

HP-41CV/CX

Geometrics Solutions

NOTICE

No express or implied warranty is made by D'Zign Land Survey & Development or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign Land Survey & Development nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign Land Survey & Development and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

HP-41CV/CX

Geometrics Solutions

TED J. KERBER, L.S.

Software by D'Zign
P. O. BOX 1570 • PACIFICA, CA 94044

This book is dedicated to my wife, Phyllis, with my heartfelt thanks for her continued support, enthusiasm and coffee.

Copyright © 1986 by Ted J. Kerber

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.

published by **D'Zign Land Survey & Development**
Pacifica, California 1986

ISBN 0-9616846-2-3

About the book

This is the second in a series of solutions books designed to aid the surveyor and engineer with calculations encountered on a day-to-day basis.

Surveyors favor the Hewlett-Packard 41 series over other available hand-holds, but no new software for the 41 has been generally available since the first survey applications book, and most of those programs are outdated.

These solution books are presented as an alternative to high-priced ROMs, most of which contain more traverse, inverse, intersection etc. programs. They have the added advantage that the user may customize them to his/her needs, add to them, or modify the type of output.

A printer is not a requirement, but a convenient option. If you have access to a card reader, having the programs on cards is the best way to assure error-free input of the program steps, and a mag card programming service is available through the publisher.

The author has an aversion to typing in long program names, and has assigned simple keystrokes as global labels for the programs, but the user should feel free to assign any name to the programs, if it aids in remembering how to address the programs.

Most of the sub-routines included in the utilities programs may be used in other programs besides those contained in this book. Or, they may act as guides when doing your own programming. It is hoped that other surveyors and engineers will write (and publish) new programs.

If the programs in this book can provide a starting point or stepping stone for new software, it will have been well worth the writing.

CONTENTS

Cul-de-sacs

CUL-DE-SAC

1

This program can be used for rapid solution of cul-de-sacs which occur on tangent. Optional input allows calculation of cul-de-sacs when the center point is offset from the main alignment of the street. Output may be with or without coordinate values, and a full routine for **layout** is included.

All of the programs which contain the layout option allow the user to select the offset distance to the hubs and the spacing of the hubs. The return curves are **automatically** divided into arc lengths which will not exceed the specified spacing, and inversed.

CURVED CUL-DE-SAC

7

Allows calculation of cul-de-sacs which occur at the end of a curved alignment. This program contains the same options as the previous one, including the ability to calculate the cul-de-sac when the center point is offset, and the **layout** routine.

BULBS

15

This program calculates a cul-de-sac for the condition where the return lines are tangent to the line of the adjacent street. Output includes the length of the cul-de-sac tangent.

KNUCKLES

19

Solves for the condition where the cul-de-sac returns are tangent to two streets at an intersection. Also calculates the curve data for the opposite side of the street, if the BC and EC are to be opposite the return points of the cul-de-sac.

Intersections

BOTH STREETS STRAIGHT

23

This program calculates all of the data for the returns around a street intersection when both streets are on a straight alignment. Options include output with or without coordinates and a complete **layout** mode for field staking.

ONE STREET CURVED

29

Similar to the program above, except that the program calculates all of the data for the returns when one of the streets is curved.

BOTH STREETS CURVED

35

The returns are calculated for all of the corners of an intersection of two curved streets. Output with or without coordinates, and a complete **layout** mode are included in the options.

Program Listings

41

UTILITIES 2

45

CUL-DE-SAC

50

CURVED CUL-DE-SAC

55

BULBS AND KNUCKLES

61

INTERSECTION - BOTH STRAIGHT

67

INTERSECTION - ONE CURVED

73

INTERSECTION - BOTH CURVED

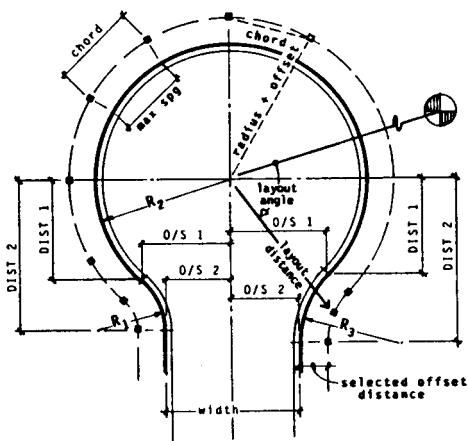
77

APPENDIX A

83

Some quick tips on storage of coordinates by point number, using the 41CV or CX. Extended memory is not required.

Cul-de-Sac


This program solves cul-de-sac problems for design, plotting or layout, with the option of output with or without coordinates. The amount of input information depends on the requested output requirements. For instance, it isn't necessary to input any coordinate or bearing information unless you want the output to show the coordinates. It isn't necessary to input coordinate or backsight information unless the layout option is selected.

In the latter case, the layout information can be assumed for field use; that is, when prompted for coordinate input of the center point, you can input N=100 and E=0, and use N=0 and E=0 for the required backsight information. Then you just occupy the center point and sight back downstation. For the bearing input you would just use "north".

This will also work for a cul-de-sac with a center point that is offset from the street centerline, just by setting the backsight on an offset equal to the centerline offset.

In its simplest form, this program furnishes the designer with a quick calculation of the cul-de-sac curve data using different trial return curves, or with the coordinate option, quick plotting information is obtained to check the different curves against the terrain shown on a topographic map of the area.

In the field, the barest minimum of information is needed in order to calculate all of the information needed for layout of the curb and gutter offset hubs in just a few minutes.

As shown, the **layout mode** calculates the radial inverses from the center point, directly to the offset hubs. The offset distance to be used and the maximum spacing between the curve points are pre-selected by response to the prompts which are called up by a "Y" response to the **LAYOUT?** prompt.

The maximum spacing selected is the spacing at the curb line. The distance between the offset hubs is automatically adjusted to use the selected maximum distance.

If **layout mode** and **coordinate mode** are used together, the output distance along centerline and the output offset are to the actual curve return point, but the coordinates are those of the offset hub.

For the main curve area, a chord for use in double-chaining of the points is calculated, rather than output of a lot of angles. Since the instrument is at the center of this curve the radially inverted distance to the hubs is always the same.

This program has been designated as "CD". Size the calculator at 045 prior to running it, and initialize the program by keystroking **[XEQ ALPHA C D ALPHA]**. The routines used are guided by prompts, beginning with:

- 1 **LAYOUT?** If the calculated solutions are to include radial stakeout of the returns, answer **[Y]** and the additional prompts (marked *) will appear. If layout is not desired, answer **[N]** and go to step number 4 **[R/S]**
- 2 **OFFSET DIST?*** Input the distance by which you wish to offset the stakes to be set **[R/S]**
- 3 **MAX SPG?*** At this point you can select the maximum spacing which you want between the offset hubs. Input the maximum distance between staked points at the curb line **[R/S]**
- 4 **SHOW COORDS?** If the coordinates of the solution points are required, answer **[Y]**. If this option is selected, the coordinates of the radius point will also be calculated.
When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the **offset hub** location. If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations.
When the answer to this prompt is yes, the additional prompt (marked **) for beginning coordinates will appear.
If the coordinates are not required, answer **[N]** and proceed at step 9 **[R/S]**
- 5 **INTER-X N+E**** This refers to the actual center point of the main radius for the cul-de-sac. Input the N-coordinate of the intersection point **[ENTER]**
Input the E-coordinate of the intersection point **[R/S]**
- 6 **BACKSITE?**** Any point with known coordinates may be used. Input the N-coordinate of the backsight point **[ENTER]**
Input the E-coordinate of the backsight point **[R/S]**

Cul-de-Sac

7 BRG=?** Input the bearing of the centerline of the street R/S

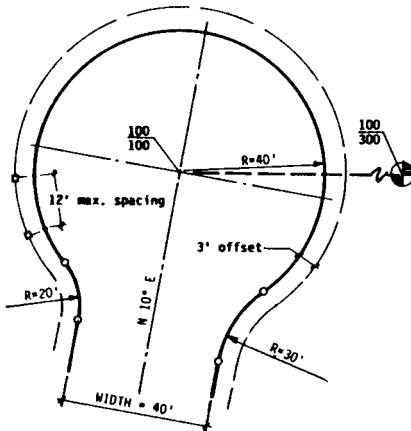
8 QD=? Input the quadrant code, using the direction toward the cul-de-sac R/S

9 RADII? Input the first radius, beginning on the left side and proceeding clockwise around the cul-de-sac. If the cul-de-sac is offset in such a way that the central radius is tangent to the outside line of the street at this point (there is no return curve) input 0 ENTER↑

Input the central radius ENTER↑

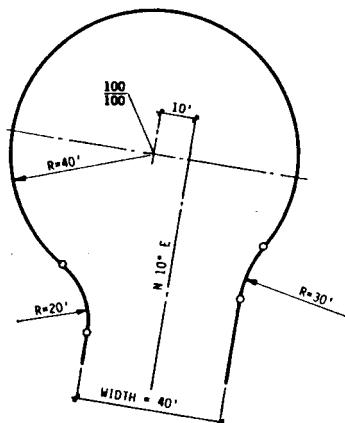
Input the last return radius. If there is no return at this point, input 0 R/S

10 WIDTH? Input the width of the street R/S


11 OFFSET? Input the amount of offset from the centerline of the street to the main radius point of the cul-de-sac. If the radius point is on the centerline of the street, input 0. If the offset is to the left, CHS R/S

Output is automatic, and will print out all of the required data in the same order that the radii were input. If you do not have a printer attached to the calculator, continue stroking the R/S key to obtain the output.

We will use the cul-de-sac shown to the right for our first keystroke example, and use both the coordinate output and layout modes.


Assume that a hub offset of 3' is wanted, and use a maximum between points of 12', for the example problem.

Use a coordinate value of N100/E300 for the backsight point, and follow the keystrokes shown in the example on the next page.

keystrokes: [XEQ]	prompt: WIDTH?	
[ALPHA C D ALPHA]	keystrokes: [4 0 R/S]	R = 40.000 DELTA = 272° 36' 18.0" L = 190.314 (15.98)
prompt: LAYOUT?	prompt: OFFSET?	
keystrokes: [Y R/S]	keystrokes: [0 R/S]	
prompt: OFFSET DIST?	prompt: OFFSET? output: DIST 1=29.814 O/S 1=26.667	DIST 1=27.994 O/S 1=28.571
keystrokes: [3 R/S]		
prompt: MAX SPG?		N= 65.0308 E= 125.0219
keystrokes: [1 2 R/S]		
prompt: SHOW COORDS?		HD = 43.000 ΔRT= 141° 48' 37.1"
keystrokes: [Y R/S]		
prompt: INTER-X N+E		RADIUS POINT: N= 62.9048 E= 52.8419
keystrokes: [1 0 0 ENTER]		
		HD = 60.000 ΔRT= 141° 48' 37.1"
[1 0 0 R/S]		
prompt: BACKSITE?		HD = 70.000 ΔRT= 54° 24' 55.1"
keystrokes: [1 0 0 ENTER]		
		R = 30.0000 DELTA = 48° 11' 22.9" L = 16.821 T = 8.944 CH = 16.330
[3 0 0 R/S]		
prompt: BRG=?		
keystrokes: [1 0 R/S]		1/2 N= 67.0448 E= 69.3301
prompt: QD=?		
keystrokes: [1 R/S]		HD = 45.019 ΔRT= 132° 56' 31.9"
prompt: RADI?		
keystrokes: [2 0 ENTER]		N= 59.9520 E= 69.5836
		HD = 50.289 ΔRT= 127° 12' 59.6"
[4 0 ENTER]		
		DIST 2=44.721 O/S 2=20.000
[3 0 R/S]		DIST 2=48.990 O/S 2=20.000

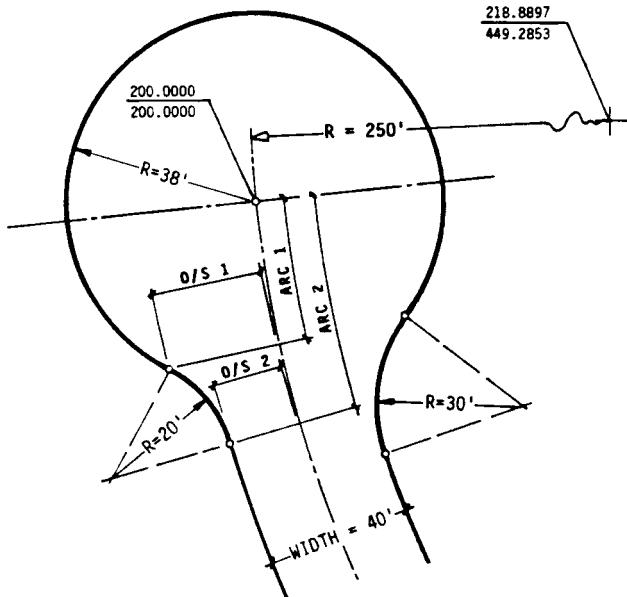
Cul-de-Sac

The cul-de-sac to the left has an offset center point which is 10' left of the centerline of the street. Other than that, it is the same as the previous example.

The only difference in input for this one would be after the last prompt, **OFFSET?**, where you would enter -10 instead of 0.

For a keystroke example, we will calculate the cul-de-sac with just the coordinate output. The prompt for the coordinates of the center point will appear, but not the layout prompts for spacing, hub offset and backsight coordinates. Begin by stroking **[XEQ] [ALPHA] [C] [D] [ALPHA]**, and then:

prompt: LAYOUT?	prompt: WIDTH?	
keystrokes: [N] [R/S]	keystrokes: [4] [0] [R/S]	R = 40.000 DELTA = 271° 0' 9.8" L = 189.196
prompt: SHOW COORDS?	prompt: OFFSET?	
keystrokes: [Y] [R/S]	keystrokes [1] [0] [CHS] [R/S]	DIST 1=20.603 O/S 1=24.286
prompt: INTER-X N+E	output: DIST 1=34.641 O/S 1=30.000	N=73.7562 E=138.1871
keystrokes: [1] [0] [0] [ENTER] [1] [0] [0] [R/S]		RADIUS POINT: N=54.0734 E=152.0275
prompt: BRG=?		R = 30.0000 DELTA = 31° 0' 9.8" L = 16.233
keystrokes: [1] [0] [R/S]		T = 8.321 CH = 16.036
prompt: QD=?		
keystrokes: [1] [R/S]		
prompt: RADII?		
keystrokes: [2] [0] [ENTER] [4] [0] [ENTER] [3] [0] [R/S]		
	N=50.5644 E=81.1289	H=59.2828 E=123.2833
	DIST 2=51.962 O/S 2=20.000	DIST 2=36.056 O/S 2=20.000


notes

Curved Cul-de-Sac

This group of program routines is used to obtain solutions for cul-de-sacs which occur at the end of a curved centerline alignment, as shown below. The program is fully prompted and begins the prompt sequence as soon as the program CDC is executed.

When used for designing the cul-de-sac, the routine solves for the offsets from centerline at the beginning and ending points, and outputs the centerline arc length for calculation of the stations opposite the return points.

Using the coordinate option, the coordinates for these points are also output, along with the coordinates of the radius point at each return. Using this routine, the coordinates of the main center point and the centerline radius point must be known (or assumed).

As with the other programs, a layout routine is included to allow field calculations of the offset hubs for staking. Layout is inverted directly, with the center point used as the instrument setup position, and the coordinates of a backsight point are also input during the initial prompting sequence. The offset distance and the maximum spacing between the offset hubs is pre-selected by the user.

As shown in the example above, the cul-de-sac return curves do not have to be symmetrical (and the center point of the cul-de-sac does not have to be on the centerline of the street). Use of the routine for a condition where the center is offset from the center of the street alignment will be shown in a second example.

The keystroke procedures and detailed examples are on the following pages. It is suggested that a sketch of the cul-de-sac be available for reference while using the program, to insure that the radii are input in the correct order.

This program has been designated as "CDC". Size the calculator at 045 prior to running it, and initialize the program by keystroking **[XEQ] [ALPHA] [C] [D]**. The routines used are guided by prompts, the first of which is:

- 1 **LAYOUT?** If the calculated solutions are to include radial stakeout of the returns, answer **[Y]** and the additional prompts (marked *) will appear. If layout is not desired, answer **[N]** and go to step number 4 **[R/S]**
- 2 **OFFSET DIST?*** Input the distance by which you wish to offset the stakes to be set **[R/S]**
- 3 **MAX SPG?*** At this point you can select the maximum spacing which you want between the offset hubs. Input the maximum distance between staked points at the curb line **[R/S]**
- 4 **SHOW COORDS?** If the coordinates of the solution points are required, answer **[Y]**. If this option is selected, the coordinates of the radius point will also be calculated.
When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the **offset hub** location. If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations.
When the answer to this prompt is yes, the additional prompt (marked **) for beginning coordinates will appear.
If the coordinates are not required, answer **[N]** and proceed at step 7 **[R/S]**
- 5 **INTER-X N+E**** This refers to the actual center point of the main radius for the cul-de-sac. Input the N-coordinate of the intersection point **ENTER↑**
Input the E-coordinate of the intersection point **[R/S]**
- 6 **BACKSITE?*** Any point with known coordinates may be used. Input the N-coordinate of the backsight point **ENTER↑**
Input the E-coordinate of the backsight point **[R/S]**

Curved Cul-de-Sac

7 RADIUS N+E?** Input the N-coordinate value of the main alignment radius point

ENTER

Input the E-coordinate

R/S

8 RADII? Input the radii, beginning with the radius of the centerline alignment (if the curve is to the left, **CHS**)

ENTER

The radius of the **outside** return is input next. If the cul-de-sac is offset in such a way that the central radius is tangent to the outside line of the main alignment at this point (there is no return curve) input 0

ENTER

Input the central radius

ENTER

Input the radius of the last return. Again, if there is no return curve at this point, input 0

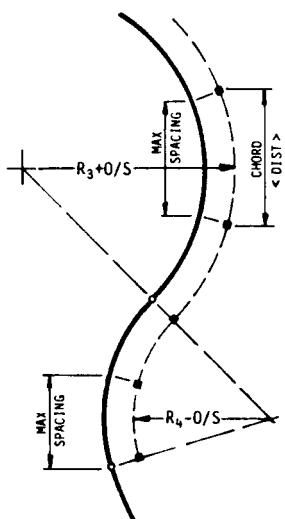
R/S

Note that, after the input of the centerline radius for the main alignment, the input of the radii is clockwise for an alignment which curves to the right and counter-clockwise for a curve to the left.

