

HP-41CV/CX

Surveying

Field Solutions

NOTICE

No express or implied warranty is made by D'Zign Land Survey & Development or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign Land Survey & Development nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign Land Survey & Development and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

HP-41CV/CX
Surveying
Field Solutions

I wish to thank those Surveyors and Engineers whose suggestions for additional flexibility in the programming have made the programs contained in this book what they are.

Special thanks go to Keith Cameron, my co-worker and friend, for his patience as I revised the programs right after he had learned to use them. More than once.

This book is dedicated to my wife, Phyllis, whose enthusiasm kept the whole project going.

REVISED - Second Printing 1986

Copyright © 1986 by Ted J. Kerber

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.

**published by D'Zign Land Survey & Development
Pacifica, California 1986**

ISBN 0-9616846-0-7

PREFACE

This book of programs was developed to fill the gap in available software for the HP-41C series calculators used by the field surveyor or party chief. They are compatible with the HP Survey Pac, and may be used with or without the Survey Pac module in the calculator. If used without a Survey Pac, the additional program "AZ" should be in the program memory.

In the design of the programs, an attempt was made to address the field problems encountered on a day-to-day basis in surveying.

Remote Slope Staking answers a very real need in the field, as do the Radial Inverse routines, for 'spraying' in a layout.


The programs are assembled into four groups, or sections, and one set of program cards is used for each group. Complete instructions and keystroke examples are included for each group, and most of the steps have been standardized to aid in remembering the keystrokes.

The programs are as close to menu-driven as a hand held calculator can handle, and utilize stack input prior to execution. Execution is by single keystroke, and all of the program routines are fully prompted.

The Alignment & Offset routine is a new concept in layout programs, giving coordinate solutions directly from station input, avoiding the necessity of using a traverse program with side-shots to do the work, and has a subroutine for Auto Inversing from the instrument setup point.

Lastly, those who have had to assign the program alpha labels to the keyboard, instead of typing in a five to seven letter label, will appreciate the fact that all of the global alpha commands have been restricted to two letters, and those letters are close to each other on the keyboard.

CONTENTS

Radial Inverse 1

This program calculates the distance and angle from a known backsight to points with known coordinates for radial stakeout from a central instrument setup.

Alignment & Offsets 5

This routine calculates the coordinates of any station along a centerline, or any offset to the station. The coordinates of the offsets may be calculated with or without the centerline coordinates being output.

Auto-Inverse 13

A combination of the other two routines. If the station to be used for layout is known, the inverting may be done automatically as the centerline stations and offsets are calculated.

Deflection & Chord 19

Calculates the layout information for the entrance and exit spirals of a spiral curve for layout by deflection angle and chord.

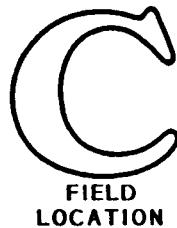
Alignment & Offsets 23

Directly calculates coordinates for any station or offset to the station within the spiral curve system, including the circular portion.

Auto-Inverse 29

If the layout is to be from a known point, this program automatically calculates the horizontal angle and distance to the centerline or offset points as they are calculated, for any station within a spiral curve system.

Tangent Offset 35


Solutions for direct layout of the entrance and exit spirals of a spiral curve system by the tangent-offset method.

Radial Inverse

39

Calculates the distance and angle from a known backsight to points with known coordinates for radial stakeout from a central instrument setup.

Topo

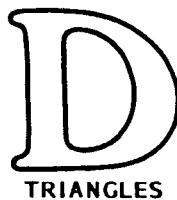
43

This program reduces the field note information for shots taken to determine the location and elevation of existing topographical features.

As-built

49

Calculates the as-built station, offset and elevation of existing structures, and automatically compares the output to the design data.


Remote Slope Staking 55

With an EDM, this program allows slope staking along any alignment composed of tangents and circular curves from a central instrument location.

Tunnel Tights

61

This program provides a quick check for 'tights', or protrusions within the excavation lines of a tunnel during construction. Output is the station, offset and elevation of any point shot, and the radius, if the point is above the tunnel springline.

Triangle Solutions

69

Provides for the solution of triangles where any of the following are the known parts: Three sides. Two angles and the included side. One side and the two following angles. Two sides and the included angle. Two sides and the following angle. Area, one side and the adjacent angle. Area, and two sides.

Program Listings

75

A

Radial Inverse

1-1

Radial inverting has become a standard procedure in the past few years, and is used for setting points on all types of surveys, from boundary corners to footing stakes. The advent of EDM has given us the capability to set accurate points at known distances without the necessity of chaining. Lower prices of instruments which have the EDM built-in, and can turn an accurate angle, has put them within "budget" reach for almost everyone.

This program calculates the distance and angle from a known backsight to points with known coordinates for radial stakeout from a central instrument setup.

If the instrument were set, as shown to the right, on a point with the coordinates of 100/100 and the backsight has the known coordinates of 600/80, it is easy to lay out the building corners by their coordinates.

This routine gives outputs as shown below when used with a printer attached, but can be used with or without the printer.

N= 425.0000
E= 350.0000

HD = 410.030
ΔRT= 39° 51' 33"

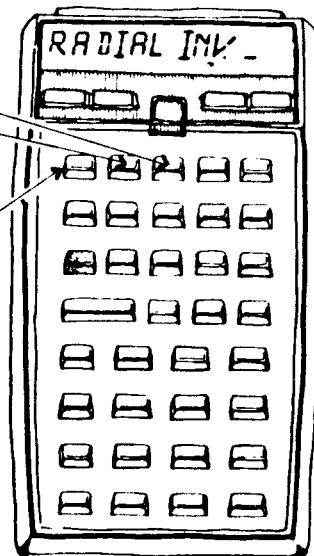
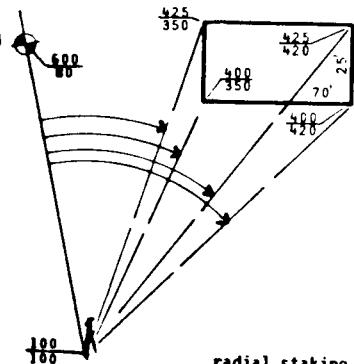
N= 400.0000
E= 350.0000

HD = 390.512
ΔRT= 42° 5' 46"

N= 425.0000
E= 426.0000

HD = 456.098
ΔRT= 46° 50' 47"

N= 400.0000
E= 420.0000



HD = 438.634
ΔRT= 49° 8' 18"

The keys used for this routine are shown in the sketch of the keyboard assignments, and step-by-step instructions are shown on the next page.

setup with known coordinates of backsight point

setup with known bearing to backsight point

inverse to selected station

KEYBOARD ASSIGNMENTS

1-2 Radial Inverse

A

There are two options for input with this program; one for known coordinates at the instrument setup point and at the backsight station, and the other for when the coordinates of the setup station and the bearing to the backsight are known. With the exception of the initial input, the operation is the same for either condition.

To begin the calculator memory should contain the programs "DMS", "STA" and "LO", and should be sized at 030. Initialize and clear to a fix-4 position by keystroking **[XEQ] [ALPHA] [L] [0] [ALPHA]**. The display will now show 0.0000.

For the condition where there are known coordinates for the instrument and backsight points:

1	Input the N-coordinate of the instrument point	[ENTER]
2	Input the E-coordinate of the instrument point	[C]
3 BACKSITE?	Input the N-coordinate of the backsight point	[ENTER]
4	Input the backsight E-coordinate	[R/S]
or, For backsight bearing known:		
1	Input the N-coordinate of the instrument point	[ENTER]
2	Input the E-coordinate of the instrument point	[B]
3 BRG=?	Input the bearing to the backsight	[R/S]
4 QD=?	Input the quadrant code for the bearing	[R/S]
then:		
5 INV. ONLY?	At this point we are only inverting to known coordinates at points we wish to set, so answer yes by	[Y] [R/S]
6 Nt E	Input the N-coordinate of the new point	[ENTER]
7	Input the E-coordinate of the new point	[A]

Output will be the coordinates of the point being set, followed by the HORIZONTAL DISTANCE, and the ANGLE RIGHT from the backsight to the point that you wish to set. If there is no printer attached, stroke **[R/S]** until the prompt **Nt E** reappears, then repeat steps 6 and 7 until all of the required inverses have been completed.

A**Radial Inverse 1-3**

As an example of the keystrokes used with this routine, and using the information from the sketch on page 1-1, we have the following:

With "DMS", "STA" and "LO" in the memory, and with the calculator in **user** mode at size 030, keystroke **[XEQ] [ALPHA] [L] [0] [ALPHA]**. 0.0000 will be displayed.

keystroke:

[1] [0] [0] [ENTER]

[1] [0] [0] [C]

prompt: **BACKSITE?**

keystroke:

[6] [0] [0] [ENTER]

[8] [0] [R/S]

question: **INV. ONLY?**

keystrokes:

[Y] [R/S]

prompt: **N \uparrow E**

keystrokes:

[4] [2] [5] [ENTER]

[3] [5] [0] [A]

output: **H= 425.0000
E= 350.0000**

**HD = 410.030
ΔRT= 39° 51' 33"**

prompt: **N \uparrow E**

keystrokes:

[4] [0] [0] [ENTER]

[3] [5] [0] [A]

output: **H= 400.0000**

E= 350.0000

HD = 390.512

ΔRT= 42° 5' 46"

prompt: **N \uparrow E**

keystrokes:

[4] [2] [5] [ENTER]

[4] [2] [0] [A]

output: **H= 425.0000
E= 420.0000**

**HD = 456.098
ΔRT=**

46° 59' 47"

prompt: **N \uparrow E**

keystrokes:

[4] [0] [0] [ENTER]

[4] [2] [0] [A]

output: **H= 400.0000
E= 420.0000**

**HD = 438.634
ΔRT=**

49° 8' 18"

prompt: **N \uparrow E**

Alternate input, with the bearing to the backsight instead of the backsight coordinates, uses the same keystrokes and will give the same output as shown, after the initial input.

The keystrokes for the alternate input are:

keystroke:

[1] [0] [0] [ENTER]

[1] [0] [0] [B]

prompt: **BRG=?**

keystrokes:

[2] [·] [1] [7] [2] [6] [R/S]

prompt: **QD=?**

keystrokes:

[4] [R/S]

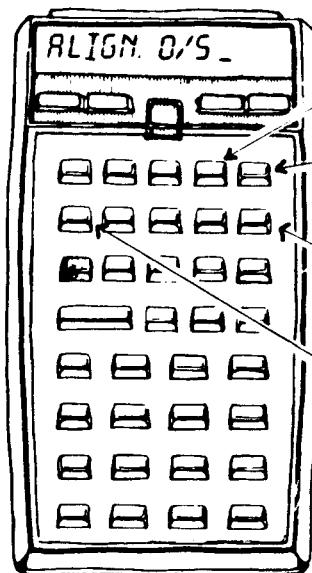
question: **INV. ONLY?**

keystrokes:

[Y] [R/S]

prompt: **N \uparrow E**

etc.


In most cases, if the bearing to the backsight is known, so are the coordinates. It is mathematically more correct to use the backsight coordinates for input, since the calculator will obtain and store the correct bearing to several decimal places of a second. The bearing you would input has already been rounded off to the nearest second.

A

Alignment & Offsets 201

This routine quickly calculates the coordinates of any station along a centerline, or any offset to the station. Input is simple and straightforward, and the output gives the option of calculated offset coordinates, with or without the centerline coordinates being output.

this routine is started by keystroking **D**

keystroke **E** after input of new station for solution

signal the beginning of a circular curve in the alignment with **J**

a constant offset may be input by keystroking **F** after the offset prompt

KEYBOARD ASSIGNMENTS

Initialize the program by keystroking **[XEQ] [ALPHA] [L] [0] [ALPHA]**. The display will show 0.0000. Remember to have programs "LO", "DMS" and "STA" in program memory. The calculator should be at size 030 and in user mode.

- 1 begin the station-coordinate routine **D**
- 2 BEG. STA? Input the beginning station as XXXXX.xx; this can be any station with a known or assumed coordinate value **R/S**
- 3 COORD. N+ E Input the N-coordinate of the beginning station **ENTER↑**
- 4 Input the E-coordinate of the beginning station **R/S**

5 BRG=? Input the tangent bearing ahead as DD.mmss [R/S]

6 QD=? Input the quadrant code for the bearing [R/S]

7 STA COORDS? At this point you can choose which option you want. If you want coordinates for the offsets, but do not need the centerline coordinates, keystroke **N**; If both centerline and offset coordinates are required, keystroke **Y** [R/S]

Note: If you select offset coordinates only, and later decide that you would like a particular centerline coordinate, such as an intersection point, B.C. or E.C., this coordinate may still be obtained by requesting an offset of "0".

8 STA? Input the station at which the coordinates are wanted [E]

The station will be displayed in the form XXX+XX.xx * [R/S]

9 If the answer to step number 7 was NO, proceed at step number 11; if yes, the display will show N= XXXXX.xxxx for the N-coordinate * [R/S]

10 If the answer to step number 7 was yes, the display will show E= XXXX.xxxx for the E-coordinate * [R/S]

11 O/S? Input the offset distance. (If left, **[CHS]**) [R/S]

12 The offset is displayed as O/S= XX.xxxx * [R/S]

13 The N-Coordinate is displayed as N= XXXX.xxxx * [R/S]

14 The E-coordinate is displayed as E= XXXX,xxxx. * [R/S]

O/S? Repeat step 11 until all of the offsets for this station have been calculated. Then return to step number 8 for the next station.

option: If a constant offset is required (3.0' to back of curb on the left side = 18.5' left, for instance) you can set this constant at step 11 by inputting the offset and keystroking **F**. From then on, the program will prompt STA? after each calculation instead of O/S? and will automatically use the offset which was input at all stations.

A

Alignment & Offsets 2-3

CURVE ROUTINE: To go around the curves, input the station at the beginning of the curve (B.C. station) at step number 8, and calculate any needed offsets as in steps 11 through 14.

15 When all of the required offsets at the B.C. station have been calculated [J]

16 **DELTA?** Input the central angle of the curve as DDD.mmss (if the curve is to the left, [CHS]) [R/S]

17 **R?** Input the radius of the curve [R/S]

18 Output will show $R = XXX.xxxx$ * [R/S]

19 Output: $N = XXXX.xxxx$ (radius point) * [R/S]

20 Output: $E = XXXX.xxxx$ (radius point) * [R/S]

21 Output: $\text{DELTA} = DD.mmss$ * [R/S]

22 Output: $EC =$ * [R/S]

23 Output: $XXX+XX.xxx$ * [R/S]

STA? Return to step number 8 and continue as before. When the stationing exceeds the E.C. station, the program automatically returns to the tangent ahead for additional stationing, until the next curve has been input.

This program routine has been designed in such a way that the station which is input after beginning a curve is compared to the station at the E.C., and when it has exceeded that point reverts to calculations based on the stored tangent bearing.

The stored bearing is modified to the bearing of the tangent ahead of the curve as part of the routine when [J] has been stroked. This eliminates the need for input of the E.C. station unless it is needed for the calculation of offsets.

If the plan stationing gives the B.C. and E.C. stations to the nearest 0.01', it is a little more accurate to use the value for the E.C. which was output during the curve routine (nearest 0.001') to calculate the offsets at the E.C..

2-4 Alignment & Offsets

A

In the example below, let's assume that we need to know the coordinates of the even stations (every 100') at centerline, and the coordinates of the right-of-way points opposite the B.C. and E.C. stations. Begin with [XEQ] [ALPHA] [] [0] [ALPHA] to initialize the program and obtain a display of 0.0000. Then proceed as shown:

keystrokes:

[D] prompt: BEG. STA?

keystrokes:

[1] [0] [0] [0] [R/S] prompt: COORD. N+E

keystrokes:

[1] [0] [0] [0] [ENTER]

[1] [0] [0] [0] [R/S] prompt: BRG=?

keystrokes:

[3] [5] [.] [0] [2] [1] [5]

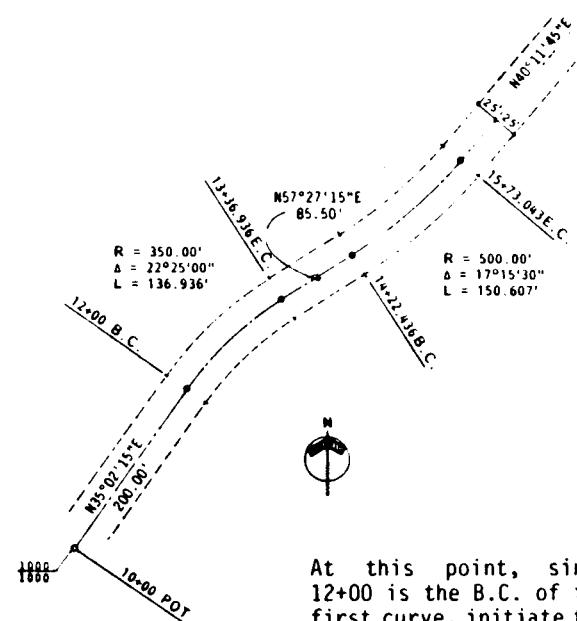
[R/S] prompt: QD=?

keystrokes:

[1] [R/S] prompt: STA COORDS?

keystrokes:

[Y] [R/S] prompt: STA?


keystrokes:

[1] [1] [0] [0] [E] output: 11+00.000 N= 1,081.8776 E= 1,057.4112

prompt: O/S?

keystrokes:

[1] [2] [0] [0] [E] output: 12+00.000 N= 1,163.7553 E= 1,114.8225

keystrokes:	prompt: O/S?	prompt: O/S?	prompt: DELTA?
[2] [5] [CHS] [R/S]	output: O/S= -25.0000 N= 1,178.1081 E= 1,094.3531	[2] [5] [R/S]	[2] [2] [.] [2] [5] [R/S] R?
keystrokes:	prompt: O/S?	output: O/S= 25.0000 N= 1,149.4025 E= 1,135.2919	keystrokes:
[2] [5] [R/S]	output: O/S= 25.0000 N= 1,149.4025 E= 1,135.2919	[3] [5] [0] [R/S]	output: R= 350.0000 N= 962.8159 E= 1,401.3943

DELTA =
22° 25' 0"
EC =
13+36.936

A**Alignment & Offsets 2-5**

prompt: STA?

keystrokes:

1 3 0 0 Eoutput: 13+00.000
N= 1.236.3775
E= 1.183.0733

Prompt: O/S?

Note: it is not a requirement of the program that the E.C. station be input. For the present example, it is input in order to calculate the 25' offsets.

keystrokes:

1 3 3 6 . 9 3 6**E**output: 13+36.936
N= 1.257.8526
E= 1.213.1036

prompt: O/S?

keystrokes:

2 5 CHS R/Soutput: O/S= -25.0000
N= 1.278.9267
E= 1.199.6543

prompt: O/S?

keystrokes:

2 5 R/Soutput: O/S= 25.0000
N= 1.236.7786
E= 1.226.5530

prompt: O/S?

keystrokes:

1 4 0 0 E

output: 14+00.000

N= 1.291.7794

E= 1.266.2641

prompt: O/S?

keystrokes:

1 4 2 2 . 4 3 6**E**output: 14+22.436
N= 1.383.8494

E= 1.285.1768

prompt: O/S?

keystrokes:

2 5 CHS R/Soutput: O/S= -25.0000
N= 1.324.9234

E= 1.271.7275

prompt: O/S?

keystrokes:

2 5 R/Soutput: O/S= 25.0000
N= 1.282.7754

E= 1.298.6262

prompt: O/S?

keystrokes:

J

prompt: DELTA?

keystrokes:

1 7 . 1 5 3 CHS

(curve is to the left)

R/S

prompt: R?

keystrokes:

5 0 0 R/S

output: R = 500.0000

N= 1.725.330!

E= 1.016.1898

DELTA =

-17° 15' 30"

EC =

15+73.043

prompt: STA?

keystrokes:

1 5 0 0

output: 15+00.000

N= 1.350.4709

E= 1.347.0663

prompt: O/S?

keystrokes:

1 5 7 3 . 0 4 3**E**

output: 15+73.043

N= 1.402.6287

E= 1.398.1116

prompt: O/S?

keystrokes:

2 5 CHS R/S

output: O/S= -25.0000

N= 1.418.7638

E= 1.379.0150

prompt: O/S?

keystrokes:

2 5 R/S

output: O/S= 25.0000

N= 1.386.4937

E= 1.417.2071

prompt: O/S?

2-6

Alignment & Offsets

A

keystrokes:

1 6 0 0 E

output: 16+00.000
M= 1,423.2196
E= 1,415.5091

prompt: O/S?

keystrokes:

1 7 0 0 E

output: 17+00.000
M= 1,499.6039
E= 1,400.0493

In this example the coordinates of the centerline points were output, and specific offsets were selected as the calculations were made. Another option available with this routine is CONSTANT OFFSET.

As a second example, using the same alignment, assume that the requirement is the offset stakes, on the left side, for the curb and gutter layout. In the example below, the offset is to be 18.50' left of centerline equals 3.00' to the back of curb.

The coordinates of the offsets are wanted at 25' stations from 11+00 through the first curve, but the centerline coordinates are not needed this time.

Initialize the program with XEQ ALPHA L O ALPHA and keystroke D to call up the first prompt, BEG. STA?.

Input of the information for the beginning station, coordinates, bearing and quadrant code are the same as in the previous example, until the prompt "STA COORDS?". This time the answer to this prompt will be NO.

