1

CCCCCCCCCCCCCCCCCCCCTC0CCC

HP-41
EXTENDED FUNCTIONS
MADE EASY

_ “% a0

muun
g et

55
=
=
=
=
=
=
=

For the HP-41C, HP-41CV, and the New HP-41CX

C)

¢

c c c c c c ¢ c c c ¢ Cc ¢ C ¢ ¢ C ¢ ¢

HP-41

EXTENDED FUNCTIONS
MADE EASY

By Keith Jarett

© 1983, SYNTHETIX
P.0. Box 113

Manhattan '‘Beach
CA 90266 USsA

Library of Congress Card Catalog Number: 83-¢58952
ISBN: 0-9612174-1-3

This book may not be reproduced, either in whole or in part,
without the written consent of the publisher, except that the
programs contained herein may be reproduced for personal use.
Permission is hereby given to reproduce short portions of this
book for purposes of review.

Printed in the United States of America

PREFACE

DEDICATION
This book is dedicated to my wife, Catherine Van De Ros-
tyne, who could not have been more helpful and supportive.

ACKNOWLEDGEMENT

The most 1important contributions to this book were made
by Clifford Stern, who was the technical consultant throughout
its development. Clifford is one of a handful of "grand
masters" of HP-41 programming., He is probably more familiar
with the subtleties of the HP-41 operating system than any
other individual. Clifford wrote most of the very advanced
utility programs in Chapter 10, checked the book for technical
errors, and provided valuable suggestions for its improvement,

Other contributors to this book were Erik Christensen,
who wrote the text editor program and documentation that
appear in Chapter 8, Tapani Tarvainen and Gerard Westen, who
wrote the amazing key assignment program in Chapter 16, and
Alan McCornack, who wrote the mailing list program in Chapter
7 and provided many helpful suggestions during editing.

ABOUT THE AUTHOR

Keith Jarett has been addicted to Hewlett-Packard calcu-
lators since he bought an HP-45 in 1973 and wrote manual
keystroke programs for it. In 198¢ and 1981, he coordinated
the development of 67 synthetic routines for the PPC ROM (see
Appendix C), a custom program module by and for HP-41 users.,

He is currently a Systems Engineer in Hughes Aircraft's
Space and Communications Group. He graduated from Culver
Military Academy in 1972, received a B.S. degree in Electrical
Engineering from Cornell University in 1975, an M.S. in E.E.
from Stanford in 1976, and a Ph.D. in E.E. from Stanford in
1979.

For price information on this book, write to: SYNTHETIX,
P.0O. Box 113, Manhattan Beach, CA 90266, Enclosed an ad-
dressed return envelope for faster reply. Dealer and distrib-
utor inquiries are welcome,

The material in this book is supplied without representation
or warranty of any kind, Neither the publisher nor the author
shall have any liability, consequential or otherwise, arising
from the use of any material in this book.

—ii-

-

p

c.c c c c c c c ¢ ¢ ¢ ¢ ¢

TABLE OF CONTENTS

INTRODUCTION..o.oooo.ooo.c.ooococoooooooooo.-ooooooooooooo-o-l

M BUGS™ ceceeccccccoeacensrsoscasscsoccscsssossscscosascssasnscscsssl

HOW TO USE HP-41 EXTENDED MEMORY AND EXTENDED FUNCTIONS

Chapter 1: Saving Programs in Extended MemMOrV.seecoesess?

1a,
1B.
lc.
1D,
1E.
1F.

Creating a Program Fil€..eeccecoeocccccscsoscsoassse/
The EMDIR functiON..ceececceccsccceccssccacaccsecsll
Using SAVEP and GETP.cccccssscccsscsscsascasssascall
Advanced features Of SAVEP..cececoccccsacccnsaeaesld
Advanced features or GETP, GETSUB, PCLPS.cccceesalb
Clearing a file from extended MEMOXYe.eeeoeeecoeessld

Chapter 2: Saving Data in Extended MemoOryY...eceeeeeceoese23

2A,
2B,
2C,
2D,
2E.

File Structure.............'............'C....Q..23
SAVERX and the "working”™ fil€..eeoececccccosassccsld
GETRX and the register pointer.ccececccceccssceceess2s
The SEEKPT and RCLPT functionSecccecececccscscossssesell
SAVEX, GETX, SAVER, GETR, and CLFLescsessscscacesss28

Chapter 3: Text files in Extended MemOXY.ceeseeoeeecesee3l

3A.
3B.
3C.
3D,
3E.
3F.
3G.
3H.

What isatext file?....‘..I........l.'..........33
Accessing data in text fileS .eececesccescsnecaselb
Insertion of data into text fileS.eeeeeeeccccaaceal?
Deletion of data from text fileS.eececeececcccecesld
POSFL' SAvEAS’ and GETAS'.C.'....................41
Viewing the contents of an ASCII fil€.eeecsceaeesad?
Saving ASCII files on magnetic CardS.ececssecccesadd
Additional text file functions on the HP-41CX....51

Chapter 4: More Extended FunCtiONS.cececscesesscacscssesdd

4A,
4B.
4cC,
4D,
4E,
4F.
4G.

Stack usage and input flexibility.ececcceeecesceesad5
ALPHA manipulation....'........'...'00000000.000057
Flag manipulationNS.cecseccccccscscscssssccssccssscseabbd
SIZE-related funCtiOnS........................-..74
Block OperationS.cececececsscececscscssccscssssnscelb
Key assignment control.ceccecescccececscsscsssescesdl
Added functions on the HP‘41CX.o..oo‘.o.ooooooo.osg

EXTENDED MEMORY APPLICATIONS:

Chapter 5: A Program Byte Counter..ccceececcesscscnsssead?

Chapter 6: Data File ApplicationS.ceecesccecccsscscesoslfl

6A,
6B,
6C.

A Universal RoOOt Findere.eeeeecececscessccsccsesselll
Numeric DifferentiatioN.eeeeececececccccccccnseecalll
A Universal Integration Programe.ceeccececceccessscsol2l

-iii-

Chapter 7: A mailing list program..c.cecseccccccescsscessl3l

Chapter 8: Text Editing on the HP-4l...ceeeccecescsssldl

Chapter 9: An HP-16 Simulator program.ccececssceccsecseslbl

Chapter 1@: Synthetic Programming.eceececcsccceccsscsesl6d

1GA.
10B,
16cC.
1D,
1gE.
10F.
10G.
164,
101,
1gJ.
16K.

What is Synthetic Programming?...ccccccececsecsel69
Single-key execution of extended functions.....l70
The structure of extended MEMOXY.eeecesososecsssl7B
A solution to the VERIfy bUJ.cceeeasesceacssssesal83
A solution to the PURFL DUJ.eccsceccccacssoseeesl87
Executing programs in extended MeMOrY..eeeees..189
Suspending/reactivating key assignmentS........193
Saving key assignments in extended memory......194
Saving files on magnetic cardS.ecececccceccceeessld9
Key assignments of synthetic functionS.........207
"Crash™ recovery tipS.cescscscessccsccsccscsssssslld

Solutions to ProblemMSececcecscsscaccsosssecssnssscsssscsasccall?

Appendix A:
Appendix B:
Appendix C:

Appendix D:

The VER and 7CLREG bugs...‘......0000000000000221
Execution times for extended functionsS...eee..223
HP-41 Books and PublicationS..ececccccsccccceedll?

Barcode fOr PrOgramS..ccsceccsscescnccccscsssecelll

INDEX‘..........I....O................‘........I.......t...262

Index to Programs..'ooooooooooc.oooooo..o..ooooo.oo.0000000264

—-iv-

INTRODUCTION

The Extended Functions/Memory module, built into the new
HP-41CX and available separately for the HP-41C and CV, pro-
vides many new functions for your Hp-411, 1t also provides
127 additional registers of memory. Up to two Extended Memory
modules can be added, each of which contains 238 registers.
Thus, depending on how many Extended Memory modules you plug
in? to accompany your Extended Functions/Memory module, you
will have 127 to 603 registers of extended memory available.

Extended memory is an example of “off-line" storage.
Programs in extended memory are not directly usable; they must
first be brought into main, or "“on-line", memory. Once in
main memory, programs can be modified or executed as needed.
Data can also be stored in extended memory.

In this respect, the operation of extended memory is
similar to that of the HP821@¢4A Card Reader, The card reader
also has the capability to save programs and data outside main
memory. The most important differences between extended mem-

ory and the card reader are:

Card reader Extended memory
Unlimited capacity Limited capacity (127 to 683 regs.)
Manual operation Keyboard or program control
Long-term storage Short—- to medium-term storage

(susceptible to MEMORY LOST)
Write-all, status, Program, data, text file types

data, program cards

The extended memory equivalent of a magnetic card set is
called a file. Just as there are different formats for mag-
netic cards (program cards, data cards, etc.), there are
different types of extended memory files. The three file
types are program, data, and text, also called AascIis.

-1-

A program file, as the name implies, holds a program. A
data file holds one or more registers of data. A text, or
ASCII file holds a collection of character strings. These
file types will be introduced and explained in the first three

chapters where examples of their use will be given.

lrhe Extended Functions/Memory module provides 47 functions,
The HP-41CX includes these 47 functions plus 14 more, for a
total of 61 extended functions.

2po not plug in two Extended Memory modules one above the
other. The Extended Functions/Memory module can be plugged in
anywhere., Consult Section 1 of your Extended Functions/Memory
module Owner's Manual for details of which module configura-
tions are allowed. If you have only one Extended Memory
module, you should plug it into'port 1 or port 3 (top left or
bottom left as viewed from the top end of the calculator).

3émerican Standard Code for Information Interchange --
a system for expressing character values in 7 binary digits.

Each character uses one byte (1/7 of a register) in the HP-4l.

)

"BUGS"

A "bug" is defined as any behavior of a function that is
either undesirable and unexpected or that is different from
what is described in the appropriate Owner's Manual. Because
of the incredible complexity of the internal programming in
the HP-41's Extended Functions ROM (Read-Only-Memory), a few
bugs managed to survive the normal "debugging" procedure at
Hewlett-Packard. Under certain somewhat unusual circumstan-
ces, some of the extended functions can have unpleasant re-
sults, sometimes even MEMORY LOST.

If you have either an Extended Functions/Memory module or
a card reader manufactured before September 1983, you should
read this section before proceeding. Otherwise your HP-41
system is essentially free of bugs, and you may skip this
discussion for now.

This book gives full details and techniques to help you
prevent problems with any extended functions bugs that you may
have. In some cases, you can even repair the damage caused by
a bug after it "bites™. The purpose of this brief summary is
to give you enough information so that you can avoid trouble
until later in this book, where prevention and repair tech-

niques are explained in detail.

You should not fault HP for the existence of bugs. They
spend much time testing their work before releasing it in a
product, but no set of tests can cover all operating cond-
itions. At some point testing has to end and production
begin. If you want perfection, you will have to wait a long
time.

Hewlett-Packard produces calculators and modules with
fewer problems than any other manufacturer. What few bugs
remain are simply the price for a product that is ahead of its

competition in performance and value.

—3-

There are three bugs in the early versions of the HP-41
Extended Functions/Memory module. Techniques presented in
this book will eliminate all problems with these bugs. Usual-

ly, preventative steps are described, but a repair procedure
is also possible for the most frequently occurring bug.

The first extended functions bug is that the SAVEP (save
program) and PCLPS (programmable clear programs) functions
must not be executed if the calculator is positioned in an
application module program, outside main memory. This is
covered in detail on pages 12 and 13. If you use the "XF"
program (Section 10B) to execute extended functions from the
keyboard, this problem will be automatically avoided.

The second bug is that the PURFL (purge file) function
sets up a dangerous situation in which a wrong move can lose
access to the entire contents of extended memory. Fortunate~
ly, synthetic programming techniques (Section 1l06E) can be used
to repair the damage. Other simple measures can help to
prevent the problem from occurring in the first place. For
more information on PURFL, refer to pages 19 through 21. 1In
case you have never heard of synthetic programming, Section
19A has a short description of what synthetic programming is
and how you can learn more about it.

The third bug is that the card reader's VER and 7CLREG
functions can alter the contents of extended memory. Until
you read the full details in Appendix A, do not use VER when
an Extended Memory module is present in port 2 or port 4 or in
a combined module. The Extended Functions/Memory module can
be plugged in anywhere without risk. A short synthetic pro-
gram in Section 10D will allow you to use VER without harming

extended memory.

The first two bugs listed above appear only in Revision
1B of the Extended Functions module. You can find out which

revision you have by executing Catalog 2 (press shift CATALOG

—4-

(

2). Somewhere in the list of peripheral functions will appear
the message

-EXT FCN 1B

-EXT FCN 1C

or -EXT FCN 2C (HP-41CX only))

If the message goes by too fast, you can press R/S to inter-
rupt the listing, then use BST to get back to it. Revisions
1C and up are free of the SAVEP/PCLPS and PURFL bugs.

The third bug is actually due to the operation of the
card reader. It appears in all but the most recent card -
readers. Check the revision number of your card reader by
running Catalog 2. If you see

CARD READER
CARD RDR 1D
CARD RDR 1E

or CARD RDR 1F
then your card reader has the VER bug. If you have a revision
1G or higher, your card reader is free of this bug.

Note that the HP-41CX has no bugs in its extended func-
tions, but if you use it with an older card reader, you will
still have to avoid using the VER function until you read
Section 1@D.

Now let's find out what extended memory is all about.

(¢ ¢ ¢ ¢ ¢

p

CHAPTER ONE
SAVING PROGRAMS IN EXTENDED MEMORY

1A, Creating a Program File

The most commonly used extended memory operations are
SAVEP (save program) and GETP (get program). These operations
save a program in extended memory and retrieve it from extend-
ed memory. To illustrate these functions, turn on your HP-41,

press GTO.. and key in the following program:

BleLBL “JHE~ 12 # 22 RCL 63 33 %287 44 STD 81 54 RCL 62
a2 5T0 83 135087 23/ 34/ 45 RCL 85 55 ST/ 81
83 ABS 14 1% 24 RCL 84 35 5T+ @2 46 STO 86 56 ST/ B4
845 15570 82 25570 85 36 RCL @9 47 RIL 87 57 ST/ 65
25 + 16 570 84 26 * w2 58 ST/ 86
86 XOY 1757085 27+ 38 5T- @7 48+LBL 01 59 RCL 65
87 5T0 29 286570 84 39 # 49 %287 69 RCL 84
B8 %(Y? I8¢LBL 88 29 ROL 87 4@ RCL @7 58 GT0 98 61 RCL 86
89 ROV 19 RCL 85 38 4 41 %27 51 RCL 84 62 RCL 81
18 INT 28 CHS 3/ 42 GT0 81 52 $T- 82 63 EHD
1 4 21 RCL 87 32 FRC 43 RCL 84 53 RCL 81 38 BYTES

I1f you see the message PACKING followed by TRY AGAIN, youwill
need to reduce the SIZE to make more registers available for
this program. An alternative to reducing the number of data
registers allocated is to use the CLP function to clear one or
more programs {choose ones that are expendable or that you
have saved on cards or tape) to make space available.

When you are done keying in this program, GTO.. to pack
and attach an END to it. This is important to minimize the
space required to store the program in extended memory.
Another thing you should do before saving the program is to
execute each GTO (lines 42 and 58) at least once. This is
explained more fully on page 189,

To execute these lines, switch to RUN (non-PRGM) mode and
press GTO .642. Next press SST and hold the key down until

the program line appears in the display, then release the key.
When the display clears, you know that line 42 has been exe-

-7

cuted. Next press

GTO.059

SST (hold until line 58 appears, then release).
The program is now ready to be saved in extended memory. The
procedure for saving a program will be described in section C
of this chapter.

Description of the "JNX" program

The "JNX" program computes Bessel functions of the first
kind of integer order, Jn(x), with eight-digit accuracy. This
program may or may not be useful to you, but it is a good
example of the power of the HP-41, The Bessel function pro-
gram "JNX" will be used in Chapter 6, so you may wish to save
it on a magnetic card or the cassette drive before proceeding.
To test that your version of "JNX" is operating correctly, try

2 ENTER] 1.2 XEQ "JNX"
to calculate J2(1.2). The result should be 1.593490184x10'1.

You may now skip to the beginning of the next section
(page 18) unless you are particularly interested in Bessel
functions. The following detailed discussion describes exact-
ly how the "JINX" program works.

Line-by-line analysis of "JNX"

The algorithm used by "JNX" is based on the recurrence
relation

Ji—1(x) = 2m/x)J;(x) - Ji41(x) .

The process starts with initial estimates

Jpix) = In+1(x) = 1/2m, where m = 2*INT(max(n,x+5)).

The recurrence relation is evaluated for decreasing values of
n, until n=@ is reached. During this process, the sum

Jg (X)+2J2 (X)+2J4 (X)"‘ZJG (x)+...

-8—

is evaluated. Since this sum theoretically should equal 1, it
is used to normalize the previously computed value of Jn(x).
Now to the specifics of this program. The data register

usage of "JINX" is

register contents
@9 n
g1 Jn(x)
g2 normalization sum
93 X
g4 Ji(x) (starts at 1/2m)
@5 Ji+1(x) (starts at 1/2m)
g6 Jn+l(x) R
g7 21 (starts at 2m)

Lines ©81-17 of "JNX" initialize the data registers. The
LBL 60 loop computes J;_; (X) from the previous estimates Ji(X)
and Ji+1(x). This new estimate replaces the old Ji(x) (line
28), while Ji(x) replaces the old Ji+l(x) (lines 24 and 25).
Lines 3¢-35 add 2J;_;(x) to the normalization sum only if
i is odd (that is, if the fractional part of 2i/4 is 0.5).
Lines 37-38 decrement i (register @7) for the next time
through the loop. Then, if i=n, lines 43-46 save the current
values of Ji(x) and Ji+l(x) for later use. Otherwise these
lines are skipped over. Unless i=0 (lines 49-50@) the LBL @0
loop is repeated, counting down one more step toward Jg(xL
When i=¢ is reached, registers 94 and @5 contain est-
imates of Jg(x) and Jl(x). Lines 51-52 adjust the sum for the
extra Jg(x) term added at line 35. Then the normalization
factor is applied to all four Bessel function estimates. When

the program halts, the following results are in the stack:

register contents
T Jl(x)
Z Jg(x)
Y Jn+l(x)
X Jn(x)

1B. The EMDIR function

Before saving the "JNX" program in extended memory, it is
advisable to check the status of extended memory. Press
XEQ ALPHA E M D I R ALPHA .
EMDIR is the Extended Memory DIRectory function. If you have
an HP-41CX, a shortcut is available. You can press
shift CATALOG 4
to request the extended memory directory.

If you haven't used extended memory yet, you will see the
message DIR EMPTY. If you have saved programs or data in
extended memory, note that each entry in the directory des-
cribes a "file", which is a set of extended memory registers
allocated to storing a program or a block of data. The file
description consists of three items: the file name, the file
type, and the file size.

The file name is a string of up to 7 characters. The
file type is designated by a single letter: P for program, D
for data, and A for ASCII (text). These are covered in Chap-
ters 1, 2, and 3, respectively. The file size is the number
of extended memory registers allocated. Actually, two more
registers per file are used for the file header. One header
register holds the file name, while the other holds file type,
length, and pointer codes. (Full details are given in section
19C.) Thus if you create a 12-register file, whether it be a
program file or any other type of file, the number of free
registers in extended memory will drop by 14.

You can check the number of extended memory registers
available by letting EMDIR run to completion. The number will
then appear in the X-register (raising the stack). This
number is always two less than the number of unused registers
left in extended memory, because the calculator automatically
subtracts the two registers that will be needed by the next
file created. Thus if EMDIR yields a register count of 53,

there are actually 55 unused registers, but the largest file
you can create is a 53-register file.

-1¢-

The EMDIR function is somewhat analogous to the CATALOG
1 function for main memory. Because of its usefulness, you
should consider assigning EMDIR to a key. Press

shift ASN ALPHA E M D I R ALPHA,

followed by the key of your choice. Wwith an HP-41CX, the
extended memory directory can be interrupted, single-stepped,
and back-stepped in the same way as Catalog 1. With an HP-41C
or CV you cannot interrupt the extended memory directory.
Instead, you can "freeze" the display by pressing and holding
any key except R/S or ON. Release the key to resume the
listing., Press R/S to interrupt (terminate) the listing.

On the HP-41CX, there are two other functions that are
related to EMDIR. The EMROOM (extended memory room) function
returns the number of extended memory registers available for
data, just as does EMDIR when run to completion, The differ-
ence is that no directory is displayed. This makes EMROOM
more suitable than EMDIR for use in a program that creates
extended memory files. You can test the number of registers
available before trying to create a file, perhaps reducing the
requested file size to match the EMROOM.

Also on the HP-41CX is the function EMDIRX (extended mem-
ory directory -- file X). When you put a number n in X and
execute EMDIRX, the name of the nth file in extended memory
will be returned in the ALPHA register and the file type will
be returned to X as a two character string (PR, DA, or AS for

program, data, or ASCII files).

1C. Using SAVEP and GETP
To save the "JNX" program in extended memoxy, simply

press
ALPHA J N X ALPHA
followed by
XEQ ALPHA S A V E P ALPHA .
The display will blank for a few moments, except for the
annunciators, while the operation is performed.

~11-

This procedure for using SAVEP (save program) is similar
to the procedure that you will use for many other extended
memory operations. First you load the name of the program or
file into the ALPHA register, then you execute the function.

To check the results of your SAVEP operation, execute
EMDIR (or Catalog 4 for the HP-41CX). You should see:

JINX P@l2,
If it went-by too fast, you can try EMDIR again. On the HP-
41C or CV, holding down any key freezes the display until you
release the key. On the HP-41CX you an press R/S to halt the
directory and SST to step through it.

Another way to check the existence or size of an extended
memory file is to use the FLSIZE (file size) function. Just
put the file name in the ALPHA register and execute FLSIZE.
For the above example, you would press

ALPHA J N X ALPHA

XEQ ALPHA F L S I Z E ALPHA .
The result should be the number 12 in the X register. This is
the size of the "JNX" file, exclusive of the 2 header regis-
ters that are needed by any extended memory file.

When you use FLSIZE, the result is the size of the named
file if it exists, or the error message FL NOT FOUND if the
named file does not exist., FLSIZE works the same for all
three types of files: program, data, and ASCII. 1If you ex-
ecute FLSIZE with the ALPHA register empty, the size of the
"working" file will be returned. The "working"”, or "current",
file is the last file that you referred to by name in an
extended memory function like SAVEP, or the file at which an
EMDIR display was terminated. More details on "working" files
will be given on page 260.

WARNING: (Revision 1B only) When you use SAVEP, make sure
that the calculator is positioned in main memory, not in an
application module's read-only memory (ROM). Be especially
wary when an application module (Math Pac, Standard Pac, etc.)
is plugged in. Even the printer (or the HP-IL module with the

-12-

printer switch on) contains three programs, PRAXIS, PRPLOT and
PRPLOTP, in read-only memory. The "XF" program presented in
Chapter 10 guarantees that you will be in main memory when you
execute SAVEP. This warning does not apply to the HP-41CX,
nor does it apply to revisions 1C and up of the Extended
Functions/Memory module,

To find out whether or not you are in an application

module program, start in RUN (non-PRGM) mode, press
shift RTN
and switch into PRGM mode. This moves you to line 60 of the
current program. If you see just
1]
then you are in an application ROM program. You can press
shift CATALOG 1 or GTO ..
to get back to main program memory. 1f you know the name of a
specific program in main memory, you can press
GTO ALPHA (program name) ALPHA .
This will also return you to main memory. Once in main memory
if you press
shift RTN PRGM
to move to line 98 of the current program, you should see
¢4 REG nnn ,
where nnn is the current number of free registers in main
program memory.

If you accidentally do a SAVEP while you are outside main
memory, do a PURFL(purge file - page 19) immediately. The
program file that SAVEP creates under these conditions is
likely to be quite large and is certain to be unusable. One
of these files can even lock up the calculator's keyboard if
you try to bring it into main memory.

Incidentally, if you want to transfer an application
module program to extended memory, you will have to do a COPY
first, to bring the program into main program memory.

This same warning against being outside main memory ap-

plies even more strongly to PCLPS (programmable clear programs

-13-~

-- to be discussed on page 18). In the case of PCLPS, the
penalty for a mis-step is the dreaded MEMORY LOST. Once
again, this warning does not apply to the HP-41CX or to revi-
sions 1C and up of the Extended Functions/Memory module.

Now let's retrieve the "JNX" program from extended mem-
ory. Make sure that the ALPHA register still contains "INX",
then GTO.. and press XEQ ALPHA G E T P ALPHA. Assuming that
you had sufficient program space available, you should now
have a second copy of "JNX" in main memory. Execute Catalog 1
and you should see LBLYJNX, END, LBLYINX, and .END. REG xx as
the last items listed.

This illustrates the fact that GETP (get program) re-
trieves the designated program and places it between the last
END and the .END., even if this means that a program must be
overwritten. In particular, if you had not performed the
GTO.. to attach an END to the "JNX" program before saving it,
the GETP operation would have overwritten the old copy of
"JNX" with the new one, leaving only one copy instead of two.
You may wish to practice more with SAVEP and GETP, using your
own library of programs.

When they are assigned to keys, the functions SAVEP and
GETP provide single-keystroke equivalents of recording and
reading magnetic program cards. A typical application is
moving a program down to the bottom of Catalog 1 for faster
response when editing or PACKing. {When you insert an in-
struction or PACK a program that is located near the top of
Catalog 1, all lower programs in Catalog 1 must be shifted.
This slows the calculator's response noticeably.] Use SAVEP
to save the program, CLP to clear it from main memory, and
GETP to bring it back at the bottom of Catalog 1. Techniques
like this are useful, but the full power of SAVEP and GETP is
harnessed by using these instructions within your programs,

Before exploring this subject, you need to know a little
more about SAVEP and GETP,

-14-

1D, Advanced features of SAVEP
The above examples might have led you to believe that a

program can only be saved in an extended memory file having
the same name as the program, With a little more effort, it
is possible to save a program under any file name you like.
Instead of just putting the program name (actually the name of
any Catalog 1 ALPHA label in the program) in the ALPHA regis-
ter, you can follow the program name with the desired file
name, using a comma as a separator, If you want to save the
current program, it is OK to omit the program name and simply
load ALPHA with a comma, followed by the file name.

[The current program is the one that appears when you
switch into PRGM mode. This is usually the program you ex-—
ecuted most recently, unless you have pressed GTO.. oOr CATALOG
1, both of which can move you to a different portion of pro-
gram memory.]

The allowable ALPHA contents for SAVEP are as follows:

ALPHA contents result
“program name" The program containing an ALPHA

label of this name is saved in
extended memory in a file of the
same name.

"program name,file name" The named program is saved in a
file of the designated name.,
CAUTION: Do not leave a space
after the comma, unless you want
the space to become part of the
file name.

", file name" The current program is saved in

a file of this name,
Note: Commas are not allowed in file names, since the comma
is interpreted as a name separator. File names cannot exceed

seven characters (any excess characters are ignored).

-15-

1E. Advanced features of GETP, including GETSUB and PCLPS
Unlike SAVEP, the GETP function operates differently when
it is executed as part of a program rather than from the
keyboard. Either way, GETP brings the program file named in
the ALPHA register into program memory, putting it just after

the last END in Catalog 1 and before the .END. . As in the
case of reading a program from cards, barcode, or cassette,
the program's ALPHA label key assignments will only take
effect if the GETP is performed in USER mode. (Any existing
conflicting key assignments are overwritten.)

When called from the keyboard, GETP sets the calculator
to the first line of the retrieved program. This makes it
convenient either to switch into PRGM mode and review the
program, or to press R/S and run the program.

When it is encountered in a running program, GETP reads
in the named program file and continues to run the original
program. An exception is made for the case in which the
original program was the last program in main memory. [The
last program in main memory is the one that has the .END. as
its last line.] 1In this case, when the program file is read
in, the original program is overwritten. Clearly the original
program cannot continue to run. Instead, execution resumes at
the first line of the new program.

When you write a program that uses GETP, you must care-
fully plan the GETP operations so that no important programs
are accidentally overwritten. Often it is helpful to place a
note in the program's operating instructions, requiring that
the user either clear the last program in memory or to GTO..
before running the program. It is good operating practice not
to GTO.. until you make sure either that the last program area
in main memory is blank (no lines other than the .END.) or
that it contains at least one ALPHA label. This precaution
will help prevent the annoying proliferation of excess ENDs in
Catalog 1.

A program can use GETP to load the subroutines it needs

~16-

)

from extended memory, each time overwriting the previously
used subroutine. This technique, called overlaying, is neces-
sary for very large programs when all the subroutines will not
fit into main memory at the same time.

The precautions needed when GETP is used may tempt you to
use GETSUB instead. The GETSUB (get subroutine) function is
almost the same as GTO.. followed by GETP. The difference is

that a new END is created even if the last program in main

memory was blank. If you make a habit of using GETSUB, you
will soon find that your Catalog 1 is full of extra END's.
These END's will have to be deleted using the following proce-

dure:

If you have an extra END with no ALPHA label preceding it
in Catalog 1, the only way to get rid of it is to run Catalog
1 and interrupt it at the extra END. Then you can either
switch into PRGM mode and backarrow the END or you can,press

XEQ ALPHA C L P ALPHA ALPHA ALPHA,
(When no program name is supplied, the CLP function clears the
current program,) If several ENDs are back-to-back, stop
Catalog 1 at the first one, switch into PRGM mode, and press
backarrow and SST alternately until a non-END line appears,
indicating that the entire group of ENDs has been deleted.

Whether GETSUB is executed from a program or from the
keyboard, the result is the same. The .END. is converted to
an END, the program file named in the ALPHA register is read
in, and a new .END. is added. Execution is not transferred to
the new program,

The only valid use of GETSUB is to retrieve a program
from extended memory when the last program in Catalog 1 has
the .END. as its last line, and you do not want that program
to be overwritten. This can occur when several program files
need to be read in from extended memory. The first file can
be read in using GETP, while GETSUB can be used for the subse-
quent files. This procedure avoids the creation of extra
END's. However, if the last program in Catalog 1 has a non-

-17-

permanent END, or if you do not want to save that program,
then use GETP rather than GETSUB.

Incidentally, if you are familiar with the card reader
functions, GETP is precisely analogous to reading in a program
card set, and GETSUB is almost analogous to executing the RSUB
card reader function. The difference is that RSUB only con-
verts the .END. to an END if you are in the last program in
main memory (the one that has the .END. as its last line).

When you are done using all the programs that were read
in, you can use the PCLPS (programmable clear programs) func-
tion to delete them. Just load the ALPHA register with the
name of the first program that you read in from extended
memory (the one that you read in with GETP, rather than
GETSUB). Then PCLPS will clear that program and all programs
following it in Catalog 1. If the ALPHA register is clear,
the current program and all following programs will be

cleared., This will occur exactly the same whether PCLPS is
called from the keyboard or encountered in a running program,
Execution of the running program will continue after the
affected programs have been cleared.

WARNING: (Revision 1B only) If the calculator is positioned
outside main program memory (in an application module program)
and the ALPHA register is hot clear, executing PCLPS will give
MEMORY LOST, after a delay of several seconds for dramatic
effect, Refer to the SAVEP warning (page 12) for more de-
tails. The "XF" program in Section 10B has the incidental

benefit of preventing this problem from occurring.

Astute readers will notice that PCLPS has an exception
much like the one for GETSUB. PCLPS clears the named program
and all the programs following it. If the PCLPS function is
executed in a running program that is one of the programs
being cleared, execution will terminate at the .END. . How-
ever, if the PCLPS instruction was part of a subroutine, the

-18-

Ny

.END. will be executed and interpreted as a RTN. Control will
return to the calling program which may no longer exist if you
did not plan things correctly. 1If the calling program does

not exist (due to the action of PCLPS), you will find yourself
outside the program area of the HP-41, in the I/0 buffer and
key assignment registers which lie beyond the .END. . This
will occur regardless of which revision of extended functions
you have. Although synthetic programmers will relish the
possibilities, this situation should be avoided, If you are
unlucky enough to have this problem occur, just interrupt the
program (if it doesn't stop itself with an error of some
sort) then press
shift CATALOG 1 or GTO ..

to reposition the calculator to main program memory.

1F. Clearing a file from extended memory

Just as the CLP (clear program) instruction clears the
named program from main memory, the PURFL (purge file) func-
tion removes the named file from extended memory. The named
file can be a program, data, or ASCII file. After the file is
removed, extended memory is automatically packed to free the
space formerly used by the file. This operation is somewhat
similar to the packing performed by CLP.

WARNING: (Revision 1B only) The PURFL function has one very
dangerous feature. After PURFL is executed, there is no
"working" file. If a working file is not quickly re-estab-
lished, the entire contents of extended memory can be rendered
inaccessible. Any instruction that operates on the working
file will destroy the extended memory directory if a working

file does not exist at the time the instruction is executed.
Then special techniques (Section 1@E) are necessary to restore
the directory.

Note: 1f your Extended Functions module is a revision 1B,
this "bug" can be useful. The sequence PURFL, RCLPT is a

-19-

quick and easy way to clear the extended memory directory
without disturbing main memory. This sequence should never be
used in a program, though.

The "working™ file , which is called the current file in
the HP-41CX Owner's Manual, is the last file used or created,
unless an EMDIR instruction (or CATALOG 4 on the HP-41CX) was
executed since then. When you run the extended memory direc-
tory on an HP-41C or CV, the last file displayed becomes the
working file. This is true regardless of whether the direc-
tory ran to completion or was interrupted. On an HP-41CX, the
working file changes only if you do not let the directory run
to completion.

The "working" file in extended memory is analogous to the
"working", or current, program in main memory. The current
program in main memory is the program which appears when you
switch into PRGM mode. All program-related operations which
do not specify an ALPHA label name operate on the current
program, Instructions like GTO .661, LIST 999, DEL 665, and
CLP ALPHA ALPHA all operate on the current program., In main
memory, the current program is selected one of two ways. It
is normally the program last accessed by a GTO "label" or XEQ
“"label" instruction. However, if you subsequently execute
Catalog 1, the program at which Catalog 1 stops becomes the
current program. Thus by carefully choosing a point at which
to halt Catalog 1, you can select a current program without
having to spell out a GTO "label"™ instruction (if indeed the
program you want contains an ALPHA label),

Just like Catalog 1, EMDIR can be prematurely halted (by
pressing R/S) in order to select a working file. The other
ways to establish a working file are to create a new file or
to execute any instruction that refers to an existing file by
name,

Now suppose that you have just executed PURFL, but you
have not yet established a new working file. If you now ex-

-20-

ecute a function that operates on the working file, for exam-
ple FLSIZE with the ALPHA register empty, you will get the
message FL NOT FOUND., This is certainly reasonable, since
there was no working file to operate on. However, with a
revision 1B Extended Function/Memory module, if you then exe-
cute an EMDIR, you will see the DIR EMPTY message. Your
entire extended memory directory is gone!

There are several ways to alleviate the problem with
PURFL if you have a revision 1B Extended Functions/Memory
module. Your first line of defense is to make a habit of
executing EMDIR or otherwise establishing a new working file
immediately after using PURFL. This includes any uses of
PURFL in your programs. Your second defense is to ask your-
self "Have I defined the correct working file?" before any
instruction that operates on the working file. Where an
instruction that can operate on either the named file or the
working file is to be used in a program, you can precede it by
the steps ALENG (alpha length -- see page 63) and 1/X to make
sure that the ALPHA register is not empty. Lastly, a short
program called "PFF" (Purge File Fix) in Section 1l0E permits
the damage to be repaired after the fact. This program cont-
ains some synthetic instructions which cannot be keyed in by
normal means, but barcode for the program is provided in
Appendix D. Once again, this problem with PURFL does not
occur with the HP-41CX or with revisions 1C and up of the

Extended Functions/ Memory module.

One more detail about SAVEP deserves to be mentioned. If
you save a new version of a program that is already saved in
extended memory, the old file will automatically be purged and
the new version will be added at the end of the extended

memory directory. Knowing this ahead of time may save you a

few moments of panic when you run the directory. You can
retain the old program file if you choose to use a different
name for the new program file (see page 14).

-21-

‘\‘»/

CHAPTER TWO
SAVING DATA IN EXTENDED MEMORY

2A. File structure

Saving data in extended memory requires a few more steps
than saving a program. Rather than simply saving the data, we
must first create an empty data "file" in extended memory in
which to save the data. Figure 2.1 shows the structure of
such a file. This structure is the same for all three types
of files (program, data, and text), except that that the
information within the file is organized differently. For

program and text files, each register equals 7 bytes.

BOTTOM OF PRECEDING FILE
FILE NAME
FILE HEADER
FILE SIZE, TYPE, POINTERS
DATA 0
1
2
3
L]
[
L
FLSIZE -1
TOP OF NEXT FILE

Figure 2.1. Register Usage for an Extended Memory File
Header information is available through FLSIZE, EMDIR, etc.

-23-

To make the examples in this chapter easier to follow,
use the following short routine to pre-load the data registers
with values that are the same as the register numbers. Data
register 99 gets the value 8, register 81 gets 1, and so on,
until a NONEXISTENT register is encountered.

¢1 LBL "PRELOAD"

g2 1 First load the stack with 1's
@3 ENTER] for repeated addition.

@4 ENTER]

@5 ENTER]

g6 CLX Start with X=0,

@7 LBL 91

@8 STO IND X Store X in register number X,
99 + Add 1.

18 GTOo 01 Go back to line 07.

11 END

2B. The SAVERX function and the "working” file
Suppose you want to save the contents of data registers 2

through 9. If you were using magnetic cards, you would key in
2,009 XEQ "WDTAX".
To save these registers in extended memory you must first
create a data file of at least 8 registers. There is no
instruction analogous to SAVEP that creates the file and
transfers the data in one operation.
Let's name the data file "ABC". Press
ALPHA A B C ALPHA
to name the file, then

8
to designate the file size, followed by
XEQ ALPHA C R F L D ALPHA (create file -- data)

to create an empty 8-register file., The CRFLD (create file --
data) instruction expects the file name in the ALPHA register

and the file size (the number of data registers in the file)
in X. CRFLD clears the registers in a file as it is created.

—24-

Execute EMDIR and you should see
ABC D@B8
as the last entry in the directory. To save the contents of
registers 2 through 9 in the "ABC" data file, press
2,009 XEQ "SAVERX"
(press XEQ ALPHA S A V E R X ALPHA).

The SAVERX (save registers designated by X) function
accepts a number in the X-register of the form bbb.eee . A
block of data registers beginning with register number bbb and
ending with register number eee is transferred to the
"working" data file in extended memory. The "working" file is
the last file used or created, unless an EMDIR oxr PURFL was
executed. When you run the extended memory directory, the
working file becomes the file at which you stopped the direc-
tory. On the HP-41CX, if you let the directory run to
completion, the working file is left unchanged. On the HP-41C
or CV, letting the directory run to completion selects the
last file in the directory as the working file.

2C. The GETRX function and the register pointer

If you have been thinking ahead, you might suspect that
the sequence 12,619, XEQ "GETRX" would retrieve the 8 numbers
and place them in data registers 12 through 19. As logical as
this may seem, it is not the case. If you try this sequence,
you will get the error message END OF FL. Some explanation
is in order.

A data file in extended memory can be very large. A
single such data file can be used to save several blocks of
data, Furthermore, you need not retrieve the entire file at
once. Small blocks of data or even single registers can be
retrieved from a data file. The price for this flexibility is
that a pointer is required to specify where in the data file
you wish to store or retrieve data. Without a pointer it
would be. impossible to guarantee that GETRX would retrieve the

~25~

right block of data.

But if a pointer is necessary, why didn't we have to set
it up before doing the SAVERX operation? Normally it is
necessary to set up the pointer, but in that case, the "ABC"
file had just been created. A newly created file has a poin-
ter that is automatically initialized to zero, meaning that
any SAVE or GET operations are performed beginning at register
@, the first register of the file. [Registers in an extended
memory data file are numbered starting with @, just as the
data registers in main memory are numbered.] Therefore the
sequence 2,099, SAVERX stored the contents of data registers 2
through 9 into the first 8 registers (and only 8 registers) of
the "ABC" data file. This sequence had the additional unob-
served effect of advancing the pointer from @ (the first
register) to 8 (one past the last register in the file). Any
further operations such as GETRX will give the END OF FL error
message until the pointer is re-set.

To set the pointer, we use the SEEKPTA function. The
SEEKPTA (seek pointer for the file named in ALPHA) function
simply sets the pointer to the value specified in X. The file
name should also be specified in the ALPHA register. 1If the
ALPHA register is clear, SEEKPTA will operate on the working
file. Each data file has its own pointer, stored in one of
the file's two header registers. A SEEKPTA on one file will
not affect the pointer for another file.

For example, suppose we want to retrieve the former
contents of data registers 4 through 7 from the data file
"ABC"™ and place these four values in data registers 11 through
14, Figure 2.2 illustrates this operation. Note in Figure
2.2 that the former contents of data register 4 reside in the
third register of the file "ABC". Therefore we press

ALPHA A B C ALPHA 2 XEQ ALPHA S E E K P T A ALPHA
to set the pointer value to 2, the third register of the file,
Once this is done we simply press

11,014 XEQ ALPHA G E T R X ALPHA

-26—-

to retrieve the data. Use RCL to check that registers 11, 12,
13, and 14 contain the same values as registers 4, 5, 6 and 7.

DATA FILE “ABC” DATA REGISTERS
REGISTER T ; R
POINTER: © 02 00 00
1 o3 o1 Ro1
BEFORE T
GETRX 2 04 . .
3 Tos5 o .
a "06 ¢ *
5 To7 "0 Rio
AFTER r T R
GETRX — 08 04 1
7 fo9 fos Ri2
"o6 Rq3
o7 R1a
"1s Ris

Figure 2.2. Effect of the Sequence: “ABC’" 2 SEEKPTA 11.014 GETRX.

The GETRX (get registers designated by X) function ac-
cepts a number in the X-register of the form bbb.eee, desig-
nating the data register block in which the retrieved data is
to be placed. GETRX retrieves the designated number of data
registers from the working extended memory file, starting at
the current register of the file. GETRX also advances the
register pointer to the first register beyond the block that
was retrieved from extended memory.

SAVERX, like GETRX, advances the register pointer to the
first register beyond the block that was written into extended
memory. In fact, this automatic advancing of the register
pointer is common to all data file SAVE and GET functions.

-27-

The RCLPTA (recall pointer for file named in ALPHA)
function provides an easy way to check the current value of
any file's pointer, in case you do not remember it. Just put
the file name in ALPHA and execute RCLPTA, and the pointer
value will be recalled to X. If ALPHA is clear, RCLPTA will
operate on the working file, As for any RCL operation, the
stack will be lifted unless the RCL was immediately preceded
by an ENTERT, CLX, or similar stack lift-disabling operation.

As an example of RCLPTA, let's now check the pointer.
Since you just recalled registers 4 through 6 of the "ABC"
file, if you execute

RCLPTA
the result should be 7.
Tip: RCLPTA is a convenient way to select a file to be the
working file without altering the contents of the file.

2D, The SEEKPT and RCLPT functions

The SEEKPT (seek pointer) function operates identically
to SEEKPTA, except that the operation of setting the pointer
is performed on the "working" file, rather than the file named
in ALPHA. 1If you are sure which file is the "working” file,
SEEKPT saves a few steps. Otherwise use SEEKPTA.

The same advice applies to using SEEKPT in a program., If
a preceding step of the program established the correct
"working™ file, it is OK to use SEEKPT. If not, use SEEKPTA.

The RCLPT (recall pointer) function is a version of
RCLPTA that operates on the working file, Use it instead of
RCLPTA when you are sure which file is the working file.

2E. More data file functions: SAVEX, GETX, SAVER, GETR, CLFL

The SAVEX (save X register) function transfers the con-
tents of the X register to the working file, which must be a
data file, in extended memory. The current pointer value
designates which register of the data file is used. After the

-28-

value is saved, the pointer value is increased by l. For
example, to store the value 15 in the third register (register
number 2) of the data file, press

2 XEQ "SEEKPT"

15 XEQ "SAVEX"
The pointer value is now 2+1 = 3, so that a second SAVEX
instruction would store X in register 3 of the file. This
automatic incrementing of the register pointer with SAVEX is
extremely useful., You can write a program that computes one
result each time through a loop, with a single SAVEX instruc-

tion to store the result:

"filename"

CLFL or CRFLD (CLFL will be covered on page 31)
LBL #1

(insert steps here to compute result)

SAVEX

GTO @1 .