9 WIDTH? Input the width of the street

R/S

10 OFFSET? Input the amount of offset. If the center point of the cul-de-sac is not offset from the centerline alignment, input 0. If the offset is to the left, **CHS**


R/S

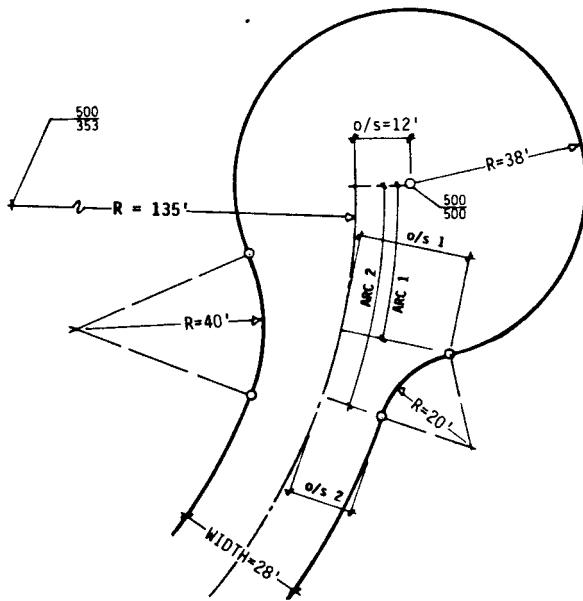
Output will begin with the curve data and arc length/offset data for the outside return and proceed in the same order as the input. When **coordinate** or **layout routines** were requested, the coordinates of the radius point for each return will also be output. In the **layout mode** the coordinates of the return points are those of the offset hubs, but the arc and offset are still to the actual curve point.

In the layout mode the main curve is not divided into a series of angles for layout, but the chord distance from the last hub, for maintaining the required spacing of the hubs is given (shown <XX.xx> in the output) so that the hubs may be quickly double-chained using the last hub and the center point.

For a first example of the keystroke procedures which would be used in solving for the curve data and curve point locations for the cul-de-sac shown on page 7, we begin with the calculator sized at least at size 045.

keystrokes: ALPHA C D C ALPHA	prompt: XEQ	prompt: WIDTH?	R = 38.0000 DELTA = 268° 7' 8.9" L = 177.823
prompt: LAYOUT?	4 0 R/S	prompt: OFFSET?	R = 38.000 DELTA = 48° 54' 46.4" L = 25.611 T = 13.644 CH = 24.840
keystrokes: N R/S	keystrokes: 0 R/S	output: R = 28.0000 DELTA = 42° 5' 24.8" L = 14.692 T = 7.695 CH = 14.364	ARC 1 = 25.981 O/S 1 = 29.123
prompt: SHOW COORDS?		ARC 1 = 26.865 O/S 1 = 25.485	ARC 2 = 51.618 O/S 2 = 20.000
keystrokes: N R/S		ARC 2 = 39.836 O/S 2 = 20.000	
prompt: RADIIS?			
keystrokes: 2 5 0 ENTER↑			
2 0 ENTER↑			
3 8 ENTER↑			
3 0 R/S			

Next, as an example of the **layout mode**, we can use the same cul-de-sac, but assume that we are set up at the intersection point (center point of the main radius) and want to stake out the returns for curb and gutter. We will use a 3' offset line, and a maximum 12 feet between points, to ensure that the curbs will be smoothly curved.


As shown to the left, the maximum spacing selected is the spacing at the actual curb line. The distance between the offset hubs is adjusted automatically to not exceed the selected distance at the curb.

For the central portion the chord distance to pull between the offset hubs is given, and the hubs may be set by double-taping using the chord distance from the last hub and a distance from the center point that is equal to the radius + the offset.

The keystroke procedures for obtaining the angles and distances for layout are shown on the next page. Assume a backsight coordinate of N=100 and E=200.

Curved Cul-de-Sac

keystrokes:	XEQ	keystrokes:		
ALPHA C D C ALPHA		2 5 0 ENTER↑		R = 38.0000
prompt: LAYOUT?		2 0 ENTER↑		DELTA =
keystrokes:		3 8 ENTER↑		268° 7' 8.9"
Y R/S		3 0 R/S		L = 177.823
prompt: OFFSET DIST?		prompt: WIDTH?		<16.77>
keystrokes:		keystrokes:		
3 R/S		4 0 R/S		R = 30.00
prompt: MAX SPG?		prompt: OFFSET?		DELTA =
keystrokes:		0 R/S		48° 54' 46.4"
1 2 R/S		output: R = 20.0000		L = 25.611
prompt: SHOW COORDS?		DELTA =		T = 13.644
keystrokes:		42° 5' 24.0"		CH = 24.848
N R/S		L = 14.692		
prompt: INTER-X N+E		T = 7.695		ARC 1= 25.981
keystrokes:		CH = 14.364		O/S 1= 29.123
2 0 0 ENTER↑		ARC 1= 26.865		HD = 41.000
2 0 0 R/S		O/S 1= 25.485		ΔRT=
prompt: BACKSITE?		HD = 41.000		302° 44' 58.2"
keystrokes:		ΔRT=		
1 0 0 ENTER↑		34° 37' 49.2"		RADIUS POINT:
2 0 0 R/S		RADIUS POINT:		HD = 68.000
prompt: RADIUS N+E		HD = 58.000		ΔRT=
keystrokes:		ΔRT=		312° 57' 33.8"
2 1 8 . 8 8 9 7	ENTER↑	34° 37' 49.2"		
4 4 9 . 2 8 5 3	R/S	1/2		1/3
prompt: RADI?		HD = 42.574		HD = 42.763
		ΔRT=		
		26° 23' 10.4"		ΔRT=
		HD = 46.793		320° 34' 21.3"
		ΔRT=		HD = 54.219
		20° 32' 9.5"		ΔRT=
		ARC 2= 39.036		324° 47' 39.3"
		O/S 2= 20.000		ARC 2= 51.618
				O/S 2= 20.000

In addition to being an example of a cul-de-sac with an offset center point, we can also use the one shown to the left as an example of a cul-de-sac on an alignment with a curve to the left.

In using this keystroke example we will assume that we are designing the cul-de-sac, and want to calculate the coordinates for plotting.

With the calculator sized at 045 keystroke **XEQ ALPHA C D C ALPHA**.

Program execution is started and the first prompt appears:

prompt: LAYOUT?
keystrokes:

N R/S

prompt: SHOW COORDS?

keystrokes:

Y R/S

prompt: INTER-X N+E

keystrokes:

5 0 0 ENTER↑

5 0 0 R/S

prompt: RADIUS N+E

keystrokes:

5 0 0 ENTER↑

3 5 3 R/S

prompt: RADII?
keystrokes:

1 3 5 CHS ENTER↑

2 0 ENTER↑

3 8 ENTER↑

4 0 R/S

prompt: WIDTH?

keystrokes:

2 8 R/S

prompt: OFFSET?

keystrokes:

1 2 R/S

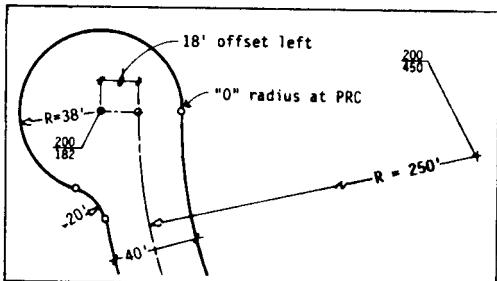
output: R = 20.0000
DELTA =
58° 14' 58.7"
L = 20.333
T = 11.143
CH = 19.469

ARC 1 = 31.758
O/S 1 = 24.386

N = 462.8587
E = 587.9958

RADIUS POINT:
N = 443.2985
E = 512.2041

N = 458.0087
E = 493.3634


ARC 2 = 46.198
O/S 2 = 14.000

R = 38.0000
DELTA =
280° 42' 21.3'
L = 186.171

Curved Cul-de-Sac

$R = 48.000$
 $\text{DELTA} = 44^\circ 48' 49.5''$
 $L = 31.286$
 $T = 16.492$
 $\text{CH} = 38.495$
 $\text{ARC 1} = 17.689$
 $\text{O/S 1} = 22.049$
 $N = 485.2423$
 $E = 464.9827$

RADIUS POINT:
 $N = 469.7078$
 $E = 428.1224$
 $N = 454.7487$
 $E = 465.2200$
 $\text{ARC 2} = 51.745$
 $\text{O/S 2} = 14.000$

As a last example of this routine, the cul-de-sac shown above is at the end of an alignment curve to the right and is offset to the left. In addition, this is an example of a "0" radius on one side. The curb line on the right side of this street forms a smooth line as it joins the curve of the cul-de-sac at a PRC opposite and radial to the center point of the main cul-de-sac radius.

To demonstrate the output, we will solve for the coordinates, without the layout option. The calculator is sized at 045, and we begin with **XEQ ALPHA C D C ALPHA**.

prompt: LAYOUT?

2 0 ENTER

RADIUS POINT:
 $N = 144.4343$
 $E = 165.3731$

keystrokes:

N R/S

prompt: SHOW COORDS?

3 8 ENTER

$N = 148.2664$
 $E = 185.0026$

0 R/S

prompt: WIDTH?

$\text{ARC 2} = 48.200$
 $\text{O/S 2} = 20.000$

keystrokes:

Y R/S

prompt: INTER-X N+E

4 0 R/S

prompt: OFFSET?

$R = 38.0000$
 $\text{DELTA} = 253^\circ 20' 28.7''$
 $L = 168.022$

keystrokes:

2 0 0 ENTER

1 8 2 R/S

prompt: RADIUS N+E

0 R/S

output: $R = 28.0000$

$R = 0.000$

keystrokes:

2 0 0 ENTER

$\text{DELTA} = 62^\circ 17' 41.2''$

$\text{ARC 1} = 0.000$
 $\text{O/S 1} = 28.000$

4 5 0 R/S

$L = 21.745$

$N = 200.0000$
 $E = 228.0000$

prompt: RADII?

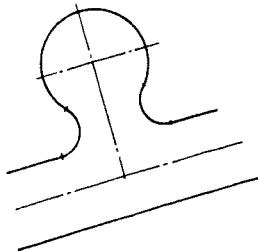
$T = 12.087$

$\text{CH} = 28.690$
 $\text{ARC 1} = 32.450$
 $\text{O/S 1} = 31.259$

keystrokes:

2 5 0 ENTER

$\text{CH} = 28.690$


$N = 163.5949$

$E = 171.1065$

notes

Bulbs

A cul-de-sac that is designed in such a way that the return curves are also tangent to the line of the adjacent street is called a "bulb". There are a number of variations of this used by different designers, but the most common type is one that has a "real" throat width. In other words, the only difference between this cul-de-sac and any other is that there is no tangent line between the return curves of the cul-de-sac and the return curves of the street going by it.

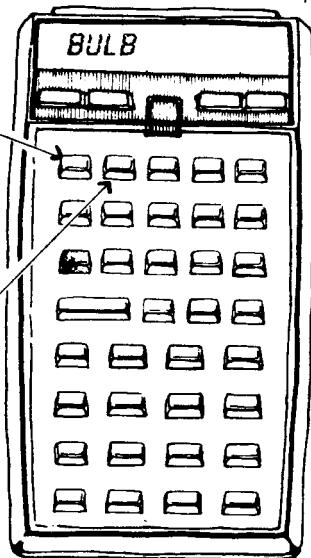
The bulb shown to the left is typical of the type which may be resolved using this program. The program allows for the bulb occurring along the outside or inside of a curved street.

The program has been designated as "BB", and works a little differently than the programs for cul-de-sacs, in that after execution, it will halt and wait for you to select the option you want. The options are whether you want the output with or without having the coordinates output.

If coordinates are not wanted, simply keystroke **A** after the program halts (the display will show 360). For the option with coordinates, you will input the coordinates of the street centerline intersection with the centerline of the bulb, and then keystroke **B**.

This program does not contain a layout option, it takes far more program steps. The layout may be done using the **cul-de-sac** program and one of the **street intersection** programs which follow.

The two buttons used for this routine are shown in the sketch to the right. When coordinate output is requested, it will output the coordinates of the three radius points, along with the design information and curve data.


If the bulb is on a curved street, the street centerline arc opposite the return points is also given. On a straight street the distance is half of the width of the bulb street plus the return radius. This allows the "street side" to be staked by offsets from centerline.

Stroke **A** to begin prompting for input

OR

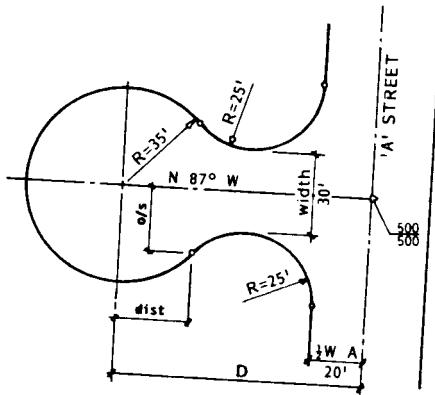
Input the north coordinate, then stroke **ENTER**

Input the east coordinate and stroke **B** for the coordinates option

To make this program easy to access, it has been given a global label of "BB". The calculator should be sized at least at 040 before beginning. Initialize the program by keystroking **XEQ ALPHA B B ALPHA**. The program will clear the registers and reset the flag status, and then halt.

- 1 If coordinates are to be calculated, input the N-coordinate value of the intersection of the streets and stroke **ENTER**
- 2 Input the E-coordinate value for the streets' intersection and stroke **B**
- 3 or If coordinates are not wanted, stroke **A**
- The prompts marked* will only appear if the coordinate calculation option has been chosen
- 4 **BRG=?*** Input the bearing of the cul-de-sac street **R/S**
- 5 **QD=?*** Input the quadrant code in the direction toward the center of the cul-de-sac **R/S**
- 6 **CURVE?** If the main street (the collector) is curving at the point where the bulb street intersects, answer **Y R/S**. If the street is straight, answer **N R/S**. When the **Y** answer is given, an additional prompt (marked**) will appear
- 7 **OUTSIDE??*** Answer this prompt **Y R/S** if the bulb is on the side of the street away from the main alignment's radius point, or **N R/S** if it is on the side toward the radius point
- 8 **RADI?** If the bulb does occur at a curve in the main alignment, input the main-line radius first ****ENTER**
- 9 or Input the radius of the return **ENTER**
- 10 Input the center radius of the cul-de-sac **R/S**
- 11 **1/2W A?** Input the half-width of the street **R/S**
- 12 **WIDTH?** Input the width at the "throat" of the cul-de-sac **R/S**

Bulbs


Output is automatic and will first print out the distance from the streets' intersection to the center of the cul-de-sac.

If the bulb is on a curve, the centerline arc distance on the main alignment will be output next, followed by the data for the center curve, the distance and offset to the PRC points and the curve data for the returns.

If coordinate output was selected, the coordinates for the radius points will also be output.

If you do not have a printer attached to the calculator, continue stroking the **R/S** key for the output.

