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WHAT IS MCODE?

MCODE is the internal machine code used by the HP-41, one level below the
set of "user code" instructions that users and programmers are accustomed to
dealing with. Some user code instructions like CLX are implemented by the
HP-41 in just a few MCODE instructions; other user code instructions like
TAN consist of hundreds of MCODE operations.

HISTORICAL BACKGROUND

When Hewlett-Packard announced the HP-41C in July 1979 they described it as:
"A Calculator, A System, A Whole New Standard." Six years later we know
these bold statements to be true. The HP-41 has been successful beyond HP’s
most optimistic expectations.

By the end of 1979, only five months after the introduction of the HP-41,
the beginnings of a new form of programming appeared. Pioneered by Dr.
William C. Wickes, it is now called synthetic programming, or SP. Synthetic
programming encompasses the creation and use of new undocumented
instructions to which the HP-41 responds. Synthetic programming is only an
extension of wuser code programming. Its study, however, provided an
important general overview of the HP-41’s operating system and its memory
management. The next step was to find ways to list and study the internal
machine code, now called MCODE.

User community programming in MCODE was discouraged by HP. "It’s too
complicated and in many cases doesn’t offer an advantage," was the usual
reason given by HP’s technical support staff. By the spring ofA 1982,
however, the first MCODE programs were written, hand compiled, and burned
into EPROM by Jim De Arras.

Four problems had to be overcome before MCODE could become popular. First,
the user community had to discover that MCODE programming is not beyond

the grasp of talented programmers. The second problem was the documentation
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of the HP-41’s operating system. HP eventually released the annotated
operating system listings, but only after Jim De Arras produced his own
version, a monumental feat. The third problem was the lack of a means to
generate and store MCODE instructions. Several small manufactures now offer
the necessary hardware to the user community. The fourth and last problem
was documenting in one place the basics of MCODE programming. This book is
the result of that effort.

WHY SHOULD YOU USE MCODE?

The first reason to use MCODE is speed. MCODE programs run from 7 to 120
times faster than user code. The second reason is that you get full system
control. More efficient data register usage (data packing) and access to
all of system memory are but two examples. A third reason to use MCODE is
that greater accuracy is possible by using the internal 13-digit math
routines. A fourth reason for using MCODE is the ease of dealing with
hexadecimal (base 16) numbers. The HP-41 has MCODE instructions to do
hexadecimal arithmetic at least as easily as decimal arithmetic. Finally,
your MCODE programs are immune to MEMORY LOST because they do not reside in
normal user code program memory.

MCODE programming requires additional hardware, costing from $100 to $400.
But once you enter the world of MCODE there is nothing you can’t do. To get
started, however, you need to understand the basics of MCODE. That’s where
this book fits in. It will give you the background you need to write your
own MCODE programs and to start to understand the HP-41’s operating system.
Understanding the operating system is the key to the most advanced
applications of MCODE.

Richard J. Nelson
Editor, CHHU Chronicle
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PREFACE

With the introduction of the HP-41C in July of 1979, the world of truly
personal computing was set on its ear. In one hand, the computer user was
now able to hold what once took an entire room full of hardware. At the
time of its introduction, the HP-41C was expected to have a product life of
five years. Based on the results of a survey made of the user community in
late 1984, the projected life of the current 41 series (CV/CX) is still 5
years. The overwhelming success of the 41 is due in large part to enter-
prising users who managed to tickle ever more power out of their 41. Dr.
William Wickes first discovered and utilized "synthetic programming" for the
HP-41, with Keith Jarett, Roger Hill, and others expanding the bounds of
knowledge significantly. In 1981, members of the Personal Programming
Center (PPC) created an astounding collection of programs for the PPC ROM,
which combined synthetic programming techniques with improved algorithms to
come up with what is still the most advanced non-MCODE ROM around.

Hewlett-Packard has responded to the success of the HP-41 by introducing new
products (such as Extended Memory, HP-IL, and the Time module) that expand
the capabilities of the 41 manyfold. Pioneering work by Steve Jacobs and
Jim De Arras in the disassembly of HP-41 instructions led HP to unofficially
release the operating system listings for the 41, along with the original
programmers’ annotations. Thus was born the art of MCODE programming.

MCODE programs can normally be executed only as part of an internal or plug-
in ROM (Read Only Memory) module. As the name implies, ROM modules cannot
be reprogrammed. Lynn Wilkins and Paul Lind originally developed the
Machine Language Development Lab (MLDL) to enable programmers to
conveniently write, test, and use MCODE programs. Later refinements by
Lynn Wilkins, Paul Lind, Nelson Crowle, and the ERAMCO company led to
today’s state-of -the-art MLDL. An MLDL contains ordinary memory (RAM) that
looks like ROM to the HP-41. It also contains sockets that allow you to
plug in EPROM (erasable, programmable, read-only memory) chips. EPROM’s,
which can be programmed using third-party hardware that connects to the HP-
41, let you create your own custom ROMs inexpensively.
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Most of the MLDL-type devices available today have some, if not all, of the
following features:

0o 4K to 16K of RAM that emulates HP-41 ROM (with battery back-up)

o Sockets for 4K to 24K of EPROM’s that emulate HP-41 ROM

o Development software to aid in MCODE programming

Once the hardware problem was solved, software needed to be tackled. MCODE
programmers all over the world developed assemblers, dissassemblers,
editors, and general-purpose MCODE programming tools. These software
development tools, which are standard on computer systems, are now available
for the HP-41.

But alas! With all of this programming power available, HP-41 users still
had a tough time trying to learn how to program in MCODE. To make it easy
on yourself, you needed to speak fluent Jacobs-DeArras, Hewlett-Packardian,
and ZENGRANGEIish to be able to understand the various mnemonics. Further,
the only method of learning for each programmer was to start at the bottom,
with all of the appropriate documents in hand, and pull himself up by his
bootstraps. One evening, Ken Emery was bemoaning the lack of a tutorial on
MCODE to several local PPC members. "Write it yourself!, they told him.
So he did, and the rest is history.

This book will do its best to try and guide you through all of the vagaries
of HP-41 MCODE programming that you are likely to experience as a beginning
MCODE programmer. Intermediate programmers will find a fair amount of
useful information as well, perhaps a few little-known tricks that will cut
program size or execution time. And advanced MCODE programmers will get a
kick out of remembering how they first discovered these secrets.

David E. White
Editor, PPC Journal
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INTRODUCTION

This book will introduce you to machine language programming on Hewlett-
Packard Series 40 calculators (the HP-41C, CV, and CX). This book is suit-
able for total beginners in machine language, but experience in normal HP-41
programming will prove helpful.

Machine language (also known as MCODE) is the language used to program the
internal functions of the calculator. With machine language (MCODE), you
have total control of the calculator. The execution speed of an MCODE
program can be anywhere from 5 to 120 times as much as that of a similar
User code program.

To help you better understand HP-41 machine language programming, we will
first review the structure of the CPU registers. Next we will discuss the
instruction set, and finally we will provide examples of how to use the
various instructions. In the process, several practical routines will be
demonstrated. Each routine is fully documented to provide a clear under-
standing of why a particular instruction was chosen at each step.

Throughout this book we shall refer to machine language programming on the
HP-41 as MCODE. The term MCODE is derived from both Machine language pro-
gramming and microCODE. Machine language is the language determined by the
instruction set of the CPU. Microcode is the electronic programming that
actually determines what the CPU’s instruction set will be. When machine
language programming first became possible on the HP-41, the term MCODE was
coined, and it remains in use to this day.

In order to program in MCODE, you must have an accessory that simulates the
ROM (Read Only Memory) of the HP-41. This is because the HP-41’s operating
system is not designed to run MCODE programs from its normal RAM (Random
Access Memory) area. Extensive internal ROM contains the permanent code
that determines the function set of the HP-41. Several types of devices are
available for this purpose, and they are commonly referred to as MLDL’s
(short for Machine Language Development Lab). These devices plug into one



of the four ports at the top of the 41. They contain RAM, memory that may
be altered by the user, suitable for holding MCODE programs. Further
explanation will be provided in the hardware section of this book.
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THE BASICS

BINARY NUMBER REPRESENTATION

The CPU can only interpret binary numbers. Binary numbers are base 2 num-
bers. They can only be represented using a one or zero. For example, 6 in
base ten would become 110 in binary. Let’s examine how this is done. The
rightmost digit is the one’s place; it may be either one or zero. When we
get to 2 we must go to the next digit to the left. This is the two’s digit.
If it is a 1 then we add 2 to the total. If the one’s and two’s digits
are set to one we have 3 (1 + 2 is 3). If we want to continue counting,
then we must move to the next digit to the left, which is the four’s digit
(four comes after three). If this digit is one, then we add 4 to the total.
In our example the four’s digit and the two’s digit are one. This means
that we have 4 + 2 (or 6). Since the one’s digit is zero, we don’t add one
to the total.

As you can see, counting in binary can be rather difficult (unless you only
have two fingers). When writing programs for the HP-41’s CPU in binary it
is very easy to make a mistake. In the CPU of the 41 the instructions are
ten binary digits long. Each of these digits is known as a BIT (for Blnary
digiT). Now, if you have a program that is 100 instructions long, then you
would have to check 1,000 (100 instructions times 10 bits per instruction)
bits to make sure that you have made no errors. As you can see, writing
programs in binary makes them difficult to debug. Binary numbers all look
the same, particularly after a few hours of debugging.

Since computers never get tired, and love to work with binary numbers, we
write programs to translate our inputs into binary. We input in hexadecimal
(hex for short) or base 16. Since numbers only cover from 0 to 9, we must
borrow letters from the alphabet for the last 6 hex digit values. We use
the letters A through F, with A corresponding to 10, B to 11, and so on
until we get to F, which is 15 in base ten.



Here’s an example of how much easier hex is than binary. We will use ten-
bit binary numbers since this is what the 41 CPU uses.

Binary Hex
0110011110 19E
1100101001 329
0000010000 010
1111101001 3E9
1000110111 237

If you make a mistake keying in the binary instructions, then you must
examine 50 bits to see where the mistake is. Using hex, only 15 digits must
be examined. This is a reduction of 70% in the number of digits you must
check.

How do we get the CPU to use these hex digits if it only recognizes binary
numbers? We use a program which will translate our hex codes to binary.
This program is called a hex assembler. Since computers don’t make mis-
takes, the translation from hex to binary will be performed without any
mistakes.

Since most people can’t count too well in hex (we haven’t seen anyone with
16 fingers), the hexcodes are given alphanumeric representations of the
operations that they perform. These alphanumeric representations are called
mnemonics. The program that translates these mnemonics into binary is
called an assembler. These programs are usually rather elaborate. However,
they make programming much easier, since you can actually see what each
instruction does, and you may follow the logic of the program. For example,
the binary number 0000001110 (O0OE in hex) is the A=0 ALL instruction in the
microprocessor of the 41. It is much easier to figure out what the A=0 ALL
instruction does (sets all of CPU register A equal to zero), than to trans-
late 0000001110 to a number which you may then look up on a chart.



The opposite of the assembler is the dissassembler. This is a program which
takes the binary codes at specified locations in memory and translates them
to mnemonics so that you may easily examine what instructions are in memory.

You may be wondering why the HP-41’s main CPU registers are 56 bits wide.
The 41 was designed with numerical computation in mind. The number 56 is
divisible by 4, therefore it may be partitioned into 14 sections of four
bits each. The reason for using four bits is because the numbers zero to
nine may be represented using four bits. The leftmost four bits (one nyb-
ble) are used to tell whether the number is negative or positive. If this
nybble is 0, then the number is positive. If it is equal to nine (1001 in
binary), the number is negative.

The next ten nybbles are used to hold the mantissa of the number. Because
there are only ten mantissa digits the 41 is accurate in calculations to ten
decimal places. For example, the mantissa of PI is 3141592654. These are
the ten digits you see when PI is in the display and you are in FIX 9 mode.

