 01, the final computation sequence, if the RCLPTA was

successful. Otherwise the named program is saved in a tempo­

rary extended memory file called "**CBX". Line 08, RCLPT,

gives the byte count from this temporary file. The temporary

file is then purged.

The EMDIR instruction is included to re-establish a wor-

\...., king file after the PURFL instruction. If a working file is

--

not defined and you have a revision IB Extended Functionsl

Memory module, the extended memory directory is in danger of

being cleared. See page 19 for details. If your revision is

lC or higher (including the HP-41CX), you can safely delete

lines 11 through 14.

The ENTER1 and RON instructions ensure that whether or

not the directory is interrupted, the X register will contain

the byte count. A completed EMDIR instruction raises the

stack, giving the number of free registers in extended memory.

An interrupted EMDIR instruction does not raise the stack.

-99-

Either way, the RON instruction will leave the byte count in

the X register, since the byte count was in X and Y before the

EMOIR instruction. The CLO instruction is included so that

the last directory entry does not remain in the display after

"CBX" fin i shes.

The LBL 01 sequence starts with the byte count in X and

computes the number of program registers required:

Nreg = INT [(Nbytes+6)/7]

This formula accomplishes division by 7 and rounding up to the

next highest integer. The "CBX" program finishes with Nreg in

Y and Nbytes in X.

"CBX" Example 2:

Count the bytes in the "JNX" program from Section lB.

This example assumes that you have a copy of "JNX" in either

main memory or extended memory.

Solution:

Load the ALPHA register with "JNX" and press XEQ "CBX".

The result should be 80 bytes (12 registers).

-100-

CHAPTER SIX

DATA FILE APPLICATIOBS

6A. A Universal Root Finder

One frequent application of programmable calculators

is solving equations of the form f(x)=0 ; that is, finding the

value of x that makes this equation true for a user-supplied

\- function f. For example, suppose the cost of producing n

items using Machine 1 is SQRT(n), while the cost of producing

~ n items on Machine 2 is 10+LN(n+l). Because the LN function

is "flatter" than the SQRT function, Machine 2 will be more

economical for very large values of n. But at what value of n

does Machine 2 become more economical? To find the crossover

point, we need to solve the equation SQRT(n) = 10+LN(n+l) for

n. This equation can be rewritten in the form f(x)=0, where

f(x) = 10+LN(x+l)-SQRT(x). This example will be solved later

in this section.

Minimization and maximization problems can be solved in

the form f(x)=0 by using the appropriate first derivative

function for f. If the function being maximized or minimized

has a relatively simple form, it is fastest to use calculus to

find the correct first derivative. However, if finding the

derivative analytically is not practical, the program "DERIV"

'--. in the next section can compute it numerically.

'- Any program that solves f(x)=0 will need to call the

f(x) program several times. The root-finder program will also

need a few data registers for its own use. These registers

must be ones that are not disturbed by the evaluation of f(x),

so that the necessary information from previous evaluations of

f (x) can be retained.

If the f(x) program uses data registers, the possibil-

~ ity of a register usage conflict cannot be overlooked. No

matter which data registers the root-finder program uses,

-101-

there will be some possible f(x) program that uses the same

data registers.

One "solution" to this problem is to check the root­

finder and f(x) programs for conflicting register usage, and

re-write one of the programs to eliminate the conflict.

The Extended Functions/Memory module solves register

usage conflicts once and for all. It allows you to write a

universal root-finder program that will work with any f(x)

program. (Of course the f(x) program must have a global label

of 6 characters or less, so that it can be reached through an

XEQ IND instruction.) Rather than leaving its essential data

in the numbered registers, where it would be susceptible to

alteration by the f(x) program, this root-finder saves its

data in an extended memory file before calling f(x). After

f(x) returns a value, the root-finder program can recall its

essential data, untouched, from extended memory. This is a

classic example of the power of extended memory.

The program listing below includes "SOLVE" plus two other

routines that will be covered in the next two sections. These

three routines are combined into one program because they use

some of the same instruction sequences, and because they will

often be used together. Key in the program exactly as shown,

so that you may try the examples that follow.

Extended Memory requirements:

Erosram free resisters needed to run

"SOLVE" 4

"DERIV" 7

"INTEG" 20

-102-

,
'--

-SOLVE-/-DERIV-/-INTEG- program listing

< ... -

fJltLBL "SOL liE" 46 GTO 81 98 6 132 SEEKPTA 177 EHTERt
'-- 82 ASTO ilil 47 LASTX 91 j 133 ,819 178 XO IHD 1)5

1)3 STD 91 48 GTO 21 92 RCL 85 134 SAYERX m ST ... Y

',-- 84 1 93 ,I 135 FS? 49 188 RHD
85 :; 49tLBL 'DERr\!" 136 OFF 181 XO Z
86 + 58 ASTO 03 94tLBL 21 137 3 182 4

.\.- 07 STO 92 51 STO 84 95 EHTERt 138 RCL 84 183 *
88 '**SOLVE" 52 RDH 96 PURFL 139 Xt2 184 STO Z

89 <\ 53 STO 85 97 E!'IDIR 148 ... 185 DSE X
\....... 18 XEQ 85 54 3 E ... 3 98 CLD 141 RCL 84 186 j

11 2 E ... 3 55 STO 96 99 RDH 142 * 187 RCL INO 115

'-.
12 SAYERX 56 "**OERIII" 188 RTH 143 RCL 82 IB8 +
13 RCL 01 57 7 144 * IB9 ISG 85

14 XEQ IND 80 58 m 95 191tLBL "INTEG" 145 RCL 81 198 LH

'- 15 "**SOLIIE" 182 ASTO 88 146 + 191 DSE 84
16 SAYE>: 59tLBL 1)2 183 STO 1)1 147 ml INO 80 192 GTO 84
17 GETR 60 ClX 184 XOY 14B "**INTEG" 193 STO IND 05

'- 61 SEEKPTA 195 - 149 GETR 194 FS? HI
IStlBL 81 62 6 E-3 106 4 158 1 195 VIEW X

'-.
19 ClX 63 SAYER:.: IIl7 i 151 RCL 04 196 RHO
28 SEEKPTA 64 RCL 1)6 188 STO 82 152 Xt2 197 Rt
21 3 E-3 65 lilT 189 ST+ X 153 - 198 FC?C 28

"- 22 SAYERX 66 RCL 85 1 Hi SI- 81 154 * 199 X$Y?
23 RCL 82 67 * 111 CLX 155 ST+ 86 288 GTG 22
24 FS? Hl 68 RCL 84 112 STG 83 156 1 281 LAm:

.~- 25 VIEW X 69 .. 113 STG 86 157 RCL 84 282 GTO 21
26 XEQ I NO ll,j (1) XEQ HID 1)3 114 STO 87 158 RCL 85
27 '**SOLYE" 71 "**DER111" 115 SF 28 159 + 283tLBL 1)5

'- 28 GETR 72 GETR 116 28 168 X<Y? 284 SF 25
29 EHTERt 73 STO IHO 1)6 117 "**IHTEG" 161 GTO 83 285 CRFUt

"-
31) EHTERt 74 ISG 86 118 XEQ 1)5 162 RCL 83 286 F5?C 25
31 XO 1)3 75 GI0 02 163 5TO 04 287 RTH
32 - 76 RCL 03 119tLBL 22 164 RDH 288 5F 25

-- 33 X$il? 77 RCL 82 120 2 165 7 289 PIJRFL
34 j 78 RCL 01 121 RCL 03 166 STO 05 210 FC?C 25
35 RCL 02 79 EHTERt 122 CHS 167 SIGN 2ll GTO 86

'-- 36 ElnERt 88 + 123 ytX 168 S1+ 83 212 SF 25
37 XO 81 81 - 124 S10 85 169 - 213 CRFLO

'- 38 - 82 9 125 ST+ 85 178 RCL 82 214 F5?C 25

39 '" 83 * 126 I 171 * 215 RTH
48 5T ... 82 84 - 127 - 172 RCL 86

'- 41 RCL 01 85 + 173 * 216tLBL 06
42 RHO 86 RCL 8il 128tLBL 83 174 3 217 "HO ROOI'I - EM"
43 RCL il2 87 11 129 STO 84 175 * 218 PROI'IPT

'- 44 RHO 88 * 138 "**IHTEG" 219 EIID
45 X$Y? 89 ... 131 CLX 176tLBL 04 485 BYTES

'-

'-'

-103-
>--

"SOLVE" Example 1:

Continuing the example given at the beginning of this

section, we want to find the value of n such that SQRT(n) =

l~+LN(n+l). Below this value, Machine 1 will be more economi­

cal, while above this value, Machine 2 will be cheaper to use.

The first step is to write a program to compute f(x). In

this case x is the number of units to be produced, and f is

the cost difference between Machine 2 and Machine 1. The

following program computes the cost difference:

~l LBL"CDIFF"

~2 SQRT

Start with n in the x-register.

~3 LASTX

~4 1

~5 +
~6 LN

~7 X<>y

~8 -

~9 l~

l~ +

11 END

SQRT (n)

n+l

LN(n+l)

LN (n+ 1) -SQRT (n)

l~+LN(n+l)-SQRT(n)

Now that you have the "CDIFF" program and the "SOLVE" program

ready, obtaining the solution is simple:

1. Make sure the SIZE is at least "~4.

2. Put the function name in the ALPHA register.

case press ALPHA C D IFF ALPHA.)

(In this

3. Key in an initial guess for the root finder. (In this

example you can use l~~. Since there is only one root,

any posi ti ve value should work.)

4. Select a display mode according to the accuracy you

desire. For example, if you want four significant di­

gits, set SCI 3. If you need an accuracy of .""~l (which

gives a different number of significant digits depending

on the value of the root), set FIX 4. The root finder

quits when two successive approximations are equal, with-

-1~4-

'--

in the specified display accuracy. Do not use FIX 9, ENG

9, or SCI 9, because roundoff errors can hurt the accur­

acy of the formula used when you ask for too many dig its.

For this example, FIX 2 is sufficient.

5. Set flag 10 if you want to view the successive approxima­

tions to the root; clear flag 10 if you want the "flying

goose" display.

6. XEQ "SOLVE" to start the root finder.

7. The root finder finishes with an extended memory direc­

tory. You may interrupt this directory to see the an­

swer, but it is not necessary to do so. The EMDIR in­

struction was put at the end of "SOLVE- to compensate for

the PURFL bug. If your extended functions are revision

lC or higher (including the CX), you may safely delete

lines 95, 97, 98, and 99. This will eliminate the ex­

tended memory directory at the end of "SOLVE".

'- For the "CDIFF" example, the following series of

approximations will be displayed if flag 10 is set:

101.00

215.31

236.07

239.66

'- 239.75

"-..- Thus for 239 units or less, Machine 1 is better, while Machine

2 will be better for 240 units or more. You may wish to

explore the effects of different initial guesses on the root

finding process. You will notice that, in all cases, once the

root finder gets near the correct solution, convergence is

'- very rapid.

-105-

The Root-Finding Algorithm

The "SOLVE n program uses a simple secant algorithm to

produce successive approximations xi to the true root of f(x).

f (X-) - f (X- _ 1)
SLOPE = I I

Xi -Xi-l

f (X) CURVE

The value of f(x) at the current approximation xi and at the

previous approximation xi-l are used to compute the next

approximation,

Xi+l = xi + (xi-xi_l)*f(xi)

(f(xi)-f(xi_l»

There are some ill-behaved functions that will give this

algorithm trouble, but in cases of practical interest you are

not likely to encounter such functions. Therefore the com­

plexity required to deal with such functions has not been

included in "SOLVE".

You should also be aware that as xi and xi-l get very

close to each other (within 10-9xi)' the calculator cannot

accurately compute the difference. Multiplication by the

number Xi-X i-I can then cause a substantial error in the

-106-

calculated value of xi+l. This is why you should not request

10-digit accuracy from "SOLVE".

Line-by-line analysis of "SOLVE"

The first 7 lines of "SOLVE" store the function name and

initial guess, and compute the second guess as 1.01 times the

first guess. You can change this to permit user input of the

second guess, if you like. The register usage of "SOLVE" is:

Register Contents

00 function name

01

02

03

previous approximation xi-l

current approximation xi

f(xi_l)

The LBL 05 subroutine sets up a 4-register data file called

"**SOLVE". This requires more than a simple CRFLD (create

file -- data) instruction, because the program should be able

to automatically handle the case in which a file named

n**SOLVE n already exists in Extended Memory. This case can

\....... result when the "SOLVE" program is terminated abnormally,

before the PURFL instruction on line 209 can be executed.

Lines 11 and 12 save the contents of registers 00 through

02 in Extended Memory in preparation for calling the f(x)

program (which may alter the contents of these registers).

\....... Then f(x) is evaluated at the initial guess x0. Lines 15 - 17

save the value of f(xg) in the fourth register of the

'- n**SOLVE n data file and use GETR to bring all the data back.

At this point all four registers are initialized, and the

iterative procedure can begin.

Lines 19 - 22 save the contents of registers 90 through

03 in preparation for executing f(x). This is not necessary

the first time through the LBL 01 loop, but it will be neces­

sary in the subsequent iterations. If flag 10 is set, xi is

VIEWed before f(x) is called. After the evaluation of f(x),

GETR brings back the contents of registers 00 through 03.

-107-

Lines 29 through 4~ update the contents of these registers as

shown:

Register Old contents New contents

~~ function name function name

In xi_l x· 1

~2 Xi xi+l = xi + (xC xi-l) *f (xi)

(f(xi)-f(xi_l»

~3 f(xi_l) f(xi)

Next the contents of registers ~l and ~2 are extracted, round­

ed, and compared. If the rounded versions are equal, execu­

tion halts with the LBL 21 "cleanup" routine. Otherwise the

LBL ~l loop is repeated.

The LBL 21 sequence first purges the "**SOLVE" file from

extended memory. This sets up a dangerous situation if you

have a revision IB Extended Functions/Memory module, due to

what is known as the PURFL bug. After PURFL is executed,

there is no "working" file. This might not seem like a prob­

lem, but if you accidently execute an instruction like SEEKPT

or SAVERX that operates on the working file, disaster will

strike: Your entire extended memory directory will vanish!

Section l~E gives more details and an outline of how this OIR

EMPTY condition can be fixed using synthetic programming tech-

niques.

higher,

This problem does not occur with revisions Ie and

including the HP-4leX.

To avoid catastrophe, the LBL 21 sequence re-establishes

a working file the only way it can without manual interven­

tion, with an EMOIR instruction. However, executing EMOIR in a

program has two undesirabie side effects. First, displaying

the directory takes valuable time. Second, when the directory

is complete, the number of free registers in extended memory

is placed in X. Since we want the "SOLVE" result to be in X,

the EMOIR instruction is preceded by ENTERl and followed by

RON. This way, even if you choose to interrupt the directory

and restart the program (as you might if "SOLVE" were being

-1~8-

used as a subroutine of another program), the X register will

still contain the correct result.

If you have revision lC or higher extended functions,

including the ex, you should delete lines 95, 97, 98, and 99.

This will save a significant amount of execution time.

These details on the LBL 21 sequence may not be of imme­

diate interest to you, but they are provided for your refer­

ence. If you write a program that uses a temporary data file,

and you want it to be usable with revision lB extended func­

tions, you will have to deal with the same situation.

"SOLVE" Example 2:

Find the second zero of J 3 (x), the Bessel function of the

first kind, order three. This is the second non-zero value of

x for which J 3 (x)=0. Of course you will need a copy of the

Bessel function program "JNX" from page 5. Since you want to

compute J 3 (x), you could construct a "shell" program:

01 LBL "J3X"

02 3

03 X<>Y

04 XEQ "JNX"

05 END

This program simply takes the value of x that it is given, and

calls "JNX" with Y=3. This simple (even trivial) technique is

"-- often used with programs like "SOLVE". If you have a function

that needs more than a single input, you must either modify

that program or create a "shell" routine to use with "SOLVE".

The name of the shell routine should be no longer than six

characters, so that the XEQ IND instruction in "SOLVE" will

work properly. In fact, it is good HP-41 programming practice

to avoid using 7-letter alpha labels wherever your programs

~ might need to be called indirectly as subroutines.

Now let's get on with the example. First we need to know

"-- something about the behavior of J3 (x). Assign "J3X" to a key

(shift ASN ALPHA J shift 3 X ALPHA key) and try a few values

-109-

of x to get a general idea of what J 3 (x) looks like. But

beware that the "JNX" program gives DATA ERROR when x=0.

x J3(x)

0.01 2.1E-8

1 0.02

2 0.13

3 0.31

4 0.43

5 0.36

6 0.11

7 -0.17

8 -0.29

9 -0.18

10 0.06

From these points, it is apparent that the second zero of

J 3 (x) is located between x=9 and x=10.

To find the value more exactly, set a SIZE of 008 or

more, select FIX 8 display mode, load the ALPHA register with

"J3X", key in an initial guess of 9.5, SF 10, and press XEQ

"SOLVE". You will see the following series of approximations:

9.59500000

9.76155455

9.76102548

9.76102313

For further information on root-finding, including a

discussion of more sophisticated algorithms, consult any good

book on Numerical Analysis or read the writeup of the "SV"

program in the PPC ROM User's Manual (see Appendix C for a

description of the PPC ROM).

-110-

6B.Numeric Differentiation

Many types of problems, particularly those involving

maximization and minimization, require numeric evaluation of

the derivative of a function. The preferred technique is

first to use the rules of calculus to construct an equation

for the derivative, then to write a program to evaluate the

equation. If the function does not have a simple closed-form

expression, numeric methods can be used. The simplest such

'- method is to evaluate the function at two closely-spaced

points, and to compute a slope based on these two values.

f (X,) - f (Xo)
SLOPE = X, - Xo

f (X) CURVE

Xo X,

A much more accurate estimate of the first derivative is

given by the expression

f'(x) = [2f(x+3h)-9f(x+2h)+18f(x+h)-11f(x)}/6h

This estimate is exact for any polynomial function of degree

three or less. Otherwise the error term is of the order of

h 3• However, it does not automatically follow that you should

use the smallest possible value for h. The problem is that

roundoff error can and will destroy the accuracy that would

'- otherwise be obtained by decreasing the value of h. A typical

example illustrating this roundoff error effect will be given

'- in Example 2 of this section.

Because of subtraction roundoff error, the most accuracy

-111-

that can be expected in the derivative estimate is 6 digits.

Any further accuracy is purely coincidental.

The "OERIV" program that is part of the "SOLVE"/nOERIV"/

"INTEG" package evaluates the above equation for f'(x) by

calling the user-supplied f(x) program four times. Like

"SOLVE", the "OERIV" program protects its data from the f(x)

program by creating a temporary extended memory data file.

"DERIV" is therefore compatible with ~ user-suppl ied f (x)

program.

Instructions for "OERIV"

Using "OERIV" is similar to using "SOLVE". The SIZE

should be 007 or more. The name of the user-supplied function

should be in the ALPHA register. The Y register should con­

tain the step size h, which can be positive or negative. This

allows derivatives to be evaluated where the function is

discontinuous on one side. Use h)0 to evaluate the derivative

to the right, or h<0 to evaluate the derivative to the left.

The X register should contain the value of x at which f'(x) is

to be estimated.

Executing "OERIVn then produces the derivative estimate.

The accuracy of the estimate depends on the step size (see

Example 2), but in no case can more than 6-digi t accuracy be

expected. The display setting does not affect the accuracy,

since no rounding is performed.

"OERIV" Example 1:

Verify the following derivative properties of Bessel

functions:

J 0 ' (x) -J l (x), and

J 1 • (x) '" J g (x) -J1 (x) /x

-112-

First you will need to construct nshell" functions for J" (x)
and J 1 (x) :

rn LBL "J0X" 01 LBL "J1X"

02 0 02 1

03 X<>Y 03 X<>Y

04 XEQ nJNX" 04 XEQ nJNX"

05 END 05 END

To estimate the derivative of J,,(x) at x=l, press .01, ENTERT,

'- 1, ALPHA J shift 0 X ALPHA, XEQ ALPHA D E R I V ALPHA. The

step size of .01 gives approximately 6-digit accuracy. Step

"-- sizes of 0.1 or .001 give 4-digit accuracy, which is quite

reasonable too.

Compare your results to the following table:

Derivative estimates True derivative

x J 0 I (x)

1 -0.440050350 0.325147317 -0.440050586 0.325l47Hll

2 -0.576724900 -0.064471700 -0.576724808 -0.064471625

3 -0.339059100 -0.373071483 -0.339058958 -0.373071608

4 0.066043167 -0.380638968 0.066043328 -0.380638978

5 0.327579l67 -0.112081133 0.327579138 -0.112080944

These results were obtained by using the program "COMPARE",

which automates the entire procedure. When used with a print-

er, a program 1 ike "COMPARE" can save many minutes of manual

keypunching and writing down results. Instead, you can just

turn on the printer, start the "COMPARE" program, and come

back 15 minutes later to check the results.

-113-

·COMPARE· program listing

81.lBL "COI'tPHRE" 89 ARCl X
02 i.00S 18 AYIBi
03 STO 89 11 • J8X'

12 .01
84tlBl III 13 XOY
85 RCl 89 14 XEQ 'DERI~'"

06 INT 15 'J0E='
07 3TO 18 16 ARCl X
Il& "X=" 17 AYIEW

18 .01
19 RCl 10
20 "jIX'

21 XEQ ·DERI ... •
22 "JIE='
23 ARCL X
24 AYIEW
25 RCl 111

26 XEQ 'JIX'

27 CH3
28 'J0T="
29 ARCl X
38 AYIEW
31 RCl 10
32 I

33 XO III
34 XEQ 'JIlX"
35 RCl 18

36 +
37 "J1T='
38 ARCl X
39 AYIEW
48 ADY
41 ISG 119
42 GTI) III
43 END

115 BYTES

Line-by-line analysis of "OERIV"

The data register usage of "OERIV" is

register

00

01

02

03

04

05

06

contents

f (x)

f(x+h)

f(x+2h)

function name -~ f(x+3h)

x

h

i, a loop counter (originally 0.0(3).

When "OERIV" starts, the stack and ALPHA contents are

register
y

X

ALPHA

contents

h, the step size

x, the point at which to estimate f' (x)

function name.

Lines 49-55 store these inputs in the appropriate registers.

Lines 56-58 set up a 7-register data file called "**OERIV" in

extended memory. Lines 59-75 constitute the loop which is

executed four times to evaluate f (x), f (x+h), f (x+2h), and

f(x+3h). Register 06 contains the ISG counter for this loop.

The counter is also used as a pointer indicating where the

result is to be stored (line 73).

-114-

Within the loop, lines 59-63 save the contents of regis­

~ ters 00 through 06 in extended memory. Lines 64-70 calculate

f(x+ih). Actually the INT function must be used to chop off

'--

\.....

'--

'--

'--

\.....

'-,..

the .003 from the loop counter i. Lines 71-73 recall regis­

ters 00-06 from extended memory and store the result f(x+ih)

in data register i. Lines 74-75 cause the loop to be repeated

for the next value of i, until the function f has been eval­

uated at all four points.

The last step in computing the derivative estimate is to

use the four results in registers 00-03 to form the result

f' (x) = [2f (x+3h) -9 f (x+2h) +18f (x+h)-llf (x)] 16h.

The factorization that is used in the computation is

f'(x) = {f(x+3h)+f(x+3h)-9[f(x+2h)-2f(x+h)]-llf(x)}/6h.

The "DERIV" program ends with the same EMDIR sequence as

"SOLVE". The same option to interrupt the extended memory

directory applies. As with "SOLVE", you can delete the EMDIR

instruction if you have revision 1C or higher.

"DERIV" Example 2:

Use "DERIV" to compute the derivative of the function

f(x) = x4+l0x3+100x 2+l000x+10000

at x=l. Show how the estimate's accuracy varies with step

size.

From differential calculus, the derivative of f(x) is

Check your

Step size

1.0

.1

.01

.001

.0001

.00001

fl (x) = 4x3+30x 2+200x+1000

= 1234 at x=l.

results against the following table:

Derivative estimate

1240.000000

1234.006000

1234.000000

1234.016667

1233.833333

1233.333333

(this is the optimum step size)

-115-

If you find it difficult to construct a program to evaluate

f(x), study the sequence below. It uses the factorization

f(x) = « (x+UJ) x+lIHJ) x+HHUJ) x+HHJ00.

This factorization technique can be applied to any polynomial

function.

01 LBL "FX"

02 ENTERT

03 ENTERT

94 ENTERT

05 19

06 +

07 *
08 lE2

09 +

10 *
11 lE3

12 +

13 *
14 lE4

15 +
16 END

(press 1 EEX 2)

Finding the derivative at x=l is simple. Just press ALPHA F X

ALPHA, key in the step size, ENTERT, the number I, and XEQ

"DERIY". Your results should agree with the table above. You

may even wish to automate the procedure by writing a short

program like this:

91 LBL "STEP"

02 "FX"

93 1

04 XEQ "DERIY"

05 END

Note that the ENTER1 is not included because lines 91 and 02

enable the stack lift. Consult your Owner's Manual for de­

tails on stack lift.

-116-

"OERIV" Accuracy

As the preceding example showed, the accuracy of the der­

ivative estimate gets better as the step size decreases, but

then gets worse if the step size is made too small. It is

possible to write a program that calls "OERIV" repeatedly,

decreasing the step size each time. The series of derivative

estimates 0i should have the following properties:

1) 0i should be monotonic, and

2) I 0i - 0i-l I should be monotonic and decreasing.

When the step size gets so small that one of these conditions

is violated, the previous derivative estimate 0i-l is the best

available estimate. This approach is used in the PPC ROM

routine "FO", where a factor of 9.7 is used to decrease the

step size in each iteration. Check page 146 of the PPC ROM

User's Manual for more details. The main disadvantage of this

approach is that it greatly slows the evaluation of the deriv­

ative. In most cases, including maximization and minimiza­

tion, the additional accuracy is not needed. Moreover, if

"OERIV" is to be called by "SOLVE", each derivative evaluation

should be as fast as possible. Your application may even

warrant using the very simple estimate

f(x) = [f(x+h)-f(x»)/h

which is about twice as fast as "OERIV".

-117-

"OERIV" Theory

The expression f'(x) = [2f(x+3h)-9f(x+2h)+lSf(x+h)-f(x»)/6h

is one of a class of derivative estimates. These estimates

can be derived through a Taylor series expansion of f(x). For

example, a four-point second derivative estimate can be de­

rived as follows:

= a0 f (x) +alf(x) +a2f (x) +a3 f (x)

+alhf' (x) +2a2hf' (x) +3a3hf' (x)

+a h 2fll(x) 1- +4a h 2fll(x) 2- +9a h 2fll(x) 3-
2 2 2

+a l h 3f(3) (x)+Sa2h3f(3) (x) +27a3h3f(3) (x)

666

Fourth and higher derivatives of f(x) are omitted from the

Taylor series expansion because a four-point estimate does not

allow derivatives beyond the third to be considered. If the

above equation is to be true for all values of h, the follow­

ing equations must be true of the coefficients a0' al' a2' and

a3:

a 0 +al +a2 +a3 0

al +2a2 +3a3 0

al +4a2 +9a3 = 2/h2

al +Sa2 +27a 3 = 0

These four equations are sufficient to define the coeffi­

cients. This also shows why four coefficients are not suffi­

cient to consider fourth and higher derivatives. When this

-l1S-

system of equations is solved, the result is the four-point

.,,- estimate:

f" (x) [2f(x)-5f(x+h)+4f(x+2h)-f(x+3h)]/h2

You may wish to write your own "DERIV2" program analogous to

"DERIV" and based on this formula.

Another interesting exercise is to derive the equation

for a four-point estimate of f'ex) and verify that it is the

same one used by "DERIV".

"DERIV" Example 3:

Find the maximum value of J 1 (x)-J 0 (x), which occurs just

past the first peak of J1(x). Although this function is ana­

lytically differentiable, this example is meant to illustrate

how to use the "SOLVE"/"DERIV" combination. The idea is to

"SOLVE" for the value of x that makes the derivative of Jl(x)­

J r.f (x) equal to zero.

tion:

The following "shell" routines are needed for the solu-

01 LBL "Jl-J0"

02 0

03 x<>y
04 XEQ "JNX"

05 -
06 END

01 LBL "DJ1-J0"

02 "Jl-J0"

r.f3 .01

04 X<>Y
05 XEQ "DERIV"

06 END

This program makes use of the fact

that J1(x) ends up in the Y

register after J 0 (x) is

calculated by "JNX".