..... :	output: 11+25.000 0/S= -18.5000 M= 1,112.9681 E= 1,056.6167	prompt: STA? keystrokes: 1 2 0 0 E
prompt: STA COORDS?		output: 12+00.000 0/S= -18.5000 M= 1,174.3764 E= 1,099.6751
keystrokes: 1 R/S	prompt: STA? keystrokes: 1 1 5 0 E	prompt: STA? keystrokes: 1 (sets curve)
prompt: STA?	output: 11+50.000 0/S= -18.5000 M= 1,133.4376 E= 1,076.9695	prompt: DELTA? keystrokes: 2 2 0 2 5
keystrokes: 1 1 0 0 E	prompt: STA? keystrokes: 1 1 7 5 E	prompt: R/S
output: 11+00.000	output: 11+75.000 0/S= -18.5000 M= 1,153.9670 E= 1,085.3223	keystrokes: 3 5 0 R/S
prompt: O/S?		
keystrokes: 1 8 0 5 CHS F		
output: 0/S= -18.5000 M= 1,092.4987 E= 1,042.2639		
prompt: STA?		
keystrokes: 1 1 2 5 E		

A

Alignment & Offsets 2-7

output:

R = 358.0000
N= 962.8159
E= 1,401.3943

DELTA =
22° 25' 0"
EC =
13+36.936

prompt:**STA?****keystrokes:****1 2 2 5 E****output:**

12+50.000

O/S= -18.5000
N= 1,195.3700
E= 1,115.5471

prompt:**STA?****keystrokes:****1 2 5 0 E****output:**

12+50.000

O/S= -18.5000
N= 1,215.1775
E= 1,132.8689

prompt:**STA?****keystrokes:****1 2 7 5 E****output:**

12+75.000

O/S= -18.5000
N= 1,233.6981
E= 1,151.5641

prompt:**STA?****keystrokes:****1 3 0 0 E****output:**

13+00.000

O/S= -18.5000
N= 1,250.8371
E= 1,171.5334

prompt:**STA?****keystrokes:****1 3 2 5 E****output:**

13+25.000

O/S= -18.5000
N= 1,266.5675
E= 1,192.6750

prompt:**STA?****keystrokes:****1 3 3 6 . 9 3 6****E****output:**

13+36.936

O/S= -18.5000
N= 1,273.4474
E= 1,203.1511

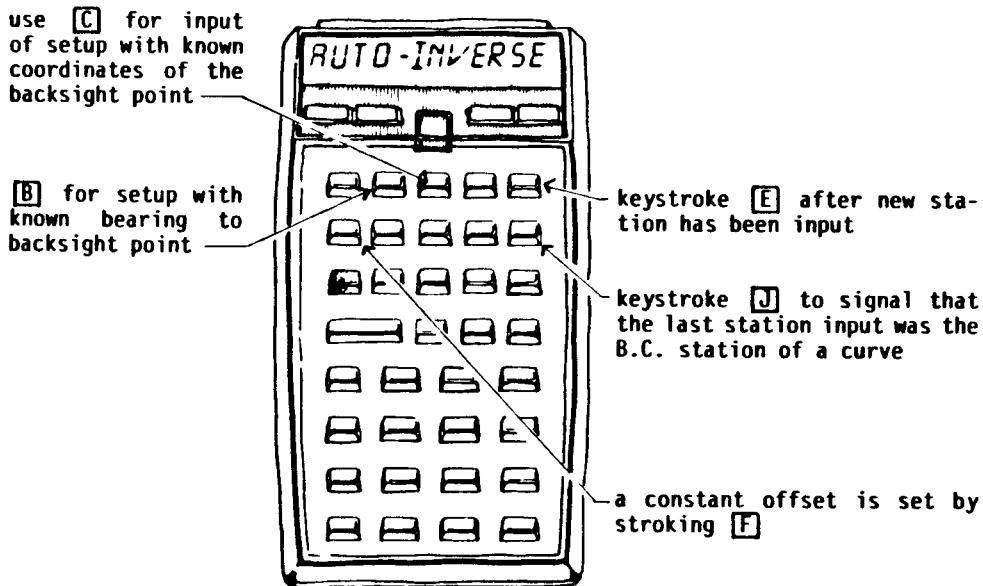
prompt:**STA?**

If more of the offset line were wanted, simply continuing input of the new stations would continue the calculations. The curves are input as in the first example, after calculating the offsets to the B.C. stations as the beginning of each curve is reached (remember to change the sign of delta on the curves to the left).

When the program is run with a printer attached, the output in the curve areas will have a space between the station and the offset/coordinate output, so that the points which are radial rather than normal to the alignment can be seen at a glance. When run without a printer, continue stroking the R/S key for output, until the next prompt appears.

This routine can be used in any of the combinations shown; constant offset coordinates can be generated with or without the centerline coordinates, varied offsets can be calculated (including multiple offsets for each station), or just centerline.

One quick way to run just centerline coordinates is to answer "no" to centerline coordinates output, and then use "0" as a constant offset.


A

Auto-Inverse 3-1

The Auto-Inverse routine is a combination of the previous routines. When you are going to do a layout, such as the alignment in the example, from a known instrument setup and backsite location you can inverse the radial ties at the same time that you calculate your centerline or offset points for the proposed alignment.

It is less time-consuming than running the alignment coordinates and then calculating the radial ties by any method, and certainly much better than having to key in bearings and distances with curve data through a traverse and sideshot program.

The keyboard assignments below show all of the keys used for the combination routine. The initial entry for Auto-Inversing uses the Radial Inverse portion first, and automatically takes you on to the alignment input portion.

KEYBOARD ASSIGNMENTS

3-2 Auto-Inverse

A

For our example, let's assume that a basic traverse has been run and adjusted, and will be used for laying out our new roadway. We'll use traverse point B as the first setup position for the instrument, and C for the backsight.

Begin with **[XEQ] [ALPHA] [L] [O] [ALPHA]**, and input the coordinates at the instrument point ($N=1210$, $E=930$) then select which option you want to use for the **BACKSITE?** prompt input. We'll use coordinate input for the example, so:

keystrokes:

[1] [2] [1] [O] [ENTER]

[9] [3] [O] [C]

prompt: **BACKSITE?**

keystrokes:

[1] [5] [0] [5] [ENTER]

[1] [1] [9] [O] [R/S]

prompt: **INV ONLY?**

keystrokes:

[N] [R/S]

prompt: **STA INV?**

At this point, you have the option of inverting to both centerline and offset points, or just to the offsets. An answer of **[Y]** will give inverses to both, **[N]** only to the offsets. For our example, we will say **NO**.

keystrokes:

[N] [R/S]

prompt: **BEG. STA?**

when this prompt is displayed, begin input of the alignment in the same way as for the Alignment & Offset routine. Follow the steps shown on 2-1 through 2-3.

A**Auto-Inverse 3 - 3**

With the instrument and backsight information already input, as shown on the previous page, let's do the 25' stations at 18.5' left, from 11+00 through the first curve, as in the last example in section 2.

keystrokes: R/S	prompt: STA?	output: 12+00.000 0/S= -18.5000 N= 1,174.3764 E= 1,099.6751
1 0 0 0 ENTER	1 1 2 5 E	
prompt: COORD N+E		
keystrokes: 1 0 0 0 ENTER	output: 11+25.000 0/S= -18.5000 N= 1,112.9681 E= 1,056.6167	HD = 173.374 ΔRT= 68° 27' 56" prompt: STA?
1 0 0 0 R/S		
prompt: BRG=?		
keystrokes: 3 5 0 2 1 5	Prompt: STA?	keystrokes: J
R/S	1 1 5 0 E	prompt: DELTA?
prompt: QD?	output: 11+50.000 0/S= -18.5000 N= 1,133.4376 E= 1,070.9695	keystrokes: 2 2 0 2 5 R/S
keystrokes: 1 R/S	HD = 168.419 ΔRT= 77° 6' 56"	prompt: R?
prompt: STA COORDS?	Prompt: STA?	keystrokes: 3 5 0 R/S
keystrokes: N R/S	1 1 7 5 E	output: R = 350.0000 N= 962.8159 E= 1401.3943
prompt: STA?	output: 11+75.000 0/S= -18.5000 N= 1,153.9070 E= 1,085.3223	DELTA = 22° 25' 0" EC = 13+36.936
keystrokes: 1 1 0 0 E	Prompt: STA?	prompt: STA?
output: 11+00.000	1 2 2 5 E	keystrokes: 1 2 2 5 E
prompt: 0/S?	output: 12+25.000 0/S= -18.5000 N= 1,195.3700 E= 1,115.5431	output: 12+25.000 0/S= -18.5000 N= 1,195.3700 E= 1,115.5431
keystrokes: 1 8 0 5 CHS F	HD = 165.141 ΔRT= 68° 27' 54"	HD = 186.119 ΔRT= 53° 7' 1"
output: 0/S= -18.5000 N= 1,092.4987 E= 1,042.2639	Prompt: STA?	
HD = 162.511 ΔRT= 94° 54' 51"	keystrokes: 1 2 0 0 E	

3-4 Auto-Inverse

A

prompt:

STA?

keystrokes:

1 2 5 0 E

output:

12+50.000

O/S= -18.5000
N= 1.215.1775
E= 1.132.8689

HD = 202.935
ΔRT= 36° 28' 4"
47° 8' 47"

keystrokes:

1 2 7 5 E

output:

12+75.000

O/S= -18.5000
N= 1.233.6981
E= 1.151.5641

HD = 222.828
ΔRT= 35° 31' 54"
42° 30' 12"

prompt:

STA?

keystrokes:

1 3 0 0 E

output:

13+00.000

O/S= -18.5000
N= 1.250.8372
E= 1.171.5334

HD = 244.961
ΔRT= 39° 8' 43"
39° 8' 43"

prompt:

STA?

keystrokes:

1 3 2 5 E

output:

13+25.000

O/S= -18.5000
N= 1.266.5875
E= 1.192.6750

HD = 268.684
ΔRT= 36° 28' 4"
36° 28' 4"

keystrokes:

1 3 3 6 . 9 3 6

E

output:

13+36.936

O/S= -18.5000
N= 1.273.4474
E= 1.203.1511

HD = 280.423
ΔRT= 35° 31' 54"
35° 31' 54"

prompt:

STA?

If we had answered **Y** to the prompt STA INV? the output would inverse to the centerline and the offset. Output at each station would be:

11+00.000
N= 1.081.8776
E= 1.057.4112

HD = 180.690
ΔRT= 93° 46' 4"
93° 46' 4"

O/S= -18.5000
N= 1092.4987
E= 1042.2639

HD = 162.511
ΔRT= 94° 54' 51"
94° 54' 51"

Multiple offsets at a station, with inverses to the offsets, and the centerline coordinates calculated, would result in output such as that below. For multiple offsets, input them individually, instead of as a constant.

13+00.000
N= 1.236.3775
E= 1.183.0733

O/S= -25.0000
N= 1.255.9176
E= 1.167.4789

HD = 241.877
ΔRT= 37° 39' 54"
37° 39' 54"

O/S= 25.0000
N= 1216.8374
E= 1198.6676

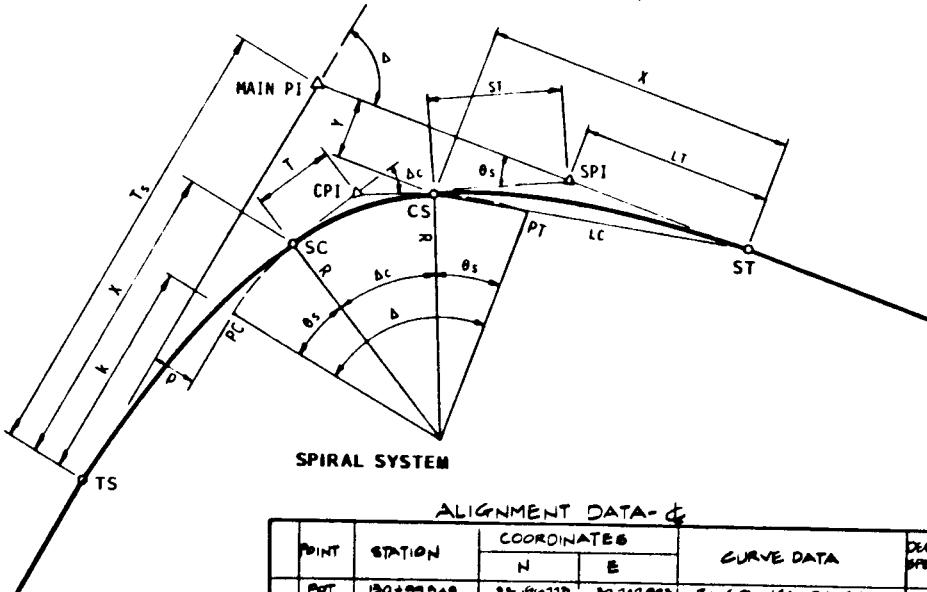
HD = 268.755
ΔRT= 47° 9' 2"
47° 9' 2"

O/S= -18.5000
N= 1250.8372
E= 1171.5334

HD = 244.961
ΔRT= 39° 8' 43"
39° 8' 43"

Unless the centerline coordinates are needed for something else, or have never been calculated before, it is quicker to not display them by **N** at the STA COORDS? prompt.

B

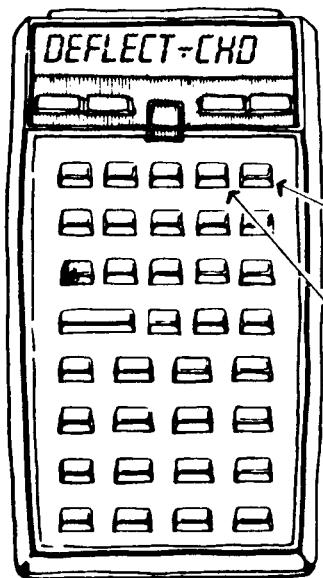
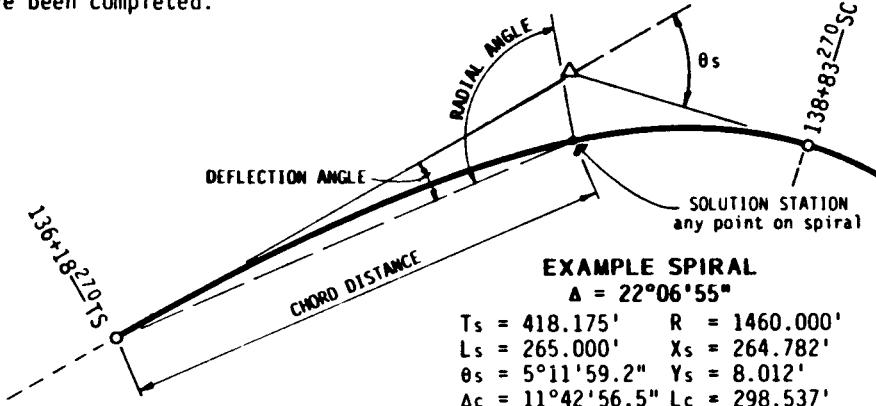

Deflection & Chord 1-1

This program is designed to calculate the data needed for field layout of a spiral curve. The type of spiral used is the BARNETT SPIRAL, (also known as the Talbot spiral). It uses arc definition, and is the type most frequently encountered.

This is the form of spiral used on interstate highways, and adopted by most states which use spiral curves in their alignment design. It is also the form of spiral used for railroad alignment by agencies such as Washington D.C.'s METRO and the Bay Area Rapid Transit District (BART) in California.

In this first routine, the solution is in the form of chord and deflection angle to any point on the spiral. In addition, the angle to turn at the calculated station to be radial to the spiral for setting offsets is output.

The nomenclature used for the spiral system and the alignment data from a typical set of plans are shown below. Curve data input is for the whole system; The entrance spiral is worked first, and then the exit spiral.



ALIGNMENT DATA - 1

POINT	STATION	COORDINATES		CURVE DATA	DESIGN SPEED
		N	E		
PT	130+99.569	98,960.115	30,142.995	R ₁ = STA 140+360.445	
PI ₁		98,026.499	30,374.100	$\Delta = 98^\circ 06' 33''$	
T ₀	136+183.270	98,638.368	30,949.742	T ₀₁ = 48.175 T ₀₂ = 418.175	
SC	136+183.270	98,638.117	30,958.646	$\theta_{s1} = 268.000^\circ$ $\theta_{s2} = 264.182^\circ$	
CC-CURVE 4		98,509.651	31,897.910	$\theta_{c1} = 9^\circ 11' 34.8''$ $\theta_{c2} = 11^\circ 42' 36.2''$	70.000
C ₆	141+81.807	99,114.859	30,602.800	R _c = 1460.000 L _c = 248.991	70.000
ST	144+46.807	99,444.670	30,955.915	L _{g1} = 266.000 X _{g1} = 264.182	70.000
PI-10	141+27.019	99,126.871	30,399.025	$\theta_{g1} = 9^\circ 11' 59.2''$ $\theta_{g2} = 6^\circ 01' 2''$	70.000

1-2 Deflection & Chord

B

To illustrate this routine, the spiral data on the previous page will be used. The entrance spiral is shown below, and the curve data for the spiral portions is the same for both the entrance and exit spirals. Stationing at the CS and ST will be output by the program after calculations for the entrance spiral have been completed.

The keys used for this routine are shown in the sketch to the left.

The required input is prompted by the program as you proceed, and followed by stroking the **[R/S]** button, except after input of a new station for solution.

The program may be used without a printer, but for ease of illustration, the printer output will be shown.

Step-by-step instructions are shown on the next page.

Programs "SP", "STA" and "DMS" must be in the program memory before beginning. With the calculator in **user** mode and sized at 050, initialize by keystroking **[XEQ] [ALPHA] [S] [P] [ALPHA]**. The program will begin the prompts for the type of solution wanted.

1 COORD-0/S?	Answer this prompt no	[N] [R/S]
2 TAN 0/S?	Answer this prompt no	[N] [R/S]
3 PI STATION?	Input the main P.I. station. If it is not shown on the curve data provided it can be calculated by inputting the TS station and adding the T distance to it. In this case, it is station 140+36.445	[R/S]
4 DELTA?	Input the system delta. If curve left, [CHS]	[R/S]
5 R?	Input the radius for the circular curve	[R/S]
6 L?	Input the spiral length	[R/S]
<p>Output will be a display of the length of spiral curve, the spiral angle (output is in the form D.MMSS), and the radius. If a printer is not attached, continue stroking [R/S]. Output continues with the P.I. station, the central angle, and the TS and SC stations, followed by the next prompt</p>		
7 STA?	Input the station for which the deflection and chord are required	[E]
<p>Output will be the chord, deflection angle and radial angle. Continue stroking [R/S] each time if not using a printer until the prompt STA? appears.</p>		
8 STA?	Repeat step 7 until all of the required stations have been calculated for the entrance spiral. It is normal to also calculate the SC station last. When ready to calculate the exit spiral, keystroke [D]	
<p>Output will be the stations of the CS and ST, followed by the prompt</p>		
9 STA?	Input the exit spiral stations for solution in the same manner as before, repeating step 7 until all of the required stations have been calculated. The exit spiral can be calculated in either direction, but the deflection angles and chords are from the ST, sighting toward the P.I.	

1-4 Deflection & Chord

B

As an example of the keystrokes used with this routine, and using the information on page 1-1, in the example spiral, we will calculate the entrance and exit spirals at even stations.

keystrokes: **XEQ**

ALPHA S P ALPHA

prompt: **COORD-0/S?**

keystrokes:

N R/S

prompt: **TAN 0/S?**

keystrokes:

N R/S

prompt: **PI STATION?**

keystrokes:

1 4 0 3 6 .

4 4 5 R/S

prompt: **DELTA?**

keystrokes:

2 2 . 0 6 5 5

R/S

prompt: **R?**

keystrokes:

1 4 6 0 R/S

prompt: **L?**

keystrokes:

2 6 5 R/S

output: **L = 265.0000**

S4 = 5.1159

R = 1,460.0000

PI =

140+36.445

CENTRAL Δ =

22° 6' 55"

TS =

136+18.270

SC =

138+83.270

At this point we begin to calculate the even stations along the entrance spiral

prompt: **STA?**

keystrokes:

1 3 7 0 0 E

output: **137+00.000**

CD = 81.738

DEFLECTION Δ =

0° 9' 54"

RADIAL Δ =

90° 19' 47"

keystrokes:

1 3 8 0 0 E

output: **138+00.000**

CD = 181.715

DEFLECTION Δ =

0° 48' 54"

RADIAL Δ =

91° 37' 49"

keystrokes:

1 3 8 8 3 . 2 7

E

output: **138+83.270**

CD = 264.903

DEFLECTION Δ =

1° 43' 59"

RADIAL Δ =

93° 27' 60"

With the calculations for the entrance spiral completed, we can move to the exit spiral

keystroke: **D**

output: **ST = 144+46.807**
CS = 141+81.807

prompt: **STA?**

keystrokes:

1 4 1 8 1 .

8 0 7 E

output: **141+81.807**
CD = 264.983
DEFLECTION Δ = 1° 43' 59"
RADIAL Δ = 93° 27' 60"

keystrokes:

1 4 2 0 0 E

output: **142+00.000**
CD = 246.739
DEFLECTION Δ = 1° 30' 12"
RADIAL Δ = 93° 0' 25"

keystrokes:

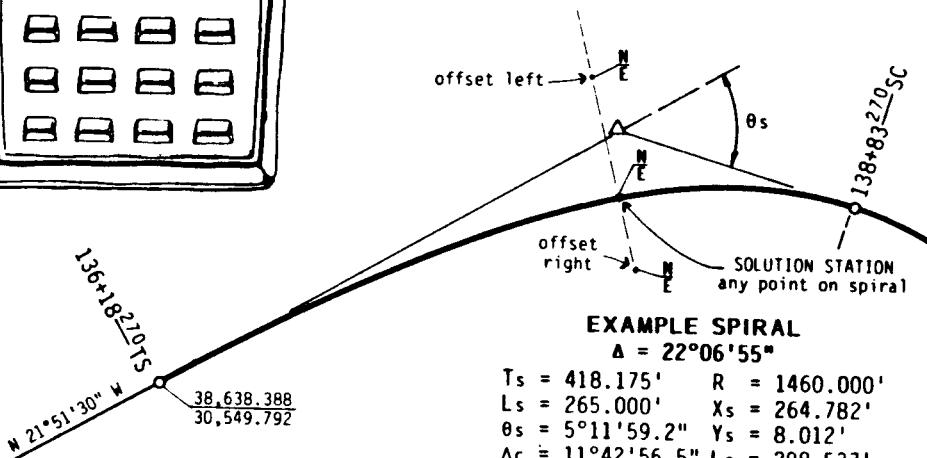
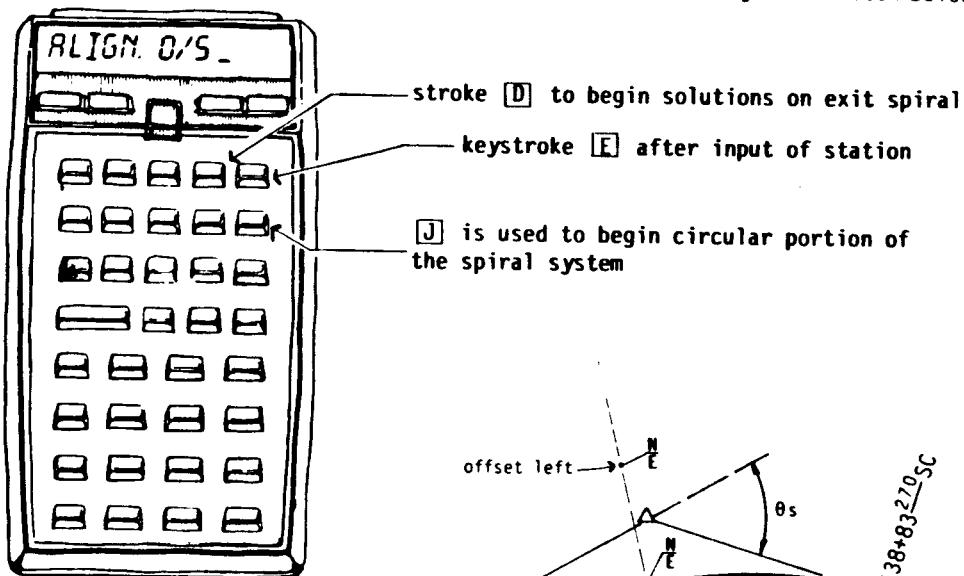
1 4 3 0 0 E

output: **143+00.000**
CD = 146.882
DEFLECTION Δ = 0° 31' 55"
RADIAL Δ = 91° 3' 50"

keystrokes:

1 4 4 0 0 E

output: **144+00.000**
CD = 46.807
DEFLECTION Δ = 0° 3' 15"
RADIAL Δ = 90° 6' 29"



B

Alignment & Offsets 2-1

With this routine, output is the coordinates along a spiral curve alignment at any station, including the circular portion. In addition to direct output of the centerline coordinates, the coordinates of offsets to the curves may be calculated at the same time.