The three rightmost nybbles are the exponent sign and the exponent. The
leftmost of the three is the sign of the exponent. This is encoded in the
same way as the sign on the mantissa. It is nine if the exponent is nega-
tive, and zero if it is positive. The next two nybbles form the exponent.
The 41 stores all numbers in scientific notation, that is, with the exponent
set so that the mantissa has only one number to the left of the decimal
point. You may remember that the exponent on the 41 may range from 0 to 99.
This is because the largest decimal number in two digits is 99. The CPU
cannot handle an exponent greater than 99 because there is no room to store
the three digits (100 and greater) needed to represent this. For numbers
with negative exponents the number stored in the exponent is 100 minus the
exponent. For example, for a negative exponent of 2 the actual number
stored is 98 (100-2). The reason numbers aren’t always displayed in scien-
tific format is because HP was kind enough to give you a choice of whether
you want scientific, engineering, or no exponent (FIX format) displayed.
The display routines take care of all of the work to make sure the number is
displayed in the format you want.



THE MICROPROCESSOR

A microprocessor is the heart of any computer. The microprocessor chip is
made of silicon, just like any of the other integrated circuits that com-
prise a computer. However, it has been designated as the controller of the
whole show. The microprocessor has been manufactured so that it recognizes
certain inputs, and then it tells everything else what to do. It is the
brain of the computer.

When this chip is manufactured, a set of commands that will delegate the
work is etched into the chip. These commands are known as the instruction
set. The microprocessor has a set of registers where all of the operations
are carried out. These registers are known as the CPU registers. The CPU
registers are completely separate from the memory registers, as you’ll see
later.

In many texts, you may have noticed references to Microprocessor, Micro
Processing Unit (MPU), and Central Processing Unit (CPU). These terms all
mean the same thing. To maintain some semblance of consistency, we will use
the term CPU throughout the book when referring to the HP-41 microprocessor.

In the CPU of the 41, ROM (Read Only Memory which may NOT be altered by
the user), and User RAM are not the same. In the ROM address space the
bytes are each 10 bits long. The CPU has a 64 Kilobyte address space for
ROM. Therefore it can have up to 65,536 bytes of functions and programs.
The way the 41 CPU was designed was to treat this whole area as ROM. The
User RAM is treated as a peripheral by the CPU, and is not part of the 64K
ROM address space. The RAM bytes are each eight bits long. The 41 CPU
further complicates matters by storing the eight bit bytes of User RAM in
56-bit registers (7 bytes per register).

Each 10-bit word of an MCODE instruction takes 155 microseconds to execute.

The only exception is FETCH S&X (introduced on page 50), which takes twice
as long. The CPU thus processes an amazing 6452 words of MCODE per second.
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THE CPU REGISTERS OF THE HP-41

In order to program in MCODE you MUST know how the internal CPU
registers intcract with each other. This is not like User RAM, where you do
not have to worry about the partitioning of programs and data. Rcmember,
with MCODE you are in command of the calculator at the most fundamecntal
level.  Therefore you must know what you are doing in similar dctail.
Almost anything you want to do can be done. Like a good synthetic
programmer, who must know that there are 16 status registers and how they
are used by the calculator, you must know how the data flows through the
internal CPU registers. A diagram of the flow of data in the CPU registers
is given below. The numbers in parentheses are the lengths of each register

in bits. Each register is named by a letter(s).

Subr.
A (56) ] Stack
4-Levels
(16)
B (56) l:
To = > PC (16) l— KY (8)
I C (56)
RAM ‘
Registers G (8)
M (56) [: ST (8) XST (6)
T (8)
N (56) =
FI (14)
P (4) Q (4

Figure 1



Now for a short vocabulary lesson, followed by a little explanation of the

uses of each of these registers.

Word

Bit

BCD

Hexcodes

Mnemonics

Nybble

NOP

Byte

Shift

Definition

Binary digit. One bit can have a value of either 1 or 0. It is
like a switch, either on or off.

Binary Coded Decimal. This is how the CPU represents the
numbers you see. Each decimal digit is represented by four
bits (one nybble). Each of the nybbles is separate from the
other, and may have a value from zero to nine. When one of the
nybbles tries to become ten, a one is added to the nybble to
the left, and the original nybble is set to zero.

The three hex digits used to symbolize the ten-bit MCODE words.

Alphanumeric representations of what certain hexcodes do. For
example, the hexcode Q0E has a mnemonic of A=0 ALL. From the
mnemonic you can deduce that hex 00E sets all of CPU register A
equal to zero. This is much easier than having to memorize
what each hexcode stands for.

Four bits put together. The highest value that may be obtained
is when all 4 bits are set to 1. This is 15 decimal, or F in
hexadecimal. One nybble is also one hexadecimal (hex) digit.

No OPeration (do nothing instruction).

Two consecutive nybbles or eight consecutive bits.

Movement of data within a register, either left or right. Any

data pushed off the end of the register is lost forever. For
example, if we shift the binary number 10110111 right by 2 bits
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Wraparound

Word

Underflow

Overflow

the two rightmost bits will be lost and zeros will be placed on
the left. We then end up with 00101101.

Movement of digits from one side of a register to the other,
during rotation of a register. Rotation is like shifting right
except instead of losing the rightmost digits they are wrapped
around to the left. For instance, if the above example was
rotated instead of shifted, we would get 11101101 as our an-
swer. Notice that the last two digits were placed on the left
end of the number and were not lost. This is wraparound. You
may also be familiar with this term as logical rotation.

The CPU instructions of the HP-41 are 10 bits long. So the
term Word describes a ROM memory cell that holds a single CPU

instruction. The term Byte is avoided in this context in order
to distinguish ROM words from the 8-bit bytes in RAM. However,
you will occasionally see CPU instructions referred to as
bytes, for example when the "byte count” of a routine is
quoted.

Underflow occurs when a negative number would result from an
operation. The CPU does not know what negative numbers are, so
it gives a result as if it had borrowed a one from the next
most significant digit. For example, the operation 1001 minus
1100 would result in an underflow, since 1100 is greater than
1001. The result would be 1101, which is 11001 minus 1100.
The Carry, which will be explained later, is set whenever an
underflow occurs.

Overflow is the opposite of the underflow. It is much like the
OUT OF RANGE error message we get when a number greater than
9.999999999 E99 would result from a mathematical operation. If
the operation were carried out, there would be an overflow,
since the wanted number would be too large for the CPU to
handle. The CPU just chops off anything that would be larger
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than it can handle. For example, 1001 plus 1000 would be
10001. But since we are using only four bits for our example,
the leftmost bit would be eliminated and the answer would be
0001. The Carry bit is set after one of these operations.

Here is an explanation of how the CPU registers function.

Register

C

M and N

Usage

This is the main register. All communication with the RAM
registers is done through the C register. This is the only
register that can directly interact with all of the other CPU
registers (except T). This register can either be shifted one
nybble right or the whole register may be rotated from 1 to 13
nybbles to the right. 4-bit digits (0 to F in hex) may be
loaded into any nybble of this register. This register cor-
responds to the accumulator on other CPUs. It may be incremen-
ted or decremented by one, and it may also be zeroed.

The A register may interact with only the C and B registers.
These registers may be added to A and they may also subtracted
from A. A can also be added to C. It can be incremented or
decremented by one, shifted left or right one nybble, or
zeroed.

This register may be added to or subtracted from only the A
register. However, it may be exchanged with the A and C regis-
ters in whole or in part. It may also be shifted right one
nybble, or zeroed.

These registers may interact with only the C register. They

can not interact with each other, or with any register other

than C. They are usually used for storage.
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P and Q

PC

Subroutine
Stack

ST

XST

These 2 four-bit registers are the pointers. They may be set
to any value from 0 to 13. They are used to point to digits in
the A, B, and C registers. Only one of the pointers may be
selected as the active pointer at any time. The active pointer
may be incremented or decremcnied by one. The active pointer
is sometimes referred to as the 'R’ register.

This is the program counter. It contains the address of the
MCODE instruction that is currently being executed. It may be
modified using certain instructions.

The subroutine stack has space for 4 pending returns. These
returns may be popped into the C register. Part of the C
register may be pushed onto the subroutine stack. This stack
should not be confused with the subroutine stack used for User
code programs.

This register interacts with the C register at the nybble
pointed to by the active pointer, and the next highest nybble.
If the nybble pointed to is 13, then wraparound occurs.

This is the flag register. Flags 0 to 7 reside in this regis-
ter. They may be set, cleared, and tested. The ST register
may be zeroed and exchanged with, or set equal to, nybbles 0
and 1 of the C register. Nybble 0 is flags 0-3 and nybble 1 is
flags 4-7. Note that these flags are independent from the User
flags of the 41, although they are frequently set to match User
flags 48 to 55.

This register contains CPU flags 8 to 13. XST cannot be
directly accessed by any other register. These flags may be
set, cleared, or tested.

Note on ST and XST: Flags 0-13 are also referred to as status
bits in HP documentation.
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KY This is the keyboard register. When a key is pressed, KY is
loaded with a two-digit hexcode from a table built into the CPU
(see the table on page 150). Part of registers C and PC may be
set equal to KY.

FI Peripheral flag register. These flags may only be tested by
the CPU. They must be set by a peripheral.

Carry This one bit is set when an overflow or underflow occurs. It
is also set if a test is true. After the carry is set, the
next MCODE instruction clears the carry, regardless of whether
that MCODE instruction tests the carry bit.

What follows is the ROSETTA STONE of MCODE programming. Figure 2 shows
the fields of a 56 bit register. These 56 bits are divided into 14 nybbles.
These are numbered 0 to 13 (starting from the right). The fields are used
extensively to operate on all or part of the A, B, or C registers.

Nybble: 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field: < ALL >
Field: <-MS->< M ><-XS8->
Field: < ADR ><--—- S&X ---->
Field: <-- KY -->

Figure 2

Note that these fields also function as postfixes for a number of instruc-
tions. Here are the functions of the fields in Figure 2:

Field Usage

ALL All 14 nybbles.
S&X Exponent and exponent sign (nybbles 0-2).
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XS Exponent sign only. (nybble 2)

M The 10 nybbles of the Mantissa (nybbles 3-12).

ADR Nybbles 3-6. This is where the address is taken from when a return
is pushed onto the subroutine stack; it is also placed here when a
return is popped from the subroutine stack.

KY Nybbles 3 and 4. This is where the contents of the KY register are
placed. C cannot be placed into KY.

@R At the nybble pointed to by the active pointer.

P-Q Uses the nybbles pointed to by each pointer. The nybbles used

depend on whether P is larger than Q. If P<=Q, digits P through Q
are used. If P>Q, digits P through 13 are used.
For example; if P=12 and Q=2 and we execute the instruction C=0 P-
Q, then nybbles 12 and 13 of C will be zeroed since P is greater
than Q. If the values were reversed, then nybbles 2 through 12
would have been zeroed. For the field designation P-Q it does not
matter which pointer is selected as the active pointer.

R< All digits from 0 through the digit pointed to by the active poin-

ter.

The last three items (@R, P-Q, and R<) are not actually fields. They are
postfixes to a group of instructions, as are the field definitions. These
last three can change position, and can not be rigidly defined as being in
one place (like the rest of the postfixes). Table 1, on page 27, contains
all of the prefix instructions for use with the postfixes mentioned above.
(By the way, a word about prefixes and postfixes. These are not before and
after fixes for something you may be considering to do or did do wrong,
rather they are descriptions of which half of the mnemonic is being
discussed. The first half is the prefix; the second half is the postfix.)

THE HARDWARE
The hardware accessory needed to program in MCODE is called a Machine Lan-

guage Development Lab, or MLDL for short. This device contains the neces-
sary electronics to interface at least one 4 Kilobyte block of CMOS RAM
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with one of the ports at the top of the calculator. The total amount of RAM
available for writing MCODE depends on the device.

At the present there are several popular versions of this box. One of
these, the ERAMCO MLDL, has 8K of RAM (two 4K blocks) and space for 24K of
EPROM (Erasable Programmable ROM). This device uses a hex code that the CPU
regards as a NOP to trigger its write mode. Reading and writing to this
device is very fast. However, in order to write MCODE to this device, you
must have software written in MCODE. The ERAMCO MLDL is supplied with
one 4K EPROM set to help you get started writing MCODE.

Another MLDL device is called the Protocoder II. This device uses the ABS
function in the calculator to trigger its read and write functions. Because
of this, it takes longer to read from and write to this unit. However,
programs will run at the same speed when they are executed in either device.
The main advantage of the Protocoder II is that software written in MCODE is

not necessary, it just makes things much easier.

For those of you with an adventurous spirit, Volume 9 Number 3 of the PPC
Calculator Journal contains schematics and instructions to build your own 4K
RAM MLDL (with provision for 4K of EPROM).