There is no need to mess around with register pointers or ISG
counters for storage. If you need a counter for the computa-
tion, you may be able to use RCLPT as a built-in counter. If
you like, you can even let the END OF FL error condition
terminate the computations. This makes for a very simple

program structure.

The GETX (get current register, transfer to X) function
is the inverse operation of SAVEX. The current register of
the working file is retrieved and brought into X. The regis-
ter pointer is increased by 1, and the stack is lifted to
accommodate the retrieved data, just as for RCL.

For example, to retrieve the number 15 from register 2 of
the "ABC" data file (which should still be the working file if
you have been following along with the examples), press

2
SEEKPT
GETX .

-29-

The result should be 15 in the X register. The register
pointer is changed from 2 to 3, as executing RCLPT will re-
veal. Just as for SAVERX, this automatic pointer incrementing

makes it convenient to use GETX inside a loop.

The SAVER (save registers) function transfers all the
data registers to the file named in ALPHA, or to the working
file if ALPHA is empty. Unlike SAVEX and SAVERX, SAVER total-
ly ignores the register pointer. Data register 08 goes into
register @ of the file, data register @1 goes into file regis-
ter 1, and so on. Unfortunately, although SAVER does not use
the pointer, it does change it! The pointer is left just
beyond the last register written into the file,

If the extended memory file is not large enough to hold
all the data registers, SAVER displays an END OF FL error
meesage and refuses to transfer even a single register. This
feature, which cannot be overridden by flag 25, limits the
usefulness of SAVER.

Unless the current SIZE precisely matches the amount of
data that you have to save (and does not exceed the FLSIZE of
the selected data file), you should consider using SAVERX
rather than SAVER to avoid wasting space in extended memory.
0f course, you can always reduce the SIZE to match the number
of data registers you want to save. For example, to save data

register 00 through 23, use the sequence

24

PSIZE

"file name"
SAVER .

The PSIZE (programmable SIZE -- see page 75) function reduces
the SIZE to 24, throwing out the data beyond register 23. The
rest of the data is then saved by SAVER. However, this tech-
nique really isn't much easier than

-3¢-

)

"file name"
'}
SEEKPTA
.823
SAVERX
but it may be preferred for some applications.

The GETR (get registers) function is far more useful than
SAVER. GETR retrieves data beginning with register @ of the
named file (the working file if ALPHA is empty), and places it
in data registers @¢ and up. Unlike SAVER, GETR will not give
an END OF FL error message if the file is smaller than the
current SIZE. GETR will stop either when the file runs out of
registers or when the current SIZE is used up. This means
that recalling an entire data file is as simple as

"file name"

GETR ’
perhaps followed by a REGMOVE or a REGSWAP instruction (see
pages 76 to 79) to move the data to a different block of
registers if you didn't want it to start at register @4.

Like SAVER, GETR ignores the pointer but sets it to the
END OF FL position, 1 register beyond the last register re-
trieved,

The CLFL (clear file) function clears the contents of a
data file; that is, it sets all the registers to zero. The
register pointer is also set to zero so that you can immedi-
ately begin using SAVE instructions to store data in the file.
Just put the file name in ALPHA and execute CLFL. A typical
application for CLFL is initialization before re-using an
existing data file. Since data files are cleared when they
are created, you do not need to use CLFL on a newly-created
data file,

If a file name is not present in ALPHA when you execute
CLFL, a NAME ERR message will appear. CLFL will not operate

-31-

on the working file. However, like the other file-handling
functiéns, CLFL does make the named file the working file. 1If
you attempt to use CLFL to clear a program file, a FL. TYPE ERR
will result., Program files can only be replaced with a new
program (using SAVEP) or purged entirely.

The PURFL (purge file) function eliminates the named file
from extended memory, freeing its registers for other uses.
Like CLFL, it must have a valid file name in ALPHA. See page
19 for an important WARNING about PURFL.

On the HP-41CX, the RESZFL (resize file) function changes
the size of an existing data or text file. RESZFL operates
only on the working file. Use RCLPTA with the desired file
name in ALPHA, or use any other means to select the desired
file as the working file. Then put the new FLSIZE in X and
execute RESZFL. If you decrease the file size, the highest
numbered registers will be eliminated. If there is nonzero
data in these registers, the calculator will give a FL SIZE
ERR message. You can override this protective feature by
specifying the negative of the desired FLSIZE in X.

As you have seen, extended memory is much more flexible
in storing data than the card reader. Extended memory allows
easy access to individual registers of data, and to sub-blocks
of registers within a block of saved data. This provides a
convenient method to analyze large data bases without tying up
all your data registers. You can pull out the numbers as

needed, in blocks or one by one.

The full power of extended memory data files will be il-
lustrated in Chapter 6 with the application programs "SOLVE",
"DERIV", and "INTEG". These programs use extended memory to

guard their data while a user-supplied program is called to
evaluate a function f£(x).

-32-

CHAPTER THREE
TEXT FILES IN EXTENDED MEMORY

Twelve of the 47 functions provided in the Extended
Functions/Memory module and 14 of the 61 HP-41CX extended
functions deal exclusively with text files. This chapter
explains how ASCII files are used and how they provide power-
ful new string handling capability. If none of your appli-
cations involve long ALPHA strings, you may wish to skip this
chapter for now.

Prior to the advent of extended memory, dealing with
character strings on the HP-41 was cumbersome. Strings had to
be broken up into segments of 6 characters or less, because
the ASTO operation cannot fit more characters into a register.

Extended memory offers a new way to deal with strings
that does not require that a string be broken into register-
sized pieces. 1Instead, the strings are stored unbroken in an
extended memory text, or ASCII, file. [The terms "text file"
and "ASCII file" are used interchangeably in this book, as
they are in HP's documentation.] Each string, or record, can
be up to 254 characters long. The number of different strings
that you can have in a single text file is limited only by the
size of extended memory. As for a data file, you must specify
the number of registers to be allocated when you create an

ASCII file. This number must be at least:

Nregisters = INT[(Nrecolrdsﬂ‘lcharact:e::s"'-l)/7]'
where N ... r4ds is the maximum number of records you will need,
and Noharacters 1S the maximum number of characters that will

be stored. The +7 accounts for one end-of-file byte (see
section 106C) and rounding up. For example if you wish to

-33-

store 20 names of at most 25 characters each, you will need

Noegisters = INT[(20+20%25+7)/7]=INT(75.29)= 75 regs.

It is a good idea to use a somewhat larger number than needed
when creating an ASCII file in case your storage needs grow.
The Extended Functions Module Owner's Manual suggests adding
20% to your best estimate of the number of characters to be
stored, and dividing the result by 7. If you have an HP-41CX,
you need not be as cautious, because the RESZFL (resize file)
function makes it easy to increase the file size later. Two
programs presented in section G of this chapter give a similar
file resizing capability to the HP-41C and CV.

Just as extended memory data files have a pointer to the
current register, text files have a pointer to the current
record. In addition, text files have a pointer to the current
character position within the record. The record pointer rrr
and the character pointer ccc are combined into a single
decimal number rrr.ccc for all pointer operations like SEEKPT

(setting the pointer values) and RCLPT (reading the current
pointer values).

To illustrate these points, let's try an example. We
will need a 25-register text file called "NAMES". Make sure
that there are at least 25 registers available for data in
extended memory. To do this, execute EMDIR and let the direc-
tory run to completion., On the HP-41CX you can use the EMROOM
function or CATALOG 4 instead of EMDIR for this purpose. The
number in X is then the number of registers available for data
in extended memory. Then, to create the "NAMES" file, press

25 ALPHA N A M E S ALPHA XEQ ALPHA C R F L. A S ALPHA.
The usage of the CRFLAS (create file -- ASCII) function is
very similar to the usage of CRFLD (create file -- data). You
put the file name in ALPHA, the number of registers in X, and

-34-

-~

execute "CRFLAS".

After you have created the text file called "NAMES", the
next step is to use the APPREC (append record) instruction to
load some data into it. Suppose you want to store the three
names:

record number name
RICHARD NELSON
ROGER HILL
JOHN MCGECHIE .

The name-storing process is simple. Just load a name into the
ALPHA register and XEQ "APPREC". The APPREC function adds a
new record to the working text file by appending the entire
contents of the ALPHA register to the file. The pointer is
advanced to one character beyond the last character appended.
The following sequence of operations loads the three names:

"RICHARD NELSON" XEQ "APPREC"

"ROGER HILL" XEQ "APPREC"

"JOHN MCGECHIE"™ XEQ "APPREC"
Each quote mark (") indicates that the ALPHA key must be

pressed.

Loading ALPHA data into a text file is much easier than
storing it in data registers. The APPREC function handles up
to 24 characters, rather than the 6 that ASTO can handle.
Just to store the name "RICHARD NELSON" in data registers
requires 5 instructions: ASTO 61, ASHF, ASTO @2, ASHF, ASTO
3. This is clearly very cumbersome compared to a single
APPREC instruction. It becomes even more cumbersome if the
string is reconstructed or needs to remain unchanged in ALPHA
(add CLA, ARCL #1, ARCL @2, ARCL @3).

Ease of loading is by no means the only advantage of
using extended memory text files to hold ALPHA data. The real
power of text files lies in their data access, insertion, and

deletion capabilities.

-35-

3B. Accessing data in text files

There are two functions that recall data from a text
file. These are ARCLREC (alpha recall record) and GETREC (get
record). As its name implies, ARCLREC recalls characters from
the working text file, starting at the current pointer loca-
tion, until the ALPHA register is full or the end of the
record is reached. The character pointer is advanced to one
position beyond the last character recalled., The ARCLREC
function sets or clears flag 17 (the "record incomplete" flag)
to indicate whether or not more data remains in the record.
ARCLREC works like ARCL, in that it appends the recalled
characters to any existing characters in the ALPHA register.

The GETREC (get record) function is precisely equivalent
to the sequence CLA, ARCLREC.

As an example, suppose you want to review the data in the
"NAMES" file, which should still be the working file since you
just created it. The sequence

g SEEKPT

GETREC AVIEW
shows you the contents of the first record, "RICHARD NELSON",
If you then try the sequence

ARCLREC AVIEW
the result will be "RICHARD NELSONROGER HILL". Whoops! We
forgot to do a CLA before the ARCLREC. Most of the time, you
will find that GETREC is handier to use than ARCLREC, because
GETREC automatically clears the ALPHA register before recal-
ling the record. The ARCLREC function will be useful for
those special instances in which the contents of a record are
to be attached to a message.

In the preceding example, the ARCLREC function was able
to fit the entire record being recalled into the ALPHA regis-
ter, so flag 17 was cleared. If the record had not fit into
the ALPHA register, ARCLREC would have set flag 17 to indicate
that more data remained in the record. When you write a

program that prints strings from text files, you will use

-36-

)

sequences that test flag 17. For example:

(record number)

SEEKPT Set pointer to the beginning of the record
LBL @1

GETREC Recall 24 characters of the record

ACA (or OUTA) Send chars. to printer, but do not print yet
Fs? 17 If record is incomplete, get 24 more chars.
GTO 41

PRBUF Otherwise print the accumulated string.

Some HP-IL peripherals automatically make use of the status of
flag 17 after ARCLREC or GETREC. If flag 17 is set, the
normal carriage return/line feed is suppressed so that the

rest of the record may be included on the same line.

3C. Insertion of data into text files

Suppose you want to change the first name record from
"RICHARD NELSON" to "RICHARD NELSON, FOUNDER OF PPC". The
first thing you must do is to set the record pointer to zero,
which is the first record of the file. If you have done
nothing to designate a different working file, the "NAMES"™
file is still the working file. The sequence

@ SEEKPT
will therefore set the pointers to character # (the first
character) of record zero (the first record).

The APPCHR (Append characters) instruction appends the
contents of the ALPHA register to end of the current record,
ignoring the character pointer. The pointer is advanced to
the end of the current record, one position beyond the charac-
ter appended. Unlike APPREC, APPCHR does not create a new
record., To make the desired change to record @, press

", FOUNDER OF PPC" XEQ "APPCHR" .
You can use the sequence

@ SEEKPT

GETREC AVIEW

GETREC AVIEW

-37-

|
f

to check your results. This is much easier than using ARCL,

APPEND, and ASTO to modify a string stored in data registers.

The next example of insertion uses the INSCHR (insert
character) instruction. The goal is to change the first
record from "RICHARD NELSON, FOUNDER OF PPC" to "RICHARD J.
NELSON, FOUNDER OF PPC", This requires inserting the charac-
ters "J. " ahead of the "N" in "NELSON".

Before the INSCHR instruction can be successfully used,
you must tell the HP-41 exactly where to insert the charac-
ters. 1In this example, that means that the record pointer
must be 6 (the first record) and the character pointer must be
8, corresponding to the 9th character, "N". INSCHR always
inserts the contents of ALPHA ahead of the current pointer
location and advances the character pointer by the number of
characters inserted. As with the other data insertion func-
tions, the pointer ends up one position past the last charac-
ter inserted. The sequence

.008 SEEKPT

"J. " INSCHR (don't forget the space)
performs the insertion of the middle initial "J." . Use

¥ SEEKPT

GETREC AVIEW

GETREC AVIEW
to check your results. The sequence that would be required to
do this insertion using ARCL and ASTO instructions defies
description!

The final example of text file insertion is the addition
of a new record in the middle of an existing file., The func-
tion INSREC (insert record) is provided for this purpose.
Analogously to INSCHR, INSREC inserts a new record ahead of
the current record pointer, loading it with the contents of
ALPHA. INSREC also advances the pointer to the end of the new
record, one position beyond the last character.

As an example of the INSREC function, try inserting the

-38-

name "CLIFFORD STERN" between "ROGER HILL" and "JOHN
MCGECHIE". Since the insertion is to be made ahead of the
third record (record number 2), the sequence is:

2 SEEKPT

"CLIFFORD STERN" XEQ "INSREC" .
The POSFL (position in file) instruction, described on page
41, makes it easy to insert characters or records in the right
place relative to any selected string of characters in a file.
First you use POSFL to find the string before which the inser-

tion is to be made, then you use INSCHR or INSREC as needed.

3D. Deletion of data from text files

Continuing the previous example, we have:
record number name
RICHARD J. NELSON, FOUNDER OF PPC
ROGER HILL
CLIFFORD STERN
JOHN MCGECHIE
Suppose you want to delete the last record of the file, record

w N =S

number 3. The function needed for this operation is DELREC.
The DELREC (delete record) function deletes the current

record (as designated by the record pointer) from the working
text file. DELREC does not change the record pointer, but it
does zero the character pointer. To delete record number 3,
the sequence is

3 SEEKPT

DELREC .
To check the result, use GETREC (the record pointer is still
3), You should get an END OF FL error message, indicating
that record 3 no longer exists. If you had deleted record
number 1, records 2 and 3 would have moved up to become the
new records 1 and 2, respectively. Incidentally, both DELREC
and INSREC deal with only a single record. 1If you need to
insert or delete several records at one point in a file, you
may need a short looping sequence containing DELREC or INSREC.

-39-

Now suppose you want to delete the string ", FOUNDER OF
PPC" from record @¢. The DELCHR (delete character) function
deletes characters starting from the current pointer position.
The number of characters to be deleted is specified by the
integer part of the number in the X register, If this number
is larger than the number of characters from the current
pointer position to the end of the record, the deletion is
only performed up to the end of the record. The record and
character pointers and X register are left unchanged by
DELREC. For this example, the sequence

g.a17 SEEKPT

16 DELCHR
performs the deletion of ", FOUNDER OF PPC". The comma was
the 18th character (character number 17) of record 6. The
number of characters to be deleted was 16. Actually, since
you were deleting all the remaining characters of record @,
you did not have to count the number of characters to be
deleted. The number 99 would have served as well as 16; you
only needed a number at least as big as the number of charac-
ters remaining in record 4.

To clear the entire contents of a text file without
deleting the file itself, use the CLFL (clear file) instruc-
tion, with the file name in the ALPHA register, CLFL needs a
file name, and will not operate on the working file. The
named file becomes the working file, and the number of records
is set to zero., This is useful to initialize an existing text
file for re~use as if it were a new file. The CLFL instruc-

tion is the same one that clears data files.

To delete the text file itself and free its extended
memory registers for other uses, put the file name in ALPHA
{(this is not optional) and execute PURFL (purge file). For
more details on PURFL, including an important WARNING, see
page 19,

-40-

Nl

3E. Miscellaneous text file operations
POSFL, SAVEAS, GETAS
The POSFL (position in file) function searches the wor-

king text file, starting at the current pointer position, for
a string that exactly matches the contents of the ALPHA regis-
ter. This string is not allowed to span more than one record;
it must be fully contained in a single record. If the search
is successful, the pointer is moved to the first character of
the string and the new pointer value is placed in the X regis-~
ter. If the search is not successful, no error message is
displayed, but the number -1 is placed in X. Thus, if you are
using the POSFL function in a program, a simple X<@#? instruc-
tion will tell you if the string was not found.

POSFL can work in combination with DELCHR or DELREC to
delete strings or records, or in combination with INSCHR or
INSREC to insert new strings or records.

The stack usage of POSFL is quite unusual. On the HP-
41CX, the stack is raised and LASTX is not disturbed. This is
just as it would be if RCLPT were executed at the point where
the match was found. On the HP-41C or CV, POSFL works this
way only if the string is found. 1If you are using an HP-41C
or CV and the string is not found, POSFL overwrites the X
register with the number -1 and places the former contents of
X in LASTX.

Let's try an example. Suppose you want to locate the
last name "HILL" in the "NAMES" file. This is easy to do.
Just press

SEEKPT

ALPHA space H I L L ALPHA

POSFL
The result should be 1.065, indicating that the space charac-
ter before "HILL" is character number 5 of record 1. The
space character was used to ensure that "HILL"™ was not found

as a first name or as a string embedded within another name,

-41-

The SAVEAS (save ASCII file) and GETAS (get ASCII file)
functions are usable only if you have an HP-IL mass storage
device, such as the HP 82161A Digital Cassette Drive. These
functions are described in the Extended Functions/Memory Mod-
ule Owner's Manual.

If you plan to make heavy use of ASCII files, an HP-IL
mass memory device will be very useful. Through SAVEAS and
GETAS, it provides a convenient way to permanently save your
ASCII files., If you need to merge the contents of two ASCII
files, which SAVEAS and GETAS are not meant to do, you can use
the programs presented in Section 3G,

3F. Viewing the contents of an ASCII file

The program "VAS" (view ASCII file) presented here will
display the entire contents of a text file, one record at a
time. It uses a few of the extended functions that are ex-
plained in Chapter 4, so you will have to read that chapter
before you try to understand how "VAS" works.

To view a text file, put the file name in the ALPHA
register and execute "VAS"., If a printer is attached, turned
on, and enabled (flag 21 set), the ASCII file contents will be
printed out. Otherwise they will be displayed. The LBL 10
subroutine performs this "print or display" operation., It is
an excellent application for the RCLFLAG and STOFLAG extended
functions (see page 66).

Here is a typical printout from "VAS":

RECORE #:

THIS EXAMPLE TLLUSTRATES
THE PRINTOUT/DBISPLAY PR

OBUCED BY YARS.

RECORD 1:

SHORT RECORDS USE { LINE

RECORD 2:

LONGER RECORDS SPILL OYE

R INTG THG OR WORE LINES

RECORD 3:

END OF FL

-42-

If you want to list only a part of the file, put a record
counter in X in the ISG format (bbb.eee, where bbb is the
starting record and eee is the last record to be viewed). Put
the file name in ALPHA and execute “PVAS"™ (partial view
ASCII).

One error trap is included in "VAS" and "pvas". 1If you
get the DATA ERROR message at line @5, you should load a file
name into ALPHA and press BST and R/S. This error trap is
intended to prevent you from losing your extended memory
directory if you have a revision 1B Extended Functions/Memory
module and you just used PURFL. With ALPHA clear, the SEEKPTA
instruction would operate on the working file, causing disas-
ter (see page 19) if there were no working file.

“yAS"/"PVAS® program listing

BleLBL -¥AS" 89¢LBL 8! 18 =F:- 26 GTO 81 34 AVIEW
82 .9 18 “RECORD * 19 XEQ 10 27 RTH 35 STOFLAG
11 LASTX 36 RDM
@3¢LBL "PVAS" 12 INT 204LBL 82 28¢LBL 10 37 FSIC 23
94 ALENG 13 RCLFLAG 21 GETREC 29 §F 25 3 rC7 2l
85 1/% 14 CF 29 22 XEQ 18 38 PRA 3% PSE
86 RDM 15 FIX @ 23 F§7 17 31 RCLFLAG 40 END
87 INT 16 ARCL Y 24 GT0 @2 32 FS%C 21
88 SEEKPTH 17 STOFLAG 25 I56 L IIFL 5 29 BYTES

Line-by-line analysis of "VAS"/"PVAS"
Line @02 provides a default record counter of 6.9¢00 for

"yAS", so that all records will be displayed. Lines 94 and 65
constitute the error trap that detects an empty ALPHA register
(length of the string in ALPHA = #). You may delete these two
lines if you have an HP-41CX or a revision 1C and up Extended
Functions/Memory module. Lines @#7-88 set the pointer to the
beginning of the first record to be viewed., The LBL 01 se-
quence forms the message "RECORD n:" in the ALPHA register.
Then XEQ 16 (line 19) displays or prints the string.

-43-

The LBL @2 sequence uses GETREC to recall 24 characters.
Then an XEQ 10 prints or displays the string. If flag 17 is
set, indicating an incomplete record, another GETREC is done.
Otherwise the record counter is incremented (line 25). The
GTO @1 instruction causes the same process to be performed to
print the next record. When the counter reaches its limit,
the GTO @1 is skipped and the RTN is executed instead. When
"VAS" is used, termination will be caused by an END OF FL
error stop at line 21, This is normal,

3G. Saving text files on magnetic cards

If you have a card reader, the program "WAS" (write ASCII
file) presented here can be used to write a text file into the
data registers, from which a WDTAX (write data registers
designated by X) instruction transfers the information to
magnetic cards. The "RAS" (read ASCII file) program performs
the reverse operation. These programs have only one con-
straint: the text file should not contain any null characters
(decimal code @ -~ see page 62). This is not a serious con-
straint since null characters are not ordinarily used,

To use "WAS", simply put the file name in ALPHA and XEQ
"WAS". The file name must be provided to avoid an error stop
at line #3. This error trap is intended to prevent the FLSIZE
instruction from wiping out your extended memory directory if
you just used PURFL. If you get the DATA ERROR message, you
should load a file name into ALPHA and press BST and R/S. The
"WAS" program will make sure that the SIZE is sufficient to
hold all the data, using the PSIZE (programmable SIZE) extend-
ed function to increase the SIZE if necessary. The PSIZE
function will be explained on page 75. If you get a NO ROOM
error stop at line 28, you will have to either delete some
programs to make more space or use the "PWAS"™ (partial write
ASCII) program described below. The number in X at this error
stop indicates the required SIZE for this "WAS" operation.

-44-

Wwhen the card reader prompt RDY #1 OF nn appears, you may
either insert the card to be recorded or you may press R/S
twice to avoid recording a card. When "WwaS" is finished, a
number of the form @.nnn is in the X register. This number
indicates that a representation of the text file data resides
in data registers @¢ through nnn. The total number of data
registers used is nnn+l, while the number of tracks used to
record the data is 1+INT(nnn/16).

To use "RAS", put the file name in ALPHA (not optional)
and XEQ "RAS"., Supply data cards at the prompt or press R/S
twice if the file representation already resides in the data
registers., The "RAS"™ program automatically knows where the
data ends. You don't need to specify a number of registers.

The "WAS" and "RAS" programs are very helpful in dealing
with a problem commonly encountered with ASCII files, Suppose
you have created an ASCII file of 50 registers and have star-
ted to load your data into it. All of a sudden, you get the
END OF FL error message, The file is fulll! It would appear
that you have to purge this file, create a new, larger one,
and start re-entering data from the beginning. But wait! You
can use "WAS"™ to write the file contents into data registers
before you purge the file. Then, after you create the larger
file, you can use "RAS"™ to re-load the data into the new file.
This saves a lot of work.

On the HP-41CX, the RESZFL (resize file) function can be
used for this purpose instead of "WAS" and "RAS". First
select the file you want to resize as the working file. You
can do this by interrupting the extended memory directory or
by naming the file and executing FLSIZE or RCLPTA. Then put
the desired file size in X and execute RESZFL. RESZFL allows
you to increase or decrease the size of the working file, as
long as no records would be lost by the file size reduction.
Caution: Even if you put a different file name in ALPHA,
RESZFL will still resize the working file. You should run
Catalog 4 (EMDIR) after using RESZFL to check the result.

-45-

If you want to record only part of a text file on cards,
put a record counter of the form bbb.eee in X, the file name
in ALPHA, and execute "PWAS" (partial write ASCII). Records
starting with bbb and ending with eee will be copied into the
data registers, and onto magnetic cards if you so choose.
This is helpful when insufficient SIZE is available for "WAS",
or when you are merging parts of two different text files.

If you want to replace part of the data in a text file
with data from cards, you can use the "PRAS" (partial read
ASCII) program., Put a record control number in X, the file
name in ALPHA, and execute "PRAS"™., The records from bbb to
eee will be deleted and replaced by the data from cards or
from the data registers. If you want to append records to the
end of a file, use a record control number xx.9, where xx is
greater than the number of records in the file , and 960-xx is
greater than the number of records to be added. To find out
the number of records in the file, see problem 3.1 on page 53.

Line-by-line analysis of "WAS"/"PWAS"/"RAS"/"PRAS"

Lines 062 and 03 make sure that the ALPHA register is not
empty, so that the FLSIZE function at line 65 will not operate
on the "working" file (which might not exist). See page 63
for an explanation of the ALENG function. If you want to be
able to use "WAS"™ and "RAS" with the "working" file, you may
delete lines 62, ¢3, 95, and 96, If you have a revision 1B

Extended Functions/Memory module, see page 19 for an explana-
tion of the risk you take by deleting these error traps.
Lines #5 through 18 calculate the number of data regis-
ters needed to store the representation of the text file.
This representation is best shown by an example, Suppose you
have the text file:
record number hame

RICHARD J., NELSON

ROGER HILL

CLIFFORD STERN

-46-

"WAS"/"PWAS"/"RAS"/"PRAS"™ program listing

#ielBL “HWRE"
87 ALENG
87 174
w4 SI12E7

5 FLSIZE
a6 7
a7
8§ APPREC
@9 DELREC
18 ROLPT
it 5
12 *
13 4
14 +
15 +
16 &
17 7
INT
E93 o4
PSiZt

21 8.9
¢ ENTERY

23 G570 B8

Z44LBL "PRAS”
25 RLENG
26 174
27 A
28 SIZE?
292
38 -
I11E3
2
33 XGY

J4eLBL 0@

35 ENTERY

36 INT

37 SEEKPTR

38 5F 25

I9DSE L

48¢LBL 81
41 GETREC
42 FC? 17
43 186 L
44 FL? &5
45 GT0 63

4h¢LBL 82
47 Rt
48 Rt

49 ASTO0 IND
58 I56 2
51 #(8?
52 570 #4
32 ALENG
34 11
55 RASHF
56 ¥{=Y?
37 GT0 82
58 RIN
935
68 X{Y?
61 FS? 17
62 GT0 81
63 GT0 @2

64¢LBL B3
65 LASTY
66 Rt

67 CLA

&8 ASTO IRD

69 INT
781 E3
s

72 5F 23
73 WDTAX
74 CF 25
75 BTN

7oeLBL B4
76
78 Kt

79¢LBL 85
88 DSE Z

Si+lBL 85
82 CLR

93 ARCL INB
84 RIN
85 ALENG
86 X=Y?
87 GTD 85
88 DSE L

v
i

[N]

-47-~

89¢LBL 84
99 ISGC Z
91 ACOS

92 GT0 83

93#LBL "RAS"
94 CF 83
95 ALEMNG
9% 1/¥
97 CLFL
98 .9
99 SIGN
188 GT0 @8

181eLBL "PRAS"
182 CF @5
183 ALENG
184 17¥
185 RDM
186 ENTERt
187 INT
188 SF 25
189 SEEKPTA
118 FE? 25
111 670 #7

112¢LBL 86
113 DELREC
114 FC? 25
115 GT0 @7
116 IS6 ¥

117 G670 86
118 CF 25

119¢LBL @7
128 APPREC
121 DELREC
122 RCLPT
123 XOY
124 SF 23
125 SEEKPY
126 CF 25
127 ¥(Y?
128 SF 85

129¢LBL 88
138 SF 25
131 RITR

132 CF 25
133 CLX
134 SF 86
135 LAsTR
136 6

137+LBL @9
138 CLR

139 ARCL IND Z

148 ALENG
141 %=07
142 FC? 86
143 X(8?
144 RTN
145 FC? 86
146 APPCHR
147 FCC 86
148 CLR
149 F5?7 85
158 INSREC
151 FL? 85
152 APPREC
193 X#¥?
154 SF 86
155 &2
156 FC? 63
157 610 18
158 RDN
139 RCLPT
168 INT
161 156 X

162¢LBL #9
163 SEEKPT

164¢LBL 18
165 RDK
166 186 Z
167 ACOS
168 FS? 86
169 ISG ¥
{78 GT0 89
171 END

291 BYTES

:
?
;
:

The representation of this file generated by "WAS" would be:

data register contents
20 "RICHAR"
g1 "D J. N"
g2 "ELSON"
a3 "ROGER "
g4 "HILL"
g5 "CLIFFO"
g6 "RD STE"
a7 "RN"™
@8 " (empty string)

The end of each record is marked by a string of less than 6
characters. This end-of-record marker will be an empty string
if the number of characters in the record is a multiple of 6.
An empty string at the beginning of a new record (register 98
in this example) signifies the end of the file.

This particular representation of the text file repre-
sents a good compromise between speed and register utiliza-
tion. Further packing of the data is practical only by using
synthetic programming techniques (see Section 16I).

The number of data registers needed to represent a text
file depends on the file size N (in registers) and on the
number of records R in the file. The program needs to compute
an upper bound on the number of data registers needed, so that
it can adjust the SIZE to be large enough. The worst possible
case is when the first R-1 records are 6 characters each,
meaning that they each take 2 data registers, and the last
record uses all the remaining space in the file. 1In this
case, a lengthy computation shows that the total number of
data registers needed to store the text file data cannot
exceed:

D= 2(R-1)+1+INT((7(N-R)+10@)/6)

= INT ((7TN+5R+4)/6) .

—48-

In “"WAS", line 65 computes the file size N, while lines ©98-10
compute the number R of records in the file. This latter
computation requires that there be up to 8 spare character
positions in the text file, so that a record consisting of the
file name can be temporarily appended without running into the
END OF FL.

Lines 19 and 20 compare the maximum number of data regis-
ters required with the current SIZE, and resize if necessary.
All of these registers will probably not be used, but this is
part of the price for user convenience. Line 21 sets the
default record counter (0.9) so that all records will be
written.

The LBL 0@ sequence sets the pointer to the beginning of
the first record designated. Flag 25 is set so that the
GETREC on line 41 will not halt the program.

The LBL @1 loop fetches a record from the file. If the
END OF FL is encountered, the GETREC clears flag 25 and causes
the GTO #3 branch to be taken. Otherwise the LBL 02 loop is
used to store the ALPHA register contents in 6-character
pieces.

First the leftmost 6 characters are stored in register
99. Line 43 increments the record counter in LASTX once for
each new record retrieved. Lines 53-57 return to LBL @2 to
store another 6 characters if 12 or more characters were
present in ALPHA before the ASHF at line 55 removed the 6 that
were just stored. 1If 12 or more characters were not present,
then at most one more ASTO will be needed before the next
GETREC. If 5 or fewer characters were present, the record is
complete and has already been stored. In this case, line 60
causes the GTO 01 to be executed.

If more than 5 characters were present, another ASTO
operation will usually be needed. The only exception occurs
when flag 17 is set, indicating that GETREC retrieved 24
characters but did not reach the end of the record. 1In this
case, the last 6 of these 24 characters have just been ASTO'd

—49-

and we do not want to store a blank end-of-record marker. So
the flag 17 test on line 61 sends us back for more characters
from the current record. If flag 17 is not set, the record is
complete and we do need an end-of-record marker (which will
contain @ to 5 characters). The GTO #2 instruction at line 62
takes care of this case.

LBL @3 marks the beginning of the termination procedure
that occurs after the END OF FL is reached by GETREC or after
the ISG L on line 43 reaches a skip condition. The end-of-
file marker (a blank string) is stored in the current data
register, so that "WAS" will know where the "RAS"™ data ends.
Then the number @.nnn is constructed for the use of WDTAX
(write data registers designated by X).

The "RAS" program begins by checking that the ALPHA
register is not empty. The named text file is cleared, which
automatically sets its pointer to record 8., The default
record counter of @8.9 is placed in LASTX by the SIGN instruc-
tion. "PRAS"™ starts similarly, but the file is not cleared.
If the SEEKPTA on line 1069 fails, the program assumes that the
new records are to be appended, and no records need to be
deleted. Otherwise the LBL #6 loop deletes the number of
records requested by the record counter that was originally
placed in X. Flag 25 is tested in case you specified too many
records and END OF FL is encountered. Flag @5 is set at line
128 if the first designated record is within the file, rather
than at or beyond the end of the file. This means that INSREC
will be used later instead of APPREC.

At LBL 08, the cards are read in (if desired), and flag
@6 is set, indicating that the next register to be read begins
a new record, The value @ in Z (line 133) is the initial
register pointer, the value in Y (line 135) is the ISG record
counter, and the 6 in X (line 136) is to be used for ALENG
comparisons. When the length of a data register string is

less than 6, the end of a record has been reached.

-5¢-

¢

«(¢ ¢ ¢

‘

The LBL 09 loop first gets a string of @ to 6 characters
from the current data register. If the length is @ and flag
96 is set, indicating that this register is supposed to begin
a new record, then the RTN at line 144 terminates "RAS".
Otherwise, if flag 06 is clear, the APPCHR function at line
146 adds the ALPHA contents to the current record. If flag @6
is set, APPREC or INSREC is executed, depending on flag 85, to
use the ALPHA contents to start a new record., If the string
length was not exactly 6 characters, then flag 96 is set to
indicate that the next string recalled will start a new rec-
ord. Lines 155-164 advance the pointer to the next record if
flags @5 and 86 are set, so that the next INSREC will put the
next record in the right place. The register counter in Z is

then incremented so that the next register can be recalled.

3H. Additional text file functions on the HP-41CX

The HP-41CX includes two additional functions dedicated
to text files. The first of these is ASROOM (ASCII file
room). ASROOM returns the number of bytes available in the
named file, or the working file if ALPHA is clear. If you

have a file to which you will not be adding information fre-
qgquently, you can use the following sequence to minimize its
usage of extended memory registers:

(file name)

FLSIZE Gives the number of registers allocated
ASROOM Gives the number of bytes free

7

/

INT Number of registers free

~ Number of registers in use

RESZFL Resize to minimum.
If you have an HP-41C or CV, you can use "WAS" and "RAS"
to reduce the file size to the minimum, but you will have to

use the following short routine to duplicate the ASROOM func-

~51-

tion in the preceding sequence:
¢1 LBL "“ASROOM"

@2 ALENG These lines are an error trap for the
93 1/X PURFL bug. You may remove them if
¥4 RDN you have Revision 1C or higher.

@5 FLSIZE Number of registers in named file.
g6 7

@7 *

28 @

#9 SEEKPTA Go to beginning of file.

19 + Total number of bytes in file.

11 Sr 25 Prevent error stop at line 14.

12 LBL @1

13 CLA

14 GETREC

15 ALENG Subtract the number of characters
le - in this record.

17 FC? 17 Subtract one byte for each record,
18 DSE X one byte at the end of file,

19 Fs? 25

20 GTO 01 Repeat if END OF FL is not reached.
21 END

This routine gives the true ASROOM as long as there are no

null bytes in the text file.

The second HP-41CX text file function is ED (edit). The
ED function is described fully in the HP-41CX Owner's Manual,
and the description is too lengthy to repeat here. When you
execute ED, the keyboard is redefined to allow easy motion
through the file as well as insertion and deletion of data.

If you have an HP-41lC or CV, Chapter 9 presents a text
editor program called "TE"™ that, while slower than ED, con-
tains all its features plus a few more, You will find "TE" or

ED quite helpful for creating and modifying text files.

-52-

c C ¢

¢

PROBLEMS (Solutions follow Chapter 1)

3.1. Write a short sequence of instructions to determine how
many records there are in a text file (assume that the file is
the working file).

3.2. Write a short program to print an entire text file, one
record to a line (unless the record overflows the print line).
Assume that the file name is in the ALPHA register at the

start of the program.

-53-

CHAPTER FOUR
MORE EXTENDED FUNCTIONS

Not all the functions built into the Extended Functions
module or built into the HP-41CX extended functions are di-
rectly concerned with using extended memory. Sixteen of the
47 functions (25 of 61 for the HP-41CX) provide operating
system enhancements that aid immeasurably in dealing with
ALPHA strings, flags, blocks of data, and key assignments.
One function, GETKEY, has the potential to allow complete
customization of the keyboard under control of a program.
This is demonstrated in the application programs in Chapters
7, 8, and 9.

4A. Stack Usage and Input Flexibility

There is one important difference between extended func-
tions and normal built-in (Catalog 3) functions that is not
mentioned in the Owner's Manual. Most of the extended func-
tions that use an input from the X register just leave the
input in X when they are done (X<>F, POSA, POSFL, and GETKEYX
are the only exceptions). Except for POSA, POSFL, and GETKEYX
they do not even copy X into LASTX. In this respect, extended
functions are much more similar to indirect functions like
ARCL IND X than they are to direct functions like 1/X.

This difference in stack usage is easy to deal with in
your programs once you are aware of it, At worst you will
need an extra roll-down instruction here and there to get rid
of a used function input. At best you will be able to make
use of the fact that LASTX is not disturbed by keeping a loop
counter there,

Those extended functions that bring a result into X work
just like RCL. The stack is raised unless a CLX, ENTERT, or
other stack lift disabling function was just executed. There
are two exceptions to this rule. The first exception is POSA,

-55_

which overwrites X and saves the previous value of X in LASTX.
The second exception, which only applies to the HP-41C or CV,
is POSFL. On the HP-41C or CV, when POSFL does not find the
string, X is overwritten and the previous value of X is saved
in LASTX. If the string is found, or if you are using an HP-
41CX, the stack is raised and LASTX is undisturbed.

Another feature common to the extended functions is that
they ignore any digits in X beyond those normally required.
Often this means that the fractional part of X is ignored.
For example, if you want to use STOFLAG to restore the status
of flags 36-39, the number in X can be 36.39xxxxxx, where the
digits xxxxxx can be nonzero., A case in which this character-
istic of the extended functions can be helpful can be found on
page 31l. There, the sequence

"file name"

g

SEEKPTA

.923

SAVERX
was mentioned as a way to save data registers # to 23 in a
data file. Because data file pointers are always integers,
the SEEKPTA instruction would have ignored any fractional part
of the number in X. Thus you could have used the sequence

"file name"

.0823

SEEKPTA

SAVERX ,
which is one step and one byte shorter. An additional unex-
pected benefit is that the SEEKPTA function is actually faster
with .623 in X than it is with @ in X. It is not often that
situations like this arise, but if you keep in mind this input
flexibility of the extended functions, you will be able to
write more efficient programs.

Another input flexibility feature of the extended func-
tions is that negative numbers are usually treated as if they

-56~

were positive numbers. The exceptions are AROT, to be dis-
cussed in section B of this chapter, and the HP-41CX functions
RESZFL (resize file, pages 32 and 45) and GETKEYX (page 98).
These last two functions use the sign of X as a flag to
override an error trap and to select a different mode of
operation, respectively. One possible benefit of this sign-
ignoring feature is that negative pointer values are treated
as if they were positive., You can thus simulate a "decrement
and skip if less than zero" instruction by using a negative
integer with an ISG instruction. Incrementing a negative

number decrements its absolute value,

4B, ALPHA manipulation

A "bare" HP-41C or CV has very limited alphabetic capa-
bility. With just a 24-character ALPHA register and a primi-
tive set of alpha operations (append, ASTO, ARCL, ASHF, etc.),
its alpha capabilities are well-suited to message displays but
inadequate for much more.

Extended memory adds the ability to store text files
(collections of ALPHA strings) and adds instructions for sel-
ectively changing, recalling, or finding a string. Moreover,
there are six ALPHA-related functions in the set of extended
functions which operate directly on the contents of the ALPHA
register rather than on strings within an text file., These
six functions, ALENG, ANUM, AROT, ATOX, POSA, and XTOA, add
significant capability, but still do not permit extensive
ALPHA processing.

I1f you remember that the HP-41 is not intended to be
capable of word processing, you will realize that its ALPHA
capabilities, especially with the addition of extended func-
tions, are more than adequate for its l2-character display.

The AROT (ALPHA rotate) function rotates the contents of

the ALPHA register leftward by the number of character posi-
tions specified in X. A negative number in X produces a

-57—-

rightward rotation. The absolute value of X must be less than
256, or a DATA ERROR message will result.

The primary use of AROT is to bring a selected character
to one end of the string in ALPHA. For example, a selected
character brought to the left end of ALPHA can be decoded by
the ATOX function (see below). A single character that has
just been appended to the right end of ALPHA can be moved from
its initial position at the end of the string to a position at
the front of the string by the sequence 1, CHS, AROT.

The AROT function does not drop the stack or disturb
LASTX. The number of positions rotated remains in X, so you
will usually have to follow AROT with a RDN instruction.

The function XTOA (X to ALPHA) appends a single character
to the rightmost part of ALPHA. This character is designated
by a decimal number from @ to 255 in X. This decimal number
is called the ASCII (American Standard Code for Information
Interchange) equivalent of the character. The correspondence
of display and printer representations to the decimal ASCII
code is shown in the table on pages 60 and 61l.

If ALPHA already contains 23 or 24 characters, TONE 7 is
sounded. This warning tone is sounded even if XTOA is used in
a program, unless flag 26 is clear. If X contains alpha data,
XTOA will act like ARCL X, appending the characters to the
right end of ALPHA., It is better to use ARCL X in this case
because its meaning is more clear in a program listing. The
stack is not dropped by XTOA, nor is LASTX updated.

The XTOA function can be used to construct ALPHA strings
containing non-keyable characters such as parentheses and
ampersand. For example, the following sequence creates the
string "X(1)= " in the ALPHA register:

nyn
49
XTOA

ll'_ l "

~58—

(U

1 (note that these two steps make use of the
+ fact that XTOA does not drop the stack)
XTOA

"i_= u .

An ARCL instruction and an AVIEW can then be used to append a
number and display the message. XTOA can also be used to form
strings containing lower case or special printer characters,
although the printer's ACCHR function does the same thing.
Except for a-e, these characters will appear as starbursts in
the display. This is due to the limitations of a 1l4-segment
display.

If the contents of the string are known ahead of time,
synthetic programming techniques allow you to put a text
instruction in your program that contains any such special
characters. This is much more efficient than using XTOA. See
page 29 of "HP-41 Synthetic Programming Made Easy". XTOA is
best suited to appending one or two characters to ALPHA, where
the actual character to be appended depends on the result of a
compuggtion in the program. This technique is used in the

base conversion portion of the "HP-16" program in Chapter 9.

The ATOX (ALPHA to X) function is almost the inverse of
XTOA., XTOA converts a decimal number to a character that is
appended at the right end of the ALPHA register., In contrast,
ATOX converts the character at the left end of the ALPHA
register to the corresponding decimal code. The stack is
raised, but LASTX is not affected.

In addition to its primary use for decoding a character
from ALPHA, ATOX is often used simply to delete a character
from the ALPHA register. An AROT operation can be used to
move any desired character to the front of the string in
ALPHA, where ATOX can remove and decode it.