In addition to the information about the spiral system which was input in the last routine, you will need to know the coordinates of the TS and the ST stations, and the bearings of the entrance and exit tangents. If these are not given on the set of plans that you are working from, they can be easily calculated prior to beginning this routine.

The keys used in this routine are shown in the keyboard assignment sketch below.

EXAMPLE SPIRAL

$$\Delta = 22^\circ 06' 55''$$

$$\begin{aligned} Ts &= 418.175' & R &= 1460.000' \\ Ls &= 265.000' & Xs &= 264.782' \\ \theta_s &= 5^\circ 11' 59.2'' & Ys &= 8.012' \\ \Delta c &= 11^\circ 42' 56.5'' & Lc &= 298.537' \end{aligned}$$

$$\text{P.I. STA } 140+36.445$$

2-2 Alignment & Offsets

B

With the calculator sized at 050, and with programs "SP", "STA" and "DMS" in program memory, the program is initialized by keystroking **[XEQ] [ALPHA] S [P]** **[ALPHA]**. The registers are cleared and the prompting for the type of solution wanted will begin, as follows:

1	COORD-O/S?	Answer this prompt yes	[Y] R/S
2	BRG=?	Input the entrance tangent bearing	R/S
3	QD=?	Input the quadrant code for the bearing toward the P.I. of the system	R/S
4	TS N+E	Input the north coordinate of the TS	[ENTER]
		Input the east coordinate of the TS	R/S
5	PI STATION?	Input the main P.I. station. If it is not shown on the curve data provided it can be calculated by inputing the TS station and adding the Ts distance to it. In this case, it is station 140+36.445	R/S
6	DELTA?	Input the system delta. If curve left, [CHS]	R/S
7	R?	Input the radius for the circular curve	R/S
8	L?	Input the spiral length	R/S

Output will be a display of the length of spiral curve, the spiral angle (output is in the form D.MMSS), and the radius. If a printer is not attached, continue stroking **[R/S]**. Output continues with the P.I. station, the central angle, and the TS and SC stations, followed by the next prompt

9	STA?	Input the station for which the coordinates are required	[E]
---	------	--	------------

Output will be the station and its coordinates. Continue stroking **[R/S]** each time if not using a printer until the prompt O/S DIST? appears.

10	O/S DIST?	Any desired offsets may be calculated at this time. Input the offset distance [CHS] if the offset is to the left	[R/S]
----	-----------	---	--------------

Output will be the offset and its coordinates. An offset to the left will be shown as a negative offset

11	O/S DIST?	Repeat step 10 until all of the required offsets for the station	
----	-----------	--	--

have been calculated, or return to step 9 with input of a new station. When all of the required stations and offsets have been calculated for the entrance spiral, we can go to the circular portion, as follows:

12 O/S DIST? Calculate the SC station last. When ready to calculate the circular portion, keystroke **[J]**

13 O/S DIST? Input the circular radius distance. If the curve is to the left, **[CHS]** **[R/S]**
Output will be the coordinates of the radius point of the circular curve. The circular portion has a slightly different format than the spirals. The station will be input each time, for each offset. For the centerline station coordinates, the offset is given as 0.

14 STA? Input the next station **[R/S]**

15 O/S DIST? Input 0 for the centerline coordinates, or the offset distance. If the offset is to the left of centerline, **[CHS]** **[R/S]**
Output will be the station and its coordinates (or the offset and its coordinates).

16 STA? Repeat steps 14 and 15 until all of the stations and offsets have been calculated through the circular portion. Go to the exit spiral by keystroking **[D]**

17 BRG=? Input the bearing of the exit tangent **[R/S]**

18 QD=? Input the quadrant code for the exit tangent in the direction toward the P.I. **[R/S]**

19 ST N+E Input the north coordinate of the ST **ENTER**
Input the east coordinate of the ST **[R/S]**
Output will be the ST and CS stations.

20 STA? Calculate the stations through the exit spiral, beginning with the CS station, by repeating steps 9 and 10 until all of the required stations and offsets have been calculated.

As an example of the keystrokes used with this routine, and using the information on page 2-1, in the example spiral, we will calculate the coordinates at even stations. In addition, to use the offset option, we will calculate the coordinates for an offset at 20 feet left and right at one of the stations in the entrance, circular and exit portions of the system.

keystrokes:

[XEQ]

[ALPHA] [S] [P] [ALPHA]

prompt: COORD-0/S?

keystrokes:

[Y] [R/S]

prompt: BRG=?

keystrokes:

[2] [1] [.] [5] [1] [3] [R/S]

prompt: QD=?

keystrokes:

[4] [R/S]

prompt: TS N+E

keystrokes:

[3] [8] [6] [3] [8]

[.] [3] [8] [8] [ENTER+]

[3] [0] [5] [4] [9]

[.] [7] [9] [2] [R/S]

prompt: INVERSE?

keystrokes:

[N] [R/S]

prompt: PI STATION?

keystrokes:

[1] [4] [0] [3] [6] [.]

[4] [4] [5] [R/S]

prompt: DELTA?

[XEQ]

keystrokes:

[2] [2] [.] [0] [6]

[5] [5] [R/S]

prompt:

R?

keystrokes:

[1] [4] [6] [0] [R/S]

prompt:

L?

keystrokes:

[2] [6] [5] [R/S]

output: L = 265.0000

S₂ = 5.1159

R = 1,460.0000

PI =

140+36.445

CENTRAL L =

22° 6' 55"

TS =

136+19.270

SC =

138+83.270

prompt: STA?

keystrokes:

[1] [3] [7] [0] [0] [E]

output: 137+00.000

N = 38.714.3292

E = 30.519.5814

prompt: O/S DIST?

We will use this station as an example for the offsets. For an offset left stroke [CHS]

keystrokes:

[2] [0] [CHS] [R/S]

output: O/S = -20.0000

N = 38.707.0424

E = 30.500.9556

prompt: O/S DIST?

keystrokes:

[2] [0] [R/S]

output: O/S = 20.0000

N = 38.721.6149

E = 30.538.2871

prompt: O/S DIST?

keystrokes:

[1] [3] [8] [0] [0] [E]

output: 138+00.000

N = 38.807.9946

E = 30.484.5431

prompt: O/S DIST?

keystrokes:

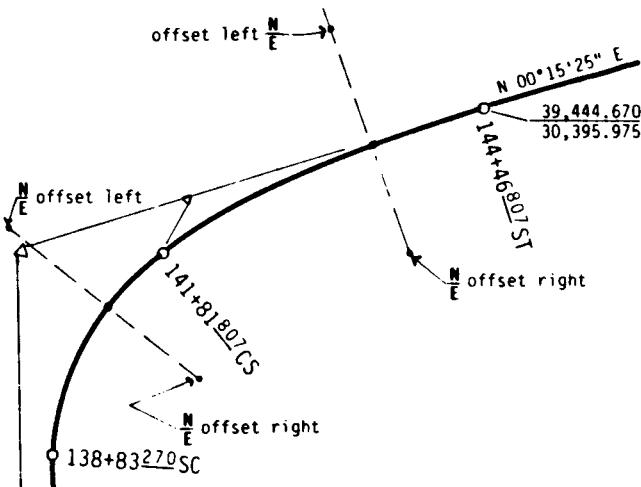
[1] [3] [8] [8] [3] [.] [2] [7]

[E]

output: 138+83.270

N = 38.887.1168

E = 30.458.6462


prompt: O/S DIST?

After calculating any needed offsets at the SC, move to the circular portion of the system

keystroke: [J]

B

Alignment & Offsets 2-5

output: 139+00.000
 $0/S = 20.0000$
 $N = 39,906.6852$
 $E = 30,473.1672$

prompt: STA?

keystrokes:

[1] [4] [0] [0] [0] [R/S]

prompt: O/S DIST?

keystrokes:

[0] [R/S]

output: 140+00.000
 $N = 39,000.1655$
 $E = 30,429.6873$

prompt: STA?

keystrokes:

[1] [4] [1] [0] [0] [R/S]

prompt: O/S DIST?

keystrokes:

[0] [R/S]

output: 141+00.000
 $N = 39,998.5919$
 $E = 30,412.1275$

prompt: STA?

With the circular portion completed, go to the exit spiral

keystroke: **[D]**

prompt: BRG=?

keystrokes:

[4] [1] [5] [2] [5] [R/S]

prompt: O/S DIST?

keystrokes:

[1] [4] [6] [0] [0] [R/S]

output: CIRCULAR

RADIUS POINT:
 $N = 39,305.6513$
 $E = 31,857.3702$

prompt: STA?

keystrokes:

[1] [3] [9] [0] [0] [R/S]

prompt: O/S DIST?

keystrokes:

[0] [R/S]

output:

$139+00.000$
 $N = 39,903.1717$
 $E = 30,453.9422$

prompt: STA?

keystrokes:

[1] [3] [9] [0] [0] [R/S]

prompt: O/S DIST?

keystrokes:

[2] [0] [CHS] [R/S]

output: 139+00.000

$0/S = -20.0000$
 $N = 39,897.6563$
 $E = 30,434.7171$

prompt: STA?

keystrokes:

[1] [3] [9] [0] [0] [R/S]

prompt: O/S DIST?

keystrokes:

[2] [0] [R/S]

2-6

Alignment & Offsets

B

prompt:

QD=?

keystrokes:

3 R/S

prompt:

ST N+E

keystrokes:

3 9 4 4 4

6 7 ENTER↑

3 0 3 9 5

9 7 5 R/S

output:

ST =
144+46.807
CS =
141+81.807

prompt:

STA?

keystrokes:

1 4 1 8 1 .

8 0 7 E

output:

141+81.807

N = 39.179.8546
E = 30.402.7994

prompt: O/S DIST?

Since all of the offsets through the exit spiral work the same at any station, we can use the CS as the example station for the offset calculations

keystrokes:

2 0 CHS R/S

output:

O/S = -20.0000
N = 39.178.1314
E = 30.382.8737

prompt: O/S DIST?

keystrokes:

2 0 R/S

output:

O/S = 20.0000
N = 39.181.5779
E = 30.422.7258

prompt: O/S DIST?

keystrokes:

1 4 2 0 0 E

output: 142+00.000

N = 39.197.9691
E = 30.401.3422

prompt: O/S DIST?

keystrokes:

1 4 3 0 0 E

output: 143+00.000

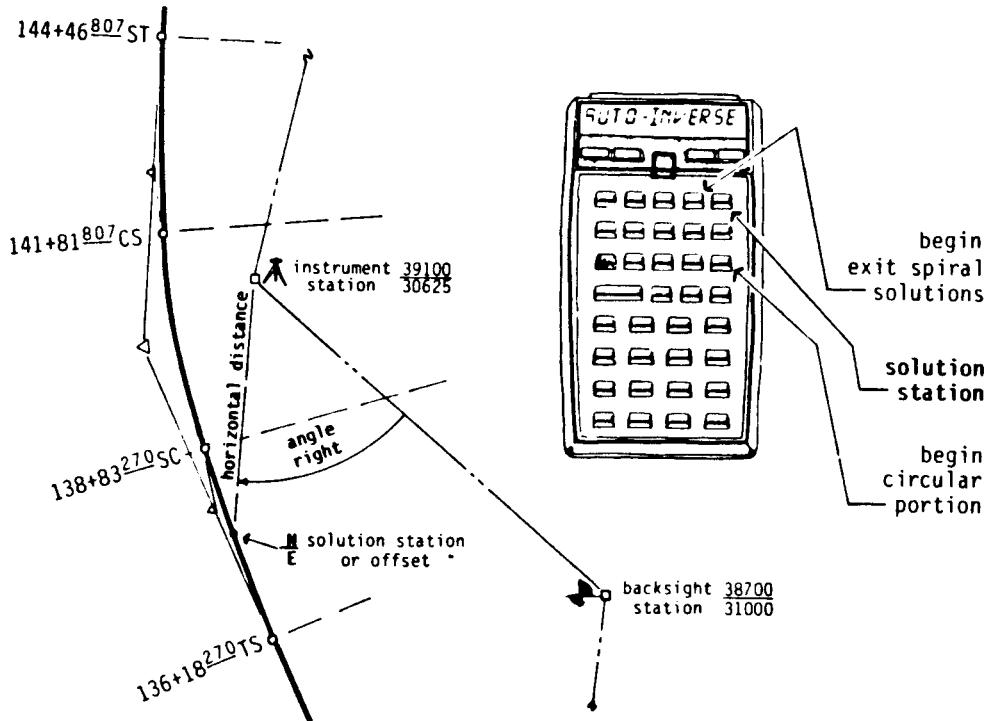
N = 39.297.8695
E = 30.396.6796

prompt: O/S DIST?

keystrokes:

1 4 4 0 0 E

output: 144+00.000


N = 39.397.8638
E = 30.395.8093

B

Auto-Inverse 3-1

This routine is similar to the previous one, in that it calculates the coordinates to the solution station and offsets. In addition, it calculates the angles and distances for radial stakeout in the field.

Working from one point on a control line and sighting another, all of the points which you calculate can be 'sprayed' directly using an EDM for the distances.

With programs "SP", "STA" and "DMS" in the program memory before beginning, and the calculator at size 050, the program can be brought to the top of the program memory by keystroking **[XEQ] [ALPHA] [S] [P] [ALPHA]**. Prompts for the type of solution wanted will begin as follows:

- 1 **COORD-O/S?** Answer this prompt yes **[Y] [R/S]**
- 2 **BRG=?** Input the entrance tangent bearing **[R/S]**

3-2 Auto-Inverse

B

3 QD=?	Input the quadrant code for the bearing toward the P.I. of the system	<input type="button" value="R/S"/>
4 TS N+E	Input the north coordinate of the TS	<input type="button" value="ENTER"/>
	Input the east coordinate of the TS	<input type="button" value="R/S"/>
5 INVERSE?	Answer this prompt yes	<input type="button" value="R/S"/>
6 INST N+E	Input the north coordinate of the setup point	<input type="button" value="ENTER"/>
	Input the east coordinate of the setup point	<input type="button" value="R/S"/>
7 BACKSITE?	Input the north coordinate of the backsight station	<input type="button" value="ENTER"/>
	Input the east coordinate of the backsight station	<input type="button" value="R/S"/>
8 PI STATION?	Input the main P.I. station. If it is not shown on the curve data provided it can be calculated by inputting the TS station and adding the Ts distance to it. In this case, it is station 140+36.445	<input type="button" value="R/S"/>
9 DELTA?	Input the system delta. If curve left, <input type="button" value="CHS"/>	<input type="button" value="R/S"/>
10 R?	Input the radius for the circular curve	<input type="button" value="R/S"/>
11 L?	Input the spiral length	<input type="button" value="R/S"/>
<p>Output will be a display of the length of spiral curve, the spiral angle (output is in the form D.MMSS), and the radius. If a printer is not attached, continue stroking <input type="button" value="R/S"/>. Output continues with the P.I. station, the central angle, and the TS and SC stations, followed by the next prompt</p>		
12 STA?	Input the station for which the coordinates are required <input type="button" value="F"/>	
<p>Output will be the station and its coordinates. Continue stroking <input type="button" value="R/S"/> each time if not using a printer until the prompt O/S DIST? appears.</p>		
13 O/S DIST?	Any desired offsets may be calculated at this time. Input the offset distance <input type="button" value="CHS"/> if the offset is to the left <input type="button" value="R/S"/>	
<p>Output will be the offset and its coordinates. An offset to the left will be shown as a negative offset</p>		

B**Auto-Inverse 3-3****14 O/S DIST?**

Repeat step 13 until all of the required offsets for the station have been calculated, or return to step 12 with input of a new station. When all of the required stations and offsets have been calculated for the entrance spiral, we can go to the circular portion, as follows:

15 O/S DIST?

Calculate the SC station last. When ready to calculate the circular portion, keystroke

[J]**16 O/S DIST?**

Input the circular radius distance. If the curve is to the left, **[CHS]**

[R/S]

Output will be the coordinates of the radius point of the circular curve. The circular portion has a slightly different format than the spirals. The station will be input each time, for each offset. For the centerline station coordinates, the offset is given as 0.

17 STA?

Input the next station

[R/S]**18 O/S DIST?**

Input 0 for the centerline coordinates, or the offset distance. If the offset is to the left of centerline, **[CHS]**

[R/S]

Output will be the station and its coordinates (or the offset and its coordinates).

19 STA?

Repeat steps 17 and 18 until all of the stations and offsets have been calculated through the circular portion. Go to the exit spiral by keystroking

[D]**20 BRG=?**

Input the bearing of the exit tangent

[R/S]**21 QD=?**

Input the quadrant code for the exit tangent in the direction toward the P.I.

[R/S]**22 ST N+E**

Input the north coordinate of the ST

[ENTER]

Input the east coordinate of the ST

[R/S]

Output will be the ST and CS stations.

23 STA?

Calculate the stations through the exit spiral, beginning with the CS station, by repeating steps 12 and 13 until all of the required stations and offsets have been calculated.

3-4 Auto-Inverse

B

The keystrokes for this routine are essentially the same as the previous routine. The difference is that we are also calculating the angle to turn and the distance to measure to the solution station from a known instrument setup. The added input is the coordinates of the instrument and backsight stations.

To use the offset option, and demonstrate the output, we will calculate the coordinates for an offset at 20 feet left and right at one of the stations in the entrance spiral and circular portions of the system.

keystrokes: **[XEQ]**

ALPHA [S] [P] ALPHA

prompt: **COORD-0/S?**

keystrokes: **[Y] [R/S]**

prompt: **BRG=?**

keystrokes: **[2] [1] [.] [5] [1] [3] [R/S]**

prompt: **QD=?**

keystrokes: **[4] [R/S]**

prompt: **TS N+E?**

keystrokes: **[1] [8] [6] [3] [8]**

[.] [3] [8] [8] [ENTER]

[1] [2] [5] [4] [9]

[.] [7] [9] [2] [R/S]

prompt: **INVERSE?**

keystrokes: **[Y] [R/S]**

prompt: **INST N+E?**

keystrokes: **[1] [9] [1] [0] [0] [ENTER]**

[1] [2] [6] [2] [5] [R/S]

prompt: **BACKSITE?**

keystrokes: **[1] [8] [7] [0] [0] [ENTER]**

[1] [1] [0] [0] [0] [R/S]

prompt: **PI STATION?**

keystrokes: **[1] [4] [0] [3] [6] [.]**

[4] [4] [5] [R/S]

prompt: **DELTA?**

keystrokes: **[2] [2] [.] [0] [6]**

[5] [5] [R/S]

prompt: **R?**

keystrokes: **[1] [4] [6] [0] [R/S]**

prompt: **L?**

keystrokes: **[2] [6] [5] [R/S]**

output: **L = 265.0000**

S4 = 5.1159

R = 1.460.0000

PI =

040+36.445

CENTRAL A =

22° 6' 55"

TS =

036+18.270

SC =

038+83.270

prompt: **STA?**

keystrokes: **[1] [3] [7] [0] [0] [E]**

NOT output: 037+00.000

N = 08.714.3292

E = 08.519.5814

HD = 399.819

ΔRT =

58° 26' 24"

prompt: **O/S DIST? *LIVE* *25.28***

We will use this station as an example for the offsets. For an offset left stroke **[CHS]**

B**Auto-Inverse 3-5**

keystrokes:

[2] [0] [CHS] [R/S]

output: O/S = -28.0000
 N = 18.707.0434
 E = 10.500.9556

HD = 412.070
 ΔRT =
 $68^\circ 48' 18''$

prompt: O/S DIST?

keystrokes:

[2] [0] [R/S]

output: O/S = 20.0000
 N = 18.721.6149
 E = 10.538.2071

HD = 388.212
 ΔRT =
 $56^\circ 4' 17''$

prompt: O/S DIST?

keystrokes:

[1] [3] [8] [0] [0] [E]

output: 138+00.000

N = 18.807.9846
 E = 10.484.5431

HD = 324.039
 ΔRT =
 $68^\circ 50' 22''$

prompt: O/S DIST?

keystrokes:

[1] [3] [8] [8] [3] [.] [2] [7]**[E]**

output: 138+83.270

N = 18.887.1168
 E = 10.458.6462

HD = 270.172
 ΔRT =
 $81^\circ 9' 27''$

prompt: O/S DIST?

After calculating any needed offsets at the SC, move to the circular portion of the system

keystroke: **[J]**

prompt: O/S DIST?

keystrokes:

[1] [4] [6] [0] [R/S]

output: CIRCULAR

RADIUS POINT
 N = 19.305.6513
 E = 10.857.3782

prompt: STA?

keystrokes:

[1] [3] [9] [0] [0] [R/S]

prompt: O/S DIST?

keystrokes:

[0] [R/S]

output:

139+00.000
 N = 18.983.1717
 E = 10.453.9422

HD = 260.772
 ΔRT =
 $84^\circ 8' 43''$

prompt: STA?

keystrokes:

[1] [3] [9] [0] [0] [R/S]

prompt: O/S DIST?

keystrokes:

[2] [0] [CHS] [R/S]

output: 139+00.000

O/S = -20.0000

N = 18.897.6583

E = 10.434.7171

HD = 277.758

 ΔRT = $86^\circ 23' 36''$

prompt: STA?

keystrokes:

[1] [3] [9] [0] [0] [R/S]

prompt: O/S DIST?

keystrokes:

[2] [0] [R/S]

output: 139+00.000

O/S = 20.0000

N = 18.908.6852

E = 10.473.1672

HD = 244.243

 ΔRT = $81^\circ 35' 28''$

prompt: STA?

keystrokes:

[1] [4] [0] [0] [0] [R/S]

prompt: O/S DIST?

keystrokes:

[0] [R/S]

output: 140+00.000

N = 19.000.1655

E = 10.429.6873

HD = 219.349

 ΔRT = $106^\circ 4' 42''$

3-6 Auto-Inverse

B

prompt: STA?

keystrokes:

1 4 1 0 0 R/S

prompt: O/S DIST?

keystrokes:

0 R/S

output: 141+00.000
N = \$9,098.5919
E = \$0.412.1275

HD = 212.877

ΔRT =
132° 46' 24"

prompt: STA?