Another type of add-on for the 41 is the EPROM box. This box provides the
electronic circuitry enabling you to plug in EPROM (Erasable Programmable
Read Only Memory) chips into the interface box. The calculator sees these
as Application Pacs. With this capability you can write one-of-a kind ROMs
for only the cost of a set of EPROMSs (approx. $15 U.S.) and the cost of
burning (programming) the EPROMs. This is much cheaper than having a custom
ROM manufactured for you by HP (about $10,000+).

The ERAMCO MLDL comes with sockets that allow you to plug in up to 24K (six
4K sets) of these EPROMs. The Protocoder II requires the addition of an
extra board that addresses up to 16K of EPROM memory. A company called
Hand Held Products makes a variety of EPROM boxes. They even have one that
uses an HP Card Reader case. You can put up to 32K of EPROM in this device.
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A company called Corvallis MicroTechnology also makes an EPROM box that
only uses one EPROM instead of the usual two. This device can hold either
4K or 8K of ROM. CMT also makes a plug-in module that has an EPROM
built into it. This module looks exactly like a HP application pac except
for the window on one side. With this module there are no extra boxes or
extentions of the calculator. This module comes in 4K, 8K, and 16K
versions. For more information about these manufacturers see Appendix A.

THE SOFTWARE

In order to efficiently program one of these boxes, some sort of software is
needed to allow you to write to the RAM. This can be accomplished using
either hexcodes or mnemonics; however, the software for writing to the boxes
using hexcodes is much more prevalent. The main piece of software that you
will need is an assembler. An assembler takes the mnemonics (alphabetic
representations of what the hex instruction does) that you input and calcu-
lates the correct hexcodes to place into the RAM of your MLDL. A disassem-
bler will output these hexcodes, along with the corresponding mnemonics, to
a printer, video display, or the display of the 41.

The EPROM set that comes with the ERAMCO MLDL has the hexcode kind
of assembler. This EPROM set also contains many utility routines not
found elsewhere.

A 4K EPROM set written in Australia is known as the Assembler 3 EPROM.
This set contains a disassembler, as well as an assembler that can assemble
MCODE from mnemonics in the Alpha register. Working with the other func-
tions of this EPROM is also a delight.

The Nelson F. Crowle ROM (NFCROM for short), another such set, is for use
with the Protocoder II. It contains read/write functions for this device and

many other useful functions.

A new 4K EPROM came out in May of 1984 that allows you to key in mnemonics
from the keyboard. This revolutionary ROM is called DAVID ASSEM.
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In order to enter instructions directly from the keyboard, each key is
redefined with a mnemonic or mnemonic prefix (more on this later). This
EPROM makes MCODE program input as easy as keying in a User code

program.

With the use of software like this you should have no problem keying in any
of the routines in this book.

For those of you who have User code (RPN) programs that you wish to put into
your MLDL RAM, Phi Trinh has written a routine that will do this for you.
The only input required is the name of the User program you wish to load
into the MLDL. The routine compiles all GTOs and XEQs and has the most
complete error checking of any routine yet written for this purpose. This
routine is intended to be used only for creating User Code ROMs with your
MLDL. The ERAMCO MLDL EPROM also has a routine that is somewhat similar
to Phi’s. ERAMCO’s program allows you to mix MCODE and User code.

Instructions on how to use these software packages will not be covered in
this book. Review their respective manuals for specifics of operation.
The manufacturers’ addresses for these software packages may be found in

Appendix A.
SOURCE LISTINGS FOR THE HP-41’'S OPERATING SYSTEM

Another very important piece of software is the operating system that is
built into your HP-41. The so-called "mainframe" of the HP-41 contains 12
kilobytes of delicately interwoven MCODE programs that make the HP-41 what
it is. The mainframe contains many routines to read the keyboard, access
the display, and perform other frequently needed "housekeeping" functions.

Rather than write a complicated subroutine every time you need a
housekeeping function in your programs, you can simply execute one of these
mainframe routines as a subroutine from your program. The variety of
mainframe functions is practically unlimited. If what you want to do has a
counterpart in normal operation of the HP-41, chances are that the task
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exists as a subroutine in the HP-41’s mainframe.

A mainframe routine begins at an entry point. In order to correctly use
mainframe routines, you need to know the following:

1) The location of the entry point.

2) The initial conditions required, including which registers are used for
input, correct flag settings, mode and peripheral selection, etc. Some
routines require detailed setup; others do most of their own setup.

3) The routine’s register and subroutine stack usage.

4) The output specifications, including what values are output and where,
and how the routine ends (return to calling program, or return to the

operating system).

To get this information, you need a copy of HP’s annotated listings for the
operating system. These listings are commonly referred to as the VASM
listings (HP’s terminology). Appendix A has a list of organizations that
sell VASM listings. Don’t ask HP, because HP does not support MCODE.

All serious MCODE programmers should spend some time studying the VASM
listings. The listings will give you a much better idea of how the HP-41
works, and you are bound to run across some entry points that you can use
later in your programs. You’'ll also get an appreciation for the complexity
of this operating system, which was written by a team of 2 or 3 very skilled

programmers.
THE ROM ADDRESS SPACE

The 64 kilobyte (64K) ROM address space of the 41 is divided into 16 pages -
ecach of which is 4K in length. Each of these pages contains 4096 ROM words

that are each 10 bits long. The RAM that is used for User code programs is
not included in this 64K, since it is addressed in a different manner.

Some of these 4K pages have been allocated by HP for specific uses. A list
of how these pages are allocated is given below in Figure 3.
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Page Number Use Page Number Use

0 8 Lower half
Port 1

1 Mainframe 9 Upper half
ROMs Port 1

2 A Lower half
Port 2

3 Extended Func. (CX only) B Upper half
Not used (CV and C) Port 2

4 Service module or C Lower half
Disabled IL Printer Port 3

5 Timer Module D Upper half
Port 3

6 Printer ROM E Lower half
Port 4

7 HP-IL Control F Upper half
Functions Port 4

Figure 3

Note that the first 8 (0-7) 4K pages are reserved for specific purposes.
The upper 8 pages are the ROM address space into which we plug all of our HP
application PACs. If you plug a 4K ROM into port 1, it will use page 8.
This leaves page 9 inaccessible since nothing else can be placed into this
port.

THE ROM WORD
In the architecture of the 41, the ROM words are 10 bits long instead of the
conventional 8 bits. The nomenclature used in this book will list these 10-

bit words in hexadecimal (hex). In order to do this, 3 hex digits must be
used. All ROM words will be of the form:
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VNN  Where V can range from 0 to 3, and N can be from 0 to F.

There are alphabetic descriptions or mnemonics for each of these different 3
digit hex codes, but that’s the subject of another chapter.

HOW A 4K PAGE IS DIVIDED

In addition to assigning specific purposes to pages, HP has assigned speci-
fic purposes to individual address areas within each 4K page. The first
section of a 4K page assigns the XROM number, the number of functions, and
the addresses of the functions within the 4K page.

Let’s give the section of the ROM we are about to describe the acronym FAT,
short for Function Address Table. The first word, at address P00O, is the
XROM number. ’P’ is the page number (any value from 5 to F). The number at
this address, called the XROM ID, may be from 001 to O1F in hex (1 to 31 in
decimal). This is the first number that is displayed when you sce a
function displayed as an XROM. For example, the Standard Applications Pac
function CLSTK is displayed as XROM 05,01 when the ROM is not plugged in.
The 05 is the decimal equivalent of the hex number at address P00O.

The word at address POOI indicates the number of functions for that 4K ROM.
This number may range from 001 to 040 hex (1 to 64 in decimal). The
functions include any global labels from User code programs contained in the
ROM, as well as any MCODE functions that are programmed into the ROM. This
number also includes any headers that are in the ROM. A header is nothing
more than an MCODE function with a name that is between eight and eleven
characters. A ROM may have more than one header. An example of this is the
HP-IL module. It has two headers, -MASS ST 1H and -CTL FNS.

Now comes the tricky part. This next set of words is grouped into pairs.
They indicate to the calculator the address of the first executable instruc-
tion in a ROM routine, be it User code or MCODE. The words are of the
following format:
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Address Word Description

P002 UVW This pair of words specifies a function whose starting

P003 XYZ address is PWYZ. If U is zero, it is an MCODE function; if
U is two, it is a User code program. Digits V and X are
normally set to zero. W, Y, and Z correspond to the last
three digits of the starting address of the function.

P004 UVW This pair of words has the same format as the first pair
P005 XYZ except they point to the address of the second ROM
function.

We continue with this format of pairing the words together until all of the
functions in our ROM have an address in the FAT. The two words after the
last entry are set to 000. This signals to the calculator that the FAT has
ended. You may start putting your programs after these final two words in
the FAT.

Let’s do an example. This ROM will have two functions. The first one, a
User code program, will be located at address P119. A function written in
MCODE will be at address P387. The XROM number for our ROM will be 14
decimal (OE hex).

Address Hexcode Description

P0O00 00E This is the XROM number in hex. 00E is 14 in hex. We do
not want to put 014 here since this would be an XROM
number of 20 in decimal (014 in hex is 20 in decimal).

POO1 002 This is the number of functions in our ROM, as specified
above. It is also in hex. If we had 31 functions in our
ROM this hexcode would be 01F.

P002 201 Since this is a User code program the U digit is set to 2.
This tells the calculator to interpret the code starting
at this address as RPN instructions. Notice that the V
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digit is zero. The 1 corresponds to the W digit in the
starting address of the program.

P003 019 This is the second word of the two word set for the
address of the first program. The X digit is set to 0.
The 1 corresponds to the Y digit in the starting address,
and the 9 is the Z digit.

P004 003 This is the first word of the two word FAT set for an
MCODE function, so the U digit is set to zero. The V
digit is 0, and 3 is the W digit.

P0O05 087 Here is the second word of this FAT entry. The X digit is
0. The 8 is the Y digit and the 7 corresponds to the Z
digit.

Now come the two 000 words at addresses P0O06 and P007. You could start
programming immediately following these instructions, but you don’t have to.
It is advisable to leave space between the last FAT entry and your first
program so that more entries may be added to the FAT as you add more fun-
ctions to your ROM. If you were to start programming your ROM at address
P008, right after address P007, you would not be able to add any more
functions to the FAT, since there would be no space to insert two more words
into the FAT for the function. To leave room for a FAT containing the
maximum number of functions (64), begin your programming at P084.

The rest of the 4096 words may be used for programs, until we reach PFF4,
PFF4 to PFFA have been defined by HP as polling (interrupt) points. You
should always leave these set to zero unless you know exactly what you are
doing.

PFFB to PFFE are reserved for the ROM revision. The 4 hexcodes at these
addresses correspond to letters which are read in reverse order starting
with address PFFE. An example of this is the HP-IL Development ROM. The
revision is PD-1B. The -’ is put in the display by the ROM-checking pro-
gram. An example should help clarify this. Here are the words at addresses
PFFB to PFFE in the HP-IL Development ROM.
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Address Hexcode Alpha code

PFFB 002 B
PFFC 031 1

PFFD 004 D
PFFE 010 P

As you can see, the revision is read from the highest address, the address
with the highest number value, to the lowest address.

The last word in the ROM is reserved for the checksum of the ROM. It is
used by the Service Module and other modules to verify that a module is
good. It is not used by the HP-41 itself. The checksum is calculated by
adding the the total of all the words in the ROM up to, but not including,
the last one. Anytime there is a carry into the 11th bit (ROM words are
only 10 bits long) we add one to the total. To get the final checksum the
2’s complement is taken. With the correct checksum in place, this process
will give a result of zero if applied to all 4096 words.
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THE TOOLS

THE INSTRUCTION SET

And now, without further ado, the HP-41 Instruction Set!

Instruction
A=0

B=0

C=0

A<>B

C<>B
A=C

A=A+B
A=A+C
A=A+l
A=A-B
A=A-1

A=A-C
C=C+C

C=C+A

Function

Sets the part of register A specified by the postfix to zero.

Does the same as above, but for the B register.

Does the same but for C.

Exchanges the contents of the A and B registers, much like
the function X<>Y in User code.

Copies the specified field of the A register into the B
register. The old contents of B at that position are lost.
Exchanges the contents of the A and C registers. This is the
only direct way to place the contents of A into C.