As a first example we can calculate the data for the bulb shown above. We will assume that we do not need the coordinates.

keystrokes: **XEQ**
ALPHA B B ALPHA
display: 360.0000
keystroke: **A**
prompt: CURVE?
keystrokes:
N R/S
prompt: RADII?
keystrokes:
2 5 ENTER↑
3 5 R/S
prompt: 1/2W A?
keystrokes:
2 0 R/S
prompt: WIDTH?
keystrokes:
3 0 R/S

output: D = 89.721
CENTER:
DELTA =
276° 22' 45.7"
L = 168.736
RETURNS:
DIST = 26.087
0/S = 23.333
DELTA =
138° 11' 22.9"
L = 68.297
T = 65.451
CH = 46.709

If coordinates had been wanted, the initial keystrokes would have been:

keystrokes:
5 0 0 ENTER↑
5 0 0 B

followed by the additional prompts: **BRG=?**
keystrokes: **8 7 R/S**
prompt: QD=?
keystrokes: **4 R/S**
then:
prompt: CURVE?
keystrokes:
N R/S
prompt: RADII?
keystrokes:
2 5 ENTER↑
3 5 R/S
prompt: 1/2W A?

keystrokes:

[2] [0] [R/S]

prompt:

WIDTH?

keystrokes:

[3] [0] [R/S]

output: $D = 89.721$

CENTER:

$N = 584.6957$

$E = 410.4816$

DELTA =

$276^\circ 22' 45.7''$

$L = 168.736$

RETURNS:

$DIST = 24.667$

$O/S = 24.831$

$N = 462.4899$

$E = 452.9682$

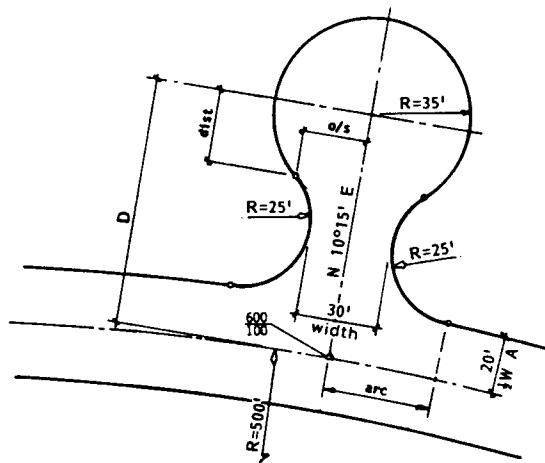
DELTA =

$138^\circ 11' 22.9''$

$L = 68.297$

$T = 65.451$

$CH = 46.709$


$N = 542.3083$

$E = 457.1551$

The bulb shown above is similar to the first one, with the exception that it occurs on a curved street. In this case, on the outside of the curve.

The only difference in input will be that three radii are input instead of two. The main street alignment radius (in this case, 500) is input first.

The keystrokes are as shown to the right.

keystrokes:

[XEQ] [ALPHA] [B] [B] [ALPHA]

display: 360.0000

keystroke:

[A]

prompt:

CURVE?

keystrokes:

[Y] [R/S]

prompt:

OUTSIDE?

keystrokes:

[Y] [R/S]

prompt:

RADI?I

keystrokes:

[5] [0] [0] [ENTER]

[2] [5] [ENTER]

[3] [5] [R/S]

prompt:

$1/2W A?$

keystrokes:

[2] [0] [R/S]

prompt:

WIDTH?

keystrokes:

[3] [0] [R/S]

output:

$D = 88.251$
 $ARC = 36.738$

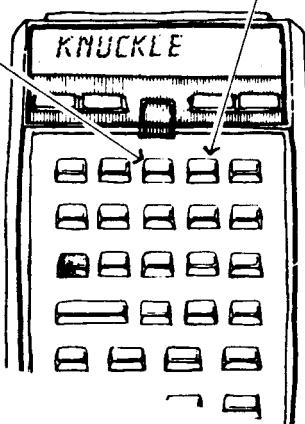
CENTER:
 $N = 686.8431$
 $E = 115.7038$
DELTA =
 $276^\circ 22' 45.7''$
 $L = 168.736$

RETURNS:
 $DIST = 21.519$
 $O/S = 27.603$

$N = 649.9532$
 $E = 68.3943$

DELTA =
 $133^\circ 58' 50.5''$
 $L = 58.468$
 $T = 58.869$
 $CH = 46.022$

$N = 635.7177$
 $E = 147.1075$


Knuckles

A "knuckle" is sometimes added at the angle-point intersection of two streets in order to get a better lot pattern without actually building in a full cul-de-sac. As with anything else, different designers use different types of solutions. This routine solves for all of the needed data for the type where the return radii are equal, and the central angle of the main area is 180° .

The offset distance (**D**) from the main alignment intersection varies with the angle of intersection and the proportions of the main and return radii. If it occurs outside the angle point, it will be a positive number, if inside, negative. The main line tangent length (**T**) is the distance along the main alignment tangents which will be at a centerline point opposite the BC or EC of the returns.

keystroke **C** to begin the prompt sequence if you do not need coordinate output

if coordinate output is wanted input the coordinates of the intersection point and stroke **D**

An additional feature of this routine is that it also designs a curve to fit the opposite side of the street (opposite the same tangent points).

This allows layout by turning 90's at the tangent points to set the BC or EC offsets and radius points directly. Because of the type of knuckle, all of the radii and the PRC points are on a straight line.

It is also convenient for layout that, with the instrument at the main alignment intersection, the angle to turn to the center radius point is equal to the central angle of the returns when the point is on the inside (**D** is negative), or 180° minus the return central angle when it falls outside the intersection (**D** is positive).

Because this program uses so many of the same program steps as are needed in solving for the bulbs, the two programs have been combined. The basic moves are the same, with the exception that we use the **C** and **D** keys to begin the prompt sequence.

After keystroking **XEO ALPHA B B ALPHA**, and execution halts, you may either continue by stroking **C** or input the coordinates of the intersection and stroke **D** if you want coordinate output. Either key will begin the prompt sequence. The complete keystroke procedures are on page 20.

Initialize the program by keystroking **[XEQ] [ALPHA] [B] [B] [ALPHA]**. The program will clear the registers and reset the flag status, and then halt.

After the calculator has halted you may choose whether or not you want to have the coordinates calculated. The routine is fully prompted, and the following are the keystroke procedures:

1 If coordinates are to be calculated, input the N-coordinate value of the intersection of the streets and stroke **[ENTER]**

2 Input the E-coordinate value for the streets' intersection and stroke **[D]**

or If coordinates are not wanted, stroke **[C]**

The prompts for the remainder of the input are the same regardless of which option was chosen. Bearing input should be in a **clockwise** direction.

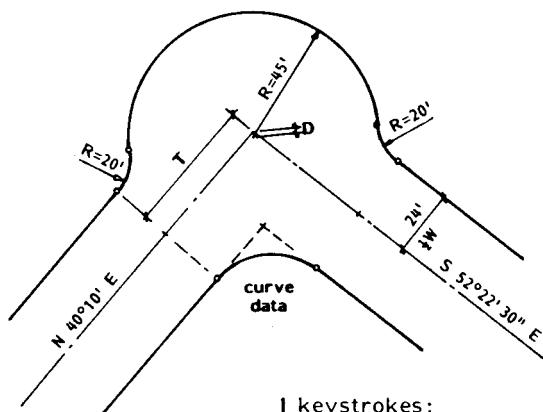
3 **BRG=?** Input the bearing of the first street **[R/S]**

4 **QD=?** Input the quadrant code **[R/S]**

5 **BRG=?** Input the bearing of the second street **[R/S]**

6 **QD=?** Input the quadrant code **[R/S]**

7 **RADI?I** Input the radius of the return **[ENTER]**


Input the center radius of the cul-de-sac **[R/S]**

8 **1/2W?** Input the half-width of the street **[R/S]**

Output is automatic and will first print out the tangent distance (**T**) along the main tangent, followed by the distance from the streets' intersection to the center of the knuckle (**D**). If coordinate output was selected, the coordinates for the radius points will also be output.

As a first keystroke example, we will use the knuckle shown on the opposite page. Assume that the coordinates of the intersection are N=500 and E=500, and we will have it output the coordinates. If a printer is not attached, continue stroking **[R/S]** to obtain the output.

Knuckles

keystrokes: **XEQ**

display: 360.0000

keystrokes:

5 0 0 ENTER+

5 0 0 D

prompt: BRG=?

keystrokes:

4 0 . 1 R/S

prompt: QD=?

keystrokes:

1 R/S

prompt: BRG=?

keystrokes:

5 2 . 2 2 3 R/S

prompt: QD=?

keystrokes:

2 R/S

prompt: RADII?

keystrokes:

2 0 ENTER+

4 5 R/S

prompt: 1/2W?

keystrokes:

2 4 R/S

output: **T = 47.861**

D = -1.289

keystrokes:

CENTER:

N= 498.7186

E= 500.1370

DELTA =

180° 8' 0.0"

L=141.372

RETURNS:

N= 491.8867

E= 435.5056

DELTA =

46° 16' 15.0"

L = 16.152

T = 8.545

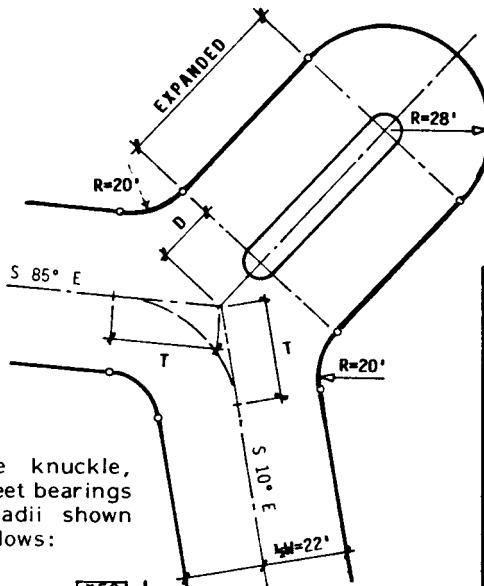
CH = 15.716

N = 505.6304

E = 564.7685

OPPOSITE:
R = 26.0325
DELTA =
87° 27' 30.0"
L = 39.737
T = 24.903
CH = 35.998

If we had stroked **C** without input of the coordinates, the output would be as shown below.


T = 47.8608
D = -1.289

CENTER:
DELTA =
180° 8' 0.0"
L = 141.372

RETURNS:
DELTA =
46° 16' 15.0"
L = 16.152
T = 8.545
CH = 15.716

OPPOSITE:
R = 26.033
DELTA =
87° 27' 30.0"
L = 39.737
T = 24.903
CH = 35.998

The knuckle routine of this program may also be used for designing a cul-de-sac of the type shown on the next page by adding a distance to D which expands the knuckle and creates a cul-de-sac.

Calculate the knuckle, using the street bearings and curve radii shown above, as follows:

keystrokes: **XEQ**

ALPHA B B ALPHA

display: 360.0000

keystroke: **C**

prompt: **BRG=?**

keystrokes: **8 5 R/S**

prompt: **QD=?**

keystrokes: **2 R/S**

prompt: **BRG=?**

keystrokes: **1 0 R/S**

prompt: **QD=?**

keystrokes: **2 R/S**

prompt: **RADIIS?**

keystrokes: **2 0 ENTER**

2 8 R/S

prompt: **1/2W?**

keystrokes: **2 2 R/S**

output: **T = 28.2749**

D = 16.108

CENTER:

DELTA =

180° 0' 0.0"

L = 87.965

RETURNS:

DELTA =

52° 30' 0.0"

L = 18.326

T = 9.863

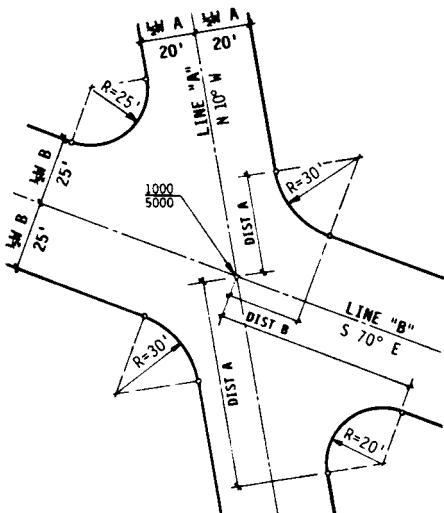
CH = 17.692

OPPOSITE:
 R = 14.849
 DELTA =
 75° 0' 0.0"
 L = 19.437
 T = 11.394
 CH = 18.079

The angle is turned to the center point and D is set in the normal way (to become the radius point of the island nose at the centerline).

Set another point at the desired distance from D. This point becomes both the radius point of the cul-de-sac and the radius point of the other end of the island.

If the opposite radius which is calculated by the program is not long enough to meet minimum local ordinances, in this case 14.85', it can be recalculated with a new radius, or the return radii can be increased in length. Using 25' as the return radius would give:


OPPOSITE:
 R = 18.062
 DELTA =
 75° 0' 0.0"
 L = 23.643
 T = 13.859
 CH = 21.991

Intersection - Both Straight

This program can be used on those many occasions when the field crew is to stake out an intersection, but the site plan or subdivision map doesn't give all of the necessary information, or can be used to generate quick solutions when designing the intersection.

In its simplest form, it calculates the distance along centerline to be opposite the E.C. or B.C. of the returns. If desired, the coordinates of the return points and the radius points may be generated, either for plotting or for radial layout from known coordinate points.

A third option, using this program is direct radial layout of offset points to the curb returns from an instrument setup at the intersection. The angles and distances to the offset hubs are output, and the maximum spacing of the offset points around the curve, as well as the offset distance, can be pre-selected to meet the needs of the contractor.

The intersection shown to the left will be used for the examples which follow.

The required information is the bearing of the centerline of each street, the street widths, and the radii at the curb returns. In order to avoid confusion with the output, the line which runs most nearly north-south is designated as line A, and the street running most nearly east-west as line B.

When input, the line A quadrant code should be given in the northerly direction, and the line B quadrant code in the easterly direction. The solutions will begin with the northeasterly return and go clockwise around the intersection.

The output "Dist A" and "Dist B" allow quick calculation of the station at the E.C. and B.C. of the returns and, of course, the offset from centerline is already known.

When used for radial layout of the intersection, the program calculates the angle right to the solution point backsighting northerly along line A.

For easy access to this program, it has been designated as "NN". With the calculator sized at 035, Initialize the program by keystroking **XEQ ALPHA N** **N ALPHA**. All of the routines used are guided by prompts, and the first of these appears as

- 1 **LAYOUT?** If the calculated solutions are to include radial stakeout of the returns, answer **Y R/S**, and the additional prompts (marked *) will appear. If layout is not desired, answer **N R/S** and go to step number 4.
- 2 **OFFSET DIST?*** Input the distance by which you wish to offset the stakes to be set **R/S**
- 3 **MAX SPG?*** At this point you can select the maximum spacing which you want to have between the offset hubs, in order to assure that the construction of the return is a curve instead of a series of chords. Input the maximum distance between points at the curb line **R/S**
- 4 **SHOW COORDS?** If the coordinates of the solution points are required, answer **Y R/S**. If this option is selected, the coordinates of the radius point will also be calculated. When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the offset hub location.
If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations. When the answer to this prompt is yes, the additional prompt (marked **) for beginning coordinates will appear.
If the coordinates are not required, answer **N R/S** and proceed at step 6.
- 5 **INTER-X N+E**** Input the N-coordinate of the intersection point **ENTER**
Input the E-coordinate of the intersection point **R/S**
- 6 **BRG=?** Input the bearing of line A **R/S**
- 7 **QD=?** Input the quadrant code for line A, using the northerly direction of the bearing **R/S**

Intersection-Both Straight

8 BRG? Input the bearing for line B R/S

9 QD=? Input the quadrant code for the line B bearing, using the **easterly** direction R/S

10 1/2W A? Input the half-width of street A R/S

11 1/2W B? Input the half-width of street B R/S

12 R? Input the radius of the first return, beginning in the upper right-hand (northeasterly) corner of the intersection R/S

Output will be the solutions requested for the return. If a printer is not attached, continue stroking **R/S** after each output until the solution for this quadrant has been completed. At this point the program will again prompt **R?**.

Return to step 12 for solution of the next return, working clockwise around the intersection.

To begin with an easy example of the keystroke procedures, use the illustrated intersection to calculate solutions without layout or coordinates, as follows:

keystrokes:	REQ	prompt:	BRG=?	prompt:	R?
ALPHA N N ALPHA		keystrokes:		keystrokes:	
prompt: LAYOUT?		7 0 R/S		3 0 R/S	
keystrokes:		prompt:	QD=?	output:	$R = 30.0000$
N R/S		keystrokes:		DELTA =	$60^\circ 0' 0.0''$
prompt: SHOW COORDS?		2 R/S		L =	31.416
keystrokes:		prompt:	1/2W A?	T =	17.321
N R/S		keystrokes:		CH =	30.000
prompt: BRG=?		2 0 R/S		DIST A =	34.641
keystrokes:		prompt:	1/2W B?	DIST B =	25.981
1 0 R/S		keystrokes:		The distances may be added or	
prompt: QD=?		2 5 R/S		subtracted to the station at	
keystrokes:				the intersection to obtain the	
4 R/S				station at the return points.	

prompt: R?	prompt: R?	prompt: R?
keystrokes:	keystrokes:	keystrokes:
[2] [0] [R/S] R = 20.0000	[3] [0] [R/S] R = 30.0000	[2] [5] [R/S] R = 25.0000
output: DELTA = 120° 0' 0.0"	output: DELTA = 60° 0' 0.0"	output: DELTA = 120° 0' 0.0"
L = 41.888	L = 31.416	L = 52.360
T = 34.641	T = 17.321	T = 43.301
CH = 34.641	CH = 30.000	CH = 43.301
DIST A = 75.056	DIST A = 34.641	DIST A = 83.716
DIST B = 72.169	DIST B = 25.981	DIST B = 80.829

Using the same keystrokes, but with an answer of **[Y] [R/S]** to the coordinate prompt, the coordinates would have been input as **[1] [0] [0] [0] [ENTER]**, **[5] [0] [0] [0] [R/S]**, and the outputs would appear as shown to the right.

The coordinates shown after distances A and B are the coordinates of the return points, at the half-width distance from and opposite the centerline distance point.

The radius point is also output, as a design aid.