With the circular portion completed, go to the exit spiral

keystroke: D

prompt: BRG=?

keystrokes:

1 1 5 2 5 R/S

prompt: QD=?

keystrokes:

3 R/S

prompt: ST N+E

keystrokes:

9 4 4 4

6 7 ENTER+

7 3 9 5

9 7 5 R/S

output: ST =

144+46.807

CS =

141+81.807

prompt: STA?

keystrokes:

1 4 1 8 1 .

8 0 7 E

output: 141+81.807

N = \$9,179.8546

E = \$0.402.7994

HD = 236.114

ΔRT =

152° 55' 11"

prompt: O/S DIST?

keystrokes:

1 4 2 0 0 E

output: 142+00.000

N = \$9,197.9891

E = \$0.401.3422

HD = 244.182

ΔRT =

156° 48' 42"

prompt: O/S DIST?

keystrokes:

1 4 3 0 0 E

output: 143+00.000

N = \$9,297.8695

E = \$0.396.6796

HD = 302.130

ΔRT =

174° 3' 56"

prompt: O/S DIST?

keystrokes:

1 4 4 0 0 E

output: 144+00.000

N = \$9,397.8630

E = \$0.395.8693

HD = 375.833

ΔRT =

185° 34' 33"

prompt: O/S DIST?

keystrokes:

1 4 4 4 6

8 0 7 E

output: 144+46.807

N = \$9,444.6697

E = \$0.395.9750

HD = 413.823

ΔRT =

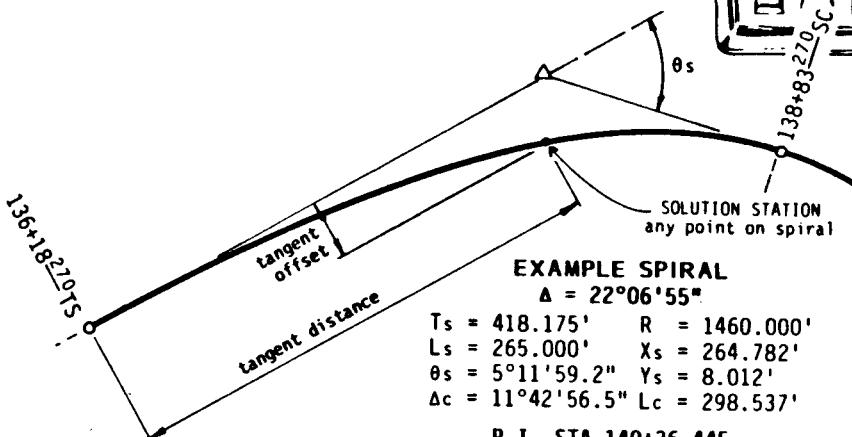
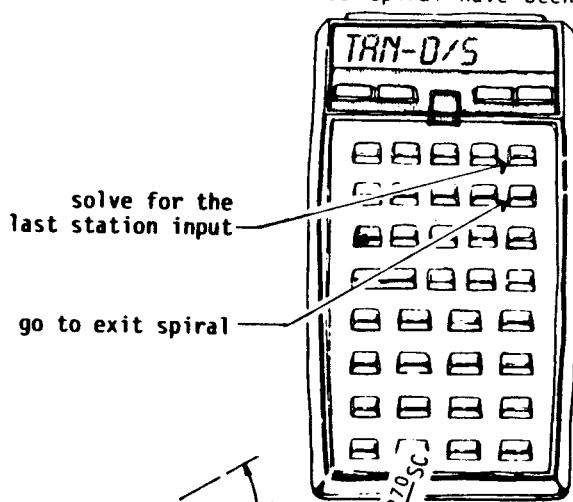
189° 32' 57"

When the calculations are being done for radial stakeout with this program, it is possible that the whole curve cannot be seen from one setup. In that event, the portion that is to be sprayed in from the first setup point should be completed, and then the program started over for the second setup.

If the first setup included the circular portion, and the second setup will be in the exit spiral only, it is not necessary to go through all of the steps.

B

Tangent Offset 4-1



In this routine, the solution is in the form of the tangent distance and the offset from the tangent to any point on the spiral. The tangent distance is the distance along the entrance tangent from the TS, or back along the exit tangent from the ST. The tangent offset is measured at right angles to the tangent.

To illustrate this routine, the spiral data below will be used. The entrance spiral is shown below, and the curve data for the spiral portions is the same for both the entrance and exit spirals. Stationing at the CS and ST will be output by the program after calculations for the entrance spiral have been completed.

The keys used for this routine are shown in the sketch to the right.

The required input is prompted by the program as you proceed, and followed by stroking the **R/S** button, except after input of a new station for solution.

Step-by-step instructions are shown on the next page, followed by a keystroke example.

4-2 Tangent Offset

B

As in the other examples, the program will begin the prompting for the type of solution wanted when you keystroke **[XEQ] [ALPHA] [S] [P] [ALPHA]**. Remember to be sized at 050 and to have the utility programs "DMS" and "STA" in program memory, as well as "SP".

1	COORD-0/S?	Answer this prompt no	[N] [R/S]
2	TAN 0/S?	Answer this prompt yes	[Y] [R/S]
3	PI STATION?	Input the main P.I. station. If it is not shown on the curve data provided it can be calculated by inputting the TS station and adding the Ts distance to it. In this case, it is station 140+36.445	[R/S]
4	DELTA?	Input the system delta. If the curve is a curve to the left, [CHS]	[R/S]
5	R?	Input the radius for the circular curve	[R/S]
6	L?	Input the spiral length	[R/S]
Output will be a display of the length of spiral curve, the spiral angle (output is in the form D.MMSS), and the radius. If a printer is not attached, continue stroking [R/S] . Output continues with the P.I. station, the central angle, and the TS and SC stations, followed by the next prompt			
7	STA?	Input the station for which the the tangent distance and tangent offset are required	[E]
Output will be the tangent distance and the tangent offset. Continue stroking [R/S] each time if not using a printer until the prompt STA? appears.			
8	STA?	Repeat step 7 until all of the required stations have been calculated for the entrance spiral. It is normal to also calculate the SC station last. When ready to calculate the exit spiral, keystroke	[D]
Output will be the stations of the CS and ST, followed by the prompt			
9	STA?	Input the exit spiral stations for solution in the same manner as before, repeating step 7 until all of the required stations have been calculated. The exit spiral can be calculated in either direction, but the tangent distances and offsets are from the ST, sighting toward the P.I.	

B

Tangent Offset 4-3

As an example of the keystrokes used with this routine, and using the information on page 4-1, in the example spiral, we will calculate the entrance and exit spirals at even stations.

keystrokes: **[XEQ]**

[ALPHA] [S] [P] [ALPHA]

prompt: **COORD-0/S?**

keystrokes:

[N] [R/S]

prompt: **TAN 0/S?**

keystrokes:

[Y] [R/S]

prompt: **PI STATION?**

keystrokes:

[1] [4] [0] [3] [6] [.]

[4] [4] [5] [R/S]

prompt: **DELTA?**

keystrokes:

[2] [2] [.] [0] [6] [5] [5]

[R/S]

prompt: **R?**

keystrokes:

[1] [4] [6] [0] [R/S]

prompt: **L?**

keystrokes:

[2] [6] [5] [R/S]

output: **L = 265.0000**

S₄ = 5.1159

R = 1,460.0000

PI =

148+36.445

CENTRAL 4 =

22° 6' 55"

TS =

136+18.270

SC =

138+83.270

At this point we begin to calculate the stations along the entrance spiral. While any station may be calculated, we will calculate the 100' even stations for this example

prompt: **STA?**

keystrokes:

[1] [3] [7] [0] [0] [E]

output: **137+00.000**

TD = 81.7294

T 0/S = 0.2352

prompt: **STA?**

keystrokes:

[1] [3] [8] [0] [0] [E]

output: **138+00.000**

TD = 181.6969

T 0/S = 2.5851

prompt: **STA?**

keystrokes:

[1] [3] [8] [8] [3] [.] [2] [7]

[E]

output: **138+83.270**

TD = 264.7818

T 0/S = 8.0118

With the calculations for the entrance spiral completed, we can move to the exit spiral

keystroke: **[D]**

output: **ST =**
144+46.807
CS =
141+81.807

prompt: **STA?**

keystrokes:

[1] [4] [1] [8] [1] [.]

[8] [0] [7] [E]

output: **141+81.807**
TD = 264.7821
T 0/S = -8.0119

prompt: **STA?**

keystrokes:

[1] [4] [2] [0] [0] [E]

output: **142+00.000**
TD = 246.6544
T 0/S = -6.4734

prompt: **STA?**

keystrokes:

[1] [4] [3] [0] [0] [E]

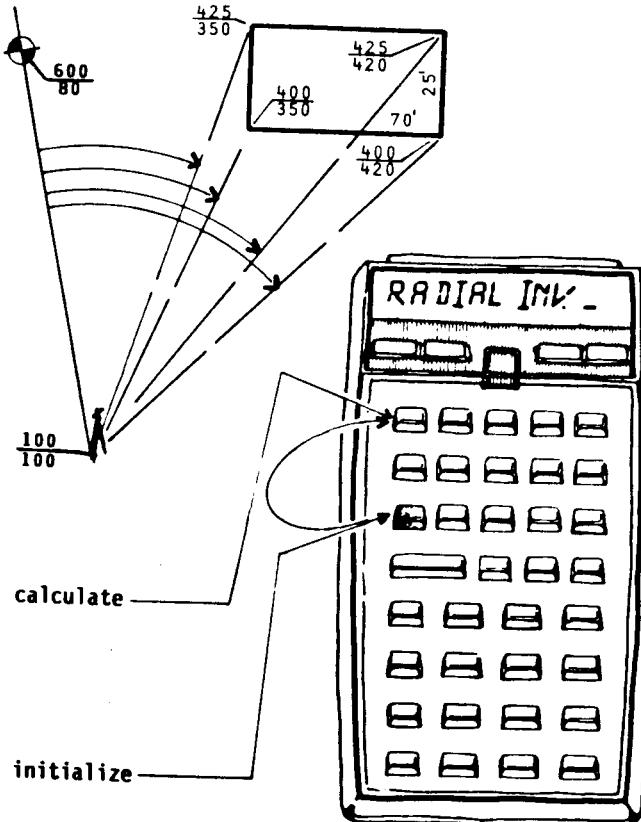
output: **143+00.000**
TD = 146.7959
T 0/S = -1.3629

prompt: **STA?**

keystrokes:

[1] [4] [4] [0] [0] [E]

output: **144+00.000**
TD = 46.8072
T 0/S = -8.0442


B

Radial Inverse 5-1

This routine may be used to calculate the angle right and horizontal distance to any point of known coordinates, from an instrument setup station and backsight station which have known coordinates.

It has been included in this section because the capability is already in the programming, and it is therefore available for use with other field problems when the program "SP" is in the program memory.

The calculator should be sized at 050. If the calculator has been off, and a printer is not attached, the numbers will 'flash' by ... in this case SF21 and proceed with the keystrokes as shown below:

keystrokes:

GTO (key in **shift RCL**)

ALPHA S P ALPHA

a (key in as **shift A**)

prompt: **INST N+E**

keystrokes:

1 0 0 ENTER↑

1 0 0 R/S

prompt: **BACKSITE?**

keystrokes:

6 0 0 ENTER↑

8 0 R/S

prompt: **N+E?**

keystrokes:

4 2 5 ENTER↑

3 5 0 A

output: **425.0000**

350.0000

HD = 410.030

ΔRT =

39° 51' 33"

prompt: **N+E ?**

5-2 Radial Inverse

B

keystrokes:

4 0 0 ENTER+

3 5 0 A

output: 400.0000
350.0000

HD = 390.512
ΔRT =
42° 5' 46"

keystrokes:

4 2 5 ENTER+

4 2 0 A

output: 425.0000
420.0000

HD = 456.098
ΔRT =
46° 50' 47"

keystrokes:

4 0 0 ENTER+

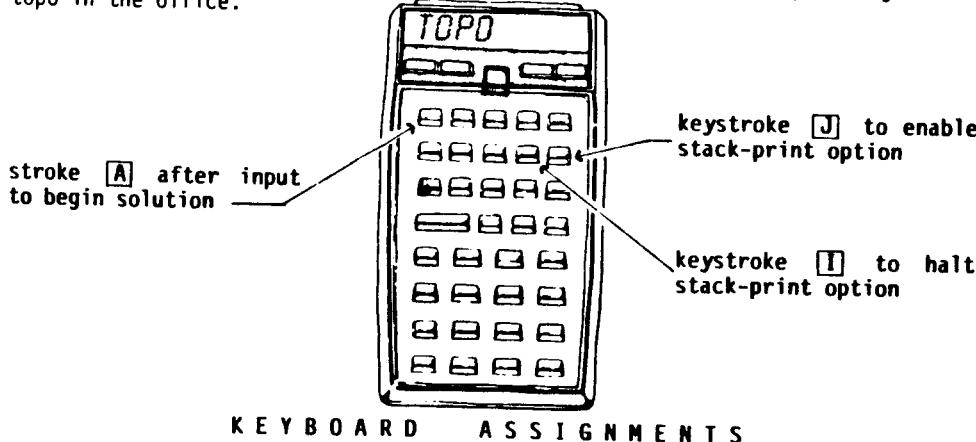
4 2 0 A

output: 400.0000
420.0000

HD = 438.634
ΔRT =
49° 8' 18"

The easiest introduction to the use of this program group is the routine where it is used to do a topographic survey. After input of the information needed to establish the baseline, the input of the horizontal and vertical (zenith) angles, slope distance and rod for each shot gives output in terms of the station along the baseline, offset left or right at the shot, and the elevation at the shot.

If a printer is attached, the input can also be shown as part of the output by 'toggling' between the I and J keys. This establishes a flag status condition which prints out the stack after input, but before beginning the calculations for the solution.


T= 127.1625
Z= 94.8235
Y= 206.5400
X= -5.0000

STA 8+75.23
AT 163.95 RT
ELEV = 80.44

The stack-print option may only be used with a printer attached, or a "nonexistent" will be displayed when the program reaches the PRINT STACK command.

The baseline for the topo may be two points along a traverse line, or along the existing alignment of a road or highway. The instrument and backsite do not have to be on centerline with this program. They can be at any convenient offset to the baseline or centerline, and they can be at different offsets, if that is more convenient. One or the other can even be at a station or offset in a curve (both can be if it is the same curve).

In the case of a simple baseline, assign the instrument point a station, such as 0+00, and the backsite the station equivalent to its distance from the instrument. The use of the station-offset output allows rapid plotting of the topo in the office.

1-2

Topo

C

To begin, the calculator should contain both of the utility programs "STA" and "DMS", as well as "TT", and be sized at 045. Initialize the program with the keystrokes **[XEQ] [ALPHA] [T] [T] [ALPHA]**. The program will begin with a prompt for the station at the instrument location.

1	INST. STA.?	Input the station which (or opposite which) the instrument occupies	[R/S]
2	OFFSET?	If the instrument is on the centerline or baseline, enter 0. If on an offset, enter the offset distance. If the offset is to the left, [CHS]	[R/S]
3	ON CURVE?	This prompt will be answered NO, [N] unless the instrument is on (or opposite) a station which is in the curve. If the setup is in a curve, answer [Y] , and answer the additional prompts for curve data.	[R/S]
4	B.C. STA?	Enter the station at which the curve starts	[R/S]
5	RADIUS?	Input the radius of the curve	[R/S]
6	DELTA?	Input delta (DD.MMSS). If curve left, [CHS]	[R/S]
7	H.I.?	Input the elevation at the height of the instrument. This can be found by taking a shot at a benchmark, measuring up from the known elevation of the setup station, or may be an assumed height of instrument for the purpose of the particular survey	[R/S]
8	BKSITE STA?	Input the station of the point that will be the backsight point	[R/S]
9	OFFSET?	Input 0 if on centerline, or the offset distance if not. If the offset is left, [CHS]	[R/S]
10	ON CURVE?	If the backsight station is on a curve, answer [Y] . If not, answer [N] . If both the instrument and the backsight are on the curve, the curve data has been input already and need not be repeated; if this is the case, answer NO. If the	

answer is yes, but the instrument was not on the curve, the program will prompt for the curve data as shown above in steps 4 thru 6

R/S

11 CURVE AREA?

This prompt will appear if the neither the instrument nor backsight are on a curve. If there is a curve in the centerline alignment which will fall within the scope of the topo, answering **Y** will bring up the prompts shown at steps 4 through 6. Shots taken within the area of the curve will be shown as radial offsets to the curve stations when output. If there is no curve area involved, answer **N**

R/S

12 SHOW GRADE?

Answer this prompt no,

N R/S

13 INPUT SHOT*

This is the prompt to begin input of the shots. Input the horizontal angle

ENTER

Input the vertical (zenith) angle

ENTER

Input the measured slope distance

ENTER

Input the rod reading. With the EDM, it is the height of the rod at the prism, and it is a minus rod. Unless the rod is inverted, all rods are minus rods and the rod is input as a minus by **CHS** prior to keystroking

A

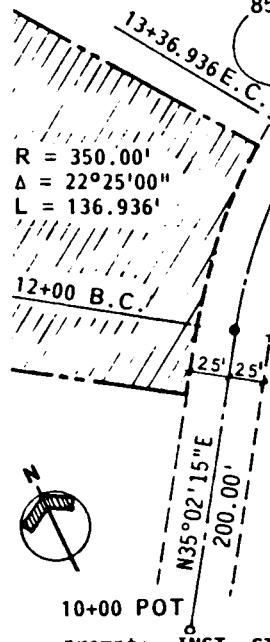
*

If a printer is attached, and the print-stack option is wanted, to record the input data

J

*

You can halt the print-stack option by keystroking


I

Output will be the station, offset and elevation at the shot. Return to step 13 for the next shot. If using the calculator without a printer attached, keystroke **R/S** for each part of the output each time until the INPUT SHOT prompt is shown.

NOTE: When there is a curve in the alignment the program executes a subroutine for solution, after first determining that the shot falls within the curve area. After the solution is calculated, it is then compared to the EC station, and if it it exceeds the curve area is recalculated as an offset to the exit tangent.

For this reason the program running time gets slightly longer when you have passed the curve area with the shots.

N57°27'15"E As an example of how the program works, and to practice 85.50' ✓ the keystrokes and input used, we can do part of the little topographic survey shown to the left.

The survey is going to be used by an architect, who is designing a residence for the lot that is shown (shaded), and he needs to know enough about the topography to start designing his footings.

One of the advantages of this program is that there is no need to run a traverse just to do a topo. Any baseline can be used, as long as it can be related to the street for plotting. For the example we will assume that the instrument is set over a right-of-way pin at 25' left of 12+00 B.C., and the backsight is at 10+00 on centerline.

This has us already tied to the alignment for plotting of the topography, and we can use an assumed height of instrument of 200. The program will number the shots as they are taken so that the only field notes which will be required for plotting is a list of the shots showing what was shot.*

To begin, initialize the program with **XEQ ALPHA**, and begin answering the prompts.

prompt: INST. STA.?

keystrokes:

1 **2** **0** **0** **R/S**

prompt: OFFSET?

keystrokes:

2 **5** **CHS** **R/S**

prompt: ON CURVE?

keystrokes:

N **R/S**

prompt: H.I.?

keystrokes:

2 **0** **0** **R/S**

prompt: BKSITE STA?

keystrokes:

1 **0** **0** **0** **R/S**

prompt: OFFSET?

keystrokes:

0 **R/S**

prompt: ON CURVE?

keystrokes:

N **R/S**

prompt: CURVE AREA?

keystrokes:

Y **R/S**

prompt: B.C. STA?

keystrokes:

1 **2** **0** **0** **R/S**

prompt: RADIUS?

keystrokes:

3 **5** **0** **R/S**

prompt: DELTA?

keystrokes:

2 **2** **0** **2** **5** **R/S**

prompt: SHOW GRADE?

keystrokes:

N **R/S**

* With printer attached

prompt: INPUT SHOT
keystrokes:

8 5 . 1 0 2 5

[ENTER]

9 1 . 1 5 1

[ENTER]

5 7 . 3

[ENTER]

5 [CHS] A

output: 1

T= 85.1025
Z= 91.1510
Y= 57.3000
X= -5.0000
STA 11+88.14
RT 81.04 LT
ELEV = 193.75

prompt: INPUT SHOT

keystrokes:

1 0 2 . 2 5 3 5

[ENTER]

9 2 . 0 7 3

[ENTER]

6 3 . 7

[ENTER]

5 [CHS] A

output: 2

T= 102.2535
Z= 92.0730
Y= 63.7000
X= -5.0000
STA 12+04.70
RT 88.42 LT
ELEV = 192.64

All of the required setup information has been input at this point, and we have the prompt for shot input, as shown to the left.

At this point you can keystroke **J** to have the angles and slope distances output, along with the solution of the shots, if your printer is attached. This output can be returned to the 'solution only' form at any time by keystroking **I**. Neither key disturbs the stack, but it is generally more convenient to switch just before or just after input, since it does erase the prompt.

When the stack is printed the T register contains the horizontal angle, the Z register contains the zenith angle, the Y register has the slope distance and the X register the rod.

The keystrokes to the left are typical input, and additional shot solutions are shown with the print-stack input.