(continued on page 63)

-59-~

decimal display printer‘ decimal display printer

code char char code char char
g (null) ~ v 32 (space) (space)
1 * g 33 ! |
2 8 H 34 " ’
3 & « 35 b i
4 X q 36 % H
5 X B 37 % ¥
6 / r 38 b &
7 B i 39 '
8 8 i 40 4 {
9 B a 41 ; 3
10 8 + 42 ¥ *
11 g) 43 + +
12 ~ ¥ 44 s)
13 £ g 45 - -
14 & v 46
15 & + 47 e
16 B] 48 2 i
17 B] 49 ' i
18 &] 50 c 2
19 & A 51 3 3
29 8] 52 Y 4
21 B # 53 5 3
22 B i 54 b 3
23 &] 55 3 7
24 8] 56 (2]
25 a2 1] 57 =] E]
26 8] 58 :
27 & £ 59 ’ ;
28 & ¢ 60 Pl <
29 % 3 61 b =
30 8 £ 62 5 3
31 8 H 63 2 7

-60-

decimal display printer decimal display printer

code char char code char char
64 i 8 96 T
65 A A 97 o 3
66 3 B 98 b b
67 C c 99 o €
68 H I 100 e d
69 £ E 101 (2 3
70 F F 102 8 ¢
71) 3 103 8 9
72 H H 104 g h
73 I 1 165 8 i
74 o J 1d6 B i
75 K 4 167 8 k
76 L L 108 g 1
77 M] 109]]
78 N N 110 B n
79 o 0 111 B 0
80 7 P 112 8 J
81 G] 113 B]
82 R R 114 B r
83 5 § 115 B s
84 T i 116] i
85 U U 117] u
86 v ¥ 118 B8 v
87 W W 119] v
88 X H 120 -] X
89 Y ¥ 121 B ¥
90 Z Z 122 8 z
91 C { 123] ¥
92 . \ 124 8 i
93 3 i 125 8 3
94 2 t 126 £ z
95 127 b F

-61-

Notes to ASCII character table

If you are using an HP-IL printer, decimal codes 9, 149,
and 27 have a different meaning., Code 9 generates a "line-
feed" character, code 10 generates a "carriage return", and
code 27 generates an "Escape" character. The "Escape" charac-
ter signifies that the following characters constitute a spe-
cial control message to the printer. This message is not
printed. Escape mode is exited automatically when enough
control characters have been received to complete a valid
command sequence.

The decimal codes 128-255 give starbursts (all segments
1lit) in the display. The printer characters for codes 128-255
are the same as those for @¢-127, respectively, except for the
three special HP-IL printer codes,

Decimal code # gives a "null" character, which is not
related to the NULL message when a key is held down too long.
Unless you do a lot of synthetic programming, you will proba-
bly never use a null character. Read Appendix C of the Exten-
ded Functions/Memory module Owner's Handbook for a complete
summary of the strange behavior they can exhibit.

Character number 255 has a few strange properties as
well. When it is displayed as part of the ALPHA register, it
appears as a starburst. However, when you ASTO a string that
contains this character and then display the ASTO'd string,
what you see in the display will be misleading. The decimal
255 character and any characters that follow it will be invis-
ible. If you have a revision 1B Extended Functions/Memory
module, you must observe another caution involving decimal 255
characters: do not store more than 6 consecutive decimal 255
characters in a text file. You risk losing that file and all
subsequent files the next time you purge a file closer to the
beginning of extended memory. This is because the HP-41 uses
a register of 7 of these characters to mark the last occupied
register of extended memory. This caution does not apply to
the HP-41CX or to extended functions revisions 1C and up.

-62-

(continued from page 59)

The ALENG (ALPHA length) function computes the number of
characters in the ALPHA register, from @ to 24. This number
is placed in the X register, while the former contents of X,
Y, and %, are raised to Y, Z, and T. LASTX is unchanged.

For example, suppose you want to check whether the ALPHA
register is empty and branch to LBL 99 if it is. The sequence

ALENG

X=g?

GTO 99
will accomplish this. If you just want to generate an error
message if ALPHA is empty, you can use the sequence

ALENG

1/X (gives DATA ERROR if X=¢).
Another use for ALENG is to determine how many ASTO and ASHF
operations are needed to store a long ALPHA string. Since
each ASTO stores 6 characters (and ASHF then removes these 6
characters), we can divide the initial length by 6 and round
up to the next highest integer to determine how many ASTO's
will be needed. Another approach is to check the length after
each ASHF and continue as long as the ALPHA register is not
empty.

An advanced application of ALENG is to aid in rotating
strings containing null characters. If a null character is
rotated to the front (leftmost part) of a string, it will
disappear. The only way you can tell that this happened is to
check the ALENG before and after the rotation to see whether
it decreased. Unless you do a lot of synthetic programming
(see section 1@A), you probably will not use ALENG this way.
But now, when you see ALENG preceding and following AROT in a
synthetic program, you will know why.

The function POSA (position in ALPHA) accepts a decimal
character code in X. It then searches the string in ALPHA,
from left to right, for the first occurrence of the specified

-63-

character. A position code is returned to the X-register,
overwriting the character code. The character code is saved
in LASTX. POSA, POSFL (page 41), and GETKEYX (page 90) are
the only extended functions that alter LASTX.

The position code returned by POSA is an integer from ¢
to 23, A value of # indicates a match at the first (leftmost)
character of ALPHA, while a value of 23 indicates a match at
the 24th character. If no match is found, the value -1 is
placed in X. These rules for the position code may seem
strange, but they are designed with a specific application in
mind. If you want to locate a particular character and bring
in to the front of ALPHA, you can use the very simple sequence

(character code)

POSA

X<g?2 (If the character is not found,
SF 99 then display "NONEXISTENTY)
AROT o

The located character can then be removed by an ATOX. 1If you
have separator characters in the ALPHA register, POSA, AROT,
and ATOX working together can find the separators, remove
them, and prepare the ALPHA register for each separate string
to be processed.

As an example of POSA, suppose you have someone's name in
the ALPHA register in the standard form "firstname lastname",
and you want to change it to the form "lastname, firstname".

The following sequence should do the trick:

"YROGER HILL" (for example)

", " Place a comma and space after last name
32 Decimal code for the space character
POSA Locate the space after "ROGER"

AROT Bring it to the front of the string
ATOX Delete the space.

The POSA function has a second mode of operation that
allows the ALPHA register to be searched for a string of 1 to

-64-

6 characters. Instead of putting a decimal character code in

X, you can ASTO a string there. For example, try the follow-

ing:
"FGH" (press ALPHA F G H ALPHA)
ASTO X (press ALPHA shift STO . 6 ALPHA)
"WXYXABCDEFGHIJ"
POSA (XEQ ALPHA P O S A ALPHA)

The result should be 9, indicating that the string "FGH"
begins at the 10th character of ALPHA. Note that the string
"FGH" is still available in LASTX if you need it.

In this second mode, POSA is very similar to the POSFL
function (page 41). Because it is not limited to 6-character
substrings or 24-character strings, the POSFL function is far
more useful than POSA for substring searches, However, for
single character searches, either by decimal code or single-
character substring, the POSA function is often simpler to use
than POSFL.

The ANUM (ALPHA number) function is a near-inverse to
ARCL. The primary use of the ARCL (ALPHA recall) function is
to append a number to the ALPHA register. The ANUM function
extracts a number from the ALPHA register. For example, if
the ALPHA register contains the string "A=452", executing ANUM
will put the result 452 into the X register. The stack is
raised and LASTX is not affected.

ANUM searches the ALPHA register from left to right,
returning the first legitimate number found. This is affected
by commas and periods in ALPHA, and the status of flags 28 and
29. When the ALPHA register contains one or more periods or
commas, things start getting complicated. First, the period
and comma are interpreted according to the status of flags 28
and 29. If flags 28 and 29 are set, a period is interpreted
as a decimal point and a comma as a digit separator. 1f flag

28 is clear and 29 is set, a comma is interpreted as a decimal

-65-

point and a period as separator. This is the standard Eur-
opean notation. If flag 29 is clear, digit separators (comma
if flag 28 set, period if flag 28 clear) are treated as alpha
characters. Therefore if the number "12,003.65" is in ALPHA
and you execute ANUM with flag 28 set but flag 29 clear, the
result will be 12, Because flag 29 was clear, the comma was
regarded as a character, splitting the number into two parts;
For most applications, you should try to avoid this problem by
making sure that flag 29 is set before you use ANUM. One more
caution: if you use ANUM with a nonstandard number format in
ALPHA, the results may not be what you intended. For example
"-34-" XEQ "ANUM" yields the positive result 34. The second
negative sign cancelled the effect of the first. Also, two or
more numbers separated only by + or - symbols will be inter-

preted as a single number.
PROBLEMS

4.1. Write a 4-step sequence to append a character to the left
end of the ALPHA register.
4,2, Write a short sequence to ASTO the ALPHA register con-
tents without wasting any registers on empty strings.
4,3, Write sequences to delete n characters from ALPHA:
a) from the left, and b) from the right.
4.4, Modify the above "lastname, firstname" rotation sequence

to handle a possible middle initial.

4C. Flag Manipulations

The extended functions provide three new functions that
are very helpful in controlling the status of flags. Most
important of these are RCLFLAG and STOFLAG.

Consider the following situation. You are writing a
program that needs to round or display a result in a certain
format, for example FIX 2. You would like the program to be

-66-

able to restore the original display format before returning
control to the user. Before the advent of extended functions,
this seemingly simple task was very difficult to do. Elabor-
ate flag testing was needed at the start of the program to
determine the original display setting. Then, after the dis-
play setting was changed, additional complicated operations
were needed to restore the original setting.

The availability of the RCLFLAG (recall flags) and
STOFLAG (restore flags) functions eliminates all this diffi-
culty. You simply use RCLFLAG to recall the flag setting
before changing the display, then use STOFLAG to restore the
original flag status. A typical instruction sequence might

look like this:

RCLFLAG Places a flag-equivalent string in X
YAMT= §"

FIX 2

ARCL 01

AVIEW

STOFLAG Uses the string to restore flags.

The LBL 92 subroutine of Chapter 7's "NAP" program is an
example of this technique. Now for some details about the

RCLFLAG and STOFLAG functions.

The RCLFLAG (recall flags) function recalls to the X-
register an unintelligible alpha string that represents the
current status of flags @ to 43. Like a standard RCL instruc-
tion, RCLFLAG raises the contents of X, ¥, and Z into ¥, Z,
and T, unless it is immediately preceded by an ENTERT, CLX, or
other stack lift disabling operation. LASTX is not changed.

The alpha string formed by RCLFLAG can be stored in a
data register or kept in the stack. The only use of this
string is to later restore some or all of the original flag

status by using STOFLAG.

-67-

The STOFLAG (restore flags) function has two modes of
operation. The one illustrated in the above example is the
simpler mode. Simply put the RCLFLAG alpha data into X, and
execute STOFLAG. The original status of flags 0 to 43 (as of
the time RCLFLAG was executed) is restored.

STOFLAG's second mode of operation permits selective
restoration of the previous flag settings. To use this mode,
put the RCLFLAG alpha string in the Y register, and a number
of the form bb.ee (not bb.eee) in X. Then, when you execute
STOFLAG, the block of flags from flag number bb to flag number
ee (including bb and ee) will be restored to their original
status. To restore a single flag, put the flag number bb in
X.

This second mode of operation allows you, for example, to
restore just the display setting, just the general-purpose
flags, or just the triginometric mode. To restore only the
display setting, you would use a sequence like:

RCLFLAG Save the original flag settings

STO @5 in data register @5

. (display-altering program steps)

RCL @5 Bring back the RCLFLAG string

36.41 Flags 36-41 control the display setting
STOFLAG Restores flags 36-41 only.

Using RCLFLAG and STOFLAG, it is possible to have several
sets of flag settings appropriate to different sections of a
program. Each flag setting can be stored in a separate data
register in the form of a RCLFLAG alpha string. Each section
of the program can then simply use RCLFLAG to establish its
flag settings, rather than having to deal with the flags

individually. This should noticeably speed program execution.

-68-

Another application of RCLFLAG/STOFLAG is the following
short routine that will print the contents of the ALPHA regis-
ter if the printer is turned on and enabled (flag 21 set), or
AVIEW and PSE otherwise. This is superior to a simple AVIEW
because:

1) It does not halt if flag 21 is set but the printer is
turned off, and
2) It does not force you to wait for a slowly scrolling
display if the printer is in use.
This sequence was used in the "VAS" (view ASCII file) program
of section 3F. Here it is as a program, "PVA" (print or VIEW
ALPHA) :
¢1 LBL "pPVA"

@2 SF 25

@3 PRA Attempt to print ALPHA

@4 RCLFLAG

g5 FszC 21 Clear flag 21 for later AVIEW
@6 FC? 25 If print was not successful,
@7 AVIEW or if flag 21 was clear, then AVIEW.
@8 STOFLAG Restore flags

@9 RDN

19 FS?2C 25 If print was not successful,
11 FC? 21 or if print was disabled,

12 PSE then PSE after the AVIEW.

13 END '

Yet another RCLFLAG/STOFLAG application allows you to
obtain FIX/ENG display format by setting flags 4% and 41,
This display mode looks like a normal FIX format until the
number in X becomes large or small enough that an exponent is
needed. Then the ENG mode takes over. Just put a number from
g to 9 in X, and execute "FEX" to set FIX/ENG mode with the
specified number of digits displayed to the right of the most

significant digit.

—69-

¢l LBL "FEX" FIX/ENG INDirect X

32 ENG @ Set flag 41

#3 RCLFLAG

¥4 FIX IND Y Set flag 40 and select the

g5 X<>Y correct number of digits

@6 RDN

g7 41

@8 STOFLAG Set flag 41 (others unchanged)
g9 R]

10 RrT Put the stack back in order.
11 END

The third flag-related function is X<>F (X exchange
flags). This function treats general-purpose flags 0@ through
@7 as a "mini-register", and performs an exchange with that
register. This "mini-register" can only hold integer numbers
from @ to 255 inclusive. Therefore any fractional part of X
is discarded before the exchange is performed, and the sign of
X is ignored. 1In effect, the X<>F function incorporates the
sequence ABS, INT as its first two steps, except that LASTX is
not altered. 1In fact, the sequence X<>F, X<>F can be used to
perform ABS, INT on a number up to 255 without altering the
stack or LASTX. No DATA ERROR message is given by X<>F unless
INT(ABS(X)) is larger than 255,

The power of X<>F is that, like STOFLAG and RCLFLAG, it
gives you the ability to maintain several sets of general-

purpose flags in data registers.

After an X<>F is performed, the settings of flags 60
through 67 express, in binary form, the former value of X. 1If

you are mathematically inclined, the formula is
7
former X = Z fi*2i '
i=0
where £; = 1 if flag i is set, ¢ if flag i is clear.

-7¢-

NG ¢

(

‘

In this binary representation, flag # has the value 1, flagl
has the value 2, flag 2 has the value 4, and so on. This
equivalence can be represented in tabular form. The example
shown below gives the binary representation of the decimal

number 133.

flag value current
number if set set? value

0o 1 Y 1

g1 2 N "}

g2 4 Y 4

@3 8 N @

04 16 N "}

g5 32 N ¢

g6 64 N]

g7 128 Y 128

Total: 133

As a simple example of the usefulness of X<>F, suppose
you have a program that starts by clearing flags 30 through @3
and setting flags @4 and 95. Rather than use the sequence

CF @0
CF 01
CF 02
CF @3
SF 04
SF @5 (12 bytes)

one can use the sequence

48 (flag 904
X<OF (4 bytes)

16, flag 85 = 32)

-71-

If you were not familiar with the binary equivalence, you

could have verified that 48 was the correct number as follows:

g This clears flags 60 through 07,
X<>F a very useful technique.

SF 04

SF 05

X<OF

The result of this sequence is 48. This shows that the number
48, when followed by X<>F, will set flags @4 and 85, while
clearing the others.

If it were important in the above example to preserve the

status of flags 06 and 07, you could have used this sequence:

)

X<>F Recalls the flag status

64

/ Flags 66 and 07 are now in the
INT one's and two's digits

LASTX

*

48 These two steps add in the number
+ to set flags @4 and @5.

X<OF

Further analysis of this sequence is left as an exercise.
When you understand it, you will be able to fully utilize
X<>F. But do not be misled into using X<>F everywhere. For
instance, in the example just shown, a simple set of six
instructions to clear flags @0-03 and set flags #4-05 saves

two bytes over the X<>F method!

-72-

PROBLEMS
4.5. Write a sequence of instructions that evaluates the

function
f(x) = SIN(PI*Xx)

PI*x
The SIN function must be evaluated in RADian mode, but the

original trig mode is to be restored.

4,6. Write a sequence to activate FIX/ENG mode without chang-

ing the currently selected number of digits (flags 36-39).

Synthetic Programming applications of RCLFLAG and STOFLAG

Wwhen a printer is attached, program execution is slowed.
The amount of slowing can be reduced if you synthetically
clear flag 55. Flag 55 will only remain clear as long as the
program continues to run. Once it stops, flags 55 and 21 will
both be set. The following short sequence, developed by Steve
Wandzura, clears flag 55 without disturbing any other impor-

tant flags:

RCLFLAG

SIGN stores flags in LASTX, sets X=0.
STO d clears all flags.

X<> L brings flags back to X.

STOFLAG restores flags (up to 43).

RDN restores the stack (except T).

The exact format of the ALPHA string generated by RCLFLAG
is, in hexadecimal,
lF Ff £ff ff £f £f ff,
where the f's denote flag information, corresponding to flags
¢ to 43, left to right. The flags are shifted one-and-a-half
bytes to the right from their normal position in the flag
register. The extra half-byte shift can be useful in advanced

synthetic programming applications.

~73-

4D. SIZE-related functions

Two of the extended functions allow you to check and
adjust the SIZE under program control. This is a powerful new
capability that, before the introduction of the extended func-
tions module, was available only through synthetic programming

techniques.

The SIZE? (SIZE finder) function finds the number of data
registers currently allocated and places that number in the X
register. So, for example, if you set a SIZE of 926, and then
you execute SIZE?, the result will be the number 20 in X. The
stack is lifted just as for a RCL operation.

The SIZE? function is the classic example of an essential
operating system function that the designers left out of the
original HP-41l. 1If you have used an HP-41 without extended
functions, you know this already. How many times have you
wanted to check the current SIZE before starting a program or
manual data entry? The usual procedure was to try several RCL
operations in an attempt to get an approximate idea of what
the first NONEXISTENT register is. This procedure could be
automated by programs like this simple but slow one:

81 LBL "SZFIND"

92 CLX These 2 lines set X=0, set flag 25
@3 SF 25 to avoid stopping at line @5.

¢4 LBL 01

85 RCL IND X Attempt to recall a register.

36 FC? 25 If the register was NONEXISTENT,
@7 RTN the value in X is the SIZE.

@8 RDN

99 1

19 + Add 1 to the register number.

11 GTO 01 then try the next one.

12 END

The SIZE? function is incomparably faster than this approach,

and much more practical too. You might use it often enough to

-74-

~

warrant assigning it to a key, but even if you do not, it is
quickly accessible by the key sequence
XEQ ALPHA S I Z E 2 ALPHA .

The PSIZE (programmable SIZE) function does the same
thing as SIZE, except that it does not give the familiar
three-underscore prompt. Instead, the SIZE is adjusted to
equal the value in X. PSIZE can be used in a running progdram,
even in a sixth-level subroutine, without any adverse effect
on the program's operation. This means that you can write
programs and subroutines that automatically increase or de-
crease the SIZE as necessary.

The following short sequence of instructions checks
whether the current SIZE is sufficient for a specific purpose,

and uses PSIZE to increase the SIZE if necessary.

(required SIZE)
SI1ZE?
X<y
X>Y?
PSIZE

Another variation provides an audible warning of the
impending PSIZE operation, in case the user of the program
wants to press R/S to prevent resizing:

(required SIZE)
SIZE?

X>Y?

GTO 41

TONE 9

X<>Y

PSE

PSIZE

LBL 91

-75=~

4E. Block operations

The extended functions REGMOVE and REGSWAP allow you to
copy, exchange, or rotate blocks of data registers. The HP-
41CX adds the function CLRGX, which clears a block of data
registers. If you have an HP-41C or CV, a short "block clear"
program does the same job.

The REGMOVE (register move) function accepts an input of
the form sss.dddonn in the X register. Executing REGMOVE
copies a source block of nnn data registers beginning at
register sss to a destination block of nnn data registers
beginning at register ddd. If nnn is zero, one register is
copied. REGMOVE does not alter the stack or LASTX. As an
example, the sequence

6.0016063 REGMOVE
copies a block of 3 registers. The source block is registers

96, 07, and 68, while the destination block is composed of
registers 61, 92, and 93,

To make the examples easier to follow, first set the SIZE
to 626 and run the "PRELOAD" program from page 24. This will
"tag" all your data registers. When you press

XEQ "“PRELOAD"

the value @ is stored in register @68, 1 in register @1, and so

on. The value in each register matches its number.

As a simple example of REGMOVE, press
3.067006 XEQ ALPHARE G M O V E ALPHA,

This will cause registers #3-08 (a 6-~register block) to be
copied into registers #7-12, as shown on the next page.

~-76-

register: 3 94 @5 @6 @7 @8 69 1@ 11 12

start: 3 4 5 6 7 8 9 10 11 12
8
7
6
5
4
result: 3 4 5 6 3 4 5 6 7 8

The intermediate steps shown in this diagram are invisible to
you. They are included so that you can visualize how the
copying process is implemented. Where there is no entry, the

register contents are not changed at that step.

The REGSWAP (register swap) function exchanges the con-
tents of two blocks of data registers. Like REGMOVE, it
accepts a number of the form sss.dddnnn in X, where sss de-
notes the beginning of the source block, ddd denotes the
beginning of the destination block, and nnn denotes the number
of registers in each block. If nnn is zero, the HP-41 assumes
that you want nnn=1 and it swaps only registers sss and ddd.
The stack and LASTX are unchanged.

The internal programming of REGSWAP interchanges one pair
of registers at a time, I1f sss<ddd, the highest numbered
register is swapped first and the lowest numbered register is
swapped last. If sss>ddd, the lowest numbered register is
moved first and the highest numbered register is moved last.
This internal order of operations is the same for REGSWAP as
it is for REGMOVE. Normally you would not need to know in
what order these operations are performed. However, if the

source and destination blocks overlap, the order of operations

-77-

affects the result. BAs an example of REGSWAP, try this:

XEQ "INIT"
3.007006 XEQ "REGSWAP" .

The following diagram shows how the register exchange 1is
performed.

register: @3 g4 g5 g6 g7 g8 @9 10 11 i2

start: 3 4 5 6 7 8 9 1@ 11 12
12 8
11 7
19 6
9 5
12 4
11 3
result: 11 12 9 10 3 4 5 6 7 8

As you can see, REGSWAP can really scramble the registers when
there is a significant overlap of the two blocks. This fea-
ture can be turned to an advantage, however, in constructing a

"block rotate" function. Consider the following example.
Press

XEQ "PRELOAD" (initializes the registers)
4.603009 XEQ "REGSWAP" .

The internal steps in the register swap are as shown on the

next page. Because 4 is greater than 3, the swap proceeds
from low to high numbered registers.

-78-

e

register: @3 g4 g5 g6 g7 g8 @9 10 11 12

start: 3 4 5 6 7 8 9 19 11 12
4
5
9 3
19
11 3
12
result: 4 5 6 7 8 9 10 11 12

The result is that the block of 1@ registers from 83 to 12 is

rotated one register downward. If you had pressed
3.004009 XEQ "REGSWAP"

the l@-register block would have been rotated upward one
register. This result can be easily generalized.

To rotate a block of nnn registers beginning at register

sss, use the REGSWAP input

sss.(sss+l) (nnn-1) to rotate upward 1 register, or

(sss+l).sss(nnn-1) to rotate downward 1 register.

If you want to rotate a block of n registers by r registers
upward or downward, you may be able to accomplish the desired
result with a single REGSWAP instruction. If the number r

divides n evenly (without a remainder), use

sss. (sss+r) (nnn~-r) to rotate upward r registers, or

(sss+r) .sss(nnn-r) to rotate downward r registers.

~79-

The CLRGX (clear registers designated by X) function on
the HP-41CX accepts an input of the form bbb.eeeii in the X
register, where bbb is the first register to be cleared, ii is
the increment between registers to be cleared, and registers
beyond eee are not to be disturbed.

If ii is not supplied (ii=@), then a default value of
ii=1 is assumed, so that registers from bbb up to and inclu-
ding eee are cleared., 1If you are familiar with the ISG (in-
crement and skip if greater than) instruction on the HP-41,
these rules will not be new to you. For example, to clear
registers ¢4 through #8, you would press

4,008 XEQ ALPHA C L R G X ALPHA .
To clear registers 91, 03, 05, 87, and 09, you would press
1.00902 XEG ALPHA C L R G X ALPHA .
Actually it is a very rare application in which you need to
use a nonzero value of ii. One example would be when you have
stored a matrix, one entry per register, in a block of data
registers. Nonzero values of ii allow you to selectively
clear one column or the diagonal elements.

CLRGX leaves its input in X and does not disturb LASTX.

If you have an HP-41C or CV, it is easy to write an
instruction sequence to clear a block of registers, The
following very simple program will clear a block of data
registers beginning at register bbb and ending with register
eee. Just put the number bbb.eee in X and execute "BC" (block
clear).

¢1 LBL"BC"

#2 SIGN Stores bbb.eee in LASTX

¢3 CLX The value 9 is to be stored.
¢4 LBL 03

@5 STO IND L Clear the register.

96 ISG L Increment the counter.

#7 GTO 93

@8 END

-8¢-

—

(

c C ¢

¢

If you plan to clear large blocks of data registers, you can
use the faster program "BCI" (block clear using summation
registers) that uses the CLI function to clear 6 registers at
a time. To clear 199 registers, "BC" uses 13 seconds, while
"BCI" takes less than 4 seconds. To use "BCI", just put the

bbb.eee control number in X and execute "BCL".

BCI program listing

BI+LBL "BLE BSeLBL 81 14 DSE X 19¢LBL 82
82 6 E-5 89 LT 28 STO IND Y
a3 + 16 IREG IND ¥ 15¢LBL @2 21 156 ¥
84 EREC IND X 11 186 % 16 LASTYX 22 GTO 83
85 156 ¥ 12 GT0 @1 17 - 23 END
86 %¢@? 18 8
87 GTo 82 13eLBL 02 44 BYTES
PROBLEM

4.7. Write a short program to rotate a block of nnn registers
starting at register sss upward by rrr registers (downward if
rrr is negative). At the start of the program, assume that

sss is in X, nnn is in ¥, and rrr is in Z. Use only the stack

and LASTX. (It is not as easy as it looks.)

4F. Key assignment control

Two extended functions, CLKEYS and PASN, enhance your
ability to control USER mode key assignments. Another extend-
ed function, GETKEY (plus GETKEYX on the HP-41CX), allows your

program to "read" the keyboard, providing the ultimate in

redefinition of the keyboard.

First a few words about key assignments. The ability to
assign a function to a single key is one of the features that
distinguishes the better programmable calculators. The HP-65
and HP-67 programmable calculators had a top row of keys

-81-

]
?
f
;

labeled A through E (the shifted top row was labeled a through
e). At the touch of one of these keys, you could execute a
section of the calculator's program that began with the corre-
sponding label (A-E or a-e).

The HP-41 is a major advance over its predecessors in key
assignment capability. The HP-41's USER mode allows virtually
every key to be redefined with an assignment of a global label
or a function. (Global labels are those labels that appear in
Catalog 1, while functions appear in Catalog 2 or Catalog 3.)
Also, to maintain compatibility with the HP-67 and HP-97, the
top row of keys can access local labels A-E (unshifted) and
a-e (shifted) in the current program. 1In addition, the un-
shifted second row can access local labels F-J. This will
work as long as no global label or function is assigned to the
key in question. This automatic label search feature is
described under "Local labels" in the HP-41 Owner's Handbook.
If a key in the top row, shifted or unshifted, or in the
second row, unshifted only, is pressed in USER mode, and if no
global label or function is assigned to that key, a search is
begun. If the corresponding local label (A through J or a
through e) is found in the current program, the calculator
starts executing the program at that point. Hold the key down
to preview its function.

Incidentally, because this local label search can take a
relatively long time, it is often useful to assign the X<>Y
and RDN functions to their own keys. This assignment has
higher priority than a local label, so no label search is
performed. The response time to these keys in USER mode is
noticeably improved.

The PASN (programmable ASN) function works almost like
the ASN (assign) function does from the keyboard. Recall that
when you use ASN, you have to enter ALPHA mode and spell out a
function name. It's the same with PASN, except that you spell
the function name out in the ALPHA register before you execute

-82-

PASN. With ASN, you designate the key to which the function
is to be assigned by actually pressing the key after spelling
out the function name. If you hold that key down for a mo-
ment, a keycode appears in the display. This keycode is a
two-digit number. The first digit is the row number of the
key (1 through 8), while the second digit indicates the column
(1 through 5). It is this row/column keycode that you have to
put in the X register before executing PASN.

The ASN function can be used to manually clear a key of
its assignment. You just press ALPHA ALPHA for the function
name. When no function is named, the HP-41 assumes that you
want the key to be free of any assignment. Once again, PASN
works similarly. Just make sure the ALPHA register is empty,
put the row/column keycode in X, and execute PASN.

Summarizing: to use PASN, load the ALPHA register with
the name of the function to be assigned, put the row/column
keycode in X, and execute PASN. The specified function will
be assigned to the designated key. If the ALPHA register is
empty, the designated key will be cleared of its assignment.
These instructions apply identically whether PASN is an in-
struction in a program or whether it is executed from the
keyboard.

The PASN function lets you write programs that make key
assignments. For example, suppose you had a program to update
text files. It could prove quite helpful to have operations
like INSREC (insert record) and DELREC (delete record) assign-
ed to keys, even though these functions may not be useful
enough to keep assigned to keys all the time. The answer is
to use PASN at the beginning of your program to assign these
functions to convenient keys. At the end of the program you
can use PASN again, with the ALPHA register empty, to clear
the assignments.

The short routine listed at the top of the next page was
written by Alan McCornack. It clears the top row (unshifted

-83-

only) of any function or global label key assignments. This
technique can be easily extended to meet your needs for se-
lected key assignment clearing.

g1 LBL "CT" (clear top row)

@2 CLA

g3 11.915 ISG counter for keycodes 11 to 15
g4 LBL 95

25 PASN Clear key x.

g6 ISG X

@7 GTO @5

@8 END

The CLKEYS (clear keys) function clears all USER mode key
assignments of global labels or functions. Note that when you
use CLKEYS to delete global label and function key assign-
ments, local label pseudo-assignments (keys A-J and a-e) will
no longer be masked by the presence of any higher-priority
global label and function assignments.

CLKEYS is a drastic solution to problems of conflicting
key assignments. In most cases you are better off using PASN

to clear or reassign individual keys. Section 18G has an even
better method.

Here is a typical application of PASN and CLKEYS. Sup-
pose you have two different sets of key assignments that you
like to use with your HP-41, depending on what you are using
it for. You can write two programs, one to set up each set of

assignments. Each program would have this general form:

LBL"KB1" (keyboard 1)

CLKEYS Eliminate previous assignments
"function 1"

(keycode 1)

PASN

-84-

“"function 2"

(keycode 2)

PASN
"function 3"
(keyode 3)
PASN

END

Since PASN, like ASN, will overwrite any assignment already
made to the designated key, you may find that CLKEYS is un-
necessary here, especially if several assignments for the
different keyboards are the same functions, or use the same
keys. If you want to selectively clear keys of assignments,

include a sequence like

CLA
(keycode 1)
PASN
(keycode 2)
PASN

etc.

in the "KB1l" program.

The third extended function that is related to key as-
signments is GETKEY. This is a very special function that is
perhaps more powerful than any other extended function, as you

will see in Chapters 8 and 9.

The GETKEY (get keycode) function is an entirely new type
of function for the HP-41., When you execute GETKEY as part of
a program, the calculator pauses for up to 10 seconds waiting

-85~

for you to press a key. If a key is pressed, the row/column
keycode for that key is placed in the X register. 1If no key
is pressed within 18 seconds, the number ¢ is placed in X. In
either case, the stack is raised and LASTX is not disturbed.
If you want the program to keep waiting until a key is

pressed, a simple loop will do the job:

LBL 00
GETKEY
X=07?

GTO 0¢@

As long as no key is pressed, this program segment will keep
looping. To avoid raising the stack each time the GETKEY is
unsuccessful, you can use a RDN instruction between LBL 60 and
GETKEY.

Unlike PASN, the GETKEY function has keycodes for the 4
mode switches. For GETKEY, these keys are assigned a row
number of #. The ON key has a keycode of 1 and the ALPHA key
has a keycode of 4. Remember that these keycodes only appear
as results from GETKEY; they will not work with PASN.

When you use GETKEY, avoid sequences like this:

LBL 00
GETKEY
GTO 00

The omission of the X=0? test causes an "infinite loop". But
you can't stop this one by just pressing R/S. After all, R/S
is just key 84. Even pressing the ON switch won't stop it.
One way to stop it is to take out the batteries. A better way
is to press and hold the R/S key, press the ON key, release
the R/S key, and release the ON key. The best bet is to make
sure that you have a normal way out of any GETKEY loop.

With GETKEY, a program can simulate the local label

assignment feature on all 35 unshifted keys. What is more,

-86-

(

(¢ ¢

(

the program can do this without worry of conflict with other
key assignments and without the necessity of setting USER
mode. The interpretation of each key can even change within a

program.
The most commonly used type of sequence with GETKEY is:

LBL 00

RDN

GETKEY

X=07? If no key was pressed,

GTO 00 then try again.

XEQ IND X Execute a subroutine corresponding

. to the key that was pressed.

. This portion of the program displays
. results or does other operations

. that are the same for all keys.

RTN or GTO @9

LBL 11 This section is executed if the key
. at row 1, column 1 was pressed.

RTN

LBL 12 This section is executed if the key
. at row 1, column 2 was pressed.

RTN

. Use a LBL for each key that you

. want your program to respond to.
END

This sequence waits until a key is pressed, then executes
whatever program steps follow the corresponding numeric local
label. For example, if you were to press the backarrow key,
the HP-41 would look for LBL 44 (row 4, column 4) and start
executing that portion of the program as a subroutine. If you

want more keys to have functions, just add the corresponding

-87-

numeric labels to the program, followed by sequences that do
whatever you want the key to do.

USER mode key assignments do not conflict with GETKEY,
because the GETKEY function temporarily pre-empts them, just
as it pre~empts the on/off and mode selection keys. GETKEY

can function as another level of custom key assignments.

Here is a simple example of how GETKEY can be used. This
sequence prompts for a YES/NO response. Either R/S or "Y"
(the multiplication key) is accepted as a YES response; any

other key is assumed to be a NO response.

"message"

SF 25

LBL 00

AVIEW

GETKEY

RDN Put keycode in stack register T
GTO IND T

. (NO response drops into here)
RTN

LBL 71 (YES response goes here)

LBL 84 (R/S response goes here)

CF 25

RTN

The GTO IND T instruction branches back to LBL 90 if no key
was pressed, or to LBL 71 or 84 if the "Y" or R/S key was
pressed. Otherwise there is no LBL corresponding to the
keycode. This causes a NONEXISTENT error which clears flag

25, Execution then drops into the NO response sequence.

-88-

This GETKEY technique implicitly requires, as do most
uses of GETKEY, that there be no extraneous local LBL's that
have keycode-like numbers. This means that within this pro-
gram, the following LBL's are not allowed, except where such a

LBL is needed as the object of the GTO IND instruction:

g1 @2 g3 04 (the rocker switches)
11 12 13 14 15 (row 1)
21 22 23 24 25 (row 2)
31 32 33 34 35 (row 3)
41 42 43 44 (row 4)
51 52 53 54 (row 5)
61 62 63 64 (row 6)
71 72 73 74 (xow 7)
81 82 83 84 (row 8)

Of course, you can violate this constraint in your programs if
you do not mind invalid results when an illegal key is pressed

in response to a GETKEY prompt.

This kind of YES/NO response testing technique is used in
the mailing list program in Chapter 7. Two more response
options are added, but the principle is the same. A much more
elaborate example of GETKEY is given in Chapter 9, where a
program is presented that simulates the single-key base con-

version functions of the HP-16 calculator.

4G. Added functions on the HP-41CX
The HP-41CX includes 14 more extended functions than the

Extended Functions/Memory module for the HP-41C or CV. Six of
these functions have already been described: EMROOM (page 11),
EMDIRX (page 1l1), RESZFL (pages 32 and 45), ED (page 52),
ASROOM (page 51), and CLRGX (page 80¢). The remaining eight

-89~

functions, GETKEYX, IREG?, X<NN?, X<=NN?, X=NN?, X#NN?,
X>=NN?, and X>NN? will be described in this section.

The GETKEYX (get keycode, wait X seconds) function is an
extended version of the GETKEY. A number in X up to +99.9
specifies the number of seconds that the calculator will wait
for a key to be pressed when you execute GETKEYX. 1If X is
less than 6.1 the calculator will do its best, but you may get
a wait that is slightly longer than you requested. GETKEYX
returns a keycode to the Y-register (not the X-register) and a
character code to the X-register, as explained below. The
interval that was specified in X is saved in LASTX, while the
former contents of stack registers Y and Z are raised to Z and
T, respectively.

If you press an unshifted key within the specified time,
the keycode is placed in the Y-register. If you press the
shift key, the key code 31 (row 3, column 1) is not returned
as it would be if you had used GETKEY. Instead, the calcula-
tor restarts the specified interval and waits for another key
to be pressed. When you press the second key, the negative of
its keycode is placed in the Y register. This feature lets
you "GET" shifted keys as well as unshifted keys.

If the specified time interval expires before a key is
pressed, the value zero is placed in Y to indicate that no key
was pressed.

The value returned to the X register depends on the ALPHA
mode status (flag 48) and on which key is pressed. 1If ALPHA
mode is on (flag 48 set) and you press a key (or shift plus
another key) which corresponds to a character, the ASCII
equivalent of the character is returned to X. This makes it
simple to create a copy of the selected character in the ALPHA
register--just use a single XTOA instruction.

If ALPHA mode is off (flag 48 clear) when you use
GETKEYX, ASCII codes are returned only for the digit keys, the
radix (decimal point) key, and the CHS key. Once again, this

-9g-

—

code enables you to create a copy of the selected key in the
ALPHA register simply by using XTOA. 1If the key pressed does
not correspond to an ALPHA character (ALPHA mode on), the
value zero is returned to the X register.

If you specify a negative time interval in the X register
for GETKEYX, the calculator will not wait until the key is
released, as it normally would. Instead, execution will re-
sume as soon as electrical contact is made. Thus a sequence
like this:

LBL @1

-.1
GETKEYX
RDN
X#9?
GTO Ol

will continue to loop as long as any key is held down. It is
not very likely that your applications will lead you to use
this feature of GETKEYX, but if you must use it, there is a
possible problem you should be aware of. Although the GETKEYX
instruction will indeed read the proper key code, releasing
the key causes the normal function to be executed. For all
but the ON and R/S keys, nothing will happen because the
program is running. In contrast, releasing the ON key will
shut off the calculator, and releasing the R/S key will halt
the program. Thus when you execute GETKEYX with a negative
number in X, avoid pressing the R/S or ON keys unless you are

done using the program.
Here are two sample applications for GETKEYX. The first,
"VREG" (view register), views a selected register for as long

as the corresponding key is held down.

-91-

"VREG" program listing

AieLBL “VREG~ 89 CHS 19 - 28 GETKEYX

B2 CF 21 18 GETKEYX 28 ¥{@? 25 RIH

11 SIGH 21 CLX 38 X+0?
B3¢LBL 81 12 BOY 22 YIEN INB ¥ 31 GT0 83
84 "REG?" 13 X=0? 23 .1 32 GT0 81
85 AON 14 GTO @2 24 CHS 33 EHD
86 RYIEM 15 ¥=Y? 25 SIGH

16 RTH
A7¢LBL 82 17 LASTX 26¢LBL 83 57 BYTES
a8 18 18 64 o SO MR

When you run "VREG", the prompt "REG?" appears, requesting a
register selection. The "A" key selects register ¢1, the "B"
key selects 62, and the "Z" key selects 26. Press the ON key

twice to quit the program.

Here is a brief explanation. The first GETKEYX loop de-
tects when a key has been pressed. If the keycode is @1 (the
ON key), a RTN stops the program, (Releasing the ON key turns
off the calculator, and pressing it the second time turns the
calculator back on.)

If the keycode is not @1, the ASCII code is retrieved
from LASTX and adjusted by subtracting 64. This converts "A"
to #1 and "Z" to 26. The next two lines replace negative
values by zero. Then the selected register is VIEWed. The
second GETKEYX loop simply continues to loop as long as a key
is held down. When the key is released, the zero keycode
causes a branch back to LBL @1 at the top of the program,
where the REG? prompt is regenerated.

Another, more straightforward application of GETKEYX is
to permit selection of a key for an assignment needed by a
program. For example, suppose you have a base conversion
program that makes assignments of the functions MOD, INT, and
FRC to USER mode keys. In section 4F you learned how the PASN
function can be used to make key assignments under program
control. The GETKEYX function lets the user of the program

-92-

select keys for these assignments "in real time", as the
program is running, without having to go to the trouble of
figuring out the keycode. A typical program might use a
structure like this:

"MOD" The LBL 99 subroutine prompts

XEQ 99 the user to press a key, uses

"INT® GETKEYX to get the key code, then
XEQ 99 uses PASN to make the requested
“FRC" assignment.

XEQ 99

LBL 99

" KeY? " Note the spaces before and after KEY?.
AVIEW Display message requesting a key.
1@

LBL @@

GETKEYX Get the keycode in Y.

X<OL

X>Y? I1f keycode <16, try again.,

GTO 09

RDN These five steps remove the 6 characters
6 " KEY? " from the ALPHA register.
CHS

AROT

ASHF

RDN Keycode is now in X.

PASN Make the requested key assignment.
RTN

The IREG? (summation register finder) function on the
HP-41CX gives the currently selected location of the summation
register block, a block of 6 registers used by the calculator

-93-

for the I+, I-, MEAN, and SDEV statistical operations. The
Catalog 3 function IREG selects a starting register for this 6
register block. When you execute :REG?, the number returned
is the same as the last location selected by IREG, or 11 if
you have not executed IREG since the calculator was last
cleared. The stack is raised and LASTX is undisturbed.

The functions of the 6 registers of the summation regis-

ter block are as follows:

R:RrEG? EXZ
RypeEG?+1 ¥
RyREG?+2 zy2

RyREG?+3 LY
RyREG?+4 Lxy
RyrEg?+5 D

The primary application of the IREG? function is to
recall data from the statistical registers regardless of where

those registers are located. For example, the sequence

2

LREG?

+ IREG? in L

RDN IREG? + 2 in T
RCL IND T Iy

RCL IND L X

simulates the HP-67/97 function RCLZ , bringing the sum of y
values into the Y register and the sum of x values into the X
register. You can modify this sequence to recall any of the

six.registers in the IREG block for your calculations.

The remaining six functions on the HP-41CX, X<NN?,
X<=NN?, X=NN?, X#NN?, X>=NN?, and X>NN?, allow you to compare
the contents of X with any other register. The location of
the other register is designated in Y. If you are familiar

-94-

with indirect functions, these functions are effectively "X
compare indirect Y" functions. To use one of these six func-
tions, for example X>=NN?, just put a register number in ¥
(from @ up to SIZE?-1l) and press

XEQ ALPHA X shift J = N N ? ALPHA
[Instead of a register number, Y can contain alpha data desig-
nating a stack register: "z", “T", or "L". "X" and "Y" will
work, but they are not useful.] The result will be displayed:
YES if the contents of X are greater than or equal to the
contents of the register specified in Y, NO otherwise.

If you use one of these instructions in a program, the
YES or NO display will not appear. Instead, the instruction
that follows will be executed only if the result is YES,
otherwise it will be skipped. This operation conforms to the
standard "do if true" rule for all test instructions.

One important feature distinguishes these six comparison
functions from their Catalog 3 counterparts. These indirect
comparison functions allow you to compare alpha data as well
as numeric values. Strings are compared on the basis of ASCII
codes. The effect is the same as if you used ATOX to compare
the strings character by character from left to right, stop-
ping at the first position that revealed a difference between
the strings. The ASCII code ordering of alpha strings is

similar to normal lexicographic ordering except that:

1) numeric and punctuation characters are less than alpha-
betic characters, and
2) lower case characters are greater than uppercase charac-

ters.

For more details on ASCII code ordering, see the ASCII
equivalence table on pages 60 and 6l.