R = 30.0000	R = 20.0000	R = 30.0000	R = 25.0000
DELTA = 60° 0' 0.0"	DELTA = 120° 0' 0.0"	DELTA = 60° 0' 0.0"	DELTA = 120° 0' 0.0"
L = 31.416	L = 41.888	L = 31.416	L = 52.360
T = 17.321	T = 34.641	T = 17.321	T = 43.301
CH = 30.000	CH = 34.641	CH = 30.000	CH = 43.301
DIST A = 34.641	DIST A = 75.056	DIST A = 34.641	DIST A = 83.716
M= 1.037.5877	M= 929.5577	M= 962.4123	M= 1.078.9718
E= 5.013.6908	E= 5.832.7294	E= 4.986.3192	E= 4.965.7668
RADIUS POINT: M= 1.042.7972	RADIUS POINT: M= 933.0387	RADIUS POINT: M= 957.2028	RADIUS POINT: M= 1.074.6298
E= 5.043.2258	E= 5.052.4256	E= 4.956.7750	E= 4.941.1466
DIST B = 25.981	DIST B = 72.169	DIST B = 25.981	DIST B = 80.829
M= 1.014.6064	M= 951.8245	M= 985.3936	M= 1.051.1375
E= 5.032.9644	E= 5.059.2668	E= 4.967.8356	E= 4.932.5961

Next, as an example of the **layout** mode of this program, we can work the same example, assuming that we are setting the instrument up at the intersection of the centerlines of the two streets, and sighting northerly along line A. We will further assume that we want to set our offset stakes at an offset of 3 feet to the face of the curb, and that we do not want more than 16 feet between the points around the curve.

keystrokes: [XEQ]	prompt: OFFSET DIST?	keystrokes: [1] [6] [R/S]
[ALPHA] [N] [N] [ALPHA]	keystrokes:	prompt: SHOW COORDS?
prompt: LAYOUT?	[3] [R/S]	keystrokes: [N] [R/S]
keystrokes:	prompt: MAX SPG?	
[Y] [R/S]		

Intersection - Both Straight

<p>prompt: BRG=?</p> <p>keystrokes: 1 0 R/S</p> <p>prompt: QD=?</p> <p>keystrokes: 4 R/S</p> <p>prompt: BRG=?</p> <p>keystrokes: 7 0 R/S</p> <p>prompt: QD=?</p> <p>keystrokes: 2 0 R/S</p> <p>prompt: 1/2W A?</p> <p>keystrokes: 2 0 R/S</p> <p>prompt: 1/2W B?</p> <p>keystrokes: 2 5 R/S</p> <p>prompt: R?</p> <p>keystrokes: 3 0 R/S</p> <p>output: R = 30.0000 DELTA = 60° 0' 0.0" L = 31.416 T = 17.321 CH = 30.000</p> <p>DIST A = 34.641 HD = 41.581 ΔRT = 23° 34' 56.2"</p> <p>RADIUS POINT: HD = 60.828 ΔRT = 45° 17' 6.0"</p>	<p>1/2 HD = 33.992 ΔRT = 41° 32' 28.9"</p> <p>DIST B = 25.981 HD = 38.197 ΔRT = 62° 51' 27.9"</p> <p>prompt: R?</p> <p>keystrokes: 2 0 R/S</p> <p>output: R = 20.0000 DELTA = 120° 0' 0.0" L = 41.888 T = 34.641 CH = 34.641</p> <p>DIST A = 75.056 HD = 78.501 ΔRT = 152° 57' 46.3"</p> <p>RADIUS POINT: HD = 85.049 ΔRT = 141° 56' 42.4"</p> <p>1/3 HD = 69.571 ΔRT = 147° 11' 4.6"</p> <p>2/3 HD = 69.087 ΔRT = 137° 34' 16.9"</p> <p>DIST B = 72.169 HD = 77.410 ΔRT = 131° 12' 18.8"</p>	<p>prompt: R?</p> <p>keystrokes: 3 0 R/S</p> <p>output: R = 30.0000 DELTA = 60° 0' 0.0" L = 31.416 T = 17.321 CH = 30.000</p> <p>DIST A = 34.641 HD = 41.581 ΔRT = 23° 34' 56.2"</p> <p>RADIUS POINT: HD = 60.828 ΔRT = 45° 17' 6.0"</p> <p>1/2 HD = 55.009 ΔRT = 198° 56' 18.0"</p> <p>DIST B = 25.981 HD = 38.197 ΔRT = 242° 51' 27.9"</p> <p>prompt: R?</p> <p>keystrokes: 2 5 R/S</p> <p>output: R = 25.0000 DELTA = 120° 0' 0.0" L = 52.368 T = 43.301 CH = 43.301</p> <p>DIST A = 83.716 HD = 86.818 ΔRT = 334° 38' 15.5"</p>
--	---	---

RADIUS POINT:
HD = 95.044
ΔRT=

321° 44' 25.8"

1/4
HD = 98.206
ΔRT=

334° 40' 46.8"

2/4
HD = 108.247
ΔRT=

331° 41' 37.2"

3/4
HD = 114.895
ΔRT=

326° 56' 31.3"

DIST B = 88.829
HD = 85.541
ΔRT=

309° 6' 23.8"

It may be noted that, for the last radius, the mid-point was labeled as "2/4" instead of 1/2.

Similar output will occur as 2/8, 4/8, 6/8, etc. because it was felt that the user would rather not have to punch in all of the extra steps which would be needed, just to reduce the fractional output to least common denominator.

Answering YES to both the **LAYOUT?** and the **SHOW COORDS?** prompts would result in output as shown below. This type of output is convenient if the layout calculations are done at the same time as the design data is calculated, since it does not require additional work to obtain the field layout information at a later date. A partial printout is shown as an example of the output.

R = 30.0000

DELTA =
60° 0' 0.0"

L = 31.416

T = 17.321

CH = 30.000

HD = 38.197

ΔRT =
62° 51' 27.9"

DIST A = 34.641

N= 1,038.1086
E= 5,016.6352

HD = 41.581

ΔRT =
23° 34' 56.2"

R = 20.0000

DELTA =
120° 0' 0.0"
L = 41.888
T = 34.641
CH = 34.641

RADIUS POINT:

N= 1,042.7972
E= 5,043.2258

HD = 68.828

ΔRT =
45° 17' 6.0"

HD = 78.501

ΔRT =
152° 57' 46.3"

1/2

N= 1,025.4419
E= 5,022.5418

HD = 33.992

ΔRT =
41° 32' 28.9"

RADIUS POINT:

N= 933.0387
E= 5,052.4256

DIST B = 25.981

N= 1,017.4254
E= 5,033.9905

HD = 85.049

ΔRT =
141° 56' 42.4"

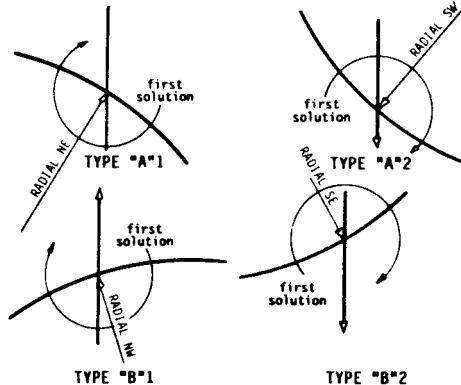
1/3

N= 941.5387
E= 5,037.7031

DIST B = 25.981

N= 1,017.4254
E= 5,033.9905

HD = 69.571

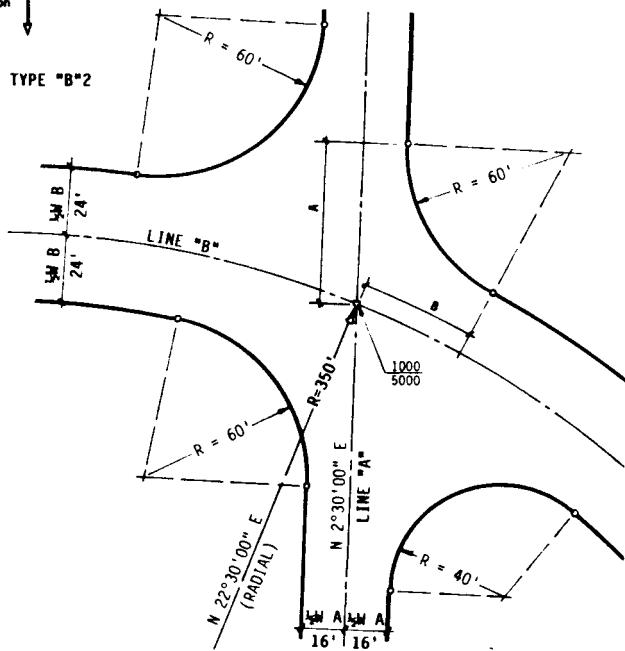

ΔRT =
147° 11' 4.6"

When working in both **layout** and **coordinate output** modes, it should be remembered that coordinates of the offset points are output, rather than those of the return and curve points.

Intersection - One Curved

This program is similar to the previous one, with the exception that it calculates the intersection when one of the streets is straight and the other is curved.

The required information is the bearing of the centerline of the straight street, the radial bearing, to the point of intersection, and radius of the curved street, the street widths, and the radii at the curb returns.


The solutions begin with the return to the right of the line A direction, and go clockwise around the intersection.

The output distance, "A" and the arc, "B" allow calculation of the stations of the E.C. and B.C. points.

The intersection shown to the right will be used as the example, and is a type A1 intersection. All of the basic information is the same as in the last program, with the exception of the radial instead of the tangent bearing being used for the curved street.

Select type A if the radial bearing is northeast or southwest, and Type B when the radial bearing is northwest or southeast.

When input, the line A quadrant code should be given in the northerly or southerly direction which matches the northerly or southerly direction of the radial bearing of B, when the line B quadrant code is given as radial to the point of intersection.

This program has been designated as "NO". With the calculator sized at 035, Initialize the program by keystroking **[XEQ] [ALPHA] [N] [0] [ALPHA]**. The calculator will clear and pause with a display of 0.0000.

- 1 Keystroke either **[A]** or **[B]**, to correspond with the type of intersection. **[A]** or **[B]**
- 2 **LAYOUT?** If the calculated solutions are to include radial stakeout of the returns, answer **[Y] [R/S]** and the additional prompts (marked *) will appear. If layout is not desired, answer **[N] [R/S]** and go to step number 5
- 3 **OFFSET DIST?*** Input the offset distance for the hubs **[R/S]**
- 4 **MAX SPG?*** Input the maximum spacing which you want between the curve points on the returns **[R/S]**
- 5 **SHOW COORDS?** If the coordinates of the solution points are required, answer **[Y] [R/S]**. If this option is selected, the coordinates of the radius point will also be calculated.
When the answer to this prompt is yes, the additional prompt (marked **) for beginning coordinates will appear.
If the coordinates are not required, answer **[N] [R/S]** and proceed at step 7
- 6 **INTER-X N+E**** Input the N-coordinate of the intersection point **ENTER**
Input the E-coordinate of the intersection point **[R/S]**
- 7 **BRG=?** Input the bearing of line A **[R/S]**
- 8 **QD=?** Input the quadrant code for line A that corresponds to the northerly or southerly direction of the radial bearing **[R/S]**
- 9 **BRG=?** Input the radial bearing of street B **[R/S]**
- 10 **QD=?** Input the quadrant code for the radial bearing of street B in the direction to the intersection **[R/S]**

Intersection - One Curved

11 R? Input the radius of the centerline of street B R/S

12 1/2W A? Input the half-width of street A R/S

13 1/2W B? Input the half-width of street B R/S

14 R? Input the radius of the first return, beginning in the quadrant indicated for the type of intersection being calculated R/S

Output will be the solutions requested for the return. If a printer is not attached, continue stroking R/S after each output until the solution for this quadrant has been completed. At this point the program will again prompt R?.

Return to step 14 for solution of the next return, working clockwise around the intersection.

To begin with an easy example of the keystroke procedures, use the illustrated intersection to calculate solutions without layout or coordinates, as follows:

keystrokes:	XEQ	prompt:	BRG=?	prompt:	R?
ALPHA N 0 ALPHA		keystrokes:		keystrokes:	
display:	0.0000	2 2 - 3 R/S	prompt:	QD=?	6 0 R/S
A prompt: LAYOUT?				output:	$A = 58.477$ $R = 60.000$ $\text{DELTA} =$ $63^\circ 11' 46.1''$ $L = 66.179$ $T = 36.989$ $CH = 62.875$ $B = 41.563$
keystrokes:		keystrokes:			
N R/S		1 R/S	prompt:	R?	
prompt: SHOW COORDS?					
keystrokes:		keystrokes:			
N R/S		3 5 0 R/S	prompt:	1/2W A?	The stations of the E.C. and B.C. may be found using DIST A and ARC B.
prompt: BRG=?					
keystrokes:		keystrokes:			
2 - 3 R/S		1 6 R/S	prompt:	1/2W B?	Add or subtract from the centerline intersections, depending on the direction of the stationing.
prompt: QD=?					
keystrokes:		keystrokes:			
1 R/S		2 4 R/S			

prompt: keystrokes: 4 0 R/S	R?	prompt: keystrokes: 6 0 R/S	R?	prompt: keystrokes: 6 0 R/S	R?
output: A = 103.231 R = 40.000 DELTA = 127° 54' 19.6" L = 89.295 T = 81.841 CH = 71.875 B = 109.378		output: A = 66.508 R = 68.000 DELTA = 88° 32' 33.8" L = 84.344 T = 58.832 CH = 77.569 B = 64.482		output: A = 102.901 R = 68.000 DELTA = 95° 46' 47.7" L = 100.300 T = 66.380 CH = 89.023 B = 86.866	

A = 58.477 N= 1,057.7230 E= 5,018.5355	A = 103.231 N= 896.1692 E= 5,011.4819	A = 66.508 N= 934.2534 E= 4,981.1142	A = 102.901 N= 1,183.5011 E= 4,988.5037
RAD. POINT: N= 1,055.1059 E= 5,078.4784	RAD. POINT: N= 894.4245 E= 5,051.4438	RAD. POINT: N= 936.8706 E= 4,921.1713	RAD. POINT: N= 1,186.1183 E= 4,928.5608
R = 60.000 DELTA = 63° 11' 46.1" L = 66.179 T = 36.909 CH = 62.875 B = 41.563 N= 1,002.7837 E= 5,049.1119	R = 40.000 DELTA = 127° 54' 19.6" L = 89.295 T = 81.841 CH = 71.875 B = 89.378 N= 924.8835 E= 5,077.3715	R = 60.000 DELTA = 88° 32' 33.8" L = 84.344 T = 58.832 CH = 77.569 B = 64.482 N= 995.5687 E= 4,933.6022	R = 60.000 DELTA = 95° 46' 47.7" L = 100.300 T = 66.380 CH = 89.023 B = 86.866 N= 1,046.7437 E= 4,919.9203

Using the same keystrokes, but with an answer of **Y R/S** to the coordinate prompt, the coordinates would have been input as **1 0 0 0 ENTERT**, **5 0 0 0 R/S**, and the outputs would appear as shown to the left.

The coordinates shown after distances A and B are the coordinates of the return points, at the half-width distance from and opposite the centerline distance point.

The radius point is also output, as a design aid.