3

T= 135.1000
Z= 92.3500
Y= 25.0000
X= -5.0000
STA 12+13.64
RT 44.97 LT
ELEV = 193.87

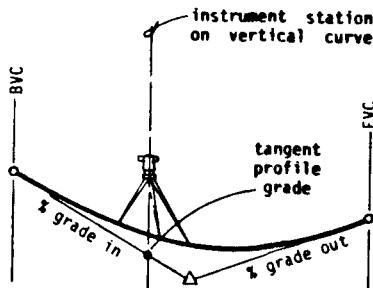
5

T= 132.5445
Z= 94.3630
Y= 92.4000
X= -5.0000
STA 12+41.72
RT 102.93 LT
ELEV = 187.58

4

T= 134.2630
Z= 93.2000
Y= 43.6000
X= -5.0000
STA 12+22.52
RT 60.47 LT
ELEV = 192.46

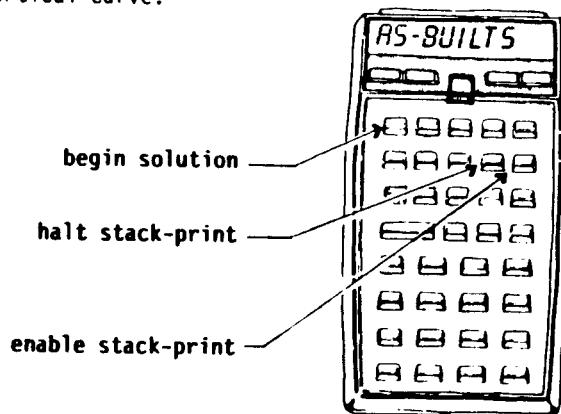
6


T= 136.0250
Z= 95.0240
Y= 106.5000
X= -5.0000
STA 12+50.63
RT 112.37 LT
ELEV = 185.64

The program is used in essentially the same way for taking as-built shots, except that the shots are usually taken with more accuracy. It can be used, for instance, for determining the location of building slabs as they are poured on the lots in a subdivision, or as-built shots on curb and gutter.

This routine will also be useful for checking the forms prior to pouring the concrete, and is generally quicker than elevation-offset shots on complex structures. In the case of a structure as-built, the shots should be taken with a butt chain, and slope chained directly to the instrument head from the point or corner being checked.

In the case of a curb and gutter as-built, the routine will carry the profile grade information and output finish grade at each shot in addition to the elevation of the shot for quick comparison. This means that the shots can be taken at convenient locations without having to be at an exact station where the grade is known.



The routine can carry one grade break or vertical curve at a time, together with the entrance and exit grades.

As shown in the sketch to the left, the instrument may occupy a station that is within the area of the vertical curve, but the elevation which you input when prompted PROFILE EL? will be the elevation of the vertical tangent at the instrument station, rather than the elevation on the vertical curve.

The keyboard assignments are the same for this routine as in the last (TOPO), as shown to the right.

The input information may be output as part of the solution as before, by switching the flag status with keystrokes of **I** (input not printed) and **J** (input printed), when the printer is attached.

Begin with the calculator sized at 045 and with programs "STA", "DMS" and "TT" in the program memory. To initialize the program, keystroke **[XEQ] [ALPHA] [Y]** **[ALPHA]**, and the program will begin with the prompt for the setup location.

1	INST. STA?	Input the instrument station	[R/S]
2	OFFSET?	If the instrument is on the centerline or baseline, enter 0. If on an offset, enter the offset distance. If offset left, [CHS]	[R/S]
3	ON CURVE?	This prompt will be answered NO, [N] unless the instrument is on (or opposite) a curve station. If in a curve, answer [Y] , and answer the additional prompts for curve data.	[R/S]
4	B.C. STA?	Enter the station at which the curve starts	[R/S]
5	RADIUS?	Input the radius of the curve	[R/S]
6	DELTA?	Input delta (DD.MMSS). If curve left, [CHS]	[R/S]
7	H.I.?	Input the elevation at the height of the instrument.	[R/S]
8	BKSITE STA?	Input the backsight station.	[R/S]
9	OFFSET?	Input 0 if on centerline, or the offset distance if not. If the offset is left, [CHS]	[R/S]
10	ON CURVE?	If the backsight station is on a curve, answer [Y] . If not, answer [N] . If both the instrument and the backsight are on the curve, the curve data has been input already and need not be repeated, and this prompt can be answered NO.	[R/S]
11	CURVE AREA?	This prompt will appear when neither the instrument nor backsight are on a curve. If there is a curve in the centerline alignment which will fall within the scope of the work, answering [Y] will bring up the prompts at steps 4 through 6. If there is no curve area involved, answer [N]	[R/S]
12	SHOW GRADE?	Answer this prompt yes	[Y] [R/S]

13 PROFILE EL? Input the finished grade elevation at the instrument station. If the instrument is at a station which is located within a vertical curve, input the elevation of the tangent profile grade.

[R/S]

14 GRADE? Input the % of grade. If negative, [CHS]

[R/S]

15 SPRINGLINE? Answer this prompt NO

[N] [R/S]

16 VERT CURVE? If the grade is a straight slope, answer [N]. If there is a vertical curve within the work area answer [Y]

[R/S]

THE NEXT THREE PROMPTS APPEAR IF THE ANSWER (above) WAS YES:

17 BVC STA? Input the beginning station of the vertical curve

[R/S]

18 LENGTH? Input the length of the vertical curve

[R/S]

19 GRADE OUT? Input the % of grade leaving the vertical curve. If negative, [CHS]

[R/S]

20 INPUT SHOT* This is the prompt to begin input of the shots. Input the horizontal angle

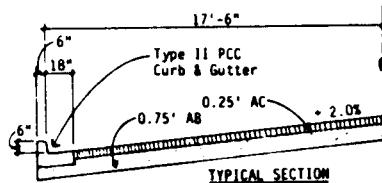
[ENTER]

Input the vertical (zenith) angle

[ENTER]

Input the measured slope distance

[ENTER]

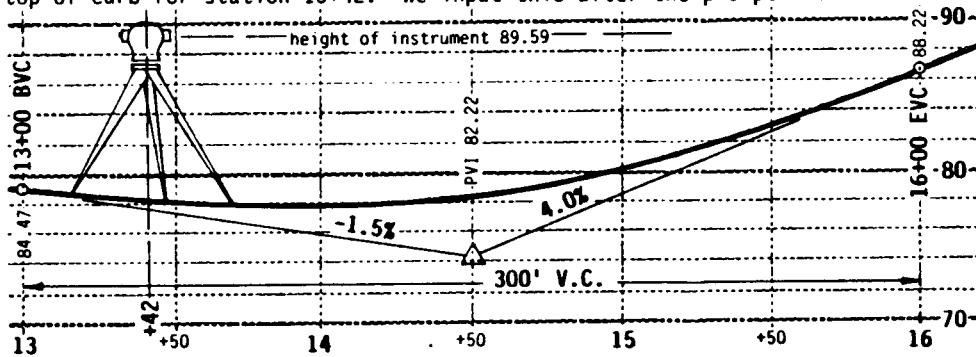

Input the rod reading. If you are sighting directly to a point, and slope chaining to it, input 0. An inverted rod is a 'plus' rod, and a normal rod is a 'minus' rod ([CHS] for minus rod)

[A]

Output will be the station, offset, elevation and finished grade at the shot. Return to step 20 for the next shot. If using the calculator without a printer attached, keystroke [R/S] for each part of the output each time until the INPUT SHOT prompt is shown.

*If the printer is attached, the input can be shown, when wanted, by using [I] (not shown) and [J] (shown) keystrokes.

This program routine is used much the same way as TOPO, and areas including horizontal curves can be incorporated in the same way. For this example, we'll use a straight section of alignment, since the new keystrokes are those which deal with the vertical alignment.



A typical section for a street is shown to the left, and we will 'as-built' the top of curb at the face of curb on the left side of the street for our example. The centerline profile for the street is shown below, and we will assume that the instrument is set up at station 13+42, backsighting station 11+00, both on centerline.

There are two things to do before beginning. First, we will want to input the elevation of the profile grade for the curb, rather than the centerline, so, using the typical section,

$$\begin{aligned}\text{top of curb} &= \text{centerline grade} - (17.5' \times .02) + 0.5' \\ &= \text{centerline profile} + 0.15'\end{aligned}$$

Second, the grade on the vertical tangent at 13+42 needs to be calculated; we're going 42' at -1.5% , and $-.015 \times 42 = -0.63$. Take centerline grade at the BVC $-0.63 + 0.15$, and we have an elevation of 83.99 for the vertical tangent at top of curb for station 13+42. We input this after the prompt PROFILE EL?.

For this example we will assume an H.I. of 89.59, and that the shots were:

	horizontal angle	vertical angle	slope distance	rod reading
1	168°24'55"	90°15'00"	87.34	5.00
2	170°43'40"	90°05'20"	108.73	5.00
3	174°34'38"	89°35'25"	184.76	5.00

C**As-builts 2-5**

To begin, initialize the program with **[XEQ] ALPHA T T ALPHA**, and begin answering the prompts.

prompt: INST. STA.?

keystrokes:

1 3 4 2 R/S

prompt: OFFSET?

keystrokes:

0 R/S

prompt: ON CURVE?

keystrokes:

N R/S

prompt: H.I.?

keystrokes:

8 9 - 5 9 R/S

prompt: BKSITE STA.?

keystrokes:

1 1 0 0 R/S

prompt: OFFSET?

keystrokes:

0 R/S

prompt: ON CURVE?

keystrokes:

N R/S

prompt: CURVE AREA?

keystrokes:

N R/S

prompt: SHOW GRADE?

keystrokes:

Y R/S

prompt: PROFILE EL?

keystrokes:

8 3 - 9 9 R/S

prompt: GRADE?

keystrokes:

1 - 5 CHS R/S

prompt: SPRINGLINE?

keystrokes:

N R/S

prompt: VERT CURVE?

keystrokes:

Y R/S

prompt: BVC STA?

keystrokes:

1 3 0 0 R/S

prompt: LENGTH?

keystrokes:

3 0 0 R/S

prompt: GRADE OUT?

keystrokes:

4 R/S

All of the required setup information has been input at this point, and we have the prompt for shot input.

prompt: INPUT SHOT

keystrokes:

1 6 8 - 2 4

5 5

ENTER+

9 0 - 1 5

ENTER+

8 7 - 3 4

ENTER+

5 CHS A

output: 1
STA 14+27.56
AT 17.54 LT
ELEV = 84.21
GR = 84.20

prompt: INPUT SHOT

keystrokes:

1 7 0 - 4 3 4

ENTER+

9 0 - 0 5 2

ENTER+

1 0 8 - 7 3

ENTER+

5 CHS A

output: 2
STA 14+49.31
AT 17.52 LT
ELEV = 84.42
GR = 84.42

prompt: INPUT SHOT

keystrokes:

1 7 4 - 3 4

ENTER+

8 9 - 3 5 2 5

ENTER+

1 8 4 - 7 6

ENTER+

5 CHS A

output: 3
STA 15+25.93
AT 17.46 LT
ELEV = 85.91
GR = 85.91

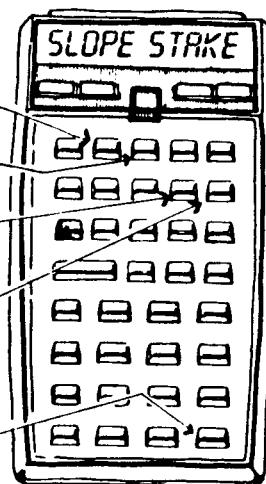
Setting slope stakes along an alignment prior to construction is one of the most time-consuming processes in construction surveying. This routine allows the staking of a large area to be accomplished from each instrument setup. It is still a 'trial and error' procedure, but it has some distinct advantages.

One advantage is that the catch points may be located at the high and low points of the existing terrain, as well as in-between. This is not usually done, even though it provides better control of the slopes, because it requires the additional calculations for the extra station grades in the field.

Both the instrument and backsight points may be at any offset to (or on) a known station on the alignment being staked. The input includes the profile of the finished grade, and calculates the station, offset and the cut or fill at any point shot.

Once input, the 'half-width' and slope ratio are carried as constants, but may be changed when desired. This feature is useful in cases such as a change from cut to fill at the station shot, or to 'flatten' the slope before and after reaching a daylight area.

After each trial shot, the program displays the distance (a minus sign indicates that the point is closer to centerline) to go to reach the actual catch point for the station being shot. When the distance is within acceptable ($\pm 0.2'$) accuracy, stroking **R/S** outputs the cut or fill information.


stroke **B** after shot
input to begin slope
stake solution

use **C** to change POVT
input as needed

keystroke **I** to halt
stack-print option

stroke **J** to enable the
stack-print option

all other commands are
accomplished with the
R/S key

The illustration to the left shows the keyboard assignments used with the slope staking procedure.

Each time **B** is stroked, the half-width is displayed. The display will show $W/2=0.00$ the first time, and the correct distance is input, followed by **R/S**. In the same manner, the original slope ratio will be displayed as $SR=0:1$ and the correct ratio is input. These may be changed at any time, by inputting a new value when they are displayed.

3-2

Remote Slope Staking

C

To begin, the calculator should be sized at 045 and have the programs "TT", "STA" and "DMS" in the program memory. Initialize the program by keystroking **[XEQ] [ALPHA] [T] [Y] [ALPHA]** to display the first prompt.

1 INST. STA?	Input the instrument station	R/S
2 OFFSET?	If the instrument is on the centerline or baseline, enter 0. If on an offset, enter the offset distance. If offset left, [CHS]	R/S
3 ON CURVE?	This prompt will be answered NO, [N] unless the instrument is on (or opposite) a curve station. If in a curve, answer [Y] , and answer the additional prompts for curve data.	R/S
4 B.C. STA?	Enter the station at which the curve starts	R/S
5 RADIUS?	Input the radius of the curve	R/S
6 DELTA?	Input delta (DD.MMSS). If curve left, [CHS]	R/S
7 H.I.?	Input the elevation at the height of the instrument.	R/S
8 BKSITE STA?	Input the backsight station.	R/S
9 OFFSET?	Input 0 if on centerline, or the offset distance if not. If the offset is left, [CHS]	R/S
10 ON CURVE?	If the backsight station is on a curve, answer [Y] . If not, answer [N] . If both the instrument and the backsight are on the curve, the curve data has been input already and need not be repeated, and this prompt can be answered NO.	R/S
11 CURVE AREA?	This prompt will appear when neither the instrument nor backsight are on a curve. If there is a curve in the centerline alignment which will fall within the scope of the work, answering [Y] will bring up the prompts at steps 4 through 6. If there is no curve area involved, answer [N]	R/S
12 SHOW GRADE?	Answer this prompt yes	[Y] R/S

C

Remote Slope Staking

3-3

GUN FWD. L. S.

13 PROFILE ELEV?

Input the finished grade elevation at the instrument station.
If the instrument is at a station which is located within
a vertical curve, input the elevation of the tangent profile
grade.

R/S**14 GRADE?**

Input the percent of grade. If negative, **[CHS]**

R/S**15 SPRINGLINE?**

Answer this prompt NO

[N] R/S**16 VERT CURVE?**

If the grade is a straight slope, answer **[N]**. If there is
a vertical curve within the work area answer **[Y]**

R/S

THE NEXT THREE PROMPTS APPEAR IF THE ANSWER (above) WAS YES:

17 BVC STA?

Input the beginning station of the vertical curve

R/S**18 LENGTH?**

Input the length of the vertical curve. In the case of a
grade-break instead of a vertical curve, input 0

R/S**19 GRADE OUT?**

Input the percent of grade leaving the vertical curve. If
negative, **[CHS]**

R/S**20 INPUT SHOT**

This is the prompt to begin input of the shot information.
Input the horizontal angle

H **[ENTER]**

Input the vertical (zenith) angle

V **[ENTER]**

Input the measured slope distance

D **[ENTER]**

Input the rod reading. **[MINUS]** for 'minus' (normal) rod

R **[ENTER]**

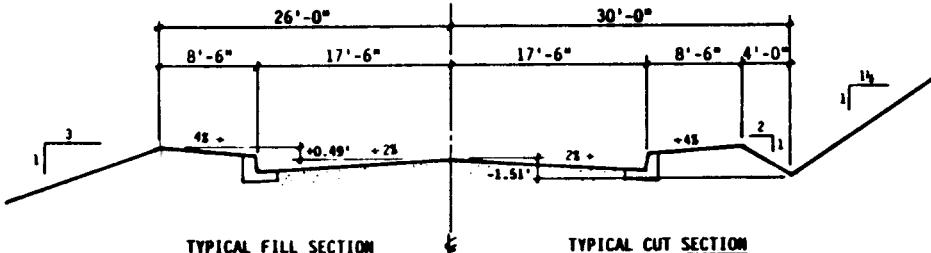
21 W/2 = 0.00

Input the correct half-width value, if different from the
value which is displayed

R/S**22 SR=0:1**

Input the correct slope ratio value, if different from the
value displayed

R/S


the display will now give the distance to the catch point. If the distance
is considered to be within acceptable tolerance, **[R/S]**, or if it is not, return
to step 20 and input the next trial shot information.

23

To change the POVT value, input the new elevation

H **[ENTER]**

For the keystroke procedure example, we can assume the same setup and alignment conditions as we had on pages 50 and 51, but use the additional information in the section shown below for slope staking.

For a fill condition we have a centerline grade (on the vertical tangent) at the instrument of 83.84 (BVC - 42' @ -1.5%). To adjust this to the shoulder profile for slope staking, we have to go 17.5' @ -2%, +0.5' for the curb, and 8.5' at +4%. This gives us a total of +0.49'. The grade for input then, will be centerline POVT at the instrument $+0.49 = 84.33$.

In the 'cut' condition we have the same adjustment figures, but a ditch has been added at the toe of the slope, and we must go an additional 4' at 2:1 (-), or -2'. This gives a total correction in cut of -1.51' to be applied to our instrument POVT, so our grade input in a cut will be 82.33.

When you are staking a fill area and come to a daylight section where the slope of the existing terrain causes the fill to become a cut, or the reverse, you can change from the fill POVT to the cut POVT by inputting the other number and keystroking **ENT**. The half-width and the slope ratio also change, and these can be changed by inputting the new number when they are displayed.

To begin, with the calculator sized at 045, initialize the program with **KEY ALPHA T** **T ALPHA**, and begin answering the prompts.

PROMPT: INST. STA.?

KEYSTROKES:

1 3 4 2 R/S

PROMPT: OFFSET?

KEYSTROKES:

0 R/S

PROMPT: ON CURVE?
KEYSTROKES:

N R/S

PROMPT: H.I.?
KEYSTROKES:

8 9 . 5 9 R/S

PROMPT: BKSITE STA.?
KEYSTROKES:

1 1 0 0 R/S

PROMPT: OFFSET?
KEYSTROKES:

0 R/S

PROMPT: ON CURVE?
KEYSTROKES:

N R/S

PROMPT: CURVE AREA?
KEYSTROKES:

N R/S

C**Remote Slope Staking****3-5**prompt: **SHOW GRADE?**

keystrokes:

[Y] [R/S]prompt: **PROFILE EL?**

Assume that we will be in a fill section for the first shots, and input the POVT for the top of the fill:

keystrokes:

[8] [4] [.] [3] [3] [R/S]prompt: **GRADE?**

keystrokes:

[1] [.] [5] [CHS] [R/S]prompt: **SPRNGLINE?**

keystrokes:

[N] [R/S]prompt: **VERT CURVE?**

keystrokes:

[Y] [R/S]prompt: **BVC STA?**

keystrokes:

[1] [3] [0] [0] [R/S]prompt: **LENGTH?**

keystrokes:

[3] [0] [0] [R/S]prompt: **GRADE OUT?**

keystrokes:

[4] [R/S]

The required input information has been completed, and we take a shot. We will use the following data for the keystroke example:

horizontal angle = 158°22'55"

vertical angle = 92°49'05"

slope distance = 115.74'

the prism is at 5.00'

keystrokes:

[1] [6] [0] [.] [1] [1] [3]**[ENTER]****[9] [2] [.] [0] [2] [1] [5]****[ENTER]****[1] [1] [3] [.] [8] [7]****[ENTER]****[5] [CHS] [B]**display: **W/2= 26.00**

keystrokes:

[R/S]display: **SR= 3:1**

keystrokes:

[R/S]display: **-0.10**

This is close enough for slope staking, so we accept this as the catch point. Instead of input for a new shot, keystroke

[R/S]output: **FILL 4.2****AT 12.7****STA 14+49.06****AT 38.56 LT****ELEV = 80.54****GR = 84.76**

The next example will be in a 'cut' portion of the alignment, and we'll use this data:

horizontal angle = 192°20'40"

vertical angle = 87°23'40"

slope distance = 188.24'

rod reading = 5.00'

Before input of the shot data we have to change the POVC to the 'cut' toe elevation.

3-6

Remote Slope Staking

C

keystrokes:

8 2 . 3 3 C

prompt: INPUT SHOT

keystrokes:

1 9 2 . 2 0 4

ENTER+

8 7 . 2 3 4

ENTER+

1 8 8 . 2 4

ENTER+

5 CHS B

display: W/2= 26.00

keystrokes:

3 0 R/S

display: SR= 3:1

keystrokes:

1 . 5 R/S

display: -3.15

Again the indication that the shot is short of being the right distance from centerline for a catch point at the elevation of the shot. You have to go

a greater distance out, go to a lower (less cut) elevation, or a combination of both.

This aspect of slope staking is always confusing, but is a little easier to understand if we assume that the existing ground is level, and take the next shot about 3.15 feet further from centerline. This would give your second shot the following data:

horizontal angle = 193°19'30"
 vertical angle = 87°24'00"
 slope distance = 188.24'
 the rod, again is at 5.00'

keystrokes:

1 9 3 . 1 9 3

ENTER+

8 7 . 2 4

ENTER+

1 8 8 . 2 4

ENTER+

5 CHS B

display: W/2= 30.00

keystrokes:

R/S

display: SR= 1.50:1

keystrokes:

R/S

display: -0.02

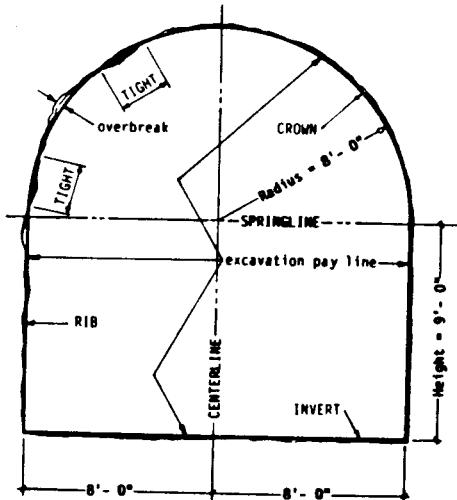
This is the catch point. If we had printed out the first shot, it would have shown the same cut information (Cut 8.9 at 13.4), but it was only 40.20 feet from centerline.

13.4 + 30.00 is 43.4, and that is the distance needed to have a catch point at this shot's elevation. The new shot should be at that distance if the cut is the same.