Set C equal to B as specified by the postfix. The contents
of B remain the same. Only the C register is altered.

Exchange the contents of the C and B registers.

Set A equal to C. The contents of C remain unchanged. A is
changed as specified by the postfix.

Adds the A and B registers and puts the result into A. The
contents of B are undisturbed.

Same as above except use C instead of B.

Add I to A as specified by the postfix.

Subtract B from A. The contents of B are not disturbed. A
contains the result.

Subtract 1 from A as specified by the postfix.

Subtract C from A. The result is in A. C is not disturbed.

Add C to itself. This shifts all of the bits in the
specified portion of C left by one bit. This is commonly
used as a quick multiply-by-2.

Add the C and A registers. The result ends up in C; the A
register is left undisturbed.

225-



C=C+1
C=A-C
C=C-1

C=-C-1

C=0-C

7B#0
2C#0
7A<C

?7A<B
2A#0
7A#C
RSHFA

RSHFB
RSHFC
LSHFA

Add one to the C register as specified by the postfix.

Subtract C from A and put the result into the C register.
Subtract one from the C register.

Gives the 1I’'s or 9’s complement of the designated field,
according to whether the CPU is in hex or decimal mode. In
hex mode, each bit is inverted; in decimal mode each digit is
subtracted from 9. For example the 1’s complement of 1101 is
0010, and the 9’s complement of 43 is 56.

2’s or 10’s complement of the specified field, according to
the CPU mode (hex or decimal). This is the 1I's or 9’s com-
plement plus one. For example, the 2’s complement of EC is
13+1 = 14 hex; the 10’s complement of 67 is 32+1= 33 decimal.
Two’s complement is ordinarily used to represent negative
numbers in computers. In the HP-41, 10’s complement is used
for both the exponent and mantissa fields of numbers. For
example, an exponent of -54 is represented as 946 = 999-
054+1. The sign digit can actually be regarded as part of
the number under the 10’s complement convention.

Sets the carry bit if the specified field is not zero.

Same as above but for the C register.

Sets the carry bit if A is less than C. All register
comparisons are done on a hex basis, even if the CPU is in
decimal mode.

Sets the carry bit if A is less than B.

Sets the carry bit if A is not equal to zero.

Sets the carry if A does not equal C.

Shifts the A register right by one nybble. The rightmost
nybble of the section being shifted is lost and a zero is put
into the leftmost nybble.

Same as above but for B.

Same as above but for C.

Shifts the A register left by one nybble. The leftmost
nybble of the section being shifted is lost and a zero is put
into the rightmost nybble. The A register is the only
register that may be shifted lef't,
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POSTFIX
Instruction ALL S&X M R< @R MS XS P-Q

A=0 00E 006 0l1A 00A 002 0l1E 016 012
B=0 02E 026 03A 02A 022 03E 036 032
C=0 04E 046 05SA 04A 042 05E 056 052
A<>B 06E 066 07A  06A 062 07E 076 072
B=A 08E 086 09A 08A 082 09E 096 092
A<>C 0AE O0A6 O0BA O0AA 0A2 OBE 0B6 0B2
C=B 0CE 0C6 ODA 0CA 0C2 ODE 0D6 0D2
C<>B OEE 0OE6 OFA OEA O0OE2 OFE OF6 0F2
A=C 10E 106 11A  10A 102 11E 116 112
A=A+B 12E 126 13A 12A 122 13E 136 132
A=A+C 14E 146 15A 14A 142 15E 156 152
A=A+l 16E 166 17TA 16A 162 17E 176 172
A=A-B 18E 186 1I9A 18A 182 19E 196 192
A=A-1 1AE 1A6 IBA 1AA 1A2 IBE IB6 1B2
A=A-C ICE 1C6 IDA ICA IC2 IDE 1D6 1D2
C=C+C IEE 1E6 IFA 1EA 1E2 IFE 1F6 1F2
C=C+A 20E 206 2]JA  20A 202 21E 216 212
C=C+l1 22E 226 23A  22A 222 23E 236 232
C=A-C 24E 246 25A  24A 242 25E 256 252
C=C-1 26E 266 27TA  26A 262 27E 276 272
C=0-C 28E 286 29A  28A 282 29E 296 292
C=-C-1 2AE 2A6 2BA 2AA 2A2 2BE 2B6 2B2
7B#0 2CE  2C6 2DA 2CA 2C2 2DE 2D6 2D2
2C+#0 2EE  2E6 2FA 2EA 2E2 2FE  2F6 2F2
7A<C 30E 306 31A 30A 302 31E 316 312
?7A<B 32E 326 33A°  32A 322 33E 336 332
7A#£0 34E 346 35A 34A 342 35E 356 352
2A#C 36E 366 37A 36A 362 37E 376 372
RSHFA 38E 386 39A  38A 382 39E 396 392
RSHFB 3AE 3A6 3BA 3AA 3A2 3BE 3B6 3B2
RSHFC 3CE 3C6 3DA 3CA 3C2 3DE 3D6 3D2
LSHFA 3EE 3E6 3FA 3EA 3E2 3FE 3F6 3F2
TABLE 1
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All of the above instructions use the same eight postfixes. Table 1 gives
the hexcode of these instructions with these eight postfixes.

There is another class of instructions whose postfixes are numeric.

Instruction Description

READ n Reads the contents of a RAM register into C. RAM is divided
into 16 register blocks, or chips, that may be individually
selected (More on how to do this later.) A READ 3 instruction
would put the contents of the fourth register of that chip
into the C register (counting starts from zero). Allowed
values of n range from 1 to 15. There is no READ 0

instruction.

WRIT n Same as for a READ except the contents of C are written to the
specified RAM register. N ranges from 0 to 15.

RCR n Rotate register C right by n nybbles. N can range from 1 to
13.

SETF n Set flag n. The 14 flags are numbered from 0 to 13.

CLRF n Same as above but will clear the flag.

?7FSET n Sets the carry bit if the specified flag is set. All 14 flags
may be tested.

R=n Sets the active pointer equal to n (0 to 13).

7R=n Sets the carry bit if the active pointer is equal to n (0 to
13).

LD@R n Load the value n into the digit pointed to by the active

pointer. The active pointer is decremented by one to make
loading of consecutive numbers easy. This can only be done in
the C register.

?FI n Sets the carry flag if the specified peripheral flag is set.
Peripheral flags can not be set by the User; the peripheral
must set them. They range from 0 to 13.

SELP n Selects peripheral device n. The CPU is inactive during this

-28-



time while special instructions are being executed by the
selected peripheral.

Now we present a table of the hexcodes for all of these functions.

I
R w S C F L S
R E R R E L S ? D ? E
E A I C T R E R R @ F L
G. D T R F F T = = R I P
0T XXX 028 XXX 388 384 38C 39C 394 010 3AC 024
1 Z 078 068 33C 308 304 30C 3I1C 314 050 32C 064
2 Y 0B O0A8 23C 208 204 20C 21C 214 09 22C 0A4
3 X OF8 OE8 03C 008 004 00C 0IC 014 ODO 02C OE4
4 L 138 128 07C 048 044 04C 05C 054 110 06C 124
5 M 178 168 O0BC 088 084 08C 09C 094 150 OAC 164
6 N 1B8§ 1A8 17C 148 144 14C 15C 154 190 16C 1A4
7 O 1IF8 1E8 2BC 288 284 28C 29C 294 1D0O 2AC 1E4
8§ P 238 228 13C 108 104 10C 11C 114 210 12C 224
9 Q 278 268 27C 248 244 24C 25C 254 250 26C 264
10 2B8 2A8 OFC 0C8 0C4 0CC ODC 0D4 290 OEC 2A4
11 a 2F8 2E8 IBC 188 184 18C 19C 194 2D0 1AC 2E4
12 b 338 328 37C 348 344 34C 35C 354 310 36C 324
13 ¢ 378 368 2FC 2C8 2C4 2CC 2DC 2D4 350 2EC 364
14 d 3B8 3A8 XXX XXX XXX XXX XXX XXX 390 XXX 3A4
15 e 3F8 3E8 XXX XXX XXX XXX XXX XXX 3DO XXX 3E4

TABLE 2

Since we now have the hexcodes for the rcad/write instructions, we should
learn how the RAM of the calculator is structured. There are basically
three different parts: the status registers, main memory, and extended
memory. The status registers receive the most use in MCODE programs since
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they contain vital information about the structure of the rest of RAM. We
will now show two tables in figures 4 and 5. The first will be the memory
structure of the calculator as a whole, and the second will highlight the
status registers.
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Address

RAM

3FF

300

Extended Memory
#2

2FF

200

Extended Memory
#1

1FF

Top of Main Memory

top of User programs

.END.

0CO

I/0O Buffer area

Key Assignments

O0BF

040

Top of X-funct. X-Mem.

Bottom of X-Funct. X-Mem

Nonexistent Registers
(VOID)

00F

000

Status Registers

Figure 4
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Now a little explanation on Figure 4. The addresses on the left are the
absolute addresses of the register blocks starting from zero. They are
given in hex. The solid lines are fixed addresses; the dashed lines are
moveable address points. We will explain each section of the diagram,
starting from the top of the diagram and working our way down.

Name Description
Extended This is the location of the second set of extended memory
Memory #2 module registers in the addressing scheme of the calculator

RAM. The addresses of these registers are from 301 to 3EF.
There is one nonexistent register (300) at the bottom of the
module. The RAM at addresses 3F0 to 3FF arc used by some
peripherals and are NONEXISTENT for storing any data.

Extended Just like Extended Memory #2, except that the addresses are
Memory #1 changed to protect the innocent. The new addresses of the
RAM that exists are from 201 to 2EF.

Main Memory 1IFF is the top register in the Main Memory of a 41CV, 41CX,
or a 41C with a quad memory module. The bottom of Main
Memory is at address 0CO. The main memory is divided into
four major sections. They are: data registers, User
programs, the I/O buffer, and key assignments. If this order
isn’t always followed your calculator will probably lock up.
The data registers start at address 1FF and go down until the
imaginary line between data and program memory is reached.
The address of this line is kept in one of the status
registers (more on this later). The next area is where the
User programs that you write are placed. Then comes the
.END.. After this is the free register area, or I/O buffer.
These are the unused program registers. This area also
includes the buffers set up by some of HP’s ROMs, the most
famous being the Time module. This is the area where the
timer alarm information is stored. Right below these
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registers are the User key assignments. They start at
register 0CO and are pushed upward every time a new assign-
ment register is needed. These assignments do not include
those for programs in User RAM. Two assignments are put in

each register before a new register is used.

Extended This is the Extended memory that comes with the Extended
Functions/ Functions module. It is addressed from OBF to 040. There
Extended are no voids between this and main memory, as there are with
Memory the other extended memory modules.

Void A void occupies the RAM address space from 010 to 03F. These

registers are NONEXISTENT.

Here is a diagram of the 16 status registers located at absolute addresses
000 to O0F:
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Nybble 13 12 11 10 9 8 7 6 5 4 3 2 1 0

e Shifted Key Assign. Bit Map PTEMP2 Line #

T S User Flags
¢ |EREG start unused Cold start Reg, 0 adar. END.
o | Rewmsme 1 Prgm pointer
L Rewrnsmck
- | Unshiteed Key Assign. Bic vap Serateh
o Sratch
P | serateh  Alpha Characters 23 10 24
ol Alpha Characters 151021
o Alpha Characters 8 to 14
Ml Atphachanscters 107
o Last X Register
x| X Register
| yReser
2| ZRegse
vl rReser

Figure 5
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Here is how the registers listed in Figure 5 are used:

Register

Description

The 36 leftmost bits of this register are used for a shifted key
assignment bit map. When a shifted key is pressed while in USER
mode, the calculator looks in this register to see if the key
being pressed has been assigned. If the corresponding bit has
been set, then the search for the key assignment starts. If the
bit is not set, then the built-in (keyboard) function is
executed. Nybbles 3 and 4 contain a set of status bits from the
last partial key sequence (see Appendix C). The right three
nybbles store the current program line number.

This is the register where all 56 User flags of the calculator
are kept. Flag zero is on the left and flag 55 is on the far
right.