Next, as an example of the **layout mode** of this program, we can work the same example, assuming that we are setting the instrument up at the intersection of the centerlines of the two streets, and sighting along line A in the direction that was input at steps 7 and 8. We will further assume that we want to set our offset stakes at an offset of 3 feet to the face of the curb, and that we do not want more than 25 feet between the stakes around the curve.

keystrokes: ALPHA N 0 ALPHA	XEQ	prompt: keystrokes: Y R/S	LAYOUT? prompt: keystrokes: 3 R/S
display: 0.000		prompt: OFFSET DIST?	MAX SPG? keystrokes: 2 5 R/S

Intersection - One Curved

<p>prompt: SHOW COORDS?</p> <p>keystrokes:</p> <p>1 R/S</p> <p>prompt: BRG=?</p> <p>keystrokes:</p> <p>2 1 3 R/S</p> <p>prompt: QD=?</p> <p>keystrokes:</p> <p>1 R/S</p> <p>prompt: BRG=?</p> <p>keystrokes:</p> <p>2 2 1 3 R/S</p> <p>prompt: QD=?</p> <p>keystrokes:</p> <p>1 R/S</p> <p>prompt: R?</p> <p>keystrokes:</p> <p>3 5 0 R/S</p> <p>prompt: 1/2 A?</p> <p>keystrokes:</p> <p>1 6 R/S</p> <p>prompt: 1/2 B?</p> <p>keystrokes:</p> <p>2 4 R/S</p> <p>prompt: R?</p> <p>keystrokes:</p> <p>6 0 R/S</p> <p>output: A = 58.477 HD = 61.486 ΔRT = 17° 59' 59.4"</p>	<p>RAD. POINT: HD = 95.893 ΔRT = 52° 25' 27.4"</p> <p>R = 68.000 DELTA = 63° 11' 46.1" L = 66.179 T = 36.909 CH = 62.875</p> <p>1/3 HD = 44.310 ΔRT = 38° 58' 53.0"</p> <p>2/3 HD = 39.335 ΔRT = 59° 1' 57.7"</p> <p>B = 41.563 HD = 50.868 ΔRT = 81° 24' 22.8"</p> <p>prompt: R?</p> <p>keystrokes:</p> <p>4 0 R/S</p> <p>output: A = 103.231 HD = 104.965 ΔRT = 169° 34' 16.5"</p> <p>RAD. POINT: HD = 117.442 ΔRT = 151° 31' 17.0"</p> <p>R = 48.000 DELTA = 127° 54' 19.6" L = 89.295 T = 81.841 CH = 71.875</p>	<p>1/4 HD = 87.184 ΔRT = 163° 36' 3.6"</p> <p>2/4 HD = 88.491 ΔRT = 150° 24' 14.5"</p> <p>3/4 HD = 89.395 ΔRT = 137° 59' 44.5"</p> <p>B = 109.378 HD = 108.075 ΔRT = 133° 14' 24.0"</p> <p>prompt: R?</p> <p>keystrokes:</p> <p>6 0 R/S</p> <p>output: A = 66.508 HD = 69.169 ΔRT = 195° 56' 37.0"</p> <p>RAD. POINT: HD = 100.992 ΔRT = 228° 48' 38.7"</p> <p>R = 60.000 DELTA = 88° 32' 33.8" L = 84.344 T = 50.832 CH = 77.569</p> <p>1/4 HD = 51.998 ΔRT = 205° 37' 11.2"</p>
---	---	--

2/4
HD = 44.008
ΔRT =
227° 37' 18.7"

3/4
HD = 50.762
ΔRT =
250° 30' 7.5"

B = 64.402
HD = 67.423
ΔRT =
261° 13' 39.8"

prompt: R?

keystrokes:

6 **0** **R/S**

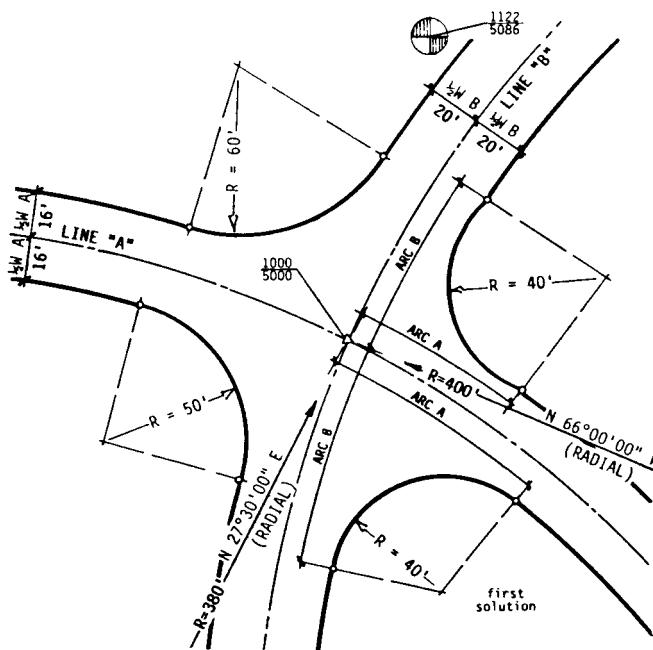
output: A = 102.901
HD = 104.641
ΔRT =
349° 32' 18.8"

RAD. POINT:
HD = 127.924
ΔRT =
323° 33' 5.2"

R = 60.000
DELTA =
95° 46' 47.7"
L = 100.300
T = 66.380
CH = 89.023

1/4
HD = 83.272
ΔRT =
343° 19' 0.8"

2/4
HD = 71.424
ΔRT =
328° 4' 0.8"


3/4
HD = 75.937
ΔRT =
309° 55' 52.8"

B = 86.866
HD = 93.889
ΔRT =
299° 28' 13.9"

Intersection- Both Curved

The solution of the returns on an intersection where both of the streets are curved has some slightly different prompts. The main difference is in the **layout** routine. Because neither of the streets is on a tangent, it is necessary to input the backsight coordinates.

When we come to the layout example, we will assume a known point with the coordinates N=1122/E=5086 as a backsight, but any convenient known point may be used.

Both of the bearings are the radial bearings to the intersection point. Line A should be clockwise and line B counter-clockwise of the return which is inside both curves.

The first solution will be the return which is on the inside of both curves. Go clockwise for the other solutions.

In the intersection shown to the left, line A has a radius of 380' and a radial bearing of N 27° 30' E. Line B has a radial bearing of N 66° W, with a radius of 400'.

The street half-widths are as shown, as are the return radii. The centerline arc distances

opposite the E.C. and B.C. points of the returns are output so that the stations may be calculated. As in the previous programs, there are options for calculating the arcs and curve data, the coordinates of the points or doing a complete layout of the intersection at any selected offset and spacing for the stakes.

Keystroke procedures and detailed examples are on the following pages. Even though the program prompts for all of the necessary input, it's handy to have a sketch of the intersection while working with it, in order to input the proper radius dimensions as the solutions are generated.

This program has been designated as "CC". Size the calculator at 045 prior to running it, and initialize the program by keystroking **[XEQ] [ALPHA] [C] [C] [ALPHA]**. the routines used are guided by prompts, and the first of these is:

- 1 **LAYOUT?** If the calculated solutions are to include radial stakeout of the returns, answer **[Y] [R/S]** and the additional prompts (marked *) will appear. If layout is not desired, answer **[N] [R/S]** and go to step number 4
- 2 **OFFSET DIST?*** Input the distance by which you wish to offset the stakes to be set **[R/S]**
- 3 **MAX SPG?*** At this point you can select the maximum spacing which you want between the layout points. Input the maximum distance between points **[R/S]**
- 4 **SHOW COORDS?** If the coordinates of the solution points are required, answer **[Y] [R/S]**. If this option is selected, the coordinates of the radius point will also be calculated.
When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the **offset hub** location. If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations.
When the answer to this prompt is yes, the additional prompt (marked **) for beginning coordinates will appear.
If the coordinates are not required, answer **[N] [R/S]** and proceed at step 7
- 5 **INTER-X N+E**** Input the N-coordinate of the intersection point **[ENTER]**
Input the E-coordinate of the intersection point **[ENTER]** *
- 6 **BACKSITE?*** Any point with known coordinates may be used. Input the N-coordinate of the backsight point **[ENTER]**
Input the E-coordinate of the backsight point **[R/S]**

Intersection- Both Curved

7 A-LINE R=?	Input the centerline radius of street "A" line. In selecting which line to designate as "A" and which to designate as "B", the line to be used as "A" will be the one with a radial bearing to the intersection clockwise from the return which is inside both curves.	<input type="checkbox"/> R/S
8 BRG=?	Input the bearing of line A.	<input type="checkbox"/> R/S
9 QD=?	Input the quadrant code for the line A bearing, using the direction toward the intersection	<input type="checkbox"/> R/S
10 1/2W A?	Input the half-width of street A	<input type="checkbox"/> R/S
11 B-LINE R=?	Input the centerline radius of street B	<input type="checkbox"/> R/S
12 BRG=?	Input the bearing for line B	<input type="checkbox"/> R/S
13 QD=?	Input the quadrant code for the line B bearing, using the direction toward the intersection	<input type="checkbox"/> R/S
14 1/2W B?	Input the half-width of street B	<input type="checkbox"/> R/S
15 R?	Input the radius of the first return, beginning with the return which is inside both curves	<input type="checkbox"/> R/S

Output will be the solutions requested for the return. If a printer is not attached, continue stroking R/S after each output until the solution for this quadrant has been completed. At this point the program will again prompt R?.

Return to step 15 for solution of the next return, working clockwise around the intersection.

This program, like the last two, assumes that the coordinates of the basic curve data are already known (such as the coordinates of the intersection. In the two previous programs sighting down the tangent and using assumed coordinates will work, but for this program it is necessary to use real values for the intersection and backsight points in order to prevent rotation of the intersection layout.

We will begin with the keystrokes for an example run without the layout option, and do the first three returns. All of the keystrokes for solving the intersection are the same when the layout option is used, except that the additional prompts are answered with known information. Start with the calculator sized at 045, then

keystrokes: XEQ	prompt: BRG=?	output: ARC A = 74.002 N= 950.7452 E= 4,961.0280
ALPHA C C ALPHA	keystrokes: 6 6 R/S	RADIUS POINT: N= 964.2499 E= 4,912.8863
prompt: LAYOUT?	prompt: QD=?	R = 50.000 DELTA = 89° 19' 48.1" L = 77.953 T = 49.417 CH = 70.295
keystrokes: N R/S	keystrokes: 4 R/S	ARC B = 58.155 N= 1,012.2298 E= 4,926.9549
prompt: SHOW COORDS?	prompt: 1/2W B?	R?
keystrokes: Y R/S	keystrokes: 2 0 R/S	keystrokes: 6 0 R/S
prompt: INTER-X N+E	prompt: R?	output: ARC A = 83.849 N= 919.2480 E= 4,994.3566
keystrokes: 1 0 0 0 ENTER	keystrokes: 4 0 R/S	prompt: R?
5 0 0 0 R/S	output: RADIUS POINT: N= 910.6153 E= 5,033.4157	keystrokes: 6 0 R/S
prompt: A-LINE R=?	R = 40.000 DELTA = 117° 41' 27.0" L = 82.164 T = 66.166 CH = 68.462	output: ARC A = 65.876 N= 1,065.1239 E= 5,012.5745
keystrokes: 3 8 0 R/S	ARC B = 80.622 N= 941.1930 E= 5,059.2034	RADIUS POINT: N= 1,097.6694 E= 4,962.1682
prompt: BRG=?	R?	R = 60.000 DELTA = 74° 43' 6.3" L = 78.245 T = 45.806 CH = 72.817
keystrokes: 2 7 . 3 R/S	keystrokes: 5 0 R/S	output: ARC B = 61.777 N= 1,040.4676 E= 4,944.0586
prompt: QD=?		
keystrokes: 1 R/S		
prompt: 1/2W A?		
keystrokes: 1 6 R/S		
prompt: B-LINE R=?		
keystrokes: 4 0 0 R/S		

Intersection - Both Curved

Now, for the example using the layout routine, a backsight point must be selected. In the example illustration the known point used as a backsight is shown as having coordinates of N1122/E5086, and is convenient for backsighting. With a maximum spacing required at 20 feet and the hubs offset 3 feet, we use the keystrokes shown below.

Begin with the calculator sized at 045 and stroke **EQ** to initiate the routine, and follow the prompts

EQ **ALPHA** **C** **C** **ALPHA**

ARC A = 83.849

prompt: LAYOUT?	prompt: BRG=?	output: HD = 81.452 ΔRT = 146° 43' 43.5"
keystrokes: Y R/S prompt: OFFSET DIST?	keystrokes: 2 7 . 3 R/S prompt: QD=?	RADIUS POINT: HD = 95.427 ΔRT = 124° 19' 17.4"
keystrokes: 3 R/S prompt: MAX SPG?	keystrokes: 1 R/S prompt: 1/2W A?	R = 40.000 DELTA = 117° 41' 27.0" L = 82.164 T = 66.166 CH = 68.462
keystrokes: 2 0 R/S prompt: SHOW COORDS?	keystrokes: 1 6 R/S prompt: B-LINE R=?	1/5 HD = 69.593 ΔRT = 105° 36' 54.3"
keystrokes: N R/S prompt: INTER-X N+E	keystrokes: 4 0 0 R/S prompt: BRG=?	2/5 HD = 68.089 ΔRT = 116° 1' 5.1"
keystrokes: 1 0 0 0 ENTER↑	keystrokes: 6 6 R/S prompt: QD=?	3/5 HD = 59.333 ΔRT = 130° 31' 19.4"
keystrokes: 5 0 0 0 R/S prompt: BACKSITE?	keystrokes: 4 R/S prompt: 1/2W B?	4/5 HD = 67.731 ΔRT = 141° 52' 32.4"
keystrokes: 1 1 2 2 ENTER↑	keystrokes: 2 0 R/S prompt: R?	ARC B = 80.6228 HD = 83.744 ΔRT = 101° 48' 23.8"
keystrokes: 5 0 8 6 R/S prompt: A-LINE R=?	keystrokes: 4 0 R/S	
keystrokes: 3 8 0 R/S		

prompt:	R?	prompt:	R?	prompt:	R?
keystrokes:		keystrokes:		keystrokes:	
5 0 R/S		6 0 R/S		4 0 R/S	
output: ARC A = 74.002		output: ARC A = 65.876		output: ARC A = 52.775	
HD = 64.025		HD = 67.504		HD = 59.601	
ΔRT=		ΔRT=		ΔRT=	
185° 38' 57.4"		333° 23' 5.5"		15° 31' 6.5"	
RADIUS POINT:		RADIUS POINT:		RADIUS POINT:	
HD = 94.164		HD = 104.748		HD = 79.540	
ΔRT=		ΔRT=		ΔRT=	
212° 30' 24.4"		383° 38' 44.4"		41° 48' 54.6"	
R = 50.000		R = 60.000		R = 40.000	
DELTA =		DELTA =		DELTA =	
89° 19' 40.1"		74° 43' 6.3"		86° 39' 43.3"	
L = 77.953		L = 78.245		L = 60.502	
T = 49.417		T = 45.806		T = 37.735	
CH = 70.295		CH = 72.817		CH = 54.897	
1/4		1/4		1/3	
HD = 57.752		HD = 54.805		HD = 44.154	
ΔRT=		ΔRT=		ΔRT=	
235° 45' 19.2"		282° 44' 38.9"		52° 8' 46.9"	
2/4		2/4		2/3	
HD = 47.797		HD = 47.777		HD = 45.257	
ΔRT=		ΔRT=		ΔRT=	
219° 4' 35.0"		301° 59' 49.6"		28° 21' 38.0"	
3/4		3/4		ARC B = 56.6842	
HD = 50.523		HD = 53.096		HD = 57.278	
ΔRT=		ΔRT=		ΔRT=	
197° 58' 22.0"		322° 15' 37.0"		66° 58' 25.4"	
ARC B = 58.1550		ARC B = 61.7769			
HD = 74.479		HD = 70.045			
ΔRT=		ΔRT=			
242° 1' 55.3"		273° 1' 52.9"			

Program Listings

The following pages contain the program steps which must be keyed into the calculator in order for the programs to function properly. Since this book has been written with the intention of providing help in the calculations needed for surveying, it is important that the programs provide correct answers when used.

For those users who have card readers, D'Zign provides a card-programming service. We will program your cards for you and return them in a labeled card holder which can be inserted directly into the book. The cost for the service is \$8.50, and you provide the blank cards.

To take advantage of this option, send 20 blank magnetic cards and your check for \$8.50 to **D'Zign land survey & development**, P.O. Box 1370, Pacifica, CA 94044.

KEYING IN A PROGRAM

1. Before beginning to key the program steps into the calculator, keystroke **shift GTO** **•** **•** to prepare the calculator for the new program. Set the calculator to **program mode** by pressing the **PRGM** key.
2. Labels are marked with a diamond (♦) in the program listings, as a visual aid. When keying in the program ignore the diamond, and key in **LBL** by keystroking **shift LBL** (the STO button), followed by either the label number or **ALPHA** the label name **ALPHA** .
3. Symbols or characters shown with quote marks indicate that they are **alpha** characters, and must be input as program steps in **alpha mode**.
4. Functions which do not appear on the keyboard may be keyed into the program by stroking **ALPHA**, spelling out the function, and again stroking **ALPHA** . Some of the functions, such as **FC?01** must be input partly in alpha. Stroke **ALPHA** **F** **C** **?** ; again stroke **ALPHA** , and the display will prompt **FC?—** , at which time you stroke the **01**. The character ***** in the listing is the **X** (multiply) button, and the character printed as **/** is the divide button.

UTILITY PROGRAMS

These are programs which are used as sub-routines by the other programs. For the main programs to function properly these sub-routines must also be in program memory. They are divided into two groups, one called UTILITIES, and the other UTILITIES 2.

Those shown on the opposite page are the same as used in the book "HP-41CV/CX Surveying Field Solutions", and do not need to be input again if previously input for use with programs from that book. Additionally, they do not have to be input if the calculator contains the D'Zign "COGO 41" module.

"AZ" need not be input if the calculator contains the HEWLETT-PACKARD Surveying Pac. This program changes bearing input to north azimuth for storage and use in the various calculations.

"DMS" must be in the calculator memory if the calculator is used with a printer attached. It is not necessary when no printer is used. Other than input by use of a card reader, this routine **cannot be put into memory unless a printer is attached while programming.**

If you do not already have these programs, and want them, when sending for the card programming service, include one extra card with your order. The extra card will also contain "STA", a handy subroutine which changes the number in the x-register to stationing (XX+XX.xxx) form. The extra card will be programmed with your set at no extra charge.

The following pages contain the programs of the UTILITIES 2 set. The program listings for each of the main programs will tell you which are used each time, but most all of them are used by all of the main programs. UTILITIES 2 contains 529 bytes of programming which would otherwise have to be typed in as part of each program. This sub-routine group occupies 77 registers of program memory.

All of these may also be used with other programs which you write yourself. "CURD", for instance, calculates the curve data (store the radius in 17 and the central angle in 21 and have your program contain the step XEQ "CURD") and "CLR" may be used at the start of any program to reset the flag status and clear the registers.

Another that you may find use for in your own programming is "RI", which performs the radial inverses. Store your instrument position northing in register 05, the easting in 06, and have the north azimuth to the backsight in register 01. If your program includes the step XEQ "RI", it will automatically perform the inverse and output the horizontal distance and angle right to any point whose N-coordinate is in the Y-register and E-coordinate is in the X-register.