The "ALSORT" (alphabetic sort) program listed on the next
page will sort a block of registers from register bbb to

register eee, inclusive, in increasing order. It uses a

-95-

simple bubble-sort algorithm., Just put the number bbb.eee in
X and execute "ALSORT".
"ALSORT"™ program listing

@1eLBL =ALSORT" 11 RLL ¥ 21 GT0 @3 32 GTO @2
@7 EHTERt 1z RCL 2 22 ¥ IMD Y
a3 156 ¥ 13 IHT 23 8T0 IND L 33+LBL 63
24 #(n? 14+ 24 F57C 86 34 Rt
85 RTH 15 D5F ¥ 25 TG A3 15 Rt
86 INT 16 587 26 RIK 36 IS6 ¥
87 1 E3 17 5F 85 27 ABS 37 GTO &1
8s / 18 RCL IND L 28 RCL IND 38 END

29 D5E ¥

89+ BL 81 19+ EL 82 38 F57 52
18 CF 86 28 %)=HH? 31 SF 8% 71 BYTES

Because the X>=NN? function is used for the comparisons, the
"ALSORT"™ program will sort either numeric or alpha data (or
both). The bubble sort algorithm is quite simple. 1In BASIC
it might look something like this:
For i = bbb + 1 to eee
For j = i-1 to bbb by -1
If Rj+1 > Ri, go to new i
Else interchange (Rj+l,Rj)
Next j
new i: Next i

In the "ALSORT" program, LBL 61 starts the i loop, which uses
an ISG counter of the form i.eee. LBL 62 starts the j loop
which uses a DSE counter j.(bbb-1). If you want to trace the
stack usage of “ALSORT", it may be helpful to know that at LBL
@1, the important stack contents are

X=@.(bbb-1l) and ¥Y=i.eee .
At LBL 62, the stack contains:

L=j+1, X=Rj+l, Y=j.(bbb-1), Z=06.(bbb-1), and T=i.eee.

|
| -96-
z

CHAPTER FIVE
A PROGRAM BYTE COUNTER

The HP-41 Owner's Manual mentions that the byte is the
basic unit of program memory, and that each instruction in a
program occupies one or more bytes. In fact, the Owner's
Manual gives a tabular summary of the byte count for each
different type of instruction.

If you have an HP-41CX and you want to know how many
bytes one of your programs occupies, you can just execute
CATALOG 1 and press R/S to halt it at the END of the selected
program. The number at the right side of the display indi-
cates the number of bytes of main memory that the program
currently occupies. If the last line of the program is .END.,
you will need to press GTO.. to give the program its own END.
No byte count is supplied with the .END. .

If you have an HP-41C or CV and you want to know how many
bytes one of your programs occupies, you could refer to the
tabular summary in your Owner's Manual and count the bytes by
hand. Dividing by seven and rounding up gives the number of
registers required to hold the program. Naturally this manual
counting procedure seems like a waste of time when you have a
powerful tool like the HP-41 at your disposal.

With the Extended Functions/Memory module, you can auto-
mate the byte counting procedure. The short utility routine
"CBX" (Count Bytes using XMemory) presented here does the
whole job. First "CBX" saves your program in extended memory,
creating a new program file (unless that program was already
saved in extended memory). Then "CBX" performs a RCLPT in-
struction which, for a program file, returns the program's
byte count to the X register. Finally, "CBX" clears the
temporary program file it created. If your program was al-

ready saved in extended memory, the file is not cleared.

-97-

i
4
:
:
:
i
:
F
i

After "CBX" gets the byte count, it computes the number

of program registers required. This number would be equal to

the FLSIZE, except that there is one extra byte in the file

for the program's checksum (see page 18l1). So sometimes the

number of program registers needed is one less than the
FLSIZE.

Instructions for "CBX"

1.

Make sure the program you want to count has a non-perma-
nent END- (not the .END.) as its last line, and that the
program is packed. These are the same things you should
do before saving a program in extended memory, in order
to minimize the space used.

Load the ALPHA register with the name of the program for
which you want a byte count., This name must not conflict
with the name of an existing data or ASCII file.

Execute "CBX" (Press XEQ ALPHA C B X ALPHA).

If the program was already saved in extended memory, the
result will appear very quickly. The byte count will be
in X, and the number of program registers will be in Y.
To see the number of program registers, press X<>Y or RDN
(roll down).

If the program was not already saved in extended memory,
"CBX" will take a few seconds longer to get the result.
First an extended memory directory will appear. About
half a second after the directory is finished, the byte
count appears in X, with the register count in ¥. To
speed things up, you may interrupt the directory display
and restart the "CBX" program by pressing R/S twice.

"CBX" Example 1l:

Count the number of bytes in "CBX" itself.

Solution:

Load the ALPHA register with the program name "“CBX".

Then XEQ "CBX". The result should be a count of 52 bytes in

-98-

-

X, and a count of 8 registers in ¥. If "CBX" was not packed
or if it did not have a nonpermanent END attached to it, your
count may be slightly larger.

"CBX"™ program listing

@1eLBL ~CRY" 87 SAVEP 13 CLD 18 +

@z 5F 25 88 RCLPT 14 RIN 197

83 RCLPTA @9 =*+#CBR" 28/

84 F52C 25 18 PURFL 15¢LBL 81 21 IHT

85 G0 81 11 ENTERt 16 RCL % 2 8OY
AR 12 EMDIR 17 6 23 END 52 BYTES

Line-by-line analysis of "CBX"

At the start of “CBX", the ALPHA register should contain
the name of the program for which the byte count is desired.

Line 93 will return the byte count if the program is
already saved in extended memory. If the program was not
already in extended memory, the RCLPTA instruction will cause
flag 25 to be cleared. Line 04 clears flag 25 and branches to
LBL @1, the final computation sequence, if the RCLPTA was
successful. Otherwise the named program is saved in a tempo-
rary extended memory file called "**CBX". Line 08, RCLPT,
gives the byte count from this temporary file. The temporary
file is then purged.

The EMDIR instruction is included to re-establish a wor-
king file after the PURFL instruction. If a working file is
not defined and you have a revision 1B Extended Functions/
Memory module, the extended memory directory is in danger of
being cleared. See page 19 for details., If your revision is
1C or higher (including the HP-41CX), you can safely delete
lines 11 through 14.

The ENTERT and RDN instructions ensure that whether or
not the directory is interrupted, the X register will contain
the byte count. A completed EMDIR instruction raises the
stack, giving the number of free registers in extended memory.
An interrupted EMDIR instruction does not raise the stack,

-99-

Either way, the RDN instruction will leave the byte count in
the X register, since the byte count was in X and Y before the
EMDIR instruction. The CLD instruction is included so that
the last directory entry does not remain in the display after
"CBX" finishes.

The LBL 01 sequence starts with the byte count in X and
computes the number of program registers required:

This formula accomplishes division by 7 and rounding up to the

next highest integer. The "CBX" program finishes with Nreg in

Y and betes in X.

“"CBX" Example 2:

Count the bytes in the "JNX" program from Section 1B.
This example assumes that you have a copy of "JNX" in either

main memory or extended memory.
Solution:

Load the ALPHA register with "JNX" and press XEQ "CBX".
The result should be 80 bytes (12 registers).

-1099-

eSS

CHAPTER SIX
DATA FILE APPLICATIONS

6A. A Universal Root Finder

One frequent application of programmable calculators
is solving equations of the form f(x)=0 ; that is, finding the
value of x that makes this equation true for a user-supplied
function f. For example, suppose the cost of producing n
items using Machine 1 is SQRT(n), while the cost of producing
n items on Machine 2 is 19+LN(n+l). Because the LN function
is "flatter" than the SQRT function, Machine 2 will be more
economical for very large values of n. But at what value of n
does Machine 2 become more economical? To find the crossover
point, we need to solve the equation SQRT(n) = 16+LN(n+l) for
n. This equation can be rewritten in the form f(x)=0, where
f(x) = 1lO+LN(x+1)-SQRT(x). This example will be solved later
in this section.

Minimization and maximization problems can be solved in
the form f(x)=¢ by using the appropriate first derivative
function for f. If the function being maximized or minimized
has a relatively simple form, it is fastest to use calculus to
find the correct first derivative. However, if finding the
derivative analytically is not practical, the program "DERIV"

in the next section can compute it numerically.

Any program that solves f(x)=0 will need to call the
f(x) program several times. The root-finder program will also
need a few data registers for its own use. These registers
must be ones that are not disturbed by the evaluation of f(x),
so that the necessary information from previous evaluations of
f(x) can be retained,

I1f the f(x) program uses data registers, the possibil-
ity of a register usage conflict cannot be overlooked. No
matter which data registers the root-finder program uses,

-101-

there will be some possible f(x) program that uses the same
data registers,

One "solution” to this problem is to check the root-
finder and f(x) programs for conflicting register usage, and

re-write one of the programs to eliminate the conflict.

The Extended Functions/Memory module solves register
usage conflicts once and for all. It allows you to write a
universal root-finder program that will work with any f(x)
program, (Of course the f(x) program must have a global label
of 6 characters or less, so that it can be reached through an
XEQ IND instruction.) Rather than leaving its essential data
in the numbered registers, where it would be susceptible to
alteration by the f(x) program, this root-finder saves its
data in an extended memory file before calling f(x). After
f(x) returns a value, the root-finder program can recall its
essential data, untouched, from extended memory. This is a

classic example of the power of extended memory.

The program listing below includes "SOLVE" plus two other
routines that will be covered in the next two sections. These
three routines are combined into one program because they use
some of the same instruction sequences, and because they will
often be used together. Key in the program exactly as shown,
so that you may try the examples that follow.

Extended Memory requirements:

pProgram free registers needed to run
"SOLVE" 4
YDERIV" 7
"INTEG" 20

-192-

—

"SOLVE™/"DERIV®/"INTEG" program listing

pLeLEL "SOLYE" 46 GT0 A1 9% & 132 SEEKETA 177 ENTERt
82 ASTO @R 47 LASTY 91 ¢ 133 .819 178 %{> IND @5
3 570 &1 48 GT0 21 92 RCL 05 134 SAVERX 179 51- ¥
841 53 / 135 F§? 49 188 RHD
a5 ¥ 49¢LBL “DERIY- 136 OFF 181 ¥ 2
9 + 58 ASTO 83 94¢{BL 21 137 3 182 4
87 570 &2 51 570 84 95 ENTERt 138 RCL 4 183 *
B8 =*S0LYE" 52 RDM 96 PURFL 139 ¥17 184 570 Z
23 4 53 570 @5 97 EMBIR © 148 - 185 BSE ¥
16 xE@ 25 54 3 £-3 9§ CLD 141 RCL 24 186 ¢
11 2 £-3 55 510 86 99 RIH 147 * 187 RCL IND 85
12 SAYERY 56 -e«DERIY" 188 RTH 143 RCL @2 188 +
13 ROL A1 577 144 * 189 156 #5
14 XEQ IND 9§ S¢ XEQ 85 1@18LBL “INTEG" 145 RCL 81 198 LH
15 =#£50L¥E" 182 ASTO 9% 146 + 191 DSE 84
16 SAYEX S94LBL 62 183 570 &1 147 XEQ@ IND 8% 192 GT0 84
17 GETR 68 LY 184 X(HY 148 ~*«[NTEG" 193 ST IND @5
61 SEEEPTA 185 - 149 GETR 194 FS7 18
18+LBL &1 62 6 E-3 186 4 154 1 195 VIEMW ¥
19 CL¥ 63 SAYERE 187 7 151 RCL 04 196 RHD
28 SEEKPTR 44 RCL 05 185 570 @2 152 %12 197 Rt
21 3E-3 65 INT 189 ST+ % 153 - 198 FCIC 20
22 SAVERY 66 RCL @5 118 §7- a1 154 * 199 ReY?
23 ROL 82 67 * 111 CLY 155 5T+ 86 280 GT0 22
24 F57 1@ 68 RCL 84 112 576 93 156 1 281 LRASTY
25 YIEN ¥ 69 + 113 570 @6 157 RCL 84 282 GT0 21
26 ¥EQ IND B8 7@ X¥EQ IND 83 114 5T0 &7 158 RCL 05
27 =%xSOLVE" 71 =s+DERIV 115 SF 28 159 + 203+LEL 85
28 GETR 72 GETR 116 28 168 ¥4Y? 204 5F 25
29 ENTER® 73 ST0 IND @6 117 =#xINTEG" 161 GTO #3 285 CRFLR
38 ENTERt 74 15G 86 118 XEQ @5 162 RCL 83 286 FSX 25
31 %(y 63 75 670 92 163 ST0 &4 287 RTH
iz - 76 ROL 83 119¢LBL 22 164 RDM 288 SF 25
33 ¥#d? 77 RCL 82 128 2 165 7 289 PURFL
34/ 78 RCL 01 121 RCL 82 166 ST0 @9 218 FC2C 25
35 ROL @2 79 ENTERt 122 CHS 167 SIGH 211 GT0 86
36 ENTERY 88 + 123 ¥4% 168 5T+ 23 212 5F 25
37 %4 Bl g1 - 124 ST0 €5 169 - 213 CRFLD
38 - 82 9 125 ST+ 85 178 RCL 82 214 F57C 25
R 81 * 126 1 171 # 215 BTN
4@ ST- @2 84 - 127 - 172 RCL 96
41 RCL 81 85 + 173 * 2164LBL 86
42 RND 86 RCL 6@ 1284LBL 83 174 3 217 =NO ROOK - EM°
43 RCL 82 87 11 129 570 04 175 * 218 PROMPT
44 RND 88 % 138 “*+INTEG" 219 EKD
” i . .
45 Xy 89 131 CL¥ 1764LBL B4 485 BYTES

-193-

"SOLVE" Example 1l:

Continuing the example given at the beginning of this
section, we want to find the value of n such that SQRT(n) =
10+LN(n+l), Below this value, Machine 1 will be more economi-
cal, while above this value, Machine 2 will be cheaper to use.

The first step is to write a program to compute f(x)., 1In
this case x is the number of units to be produced, and f is
the cost difference between Machine 2 and Machine 1. The

following program computes the cost difference:

¢1 LBL"CDIFF" Start with n in the X-register.
@2 SQRT SQRT (n)

@3 LASTX

g4 1

@5 + n+l

g6 LN LN(n+l)

g7 XY

@8 - LN(n+1)—-SQRT (n)

g9 19

19 + 10+LN(n+1)-SQRT(n)
11 END

Now that you have the "CDIFF" program and the "SOLVE" program
ready, obtaining the solution is simple:

1. Make sure the SIZE is at least #04.

2, Put the function name in the ALPHA register. (In this
case press ALPHA C D I F F ALPHA,)

3. Key in an initial guess for the root finder. (In this
example you can use 16@. Since there is only one root,
any positive value should work.)

4. Select a display mode according to the accuracy you
desire. For example, if you want four significant di-
gits, set SCI 3, 1If you need an accuracy of .80l (which
gives a different number of significant digits depending
on the value of the root), set FIX 4. The root finder

quits when two successive approximations are equal, with-

-104-

in the specified display accuracy. Do not use FIX 9, ENG
9, or SCI 9, because roundoff errors can hurt the accur-
acy of the formula used when you ask for too many digits.
For this example, FIX 2 is sufficient.

5. Set flag 19 if you want to view the successive approxima-
tions to the root; clear flag 1@ if you want the "flying
goose" display.

6. XEQ "SOLVE™ to start the root finder.

7. The root finder finishes with an extended memory direc-
tory. You may interrupt this directory to see the an-
swer, but it is not necessary to do so. The EMDIR in-
struction was put at the end of "SOLVE"™ to compensate for
the PURFL bug. If your extended functions are revision
1C or higher (including the CX), you may safely delete
lines 95, 97, 98, and 99. This will eliminate the ex-
tended memory directory at the end of "SOLVE".

For the "CDIFF" example, the following series of

approximations will be displayed if flag 1@ is set:

161,00
215.31
236.97
239.66
239.75

Thus for 239 units or less, Machine 1 is better, while Machine
2 will be better for 240 units or more. You may wish to
explore the effects of different initial guesses on the root
finding process. You will notice that, in all cases, once the
root finder gets near the correct solution, convergence is

very rapid.

-1065-

The Root-Finding Algorithm

The "SOLVE™ program uses a simple secant algorithm to

produce successive approximations x; to the true root of f(x).

f {X) CURVE

f (Xj.1)

F0G) -0 1)

SLOPE =
Xi—X.1

f(Xi)

~—TRUE X; +1 X Xi-1

ROOT

The value of f(x) at the current approximation x; and at the

previous approximation x;_; are used to compute the next
approximation,

Xjpp = x; + KiTXiop) (X))

(E(x;)-£(x5_7))

There are some ill-behaved functions that will give this
algorithm trouble, but in cases of practical interest you are
not likely to encounter such functions. Therefore the com-
plexity required to deal with such functions has not been
included in "“SOLVE".

You should also be aware that as X; and x;_7 get very
close to each other (within lﬂ'gxi), the calculator cannot
accurately compute the difference. Multiplication by the

number Xj-Xj_1 can then cause a substantial error in the

-166-

calculated value of xj,q. This is why you should not request
19-digit accuracy from "SOLVE",

Line-by-line analysis of "SOLVE"
The first 7 lines of "SOLVE" store the function name and

initial guess, and compute the second guess as 1.01 times the
first guess. You can change this to permit user input of the
second guess, if you like. The register usage of "SOLVE" is:

Register Contents
1} function name
g1 previous approximation x;_;
g2 current approximation xj
23 £(x5_1) ‘

The LBL @5 subroutine sets up a 4-register data file called
"k*SOLVE", This requires more than a simple CRFLD (create
file -- data) instruction, because the program should be able
to automatically handle the case in which a file named
"x*SOLVE" already exists in Extended Memory. This case can
result when the "SOLVE" program is terminated abnormally,
before the PURFL instruction on line 269 can be executed.

Lines 11 and 12 save the contents of registers @@ through
§2 in Extended Memory in preparation for calling the f(x)
program (which may alter the contents of these registers).
Then f(x) is evaluated at the initial guess xy. Lines 15 - 17
save the value of f(xg) in the fourth register of the
"x*SOLVE™ data file and use GETR to bring all the data back.
At this point all four registers are initialized, and the
iterative procedure can begin.

Lines 19 - 22 save the contents of registers #¢ through
93 in preparation for executing f(x). This is not necessary
the first time through the LBL @61 loop, but it will be neces-
sary in the subsequent iterations. If flag 10 is set, x; is
VIEWed before f£(x) is called. After the evaluation of f(x),
GETR brings back the contents of registers 6@ through #3.

-107-

Lines 29 through 46 update the contents of these registers as
shown:

Register 01d contents New contents
1) function name function name
o1 Xj-1 X
02 X Xip1 = X3 + FiT¥i-1)*E(x4)
(f(xi)-f(xi_l))
g3 f£(x;_1) f(x3)

Next the contents of registers #1 and #2 are extracted, round-
ed, and compared. If the rounded versions are equal, execu-
tion halts with the LBL 21 "cleanup” routine. Otherwise the
LBL @1 loop is repeated.

The LBL 21 sequence first purges the "**SOLVE"™ file from
extended memory. This sets up a dangerous situation if you
have a revision 1B Extended Functions/Memory module, due to
what is known as the PURFL bug. After PURFL is executed,
there is no "working" file. This might not seem like a prob-
lem, but if you accidently execute an instruction like SEEKPT
or SAVERX that operates on the working file, disaster will
strike: Your entire extended memory directory will vanish!
Section 1l0E gives more details and an outline of how this DIR
EMPTY condition can be fixed using synthetic programming tech-
niques. This problem does not occur with revisions 1C and
higher, including the HP-41CX.

To avoid catastrophe, the LBL 21 sequence re-establishes
a working file the only way it can without manual interven-
tion, with an EMDIR instruction. However, executing EMDIR in a
program has two undesirable side effects. First, displaying
the directory takes valuable time. Second, whén the directory
is complete, the number of free registers in extended memory
is placed in X. Since we want the "SOLVE"™ result to be in X,
the EMDIR instruction is preceded by ENTER]T and followed by
RDN. This way, even if you choose to interrupt the directory
and restart the program (as you might if "SOLVE" were being

-108-

used as a subroutine of another program), the X register will
still contain the correct result.

If you have revision 1C or higher extended functions,
including the CX, you should delete lines 95, 97, 98, and 99,
This will save a significant amount of execution time.

These details on the LBL 21 sequence may not be of imme-
diate interest to you, but they are provided for your refer-
ence. If you write a program that uses a temporary data file,
and you want it to be usable with revision 1B extended func-

tions, you will have to deal with the same situation.

"SOLVE" Example 2:

Find the second zero of J3(x), the Bessel function of the
first kind, order three. This is the second non-zero value of
x for which J3(x)=06. Of course you will need a copy of the
Bessel function program "“JNX" from page 5. Since you want to
compute J3(x), you could construct a "shell™ program:

g1 LBL "J3X"

g2 3

g3 XY

g4 XEQ "JNX"

@5 END .
This program simply takes the value of x that it is given, and
calls "JNX" with ¥=3., This simple (even trivial) technique is
often used with programs like "SOLVE". If you have a function
that needs more than a single input, you must either modify
that program or create a "shell" routine to use with "SOLVE".
The name of the shell routine should be no longer than six
characters, so that the XEQ IND instruction in “SOLVE" will
work properly. In fact, it is good HP-41 programming practice
to avoid using 7-letter alpha labels wherever your programs
might need to be called indirectly as subroutines.

Now let's get on with the example., First we need to know
something about the behavior of J3(x). Assign "J3X" to a key
(shift ASN ALPHA J shift 3 X ALPHA key) and try a few values

-109-

of x to get a general idea of what J3(x) looks like. But
beware that the "JNX" program gives DATA ERROR when x=@.

X J3(X)

=
.

=
jum

2,1E-8
.02
g.13
.31
#.43
.36
g.11
-0.17
-0.29
-0.18
g.4d6

W 00 N O U b W N

ot
[~

From these points, it is apparent that the second zero of
J3(x) is located between x=9 and x=16.

To find the value more exactly, set a SIZE of 908 or
more, select FIX 8 display mode, load the ALPHA register with
"J3X", key in an initial guess of 9.5, SF 16, and press XEQ
"SOLVE". You will see the following series of approximations:

9.59500000
9.76155455
9.76102548
9.76102313

For further information on root-finding, including a
discussion of mére sophisticated algorithms, consult any good
book on Numerical Analysis or read the writeup of the "sv"
program in the PPC ROM User's Manual (see Appendix C for a
description of the PPC ROM).

-110-~

6B.Numeric Differentiation
Many types of problems, particularly those involving

maximization and minimization, require numeric evaluation of
the derivative of a function. The preferred technique is
first to use the rules of calculus to construct an equation
for the derivative, then to write a program to evaluate the
equation. If the function does not have a simple closed-form
expression, numeric methods can be used. The simplest such
method is to evaluate the function at two closely-spaced
points, and to compute a slope based on these two values.

cLope K1) =1 Xg)
f(X})/ LOPE = X7 = Xg
f (Xo)
f (X) CURVE
Xo X4

A much more accurate estimate of the first derivative is

given by the expression
£'(x) = [2f(x+3h)-9f(x+2h)+18f(x+h)-11£(x)]/6h .

This estimate is exact for any polynomial function of degree
three or less. Otherwise the error term is of the order of
n3. However, it does not automatically follow that you should
use the smallest possible value for h. The problem is that
roundoff error can and will destroy the accuracy that would
otherwise be obtained by decreasing the value of h. A typical
example illustrating this roundoff error effect will be given
in Example 2 of this section.

Because of subtraction roundoff error, the most accuracy

-111-

that can be expected in the derivative estimate is 6 digits.
Any further accuracy is purely coincidental.

The "DERIV" program that is part of the "“SOLVE"/"DERIV"/
"INTEG"™ package evaluates the above equation for f'(x) by
calling the user-supplied f(x) program four times. Like
"SOLVE", the "DERIV" program protects its data from the f(x)
program by creating a temporary extended memory data file.

"DERIV" is therefore compatible with any user-supplied £(x)
program,

Instructions for "DERIV"

Using "DERIV" is similar to using "SOLVE". The SIZE
should be #87 or more. The name of the user-supplied function
should be in the ALPHA register. The Y register should con-
tain the step size h, which can be positive or negative. This
allows derivatives to be evaluated where the function is
discontinuous on one side. Use h>@ to evaluate the derivative
to the right, or h<@ to evaluate the derivative to the left.
The X register should contain the value of x at which f'(x) is
to be estimated,

Executing "DERIV" then produces the derivative estimate.
The accuracy of the estimate depends on the step size (see
Example 2), but in no case can more than 6-digit accuracy be
expected. The display setting does not affect the accuracy,
since no rounding is performed.

"DERIV" Example 1l:

Verify the following derivative properties of Bessel
functions:

Jg'(x)
Jll (x)

—Jl(x), and
Jg(x)=J;(x)/x .

I

-112-

First you will need to construct "shell"™ functions for Jg(x)

and J; (x):

¢l LBL "J@gxX" g1 LBL "J1X"

g2 ¢ g2 1

g3 XY g3 XY

g4 XEQ "JINX" @4 XEQ "JNX"

@5 END @5 END
To estimate the derivative of Jg(x) at x=1, press .01, ENTERT,
1, ALPHA J shift 6 X ALPHA, XEQ ALPHA D E R I V ALPHA. The
step size of .01 gives approximately 6-digit accuracy. Step

sizes of 0.1 or .66l give 4-digit accuracy, which is quite

reasonable too.

Compare your results to the following table:

Derivative estimates True derivative
X Jg' (x) Jy' (%) -J; (x) Jg(x)-J1 (x)/x
1 -0.440050350 9.325147317 -0.4408050586 ¥.325147101
2 -0.576724900 -0.064471700 -0.576724808 -0.064471625
3 -0.339959100 -0.373971483 -0.339058958 -§.373071608
4 ¢.066043167 -0.380638968 0.066043328 -0.380638978
5 $.327579167 -6.112081133 6.327579138 ~0.1120880944

These results were obtained by using the program "COMPARE",

which automates the entire procedure.

When used with a print-

er, a program like "COMPARE" can save many minutes of manual

keypunching and writing down results.

turn on the printer, start the “"COMPARE" program,

back 15 minutes later to check the results.

-113-

Instead,

you can just
and come

"COMPARE"™ program listing

BL#LBL “CONPARE" 89 ARCL ¥ 18 .81 27 CHS 36 +

82 1,805 18 AVIEW 19 RCL 18 29 ~JBT=" 37 =T

A3 570 89 1 = 28 "Ji 29 ARCL X 38 ARCL X
12 .1 21 XE9 “DERIY- 38 AYIEH 39 WYIEW

B4+LBL 81 13 8Oy 22 =JiE= 31 RCL 18 48 ADY

85 RIL &9 14 XE@ -DERTY" 23 ARCL ¥ 32/ 41 15G 89

86 INT 15 =JoE=" 24 AYIEW 33 %(5 18 42 CTo 81

87 570 18 16 ARCL X 25 RCL 18 34 XEQ -JEK" 43 END

ag i=" 17 AVIEN 26 ¥EQ -J1X* 35 RCL 18 115 BYTES

Line-by-line analysis of "DERIV"

The data register usage of "DERIV" is

register contents
1"} f (x)
g1 f(x+h)
@2 £ (x+2h)
@3 function name -» f(x+3h)
g4 X
g5 h
g6 i, a loop counter (originally ©.003).

When "DERIV" starts, the stack and ALPHA contents are

register contents

Y h, the step size

X X, the point at which to estimate f'(x)
ALPHA function name,

Lines 49-55 store these inputs in the appropriate registers.
Lines 56-58 set up a 7-register data file called “**DERIV" in
extended memory. Lines 59-75 constitute the loop which is
executed four times to evaluate f£(x), f£(x+h), f£(x+2h), and
f(x+3h). Register #6 contains the ISG counter for this loop.
The counter is also used as a pointer indicating where the
result is to be stored (line 73).

-114-

Within the loop, lines 59-63 save the contents of regis-
ters @¢ through @6 in extended memory. Lines 64-70 calculate
f(x+ih). Actually the INT function must be used to chop off
the .603 from the loop counter i. Lines 71-73 recall regis-
ters 0@-06 from extended memory and store the result f(x+ih)
in data register i. Lines 74-75 cause the loop to be repeated
for the next value of i, until the function £ has been eval-
uated at all four points.

The last step in computing the derivative estimate is to
use the four results in registers ¢4-03 to form the result

£'(x) = [2f(x+3h)-9f(x+2h)+18£(x+h)-11£(x)]/6h.
The factorization that is used in the computation is

f'(x) = {f(x+3h)+f(x+3h)—9[f(x+2h)—2f(x+h)]‘llf(x)}/6h.
The "DERIV" program ends with the same EMDIR sequence as
"SOLVE". The same option to interrupt the extended memory
directory applies. As with "SOLVE", you can delete the EMDIR

instruction if you have revision 1C or higher.

"DERIV" Example 2:
Use "DERIV" to compute the derivative of the function
£(x) = x3+10x3+100x2+1000x+10000

at x=1. Show how the estimate's accuracy varies with step

size.

From differential calculus, the derivative of f(x) is
£'(x) = 4x3+30x%+200x+1000
= 1234 at x=1.
Check your results against the following table:

Step size Derivative estimate

1.0 1246.000000
.1 1234.006000
.01 1234.000000 (this is the optimum step size)
.001 1234.016667
.0001 1233.833333
.00091 1233.333333

-115-

If you find it difficult to construct a program to evaluate
£(x), study the sequence below. It uses the factorization

f(x) = (((x+1@)x+100)x+1000)x+10000.
This factorization technique can be applied to any polynomial
function.

g1 LBL "FX"

g2 ENTER]

@3 ENTER]

@4 ENTER]

95 19

g6 +

a7

g8 1lE2 (press 1 EEX 2)

g9 +

1g *

11 1E3

12 +

13 *

14 1E4

15 +

16 END

*

Finding the derivative at x=1 is simple. Just press ALPHA F X
ALPHA, key in the step size, ENTER], the number 1, and XEQ
"DERIV", Your results should agree with the table above. You
may even wish to automate the procedure by writing a short
program like this:

¢1 LBL "STEP"

g2 “"Fx"

g3 1

g4 XEQ "DERIV"

g5 END
Note that the ENTER] is not included because lines @1 and 62
enable the stack lift. Consult your Owner's Manual for de-
tails on stack lift.

-116-

"DERIV" Accuracy

As the preceding example showed, the accuracy of the der-
ivative estimate gets better as the step size decreases, but
then gets worse if the step size is made too small. It is
possible to write a program that calls "DERIV" repeatedly,
decreasing the step size each time. The series of derivative
estimates D; should have the following properties:

1) D; should be monotonic, and

2) | D; - Dy | should be monotonic and decreasing.
When the step size gets so small that one of these conditions
is violated, the previous derivative estimate D;_; is the best
available estimate. This approach is used in the PPC ROM
routine "FD", where a factor of @.7 is used to decrease the
step size in each iteration. Check page 146 of the PPC ROM
User's Manual for more details. The main disadvantage of this
approach is that it greatly slows the evaluation of the deriv-
ative. In most cases, including maximization and minimiza-
tion, the additional accuracy is not needed. Moreover, if
"DERIV" is to be called by "SOLVE", each derivative evaluation
should be as fast as possible. Your application may even
warrant using the very simple estimate

f(x) = [£E(x+h)-£(x)]1/h ,
which is about twice as fast as "DERIV".

-117-

“"DERIV" Theory
The expression f£'(x) = [2f(x+3h)-9f(x+2h)+18£f(x+h)-£f(x)]/6h

is one of a class of derivative estimates. These estimates

can be derived through a Taylor series expansion of f£(x). For
example, a four-point second derivative estimate can be de-
rived as follows:

£"(x) = agf(x)+ajf(x+h)+ayf(x+2h)+azf (x+3h)
= agf(x) +alf(x) +a2f(x) +a3f(x)
+ajhf' (x) +2a5hf’ (x) +3a3hf'(x)

+a;h2f" (x) +4a,h2E"(x) +9azh?f"(x)
2 2 2

+a;1h3£(3) (x) +8a,03£ (3) (x) +27a503£(3) (x)
6 6 6

Fourth and higher derivatives of f(x) are omitted from the
Taylor series expansion because a four-point estimate does not
allow derivatives beyond the third to be considered. 1If the
above equation is to be true for all values of h, the follow-
ing equations must be true of the coefficients ag, ay, aps and

a3:

aa +a1 +a2 +a3 =g

aj +232 +3a3 =0
2/h?
[/

al +4az +9a3

ay; +8ap +27a,
These four equations are sufficient to define the coeffi-

cients. This also shows why four coefficients are not suffi-

cient to consider fourth and higher derivatives., When this

-118-

system of equations is solved, the result is the four-point

estimate:
f"(x) = [2f(x)—5f(x+h)+4f(x+2h)—f(x+3h)]/h2 .

You may wish to write your own "DERIV2" program analogous to
"DERIV" and based on this formula.

Another interesting exercise is to derive the equation
for a four-point estimate of f£'(x) and verify that it is the
same one used by "DERIVY,

"DERIV" Example 3:

Find the maximum value of Jl(x)—Ja(x), which occurs just
past the first peak of Jj(x). Although this function is ana-
lytically differentiable, this example is meant to illustrate
how to use the "SOLVE"/"DERIV" combination. The idea is to
"SOLVE" for the value of x that makes the derivative of J,(x)-
Jg(x) equal to zero.

The following "shell" routines are needed for the solu-
tion:

g1 LBL "J1-Jg"

g2 ¢ This program makes use of the fact
g3 X<>Y that J;(x) ends up in the Y

g4 XEQ "JINX" register after Jg(x) is

g5 - calculated by "JNX".

06 END '

g1 LBL "DJ1-Jg"

g2 "Ji-Jg" This program uses "DERIV" to compute
g3 .01 the first derivative of J;(x)-Jg(x).
g4 XOY

g5 XEQ "DERIV"

@6 END

After keying in these shell routines, press "DJl-J6", 2,

-119-

FIX 4, XEQ "SOLVE". This will compute the location of the
peak of Jy(x)-Jg(x). To f£ind the value of J;(x)-Jgz(x) at the
peak, leave the location in the X register and XEQ "J1-J@".
Your result should be:

location of peak peak value of J, (x)-Jg(x)

2,9386 0.6002

High accuracy in determining the location of the peak is not
necessary to find the value at the peak. The flatness of the
function in the vicinity of the peak is very forgiving of
errors in x.

-120-

6C. A Universal Integration program

Integration, like root-finding, is a frequent application
of programmable calculators. The integration program present-
ed here, "INTEG", starts with a user-supplied function g and

user-supplied values a and b. Then "INTEG" calculates

b
fg(z) dz .
a

Together with the root-finder program "SOLVE", "INTEG"

allows equations of the form
b

fg(x,z) dz = c

a

to be solved for x. The process of integration usually re-
gquires many more evaluations of the user-supplied function
g(z) than would differentiation or root-finding. This makes
the "INTEG" program much slower to give an answer than either
"SOLVE" or "“DERIV". The particular algorithm used in "INTEG"
is the same one used in the PPC ROM program "IG", and is very
similar to the algorithm used by the HP-34C's "integrate"
function.

Instructions for "INTEG"

To calculate the integral of the function g(z) from z=a
to z=b, put the name of the program that calculates g(z) in
the ALPHA register, key in a ENTERT b, then XEQ "INTEG". A
SIZE of 628 or more is required. The display setting deter-
mines the accuracy of the result and the amount of time that
the calculation will take, just as with "SOLVE". The calcula-
tion is an iterative procedure that halts when two successive
estimates are equal, when rounded to the current display
setting., If you set flag 10, the successive estimates will be
VIEWed (and printed if a printer is attached). The time needed

-121-

to compute each new estimate is approximately the same as the
total time already used. That is to say, the total elapsed
time doubles at each step. So be sure not to specify more

accuracy than you really need.

"INTEG" Example 1l:
Use "INTEG" to calculate the integral
1/2
3(1-22)"1/2 g,
-1/2.

to 6 significant digits.

The first step is to write a short program to calculate
the integrand:

g1 LBL"I1"
92 X72

03 1

04 XY

05 -

06 SQRT

07 1/X

98 3

g9 *

19 END

Next set the display mode to SCI 5. Since "INTEG" repeatedly
refines its estimate until two successive estimates are equal
when rounded, SCI 5 mode will yield an accuracy of approxi-
mately 6 digits. Next, place the function name "I1" in the
ALPHA register. Set flag 10 so that you will see the sequence
of estimates. Then key in the limits of integration .5 CHS

-122-

ENTER] .5 and XEQ "INTEG". You should see the following
estimates:

3.00000 /]
3.14601 1"/
3.14214 "2’
3.14158 2]
3.14159 1"}
3.14159 3"}

If you get impatient with the progress, you can press R/S to
interrupt "INTEG", change the display mode, and press R/S to

restart. The correct answer for this integral is PI.

"INTEG" is compatible with functions that are not defined
at the limits of integration, because it never tries to eval-
uate the integrand at the limits. The next example illus-
trates this.

"INTEG" Example 2:

Evaluate
1

f 2"1/2 az

g
to 4 significant digits.

Solution:
g1 LBL"I2"
@2 SORT
93 1/X
¥4 END

-123-

Press SCI1 3, "“12", @ ENTERT 1, XEQ "INTEG". The results
should be:

1.414

1.71¢9

1.865

1.934

1.967

1.984

1.992

1.996

1.998

1.999

1.999 (The true value of the integral is 2.)

This example illustrates how slow convergence can be when the
integrand increases without bound at one or both limits of
integration. The maximum number of iterations that "INTEG"
allows is 13, encompassing 2133 evaluations of the integrand.
This maximum number was chosen because it will take over 8
hours to complete, even with the simplest integrand. If you
are very patient and want to try more iterations, simply
change lines 116 and 133 to reflect the increased usage of
data registers. Of course, you need not make any changes to
"INTEG" if the integrand function does not alter data regis-

ters 20 and up.

"INTEG" Theory

The algorithm used by "INTEG" is the same one used by the
PPC ROM program "IG", and it is very similar to the algorithm
used by the HP-34C. The essence of the algorithm is repeated
interval-halving, First the integrand g(z) is evaluated at
the midpoint and an estimate of the integral is produced.
Then g(z) is evaluated at two more points between the midpoint
and the limits of integration to produce a 3-point histogram
estimate of the integral. 1In the third iteration, 4 more

~124-~

points are added straddling the previous 3 points. With each
step, the number of points is approximately doubled.

There are two improvements that are applied to this
integration procedure. Two successive histogram estimates are
used to construct a Simpson's rule estimate, without any more
evaluations of g(z). Two successive Simpson's rule estimates
are used to construct a Newton-Cotes estimate. This refine-
ment of estimates is continued for a total of k-1 refinements
at the kth iteration.

The second improvement to the integration procedure is
the use of non-uniform sampling points to cover the interval
of integration more quickly. The non-uniform sampling is
implemented by performing the change of variables

b
f g(z) dz
a

=
il

1
3(b-a)/4 * U/nf{u(3—u2)(b-a)/4+(a+b)/2}*(l—u2) du
-1

and using a uniform sampling procedure for the new integrand
as a function of u., Compare the uniform interval-halving for
the u;'s to the non-uniform spacing of the zi's for
(a,b)=(-1,1):

|2
.

g o
+.5 +.6875
+.25, +.75 +.3672, +.9141
+.125, +.375, +.625, +.875 +.1865, +.5361, +.8154, +.9775

Although the z;'s approach the limits of integration much more

quickly than the uj;'s, the penalty is that the simple histo-

-125-

gram estimate becomes more difficult to calculate. Each value

g(z;) must be weighted by the width of the sub-interval cen-

tered at Zj.

The full explanation of how "INTEG" works would take several

more pages. If you want to find out more, consult the follow-

ing references:

1.

2.

PPC ROM User's Manual, pages 222-224 under the
writeup for the "IG" program.

P.J. Davis and P. Rabinowitz, "Methods of Numerical
Integration", Section 6.3, Academic Press, New York,
1975.

W.M. Kahan, "Handheld Calculator Evaluates Integ-
rals" [HP-34C], Hewlett-Packard Journal, August
19849,

B. Carnahan, H.A. Luther, and J.0. Wilkes, "Applied
Numerical Methods", Section 2.7, J. Wiley, New York,
1969. The notation in this reference is

Ty 4 = M(i+3-1,3-1).

Formulas used by "INTEG"

Iteration number k =606,1, 2, ...

For each value of k, the following are calculated:

First sample point uy

ith sample point u; = uj_]

-1427k
+ ol-k

1

kth histogram estimate M(k,9)

2k1

Sy = Spop * ./. (1-u;2) *£{u; (3-u;?) (b-a) /4 + (a+b)/2}
g

M(k,8) = [3(b-a)/4)*27Kxg

-126-

Refinement of estimates uses this formula for j=1, 2, ... k,
M(k,3) = M(k,j-1) + [M(k:j-l)-M(k-l'j—l)]/[4j—l]

The series of estimates M(k,k) converges to the true value of
the integral I. Actually, the estimates M(k,¢) also converge
to I, but the convergence of M(k,k) is faster. The amount of
computation needed to construct M(k,k) is quite small compared
to the amount of computation needed to construct M(0,0),
M(1,8), ..., M(k,0), which are needed to get M(k,k).

Line-by-line analysis of "INTEG"

The "INTEG" program is a modified and re-optimized ver-
sion of the PPC ROM program "IG", which was written and re-
vised by PPC members Read Predmore and John Kennedy, respec-
tively. Bytes have been saved in a few places, one fewer data
register is used, and, most importantly, the capabilities of
Extended Memory make "INTEG" compatible with any user-supplied
integrand function.

The data register usage of "INTEG" is

register contents contents for LBL #6 1loop
go function name
g1 (at+b) /2
g2 (b-a) /4
@3 k
g4 uy DSE loop count k-j
a5 Ujp1-uy = 21-k M(k,j) register number
g6 Sk-1
a7 M(G,0)
g8 M(1,0) ->» M(1,1)
g9 M(2,08) -» M(2,1) ->» M(2,2)
10 M(3,0) -» M(3,1) -» M(3,2) ->» M(3,3)
etc.

-127-

When "INTEG" starts, the stack and ALPHA contents are

register contents
Y a, the lower limit of integration
X b, the upper limit of integration
ALPHA function name,

Lines 181-115 use these inputs to initialize the data regis-
ters. Flag 20 is set so that the termination test will be
bypassed for k=¢ (line 198). Next, a 20-register data file
called "**INTEG" is created in extended memory. The LBL 05
subroutine automatically handles the case in which a file
named "**INTEG" already exists in extended memory.

The LBL 22 sequence computes ug and the increment uj,;-uj
= 21-kK, rhe LBL 03 loop is where most of the time is spent,
First the registers are saved in preparation for calculating
g(z;). Lines 137-146 calculate z; = uj(3-u;2)(b-a)/4 +
(atb)/2. Next g(z;) is evaluated and the register contents
are restored. The value of g(z;) is weighted by (l-uiz)
before being added into the current sum Sy. Lines 155-160
calculate uj4; = vy + 21-k and exit the LBL 03 loop when the
result becomes greater than 1, and thus outside the limits of
integration.

Lines 135 and 136 are provided to prevent memory loss due
to low battery voltage. Some integral evaluations can run a
very long time, possibly even exceeding the life of a fully-
charged battery pack. I1f a weak battery condition halts
"INTEG"™ at line 136, you can change to a fresh battery pack
and press R/S to continue., If you don't have a spare battery
pack, it should be safe to leave the batteries out for several
hours. Most new HP-41l's will retain their memory contents for
much more than 24 hours after the batteries are removed. Even
the oldest HP-41C's appear to be good for at least 8 hours.
But don't turn on the calculator while the battery pack is
removed! That will almost certainly result in MEMORY LOST.

-128-

¢

A

¢

¢

At the completion of the LBL #3 loop, X is 1+27K and v is
1. Lines 162-175 set up the data registers for the LBL 04
loop, which applies the M(k,j) formula to the previously
calculated values M(k-1,8¢), M(k-1,1), ..., M(k-1,k-1), which
are stored in registers 87 and up. First, k is stored in
register 4 as a DSE counter, whose value is k-j. The first
time through the loop, j is zero. The number 7 is stored in
register #5 as a pointer to the register containing M(k-1,0).
This pointer will be incremented each time through the LBL @4
loop, just as the counter in register 04 will be decremented.
Lines 167 and 168 increment k for the next time through the
LBL 22 loop. Line 169 obtains 2~k by subtracting 1 from the
value that was in X at the completion of the LBL 63 loop.
Lines 176-175 compute M(k,8) = 3*2 K5 *(b-a)/4. Note that at
this point Y still contains 1. The Y register will be used in
the LBL ¢4 loop to hold the value 4j, which starts at 1 for
j=0 the first time through the loop.

At the top of the LBL 64 loop, X contains M(k,j) and Y
contains 4j. After lines 177-186, X contains [M(k,j)-M(k-1,])]
/[4j—l], Y contains 4x4]) = 4j+1, and Z contains a rounded
version of M(k-1,j). Next M(k,j) is added to X, producing the
value M(k,j+l). Lines 189-192 increment the register counter
and decrement register 4. This sets up conditions for the
next time through the LBL @4 loop with the next value of j.
After k times through the loop, the GTO @4 instruction is
skipped with the value M(k,k) in X and the rounded version of
M(k-1,k-1) in 2 and T. M(k,k) is stored in the proper regis-
ter, then it is rounded and compared to M(k-1,k-1). 1If the
two rounded versions are equal, M(k,k) is extracted from LASTX
and returned as the result. Otherwise a branch to LBL 22
begins the calculation of M(k+1,8) and eventually M(k+1,k+1).