This register holds a number of interesting goodies. Starting
from the left, the first three nybbles are used as the absolute
address of the first register of the Statistics Registers. The
next two nybbles are not used by the calculator (they are used by
some custom ROMs). Nybbles 6, 7, and 8 are the cold start
constant. They are set to 169 hex. If changed from this value,
the calculator will give MEMORY LOST (no accommodations for
errant MCODE programming). The next three nybbles hold the
absolute address for data register zero. The last three nybbles
are the absolute address of the register in which the .END.
resides. Don’t mix this register up with the CPU C register.
You will notice that this is a small ¢ and the internal CPU
register is a capital C. This is an easy way to tell them apart.

The four rightmost nybbles of this register hold the pointer to

the address where you happen to be in program memory. The other
ten nybbles are the first two and one half return addresses on
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Last X

the user subroutine return stack. Each return address takes up
four nybbles.

This register is the last three and one half returns on the user
subroutine return stack.

The leftmost 36 bits of this register hold the unshifted key
assignment bit map. These are used in the same way as the bits
for the shifted keys in register e. The rest of the register is
used by the calculator as a scratch area.

This register is used by the calculator as a scratch register.
Scratch means that there is no set purpose for that register
area. It may have several different uses.

The eight leftmost nybbles are used as a scratch area. The other
six nybbles are the last three characters of the Alpha register
when there are 24 characters.

These three registers are the first 21 characters of the Alpha
register. The M register is filled with the first seven
characters. At the eighth character the N register starts
filling with characters. It will accumulate characters until we
get to the fifteenth character. Then the O register starts to
accumulate characters. It takes characters until there are 21 of
them. Finally, the P register takes the last three characters of
the Alpha register.

This is the Last X register and is accessed with the Last X
function.

This is the familiar X register where all of the numbers we see
are placed.

The second register in the RPN stack.
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Z The third register in the RPN stack.

T The top (fourth) register in the RPN stack.

If you don’t quite understand this the first time, read it a few times and
let the subject matter sink in. This knowledge will be very helpful for
creating simple MCODE routines. You might consult a copy of "HP-41
Synthetic Programming Made Easy" for more detailed information on the status

registers.

Here is a hexcode list of alpha characters displayable in the names of
MCODE functions.

CHARACTER TABLE FOR MCODE FUNCTION NAMES

o 1 2 3 4 5 6 7 8 9 A B C D E F

00 @ A B C D E F G HITIT J KL MNO

00l P Q RS T UV W X Y Z [ \ ]

~a

02 sp. ! " # % $ & ° () * + <« - -/
03 o 1 2 3 4 5 6 7 8 9 B , < = > 27
04 - a b ¢ d e - T 7T I xR x4 ¢ [ £

sp. = blank space
TABLE 3

Let’s look at how the name of a function is coded. The name of the function
is put in reverse order from what would be read. An example should help.
Let’s do the name for a Y<>Z function.
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Hexcode Letter

09A  'z"
03E "'
03C "<
O l 9 "‘Yll

start of executable code.

You will notice that the letters are in the reverse order from what we would
expect. They start with the last letter and work down to the first. Notice
that the last letter in the function name (Z) has hex 080 added to its
hexcode (09A = 01A + 080 in hex). This signals to the processor that this
is the last letter in the function name. Function names may be up to seven

characters in length.

Now we have the knowledge to write a Y<>Z routine. But first, let’s set up
our 4K block of RAM. First set your MLDL address switches to page 8 and
clear out the entire 4K block of RAM. The software you have probably has a
function to do this. Consult the instruction manual of your software
package on how to clear the RAM block.

We are going to use XROM 1, so the hexcode at address 8000 will be 001. We
shall leave space in the FAT for the maximum number of functions (64) or 40
hex, so that our ROM name can start at address 8084 (JJ*2+4, where JJ=40
hex). If you don’t want to be able to have 64 functions in your RAM, then
you just decrease the JJ number to however many functions you want and use
that hex number instead of 040 in the formula to find the address of the
first instruction. The name of our ROM shall be SKWID 1A. (At least 8
letters must be used so that the header will show up in the CAT 2 listing of
a CX. Up to 11 letters may be used in this name). The code for the ROM
name is shown in the following listing:
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Address Hexcode Letter or function

8000 001 XROM number in hex

8001 001 Number of functions in the FAT.

8002 000 Address of the first executable instruction in the ROM
8003 08C header.

8004 000 Indicates end of FAT.

8005 000

We now jump down to 8084 so that there will be room for
more entries in the FAT. This entire area is clear.

8084 081 "A" Recall that hex 080 is added to the hexcode

for the letter A.
8085 031 "
8086 020 "
8087 004 "D"
8088 009 "I
8089 017 A
808A 00B "K*"
808B 013 "S"
808C 3E0 RTN This is the return function, so that if this

function is synthetically entered into a
program, the function just executes the return
and acts as a NOP.

There is one entry in the FAT, as shown by the hex code at address 8001.
This is the ROM header. When you execute CAT 2 you should see SKWID 1A in
the display; if you don’t, make sure that you keyed everything in correctly.
We shall now write our Y<>Z routine. First we must update the FAT. The
number at address 8001 must be increased by 1 and the address of the first
executable instruction must be added to the FAT. Since the name is 4
letters long and the last instruction was entered at 808C, we will then add
5 to this address to come up with the address of the first executable
instruction for the FAT. 808C+5 is 8091 in hex, so the FAT now looks like
the following:

-39-



The rest of the FAT is zeros since there are no more functions.

Address

8000
8001
8002
8003
8004
8005

001
002
000
08C
000
091

Hexcode Function

XROM Number
Number of functions in the FAT.
Address of ROM header.

Address of Y<>Z function.

Now that

this is done we can get down to the real business of writing the Y<>Z

routine.

Address

808D

808E

808F

8090
8091

8092

8093

Hexcode

09A

03E

03C

019
0B8

10E

078

Mnemonic

nZn

"

<"
“YN
READ 2(Y)

A=C ALL

READ 1(Z)

"Y<>Z"

Description

Last letter of function name. Has hex 080
added to its hexcode.

The rest of the name is the next 3
hexcodes.

Put the Y register into C. We may now
manipulate the contents of the Y register
or save them for later usage.

Save Y, which is in C, in A. This will
allow us to use the C register for another
purpose. The choice of register A is
arbitrary; any of the other 56-bit CPU
registers would do just as well.

Put the Z into C. The old

contents of C, the Y register, are lost

register

from C. This is why we had to save them
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elsewhere.

8094 0AS8 WRIT 2(Y) We shall now write the Z register out to
the Y register. We can do this since Z is
in the C register.

8095 0AE A<>C ALL We now bring back the original contents of
the Y register to C. You can only write
to RAM registers through the C register.

8096 068 WRIT 1(Z) Put the contents of the original Y
register out to the Z register.
8097 3E0 RTN Return.

In case you’re wondering, the letter behind the number in the read and write
instruction 1is the letter of the status register that corresponds to that
number. This is used since these instructions are usually used only on the
status registers. The letters would not be appropriate for any other part
of RAM.

THE CPU FLAGS

The 14 flags of the CPU should not be confused with the 56 User flags that
are in the calculator. Flags zero to seven are contained in the ST regis-
ter. This register may be zeroed. It may also be set equal to, or ex-
changed with, nybbles zero and one of the C register. These flags may be
set, cleared, and tested. Flags eight and nine have no special meaning.
Although they may be set, cleared, and tested, they are contained in a
special register (XST) which we cannot access except by instructions that
manipulate the individual flags. Flags 10, 11, 12, and 13 are given a
special meaning by the CPU. Otherwise they share the same characteristics
as flags eight and nine. The designations of these flags are given below.
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Flag If Set

10 The User code program counter (contained in status register b) points
to a ROM program.

11 The RPN stack 1ift is enabled.

12 The User program pointer is in a private program.

13 A User code program is being run.

Now let’s write a program to show the use of some of these flags. The
program we will write is a "go to .END." program. This program will put
you at the top of the last program in User RAM. That is the one with the
.END. as its END. This is useful to avoid having to go through Catalog 1 to
get to the scratch area at the end of User program memory.

The strategy of this program is to execute the permanent .END. with no
pending return in the return stack, so that the program pointer will be set
to the top of the last program in User RAM. This is accomplished by forming
the address which points to the permanent .END., and placing it along with a
zeroed pending return in the status register b. CPU flag 13 is then set to
force the HP-41 to execute the .END. as a program instruction.

We now write the program to implement this procedure. It shall be called
GE. Here is the annotated listing:

IIGEII

Address Hexcode Mnemonic Description

8098 085 "E" Last letter of name. Hex 080 is added to
the hexcode for E.

8099 007 "G" First letter of name.

809A 378 READ 13(¢c) Get the address of the .END. register. It
is in nybbles 0-2 of c.

809B 05A C=0 M Zero the mantissa of register C. This is

nybbles 3-12. This clears the Ist return
so that the calculator will return control
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809C

809D

809E

809F

80A0

80A1

01C

0D0

0C4

2C8

328

3E0

R=3
LD@R 3
CLRF 10
SETF 13
WRIT 12(b)
RTN

to the keyboard when the .END. is
executed.

Set the active pointer to 3 so that the
required digit may be loaded into nybble
3.

Load a 3 into nybble 3 so that the first
byte of the .END. will be executed.

Clear flag 10 so that the calculator is
set to RAM.

Set flag 13 so the calculator thinks a
program is running, even if this routine
is executed from the keyboard. This will
allow us to execute the .END.

Write the address of the .END. to the b
register. This will put the program
pointer, which is in the last four nybbles
of status register b, at the first byte of
the .END.

Return.

Now that the routine is written the FAT must be updated. The first execu-
table instruction, Read 13(c), is at address 809A. So the update of the FAT
would be:

Address Hexcode Meaning

8000
8001

8002
8003
8004
8005
8006
8007

001
003

000
08C
000
091
000
05A

XROM number

This was increased to 3. This is the number of functions

in our sample ROM.
First ROM function. SKWID 1A header.

Address of Y<>Z function.

Address of GE function.
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That’s what the FAT should now look like. These two functions we’ve just
created may be used in programs and from the keyboard just like any of the
functions that are built into the calculator. However, the MLDL box they
are in must be plugged into your calculator at the time they are executed or
you will get NONEXISTENT in the display.

-44-



JUMPS and JUMPING

Okay everyone, now it is time for you to put on your bunny suits (in Aus-
tralia you may substitute Kangaroo suits), as we are going to introduce jum-
ping. There are two kinds of jumps. For those of you who like to travel
light, there is the Jump No Carry (JNC). Or, if you like to bring along the
kitchen sink, there is the Jump on Carry (JC). The length of the jump may
be up to 63 (3F in hex) steps forward (+) or 64 (40 in hex) steps backwards
(-). The Jump on Carry instruction will only jump if the step preceding it
sets the carry bit. Otherwise, the Jump on Carry instruction will be
treated as if it were a NOP. The same is true for the Jump No Carry, except
that the carry bit must not be set for the jump to occur. If the carry bit
is set, the JNC instruction will be treated as a NOP. Table 4 shows the
hexcodes for the JC and JNC instructions.

SKWID practicing his jumps.
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DIST JNC JC JNC JC DIST JNC JC JNC JC

ANCE - - + + ANCE - - + +
01 3FB 3FF 00B OOF 02 3F3 3F7 013 017
03 3EB 3EF (01B OIF 04 3E3 3E7 023 027
05 3DB 3DF 02B O2F 06 3D3 3D7 033 037
07 3CB 3CF 03B O03F 08 3C3  3C7 043 047
09 3BB 3BF 04B 04F 0A 3B3 3B7 053 057
0B 3AB 3AF 05B O0SF oC 3A3 3A7 063 067
0D 39B 39F 06B O06F 0E 393 397 073 077
OF 38B 38F 07B 07F 10 383 387 083 087
11 37B 37F 08B O08F 12 373 377 093 097
13 36B 36F 09B 0O9F 14 363 367 0A3 0A7
15 35B 35F 0AB O0AF 16 353 357 0B3 0B7
17 34B 34F 0BB (BF 18 343 347 0C3 o0C7
19 33B  33F 0CB OCF 1A 333 337 0D3 0D7
1B 32B  32F O0DB ODF 1C 323 327 0E3 O0E7
1D 31B 3IF 0EB OEF 1E 313 317 0F3 OF7
1F 30B 30F 0OFB OFF 20 303 307 103 107
21 2FB 2FF 10B 10F 22 2F3 2F7 113 117
23 2EB 2EF 11B 1IF 24 2E3 2E7 123 127
25 2DB 2DF 12B  12F 26 2D3 2D7 133 137
27 2CB 2CF 13B 13F 28 2C3  2C7 143 147
29 2BB 2BF 14B 14F 2A 2B3 2B7 153 157
2B 2AB 2AF 15B I5F 2C 2A3 2A7 163 167
2D 29B 29F 16B 16F 2E 293 297 173 177
2F 28B 28F 17B  17F 30 283 287 183 187
31 27B 27F 18B 18F 32 273 277 193 197
33 26B 26F 19B 19F 34 263 267 1A3 1A7
35 25B 25F 1AB 1AF 36 253 257 1B3 1B7
37 24B 24F 1BB 1BF 38 243 247 1C3  1C7
39 23B  23F 1CB ICF 3A 233 237 1D3 1D7
3B 22B 22F 1IDB IDF 3C 223 227 1E3 1E7
3D 21B 2IF 1EB 1EF 3E 213 217 1F3 1F7
3F 20B 20F 17F 1FF 40 203 207 XXX XXX
TABLE 4
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To use Table 4 the jump distance must be known. This is the 2-digit hex
number listed under distance. Next, you must decide whether the jump is a
JNC or a JC. Then look down the appropriate column and use the ones with
the + for forward jumps and the columns with the - for backward jumps.