This program uses "DERIV" to compute

the first derivative of J 1 (x)-J0 (x).

After keying in these shell routines, press "DJ1-J0", 2,

-119-

FIX 4, XEQ "SOLVE". This will compute the location of the

peak of J l (x)-J0(x). To find the value of Jl(x)-J0(x) at the

peak, leave the location in the X register and XEQ "Jl-J0".

Your result should be:

location of peak

2.9386 0.6002

High accuracy in determining the location of the peak is not

necessary to find the value at the peak. The flatness of the

function in the vicinity of the peak is very forgiving of

errors in x.

-120-

6C. ~ Universal Integration program

Integration, like root-finding, is a frequent application

of programmable calculators. The integration program present­

'- ed here, "INTEG", starts with a user-supplied function g and

user-supplied values a and b. Then "INTEG" calculates

b

j9(Z)dZ
a

Together with the root-finder program "SOLVE", "INTEG"

allows equations of the form

b

jg(X,Z)dZ =c

a

'- to be solved for x. The process of integration usually re­

quires many more evaluations of the user-supplied function

\....- g (z) than would differentiation or root-finding. This makes

the "INTEG" program much slower to give an answer than either

"SOLVE" or "DERIV". The particular algorithm used in "INTEG"

is the same one used in the PPC ROM program "IG", and is very

similar to the algorithm used by the HP-34C's "integrate"

function.

Instructions for "INTEG"

To calculate the integral of the function g(z) from z=a

to z=b, put the name of the program that calculates g(z) in

the ALPHA register, key in a ENTERl b, then XEQ "INTEG". A

SIZE of 020 or more is required. The display setting deter­

mines the accuracy of the result and the amount of time that

the calculation will take, just as with "SOLVE". The calcula-

\....- tion is an iterative procedure that halts when two successive

estimates are equal, when rounded to the current display

\....- setting. If you set flag 10, the successive estimates will be

VIEWed (and printed if a printer is attached). The time needed

-121-

to compute each new estimate is approximately the same as the

total time already used. That is to say, the total elapsed

time doubles at each step. So be sure not to specify more

accuracy than you really need.

"INTEG" Example 1:

Use "INTEG" to calculate the integral

1/2

~ 3(1_z2)-1/2 dz

-1/2·

to 6 significant digits.

The first step is to write a short program to calculate

the integrand:

01 LBL"Il"

02 Xp

03 1

04 X<>Y

05 -

06 SQRT

07 l/X

08 3

09 *
10 END

Next set the display mode to SCI 5. Since "INTEG" repeatedly

refines its estimate until two successive estimates are equal

when rounded, SCI 5 mode will yield an accuracy of approxi­

mately 6 digits. Next, place the function name "11" in the

ALPHA register. Set flag 10 so that you will see the sequence

of estimates. Then key in the limits of integration .5 CHS

-122-

ENTERl .5 and XEQ "INTEG". You should see the following

'-- estimates:

3.'HHHH~ 00

3.14601 00

3.14214 00

3.14158 00

3.14159 00

3.14159 00

If you get impatient with the progress, you can press R/S to

interrupt "INTEG", change the display mode, and press R/S to

restart. The correct answer for this integral is PI.

"INTEG" is compatible with functions that are not defined

at the limits of integration, because it never tries to eval­

uate the integrand at the limits. The next example illus­

trates this.

"INTEG" Example 2:

Evaluate

I f z-1/2 dz

o

to 4 significant digits.

solution:

01 LBL"I2"

02 SQRT

03 l/X

04 END

-123-

Press SCI 3, "12", 0 ENTERl 1, XEQ "INTEG".

should be:

The results

1.414

1. 710

1.865

1.934

1. 967

1.984

1.992

1.996

1.998

1.999

1.999 (The true value of the integral is 2.)

This example illustrates how slow convergence can be when the

integrand increases without bound at one or both limits of

integration. The maximum number of iterations that "INTEG"

allows is 13, encompassing 213 _1 evaluations of the integrand.

This maximum number was chosen because it will take over 8

hours to complete, even with the simplest integrand. If you

are very patient and want to try more iterations, simply

change lines 116 and 133 to reflect the increased usage of

data registers. Of course, you need not make any changes to

"INTEG" if the integrand function does not alter data regis­

ters 29 and up.

"INTEG" Theory

The algorithm used by "INTEG" is the same one used by the

PPC ROM program "IG", and it is very similar to the algorithm

used by the HP-34C. The essence of the algorithm is repeated

interval-halving. First the integrand g(z) is evaluated at

the midpoint and an estimate of the integral is produced.

Then g(z) is evaluated at two more points between the midpoint

and the limits of integration to produce a 3-point histogram

estimate of the integral. In the third iteration, 4 more

-124-

points are added straddling the previous 3 points. wi th each

step, the number of points is approximately doubled.

There are two improvements that are applied to this

~ integration procedure. Two successive histogram estimates are

used to construct a Simpson's rule estimate, without any more

evaluations of g (z). Two successive Simpson's rule estimates

are used to construct a Newton-Cotes estimate. This refine­

ment of estimates is continued for a total of k-l refinements

'- at the kth iteration.

'-

'-

'-

,
'--"

The second improvement to the integration procedure is

the use of non-uniform sampling points to cover the interval

of integration more quickly. The non-uniform sampling is

implemented by performing the change of variables

I

b

f g(z) dz

a

1

3 (b-a) /4 * f f {u (3-u 2)(b-a) / 4+(a+b) /2 }*(l-u2) du

-1

and using a uniform sampling procedure for the new integrand

as a function of u. Compare the uniform interval-halving for

the ui's to the non-uniform spacing of the zi's for

(a,b) = (-1,1):

u·
1 Zi

0 0

+.5 +.6875

2:.. 25 , +.75 2:.. 3672 , +.9141

2:.. 125 , 2:.. 375 , 2:.. 625 , +.875 2:.. 1865 , 2:.. 5361 , 2:.. 8154 , +.9775

Although the zi's approach the limits of integration much more

quickly than the ui's, the penalty is that the simple histo-

-125-

gram estimate becomes more difficult to calculate. Each value

g (zi) must be weighted by the width of the sub-interval cen­

tered at zi'

The full explanation of how "INTEG" works would take several

more pages. If you want to find out more, consult the follow­

ing references:

1. PPC ROM User's Manual, pages 222-224 under the

writeup for the "IG" program.

2. P.J. Davis and P. Rabinowitz, "Methods of Numerical

Integration", Section 6.3, Academic Press, New York,

1975.

3. W.M. Kahan, "Handheld Calculator Evaluates Integ­

rals" [HP-34C), Hewlett-Packard Journal, August

1980.

4. B. Carnahan, H.A. Luther, and J.O. Wilkes, "Applied

Numerical Methods", Section 2.7, J. Wiley, New York,

1969. The notation in this reference is

Ti,j = M(i+j-l,j-l).

Formulas used .eY. "INTEG"

Iteration number k = 0, 1, 2,

For each value of k, the following are calculated:

First sample point u0 -1+2-k

ith sample point

kth histogram estimate M(k,0)

(1-u· 2)*f{u. (3-u. 2) (b-a)/4 + (a+b)/2}
1 1 1

M(k,0)

-126-

--

Refinement of estimates uses this formula for j=l, 2, ••• k,

M(k,j) = M(k,j-l) + [M(k,j-l)-M(k-l,j-l»)/[4 j -l)

The series of estimates M(k,k) converges to the true value of

the integral I. Actually, the estimates M(k,0) also converge

to I, but the convergence of M(k,k) is faster. The amount of

computation needed to construct M(k,k) is quite small compared

\...- to the amount of computation needed to construct M(0,9),

M(1,9), ••• , M(k,0), which are needed to get M(k,k).

'-

"-

"-

'--

\..-

\..-

L

'-

'---

\..-

-

Line-by-line analysis of "INTEG"

The "INTEG" program is a modified and re-optimized ver­

sion of the PPC ROM program "IG", which was written and re­

vised by PPC members Read Predmore and John Kennedy, respec­

tively. Bytes have been saved in a few places, one fewer data

register is used, and, most importantly, the capabilities of

Extended Memory make "INTEG" compatible with any user-supplied

integrand function.

The data register usage of "INTEG" is

register contents contents for LBL 06 loop

00 function name

In (a+b)/2

02 (b-a)/4

93 k

04 u· 1 DSE loop count k-j

95 ui+l-ui 21- k M(k,j) register number

06 Sk-l
97 M(9,9)

08 M(1,9) -~ M(l,l)

09 M(2,9) -~ M(2,1) -~ M(2,2)

10 M(3,0) -~ M(3,1) -~ M(3,2) -~ M(3,3)

etc.

-127-

When "INTEG" starts, the stack and ALPHA contents are

register contents

Y a, the lower limit of integration

X h, the upper limit of integration

ALPHA function name.

Lines HH-115 use these inputs to initialize the data regis­

ters. Flag 20 is set so that the termination test will be

bypassed for k=0 (line 198). Next, a 20-register data file

called "**INTEG" is created in extended memory. The LBL 05

subroutine automatically handles the case in which a file

named "**INTEG" already exists in extended memory.

The LBL 22 sequence computes Ug and the increment ui+1-ui

= 21 - k • The LBL 03 loop is where most of the time is spent.

First the registers are saved in preparation for calculating

g(zi)' Lines 137-146 calculate zi = ui(3-Ui2)(b-a)/4 +

(a+b)/2. Next g(zi) is evaluated and the register contents

are restored. The value of g (zi) is weighted by (l- u i 2)

before being added into the current sum Sk'

calculate ui+1 = ui + 2 1 - k and exit the LBL 03

result becomes greater than 1, and thus outside

integration.

Lines 155-160

loop when the

the limits of

Lines 135 and 136 are provided to prevent memory loss due

to low battery voltage. Some integral evaluations can run a

very long time, possibly even exceeding the life of a fully­

charged battery pack. If a weak battery condition halts

"INTEG" at line 136, you can change to a fresh battery pack

and press R/S to continue. If you don't have a spare battery

pack, it should be safe to leave the batteries out for several

hours. Most new HP-4l's will retain their memory contents for

much more than 24 hours after the batteries are removed. Even

the oldest HP-41C's appear to be good for at least 8 hours.

But don't turn on the calculator while the battery pack is

removed! That will almost certainly result in MEMORY LOST.

-128-

At the completion of the LBL 03 loop, X is 1+2-k and Y is

\..... 1. Lines 162-175 set up the data registers for the LBL 04

loop, which applies the M{k,j) formula to the previously

calculated values M{k-l,0), M{k-l,l), ••• , M{k-l,k-l), which

I. --

are stored in registers 07 and up. First, k is stored in

register 04 as a DSE counter, whose value is k-j. The first

time through the loop, j is zero. The number 7 is stored in

register 05 as a pointer to the register containing M{k-l,0).

This pointer will be incremented each time through the LBL 04

loop, just as the counter in register 04 will be decremented.

Lines 167 and 168 increment k for the next time through the

LBL 22 loop. Line 169 obtains 2- k by subtracting 1 from the

value that was in X at the completion of the LBL 03 loop.

Lines 170-175 compute M{k,0) = 3*2-k*sk*{b-a)/4. Note that at

this point Y still contains 1. The Y register will be used in

the LBL 04 loop to hold the value 4j, which starts at 1 for

j=0 the first time through the loop.

At the top of the LBL 04 loop, X contains M{k,j) and Y

contains 4 j • After lines 177-186, X contains [M{k,j)-M{k-l,j)l

/[4 j -ll, Y contains 4*4 j = 4 j +l , and Z contains a rounded

version of M{k-l,j). Next M{k,j) is added to X, producing the

value M (k,j+l). Lines 189-192 increment the reg ister counter

and decrement register 4. This sets up conditions for the

next time through the LBL 04 loop with the next value of j.

After k times through the loop, the GTO 04 instruction is

skipped with the value M{k,k) in X and the rounded version of

M{k-l,k-l) in Z and T. M{k,k) is stored in the proper regis­

ter, then it is rounded and compared to M(k-l,k-l). If the

two rounded versions are equal, M{k,k) is extracted from LASTX

and returned as the result. Otherwise a branch to LBL 22

begins the calculation of M{k+l,0) and eventually M{k+l,k+l).

Like "SOLVE" and "DERIV", "INTEG" ends with an EMDIR

instruction, so that there will be a working file when the

program halts. This is only needed for revision lB extended
functions.

-129-

"INTEG" Example 3:

Verify that

3

solution:

f J l (x) dx
2

J0 (2) - J 0 (3)

Set FIX 4 and key in the "shell" function

01 LBL"J1X"

02 1

03 XOY

04 XEQ"JNX"

05 END

Press 2 ENTER1 3, "J1X", SF 10, and XEQ "INTEG". The resul t

is:

0.4971

0.4831

0.4839

0.4839

To compare this to the true value of the integral, press

o ENTERT 2 XEQ "JNX"

to compute J 0 (2)=0.2239. Next press

o ENTERT 3 XEQ "JNX"

to compute J 0 (3)=-0.260l. The difference is 0.4840, which

agrees with the computed value of the integral.

-130-

CHAPTER SEVEN

A MAILING LIST PROGRAM

The "NAP" (Name/Address/Phone) program presented in this

chapter illustrates how text files can be used to save blocks

of ALPHA data in an organized manner. The program was written

by Alan McCornack. It is included here primarily as a learn­

ing tool, but you may find it suitable for general use. Its

relatively straightforward approach can be a model to help you

develop a program to manage your own data base. Alan's use of

GETKEY in the program's Edit section is also instructive,

showing how the use of GETKEY can be confined to a portion of

a program if desired.

The "NAP" program assumes that the name, address, and

phone number data for each entry in the list has the following

format:

item

Name

Address

line 1

line 2

line 3

Phone number

Miscellaneous

information

maximum length

24 chars.

24 chars.

24 chars.

24 chars.

22 chars.

22 chars.

The 24-character length limit is imposed so that each item may

be fully listed on a single printed line. The last two items

are limited to 22 characters so that they may appear on a

single line after being indented two spaces. Any characters

'- may be used, including special characters accumulated in the

ALPHA register using XTOA.

-131-

The "NAP" program forms a block of 6 records for each entry.

The record contents are as shown, where n is the entry number:

record number contents

6n name

6n+l address line 1

6n+2 address line 2

6n+3 address line 3

6n+4 phone number

6n+5 miscellaneous data

Entries are numbered in sequence, starting with zero. Thus,

if you have 10 entries, the text file will contain 60 records.

The entries will be numbered 0 to 9.

Instructions for using the "NAP" program

1. Before you use "NAP", you must create a text file named

"ML" (mailing list). Pick a file size, key that number

into X, put "ML" in the ALPHA register, and execute

CRFLAS. The file size should be large enough to handle

your projected mailing list needs. Each entry will use

one register for each 7 characters of text plus another

register for the 6 record separator bytes. A typical

entry uses 8 to 12 registers. The maximum number of

entries that can be accomodated is therefore about 50 to

75 with a full 603-register complement of extended mem­

ory. If this limit is too low, you may be able to do a

little better by abbreviating some of the information to

cut down on the number of characters used.

2. Once the "ML" ASCII file is in place, the" "NAP" program

provides several options. These options are available on

the five top row keys in USER mode. I f you already have

some functions or global labels assigned to the top row,

you can use the "SKU (suspend key assignments) program

from Section 10G to temporarily de-activate them. Other-

-l32-

wise you will have to clear the assignments from these

keys by pressing

ASN ALPHA ALPHA (key)

or by using the "CT" program from page 84, then manually

clearing the x12 key. The top row assignments must be

cleared because global label or function key assignments

are always given priority over local labels where there

is a confict.

\..... 3. Switch into USER mode. Make sure that the SIZE is at

least 001, because the "NAP" program uses register 00.

Set flag 26 manually or by turning the calculator off,

then on. Clear flag 21 unless you have a printer at­

tached and you want printed output.

4. Press GTO "NAP". You are now in the "NAP" program. If

you have removed or suspended any top row key assign­

ments, the top row keys will have the following func­

tions:

Add entry Find string

List all

List entry Delete entry

The "List all" function is obtained by pressing

shift ~ (the "c" key).

Edit

Each of these functions will now be described in detail. If

you are starting with an empty "ML" text file, you will want

to use "Add entry" first, so press the "A" key (row 1, column

1). Actually, you can start with the "Add entry" function by

using XEQ "NAP" instead of GTO "NAP".

(A) Add en try

The program will prompt for a NAME to fill the first line of
the six-line entry. The program will stop in ALPHA mode, so

-133-

that you can key in a name of up to 24 characters. You do not

need to count the characters, because the calculator will give

a warning tone as the 24th character is entered. After you

have keyed in the name, press R/S to restart the program. The

next prompt will ask for "ADD. Ll?", line 1 of the address.

Key it in and press R/S. Proceed this way, entering line 2

and line 3 of the address. If you want to leave a line blank,

you can just press R/S without an entry in response to the

prompt. When the prompt "PHONE?" appears, key in the phone

number. Make sure that you use no more than 22 characters if

you expect neat printer output. To check the number of char­

acters, add spaces until the warning tone sounds. This indi­

cates that 24 characters are present. Then press backarrow to

get rid of the extra spaces you added. Press R/S when the

entry is ready to be processed. The next prompt, "MISC.?"

will be for the miscellaneous data field. This field should

also be limited to 22 characters if a printer will be used.

When you press R/S, the program will store this data and quit.

After you finish making a full name/address/phone entry,

you can press R/S or the "A" key to add another entry.

Caution: Never quit this part of the program without adding

all 6 lines of the entry. If you make a mistake, simply

continue making entries until all 6 are done, then correct the

mistake using the edit function (key "E") described later. If

you want to delete an incomplete entry, you can use the delete

function (key "0") described on the next page, but only if no

further entries have yet been added to the file.

(B) Find string

Press "B", the l/x key, to execute this routine. The

program will prompt you for a string to find. The program

stops in ALPHA mode so you can key in the string. The string

can be up to 24 characters long. The program will find the

string, wherever it appears in the file, as long as the string

-134-

is fully contained in a single line.

\..- If the string is not found, a value of -1 is returned in

X. If the string is found, the message "ENTRY NO. n" tells

~- you which entry contains the string. All 6 lines of the entry

will then be shown.

Press R/S to halt the program if this is the entry you

were looking for. Otherwise the search will automatically be

continued. This second search (and all subsequent searches)

'- will use only the first 6 characters of the string you en­

tered. As long as you do not interrupt the searching by

"- pressing R/S, the search will continue to display entries for

which a match is found. When the END OF FL is reached and no

more matches are found, the value -1 is returned to X and the

program halts.

The string to be found need not be in the NAME line. It

will be found on any line anywhere in the "ML" file. For

example, suppose you wanted to record birthdays in the MISe

line. You could use the notation "bmm/dd/yy". The lowercase

b is a "tag" that indicates birthday data. To list all en­

tries that have June birthdays, you could then search for the

string "b6". The lowercase characters a through e make es­

pecially handy "tags" because they are easy to key in and not

often used otherwise.

\...,- (C) List entry

Press "C", the Vx key, to execute this routine. The

"-program asks for the number of the entry to be listed. Just

key in the number and press R/S. Remember that the first

entry is number zero, not 1. The 6 lines of the entry will be

displayed in sequence, and printed if the printer is attached

and flag 21 is set.

(c) List all

'- Press "c", shift ~, to execute this routine. No input

is needed. The entire name and address list will be displayed

-135-

in sequence. If the printer is attached and flag 21 is set,

the list will be printed out. The phone number and miscellan­

eous lines will be indented by two spaces in the printed

listing. Successive entries will be separated by two spaces.

At the end of the listing, the number of registers used

and the total number of registers in the file will be dis­

played (and printed if the printer is attached and enabled).

(D) Delete entry

Press "0", the LOG key, to execute this routine. The

program asks for the number of the entry to be deleted. Be

sure you know the right number for the entry you want to

delete. I f you are in doubt, press the "e" key to check the

entry. When you are sure which entry you want to delete, key

in the number and press RIS. Again, remember that the first

entry is number zero.

(E) Edit

Press "E", the LN key, to execute th i s rout i ne. The

program will ask you for the number of the entry you want to

edit. Key in this number and press Ris. The program will

proceed to show you each line of the entry (and print it if

the printer is attached and enabled). After a pause, the

prompt "OK?" will appear. If the line is OK and does not need

to be changed, press "y" or Ris. If you want to see the line

again, press the ALPHA key. To quit the EDIT mode, press the

backarrow key or the ON key. Press "N" (the ENTER key) if you

want to change the line. If you do not press any key, the

line will be displayed again and the "OK?" prompt will be

repeated, just as if you had pressed the ALPHA key. If you

press any key other than those mentioned above, the result

will be the same as if you pressed "N".

If you press "y" (the multiplication key) or RIS to

indicate the line is OK, the next line will be displayed.

If you press "N" (the ENTER key), or any key other than

-l36-

ALPHA, nyu, RIS, ON, or backarrow, the prompt "LINE?" will

appear. Key in a string to replace the line and press RIS.

If you want to clear the line, you can just press Ris. If you

made a mistake and you do not want to change the line, press

ALPHA to exit ALPHA mode, then either XEQ 84 or the "E" key to

restart the editing process. The "E" key will start over at

the beginning of the entry; XEQ 84 continues with the next

line of the current entry.

\- Each line of the entry is displayed in sequence, with the

"OK?" prompt. Each time you can press "y" or "N" to indicate

'-- whether it is OK to proceed to the next line. When you have

finished editing all 6 lines of the entry, the program will

automatically continue on to the next entry, if there is one.

When you want to quit, simply press the backarrow key in

response to the "OK?" prompt.

Line-by-line analysis of "NAP"

The "NAP" program contains several subroutines that are

used by more than one local label. This technique is known as

modular programming, and greatly reduces the number of bytes

used in a complex task by dividing the job into sections.

Label 90 selects an initial pointer of zero (beginning of

the "ML" file). LBL 91 selects a pointer to the beginning of

a selected entry. Line 52 initializes the character count in

the X register. The integer part of this character count will

be displayed later as the number of registers occupied.

Label 92 appends the integer part of X to the ALPHA

register for display purposes. The RCLFLAG and STOFLAG func­

tions ensure that the display setting is restored. Label 98

displays the contents of the ALPHA register without printing

it. Label 99 prints the contents of the ALPHA register, or

'- displays ALPHA and pauses if the printer is off, not present,

or disabled. This routine differs from the "PVA" routine

presented in section 4C in that it preserves the status of

flag 25, which is used in "NAP" to detect the END OF FL.

-137-

"NApn program listing

81 tLBL • HAP" 44tLBL 91 85 XEI.l 98 128 XEI.l % 178 STOFUiG

82tLBL H 45 -ENTRY NO. "~'" 86 "FIND?" 129 ADY 171 RDN

83 XEQ 90 46 PRO!'lPT 87 AON 138 CLD 172 FS? 21

84 SF 25 47 I) 88 STOP 131 RTN 173 FC? 25

95 5 48 * 89 AOFF 174 PSE

116 CHS 98 ASTO 118 132tLBL D 175 STOFUiG

49tLBL 86 133 XEI.l 91 176 RDN

1l7tLBL 85 58 "i'lL- 91tLBL 98 177 RTH

88 E. 51 SEEKPTA 92 POSFL 134tLBL 89
89 + 52 7 93 X<8? 135 DELREC 178tLBL E
18 SEEKPT 53 RTH 94 RTN 136 DSE L 179 WI 91
11 FS"! 25 95 6 137 GTO 89
12 GTO 85 54tLBL 92 96 I 138 RTN 188tLllL 71

13 LilSn: 55 INT 97 LliST:~ 181tLBL 84

14 / 56 RCLFLAG 98 XOY 139tLBL G 182 SF 25
15 "NAI'IE • 57 FIX !l 99 -ENTRY NO. 148 XEI.l 9!l 183 GETREC
16 XEQ 92 58 CF 29 18!l XEI.l 92 141 CLA 184 FC? 25

17 SIGH 59 ARCL 'i 181 XEQ 99 185 GTO 81

IS XOY 6!l STOFLAG 182 * 142tLBL Hi 186 XEI.l 99

19 AON 61 RDN 1113 SEElePT 143 SF 25 187 -OK"j-

28 XEIi 94 62 RTN 184 RDN 144 XOY 188 XEI.l 98
---" 21 XEQ 93 185 XEI.l 95 145 SEEKPT 189 GETKEY

22 XEQ 93 63tLBL 93 186 ARCL 81l 146 6 198 CLD
23 XEQ 93 64 "ADD. L" Hl7 GTO 88 147 + 191 RDN

24 -PHONE" 65 XOY 148 XO,(192 GTO IND T

25 XEI.l 94 66 XEI.l 92 Hl8tLBL 96 149 FS? 25 193 -LIHE?-

26 -'HSC. " 67 XO'T 189 SF 25 15~ XEI.l 95 194 XEI.l 98

27 XEI.l 94 68 ISG Y 118 liRCLREC 151 FS? 25 195 " -
28 HOFF 111 XEI.l 99 152 GTO 18 196 AON

29 -RGS. = " 69tLBL 94 112 CLA 153 7 197 STOP

38 7 78 -1-'1" 113 FS"j 2S 154 I 198 AOFF

31 / 71 XEQ 98 114 GTO 87 155 FLSIZE 199 DELREC

32 XEQ n 72 " " 115 RTN 156 XOY 288 INSREC

73 STOP 157 XEQ 92 281 GTO 84
33tLBL % 74 liPPREC 116tLBL C 158 "I- : "
34 RCLFUiG 117 XEQ 91 159 XOY 282tLBL 88

35 CF 21 75tLBL 87 168 XEQ 92 283tLBL 84

36 liVIEW 76 1 118tLBL 95 161 -I- RGS.· 284 RCLPT

37 STOFLAG 77+ 119 ADV 285 INT

38 RDN 78 RCLPT 128 CUi 162tlBL 99 286 SEEI(PT

39 RTil 79 FRC 121 XEQ 96 163 RClFLiiG 287 GTO 84
48 GTG il 88 1 E3 122 XEQ 96 164 SF 25

81 * 123 XEQ 96 165 PRii 288tLBL 44

41tLBL 99 82 + 124 XEQ 96 166 RCLFLiiG 289tLBL 81

42 0 83 RTH 125 - - 167 FS?C 21 218 ClST

43 GTO 86 126 XEI.l 96 168 FC? 25 211 EHD

84tLBL B 127 - - 169 AVIEW 447 BYTES

-138-

Label 96 outputs a record (line) from the "ML" file. The

"--- ARCLREC function is used instead of GETREC so that the PHONE

and MISC lines can be indented. Label 99 is called for the

"--- actual output. If the END OF FL was not encountered, the GTO

07 instruction causes the LBL 07 character count routine to be

executed. This sequence computes the number of characters in

the current record (RCLPT, FRC, lE3, *), and adds that number

plus 1 (for the record length byte) to the character counter

in X. Details of ASCII file register usage can be found in

Section 10C.

Label 95 is used by labels B, c, and C to output six

consecutive records of the file. It advances the paper,

clears ALPHA, then outputs the first four lines using label

96. The next two lines are preceded by 2 spaces that are

loaded into the ALPHA register before label 96 is called.

Label A adds one entry to the "ML" text file. Lines 04-

12 find the end of the file and set the pointer there. Flag

25 is used both to suppress the END OF FL error message and to

test when the END OF FL is reached. Lines 15-28 prompt for

the 6 lines of the entry and append the 6 records to the "ML"

file. Label 93 is a byte-saving device that generates the

three prompts "ADD. Ll?", "ADD. L2?", and "ADD. L3?". Lines

17-18 set up a counter in Y with an initial value of 1. The

ISG Y at line 68 then increments this counter each time label

93 is called. Label 94 merely appends a question mark, calls

label 98 to display the prompt without printing it, loads the

',,- ALPHA register with a single space, and halts for input. If

the user just presses R/S, the single space will be used for

the record. Otherwise whatever ALPHA string was keyed in will

be appended to the "ML" file at line 74. The LBL 07 sequence

updates the character counter in X as described above.

~ When LBL A concludes, the number of registers used is

displayed, rounded to the next higher integer.

Label B prompts for a string to find, storing the left­

most 6 characters in register 00 for subsequent searches.