Instead of input for a new shot,
 keystroke

R/S

output: CUT 8.9
 AT 13.4
 STA 15+24.98
 AT 43.34 RT
 ELEV = 93.13
 GR = 84.23


C

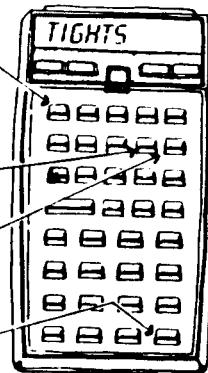
Tunnel Tights 4.1

This section of programs originated as a program for tight-checking, and is capable of carrying both a horizontal curve and a vertical curve alignment at the same time.

The basic technique for checking tights is to measure the distances with a rag-tape, from the head of the instrument. In order to reach the crown and upper rib area, the zero end of the tape is fastened to a rod, or a powder pole, which is held in place by the rodman while the instrument is sighted onto the end where it touches the side of the tunnel.

Tights in tunnel excavation must be removed as the tunnel progresses, or going back later to remove them becomes very costly. This program allows complete breakdown of the shots at the time they are taken, and lets the field crew paint the tights as they do the check.

TYPICAL TUNNEL SECTION


The typical section shown above gives the basic nomenclature of the tunnel, and the dimensions which will be used for the keystroke example. The keystrokes used for this routine are also shown above, and input is the same as in the previous routines using this program with the exception that we now input the prompts that are needed for reduction of the field data. A response of YES to the SPRINGLINE? prompt brings up additional input as profile grade, but the finished grade which is output will be the grade at the tunnel invert.

stroke **A** after shot
input to begin slope
Stake solution

keystroke **I** to halt
stack-print option

stroke **J** to enable the
stack-print option

all other commands are
accomplished with the
R/S key

4-2

Tunnel Tights

C

Begin with the calculator sized at 045, with programs "TT", "STA" and "DMS" in the program memory. The prompting will begin when you initialize with the keystrokes **[XEQ] [ALPHA] [Y] [Y] [ALPHA]**.

1	INST. STA?	Input the instrument station	[R/S]
2	OFFSET?	If the instrument is on centerline, enter 0. If on an offset, enter the offset distance. If the offset is left of centerline, [CHS]	[R/S]
3	ON CURVE?	This prompt will be answered NO, [N] unless the instrument is on (or opposite) a curve station. If in a curve, answer [Y] , and answer the additional prompts for curve data.	[R/S]
4	B.C. STA?	Enter the station at which the curve starts	[R/S]
5	RADIUS?	Input the radius of the curve	[R/S]
6	DELTA?	Input delta (DD.MMSS). If curve left, [CHS]	[R/S]
7	H.I.?	Input the elevation at the height of the instrument.	[R/S]
8	BKSITE STA?	Input the backsight station.	[R/S]
9	OFFSET?	Input 0 if on centerline, or the offset distance if not. If the offset is left, [CHS]	[R/S]
10	ON CURVE?	If the backsight station is on a curve, answer [Y] . If not, answer [N] . If both the instrument and the backsight are on the curve, the curve data has been input already and need not be repeated, and this prompt can be answered NO.	[R/S]
11	CURVE AREA?	This prompt will appear when neither the instrument nor backsight are on a curve. If there is a curve in the centerline alignment which will fall within the scope of the work, answering [Y] will bring up the prompts at steps 4 through 6. If there is no curve area involved, answer [N]	[R/S]
12	SHOW GRADE?	Answer this prompt yes	[Y] [R/S]

C

Tunnel Tights 4-3

13 PROFILE EL?

Input the SPRINGLINE elevation at the instrument station. If the instrument is at a station which is located within a vertical curve, input the elevation of the SPRINGLINE tangent profile grade.

R/S**14 GRADE?**

Input the percent of grade. If negative, **CHS**

R/S**15 SPRINGLINE?**

Answer this prompt YES

Y R/S**16 HEIGHT?**

Input the height of the springline of the tunnel above the invert. This is the same as the difference in elevation between the springline and the invert

R/S**17 VERT CURVE?**

If the grade is a straight slope, answer **N**. If there is a vertical curve within the work area answer **Y**

R/S

THE NEXT THREE PROMPTS APPEAR IF THE ANSWER (above) WAS YES:

18 BVC STA?

Input the beginning station of the vertical curve

R/S**19 LENGTH?**

Input the length of the vertical curve. In the case of a grade-break instead of a vertical curve, input 0

R/S**20 GRADE OUT?**

Input the percent of grade leaving the vertical curve. If negative, **CHS**

R/S**21 INPUT SHOT**

This is the prompt to begin input of the shot information. Input the horizontal angle

ENTER↑

Input the vertical (zenith) angle

ENTER↑

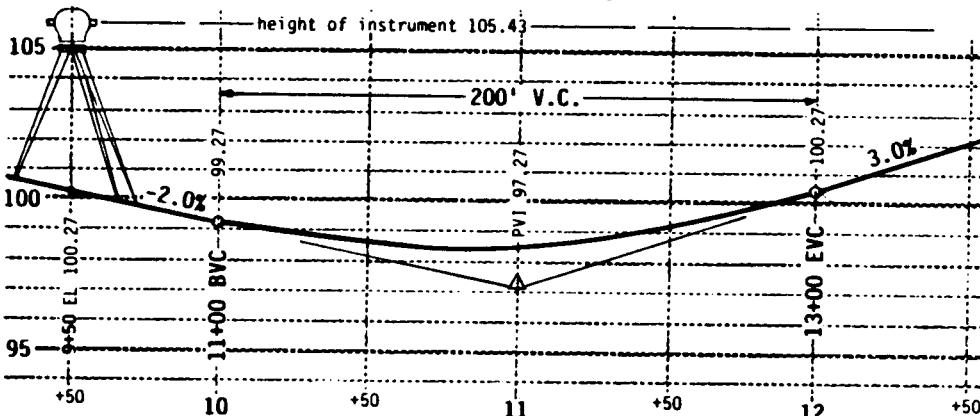
Input the measured slope distance

ENTER↑

Input 0, since you are sighting directly to the zero end of the tape and there is no rod correction

A

output will be the station, offset and elevation of the shot, followed by the invert grade at the station. If the shot is above springline, the radius at to determine whether the shot is 'tight' or not. Return to step 21 for the next shot.


4-4

Tunnel Tights

C

For the keystroke example, we will use the dimensions of the tunnel shown in the section on page 61, and the profile information shown below. For the horizontal alignment, we'll use a centerline that has a curve to the right beginning at station 10+02.17, with the following curve data:

Radius = 1000.00', DELTA = 42°16'22", LENGTH = 737.80'

Assume that the instrument is set up at station 9+50, backsighting 8+00, and that a rod shot at a nearby benchmark gives us an H.I. of 105.43. We want to do a tight-check in the vicinity between stations 9+50 and 10+50.

With the calculator sized at 045, and programs "TT", "STA" and "DMS" in the program memory, you can begin once the setup and backsight points are known. Keystroke **[XEQ] [ALPHA] [T] [T] [ALPHA]** to begin the prompt sequence.

prompt: INST. STA.? keystrokes: 9 [5] [0] [R/S]	prompt: H.I. = ? keystrokes: 1 [0] [5] [.] [4] [3] [R/S]	prompt: ON CURVE? keystrokes: N [R/S]
prompt: OFFSET? keystrokes: 0 [R/S]	prompt: BKSITE STA? keystrokes: 8 [0] [0] [R/S]	prompt: CURVE AREA? keystrokes: Y [R/S]
prompt: ON CURVE? keystrokes: N [R/S]	prompt: OFFSET? keystrokes: 0 [R/S]	prompt: B.C. STA? keystrokes: 1 [0] [0] [2] [.] [1] [7] [R/S]

Tunnel Tights 4-5

prompt: RADIUS?

keystrokes:

1 0 0 0 R/S

prompt: DELTA?

keystrokes:

4 2 1 6 2 2

R/S

prompt: SHOW GRADE?

keystrokes:

Y R/S

prompt: PROFILE EL?

For tight-checking you will always use the SPRINGLINE elevation for input at this point. The invert profile grade

at 9+50 is 100.27, and springline is 9' higher, so the grade to input is 109.27

keystrokes:

1 0 9 . 2 7 R/S

prompt: GRADE?

keystrokes:

2 CHS R/S

prompt: SPRINGLINE?

keystrokes: ~~CHS~~ R/S

Y R/S

prompt: HEIGHT?

keystrokes: ~~CHS~~ R/S

9 R/S

prompt: VERT CURVE?

keystrokes:

Y R/S

prompt: BVC STA?

keystrokes:

1 0 0 0 R/S

prompt: LENGTH?

keystrokes:

2 0 0 R/S

prompt: GRADE OUT?

keystrokes:

3 R/S

prompt: INPUT SHOT

We have the instrument set, backsighted and ready, and we have the calculator primed with the necessary information about the tunnel. The next step in a tight-check is to take shots at anything that looks like it sticks out more than the material around it. If it isn't tight, the area isn't.

Checking one spot, we get the following data:

Horizontal Angle = 168°34'15", Zenith Angle = 78°09'35",
Slope Distance = 33.5', Rod = 0

Input of these, following the 0 with **A** we get the output shown to the right, indicating that the point is tight by half a foot, since the radius should be 8'. The spot is marked with a dot of paint, and we begin taking shots around it, looking for the outline of "0" tight, so that we can paint it.

STA 9+82.14
AT 6.50 LT
ELEV = 112.38
GR = 99.63
RAD. = 7.47

A second shot yields a radius of 8.17', so it is outside of the tight area, and the "0" point lies somewhere between the two shots. Since the difference is $\pm 0.7'$, and our second shot is $\pm 0.2'$ too far, the next shot is taken at about 2/7ths of the way back to the first shot. We get:

Horizontal Angle = 166°11'40", Zenith Angle = 77°29'30"
Slope Distance = 30.9' and the Rod = 0

4-6 Tunnel Tights

C

keystrokes:

1 6 6 . 1 1 4

ENTER↑

7 7 . 2 9 3

ENTER↑

3 0 . 9

ENTER↑

0

A

output:

STA 9+79.30
AT 7.20 LT
ELEV = 112.12
GR = 99.68
RAD. = 7.98

The keystrokes to the left are typical for input of any of the shots which are taken for locating tights.

Additional shots, with their stack-print input, which are relative to this particular area are shown below. When the shots are taken on the rib, the distance left or right of the centerline (the offset distance) is used to determine whether or not the area is tight.

In common practice the whole perimeter of the tight area is painted, like a contour line of "0" tight, and at least one or two spots on the tight are painted to show the depth of material to be removed. It is generally better to paint a little "loose", that is, a little more than necessary, to insure that the whole tight is removed in one shot.

T= 170.2910
Z= 75.1820
Y= 35.5000
X= 0.0000

T= 166.2115
Z= 87.4015
Y= 34.2000
X= 0.0000

T= 167.3740
Z= 88.3155
Y= 35.9000
X= 0.0000

T= 163.5210
Z= 90.2710
Y= 28.9000
X= 0.0000

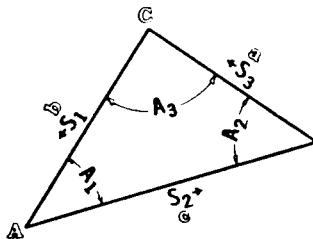
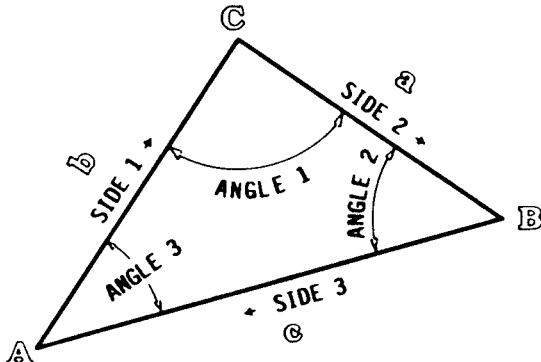
T= 162.2645
Z= 79.2500
Y= 26.8000
X= 0.0000

STA 9+83.87
AT 5.68 LT
ELEV = 114.44
GR = 99.59
RAD. = 8.15

STA 9+83.21
AT 8.06 LT
ELEV = 106.82
GR = 99.61

STA 9+84.59
AT 7.59 LT
ELEV = 111.34
GR = 99.58
RAD. = 8.08

STA 9+77.76
AT 8.03 LT
ELEV = 105.20
GR = 99.71



STA 9+75.12
AT 7.95 LT
ELEV = 110.35
GR = 99.77
RAD. = 8.11

This program solves triangles when three parts are known, including two solution routines where one of the known parts is the area. When the printer is attached, the output is designed to indicate which parts of the triangle were input as known, and which are calculated.

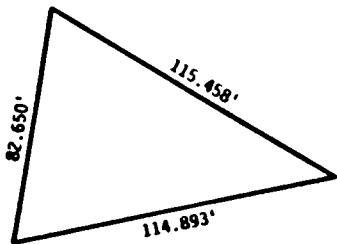
The program does not use a standard 'textbook' notation for the angles and sides (a opposite A, b opposite B and c opposite C), but instead starts with any side being called "side 1" and goes around the triangle. The next part is angle 1, then side 2, followed by angle 2, side 3 and angle 3.

Side 1 can be assigned to any side that is convenient to use, depending upon the available information about the triangle. It should be located at a side where the known information then falls in position for solution by one of the routines.

B The example triangle (above) shows this style of labeling, compared to the standard notation for sides and angles. In the example, the assigned designations go clockwise. If it better fits the information available, it can go counter-clockwise instead, as shown to the left.

There are seven types of solution available within the program, and each is identified in terms of which parts are already known. For example, the solution for a triangle with three known sides is identified as S-1, S-2, S-3. This is also the order in which the parts are input.

The calculator should be sized at 030, and the utility program "DMS" must be in the program memory if the program is being used with a printer attached.


Bring the program to the top of program memory by keystroking **[XEQ] [ALPHA] [T] [R] [ALPHA]**, after which the keystrokes are as shown for each of the solution types. It is not necessary to re-enter the program for each triangle solution and each solution of additional triangles may be calculated by simply starting with the keystrokes to input the next problem.

1-2

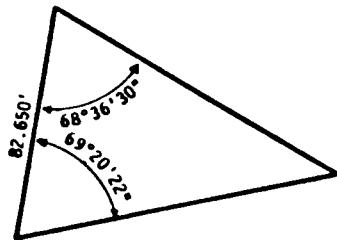
Triangle Solutions

D**S-1, S-2, S-3 THREE SIDES KNOWN:**

- 1 Input the length of side one
- 2 Input the length of side two
- 3 Input the length of side three

ENTER↑**ENTER↑****A****EXAMPLE****keystrokes:**

8 2 • 6 5
1 1 5 • 4 5 8
1 1 4 • 8 9 3


ENTER↑
ENTER↑

A**output:**

s-1 = 82.650
a-1 = 68° 36' 29.9°
s-2 = 115.458
a-2 = 42° 3' 7.8°
s-3 = 114.893
a-3 = 69° 28' 22.3°
area = 4,442.60!

A-3, S-1, A-1 TWO ANGLES AND THE INCLUDED SIDE:

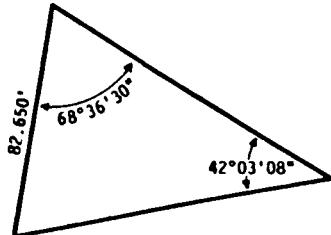
- 1 Input the value for angle three (D.MMSS)
- 2 Input the length of side one
- 3 Input the value of angle one (D.MMSS)

ENTER↑**ENTER↑****B****EXAMPLE****keystrokes:**

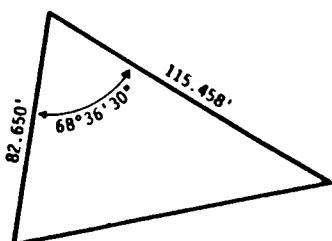
6 9 • 2 0 2 2
8 2 • 6 5
6 8 • 3 6 3

ENTER↑
ENTER↑

B**output:**


s-1 = 82.650
a-1 = 68° 36' 30.0°
s-2 = 115.458
a-2 = 42° 3' 8.0°
s-3 = 114.893
a-3 = 69° 28' 22.0°
area = 4,442.595

D


Triangle Solutions 1-3

S-1, A-1, A-2 ONE SIDE AND THE TWO FOLLOWING ANGLES KNOWN:

- 1 Input the length of side one **ENTER↑**
- 2 Input the value of angle one (D.MMSS) **ENTER↑**
- 3 Input the value of angle two (D.MMSS) **C**

EXAMPLE**keystrokes:****8 2 . 6 5****6 8 . 3 6 3****4 2 . 0 3 0 8****ENTER↑****ENTER↑****C****output:****s-1 = 82.650
a-1 =
68° 36' 30.0"****s-2 = 115.458
a-2 =
42° 3' 8.0"****s-3 = 114.893
a-3 =
69° 20' 22.0"****S-1, A-1, S-2 TWO SIDES AND THE INCLUDED ANGLE KNOWN:****area = 4,442.595**

- 1 Input the length of side one **ENTER↑**
- 2 Input the value for angle one (D.MMSS) **ENTER↑**
- 3 Input the length of side two **D**

EXAMPLE**keystrokes:****output:****8 2 . 6 5****6 8 . 3 6 3****1 1 5 . 4 5 8****ENTER↑****ENTER↑****D****s-1 = 82.650
a-1 =
68° 36' 30.0"****s-2 = 115.458
a-2 =
42° 3' 7.8"****s-3 = 114.893
a-3 =
69° 20' 22.2"****area = 4,442.601**

1-4

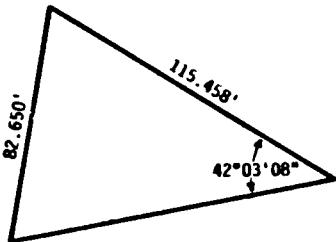
Triangle Solutions

D

S-1, S-2, A-2 TWO SIDES AND THE FOLLOWING ANGLE KNOWN: There are two possible solutions for a triangle with this configuration of known parts, and both solutions are output.

1 Input the length of side one

[ENTER]


2 Input the length of side two

[ENTER]

3 Input the value for angle two (D.MMSS)

[E]

EXAMPLE

keystrokes:

8 2 . 6 5

[ENTER]

1 1 5 . 4 5 8

[ENTER]

4 2 . 0 3 0 8

[E]

output:

first solution:

S-1 = 82.658

a-1 =

68° 36' 29.2"

second solution

S-1 = 115.458

a-1 =

42° 3' 8.8"

S-2 = 115.458

a-2 =

42° 3' 8.8"

s-2 = 56.578

a-2 =

118° 39' 37.2"

s-3 = 114.893

a-3 =

69° 29' 22.8"

S-3 = 82.658

a-3 =

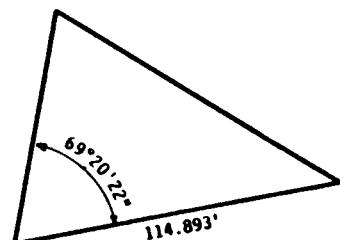
27° 17' 14.8"

area = 4,442.595 area = 2,187.426

AREA, S-1, A-1 THE AREA, ONE SIDE AND THE ADJACENT ANGLE KNOWN:

1 Input the area

[ENTER]


2 Input the length of side one

[ENTER]

3 Input the value of angle one (D.MMSS)

[F]

EXAMPLE

keystrokes:

4 4 4 2 . 6 0 1

[ENTER]

1 1 4 . 8 9 3

[ENTER]

6 9 . 2 0 2 2

[F]

output:

S-1 = 114.893

A-1 =

69° 20' 22.0"

s-2 = 62.650

a-2 =

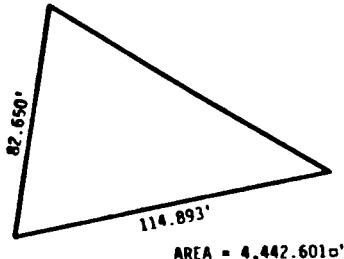
68° 36' 30.0"

s-3 = 115.458

a-3 =

42° 3' 8.8"

AREA = 4,442.601°


D

Triangle Solutions

1-5

AREA, S-1, S-2 THE AREA, AND TWO SIDES KNOWN:

1	Input the area	ENTER↑
2	Input the length of side one	ENTER↑
3	Input the length of side two	6

EXAMPLE**keystrokes:****output:**

4 4 4 2 . 6 0 1 **ENTER↑**
1 1 4 . 8 9 3 **ENTER↑**
8 2 . 6 5 0 **6**

S-1 = 114.893
a-1 =
69° 20' 22.3°

S-2 = 82.658
a-2 =
68° 36' 29.9°

s-3 = 115.456
a-3 =
42° 3' 7.8°

AREA = 4,442.601

When the printer is attached, the output is as shown in the above examples. The known information is printed in capital letters and the calculated are in lower case.

There is no solution for a case of three angles known, because this produces an infinite number of similar triangles. At least one side must be known in addition to the angles in order to arrive at a solution for the triangle.

PROGRAMMING ON CARDS \$8.50

**TO SAVE YOURSELF THE TIME INVOLVED IN TYPING
IN THE PROGRAM STEPS, AND TO INSURE THAT THE
PROGRAMS WILL WORK PROPERLY, SEND 20 BLANK
CARDS AND A SELF-ADDRESSED STAMPED ENVELOPE
WITH YOUR CHECK OR MONEY ORDER (\$8.50 PER SET).**

**WE WILL PROGRAM YOUR CARDS FOR YOU AND RETURN
THEM IN A LABELED CARD HOLDER WHICH CAN BE
INSERTED DIRECTLY INTO YOUR BOOK.**

**D'Zign land survey &
development**

**P. O. BOX 1370 • PACIFICA, CA 94044
[415] 355-8942**

The Program Listings

This solutions book is intended to help in the calculations of required field information. In order to best accomplish this aim, it is important that the program steps be keyed in properly.

KEYING IN A PROGRAM

1. Before beginning to key the program steps into the calculator, keystroke **shift** **GTO** **♦** **♦** to prepare the calculator for the new program. Set the calculator to **program mode** by pressing the **PRGM** key.
2. **LABELS** are marked with a diamond (**♦**) as a visual aid. When keying in the program ignore the diamond, and key in **LBL** by keystroking **shift** **LBL** (the **STO** button), followed by either the label number or **ALPHA** the label name **ALPHA**.
3. Symbols or characters shown with quote marks indicate that they are **alpha** characters, and must be input as program steps in **alpha mode**.
4. Functions which do not appear on the keyboard may be keyed into the program by stroking **ALPHA**, spelling out the function, and again stroking **ALPHA**. The character ***** in the listing is the **[X]** button (to multiply) and the character printed as **/** is the divide button.