Now we will introduce a few miscellaneous instructions. A table of their
hex codes and mnemonics is given below.

ST=0 3C4 XQ>GO 020 N=C 070
CLRKEY 3C8 POWOFF 060 C=N 0BO
7KEY 3CC SLCT P 0AO C<>N O0F0
R=R-1 3D4 SLCT Q 0EO LDI S&X 130
R=R+1 3DC 7P=Q 120 PUSH ADR 170
G=C 058 7LOWBAT 160 POP ADR 1BO
C=G 098 A=B=C=0 1A0 GTO KEY 230
C<>G 0D8 GOTO ADR 1E0Q RAMSLCT 270
M=C 158 C=KEY 220 WRITE DATA  2F0
C=M 198 SETHEX 260 READ DATA 038
C<>M 1D8 SETDEC 2A0 FETCH S&X 330
T=ST 258 DSPOFF 2E0 C=COR A 370
ST=T 298 DSPTOG 320 C=C AND A 3B0O
ST<>T 2D8 7C RTN 360 PRPH SLCT 3F0
ST=C 358 INC RTN 3A0 RTN 3EOQ
C=ST 398 C<>ST 3D8
TABLE 5

Explanations on how most of these instructions operate follows.

Instruction Description

ST=0 Clears the ST register (flags 0 through 7).

CLRKEY Clears the KY register. Usually followed by ?KEY. If a key is
still down then the keyboard flag will be immediately reset.
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KEY

R=R+l1

XQ>GO

POWOFF

SLCT P

SLCT Q

P=Q

72LOWBAT

A=B=C=0

If no key is being pressed the key flag will stay clear. An
example will be shown in the next program.

Sets the carry bit if there is anything in the KY register;
i.e., if a key has been pressed.

Decrements the active pointer by one.

Increments the active pointer by one.

Deletes the next return on the return stack and pushes the
other returns down one notch. 1i.e. the second becomes the
first return and the third becomes the second return. A 0000
is put in for the fourth return spot.

This instruction places the calculator into standby mode or
deep sleep depending on whether the display is on or off. If
the display is on then we go into standby mode, in which the
calculator is on and just sitting there doing nothing. If the
display is off then the result is the same as if we turn the
calculator off using the ON button. This instruction must be
followed by the 000 instruction. The PC register is reset to
0000 and the CPU stops there waiting for a key to be pressed.

Selects register P as the active pointer. Does not change the
value of either of the pointer registers.

As above but selects the Q register.

Sets the carry bit if the values of the P and Q registers are
the same.

Sets the carry bit if the battery voltage is low.

Sets the A, B, and C registers equal to zero.
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GOTO ADR Replaces the program counter (PC) register with nybbles three

C=KEY

SETHEX

SETDEC

DSPOFF

DSPTOG

7C RTN

INC RTN

LDI S&X

PUSH ADR

POP ADR

through six of the C register.

Places the contents of the KY register into nybbles 3 and 4 of
the C register.

Puts the CPU into hexadecimal mode. All calculations are now
done using the digits 0 to F.

Puts the CPU into decimal mode. All calculations are done
using the digits 0 to 9. However, register exchanges may still
be done with hex numbers while in this mode.

Turns off the display.

Toggles the display between on and off. This switches it to
which ever state it was not in before the instruction was
executed.

Return if the carry bit was set by the preceding instruction.

Return if the carry bit was not set by the preceding
instruction.

This instruction places the hexcode of the next ROM word into
the S&X field of the C register.

Places nybbles 3 - 6 of the C register onto the subroutine
stack. All pending returns are moved up one. The C register

is not changed.
Takes the Ist return from the subroutine stack and places it at

digits 3 - 6 of the C register. All of the remaining returns
are moved down one and 0000 is placed into the fourth return
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FETCH S&X

C=C AND A

PRPH SLCT

position on the stack.

Places the contents of the KY register into the last two
nybbles of the program counter (PC) register.

Uses the address in nybbles 3 - 6 of the C register to copy the
ROM word at that location into the S&X field of the C register.

Performs a logical OR of the A and C registers and puts the
answer in C. Looks at each bit position in both registers and
sets the corresponding bit in the C register result if it is
set in either the original C register or the A register.

Same as above except that both matching bits in the A and C
registers must be set in order for that bit to be set in the C
register. Neither of these functions disturb the A register.

Uses digits 1 and 0 of register C as the number of the peri-
pheral to select.

As an example, the program below is a counting program. It will count by

ones (in MCODE of course) from the moment the program is executed until a

key on the keyboard is pressed. We shall input the program to show the use

of some of the functions that are described above, and also to show how the

JC and JNC instructions work.

"COUNT"
Address Hexcode Mnemonic Description
"T" Last letter of the name of the routine
COUNT. Hex 080 is added to the hex code
for T.
"N" The next four words are the rest of the
name.
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80A4
80A5
80A6
80A7

80A8

80A9

80AA
80AB

80AC
80AD

80AE
80AF
80BO
80B1
80B2
80B3
80B4

015
00F
003
2A0

04E

23A

3CC
3F3

130
009

35C
11A
342
027
266
3FA
3E3

g
"0

ncn
SETDEC

C=0 ALL

C=C+1 M

7KEY
JNC -02

LDI S&X
HEX: 009

R= 12
A=C M
2A#0 @R
JC +04
C=C-1 S&X
LSHFA M
INC -04

Set the CPU so that counting will be in
decimal mode.

Zero C so that counting will start at
Zero.

Add one to the Mantissa of C. This is the
start of the counting loop.

If a key is pressed the carry bit will be
set, and the JNC instruction will act as a
NOP. If no key is pressed, the carry will
not be set and we jump back to the
beginning of the loop.

The largest exponent a 10 digit number may
may have is nine. This is loaded into the
exponent field. The number that we
counted up to is right justified in the
mantissa of C. If this number is not 10
digits long, we will decrement the expo-
nent.

Set the active pointer to the leftmost
nybble of the mantissa. This allows us
to check if this digit is zero. If it is,
we shift the whole mantissa left one and
subtract one from the exponent. If it is
not zero, the carry will be set and we
jump out (JC) to the rest of the routine.
The reason we check for leading
zeros, that is, the zeros in the leftmost
nybbles of the mantissa, is because the
number we counted up to is right justified
in the mantissa of C. We shift this left
to remove these leading zeros, if

necessary. If there are leading zeros, we
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loop around to check for more leading

zeros again.

80B5 3C8 CLRKEY Loop to check if the key that stopped the
80B6 3CC 7KEY counting has been released. If it is still
80B7 3F7 JC -02 down, the carry will be set during the

7KEY step. If it is not down, the ?KEY
will not set the carry, and the JC
instruction will not be executed.

80B8 0BA A<>C M Get back the mantissa and write out the
80B9 0ES8 WRIT 3(X) number to X. The exponent is in C so we

only need to retrieve the mantissa from A.
80BA 3E0 RTN Return.

To update the FAT you should increase the number at address 8001 from 003 to
004. The rest of the FAT update looks like the following:

Address Hexcode Description

8001 004 Number of functions in our sample ROM.
8008 000 First word of the address of the COUNT function.
8009 0A7 Second word of the FAT Address for COUNT.

Running this program on one calculator for 60 seconds produced an answer of
129,686. Compare this with 1,056 for a User code version of the same
program and the MCODE version is about 120 times as fast. This program
really shows you what kind of speed advantage can be enjoyed using MCODE.

We will now write another program, using jumps, that introduces a few more
instructions to your vocabulary. We shall introduce the: RAMSLCT, WRITE
DATA, and READ DATA instructions.

The RAMSLCT instruction uses the S&X field of register C for the number of
the RAM register to be selected. The number in the S&X field of C is
interpreted as a hex number, not a decimal number. First, some explanation
on how the User RAM is set up from the CPU’s point of view. RAM is divided
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into 16 register blocks, or chips, as they are known. The addresses of chip
xy are xy0 to xyF; xy may be from 00 to 3F (0 to 63 in decimal). Each of
these chips may only be accessed if a register in that chip has been
selected using the RAMSLCT instruction. The RAMSLCT instruction selects
both a chip and a register within that chip. If S&X of C is xyz, RAMSLCT
selects chip xy and register xyz. The 15 read/write instructions introduced
earlier will only operate on a register within the selected chip. In addi-
tion, the read and write instructions change the RAMSLCT pointer to the
designated register within the selected chip. Thus if chip xy is selected,
READ n or WRIT n will address register xyn and change the RAMSLCT pointer to
register xyn. Here’s an example to clarify this mess.

Hexcode Mnemonic Description

130 LDI S&X Load hex 0CO into C register S&X field. The RAMSLCT
0Co HEX: 0C0 instruction will then select this register (number
270 RAMSLCT 192). This is register zero of the selected chip

(the last digit in the hex number is the register
number in the chip that is selected).

OF8 READ 3(X) Reads the fourth register in this chip (decimal 195)
into the C register. The selected RAM register is
now 0C3. This would be the same if we used a write
instead of a read.

Sometimes we don’t know exactly where in a RAM chip we will be, and we can’t
have the RAMSLCT pointer being moved on us. How do we read or write to the
selected RAM register without moving the RAMSLCT pointer? We use the READ
DATA and WRITE DATA instructions. These instructions read and write data
between the C register and RAM without modifying the RAMSLCT pointer.

The READ DATA instruction is sometimes listed as READ 0 by some disassem-
blers. THIS IS INCORRECT! There is no such thing as a READ 0 instruction.
This was a mistake made by some of the early pioneers in the MCODE field,
working without factory documentation that appeared later.
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Disassemblers typically place a letter after the register number of each
read/write instruction. These letters correspond to the status registers,
and only apply if chip 0 is selected.

Next we will write a combination Alpha-to-Memory and Memory-to-Alpha
routine. These programs will take the four registers that comprise the
Alpha register and put them into User data registers. This data can not be
safely recalled from the data registers using the RCL function.

These routines are good for storing the contents of Alpha and then retriev-
ing the Alpha register unaltered. The routine will use four data registers
starting with data register 0. The next 3 data registers will also be used.
Fill the Alpha register with the desired characters. You now can execute
the AM (Alpha to Memory) function. Next, clear the Alpha register. Then
execute the MA (Memory to Alpha) function. The old Alpha data reappears.
That was pretty fast wasn’t it? One other note: this routine assumes that
you have a HP-41CX, HP-41CV, or a HP-41C with a quad memory module. Now
here’s the routine:

"AM & MA"
Address Hexcode Mnemonic Description
80BB 081 "A" Second letter of the Memory to Alpha name.
80BC 00D "M" First letter of the name.
80BD 248 SETF 9 We set this flag to tell which routine we

are executing. If it is set we are using
MA. If it is clear we are using AM.

80BE 023 IJINC +04 Jump to READ 3(X) instruction. We do this
so that the AM name is not executed as
MCODE instructions.