-139-

Label 08 performs the search (line 92), computes and displays

the entry number (lines 95-101), sets the pointer to the

beginning of the entry (102-103), and calls label 95 to dis­

play the entry. The search is then resumed, us i ng the left­

most 6 characters of the target string. When the END OF FL is

reached, the POSFL instruction returns a value of -1 to X, and

the test at line 93 halts the program.

Label C calls label 91 to set the pointer to a selected

entry, then drops into label 95 to display the entry.

Label c first calls label 90 to initialize the character

counter. Then it sets the pointer to the beginning of the

file (line 145). Lines 146-148 prepare the pointer value that

will be needed the next time through the loop. If the END OF

FL was not reached, label 95 displays the 6 lines of the

entry, and the GTO 10 proceeds to the next entry. When the

END OF FL is reached (flag 25 clear), the character count in X

is divided by 7, giving the number of registers occupied.

Lines 155-161 construct and display or print a message that

compares this number with the FLSIZE.

Label D calls label 91 to set the pointer to the begin­

ning of an entry, then it deletes 6 records.

Label E calls label 91 to select an entry. The first

record of the entry is then printed or displayed (line 186).

Then the prompt "OK?" is displayed and GET KEY is executed.

After the key is pressed or the time expires with no key

having been pressed, lines 190-192 effect a GTO IND X, branch­

ing to the label designated by the keycode. Labels 71 ("y")

and 84 (R/S) cause the next line to be displayed. Labels 00

(no key) and 04 (ALPHA) set the pointer back to the beginning

of the current record, and cause the current line to be redis­

played. Labels 44 (backarrow) and 01 (ON) cause the program

to halt. If any other key is pressed, execution will continue

with line 193, because flag 25 was set. This sequence prompts

for a new line, then uses that string to replace the current

record (lines 199-200).

-140-

'-

CHAPTER EIGHT

TEXT EDITING ON THE HP-41

This chapter introduces a Text Editor program, called

"TE", that allows any text file to be reviewed and edited with

a minimum of keystrokes. Like the "HP-16" program of Chapter

9, it uses the GETKEY function to achieve a remarkable degree

of user convenience and "friendliness". If you have an HP-

41CX, its built-in ED function does essentially the same job

as this Text Editor program. The major advantage of ED is

that it responds much more quickly than "TE". Advantages of

"TE" are its search and special (non-keyable) character entry

features. Even if you have an HP-41CX, do not overlook the

capabilities that "TE" provides.

This powerful program and its associated documentation

were wr i tten by Er ik Chr istensen, and are reproduced here by

permission.

"TE" (text editor) is a text editor program for use with

a HP-41C or cv that has an Extended Functions/Memory module

plugged in. The program will also work with an HP-41CX. Ad­

ditional Extended Memory modules are optional (up to two can

be used). The HP-41 used must have at least 115 free program

registers, and one free data register.

The "TE" program provides a quick way to view, add,

delete, and change text in an extended memory text (ASCII)

file. An edit mode is included that totally redefines the

'- keyboard for file processing. In this edit mode, you press a

certain key that corresponds to the operation you wish to per­

form on the file. Then you are prompted accordingly, and the

editing continues. You view the file through a twelve charac­

ter "window" that you can move throughout the file using

different one-key operations. You are notified if an error

condition occurs, but execution is not interrupted. The fol-

-141-

lowing pages will describe the different functions of the keys

(A) - (H). The last one described will be the (E) key, for it

represents the largest part of the program, including the edit

mode.

As with "NAP" in Chapter 7, you need to execute "SKU or

clear any key assignments from keys (A) (H) before you can

effectively use "TE". Section 10G has a full explanation.

Once these keys are clear of assignments, execute "TE" to

start the text editor. Keys (A) - (H) will then be redefined

as follows:

row 1: Add file chr free? clear fl delete fl edit fl

row 2: file dir goto file HELP

Here is a brief explanation of each of these functions:

(A) Add a file to memory

This routine sets up the memory allocation for a new text file

in extended memory. The program prompts for the number of

lines the text file is to have ("LINES?"). Key in a number,

and then press R/S. The program then prompts for the total

number of characters that will be allocated for the file

("CHAR"). Key in a number, and press R/S. The routine then

prompts for the name that the new file shall be called

("NAME?"). Type in a file name that is from 1 to 7 letters

long, and press R/S. If the name keyed in has already been

used as a name for another file, then you will be reprompted

for another name. If there is currently not enough free

memory available to create the file, you will be prompted

again for the number of lines and characters to be allocated.

Upon completion, the display will show "OK" and the program

will stop. You may now use any of the other local labels.

-142-

(B) Count the number of free characters in a file

This routine checks how many characters may be added to the

specified file. The routine prompts for the name of the file

'- to be analyzed ("FILE NAME"). Key in a name from 1 to 7

characters long that corresponds to an already created file,

and press R/S. If you specify a name not yet used as a name

for a file, or the name of a program or data file, you will be

reprompted. When a file has been picked, the program will

'- proceed to count the free characters, and then will stop wi th

"CHAR LEFT=n" where n equals the number of free characters.

'--- Press R/S and you will see "OK" in the display. You can now

use any of the other routines.

-

(C) Clear out the contents of a file

This routine erases all the text stored in a file, but leaves

the file intact, including the name, memory allocation, and

directory placement. The routine prompts for the name of the

file to be cleared out ("FILE NAME?"). Key in the name of the

file to be cleared (1 to 7 characters), and press R/S. If you

specify a name that has not already been used in memory, or

the name of a data or program file, you will be reprompted for

the name of the file. The routine ends with "OK" in the

display. You can now use any of the other routines.

(D) Delete a file from memory

This routine purges a text file from extended memory. This

routine would be the one to use to make room for new files, by

deleting old ones. The routine prompts for the name of the

file to be deleted ("FILE NAME?"). Enter the name of the file

to be cleared (1 to 7 characters long), and press R/S. If you

specify the name of a file not already used in memory, or the

name of a data or program file, you will be reprompted for the

name. The routine ends with "OK" in the display. You may now

'-- use any of the other routines.

-143-

(F) View the file directory

This routine will show the names, types, and memory alloca­

tions for each file in extended memory, including data and

program files. The order of viewing is the order in which the

files were created, so the first one shown is the first one

created. The display for each file is: FFFFFFF TKKK, where

FFFFFFF is the 1 to 7 character name of the file, T denotes

the type of file, and MMM stands for the number of 7 charac­

ter registers that are allocated to the file. T can be A,D,

or P, where A=ASCII text file, D=data file, and P=program

file. When all the files in extended memory have been listed,

the program will halt with "FREE=n" in the display, where n

equals the number of free characters that can be allocated to

files, in extended memory. Press R/S once more, and "OK" will

be displayed. You may now use any of the other routines.

(G) Go to a file

This routine is used to position the editor to any text file

in memory. Once positioned to a text file, you may perform

any operation on the current file, by just hitting R/S after a

"FILE NAME?" prompt. This works for routines (B), and (E).

To position the editor to a specific file, answer the prompt

in this routine ("FILE NAME?") with the name of the file

desired, and press R/S. If the file specified is not found,

or is the name of a program or data file, you will be re­

prompted for the name. Upon completion, "OK" will be seen in

the display. You may now use any of the other routines.

(H) Help associating a key

This routine is a convenience routine to determine the func-

tion of certain local label key (A)-(G). It will display a

mnemonic that corresponds to the key pressed. It will prompt

with "PROBLEM KEY?". Respond by pressing the key that you are

uncertain about. The display will show a 3 character

-144-

mnemonic. The codes for keys (A)-(G) are as follows: (A)=ADD,

~ (B)=FRE, (C)=CLR, (D)=DEL, (E)=ED ,(F)=DIR, (G)=GTO. The

mnemonic will be shown for about one second, and then the

routine will go back and ask for another key. It will con-'-

tinue to do so until you press another key, or leave the HP-41

unattended during the prompt. When you press any other key

than (A)-(G), the routine will stop prompting and display

"OK", meaning that it is possible to use any of the other

'-- routines.

~ (E) Ed ita f i 1 e

When you press the "E" key, you enter the edit mode.

keyboard is completely redefined for file processing.

The

All

input will be done while the program is running, except alpha

character entry, for which the program will stop, and for

~. which R/S is necessary to continue.

To select the edit mode, press the (E) key. You will see

the message "FILE NAME?" in the display. Key in the name of

the file to be edited (1-7 characters) and press R/S. If you

specify the name of a program or data file, you will be re­

prompted for another name. If a text file has already been

selected using local label (G), then that file will be used if

you just press R/S without a name input. After the name has

been specified, you will see a portion of text in the file

through a 12 character window (which is movable using various

commands). The window will initially be positioned to line 0,

character 0. You will also see the flag 0 annunciator. This

means that the calculator is ready for your selection of any

editing function. When flag 0 is set, you may press the key

that corresponds to the function you desire. You will then be

prompted for input if necessary for the selected function, and

~ the screen will again show the window. Then you can select

other keys to edit the file. When you are finished, press the

'--... R/S key or the ON key when flag 0 is set to qu i t the ed i t

mode.

-145-

The edit mode keyboard is set up as shown in the table

below. Each key performs a different file operation.

NOTE: No USER mode key assignments are affected by this redef-

ined keyboard.

row 0 quit INS X

row 1 ADD L BEG L CHA L DEL L INS L

row 2 BACK n GOTO A POINT INS A AHEADn

row 3 BACK 1 DEL A VIEW L CHA A AHEADl

row 4 ADD A GTOCHR POS FL DELCHR

row 5 UP n 7 8 9

row 6 UP 1 4 5 6

row 7 DOWN 1 1 2 3

row 8 DOWN n ftJ GO TO REC STOP/CONT

Each edit mode operation listed on the keyboard diagram above

will now be described in detail. The operations will be

identified by the mnemonics on the keyboard diagram, and

listed from the top to the bottom of the keyboard.

(ADD L) Add a line of text at the end of the file.

This operation will create a new line of text that you specify

at the end of the file. The window will be set to the newly

created text, at the end of the file. If there is not enough

room allocated for the new text, then "ERROR" will be dis­

played, and the operation will not be performed. You will be

prompted for the new text to be added ("NEW TEXT?"). Key in a

string of characters that can be 1 to 24 characters in length,

and press R/S. The routine will return to the window display.

-146-

(BEG L) Move the window to the beginning of the line

~ This routine will position the window to the first 12 charac­

ters of the line that the window is presently positioned to.

If the window is already at the beginning of the line, then

nothing happens. 'The routine does not prompt, and returns

immediately to the window display.

(CHA L) Change the contents of a line

'- This routine will change the text of a line to new text, thus

erasing the old text. You are prompted for the text that is

to overwrite the previous text on the current line ("NEW

TEXT?"). Respond to the prompt by keying in a 1 to 24 charac­

ter string that will replace the old text, and press Rls. If

there is not enough room for the new text, then "ERROR" will

be displayed. The window is positioned to the beginning of

'- the newly created text. The routine will return to the window

display.

(DEL L) Delete a line of text

This routine will erase an entire line of text from memory.

All subsequent lines will move up one, so the window will be

positioned to the next line in memory. This routine does not

prompt, and returns immediately to the window display.

(INS A) Insert text in a line

This routine will enable you to insert text at the current

window position. The text inserted will appear right before

the text currently shown in the window. The window will be

positioned to the beginning of the newly inserted text. The

prompt is "NEW TEXT?". Respond with a 1 to 24 character

string of text to be inserted, and press Rls. If there is not

'- enough room for the text to be inserted, then "ERROR" will be

displayed. The routine returns to the window display.

-147-

(AHEAD n) Move window ahead n characters

This routine will move the window forward through the current

line of text n characters. The routine prompts for a

"NUMBER?". Enter a 3 key sequence that represents a 3 digit

number for n. The routine then shows the three digit number

in the display, and returns to the new window display. If the

window would be moved beyond the end of the current line then

"ERROR" will be displayed.

(BACK 1) Move window back 1 character

This routine will backspace the window one character in the

line. If you backspace past the first character, then "ERROR"

is displayed. The routine then returns to the window display.

(DEL A) Delete specified text

This routine will enable the user to delete certain strings of

text from the line. The routine prompts for the text to be

deleted with "OLD TEXT?". Enter a 1 to 24 character string,

and press R/S. If the text to be deleted is not found, then

nothing happens. The search for the text is done from the

current window position to the end of the file. The routine

returns to display the window.

(VIEW L) View an entire line

This routine views the current line, 12 characters at a time.

It goes from the beginning of the line to the end. First it

displays the line number "LINE n", where n equals the line

number. Then it views the line, and returns.

(INS L) Insert a line of text

This routine will insert a line of user-specified text in the

file. The text will be inserted right before the current

line. After the text has been inserted, the window will be

positioned to the beginning of the new line of text. If there

is not enough room for the new text, "ERROR" will show up in

-148-

the display. The prompt for the text to be inserted is "NEW

'- TEXT?". Respond with a 1 to 24 character string of letters to

be inserted, and press R/S. The routine then returns to the

window display.

(BACK n) Move back n characters

This routine will move the window back through the line n

characters, where n is selectable. If by moving back n char­

acters the window would be past the beginning of the text,

then the window will be positioned to the beginning of the

text. The prompt for n is "NUMBER?". Respond by pressing a 3

key sequence representing a 3-digit number while the program

runs. The three digit number will show up in the display, and

then the routine will return to display the window at its new

position.

(GOTO A) Go to text in line

This routine will search the current line for a match with

user specified text, and if a match is found, it will move the

window to the first character of the specified text. The

routine will only search the current line, and if a match is

not found, the window does not change position. The prompt is

"TARGET TEXT?". Respond by keying the string that is to be

located (1 to 24 characters) and press R/S. The routine will

then return to display the window.

(POINT) View the current pointer values

This routine will show how many lines down and how many let­

ters from the leftmost position the window is, relative to the

beginning of the file. The routine does not prompt. It

displays the message "LINE n CHR m" where n is the number of

'- lines down from the beginning, and m is the number of charac­

ters from the beginning of the line.

-149-

(CHA A) Change text in a line

This routine will allow you to replace text in a line. You

are prompted for the text that is to be changed ("OLD TEXT?").

Enter a 1 to 24 character string representing the text to be

changed. This text is then deleted, if it can be found. The

routine then prompts "NEW TEXT?". Type in the text that is to

replace the old text (1 to 24 characters), and press RiS. The

new text is then inserted where the old text used to be. If

there is not enough room for the new text to be inserted, then

"ERROR" is displayed. The routine returns to display the

window.

(AHEAD 1) Move window 1 character ahead

This routine moves the window one character ahead through the

line. If the window is moved out of the text, then "ERROR" is

shown. The routine returns to display the window.

(ADD A) Add text at end of line

This routine will add user specified text at the end of the

current line. If there is not enough room for the new text,

then "ERROR" will be displayed. The prompt is "NEW TEXT?".

Enter a 1 to 24 character string that will serve as the addi­

tion to the line, and press RiS. The routine returns to

display the window.

(GTOCHR) Move window to absolute character number

This routine will move the window to a specified character

number (counted from the beginning of the line). If there is

not a character at the specified position, then "ERROR" will

be displayed. At the prompt "NUMBER?", key in 3 digits repre­

senting the position of the character within the line. 'The

number will then be displayed, and the routine will return to

display the new window.

-150-

(POS FL) position window to specified text

This routine will search from the beginning of the file for a

match with the specified text. If a match is found, then the

window is positioned to the first character of the text being

sought after. If a match is not found, then the window is not

changed in position. The prompt for text to be located is

"TARGET TEXT?". Your response is a 1 to 24 character string,

~ followed by RIS. The routine returns to display the window at

its new position.

(DELCHR) Delete n characters

This routine deletes n characters from the current line. The

deleting starts at the first character displayed in the win­

dow, and proceeds n characters to the right. If n is larger

'- than the number of characters from the beginning of the window

to the end of the current line then everything from the first

~ character of the window to the end of the line is deleted.

The prompt for n, the number of characters to be deleted, is

"NUMBER?". Key in a 3-digit number n, with leading zeros if

necessary. This number will then be displayed briefly, and

the routine will return to show the updated window display.

(UP n) Move window up n lines

This routine will move the window display up a specified

number of lines. If the window would be moved past the begin­

ning of the file (first line), then the window will be posi­

tioned to the first line. The prompt for the number of lines

to be moved up is "NUMBER?". Respond with a 3 digit sequence,

and the 3 digit number will be displayed. Then the routine

will return to view the window display.

(UP 1) Move window up 1 line

This routine will move the window up one line of text. If the

window is positioned at the first line, then nothing will

-151-

happen. This routine does not prompt, and returns directly to

the window display.

(DOWN 1) Move window down 1 line

This routine moves the window down one line of text in the

file. If you try to move the window past the last line of

text in the file, then "ERROR" will be displayed. This rou­

tine does not prompt, and returns directly to the window

display.

(DOWN n) Move window down n lines

This routine will move the window display down a specified

number of lines. If the window would be moved past the end of

the file (last line), then the window position will be un­

changed, and "ERROR" will be displayed. The prompt for the

number of lines to move down is "NUMBER?". Respond with a 3

digit sequence, and the 3 digit number will be displayed.

Then the routine will return to view the window display.

(GOTO REC) Move the window to a specified line

This routine will move the window to a specified line number

n. Lines are numbered starting with line 0 (the first line in

the file). The prompt for n is "NUMBER?". Respond with a 3

digit number for the line number n, with leading zeros if

necessary. The 3 digit number will then be displayed, and the

routine will return to the window display. If you try to move

the window to a line of text that has not yet been created,

then the display will show "ERROR" and the window position

will not change.

(STOP/CONT) Exit the edit mode

This routine exits the edit mode, freeing you to use any other

local label routines (A)-(H). It restores the original flag

status, and ends with "OK" in the display. Either the R/S or

the ON key will cause this exit routine to be executed.

-152-

(INS X) Insert a special character

This routine will insert a not normally keyable character into

the file, at the current window position. The input to the

routine is the ASCII code (a number between 0-255) of the

letter. A listing of these special characters and their

corresponding codes can be found on pages 60 and 61. The

routine will prompt for the character code with "NUMBER?" in

the display. Key in a three digit numeric sequence that

represents the character code. The code will be displayed,

and then the routine will return to the window display. If

~ there is not enough room for the new character in the file,

then "ERROR" will be displayed.

If any of the preceding function descriptions were not com­

pletely clear to you, you should create a small ASCII file in

which you can tryout the edit mode functions. You will find

'-- that the descriptions make an excellent reference after you

have actually used "TE".

CUSTOMIZATION OF "TE"

The information that follows is provided in case you want

to add your own editing routines to "TE" or change an existing

routine. If you do not intend to modify "TE", you can skip to

the next chapter.

To add or change a routine:

1) Choose the key that your new routine is to be assigned to.

Press (XEQ) (ALPHA)GETKEY(ALPHA) and that key.

2) The row/column key code in X from step 1 is the numeric

label number that will start your new routine. So, for

example, if you saw 41 in the display from example 1,

then your routine would start with LBL 41.

'-- 3) After the LBL at the start of your routine, you can add

anything you please, followed by a RTN statement.

-153-

4) Your routine must observe the following constraints:

FLAG/REG PRE-ROUTINE POST-ROUTINE

Flag 29 clear clear

Flag 25 set set

FIX 0 0

Flag 28 set set

Flags 0-3,6 clear clear

X rrr.ccc rrr.ccc

Y not used can be used

Z not used can be used

T keycode can be used

L not used can be used

ALPHA window display can be used

REG 00 initial flag sts cannot be used

When your routine comes to the RTN statement, it must

have the new window position in X in the form rrr.ccc,

where rrr is the record number, and ccc is the character

number of the first character of the window. If your

routine deletes any text from the file, it should not

conclude with RTN, but rather GTO 26. This calls an

error handling routine.

5) To call various prompting routines, do the following:

PROGRAM STEP DESCRIPTION USES

XEQ 09

XEQ 06

XEQ 07

XEQ 08

"NUMBER?" • in X

" TEXT?" txt in A

T,Z,L,ALPHA

"NEW TEXT" txt in A

"TARGET TEST?" txt in A

-154-

EXAMPLE OF AN ADDED ROUTINE

'-- Add a routine that will erase all text that matches the text

supplied by the user in the file. Have the prompt for the

~ text to be deleted to be "TARGET TEXT?". This new routine

is assigned to the (ALPHA) key.

ROUTINE LISTING

01 LBL 04

02 ENTERT

03 XEQ 08

04 LBL 88

05 RON

06 POSFL

07 X<0?

08 CLA

09 RON

10 ALENG

11 DELCHR

12 X;i0?

13 GTO 88

14 RON

15 SF 25

16 SEEKPT

17 FS? 25

18 RTN

19 GTO 26

start routine with label assignments

put rrr.ccc in Y

call "TARGET TEXT?' prompt

start deleting loop

now rrr.ccc is in X

search the file for text in ALPHA

was text found?

if not, then clear alpha

put rrr.ccc in X

get the length of text

delete that many characters

was alpha clear?

if not, loop back to search again

put rrr.ccc in X

set error ignore flag

try to position window to old position

were you successful?

then return

if not, then call error handler

To add this routine press:

(GTO) (ALPHA) TE (ALPHA) (SHIFT) (RTN) (PRGM)

and key in the routine.

NOw, every time that (ALPHA) is hit while in the edit mode,

you will see a prompt for "TARGET TEXT?". Key in the text

that is to be deleted throughout the file, and press (R/S).

The routine will then return to the window display.

-155-

NUMERIC LABEL DESCRIPTION

LBL Description

00 Edit mode input loop

02 INS X

06 "TEXT?" prompt

07 "NEW TEXT?" prompt

08 "TARGET TEXT?" prompt

09 "NUMBER?" prompt

10 loop for VIEW L

11 ADD L

12 BEG L

13 CHA L

14 DEL L

15 INS L

16 "FILE NAME?" prompt

17 "NAME?" prompt for LBL A

18 "OK" prompt

19 loop for LBL B

20 escape loop for LBL B

21 BACK n

22 GOTO A

23 POINT

LBL Description

24 INS A

25 AHEAD n

26 error handler for deletion

31 BACK 1

32 DEL A

33 VIEW L

34 CHA A

35 AHEAD 1

41 ADD A

42 GOTO CHR

43 P~S FL

44 DEL CHR

51 UP n

61 UP 1

71 DOWN 1

81 DOWN n

83 GOTO REC

84 exit edit mode

99 window display loop

-156-

ERROR SUMMARY

Function Meaning of ERROR message

ADD L Not enough room for new text

BEG L No error situations

CHA L Not enough room for new text

DEL L No error situations

INS A Not enough room for new text

DEL A No error situations

VIEW L No error situations

INS L Not enough room for new text

GO TO A No error situations

POINT No error situations

CHA A Not enough room for new text

ADD A Not enough room for new text

GTO CHR New position exceeds text limits

POSFL No error situations

DELCHR No error situations

GTO REC New position exceeds text limi ts

STOP/CONT No error situations

INS X Not enough room or illegal ASCII code

AHEAD n New position exceeds text limits

AHEAD 1 New position exceeds text limits

BACK n No error situations

BACK 1 No error situations

UP n No error situations

DOWN 1 New position exceeds text limits

DOWN n New position exceeds text limi ts

UP 1 No error situations

-157-

"TE" Program listing

81tLBL 31 39 XEQ 117 78 "HEW" 116 IHT 159 ilYIEW
82 1 E-3 48 DELREC 117 XEQ 89 168 RTH
83 - 41 IHSREC 79tLBL 86 118 +
84 X(Il? 42 GTO 26 88 "f- TEXT?" 119 RTH 161tLBl 14
85 ClX 81 AYIEW 162 DELREC
86 RTN 43tLBl 32 82 CUI 12litLBl 112 163 XEQ 26

44 "OLD" 83 ilOH 121 XEQ 89 164 RTN
1l7tLBl 3S 45 XEQ 1i6 84 STOP 122 CUi
118 1 E-3 46 POSFl 85 AOFF 123 XTOA 165tLBl 15
89 + 47 X<8? 86 RTH 124 FS? 25 166 XEQ 87
18 RTH 48 Clil 125 IHSCHR 167 IHSREC

49 ALEHG 87tLBl 42 126 RDN 168 RTN
IItLBL 71 58 DELCHR 88 IHT 127 RTN
12 IHT 51 GTO 26 89 GTO 25 169tLBL 33
13 1 128tLBl 83 178 FS? 55
14 + 52tLBl 24 9litLBL 44 129tLBL 119 171 SF 21
15 RTH 53 XEQ 1i7 91 XEQ 89 138 "HU"BER?" 172 IHT

54 INSCHR 92 DELCHR 131 AYIEW 173 "LIHE "
16tLBl 61 55 RTN 93 GTO 26 132 "RHIJ)?" 174 ilRCl X
17 lilT 133 64 175 AYIEW
18 1 56tLBl 43 94tLBl 51 134 XTOil 176 SEEKPT
19 - 57 8 95 IHT 135 RDN
28 X(8? 58 SEEKPT 96 XEQ 89 136 "1-456" 177tlBl 18
21 CLX 59 RDH 97 - 137 SF 81 178 Clil
22 RTH 68 XEG 88 98 X(il? 138 GETKEY 179 ARCl 81l

61 POSFL 99 CLX 139 SF 82 188 ARCL 88
23tlBl 41 62 X<8? 1118 RTN 148 GETKEY 181 ARCLREC ~

24 XEQ 87 63 RDN 141 SF 83 182 ASHF
25 APPCHR 64 RTN 181tLBl 25 142 GETKEY 183 ASHF
26 RTH 1112 XEQ 89 143 CF 83 184 AYIEW

65tLBL 22 183 1 E3 144 CF 82 185 FS? 17
27tLBl 34 66 IHT 184 I 145 CF 81 186 GTO 18
28 SF 18 67 XEQ 88 185 + 146 POSA 187 LASTX
29 XEQ 32 68 POSFl 186 RTH 147 RDN 188 CF 21
38 SF 25 69 IHT 148 POSA 189 RTH
31 GTO 24 78 X<>Y 187tLBL 21 149 RDH

71 X=Y? 188 XEQ 89 158 POSA 198tLBL 23
32tLBL 11 72 LASTX 189 1 E3 151 RDN 191 ENTERt
33 XEQ 87 73 RTN 118 I 152 CLA 192 IHT
34 APPREC 111 - 153 ARCL T 193 "LIHE"
35 RClPT 74tLBL 1i8 112 X(8? 154 ARCL Z 194 ARCl X
36 IHT 75 "TARGET" 113 IHT 155 ARCL Y 195 "f-CHAR"
37 RTH 76 GTO 86 114 RTH 156 AHUII 196 LASTX

157 X<8? 197 He
38tLBL 13 ntLBl 87 115tLBl 81 158 GTO 89 198 1 E3

-158-

"TE" Program listing (continued)

'-..- 199 * 239 CLD 281 STOP 321 GTO 16 363 CF HI
288 IlRCL X 248 STOP 282 GTO 18 322 SF 25 364 SIZE?
281 1l~'IEW 241 IlOFF 323 POSFL 365 1

\.....- 282 RDH 242 SF 25 283tLBL C 324 FC?C 25 366 iOn
283 RDH 243 RCLPTH 284 XEQ 16 325 GTO 16 367 PSIZE
284 RTN 244 FS·j 25 285 SF 25 326 RTH

\.....- 245 GTG 17 286 CLFL 368tLBL 18
285tLBL 12 246 SF 25 287 FC? 25 327tLBL F 369 CF 25

"'--- 286 Hn 247 CRFLRS 288 GTO C 328 E"DIR 378 CLST
2117 RTH 248 Fe? 25 289 GTO 18 329 7 371 "OK"

249 GTO II 330 • 372 PRO"PT
'-- 288tLBL 26 250 GTO 18 298tLBL D 331 "FREE=" 373 GTO 18

209 RCLPT 291 XEQ 16 332 ilRCL X

\.....
2Hl SF 25 251tLBL B 292 SF 25 333 PRO"PT 374tLBL 99
211 SEEKPT 252 XEQ 16 293 PURFL 334 GTO 18 375 RCLPT
212 FC?C Hi 253 • 294 FC? 25 376 SF 25

'-- 213 FS? 25 254 SEEKPT 295 GTO D 335tLBL H 377 CUl
214 RTH 255 FLSIZE 296 GTO 18 336 5 378 ilRCL 88
215 IHT 256 7 337 "PROBLE" KEY?" 379 IlRCL 80

~ 216 SF 25 257 * 297tLBL E 338 IlYIEW 388 RRCLREC
217 SEEKPT 258 1 298 XEQ 16 339 "DIRED DELCLRFRE" 381 RSHF
218 FC? 25 259 - 299 RCLFLilG 348 "i-RDDGTO" 382 IlSHF

'-- 219 XEQ 61 388 STO 88 341 GETKEY 383 SEEKPT
228 RTH 268tLBL 19 3ill RDH 342 23 384 IlYIEW

'--
261 SF 25 382 • 343 X(=Y? 385 SF 25

221tLBL 01 262 GETREC 383 SEEKPT 344 GTO 18
222tLBL 84 263 FPC 25 384 FIX 0 345 RDH 386tLBL 88

~ 223 RCL 00 264 GTO 20 385 CF 29 346 III 387 SF 80
224 STOFLRG 265 RLENG 386 CF 27 347 - 388 GETKEY
225 GTO 18 266 - 387 GTO 99 348 X}Y? 389 CF 88

\..... 267 FS? 17 349 + 398 RDH
226tLBL H 268 GTO 19 388tLBL G 358 Hl 391 XEQ IND T
227 "LINES·;" 269 1 399 XEQ 16 351 "OD 392 SEEKPT

\..... 228 PRO"PT 270 - 318 GTO 18 352 -3 393 "ERROR"
229 "CHRR?" 271 GTO 19 353 * 394 FC? 25

'-- 238 PRO"PT 311tLBL 16 354 IlROT 395 RYIEII
231 + 272tLIlL 28 312 "FILE NR"E?' 355 ilSHF 396 GTO 99
2327 273 'CHRR LEFT=" 313 ilON 356 IlSHF 397 END

~ 233 i 274 RCLFLilG 314 IlYIEW 357 ilSHF
234 I 275 FIX 8 315 CLil 353 RYIEII 883 BYTES
235+ 276 CF 29 316 STOP 359 GTO H

'-- 277 ilRCL Y 317 ilOFF
236tLBL 17 278 STOFLilG 318 SF 25 368tLBL "TE"

'-,.
237 "Nil"E?o 279 RYIEII 319 RCLPTIl 361 SF 27
238 ilON 288 RDH 328 FC?C 25 362 CF 21

~

"'--"'

-159-
',,-

CHAPTER NINE

AN HP-16 SIMULATOR PROGRAM

This chapter presents a program that simulates some of

the functions of the HP-16C calculator. Since the example

~ program performs base conversions, a little background on

number bases is in order.