Like "SOLVE" and "DERIV", "INTEG" ends with an EMDIR
instruction, so that there will be a working file when the
program halts. This is only needed for revision 1B extended
functions.

-129-

"INTEG" Example 3:
Verify that
3
./.Jl(x) dx = Jg(2) - J4(3) .
2

Solution:
Set FIX 4 and key in the "shell" function
#1 LBL"J1X"
g2 1
@3 X<O>Y
@4 XEQM"JINX"
@5 END

Press 2 ENTERT 3, "J1X", SF 1¢, and XEQ "INTEG". The result

is:

#.4971
§.4831
?.4839
3.4839

To compare this to the true value of the integral, press
¢ ENTER] 2 XEQ "JNX"
to compute J;(2)=8.2239., Next press
g ENTERT 3 XEQ “JNX"
to compute J;(3)=-0.2601. The difference is ©.4840, which

agrees with the computed value of the integral.

-130-

CHAPTER SEVEN
A MAILING LIST PROGRAM

The "NAP" (Name/Address/Phone) program presented in this
chapter illustrates how text files can be used to save blocks
of ALPHA data in an organized manner. The program was written
by Alan McCornack. It is included here primarily as a learn-
ing tool, but you may find it suitable for general use. Its
relatively straightforward approach can be a model to help you
develop a program to manage your own data base. Alan's use of
GETKEY in the program's Edit section is also instructive,
showing how the use of GETKEY can be confined to a portion of

a program if desired.

The "NAP" program assumes that the name, address, and
phone number data for each entry in the list has the following

format:

item maximum length
Name 24 chars.
Address
line 1 24 chars.
line 2 24 chars.
line 3 24 chars.
Phone number 22 chars.
Miscellaneous
information 22 chars.

The 24-character length limit is imposed so that each item may
be fully listed on a single printed line. The last two items
are limited to 22 characters so that they may appear on a
single line after being indented two spaces. Any characters
may be used, including special characters accumulated in the
ALPHA register using XTOA.

-131-

The "NAP" program forms a block of 6 records for each entry.

The record contents are as shown, where n is the entry number:

record number contents
6n name
6n+1l address line 1
6n+2 address line 2
6n+3 address line 3
6n+4 phone number
6n+5 miscellaneous data

Entries are numbered in sequence, starting with zero. Thus,
if you have 10 entries, the text file will contain 68 records.

The entries will be numbered ¢ to 9.

Instructions for using the "NAP" program

l. Before you use "NAP", you must create a text file named
"ML" (mailing list). Pick a file size, key that number
into X, put "ML" in the ALPHA register, and execute
CRFLAS. The file size should be large enough to handle
your projected mailing list needs. Each entry will use
one register for each 7 characters of text plus another
register for the 6 record separator bytes. A typical
entry uses 8 to 12 registers. The maximum number of
entries that can be accomodated is therefore about 56 to
75 with a full 6@3-register complement of extended mem-
ory., If this limit is too low, you may be able to do a
little better by abbreviating some of the information to
cut down on the number of characters used.

2. Once the "ML" ASCII file is in place, the "NAP" program
provides several options. These options are available on
the five top row keys in USER mode. If you already have
some functions or global labels assigned to the top row,
you can use the "SK" (suspend key assignments) program

from Section 106G to temporarily de-activate them, Other-

-132-

wise you will have to clear the assignments from these
keys by pressing
ASN ALPHA ALPHA (key)

or by using the "CT" program from page 84, then manually
clearing the X772 key. The top row assignments must be
cleared because global label or function key assignments
are always given priority over local labels where there
is a confict.

3. Switch into USER mode. Make sure that the SIZE is at
least 981, because the "NAP" program uses register 06.
Set flag 26 manually or by turning the calculator off,
then on., Clear flag 21 unless you have a printer at-
tached and you want printed output.

4. Press GTO "NAP", You are now in the "NAP" program., If
you have removed or suspended any top row key assign-
ments, the top row keys will have the following func-

tions:

List all
Add entry Find string List entry Delete entry Edit

The "List all" function is obtained by pressing
shift -J; (the "c" key).

Each of these functions will now be described in detail. TIf
you are starting with an empty "ML" text file, you will want
to use "Add entry" first, so press the "A" key (row 1, column
1). Actually, you can start with the "Add entry" function by
using XEQ "NAP" instead of GTO "NAP".

(A) Add entry
The program will prompt for a NAME to £ill the first line of

the six-line entry. The program will stop in ALPHA mode, so

-133-

that you can key in a name of up to 24 characters. You do not
need to count the characters, because the calculator will give
a warning tone as the 24th character is entered. After you
have keyed in the name, press R/S to restart the program. The
next prompt will ask for "ADD. L1?", line 1 of the address.
Key it in and press R/S. Proceed this way, entering line 2
and line 3 of the address. If you want to leave a line blank,
you can Jjust press R/S without an entry in response to the
prompt. When the prompt "PHONE?" appears, key in the phone
number. Make sure that you use no more than 22 characters if
you expect neat printer output. To check the number of char-
acters, add spaces until the warning tone sounds. This indi-
cates that 24 characters are present. Then press backarrow to
get rid of the extra spaces you added., Press R/S when the
entry is ready to be processed. The next prompt, "MISC.?2"
will be for the miscellaneous data field. This field should
also be limited to 22 characters if a printer will be used.
When you press R/S, the program will store this data and quit.

After you finish making a full name/address/phone entry,

you can press R/S or the "A" key to add another entry.

Caution: Never quit this part of the program without adding
all 6 lines of the entry. If you make a mistake, simply
continue making entries until all 6 are done, then correct the
mistake using the edit function (key "E") described later. 1If
you want to delete an incomplete entry, you can use the delete
function (key "D") described on the next page, but only if no

further entries have yet been added to the file.

(B) Find string

Press "B", the 1/x key, to execute this routine. The
program will prompt you for a string to find. The program
stops in ALPHA mode so you can key in the string. The string
can be up to 24 characters long. The program will find the
string, wherever it appears in the file, as long as the string

-134-

is fully contadined in a single line.

If the string is not found, a value of -1 is returned in
X. If the string is found, the message "ENTRY NO. n" tells
you which entry contains the string. All 6 lines of the entry
will then be shown.

Press R/S to halt the program if this is the entry you
were looking for. Otherwise the search will automatically be
continued. This second search (and all subsequent searches)
will use only the first 6 characters of the string you en-
tered. As long as you do not interrupt the searching by
pressing R/S, the search will continue to display entries for
which a match is found. When the END OF FL is reached and no
more matches are found, the value -1 is returned to X and the
program halts.

The string to be found need not be in the NAME line. It
will be found on any line anywhere in the "ML" file. For
example, suppose you wanted to record birthdays in the MISC
line. You could use the notation "bmm/dd/yy". The lowercase
b is a "tag" that indicates birthday data. To list all en-
tries that have June birthdays, you could then search for the
string "b6". The lowercase characters a through e make es-
pecially handy "tags" because they are easy to key in and not

often used otherwise.

(C) List entry

Press "C", the V; key, to execute this routine. The
‘program asks for the number of the entry to be listed. Just
key in the number and press R/S. Remember that the first
entry is number zero, not 1. The 6 lines of the entry will be
displayed in sequence, and printed if the printer is attached

and flag 21 is set.
(c) List all
Press "c¢", shift \E} to execute this routine. No input

is needed. The entire name and address list will be displayed

-135-

in sequence. If the printer is attached and flag 21 is set,
the list will be printed out. The phone number and miscellan-
eous lines will be indented by two spaces in the printed
listing. Successive entries will be separated by two spaces.
At the end of the listing, the number of registers used
and the total number of registers in the file will be dis-

played (and printed if the printer is attached and enabled).

(D) Delete entry

Press "D", the LOG key, to execute this routine. The
program asks for the number of the entry to be deleted. Be
sure you know the right number for the entry you want to
delete. If you are in doubt, press the "C" key to check the
entry. When you are sure which entry you want to delete, key
in the number and press R/S. Again, remember that the first

entry is number zero.

(E) Edit

Press "E", the LN key, to execute this routine. The
program will ask you for the number of the entry you want to
edit. Key in this number and press R/S. The program will
proceed to show you each line of the entry (and print it if
the printer is attached and enabled). After a pause, the
prompt "OK?" will appear. If the line is OK and does not need
to be changed, press "Y" or R/S. If you want to see the line
again, press the ALPHA key. To quit the EDIT mode, press the
backarrow key or the ON key. Press "N" (the ENTER key) if you
want to change the line. 1If you do not press any key, the
line will be displayed again and the "OK?" prompt will be
repeated, just as if you had pressed the ALPHA key. If you
press any key other than those mentioned above, the result
will be the same as if you pressed "N".

If you press "Y" (the multiplication key) or R/S to
indicate the line is OK, the next line will be displayed.

If you press "N" (the ENTER key), or any key other than

-136-

ALPHA, "Y", R/S, ON, or backarrow, the prompt "LINE?" will
appear. Key in a string to replace the line and press R/S.
If you want to clear the line, you can just press R/S. If you
made a mistake and you do not want to change the line, press
ALPHA to exit ALPHA mode, then either XEQ 84 or the "E" key to
restart the editing process. The "E" key will start over at
the beginning of the entry; XEQ 84 continues with the next
line of the current entry.

Each line of the entry is displayed in sequence, with the
"OK?" prompt. Each time you can press "y" or "N" to indicate
whether it is OK to proceed to the next line. When you have
finished editing all 6 lines of the entry, the program will
automatically continue on to the next entry, if there is one.

When you want to quit, simply press the backarrow key in

response to the "OK?" prompt.

Line-by-line analysis of "NAP"

The "NAP" program contains several subroutines that are
used by more than one local label. This technique is known as
modular programming, and greatly reduces the number of bytes
used in a complex task by dividing the jbb into sections.

Label 9¢ selects an initial pointer of zero (beginning of
the "ML"™ file). LBL 91 selects a pointer to the beginning of
a selected entry. Line 52 initializes the character count in
the X register. The integer part of this character count will
be displayed later as the number of registers occupied.

Label 92 appends the integer part of X to the ALPHA
register for display purposes. The RCLFLAG and STOFLAG func-
tions ensure that the display setting is restored. Label 98
displays the contents of the ALPHA register without printing
it. Label 99 prints the contents of the ALPHA register, or
displays ALPHA and pauses if the printer is off, not present,
or disabled. This routine differs from the "pPVA"™ routine
presented in section 4C in that it preserves the status of
flag 25, which is used in “NAP" to detect the END OF FL.

-137-

BL9LBL "HAP-

B2¢LEL §
837 AEG W
B4 5F 25
B3 3

i1 éHS

B7+[EBL 83
88 &

B9 +

1@ SEEKPT
11 F8% 25
12 GT0 &5
13 LRSTY
14 «

13 “HAME -
16 ¥EG 92
17 SIGH

18 209

19 AH

28 NEG %4
21 #Ed 93
22 ¥Ef 93
23 AE8 93
24 “PHUONE"
25 ¥EB 54

26 -HISC, -

27 ¥ED 94
28 AOFF

29 "RES. = °

37
3t s

32 ¥EG 92

J34LBL 95
34 RCLFLAG
3[R 2
36 AVIEH
37 STOFLAG
38 RDN

39 ETH

48 GTG A

4i¢LBL 98
42 @
43 G610 @5

"NAP" program listing

44¢LBL 91

45 “ENTRY HO. 7~

46 PROMPT
476
45 *

49¢LBL BE
58 “HL-

51 SEEKPTH
527

52 ETH

S4eLBL 92
INT
RCLFLAG
FIX &
CF 29
ARCL ¥
STOFLAG
HIK

KTH

[~ o= o AN A N, R X R R |
(=N i~ A]

[)

63+LBL 93
64 "ABD. L-
63 X{}

66 KEG %2
67 X{¥Y

68 IS6 Y

§9eLEL 94
78 -b2-
71 XEQ 98
72

73 §T0P

4 APPREC

- -

7IeLBL #7
76 1

77+

78 RLLPT
79 FRC

88 1 £3
8l +

82 +

83 RTH

B4¢iBL B

85 ¥EG 96
86 “FIND?"
87 AOH
88 STOP
89 AOFF
98 A5TO A

Si¢LBL 88
92 POSFL
93 X7
94 ETH
356

9% 7

97 LASTH
98 ®OY

99 “ENTRY WO, -

108 XEQ 32

181 ¥E@ 93

182 *

183 SEEKPT

184 RIH

185 ®EG 95

186 ARCL &
187 670 @8

188+LBL 95
189 SF 25
118 ARCLREL
111 #E¢ 99
112 CLA

113 F§? 23
{14 GT0 &
115 RTH

1164LBL €
117 ZE@ 91

1184LBL 93
119 ADY
128 CLR
121 XEQ 9%
122 XEB 9
123 XEQ 9%
124 XEQ 9%
{25 = -
126 XEQ 9%

AT = o=

127

-138-

128 ¥EQ %
129 ADY
138 CLh
131 R7H

{32¢BL D
133 #EQ 91

134+LBL 49
135 DELREC
136 ISE L
137 670 89
138 RTH

139¢LBL ¢
148 XEG 98

142¢LBL 18
143 5F 25
144 0¥
145 SEEKPT
146 6

147 +

148 %Y
149 F52? 25
138 XEQ@ 95
151 F§2 25
132 GT0 1@
1537

154 7

135 FLSIZE
156 XGY
157 XE@ 92
158 7k« °
139 XGY
168 XER 92
161 “F RGS.

162¢LBL 93
163 RLLFLAG
164 SF 25
165 PRA

166 RCLFLAG
167 F52C 21
168 FC? 25
169 AVIEW

8

178 STOFLAG
171 RDN

172 F57 21
173 FC? 25
74 PSE

173 STOFLAG
176 RDN

177 RTN

178¢LBL E
179 ¥E@ 91

18@eLBL 71
181eLBL 84
182 SF 23
183 GETREC
184 FC7 25
185 GT0 #1
186 XE@ 99
187 ~0K?*
188 XE@ 98
189 GETKEY
198 CLD
191 RDH
192 GTO IND T
193 “LINE?"
194 Xtq 98
195 = =
196 AOH
197 STOP
198 AOFF
199 DELREC
208 INSREC
281 GT0 84

2824 BL 0e
283+LBL 44
284 RCLPT
285 INT
286 SEEKPT
287 GT0 84

288¢LBL 44
289+1BL 81
218 CLST
211 END

447 BYTES

Label 96 outputs a record (line) from the "ML"™ file. The
ARCLREC function is used instead of GETREC so that the PHONE
and MISC lines can be indented. Label 99 is called for the
actual output. If the END OF FL was not encountered, the GTO
@7 instruction causes the LBL 087 character count routine to be
executed. This sequence computes the number of characters in
the current record (RCLPT, FRC, 1E3, *), and adds that number
plus 1 (for the record length byte) to the character counter
in X. Details of ASCII file register usage can be found in
Section 1l4C.

Label 95 is used by labels B, c, and C to output six
consecutive records of the file. It advances the paper,
clears ALPHA, then outputs the first four lines using label
96. The next two lines are preceded by 2 spaces that are
loaded into the ALPHA register before label 96 is called.

Label A adds one entry to the "ML" text file. Lines G4-
12 find the end of the file and set the pointer there. Flag
25 is used both to suppress the END OF FL error messagyge and to
test when the END OF FL is reached. Lines 15-28 prompt for
the 6 lines of the entry and append the 6 records to the "ML"
file. Label 93 is a byte-saving device that generates the
three prompts "ADD. L12", "ADD. L2?", and "ADD. L32?". Lines
17-18 set up a counter in Y with an initial value of 1. The
ISG Y at line 68 then increments this counter each time label
93 is called. Label 94 merely appends a question mark, calls
label 98 to display the prompt without printing it, loads the
ALPHA register with a single space, and halts for input. If
the user just presses R/S, the single space will be used for
the record. Otherwise whatever ALPHA string was keyed in will
be appended to the "ML" file at line 74, The LBL 67 sequence
updates the character counter in X as described above.

When LBL A concludes, the number of registers used 1is
displayed, rounded to the next higher integer.

Label B prompts for a string to find, storing the left-
most 6 characters in register 90 for subsequent searches.

-139-

Label @8 performs the search (line 92), computes and displays
the entry number (lines 95-101l), sets the pointer to the
beginning of the entry (162-163), and calls label 95 to dis-
play the entry. The search is then resumed, using the left-
most 6 characters of the target string. When the END OF FL is
reached, the POSFL instruction returns a value of -1 to X, and
the test at line 93 halts the program.

Label C calls label 91 to set the pointer to a selected
entry, then drops into label 95 to display the entry.

Label ¢ first calls label 96 to initialize the character
counter. Then it sets the pointer to the beginning of the
file (line 145). Lines 146-148 prepare the pointer value that
will be needed the next time through the loop. If the END OF
FL was not reached, 1label 95 displays the 6 lines of the
entry, and the GTO 10 proceeds to the next entry. When the
END OF FL is reached (flag 25 clear), the character count in X
is divided by 7, giving the number of registers occupied.
Lines 155-161 construct and display or print a message that
compares this number with the FLSIZE.

Label D calls label 91 to set the pointer to the begin-
ning of an entry, then it deletes 6 records.

Label E calls label 91 to select an entry. The first
record of the entry is then printed or displayed (line 186).
Then the prompt "OK?" is displayed and GETKEY is executed.
After the key is pressed or the time expires with no key
having been pressed, lines 19¢-192 effect a GTO IND X, branch-
ing to the label designated by the keycode. Labels 71 ("Y")
and 84 (R/S) cause the next line to be displayed. Labels 00
(no key) and 64 (ALPHA) set the pointer back to the beginning
of the current record, and cause the current line to be redis-
played. Labels 44 (backarrow) and 61 (ON) cause the program
to halt. If any other key is pressed, execution will continue
with line 193, because flag 25 was set. This sequence prompts
for a new line, then uses that string to replace the current
record (lines 199-200).

-140-

CHAPTER EIGHT
TEXT EDITING ON THE HP-41

This chapter introduces a Text Editor program, called
"TE", that allows any text file to be reviewed and edited with
a minimum of keystrokes. Like the "HP-16" program of Chapter
9, it uses the GETKEY function to achieve a remarkable degree
of user convenience and "“friendliness", If you have an HP-
41CX, its built-in ED function does essentially the same job
as this Text Editor program. The major advantage of ED is
that it responds much more quickly than "TE". Advantages of
WpE" are its search and special (non-keyable) character entry
features. Even if you have an HP-41CX, do not overlook the
capabilities that "TE" provides.

This powerful program and its associated documentation
were written by Erik Christensen, and are reproduced here by

permission.

"PE" (text editor) is a text editor program for use with
a HP-41C or CV that has an Extended Functions/Memory module
plugged in. The program will also work with an HP-41CX. Ad-
ditional Extended Memory modules are optional (up to two can
be used). The HP-41 used must have at least 115 free program
registers, and one free data register.

The "TE" program provides a quick way to view, add,
delete, and change text in an extended memory text (ASCII)
file. An edit mode is included that totally redefines the
keyboard for file processing. In this edit mode, you press a
certain key that corresponds to the operation you wish to per-
form on the file. Then you are prompted accordingly, and the
editing continues. You view the file through a twelve charac-
ter "window"™ that you can move throughout the file using
different one-key operations. You are notified if an error
condition occurs, but execution is not interrupted. The fol-

-141-

lowing pages will describe the different functions of the keys
(A) - (H). The last one described will be the (E) key, for it
represents the largest part of the program, including the edit
mode.

As with "NAP" in Chapter 7, you need to execute "SK" or
clear any key assignments from keys (A) - (H) before you can
effectively use "TE". Section 10G has a full explanation.
Once these keys are clear of assignments, execute "TE" to

start the text editor. Keys (A) - (H) will then be redefined
as follows:

row 1l: Add file chr free? clear fl delete f1 edit f1l

row 2: file dir goto file HELP

Here is a brief explanation of each of these functions:

(A) Add a file to memory

This routine sets up the memory allocation for a new text file
in extended memory. The program prompts for the number of
lines the text file is to have ("LINES?"). Key in a number,
and then press R/S. The program then prompts for the total
number of characters that will be allocated for the file
("CHAR"). Key in a number, and press R/S. The routine then
prompts for the name that the new file shall be called
("NAME?"). Type in a file name that is from 1 to 7 letters
long, and press R/S. If the name keyed in has already been
used as a name for another file, then you will be reprompted
for another name. If there is currently not enough free
memory available to create the file, you will be prompted
again for the number of lines and characters to be allocated.
Upon completion, the display will show "OK" and the program

will stop. You may now use any of the other local labels.

-142-

(B) Count the number of free characters in a file

This routine checks how many characters may be added to the
specified file. The routine prompts for the name of the file
to be analyzed ("FILE NAME"). Key in a name from 1 to 7
characters long that corresponds to an already created file,
and press R/S. 1If you specify a name not yet used as a name
for a file, or the name of a program or data file, you will be
reprompted. When a file has been picked, the program will
proceed to count the free characters, and then will stop with
"eHAR LEFT=n" where n equals the number of free characters.
Press R/S and you will see "OK" in the display. You can now

use any of the other routines.

(C) Clear out the contents of a file

This routine erases all the text stored in a file, but leaves
the file intact, including the name, memory allocation, and
directory placement. The routine prompts for the name of the
file to be cleared out ("FILE NAME?"). Key in the name of the
file to be cleared (1 to 7 characters), and press R/S. If you
specify a name that has not already been used in memory, Or
the name of a data or program file, you will be reprompted for
the name of the file. The routine ends with "OK" in the

display. You can now use any of the other routines.

(D) Delete a file from memory

This routine purges a text file from extended memory. This
routine would be the one to use to make room for new files, by
deleting old ones. The routine prompts for the name of the
file to be deleted ("FILE NAME?"). Enter the name of the file
to be cleared (1 to 7 characters long), and press R/S. If you
specify the name of a file not already used in memory, or the
name of a data or program file, you will be reprompted for the
name. The routine ends with "OK" in the display. You may now

use any of the other routines.

-143-

(F) View the file directory

This routine will show the names, types, and memory alloca-
tions for each file in extended memory, including data and
program files, The order of viewing is the order in which the
files were created, so the first one shown is the first one
created. The display for each file is: FFFFFFF TMMM , where
FFFFFFF is the 1 to 7 character name of the file, T denotes
the type of file, and MMM stands for the number of 7 charac-
ter registers that are allocated to the file. T can be A,D,
or P, where A=ASCII text file, D=data file, and P=program
file. when all the files in extended memory have been listed,
the program will halt with "FREE=n" in the display, where n
equals the number of free characters that can be allocated to
files, in extended memory. Press R/S once more, and "OK" will

be displayed. You may now use any of the other routines.

(G) Go to a file

This routine is used to position the editor to any text file
in memory. Once positioned to a text file, you may perform
any operation on the current file, by just hitting R/S after a
"FILE NAME?" prompt. This works for routines (B), and (E).
To position the editor to a specific file, answer the prompt
in this routine ("FILE NAME?") with the name of the file
desired, and press R/S. If the file specified is not found,
or is the name of a program or data file, you will be re-
prompted for the name. Upon completion, "OK"™ will be seen in

the display. You may now use any of the other routines.

(H) Help associating a key

This routine is a convenience routine to determine the func-
tion of certain local label key (A)-(G). It will display a
mnemonic that corresponds to the key pressed. It will prompt
with "PROBLEM KEY?". Respond by pressing the key that you are

uncertain about. The display will show a 3 character

-144-

mnemonic. The codes for keys (A)-(G) are as follows: (A)=ADD,
(B)=FRE, (C)=CLR, (D)=DEL, (E)=ED ,(F)=DIR, (G)=GTO. The
mnemonic will be shown for about one second, and then the
routine will go back and ask for another key. It will con-
tinue to do so until you press another key, or leave the HP-41
unattended during the prompt. When you press any other key
than (A)-(G), the routine will stop prompting and display
"OK", meaning that it is possible to use any of the other

routines.

(E) Edit a file

When you press the "E" key, you enter the edit mode. The
keyboard is completely redefined for file processing. All
input will be done while the program is running, except alpha
character entry, for which the program will stop, and for
which R/S is necessary to continue.

To select the edit mode, press the (E) key. You will see
the message "FILE NAME?" in the display. Key in the name of
the file to be edited (1-7 characters) and press R/S. 1If you
specify the name of a program or data file, you will be re-
prompted for another name. If a text file has already been
selected using local label (G), then that file will be used if
you just press R/S without a name input. After the name has
been specified, you will see a portion of text in the file
through a 12 character window (which is movable using various
commands). The window will initially be positioned to line 4,
character #. You will also see the flag ¢ annunciator. This
means that the calculator is ready for your selection of any
editing function. When flag 8 is set, you may press the key
that corresponds to the function you desire. You will then be
prompted for input if necessary for the selected function, and
the screen will again show the window. Then you can select
other keys to edit the file. When you are finished, press the
R/S key or the ON key when flag @ is set to quit the edit

mode.

-145-

The edit mode keyboard is set up as shown in the table
below. Each key performs a different file operation.
NOTE: No USER mode key assignments are affected by this redef-
ined keyboard.

row @ quit INS X

row 1 ADD L BEG L CHA L DEL L INS L
row 2 BACK n GOTO A POINT INS A AHEADN
row 3 BACK 1 DEL A VIEW L CHA A AHEAD1
row 4 ADD A GTOCHR POS FL DELCHR
row 5 UP n 7 8 9

row 6 UpP 1 4 5 6

row 7 DOWN 1 1 2 3

row 8 DOWN n '] GOTO REC STOP/CONT

Each edit mode operation listed on the keyboard diagram above
will now be described in detail. The operations will be
identified by the mnemonics on the keyboard diagram, and
listed from the top to the bottom of the keyboard.

(ADD L) Add a line of text at the end of the file.

This operation will create a new line of text that you specify
at the end of the file. The window will be set to the newly
created text, at the end of the file. If there is not enough
room allocated for the new text, then "ERROR"™ will be dis-
played, and the operation will not be performed. You will be
prompted for the new text to be added ("NEW TEXT?"). Key in a
string of characters that can be 1 to 24 characters in length,

and press R/S. The routine will return to the window display.

-1l46-

(BEG L) Move the window to the beginning of the line

This routine will position the window to the first 12 charac-
ters of the line that the window is presently positioned to.
I1f the window is already at the beginning of the line, then
nothing happens. 'The routine does not prompt, and returns

immediately to the window display.

(CHA L) Change the contents of a line

This routine will change the text of a line to new text, thus
erasing the old text. You are prompted for the text that is
to overwrite the previous text on the current line ("NEW
TEXT?"). Respond to the prompt by keying in a 1 to 24 charac-
ter string that will replace the old text, and press R/S. If
there is not enough room for the new text, then "ERROR" will
be displayed. The window is positioned to the beginning of
the newly created text. The routine will return to the window

display.

(DEL L) Delete a line of text

This routine will erase an entire line of text from memory.
All subsequent lines will move up one, so the window will be
positioned to the next line in memory. This routine does not

prompt, and returns immediately to the window display.

(INS A) Insert text in a line

This routine will enable you to insert text at the current
window position. The text inserted will appear right before
the text currently shown in the window. The window will be
positioned to the beginning of the newly inserted text. The
prompt is "NEW TEXT?". Respond with a 1 to 24 character
string of text to be inserted, and press R/S. If there is not
enough room for the text to be inserted, then "ERROR" will be
displayed. The routine returns to the window display.

-147-

(AHEAD n) Move window ahead n characters

This routine will move the window forward through the current
line of text n characters. The routine prompts for a
"NUMBER?". Enter a 3 key sequence that represents a 3 digit
number for n. The routine then shows the three digit number
in the display, and returns to the new window display. If the
window would be moved beyond the end of the current line then
"ERROR" will be displayed.

(BACK 1) Move window back 1 character
This routine will backspace the window one character in the
line. If you backspace past the first character, then "ERROR"

is displayed. The routine then returns to the window display.

(DEL A) Delete specified text

This routine will enable the user to delete certain strings of
text from the line. The routine prompts for the text to be
deleted with "OLD TEXT?". Enter a 1 to 24 character string,
and press R/S. If the text to be deleted is not found, then
nothing happens. The search for the text is done from the
current window position to the end of the file. The routine
returns to display the window.

(VIEW L) View an entire line

This routine views the current line, 12 characters at a time.
It goes from the beginning of the line to the end., First it
displays the line number "LINE n", where n equals the line

number. Then it views the line, and returns.

(INS L) Insert a line of text

This routine will insert a line of user-specified text in the
file. The text will be inserted right before the current
line., After the text has been inserted, the window will be
positioned to the beginning of the new line of text. If there

is not enough room for the new text, "ERROR"™ will show up in

-148-

the display. The prompt for the text to be inserted is "NEW
TEXT?". Respond with a 1 to 24 character string of letters to
be inserted, and press R/S. The routine then returns to the

window display.

(BACK n) Move back n characters

This routine will move the window back through the line n
characters, where n is selectable. If by moving back n char-
acters the window would be past the beginning of the text,
then the window will be positioned to the beginning of the
text, The prompt for n is "NUMBER?". Respond by pressing a 3
key sequence representing a 3-digit number while the program
runs. The three digit number will show up in the display, and
then the routine will return to display the window at its new

position.

(GOTO A) Go to text in line

This routine will search the current line for a match with
user specified text, and if a match is found, it will move the
window to the first character of the specified text. The
routine will only search the current line, and if a match is
not found, the window does not change position. The prompt is
WPARGET TEXT?". Respond by keying the string that is to be
located (1 to 24 characters) and press R/S. The routine will

then return to display the window.

(POINT) View the current pointer values

This routine will show how many lines down and how many let-
ters from the leftmost position the window is, relative to the
beginning of the file. The routine does not prompt. It
displays the message "LINE n CHR m" where n is the number of
lines down from the beginning, and m is the number of charac-

ters from the beginning of the line.

-149-

(CHA A) Change text in a line

This routine will allow you to replace text in a line. You
are prompted for the text that is to be changed ("OLD TEXT?").
Enter a 1 to 24 character string representing the text to be
changed. This text is then deleted, if it can be found. The
routine then prompts "NEW TEXT?". Type in the text that is to
replace the old text (1 to 24 characters), and press R/S. The
new text is then inserted where the old text used to be. If
there is not enough room for the new text to be inserted, then
"ERROR" is displayed. The routine returns to display the
window.

(AHEAD 1) Move window 1 character ahead
This routine moves the window one character ahead through the
line. If the window is moved out of the text, then "ERROR" is

shown. The routine returns to display the window.

(ADD A) Add text at end of line

This routine will add user specified text at the end of the
current line. If there is not enough room for the new text,
then “"ERROR" will be displayed. The prompt is "NEW TEXT?".
Enter a 1 to 24 character string that will serve as the addi-
tion to the line, and press R/S. The routine returns to

display the window.

(GTOCHR) Move window to absolute character number

This routine will move the window to a specified character
number (counted from the beginning of the line). If there is
not a character at the specified position, then "ERROR" will
be displayed. At the prompt "NUMBER?", key in 3 digits repre-
senting the position of the character within the line. ‘The
number will then be displayed, and the routine will return to

display the new window.

-150-

(POS FL) Position window to specified text

This routine will search from the beginning of the file for a
match with the specified text. If a match is found, then the
window is positioned to the first character of the text being
sought after. If a match is not found, then the window is not
changed in position. The prompt for text to be located is
"PARGET TEXT?". Your response is a 1 to 24 character string,
followed by R/S. The routine returns to display the window at

its new position.

(DELCHR) Delete n characters

This routine deletes n characters from the current line. The
deleting starts at the first character displayed in the win-
dow, and proceeds n characters to the right. If n is larger
than the number of characters from the beginning of the window
to the end of the current line then everything from the first
character of the window to the end of the line is deleted.
The prompt for n, the number of characters to be deleted, is
"NUMBER?". Key in a 3-digit number n, with leading zeros if
necessary. This number will then be displayed briefly, and

the routine will return to show the updated window display.

(UP n) Move window up n lines

This routine will move the window display up a specified
number of lines. If the window would be moved past the begin-
ning of the file (first line), then the window will be posi-
tioned to the first line. The prompt for the number of lines
to be moved up is "NUMBER?". Respond with a 3 digit sequence,
and the 3 digit number will be displayed. Then the routine

will return to view the window display.
(UP 1) Move window up 1 line
This routine will move the window up one line of text. If the

window is positioned at the first line, then nothing will

-151-

happen. This routine does not prompt, and returns directly to

the window display.

(DOWN 1) Move window down 1 line

This routine moves the window down one line of text in the
file. If you try to move the window past the last line of
text in the file, then "ERROR™ will be displayed. This rou-
tine does not prompt, and returns directly to the window
display.

(DOWN n) Move window down n lines

This routine will move the window display down a specified
number of lines. If the window would be moved past the end of
the file (last line), then the window position will be un-
changed, and "ERROR"™ will be displayed. The prompt for the
number of lines to move down is "NUMBER?". Respond with a 3
digit sequence, and the 3 digit number will be displayed.

Then the routine will return to view the window display.

(GOTO REC) Move the window to a specified line

This routine will move the window to a specified line number
n. Lines are numbered starting with line @ (the first line in
the file). The prompt for n is "NUMBER?"., Respond with a 3
digit number for the line number n, with leading zeros if
necessary. The 3 digit number will then be displayed, and the
routine will return to the window display. If you try to move
the window to a line of text that has not yet been created,
then the display will show "ERROR" and the window position

will not change,

(STOP/CONT) Exit the edit mode

This routine exits the edit mode, freeing you to use any other
local label routines (A)-(H). It restores the original flag
status, and ends with "OK" in the display. Either the R/S or

the ON key will cause this exit routine to be executed.

-152-

‘

c C C ¢

e

(INS X) Insert a special character

This routine will insert a not normally keyable character into
the file, at the current window position. The input to the
routine is the ASCII code (a number between §-255) of the
letter. A listing of these special characters and their
corresponding codes can be found on pages 60 and 61. The
routine will prompt for the character code with YNUMBER?" in
the display. Key in a three digit numeric sequence that
represents the character code. The code will be displayed,
and then the routine will return to the window display. If
there is not enough room for the new character in the file,
then "ERROR" will be displayed.

If any of the preceding function descriptions were not com-
pletely clear to you, you should create a small ASCII file in
which you can try out the edit mode functions. You will find
that the descriptions make an excellent reference after you

have actually used "TE".

CUSTOMIZATION OF “TE"
The information that follows is provided in case you want

to add your own editing routines to "TE" or change an existing

routine. If you do not intend to modify “TE", you can skip to

the next chapter.
To add or change a routine:

1) Choose the key that your new routine is to be assigned to.
Press (XEQ) (ALPHA)GETKEY(ALPHA) and that key.

2) The row/column keycode in X from step 1 is the numeric
label number that will start your new routine. So, for
example, if you saw 41 in the display from example 1,
then your routine would start with LBL 4l.

3) After the LBL at the start of your routine, you can add
anything you please, followed by a RTN statement.

-153-

4) Your routine must observe the following constraints:

FLAG/REG PRE-ROUTINE POST—-ROUTINE
Flag 29 clear clear

Flag 25 set set

FIX] @

Flag 23 set set

Flags ©0-3,6 clear clear

X rrr.ccc rrr.ccc

Y not used can be used
Z not used can be used
T keycode can be used
L not used can be used
ALPHA window display can be used
REG 00 initial flag sts cannot be used

When your routine comes to the RTN statement, it must
have the new window position in X in the form rrr.ccc,
where rrr is the record number, and ccc is the character
number of the first character of the window. If your
routine deletes any text from the file, it should not
conclude with RTN, but rather GTO 26. This calls an

error handling routine.

5) To call various prompting routines, do the following:

PROGRAM STEP DESCRIPTION USES
XEQ 09 "NUMBER?" # in X T,%,L,ALPHA
XEQ 06 " TEXT?" txt in A

XEQ 07 "NEW TEXT" txt in A

XEQ 08 "TARGET TEST?" txt in A

-154-

EXAMPLE OF AN ADDED ROUTINE

Add a routine that will erase all text that matches the text
supplied by the user in the file. Have the prompt for the
text to be deleted to be "TARGET TEXT?". This new routine
is assigned to the (ALPHA) key.

ROUTINE LISTING

g1 LBL 04 start routine with label assignments
@2 ENTER] put rrr.ccc in ¥

93 XEQ 08 call “TARGET TEXT?' prompt

g4 LBL 88 start deleting loop

@5 RDN now rrr.ccc is in X

86 POSFL search the file for text in ALPHA

37 X<@? was text found?

g8 CLA if not, then clear alpha

29 RDN put rrr.ccc in X

14 ALENG get the length of text

11 DELCHR delete that many characters

12 X#0? was alpha clear?

13 GTO 88 if not, loop back to search again

14 RDN put rrr.ccc in X

15 SF 25 set error ignore flag

16 SEEKPT try to position window to old position
17 FS? 25 were you successful?

18 RTN then return

19 GTO 26 if not, then call error handler

To add this routine press:
(GTO) (ALPHA)TE (ALPHA) (SHIFT) (RTN) (PRGM)
and key in the routine.

Now, every time that (ALPHA) is hit while in the edit mode,
you will see a prompt for "TARGET TEXT?". Key in the text

that is to be deleted throughout the file, and press (R/S).
The routine will then return to the window display.

-155-

NUMERIC LABEL DESCRIPTION

LBL Description

oa
g2
g6
a7
@8
9
19
11
12
13
14
15
16
17
18
19
20
21
22
23

Edit mode input loop
INS X

"TEXT?" prompt

"NEW TEXT?" prompt
"TARGET TEXT?" prompt
"NUMBER?" prompt

loop for VIEW L

ADD
BEG
CHA
DEL
INS L

"FILE NAME?" prompt
"NAME?" prompt for LBL A

| o B N

"OK" prompt

loop for LBL B

escape loop for LBL B
BACK n

GOTO A

POINT

LBL

24
25
26
31
32
33
34
35
41
42
43
44
51
61
71
81
83
84
99

-156-

Description

INS A

AHEAD n

error handler for deletion
BACK 1

DEL A

VIEW L

CHA A
AHEAD 1
ADD A
GOTO CHR
POS FL
DEL CHR
UP n

UP 1
DOWN 1
DOWN n
GOTO REC
exit edit mode

window display loop

ERROR SUMMARY

Function

ADD
BEG
CHA
DEL
INS
DEL
VIEW
INS L
GOTO
POINT
CHA A
ADD A

- N N N

GTO CHR

POSFL
DELCH

GTO REC
STOP/CONT

INS X

AHEAD n
AHEAD 1

BACK
BACK
UP n
DOWN
DOWN
UP 1

L

A

R

Ll

=

Meaning of ERROR message

Not enough room for new text

No error situations

Not enough room for new text

No error situations

Not enough room for new text

No error situations

No error situations

Not enough room for new text

No error situations

No error situations

Not enough room for new text

Not enough room for new text
New position exceeds text limits
No error situations

No error situations

New position exceeds text limits
No error situations

Nct enough room or illegal ASCII
New position exceeds text limits
New position exceeds text limits
No error situations

No error situations

No error situations

New position exceeds text limits
New position exceeds text limits

No error situations

-157-

code

"TE"™ Program listing

glelBL 31 39 JE@ 87 78 “HEW® {16 INT

82 1 E-2 49 DELREC 117 XEQ 89

a3 - 41 IHSREC 79¢LBL 85 118 +

84 x(8? 42 GT0 26 88 “F TEXT?" 119 RTH

85 CLX 81 AVIEW

86 RTH 43+1BL 32 82 CLA {28+ BL 82
44 ~0LD" 83 AON 121 %EQ 89

@7+LEL 35 43 ¥EQ 65 84 STOP 122 CLA

A% i E-2 46 POSFL 83 ROFF 123 XT0R

89 + 47 ¥(8? 86 RTH 124 F5? 25

1@ RTH 48 CLA 125 INSCHR
49 ALEHG 87eLBL 42 126 RIN

11elBL 71 58 DELCHR 88 INT 127 RTH

12 IHT 51 GTD 26 89 G670 25

131 128¢LBL 83

14 + S2eLBL 24 9@+LBL 44 129¢LBL @9

15 RTH 53 XEQ @7 91 XE@ 89 {38 ~NUMBER?"
54 IHSCHR 92 DELCHR 131 AVIEH

16¢LBL 61 55 RTH 93 G0 26 132 “RHI»?"

17 IHT 133 64

18 1 J6¢LBL 42 94¢LBL 51 134 X70A

19 - 578 95 INT 135 RN

28 A(n? 58 SEEKPT 96 XED 89 136 ~H456"

21 CL¥ 59 RBN 3 - 137 SF 81

22 RTH 68 XE0 68 98 X(a? 138 GETKEY
&1 POSFL 99 (LK 139 SF 82

23¢LBL 41 62 #(@? 188 RTH 148 GETKEY

24 ¥E6 W7 63 RIH 141 SF 83

25 RPPCHR - 64 RTH 181¢LBL 23 142 GETKEY

26 RTH 182 XE@ 49 143 CF @3
63¢LBL 22 183 1 £3 144 CF @2

274LBL 34 66 INT 184 7 145 CF 81

28 5F 1@ 67 xEG 88 195 + 146 POSA

29 XE@ 32 68 POSFL 186 ETH 147 RDH

38 5F 25 69 INT 148 POSA

31 GT0 24 78 XOY 187¢LBL 21 149 RDH
71 ¥=Y? 188 XEQ 83 156 POSA

32¢LBL 11 72 LASTY 189 1 E3 151 RDM

33 XER &7 73 RTH 118 7 152 CLA

34 APPREC i - 153 ARCL T

35 RCLPT 74¢LBL 88 112 ¥{8? 154 ARCL 7

36 INT 75 “TARGET" 113 INT 155 ARCL ¥

37 KTH 76 GT0 86 114 RTH 156 ANUK

157 %87
38¢LBL 13 77eLBL 87 115¢LBL 81 158 10 89

~158-

159 AVIER
168 RTH

1elelBL 14
162 DELREC
163 #EG 26
a4 RTN

1654LBL 15
166 XEQ 87
167 INSREC
168 RTK

169¢LBL 33
178 F$? 55
171 5F 21
172 INT

173 "LIKE *
174 ARCL ¥
175 AVIEM
176 SEEKPT

{77¢LBL 18
178 CLA

179 ARCL 48
188 ARCL @@
181 ARCLREC
182 ASHF
183 ASHF
184 AVIEW
185 FS? {7
186 GT0 18
187 LASTX
188 CF 21
189 RTH

198+LBL 23
191 ENTERT
192 INT

193 =LINE"
194 ARCL X
195 ~HCHAR®
196 LASTX
197 FRC

198 1 £3

199 =

268 ARLL %
281 AVIERW
282 RIN
283 RIM
284 ETH

ooy
I

205¢LBL
286 IKT
287 RN

2884LBL 26
289 RCLPT
218 5F 25
211 SEEKFT
212 FC2C 18
213 F52 25
214 ETH
215 INT
216 5F 25
217 SEEKPT
218 FL? 25
219 XEB 81
228 RTH

221+LBL 81
222+LBL 84
223 RCL 69
224 STOFLAG
223 670 18

2264LBL A
227 “LINES?”
228 PROMPT
229 “CHRAR?"
238 PROMPT
231 +

232
233
234
233

R |

236+LEL 17
237 “HAME?"
238 ACH

273

"PE" Program listing (continued)

235 CLD
248 5T0P
241 ROFF
242 5F 23
243 RCLPTR
244 F5? 25
245 G0 17
246 SF 25
247 CRFLAS
248 FL? 25
249 GTG A
258 GT0 18

2514iBL B
252 X4 16
233 .

254 SEEKPT
295 FLSIZE

26BeLBL 19
261 5F 23
262 GETREC
263 FLPC 23
264 GTO 79
265 ALERG
266 -

267 F8? 17
268 GT6 19
269 1

278 -

271 GT0 19

272¢LBL 2B iz
"CHAR LEFT="

274 RCLFLAG

275 FIX @

276 CF 29

277 ARCL Y

278 STOFLAG

279 RYIENW

288 RDH

281 ST0P
282 GTO 18

283¢LBL €
284 XEQ 18
285 SF 25
286 CLFL
287 FL? 25
288 GT0 €
289 G140 18

298¢LEL T
291 ¥EQ 16
292 5F 25
293 PURFL
294 FC? 25
295 670 B
296 GTO 12

297+LBL E
298 XEB 16
299 RCLFLAG
308 ST0 04
381 RIN
38z .