80BF 08D ™" Name for Alpha to Memory routine.
80C0 001 "A"
80C1 244 CLRF 9 Clearing flag nine means we are in AM

routine (sece address 80BD).
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80C2

80C3

80C4
80C5
80C6

80C7
80C8
80C9S
80CA
80CB

80CC

80CD
80CE

80CF
80DO0
80D1

80D2

378

03C

106
130
1FD

306
027
04E
OES8
3E0

39C

130
005

24C
013
0A6

270

READ 13(c)

RCR 3

A=C S&X
LDI S&X
HEX: 1FD

7A<C S&X
JC +04
C=0 ALL
WRIT 3(X)
RTN

R=0

LDI S&X
HEX: 005

?7FSET 9
JNC +02
A<>C S&X

RAMSLCT

Get the absolute address of data register
zero. It is in nybbles 3, 4, and 5 of
status register c.

Rotate the address of data register zero
into the S&X field of the C register.

Save the address of data register zero in
A. Load the highest absolute address that
can be wused without overflowing main
memory.

If A is less than C, then the registers
wanted will not overflow into extended
memory. The carry bit will be set and we
will jump out. Otherwise we will zero the
C register and write it out to X, so X
will be zero if we error. We then return
to the calling program without finishing
the routine.

Set active pointer to zero for use as a

counter.

Load the absolute address of the start of
the Alpha register. This is the M
register. As you remember, the other

three registers that comprise the Alpha
register are numbered 6, 7, and 8 (for N,
O, and P).

Check which of the two routines is being
run. Right now the address pointer to the
the Alpha registers is in C and the data
register pointer is in A. If we are run-
ning the MA routine then we want to
reverse this and not jump over the A<>C
S&X instruction. The register pointer in
C after this will be the one from which
the data is transferred.

Select the RAM register of the pointer in
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C. This is the beginning of the loop.
80D3 226 C=C+1 S&X Increment the register pointer of the RAM
register from which the data is being

transferred.
80D4 0E6 C<>B S&X Save the RAM register pointer in B.
80D5 038 READ DATA  Read the selected RAM register into C.
80D6 0AE A<>C ALL Exchange the data with the other RAM
pointer.
80D7 270 RAMSLCT Select the other set of RAM registers.

80D8 0AE A<>C ALL Get the data back and put the second RAM
pointer back into A.

80D9 2F0 WRITE DATA Write out the data to the selected regis-
ter.

S8ODA 166 A=A+1 S&X Increment the second RAM pointer.

80DB 3DC R=R+l Increment the active pointer.

80DC 0E6 C<>B S&X Put the first RAM pointer back into C.

80DD 054 7R=4 Have we been through the loop 4 times?

80DE 360 7C RTN Remember there are 4 registers that make

80DF 39B IJNC -0D up the Alpha register. If so, the carry

will be set and we return. Otherwise,
jump back to the beginning of the loop.

Well, that’s the end of the routine. Hope you liked it and learned how the
RAM registers may be selected and written to. For these routines there are
2 entries in the FAT. One for the MA routine and one for the AM routine.
It does not matter that the two routines are combined. The names must still
have an address in the FAT in order to show up in Catalog 2. The entries
into the FAT are shown below. The number at address 8001 should be in-
creased by 2 from 004 to 006 since we are adding two routines to the FAT.

Address Hexcode Description
8001 006 This is the number of functions in our sample ROM. Notice

it has been increased by 2 since the last time we modified
the FAT since we have two new routines.
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800A 000 First word of the address of the MA routine.
800B 0BD Second word of the address of the MA routine.
800C 000 First word of the address of the AM routine.
800D 0Cl1 Second word of the address of the AM routine.

Before we demonstrate the use of any more instructions, we need to introduce
a new subject area which will make our programming easier and far more
versatile.

ABSOLUTE EXECUTEs AND GOTOs

There are 4 different types of instructions in this group. If the last two
bits of the first word of an instruction are 01 then they fall into this
category. These instructions all use two words to form one instruction.
They differ based on how the last two bits in the second word are set. The
4 types of instructions are:

Instruction Mnemonic How it Works

INC XQ ---- This is the No Carry EXecute. This instruction will
only jump to the specified address if the carry bit
is not set when the instruction is executed. If
the carry bit is set the instruction is treated as a
NOP.

7C XQ ---- This is the EXecute on Carry. This instruction is
the same as the one above except the carry must be
set for it to jump.

INC GO ---- This is the No Carry GOTO instruction. It will go
to the specified address only if the carry bit is
not set when the instruction is executed. If the
carry is set it is treated as a NOP instruction.

7C GO ---- Here is the GOTO on Carry. This is the opposite of
the above instruction. If the carry bit is set the
instruction will go to the specified address.
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Don’t forget, the Carry bit is cleared by any instruction. To use a jump on
Carry, the Carry bit must be set by the instruction immediately preceding

the jump instruction.

The dash after each instruction is the address you want to GOTO/EXECUTE,
when the instruction is displayed as a mnemonic.

An EXECUTE is a subroutine call: it loads a return address onto the
subroutine return stack. A GOTO is merely an exit to a specified address.

If the first word that an EXECUTE branches to is the NOP 000, then that
instruction produces an immediate return. This feature of the EXECUTE
instructions allows calls to possibly nonexistent ROMs.

Now we will show you how these 4 instructions are put into hexcodes. The way
the CPU tells that the instruction is either a GOTO or an EXECUTE is by the
last two bits in the first word. If these are set to 0l the next word is
interpreted as the second half of a GOTO or EXECUTE instruction. The way it
differentiates between these is by the last two bits of the second word. A
table for the interpretation of these two bits is given below.

Instruction Value of bit 1 0
from 2nd word

INC XQ 0 0
?7C XQ 0 1
INC GO I 0
?C GO 1 1

Note that the 0 bit corresponds to the setting of the Carry flag (1 for
Carry set, 0 for Carry clear).

The numbers are the values of the last two bits of the second word of the

instruction, the two least significant bits. Now we will show you how the
rest of the instruction is formatted.
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Instruction Bit number 9876 5432 10

Value of the four bits 3 2
INC XQ 8432 first word 0011 0010 01

Value of the four bits 8 4
second word 1000 0100 OO

You will notice that after taking away the 0 and 1 bits we are left with the
digits from the address that we want in the remaining 4 nybbles. The first
hex digit of the address is in the 4 most significant bits (6 to 9) of the
second word. The second digit of the address is in the next 4 bits (2 to 5)
of the second word. Then we jump up to bits 6 to 9 of the first word for
the third digit of the address. That leaves bits 2 through 5 of the first
word for the last digit in the address.

Again, notice that bit 1 is zero and bit 0 is equal to one in the first
word. This signals to the CPU that the instruction is a GOTO/EXECUTE in-
struction. Since both bits 0 and 1 are zero in the second word, the CPU
knows that it is a ?NC XQ instruction. For a ?C XQ to the same location
only bit zero of the second word would have to be changed, since the address
information is coded in the same way for all 4 types of instructions. In
order to make the input of these instructions into your MLDL box easier, it
is recommended that you use an assembler to figure out the details of the
hexcode. This way, all you have to do is input the mnemonic, such as ?C GO
14E2. The assembler program does the rest.

These instructions are usually not used to EXECUTE or GOTO another part of a
routine that you are writing in MCODE. This is because if we put a ?NC XQ
8432 in our example ROM page and then move the page to another port, the
code we wish to execute will no longer be at address 8432. However, the
EXECUTE may still end up going there, sometimes with fatal results. There
is another kind of EXECUTE and GOTO for use within a 4K page, which will be

discussed later.
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The absolute EXECUTEs and GOTOs are used for accessing code in the
mainframe ROMs. These are the 12K of ROM that contain the code for con-
trolling the User portion of the calculator. They contain many useful
routines that may be used as subroutines in our programs.

If you remember, the MA and AM routines that we programmed earlier could
only save data in registers 0 to 3. Now we shall rewrite them to use some
entry points in the mainframe ROMs so that you can specify the first data
register to be used by entering its number in the X register.

We shall use two entry points, one to convert the number in X to a
hexadecimal number in the S&X field of C, and another entry point for the
NONEXISTENT error routine in case the registers that would be used are not
part of the calculator’s RAM memory. We still assume that you have a 41CX,
41CV, or 41C with a quad memory module. So let’s rewrite the routine.

"AM & MA" revised

Address Hexcode Mnemonic Description

80BB 081 "A" Name for the MA routine. Notice that the

80BC 00D "™M" address of the first executable instruc-

80BD 248 SETF 9 tion for each routine has not changed.

80BE 023 JNC +04 The first seven instructions are exactly

the same.

80BF 08D "M"

80C0O 001 "A"

80C1 244 CLRF 9

80C2 0F8 READ 3(X)

80C3 38D INC XQ This execute instruction accesses a sub-

80C4 008 02E3 routine that takes the number in C and
[BCDBIN] converts the number to its hexadecimal

equivalent in the S&X field of C. For
example, the conversion for 999 decimal
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would be 3E7. This mainframe entry point
is called BCDBIN (BCD to binary) in HP’s
annotated VASM listings for the operating
system of the 41.

80CS5 106 A=C S&X We save the result in A and get the
80C6 378 READ 13 absolute address of data register zero
80C7 03C RCR 3 from the ¢ register and rotate it into the
80C8 146 A=A+C S&X S&X field of C. We then add these two to

get the absolute address of the first data

register to which we will write.

80C9 130 LDI S&X Load the largest absolute address that can
80CA 1FD HEX: IFD be used without . overflowing main memory
when we store data in the following 3

registers.
80CB 306 2A<C S&X If A is less than C, the registers used
80CC 381 INC GO by the routine will not be NONEXISTENT, so
80CD 00A 02EOQ the carry will be set and the ?NC GO
[ERRNE] instruction will be ignored. If A is

greater than or equal to C, we go to the
entry point at 02EQ, called ERRNE (error -
NONEXISTENT), which is the NONEXIS-
TENT error message routine.

The instructions from 80CC to 80El1 have been moved down to 80CE through
80DF. This routine is much more versatile. In order to use it you just
place the number of the data register where you want to start saving data
into X, and place the Alpha characters to be saved into Alpha. Then just
execute the revised routine, and bingo, it’s all done.

THE NORMAL FUNCTION RETURN
Before a function is executed, a special return address called the Normal
Function Return is loaded into the CPU subroutine return stack; this is

address 00F0. The code at this address does the necessary processing that

is required after any function is executed. If you use all four levels of
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the subroutine return stack, this address will have been pushed off and you
will have to end your program by exiting to address 00F0. Otherwise, the
pending return will be 0000 if you try to finish with a RTN, and you will
end up at that address of the mainframe. This sends the 41 directly into
standby mode whether you should be there or not, and fails to do the
necessary processing that follows function execution. When this happens,
the calculator appears to have crashed, because the display freezes instead
of reverting to a default display such as the X-register. However, unlike
an ordinary crash, the calculator will respond to keystrokes, and you can
then conclude that your routine has not exited through the Normal Function
Return. You should place an ?NC GO 00F0 as the ending instruction of your
program instead of a return. If the calculator does not respond to
keystrokes, then you are in an infinite loop and something else is wrong
with your program.

Another interesting routine that we have provided for your programming
pleasure is an Invert Flag routine. This routine takes the number in X to
be the flag that you wish to invert. Invert means that if the flag was set
the routine will clear it; and if the flag was clear, the routine will set
it. The routine may be used with all 56 User flags (0 to 55).

This routine utilizes three mainframe ROM entry points. These are: BCDBIN
at address 02E3 (converts a decimal number into hexidecimal in S&X of C),
the clear flag routine at address 164D, and the set flag routine at address
164A. This program also introduces some other interesting tricks. It uses
the C=C+C ALL instruction to shift the C register left by only one bit at a
time. The other instruction that will be introduced is the C=C AND A
instruction. Its use will be explained with the routine.

IIIFII
Address Hexcode Mnemonic Description
80E2 086 "F" Name of routine.