A decimal number wxyz has the value

where w, x, y, and z are any digits from 0 to 9. The sub­

script 10 indicates base 10. Hexadecimal (base 16) notation

~ works the same way. A hexadecimal number qrst16 has the value

where q, r, s, and t are any hexadecimal digits from zero to

fifteen. Since there are no ordinary digits that correspond

to the numbers ten through fifteen, it is standard notation to

borrow them from the alphabet: A16 10, B16 = 11, C1 6 = 12,

016 = 13, E16 = 14, and F16 = 15. For example C5 16 =
12·16+5 = 197, and FF16 = 15·16+15 = 255.

These same principles apply to number bases other than 10

or 16. Each digit in the representation represents a coef­

ficient of a power of the base.

Base conversion is a frequent application of programmable

calculators. In fact, the HP-16C specializes in base conver­

sion and operations in base 2 (binary), base 8 (octal), base

10 (decimal), and base 16 (hexadecimal). Keys labeled A

through F are provided for easy entry of hexadecimal numbers.

-161-

A base 16 number can be entered in HEX mode, then converted to

decimal simply by pressing the DEC key. The calculator then

interprets all further entries as decimal numbers until the

mode is changed.

The program IHP-16" listed on page 164 simulates the base

conversion functions of the HP-16. Just press

XEQ ALPHA H P shift - shift 1 shift 6 ALPHA

to execute the program, and the keyboard is redefined as shown

in the accompanying table. Keys that do not appear in the

table do nothing when pressed, because there is no correspond­

ing numeric label in the program.

nHP_16 n GETKEY keyboard

row 1: A B C D E

row 2 : F HEX DEC OCT BIN

row 3 : X<>Y STO RCL

row 4: ENTERT backspace

row 5 : 7 8 9

row 6: + 4 5 6

row 7: * 1 2 3

row 8: / quit

-162-

\.....

Although the program is somewhat sluggish, it is meant to

simulate an HP-16C with a two-level stack (X and Y registers

only). The mode is indicated by flag annunciators. Flag 1

denotes hexadecimal, flag 2 decimal, flag 3 octal, and flag 4

binary. The flag 0 annunciator, when lit, indicates that the

HP-4l is ready for you to press a key. When not lit, the flag

o annunciator indicates that a calculation is in progress.

When you press a key, the disappearence of the flag 0 annun­

~ ciator signifies that your input was recognized. wait for the

\.....

\.....

flag 0 annunciator to reappear before pressing another key.

A series of examples will make the operation of this

program more clear. First, execute "HP-16" to start the pro­

gram. The flag 1 annunciator signifies that you are in HEX

mode.

Press the "C" key (row 1, column 3). The flag 0 annun­

ciator disappears briefly, then it reappears and a "C" appears

in the display. Press the "2" key and "C2" will appear. If

you make a mistake, press the backarrow key and the rightmost

digit of the displayed number will be removed.

Now convert this number to base 8 by pressing the "OCT"

key (row 2, column 4). After a short wait, the result "302"

will appear. The flag 3 annunciator indicates octal mode.

Let's add 7 to this number. This is done just the way

you would expect. Simply press 7, wait for the "7" to appear

in the display, then press +. The two numbers 3028 and 78

will be added and the octal result, 311 8 , will appear in the

display.

You can convert this number to binary by pressing the BIN

~ key (row 2, column 5). This takes a little while because of

\.....

the number of digits that need to be decoded, but the result

is 11001001 2• The flag 4 annunciator indicates binary mode.

To find the decimal equivalent, press the DEC key (row 2,

column 3). The flag 2 annunciator indicates decimal mode, and

the result 201 appears.

-163-

"HP-16" program listing

91tLBL "HP-16' 49tLBL 53 78 + 117 GTO 19 156 CHS
82 2 41tLBL 54 79 RTN 157 AliOT
83 XOF 42 Rt 118tLBL 24 158 liBN
94 16 43 45 89tLBL 18 119 3 159 IHT
85 STO 88 44 - 81 RDN 128 EHTElit 168 X)IP
86 CLST 82 SIGN 121 GTO 18 161 GTO 88
117 CLA 45tLBL Hi 83 RDH 162 RDH
118 CF 21 46 48 84 FC? 86 122tLBL 25 163 liTH

47 GTO 86 85 liCL IHD L 123 16
1l9tLBL 85 86 STO IHD L 124 2 164tLBL 41
18 liDN 48tLBL 11 87 FS?[116 165 EHTERt
11 AIIIEW 49tLBL 12 88 liTH 125tLBL Hl 166 CF 87
12 SF 81l 51ltLBL 13 89 GTO 117 126 STO 89 167 RTN
13 GETKE\' 51tLBL 14 127 RDN
14 CF Illl 52tLBL 15 98tLBL 44 128 XOF 168tLBL 32
15 X=!l? 53 lit 91 liCL 98 129 RDH 169 XOY
16 GTO 85 54 1 92/ 178 GTO 87
17 liBN 55 - 93 IHT 131ltLBL 07
18 SF 25 56 GTO 10 94 I 131 CF 07 171tLBL 51

19 XEQ IHD T 95 CHS 132 CLA 172 CHS
28 lit 57tLBL 21 96 AROT 133 EHTERt
21 GTO 85 58 15 97 RDN 173tLBL 61

98 ATOX 134tLBL 88 174 XO'T
22tLBL 82 S9tLBL Hi 99 liBH 135 EHTERt 175 ST+ Y
23 8 60 55 180 RTN 136 XO 88 176 XOY
24 GTO 18 137 STi 88 177 ABS

61tLBL 06 181tLBL III 138 "OD 178 GTO 07
2StLBL 72 62 FS?C 85 182tLBL 84 139 9
26tLBL 73 63 GTO 18 183 8 148 ST- i' 179tLBL 81
27tLBL 74 64 XOY 184 XOF 141 RDH 188 1IX
28 lit 65 + 185 liBH 142 7
29 11 66 FS? 87 186 CF 25 143 XOY 181tLBL 71
38 - 67 GTO 89 187 CLD 144 X)8? 182 XOY
31 GTO Hi 68 8 188 STOP 145 ST+ Y 183 ST* Y

69 X()Y 189 RTH 146 X(=8? 184 XOY
32tLBL 62 78 CLA 147 XOY 185 IHT
33tLBL 63 71 SF 87 118tLBL 22 148 liDN 186 GTO 87
34tLBL 64 1112 149 57
35 lit ntLBL 89 112 16 158 ST+ Y 187tLBL 33
36 58 73 XTOA 113 GTO 18 151 liDN 188 SF 86
37 - 74 XO L 152 XTOA
38 GTO 18 75 XO 88 114tLBL 23 153 XO L 189tLBL 34

76 SH Y 115 4 154 XO 88 198 SF 85
39tLBL 52 77 XO 88 116 18 155 1 191 END

297 BYTES

-164-

\..-..

Press the X<>Y key (row 3, column 2, not row 2, column 1)

and you will see that the number C2 16 = 194 was duplicated

into the Y register when the 7 was added. This automatic

duplication is similar to the way the T register duplicates

itself when an operation like addition is performed normally.

The ENTERT key also works as expected, duplicating X into

Y and terminating digit entry.

The "HP-16" program allows you to store and recall num­

bers from data registers 01 to 15. You simply press the STO

or RCL key, wait for the flag 0 annunciator to reappear, and

press a key from 1 to 9 or A to F to designate the register.

Do not store anything in register 0, because that register is

'- reserved for holding the number base. The availability of STO

and RCL operations alleviates the limitations of a two-level

stack. The RCL operation does raise the stack, so you do not

need to ENTERT before doing a RCL.

When you are done using the program, just press the RIS

key or the ON key to quit and clear the flags. The X and Y

register contents will still be in X and Y as decimal numbers,

regardless of what mode you were in when you pressed Ris.

The "HP-16" program is an example of how completely you

can change the personality of your HP-41 with just the GETKEY

function and a program of moderate size. If you have an ap-

'\".... plication that needs this degree of user convenience, GETKEY

may be just what you need.

Line-by-line analysis of "HP-16"

The "HP-16" program is composed of many small pieces,

each of which obeys a few basic rules. First, the number base

is held in data register 00. The steps 16, STO 00 at the top

of the program have the effect of setting hexadecimal (base

16) mode. The program's "X" and "Y" register contents are

held in the stack, in X and Y both before and after the XEQ

IND T instruction (line 16). Numbers in the stack are always

-165-

in decimal. The displayed number is actually a string in the

ALPHA register. If the number being displayed changes other

than by addition or removal of a digit, the LBL 07 subroutine

is called to reconstruct the ALPHA representation from the

decimal number in X. LBL 10 is used repeatedly for short

forward (downward) jumps. A label number can only be re-used

this way if none of the jumps cross each other.

The LBL 05 loop is the main loop of this program. It

uses GETKEY to read the keyboard, then it sets flag 0 and

executes the proper subroutine for the key that was pressed.

Flag 0 is then cleared, the new contents of ALPHA are dis­

played, and another GET KEY is attempted. Flag 25 is set to

avoid error stops when an invalid key is pressed accidentally.

Incidentally, clearing flag 21 at line 08 prevents the pres­

ence of a turned-off printer from halting the program at the

AVIEW instruction.

instruction.

If you want printout, delete the CF 21

Digit entries are handled by placing the decimal value in

Y, and the ASCII offset from that value in X. For example,

when you press "c" (key 13), the value 12 is placed in Y, and

55 in X. For the letters A through F, the ASCII code is 55

plus the arithmetic value of 10 to 15. The LBL 06 sequence

appends the correct ASCI I character to ALPHA. Flag 07 indi-

cates that a digit entry is in progress. If a digit is

pressed when a digit entry was not already in progress, the

stack will be raised. This is accomplished by the sequence 0,

X<>Y, CLA. This sequence is bypassed by the GTO 09 instruc­

tion if a digit entry was in progress. The LBL 09 sequence

then updates the decimal number in X by multiplying by the

base (lines 75 and 76) and adding the value of the new digit

(lines 77 and 78).

If the digit is pressed as part of a STO or RCL, flag 5

will be set and the LBL 10 section at line 80 performs the

necessary operation (STO if flag 6 is set, RCL if flag 6 is

clear). For RCL operations, the LBL 07 sequence is used to

-166-

reconstruct an ALPHA string corresponding to the new X regis­

ter.

The LBL 44 routine simply divides the current X register

contents by the number base, effectively performing a single­

digit shift, then it removes the rightmost character from

ALPHA.

The termination sequence (LBL 01 or LBL 84) uses X<>F to

clear flags 0 to 7, then it clears the previously AVIEWed

display before stopping. You can restart by pressing R/S

again, but the number base will not show in the flag annuncia-

\..... tors unti 1 you press a number base mode key.

The mode selection labels, 22 through 25, put a number in

"- Y corresponding to the flag to be set, and a number in X

corresponding to the new base. The base is then stored in

register 00, and the X<>F function is used to set the proper

flag and clear any others.

Once the base has been changed, the ALPHA register needs

to be updated to agree. The LBL 07 sequence does this. After

ALPHA is cleared, the digits are computed and placed in ALPHA,

working from right to left. The ENTERT immediately preceding

LBL 08 serves to keep a copy of the number being encoded.

This is necessary because the ALPHA encoding destroys the

number in X.

Near the top of the LBL 08 loop, the MOD function gives

the arithmetic value of the current digit. The next 13 lines

convert this arithmetic value to an ASCII equivalent, then an

XTOA function creates the character. The AROT function ro­

tates the new character to the front of the string. The

current decimal value is divided by the base (this was the

reason for the earlier ST/ 00 instruction), and the integer

part is taken. This procedure effects the arithmetic equi­

valent of a one-digit shift. If the result is still not zero,

more digits remain to be decoded, and the LBL 08 sequence is

"- performed again.

-167-

The ENTERl sequence, LBL 41, simply pushes a zero onto

the stack and clears the ALPHA register in preparation for

digit entry. The X<>Y sequence, LBL 32, interchanges X and Y

and goes to the LBL 07 sequence to reconstruct ALPHA. The-,

+, I, and * sequences also branch to LBL 07 for ALPHA recon­

struction. The two X<>Y instructions and the ST+Y or ST*Y

allow the previous value of Y to remain unchanged in Y. Since

the LBL 07 routine cannot handle negative numbers or noninteg­

ral numbers, INT is used after division and ABS after subtrac­

tion.

The STO and RCL sequences both set flag 5. That flag is

used to indicate that the next digit entry is really a regis­

ter number. Flag 6 is used to determine whether a STO or RCL

is to be performed.

I hope this example convinces you of the tremendous power

of GETKEY. Your applications may be simpler or more complex,

but the same principles apply.

-168-

CHAPTER TEN

SYNTHETIC PROGRAMMING

113A. What is Synthetic Programming?

Synthetic instructions are those which cannot be entered

from the keyboard by normal means. The creation and use of

synthetic instru~tions is called synthetic programming. Thou­

sands of synthetic instructions can be created, ranging from

non-standard TONEs to powerful instructions that access system

scratch registers. Synthetic programming will not harm your

HP-41 in any way, although "crashes" (temporary keyboard lock-

\...- up and/or MEMORY LOST) can occur if you are experimenting in

unfamiliar territory. Refer to section K of this chapter for

tips on how to recognize and recover from a "crash" condition.

Synthetic programming will work on all calculators in the

HP-41 family, regardless of date of manufacture. It depends

only on fundament,al aspects of the calculator's internal oper­

ating system that are common to all HP-41's.

The programs presented in this chapter use synthetic

techniques to get into areas of memory that are not normally

accessible. These include the registers that hold key assign­

ment information and header registers in extended memory.

Since some of the instructions are not directly keyable,

barcode is provided in Appendix D. I f you do not have access

to a wand, SYNTHETIX can provide you with magnetic cards for

any or all of the programs in this book. The charge is $4.130

(USA) or $5.013 (elsewhere), plus $1.013 per magnetic card. To

find out how many magnetic cards will be needed for each

program you want, divide its byte count by 224 and round any

fractional part up to the next integer. Mail your order to

SYNTHETIX at the address on the top of the next page.

-169-

SYNTHETIX

P.O. Box 113

Manhattan Beach

CA 90266 USA

Checks must be payable through a US bank. Cash is also ac­

ceptable if you find it more convenient, but you should wrap

it well.

Another alternative is to learn enough about synthetic

programming so that you can key these programs in yourself.

The easiest way to get started with synthetic programming is

to buy a copy of the book "HP-41 Synthetic Programming Made

Easy". If your dealer does not sell this book, it is availa­

ble by mail from SYNTHETIX at the above address. See Appendix

C for price information.

If you like to program your HP-41, you really should

learn about synthetic programming. It is almost like finding

a brand-new machine, hidden inside your familiar HP-41.

I hope you enjoy the programs presented in this chapter.

If you are an experienced synthetic programmer, you will

appreciate their power and versatility. If you are a novice,

they offer a glimpse of the capabilities of synthetic program­

ming.

10B. Single-key execution of extended functions

The program presented in this section allows you to

execute any function from the set of extended functions,

simply by specifying a numeric code for the function. This

program was written by Clifford Stern, a "grand master" of

synthetic programming. Clifford specializes in keystroke­

efficient utility routines and intricate synthetic programs.

-170-

-'

It is a simple matter to use the built-in ASN function to

assign several of the commonly used extended functions to

keys. You have probably already assigned EMDIR, the extended

memory directory function, to a convenient USER mode key.

Perhaps you have also assigned SAVEP and GETP. Or, if you

have used data files, you may have assigned RCLPT, SEEKPT,

SAVERX, and GETRX to keys. These key assignments are handy,

but they can quickly use up a significant portion of your USER

mode keyboard.

How would you like to be able to assign all the extended

functions to a single key? Impossible? Not with synthetic

programming! All you need is a copy of the "XF" (e!tended

\.....- ~unctions) program.

To execute any extended function, just put the numeric

~ code of the function in x, and execute "XF". The numeric

codes are listed in front of each function name in the table

on the next page. A short digression should make the numeric

code equivalence mOre clear.

If you key in program lines using extended functions

while the Extended Functions module is connected, the display

XEQTfunction name

~ will change to

XROMTfunction name

If you later remove the XFunctions module, the program lines

will be displayed and printed as

XROM 25,xx

The designation XROM indicates that the function resides in an

e!ternal ~ead-Qnly ~emory. The number 25 identifies the Ex-

'- tended Functions module. The two-digit number xx identifies

the specific function within the module. This is the same

two-digit function code that the "XF" program uses.

Incidentally, as the table on the next page shows, "XF"

also allows you to execute Time module (XROM 26) and optical

wand (XROM 27) functions. Inputs 49-62 and 95-99 are only

valid for the HP-41CX.

-171-

Numeric function codes for "XF- -/

(XROM numbers are also included for reference)

-EXT FeN 2C -X EXT FCN -X mE
1 lUNG 25,81 49 ASROOI1 25,49 95 CUlLI1A 26,31
2 ANUM 25,82 58 CLRGX 25,58 96 CUlLIIX 26,32
7 APPCHR 25,83 51 EB 26,33 ." 25,51 97 CLRALIIS
4 APPREC 25,84 52 EIIDIRX 25,52 98 RCUiLI1 26,34
5 ARCLREC 25,85 53 EIIROOI1 25,53 99 SWPT 26,35
6 AROT 25,86 54 GETKEYX 25,54
7 ATOX 25,87 55 RESZFl 25,55
8 CLFL 25,88 56 ~REG? 25,56
9 CLKEVS 25,89 57 X=NN? 25,57

18 CRFLAS 25,18 58 XltNN? 25,58
11 CRFLB 25,11 59 X(NN? 25,59 - WAND IF -

12 BElCHR 25,12 68 X(=HN? 25,68 129 WNDBTA 27,91
13 BElREC 25,13 61 X}NN? 25,61 139 WNDDTX 27,82
14 EIIDIR 25,14 62 X}=NN? 25,62 131 WNBLNK 27,93
IS FLSIZE 25, IS 132 WNBSUB 27,94
16 GETiiS 25,16 133 WNBSCN 27,85
17 GETKEY 2S,17 134 TIINDTST 27,86
18 GETP 25,18 -TIllE 2B
19 GETR 25,19 65 ABATE 26,81
28 GETREC 2S,28 66 ALIICAT 26,82
21 GETRX 25,21 67 ALliN OW 26,83
22 GET SUB 25,22 68 ATIIIE 26,84
23 Gm: 25,23 69 AmE24 26,85
24 INSCHR 25,24 78 ClK12 26,86
25 INSREC 25,25 71 CLK24 26,87
26 PASN 2S,26 72 CLKT 26,88
27 PCLPS 25,27 73 CLKTB 26,89
28 POSA 25,28 74 CLOCK 26, III
29 POSFL 25,29 75 CORRECT 26,11
38 PSIZE 2S,38 76 BATE 26,12
31 PURFL 2S,31 77 BATEt 26,13
32 RCLFLAG 2S,32 78 DBAYS 26,14
33 RCLPT 25,33 79 DIIV 26,15
34 RClPTA 25,34 89 DOW 26,16
35 REGIIOYE 25,35 81 MBV 26,17
36 REGSIIAP 25,36 82 RClAF 26,18
37 SAYEAS 25,37 83 RClSII 26,19
38 SAYEP 2S,38 84 RUNSW 26,21l
39 SAYER 2S,39 8S SETAF 26,21
49 SAYERX 2S,48 86 SETBATE 26,22
41 SAYEX 2S,41 87 SETIIIE 26,23
42 SEEKPT 2S,42 88 SETSW 26,24
43 SEEK PTA 25,43 89 STOPSW 26,25
44 SIZE? 25,44 98 SII 26,26
45 STOFLAG 25,45 91 T+X 26,27
46 XOF 25,46 92 TII1E 26,28
47 XTOA 25,47 93 XVZALII 26,29

-172-

-"

·X!'" program listing

01+LBL 'XF" 10 RDN 19 XO a 28 STO (.
02 XOY II XWA 20 RCL [29 ;':0 L
83 SIGN 12 RDIl 21 STO lim \ 38 SAYEP
04 XO \ 13 581 22 ;':0 1 31 CLD
05 STU a 14 SiZE'j 23 Wi 32 EHD
86 RDIl 15 ST- Y 24 XO [
07 64 16 RDH 25 RDH 74 BYTES
08 ST+ 'i 17 XO \ 26 XO \

89 "i-,,·i+,s+j .. t IS XO (. 27 XO a

Barcode for "XF" can be found in Appendix D.

Synthetic lines and their decimal byte equivalents:

'- line 04 206, 118 ; line 05 = 145, 123

line 09 = 254, 127, 0, Icl, 1, 105, Icl, 18, Icl, 123, 145, 125,

'-- 206,116,166

line 17 21cl6, 118 ; line 18 = 206, 125 ; line 19 21cl6, 123

line 21cl 144, 117 ; line 21 = 145, 246 ; line 22 21cl6, 119

line 24 2106, 117 line 26 = 21cl6, 118 ; line 27 206, 123

line 28 145, 125

(Use this information if you are keying in the program using a

byte-loader, byte-grabber, or any other synthetic technique.)

Setting ~ "XF":

The "XF" program must be the first program in Catalog !.
This means that you must clear all other programs from main

memory before loading in "XF". You can use SAVEP to copy some

of the programs into extended memory, or you can use magnetic

card or tape storage. To clear out program memory, just load

the ALPHA register with the name of the first program in main

memory (Catalog 1) and execute PCLPS.

Next load the "XF" program into your calculator using the

barcode, magnetic cards, or using synthetic programming tech­

niques described in Chapter 3 of "HP-41 Synthetic programming

Made Easy".

-173-

If you have an HP-41C, you may need to change line 13.

This number, normally 501, should be 263+64n, where n is the

number of single-density memory modules plugged in. This

refers to main memory modules, not extended memory modules.

For example, if you are using two single-density memory mod­

ules, line 13 should be 373. If you have a quad memory mod­

ule, which is the equivalent of 4 single-density modules, the

number 501 is correct. WARNING: Failure to put the right

number in line 13 can result in MEMORY LOST. If you unplug a

main memory module without changing this number, you are just

one keystroke away from disaster. Of course it is OK to

unplug extended memory modules.

For maximum convenience, assign "XF" to your favorite

key. To do this, press

shift ASN ALPHA X F ALPHA

followed by the key (or "shift" followed by the key for a

shifted location) to which you want "XF" assigned. You should

probably avoid assigning "XF" (or any other function) to a

digit entry key or to the XEQ key. If you have the SIZE

function assigned to a key, you can use that key for "XF".

With "XF", you can conveniently resize by keying in the de­

sired size, ENTER1, 30 (the numeric code for PSIZE), and

executing "XF".

"XF" is a self-modifying program which works by con­

structing and storing a short instruction sequence containing

the requested extended function (line 30) in t~e first program

in memory. The first program will be changed, regardless of

whether it is "XF" or not. If "XF" is the first program, as

it should be, the stored sequence of instruction will fit

right in, so only the extended function (line 30) will change.

Line 31, CLD, can be deleted if you have an HP-41CX. Its

purpose is to clear the display after EMDIR.

-174-

WARNING: Do not change the "XF" program unless you make sure

that you keep the same number of bytes between the top of the

program and line 30. If you change this byte count, the

stored instruction sequence will end up in the wrong place.

"XF" is an example of the power of synthetic programming.

Self-modifying programs are usually rather complicated, but

this shows how a simple one can do a job that cannot be

reasonably done without synthetic programming.

\....- Example 1. for "XF":

The most frequently used extended memory function is

probably the extended memory directory function, EMDIR. The

table of "XF" inputs shows that the corresponding numeric code

is 14. So if you press

14

XEQ "XF" (just press the assigned key)

~ the extended memory directory will be displayed.

'-- Instructions for using "XF"

\..

1. Make sure that "XF" is the first program in main memory

by executing Catalog 1. The first thing you should see

is LBLTXF. You do not need to check Catalog 1 every

time, but you should be c~rtain that "XF" is at the top

of it.

2. Load the X, Y, Z, and ALPHA registers with whatever

contents they will need at the time the function is

executed. The string in ALPHA is limited to 14 charac­

ters. If more characters are put in ALPHA, only the

rightmost 14 will be used and the rest of the characters

will be lost.

3. Press ENTERT and put the numeric code of the function in

X. The numbers that were in X, Y, and Z are now in Y, Z,

and T. Do not use code zero. Code zero has no effect on - -- -- --- ---
the HP-41CX, but on the HP-41C or CV it will destroy all

-175-

global label assignments, leaving only "phantom" assign­

ments that act like the ABS function.

4. Press the assigned key to execute "XF". The designated

function will be executed. "XF" actually builds a se­

quence of bytes in the ALPHA register, transfers the

sequence into lines 27-30 and then executes the sequence.

If you interrupt "XF" and do not restart it immediately,

you run a risk of MEMORY LOST. Some safeguar-ds have been

provided, but if you stop between lines 18 and 28 and you

do not allow "XF" to finish normally, MEMORY LOST can

eventually result.

5. When the function is complete, the "flying goose" will

disappear. If an error occurs, you will see the corres­

ponding error message. For example if you use "XF" to

execute GETX (function number 23) when the working file

is not a data file, you will get the message FL TYPE ERR.

6. By checking line 30 of "XF" (GTO."XF" and GTO .030), you

can find out what extended function was last executed

using "XF". This can be quite helpful.

The "XF" program eliminates the need for key assignments of

extended functions to the extent that you use these functions

in RUN (non-PRGM) mode. If you are keying in a long program

that uses extended functions, you may still want to temporar­

ily assign a few of the more frequently encountered functions

to your USER mode keys.

Two cautions apply to "XF". First, do not use "XF" to

execute PCLPS (function number 27) with the ALPHA register

empty. This will clear all main memory programs, including

"XF" itself. Unless this is the result you want, you should

name a program before executing PCLPS. For example, if you

want to clear all programs except "XF", put the name of the

second Catalog 1 program in ALPHA, put 27 in x, and execute

"XF".