Utilities

01+LBL "AZ"	01+LBL "DMS"	27 6
02 "BRG=?"	02 STO 23	28 ACCOL
03 PROMPT	03 RDH	29 2
04 "QD=?"	04 STO 24	30 SKPCOL
05 PROMPT	05 RDH	31 RCL 22
06 X<>Y	06 STO 25	32 INT
07 HR	07 RDH	33 ACX
08 X<>Y	08 STO 26	34 39
09 ENTER↑	09 RDH	35 ACCHR
10 ENTER↑	10 ENTER↑	36 RCL 22
11 2	11 INT	37 FRC
12 /	12 CF 29	38 100
13 INT	13 FIX 0	39 *
14 PI	14 ACX	40 FIX 1
15 R-D	15 -	41 ACX
16 *	16 100	42 34
17 X<>Y	17 *	43 ACCHR
18 LASTX	18 ABS	44 PRBUF
19 *	19 STO 22	45 RCL 26
20 COS	20 3	46 RCL 25
21 RT↑	21 SKPCOL	47 RCL 24
22 *	22 6	48 RCL 23
23 -	23 ACCOL	49 FIX 4
24 FS? 10	24 9	50 SF 29
25 RTH	25 ACCOL	51 RTN
26 HMS	26 ACCOL	52 END
27 RTH		

HP-41CV/CX Surveying Field Solutions

FULLY DOCUMENTED AND ILLUSTRATED
SOLUTIONS BOOK! \$19.95*
(CALIFORNIA RESIDENTS PLEASE ADD \$1.30 SALES TAX)

FIELD LAYOUT ◊ RADIAL INVERSE
ALIGNMENT AND OFFSETS - a new
concept in COGO with coordinate solutions
using STATION input AND with an
AUTO-INVERSE option! SPIRAL CURVES
(including the circular portion) with
coordinate output from STATION input
and the same AUTO-INVERSE option!

FIELD LOCATION ◊ TOPO ◊ AS-BUILTS
◊ REMOTE SLOPE STAKING ◊ TUNNEL
TIGHTS and TRIANGLE SOLUTIONS
seven types including two solutions where
the AREA is one of the known parts.

* PRICE VALID THRU MAY 1987

Software by D'Zign
P.O. BOX 1370 • PACIFICA, CA 94044

Utilities 2

01♦LBL "SORT"	22 RTN
02 XEQ 01	23♦LBL 22
03 "LAYOUT?" is layout wanted?	24 SF 06
04 XEQ 02	25 SF 02
05 X=Y?	26 "INTER-X H†E"
06 XEQ 23	27 PROMPT prompt for input of
07 XEQ 01	28 STO 06 center coordinates
08 "SHOW COORDS?" are coordinates	29 RDN
09 XEQ 02 wanted?	30 STO 05
10 X=Y?	31 RTN
11 XEQ 22	32♦LBL 23
12 RTN	33 SF 02
13♦LBL 01 set for alpha response	34 SF 03
14 "Y"	35 "OFFSET DIST?"
15 ASTO X	36 PROMPT prompts for desired
16 R0H	37 STO 02 hub offset distance
17 RTN	38 "MAX SPG?"
18♦LBL 02 accept alpha response	39 PROMPT prompts for spacing
19 PROMPT	40 STO 32 between layout points
20 ASTO Y	41 RTN
21 R0FF	42♦LBL "BA"

43 RCL 37	radius 'a'	78 SQRT
44 RCL 38	return radius 'b'	79 ACOS
45 RCL 03	base distance	80 2
46 +		81 *
47 +		82 STO 40 angle 'B'
48 2		83 SF 01
49 /		84 RTN
50 STO 18		85+LBL "SET"
51 X†2		86 RCL 27 denominator
52 LASTX		87 RCL 34
53 RCL 38	return radius 'b'	88 X=Y?
54 *		89 RTN
55 -		90 RCL 31 return base azimuth
56 RCL 37		91 RCL 33 curve portion angle
57 RCL 03		92 RCL 27
58 *		93 *
59 /		94 FS? 07
60 SQRT		95 CHS
61 ACOS		96 -
62 2		97 CLA
63 *		98 FIX 0
64 STO 39	angle 'C'	99 CF 29
65 SIN		100 ARCL 27 numerator
66 RCL 37	radius 'a'	101 "1/-" denominator
67 STO 28		102 ARCL 34
68 RCL 18		103 AVIEW
69 X†2		104 SF 29
70 LASTX		105 RCL 17 return radius
71 RCL 37		106 RCL 02 hub offset constant
72 *		107 -
73 -		108 P-R
74 RCL 38	radius 'b'	109 RCL 07 radius point N-coord
75 /		110 +
76 RCL 03	base distance	111 X<>Y
77 /		112 RCL 08 radius point E-coord

113 +		148 ARCL X	
114 CLA		149 AVIEW	output tangent dist
115 FIX 4		150 RCL 21	
116 XEQ "RI"		151 2	
117 1		152 /	
118 ST+ 27		153 SIN	
119 GTO "SET"		154 RCL 17	
120 RTN		155 *	
121LBL "CURD"		156 2	
122 HMS		157 *	
123 "DELTA ="		158 "CH = "	
124 AVIEW		159 ARCL X	
125 FIX 4		160 AVIEW	output chord length
126 CLA		161 RTN	
127 ARCL X		162LBL "DIV"	
128 FC? 55		163 RCL 17	
129 AVIEW		164 X=0?	
130 FS? 55		165 RTN	
131 XEQ "DMS" output as DD°MM'SS"		166 1	
132 RCL 17		167 STO 27	
133 RCL 21		168 RCL 09	
134 D-R		169 180	
135 *		170 +	
136 STO 30	curve length	171 STO 31	return base azimuth
137 RCL 21	curve central angle	172 RCL 30	curve arc length
138 2		173 RCL 32	maximum spacing
139 /		174 /	
140 TAN		175 .46	
141 RCL 17		176 +	
142 *		177 FIX 0	
143 FIX 3		178 RND	
144 "L = "		179 STO 34	denominator
145 ARCL Y		180 FIX 4	
146 AVIEW	output length	181 RCL 21	
147 "T = "		182 STO 30	curve portion length

183 X<>Y		218 INT
184 /		219 180
185 STO 33		220 *
186 RTN		221 -
187♦LBL "RI"		222 ABS
188 FS? 06		223 HMS
189 XEQ "98"	output coordinates	224 FIX 4
190 FS? 06		225 RCL 12
191 ADV		226 RCL 11
192 RCL 06	instrument E-coord	227 RCL 01
193 -		228 -
194 X<>Y		229 ENTER↑
195 RCL 05	instrument N-coord	230 CLX
196 -		231 X<>Y
197 R-P		232 X<0?
198 FIX 3		233 360
199 "HD = "		234 +
200 ARCL X		235 HMS
201 AVIEW	distance to hub being set (offset hub)	236 "ZRT="
202 CLX		237 FC? 55
203 X<>Y		238 ARCL X
204 X<0?		239 AVIEW
205 360		240 FS? 55
206 +		241 XEQ "DMS"
207 STO 11		242 ADV
208 ENTER↑		243 RTN
209 ENTER↑	calculate angle right to the offset hub	244♦LBL "98"
210 90		245 FIX 4
211 /		246 "N= "
212 1		247 ARCL Y
213 +		248 AVIEW
214 INT		249 "E= "
215 STO 12		250 ARCL X
216 2		251 AVIEW
217 /		252 RTN

253*LBL "CLR"	261 CF 04
254 CLRG	262 CF 05
255 SF 21	263 CF 06
256 SF 27	264 CF 07
257 CF 08	265 CF 08
258 CF 01	266 CF 09
259 CF 02	267 CF 10
260 CF 03	268 RTN

Cul-de-Sac

CD occupies 79 registers of program memory and should be used with the calculator sized at least to 045. The program contains 550 bytes of programming, and can be stored on 5 tracks of magnetic cards.

Subroutines used with this program are "SORT", "SET", "CURD", "DIV", "98", "CLR" and "RI", all of which are contained in the UTILITIES 2 series of program steps. "AZ" and "DMS" are also used with this program. "AZ" is contained in the Hewlett-Packard Surveying Pac, and both are in the D'Zign "COGO 41" module. It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached.

01♦LBL "CD"	21 STO 17
02 XEQ "CLR" clear registers & set	22 "WIDTH?"
03 SF 00 flag status	23 PROMPT
04 SF 07	24 2
05 360	25 /
06 STO 00	26 STO 16 store outer and inner
07 XEQ "SORT" prompt subroutine	values for $\frac{1}{2}$ width of
08 FS? 03	27 STO 18 street
09 XEQ 21 prompt for backsight	28 "OFFSET?"
10 FS? 02 coordinates (layout)	29 PROMPT prompt for offset from
11 XEQ 16 prompt routine, input	30 STO 10 centerline of street
12 FS? 02 when coordinates or	31♦LBL 02 calculate distance and
13 XEQ 22 layout are wanted	32 RCL 14 offset to return point
14 "RADII?"	33 RCL 04
15 PROMPT	34 +
16 STO 15	35 STO 37
17 RDN	36 RCL 14
18 STO 04	37 RCL 16
19 RDN	38 +
20 STO 14	39 RCL 10
	40 FS? 07

41 CHS	76 RCL 19
42 -	77 RCL 20
43 X<>Y	78 +
44 /	79 STO 09
45 ASIN	80 XEQ 15
46 ST- 08	81 RCL 14
47 FC? 07	82 STO 17
48 CHS	83 "R = " output return radius
49 STO 19	84 ARCL X
50 FC? 07	85 AVIEW
51 XEQ 12	86 98
52 RCL 19	87 RCL 19
53 RCL 04	88 FC? 07
54 X<>Y	89 CHS
55 COS	90 -
56 *	91 STO 21
57 ABS	92 XEQ "CUR1" calculate curve data
58 FIX 3	93 ADV
59 "DIST 1=" output PRC distance	94 RCL 19
60 ARCL X	95 FS? 03 layout wanted?
61 AVIEW	96 XEQ "DIV" divide curve
62 RCL 04	97 FS? 03
63 RCL 19	98 XEQ "SET" calculate arc points
64 SIN	99 FS? 02 and set for layout
65 *	100 XEQ 18
66 ABS	101 RCL 37
67 RCL 10	102 RCL 19
68 FS? 07	103 COS
69 CHS	104 *
70 +	105 ABS
71 "O/S 1=" output offset at PRC	106 RCL 16
72 ARCL X	107 FIX 3
73 AVIEW	108 "DIST 2="
74 FC? 06	109 ARCL Y
75 ADV	110 AVIEW output distance to BC

111 "O/S 2=*		146 ARCL X	
112 ARCL X		147 AVIEW	output curve length
113 AVIEW	output offset at BC	148 FS? 03	
114 ADV		149 XEQ 11	
115 FC? 07		150 ADV	
116 RTN		151 ADV	
117 RCL 15	reset for solution of	152 RTN	
118 STO 14	second return curve	153+LBL 11	
119 STO 17		154 ENTER†	
120 RCL 18		155 RCL 32	
121 STO 16		156 /	
122 CF 07		157 RCL 02	
123 XEQ 02		158 RCL 04	
124 RTN		159 +	
125+LBL 12	calculate curve data for central radius of	160 RCL 04	
126 ADV	the cul-de-sac	161 /	
127 "R = "		162 *	
128 ARCL 04		163 /	
129 AVIEW	radius output	164 FIX 2	
130 RCL 00		165 " < "	
131 HMS		166 ARCL X	output chord value to
132 "DELTA ="		167 "†>"	use for double-chain
133 AVIEW		168 AVIEW	layout in central area
134 CLA		169 RTN	of the cul-de-sac
135 ARCL X		170+LBL 18	
136 FC? 55		171 RCL 43	
137 AVIEW	central angle output	172 RCL 21	
138 FS? 55	when printer is not attached	173 FC? 07	
139 XEQ "DMS"	with printer attached	174 CHS	
140 RCL 04		175 +	
141 RCL 00		176 XEQ 19	
142 D-R		177 RTN	
143 *		178+LBL 50	output of coordinates
144 FIX 3		179 FS? 03	
145 "L = "		180 RTN	

181 XEQ "98"	coordinate subroutine	216 RCL 02	hub	offset	distance
182 ADV		217 FS? 03			
183 RTN		218 -			
184*LBL 15		219 P-R			
185 RCL 09		220 RCL 07			
186 RCL 37		221 +			
187 P-R		222 X<>Y			
188 RCL 05		223 RCL 08			
189 +		224 +			
190 STO 07	return radius N-coord	225 FS? 06	coordinates wanted?		
191 X<>Y		226 XEQ 50	output the coordinates		
192 RCL 06		227 FS? 03			
193 +		228 XEQ "RI"	calculate angle and		
194 STO 08	return radius E-coord	229 RTN	distance to new point		
195 FS? 02		230*LBL 01			
196 XEQ 17	adjust azimuth value	231 RCL 01			
197 "RADIUS POINT:"		232 RCL 19			
198 FS? 02	coordinates or layout?	233 +			
199 AVIEW	output	234 RCL 04			
200 RCL 07		235 FS? 03			
201 RCL 08		236 RCL 02			
202 FS? 06	coordinates wanted?	237 FS? 03			
203 XEQ 50	output of coordinates	238 +			
204 FS? 03	is layout wanted?	239 P-R			
205 XEQ "RI"	calculate angle and	240 RCL 05			
206 RTN	distance to new point	241 +			
207*LBL 17		242 X<>Y			
208 ADV		243 RCL 06			
209 RCL 09		244 +			
210 180		245 RTN			
211 +		246*LBL 16			
212 STO 43		247 FS? 06			
213*LBL 19		248 RTN			
214 RCL 17		249 "INTER-X NTE"	this prompt will		
215 FS? 03		250 PROMPT	appear when either of		
			the coordinates or the		
			layout options wanted		

251 STO 06	267 CF 10
252 RDN	268 RTN
253 STO 05	269LBL 23 set backsight azimuth
254 RTN	270 RCL 06
255LBL 21	271 -
256 "BACKSITE?" Prompt appears when 257 PROMPT layout is wanted	272 X<>Y
258 XEQ 23	273 RCL 05
259 STO 01	274 -
260 RTN	275 R-P
261LBL 22	276 CLX
262 SF 10	277 X<>Y
263 XEQ "AZ"	278 X<>?
264 180	279 360
265 +	280 +
266 STO 20	281 RTN
	282 END

Curved Cul-de-Sac

CDC occupies 95 registers of program memory and should be used with the calculator sized at least to 045. The program contains 669 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "SORT", "BA", "SET", "CURD", "DIV", "CLR", "98" and "RI", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used. These are the programs contained in the UTILITIES programs at the beginning of the program listings, and are the same utilities group used with the programs in the book "HP-41CV/CX Surveying Field Solutions".

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01 LBL "CDC"	21 SF 05	
02 XEQ "CLR"	clear registers & set	22 FS? 05
03 SF 04	flag status	23 CHS
04 SF 07		24 STO 38 alignment radius
05 XEQ "SORT"	prompt routine sets	25 "WIDTH?"
06 FS? 02	flag status for output	26 PROMPT
07 XEQ 06		27 2
08 FS? 03	radial inverse if set	28 /
09 XEQ 03		29 STO 16 store outer and inner
10 FS? 02		30 STO 18 values for half-width
11 XEQ 02		31 "OFFSET?" centerline offset dist.
12 "RADII?"		32 PROMPT
13 PROMPT		33 FS? 05
14 STO 15	ending return radius	34 CHS
15 RDN		35 ST+ 16 modify half-width
16 STO 04	main radius	36 CHS
17 RDN		37 ST+ 18 modify half-width
18 STO 14	beginning return rad.	38 ST+ 38 modify the alignment
19 RDN		39 STO 36 radius
20 X<0?		40 RCL 14

41 RCL 04	76 X<Y	
42 +	77 RCL 39	angle
43 STO 37	78 +	
44 RCL 38	79 -	
45 RCL 16	80 ST+ 00	
46 RCL 14	81 FC? 00	
47 +	82 XEQ 12	
48 +	83 "R = "	calculate curve data for central curve
49 STO 03	84 ARCL 15	
50 XEQ "BA"	85 AVIEW	begin output return number two
51 RCL 48	86 RCL 15	
52 RCL 39	87 STO 17	
53 +	88 180	
54 ST+ 00	89 RCL 39	
55 "R = "	90 -	
56 ARCL 14	91+LBL 01	
57 AVIEW	92 STO 21	
58 RCL 14	93 X=0?	
59 STO 17	94 SF 08	
60 RCL 39	95 FC? 08	
61 XEQ 01	96 XEQ "CURD"	calculate curve data
62+LBL 13	first return radius	
63 RCL 38	97 XEQ 10	
64 RCL 18	98 FS? 02	
65 RCL 15	99 XEQ 04	
66 +	100 FS? 08	
67 -	101 CF 04	
68 STO 03	102 FS?C 08	
69 RCL 15	103 RTN	
70 RCL 04	104 FS? 03	layout wanted?
71 +	105 XEQ "DIV"	divide curve length
72 STO 37	106 FS? 03	
73 XEQ "BA"	107 XEQ "SET"	calculate radial layout
74 180	108 FS? 02	
75 ST+ 00	109 XEQ 08	
	110 XEQ 14	