UTILITY PROGRAMS

The program listings on page 76 are subroutines which are used by the other programs. These subroutines must be in the program memory in order for the other programs to work properly. In addition, the program listed below must be in program memory if the programs are being used in a calculator which does not contain a Hewlett-Packard Survey Pac module.

01♦LBL "AZ"	15 R-D
02 "BRG=?"	16 *
03 PROMPT	17 X<Y
04 "QD=?"	18 LASTX
05 PROMPT	19 *
06 X<Y	20 COS
07 HR	21 RT
08 X<Y	22 *
09 ENTER†	23 -
10 ENTER†	24 FS? 10
11 2	25 RTN
12 /	26 HMS
13 INT	27 RTN
14 PI	28 .END.

CH 2000-2
IN 1000-2000-0000

01*LBL "STA"

02 STO 27

03 100

04 *

05 ENTER†

06 ENTER†

07 INT

08 XY?

09 FRC

10 100

11 *

12 CLA

13 "+"

14 ASTO 28

15 CLA

16 "-"

17 ASTO 29

18 CLA

19 CF 29

20 FIX 0

21 ARCL Y

22 ARCL 28

23 10

24 XY?

25 ARCL 29

26 RDH

27 FIX 3

28 ARCL X

29 REVIEW

30 SF 29

31 RCL 27

32 RTN

33*LBL "DMS"

34 STO 23

35 RDH

36 STO 24

37 RDH

38 STO 25

39 RDH

40 STO 26

41 RDH

42 ENTER†

When executed "STA" will change the output form to XXX+XX.xxx, the form which is normally used by surveyors.

43 INT

44 CF 29

45 FIX 0

46 RDX

47 -

48 100

49 *

50 ABS

51 STO 22

52 3

53 SKPCOL

54 6

55 ACCOL

56 9

57 ACCOL

58 ACCOL

59 6

60 ACCOL

61 2

62 SKPCOL

63 RCL 22

64 INT

65 RDX

66 39

67 ACCHR

68 RCL 22

69 FRC

70 100

71 *

72 FIX 1

73 RDX

74 34

75 ACCHR

76 PRBUF

77 RCL 26

78 RCL 25

79 RCL 24

80 RCL 23

81 FIX 4

82 SF 29

83 PTH

84 END

35 4 00 - 00
36 - 24
37 270 22
38 ↓
39 270 24
40 ↓
41 ↓
42 END

43 270 25

44 ↓

45 ↓

46 INT

47 CF 27

48 ↓

49 ACCOL

50 6

51 RCL 22

52 3

53 SKPCOL

54 6

55 ACCOL

56 9

57 ACCOL

58 ACCOL

59 6

60 ACCOL

61 2

62 SKPCOL

63 RCL 22

64 INT

65 RDX

66 39

67 ACCHR

68 RCL 22

69 FRC

70 100

71 *

72 FIX 1

73 RDX

74 34

75 ACCHR

76 PRBUF

77 RCL 26

78 RCL 25

79 RCL 24

80 RCL 23

81 FIX 4

82 SF 29

83 PTH

84 END

NOTE:
output as written will give the answer to the nearest 0.1" of angle.

If the nearest second of angle is all that will be required, delete step number 72.

A

01•LBL "LO"	initiate program, set flags	36 ASTO Y
02 CLRG	to correct status	37 AOFF
03 CF 00		38 X=Y?
04 CF 01		39 CF 04
05 CF 06		40 RTN
06 CF 07		41•LBL 06
07 CF 09		42 F3? 09
08 CF 11		43 RTN
09 CF 02		44 RCL 02
10 CF 08		45 RTN
11 CF 05		46•LBL C
12 CF 10		47 STO 06
13 SF 03		48 RDN
14 SF 21		49 STO 05
15 SF 04		50 "BACKSITE?"
16 FIX 4		51 PROMPT
17 CLX		52 RCL 06
18 RTN		53 -
19•LBL 01	set registers for ALPHA re-	54 X<Y
20 "Y"	sponse status question	55 RCL 05
21 ASTO X		56 -
22 AON		57 R-P
23 "INV. ONLY?"	question on inverse to coordi-	58 CLX
24 PROMPT	nate input only, or to output	59 X<Y
25 ASTO Y	of station-offset routine.	60 X<?
26 AOFF		61 360
27 X=Y?		62 +
28 SF 06	controls prompts for inverse	63 HME
29 F3? 06	only routine (answer Y to the	64 STO 01
30 GTO 17	question above sets flag 06)	65 SF 07
31 "Y"		66 XEQ 01
32 ASTO X		67 GTO D
33 AON		68•LBL B
34 "STA INV?"		69 STO 06
35 PROMPT		70 RDN

if the answer to the inverse
only was no, questions whether
or not centerline inverses are
wanted. inverses centerline
if flag 04 is clear.

inverse routine for input with
backsite coordinates known.

input of north [ENTER] & east
coordinate for inverse routine
backsite setup.

back azimuth calculated for
inverse routine.

71 STO 05	inverse routine with backsight bearing known.	111 RCL 03
72 XEQ "AZ"		112 -
73 STO 01		113 RCL 00
74 SF 07	will inverse when flag 07 is set.	114 HR
75 XEQ 01		115 X<>Y
76♦LBL D	alignment routine input.	116 P-R
77 "BEG. STA?"		117 RCL 07
78 PROMPT	sets beginning station.	118 +
79 STO 03		119 X<>Y
80 "COORD. N/E"		120 RCL 08
81 PROMPT		121 +
82 STO 08	beginning coordinates stored.	122 FS? 03
83 RDH		123 GTO 04
84 STO 07		124 XEQ 98
85 XEQ "AZ"	converts tangent bearing to azimuth and stores for use in the alignment routine.	125♦LBL 04
86 STO 00		126 FC? 03
87 "Y"		127 ADV
88 ASTO X		128 STO 10
89 ADN		129 X<>Y
90 "STA COORDS?"		130 STO 09
91 PROMPT	status question for the output of the centerline coordinates.	131 X<>Y
92 ASTO Y		132 FS? 04
93 AOFF		133 GTO 03
94 X=Y?		134 FS? 07
95 CF 03	retards the display of coordinates on centerline when set.	135 XEQ R
96 "STA?"		136♦LBL 03
97 PROMPT		calculates inverse to coordinates in X/Y registers.
98♦LBL E	calculate coordinates for the solution station input.	137 RCL 00
99 STO 28		138 HR
100 FS? 08		139 90
101 GTO 02		140 FS? 05
102♦LBL 10		141 CHS
103 FS? 07		142 +
104 SF 11		143 FS? 09
105 FS? 04		144 STO 17
106 CF 11		145 "0/S?"
107 CF 05		146 FS? 09
108 ADV		147 "R?"
109 XEQ "STA"	sub-routine changes X register number to XXX+XX,xxx output	148 FC? 01
110 FIX 4		149 GTO 17
		150 FS? 09

151 GTO 17	191 GTO 03
152LBL 18	192 RTN
153 FS? 09	193LBL A
154 STO 04	194 FS? 06
155 FS? 01	195 ADV
156 XEQ 06	196 FS? 06
157 "0/S= "	197 XEQ 98
158 FS? 09	198 FS? 06
159 "R = "	199 ADV
160 ARCL X	200 RCL 06
161 AVIEW	201 -
162 P-R	202 X(>)Y
163 RCL 09	203 RCL 05
164 +	204 -
165 FS? 09	205 R-P
166 STO 09	206 FIX 3
167 X(>)Y	207 "HD = " output inversed distance.
168 RCL 10	208 ARCL X
169 +	209 AVIEW
170 FS? 09	210 CLX
171 STO 10	211 X(>)Y calculate horizontal angle to
172 XEQ 98	212 X(>?) solution station or point from
173 ADV	213 360 the backsight azimuth.
174 FS? 09	214 +
175 RTN	215 STO 11
176 FS? 07	216 ENTER↑
177 XEQ A	217 ENTER↑
178 FS? 01	218 90
179 GTO 16	219 /
180 GTO 03	220 1
181 RTN	221 +
182LBL 17	222 INT
183 FS? 06	223 STO 12
184 "N↑ E"	224 2
185 PROMPT	225 /
186 GTO 18	226 INT
187 RTN	227 180
188LBL F	228 *
189 SF 01	229 -
190 STO 02	230 ABS

231 HMS	271 RCL 14
232 FIX 4	272 RCL 00
233 RCL 12	273 HMS+
234 RCL 11	274 0
235 RCL 01	275 X<Y
236 HR	276 X<0?
237 -	277 360
238 ENTER↑	278 HMS+
239 CLX	279 STO 00
240 X<Y	280 RCL 14
241 X<0?	281 "DELTA" = output central angle.
242 360	282 FC? 55
243 +	283 ARCL X
244 HMS	284 AVIEW Δ (DD.MMSS)
245 "CRT="	285 FS? 55
	output horizontal angle right.
246 FC? 55	286 XEQ "DMS" subroutine for DD°MM'SS" form.
247 ARCL X	287 HR
248 AVIEW	288 ABS
249 FS? 55	289 RCL 04
250 XEQ "DMS"	290 * calculate curve data.
251 ADV	291 PI
252 FS?C 11	292 *
253 GTO 03	293 180
254 FS? 08	294 /
255 GTO 12	295 STO 18
256 FS? 01	296 RCL 15
257 GTO 16	297 +
258 GTO 03	298 STO 16
259 RTN	299 RCL 14
260LBL J	300 HR
	signals beginning of curve in
261 SF 09	the alignment.
262 ADV	301 RCL 18
263 RCL 20	302 / calculate $\ell = L/\Delta$.
264 STO 15	303 STO 19
265 "DELTA?"	304 RCL 16
	prompt for central angle of
266 PROMPT	the curve.
267 STO 14	305 "EC" = station at end of curve output
268 X<0?	306 AVIEW
269 SF 05	307 XEQ "STA" print in XXX+XX.xxx form.
270 XEQ 03	308 FIX 4
	flag 05 is set when Δ is neg-
	ative (indicates curve left).
	309 RCL 17
	310 180

311 -		
312 RCL 14		
313 HR	calculate radial from radius	
314 +	point for offset calculation.	
315 0		
316 X<>Y		
317 X<0?		
318 360		
319 +		
320 RCL 04		
321 P-R		
322 RCL 09		
323 +		
324 STO 07		
325 X<>Y		
326 RCL 10		
327 +		
328 STO 08		
329 CF 09		
330 SF 08		
331 RCL 16		
332 STO 03		
333 GTO 16		
334 RTN		
335LBL 15	output of coordinates.	
336 CF 00		
337 "H= "		
338 ARCL Y		
339 FC? 03		
340 AVIEW		
341 "E= "		
342 ARCL X		
343 FC? 03		
344 AVIEW		
345 ADV		
346 FC? 07		
347 GTO 12		
348 FC? 04		
349 XEQ A	inverse to coordinates in the	
350 GTO 12	X/Y registers.	
351LBL 02		ending loop for fixed offset
352 RCL 20		input on curved area.
353 RCL 03		
354 X<=Y?		
355 CF 08		
356 RDH		
357 FC? 08		
358 GTO 10		
359 SF 00		
360 ADV		
361 XEQ "STA"		
362 FIX 4		
363 RCL 15		
364 -		
365 RCL 19		
366 *		
367 RCL 17		
368 180		
369 -		
370 +		
371 0		
372 X<>Y		
373 X<Y?		
374 360		
375 +		
376 STO 21		
377 RCL 04		
378 FC? 00		
379 GTO 12		
380LBL 13		output coordinates - 02 and
381 P-R		12 label subroutine.
382 RCL 09		
383 +		
384 X<>Y		
385 RCL 10		
386 +		
387 FS? 00		
388 GTO 15		
389 XEQ 98		
390 ADV		

391 FS? 07	409 RCL 04
392 XEQ A	410 +
393LBL 12	411 XEQ 13
394 FS? 02	412 GTO 12
395 GTO 16	413 RTN
396 FS? 01	414LBL 16
397 SF 02	415 CF 02
398 RCL 21	416 "STA?"
399 "0/S?"	417 PROMPT
400 FC? 01	418 RTN
401 PROMPT	419LBL 98
402 FS? 01	420 "N= "
403 RCL 02	421 ARCL Y
404 "0/S= "	422 AVIEW
405 ARCL X	423 "E= "
406 AVIEW	424 ARCL X
407 FC? 05	425 AVIEW
408 CHS	426 RTN

offset subroutines in curved
alignment area.

output coordinates.

GENERAL NOTES:

B

01•LBL "SF"		36 FS? 05	
02 CF 02	initialize and clear.	37 XEQ 22	
03 SF 21		38 FS? 03	
04 SF 27		39 XEQ 17	
05 CLPG		40•LBL 01	input of spiral data for
06 FIX 4		41 "PI STATION?"	spiral curve.
07 CF 01		42 PROMPT	P.I. station
08 3	store spiral constants.	43 STO 06	
09 STO 11		44 "DELTA?"	
10 -10		45 PROMPT	Central Angle
11 STO 12		46 XEQ?	is curve to the left?
12 -42		47 XEQ 38	
13 STO 13		48 HR	
14 216		49 2	
15 STO 14		50 /	
16 1320		51 STO 05	$\Delta/2$
17 STO 15		52 CF 01	
18 -9360		53 "R?"	
19 STO 16		54 PROMPT	Input value for circular
20 -75600		55 CF 04	curve radius.
21 STO 17		56 STO 28	
22 685440		57 "L=?"	
23 STO 18		58 PROMPT	input length of spiral.
24 6894720		59 STO 40	L_s
25 STO 19		60 ENTER↑	
26 CF 22	reset status of flags.	61 STO 02	station
27 CF 03		62 RCL 20	
28 CF 14		63 /	
29 CF 15		64 2	
30 CF 05		65 /	
31 CF 06		66 STO 00	θ (radians)
32 CF 07		67 R-D	
33 CF 08		68 STO 41	θ (degrees)
34 CF 09		69 HMS	
35 XEQ 21		70 1 E2	

71 RCL 20	Radius	111 +	
72 /		112 STO 42	T.S., total tan length
73 R-D		113 RCL 06	
74 HMS		114 X>Y	
75 CLA	OUTPUT OF SPIRAL DATA:	115 -	
76 RCL 20		116 STO 01	T.S., S.T.
77 RDN		117 ST+ 02	
78 RDN		118 RCL 05	TΔ/2
79 "L = "		119 RCL 41	θ
80 ARCL Y		120 -	
81 AVIEW	Length	121 2	
82 "S ₄ = "		122 *	
83 F0? 55		123 STO 21	Δ
84 ARCL X		124 D-R	
85 AVIEW		125 RCL 20	
86 F0? 55		126 *	
87 XEQ "DMS"	Spiral Angle ()	127 RCL 40	
88 "R = "		128 2	
89 ARCL Z		129 *	
90 AVIEW	Radius	130 +	
91 CLD		131 +	
92 ADV		132 STO 07	S.T. station
93 F0? 01		133 RCL 06	
94 GTO 15		134 RCL 01	
95 0		135 0	
96 STO 01	T.S., S.T.	136 RDN	
97 RCL 40	L _S	137 CLA	
98 STO 02		138 "PI = "	
99 XEQ 09	to solution loop.	139 AVIEW	output P.I. station
100 RCL 41		140 RDN	
101 RCL 20		141 XEQ "STA"	output in form XXX+XX.xx
102 P-R		142 CLA	
103 RDN		143 FIX 4	
104 -	Y _S - R(Sin θ)	144 "CENTRAL θ = "	
105 RDN		145 AVIEW	output Δ
106 +		146 RCL 05	
107 RCL 05		147 2	
108 TAN		148 *	
109 *		149 HMS	
110 RT		150 CLA	

151 RCL X	191 "STA?"	
152 F3? 55	192 PROMPT	
153 XEQ "DMS"	193LBL D	prompt for input of the new station for which a solution is wanted.
154 F3? 55	194 SF 08	
155 AVIEW	195 CLA	
156 CLD	196 F3? 05	
157LBL 15	197 XEQ 22	
158 XEQ 09	198LBL 18	
159 X?Y	199 PCL 07	
160 PCL 41	200 PCL 01	
161 TAN	201 STO 07	
162 -	202 X?Y	
163 -	203 STO 01	
164 F3? 02	204 PCL 40	
165 CHS	205 CHS	
166 STO 42	206 STO 40	
167 0	207 +	
168 PCL 01	208 STO 02	
169 PCL 40	209 SF 02	
170 +	210 GTO 15	
171 STO 03	211LBL E	
172 PCL 01	212 STO 02	set solution station.
173 PCL 42	213 CF 01	
174 +	214 ADV	
175 PCL 01	215LBL 19	
176 ADV	216 SF 04	compute field data for solution station.
177 "TS" =	217 PCL 02	
178 F3? 02	218 -	
179 "ST" =	219 F3?C 22	
180 AVIEW	220 GTO 00	
181 PCL 01	221 PCL 04	
182 XEQ "STA"	222 CF 02	
183 CLA	223 X?0?	
184 "SC" =	224 SF 02	
185 F3? 02	225 ABS	
186 "CS" =	226 PCL 03	
187 AVIEW	227 PCL 02	
188 PCL 03	228 -	
189 XEQ "STA"	229 ABS	
190 ADV	230 X?Y?	

231 GTO 00	end of spiral.	271 RCL 32	
232 X<0>Y		272 RCL 31	
233 GTO 07		273 RCL 30	
234+LBL 00	stop	274 RCL 27	
235 SF 00		275 FIX 3	
236+LBL 07		276 "CD = "	output long chord.
237 FS?C 02	exit spiral?	277 ARCL Z	
238 CHS		278 FS? 14	
239 ST+ 02		279 AVIEW	output deflection angle
240 RCL 02		280 RDN	
241 RCL 01		281 FIX 4	
242 -		282 "DEFLECTION $\Delta =$ "	
243 RCL 40		283 FS? 14	
244 /		284 AVIEW	
245 X12		285 FS? 14	
246 RCL 41		286 XEQ 83	
247 D-R		287 CHS	
248 *		288 RCL 00	θ (radians)
249 STO 08		289 R-D	
250 XEQ 09	solution loop.	290 HMS	
251 FS? 01		291 HMS+	
252 GTO 04	solution for deflection	292 90	
253 P-P	angle and chord.	293 HMS+	
254 X<0>Y		294 "RADIAL $\Delta =$ "	output radial angle to
255 HMS		295 FS? 14	turn at solution station
256+LBL 04		296 AVIEW	
257 FIX 3		297 FS? 14	
258 RCL 02		298 XEQ 83	
259 0		299 HR	
260 RDN		300 STO 38	
261 STO 27		301 FC? 03	
262 RDN		302 ARV	
263 STO 30		303 CLD	
264 RDN		304 FS? 05	
265 STO 31		305 GTO 23	
266 RDN		306 FS? 03	
267 STO 32		307 GTO 23	
268 RDN		308 "STA?"	
269 FS? 55		309 FS? 14	
270 XEQ "STA"	output solution station	310 PROMPT	

311 F62C 00		351 +	
312 GTO 19		352 *	
313+LBL 09	compute Y and X values	353 RTH	y
314 CF 22		354+LBL 83	set up for the type of
315 9		355 CLA	solution wanted.
316 STO 43		356 F5? 55	
317 8		357 XEQ "DMS"	Change to output form of
318 STO 03		358 RPLCL X	DD:MM:SS" when a printer
319 STO 09		359 F0? 55	is attached.
320+LBL 02		360 RVIEW	
321 RCL 00	Looping point	361 RTH	
322 RCL 43		362+LBL 21	
323 Y+X		363 "Y"	
324 10		364 ASTO X	
325 ST+ 43		365 RDN	
326 CLX		366 "COORD-0/S?"	coordinate solution with
327 RDN		367 PROMPT	offset option.
328 RCL IND 43	Looping control register	368 ASTO Y	
329 /		369 RDNFF	
330 10		370 X=Y?	
331 ST- 43		371 SF 05	
332 CLX		372 FS? 05	
333 RDN		373 XEQ 22	
334 RCL 08		374 FS? 05	
335 RCL 09		375 GTO 16	
336 STO 08		376 "Y"	
337 RDN		377 ASTO X	
338 +		378 RDN	
339 STO 09		379 "TAN 0/S?"	tangent/offset solution.
340 DSE 43		380 PROMPT	
341 GTO 02		381 ASTO Y	
342 RCL 09		382 RDNFF	
343 RCL 02		383 X=Y?	
344 RCL 01		384 SF 03	
345 -		385 FS? 03	
346 ABS		386 GTO 17	
347 *		387 SF 14	
348 LASTX	x	388 RTH	
349 RCL 08		389+LBL 16	
350 1		390 "Y"	

391 RSTO X	431 HMS	
392 RDH	432 STO 45	backsight azimuth.
393 "INVERSE?"	433 "H" E?	
394 PROMPT	434 FS? 15	
395 RSTO Y	435 PROMPT	prompt for next pair of
396 RUFF	436 GTO 01	coordinates for direct
397 X=Y?	437 RTN	inversing.
398 SF 06	438LBL A	
399 FS? 06	439 RDY	inverse from instrument
400 XEQ 20	440 CLA	to the coordinate pair
401 GTO 01	441 ARCL Y	in the Y and X registers
402 RTN	442 FS? 55	
403LBL 17	443 AVIEW	
404 0	444 CLA	
405 STO 44	445 ARCL X	
406 STO 33	446 FS? 55	
407 STO 39	447 AVIEW	
408 GTO 01	448 XEQ 03	
409 RTN	449 "H" E?"	
410LBL a	450 PROMPT	
411 SF 15	451 PTN	
412LBL 20	452LBL 03	
413 "INST H" E?	453 RDY	
414 PROMPT	454 RCL 49	
415 STO 49	455 -	
416 RDH	456 X>Y	
417 STO 48	457 RCL 48	
418 "BACKSITE?"	458 -	
419 PROMPT	459 R-P	
420 RCL 49	460 FIX 3	
421 -	461 "HD" =	output of the inversed
422 X>Y	462 ARCL X	distance to the solution
423 RCL 48	463 AVIEW	coordinates.
424 -	464 CLX	
425 R-P	465 X>Y	
426 CLX	466 X<0?	
427 X<Y	467 360	
428 X<0?	468 +	
429 360	469 STO 46	inversed azimuth.
430 +	470 ENTER↑	