-176-

0,,--

The second caution is not to call "XF" from a second-

level or deeper subroutine. That is, "XF" must not be called

when two or more RTNs are already pending. The "XF" program

clears operating system register a, which holds the informa­

tion used for third- through sixth-level RTNs.

An alternative version of "XF", also written by Clifford

Stern, saves a couple of keystrokes over "XF". This version,

called "EFTW" (extended functions / time module / wand) pauses

in ALPHA mode for an entry of up to 7 characters. The opera­

ting instructions are otherwise the same as for "XF". Line 14

\...- must be 246+64n, where n is the number of single-density

memory modules present. Additionally, XYZALM (function number

93) cannot be used where a nonzero Z input is needed, because

the Z register is changed to zero by the time XYZALM is exe­

cuted.

·EFTW· program listing

il1+lBl "EFTIo!" 89 64 17 XO \ 25 STO (;
il2 RCl[19 + 18 XO (; 26 RDH
il3 WI 11 "I-tt·j+o+uu+u 19 RCl [27 SIIYEP
il4 STO [12 XTOII 2il STO IHD \ 28 ClD
85 1I0H 13 ClX 21 XO J 29 EHD
il6 PSE 14 5il2 22 Cll!
il7 AOFF 15 SIZE? 23 XO [67 BYTES
88 ClX 16 - 24 RDH

Barcode for "EFTW" can be found in Appendix D.

Synthetic lines and their decimal byte equivalents:

line 02 = 144, 117 line 04 = 145, 117

line 11 = 254, 127, 0, 0, 1, 105, 0, 18, 0, 117, 117, 145,

125,117, 166

line 17 206, 118 line 18 = 206, 125 line 19 144, 117

line 20 145, 246 line 21 206, 119 line 23 206, 117

line 25 145, 125

-177-

10C. The internal structure of extended memory

This section outlines the general arrangement of files in

extended memory, showing what areas are affected by the card

reader's VER and 7CLREG functions. Then, for advanced syn­

thetic programmers, the details of file header structure and

ways to avoid data normalization (see page 25 of "HP-41 Syn­

thetic Programming Made Easy") are covered.

Extended memory is made up of one, two, or three blocks

of registers, depending on whether zero, one, or two extended

memory modules are plugged in. The Extended Functions/Memory

module contains 128 registers, while each Extended Memory

module contains 239 registers. The advertised sizes of these

modules are 127 and 238, respectively, because the last regis­

ter in each module is reserved. This last register contains a

pointer to the beginning of the next module and another point­

er to the end of the previous module. These pointers are

needed for proper file linkage because the order in which

extended memory modules are used can vary if the two modules

are not installed at the same time.

Figure 10.1 on the next page shows the organization of

extended memory in more detail, with absolute register ad­

dresses given for those adventurous enough to poke around.

within the unreserved areas of extended memory, files are

stored in the same order in which they appear in the extended

memory directory. Each file has two header registers, as

shown in Figure 2.1. A special partition code (hexadecimal

FF,FF,FF,FF,FF,FF,FF for synthetic programmers) is stored just

below the last register of the last file. This code separates

used from unused portions of extended memory. It tells the

calculator that the rest of extended memory is available for

new files.

When you start with an empty extended memory directory,

the partition code is at the top of the extended functions/­

memory module. The first file you create will occupy the top-

-178-

most registers of the Extended Functions/Memory module, and

will move the partition code down. As you create files, new

files will always be added just below the last file, and the

partition code will be moved down.

Eventually you will use up all 127 available registers in

the first block of extended memory. When this happens, the

file will spillover into an Extended Memory module. Usually

the Extended Memory module in port 1 or 3 will be used before

the module in port 2 or 4. The only exceptions are:

1) if there is no Extended Memory module in port 1 or 3,

or

2) if the module in port 2 or 4 was partially filled

before the other module was installed.

After MEMORY L08T, the natural order of use (port 1 or 3

first) will be restored.

Detailed structure of header and pointer registers:

Each file header consists of two registers at the top of

the file. The first of these registers contains the file

name, up to 7 characters. If the file name is fewer than 7

characters, spaces (hexadecimal 20) are added on the right to

fill the 7 bytes of the register.

The second file header register contains several pieces

of information about the file. The structure will be de­

scribed here in terms of nibbles, which are hexadecimal dig­

its. Two nibbles make one byte; seven bytes make one regis­

ter. The leftmost nibble of the second file header register

indicates the file type. This nibble is 1 for program files,

2 for data files, and 3 for A8CII files.

For program files, the 14 nibbles of this register are:

10,00,00,00,BB,B8,88 ,

where BBB is number of bytes in the saved program (including

the END) and 888 is the FL8IZE, in registers. Both of these

numbers are in hexadecimal, not decimal. A program in an

extended memory file has the same form as a program in main

-180-

'-..

memory, including the END. The END is followed by a single

checksum byte that contains the modulo 256 sum of all the

bytes in the program. This represents a single byte of "over­

head" in addition to the two program file header registers.

Thus if a program's byte count is 49 bytes (7 registers), an

8-register file will be created by SAVEP because a 50th check-

'- sum byte must be included.

For data files, the second header register is:

2A,AA,00,00,RR,RS,SS ,

where AAA is the absolute address of this second header regis­

ter, RRR is the register pointer, and SSS is the file size.

Registers are numbered 0, 1, 2, etc., starting with the regis­

ter immediately below the second header register.

For ASCII files, the second header register is

3A,AA,00,CC,RR,RS,SS ,

'- where CC is the character pointer, RRR is the record pointer,

and AAA and SSS are the same as for data files.

'-

The pointer registers at the bottom of each block of

extended memory contain these 14 nibbles:

00,0W,WP,PP,NN,NT,TT ,

where WW is the number of the working file (01 and up), PPP is

the absolute address of the bottom register of the previous

block of extended memory, NNN is the address of the top regis­

ter of the next block, and TTT is the address of the top

register of this block. The WW field is used only in the

Extended Functions/Memory module. The PPP field is not used

in the Extended Functions/Memory module, but in the HP-41CX it

indicates the previous working file. The NNN field is not

used in the second Extended Memory module. All these pointer

registers are initialized when a file is created that occupies

part of the module in question. If an extended memory-related

function has been used, but no files have been created yet,

the TTT field will contain the address of the pointer register

itself.

-181-

The nibbles of the header or pointer registers that are

unused do not have to be zero. For example, it is often

convenient for a synthetic program to change the first nibble

of a pointer register to 1, so that the register can be re­

called as ALPHA data.

This brings up the subject of normalization. If a num­

bered register contains a bit pattern that does not represent

a number and which the HP-41 does not recognize as ALPHA data,

the register contents may be altered when the register is

recalled. This point is discussed further on page 25 of "HP-

41 Synthetic Programming Made Easy". Operations that normal­

ize the contents of a numbered register include RCL, ARCL,

X<>, VIEW, and any INDirect operation.

Among the extended functions, several of the SAVE and GET

operations can transfer data without normalization. This

makes possible many advanced synthetic programming applica­

tions, including some of the programs in this chapter. GETX,

SAVEX, GETR, SAVER, and GETRX do not normalize data at all.

The SAVERX and REGSWAP functions normalize both upper and

lower extremes of the data register block used. The REG MOVE

operation normalizes only the topmost data register used.

When a file is purged from extended memory, all files

below that file in extended memory are moved up to fill the

space left by the purged file. If the file was the last one

in extended memory, no files are moved. The partition code is

then stored just below the last remaining file. The registers

beyond this point are not cleared. They retain the same

contents they had before PURFL was executed, but they are no

longer accessible except through synthetic techniques.

All of these details are of interest primarily to ad­

vanced synthetic programmers, but they illustrate the number

and variety of pointers that the calculator must maintain to

keep things simple for the user of extended memory.

-182-

'-

10D. !i solution to the VERify "bug"

The program "VER" (verify) presented here takes the place

of the card reader's built-in VER function, while ensuring

that extended memory is not damaged. This is another master­

piece by Clifford Stern. Unless your card reader is very new

(revision IG or higher) or unless you do not have an Extended

Memory module in port 2 or port 4, you need this program. The

revision of your extended functions is irrelevant here.

Two versions of the "VER" program are provided in barcode

in Appendix D. Normally you should use the first version.

The second version is only to be used in two cases:

1) If you have a single Extended Memory module in port 2 or

4 with no Extended Memory module in port 1 or 3, or

2) If an Extended Memory module was plugged into port 1 or 3

after a module in port 2 or 4 was partially filled, and

MEMORY LOST has not occurred since then. If you plugged

in both modules at the same time, the first version is

the one to use.

If you have only the Extended Functions/Memory module (or an

HP-41CX) and no extended memory modules, or if you have only

one Extended Memory module which is plugged into port 1 or

port 3, you can use the card reader's built-in VER function.

If you plan to add more extended memory, though, you might

want to get into the habit of using the "VER" program.

WARNING: Before you use either version of "VER", make sure

that either:

1) There is at least one key assignment which is not a

global label assignment, or

2) There are no Time module alarms set and there is at least

one free program register. To check the number of free

program registers, press GTO .000 and look for the 00 REG

nn display in PRGM mode. The number nn is the number of

free program registers.

-183-

Neither of these conditions is difficult to ensure, and either

one will ensure that "VER" will work properly.

To use "VER", press

XEQ ALPHA V E R ALPHA

and the prompt

CARD

will appear. At the same time, you will see the ALPHA mode

annunciator. If the ALPHA annunciator is not on, the "VER"

program is not present and you have accidentally executed the

built-in VER function. In that case, do not insert any cards!

After you have verified the last card, press RIS or

backarrow to clear the display of the CARD prompt. You will

then see the message

PRESS RIS •

WARNING: Be sure to press R/§. to restart the "VER" program.

If you do not restart the program, the damage caused by VER

will not be repaired. Even worse, important system pointers

will be disrupted, probably causing keyboard lockup and MEMORY

LOST. This is a common feature of this type of synthetic

program. It is powerful and useful but quite unforgiving if

you do not use it properly.

Cautions:

1) If you do not take your finger off the RIS key quickly

enough, the calculator will pause several seconds or more

while it tries to compute a line number. During this

pause, the "PRESS RIS" message will remain in the dis­

play, and the PRGM annunciator will be off, just as if

nothing is happening. Do not be fooled, and do not press

RIS again. The program will restart itself. When the

program finishes you will probably see some starbursts

and other non-standard characters in the display.

2) "VER" cannot be called from a depth of more than one

subroutine level (that is, when more than one RTN is

pending) •

-184-

'--

'-.-

81tLBL "YER"
82 CF 25
83 RCLFUlG

05 XO \
86 EHTERt
87 XO t
OS RCL 84

89 "at, "

iii iiSTO 63

·VER" program listing

11 REG"OYE 21 STO liiD Z 31 iiOFF
12 "f-*" 22 DSE 18 32 XOY
13 191 23 STO IHn IB 33 SEEKPT
14 STO 18 24 R1- 34 RDN
15 Rt 25 RCL \. 35 SAVEX
16 STO 86 26 RCLPT 36 XOY
17 ""t"ii • 27 GETX 37 STO IND 18
18 XO] 23 'PRESS RIS' 38 LiiSTX

19 STO IND 'i 29 iiON 39 X=Y-J
28 XO [38 VER 48 STO 63

Barcode for "VER" is given in Appendix D.

Synthetic lines and their decimal equivalents

line 134 252, 1, 1135, 13 , 19, 2413, 1, 137, 13,

line 135 2136, 118 ; line 137 = 2136, 125

line 139 245, 16, 13, 46, 2413, 191

line 17 247, 127, 0, 0, 0, 22, 191, 255

line 18 2136, 119 ; line 213 2136, 117

line 25 144, 118 ; line 313 167, 133 (not

Version 2 differences:

line 139

1 ine 17

245, 16, 0, 62, 240, 191

247, 127, 13, 13, 13, 7, 223, 255

41 DSE 18
42 STO IND 10

43 Rt
44 STO 12
45 EHD

112 BYTES

(version 1) :

48, 3, 13, 2

synthetic)

The concept used in the "VER" program is simple. The

~ goal of the program is to recall location 113137 (see the ex­

tended memory map on page 179), execute the card reader's VER

function, then restore location 113137. Lines 02 and 03 force

an error stop if extended functions are not present. You may

delete these lines if you will be using "VER" with an HP-41CX.

So that GETX can be used to recall location 113137, "VER"

temporarily alters the second header register of the top file

to simulate a 4095-register data file. This powerful tech­

nique, invented by Clifford Stern, allows all of extended

memory to be accessed, without normalization, by SAVEX and

-185-

GETX. The REGMOVE function (line 11) saves the two header

registers of the original top file so that they can be re­

stored before the program finishes.

Contrary to appearances, registers 04, 06, 10, and 63 are

not affected by "VER". Due to the program's manipulation of

the operating system's pointer to register 01, the instruc­

tions like DSE 10 and STO 06 actually access internal oper­

ating system registers. The ASTO 63 function alters the

bottom pointer register of the Extended Functions/Memory mod­

ule in order to set the working file pointer to 01.

-186-

l0E. A solution to the PURFL bug

"-- The "PFF" (purge file fix) program presented here is

provided especially for owners of revision lB Extended Func-

tions/Memory modules. It allows you to recover from an inad­

vertent use of a working file function when no working file

exists. This situation can occur after a PURFL is executed,

as explained on page 19. What actually occurs is that the top

register of extended memory is overwritten by the partition

code, which was mentioned in Section C of this chapter. This

erroneous partition code tells the HP-4l that extended memory

is empty.

The solution is simple. The "PFF" program just replaces

the file name that belongs in the top register of extended

memory, location 191 (decimal) on Figure 10.1 (page 179).

Since no other extended memory registers are disturbed by the

'-- "bug", no further action is needed to restore the extended

memory directory.

The "PFF" program that achieves this result was written

by Clifford Stern. It uses synthetic techniques, since the

affected register is not a normally accessible data register.

Because the PURFL bug is present only in the revision lB

Extended Functions/Memory module, owners of revision IC or the

HP-41CX can skip this section.

Instructions for "PFF": -- ---
1. First verify that your extended memory directory is in­

deed empty. If you did not empty it intentionally, and

MEMORY LOST has not occurred, then you know that the top

register of extended memory has been changed. The "PFF"

program will then repair the damage, provided that you

have not created any new files in extended memory. Once

you create a new file, old files are overwritten and the

damage cannot be fixed.

2. Put the name of the first extended memory file, up to

seven characters, in the ALPHA register.

-187-

Note: If you do not remember the name, any string will

do. For example, you could name it "TOP"~ Then, after

"PFF" re-establishes your extended memory directory, you

can GET the "TOP" file, check its contents to establish

its identity, then use "PFF" again to give it the correct

name.

3. Execute "PFF". The program finishes with an EMDIR in­

struction, both to establish a working file and to show

you exactly what extended memory files were recovered. -~

You may interrupt the extended memory directory if you

like.

WARNING: "PFF" may be single-stepped, but never abandon "PFF"

between lines 08 and 12, or MEMORY LOST will probably ensue.

Under normal operation, "PFF" should be trouble-free.

·PFF" program listing

91.lBL -PFF"
92 "f-

93 7
94 HROT
95 RCL c
96 RCL [

97 -·ill.·
98 IlSTO G
89 STO 99
lil XOY
11 STO c
12 CLST
13 EI1DIR
14 CLD
15 END

41 BYTES

Line 02 is

"Append 6 spaces"

Barcode for "PFF"

can be found

in Appendix D.

Synthetic lines and their decimal byte equivalents:

line 05 144, 125 ; line 06 = 144, 117

line 07 245, 1, 105, 11, 242, 0

line 08 154, 125 ; line 11 = 145, 125

-188-

l0F. Executing ~ program within extended memory

If a program file is contained entirely within the 127

registers of the Extended Functions/Memory module, it is pos­

sible to execute that program without doing a GETP first.

Naturally, synthetic programming techniques are needed, but

nothing too fancy. All that needs to be done is to alter the

program pointer, two bytes of an internal register that desig­

nate what part of memory is displayed when you switch into

PRGM mode.

WARNING: Before you try to execute a program in extended

memory, make sure all its GTO's and XEQ's are compiled. That

~ is, make sure that each and every GTO or XEQ instruction in

the program has been executed at least once since the program

was last edited or PACKed. This applies to local GTO and XEQ

instructions (those that refer to labels 00-99, A-J, or a-e).

If you fail to do this, executing the program in extended

memory may invalidate the checksum, causing GETP to give a

CHKSUM ERR message.

Note: If you do not care about the fact that GETP may not work

on a program file that has been executed in extended memory,

you may ignore this warning. In particular, if you plan to

execute the program only in extended memory, the loss of GETP

is not important. Moreover, the program "RPF" (Retrieve Pro­

gram File) presented in section 101 can be used in place of

GETP in case of checksum error.

If you will be needing to GET the program frequently or

under program control, it will prove much more convenient just

to make sure the GTO's and XEQ'S are compiled before you save

the program. A digression on the subject of compiled branch

information should make things more clear.

The first execution of a local GTO or XEQ instruction

causes the branch direction and distance to be stored within

'- the GTO ~ XEQ instruction. The calculator thus remembers the

location of the label the next time the GTO or XEQ is encoun-

-189-

teredo It is this storage of distance information within the

instructions that invalidates the program file checksum. If

the GTO's and XEQ's are already compiled before the program is

saved, the checksum cannot be altered by execution of the

program in extended memory. Indirect and global (Catalog 1)

ALPHA GTO and XEQ instructions do not compile, so no special

care is needed for them.

All compiled jump distance information is lost whenever

you edit the program (make an insertion or deletion). It is

also destroyed by PACKing, unless the program was already

packed. Therefore, the following procedure is recommended to

ensure that all GTO's and XEQ's are compiled before you save a

program that you intend to execute in extended memory:

1. You need to have the program in main memory. If it is

already saved in extended memory, you can just do a GETP.

2. Next compile all GTO's and XEQ's:

GTO.. (use PACK if the program already has its own END)

For each line that contains a local GTO or XEQ:

GTO.nnn (go to the line containing the GTO or XEQ)

SST in RUN (non-PRGM) mode to execute the instruction:

Press and hold the SST key until the instruction ap­

pears in the display. Then release the SST key.

When the instruction disappears, it has been executed.

Repeat until you have SST'ed all local GTO's and XEQ's.

3. Now you can execute SAVEP with the program name in the

ALPHA register to save the program.

The "EXM" (Execute eXtended Memory) program uses one

synthetic instruction, an ASTO b. This instruction is used

here to transfer a character from the ALPHA register into the

rightmost two bytes of operating system register b, the loca­

tion of the program pointer.

-190-

"EXM" Example: Suppose your first file in extended memory is

the "JNX" program. You can use "EXM" to execute "JNX" without

bringing it into main memory. Just load the Y and X registers

with the two inputs needed (n and x), and press

XEQ ALPHA E X M ALPHA •

The result will appear in X when "JNX" is complete. The

program pointer will remain in the "JNX" program unless you

execute Catalog 1 or unless you GTO or XEQ a Catalog 1 label.

As it is listed here, "EXM" only allows the first file in

extended memory to be executed. If, however, you know the

absolute address of the second header register of the program

'- file you want to execute, you can use that number in place of

the number 190 (line 02) to execute a different program. But,

to repeat, the program file must reside completely within the

Extended Functions/Memory module. It must not spillover into

an Extended Memory module.

nEXK· program listing

81*LBL "EXM"
82 19i1
83 CUi
84 XTOfl
85 RDH
86 tlSTO b
87 END

19 BYTES

Instructions for "EXM":

Barcode for the "EXM" program is

given in Appendix D.

The decimal byte equivalents for

line 06 are 154, 124.

1. Make sure that the program file you want to execute is

the first file in the extended memory directory. If it

is not, compute the location of the file's second header

register. This is 190 minus the number of registers used

by the preceding files. Remember that the number of

registers used by a file is 2 more than the number shown

-191-

in the extended memory directory. Replace line 02 of

the "EXM" program with this computed number.

2. Make sure that the program file you want to execute lies

entirely within the Extended Functions/Memory module.

Add up the number of registers used by all files up to

and including the file to be executed. Make sure to

include the two header registers for each file that are

not included in the extended memory directory display.

This total should not exceed 127 registers.

3. As discussed in the warning above, all the GTO's and

XEQ's in the saved program should be compiled if you

expect to be able to use GETP to retr i ve the program file

later. In emergencies, you can use the "RPF" (retrieve

program file) program presented in section 101.

4. Load the X, Y, and Z reg i s ter s with any i npu ts needed by

the function. The ALPHA register cannot be used for

input, because it is cleared by "EXM".

5. Execute "EXM". Line 06 of "EXM" causes an immediate jump

to the first line of the program immediately below the

absolute register location designated in line 02.

CAUTION: Do not use "EXM" to execute a program containing a

PSIZE instruction. Whenever PSIZE changes the SIZE, it re­

vises the program pointer to compensate for the fact that all

of the programs in main memory have been moved. Even though

PSIZE does not move your program in extended memory, PSIZE

will revise the program pointer as if the program had moved.

This causes an unwanted jump. The only case in which this

jump will not occur is when the PSIZE input happens to equal

the current SIZE, so that the SIZE is unchanged.

-192-

10G. Suspending and Reactivating USER mode key assignments

As part of its compatibility with HP-67/97 operation, the

HP-41 has 15 keys (top two rows unshifted plus top row shift­

~ ed) which, when pressed in USER mode, will find and execute

the corresponding local label (A-J and a-e). But this feature

~ conflicts with any global label assignments. How many times

have you wanted to use the automatic assignment of local

labels A-J and a-e, but found a function or global label

assignment in your way? You press LOG to execute LBL 0, but

instead you get another function that you assigned to that

~ key. Wouldn't it be nice if there were a way to eliminate the

conflicting key assignment, then bring it back later?

Once again, synthetic programming comes to the rescue. A

very short synthetic program called "SK" (Suspend Key assign­

ments), written by Tapani Tarvainen, temporarily de-activates

all USER mode function and global label key assignments. To

suspend these key assignments, press

XEQ ALPHA S K ALPHA

A program called "RK" (Reactivate Key assignments), also

written by Tapani Tarvainen, allows you to reactivate the

dormant key assignments. When you execute "RK", a GETP will

be performed on a special synthetic program file. This syn­

thetic file must first be created in extended memory by using

the "IN" (INitialize) program described on the next page.

Actually, you could reactivate the key assignments by retriev­

ing ~ program from extended memory using GETP. In the

process of retrieving the program, the calculator will reac­

tivate all dormant key assignments. This reactivation occurs

whenever a program is brought into main memory~ whether from

magnetic cards, barcode, tape, or extended memory. The advan­

tage of using "RK" is that the last program in Catalog 1 will

not be disturbed. Any other type of GETP operation will

~ overwrite the last Catalog 1 program (see page 16). Unless

that is what you want, you should use "RK" rather than GETP.

-193-

l0H. Saving key assignment status in extended memory

The HP82l04A magnetic card reader has a WSTS function

that allows you to record key assignment information on mag­

netic cards. This makes it easy to keep several sets of

function key assignments (global label assignments are not

recorded). You just set up and record each set of function

assignments, constructing a key assignment "library". Then

when you want to use a particular key assignment configura­

tion, you just read in the corresponding magnetic card.

Synthetic programming techniques let you use extended

memory just as you would use magnetic cards to store key

assignments. The programs "SAVEK" (SAVE Key assignments) and

"GETK" (GET Key assignments), were written by Tapani Tarvainen

and revised (LBL 04 section added) by Clifford Stern. These

programs save key assignment information in extended memory

and retrieve it on request. Unlike previous versions, they

are fully compatible with Time module alarms and other I/O

buffers. These programs also include "SK" (Suspend Key as­

signments) and "RK" (Reactivate Key assignments).

Caution: Before you use either "RK" or "GETK" for the first

time, you need to use an initialization program called "IN",

which is listed on page 198. Both the "RK" and "GETK" pro­

grams conclude with a GETP instruction, which has the effect

of reactivating any new or dormant key assignments. A unique

method, invented by Tapani Tarvainen, uses a synthetic program

file as the object of the GETP instruction. This procedure

eliminates the normal over-writing of the last program in main

memory when GETP is executed. The synthetic program file has

the name" " (a single space) and a length of zero bytes. The

"IN" program, an esoteric creation of Clifford Stern, auto­

mates the procedure of creating this synthetic program file in

extended memory.

-194-

Warning: Before you execute "IN", read the warning under

"VER" on page 183. Then, if one of the two conditions listed

there is satisfied, you can press

XEQ "IN"

to create the synthetic program file needed by "RK" and

"GETK". Once this is done, you do not need to use "IN" again

as long as the synthetic file remains in extended memory. To

make sure, run the extended memory directory. You should see

one entry that displays as " P00l" •

Instructions for "SAVEK" and "GETK"

1. There must be an END above LBLTSAVEK in Catalog 1. Fail­

ure to observe this constraint will result in an eventual

MEMORY LOST.

2. If you have not already done so, execute the "IN" program

as described in the last two paragraphs to set up the

synthetic zero-byte program file called" " in extended

memory.

3. To save the current set of function key assignments, put

a file name of up to 7 characters in the ALPHA register

and execute "SAVEK". If you get a NO ROOM error message

at line 43, there is not enough space left in extended

memory to hold the key assignment information. You have

the option of clearing extended memory space if you still

want to save the key assignments. After clearing the

space, start "SAVEK" from the beginning with the file

name in ALPHA. When "SAVEK" finishes, the number in X

indicates the size of the new key assignment data file.

4. To use "GETK", load the ALPHA register with the name of a

key assignment data file that you created with "SAVEK".

Then press XEQ "GETK". If you get a "NO ROOM" error

message at line 72, there are no free program registers.

"GETK" requires the initial presence of a free register,

and the error trap at line 72 assures its existence.

Thus, NO ROOM at line 72 indicates that you must decrease

-195-

the SIZE by 1 or delete a program to make space. If you

get the "NO ROOM" message at line 82, there are not

enough free program registers to hold the key assignments

from the designated data file. The difference between

the number in X and the current SIZE is the register

deficiency. Again, you must decrease the SIZE or delete

a program to eliminate this deficiency. If either one of

these error stops occurs, you must either re-load ALPHA

and XEQ "GETK" again, or XEQ "RK" to simply reactivate

the global label key assignments and quit.

The "SAVEK" program saves key assignments of Catalog 2 or

Catalog 3 functions, but it does not save assignments of

Catalog 1 labels. The "GETK" program retrieves the function

key assignment information from the designated extended memory

file. These function key assignments are merged with any

existing global label assignments. Previous function assign­

ments are cleared. In case of a conflict, where a global

label is already assigned to one of the keys used in the

stored set of function assignments, the global label assign­

ment will take precedence.

If you have a PPC ROM (see Appendix C), you can delete

the LBL 04 section, lines 46-62, and replace the XEQ 04 in­

structions on lines 04 and 86 by XROM E? •

In case you were wondering, the RTN on line 01 is a

necessary part of the "GETK" program. If "SAVEK"/"GETK" is

the last program in main memory (that is, if it has .END. as

its last line), the GETP at line 105 will transfer control to

line 01.

-196-

"SAVEK-/-GETK-/"RK-/"SK" program listing

01 RTH 22 "1-*" 45 GTO 81 67 RTN 90 -
23 XO \ 91 E3

02tLBL -SiWEK" 24 X;tY? 46tLBL ii4 68*LBL -GETK" 92 STI Z
03 RCL [25 GTO ii3 47 RCL G 69 E 93 Xt2
04 XEQ ii4 26 ARCl c 48 "*" 70 SIZE? 94 I
05 193 27 XO \ 49 ;';0 [71 + 95 +
06 ;.;)y? 28 STO IND Z 50 STO \ 72 PSIZE 96 XOY
87 RTH 29 Fe? 10 51 ASHF 73 LRSTX 97 XO c·
88 SF 18 38 SRVEX 52 RDH 74 PSIZE 98 XOY

31 ISG Z 53 ALEHG 75 XOY 99 REGI10VE
09tLBL 01 32 GTO ii2 54 8 76 FlSIZE 108 GETR
10 - 55 'itX 77 XEQ Iii 181 XOY
11 E3 33tlBL ii3 56 ATOX 78 CLKEi'S 182 STO c
12 I 34 XO L 57 * 79 :-:0 c
\3 "a" 35 XO c 5S 512 Sil RDH 183tLBL -RK"
14 RCL [36 Rt 59 HOD SI + 184 " -
15 XEQ Iii 37 CUi 61l ATOX 82 PSIZE 185 GETP
16 SIGH 38 STO [61 + 83 RDN 186 RTN

39 Rt 62 RTH 84 PSIZE
17tLBL 82 41l lNT 85 XO L 187tLBL ·SK·
IS RDN 41 FC'iC 10 63tLBL 18 86 XEQ il4 IIl8 •

19 RCL IND Y 42 RTH 64 RCL c 87 RCL i' 189 STu •
28 •• 43 CRFlII 65 "@-ipx*- 88 - IIIl STO e

21 XO [44 E 66 AS TO c 89 192 111 END 212 Bi'TES

Barcode for this program can be found in Appendix D.