383 SEEKPT
384 FIX @
385 CF 29
386 CF 27
307 GT0 99

388+LBL G
389 XEQ 16
318 570 18

J11eLBL 16
“FILE HAHWE?"
313 AON

314 AVIEW
315 CLA

316 STOP

317 AOFF
318 SF 25
319 RCLPTA
328 FCC 25

-159-

321 GTO 16
322 SF 25
323 POSFL
324 FCIC 25
325 GT0 16
326 RTH

J27eLBL F
328 EMDIR
3297

336 *

331 “FREE="
332 ARCL X
333 PROWPT
334 GTO0 18

335¢LBL H
33 5
337 “PROBLEM KEY?"
338 AVIEW
339 ~DIRED DELCLRFRE"
348 ~HADDGTO"
341 GETKEY
Iz 23
343 B{=Y?
344 GT0 18
345 RIN
34o 18
347 -
348 47
349 +
358 18
351 HOD
392 -3
333 %
354 AROT
333 ASHF
356 ASHF
357 ASHF
358 AVIEK
339 GTO H

JeBeLBL “TE
361 5F 27
362 CF 21

363 CF 14
364 SI2E7
3651

366 X)?

367 PSIZE

368¢LBL 18
369 CF 25
378 CLST
371 0K"
372 PRONPT
373 GTO 18

374eiBL 99
373 RCLPT
376 SF 25
377 CLA

378 ARCL 98
379 ARCL ve
388 ARCLREC
381 ASHF
382 ASHF
383 SEEKPT
384 AVIEW
383 SF 25

JgbeLBL 08
387 SF 68
388 GETKEY
389 CF 88
398 RDN
391 XEQ INB T
392 SEEKPT
393 “ERROR™
394 FC? 25
395 AVIEH
396 GT0 99
397 END

893 BYTES

‘-

C ¢ C ¢

¢

CHAPTER NINE
AN HP-16 SIMULATOR PROGRAM

This chapter presents a program that simulates some of
the functions of the HP-16C calculator. Since the example
program performs base conversions, a little background on

number bases is in order.
A decimal number wxyz has the value
WXyZig = w'193+x'102+y°1@+z,

where w, %, y, and z are any digits from @ to 9. The sub-
script 10 indicates base 1¢. Hexadecimal (base 16) notation

works the same way. A hexadecimal number grst,. has the value
= g*163+r°162+g°
qrstyg = 9 16°+r°16“+s°16+t,

where g, ¥, s, and t are any hexadecimal digits from zero to
fifteen. Since there are no ordinary digits that correspond
to the numbers ten through fifteen, it is standard notation to
borrow them from the alphabet: Ajg = 16, Byg = 11, Cy¢ = 12,
Dig = 13, Ejg = 14, and F;¢ = 15. For example C5;¢ =
12°16+5 = 197, and FFg = 15°16+15 = 255,

These same principles apply to number bases other than 10
or 16. Each digit in the representation represents a coef-

ficient of a power of the base.

Base conversion is a frequent application of programmable
calculators. In fact, the HP-16C specializes in base conver-
sion and operations in base 2 (binary), base 8 (octal), base
19 (decimal), and base 16 (hexadecimal). Keys labeled A
through F are provided for easy entry of hexadecimal numbers.

-161-

A base 16 number can be entered in HEX mode, then converted to
decimal simply by pressing the DEC key. The calculator then
interprets all further entries as decimal numbers until the

mode is changed.

The program "HP-16" listed on page 164 simulates the base
conversion functions of the HP-lb. Just press

XEQ ALPHA H P shift - shift 1 shift 6 ALPHA
to execute the program, and the keyboard is redefined as shown
in the accompanying table. Keys that do not appear in the
table do nothing when pressed, because there is no correspond-

ing numeric label in the program.

"HP-16" GETKEY keyboard

row 1l: A B o D E

row 2: F HEX DEC OCT BIN

row 3: - X<OY STO RCL -—

row 4: ENTERT - - backspace
row 5: - 7 8 9

row 6: + 4 5 6

row 7: * 1 2 3

row 8: / ") -— quit

-162-

Although the program is somewhat sluggish, it is meant to
simulate an HP-16C with a two-level stack (X and Y registers
only). The mode is indicated by flag annunciators. Flag 1l
denotes hexadecimal, flag 2 decimal, flag 3 octal, and flag 4
binary. The flag ¢ annunciator, when lit, indicates that the
HP-41 is ready for you to press a key. When not lit, the flag
¥ annunciator indicates that a calculation is in progress.
When you press a key, the disappearence of the flag 6 annun-
ciator signifies that your input was recognized., Wait for the

flag ¢ annunciator to reappear before pressing another key.

A series of examples will make the operation of this
program more clear. First, execute "HP-16" to start the pro-
gram. The flag 1 annunciator signifies that you are in HEX
mode,

Press the "C" key (row 1, column 3). The flag # annun-
ciator disappears briefly, then it reappears and a "C" appears
in the display. Press the "2" key and "C2" will appear. If
you make a mistake, press the backarrow key and the rightmost
digit of the displayed number will be removed.

Now convert this number to base 8 by pressing the "OCT"
key (row 2, column 4)., After a short wait, the result "302"
will appear. The flag 3 annunciator indicates octal mode.

Let's add 7 to this number. This is done just the way
you would expect. Simply press 7, wait for the "I" to appear
in the display, then press +. The two numbers 302g and 7g
will be added and the octal result, 31llg, will appear in the
display.

You can convert this number to binary by pressing the BIN
key (row 2, column 5). This takes a little while because of
the number of digits that need to be decoded, but the result
is 110010061,. The flag 4 annunciator indicates binary mode.

To find the decimal equivalent, press the DEC key (row 2,
column 3). The flag 2 annunciator indicates decimal mode, and

the result 201 appears.

~-163-

#1eLBL "HP-16~
8z 2
03 KOOF
#4 16
@5 5706 4@
86 CL5T
a7 CLA
86 CF 21

@9¢LBL &5
18 RIM

11 AVIEM
12 SF 9@
13 GETKEY
14 CF o@
15 A=87
16 GT0 45
17 RN

18 5F 25
19 XEQ IND T
28 Rt

21 GT0 85

224/ BL 82
239
24 CTO 18

25¢LBL 72
26¢LBL 73
27¢LBL 74
28 Kkt
2871
38 -
31 GT0 18

32¢LBL 62
33¢LBL 63
J4elBL &4
35 Rt
36 58
37 -
38 GT0 18

29¢LBL 52

"HP-16" program listing

4BeLBL 53
414LBL 54
42 Rt

43 45

44 -

45¢LBL 14
46 43
47 GT0 86

48+LBL 11
49¢LBL 12
JReLBL 13
JieLBL 14
S2¢LBL 15
a3 Rt
M1

35 -

36 GT0 18

S7eLBL 21
38 13

J9¢LBL 18
68 53

61¢LBL 85
62 FS7C 83
63 GT0 18
6d KOV
63 +

66 FS? 47
67 GTO 8%
b3 8

69 XOY
78 CLA

71 SF &7

72eLBL &9
73 X100
74 ¥ L
73 ¥() o8
76 5Tx ¥
77 X o

=g

g+

9 RTH
8e+LBL 18
81 RN

82 SIGH

83 RN

84 FC? 85
85 RCL IND L
86 STO INB L
87 F57C B
88 KTH

89 GT0 #7

98¢LBL 44
91 RCL @4
92 7

93 INT

94 |

95 CHS

96 AROY
97 RDH

98 ATOY
99 RIN
188 RTH

181+LBL 81
1824LBL 84
1e3 8

184 XOOF
185 RIN
186 CF 25
187 CLD
188 ST0P
189 RTH

118elBL 22
112
112 16
113 670 18

114eLBL 23

115 4
116 18

-164-

117 670 18

118¢iBL 24
119 3

128 EHTERt
121 670 18

122¢LBL 25
122 16
124 2

125+LBL 18
126 570 @8
127 RIK
128 XOF
129 RIN

138¢LBL &7
131 CF &7
132 CLA

133 EHTERt

1344LBL 82
135 EHTERt
136 £ 98
137 517 08
138 HOD
138 9

148 5T- Y
141 KBH
142 7

143 XY
144 ¥387
145 57+ ¥
146 (=87
147 X{¥Y
148 RDN
149 57

158 ST+ Y
151 RDN
152 ¥70A
133 20 L
154 X a8
155 1

136 CHS
157 AROT
158 RIN
139 INT
168 %387
161 GTO 83
162 RIM
163 KTH

164+LBL 41
163 ENTERt
166 CF &7
167 RTH

168¢LBL 32
169 1Y
178 610 97

171+LBL 51
172 CHE

173¢LBL &1
174 X0V
175 5T+ ¥
176 BOY
177 ABS
178 GT0 &7

179¢LBL 81
186 172

181+LBL 71
182 ¥{3Y
183 5T+ ¥
184 ¥OY
185 INT
186 GTO &7

187¢LBL 33
188 SF &6

189¢LBL 34
198 5F 85
191 END

297 BYTES

c ¢ C ¢

‘

(

Press the X<>Y key (row 3, column 2, not row 2, column 1)
and you will see that the number C2i¢ = 194 was duplicated
into the Y register when the 7 was added. This automatic
duplication is similar to the way the T register duplicates
itself when an operation like addition is performed normally.

The ENTERT key also works as expected, duplicating X into
Y and terminating digit entry.

The "HP-16" program allows you to store and recall num-
bers from data registers @1 to 15. You simply press the STO
or RCL key, wait for the flag @ annunciator to reappear, and
press a key from 1 to 9 or A to F to designate the register.
Do not store anything in register #, because that register is
reserved for holding the number base. The availability of STO
and RCL operations alleviates the limitations of a two-level
stack. The RCL operation does raise the stack, so you do not
need to ENTER] before doing a RCL.

When you are done using the program, just press the R/S
key or the ON key to quit and clear the flags. The X and Y
register contents will still be in X and Y as decimal numbers,

regardless of what mode you were in when you pressed R/S.

The "HP-16" program is an example of how completely you
can change the personality of your HP-41 with just the GETKEY
function and a program of moderate size. If you have an ap-
plication that needs this degree of user convenience, GETKEY

may be just what you need.

Line-by-line analysis of "HP-16"

The "HP-16" program is composed of many small pieces,
each of which obeys a few basic rules. First, the number base
is held in data register ¢@. The steps 16, STO 0@ at the top
of the program have the effect of setting hexadecimal (base
16) mode. The program's "X" and "Y" register contents are
held in the stack, in X and Y both before and after the XEQ

IND T instruction (line 16). Numbers in the stack are always

-165~

in decimal. The displayed number is actually a string in the
ALPHA register. If the number being displayed changes other
than by addition or removal of a digit, the LBL @7 subroutine
is called to reconstruct the ALPHA representation from the
decimal number in X. LBL 1% is used repeatedly for short
forward (downward) jumps. A label number can only be re-used
this way if none of the jumps cross each other.

The LBL @65 loop is the main loop of this program. It
uses GETKEY to read the keyboard, then it sets flag @ and
executes the proper subroutine for the key that was pressed.
Flag ¥ is then cleared, the new contents of ALPHA are dis-
played, and another GETKEY is attempted. Flag 25 is set to
avoid error stops when an invalid key is pressed accidentally.
Incidentally, clearing flag 21 at line 08 prevents the pres-
ence of a turned-off printer from halting the program at the
AVIEW instruction. If you want printout, delete the CF 21
instruction,

Digit entries are handled by placing the decimal value in
Y, and the ASCII offset from that value in X. For example,
when you press "C" (key 13), the value 12 is placed in Y, and
55 in X, For the letters A through F, the ASCII code is 55
plus the arithmetic value of 10 to 15. The LBL 66 sequence
appends the correct ASCII character to ALPHA. Flag @7 indi-
cates that a digit entry is in progress. If a digit is
pressed when a digit entry was not already in progress, the
stack will be raised. This is accomplished by the sequence 4@,
X<>Y, CLA. This sequence is bypassed by the GTO #9 instruc-
tion if a digit entry was in progress. The LBL #9 sequence
then updates the decimal number in X by multiplying by the
base (lines 75 and 76) and adding the value of the new digit
(lines 77 and 78).

If the digit is pressed as part of a STO or RCL, flag 5
will be set and the LBL 10 section at line 80 performs the
necessary operation (STO if flag 6 is set, RCL if flag 6 is
clear). For RCL operations, the LBL @#7 sequence is used to

-166-

reconstruct an ALPHA string corresponding to the new X regis-
ter.

The LBL 44 routine simply divides the current X register
contents by the number base, effectively performing a single-
digit shift, then it removes the rightmost character from
ALPHA.

The termination sequence (LBL ¢1 or LBL 84) uses X<>F to
clear flags @ to 7, then it clears the previously AVIEWed
display before stopping. You can restart by pressing R/S
again, but the number base will not show in the flag annuncia-
tors until you press a number base mode key.

The mode selection labels, 22 through 25, put a number in
Y corresponding to the flag to be set, and a number in X
corresponding to the new base. The base is then stored in
register 89, and the X<>F function is used to set the proper
flag and clear any others.,

Once the base has been changed, the ALPHA register needs
to be updated to agree. The LBL #7 sequence does this. After
ALPHA is cleared, the digits are computed and placed in ALPHA,
working from right to left. The ENTERT immediately preceding
LBL 08 serves to keep a copy of the number being encoded.
This is necessary because the ALPHA encoding destroys the
number in X.

Near the top of the LBL ¢8 loop, the MOD function gives
the arithmetic value of the current digit. The next 13 lines
convert this arithmetic value to an ASCII equivalent, then an
XTOA function creates the character. The AROT function ro-
tates the new character to the front of the string. The
current decimal value is divided by the base (this was the
reason for the earlier ST/ 68 instruction), and the integer
part is taken. This procedure effects the arithmetic equi-
valent of a one-digit shift. If the result is still not zero,
more digits remain to be decoded, and the LBL ¥8 sequence is

performed again.

-167-

The ENTER] sequence, LBL 41, simply pushes a zero onto
the stack and clears the ALPHA register in preparation for
digit entry. The X<>Y sequence, LBL 32, interchanges X and Y
and goes to the LBL #7 sequence to reconstruct ALPHA. The -,
+, /, and * sequences also branch to LBL ¢7 for ALPHA recon-
struction. The two X<>Y instructions and the ST+Y or ST*Y
allow the previous value of Y to remain unchanged in Y. Since
the LBL 67 routine cannot handle negative numbers or noninteg-
ral numbers, INT is used after division and ABS after subtrac-
tion.

The STO and RCL sequences both set flag 5. That flag is
used to indicate that the next digit entry is really a regis-
ter number. Flag 6 is used to determine whether a STO or RCL
is to be performed.

I hope this example convinces you of the tremendous power
of GETKEY. Your applications may be simpler or more complex,
but the same principles apply.

-168-

CHAPTER TEN
SYNTHETIC PROGRAMMING

1¢0A. What is Synthetic Programming?

Synthetic instructions are those which cannot be entered
from the keyboard by normal means. The creation and use of
synthetic instructions is called synthetic programming. Thou-
sands of synthetic instructions can be created, ranging from
non-standard TONEs to powerful instructions that access system
scratch registers. Synthetic programming will not harm your
HP-41 in any way, although "crashes" (temporary keyboard lock-
up and/or MEMORY LOST) can occur if you are experimenting in
unfamiliar territory. Refer to section K of this chapter for
tips on how to recognize and recover from a "crash" condition.

Synthetic programming will work on all calculators in the
HP-41 family, regardless of date of manufacture. It depends
only on fundamental aspects of the calculator's internal oper-

ating system that are common to all HP-41's.

The programs presented in this chapter use synthetic
techniques to get into areas of memory that are not normally
accessible. These include the registers that hold key assign-

ment information and header registers in extended memory.

Since some of the instructions are not directly keyable,
barcode is provided in Appendix D. If you do not have access
to a wand, SYNTHETIX can provide you with magnetic cards for
any or all of the programs in this book. The charge is $4.00
(USA) or S5.60 (elsewhere), plus $1.60 per magnetic card. To
find out how many magnetic cards will be needed for each
program you want, divide its byte count by 224 and round any
fractional part up to the next integer. Mail your order to

SYNTHETIX at the address on the top of the next page.

-169-~

SYNTHETIX

P.0. Box 113
Manhattan Beach
CA 90266 Usa

Checks must be payable through a US bank. Cash is also ac-

ceptable if you find it more convenient, but you should wrap
it well, ‘

Another alternative is to learn enough about synthetic
programming so that you can key these programs in yourself.
The easiest way to get started with synthetic programming is
to buy a copy of the book "HP-41 Synthetic Programming Made
Easy". If your dealer does not sell this book, it is availa-
ble by mail from SYNTHETIX at the above address. See Appendix
C for price information,

If you like to program your HP-41, you really should
learn about synthetic programming. It is almost like finding

a brand-new machine, hidden inside your familiar HP-41.

I hope you enjoy the programs presented in this chapter.
If you are an experienced synthetic programmer, you will
appreciate their power and versatility. If you are a novice,
they offer a glimpse of the capabilities of synthetic program-
ming.

10B. Single-key execution of extended functions

The program presented in this section allows you to
execute any function from the set of extended functions,
simply by specifying a numeric code for the function. This
program was written by Clifford Stern, a “"grand master" of
synthetic programming. Clifford specializes in keystroke-

efficient utility routines and intricate synthetic programs.

-170-

It is a simple matter to use the built-in ASN function to
assign several of the commonly used extended functions to
keys. You have probably already assigned EMDIR, the extended
memory directory function, to a convenient USER mode key.
Perhaps you have also assigned SAVEP and GETP., Or, if you
have used data files, you may have assigned RCLPT, SEEKPT,
SAVERX, and GETRX to keys. These key assignments are handy,
but they can quickly use up a significant portion of your USER
mode keyboard.

How would you like to be able to assign all the extended
functions to a single key? Impossible? Not with synthetic
programming! All you need is a copy of the "XF" (eXtended
Functions) program.

To execute any extended function, just put the numeric
code of the function in X, and execute WXF", The numeric
codes are listed in front of each function name in the table
on the next page. A short digression should make the numeric
code equivalence more clear.

If you key in program lines using extended functions
while the Extended Functions module is connected, the display

XEQTfunction name
will change to

XROMTfunction name .
If you later remove the XFunctions module, the program lines
will be displayed and printed as

XROM 25,xx .
The designation XROM indicates that the function resides in an
eXternal Read-Only Memory. The number 25 identifies the Ex-
tended Functions module. The two-digit number xx identifies
the specific function within the module. This is the same
two-digit function code that the "XF" program uses.

Incidentally, as the table on the next page shows, "XF"
also allows you to execute Time module (XROM 26) and optical
wand (XROM 27) functions. 1Inputs 49-62 and 95-99 are only
valid for the HP-41CX.

-171-

Numeric function codes for "XFP®™

(XROM numbers are also included for reference)

-EXT FCH 2C
ALENG
AHUM
RPPCHR
APPREC
ARCLREC
AROT
ATox
CLFL
CLKEYS
CRFLRS
CRFLD
DELCHR
DELREC
EMDIR
FLSIZE
GETRS
GETKEY
GETP
GETR
GETREC
GETRX
GETSUB
GETX
INSCHR
INSREC
PASH
PLLPS
POsA
POSFL
PSIZE
PURFL
RCLFLAG
RCLFT
RCLPTA
REGMOYE
REGSKAP
SAYERS
SAVEP
SAYER
SAYERX
SAVEY
SEEKPT
SEEKPTR
SI1ZE?
STOFLAG
XOF
X108

25,81
25,82
25,83
25,84
25,85
23,86
25.87
25,88
25,89
25,16
23,11
29,12
23,13
2514
23,13
23,16
25. 17
25.18
2319
25,20
25,21
25,22
23,23
29,24
25.:23
23,26
25,27
25,28
23,29
25.38
25,31
25,32
23,33
25,34
25,33
23,36
25,37
23,38
25,39
23,48
253,41
25,42
2343
23,44
25,45
25.:46
25,47

~% EXT FCN
ASROON
CLRGX
ED
ENDIRX
ENROOM
GETKEYX
RESZFL
IREG?
X=NN?
X#HH?
X{NN?
R{=NH?
XOHN?
Z)=HH?

-TIRE 2B
ADATE
ALMCRT
ALMNON
ATIME
ATINEZ24
CLK12
CLK24
CLKT
CLKTD
CLOCK
CORRECT
DATE
DATE+
BIAYS
DY

DO

MBY
RCLAF
RCLSH
RUNSH
SETAF
SETDATE
SETINE
SETSHW
STOPSH
SH

T+
TIME
XYZALN

-172-

25,49
25,358
25,51
25,52
23,93
253,34
25.59
25,56
23,57
235,58
25,59
25,68
25.61
25:62

26.81
26,82
26,83
26,84
260,85
26,86
25,87
26,88
26,89
26,18
26,11
26,12
26,13
26,14
26,13
26:16
26,17
26,18
26,19
26,28
26,21
26,22
26,23
26,24
26,23
26,26
26,27
26,28
26,29

125
138
131
132
133
134

-% TINE

CLALMR 26,31
CLALMY 26,32
CLRALMS 26.33
RCLALN 26,34
SHPT 26.35

- NAND IF -

HHDDTR 27.81
HHDDTX 27,82
WHDLNK 27,83
WHDSUB 27,84
WHDSCH 27,83
THNDTST 27,86

e

C ¢ 7

(

"XF" program listing

Bi+LBL “¥F" i@ RDH 19 847 a 28 5T ¢
B2 R 11 ATOH 2B RCL 29 %y L
83 SIGH 12 RIN 21 5T0 IHD 38 SAVEP
84 X~ 13 581 22 %0 1 31 CLD
85 5370 2 14 SiZE7 23 CLA 32 END
a6 KON 15 5T- ¥ 24 XG L
87 64 16 RIH 25 RIK 74 BYTES
a8 ST+ ¥ 17 2 26 B N

B9 Feexisbeust T 18D 27 %> a

Barcode for "XF" can be found in Appendix D.

Synthetic lines and their decimal byte equivalents:
line 04 = 206, 118 ; line ¢5 = 145, 123

line 09 = 254, 127, ¢, ¢, 1, 1¢5, @, 18, @, 123, 145, 125,
2¢6, 116, 166

line 17 = 206, 118 ; line 18 = 2¢6, 125 ; line 19 = 206, 123

line 20 = 144, 117 ; line 21 = 145, 246 ; line 22 = 206, 119

line 24 = 206, 117 ; line 26 = 206, 118 ; line 27 = 206, 123

line 28 145, 125
(Use this information if you are keying in the program using a
byte-loader, byte-grabber, or any other synthetic technique.)

Setting up "XF":

The "XF" program must be the first program in Catalog 1.
This means that you must clear all other programs from main
memory before loading in "XF". You can use SAVEP to copy some

of the programs into extended memory, or you can use magnetic

card or tape storage. To clear out program memory, just load
the ALPHA register with the name of the first program in main
memory {(Catalog 1) and execute PCLPS.

Next load the "XF" program into your calculator using the
barcode, magnetic cards, or using synthetic programming tech-
niques described in Chapter 3 of "HP-41 Synthetic Programming
Made Easy".

-173-

If you have an HP-41C, you may need to change line 13.
This number, normally 501, should be 263+64n, where n is the
number of single-density memory modules plugged in. This
refers to main memory modules, not extended memory modules.
For example, if you are using two single-density memory mod-
ules, line 13 should be 373, If you have a quad memory mod-
ule, which is the equivalent of 4 single-density modules, the
number 501 is correct. WARNING: Failure to put the right
number in line 13 can result in MEMORY LOST. If you unplug a
main memory module without changing this number, you are just
one keystroke away from disaster. Of course it is OK to

unplug extended memory modules.

For maximum convenience, assign "XF" to your favorite

key. To do this, press
shift ASN ALPHA X F ALPHA

followed by the key (or "shift" followed by the key for a
shifted location) to which you want "XF" assigned. You should
probably avoid assigning "XF" (or any other function) to a
digit entry key or to the XEQ key. If you have the SIZE
function assigned to a key, you can use that key for "XF".
With "XF", you can conveniently resize by keying in the de-
sired size, ENTERT, 30 (the numeric code for PSIZE), and
executing "XF".

"XF" is a self-modifying program which works by con-
structing and storing a short instruction sequence containing
the requested extended function (line 3¢) in the first program
in memory. The first program will be changed, regardless of
whether it is "XF" or not. If "XF" is the first program, as
it should be, the stored sequence of instruction will fit
right in, so only the extended function (line 3¢) will change.
Line 31, CLD, can be deleted if you have an HP-41CX. 1Its
purpose is to clear the display after EMDIR.

-174-

WARNING: Do not change the "XF" program unless you make sure
that you keep the same number of bytes between the top of the
program and line 3. If you change this byte count, the

stored instruction sequence will end up in the wrong place.

"XF" is an example of the power of synthetic programming.
Self-modifying programs are usually rather complicated, but
this shows how a simple one can do a job that cannot be

reasonably done without synthetic programming.

Example 1 for "XF":

The most frequently used extended memory function is
probably the extended memory directory function, EMDIR. The
table of "XF" inputs shows that the corresponding numeric code
is 14. So if you press

14
XEQ "XF" (just press the assigned key)

the extended memory directory will be displayed.

Instructions for using "XF"

1. Make sure that "XF" is the first program in main memory
by executing Catalog 1. The first thing you should see
is LBLTXF. You do not need to check Catalog 1 every
time, but you should be certain that "YXF" is at the top

of it,

2. Load the X, ¥, 2, and ALPHA registers with whatever
contents they will need at the time the function is
executed. The string in ALPHA is limited to 14 charac-
ters. If more characters are put in ALPHA, only the
rightmost 14 will be used and the rest of the characters
will be lost.

3. Press ENTERT and put the numeric code of the function in
X. The numbers that were in X, Y, and Z are now in Y, 2,
and T. Do not use code zero. Code zero has no effect on
the HP-41CX, but on the HP-41lC or CV it will destroy all

-175-

global label assignments, leaving only "phantom" assign-
ments that act like the ABS function.

4. Press the assigned key to execute "XF". The designated
function will be executed. "XF" actually builds a se-
quence of bytes in the ALPHA register, transfers the
sequence into lines 27-36 and then executes the sequence.
If you interrupt "XF" and do not restart it immediately,
you run a risk of MEMORY LOST. Some safeguards have been
'provided, but if you stop between lines 18 and 28 and you
do not allow "XF" to finish normally, MEMORY LOST can
eventually result.

5. When the function is complete, the "flying goose" will
disappear. If an error occurs, you will see the corres-
ponding error message. For example if you use "XF" to
execute GETX (function number 23) when the working file
is not a data file, you will get the message FL TYPE ERR.

6. By checking line 38 of "XF" (GTO."XF" and GTO .#36), you
can find out what extended function was last executed

using "XF". This can be quite helpful.

The "XF" program eliminates the need for key assignments of
extended functions to the extent that you use these functions
in RUN (non-PRGM) mode. If you are keying in a long program
that uses extended functions, you may still want to temporar-
ily assign a few of the more frequently encountered functions
to your USER mode keys.

Two cautions apply to "XF". First, do not use "XF" to
execute PCLPS (function number 27) with the ALPHA register
empty. This will clear all main memory programs, including
"XF" itself. Unless this is the result you want, you should
name a program before executing PCLPS. For example, if you
want to clear all programs except "XF", put the name of the

second Catalog 1 program in ALPHA, put 27 in X, and execute
“XF" .

-176-

The second caution is not to call "XF" from a second-
level or deeper subroutine. That is, "XF" must not be called
when two or more RTNs are already pending. The "XF" program
clears operating system register a, which holds the informa-
tion used for third- through sixth-level RTNs.

An alternative version of "XF", also written by Clifford
Stern, saves a couple of keystrokes over.“XF“. This version,
called "EFTW" (extended functions / time module / wand) pauses
in ALPHA mode for an entry of up to 7 characters. The opera-
ting instructions are otherwise the same as for “XF". Line 14
must be 246+64n, where n is the number of single-density
memory modules present. Additionally, XYZALM (function number
93) cannot be used where a nonzero Z input is needed, because

the Z register is changed to zero by the time XYZALM is exe-

cuted.,
"EFTW® program listing

@1¢LBL “EFTE" 89 64 17 R 25 570 ¢
a2 ROL T 18+ 18 ¥{7 ¢ 26 RIN
83 CLA {1 “Feexiebouury - {19RCL L 27 SAVEF
B4 570 { 12 T0R 20 STO IND ~ 28 CLD
85 AN 13 L% 21 ¥ 1 29 END
@6 PSE 14 582 22 CLA
#7 ROFF 15 SIZE? BRI 67 BYTES
88 L 16 - 24 RIH

Barcode for "EFTW" can be found in Appendix D.

Synthetic lines and their decimal byte equivalents:
line @2 = 144, 117 ; line @4 = 145, 117
line 11 = 254, 127, ¢, ¢, 1, 1¢5, ¢, 18, &, 117, 117, 145,
125, 117, 166

line 17 = 206, 118 ; line 18 = 286, 125 ; line 19 = 144, 117
line 20 = 145, 246 ; line 21 = 206, 119 ; line 23 = 206, 117
line 25 = 145, 125

-177~

16C. The internal structure of extended memory

This section outlines the general arrangement of files in
extended memory, showing what areas are affected by the card
reader's VER and 7CLREG functions. Then, for advanced syn-
thetic programmers, the details of file header structure and
ways to avoid data normalization (see page 25 of "HP-41 Syn-

thetic Programming Made Easy") are covered.

Extended memory is made up of one, two, or three blocks
of registers, depending on whether zero, one, or two extended
memory modules are plugged in. The Extended Functions/Memory
module contains 128 registers, while each Extended Memory
module contains 239 registers. The advertised sizes of these
modules are 127 and 238, respectively, because the last regis-
ter in each module is reserved. This last register contains a
pointer to the beginning of the next module and another point-
er to the end of the previous module. These pointers are
needed for proper file linkage because the order in which
extended memory modules are used can vary if the two modules
are not installed at the same time.

Figure 1¢.1 on the next page shows the organization of
extended memory in more detail, with absolute register ad-
dresses given for those adventurous enough to poke around.

Within the unreserved areas of extended memory, files are
stored in the same order in which they appear in the extended
memory directory. Each file has two header registers, as
shown in Figure 2.1. A special partition code (hexadecimal
FF,FF,FF,FF,FF,FF,FF for synthetic programmers) is stored just
below the last register of the last file. This code separates
used from unused portions of extended memory. It tells the
calculator that the rest of extended memory is available for
new files.

When you start with an empty extended memory directory,
the partition code is at the top of the extended functions/-
memory module. The first file you create will occupy the top-

-178-

ABSOLUTE
REGISTER ADDRESS

HEX DECIMAL

OBF 191
X FUNCTION/
MEMORY
041 65
040 64 POINTERS
26F 751
X MEMORY
PORT 10R3
THE CARD READER'S
202 514 7CLREG FUNCTION
POINTERS MAY ALTER
201 513 T REGISTERS 613-537
THE CARD READER'S
3EF 1007 } VER FUNCTION
MAY ALTER
REGISTER 1007
X MEMORY
PORT 2 OR4
302 770
301 769 POINTERS

Figure 10.1 Overall Structure of Extended Memory.

-179-

most registers of the Extended Functions/Memory module, and
will move the partition code down. As you create files, new
files will always be added just below the last file, and the
partition code will be moved down.

Eventually you will use up all 127 available registers in
the first block of extended memory. When this happens, the
file will spill over into an Extended Memory module. Usually
the Extended Memory module in port 1 or 3 will be used before
the module in port 2 or 4. The only exceptions are:

1) if there is no Extended Memory module in port 1 or 3,

or

2) if the module in port 2 or 4 was partially filled

before the other module was installed.
After MEMORY LOST, the natural order of use (port 1 or 3
first) will be restored.

Detailed structure of header and pointer registers:

Each file header consists of two registers at the top of
the file. The first of these registers contains the file
name, up to 7 characters. If the file name is fewer than 7
characters, spaces (hexadecimal 28) are added on the right to
fill the 7 bytes of the register.

The second file header register contains several pieces
of information about the file. The structure will be de-
scribed here in terms of nibbles, which are hexadecimal dig-
its. Two nibbles make one byte; seven bytes make one regis-
ter. The leftmost nibble of the second file header register
indicates the file type. This nibble is 1 for program files,
2 for data files, and 3 for ASCII files.

For program files, the 14 nibbles of this register are:

1¢,00,00,09,BB,BS,SS ,
where BBB is number of bytes in the saved program (including
the END) and SSS is the FLSIZE, in registers. Both of these
numbers are in hexadecimal, not decimal. A program in an
extended memory file has the same form as a program in main

-180-

memory, including the END. The END is followed by a single
checksum byte that contains the modulo 256 sum of all the
bytes in the program. This represents a single byte of "“over-
head" in addition to the two program file header registers.
Thus if a program's byte count is 49 bytes (7 registers), an
8-register file will be created by SAVEP because a 5@th check-
sum byte must be included.
For data files, the second header register is:
2A,AA,00,00,RR,RS,SS ,
where AAA is the absolute address of this second header regis-
ter, RRR is the register pointer, and S§5S is the file size.
Registers are numbered 4, 1, 2, etc., starting with the regis-
ter immediately below the second header register.
For ASCII files, the second header register is
3A,AA,90,CC,RR,RS,SS ,
where CC is the character pointer, RRR is the record pointer,

and AAA and SSS are the same as for data files.

The pointer registers at the bottom of each block of

extended memory contain these 14 nibbles:
9%,0W,WP,PP,NN,NT,TT ,

where WW is the number of the working file (@1 and up), PPP is
the absolute address of the bottom register of the previous
block of extended memory, NNN is the address of the top regis-
ter of the next block, and TTT is the address of the top
register of this block. The WW field is used only in the
Extended Functions/Memory module. The PPP field is not used
in the Extended Functions/Memory module, but in the HP-41CX it
indicates the previous working file. The NNN field is not
used in the second Extended Memory module. All these pointer
registers are initialized when a file is created that occupies
part of the module in question. 1If an extended memory-related
function has been used, but no files have been created yet,
the TTT field will contain the address of the pointer register
itself.

-181-

The nibbles of the header or pointer registers that are
unused do not have to be zero. For example, it is often
convenient for a synthetic program to change the first nibble
of a pointer register to 1, so that the register can be re-
called as ALPHA data.

This brings up the subject of normalization. If a num-

bered register contains a bit pattern that does not represent
a number and which the HP-41 does not recognize as ALPHA data,
the register contents may be altered when the register is
recalled. This point is discussed further on page 25 of "HP-
41 Synthetic Programming Made Easy". Operations that normal-
ize the contents of a numbered register include RCL, ARCL,
X<>, VIEW, and any INDirect operation.

Among the extended functions, several of the SAVE and GET
operations can transfer data without normalization. This
makes possible many advanced synthetic programming applica-
tions, including some of the programs in this chapter. GETX,
SAVEX, GETR, SAVER, and GETRX do not normalize data at all.
The SAVERX and REGSWAP functions normalize both upper and
lower extremes of the data register block used. The REGMOVE
operation normalizes only the topmost data register used.

When a file is purged from extended memory, all files
below that file in extended memory are moved up to f£ill the
space left by the purged file. If the file was the last one
in extended memory, no files are moved. The partition code is
then stored just below the last remaining file. The registers
beyond this point are not cleared. They retain the same
contents they had before PURFL was executed, but they are no

longer accessible except through synthetic techniques.

All of these details are of interest primarily to ad-
vanced synthetic programmers, but they illustrate the number
and variety of pointers that the calculator must maintain to
keep things simple for the user of extended memory.

-182-

o

10D. A solution to the VERify "bug"
The program "VER" (verify) presented here takes the place

of the card reader's built-in VER function, while ensuring
that extended memory is not damaged. This is another master-
piece by Clifford Stern. Unless your card reader is very new
(revision 1G or higher) or unless you do not have an Extended
Memory module in port 2 or port 4, you need this program. The
revision of your extended functions is irrelevant here.

Two versions of the "VER"™ program are provided in barcode
in Appendix D. Normally you should use the first version.
The second version is only to be used in two cases:

1) If you have a single Extended Memory module in port 2 or

4 with no Extended Memory module in port 1 or 3, or

2) If an Extended Memory module was plugged into port 1 or 3
after a module in port 2 or 4 was partially filled, and

MEMORY LOST has not occurred since then. If you plugged

in both modules at the same time, the first version is

the one to use.

I1f you have only the Extended Functions/Memory module (or an
HP-41CX) and no extended memory modules, or if you have only
one Extended Memory module which is plugged into port 1 or
port 3, you can use the card reader's built-in VER function.
If you plan to add more extended memory, though, you might

want to get into the habit of using the "VER" program.

WARNING: Before you use either version of "VER", make sure
that either:
1) There is at least one key assignment which is not a
global label assignment, or
2) There are no Time module alarms set and there is at least
one free program register. To check the number of free
program registers, press GTO .080 and look for the @8 REG
nn display in PRGM mode. The number nn is the number of

free program registers.

-183-

Neither of these conditions is difficult to ensure, and either

one will ensure that "VER" will work properly.

To use "VER", press
XEQ ALPHA V E R ALPHA
and the prompt
CARD
will appear. At the same time, you will see the ALPHA mode
annunciator., If the ALPHA annunciator is not on, the "VER"
program is not present and you have accidentally executed the
built-in VER function. In that case, do not insert any cards!
After you have verified the last card, press R/S or
backarrow to clear the display of the CARD prompt. You will
then see the message
PRESS R/S .
WARNING: Be sure to press R/S to restart the "VER" program.

If you do not restart the program, the damage caused by VER
will not be repaired. Even worse, important system pointers
will be disrupted, probably causing keyboard lockup and MEMORY
LOST. This is a common feature of this type of synthetic
program. It is powerful and useful but quite unforgiving if
you do not use it properly.

Cautions:

1) If you do not take your finger off the R/S key quickly
enough, the calculator will pause several seconds or more
while it tries to compute a line number. During this
pause, the "PRESS R/S" message will remain in the dis-
play, and the PRGM annunciator will be off, just as if
nothing is happening. Do not be fooled, and do not press
R/S again. The program will restart itself. When the
program finishes you will probably see some starbursts
and other non-standard characters in the display.

2) "VER" cannot be called from a depth of more than one
subroutine level (that is, when more than one RTN is

pending) .

-184-

"VER" program listing

@1eLBL ~VER® 11 REGMOYE 21 5T0 IND 2 21 AOFF 41 DSE 18
@z OF 25 12 *pe- 22 DSE 18 32 R 42 STO IND 18
82 RCLFLAG 13 191 23 570 IND 18 33 SEEKPT 43 Bt
B4 "xitprefedE 14 570 18 24 RY 34 RDM 44 ST0 12

85 A0 N 15 Rt 25 RCL © I5 SAVEY 45 EHD

86 ENTERt 16 570 @ 26 ROLPT 36 A0

87 K> ¢ 17 “heeed = 27 GETH 37 STO IND 18 112 BYTES
88 RCL 84 18 %43 1 28 "PRESS R/S" 38 LASTY

89 8¢, " 19 STO IND ¥ 29 AOM 39 %=1?

18 RSTO 63 28 % [30 VER 48 570 63

Barcode for "VER" is given in Appendix D.

Synthetic lines and their decimal equivalents (version 1):
line 04 252, 1, 1¢5, @, 19, 24¢, 1, 137, @, 48, 3, &, 2
line 65 = 206, 118 ; line @7 = 286, 125
line 99 = 245, 16, 0, 46, 240, 191
line 17 = 247, 127, ¢, ¢, ¢, 22, 191, 255
line 18 = 2066, 119 ; line 20 = 206, 117
line 25 = 144, 118 ; line 30 167, 133 (not synthetic)

Version 2 differences:
line 09 245, 16, @, 62, 249, 191
line 17 247, 127, ¢, ¢, 9, 7, 223, 255

The concept used in the "VER" program is simple. The
goal of the program is to recall location 1807 (see the ex-
tended memory map on page 179), execute the card reader's VER
function, then restore location 1007. Lines #2 and #3 force
an error stop if extended functions are not present. You may
delete these lines if you will be using "VER" with an HP-41CX.

So that GETX can be used to recall location 1087, "VER"
temporarily alters the second header register of the top file
to simulate a 4095-register data file. This powerful tech-
nique, invented by Clifford Stern, allows all of extended
memory to be accessed, without normalization, by SAVEX and

-185-

GETX. The REGMOVE function (line 11) saves the two header
registers of the original top file so that they can be re-
stored before the program finishes.

Contrary to appearances, registers 64, 06, 10, and 63 are
not affected by "VER". Due to the program's manipulation of
the operating system's pointer to register 01, the instruc-
tions like DSE 16 and STO @6 actually access internal oper-
ating system registers., The ASTO 63 function alters the
bottom pointer register of the Extended Functions/Memory mod-

ule in order to set the working file pointer to 01l.

-186-

13E. A solution to the PURFL bug

The "PFF" (purge file fix) program presented here is
provided especially for owners of revision 1B Extended Func-
tions/Memory modules. It allows you to recover from an inad-
vertent use of a working file function when no working file
exists. This situation can occur after a PURFL is executed,
as explained on page 19. What actually occurs is that the top
register of extended memory is overwritten by the partition
code, which was mentioned in Section C of this chapter. This
erroneous partition code tells the HP-41 that extended memory
is empty.

The solution is simple. The "PFF" program just replaces
the file name that belongs in the top register of extended
memory, location 191 (decimal) on Figure 18.1 (page 179).
Since no other extended memory registers are disturbed by the
"bug", no further action is needed to restore the extended
memory directory.

The "PFF" program that achieves this result was written
by Clifford Stern. It uses synthetic techniques, since the
affected register is not a normally accessible data register.

Because the PURFL bug is present only in the revision 1B
Extended Functions/Memory module, owners of revision 1C or the

HP-41CX can skip this section.

Instructions for "“PFF":

1. First verify that your extended memory directory is in-
deed empty. If you did not empty it intentionally, and
MEMORY LOST has not occurred, then you know that the top
register of extended memory has been changed. The "PFE"
program will then repair the damage, provided that you
have not created any new files in extended memory. Once
you create a new file, old files are overwritten and the
damage cannot be fixed,

2. Put the name of the first extended memory file, up to
seven characters, in the ALPHA register.

-187-

Note: 1If you do not remember the name, any string will
do. For example, you could name it "TOP". Then, after
"PFF" re-establishes your extended memory directory, you
can GET the "TOP"™ file, check its contents to establish
its identity, then use "PFF" again to give it the correct
name.

Execute "PFF". The program finishes with an EMDIR in-
struction, both to establish a working file and to show
you exactly what extended memory files were recovered.
You may interrupt the extended memory directory if you
like.

WARNING: "PFF" may be single-~-stepped, but never abandon "PFF"
between lines 08 and 12, or MEMORY LOST will probably ensue.

Under normal operation, "PFF" should be trouble-free.

"PFF" program listing

BleLBL “PFF-
B2kt
837 Line 62 is
ggggz: "Append 6 spaces"
86 RCL I
lz' 'n
a?ﬁmél Barcode for “PFF"

29 570 84 can be found
18 XY . .

i1 570 ¢ in Appendix D.
12 CLST

13 EMDIR

14 CLD

15 END

41 BYTES

Synthetic lines and their decimal byte equivalents:

line @65 = 144, 125 ; line 06 = 144, 117
line ©7 = 245, 1, 185, 11, 242, ©
line #8 = 154, 125 ; line 11 = 145, 125

-188-

10F. Executing a program within extended memory

If a program file is contained entirely within the 127
registers of the Extended Functions/Memory module, it is pos-
sible to execute that program without doing a GETP first.
Naturally, synthetic programming techniques are needed, but
nothing too fancy. All that needs to be done is to alter the
program pointer, two bytes of an internal register that desig-
nate what part of memory is displayed when you switch into
PRGM mode.

WARNING: Before you try to execute a program in extended
memory, make sure all its GTO's and XEQ's are compiled. That
is, make sure that each and every GTO or XEQ instruction in
the program has been executed at least once since the program
was last edited or PACKed. This applies to local GTO and XEQ
instructions (those that refer to labels #¢-99, A-J, or a-e).
If you fail to do this, executing the program in extended
memory may invalidate the checksum, causing GETP to give a
CHKSUM ERR message.

Note: If you do not care about the fact that GETP may not work
on a program file that has been executed in extended memory,
you may ignore this warning. 1In particular, if you plan to
execute the program only in extended memory, the loss of GETP
is not important. Moreover, the program "RPF" (Retrieve Pro-
gram File) presented in section 161 can be used in place of
GETP in case of checksum error.