111 RTN	146 RCL 07
112*LBL 06	147 RCL 08
113 FS? 06	148 FS? 06
114 RTN	149 XEQ 05 output coordinates
115 "INTER-X N†E"	150 FS? 03
116 PROMPT	151 XEQ "RI" radial inverse to set
117 STO 06	curve points
118 RDH	152 RTN
119 STO 05	153*LBL 14
	154 RCL 40
120 RTN	155 D-R
121*LBL 04	156 RCL 38
122 RCL 09	157 RCL 36
123 RCL 20	158 -
124 +	159 *
125 STO 09	160 FIX 3
126 RCL 37	161 FC? 02
127 FS? 05	162 ADV
128 CHS	163 "ARC 2= "
129 P-R	164 ARCL X
130 RCL 05	165 AVIEW
131 +	166 RCL 36
132 STO 07	167 ST+ 16
133 X<>Y	168 ST- 18
134 FS? 05	169 "0/S 2= "
135 CHS	170 FS? 04 which side?
136 RCL 06	171 ARCL 16
137 +	172 FC? 04
138 STO 08	173 ARCL 18
139 FS? 02	174 AVIEW
140 XEQ 07	175 RCL 36
141 FS? 08	176 ST- 16
142 RTN	177 ST+ 18
143 "RADIUS POINT:"	178 CF 04
144 FS? 02	179 FIX 4
145 AVIEW	180 ADV

181 RTN		216 +
182♦LBL 12	output curve data for main portion	217 RCL 04
183 "R = "		218 /
184 RCL 04		219 *
185 AVIEW		220 /
186 RCL 00		221 FIX 2
187 HMS		222 - <"
188 "DELTA ="		223 ARCL X
189 AVIEW		224 "T>"
190 CLA		225 AVIEW output chord distance
191 ARCL X		226 RTN
192 FC? 55		227♦LBL 05
193 AVIEW		228 FS? 03
194 FS? 55		229 RTN
195 XEQ "DMS"		230 XEQ "98" output coordinates
196 RCL 04		231 ADV
197 RCL 00		232 RTN
198 D-R		233♦LBL 03
199 *		234 "BACKSITE?"
200 FIX 3		235 PROMPT prompt for input of
201 "L = "		236 XEQ 23 backsight coordinates
202 ARCL X		237 STO 01
203 AVIEW		238 RTN
204 FS? 03		239♦LBL 02
205 XEQ 11	calculate offset chord	240 "RADIUS N†E"
206 ADV		241 PROMPT prompt for input of
207 ADV		242 XEQ 23 alignment radius point
208 CF 07		243 STO 20 coordinates
209 RTN		244 RTN
210♦LBL 11	determines the chord	245♦LBL 23
211 ENTER↑	at the offset line for	246 RCL 06
212 RCL 32	double-taping of main	247 -
213 /	portion of cul-de-sac	248 X<Y
214 RCL 02		249 RCL 05
215 RCL 04		250 -

251 R-P	286 "ARC 1= " output arc length to
252 CLX	287 X>Y return point
253 X>Y	288 RCL 38
254 X<0?	289 RCL 36
255 360	290 -
256 +	291 RCL 38
257 RTN	292 /
258*LBL 10	293 *
259 ADV	294 X>Y
260 180	295 ARCL Y
261 RCL 48	296 AVIEW
262 RCL 39	297 RCL 36
263 +	298 FS? 04
264 -	299 CHS
265 STO 09	300 -
266 RCL 04	301 "0/S 1= "
267 P-R	302 ARCL X
268 CHS	303 AVIEW output offset distance
269 RCL 38	304 FIX 4 to return point
270 +	305 RTN
271 STO 28	306*LBL 07 moves to next curve
272 /	307 ADV
273 ATAN	308 RCL 09
274 STO 29	309 180
275 D-R	310 FS? 05
276 RCL 38	311 CHS
277 *	312 +
278 RCL 28	313 STO 43
279 RCL 29	314*LBL 09 calculates coordinates
280 COS	315 RCL 17 from return's radius
281 /	316 FS? 03 point coordinates
282 RCL 38	317 RCL 02
283 -	318 FS? 03
284 FIX 3	319 -
285 ABS	320 P-R

321 FS? 05		331 RTN
322 CHS		332+LBL 08
323 RCL 07		333 RCL 43
324 +		334 RCL 21
325 X<>Y		335 FC? 07
326 RCL 08		336 CHS
327 +		337 +
328 XEQ 05	output coordinates	338 XEQ 09
329 FS? 03		339 RTN
330 XEQ "RI"	radial inverse to set point	340 .END.

Bulbs & Knuckles

BB occupies 90 registers of program memory and should be used with the calculator sized at least to 045. The program contains 627 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "CURD", "CLR" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01LBL "BB"		21 SF 01
02 XEQ "CLR"	clear registers & flag	22 FS? 01
03 90	status	23 XEQ 06
04 STO 21		24 X=Y?
05 360		25 SF 04
06 STO 00		26 "RADII?"
07 SF 07		27 PROMPT input radii
08 SF 10		28 STO 04 main radius stored
09 RTN		29 RDH
10LBL B	bulb solution with the	30 STO 17 return radius stored
11 STO 06	coordinates output	31 FS? 01
12 RDH		32 RDH
13 STO 05		33 FS? 01
14 SF 06		34 STO 03
15 XEQ "AZ"	bearing to azimuth	35 "1/2W A?"
16 STO 10		36 PROMPT one-half of the street
17LBL A	bulb solution without	37 STO 36 width
18 SF 09	coordinates	38 "WIDTH?" throat width of the
19 XEQ 06		39 PROMPT cul-de-sac
20 X=Y?		40 2

41 /	76 FS? 01
42 STO 16	77 XEQ 01 calculate arc if curve
43 RCL 17	78 RDY
44 +	79 "CENTER: "
45 FS? 01	80 AVIEW
46 GTO 03	81 FS? 06
47 RCL 17	82 XEQ 02 calculate coordinates
48 RCL 04	83 RCL 04 at center point
49 +	84 RCL 08
50 STO 37	85 HMS
51 /	86 FIX 4
52 ASIN	87 "DELTA ="
53 STO 14	88 AVIEW
54 CHS	89 ARCL X
55 90	90 FC? 55
56 +	91 AVIEW
57 ST+ 21	92 FS? 55
58 RCL 14	93 XEQ "DMS" output in form D°M'S"
59 2	94 D-R if printer is attached
60 *	95 *
61 ST- 00	96 FIX 3
62 RCL 14	97 "L ="
63 COS	98 ARCL X
64 RCL 37	99 AVIEW length of arc for main
65 *	100 RDY curve
66 RCL 17	101 "RETURNS: "
67 RCL 36	102 AVIEW
68 +	103 XEQ 05
69 +	104 RCL 04
70+LBL 00	105 P-R
71 FIX 3	106 ABS
72 STO 15	107 FIX 3
73 "D = "	108 "DIST = " distance to point on
74 ARCL X	109 ARCL X centerline at PRC's
75 AVIEW	110 FC? 08

111 AVIEW		146 +
112 X<Y		147 X<Y
113 ABS		148 /
114 "0/S = "	offset to PRC's from	149 STO 11
115 ARCL X	centerline	150 ASIN
116 FC? 08		151 STO 12
117 AVIEW		152 FS? 04
118 FC? 08		153 CHS
119 ADV		154 ST+ 21
120 FS? 06		155 RCL 27
121 XEQ 04	calculate radius point	156 RCL 17
122 FS? 06	of return curve	157 RCL 16
123 ADV		158 +
124 RCL 21		159 RCL 17
125 XEQ "CURD"	calculate and output	160 RCL 04
126 FS? 06	curve data for return	161 +
127 ADV		162 STO 37
128 CF 07		163 /
129 FS? 06		164 ASIN
130 XEQ 04		165 STO 14
131 FS? 06		166 CHS
132 ADV		167 90
133 FS? 08		168 +
134 XEQ 07		169 ST+ 21
135 RTN		170 RCL 14
136LBL 03	calculate if on curve	171 2
137 RCL 03		172 *
138 RCL 36		173 ST- 00
139 RCL 17		174 180
140 +		175 RCL 14
141 FS? 04	outside curve?	176 FC? 04
142 CHS		177 -
143 -		178 RCL 12
144 RCL 17		179 +
145 RCL 16		180 SIN

181 RCL 37	216 "RADII?"
182 *	217 PROMPT input of radii
183 RCL 11	218 STO 04 center radius
184 /	219 RDN
185 RCL 03	220 STO 17
186 -	221 "1/2W?"
187 ABS	222 PROMPT half-width of street
188 XEQ 00	223 STO 16
189 RTN	224 RCL 09
190♦LBL D	knuckle solution with coordinates
191 SF 06	225 90
192 STO 06	226 RCL 02
193 RDN	227 -
194 STO 05	228 -
195♦LBL C	solve knuckle without coordinates
196 SF 08	229 STO 18
197 180	230 RCL 04
198 STO 08	231 RCL 17
199 90	232 +
200 STO 14	233 RCL 02
201 XEQ "AZ"	234 SIN
202 STO 09	235 /
203 XEQ "AZ"	236 STO 19
204 STO 18	237 RCL 17
205 RCL 09	238 RCL 16
206 RCL 18	239 +
207 -	240 -
208 ABS	241 RCL 02
209 2	242 TAN
210 /	243 *
211 STO 02	244 "T = "
212 90	245 ARCL X output tangent dist.
213 X<>Y	246 RVIEW
214 -	247 RCL 04
215 STO 21	248 RCL 17
	249 +
	250 RCL 02
	central angle, return

251 TAN	286 RCL 04
252 /	287 RCL 17
253 RCL 19	288 +
254 RCL 16	289 P-R
255 -	290 RCL 05
256 RCL 17	291 +
257 -	292 STO 07
258 RCL 02	293 X<Y
259 COS	294 RCL 06
260 /	295 +
261 -	296 STO 08
262 XEQ 00	297 XEQ "98" output coordinates
263 RTN	298 RTN
264LBL 01	299LBL 05 set brg/az to radius
265 RCL 12	300 RCL 10 point of return
266 P-R	301 180
267 RCL 03	302 +
268 *	303 RCL 14
269 "ARC = " output arc length	304 FS? 07
270 ARCL X	305 CHS
271 AVIEN	306 -
272 RTN	307 RTN
273LBL 02 calculate coordinates	308LBL 06 prompt sequence for
274 RCL 10 at center	309 "Y" curved alignment
275 RCL 15	310 ASTO X
276 P-R	311 AOH
277 ST+ 05	312 FS? 09
278 X<Y	313 "CURVE?"
279 ST+ 06	314 FC? 09
280 RCL 05	315 "OUTSIDE?"
281 RCL 06	316 PROMPT
282 XEQ "98" output coordinates	317 ASTO Y
283 RTN	318 AOFF
284LBL 04 calc radius points of	319 CF 09
285 XEQ 05 return curve	320 RTN

321LBL 07	calculate curve data	332 *
322 RCL 19	opposite knuckle	333 STO 21
323 RCL 16		334 ADY
324 2		335 "OPPOSITE:"
325 *		336 AVIEW
326 -		337 "R = " output radius opposite
327 RCL 17		338 ARCL Y
328 -		339 AVIEW
329 STO 17		340 XEQ "CURD" calculate curve data
330 RCL 02		341 RTN
331 2		342 END

Intersection-Both Straight

NN occupies 94 registers of program memory and should be used with the calculator sized at least to 045. The program contains 656 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "**SORT**", "**CURD**", "**CLR**", "**RI**" and "**98**", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "**AZ**" and "**DMS**" are used.

It is not necessary to have "**DMS**" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "**AZ**" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01+LBL "NN"	21 -
02 XEQ "CLR"	22 ENTER↑
03 SF 10	23 180
04 XEQ "SORT"	24 X<=Y?
05 XEQ "AZ"	25 XEQ 01 rotate by 180°
06 STO 09	26 X>Y
07 XEQ 04	27 X<0?
08 1	28 XEQ 00 rotate by 180°
09 X=Y?	29 X<0?
10 SF 00	30 XEQ 00
11 XEQ "AZ"	31 STO 03
12 STO 10	32 XEQ 02
13 90	33 ADV
14 -	34+LBL 08 calc subroutine
15 XEQ 04	35 "R?"
16 1	36 PROMPT
17 X=Y?	37 STO 17
18 SF 01	38 RCL 03
19 RCL 09	39 FS? 07
20 RCL 10	40 XEQ 13 subtract from 180°

41	STO 21	76	GTO 08
42	XEQ 03	77	RTN
43	XEQ 09	78	LBL 09
44	FIX 3	79	RCL 09
45	RCL 19	80	FS? 07
46	ABS	81	XEQ 00 delta less than 0°?
47	*DIST A = *	82	90
48	ARCL X	83	FS? 07
49	AVIEW	84	CHS
50	FIX 4	85	FS? 08
51	FS? 02	86	CHS
52	XEQ 05	87	+
53	FS? 02	88	RCL 16
54	XEQ 07	89	FS? 09
55	FS? 03	90	CHS
56	XEQ 10	91	P-R
57	LBL 25	92	RCL 10
58	FIX 3	93	90
59	RCL 20	94	FS? 07
60	ABS	95	CHS
61	*DIST B = *	96	FS? 08
62	ARCL X	97	CHS
63	AVIEW	98	-
64	FIX 4	99	RCL 18
65	FS? 02	100	P-R
66	XEQ 06	101	X<>Y
67	FS? 09	102	RDH
68	STOP	103	X<>Y
69	FS? 08	104	-
70	GTO 11	105	RDH
71	FS? 07	106	X<>Y
72	GTO 14	107	-
73	SF 00	108	R↑
74	SF 05	109	X<>Y
75	SF 07	110	STO 22

111 X>Y	146 RCL 21
112 STO 23	147 2
113 RCL 10	148 /
114 SIN	149 TAN
115 *	150 *
116 X<Y	151 FS? 07
117 RCL 10	152 CHS
118 COS	153 FS? 08
119 *	154 CHS
120 +	155 ST+ 19
121 RCL 03	156 FS? 07
122 SIN	157 CHS
123 /	158 FS? 09
124 STO 19	159 CHS
125 RCL 22	160 ST+ 20
126 RCL 23	161 RTN
127 FS? 09	162+LBL 10 calculate return delta
128 CHS	163 1
129 RCL 09	164 STO 27
130 SIN	165 RCL 09
131 *	166 98
132 X>Y	167 FS? 08
133 FS? 09	168 CHS
134 CHS	169 FS? 09
135 RCL 09	170 CHS
136 COS	171 -
137 *	172 STO 31
138 +	173 RCL 30
139 RCL 03	174 RCL 32
140 SIN	175 /
141 /	176 .46
142 FS? 09	177 +
143 CHS	178 FIX 0
144 STO 20	179 RND
145 RCL 17	180 STO 34

distance, quads 1 & 3

distance quads 2 & 4

181 FIX 4	216 RCL 07	
182 RCL 21	217 +	
183 STO 38	218 X<Y	
184 X<Y	219 RCL 08	
185 /	220 +	
186 STO 33	221 CLA	
187♦LBL 12	loop/stop	222 FIX 4
188 RCL 27		223 XEQ "RI" radial inverse to set
189 RCL 34		224 1 point
190 X=Y?		225 ST+ 27
191 GTO 25	insert for return	226 GTO 12
192 XEQ 19		227 RTN
193 RTN		228♦LBL 11 change from zone 3 to
194♦LBL 19	curve loop	zone 4
195 RCL 31		229 CF 00
196 RCL 33		230 CF 08
197 RCL 27		231 CF 07
198 *		232 CF 05
199 FS? 07		233 SF 09
200 CHS		234 180
201 FS? 08		235 RCL 03
202 CHS		236 -
203 -		237 STO 03
204 CLA		238 STO 21
205 FIX 0		239 GTO 08
206 CF 29		240 RTN modify delta
207 ARCL 27		241♦LBL 13
208 "F/"		242 180
209 ARCL 34		243 X<Y
210 RVIEW	output fractional label	244 -
211 SF 29		245 RTN
212 RCL 17		246♦LBL 14 reset flag status
213 RCL 02		247 CF 07
214 -		248 SF 08
215 P-R		249 SF 04
		250 SF 01

251 GTO 08	286 2	
252 RTN	287 /	
253LBL 01	288 INT	
254 -	289 RTN	
255 ENTER↑	290LBL 05	calculate coordinates
256 RTN	291 RCL 09	
257LBL 08	292 RCL 16	
258 180	293 FS? 03	
259 FS? 07	294 XEQ 24	
260 CHS	295 FS? 08	
261 +	296 CHS	
262 RTN	297 FS? 09	
263LBL 02	298 CHS	
264 "1/2W A?"	299 RCL 19	
265 PROMPT	300 R-P	
266 STO 16	301 RDN	
267 "1/2W B"	302 +	
268 PROMPT	303 RT	
269 STO 18	304 P-R	
270 RTN	305 RCL 05	
271LBL 03	306 +	
272 ADV	307 X<>Y	
273 "R = "	308 RCL 06	
274 ARCL 17	309 +	
	310 FC? 03	
275 AVIEW	311 XEQ "98"	output coordinates
276 RCL 21	312 FC? 03	
277 XEQ "CURD"	313 ADV	
	314 FS? 03	
278 ADV	315 XEQ "RI"	radial inverse to set
279 RTN	316 RTN	point
280LBL 04	317LBL 24	
	318 RCL 02	
281 90	319 +	
282 /	320 RTN	
283 INT		
284 1		
285 +		

321LBL 07	351 XEQ "RI"	radial inverse to set
322 RCL 09	352 RTN	point
323 RCL 17	353LBL 06	calculate coordinates
324 RCL 16	354 RCL 10	
325 +	355 RCL 18	
326 FS? 08	356 FS? 03	
327 CHS	357 XEQ 24	
328 FS? 09	358 FS? 08	
329 CHS	359 CHS	
330 RCL 19	360 RCL 20	
331 R-P	361 R-P	
332 RDN	362 RDN	
333 +	363 FS? 07	
334 RT	364 CHS	
335 P-R	365 -	
336 RCL 05	366 RT	
337 +	367 P-R	
338 STO 07	368 RCL 05	
339 X>Y	369 +	
340 RCL 06	370 X>Y	
341 +	371 RCL 06	
342 STO 08	372 +	
343 "RADIUS POINT:"	373 FC? 03	
344 FS? 02	374 XEQ "98"	output coordinates
345 RVIEW	375 FC? 03	
	376 ADV	
346 FC? 03	377 FS? 03	
347 XEQ "98"	378 XEQ "RI"	radial inverse to set
	379 RTN	point
348 FC? 03	380 END	
349 ADV		
350 FS? 03		

Intersection-One Curved

NO occupies 64 registers of program memory and should be used with the calculator sized at least to 045. The program contains 448 bytes of programming, and can be stored on 4 tracks of magnetic cards.