The "IN" program is listed on the next page.

Synthetic lines and their decimal equivalents:

line 03 144, 117 line 11 27, 19 ; line l3 241, 16

line 14 144, 117 line 20 241, 240 line 21 206, 117

line 23 206, 118 line 26 155, 125 line 27 206, 118

line 35 206, 125 line 38 145, 117 line 44 27

line 47 144, 125 line 49 206, 117 line 50 145, 118

line 64 144, 125 line 65 246, 64, 1, 105, 12, 2, 0

line 66 154, 125 line 69 27 ; line 79 = 206, 125

line 91 27, 19 ; line 97 206, 125 ; line 102 = 145, 125

line 109 = 145, 122 ; line 110 = 145, 127

-197-

Here is the "IN" program, to be executed before the first use

of "RK" or "GETK":

8ltLBL "IH" 18 REGI10YE 19 STO ii1 28 XO \ 37 X>!l?
82 EI'IDIR 11 "1-*" 28 XO j 29 STO 82 38 ASTO L
83 E 12 RDH 21 STO 93 31i CLll 39 ASTO X

84 " ,·itA·t8HX· 13 RCL 12 22 RDH 31 STO [48 SAYEX
85 CRFLD 14 STO 96 23 EI1DIR 32 Rt 41 XO L
86 + 15 "I-t·it-." 24 CLD 33 X)8? 42 STO Iil
87 RCL \ 16 RCL [25 ST- T 34 EtX 43 Rt
ii8 XO (; 17 STO 12 26 XOi' 35 SEEKPTA 44 XO G

89 RCL 84 18 XOY 27 STu 81 36 "." 45 END

93 BYTES

Barcode for "IN" can be found in Appendix D.

Synthetic lines and their decimal byte equivalents:

line 133 = 27 ; line 134 254, 32, 44, 1, 1135, 13, 19, 2413, 1,

137, 0, 48, 3, 0, 2

line 137 144, 118 ; line 138 = 2136, 125

line 15 247, 127, 0, 1, 1135, 11, 223, 255

line 16 144, 117 line 213 206, 119 ; line 28 = 2136, 118

line 31 145, 117 line 36 241, 1 ; line 44 = 2136, 125

If you have an HP-41CX, lines 02 and 23 can be replaced by

EMROOM. As with "VER", despite appearances, no numbered data

registers are disturbed by "IN".

Notwithstanding its brevity, "IN" is a very sophisticated

program. In fact, if you think you are an expert in synthetic

programming, you might try figuring out how it works. Clif­

ford Stern is probably the only one who knows all the tricks

it contains.

-198-

~'

101. Saving extended memory files on magnetic cards

Chapter 3 introduced the programs "WAS"/"RAS" which allow

you to transfer ASCII file data to and from magnetic cards.

The "WFL" (Write File) and "RFL" (Read File) programs present­

ed in this section were written by Clifford Stern. They allow

all types of files to be written onto magnetic cards, or just

~_ into data registers for more temporary storage. Furthermore,

the absolute minimum number of registers is used. Seven bytes

of data are saved per register, rather than the 6 or fewer

bytes per register that "WAS" saves. A third program, "RPF"

(Retrieve Program File), allows the retrieval of extended

memory programs that have checksum errors. For example, a

checksum error can result from running the program in extended

"--- memory (see Section 10F) if all the GTO's and XEQ's were not

compiled before the program was saved.

Constraints common to "WFL", "RFL", and "RPF"

1. There must be an END above the "WFL"/"RFL"/"RPF" program

in Catalog 1. Failure to observe this constraint will

lead to an eventual MEMORY LOST.

2. Make sure that at least one of the conditions listed on

page 183 is satisfied (no alarms and one free register,

or at least one non-label key assignment).

3. The ALPHA register must contain a file name at the start

of each of these programs. The sequence ALENG, l/X

(lines 14 and 15) cannot be deleted from the program,

because the file name is required during the program's

execution. The POSA instruction at line 17 causes an

error stop at line 19 if the ALPHA register contains a

comma. Commas are not allowed in the file name, because

a comma is interpreted by the calculator as a name separ­

ator (see page 15). The comma and all the characters

that follow it are ignored by all extended functions

except SAVEP. If a comma were present, the ALENG error

trap would be ineffective.

-199-

3. These programs may be called from another program, but

not from a subroutine. In other words, no RTNs may be

pending when one of these programs is called.

Instructions for "WFL"

1. Set flag 14 if you intend to write data onto protected

cards.

2. Two modes of operation are available for "WFL". The

first mode, obtained by clearing flag 01, writes the

entire contents of the file. The second mode provides

slower, but more economical, storage of ASCII files that

are only partially filled. It first counts the number of

characters in the file, then it transfers only those

registers that are actually in use to the data registers.

To activate this second mode, set flag 01. After you

have checked the status of flag 01, put the name of the

file in the ALPHA register, and execute "WFL".

3. If the PSIZE instruction at line 49 gives a NO ROOM error

message, you will need to clear some programs or key

assignments to make enough room for the file contents.

The number in X indicates the required SIZE.

4. When the ROY 01 OF nn prompt appears, you can either feed

in a magnetic card to record the file data or press RIS

!~ice to bypass the writing of magnetic cards. 00 not

just press backarrow, or your file, which has been tem­

porarily changed to a data file, will not be restored to

its original file type. 00 not change the contents of

the stack before restarting "WFL". MEMORY LOST is the

probable result. I f the card reader is not present, the

ROY 01 OF nn prompt will not appear at all. The file

contents will simply be transferred to the data regis­

ters.

5. If you forgot to set flag 14 and you still want to write

the data onto protected cards, press RIS twice to bypass

the ROY 01 OF nn prompt. When the program finishes, you

-200-

,
'-

can SF 14 and execute WDTA from the keyboard to write the

cards.

6. When the last magnetic card is fed through, or after you

press R/S twice, the program will conclude with an in­

struction sequence that leaves the new SIZE in X. This

number, which represents the minimum required file size,

should be written on the cards. It may be needed later

for "RFL".

CAUTION: If your purpose is to immediately transfer the file

data back into extended memory rather than recording it on

magnetic cards, you must be very careful not to disturb it

before using "RFL". The data is in a volatile, "non-normal­

ized" form (see page 182). Any RCL, VIEW, or similar opera-

tion will alter the data. You must not try to move the data,

\..... or even look at it, until it has been written back into exten-

ded memory. This is the price for the efficient register-for-

'-- register storage in "WFL". The data format is the same as

that used within extended memory, where all data is also non-

normalized. If you accidentally recall or view a data regis-

ter written by "WFL", you will have to execute "WFL" again to

restore the correct data before using "RFL".

Instructions for "RFL"

1. As with "WFL", two modes of operation are available for

"RFL". The mode is selected by the status of flag 01.

Depending on the amount of space available in the calcu­

lator, the first mode (flag 01 clear) may work regardless

of whether flag 01 was set for "WFL". To find out, clear

flag 01, put the file name in the ALPHA register, and

execute "RFL".

~. 2. If a NO ROOM error message appears at line 49, and flag

01 was clear when you used "WFL" to write the cards, you

will need to clear some programs to make more space

available. The number in X is the required SIZE. If you

-201-

get NO ROOM but flag 01 was set when you used "WFL" to

write the cards, then you have another option. you can

set flag 01 to indicate that the SIZE does not need to be

increased to the FLSIZE. Whenever you use "RFL" with

flag 01 set, you must manually reSIZE to the number of

registers written (this is the same number you wrote on

the cards). This flag 01 option can also be used to read

data file cards into a larger data file when the SIZE

cannot be set to the new FLSIZE. Regardless of what

action you take in response to the NO ROOM error message,

you must reload the ALPHA register and execute "RFL"

again.

3. If a card reader is present, the prompt CARD will appear.

At this point you can feed in the data cards you made

with "WFL". If the data is already in the registers, you

can press R/S twice to bypass the card reading operation.

As with "WFL", do not just press backarrow in response to

the CARD prompt, or the file, which has temporarily been

changed to a data file, will not be restored to its

original type. Also, do not disturb the stack before

restarting the program. If you do, MEMORY LOST is the

likely result. [If no card reader is present, the card

reading is automatically bypassed.]

4. The program will take the information from the data

registers and transfer it into the designated extended

memory file. It does not matter whether the file is a

program, data, or ASCII (text) file.

One useful application of "WFL" and "RFL" is to minimize the

number of registers needed for a "fixed" ASCII file, one that

you will not be adding information to frequently. You can

create a large ASCII file, fill it with the desired informa­

tion, then use "WFL" with flag 01 set to write the records

into data registers and possibly onto magnetic cards. Note
the resulting SIZE (which appears in X at the conclusion of

-202-

',---

"WFL"). Purge the ASCII file and create a new ASCII file of

the same name with a FLSIZE equal to the "WFL" SIZE. Then

execute "RFL", pressing R/S twice at the CARD prompt, to read

the information back from the data registers into the new

ASCII file, which is just the right size for the data.

Another "WFL"/"RFL" application is to deal with the prob­

lem of an ASCII file that has outgrown its original FLSIZE.

Just clear flag 01, put the file name in ALPHA, and execute

"WFL" to write the whole file to data registers (and cards if

you 1 ike). Then purge the file, crea te a larger one with the

same name, set flag 01, put the file name in ALPHA, and exe­

cute "RFL". As long as you have not disturbed the data regis­

ters since executing "WFL", you can safely press R/S twice at

the CARD prompt to bypass it.

A third application of "WFL" and "RFL" is one-step re-

"- cording of a data file, without any need for a GETR instruc-

tion. When used in place of GETR, "WFL" eliminates the need

for resizing, since the program does it automatically. In

addition, the data file's register pointer will be restored to

its original value. This is a slight improvement over GETR.

You can also use "WFL" to record a program file directly from

extended memory, if you do not care that the recorded informa-

"- tion is in a format that can only be used by "RFL". This

might be the case, for example, if you wanted to record a

program that you only execute in extended memory.

The "RPF" (retrieve program file) program retrieves a

program from extended memory when a checksum error exists.

This can be recognized by the CHKSUM ERR message when you try

a GETP or GETSUB. If a checksum error does not exist, GETP or

GETSUB is far preferable to "RPF", because "RPF" has the side­

effect of changing the retrieved program file into a data

file. If you suspect real damage to the program, use "RPF" as

a "last resort", only if the program is not available on

magnetic cards, tape, or barcode. Of course if the damage is

-203-

due only to running the program in extended memory, "RPF" will

retrieve a "clean" copy of the program.

The procedure used for "RPF" is a bit unusual, and the

manual operations required preclude use of "RPF" as a subrou­

tine. Follow the instructions carefully and precisely.

Instructions for "RPF"

1. GTO ••

2. Sw itch to PRGM mode. Check to make sure there is at

least one free register. Then SST to get the .END. in

the display, and insert any instruction (ENTERT will do),

then delete it.

3. Put the name of the damaged program file in the ALPHA

register and execute "RPF". If you get a NO ROOM error

message at line 47, you will have to clear some programs

out of main memory to make room for the program to be

retrieved. Then start over at step 1.

4. PACK (press XEQ ALPHA PAC K ALPHA, not GTO ••)

5. At the conclusion of "RPF", the SIZE will be 000 and the

program file will be changed to a data file.

6. Check the copy of the retrieved program for accuracy, in

case more than GTO/XEQ compiling caused the CHKSUM ERR.

7. If the retrieved program was less than 35 bytes long, it

may not be possible to use "RPF" again on the same file

(which is now a data file). This condition will occur

only if the byte count modulo 7 exceeds the FLSIZE. It

is not likely that you will encounter this problem,

because any program worth executing in extended memory

should be much longer than 34 bytes.

Note: If you want to remove the "RPF" portion of this

"WFL"/"RFL"/"RPF" program, delete lines 149-232, 122-123, 11-

12, and 01-04. This reduces the byte count to yield a 265-

byte Write and Read Files program. Alternatively, if you have

a PPC ROM (see Appendix C), you can replace lines 153-166 of

the program by XROM "E?".

-204-

-

\..... ..

IH tLBL "RPF"
92 CF 91
93 SF 05
94 GTO 82

85tLBL -IIFL"
96 CF 86
87 GTO III

88tLBL "RFL"
89 SF 86

18tLBL 81
11 CF 95

12tLBL 82
13 CF 25
14 IUHG
15 \IX
16 44
17 POSA
18 CHS
19 LH
28 FLSIZE

21 -I-
22 7
23 AIWT
24 XO [
25 XOY
26 FC? III
27 GTO 84
28 SF 25
29 FS? 116
38 GTO 114
31 ClX
32 SEEKPT

33tlBL 113
34 CLA
35 GETREC
36 ALEHG

37 +
38 FS? 25
39 GTO IE
48 RCLPT
41 +
42 8
43 +
44 7
45 I

46tLBL 114
47 PSIZE

48 -. iti:t.t8Hx"
49 X() \
58 XO (,
51 STO 18
52 XO [
53 REG"OVE
54 RCL (,
55 -1-.-
56 STO 86

57 -I-t'i}:
58 CLX
59 STO 87
68 RCL \
61 Rt
62 CF 117
63 X=y?
64 SF 87
65 XO [
66 STO 12
67 STO 81
68 XO 1
69 STO 83
78 2
71 CHS
72 UISTX
73 FS? 117
74 GTO 86
75 .

76tLBL 85
77 STO 1
78 LASTX
79 STO III
88 Rt
81 FLSIZE
82 ST+ Y.
83 2
84 ST+ Z
85 CLX
86 STO 1
87 RCL (,
88 STu 81
89 Rt
99 SEEKPTR
91 RCL [
92 GETX
93 X*T?
94 GTO 115
95 XO \
96 STO [
97 RCLPT
98 GETX

99tLBL 86
188 STO 1
Ull "I-t-
182 E28
183 STO t
184 E
185 CHS
186 AROT
187 Rt
188 SEEKPT
189 Rt
\18 •
111 XO 1
112 FC? 87
113 SAVEX
114 FS? 87
115 SIGH

116 RDH
117 LASTX
118 STO 81
119 RCL a
128 XO (,
121 SF 25
122 FS? 85
123 GTO 97
124 TOHE 8
125 FS? 86
126 RDTA
127 FS? 86
128 SRVER
129 FC? 86
138 GETR
131 FC? 86
132 IIDTA
133 CF 25
134 STO (;
135 STO 81
136 CLX
137 STO \
138 Rt
139 SEEKPTIl
148 Rt
141 Fe? 87
142 SAVEX
143 FC? 117
144 lAST X
145 STO 81
146 XO a
147 STO G

148 SIZE?
149 RTH

151ltlBl 117
151 RClPTA
152 STO 81l
153 RCl G

154 -.-
155 X() [

156 STO \.
157 ASHF
158 AlEHG
159 8
168 ytX
161 ATOX
162 •
163 512
164 "uD
165 ATOX
166 +
167 EHTERt
168 ".j-

169 16
178 •
171 2
172 +
173 EHTERt
174 XEQ 18
175 RCL 88
176 SIGH
177 CLX
178 XTOA
179 SEEKPT
188 PSIZE
181 XO [
182 XO G
183 FLSIZE

184 -t-'
185 STO 1
186 XOY
187 STO \
188 Rt
189 XO [
198 STO 88

191tLBL 88
192 GETX

193 STO IHD]
194 liSE]
195 GTO 88

196 XO [
197 RCL \
198 LASTX
199 7
288 "OD
281 SEEKPT
282 CF 25
283 LASTX
284 -
285 AROT
286 CHS

287tLBL 89
288 -I-+"
289 DSE X
218 GTO 89
211 XOY
212 XO [
213 STO 81
214 2
215 CHS
216 AROT
217 Rt
218 EHTERt
219 XEQ Hi
228 XO [
221 XO G

222 BEEP
223 STOP

224tLBL 18
225 256
226 "OD
227 XOY
228 LRST:':
229 /
238 XTOA
231 RDH
232 XTOA
233 EMD

419 BYTES

Barcode for this program can be found in Appendix D.

Note that line 21 is "Append 6 spaces".

-2105-

synthetic lines and their decimal byte equivalents:

line 24 206, 117

line 48 252, 1, 105, 0, 19, 240, 1, 137, 0, 48, 3, 0, 2

line 49 206, 118 ; line 50 = 206, 125 ; line 52 = 206, 117

line 54 144, 125

line 57 = 247, 127, 0, 1, 105, 11, 223, 255

line 60 144, 118 line 65 206, 117 line 68 206, 119

line 77 145, 119 line 86 145, 119 line 87 144, 125

line 91 144, 117 line 95 206, 118 line 96 145, 117

line 100 145, 119 ; line 101 = 242, 127, 0

line 102 27, 18, 16 ; line 103 = 145, 120 ; line 104 27

line 111 206, 119 line 119 144, 123

line 120 206, 125 line 134 145, 125

line 137 145, 118 line 146 206, 123

line 147 145, 125 line 153 144, 125

line 155 206, 117 line 156 145, 118

line 168 242, 1, 105 ; line 181 = 206, 117

line 182 206, 125 line 184 243, 192, 0, 45

line 185 145, 119 line 187 145, 118

line 189 206, 117 line 193 145, 247

line 194 151, 119 line 196 206, 117

line 197 144, 118 ; line 208 242, 127, 0

line 212 206, 117 line 220 206, 117

line 221 206, 125

-206-

l0J. Key assignments of synthetic functions

If you do any synthetic programming, it is quite helpful

to assign some frequently used two-byte synthetic functions to

your USER mode keyboard. Chapter 4 of "HP-41 Synthetic Pro­

gramming Made Easy" contains two of the most efficient pro­

grams to make synthetic key assignments.

The program "ASG" (assign) presented here was conceived

by Tapani Tarvainen and optimized by Tapani and Gerard westen.

'- This program represents a major step forward in synthetic

programming. 'Previous synthetic key assignment programs re­

quired the user to specify the function to be assigned in

terms of its two decimal byte equivalents. "ASG" lets you

simply spell out the function to be assigned.

. WARNING: An END must precede LBLTASG in Catalog 1. I f you ,-.
have "XF" as the first program in Catalog 1, this is already

taken care of. If you do accidentally execute "ASG" when it

is the first program in Catalog 1, keyboard lockup is likely

and MEMORY LOST is possible.

"ASG" Exa!!!~.!.: Suppose you want to assign RCL b to a key.

First, execute "ASG" (press XEQ ALPHA A S G ALPHA). The

following message will appear in the display:

ASN

just as for the real ASN function, except that the ALPHA mode

annunciator will be on. Now you fill in the name of the

function to be assigned, in this case RCL b. The calculator

is already in ALPHA mode, so you need only press

R C L (space) shift b

Then press R/S to restart the program. wait about half a sec-

\- ond, then press the key to which you want RCL b assigned. To

assign RCL b to a shifted location, press the shift key, wait

'- for the minus sign to appear (indicating a shifted location),

then press the key to which you want the assignment made.

Once you have entered the function name and pressed the

key to which the assignment is to be made, you need only wait

-207-

for the "ASG" program to complete its work. The procedure is

strikingly similar to the use of the built-in ASN function.

The "PASG" (programmable assign) entry point provides a

synthetic key assignment capability similar to PASN. Spell

out the synthetic function in ALPHA, put the row/column key­

code in X, and execute "PASG". The keycode is the same one

you would use for PASN.

The "PASG" portion of "ASG" accomplishes the amazing feat

of decoding the function name into its decimal equivalents.

This is done in two steps. In the RCL b example, "PASG" first

assigns the function RCL and extracts the decimal code from

the operating system registers, then the program decodes the

suffix b into its decimal equivalent. These two values are

used as input to a more standard key assignment program,

"MKX", also a Tarvainen creation with optimization by Westen.

For adventurous novices: If you are unfamiliar with synthetic

programming and you have been puzzling over the synthetic

program listings, you may want to use "ASG" to create some

synthetic instructions. A few basic points will help you

avoid some of the simpler pitfalls. First and foremost, do

not alter the contents of register c unless you know exactly

what you are doing. The likely result is MEMORY LOST. Sec­

ond, you should be aware that some synthetic lines in printer

listings appear differently in the display. Most notable are

text lines, in which characters with decimal codes 128-255

disappear, and instructions that access some of the operating

system registers. The equivalence is:

disEla:t: Erinter listing

STO M STO [

STO N STO \
STO 0 STO]

STO P STO T
STO Q STO

STO I- STO T

-208- . ./

The STO prefix could just as well be RCL, X<>, or any other

'- two-byte prefix. The M, N, 0, and P registers make up the

ALPHA register. These four, plus Q and a, are the safest to

experiment with.

Of course, full details of the operating system registers

and their uses can be found in the book "HP-41 Synthetic

Programming Made Easy". Also given are techniques for creat­

ing synthetic text lines, which cannot be made with "ASG".

Instructions for "ASG"

1. Make sure there is an END above LBLTASG in Catalog 1, and

that there is no LBLTANUM in Catalog 1. Failure to

observe these restrictions will lead to M&MORY LOST.

',,- 2. Execute "ASG". The prompt ASN will appear, and the

ALPHA mode annunciator will be lit.

3. Using the ALPHA mode keys, spell out the function to be

assigned. If the suffix is a synthetic character, you

may spell out a decimal number, 0 to 255, instead. If

you like, the prefix can also be a decimal number. For

indirect functions like GTO IND X, you do not actually

need to spell out "IND". As long as there are two spaces

between the GTO and the X, the function GTO IND X will be

assigned.

4. Press R/S to restart the program.

5. Wait half a second and press the key to which the func­

tion is to be assigned. For a shifted assignment press

the shift key, wait a moment until "-" appears in the

display, then press the desired key. It is not necessary

to press R/S again.

6. The program will proceed to make the synthetic function

assignment. Should an error stop occur, do not attempt

to restart the program. Instead, start over with step 2

above. If the error was NO ROOM at line 50, decrease the

SIZE or clear a program.

7. To make another assignment, execute "ASG" again.

-209-

Instructions for "PASG"

1. Make sure there is an END somewhere above LBLTpASG in

Catalog 1, and that there in no LBLTANUM in Catalog 1.

As for "ASG", the penalty for failing to heed these

restrictions is MEMORY LOST.

2. Load the ALPHA register with a string that spells out the

function to be assigned. See item 3 in the "ASG" in-

structions for an explanation of the various types of

strings that are allowed.

3. Put the row/column keycode in X. "PASG" works just like

PASN in this respect.

4. Execute "PASG". The program will make the synthetic

assignment. As with "ASG", do not attempt to restart

after an error stop occurs. Start over with step 2.

5. To make another assignment, load ALPHA and X and execute

"PASG" again.

Instructions for "MKX"

1. Put the decimal prefix code in Z, suffix code in Y, and

keycode in X.

2. Execute "MKX" to make the desired assignment.

General cautions for "ASG", "PASG", and "MKX":

1. Do not interrupt or SST these programs. If you acciden­

tally interrupt or SST the program between lines 158 and

161, you will have to re-execute the program. If you

interrupt the program after line 176, you must restart

the program to avoid an eventual MEMORY LOST.

2. Make sure there is no global label present that has the

same name as a function you want to assign. For example,

if you have a LBL "STO" in Catalog 1, "ASG" and "PASG"

will not be able to assign a synthetic STO instruction.

3. WARNING: Make sure there is no global label "ANUM" in

Catalog 1. If you have a LBLTANUM in Catalog 1, memory

will be completely trashed.

-210-
-'

The "ASG", "PASG", and "MKX" programs are fully compati­

ble with Time module alarms and other I/O buffers. "ASG" and

"PASG" also allow you to assign Catalog 1 labels and nonsyn­

thetic functions, as well as synthetic functions. In fact,

"ASG" and "PASG" are essentially direct replacements for the

ASN and PASN functions. They will accept any input that ASN

\..... or PASN accepts, plus many more that correspond to synthetic

functions.

Examples of "ASG" and "PASG"

The following list shows typical key assignments, both

nonsynthetic and synthetic, and the "ASG"/"PASG" ALPHA inputs

needed to obtain them. Several variations on the ALPHA input

are usually possible, as the list shows. Any functions that

show only decimal inputs are more easily assigned with "MKX"

by putting the decimal inputs in the stack.

Function

"ASG"

"VER"

BST

SIGN

SF 14

STO N

X<> M

GTO IND X

RCL IND X

XROM 29,08

TONE 10

TONE 89

FIX 10

XROM 28,35

ALPHA input

"ASG"

"VER"

"BST"

(any global label can be assigned

using "ASG" or "PASG")

"SIGN"

"SF 14" or "168 14"

"STO N", "STO 118", "145 N", or "145 118"

"X<> M", "X<> 117", or ''206 117"

"GTO IND X", "GTO X" (note 2 spaces) ,

"GTO I 115 ", "GTO 243", ''208 243" , etc.

"RCL IND X", "RCL X" (2 spaces) ,

"RCL I X", "RCL 243", "145 243", etc.

"XROM 29,O8" or "X 29,O8" (=PRA)

"TONE 1O" or "159 1O"

"TONE 89" or "159 89"

"FIX 1O" or "156 1O"

"XROM 28,35" or "X 28,35" (=OUTA)

(continued on page 213)

-211-

iHtLBL 'HSC"
92 RCLFLHG
93 SIGH

!l4 aa
85 HSTO d
86 "ilSN .
87 STOP
98 CF 21
99 "f- a

19tLBL iii
11 3i
121WIBi
13 GETKE'i
14 X=!!?
15 GTO iH
16 Xtn
17 GTO 82
18 -f---
19 FS?C il3
28 GTG III
2i 2
22 CHS
23 ilROT
24 HTOX
25 ilTOX
26 SF 93
27 GTO 81

28tLBL 92
29 ilRCL X
38 ilYIEIoI
31 FG? 93
32 CHS
33 X)9?
34 XlOil
35 LASTX
36 STOFLilG
37 ilTOX
381HO/(
39 LN
48 CHS
41 ilROT
42 ilSHF

43 Rt

44tLBL 'PHSGa
45 HOFF
46 32
47 POSH
48 Xl!)?
49 GTO 83
59 RDH
51 PHSN
52 CLD
53 RTH

54tLBL in
55 'f-t'
56 ilROT
57 "Hill'
58 HTOX
59 POSH
69 ISG X
61 ilON
62 ilROT
63 44
64 POSA
6:) ISG X
66 GTO 84
67 ilROT
68 Rt
69 HHUM
79 HSHF
71 ilH1J1'!
72 641l
73+
74 64
75 *
76 +
n RCL x
78 2:)6
79 STi Z
Illi !'IUD
81 GTO 86

82tLBL !l4
83 Rt

84 ilNU!'I
8S HTOX
86 84
87 -
88 X(=ij?
89 GTO ij4
99 CHS
91 7
92+
93 X)8?
94 GTO 85
9:) CHS
96 31
97 !'Ion
98 2

99tLBL 84
189 X<ij?
181 9
182 X)!!?
183 +
184 X)in
185 3
186 X>ij?
187 +

H!8tLBL 85
189 17
lUi +
111 X)ij?
112 95
113 X>8?
114 +
115 X>8"'
116XO'i
117 ClX
118 POSH
119 X)9?
121l ilROT
121 GLX
122)(0 d
123 Rt
124 SF 25
125 PilSN

126 RCL _
127 STO t
128 RDN
129 XOY
13!l XO d
131 Xt8?
132 HTOX
133 ilSHF
134 X=8~'

135 HNUI'!
136 Rt
137 FS? 48
138 GTO 96
139 XOF
149 Rt
141 29S
142 Rt
143 Xty?
144 SF 97
145 X(=Y?
146 X=y?
147 RDN
148 X)n
149 174
159 Rt
151 XOF

152tlBl 96
153 HOFF
154 Rt

IS5tLSl '1'IK:t:-
156 'ilNu",a
157 PHSN
158 RCl '
159 CUi
168 5TO t

161 'f- S'
162 AS TO \
163 ARCl \
164 Rt
165 XTOA
166 Rt
167 XTOA

168 RCL \
169 HTOX
178 SiGH
171 ilROT
172 RCl [
173 RCL (;
174 "@'ihXt '

175 ilSTO G

176 Rt

177tlBL 117
178 RCL IND L
179 "**'
188 STO \
181 XO [
182 STO 1
183 ilSTO [
184 ASHF
185 XO \
186 ilSHF
187 XtY")
188 XO [
189 X=Y?
198 Rt
191 'f-****"
192 STO \

193 -f-"
194 XO [
195 STO 1
196 ARCL c"
197 XO 1

198 STO IND L
199 RDN
288 XtY?
281 ISG L
292 XtY?
293 GTO 87
284 XO Z
285 STU G

286 CLST
287 WI
288 CLD
289 END

372 BYTES

Barcode for this program can be found in Appendix 0,

Line 146 is a text line "ANUM", not the instruction ANUM,

-212-

Synthetic lines and their decimal byte equivalents:

line 04 242, 132, 128 ; line 05 = 154, 126

line 55 242, 127, 0 ; line 57 = 243, 127, 64, 48

line 122 206, 126 line 126 144, 121

line 127 145, 120 line 130 206, 126

line 158 144, 122 line 160 145, 120

line 161 243, 127, 166, 66 ; line 162 = 154, 118

line 163 155, 118 line 168 144, 118

line 172 144, 117 line 173 144, 125

line 174 24"6, 64, 1, 105, 11, 2, 0 ; line 175 154, 125

line 180 145, 118 line 181 206, 117

line 182 145, 119 line 183 154, 117

line 185 206, 118 line 188 206, 117

line 192 145, 118 line 193 245, 127, 132, 132, 132, 240

line 194 206, 117 line 195 145, 119

line 196 155, 125 line 197 206, 119

line 205 145, 125

~ For faster operation with an HP-41CX or Time module use:

line 156 "SW" ; line 161 = 243, 127, 166, 154

(continued from page 211)

Fancier synthetic functions:

GTO.000

eGOBEEP

Q-Loader

byte grabber

"199 133" (works in PRGM mode, only when

the card reader is attached)

"4 167" or "0 167" (gives mass storage or

printer functions; experiment

in PRGM mode)

"27 0" (experiment in PRGM mode)

"247 63" (not for novices; can give MEMORY

LOST if inserted above an END)

The "ASG" program is perhaps the most advanced synthetic

program ever written, in that it makes use af a wide variety

'--- of synthetic techniques to provide a very high degree of user

convenience. I hope you enjoy using it.