If you will be needing to GET the program frequently or
under program control, it will prove much more convenient just
to make sure the GTO's and XEQ's are compiled before you save
the program. A digression on the subject of compiled branch
information should make things more clear.

The first execution of a local GTO or XEQ instruction
causes the branch direction and distance to be stored within

the GTO or XEQ instruction. The calculator thus remembers the

location of the label the next time the GTO or XEQ is encoun-

-189-

tered. It is this storage of distance information within the
instructions that invalidates the program file checksum. 1If
the GTO's and XEQ's are already compiled before the program is
saved, the checksum cannot be altered by execution of the
program in extended memory. Indirect and global (Catalog 1)
ALPHA GTO and XEQ instructions do not compile, so no special
care is needed for them.

All compiled jump distance information is lost whenever
you edit the program (make an insertion or deletion). It is
also destroyed by PACKing, unless the program was already
packed. Therefore, the following procedure is recommended to
ensure that all GTO's and XEQ's are compiled before you save a
program that you intend to execute in extended memory:

1. You need to have the program in main memory. If it is
already saved in extended memory, you can just do a GETP.
2. Next compile all GTO's and XEQ's:

GTO.. (use PACK if the program already has its own END)

For each line that contains a local GTO or XEQ:

GTO.nnn (go to the line containing the GTO or XEQ)

SST in RUN (non-PRGM) mode to execute the instruction:
Press and hold the SST key until the instruction ap-
pears in the display. Then release the SST key.

When the instruction disappears, it has been executed.

Repeat until you have SST'ed all local GTO's and XEQ's.
3. Now you can execute SAVEP with the program name in the

ALPHA register to save the program.

The "EXM" (Execute eXtended Memory) program uses one
synthetic instruction, an ASTO b. This instruction is used
here to transfer a character from the ALPHA register into the
rightmost two bytes of operating system register b, the loca-

tion of the program pointer.

-190-

"EXM" Example: Suppose your first file in extended memory is

the "JNX" program. You can use "EXM" to execute "JNX" without
bringing it into main memory. Just load the Y and X registers
with the two inputs needed (n and x), and press

XEQ ALPHA E X M ALPHA .
The result will appear in X when "JNX" is complete. The
program pointer will remain in the "JNX" program unless you

execute Catalog 1 or unless you GTO or XEQ a Catalog 1 label.

As it is listed here, "EXM" only allows the first file in
extended memory to be executed. If, however, you know the
absolute address of the second header register of the program
file you want to execute, you can use that number in place of
the number 190 (line #2) to execute a different program. But,
to repeat, the program file must reside completely within the
Extended Functions/Memory module. It must not spill over into

an Extended Memory module.

"EXM" program listing

BleLBL “ERN"
82 198

83 Cih given in Appendix D.

84 XTOH

85 RN

86 ASTO b The decimal byte equivalents for

87 END line 06 are 154, 124.

Barcode for the "EXM" program is

19 BYTES

Instructions for "EXM":

1. Make sure that the program file you want to execute is
the first file in the extended memory directory. If it
is not, compute the location of the file's second header
register. This is 190 minus the number of registers used
by the preceding files. Remember that the number of
registers used by a file is 2 more than the number shown

~-191-

in the extended memory directory. Replace line @2 of
the "EXM" program with this computed number.

2. Make sure that the program file you want to execute lies
entirely within the Extended Functions/Memory module,
Add up the number of registers used by all files up to
and including the file to be executed. Make sure to
include the two header registers for each file that are
not included in the extended memory directory display.
This total should not exceed 127 registers.

3. As discussed in the warning above, all the GTO's and
XEQ's in the saved program should be compiled if you
expect to be able to use GETP to retrive the program file
later. In emergencies, you can use the "RPF" (retrieve
program file) program presented in section 10I.

4, Load the X, Y, and Z registers with any inputs needed by
the function. The ALPHA register cannot be used for
input, because it is cleared by "EXM".

5. Execute "EXM". Line @66 of "EXM" causes an immediate jump
to the first line of the program immediately below the

absolute register location designated in line 02,

CAUTION: Do not use "EXM" to execute a program containing a
PSIZE instruction. Whenever PSIZE changes the SIZE, it re-
vises the program pointer to compensate for the fact that all
of the programs in main memory have been moved. Even though
PSIZE does not move your program in extended memory, PSIZE
will revise the program pointer as if the program had moved.
This causes an unwanted jump. The only case in which this
jump will not occur is when the PSIZE input happens to equal

the current SIZE, so that the SIZE is unchanged.

-192-

10G. Suspending and Reactivating USER mode key assignments

As part of its compatibility with HP-67/97 operation, the
HP-41 has 15 keys (top two rows unshifted plus top row shift-
ed) which, when pressed in USER mode, will find and execute
the corresponding local label (A-J and a-e). But this feature
conflicts with any global label assignments. How many times
have you wanted to use the automatic assignment of local
labels A-J and a-e, but found a function or global label
assignment in your way? You press LOG to execute LBL D, but
instead you get another function that you assigned to that
key. Wouldn't it be nice if there were a way to eliminate the
conflicting key assignment, then bring it back later?

Once again, synthetic programming comes to the rescue. A
very short synthetic program called "SK" (Suspend Key assign-
ments), written by Tapani Tarvainen, temporarily de-activates
all USER mode function and global label key assignments. To
suspend these key assignments, press

XEQ ALPHA S K ALPHA .

A program called "RK" (Reactivate Key assignments), also
written by Tapani Tarvainen, allows you to reactivate the
dormant key assignments. When you execute "RK", a GETP will
be performed on a special synthetic program file. This syn-
thetic file must first be created in extended memory by using
the "IN" (INitialize) program described on the next page.
Actually, you could reactivate the key assignments by retriev-
ing any program from extended memory using GETP. In the
process of retrieving the program, the calculator will reac-
tivate all dormant key assignments. This reactivation occurs
whenever a program is brought into main memory, whether from
magnetic cards, barcode, tape, or extended memory. The advan-
tage of using "RK" is that the last program in Catalog 1 will
not be disturbed. Any other type of GETP operation will
overwrite the last Catalog 1 program (see page 16). Unless
that is what you want, you should use "RK" rather than GETP.

-193-

1¢H. Saving key assignment status in extended memory

The HP821¥4A magnetic card reader has a WSTS function
that allows you to record key assignment information on mag-
netic cards. This makes it easy to keep several sets of
function key assignments (global label assignments are not
recorded). You just set up and record each set of function
assignments, constructing a key assignment "library". Then
when you want to use a particular key assignment configura-
tion, you just read in the corresponding magnetic card.

Synthetic programming techniques let you use extended
memory just as you would use magnetic cards to store key
assignments. The programs "“SAVEK" (SAVE Key assignments) and
"GETK" (GET Key assignments), were written by Tapani Tarvainen
and revised (LBL #4 section added) by Clifford Stern. These
programs save key assignment information in extended memory
and retrieve it on request. Unlike previous versions, they
are fully compatible with Time module alarms and other I/0
buffers. These programs also include "SK" (Suspend Key as-

signments) and "RK" (Reactivate Key assignments).

Caution: Before you use either "RK" or "GETK" for the first
time, you need to use an initialization program called "IN",
which is listed on page 198. Both the "RK" and "GETK" pro-
grams conclude with a GETP instruction, which has the effect
of reactivating any new or dormant key assignments. A unique
method, invented by Tapani Tarvainen, uses a synthetic program
file as the object of the GETP instruction. This pfocedure
eliminates the normal over-writing of the last program in main
memory when GETP is executed. The synthetic program file has
the name " " (a single space) and a length of zero bytes. The
"IN" program, an esoteric creation of Clifford Stern, auto-
mates the procedure of creating this synthetic program file in
extended memory.

-194-

Warning: Before you execute "IN", read the warning under
“"WER"™ on page 183. Then, if one of the two conditions listed
there is satisfied, you can press
XEQ "IN"

to create the synthetic program file needed by "RK" and
"GETK". Once this is done, you do not need to use "IN" again
as long as the synthetic file remains in extended memory. To
make sure, run the extended memory directory. You should see

one entry that displays as " POGL" .

Instructions for “SAVEK" and "GETK"
1. There must be an END above LBLYSAVEK in Catalog 1. Fail-

ure to observe this constraint will result in an eventual
MEMORY LOST.

2. If you have not already done so, execute the "IN" program
as described in the last two paragraphs to set up the
synthetic zero-byte program file called "™ " in extended
memory.

3. To save the current set of function key assignments, put
a file name of up to 7 characters in the ALPHA register
and execute "SAVEK". If you get a NO ROOM error message
at line 43, there is not enough space left in extended
memory to hold the key assignment information. You have
the option of clearing extended memory space if you still
want to save the key assignments. After clearing the
space, start "SAVEK" from the beginning with the file
name in ALPHA. When "SAVEK" finishes, the number in X
indicates the size of the new key assignment data file.

4. To use "GETK", load the ALPHA register with the name of a
key assignment data file that you created with "SAVEK".
Then press XEQ "GETK". I1f you get a "NO ROOM" error
message at line 72, there are no free program registers.
"GETK" requires the initial presence of a free register,
and the error trap at line 72 assures its existence.
Thus, NO ROOM at line 72 indicates that you must decrease

-195-

the SIZE by 1 or delete a program to make space, If you
get the "“NO ROOM" message at line 82, there are not
enough free program registers to hold the key assignments
from the designated data file. The difference between
the number in X and the current SIZE is the register
deficiency. Again, you must decrease the SIZE or delete
a program to eliminate this deficiency. 1If either one of
these error stops occurs, you must either re~load ALPHA
and XEQ "GETK" again, or XEQ "RK" to simply reactivate
the global label key assignments and quit.

The "“SAVEK" program saves key assignments of Catalog 2 or
Catalog 3 functions, but it does not save assignments of
Catalog 1 labels. The "GETK" program retrieves the function
key assignment information from the designated extended memory
file. These function key assignments are merged with any
existing global label assignments. Previous function assign-
ments are cleared. In case of a conflict, where a global
label is already assigned to one of the keys used in the
stored set of function assignments, the global label assign-

ment will take precedence.

If you have a PPC ROM (see Appendix C), you can delete
the LBL 94 section, lines 46-62, and replace the XEQ 04 in-
structions on lines 64 and 86 by XROM E? .,

In case you were wondering, the RTN on line @1 is a
necessary part of the "GETK" program., If "SAVEK"/"GETK" is
the last program in main memory (that is, if it has .END. as
its last line), the GETP at line 165 will transfer control to
line 01.

-196-

—

"SAVEK™/"GETK"/"RK"/"SK" program listing

B8l ETH i o
23 B~
@2+ BL "SAYEK- 24 K2¥?
3 RCL I 25 GTD &3
B4 XER 84 26 ARLL ¢
a5 193 27 B{r
86 Y7 28 STO IND
@7 RTH 29 FC? 18
83 SF i@ 38 SAVEL
31186 2
a9+ EL 81 3z GT0 82
16 -
11 B3 33eLBL 83
1z # EL I SO
13 =a* 35 & e
14 RCL R
15 XEQ 18 37 CLA
16 SIGH 38 570
39 Rt
17¢LBL 82 48 INT
18 RIH 41 FC7; 1B
19 RCL IND ¥ 42 RTH
28 =" 43 CRFLD
21 B [44 E

ra

9 -
91 B3

92 51/ £

93 2
94 s
9+

9% XOY

97 X ¢

98 ROY

99 REGMOYE
188 GETR
a1 8OY
182 570 ¢

183+LBL "RK"
184 * -
185 GETP
186 RTH

187+LBL
14§ .

189 51D
118 570

45 GT0 81 67 RTH

4h+LBL 84 68¢LEL "GETK"

47 RIL ¢ 8% E

48 "= 78 SIZE?

43 R [i I

58 570 » 72 PSIZE

51 ASHF 73 LASTX

32 RDN 74 PSIZE

53 ALENG 75 ROY

348 76 FLSIZE

53 TH 77 4EQ 18

56 ATOX 78 CLKEYS

57 % 7 ¥ c

38 512 88 KDH

59 HOD 81 +

68 ATOX 82 PSIZE

6l + 83 RIK

62 RTH 84 PSIZE
83K L

63¢LEBL 14 86 XEQ @4

64 RTL ¢ 87 RCL Y

65 "Bxipxe” 88 -

&6 HSTO ¢ 89 192

111 END

212 BYTES

Barcode for this program can be found in Appendix D.

The "IN" program is listed on the next page.

Synthetic lines
line @3 = 144,
line 14 = 144,
line 23 = 206,
line 35 = 2#6,
line 47 = 144,
line 64 = 144,
line 66 = 154,

and
117
117
118
125
125
125
125

line 91 = 27, 19 ;

line 169 = 145,

122

their decimal equivalents:

-
14
-
14
-
14
-
’
-
1
-
14

line 11 = 27,
line 20 = 241,
line 26 = 155,
line 38 = 145,
line 49 = 206,
line 65 = 246,
line 69 = 27

19 ; line 13

’

240 ;
125 ;
117 ;
117 ;
64, 1,
line

line
line
line
line
105,
79 =

= 241,
21 = 206,
27 = 206,
44 = 27
50 = 145,

12, 2, @
206, 125

line 97 = 206, 125 ; line 102 = 145,
line 11¢ = 145, 127

14

-197-

16

117
118

118

125

Here is the "IN" program, to be executed before the first use
of "RK" or "GETK":

BieLBL “IN" 18 REGMOVE 19 570 81 28 X(¥ © 37 %87
82 EMDIR 11 b 28 % 1 29 ST0 82 38 ASTO L
83 12 RIN 21 570 63 36 CLA 38 ASTO X
B4 = siepredeeE- 13 RiL 12 22 RIN 3 STO I 48 SRYEX
85 CRFLD 14 570 @6 23 ENDIR 2 Bt 4 %L
8 + 15 =Fexin 24 CLD 33)87 42 570 81
87 RCL » 16 RCL I 25 571- 71 34 F1¥ 43 Rt
B8 X(¢ 17 576 12 26 XY 35 SEEKPTR 44 20 ©
#9 RCL 64 18 XY 27 570 a1 3 =1 45 EHD
33 BYTES

Barcode for "IN" can be found in Appendix D.

Synthetic lines and their decimal byte equivalents:

line 83 = 27 ; line 04 = 254, 32, 44, 1, 105, @9, 19, 249, 1,
137, o, 48, 3, @9, 2

line 07 = 144, 118 ; line 08 = 206, 125

line 15 = 247, 127, ¢, 1, 1065, 11, 223, 255

line 16 = 144, 117 ; line 260 = 2¢6, 119 ; line 28 = 206, 118

line 31 = 145, 117 ; 1line 36 = 241, 1 ; line 44 = 206, 125

If you have an HP-41CX, lines 62 and 23 can be replaced by
EMROOM. As with "VER", despite appearances, no numbered data
registers are disturbed by "IN".

Notwithstanding its brevity, "IN" is a very sophisticated
program. In fact, if you think you are an expert in synthetic
programming, you might try fiquring out how it works. Clif-

ford Stern is probably the only one who knows all the tricks
it contains.

-198-

101. Saving extended memory files on magnetic cards

Chapter 3 introduced the programs "WAS"/"RAS"™ which allow
you to transfer ASCII file data to and from magnetic cards.
The "WFL" (Write File) and "RFL" (Read File) programs present-
ed in this section were written by Clifford Stern. They allow
all types of files to be written onto magnetic cards, or just
into data registers for more temporary storage. Furthermore,
the absolute minimum number of registers is used. Seven bytes
of data are saved per register, rather than the 6 or fewer
bytes per register that "WAS" saves. A third program, "RPEF"
(Retrieve Program File), allows the retrieval of extended
memory programs that have checksum errors. For example, a
checksum error can result from running the program in extended
memory (see Section 1@F) if all the GTO's and XEQ's were not

compiled before the program was saved.

Constraints common to "WFL", “RFL", and "RPF"

1. There must be an END above the "WFL"/"RFL"/"RPF" program
in Catalog 1. Failure to observe this constraint will
lead to an eventual MEMORY LOST.

2. Make sure that at least one of the conditions listed on

page 183 is satisfied (no alarms and one free register,
or at least one non-label key assignment).

3. The ALPHA register must contain a file name at the start
of each of these programs. The sequence ALENG, 1/X
(lines 14 and 15) cannot be deleted from the program,
because the file name is required during the program's
execution. The POSA instruction at line 17 causes an
error stop at line 19 if the ALPHA register contains a
comma. Commas are not allowed in the file name, because
a comma is interpreted by the calculator as a name separ-
ator (see page 15). The comma and all the characters
that follow it are ignored by all extended functions
except SAVEP, If a comma were present, the ALENG error

trap would be ineffective.

-199-

3. These programs may be called from another program, but

not from a subroutine. 1In other words, no RTNs may be
pending when one of these programs is called.

Instructions for "WFL"

1.

2.

Set flag 14 if you intend to write data onto protected
cards.

Two modes of operation are available for "WFL". The
first mode, obtained by clearing flag @1, writes the
entire contents of the file. The second mode provides
slower, but more economical, storage of ASCII files that
are only partially filled., It first counts the number of
characters in the file, then it transfers only those
registers that are actually in use to the data registers.
To activate this second mode, set flag @#1l. After you
have checked the status of flag 91, put the name of the
file in the ALPHA register, and execute "WFL".

If the PSIZE instruction at line 49 gives a NO ROOM error
message, you will need to clear some programs or key
assignments to make enough room for the file contents.
The number in X indicates the required SIZE.

When the RDY @1 OF nn prompt appears, you can either feed
in a magnetic card to record the file data or press R/S
twice to bypass the writing of magnetic cards. Do not
just press backarrow, or your file, which has been tem-
porarily changed to a data file, will not be restored to
its original file type. Do not change the contents of
the stack before restarting "WFL". MEMORY LOST is the
probable result. 1If the card reader is not present, the
RDY ¢1 OF nn prompt will not appear at all. The file
contents will simply be transferred to the data regis-
ters.

If you forgot to set flag 14 and you still want to write
the data onto protected cards, press R/S twice to bypass

the RDY @1 OF nn prompt. When the program finishes, you

-200-

can SF 14 and execute WDTA from the keyboard to write the
cards.

6. When the last magnetic card is fed through, or after you
press R/S twice, the program will conclude with an in-
struction segquence that leaves the new SIZE in X. This
number, which represents the minimum required file size,
should be written on the cards. It may be needed later

for "RFL".

CAUTION: If your purpose is to immediately transfer the file
data back into extended memory rather than recording it on
magnetic cards, you must be very careful not to disturb it
before using "RFL". The data is in a volatile, "non-normal-
ized" form (see page 182)., Any RCL, VIEW, or similar opera-
tion will alter the data. You must not try to move the data,
or even look at it, until it has been written back into exten-
ded memory. This is the price for the efficient register-for-
register storage in "WFL". The data format is the same as
that used within extended memory, where all data is also non-
normalized. 1If you accidentally recall or view a data regis-
ter written by "WFL", you will have to execute "WFL" again to

restore the correct data before using "RFL".

Instructions for "RFL"

1. As with "WFL", two modes of operation are available for
"RFL". The mode is selected by the status of flag 0@1.
Depending on the amount of space available in the calcu-
lator, the first mode (flag g1 clear) may work regardless
of whether flag #1 was set for "WFL". To find out, clear
flag @61, put the file name in the ALPHA register, and
execute "RFL".

2. If a NO ROOM error message appears at line 49, and flag
@1 was clear when you used "WFL" to write the cards, you
will need to clear some programs to make more space

available. The number in X is the required SIZE. If you

-201-

get NO ROOM but flag ¢1 was set when you used "WFL" to
write the cards, then you have another option. You can
set flag @1 to indicate that the SIZE does not need to be
increased to the FLSIZE. Whenever you use "RFL" with
flag @1 set, you must manually reSIZE to the number of
registers written (this is the same number you wrote on
the cards). This flag 41 option can also be used to read
data file cards into a larger data file when the SIZE
cannot be set to the new FLSIZE. Regardless of what
action you take in response to the NO ROOM error message,
you must reload the ALPHA register and execute "RFL"
again.

If a card reader is present, the prompt CARD will appear,
At this point you can feed in the data cards you made
with "WFL". If the data is already in the registers, you
can press R/S twice to bypass the card reading operation.
As with "WFL", do not just press backarrow in response to
the CARD prompt, or the file, which has temporarily been
changed to a data file, will not be restored to its
original type. Also, do not disturb the stack before
restarting the program. If you do, MEMORY LOST is the
likely result. [If no card reader is present, the card
reading is automatically bypassed.]

The program will take the information from the data
registers and transfer it into the designated extended
memory file., It does not matter whether the file is a
program, data, or ASCII (text) file.

One useful application of "WFL" and "RFL" is to minimize the
number of registers needed for a "“fixed" ASCII file, one that
you will not be adding information to frequently. You can

Create a large ASCII file, £ill it with the desired informa-
tion,

then use "WFL" with flag @1 set to write the records

into data registers and possibly onto magnetic cards. Note
the resulting SIZE (which appears in X at the conclusion of

-202-

"WFL"). Purge the ASCII file and create a new ASCII file of
the same name with a FLSIZE equal to the "WFL" SIZE. Then
execute "RFL", pressing R/S twice at the CARD prompt, to read
the information back from the data registers into the new
ASCII file, which is just the right size for the data.

Another "WFL"/"RFL" application is to deal with the prob-—
lem of an ASCII file that has outgrown its original FLSIZE.
Just clear flag 81, put the file name in ALPHA, and execute
"WFL" to write the whole file to data registers (and cards if
you like). Then purge the file, create a larger one with the
same name, set flag @1, put the file name in ALPHA, and exe-
cute "RFL". As long as you have not disturbed the data regis-
ters since executing "WFL", you can safely press R/S twice at
the CARD prompt to bypass it.

A third application of "WFL" and "RFL" is one-step re-
cording of a data file, without any need for a GETR instruc-
tion. When used in place of GETR, "WFL" eliminates the need
for resizing, since the program does it automatically. In
addition, the data file's register pointer will be restored to
its original value. This is a slight improvement over GETR.
You can also use "WFL" to record a program file directly from
extended memory, if you do not care that the recorded informa-
tion is in a format that can only be used by "RFL". This
might be the case, for example, if you wanted to record a

program that you only execute in extended memory.

The "RPF" (retrieve program file) program retrieves a
program from extended memory when a checksum error exists.
This can be recognized by the CHKSUM ERR message when you try
a GETP or GETSUB. If a checksum error does not exist, GETP or
GETSUB is far preferable to "RPF", because "RPF" has the side-
effect of changing the retrieved program file into a data
file. If you suspect real damage to the program, use "RPF" as
a "last resort", only if the program is not available on
magnetic cards, tape, Or barcode. Of course if the damage is

-203-

due only to running the program in extended memory, "RPF" will
retrieve a "clean" copy of the program.

The procedure used for "RPF" is a bit unusual, and the
manual operations required preclude use of "RPF" as a subrou-
tine. Follow the instructions carefully and precisely.

Instructions for "RPF"
1. GTO ..

2. Switch to PRGM mode. Check to make sure there is at
least one free register. Then SST to get the .END. in
the display, and insert any instruction (ENTERT will do),
then delete it.

3. Put the name of the damaged program file in the ALPHA
register and execute "RPF". If you get a NO ROOM error
message at line 47, you will have to clear some programs
out of main memory to make room for the program to be
retrieved. Then start over at step 1.

4. PACK (press XEQ ALPHA P A C K ALPHA, not GTO ..)

5. At the conclusion of "RPF", the SIZE will be 600 and the
program file will be changed to a data file.

6. Check the copy of the retrieved program for accuracy, 1in
case more than GTO/XEQ compiling caused the CHKSUM ERR.

7. If the retrieved program was less than 35 bytes long, it
may not be possible to use "RPF" again on the same file
(which is now a data file). This condition will occur
only if the byte count modulo 7 exceeds the FLSIZE. It
is not likely that you will encounter this problem,
because any program worth executing in extended memory
should be much longer than 34 bytes.

Note: If you want to remove the "RPF" portion of this
"WFL"/"RFL"/"RPF" program, delete lines 149-232, 122-123, 11-
12, and 01-0¢4. This reduces the byte count to yield a 265-
byte Write and Read Files program. Alternatively, if you have

a PPC ROM (see Appendix C), you can replace lines 153-166 of
the program by XROM "E?".

-204-

(

"WFL™/"RFL"/"RPF" program listing

fieLBL “RPF" 7+ 764LBL 85 116 RIN 156 570 © 196 %O [
#z OF 81 I8 F57 25 77 5101 117 LASTY 157 ASHF 197 RCL ©
83 5F @5 39 410 92 78 LASTY 118 570 81 158 ALENG 198 LASTX
84 570 82 48 RCLPT 79 510 @1 119 RCL 3 159 8 199 7
41+ 88 Rt 128 ¥ ¢ 160 Y1X 208 MOD
@5eLBL “WFL- 42 3 81 FLSIZE 121 5F 25 161 ATOX 201 SEEKPT
86 CF @6 43 + g2 ST+ Y. 122 F57 85 162 % 282 CF 25
#7 GT0 o1 4 7 83 2 123 GT0 87 163 512 203 LASTY
43 ¢ 84 5T+ 2 124 TONE § 164 HOD 204 -
@8¢LBL "RFL" 85 CLY 125 FS? 8 165 ATOX 285 ARGT
#9 5F 86 46eLBL B4 86 STC 1 126 ROTA 166 + 206 CHS
47 PSIZE 87 RLL ¢ 127 FS? 86 167 ENTERt
1BeLBL 81 48 ~xiepseBess= 88 ST 61 128 SAYER 168 =:i- 287¢LBL #9
11 CF 83 49 ¥ 89 Rt 129 FC? 86 169 16 288 “e-
58 Ay ¢ 99 SEEKPTR 138 GETR 178 * 209 DSE X
12¢LBL 82 51 570 12 91 RCL I 131 FC7 86 171 2 218 60 89
13 CF 25 52 ¥ [92 GETY 132 WITA 172 + 211 ROY
14 ALENG 53 REGMOVE 93 X#77 133CF 25 173 ENTERY 212 %y 1
15 174 54 RIL ¢ 94 GTD @5 134 5T0 ¢ 174 YEQ 18 213 5T0 81
16 44 55 = 95 (3 \ 135 570 81 175 RCL @ 214 2
17 POSA 56 ST0 8¢ 96 ST0 [136 CL¥ 176 SIGH 215 CHS
18 CHS 57 *kexip® 97 ROLPT 137 570 © 177 CL¥ 216 AROT
19 LN 58 CLX 98 GETY 138 Rt 178 XTOA 217 Rt
26 FLSIZE 59 STO &7 139 SEEKPTA 179 SEEKPT 218 ENTER?
21 - 68 ROL © 99+LBL 86 148 Rt 188 PSIZE 219 ¥EQ 16
227 61 Rt 188 570 1 141 FC7 07 181 X0 I 228 X0 I
23 AROT 62 F 87 181 "= 142 SAVEX 182 X0 ¢ 2180 ¢
24 ¥ [£3 %=Y? 182 E28 143 FC? 87 183 FLSIZE 222 BEEP
25 X 64 SF @7 183 570 ¢ 144 LRASTZ 184 =+-° 223 STOP
26 FC7 81 65 1> [194 E 145 STG 81 185 570 1
27 GTD 94 66 5TD 12 185 CHS 146 %> 3 186 XOY 224¢(BL 18
28 SF 25 &7 570 81 186 AROT 147 570 ¢ 187 570 225 256
29 F§? 86 68 X3 1 187 Rt 148 SIZE? 188 Rt 226 NOD
38 GT0 74 69 ST0 83 108 SEEKPT 149 RTH 189 %> [227 KO
31 CLY 782 189 Rt 198 570 84 228 LASTY
32 SEEKPT 71 CHS 116 . 158¢LBL 67 229 ¢
72 LASTY 111 %> 1 151 RCLPTR 191eLBL 08 238 XT0A
33eLBL @3 73 F$? @7 112 FL? @7 152 ST0 88 192 GETY 231 RDN
34 CLA 74 GT0 86 113 SAVEX 1S3RCL ¢ 193 STD IND 1 232 XTOA
35 GETREC 75 . 114 F5? 7 154 %= 194 DSE 1 233 END
36 ALEHG 115 SIGH 155 %G 1 195 GTO @8
419 BYTES

Barcode for this program can be found in Appendix D.

Note that line 21 is "Append 6 spaces".

-2085-

Synthetic lines and their decimal byte equivalents:

line 24 206, 117

line 48 = 252, 1, 105, @, 19, 249, 1, 137, @, 48, 3, @9, 2
line 49 = 2066, 118 ; line 56 = 206, 125 ; line 52 = 296, 117
line 54 = 144, 125

line 57 = 247, 127, ¢, 1, 165, 11, 223, 255

line 60 = 144, 118 ; line 65 = 206, 117 ; line 68 = 266, 119
line 77 = 145, 119 ; line 86 = 145, 119 ; line 87 = 144, 125
line 91 = 144, 117 ; line 95 = 2066, 118 ;7 line 96 = 145, 117

line 16¢ = 145, 119 ; line 101 = 242, 127, @
line 162 = 27, 18, 16 ; line 103 = 145, 120 ; line 104 = 27
line 111 = 206, 119 ; line 119 = 144, 123

line 120 = 206, 125 line 134 = 145, 125

line 137 = 145, 118 line 146 = 206, 123

line 147 = 145, 125 line 153 = 144, 125

line 155 = 206, 117 ; line 156 = 145, 118

line 168 = 242, 1, 165 ; line 181 = 206, 117
line 182 = 206, 125 ; line 184 = 243, 192, 9, 45
line 185 = 145, 119 ; line 187 = 145, 118

line 189 = 206, 117 ; line 193 = 145, 247

line 194 = 151, 119 ; line 196 = 206, 117

line 197 = 144, 118 ; line 208 = 242, 127, @
line 212 = 266, 117 ; line 220 = 206, 117

line 221 = 2¢6, 125

- we

-

-206-

10J. Key assignments of synthetic functions

If you do any synthetic programming, it is quite helpful
to assign some frequently used two-byte synthetic functions to
your USER mode keyboard. Chapter 4 of "HP-41 Synthetic Pro-
gramming Made Easy" contains two of the most efficient pro-
grams to make synthetic key assignments.

The program "ASG" (assign) presented here was conceived

by Tapani Tarvainen and optimized by Tapani and Gerard Westen.
This program represents a major step forward in synthetic
programming. 'Previous synthetic key assignment programs re-
quired the user to specify the function to be assigned in
terms of its two decimal byte equivalents. "ASG" lets you
simply spell out the function to be assigned.
WARNING: An END must precede LBLYASG in Catalog 1. If you
have "XF" as the first program in Catalog 1, this is already
taken care of. If you do accidentally execute "ASG" when it
is the first program in Catalog 1, keyboard lockup is likely
and MEMORY LOST is. possible.

"ASG" Example 1l: Suppose you want to assign RCL b to a key.
First, execute "ASG" (press XEQ ALPHA A S G ALPHA). The

following message will appear in the display:

ASN
just as for the real ASN function, except that the ALPHA mode
annunciator will be on. Now you fill in the name of the
function to be assigned, in this case RCL b. The calculator
is already in ALPHA mode, so you need only press

R C L (space) shiftb
Then press R/S to restart the program. Wait about half a sec-
ond, then press the key to which you want RCL b assigned. To
assign RCL b to a shifted location, press the shift key, wait
for the minus sign to appear (indicating a shifted location),
then press the key to which you want the assignment made.

Once you have entered the function name and pressed the

key to which the assignment is to be made, you need only wait

-207-

for the "ASG" program to complete its work. The procedure is
strikingly similar to the use of the built-in ASN function.

The "PASG" (programmable assign) entry point provides a
synthetic key assignment capability similar to PASN. Spell
out the synthetic function in ALPHA, put the row/column key-
code in X, and execute "PASG". The keycode is the same one
you would use for PASN.

The "PASG" portion of "ASG" accomplishes the amazing feat
of decoding the function name into its decimal equivalents.
This is done in two steps. 1In the RCL b example, "PASG" first
assigns the function RCL and extracts the decimal code from
the operating system registers, then the program decodes the
suffix b into its decimal equivalent. These two values are
used as input to a more standard key assignment program,
"MKX", also a Tarvainen creation with optimization by Westen.

For adventurous novices: 1If you are unfamiliar with synthetic

programming and you have been puzzling over the synthetic
program listings, you may want to use "ASG"™ to create some
synthetic instructions. A few basic points will help you
avoid some of the simpler pitfalls. First and foremost, do
not alter the contents of register c unless you know exactly
what you are doing. The likely result is MEMORY LOST. Sec-
ond, you should be aware that some synthetic lines in printer
listings appear differently in the display. Most notable are
text lines, in which characters with decimal codes 128-255
disappear, and instructions that access some of the operating

system registers. The equivalence is:

display printer listing
STO M STO [

STO N STO \

STO O STO]

STO P STO T

STO Q STO __

STO | sTO T

~-208-

The STO prefix could just as well be RCL, X<>, or any other
two-byte prefix. The M, N, O, and P registers make up the
ALPHA register. These four, plus Q and a, are the safest to
experiment with.

Of course, full details of the operating system registers
and their uses can be found in the book "HP-41 Synthetic
Programming Made Easy". Also given are techniques for creat-

ing synthetic text lines, which cannot be made with "ASG".

Instructions for "ASG"

1. Make sure there is an END above LBLYTASG in Catalog 1, and
that there is no LBLTANUM in Catalog 1. Failure to
observe these restrictions will lead to MEMORY LOST.

2. Execute "ASG". The prompt ASN will appear, and the
ALPHA mode annunciator will be 1lit.

3. Using the ALPHA mode keys, spell out the function to be
assigned. If the suffix is a synthetic character, you
may spell out a decimal number, @ to 255, instead. 1If
you like, the prefix can also be a decimal number. For
indirect functions like GTO IND X, you do not actually
need to spell out "IND". As long as there are two spaces
between the GTO and the X, the function GTO IND X will be
assigned.

4, Press R/S to restart the program.

5. Wait half a second and press the key to which the func-
tion is to be assigned. For a shifted assignment press
the shift key, wait a moment until "-" appears in the
display, then press the desired key. It is not necessary
to press R/S again.

6. The program will proceed to make the synthetic function
assignment. Should an error stop occur, do not attempt
to restart the program. Instead, start over with step 2
above. If the error was NO ROOM at line 56, decrease the
SIZE or clear a program.

7. To make another assignment, execute "ASG" again.

-209-

Instructions for "PASG"

1.

Make sure there is an END somewhere above LBLTPASG in
Catalog 1, and that there in no LBLTANUM in Catalog 1.
As for "ASG", the penalty for failing to heed these
restrictions is MEMORY LOST.

Load the ALPHA register with a string that spells out the
function to be assigned. See item 3 in the "ASG" in-
structions for an explanation of the various types of
strings that are allowed.

Put the row/column keycode in X. "PASG" works just like
PASN in this respect.

Execute "PASG". The program will make the synthetic
assignment. As with "ASG", do not attempt to restart
after an error stop occurs. Start over with step 2.

To make another assignment, load ALPHA and X and execute
"PASG" again.,

Instructions for "MKX"

1.

2.

Put the decimal prefix code in Z, suffix code in Y, and
keycode in X,

Execute "MKX" to make the desired assignment.

General cautions for "ASG"™, "PASG", and "MKX":

1.

Do not interrupt or SST these programs. If you acciden-
tally interrupt or SST the program between lines 158 and
161, you will have to re-execute the program. If you
interrupt the program after line 176, you must restart
the program to avoid an eventual MEMORY LOST.

Make sure there is no global label present that has the
same name as a function you want to assign. For example,
if you have a LBL "STO" in Catalog 1, "ASG" and "PASG"
will not be able to assign a synthetic STO instruction.
WARNING: Make sure there is no global label "ANUM" in
Catalog 1. If you have a LBLTANUM in Catalog 1, memory
will be completely trashed.

-210-

The "ASG", "PASG", and "MKX" programs are fully compati-
ble with Time module alarms and other I1/0 buffers. "ASG" and
"PASG" also allow you to assign Catalog 1 labels and nonsyn-
thetic functions, as well as synthetic functions. In fact,
"ASG" and "PASG" are essentially direct replacements for the
ASN and PASN functions. They will accept any input that ASN
or PASN accepts, plus many more that correspond to synthetic

functions.

Examples of "ASG" and "PASG"

The following list shows typical key assignments, both
nonsynthetic and synthetic, and the “"ASG"/"PASG" ALPHA inputs
needed to obtain them. Several variations on the ALPHA input

are usually possible, as the list shows. Any functions that
show only decimal inputs are more easily assigned with "MRX"

by putting the decimal inputs in the stack.

Function ALPHA input
"ASG" "ASG" (any global label can be assigned
"VER" "VER" using "ASG" or "PASG")
BST "psT"
SIGN "SIGN"
SF 14 "SF 14" or "168 14"
STO N "sTO N", "STO 118", "145 N", or "145 118"
X<> M "x<> M", "X<> 117", or "206 117"
GTO IND X nGro IND X", "GTO X" (note 2 spaces),
"GTO I 115", "GTO 243", "2¢8 243", etc.
RCL IND X "RCL IND X", "RCL X" (2 spaces),
"RCL I X", "RCL 243", "145 243", etc.
XROM 29,08 "XROM 29,08" or "X 29,08" {=PRA)
TONE 10 "TONE 16" or "159 1¢"
TONE 89 "TONE 89" or "159 89"
FIX 14 "FIX 18" or "156 16"
XROM 28,35 "XROM 28,35" or "X 28,35" (=OUTA)

(continued on page 213)

-211-

#lelBL "ASE"

82 RCLFLHG
83 SIGH
#g ="

5 ASTO d
a6 “ASH -
#7 570p
8g OF 21
R

1aeLBL &1
i1 3l

12 AYIEH
13 GETEEY
14 %=#7
15 G0 &1
16 X#Y7
i7 670 62
18 k-
19 FSIC 82
28 670 6l
21 2

22 THS

23 AROY
24 A0
25 ATOE
26 SF 83
27 670 a1

28eLBL 2
29 ARCL =
38 AVIEW
31 FC? a2
3z CHS

13 e
34 3T0A
35 LASTX
36 STOFLAG
37 AT0X
38 AT0Z
35 LN

48 CHE

41 AROT
42 ASHF

"ASG"/"PASG"/"MKX" program listing

43

44¢LBL "PASET

4
47
48
49
58
51
52
53

Bt

ROFF
3
Pa5H
Ao87
GT0 82
R
PASH
CLE
ETH

S4eLBL 83

33
36
57
38
59
6
61
62
63
bd
63
66
&7
bl
69
7
71
72
73
74
73
76
77
78

ni_‘n
AROY
“Heg"
ATOY
POSA
ISG £
AN
ARGTY
44
POSA
IS6 ¥
G0 64
AROT
Bt
ANUH
ASHF
AN
ndd

64

84 AHUK
83 ATOX
86 34

87 -

88 ¥¢{=7
B9 GT0 644
9% CHS
917

32+

93 a7
94 G0 85
93 CHS

9 31

97 MOD

38 2

99+LBL 44
188 Z{B?
18{ 9
192 87
183 +
184 Zs87
185 3
16 X487
187 +

188¢LBL 45
189 i7
116 +

111 %87
112 93
113 ¥87
i14 +

115 X487
116 ¥O¥Y
117 Ci¥
118 POSA
119 ¥>e?
128 ARDY
121 CLX
122 X5 d
123 Kt
124 5F 23
125 PASH

126 RCL _
127 570 ¢
128 KON
129 %437
138 ¥{3 d
131 X+87
132 AT0X
133 ASHF
134 X=@7
135 ANUM
136 Rt
137 F57 48
138 GTC 86
139 ZOGF
148 Rt
141 268
142 Rt
143 ¥#v7
144 SF &
145 X(=Y?
146 ¥=Y?
147 RIH
148 X372
149 i74
158 Bt
151 ¥OF

132¢LBL 8%
133 AOFF
154 Rt

159¢LEL ~HKXE-
136 ~ANHUN-
157 PRSH
158 RCL 7
159 CLA
168 570 ¢
161 - g
162 ASTO ~
163 ARCL »
154 B
165 XT0R
166 Rt
167 X708

168 RCL
169 ATOX

178 SiGH

171 ARGt

172 ROL
172 RIL ¢
174 “Bxipxe"
173 AST0 ¢
176 Rt

177¢LBL &7
178 RCL IND L
179 =%~
188 ST0 ~
181 ¥4x [
182 570 1
183 ASTO {
184 ASHF
185 X<r
186 HSHF
187 BeY?
188 X0 1
189 ¥=Y?
198 Bt
191 “Haxxs=
192 570 ~
193 ¢
194 X< [
195 570
196 ARCL ¢
197 33 1
198 ST0 IWD L
199 RIN
288 Xzy?
281 IS6 L
282 £#Y?
283 GT0 &7
284 K(» 2
285 570 ¢
286 CLST
287 CLA
288 CLD
289 END

o]

372 BYTES

Barcode for this program can be found in Appendix D.
Line 146 is a text line "ANUM", not the instruction ANUM.

-212-

Synthetic lines and their decimal byte equivalents:
line 04 242, 132, 128 ; line @5 = 154, 126

line 55 242, 127, ¥ ; line 57 = 243, 127, 64, 48
line 122 = 266, 126 ; line 126 = 144, 121

line 127 = 145, 120 line 130 = 206, 126

line 158 = 144, 122 ; line 160 = 145, 120

line 161 = 243, 127, 166, 66 ; line 162 = 154, 118
line 163 = 155, 118 ; line 168 = 144, 118

line 172 = 144, 117 ; line 173 144, 125

line 174 = 246, 64, 1, 165, 11, 2, ¢ ; line 175 = 154, 125
line 18¢ = 145, 118 line 181 = 286, 117

H [}

-e

-e

line 182 = 145, 119 ; line 183 = 154, 117
line 185 = 266, 118 ; line 188 = 206, 117
line 192 = 145, 118 ; 1line 193 = 245, 127, 132, 132, 132, 240
line 194 = 206, 117 ; line 195 = 145, 119
line 196 = 155, 125 ; line 197 = 266, 119

line 265 = 145, 125
For faster operation with an HP-41CX or Time module use:
line 156 "SW" ; line 161 = 243, 127, 166, 154

(continued from page 211)
Fancier synthetic functions:
GT0.900 "199 133" (works in PRGM mode, only when
the card reader is attached)
eGOBEEP "4 167" or "O 167" (gives mass storage or
printer functions; experiment
in PRGM mode)
Q-Loader" 27 @" (experiment in PRGM mode)
byte grabber "247 63" (not for novices; can give MEMORY
LOST if inserted above an END)

The "ASG" program is perhaps the most advanced synthetic
program ever written, in that it makes use af a wide variety
of synthetic techniques to provide a very high degree of user
convenience., I hope you enjoy using it.

-213-

10K. "Crash" recovery tips

A "crash”" is a condition in which the keyboard is "locked
up"” and fails to respond, or in which Catalog 1 is damaged.
There is usually no problem recognizing a crash, but recover-
ing from one is another story. Unfortunately, MEMORY LOST is
necessary to recover from many types of crashes.

If the keyboard "locks up" and you cannot get any re-
sponse from the R/S key or the ON switch, there are several
techniques that may help you regain control:

1. Press and hold the backarrow key, press the R/S key,
release the R/S key, and release the backarrow key.

2. Newer HP-41's (1982 or later, approximately) have a reset
feature. Check your Owner's Manual before trying this,
because on older HP-41's it gives MEMORY LOST. It will
also give MEMORY LOST on a newer HP-41 if the keyboard is
not locked up. Press the ON key to turn the calculator
off, then press and hold the backarrow key. Press and
release the ON key, then release the backarrow key.

3. Remove the batteries for a few seconds and then replace
them, This will clear all but the most serious crashes.

4., The next thing to try, if you have a card reader, is to
insert a card (any type). If the card is not pulled
through, remove the batteries for a few seconds and
reinsert them, with the card still in place. The card
should be pulled through and the display should respond,
without MEMORY LOST. This technique was developed by
Clifford Stern.

5. Remove the batteries and reinstall them with each cell
reversed (this cannot be done with the HP rechargeable
battery pack). Press and hold the ON key for 1§ seconds.
Replace the batteries in the normal polarity and press
the ON key. You should get MEMORY LOST.

6. Simply removing the batteries overnight will usually not

clear a serious crash. Older HP-41l's can retain their

-214-

memory without batteries overnight, and newer HP-41's can

retain their memory for a week or more.