471 ENTER↑	511 SF 10	
472 90	512 XEQ "AZ"	
473 /	513 CF 10	input of tangent bearing
474 1	514 STO 39	and quadrant code.
475 +	515 "TE N/E"	
476 INT	516 F3? 08	coordinate input.
477 STO 47	517 "ST N/E"	
478 2	518 PPROMPT	
479 /	519 STO 33	prompt for coordinate
480 INT	520 RDH	input when exit spiral.
481 100	521 STO 44	
482 *	522 RTH	
483 -	523♦LBL 23	
484 RES	524 RCL 39	
485 HMS	525 RCL 30	
486 FIX 4	526 HR	
487 RCL 47	527 F3? 07	
488 RCL 46	528 CHS	
489 RCL 45	529 F3? 08	
490 HR	530 CHS	
491 -	531 +	
492 ENTER↑	532 STO 37	
493 CLX	533 RCL 31	
494 X<Y	534 P-R	
495 X<0?	535 RCL 44	
496 360	536 +	
497 +	537 STO 35	
498 HMS	538 X<Y	
499 "RT="	539 RCL 33	
500 F3? 55	540 +	
501 APCL X	541 STO 36	
502 AVIEW	542 FIX 4	
503 F3? 55	543 "N = "	
504 XEQ "DMS"	544 F3? 03	output north coordinate
505 RTN	545 "TD = "	or
506♦LBL 30	546 APCL 35	output tangent distance
507 SF 07	547 AVIEW	
508 CHS	548 "E = "	output east coordinate
509 RTN	549 F3? 03	or
510♦LBL 22	550 "T O/S = "	output of tangent offset

551 ARCL 36	591 "E = "	output O/S E coordinate
552 AVIEW	592 ARCL X	
553 FS? 06	593 AVIEW	
554 XEQ 03	594 FS? 06	
555 RCL 37	595 XEQ 28	
556 RCL 38	596 FS? 09	
557 FS? 07	597 GTO 32	
558 XEQ 31	598 GTO 24	
559 FS? 08	599 RTN	
560 CHS	600LBL J	
561 +	601 SF 09	set radius point of the
562 STO 32	602 "CIRCULAR:"	circular portion of the
563LBL 24	603 FS? 55	spiral system.
564 ADV	604 AVIEW	
565 RCL 32	605 GTO 24	
566 "STA?"	606LBL 31	
567 FS? 03	607 CHS	
568 PROMPT	608 180	
569 "O/S DIST?"	609 +	
570 PROMPT	610 RTN	
571 "O/S = "	611LBL 32	
572 FS? 09	612 "STA?"	
573 "RADIUS POINT:"	613 PROMPT	prompt for solution at
574 FC? 09	614 ADV	next station.
575 ARCL X	615 FS? 55	
576 FS? 55	616 XEQ "STA"	output as form XXX+XX.xx
577 AVIEW	617 FIX 4	
578 P-R	618 RCL 03	S.C., C.S.
579 RCL 35	619 -	
580 +	620 RCL 32	
581 FS? 09	621 FC? 07	
582 STO 35	622 180	
583 X>Y	623 FC? 07	
584 RCL 36	624 -	
585 +	625 X>Y	
586 FS? 09	626 180	
587 STO 36	627 *	
588 "N = "	628 PI	
589 ARCL Y	629 /	
590 AVIEW	630 RCL 20	

631 /	648 RCL 36	
632 FS? 07	649 +	
633 CHS	650 "N = "	output O/S N coordinate.
634 +	651 ARCL Y	
635 RCL 28	652 RVIEW	
636 "O/S = "	653 "E = "	output O/S E coordinate.
637 PROMPT	654 ARCL X	
638 ARCL X	655 RVIEW	
639 X#0?	656 FS? 06	
640 RVIEW	657 XEQ 03	
641 FC? 07	658 CF 09	
642 CHS	659 GTO 32	
643 +	660 RTN	
644 P-R	661 LBL 28	
645 RCL 35	662 FC? 09	
646 +	663 XEQ 03	
647 X#Y	664 RTN	

100000
OF ITA
-N-6-

- 5 -

C

01 LBL "TT"		25 "INST. STA.?"
02 FIX 4	initialize and clear	26 PROMPT input setup information
03 SF 21		27 STO 05
04 SF 01		28 STO 30
05 CF 02		29 "OFFSET?"
06 CF 03		30 PROMPT
07 CF 04		31 STO 06
08 CF 05		32 XEQ 16
09 CF 08		33 "ON CURVE?"
10 CF 10		34 PROMPT
11 CF 11		35 ASTO Y
12 SF 06		36 R0FF
13 CLRG		37 X=Y?
14 1.99981	counter register begin	38 XEQ 00
15 CHS	constant storage	39 FC? 01
16 STO 41		40 XEQ 01
17 " LT"	store alpha for output	41 "H.I. = ?"
18 ASTO 31		42 PROMPT height of instrument
19 " RT"		43 STO 11
20 ASTO 32		44 "BKSITE STA?"
21 "+"		45 PROMPT input backsight information
22 ASTO 33		46 STO 03
23 "+0"		47 "OFFSET?"
24 ASTO 34		48 PROMPT

49 STO 04	89 RCL 04
50 XEQ 16	90 RCL 02
51 "ON CURVE?"	91 RCL 08
52 PROMPT	92 2
53 ASTO Y	93 X=Y?
54 AOFF	94 XEQ 17
55 X=Y?	95 CLX
56 XEQ 02	96 4
57 RCL 03	97 X=Y?
58 RCL 04	98 XEQ 18
59 RCL 06	99 RDH
60 -	100 RDH
61 X<>Y	101 1
62 RCL 05	102 -
63 -	103 90
64 P-P	104 *
65 CLX	105 +
66 X<>Y	106 STO 21
67 X<0?	107 FS? 01
68 360	108 XEQ 20
69 +	109LBL 19
70 STO 07	110 XEQ 16
71 ENTER↑	111 "SHOW GRADE?" will grade be carried?
72 ENTER↑	112 PROMPT
73 90	113 ASTO Y
74 /	114 AOFF
75 1	115 X=Y?
76 +	116 XEQ 07
77 INT	117 GTO 10
78 STO 08	118 RTN
79 2	119LBL 20
80 /	120 XEQ 16
81 INT	121 "CURVE AREA?" any of the alignment on
82 180	122 PROMPT a curve?
83 *	123 ASTO Y
84 -	124 AOFF
85 ABS	125 X=Y?
86 HMS	126 XEQ 00
87 STO 02	127 RTN
88 RCL 03	128LBL 17

129 RDH	169 RCL 14
130 RDH	170 *
131 CHS	171 180
132 180	172 /
133 HMS+	173 RCL 15
134 STO 21	174 +
135 FS? 01	175 STO 42
136 XEP 20	176 RCL 13
137 GTO 19	177 ABS
138LBL 18	178 2
139 RDH	179 /
140 RDH	180 TAN
141 CHS	181 PCL 14
142 360	182 *
143 HMS+	183 STO 44
144 STO 21	184 -
145 GTO 19	185 STO 43
146LBL 02	186 RCL 15
147 FS? 01	187 ST+ 44
148 XEQ 08	188 RTN
149 FC? 01	189LBL 45
150 XEQ 05	190 RCL 19
151 RTN	191 RCL 18
152LBL 00	192 RCL 44
153 CF 01	193 -
154 "B.C. STA?"	194 P-P
155 PROMPT	195 X<>Y
156 STO 15	196 PCL 13
157 "RADIUS?"	197 -
158 PROMPT	198 X<>Y
159 STO 14	199 P-R
160 "DELTA?"	200 RCL 43
161 PROMPT	201 +
162 HR	202 ENTER↑
163 X<>Y	203 GTO 11
164 SF 05	204 RTN
165 STO 13	205LBL 01
166 ABS	206 RDH
167 PI	207 CLX
168 *	208 RCL 14

209 PI	249 ENTER↑	
210 *	250 INT	
211 RCL 15	251 X=Y?	
212 RCL 05	252 CF 08	
213 XEQ 03	253 RDH	
214 RCL 06	254 CF 29	
215 XEQ 04	255 FIX 0	
216 STO 06	256 FS? 08	
217 X<Y	257 FIX 2	
218 RCL 15	258 "SR= "	output prompt for slope
219 +	259 ARCL X	staking routine
220 STO 05	260 "F:1"	
221 RTN	261 PROMPT	
222LBL 05	262 SF 29	
223 RCL 14	263 FIX 2	
224 PI	264 STO 36	
225 *	265 RCL 48	
226 RCL 15	266 RCL 08	
227 RCL 03	267 +	
228 XEQ 03	268 RCL 12	
229 RCL 04	269 -	
230 XEQ 04	270 STO 37	
231 STO 04	271 ABS	
232 X<Y	272 RCL 36	
233 RCL 15	273 *	
234 +	274 RCL 38	
235 STO 03	275 +	
236 RTN	276 STO 39	
237LBL 8	277 RCL 21	
238 CF 06	278 X<0?	
239 SF 10	279 CHS	
240 XEQ A	280 -	
241LBL 35	281 CHS	
242 RCL 38	282 STOP	
243 "W/2= "	283 FIX 1	
244 ARCL X	284 CLA	
245 PROMPT	285 RDV	
246 STO 38	286 "FILL "	output of cut or fill
247 SF 08	287 RCL 37	in slope stake routine
248 RCL 36	288 X<0?	

289 *CUT *	329 /
290 ABS	330 STO 10
291 ARCL X	331 XEQ 16
292 AVIEW	332 *SPRINGLINE?-
293 RCL 36	333 PROMPT is this a tunnel?
294 *	334 ASTO Y
295 * AT *	335 AOFF
296 ARCL X	336 X=Y?
297 AVIEW	337 XEQ 08
298 CF 10	338 XEQ 16
299 RCL 21	339 *VERT CURVE?-
300 RCL 35	340 PROMPT
301 ENTER†	341 ASTO Y
302 GTO 11	342 AOFF
303 RTN	343 X=Y?
304*LBL 03	344 XEQ 09 input vertical data
305 -	345 RTN
306 CHS	346*LBL 16
307 180	347 -Y-
308 *	348 ASTO X
309 X<>Y	349 AON
310 /	350 RTN
311 RTN	351*LBL 08
312*LBL 04	352 CF 06
313 CHS	353 SF 03
314 RCL 14	354 *HEIGHT?-
315 +	355 PROMPT
316 P-R	356 CHS
317 CHS	357 STO 00
318 RCL 14	358 RTN
319 +	359*LBL 09
320 RTN	360 SF 04
321*LBL 07	361 *EYC STA?-
322 SF 02	362 PROMPT input beginning station
323 *PROFILE EL?*	363 STO 16 of vertical curve
324 PROMPT	364 *LENGTH?-
325 STO 20	365 PROMPT input vertical curve
326 *GRADE?-	366 STO 17 length
327 PROMPT	367 *GRADE OUT?-
328 100	368 PROMPT outgoing grade
	input of vertical grade data if grade is to be carried

369 100	409 +		
370 /	410 X<>Y		
371 STO 09	411 P-R		
372LBL 10	412 RCL 05		
373 ADV	413 +		
374 ADV	414 STO 18		
375 "INPUT SHOT"	input field data	415 X<>Y	
376 PROMPT		416 RCL 06	
377 RTN		417 +	
378LBL C		418 STO 19	
379 STO 20		419 X<>Y	
380 "INPUT SHOT"		420 RCL 15	
381 PROMPT		421 FS? 01	
382 RTN		422 GTO 11	
383LBL A		423 X>Y?	
384 ISG 41	counter	424 GTO 11	
385 FIX 0		425 -	
386 CF 29		426 X<>Y	
387 FS? 06		427 FS? 05	
388 XEQ 44	calculate solutions	428 CHS	
389 SF 29		429 RCL 14	
390 FIX 4		430 -	
391 FS? 11		431 CHS	
392 XEQ 99		432 R-P	
393 FIX 2		433 CHS	
394 STO 01		434 RCL 14	
395 RDN		435 +	
396 X<>Y		436 X<>Y	
397 HR		437 RCL 14	
398 X<>Y		438 *	
399 P-R		439 PI	
400 RCL 11		440 *	
401 +		441 180	
402 PCL 01		442 /	length
403 +		443 RCL 15	
404 STO 12		444 +	
405 RDN		445 RCL 42	
406 X<>Y		446 X=Y?	
407 HR		447 GTO 45	
408 RCL 07		448 RDN	

449 X<>Y	489 GTO 35
450 FS? 05	490 GTO 10
451 CHS	491 RTN
452 X<>Y	492 LBL 13
453 ENTER↑	493 "AT "
454 GTO 11	494 ARCL X
455 RTN	495 ARCL 32
456 LBL 99	496 GTO 15
457 FS? 55	497 LBL 12
458 PRSTK	498 CF 29
459 RTN	499 100
460 LBL 44	500 /
461 CLA	501 ENTER↑
462 ARCL 41	502 INT
463 FS? 55	503 X<>Y
464 AVIEW	504 FRC
465 RTN	505 100
466 LBL 11	506 *
467 RDN	507 FIX 0
468 XEQ 12	508 "STA "
469 CLX	509 ARCL Y
470 X<>Y	510 FIX 2
471 RND	511 10
472 STD 21	512 X>Y?
473 X>Y?	513 SF 00
474 GTO 13	514 RDN
475 CHS	515 RND
476 "AT "	516 FS? 00
477 ARCL X	517 ARCL 34
478 ARCL 31	518 FC? 00
479 LBL 15	519 ARCL 33
480 FC? 10	520 CF 00
481 AVIEW	521 ARCL X
482 "ELEV = "	522 FC? 10
483 ARCL 12	523 AVIEW
484 FC? 10	524 X<>Y
485 AVIEW	525 100
486 FS? 02	526 *
487 XEQ 14	527 +
488 FS? 10	528 SF 29

output of offset right

output of offset left

output shot elevation

529 STO 35	569 XEQ 22
530 RTN	570 X<>Y
531+LBL 14	571 RCL 16
532 RCL 35	572 RCL 17
533 FS? 04	573 2
534 GTO 21	574 /
535+LBL 26	575 +
536 RCL 35	576 ENTER↑
537 RCL 30	577 RCL 30
538 -	578 -
539 RCL 10	579 RCL 10
540 *	580 *
541 RCL 20	581 RCL 20
542+LBL 24	582 +
543 +	583 X<>Y
544 STO 40	584 RCL 16
545 RCL 00	585 -
546 +	586 RCL 17
547 *GR = *	587 2
548 ARCL X	588 /
549 FC? 10	589 -
550 RVIEW	590 RCL 09
551 FS? 03	591 *
552 XEQ 25	592 GTO 24
553 FS? 10	593 RTN
554 GTO 35	594+LBL 23
555 GTO 10	595 -
556 RTN	596 ENTER↑
557+LBL 22	597 ENTER↑
558 RCL 17	598 RCL 09
559 -	599 RCL 10
560 X>Y?	600 -
561 GTO 26	601 100
562 GTO 23	602 +
563 RTN	603 RCL 17
564+LBL 21	604 /
565 RCL 16	605 *
566 RCL 17	606 2
567 +	607 /
568 X>Y?	608 RCL 10

609 100	629 -
610 *	630 ENTER↑
611 +	631 *
612 *	632 RCL 21
613 100	633 ENTER↑
614 /	634 *
615 RCL 16	635 +
616 RCL 30	636 SORT
617 -	637 FIX 2
618 RCL 10	638 * RAD. = * output of radius when
619 *	639 ARCL X shot elevation is above
620 RCL 28	640 AVIEW springline elevation
621 +	641 RTN
622 GTO 24	642LBL J enable printstack
623 RTN	643 SF 11
624LBL 25	644 RTN
625 RCL 12	645LBL I cancel printstack
626 RCL 48	646 CF 11
627 X>Y?	647 RTN
628 RTN	648 END

calculate radius when
shot above springline

D

01•LBL "TR"	34 X12
02 SF 21	35 LASTX
03 SF 27	36 RCL 02
04 CLRG	37 *
05 FIX 4	38 -
06 CLX	39 RCL 09
07 CF 00	40 RCL 04
08•LBL 06	41 *
09 CF 01	42 /
10 CF 02	43 SQRT
11 CF 03	44 ACOS
12 CF 04	45 2
13 CF 05	46 *
14 CF 06	47 STO 05 A-3
15 CF 07	48 SIN
16 RTN	49 RCL 09
17•LBL A	50 *
18 SF 01	51 STO 08 H
19 SF 02	52 RCL 07
20 SF 03	53 X12
21•LBL 11	54 LASTX
22 STO 04	55 RCL 09
23 RDH	56 *
24 STO 02	57 -
25 RDH	58 RCL 02
26 STO 09	59 /
27 RDH	60 RCL 04
28 RDH	61 /
29 +	62 SQRT
30 +	63 ACOS
31 2	64 2
32 /	65 *
33 STO 03	66 STO 03 A-2

67 RCL 05	107 *
68 XEQ 00	calculate missing angle
69 STO 01	A-1
70 GTO 01	output solution
71 RTN	
72LBL B	A-3, S-1, A-1
73 SF 01	S-1 capitals when set
74 SF 04	A-1 capitals when set
75 SF 06	A-3 capitals when set
76LBL 10	loop for second solution with 2
77 SF 13	sides and following angle
78 FST 00	
79 XEQ 07	reset flags for output
80 "SECOND SOLUTION"	
81 FSTC 00	
82 AVIEW	
83 CF 13	
84 HR	
85 STO 01	A-1
86 RDM	
87 STO 09	S-1
88 RDM	
89 HR	
90 STO 05	
91LBL 03	
92 RCL 01	
93 XEQ 00	calculate A-2
94 STO 03	
95 RCL 05	A-3
96 RCL 09	S-1
97 P-R	
98 X<Y	
99 STO 08	
100 RCL 03	
101 1	
102 P-R	
103 RDM	
104 /	
105 STO 02	S-2
106 RT	
	107 *
	108 +
	109 STO 04 S-3
	110 GTO 01 output solution
	111 RTN
	112LBL C S-1, A-1, A-2
	113 SF 01 S-1 capitals when set
	114 SF 04 A-1 capitals when set
	115 SF 05 A-3 capitals when set
	116 HR
	117 STO 03 A-2
	118 RDM
	119 HR
	120 STO 01 A-1
	121 RDM
	122 STO 09 S-1
	123 RCL 03
	124 RCL 01
	125 XEQ 00 calculate A-3
	126 RCL 09
	127 RCL 01
	128 XEQ 04
	129 GTO 03 solve as ASA
	130 RTN
	131LBL 05
	132 RCL 09
	133 RCL 01
	134 HMS
	135 RCL 02 S-2
	136 GTO 08
	137 RTN
	138LBL D S-1, A-1, S-2
	139 SF 01 S-1 capitals when set
	140 SF 02 S-2 capitals when set
	141 SF 04 A-1 capitals when set
	142LBL 08
	143 STO 02 S-2
	144 RDM
	145 HR
	146 STO 01 A-1

147 RDH	187 XEQ 04
148 STO 09	188 XEQ 03 converts parts for the second
149 RCL 01	189 180 solution
150 RCL 02	190 RCL 05
151 P-R	191 -
152 RCL 09	192 RCL 03 sort stack
153 -	193 +
154 R-P	194 CHS
155 STO 04	195 180
156 RCL 09	196 +
157 RCL 02	197 HMS
158 RCL 04	198 RCL 02
159 GTO 11	199 RCL 03 calculate third angle
160 RTN	200 HMS
161•LBL E	201 XEQ 06
162 SF 13	202 SF 00
163 •FIRST SOLUTION•	203 SF 03
164 RVIEW	204 GTO 10
165 CF 13	205•LBL 07 solve as A-3, S-1, A-1
166 XEQ 07	206 SF 01
167 HF	207 FC? 00
168 STO 03	208 SF 02 S-1 capitols when set
169 RDH	209 FC? 00 S-2 capitols when set
170 STO 02	210 SF 05 A-2 capitols when set
171 RDH	211 RTN
172 STO 09	212•LBL 00 $Ax = \cos^{-1}[-\cos(Ay+Az)]$
173 RCL 03	213 +
174 SIN	214 COS
175 RCL 02	215 CHS
176 *	216 ACOS
177 RCL 09	217 RTN
178 /	218•LBL 01 output solutions
179 ASIN	219 FIX 3
180 STO 05	220 SF 13
181 RCL 03	221 FS? 01 was S-1 input?
182 XEQ 00	222 CF 13
183 STO 01	223 •S-1 = •
184 RCL 05	224 RCL 09
185 RCL 09	225 RVIEW
186 RCL 01	226 RCL 01

227 HMS	267 HMS
228 FIX 4	268 FIX 4
229 SF 13	269 SF 13
230 FS? 04	270 FS? 06
was A-1 input?	was A-3 input?
231 CF 13	271 CF 13
232 "A-1 = "	272 "A-3 = "
233 FC? 55	273 FC? 55
234 ARCL X	274 ARCL X
235 AVIEW	275 AVIEW
236 FS? 55	276 FS? 55
237 XEQ "DMS" print as DD°MM'SS"	277 XEQ "DMS" print as DD°MM'SS"
238 ADV	278 ADV
239 FIX 3	279 RCL 08
240 SF 13	280 RCL 04
241 FS? 02	281 *
was S-2 input?	
242 CF 13	282 2
243 "S-2 = "	283 /
244 ARCL 02	284 FIX 3
245 AVIEW	285 SF 13
246 RCL 03	286 FS? 07
247 HMS	was AREA input?
248 FIX 4	287 CF 13
249 SF 13	288 "AREA = "
250 FS? 05	289 ARCL X
was A-2 input?	290 AVIEW
251 CF 13	291 ADV
252 "A-2 = "	292 FIX 4
253 FC? 55	293 ADV
254 ARCL X	294 XEQ 06
255 AVIEW	reset flag status for the next
256 FS? 55	295 RTN
257 XEQ "DMS" print as DD°MM'SS"	routine or usage
258 ADV	296LBL 09
259 FIX 3	sort stack
260 SF 13	297 RDN
261 FS? 03	298 RDN
was S-3 input?	299 RTN
262 CF 13	300LBL 04
263 "S-3 = "	filng and storing
264 ARCL 04	301 STO 01
265 AVIEW	302 RDN
266 RCL 05	303 STO 09
	304 RDN
	305 STO 05
	306 RTN

307♦LBL F AREA, S-1, A-1
308 SF 07 area capitals when set
309 SF 01 S-1 capitals when set
310 SF 04 A-1 capitals when set
311 HR
312 STO 01
313 SIN
314 XEQ 02
315 STO 02 S-2
316 XEQ 05
317 RTN
318♦LBL G AREA, S-1, S-2
319 SF 07 area capitals when set
320 SF 01 S-1 capitals when set
321 SF 02 S-2 capitals when set
322 STO 02
323 XEQ 02
324 ASIN
325 STO 01
326 XEQ 05
327 RTN
328♦LBL 02
329 X<>Y
330 STO 09
331 *
332 /
333 2
334 *
335 RTN

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.