-213-

10K. "Crash" recovery tips

A "crash" is a condition in which the keyboard is "locked

up" and fails to respond, or in which Catalog 1 is damaged.

There is usually no problem recognizing a crash, but recover­

ing from one is another story. Unfortunately, MEMORY LOST is

necessary to recover from many types of crashes.

If the keyboard "locks up" and you cannot get any re­

sponse from the R/S key or the ON switch, there are several

techniques that may help you regain control:

1. Press and hold the backarrow key, press the R/S key,

release the R/S key, and release the backarrow key.

2. Newer HP-4l's (1982 or later, approximately) have a reset

feature. Check your Owner's Manual before trying this,

because on older HP-4l's it gives MEMORY LOST. It will

also give MEMORY LOST on a newer HP-4l if the keyboard is

not locked up. Press the ON key to turn the calculator

off, then press and hold the backarrow key. Press and

release the ON key, then release the backarrow key.

3. Remove the ba t ter ies for a few seconds and then replace

them. This will clear all but the most serious crashes.

4. The next thing to try, if you have a card reader, is to

insert a card (any type). If the card is not pulled

through, remove the batter ies for a few seconds and

reinsert them, with the card still in place. The card

should be pulled through and the display should respond,

without MEMORY LOST. This technique was developed by

Clifford Stern.

5. Remove the batteries and reinstall them with each cell

reversed (this cannot be done with the HP rechargeable

battery pack). Press and hold the ON key for 10 seconds.

Replace the batteries in the normal polarity and press

the ON key. You should get MEMORY LOST.

6. Simply removing the batteries overnight will usually not

clear a serious crash. Older HP-4l's can retain their

-214-

memory without batteries overnight, and newer HP-41's can

reta i n the i r memory for a week or more.

If the keyboard does respond, but Catalog 1 is not normal, you

will usually have to clear the calculator (using the ON and

backarrow keys in the sequence described in your Owner's

Manual). However, if you have a PPC ROM (see Appendix C), you

may be able to restore Catalog 1 along with all of your pro­

grams. Try this sequence, developed by Clifford Stern:

ALPHA C 0 0 0 2 D ALPHA (You can use spaces in place of

the zeros to save a few keystrokes.)

XEQ "HN"

XEQ "E?"

If this result is less than 192 or more than 511, stop here.

Otherwise, continue:

XEQ "sx"
PACK

Check Catalog 1 to see what programs were recovered.

This sequence will not deal with cases in which the

pointers to the .END. or register 00 have been altered. For

these cases you need a PPC ROM, knowledge of the structure of

system scratch register c (see page 110 of "HP-41 Synthetic

programming Made Easy"), persistence, and some luck.

-215-

SOLUTIONS TO PROBLEMS

"'- 3.1. "*" APPREC DELREC RCLPT

-"--- 3.2. Here is one solution:

-.

01 LBL "PAS" (print ASCII file)

02 CLX

03 SEEKPTA

04 SF 25

05 LBL 01

06 GETREC

07 FC? 25

08 RTN

09 ACA

10 FS? 17

11 GTO 01

12 PRBUF

13 ADV

14 GTO 01

15 END

4.1. One solution is:

XTOA

SIGN

CHS

AROT

add the designated character.

rotate it to the front of ALPHA.

The sequence SIGN, CHS, is much faster than a digit entry -1.

4.2. Here Is a typical sequence to ASTO a string:

(start register number)

ENTERT

LBL 01

ASTO IND Y

-217-

RON

ALENG

X>f3?

GTO 131

4.3a. To delete n characters from the left:

n a digit entry line

X=f3?

RTN quit if n=f3

LBL 131

ATOX delete a character

RON

OSE X decrement n

GTO 131

4.3b. To delete n characters from the right:

n

CHS

AROT

CHS

rotate n characters from the right

end to the left end of ALPHA.

continue using the sequence from 4.3a.

4.4. Starting with "firstname initial lastname" or "firstname

lastname" in the ALPHA register, the following sequence

will produce "lastname, firstname initial" or "lastname,

firstname":

32

POSA

"r' "
AROT

ATOX

POSA

44

POSA

X<>Y

X<Y?

find the first space character

append a comma and a space

rotate firstname behind lastname

remove space that followed {irstname

find the next space

find the comma

if space is in front of comma

-218-

'---

"--

"-..-

1....-

\...-

\/

",---

"-
'--

",--

"-

I......-

\......

"\...-

\......

\....

\......

\....

'----
"'-.-

'-

X<~?

RTN

"t- "
AROT

ATOX

4.5. PI

*
RCLFLAG

X<>Y

SIN

X<>Y

STOFLAG

X<>L

/

and if space was found

then skip the RTN and continue

append a space after firstname

rotate middlename behind firstname

remove space that followed middlename

4.6. The program "FE" (FIX/ENG) listed here preserves the

status of flags 36-39, while setting flags 40 (FIX) and 41

(ENG) • The approach is simi lar to "FEX", except that another

RCLFLAG is needed at the beginning to save the status of flags

36-39:

01 LBL "FE"

02 RCLFLAG Save status of flags ~-39

~3 ENG ~ Set flag 41

~4 RCLFLAG Save status of flag 41

~5 FIX ~ Set flag 40

06 x<>y
~7 .39

~8 STOFLAG Restore flags ~-39

~9 RT This sequence is faster than

10 RT the alternative: RON, RON

11 41

12 STOFLAG Set flag 41

13 RT

14 RT
15 END

-219-

4.7. The program "BR" (block rotate) listed below is one possi­

ble solution. The first 110 lines of this program form the sum

1.lOlOl*sss+.1010101O101* (nnn-l). Lines 11-21 add 1 if rrr<1O or .10101

if rrr>lO. At this point the number in x is

sss. (sss+l) (nnn-l) if rrr>0, or

(sss+l) .sss (nnn-l) if rrr<lO.

The absolute value of rrr (line 14) ends up in Y, where it can

be used as a DSE counter in the LBL 101 loop.

-BR- program listing

81tLBL "BR" 88 1 E-6 15 XO T ntLBL !ll
82 .1 89 * 16 SIGH 23 REGSWAP
83 % 18 ST+ Y 17 eHS 24 DSE Y
84 + 11 XO L 18)O8? 25 GTO lH
85 XOY 12 SQRT 19 XOY 26 END
86 1 13 Rt 28 RDH
87 - 14 ABS 21 + 43 BYTES

-2210-

--

APPENDIX A

The VER and 7CLREG bugs

If your card reader is a revision IG or higher, you may

skip to the discussion of the 7CLREG bug on the next page.

To find out which revision you have, run Catalog 2. If you

see one of these headers:

CARD READER

CARD RDR ID

CARD RDR lE

CARD RDR IF

then your card reader has the VER bug. If you see

CARD RDR IG

then your card reader does not have the VER bug.

'- Here is the full story on the VER bug (for card readers

up to IF). When the card reader's VER (verify) function is

~ executed with an extended memory module plugged into port 2

(port numbers are shown on the bottom of your HP-41 next to

\ -......-

\----

',-

the serial number), the first register of that module will be

altered. The same warning applies to having an extended

memory module plugged into port 4 of a port extender or built

into a dual Extended Memory module (see Appendix C).

When you use VER under these conditions, one register

(decimal location 1007) of your data or program information in

extended memory will be incorrect, unless there was no data in

the port 2 module. It is even possible that the altered

register will be a file header register, disrupting the ex­

tended memory directory.

If this discussion is not completely clear to you, come

back to it after you read Chapters 2 and section 10C. For the

present, just refrain from executing the card reader function

VER if you have an extended memory module in port 2. If you

must have an XMemory module in port 2, at least make sure that

the module in port 1 or 3 will be filled before the one in

-221-

port 2 is used. This is easy to do:

1) If you have only one XMemory module, put it in port 1

or 3.

2) If you have two XMemory modules, install them at the same

time (while the calculator is turned off, of course).

If you follow this procedure, the register affected by VER

will be the 366th register of extended memory. If you add up

the file sizes shown in the extended memory directory and add

2 more registers for each file header,

which file contains the 366th register.

checked or purged after a VER operation.

you can figure out

That file should be

If the 366th regis-

ter is the second of the two header registers for a file, that

file and all the following files will probably be lost. This

paragraph will become clear after you read section 10C.

Now for the good news. It is possible to completely

eliminate the destruction of the 366th extended memory regis­

ter. The synthetic program "VER" introduced in Section 10D

does the job, in less time than it takes to press XEQ "VER".

If you have a port extender (Appendix C), another technique is

almost as handy. Just switch off all XFunction and XMemory

modules before executing VER.

All card readers have the 7CLREG bug. The card reader's

7CLREG function is intended to simulate the HP-67/97 CLREG

function. This 7CLREG function can ruin an entire module of

extended memory. If you execute 7CLREG when the SIZE is less

than 25, some of the data near register 360 of extended memory

will be lost. This assumes that the recommended module plug­

in procedure was used, so that the module in port 1 or 3

contains register 365 as its last register. In addition,

7CLREG is likely to cause all extended memory data starting at

register 366 to become inaccessible. The solution is to avoid

using 7CLREG, or to precede it with the sequence SIZE?, 25,

X>Y?, PSIZE (see page s 74-75) to ensure a SIZE of at least 25.

-222-

APPENDIX B

EXECUTION TIMES FOR EXTENDED FUNCTIONS

Whenever you write a program, you face choices between

different ways of obtaining the same result. A table of

execution times for various functions is a helpful tool in

making these choices. For example if you want to put the

value 1 in X, you might not be aware that the sequence CLX,

SIGN is almost 40 milliseconds (65%) faster than the usual

digit entry 1. In a loop which will be executed many times,

this difference could be worth the extra byte of program space

used.

A table of execution times for important built-in (Cata­

log 3) functions can be found on pages 145 and 146 of "HP-41

Synthetic programming Made Easy". Execution times, in milli­

seconds, are presented in this appendix for most of the exten­

ded functions, including the ones for which you are likely to

have alternatives, so that you can make the best choice of

functions when writing your own programs.

These execution times were measured by Clifford Stern,

using his Time module application program that was presented

in "HP-41 Synthetic programming Made Easy". Although each

timing run was automated, the entire process was still quite

an effort because of the large number of variables that affect

execution time.

-223-

Execution times for the extended functions

All times are listed in milliseconds (thousandths of a second)

ALENG l68-3.SC-S.8INT«C-l)/7) ,

where C is the number of characters in the ALPHA register.

ANUM 9S to 390 (unpredictable)

APPCHR 237+l0.2C+12.1R+file increments*

where C is the number of characters appended, and

R is the record number.

This formula assumes R is the last record of the file;

otherwise APPCHR will be slower and less predictable.

APPREC 2ll+6.9C+12.1R+file increments

ARCLREC

AROT

ATOX

CLFL

CLKEYS

458+l2R+file increments

X>0: 286-7.77C-6.6INT«C-l)/7)-19.9X

X<0: 287-7.77C-6.6INT«C-l)/7)-19.9(C-IXI)

X=0: 145

X>0: 167-4. 28C

199+3.24·FLSIZE+file increments

326+l2.2G,

where G is the number of global (Catalog 1) LBLs present.

CRFLAS 246+3.6·FLSIZE

CRFLD

DELCHR

DELREC

FLSIZE

GETP

GETR

GETREC

246+3.6·FLSIZE

unpredictable, but slow

unpredictable, but slow

72.9+file increments

l099+11S·FLSIZE

S8.S+l2.S·FLSIZE+2.S(SIZE-FLSIZE)+file increments

3S0+l2.1R+file increments

* File increments are: l2.9(N-l)+9E for the working file, or

136+12.3 (N-l)+9E for a named file,

where N is the file number in the extended memory directory

(1 and up) and E is the number of the extended memory block in

which the file resides. E can be 0,1, or 2(see Figure 10.1).

-224-

GETRX l19+9.9D+file increments,

GETX

where D is the number of data registers retrieved.

63.5+file increments

ISSCHR

ISSREC

PASS

unpredictable, but slow

unpredictable, but slow

depends on search time of Catalogs 1, 2, and 3 until

the named label or function is found.

PCLPS 799+l.9P+16G,

where P is the number of program registers cleared.

PO SA 83.5 to 281

POSFL 199+l7.9C+24.5R+file increments

where C is the number of characters scanned, and

R is the number of records scanned.

PSIZE

PORFL

746+4.1X

279+file increments

This formula assumes you are purging the last file in the

extended memory directory. Otherwise PURFL will be

slower and less predictable.

RCLFLAG 36.8

\..- RCLPT or

RCLPTA 192+file increments

'- REGMOVE 77+6.5D,

where D is the number of data registers in the block.

REGSWAP 75.6+7.4D

SAVEP

SAVER

SAVERX

SAVEX

SEEKPT or

359+99·FLSIZE+file increments

56+l2.5·SIZE+file increments

INT(X)=9: 192.6+9.9D

INT(X)19: 199.3+9.9D

59.6+file increments

SEEKPTA Data files X=9: 69.6+file increments

.991~X<1: 65.2+file increments

ASCII files X=9: l02.3+file increments

.991~X<1: 96.2+file increments

X~l Slower and less predictable.

-225-

56+2.6X SIZE?

STOFLAG X=alpha data: 35.1

X=bb.ee: approx. 58+20F,

where F is the number of flags restored.

X<>F 100

XTOA X=numeric:

x=alpha data

approx. 48

47+3.7C,

where C is the number of characters appended,

plus 1 or 2 ms if ALPHA is not clear.

AS ROOM unpredictable

CLRGX 67.6+1.190

EMROOM

RESZFL

I REG?

91+file increments

unpredictable

53

XcompareNN? 45 to 50 ms, minus about 4 ms if Y=0.

-226-

APPENDIX C

HP-41 BOOKS, PUBLICATIONS, AND MODULES

This appendix lists several excellent sources of further

~ information about your HP-41 system. These range from the

introductory to the very advanced •
. '-...-

1. An Easy Course in programm~ the HP-41, a book by Ted

Wadman and Chris Coffin. This is by far the best book for

anyone who has trouble getting through the HP-41 Owner's

Manual. If you know a calculator novice who needs a very easy

~ to read, simple, introductory book on the HP-41 calculator,

this is it. I f your dealer does not carry this book, you can

\..- order it from:

Grapevine publications, Inc. , Dept. X

P.O. Box 25724

Portland, OR 97225 U.S.A.

The price per copy is $15.00 plus shipping, which is $2.00

\.~ (USA), $3.50 (Canada), or $6.00 (elsewhere). Checks must be

payable through a U.S. bank.

\
"--"

2. HP-41 Synthetic programm~ ~ade Easy, a book by Keith

Jarett. 192 pages, plastic spiral bound. The most up-to-date

and readable introduction to the fascinating subject of syn­

thetic programming. Contains application programs for the

Extended Functions and Time modules. Works equally well with

the HP-41C, CV, or CX. Includes a plastic Quick Reference

Card for Synthetic programming, a $3.00 value. If your dealer

does not have this book, you may order it directly from:

SYNTHETIX, Dept. X

P.O. Box 113

Manhattan Beach

CA 90266 U.S.A.

The price per copy, is $16.95 plus shipping, which is $1.00

-227-

(USA, book rate), $2.lcH' (USA, United Parcel), $3.00 (USA or

Canada, air mail), or $5.55 (elsewhere, air mail). California

residents add sales tax. Checks must be payable through a

U.S. bank. This same price and shipping schedule applies to

"HP-41 Extended Functions Made Easy".

3. The HP-41CX Owner's Manual, in two volumes. An excellent

general HP-41 reference. These are the best, most complete

calculator manuals HP has ever produced. Order them through

your dealer or direct from HP (call 800-538-8787). The part

numbers are 00041-90474 (Vol. I) and 00041-90492 (Vol. II).

4. Synthetic Programmi.!!..9. on the HP-4lC, a book by William C.

Wickes. 92 pages, softbound. The first book on synthetic

programming, and an excellent follow-up to "HP-41 Synthetic

Programming Made Easy" (above). Contains many useful details

needed to complete your knowledge of synthetic programming.

You can order it from:

Larken Publications

4517 NW Queens Ave.

Corvallis, OR 97330 U.S.A.

The price is $11.00 postpaid, by surface mail. For airmail,

add: $1.00 (USA, Canada, Mexico), $2.00 (Europe, South Amer i­

ca), or $3.00 (elsewhere). Checks must be payable through a

U.S. bank.

5. Calculator Tips and Routines (Especially for the HP-4l),

a book edited by John Dearing. 130 pages, spiral bound. This

book contains many listings of routines from the PPC ROM (see

item 6), plus a great number of other short, useful instruc­

tion sequences and tips. This book is available from dealers

or directly from:

Corvallis Software, Inc.

P.O. Box 1412

Corvallis OR 97339-1412 U.S.A.

-228-

The price is $15 within the USA and Canada, $20 elsewhere,

airmail prepaid. Checks must be payable through a US bank.

6. The PPC Calculator Journal, published by Personal Program­

ming Center, a non-profit, public benefit California corpora-

~ tion dedicated to personal computing. The issues from July

1979 (Volume 6, Number 4) to the present contain a wealth of

''-.-

information on the HP-41 system. The PPC Calculator Journal

is the most up-to-date and comprehensive source for such

information.

To obtain PPC membership information and a sample Jour­

nal, send a 9" by 12" self-addressed stamped envelope with 3

ounces of postage to:

PPC, Dept. XF

2545 W. Camden Place

Santa Ana, CA 92704 USA

7. The PPC ROM, an BK custom ROM module des igned by PPC mem­

bers and manufactured by Hewlett-Packard. The PPC ROM con-

~ tains 122 programs of general utility, and it comes with a

500-page User's Manual. It is an excellent value both for its

~ utility and as a learning tool, because all the programs are

fully documented and accompanied by line-by-line analysis.

Many calculator dealers now carry the PPC ROM. You may

also write to PPC at the above address for price and ordering

information. Mark the lower left corner of your outer envel­

ope "PPC ROM ordering info" and enclose a self-addressed,

stamped envelope if possible. A substantial discount on the

PPC ROM is available to PPC members. This discount could

almost pay for your first year's membership.

B. The AME Port-X-Tender, a flat, thin box that fits under the

HP-4l and adds six more plug-in positions, for a total of ten.

~_ The 6 extra slots can be used for any modules or peripherals,

including the HP-IL module. These extra slots are switchable,
''-....

-229-

allowing you to switch between two sets of extended memory if

you have an HP-41C or cv (this will not work with the CX

because some of the extended memory is internal and cannot be

switched). A lithium battery maintains the contents of all

modules, whether switched on or not. The Port-X-Tender plugs

into port 3 with a short cable. The box is held in place with

fabric fasteners. No modifications to your HP-4l are re­

quired. If your dealer does not carry the Port-X-Tender, mail

your order to:

AME Design

2554 Lincoln Blvd. Suite 5000

Marina Del Rey, CA 90291 U.S.A.

Telephone (213)-306-1249

The US price is $149.95 plus $5.00 for shipping. Elsewhere,

please write for price information. California residents

please add sales tax.

9. Double and Triple XFUNCTIONS and XMEMORY modules. These are

multiple modules in a single package. This frees some of your

4 ports for other uses, so you don't have to resort to swap­

ping modules in and out of the calculator. The prices are:

2 XMEMORY $160.00 (for the HP-41C, CV, or CX)

XFUNCTIONS + 1 XMEMORY $160.00 (for the HP-41C or CV only)

XFUNCTIONS + 2 XMEMORY $250.00 (for the HP-41C or CV only)

These prices include manuals and shipping.

dents add sales tax. Mail your order to:

California resi-

Software, Operations, and Systems Co.

945 Medford Rd.

Pasadena, CA 91107 U.S.A.

Trade-in credit is available for any single .odules you may

have. Write for details. Other multiple modules are also

available.

-230-

APPENDIX D

BARCODE FOR PROGRAMS

Barcode is provided here for all but the shortest

programs in this book, so that you may conveniently enter

these programs into your HP-41 using the 82153A Optical Wand.

If you have a wand or if you can borrow one, this will save

you some time.

Al~~ protect the surface of the barcode with a clear

plastic sheet. I t may also be helpful to place a clean dark

sheet of paper behind the barcode to improve the contrast.

If your barcode is not readable, try inking in any

incomplete bars, scanning the rows faster with the aid of a

straightedge, or holding the wand at a different angle. If

all else fails, try another wand.

I f you have a card reader or tape dr i ve, you should

record these programs in case your dog or cat finds this book.

Extended memory should not be considered as permanent storage,

'- since it is susceptible to MEMORY LOST.

-231-

BESSEL FUNCTION

PROGRAM REGISTERS NEEDED: 12

PAGE 1
OF1

11~~III(fll 11
ij~illlrtlrlll1l1l1l1l1l1l1l1l1l11l11l1l1ll1l1l1l1l1l1ll1l1l1l1ll11l1ll1l1l1l1l1l11l1l1ll1ll1l1l11111111111111111111111111111111111
@ill1if1

1

111

ijiUliliiilliiilll111111111111111111111111111111111111111 ,j

ijiliflliillfiilllil11

ijll~illiilliiilli111
ijiUlliiilliillllllllllllllllllllllllllllll

VIEW ASCII FILE

PROGRAM REGISTERS NEEDED: 13

PAGE 1
OF1

111Iilllillllll111l111 111111111 1111 11111111111111111111111111111111 111111111 111111111111111 111111 11111111111111111111111111111111111

11~ililiilllilll111
ij~illfI1~IIli)II11I111111I1I111I11I11I1I1I111I1I1I111I1I1I1I1I1II1II1I111I1I111
ijiUlil(filllll11lll111111111111111111111111111111111111

11ijijll Iii Iliiill 111111111111111111111111111 111111111111111111 111111111111111111 1111111111111 11111111111111111111111111111111111111

Imililiirll1111111111111111111111111111111111111

Ijijijllliillifll"IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1111111111111111111111

-232-

\...... WRITE, PARTIAL WRITE, READ,
PARTIAL READ ASCII FILE
PROGRAM REGISTERS NEEDED: 42

PAGE 1
OF2

'-

~illllflllfll 11
~~ijfllilllijllill11
liiHflljilliiill111

~ijllilliillif(1I11111111II11111111111111II1I11
li~fliliiilliflllllllllllllllllllllllllllllllllllllllill 111
~ilililiiilliilllill 111
liillllliflllil'lIlllllllllIllIlllllllllllllllllllIllIIllllllIIll111I

~~ijlilrlilllII111
liilmlliillliilllllllllllllllllllllllllllllllllllllllill11

~ij~iillillflllill11
liilililliillliillill111II

liil~iiliirlliillill111
~mliilrliIIII'1111111111I111111111111111II1111I11111111111I111
liiUlIU'liill'llilll111

~ij]IiI~lrlilliilll11
~ijilirll(illilliiillllllllllllllllllllllllllllllllllllllill11
~ijiliflljrlllilliillill 111
~iHl~llilillliiill 111