If the keyboard does respond, but Catalog 1 is not normal, you
will usually have to clear the calculator (using the ON and
backarrow keys in the sequence described in your Owner's
Manual). However, if you have a PPC ROM (see Appendix C), you
may be able to restore Catalog 1 along with all of your pro-
grams. Try this sequence, developed by Clifford Stern:

ALPHA C @ ¢ ¢ 2 D ALPHA (You can use spaces in place of

the zeros to save a few keystrokes.)

XEQ "HN"

XEQ "E2?"
If this result is less than 192 or more than 511, stop here.
Otherwise, continue:

XEQ "sx"

PACK

Check Catalog 1 to see what programs were recovered.

This sequence will not deal with cases in which the
pointers to the .END. or register #¢ have been altered. For
these cases you need a PPC ROM, knowledge of the structure of
system scratch register c (see page 11¢ of "HP-41 Synthetic

Programming Made Easy"), persistence, and some luck.

-215-

C

‘

¢

SOLUTIONS TO PROBLEMS

3.1. "*" APPREC DELREC RCLPT

3.2. Here is one solution:

g1
@2
@3
g4
@5
g6
87
28
@9
19
11
12
13
14
15

4.1. One

LBL "PAS" (print ASCII file)
CLX
SEEKPTA
SF 25
LBL 41
GETREC
FC? 25
RTN

ACA

FS? 17
GTO 41
PRBUF
ADV

GTO 41
END

solution is:

XTOA add the designated character.
SIGN

CHS

AROT rotate it to the front of ALPHA.

The sequence SIGN, CHS, is much faster than a digit entry -l.

4,2, Here Is a typical sequence to ASTO a string:

(start register number)
ENTER]

LBL 41

ASTO IND Y

-217-

RDN
ALENG
X>@2
GTO @1

4.3a. To delete n characters from the left:

n a digit entry line
X=97?

RTN quit if n=0

LBL @1

ATOX delete a character
RDN

DSE X decrement n

GTO @1

4.3b. To delete n characters from the right:

n

CHS rotate n characters from the right
AROT end to the left end of ALPHA.

CHS

continue using the sequence from 4.3a.

4.4, Starting with "firstname initial lastname" or "firstname
lastname” in the ALPHA register, the following sequence
will produce "lastname, firstname initial" or "lastname,

firstname":

32

POSA find the first space character

"k, " append a comma and a space

AROT rotate firstname behind lastname
ATOX remove space that followed firstname
POSA find the next space

44

POSA find the comma

X<>Y

X<Yy? if space is in front of comma

~218-

X<@? and if space was found

RTN then skip the RTN and continue

" " append a space after firstname
AROT rotate middlename behind firstname

ATOX remove space that followed middlename

4.5, PI

*

RCLFLAG

XY

SIN

X<>Y

STOFLAG

X<>L

/
4,6, The program "FE" (FIX/ENG) listed here preserves the
status of flags 36-39, while setting flags 46 (FIX) and 41
(ENG). The approach is similar to "FEX", except that another
RCLFLAG is needed at the beginning to save the status of flags
36-39:

¢l LBL "FE"

@2 RCLFLAG Save status of flags ©@-39
@3 ENG ¢ Set flag 41

@4 RCLFLAG Save status of flag 41

g5 FIX @ . Set flag 40

g6 X<>Y

87 .39

#8 STOFLAG Restore flags @-39

g9 R] This sequence is faster than
16 RT the alternative: RDN, RDN
11 41

12 STOFLAG Set flag 41

13 R]

14 RY

15 END

-219-

:i
:
3
:
L
%
.,
.
z
L
4

4.7. The program "BR" (block rotate) listed below is one possi-
ble solution. The first 10 lines of this program form the sum
1.001*sss+.000061*(nnn-1). Lines 11-21 add 1 if rrr<@ or .01

if rrr>@¢. At this point the number in x is

sss.(sss+1) (nnn-1) if rrr>@, or

(sss+l).sss(nnn-1) if rrr<4g.

The absolute value of rrr (line 14) ends up in Y, where it can

be used as a DSE counter in the LBL @1 loop.

"BR" program listing

d1#LBL “BR" 85 1 E-5 15 80 T 22¢LBL 81
8z .1 a3 » 16 SIGH 23 REGSHRP
83 % 18 57+ ¥ 17 CHS 24 ISE Y

84 + {1 ¥ L 18 %472 25 GT0 81
83 XOY 12 SORT 19 ¥OY 26 END

86 1 13 Bt 28 RIN

a7 - 14 ABS 21+ 43 BYTES

-220-

S

APPENDIX A
The VER and 7CLREG bugs

If your card reader is a revision 1G or higher, you may
skip to the discussion of the 7CLREG bug on the next page.
To find out which revision you have, run Catalog 2. If you
see one of these headers:

CARD READER
CARD RDR 1D
CARD RDR 1lE
CARD RDR 1F
then your card reader has the VER bug. If you see
CARD RDR 1G
then your card reader does not have the VER bug.

Here is the full story on the VER bug (for card readers
up to 1F). When the card reader's VER (verify) function is
executed with an extended memory module plugged into port 2
(port numbers are shown on the bottom of your HP-41 next to
the serial number), the first register of that module will be
altered. The same warning applies to having an extended
memory module plugged into port 4 of a port extender or built
into a dual Extended Memory module (see Appendix C).

When you use VER under these conditions, one register
(decimal location 10@7) of your data or program information in
extended memory will be incorrect, unless there was no data in
the port 2 module. It is even possible that the altered
register will be a file header register, disrupting the ex-
tended memory directory.

If this discussion is not completely clear to you, come
back to it after you read Chapters 2 and Section 16C. For the
present, just refrain from executing the card reader function
VER if you have an extended memory module in port 2. If you
must have an XMemory module in port 2, at least make sure that
the module in port 1 or 3 will be filled before the one in

-221-

port 2 is used. This is easy to do:
l) If you have only one XMemory module, put it in port 1
or 3.
2) If you have two XMemory modules, install them at the same

time (while the calculator is turned off, of course).

If you follow this procedure, the register affected by VER
will be the 366th register of extended memory., If you add up
the file sizes shown in the extended memory directory and add
2 more registers for each file header, you can figure out
which file contains the 366th register. That file should be
checked or purged after a VER operation. If the 366th regis-
ter is the second of the two header registers for a file, that
file and all the following files will probably be lost. This
paragraph will become clear after you read Section 1@C.

Now for the good news. It is possible to completely
eliminate the destruction of the 366th extended memory regis-
ter. The synthetic program "VER" introduced in Section 16D
does the job, in less time than it takes to press XEQ "VER".
If you have a port extender (Appendix C), another technique is
almost as handy. Just switch off all XFunction and XMemory

modules before executing VER.

All card readers have the 7CLREG bug. The card reader's
7CLREG function is intended to simulate the HP-67/97 CLREG
function. This 7CLREG function can ruin an entire module of
extended memory. If you execute 7CLREG when the SIZE is less
than 25, some of the data near register 364 of extended memory
will be lost. This assumes that the recommended module plug-
in procedure was used, so that the module in port 1 or 3
contains register 365 as its last register. In addition,
7CLREG is likely to cause all extended memory data starting at
register 366 to become inaccessible. The solution is to avoid
using 7CLREG, or to precede it with the sequence SIZE?, 25,
X>Y?, PSIZE (see pages 74-75) to ensure a SIZE of at least 25.

-222-

APPENDIX B
EXECUTION TIMES FOR EXTENDED FUNCTIONS

Whenever you write a program, you face choices between
different ways of obtaining the same result. A table of
execution times for various functions is a helpful tool in
making these choices. For example if you want to put the
value 1 in X, you might not be aware that the sequence CLX,
SIGN is almost 40 milliseconds (65%) faster than the usual
digit entry 1. 1In a loop which will be executed many times,
this difference could be worth the extra byte of program space
used.

A table of execution times for important built-in (Cata-
log 3) functions can be found on pages 145 and 146 of "HP-41
Synthetic Programming Made Easy”. Execution times, in milli-
seconds, are presented in this appendix for most of the exten-
ded functions, including the ones for which you are likely to
have alternatives, so that you can make the best choice of
functions when writing your own programs.

These execution times were measured by Clifford Stern,
using his Time module application program that was presented
in "HP-41 Synthetic Programming Made Easy". Although each
timing run was automated, the entire process was still quite
an effort because of the large number of variables that affect

execution time.

-223-

Execution times for the extended functions

All times are listed in milliseconds (thousandths of a second)

ALENG 168-3.5C-5.8INT((C-1)/7),

where C is the number of characters in the ALPHA register.
ANUM 95 to 390 (unpredictable)
APPCHR 237+16.2C+12.1R+file increments”

where C is the number of characters appended, and

R is the record number.
This formula assumes R is the last record of the file;
otherwise APPCHR will be slower and less predictable.

APPREC 211+6.9C+12.1R+file increments
ARCLREC 458+12R+file increments
AROT X>0: 286-7.77C-6.6INT((C-1)/7)-16.9X

X<@: 287-7.77C-6.6INT((C-1)/7)~-10.9(C-|X]|)
ATOX X=@: 145
X>0: 167-4.28C
CLFL 199+3.24*FLSIZE+file increments
CLKEYS 326+12.2G,
where G is the number of global (Catalog 1) LBLs present.
CRFLAS 246+3,.6°FLSIZE

CRFLD 246+3,6°FLSIZE

DELCHR unpredictable, but slow

DELREC unpredictable, but slow

FLSIZE 72.9+file increments

GETP 1099+115*FLSIZE

GETR 58.5+12.5°FLSIZE+2.5(SIZE~-FLSIZE)+file increments
GETREC 35¢0+12.1R+file increments

*File increments are: 12.9(N-1)+9E for the working file, or
136+12.3(N-1)+9E for a named file,

where N is the file number in the extended memory directory

(1 and up) and E is the number of the extended memory block in

which the file resides. E can be 6, 1, or 2(see Figure 10.1).

~224-

GETRX 116+9.9D+file increments,
where D is the number of data registers retrieved.
GETX 63.5+file increments
INSCHR unpredictable, but slow
INSREC unpredictable, but slow
PASN depends on search time of Catalogs 1, 2, and 3 until

the named label or function is found.
PCLPS 709+1,0P+16G,
where P is the number of program registers cleared.
POSA 83.5 to 281
POSFL 190+17.0C+24 ,5R+file increments
where C is the number of characters scanned, and
R is the number of records scanned.
PSIZE 746+4.1X
PURFL 278+file increments
This formula assumes you are purging the last file in the
extended memory directory. Otherwise PURFL will be
slower and less predictable.
RCLFLAG 36.8
RCLPT or
RCLPTA 192+file increments
REGMOVE 77+6.5D,
where D is the number of data registers in the block.
REGSWAP 75.6+7.4D

SAVEP 350+90°*FLSIZE+file increments

SAVER 56+12.5°SIZE+file increments

SAVERX INT(X)=0: 1062.6+9.9D
INT(X)#0: 169.3+49.9D

SAVEX 59.6+file increments

SEEKPT or

SEEKPTA Data files X=@: 69.6+file increments
.BP1<X<1l: 65.2+file increments
ASCII files X=@: 1¢2.3+file increments
.001<X<1: 96.2+file increments
X>1 Slower and less predictable.

-225-

SIZE? 56+2,6X
STOFLAG X=alpha data: 35.1
X=bb.ece: approx. 58+20F,
where F is the number of flags restored.
X<OF 100
XTOA X=numeric: approx. 48
X=alpha data 47+3.7C,
where C is the number of characters appended,
plus 1 or 2 ms if ALPHA is not clear.

ASROOM unpredictable
CLRGX 67.6+1.19D

EMROOM 91+file increments
RESZFL unpredictable
ZREG? 53

XcompareNN? 45 to 50 ms, minus about 4 ms if Y=0,.

-226-

e

APPENDIX C
HP-41 BOOKS, PUBLICATIONS, AND MODULES

This appendix lists several excellent sources of further
information about your HP-41 system. These range from the

introductory to the very advanced.

1. An Easy Course in Programming the HP-41, a book by Ted
Wadman and Chris Coffin. This is by far the best book for
anyone who has trouble getting through the HP-41 Owner's
Manual. If you know a calculator novice who needs a very easy

to read, simple, introductory book on the HP-41 calculator,

this is it. If your dealer does not carry this book, you can
order it from:

Grapevine Publications, Inc. , Dept. X

P.0. Box 25724

Portland, OR 97225 U.S.A.
The price per copy is $15.60 plus shipping, which is $2.00
(usa), $3.50 (Canada), or $6.60 (elsewhere). Checks must be
payable through a U.S. bank.

2. HP-41 Synthetic Programming Made Easy, a book by Keith

Jarett. 192 pages, plastic spiral bound. The most up-to-date
and readable introduction to the fascinating subject of syn-
thetic programming. Contains application programs for the
Extended Functions and Time modules. Works equally well with
the HP-41C, CV, or CX. Includes a plastic Quick Reference
Card for Synthetic Programming, a $3.00 value. 1f your dealer
does not have this book, you may order it directly from:

SYNTHETIX, Dept. X

P.O. Box 113

Manhattan Beach

CA 90266 U.S.A.
The price per copy, is $16.95 plus shipping, which is $1.00

~227-

(UsA, book rate), $2.00 (USA, United Parcel), $3.0¢ (USA or
Canada, air mail), or $5.55 (elsewhere, air mail). California
residents add sales tax. Checks must be payable through a
U.S. bank. This same price and shipping schedule applies to
"HP-41 Extended Functions Made Easy".

3. The HP-41CX Owner's Manual, in two volumes. An excellent

general HP-41 reference. These are the best, most complete
calculator manuals HP has ever produced. Order them through
your dealer or direct from HP (call 80#-538-8787). The part
numbers are ¢9641-99474 (Vol. I) and (0041-90492 (Vol. 1II).

4. Synthetic Programming on the HP-41C, a book by William C.

Wickes. 92 pages, softbound. The first book on synthetic
programming, and an excellent follow-up to "HP-41 Synthetic
Programming Made Easy" (above). Contains many useful details
needed to complete your knowledge of synthetic programming,
You can order it from:

Larken Publications

4517 NW Queens Ave.

Corvallis, OR 97334 U.S.A.
The price is $11.90 postpaid, by surface mail. For airmail,
add: $1.06 (UsA, Canada, Mexico), $2.00 (Europe, South Ameri-
ca), or $3.90 (elsewhere). Checks must be payable through a
U.S. bank.

5. Calculator Tips and Routines (Especially for the HP-41),

a book edited by John Dearing. 138 pages, spiral bound. This
book contains many listings of routines from the PPC ROM (see
item 6), plus a great number of other short, useful instruc-
tion sequences and tips. This book is available from dealers
or directly from:

Corvallis Software, Inc.

P.O. Box 1412

Corvallis OR 97339-1412 U.S.A.

-228-

The price is $15 within the USA and Canada, $206 elsewhere,
airmail prepaid. Checks must be payable through a US bank.

6. The PPC Calculator Journal, published by Personal Program-

ming Center, a non-profit, public benefit California corpora-
tion dedicated to personal computing. The issues from July
1979 (Volume 6, Number 4) to the present contain a wealth of
information on the HP-41 system. The PPC Calculator Journal
is the most up-to-date and comprehensive source for such
information,

To obtain PPC membership information and a sample Jour-
nal, send a 9" by 12" self-addressed stamped envelope with 3
ounces of postage to:

PPC, Dept. XF

2545 W. Camden Place

Santa Ana, CA 92704 USA

7. The PPC ROM, an 8K custom ROM module designed by PPC mem-
bers and manufactured by Hewlett-Packard. The PPC ROM con-
tains 122 programs of general utility, and it comes with a
5@@-page User's Manual. It is an excellent value both for its
utility and as a learning tool, because all the programs are
fully documented and accompanied by line-by-line analysis.
Many calculator dealers now carry the PPC ROM. You may
also write to PPC at the above address for price and ordering
information. Mark the lower left corner of your outer envel-
ope “PPC ROM ordering info" and enclose a self-addressed,
stamped envelope if possible. A substantial discount on the
PPC ROM is available to PPC members. This discount could

almost pay for your first year's membership.

8. The AME Port-X-Tender, a flat, thin box that fits under the

HP-41 and adds six more plug-in positions, for a total of ten.

The 6 extra slots can be used for any modules or peripherals,
including the HP-IL module. These extra slots are switchable,

-229-

allowing you to switch between two sets of extended memory if
you have an HP-41C or CV (this will not work with the CX
because some of the extended memory is internal and cannot be
switched). A lithium battery maintains the contents of all
modules, whether switched on or not. The Port-X-Tender plugs
into port 3 with a short cable. The box is held in place with
fabric fasteners. No modifications to your HP-41 are re-
quired. If your dealer does not carry the Port-X-Tender, mail
your order to:

AME Design

2554 Lincoln Blvd. Suite 5000

Marina Del Rey, CA 90291 U.S.A.

Telephone (213)-306-1249
The US price is $149.95 plus $5.008 for shipping. Elsewhere,
please write for price information. California residents
please add sales tax.

9. Double and Triple XFUNCTIONS and XMEMORY modules. These are
multiple modules in a single package. This frees some of your

4 ports for other uses, so you don't have to resort to swap-

ping modules in and out of the calculator. The prices are:
2 XMEMORY $169.60 (for the HP-41C, CV, or CX)
XFUNCTIONS + 1 XMEMORY $160.00 (for the HP-41C or CV only)
XFUNCTIONS + 2 XMEMORY $250.00 (for the HP-41C or CV only)
These prices include manuals and shipping., California resi-
dents add sales tax. Mail your order to:
Software, Operations, and Systems Co.
945 Medford Rd4.
Pasadena, CA 91167 U.S.A.
Trade-in credit is available for any single modules you may
have. Write for details. Other multiple modules are also
available,

-230-

o

APPENDIX D
BARCODE FOR PROGRAMS

Barcode is provided here for all but the shortest
programs in this book, so that you may conveniently enter
these programs into your HP-41 using the 82153A Optical Wand.
If you have a wand or if you can borrow one, this will save
you some time,

Always protect the surface of the barcode with a clear
plastic sheet. It may also be helpful to place a clean dark
sheet of paper behind the barcode to improve the contrast.

If your barcode is not readable, try inking in any
incomplete bars, scanning the rows faster with the aid of a
straightedge, or holding the wand at a different angle. If
all else fails, try another wand.

If you have a card reader or tape drive, you should
record these programs in case your dog or cat finds this book.
Extended memory should not be considered as permanent storage,
since it is susceptible to MEMORY LOST.

-231-

|
:
E

TR TN SRR TS TR AR T R TAR IET

BESSEL FUNCTION PAGE 1

OF 1
PROGRAM REGISTERS NEEDED: 12

ROW 1 (

ROW 3 (21: 33)
ROW 7 (63:63)

VIEW ASCII FILE PAGE 1
OF 1

PROGRAM REGISTERS NEEDED: 13

ROW 1 (1:3)
ROW 2 (3: 10)
ROW 3 (10: 14)

-232-

—

WRITE, PARTIAL WRITE, READ, PAGE 1
PARTIAL READ ASCIIFILE OF 2

PROGRAM REGISTERS NEEDED: 42

ROW 1 (1:5) _
O 0
ROW 2 (5:14)
O 0
ROW 3 (15 : 23)

0000 0
lwmmmmwmwmmmmmwwmmmmmmmmmmmwwmmmwmmm
WWWWMWWWWWWWWWWWWWMWMWW
AR
ROW 7 (45 : 53))
AT
ROW 8 (53 : 62)
g O A
ROW 9 (62: 70)
0O
ROW 10 (71 : 80)

T i
ROW 11 (80 : 88)

O 0
ROW 12 (89 : 93)
00000
WWWWWMWWWMWMWMWWWWMWMWMWWMW
IWWWWMWWWWWWWWWWMWWMMMWWWWWMWM
A
ROW 16 (114: 120)

O OO
ROW 17 (121 : 128)
0O
ROW 18 (128 136)

O A

-233-

WRITE, PARTIAL WRITE, READ, PAGE 2
PARTIAL READ ASCII FILE OF 2

BLOCK CLEAR USING ZREG PAGE 1
OF 1
PROGRAM REGISTERS NEEDED: 7

O
e
R
N

-234-

~—

BLOCK ROTATE PAGE 1
OF 1

PROGRAM REGISTERS NEEDED: 7

ROW1 (1:7)
N0 O
ROW 2 (8:15)
A
ROW 3 (15 : 25)
0 O
ROW 4 (25 : 26)

T

VIEW REGISTERS PAGE 1
OF 1

PROGRAM REGISTERS NEEDED: 9

ROW 1 (1:4)
0T
ROW 2 (4:12)
00 R A
ROW 3 (13:22)
0
ROW 4 (23:31)
A
ROW 5 (32: 33)

T i

-235-

ALPHA SORT PAGE 1
OF 1

PROGRAM REGISTERS NEEDED: 11

ROW 1 (1:3)
i
ROW 2 (4:12)
O A T
ROW 3 (12:20)
i
ROW 4 (21 : 28)
0
ROW 5 (28 : 36)
e
ROW 6 (36 : 38)

O

COUNT BYTES WITH XMEMORY PAGE 1
OF 1
PROGRAM REGISTERS NEEDED: 8

O
0
O
A

-236-

~—

SOLVE, DERIVATIVE, INTEGRAL PAGE 1
OF 2

PROGRAM REGISTERS NEEDED: 58

ROW 1 (1:4)
Mmmmm—m=n i
ROW 2 (5:10)
0 0 O
ROW 3 (10: 15)
O
ROW 4 (15: 20)
L
nmmwmmMwmwmwmwmmmmwwwmwmmmmmmmmw
MWWMMMMWMMmMMMMWMWmMMMMMMMWWWMWMWN
A
ROW 8 (41: 49)

O O
ROW 9 (49 : 54)
0
ROW 10 (54 : 57)

O 0 O
ROW 11 (58 : 63)
0
ROW 12 (64:71)
0 O O
ROW 13 (71:77)
0
ROW 14 (78 : 89)
A
ROW 15 (90 : 99)

00 AT
MMMWMWWWNWWMNMWWWWMMMMWWWNMWWWMW
mmmwmmwmmmmwmmmmmmmmwmmmmmmmmmmmmmmmmmmmm
A

-237-

SOLVE, DERIVATIVE, INTEGRAL PAGE 2
OF 2

ROW 29 (203 : 210)

-238-

NAME-ADDRESS—PHONE PAGE 1
MAILING LIST PROGRAM OF 2

PROGRAM REGISTERS NEEDED: 64

ROW 1 (1:4)
e
ROW?2 (4:13)
A
ROW 3 (14:19)
i
ROW 4 (20: 24)

L 00
ROW 5 (24 : 26)
000
ROW 6 (26 : 29)
0
ROW 7 (29 : 36)
D0 0O O
ROW 8 (37 : 44)
T
ROW 9 (44 : 45)
O 0 A
ROW 10 (46 : 54)
0 0 0 A
ROW 11 (55 : 62)
0 A
ROW 12 (63 : 66)
A
ROW 13 (67 : 72)
0O
ROW 14 (73:81)

O 0O
ROW 15 (82: 86)
T T
ROW 16 (87 : 97)
T
ROW 17 (98 ; 100)
T
ROW 18 (100: 106)
0

-239-

NAME-ADDRESS-PHONE PAGE 2
MAILING LIST PROGRAM OF 2

T " || ||"I"||I|II|

-240-

—

{

—

TEXT EDITOR PAGE 1
OF 4
PROGRAM REGISTERS NEEDED: 115

ROW 1 (1:8)
00O
ROW 2 (8: 16)
O
ROW3 (17:25)
O
ROW 4 (26:31)
T
ROW 5 (32 : 39)
0
ROW 6 (39: 44)
O
ROW 7 (44 :51)

O O
ROW 8 (51:57)
O
ROW 9 (58 : 65) .
0 A
ROW 10 (66 : 75)
O
ROW 11 (75:78)
T
ROW 12 (79 : 84)

00 0
ROW 13 (85 : 91)
i
ROW 14 (92 : 98)
O
ROW 15 (99 : 106)
00
ROW 16 (107:114)
OO A
ROW 17 (115:122)
00
ROW 18 (123: 130)

O 0 0O

~241-

TEXT EDITOR PAGE 2
OF 4

ROW 19 (130:132)

O
O
O
O
WWWWWWWMWWMWWMMWWWMWWMWWWWMHWWI
O
e
e
I
e
IWMmwWWMWMWWWWMMMMWMMWWMWWMWWNWWMM
WMWWWWMWWWWWWMWWWWMWWWMMMWWWWW

-242-

TEXT EDITOR PAGE 3

OF 4

||I|IIIII||||I|I|||I||||I||I|I||||||||I|||||||||I|II||IIII|I|||III|II|||||||||||I||||II||||I|II|I|I||||II|I|I|I|||I|I|||I||I||IIIII|
I|I|I||I|||I|||I|I||||||II|||I|I|I|||||II||||I|||I||||I|||II||||II|||II|IIIII|I||||||II||II|I||I|||I|I|I||I|||IIII|||II||III|I||I|I|
||III|IIII|||I|II|||I|||||||||||II|||I|I||I|I||II||I|||||I|I|||||II|I|II|||||II||II||I|||I|||||||Il||I||III||||||I|I|||||III|I|||II|
e
ROW 41 (273: 279)
00
ROW 42 (280 : 286)

T
ROW 43 (286: 291)
000
ROW 44 (201 : 296)
Ol
ROW 45 (297 : 304)

A O
ROW 46 (304 : 309)
00
ROW 47 (310:312)
A r
ROW 48 (312: 320)
000 A
||||IIIIII|||I|l|||||||||||||II||III|I|||||||||I|||||I|||||IIII|||||||I|III|I||II||I||II|IIIIIIIII|||II|IIII|I||||||||I|||I||I||||I|
I||||I|||Il||||||||||||||II||||I|II|||II|I||I|I|III||||I|||I|||III|||IIIII|I||||I|II|I|I|I|||||II||I||||I||I||IIII|I|||I|I||IIII|II|
A
ROW 52 (337 : 339)

000 AR
I||||IIIII|||I|II|II|I||||IIII|||||I|||||I|I|||I|I||I|I||||II||||III|||I|I|I||II|||I||||I|||||I||||I||||I|II|||II||I|I||I||I|||I||I|
T

-243-

TEXT EDITOR PAGE 4
OF 4

III||IIII||||I||II||||l|I|||l||||||I|||IIIIIIIIII||I|l|I||I||IIIII||||I|||I|||I|||||IIIII|II|||||I||Ill||l||||II|II|||||I||II|I|||I|
||IIIIIIIII|||I||||I||l|||IIIII|II|||||||||I|I|I||||l||I|II|I|I||||IIIIIIIIII||||I|III||IIIIII|||I||||I|I|I|I|II|||I||II|||I|I|||II|
A
|||I||III||||II|I|||I||||||||Ill|Ill|I||IIIIIIIIII|II|IIIIIIIIII|||II||||II|I|I||||||II||II|IllIIIIIlIIIII|||||||||||II|II||I|||||I|
IIIIIIIIII||IIIIII|||||||II|I||II||I|I|I|II|||I|||I||II|||I|I|||IIlIIlIIII|IIIIIIIIIIIIII|l||II|IIIll|IllII|I|I|||||||||I|I|I||II|II
|||IIIII|l|IIIII|Ill|I|I|IIIIIIIIIIII|I||I|!|||||||III|I|II|IIIII|IIII||||I|||III|IIIIIIIIIIIIIIIIIIIIIIIIII AT
A

~244-

HP-16C SIMULATOR PAGE1
OF 2

PROGRAM REGISTERS NEEDED: 43

ROW 1 (1:4)
T R

ROW 2 (4:13)
A
ROW 3 (14 : 21)
O
ROW 4 (22 :29)
T
ROW 5 (29 : 36)

O O
ROW 6 (37 : 44)
AR
ROW 7 (45 : 54)
0 O R
ROW 8 (55 : 62)
0
ROW 9 (63:71)
O
ROW 10 (72:79)
L
ROW 11 (80 : 88)
0 0 O
ROW 12 (89 : 98)
AT
ROW 13 (98 : 107)

O A
ROW 14 (108 115)
O 0 A
ROW 15 (116:122)

A O
ROW 16 (123 131)
i
ROW 17 (132: 141)
O O

ROW 18 (142:151)

-245-

\
;
r
\

HP-16C SIMULATOR PAGE 2

OF 2

ROW 19 (152:1

2 : 160)
OO
ROW 20 (161:169)
0
ROW 21 (170:178)

P 0O
ROW 22 (178 : 186) -
L
ROW 23 (187 :191)

-246-

EXTENDED FUNCTIONS » PAGE 1
OF 1

PROGRAM REGISTERS NEEDED: 11

ROW 1 {1:6)
OO O
ROW 2 (7:9)
T

ROW3 (9:13)
0 0
ROW 4 (14 : 20)
OO
ROW 5 (21 : 28)

O A
ROW 6 (28 : 32)

O A

EXTENDED FUNCTIONS- PAGE 1
TIME MODULE-WAND OF 1

PROGRAM REGISTERS NEEDED: 10

ROW 1 (1:4)
O
ROW 2 (5: 11)
A
ROW 3 (11:14)
0 A
ROW 4 (14 : 20)
O 0O A
ROW 5 (21: 29)
O O
ROW 6 (29: 29)

AR RO

-247-

VERSION 1 PAGE 1
VERIFY CARD

OF 1
PROGRAM REGISTERS NEEDED: 16

ROW 1 (1:4

)
O A
ROW 2 (4:5)
L
ROW 3 (6:11)
L
ROW 4 (11:17)
0
ROW 5 (17 :21)
L
ROW 6 (22: 28)
O 0
ROW 7 (28:32)
0
ROW 8 (33 : 41)
O O
ROW 9 (41: 45)

PURGE FILE FIX PAGE 1

OF 1
PROGRAM REGISTERS NEEDED: 6

ROW 1 (1:2

A

)

0

0
QT

-248-

~

VERSION 2 PAGE 1
VERIFY CARD OF 1

PROGRAM REGISTERS NEEDED: 16

ROW 1 (1:4)
0000

ROW2 (4:5)
0

ROW 3 (6:11)
R
ROW 4 (11:17)
A A
ROW S5 (17:21)
OO0
ROW 6 (22: 28)
A
ROW 7 (28:32)
00
ROW 8 (33:41)
A
ROW 9 (41: 45)

O

EXECUTE PROGRAM IN PAGE 1
EXTENDED MEMORY OF 1

PROGRAM REGISTERS NEEDED: 3

ROW 1 (1:4)
ROW2 (5:7)

-249-

SAVE, GET, SUSPEND, REACTIVATE PAGE 1
KEY ASSIGNMENTS OF 1

PROGRAM REGISTERS NEEDED: 31

ROW 1 (1:4)

L
ROW 2 (4: 11)
T
ROW 3 (12:19)
K
mWMWWMWWWMWWMMMWWWWMWW%MMWWMMW
IWWWWWWWWMWWMMWWMMWWWWWMMWM
mmmwmmmmmwmmmwmmwwmmmmwmmwmmn
HMWWWWMMWWWWWWWMWWMWMWWMM
IWMWWWWWWWWWWWWMWWWWMWW%MWMM
e
ROW 10 (65 : 68)
L
ROW 11 (68 : 76)

O O
ROW 12 (77 : 84)
T
ROW 13 (84 : 90)
OO

ROW 14 (91: 99)

0 0O
ROW 15 (100 : 104)
OO A
ROW 16 (105: 110)
T
ROW 17 (110:111)
I

-250-

—

-

—

—

—

/

GETK INITIALIZATION PAGE 1
OF 1

PROGRAM REGISTERS NEEDED: 14

ROW 1 (1:4)
0

ROW 2 (4:5)
A

ROW 3 (6:13)
0O A
ROW 4 (14:18)

O OO
ROW 5 (19 : 28)
0O
ROW 6 (28 37)
0 0
ROW 7 (38 : 45)
A
ROW 8 (45 : 45)

AT

-251-

WRITE FILE, READ FILE, PAGE 1
RETRIEVE PROGRAM FILE OF 2

PROGRAM REGISTERS NEEDED: 60

ROW 1 (1:4)
O
ROW 2 (5 : 8)
0 0
ROW 3 (8: 13)
O
ROW 4 (14 :21) .

L
ROW 5 (21 : 26)
0
ROW 6 (26 : 33)

L
ROW 7 (34 : 41)

O A
ROW 8 (42 : 48)
L
ROW 9 (48 : 52)

L
ROW 10 (52: 57)

D A
ROW 11 (57 : 64)
O
ROW 12 (64 : 73)

0 A

ROW 13 (74 : 82)

O

ROW 14 (83:91)

A O A

ROW 15 (91 : 98)

O O O A

ROW 16 (98 : 104)

L

ROW 17 {105 113)

A

ROW 18 (113: 121)

O A

-252-

«c ¢ (¢

‘

¢

WRITE FILE, READ FILE, PAGE 2
RETRIEVE PROGRAM FILE OF 2

ROW 19 (122:128)
0

ROW 20 (128 134)
T
ROW 21 (135 143)

O A A
ROW 22 (143: 151)

I
ROW 23 (152: 159)
T
ROW 24 (160 : 168)
D
ROW 25 (168 : 176)
O

ROW 26 (177:183)
i
ROW 27 (184 : 190)

T i
ROW 28 (191:197)
O
AOW 29 (198 207)

OO 0
ROW 30 (208 : 215)
L
ROW 31 (216 223)
R
ROW 32 (224 : 232)
D 0
ROW 33 (233 : 233)

T

-253-

ASSIGN, PROGRAMMABLE ASSIGN, MAKE PAGE 1
KEY ASSIGNMENTS WITH XFUNCTIONS

OF 2
PROGRAM REGISTERS NEEDED: 54

ROW 1 (1:4)
O
ROW?2 (5:9)
L
ROW 3 (10: 18)
D
ROW 4 (18 : 25)
O
ROW5 (25 : 33)
L
ROW 6 (34 : 41)
0 0O Ol
ROW 7 (42 : 46)
O
ROW 8 (47 : 55)
At
ROW 9 (55 : 60)
L
ROW 10 (61: 67)
O
ROW 11 (68 : 75)
L
ROW 12 (76 : 83)
O
ROW 13 (84 : 92)
L
ROW 14 (93 : 103)
O
ROW 15 (104: 114)
O
ROW 16 (115: 124)
O
ROW 17 (124:132)
0
ROW 18 (132: 140)
L

-254-

ASSIGN, PROGRAMMABLE ASSIGN, MAKE PAGE 2
KEY ASSIGNMENTS WITH XFUNCTIONS OF 2

ROW 19 (141:149)
0O

ROW 20 (149 : 155)

0 0O
ROW 21 (155: 160)
A
ROW 22 (161: 167)
O O A
ROW 23 (167 :174)
0
ROW 24 (174:179)
0 A

ROW 25 (179 : 185)
AT
ROW 26 (186:192)
0 O A
ROW 27 (192: 196)

O O A
ROW 28 (197 : 204)
O 0
ROW 29 (205 : 209)

00 00 OO

-255-

NOTES

~257-

NOTES

-258-

NOTES

J

J o)) D

)

y)

-259-

NOTES

~260-

NOTES

~-261-

INDEX

ALENG.eccasososcscsocssecesb3
M ALSORT™ ¢c.ceecenccoseseed5—96
ANUM.ceoeesesococssoscsaseeabd
APPCHRueessasscssesesaeal?,bl
APPREC. . cacceoscccecseeld,5@
ARCLREC.ceeeccssscccssscseeclb
AROT.eeeesccosnssasccscssscad?
ASCITeeeonasccssnoccscsceanaal
ASCII character codes,..60-61
ASCII (or text) file......33
¥ ASGM eeececncccccesss 207213
ASROOM.cceeseeossccsessedrl=52
ATOXeeoeosasosccasassssseeadd
"BCM tteectcccccccssscececsdl
B =1 e 2
Bessel functioN..ceesccesece?
BUGeeeoeovsscsossassccnossssnsel
BYt€Civeeeoeosonceesses23, 97
Byte cOUNt.cecececsccssoesed?
Card Reader.cesceeseesd,5,221
"CBX" teeesccocccccnseesd7—100
CheckSUMeececoooss.98,181,199
CLFL.ccosocosscsececesell, 48
CLKEYSceeeoeocsosccssccsnsss84
(04 1 2{¢). G 1
Compiling.sscecccsacess’, 189
“Crash" recovery.....214-215
CRFLASccscesecsccscnsscesseld
CREFLDueeccssccooncacees24,107
Current (working) file....20
Current pProgralecececcssecseld
DELCHReeeeooccssaccosocncesil

-262-

"DERIV" cieeecccsccsnscecesll
Differentiation......111-12¢
DirectoOryeeeseseeeesesll-11,20
EDececescsoncnsosncnsad2, 141
N EFTW” ceevececcsncnnsaeceall?
EMDIRceeeceaceasseanesslf=11,20
Execution time.......223-226
MEXM" i ceeececncecessalB89-192
"FEX" teecesssccosscosnncccel®
Fil€ueevoososeooaessl=2,16,23
File headers......23,180-181
File pointers.....25,180-181
File typeSeeeesseceesel—2,10
FLSIZE:eveeesccsccooccasasll, 12
GETASceeeescscscsccccnccsasd?
GETKEYeeeeeaasoasosesses85-89
GETKEYX 4t esooooosoesaesdB-93
GETP.eoessscscanccaecseald,lo
GETReceoccccccsscrssccscseell
GETREC.ceseeacscsccscacsces3b
GETRXeeeeoeosesoccsceseld, 27
GETSUB.veeesocscsscsassccsel?
GETXueaeeocsacsessccsssasceeld
Header registers..25,189-181
HP-16 simulator......l161-168
INSCHR:ceessocasccacossssel8
INSRECeeessascescnsnsss38,51
MINTEG" ceeeovosscscscanselll
IntegratioONeieceesessal21-130
Keycod€.eceevsooosess83,85,90
Local labelS.ceseeeese82,193
Mailing liSte.eeseesssl31-140

——

MEMORY LOST......169,186,214
MEMOry MaPecesecosccocssesl?d
Memory structure.....178-182
NormalizatioON..eeseeeseas182
Partition codecscceccsc.s178
PASNeeceooonsossacsacsese82-85
PCLPSeececscsssssscscccsesld
PCLPS Warningeeesesoseccesesl8
"PFF" cecscccccccscsss 187-188
Pointers in XMemory...25,189¢
POrt NUMDET.ceeecescosssss22]
POSAececcscsoscancssecss63-64
POSFLesosocscnvassocssssssdl
PPCececccsscasssscncsceasll)d
PPC ROM.veeoocoososeceess229
Program file names.....5,180
PSIZEceeccsosssnccccccocseld
PURFLecocosecacscsscaesld, 182
PURFL buge.e....19,21,182,187
kb -7 X P
PRAS" ceeeeccccssnececssdd—46
RCLFLAG.escescscaacccsssssb?
RCLPT.ceceossssccccnscesselB
RCLPTAceesesasosncsscnsenssl8
REGMOVE.cesoecccsacccssaseslb
REGSWAP.cevecsccsnenasasll=79
RESZFL.ssecassovossesss32,45
Revision cod@.ecesecs.4=5,221
Root finder.....ee...191-1190
SAVEAS esesevscsccsccsevesedl
SAVEP .0ececosssssosessel2,15
SAVEP wWarning.eceeceseceoessl2
SAVER..eeacecescssccsssece3l
SAVERXcecossavsannsacsses2D, 27
SAVEX.eecoecassancsscsscscsselB

SEEKPTeecoascoscoscsessecsl8
SEEKPTAccoevssscsnsasocsascssl2b
SIZE?eesececsccassssaascssld
Solutions to problems....217
W GOLVE” ¢eeocccssseoeald2-103
Stack USAJCecseccscsscsessdd
STOFLAG.eeoesccessscncsseesb8
Synthetic programming.73,169
NPE™, ceeeceocrescssssldl-159
Text editOresescecsoceesssldl
MRS ceesooncsasscsansssscdl
"VER" eevesnccsceaseess83-186
VER bug......183-186,221-222
MY REG" ceesecsossansossnscsesdl
VHAS ceeeeseccsescossessdd—46
"WFL"/"RFL"/"RPF"....199-206
Working fileeeecoceoss 28,28
MXF™ eeseeesnaneassl7l-176,172
XROM NUMbErS..cceeeeesss-171
XTOA:eeeeosasssssssoncsssed8
XcompareNN?eesesosceocesssId
X< F eeeeessonccsssalB-72,167
IREG? ceeecccssosssssassesI3-94

-263-

INDEX TO PROGRAMS

Program Byte Page Barcode Description

name (s) count on page

JNX 80 7 232 Bessel function

PRELOAD 25 24 --- Register loader

VAS/PVAS 89 43 232 View ASCII file
WAS/PWAS/ Write/Partial write/Read/
RAS/PRAS 291 47 233 Partial read ASCII file
ASROOM 42 52 - ASCII file room

pva 29 69 -—— Print or view ASCII file
FEX 24 70 - FIX/ENG indirect X

BCZ 44 81 234 Block clear using REG
BR 43 220 235 Block rotate

CT 84 23 - Clear top row

VREG 57 92 235 View registers

ALSORT 71 96 236 Alpha sort

CBX 52 99 236 Count bytes with XMemory
SOLVE/DERIV/ Solve/Derivative/
INTEG 405 163 237 Integral

NAP 447 138 239 Mailing list program

TE 863 158 241 Text editor

HP-16 297 164 245 HP-16C simulator

XF 74 173 247 Single-key XFunctions

EFTW 67 177 247 Alternative to "XF"

VER 112 185 248,249 Bug-less VERify

PFF 41 188 248 Purge file fixup

EXM 19 191 249 Execute extended memory
SAVEK/GETK/ Save/Get/Suspend/Reac-
SK/RK 212 197 259 tivate key assignments
IN 93 198 251 GETK/RK Initialization

WFL/RFL/ Write file/Read file/
RPF 419 205 252 Retrieve program file

ASG/PASG/MKX 372 212 254 Synthetic key assignments

-264-

c c c r c ¢ c c c ¢ ¢ € C

r

.

k NAME

ADDRESS

\.. CITY

~

ORDER BLANK

Check your dealer for the best prices on HP-41 Extended Functions Made
Easy and HP-41 Synthetic Programming Made Easy. If your dealer does not

carry the book you want, use this order form.

HP-41 Extended Functions Made Easy

An introduction to the Extended Functions module
(built into the HP-41CX). Helps you get the most
from your Extended Functions. Over 30 powerful
utility programs. $16.95 per copy.

HP-41 Synthetic Programming Made Easy

An introduction to the creation and use of non-
keyable (synthetic) instructions. Very readable and
up-to-date. Multiples the power and convenience of
our HP-41. $16.95 per copy.

Quick Reference Card for Synthetic Programming
An indispensable aid to synthetic programming.
$3.00 each.

Combined Hex/Decimal Byte Table
More compact, btack-and-white reference card. $2.00
for 1, plus $1.00 per additional card.

Subtotal:

Sales Tax (California orders only, currently 6 or
6.5%)

Shipping, per book
within USA, book rate (4th class) $1.00
USA 48 states, United Parcel Service$2.00
USA, Canada, airmail $3.00
elsewhere, airmail, $5.55

Shipping for plastic cards (any number)
Free with a book order or with a self-addressed
stamped envelope. Otherwise $1.50

Circle the applicable charges; enter shipping total here

Total enclosed :

Quantity

Amount

$
$

Checks must be payable through a US bank.

STATE

Z\P

COUNTRY

Mail to:

SYNTHETIX
P.O. Box 113
Manhattan Beach
CA 90266 USA

UNLEASH THE POWER
OF YOUR EXTENDED FUNCTIONS!

The Extended Functions/Memory module, built into the
HP-41CX and available separately for the HP-41C and CV, is the
most powerful module that Hewlett-Packard sells for the HP-41. Un-
fortunately, the Owner’s Manual barely hints at the true capabilities
of the extended functions and extended memory.

HP-41 Extended Functions Made Easy is the definitive book on
extended functions and extended memory, by a leading expert on
the HP-41 system. The book assumes no prior knowledge of
extended functions or extended memory. Instead, it leads you step
by step from the basic concepts of extended memory through
explanations of each of the extended functions and short examples
of their use.

The second half of the book introduces over 30 utility programs,
including a text editor, a mailing list manager, programs to store text
files on magnetic cards, mathematical programs (solve, integrate,
etc.), and much more. These programs make your extended
functions more powerful, convenient, and fun to use. Barcode,
included for all programs, makes the programs as easy to load as they
are to use.

If you own an HP-41CX or an Extended Functions/Memory
module, you need this book!

ISBN: 0-9L12374-1-3

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