Subroutines used with this program are "SORT", "CURD", "CLR", "RI", "DIV", "SET" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01♦LBL "NO"	23 PROMPT
02 XEQ "CLR"	24 STO 18
03 SF 10	25 "R?"
04 CLX	26 PROMPT
05 RTN	27 STO 17
06♦LBL B	28 RCL 10
07 SF 01	29 RCL 01
08 SF 04	30 -
09♦LBL A	31 FS? 04
10 XEQ "SORT"	32 XEQ 03
11 XEQ "AZ"	33 STO 00
12 STO 01	34♦LBL 00
13 XEQ "AZ"	35 ENTER↑
14 STO 10	36 SIN
15 "R?"	37 RCL 04
16 PROMPT	38 *
17 STO 04	39 STO 03
18♦LBL 02	40 RCL 17
19 "1/2W A?"	41 RCL 16
20 PROMPT	42 +
21 STO 16	43 FS? 08
22 "1/2W B?"	44 CHS

calculate return curve data

45 FS? 04	80 CHS		
46 CHS	81 FS? 07		
47 +	82 CHS		
48 RCL 17	return radius	83 +	
49 RCL 18		84 *	
50 +		85 FS? 07	
51 FS? 08		86 CHS	
52 CHS		87 RCL 00	
53 FS? 07		88 COS	
54 CHS		89 FS? 01	
55 RCL 04		90 CHS	
56 +		91 RCL 04	
57 /		92 CHS	
58 ASIN		93 FS? 07	
59 STO 14		94 CHS	
60 X<>Y		95 FS? 04	
61 FS? 04		96 CHS	
62 X<>Y		97 *	
63 FS? 08		98 +	
64 X<>Y		99 FS? 07	
65 FS? 07		100 CHS	
66 X<>Y		101 STO 19	distance, line A
67 -		102 ABS	
68 STO 15	angle factor	103 ADY	
69 RCL 14		104 FIX 3	
70 COS		105 "A = -	
71 RCL 04		106 ARCL X	
72 RCL 17	return radius	107 AVIEW	output distance A
73 FS? 08		108 XEQ 07	calculate coordinates
74 CHS		109+LBL 05	at radius point
75 FS? 07		110 RCL 15	
76 CHS		111 FS? 07	
77 +		112 CHS	
78 RCL 18	width	113 D-R	
79 FS? 08		114 RCL 04	

115 *	158 "R?"	
116 FS? 08	151 PROMPT	input next radius
117 CHS	152 STO 17	
118 STO 20	153 RCL 00	
119 ABS	154 GTO 00	
120 FIX 3	155 RTN	
121 "B = "	156+LBL 03	calculate return curve
122 ARCL X	157 360	
123 AVIEW	158 X<>Y	
124 FIX 4	159 -	
125 RCL 09	160 360	
126 180	161 X<>Y	
127 +	162 X>Y?	
128 RCL 21	163 -	
129 FS? 07	164 X<0?	
130 CHS	165 CHS	
131 -	166 RTN	
132 RCL 17	167+LBL 01	reset flag status
133 FS? 02	168 SF 00	
134 RCL 02	169 CF 07	
135 FS? 02	170 SF 08	
136 -	171 "R?"	
137 P-R	172 PROMPT	input next radius
138 RCL 07	173 STO 17	
139 +	174 RCL 00	
140 X<>Y	175 GTO 00	
141 RCL 08	176 RTN	
142 +	177+LBL 07	calculate coordinates
143 FS? 06	178 RCL 01	at radius point
144 XEQ 04	179 RCL 19	
145 FS? 03	180 P-R	
146 XEQ "RI"	181 RCL 05	
147 FS? 07	182 +	
148 GTO 01	183 STO 07	
149 SF 07	184 X<>Y	

185 RCL 06	220 RCL 08
186 +	221 "RAD. POINT: "
187 STO 08	222 FS? 02
188 RCL 01	223 AVIEW label output
189 90	224 FS? 06
190 FS? 08	225 XEQ 04 output coordinates
191 CHS	226 FS? 03
192 +	227 XEQ "RI" radial inverse to set
193 STO 09	point
194 RCL 16	228 FIX 3
195 FS? 02	229 "R = "
196 RCL 02	230 ARCL 17
197 FS? 02	231 AVIEW output current radius
198 +	232 90
199 P-R	233 RCL 14
200 ST+ 07	234 CHS
201 X<>Y	235 FS? 07
202 ST+ 08	236 CHS
203 RCL 07	237 FS? 04
204 RCL 08	238 CHS
205 FS? 06	239 +
206 XEQ 04	240 STO 21
207 FS? 03	241 XEQ "CURD" calculate and output
208 XEQ "RI"	242 ADV curve data
209 RCL 09	243 FS? 03
210 RCL 17	244 XEQ "DIV" divide curve per max
211 FS? 02	245 FS? 03 spacing requirements
212 RCL 02	246 XEQ "SET" calculate curve points
213 FS? 02	247 GTO 05
214 -	248 RTN
215 P-R	249+LBL 04
216 ST+ 07	250 FS? 03
217 X<>Y	251 RTN
218 ST+ 08	252 XEQ "98" output coordinates
219 RCL 07	253 ADV
	254 RTN

Intersection- Both Curved

CC occupies 92 registers of program memory and should be used with the calculator sized at least to 045. The program contains 641 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "SORT", "CURD", "CLR", "RI", "DIV", "SET" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01LBL "CC"	21	STO 36	radial azimuth, line B
02 XEQ "CLR" clear registers & set	22	CF 18	
03 SF 10 flag status	23	RCL 35	radial azimuth line A
04 XEQ "SORT" prompt sequence	24	X<Y	
05 FS? 03	25	-	
06 XEQ 11	26	360	
07 FS? 03	27	X<Y	
08 XEQ 10	28	X<0?	
09 "A LINE R=?"	29	+	
10 PROMPT begin added prompts	30	STO 00	
11 STO 37	31	"1/2W B??"	
12 XEQ "AZ" bearing to azimuth	32	PROMPT	
13 STO 35	33	STO 18	
14 "1/2W A??"	34	RCL 00	delta
15 PROMPT	35	RCL 38	radius, line B
16 STO 16	36	P-R	
17 "B LINE R=?"	37	RCL 37	radius, line A
18 PROMPT	38	-	
19 STO 38	39	R-P	
20 XEQ "AZ" bearing to azimuth	40	STO 03	base distance

41 CLX	76 /
42 RCL 37	77 SQRT
43 RCL 38	78 ACOS
44 RCL 03	79 2
45 +	80 *
46 +	81 STO 40 calculated angle
47 2	82 SF 01
48 /	83+LBL 00 begin solutions
49 STO 10	84 FS? 04
50 X†2	85 SF 07
51 LASTX	86 FS? 09
52 RCL 38	87 SF 07
	radius, line B
53 *	88 "R?"
54 -	89 PROMPT
55 RCL 37	90 STO 17
56 RCL 03	91 RCL 16
57 *	92 +
58 /	93 FS? 01
59 SQRT	94 CHS
60 ACOS	95 FS? 04
61 2	96 CHS
62 *	97 RCL 37
63 STO 39	98 +
	calculated angle
64 SIN	99 STO 10
65 RCL 37	100 RCL 17
66 STO 28	101 RCL 18
67 RCL 10	102 +
68 X†2	103 FS? 01
69 LASTX	104 CHS
70 RCL 37	105 FS? 09
71 *	106 CHS
72 -	107 RCL 38
73 RCL 38	108 +
74 /	109 STO 28
75 RCL 03	110 RCL 03

111 +		146 STO 41	third angle
112 +		147 180	
113 2		148 X<Y	
114 /		149 RCL 29	
115 STO 42	temporary storage reg	150 +	
116 X†2		151 FS? 01	
117 LASTX		152 -	
118 RCL 28	base side two	153 FS? 08	
119 *		154 -	
120 -		155 STO 21	central angle of the
121 RCL 10	base side one	156 RCL 39	return
122 RCL 03	base distance	157 RCL 29	
123 *		158 FS? 04	
124 /		159 X<Y	
125 SQRT		160 FS? 08	
126 ACOS		161 X<Y	
127 2		162 -	
128 *		163 D-R	
129 STO 29	calculated angle	164 RCL 37	radius, line A
130 SIN		165 *	
131 RCL 10		166 FIX 3	
132 RCL 42		167 ADV	
133 X†2		168 ADV	
134 LASTX		169 "ARC A = "	
135 RCL 10		170 ARCL X	
136 *		171 AVIEW	output arc distance
137 -		172 FC? 02	
138 RCL 28		173 ADV	
139 /		174 FS? 02	
140 RCL 03		175 XEQ 01	set coordinates
141 /		176 FS? 02	
142 SQRT		177 XEQ 02	output radius point if
143 ACOS		178 FIX 3	coordinates or layout
144 2		179 "R = "	are wanted
145 *		180 ARCL 17	

181 AVIEW	output return radius	216 RTN
182 RCL 21		217 "INTER-X N†E"
183 XEQ "CURD"	calculate curve data	218 PROMPT input coordinates at
184 ADV		219 STO 06 intersection
185 FS? 03		220 RDN
186 XEQ "DIV"	divide curve per max	221 STO 05
187 FS? 03	spacing instruction	222 RTN
188 XEQ "SET"	set coordinates at the	223LBL 12 azimuth rotation
189 RCL 40	curve points	224 180
190 RCL 41		225 -
191 FS? 08		226 STO 09
192 X>Y		227 180
193 FS? 09		228 +
194 X>Y		229 RTN
195 -		230LBL 01 calculate coordinates
196 D-R		at return radius point
197 RCL 38		231 180
198 *		232 RCL 35
199 FIX 3		233 +
200 "ARC B = "		234 RCL 37
201 ARCL X		235 P-R
202 AVIEW	output line B arc dist	236 RCL 05
203 FS? 02		237 +
204 XEQ 03		238 STO 07
205 FS?C 08		239 X>Y
206 SF 09		240 RCL 06
207 FS?C 04		241 +
208 SF 08		242 STO 08
209 FS?C 01		243 RCL 35
210 SF 04		244 RCL 39
211 CF 07		245 RCL 29
212 GTO 08		246 -
213 RTN		247 +
214LBL 11	additional prompts if	248 FS? 01
215 FS? 06	layout or coord. mode	249 XEQ 12 rotate
		250 FS? 04

251 XEQ 12	rotate	286 +
252 FS? 08		287 FC? 03
253 STO 09		288 XEQ "98" output coordinates
254 FS? 09		289 ADV
255 STO 09	reset azimuth	290 FS? 03
256 RCL 17	return radius	291 XEQ "RI" radial inverse to set
257 RCL 16	half-width A	292 RTN points
258 +		293+LBL 02 output coordinates
259 FS? 01		294 "RADIUS POINT:"
260 CHS		295 FS? 02
261 FS? 04		296 AVIEW
262 CHS		297 RCL 07
263 RCL 37	radius, line A	298 RCL 08
264 +		299 FC? 03
265 P-R		300 XEQ "98" output coordinates
266 ST+ 07		301 FS? 06
267 X<Y		302 ADV
268 ST+ 08		303 FS? 03
269 RCL 36		304 XEQ "RI" radial inverse to set
270 RCL 48		305 RTN point
271 RCL 41		306+LBL 03
272 -		307 RCL 35
273 -		308 RCL 39
274 RCL 17		309 RCL 29
275 FS? 03		310 -
276 XEQ 09	modify radius by o/s	311 +
277 FS? 04		312 RCL 17
278 CHS		313 FS? 03
279 FS? 08		314 XEQ 09 modify radius by o/s
280 CHS		315 FS? 08
281 P-R	calculate coordinates	316 CHS
282 RCL 07		317 FS? 09
283 +		318 CHS
284 X<Y		319 P-R
285 RCL 08		320 RCL 07

321 +	336 PROMPT	
322 X<>Y	337 RCL 06	
323 RCL 08	338 -	
324 +	339 X<>Y	
325 FC? 03	340 RCL 05	
326 XEQ "98"	output of coordinates	341 -
327 FS? 03		342 R-P
328 XEQ "RI"	radial inverse to set	343 CLX
329 RTN	point	344 X<>Y
330+LBL 09		345 X<0?
331 RCL 02		346 360
332 -		347 +
333 RTN		348 STO 01 backsight azimuth
334+LBL 10	prompt (layout mode)	349 RTN
335 "BACKSITE?"		350 END

We often are asked, "How do you store coordinates by point number without X-function in a 41?" There are a number of ways this can be done, but this little routine is one of the easiest.

PIN (point in) assigns the next consecutive number in the counter register to any coordinate pair when the N-coord is in the Y register and the E-coord is in X. **POUT** (point out) replaces the coordinate pair into the Y and X registers for whatever point number is in the X register when executed.

These two routines (©1983, Ted J. Kerber), combined with short programs that tap the subroutines of the HP SURVEYING PAC, give you a complete traverse and inverse package. It may also be extended into storage of three-dimensional coordinates by using similar steps to store the Z register, and have the elevation of the point reside there.

The number of points you can store by this method is only limited by the total number of available registers (it requires two registers per point number), and this is dictated by how many registers you have to use up with the other routines.

In the example listings, with the calculator sized at 120, we're storing N-coordinates in registers 20 thru 69, and E-coordinates in registers 70 thru 119 (a total of 49 points), with register 17 used as the counter. Begin with 0 in register 17.

You can custom fit the routine to your own needs by varying step 19 (first E register), steps 26 and 38 (first N register) and step 43 (difference between registers). Data cards can be used to input or dump the coordinates for later use. You can recall and use the coordinates without having to look at them by adding a PRINT/DON'T PRINT flag in front of the "AVIEW" steps.

01LBL "PIN"	15 CLA	29 RDH	43 50
02 RCL 17	16 ARCL Y	30 STO IND 19	44 +
03 1	17 AVIEW	31 RTN	45 STO 19
04 +	18 ADV	32LBL "POUT"	46 RDH
05 FIX 0	19 70	33 FIX 0	47 RCL IND 19
06 CF 29	20 +	34 CLA	48 CLA
07 CLA	21 STO 19	35 ARCL X	49 ARCL Y
08 ARCL X	22 RDH	36 AVIEW	50 AVIEW
09 AVIEW	23 STO IND 19	37 FIX 4	51 CLA
10 STO 17	24 CLX	38 20	52 ARCL X
11 FIX 4	25 RCL 17	39 +	53 AVIEW
12 CLA	26 20	40 STO 19	54 ADV
13 ARCL Z	27 +	41 RCL IND 19	55 RTN
14 AVIEW	28 STO 19	42 X>Y	56 END

notes

OTHER SOFTWARE FOR THE HP-41CV/CX

CARD PROGRAMMING SERVICE

to save yourself the time involved in typing in the program steps, and to insure that the programs will work properly, send 20 blank card with your check or money order (\$8.50 per set)

We will program your cards for you and return them in a labeled card holder which may be inserted directly into your book.

Programming on cards, Geometrics \$8.50

HP-41CV/CX SURVEYING FIELD SOLUTIONS

A fully documented and illustrated solutions book for the surveyor.

**FIELD LAYOUT ♦ SPIRALS ♦ FIELD LOCATION ♦ TOPO
REMOTE SLOPE STAKING ♦ RADIAL INVERSE and much more!**

Surveying Field Solutions \$19.95

CARD PROGRAMMING SERVICE

the card programming service is also available for the Surveying Field Solutions book. Send 20 blank cards with your order.

Programming on cards, Field Solutions \$8.50

COGO 41

This is the ROM you've been needing. Complete traverse, inverse . . . everything the others have and more! Coordinate storage and retrieval option by **point number**. No need to pre-divide to mean angles before input.

The closure routine includes **automatic angle check and adjustment**. The compass and transit corrections are **automatic**, at the touch of a button. X-memory is **not required**!

All of the normal intersection routines are included, plus LINE TO SPIRAL and CURVE TO SPIRAL. Bearings and azimuth may be input, or defined by input of the **point numbers** at either end of an existing line.

COGO 41 available mid-1987

CALIFORNIA RESIDENTS PLEASE ADD 6 1/2% TAX
prices valid thru May 1987

D'Zign land survey & development
P.O. BOX 1370 • PACIFICA, CA 94044

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.