-233-

WRITE, PARTIAL WRITE, READ,
PARTIAL READ ASCII FILE

PAGE 2
OF2

limliilillflliiilllill111I

li~]lilliililfill111
liiUlIlliillllillilll1i11

li~]fllI1iijlliiill111II
~~ijl~llifillllill1111111

BLOCK CLEAR USING ~REG

PROGRAM REGISTERS NEEDED: 7

PAGE 1
OF1

~~~llllllillllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111111111 
~rmllililllllllllllllll1l1llll11lllll1lll1llll1ll1lll1llll1lll1ll1111111111111111111111111111111111111111111111111111111111111111 --

~rl]illirllllrlllllllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111 
~~mlliilliijlllllllllllllllllllllllllllllllllllllllllllill111111 

-234-



1...;. 
BLOCK ROTATE PAGE 1 

OF 1 
.,- PROGRAM REGISTERS NEEDED: 7 

'-
ROW1 (1 :7) 

'- 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 2 (8: 15) 

"- 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111III 
ROW3 (15:25) 

\....- 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 4 (25: 26) 

\....- 111111111111111111111111111111111111111111111111111111111111 

'-

\...... 

VIEW REGISTERS PAGE 1 

'- OF1 

PROGRAM REGISTERS NEEDED: 9 

\..... 

ROW1 (1 :4) 

"-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

'--

ROW2 (4: 12) 

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I 

"-

ROW 3 (13: 22) 

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I 
ROW 4 (23: 31) 

'--- 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111III 
ROW 5 (32: 33) 

"- 11111111111111111111111111111111111111111111111111111111111111111111 

"-

\..... 

'-

\.... 

'-..--

'-
-235-



ALPHA SORT 

PROGRAM REGISTERS NEEDED: 11 

PAGE 1 
OF1 

11~"jlljllrlllllllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111111111111 
~ijililfillliilllllllllllllllllllllllllllllllllllllllllllill 11111111111111111111111111111111111111111111111111111111111111111111111 
~ijilillIllrllllllllllllllllllllllllllllllllllllllllllllllllll 111111111111111111111111111111111111111111111111111111111111111111III 
11ij]ilfillli~)1I11111111I11I1111111111111I111II11I1II11111111111111111111111111111111111111111111111111111111111111111111111111111 
~~mlli~llrllllllllllllllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111 
~il]lilll1111illllllllllllllllllllllllllllllllllllllllllll1111111111111111 

COUNT BYTES WITH XMEMORY 

PROGRAM REGISTERS NEEDED: 8 

PAGE 1 
OF 1 

~~Hlllillilllllllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111111111111 
ROW2 (5: B) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~~flill(~11111111111111111l11111l1ll1111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111I 
ROW 4 (14: 23) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

-236-



~ SOLVE, DERIVATIVE, INTEGRAL 

PROGRAM REGISTERS NEEDED: 58 

PAGE 1 
OF2 

~~"jllllllllllllllllllll1llll1lllllllllll11ll1lllllllllllll 1111111111111111111111111111111111111111111111111111111111111111111111 
~mllilililillllllllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111111 
~iUfll(lI1Illijlllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111111111 
~~flil(11Iilliiillllllllllllllllllllllllllllllllllllllllllll 111111111111111111111111111111111111111111111111111111111111111111111111 
~mlil(~illiillllllllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111II 
~ij~lllirllrfllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111111111 
~rlilillililifllllllllllllllllllllllllllllllllllllllllllllill 1111111111111111111111111111111111111111111111111111111111111111111111 
11ij~li1111111l1l111111111111111111l11ll11111111111l11ll111l1l111l111111111111111111111111111111111111111111111111111111111111111II 
~mlil(~iIIUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 11111111111111111111111111111111111111111111111111111111111111111111 
ROW 10 (54: 57) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~ijillilliilliillllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111III 
11iUllll(Wlljillllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111 

~m111111111flllllllllllllllllllllllllllllllllllllllllllll 1111111111111111111111111111111111111111111111111111111111111111111111111 
~rlillil11lliillllllllllllllllllllllllllllllllllllllllllllll 11111111111111111111111111111111111111111111111111111111111111111111111 
11iUiflliilliillllllllllllllllllllllllllllllllllllllllllllili1111111111111111111111111111111111111111111111111111111111111111111111 

~rlillillllillIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111111111111111111111111111111111111111111111111111111111111111111 
~rlillllljr~lfljillllllllllllllllllllllllllllllllllllllll 1111111111111111111111111111111111111111111111111111111111111111111111III 
11ij~llilljjlllflliillllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111111 

-237-



SOLVE, DERIVATIVE, INTEGRAL PAGE 2 .~ 
OF2 

~ijmililililfillillllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111111 
~iHilllirlilfliilllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111 ~ 
~ililfllilirillifilillllllllllllllllllllllllllllllllllllllil11111111111111111111111111111111111111111111111111111111111111111111111 
11iHiilliilillIlilllllllllllllllllllllllllllllllllllili1111111111111111111111111111111111111111111111111111111111111111111111111111 

~miilfliillliiillllllllllllllllllllllllllllllllllllllllill 1111111111111111111111111111111111111111111111111111111111111111111111 
11il~iillllillliilllllllllllllllllllllllllllllllllllllll 111111111111111111111111111111111111111111111111111111111111111111111111111 
11il~iillliill111rilllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111111111111111111 
~ilmil111lrll1liiilllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111I 
11ilmililifillifillllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111111111 

11ilmilifliilflIilllllllllllllllllllllllllllllllllllllllllllili1111111111111111111111111111111111111111111111111111111111111111111 

11~~i~lliril~lrillllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111111111111 
~ijillhiillliiillllllllllllllllllllllllllllllllllllllllllllll 1111111111111111111111111111111111111111111111111111111111111111111II 
~ij~ifllrilililrlllllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111 
~mllilrllrllnlllllllllllllllllllllllllli 

-238-



'-' NAME-ADDRESS-PHONE PAGE 1 
MAILING LIST PROGRAM OF2 
PROGRAM REGISTERS NEEDED: 64 

"-

"- ROW 1 (1 :4) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
"- ROW2 (4: 13) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
"- ROW 3 (14: 19) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
"- ROW 4 (20: 24) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
"- ROW 5 (24: 26) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
""- ROW 6 (26: 29) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
"- ROW 7 (29: 36) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"- ROW 8 (37: 44) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 9 (44: 45) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 10 (46: 54) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 11 (55: 62) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 12 (63: 66) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 13 (67: 72) 

\....... 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW14 (73:81) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

\.......-
ROW 15 (82: 86) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

',-
ROW 16 (87: 97) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~ 
ROW 17 (98: 100) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW1S (100:106) 

'--
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

'-

-239-
'-...-



NAME-ADDRESS-PHONE 
MAILING LIST PROGRAM 

PAGE 2 
OF2 

~~~llillirflljjllillllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111 
~~iliiljlirilijiilllllllllllllllllllllllllllllllllllllllill 111 -

~~iIIliirrlljrllilll 111
~rliliillirflljrillllllllllllllllllllllllllllllllllllllill 111
~mi~l(jl1flllililll 11 -

~rliliiliirflljiiillill 11
~~illi1jfliljrllilll111III
~~iffliirllljrlilll 111
~~~iilliliiljI611illllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111 _ 

~~iflilliiillliiilllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111 
~rliliiliifrllililllllllllllllllllllllllllllllllllllllllllllill 11111111111111111111111111111111111111111111111111111111111111111111 ~ 
11~ijiilliffllliiilllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111III -

~~ililljliIlIilllllllllllllIlllIllIlllllllllllllIIlllllllllll11111111111111111111111111111111111111111111111111111111111111111111 
~mflll1iililliillllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111 ~ 
~mllill(jliillirlilllllllllllllllllllllllllllllllllllllill 111111111111111111111111111111111111111111111111111111111111111111111111 
~miilrilillirlilllllllllllllllllllllllllllllllllllllllil 1111111111111111111111111111111111111111111111111111111111111111111111111 
~rliflllirlll~liilllllllllllllllllllllllllllllllllllllllllllllllll 

-240-



~ TEXT EDITOR PAGE 1 
OF4 

PROGRAM REGISTERS NEEDED: 115 

'--

"-
ROW1 (1 :8) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 2 (8: 16) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 3 (17: 25) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 4 (26: 31) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

'-
ROW 5 (32: 39) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 6 (39: 44) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 7 (44: 51) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

'-
ROW 8 (51 : 57) 

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I 
ROW 9 (58: 65) 

"-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 10 (66: 75) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW11 (75:78) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 12 (79: 84) 

'''"-
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I 
ROW 13 (85: 91) 

\....-
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I 
ROW 14 (92: 98) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 15 (99: 106) 

''-..-

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 16 (107: 114) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 17 (115: 122) 

"- 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 18 (123: 130) 

"-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"--
-241-



TEXT EDITOR PAGE 2 _ 
OF4 

~~fli~I(lllillllrlllllllllllllllllllllllllllllllllllllll 11111111111111111111111111111111111111111111111111111111111111111111111111 
~~~Iihillililililllllllllllllllllllllllllllllllllllllllllllllil 11111111111111111111111111111111111111111111111111111111111111111 ~ 
~ilillill(lllillmll 111 -/

~~illilllliillliiilllllllllllllllllllllllllllllllllllllll111I ~.
~ilifflljrlllllIII 111 -/

~mrilllliilllilll11II
~ililiillllifllll1f1lllllllllll1lll1lllllll11lll11lllllllll1llll1l 111
~ililihillflimillill 11
~~il~lljillliirlll111
~~~Ilhlliillillllllllllllllllllllllllllllllllllllllllllllllllill 1111111111111111111111111111111111111111111111111111111111111111 ~ 
~~illililirlf~jillllllllllllllllllllllllllllllllllllill 11111111111111111111111111111111111111111111111111111111111111111111111111 
~~fliillirfllijiilllllllllllllllllllllllllllllllllllllllllllllllllllllllllil 111111111111111111111111111111111111111111111111111111 
~mmlrljillUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 11111111111111111111111111111111111111111111111111 
~mifllrljrllnlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllill 111111111111111111111111111111111111111111111 
li~~lifllfll111irllillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111 
liilillhillflliiillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllil11111111111111111111111111111111111111111111111111 

~ilillillrilillililllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllill 1111111111111111111111111111111111111111111111111 
~~iffilliilliiilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllil 11111111111111111111111111111111111111111111 

-242-



\...:..- TEXT EDITOR PAGE 3 
OF4 

."-.. 

ROW 37 (250: 255) 

'--

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 38 (256 : 264) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

'-
ROW 39 (264: 271) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 40 (271 : 273) 

'--
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 41 (273: 279) 

'-
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I 
ROW 42 (280: 286) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 43 (286: 291) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 44 (291 : 296) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 45 (297: 304) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 46 (304: 309) 

'--
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 47 (310: 312) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 48 (312: 320) 

"--
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I 
ROW 49 (320: 325) 

\..... 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 50 (326 : 331) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 51 (332: 337) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 52 (337: 339) 

~'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 , 

i ROW 53 (339 : 339) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 54 (340: 343) 

'- 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

'-.::: 

-243-



TEXT EDITOR PAGE 4 < 

OF4 

11illlr~I(~iiIIIllilllllllllllllllllllllllllllllllllllllllllllllllllllll 11111111111111111111111111111111111111111111111111111111111 
~il~iillirilliiiillllllllllllllllllllllllllllllllllllllil1111111111111111111111111111111111111111111111111111111111111111111111111 
~iMilrlirlllirlllllllllllllllllllllllllllllllllllllllllllll 111111111111111111111111111111111111111111111111111111111111111111111 
11~Uiill(~iil~iiillllllllllllllllllllllllllllllllllllllllllllll 111111111111111111111111111111111111111111111111111111111111111111 
~ij~~ililfflliflllllllllllllllllllllllll1lll1l11l1llll11lllll1ll 11111111111111111111111111111111111111111111111111111111111111111 
~miilliillliiilllllllllllllllllllllllllllllllllllllllllll 111111111111111111111111111111111111111111111111111111111111111111111111 
~ijIIIII(~iiIlIliillllllllllllllllllllllllllllllllllllllllllllll 1111111111111111111111111111111111111111111111111111111111111111111 ~ 
l1ijlliillillliiflllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111 

-244-



......... HP-16C SIMULATOR 
PAGE 1 

OF2 

"-
PROGRAM REGISTERS NEEDED: 43 

'-- ROWl (1 :4) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"- ROW2(4:13) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
,,-. ROW 3 (14: 21) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111III 
,--. ROW 4 (22: 29) 

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I 

'--- ROW 5 (29: 36) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 6 (37: 44) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~ 
ROW 7 (45: 54) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~ 
ROW 8 (55: 62) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

'---
ROW 9 (63: 71) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111III 

"-
ROW 10 (72: 79) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

'--
ROWll (80:88) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-
ROW 12 (89: 98) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 13 (98: 107) 

'-
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I 

'--
ROW14 (108:115) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW15 (116:122) 

'---
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

'---
ROW 16 (123: 131) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 17 (132: 141) 

'---
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 18 (142: 151) 

'---
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

\....--

-245-
\..... 



HP-16C SIMULATOR PAGE 2 
OF2 

11~[lfllfllilllif(1111II1111I1I111I11I11II1I1II1I1II11111I111I11II111II11II1111111111111111111111111111111111111111111111111111111 
11fHfll11

1

1iilliiiilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli111111111111111111111111111111111111111111111111 

11~ijflllifllllfliilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111 
11fHlliifllillliiilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli1111111111111111111111111111111111111111111111 

11~millirlllliiillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111 

-246-



i......- EXTENDED FUNCTIONS PAGE 1 
OF1 

'-
PROGRAM REGISTERS NEEDED: 11 

"'- ROW1 (1 :6) 

"-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW2 (7: 9) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW3 (9: 13) 

"-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 4 (14: 20) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
~ ROW 5 (21 : 28) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
"-

'-

ROW 6 (28 : 32) 

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

"-

EXTENDED FUNCTIONS- PAGE 1 
"- TIME MODULE-WAND OF 1 

PROGRAM REGISTERS NEEDED: 10 

....... " 

ROW1 (1 :4) 

'--
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW2 (5: 11) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW3 (11 :14) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 4 (14:20) 

'-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 5 (21 : 29) 

"-
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 6 (29: 29) 

:\..... 
11111111111111111111111111111111111111111111 

\..... 

'-... 

"'-

-247-
'-



VERSION 1 
VERIFY CARD 

PROGRAM REGISTERS NEEDED: 16 
PAGE 1 

OF1 

Ij~ill lillilllllllllllllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111 

1111111lli 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~Mlllllii 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~ml 11'lllIiillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli11111111111111111111111111111111111111111111 

~mlilliflillilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli111111111111111111111111111111111111111 
~~~flllllll~1I1I1I1I1I11I1I1II1I1I1I1I11I11I1I11I1I1I1I111I11I11I11I1I11II1I1I1I11I111I11111111111111111111111111111111111111111 
limlilliill iillill11111111111111111111111111111

Il~~ilmlliillill11
11~ilrllijlliiill1111111111

PURGE FILE FIX

PROGRAM REGISTERS NEEDED: 6

PAGE 1
OF1

Ij~jillillilli11
lilliiilillillill111

li~UiI~lIiilli111 ROW4 (15: 15)

11

-248-

'-...- VERSION 2 PAGE 1
VERIFY CARD OF1
PROGRAM REGISTERS NEEDED: 16

"-

.--- ROW 1 (1 :4)

'-...-
11
ROW 2 (4:5)

11
"- ROW3 (6: 11)

11
"- ROW 4 (11: 17)

11
'-...- ROW 5 (17: 21)

11
""- ROW 6 (22: 28)

11
""- ROW 7 (28: 32)

11
\".... ROW 8 (33: 41)

11
"-

ROW 9 (41 : 45)

11
'-

'-

"-
EXECUTE PROGRAM IN PAGE 1

EXTENDED MEMORY OF1

PROGRAM REGISTERS NEEDED: 3
.........

ROW1 (1 :4)

"-
11
ROW 2 (5:7)

'-
11

"-

"-

"-

-249-

SAVE, GET, SUSPEND, REACTIVATE
KEY ASSIGNMENTS
PROGRAM REGISTERS NEEDED: 31

PAGE 1
OF1

11illIII111

11~~illilliljll111
~mlilmillillil 1111111111111111111111111111111111111
~iijlilillililllil111111111111111111111111111111111
~illlilriIllI(II 111
~mill(iillililllill111
~il1fllirllllrll111
11il~lil(i~lilll1l111I1IIII1II11III11II1III11I11I1I11IIII1III1I111II1I11II11I1I11
11~1flfiilliill11
~~~lrllrlillf(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11111111111111111111111111111111111111 
~mliliflilflllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli111111111111111111111111111111111111111111111 
~~~11~lllfllifllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111 
~imflilifilliiilllill11
~mflillillliiilllilHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
11mlllillflllillilllill111

~ilmil11lirlliilll11
~~fliilfillilliiliilllllllllllllllllllllllllllllllllllllli

-2513-

GETK INITIALIZATION

PROGRAM REGISTERS NEEDED: 14

PAGE 1
OF1

~mlilljllfllill111III
~ililillillilllill111
~ililllrllirlll111III
~ijilillillmlli11
~illlhlrIllI(11111111111111I1111II111II111II11II111I111I11II1111I11111I111
~i~lilliflliflll11
~mlll~1IIiilll11
~ij]illillliilllllllllllllllllllllllllllll

-251-

WRITE FILE, READ FILE,
RETRIEVE PROGRAM FILE
PROGRAM REGISTERS NEEDED: 60

PAGE 1 ~
OF2

lillill111

Imilill111

~~[llliIllII111
lillililii~lil)111I1I1I111111I1I1I11I1II111I1I1I1I1I1111I1II1111I1111I1I1I111
liij~lililllilll11l1l1l1ll1ll1l1l11ll1l1l11ll1l1l11ll1l1l1lll1l1l11ll1l1l1l1lll1l1lll1l1l11
limlif~illiiilllill11
11ijijjll1illiiilllil111

111lililli~lilll1l1l11l1l1l1l1l1l1ll1l1l1l11lll11lll1l1l1l1l11lll11ll1l1l1lll11lll1l1l1l111
11~~flliflliilll1111111111111111111111111111111111
lii~jliimlilillill11
~~[jliljllirlllllllllll"llllllllllllIlIllIlIlIlIlIlIlllIlllIllllIl111 -

li~~llllmlilll11111111111111111111111111111111
ImUiillj~IUII111111111111111111111111111111111111
liij~111Iiiflli)11II1I1I11II11I1111I11I11I1II1II111II11I1I1I11II111II11I1I1I11I1II1II1I11
li~ijlljliilll1i11
11ijilfillfllliilll111111111111111111111111111111111111111

11rl~I~lllljllilliillli111
11ijillil1

1

11111ifilllil111

-252-

""- WRITE FILE, READ FILE,
RETRIEVE PROGRAM FILE

PAGE 2
OF2

~mlliliillilillilllill111
~ilUflilrlililUII11
~miillllrfllifll\111111111I111111II11I1I111111111II11I111I111
~mliillllrlllli\1111111111111II11II11I1111I1111II111II111I1I11II111
~~ijflllillillili\111111111I11111111111111II1I11I1II111III
~mlliliiliillmlllill11III
~~rliiliiliilillillllllllllllllllllllllllllllllllllllill 11
~~Ulilif~lirlill11
~m~IIII[lIjifll11
~ililiiliililliill111
~~iliililiillill\111111111II11I1111111II1111111I111111I111I111
~~ij~1111fillllrlll11
~ililijlllililill\1111111111111I1111111I111II11111111111II1I111II
~~ijirlirlliliUII11
~~ilirlirllilllrll\111111I111111111II11111111I1I11

-253-

ASSIGN, PROGRAMMABLE ASSIGN, MAKE
KEY ASSIGNMENTS WITH XFUNCTIONS
PROGRAM REGISTERS NEEDED: 54

PAGE 1
OF2

~~~1)111111111111111111111111111111111111111111111111111111111111111111111"'1I1I111I1I1I1I111111111111111111111111111111111111111 
~~ijilllllrlllllllllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111111 
11~~llllI1lllillllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111111111111 
~~~illiilli~)1I1111111111I1I1II11111I11I11111111111111II11I1111111111111111111111111111111111111111111111111111111111111111111111 
11mfliilll1i1111111111111111111ll11111111111111ll11ll11III '/

~~ijliliillifllill11II .

11mlilllilliilllill111

~millWllfll'lIIllllllllllllllIlllllIIllllIllllllllIlllllllllll111 '"

~mlilfi"'II111
Ilijijilllliill111

11~~I)jllililiiilll111
~~]lIiIlfllliill111
11~llrll~lliilll11
11flillillilillil111

~fliliillilliljjillllllllllllllllllllllllllllllllllllllill 111
~~Ulillilliljiiillil111 -

11miiliifillfl1fllill11

~flilliliilfilililillill111
-254-

~ ASSIGN, PROGRAMMABLE ASSIGN, MAKE PAGE 2
KEY ASSIGNMENTS WITH XFUNCTIONS OF2

'--

',- ROW 19 (141 : 149)

'-
11
ROW 20 (149: 155)

'--
111I
ROW 21 (155: 160)

'-
11
ROW 22 (161 : 167)

'-......
11
ROW 23 (167: 174)

111III
'- ROW 24 (174: 179)

11
"- ROW 25 (179: 185)

11
"-...- ROW 26 (186: 192)

11
'-- ROW27 (192: 196)

11
....... - ROW28 (197: 204)

11
'\.,... ROW 29 (205: 209)

11
'--

'-

'-

'-

'''-.--

'--

'-

'--

-255-
',-

NOTES

-257-

NOTES

'-

-258-

NOTES

-259-

NOTES

-2613-
-"

NOTES

-261-

INDEX

ALENG ••••••••••••••••••••• 63

"ALSORT" •••••••••••••••• 95-96

ANUM •••••••••••••••••••••• 65

APPCHR ••••••••••••••••• 37,5l

APPREC ••••••••••••••••• 35,50

ARCLREC ••••••••••••••••••• 36

AROT •••••••••••••••••••••• 57

ASCII •••••••••••••••••••••• 2

ASCII character codes •• 6i-61

ASCII (or text) file •••••• 33

"ASG" •••••••••••••••• 207-2l3

ASROOM ••••••••••••••••• 51-52

ATOX •••••••••••••••••••••• 59

"BC" •••••••••••••••••••••• 8 fa'

"BCE" ••••••••••••••••••••• 8l

Bessel function •••••••••••• 7

Bug •••••••••••••••••••••••• 3

Byte •••••••••••••••••• 23, 97

Byte count •••••••••••••••• 97

Card Reader •••••••••• 4,5,22l

"CBX" ••••••••••••••••• 97-l00

Checksum •••••••••• 98,181,l99

CLFL ••••••••••••••••••• 31,41

CLKEYS •••••••••••••••••••• 84

CLRGX ••••••••••••••••••••• SI

Compiling •••••••••••••• 7,189

"Crash" recovery ••••• 2l4-2l5

CRFLAS •••••••••••••••••••• 34

CRFLD ••••••••••••••••• 24,l07

Current (working) file •••• 2i

Current program ••••••••••• 15

DELCHR •••••••••••••••••••• 4B

-262-

"DERIV" •••••••••••••••••• ll2

Differentiation •••••• lll-l20

Directory ••••••••••• li-ll,20

ED •••••••••••••••••••• 52,l4l

"EFTW" ••••••••••••••••••• l77

EMDIR ••••••••••••••• li-ll,20

Execution time ••••••• 223-226

"EXM" •••••••••••••••• l89-l92

.. FEX 70

File ••••••••••••••• 1-2,l0,23

File headers •••••• 23,l80-l8l

File pointers ••••• 25,l80-l8l

File types •••••••••••• 1-2,l0

FLSIZE ••••••••••••••••• l0,12

GETAS ••••••••••••••••••••• 42

GETKEY ••••••••••••••••• 85-89

GETKEYX •••••••••••••••• 9i-93

GETP ••••••••••••••••••• 14,16

GETR •••••••••••••••••••••• 31

GETREC •••••••••••••••••••• 36

GETRX •••••••••••••••••• 25,27

GETSUB •••••••••••••••••••• 17

GETX •••••••••••••••••••••• 29

Header registers •• 25,l80-l8l

HP-l6 simulator •••••• l6l-l68

INSCHR •••••••••••••••••••• 38

INSREC ••••••••••••••••• 38,5l

"INTEG" •••••••••••••••••• l2l

Integration •••••••••• l2l-l30

Keycode ••••••••••••• 83,85,90

Local labels •••••••••• 82,l93

Mailing list ••••••••• l3l-l40

MEMORY LOST •••••• l69,l89,2l4

Memory map •••• ~ •••••••••• l79

Memory structure ••••• l78-l82

Normalization •••••••••••• 182

Partition code ••••••••••• 178

PASN ••••••••••••••••••• 82-85

PCLPS ••••••••••••••••••••• 18

peLPS warning ••••••••••••• l8

"PFF" •••••••••••••••• l87-l88

Pointers in XMemory ••• 25,l80

Port number •••••••••••••• 221

POSA ••••••••••••••••••• 63-64

POSFL ••••••••••••••••••••• 41

PPC •••••••••••••••••••••• 229

PPC ROM •••••••••••••••••• 229

Program file names ••••• 5,l80

PSIZE ••••••••••••••••••••• 75

PURFL ••••••••••••••••• l9,l82

PURFL bug •••••• 19,2l,l82,l87

npVAH ••••••••••••••••••••• 69

"RAS" •••••••••••••••••• 44-46

RCLFLAG ••••••••••••••••••• 67

RCLPT ••••••••••••••••••••• 28

RCLPTA •••••••••••••••••••• 28

REGMOVE ••••••••••••••••••• 76

REGSWAP •••••••••••••••• 77-79

~ RESZFL ••••••••••••••••• 32,45

Revision code •••••••• 4-5,22l

'- Root finder •••••••••• l0l-ll0

SAVEAS •••••••••••••••••••• 42

SAVEP •••••••••••••••••• 12,l5

SAVEP warning ••••••••••••• l2

SAVER ••••••••••••••••••••• 39

~ SAVERX ••••••••••••••••• 25,27

SAVEX ••••••••••••••••••••• 28

-263-

SEEKPT •••••••••••••••••••• 28

SEEKPTA ••••••••••••••••••• 26

SIZE? •••••••••••••••••••• 74

solutions to problems •••• 2l7

"SOLVE" •••••••••••••• l02-l03

Stack usage ••••••••••••••• 55

STOFLAG ••••••••••••••••••• 68

Synthetic programming.73,169

"TE" ••••••••••••••••• l4l-l59

Text editor •••••••••••••• l4l

"VAS" ••••••••••••••••••••• 42

"VER" •••••••••••••••• l83-l86

VER bug •••••• l83-l86,221-222

"VREG" •••••••••••••••••••• 92

"WAS" •••••••••••••••••• 44-46

"WFL"/"RFL"/"RPF" •••• l99-206

working file ••••••••••• 21,28

"XF" ••••••••••••• 171-l76,l72

XROM numbers ••••••••••••• 171

XTOA •••••••••••••••••••••• 58

XcompareNN? •••••••••••••• 94

X<>F ••••••••••••••• 71-72,l67

IREG? ••••••••••••••••• 93-94

INDEX TO PROGRAMS

Program Byte Page Barcode Description

name (s) count on page

JNX 80 7 232 Bessel function

PRELOAD 25 24 Register loader

VAS/PVAS 89 43 232 View ASCII file

WAS/PWAS/ write/Partial write/Read/

HAS/PRAS 291 47 233 Partial read ASCII file

AS ROOM 42 52 ASCII file room

PVA 29 69 Print or view ASCII file

FEX 24 70 FIX/ENG indirect X

BCI: 44 81 234 Block clear using REG

BR 43 220 235 Block rotate

CT 84 23 Clear top row

VREG 57 92 235 View registers

ALSOR'I' 71 96 236 Alpha sort
'~

CBX 52 99 236 Count bytes with XMemory

SOLVE/DERIV/ Solve/Derivative/

INTEG 405 103 237 Integral

NAP 447 138 239 Mailing list program

TE 803 158 241 Text editor

HP-16 297 164 245 HP-16C simulator

XF 74 173 247 Single-key XFunctions

EFTW 67 177 247 Alternative to "XF"

VER 112 185 248,249 Bug-less VERify

PFF 41 188 248 Purge file fixup

EXM 19 191 249 Execute extended memory

SAVEK/GETK/ Save/Get/Suspend/Reac-

SK/RK 212 197 259 tivate key assignments

IN 93 198 251 GETK/RK Initialization

WFL/RFL/ write file/Read file/

RPF 419 205 252 Retrieve program file

ASG/PASG/MKX 372 212 254 Synthetic key assignments

-264-

\...-

"-

~

"-

NAME

ORDER BLANK

Check your dealer for the best prices on HP·41 Extended Functions Made
Easy and HP·41 Synthetic Programming Made Easy. If your dealer does not
carry the book you want, use this order form.

Hp·41 Extended Functions Made Easy
An introduction to the Extended Functions module
(built into the HP-41CX). Helps you get the most
from your Extended Functions. Over 30 powerful
utility programs. $16.95 per copy.

HP-41 Synthetic Program ming Made Easy
An introduction to the creation and use of non·
keyable (synthetic) instructions. Very readable and
up·to·date. Multiples the power and convenience of
our HP-41. $16.95 per copy.

Quick Reference Card for Synthetic Program ming
An indispensable aid to synthetic programming.
$3.00 each.

Combined Hex/Decimal Byte Table
More compact, black·and·white reference card. $2.00
for I, plus $1.00 per additional card.

SUbtotal:

Sales Tax (California orders only, currently 6 or
6.5%)

Shipping, per book
within USA, book rate (4th class) $1.00
USA 48 states, United Parcel Service $2.00
USA, Canada, air mail $3.00
elsewhere, air mail $5.55

Shipping for plastic cards (any number)
Free with a book order or with a self·addressed
stamped envelope. Otherwise $1.50

Quantity Amount

$------

$------

$------

$------

$------

$------

Circle the applicable charges; enter shipping total here $ ______ _

Total enclosed: $=======
Checks must be payable through a US bank.

Mail to:

ADDRESS SYNTHETIX

CITY STATE ZIP
P.O. Box 113

Manhattan Beach
COUNTRY CA 90266 USA

UNLEASH THE POWER

OF YOUR EXTENDED FUNCTIONS!

The Extended Functions/Memory module, built into the
HP-41CX and available separately for the HP-41C and CV, is the
most powerful module that Hewlett-Packard sells for the HP-41. Un­
fortunately, the Owner's Manual barely hints at the true capabilities
of the extended functions and extended memory.

HP-41 Extended Functions Made Easy is the definitive book on
extended functions and extended memory, by a leading expert on
the HP-41 system. The book assumes no prior knowledge of
extended functions or extended memory. Instead, it leads you step
by step from the basic concepts of extended memory through
explanations of each of the extended functions and short examples
of their use.

The second half of the book introduces over 30 utility programs,
including a text editor, a mailing list manager, programs to store text
files on magnetic cards, mathematical programs (solve, integrate,
etc.), and much more. These programs make your extended
functions more powerful, convenient, and fun to use. Barcode,
included for all programs, makes the programs as easy to load as they
are to use.

If you own an HP-41CX or an Extended Functions/Memory
module, you need this book!

-

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