80E3 009 "I
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80E4
80ES
80E6

80E7
80ES8
80E9
S0EA
80EB
80EC
80ED

80EE
80EF
80F0
80F1
80F2
80F3

80F4
80F5
80F6
80F7
80F8
80F9

OF8
38D
008

10E
130
037
0AE
1Cé6
381
00B

04E
226

1A6
O01F
1EE
3EB

OEE
3B8
10E
0CE
3B0
2EE

READ 3(X)
INC XQ
02E3
[BCDBIN]

A=C ALL
LDI S&X
HEX: 037
A<>C ALL
A=A-C S&X
?2C GO

02E0

C=0 ALL
C=C+1 S&X
A=A-1 S&X
JC +03
C=C+C ALL
JNC -03

C<>B ALL
READ 14(d)
A=C ALL
C=B ALL
C=C AND A
2C#0 ALL

Get the flag number from the X register
and convert it to binary in the S&X field
of C. This is the hex representation of
the decimal number that is in X (46
decimal would be 02E in hex).

Save the answer in A. Load S&X of C with
the largest value the number may have (55
decimal) because there are only flags 0
to 55 and for numbers over 55 the flag is
NONEXISTENT. Exchange the two numbers
and then subtract them. If the carry is
set, there was an underflow during the
subtraction and the number in X was
greater than 55. This causes us to go to
the NONEXISTENT error routine at 02EQ in
the mainframe ROMs. Otherwise, we
continue on with the routine.

We now have 55 minus the original flag
number in S&X of A. We zero C and then
add one to it. This sets only the least
significant bit of register C. Then one
is subtracted from S&X of A. This serves
as a counter for the number of times we
must go through the bit shifting loop. If
we have an underflow (0 minus 1) then the
carry will be set and we jump out of the
loop. The next step shifts the bit in C
one to the left and the following step
jumps back to the start of the loop.

In order to use the set flag and clear
flag entry points you need a mask with the
bit set corresponding to the flag that you
want to manipulate. This mask must be put
into B. Register A must contain the flag

register, which is register d of the RAM
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80FA 135 7C GO status registers. These conditions are

80FB 05B 164D met and then the mask is put back into C.
[XCF] We next AND it with the flag register
80FC 129 INC GO which is now in A. If the bit in the flag
80FD 05A 164A register that corresponds to the bit set
[XSF] in the mask is also set, then this bit

will be set. All other bits in the mask
are 0 so the answer when these are AND’ed
will always be 0. If the corresponding
bit is not set in A, then C will be
zeroed. We then check whether or not C is
0. If not, the carry will be set and we
want to go to entry point XCF (execute
CF), the clear flag routine (164D). If C
is 0 the flag was clear and we want to set
it; so, we go to XSF (execute SF), the set
flag routine (164A). The routine returns
through one of the mainframe flag rou-

tines.

Remember to update the FAT. We now have seven functions. The address of
the first executable instruction in this routine is at 80E4.

The next routine has a pair of functions HP should have built as standard
functions into the calculator. These are the FS?S and FC?S functions.
These functions are analogous to the FS?C and FC?C functions built into the
calculator. They leave the specified flag set and check to see whether the
test is true or not. If it is not true, one step is skipped in a running
program. A YES or NO will appear in the display if they are executed from
the keyboard.

We have another one of those handy entry points to help in these functions.
The only difference is that our routines take the flag number from X, while
the HP routines prompt for the flag number. One advantage of our routines
is that they work on all 56 flags. HP’s only work for flags 0 to 29. These
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programs use the FS? and FC? routines in the mainframe ROMs. They test the
flag and automatically skip a step in a program if the test is false. They
share a lot of code with the IF routine as well. We will leave the combi-
ning of these two routines as an exercise for you to do. The combination
takes a total of 60 words. See if you can match this. For now, here are
the FS?S and FC?S routines.

"FS?S & FC?S"

Address Hexcode Mnemonic Description

80FE 093 "s" Name for the FS?S routine.

80FF 03F "

8100 013 "S"

8101 006 "F"

8102 244 CLRF 9 This flag is used to tell which routine is

being executed. Clear is the FS?S routine
and with flag nine set the FC?S routine as
being executed. This flag is used later
in the routine to figure out which routine

was executed.

8103 033 IJINC +06 Jump over the FC?S name to the READ 3(X)
instruction.
8104 093 "s" Name for the FC?S routine.
8105 03F "
8106 003 "C"
8107 006 "F"
8108 248 SETF 9 See the description for the CLRF 9
instruction.
8109 0F8 READ 3(X) Get the flag number from the X register.
810A 38D INC XQ Convert the flag number to hex in S&X of
810B 008 02E3 C.
[BCDBIN]
810C 106 A=C S&X Save this in A. Then load the largest
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810D
810E
810F
8110
8111
8112

8113
8114

8115
8116
8117
8118

8119
811A
811B
811C
811D
811E

811F
8120
8121
8122
8123

130
037
0AE
1C6
381
00B

04E
226

1A6
O0IF
1EE
3EB

10E
OEE
3B8
070
370
3A8

0BO
10E
24C
169
047

LDI S&X
HEX: 037
A<>C ALL
A=A-C S&X
2C GO

02E0
[ERRNE]
C=0 ALL
C=C+1 S&X

A=A-1 S&X
JC +03
C=C+C ALL
JNC -03

A=C ALL
C<>B ALL
READ 14(d)
N=C
C=COR A
WRIT 14(d)

C=N

A=C ALL
?FSET 9
7C GO
115A

possible flag number (55) into S&X of C.
Exchange the number of the flag to be
tested and the highest possible flag num-
If the

underflow

ber. These are then subtracted.
carry is set, we will have an
since the flag number to be tested is
greater than 55 (037 hex) and we will go
to the NONEXISTENT routine. Otherwise,
we have the number of times we wish to go
through the bit shifting loop in the S&X
field of A. We now have a counter for the
number of times we wish to move the bit in
the mask over from the rightmost position.
We first zero C and set the rightmost bit
using the C=C+1 instruction.

This is the mask making loop. We want to
set the bit that corresponds to the number
in X. If A is zero (55 minus 55), then an
underflow will occur and the carry will be
set and we jump out of the loop. If
there is no underflow, we shift the bit
left by one and jump back to the start of
the loop to try again.

Save the mask in A. Then put it into B
for later use by the mainframe routines.
Get the flag register. We save this in N
for later use. The flag register and mask
are ORed so that the mask bit will be set
in the flag register. This is then writ-
ten out to the flag register.

Get back the original flag register con-
tents and place them into A for use with
Check to see

which routine is being executed. These

the mainframe routines.

routines require that the flag register is
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[FC?] in A and that the mask is in B upon entry

8124 115 INC GO to them. If the carry is set we GOTO the
8125 05A 1645 FC? routine (115A). Otherwise we GOTO the
[XFS?] XFS? (eXecute FS?) entry point (1645).

The programs return through these main-

frame routines.

Don’t forget to update the FAT. These two programs are combined into one.
But we still need two entries in the FAT to be able to access both of the
routines. Here is what the FAT should look like.

Address Hexcode Description

8010 001 Since the third digit from the right of the address of the
FS?S routine is not zero we have to put the number of this
digit into the rightmost digit of the first word of the
two word FAT entry (see page 20). The starting address
for this routine is 8102.

8011 002 The last two digits of this word are the last two digits
of the address of the FS?S routine. This is no different
than the entries we did before.

8012 001 The purpose of this word is the same as the one at address
8010 except that the second word of the two word FAT set
will be different. It will be the starting address of the
FC?S routine.

8013 008 These are the two rightmost digits of the first executable
instruction in the FC?S routine.

Remember to update the word at address 8001. This tells the calculator the
number of entries in the FAT. It is now 009.

The next routine uses an entry point called GENNUM (generate number) in the
mainframe ROMs to decode a 3 digit hex number into decimal. This entry
point is at address O5E8 in the mainframe. This routine takes a binary
number in the S&X field of the A register and converts it to a decimal
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number. The answer ends up in the mantissa of the A register. However,
things are never simple and this routine is no exception. It does not place
an exponent on the decimal number, and in addition leaves garbage in the
rest of A. Since the mainframe routine assumes that the display is selec-
ted, a nonexistent chip must be selected in order to keep the mainframe
routine from writing to RAM registers. The number of digits output by the
routine can be from 1 to 4. In order to guarantee a fixed number of output
digits, a number from 1 to 4 is placed in the mantissa sign of A as an input
to the routine. We shall use the number 4 to provide a 4-digit result
(possibly with leading zeros). Basically, that is all there is to the
routine; it is called BIN-BCD (binary to binary coded decimal).

v
SRe
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Address

8126

8127

8128
8129
812A
812B
812C
812D

812E
812F
8130
8131

8132
8133

8134

8135
8136

8137

8138
8139

813A

Hexcode Mnemonic

084

003

002
02D
00E
009
002
0F8

106
130
010
270
2DC
110
11E

3A1
014

0AE

11C
04A

270

nDH

"Cll

l|B"
'lN"
"I"
I'B'l
READ 3(X)

A=C S&X
LDI S&X
HEX: 010
RAMSLCT
R= 13
LD@R 4
A=C MS

INC XQ
05E8
[GENNUM]
A<>C ALL
R=8

C=0 R«

RAMSLCT

"BIN-BCD"

Description

Last letter of the routine name with hex
080 added to its hexcode.
The next six words are the rest of the

routine name.

Get the number to be decoded from the X
register.

Put the number into the A register.

Load the address of a nonexistent RAM chip
into the S&X field and RAMSLCT it.

Set the pointer to the mantissa sign so
that a 4 may be loaded. This number will
be put into the A register. The mainframe
routine uses this number to set the number
of output digits. If the number output is
not 4 digits, leading zeros are inserted.
Execute the mainframe routine to do most
of the dirty work. The result is in the
mantissa of A.

Put the answer into C. Set the pointer to
8. The of the

mantissa of the answer will be in nybble

least significant digit
9. Zero register C from digit 8, the
digit pointed to by the pointer, to digit
0.

Select the RAM status registers, chip O.
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813B
813C
813D

813E
813F
8140
8141
8142
8143

8144
8145
8146
8147
8148
8149

39C
0D0
010

0AE
342
027
3FA
1A6
3E3

0AE
2FA
017
04E
OES8
3E0

R=0
LD@R 3
LD@R 0

A<>C ALL
7440 @R
IC +04
LSHFA M
A=A-1 S&X
INC -04

A<>C ALL
7C#0 M
JC +02
C=0 ALL
WRIT 3(X)
RTN

The S&X field of C was zeroed by the
previous instruction.

Set the pointer equal to 0 so that we may
load in the exponent. Remember the main-
frame routine does not provide this. The
possible is 3. Four
The man-

largest
decimal digits are i.jkl * 103.

exponent

tissa sign is then zeroed because garbage
is left there by the routine. Remember
that LD@R decrements the pointer by one.
After loading the value 3 in nybble zero,
we wrapped back around to nybble 13, the
mantissa sign digit.

Put everything back into A. Check to see
if there are any leading zeros in the
mantissa of A. If there are no leading
zeros, jump out (the carry will be set).
Otherwise, we can shift out any leading
zeros in the mantissa (nybble 12 will be
zero) using the LSHFA M instruction. We
decrement the exponent by one since there
is one less digit in the mantissa than
before. We loop around again to check
for more leading zeros in the mantissa.
Put the final answer into the C register.
Check to see if the mantissa is zero. If
If not
zero, the carry will be set and we jump
to the WRIT 3(X) instruction and return.

If the mantissa is zero, then zero the

it is the exponent will be FFF.

whole C register, write it out to X, and

return.

Don’t forget to update the FAT. We now have ten functions. The hexcode at
address 8001 would be 00A (ten in hex), not 010 (which is sixteen).
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The way you may use the above routine, in a program or from the keyboard, is
to put the number you want to decode into X. The last three nybbles of
whatever is in X will be decoded and placed into X. For example, if the
number in X is 987234.92 the BIN-BCD routine will give an answer of 5. This
is because the exponent of this number is 5 and the exponent sign is zero.
The S&X field of X upon entry would be 005 in hex.

However, the real use of this routine is as a subroutine to decode binary
numbers that we get as results in MCODE routines that we write. Our next
routine is a Free Register Finder routine. It finds the number of empty
registers below the permanent .END.. This result is the same number you see
after you key GTO .. in program mode. The routine is very short (only 3
words long) and shows the power of MCODE. In particular, it illustrates how
useful the BIN-BCD routine can be.

npon

Address Hexcode Mnemonic Description

814A O0BF " Name

814B 006 "F"

814C 285 INC XQ This routine in the mainframe calculates

814D 014 05A1 the number of free registers left (MEMory

[MEMLFT] LeFT). No inputs are nceded. The answer

is given in binary form in the S&X field
of C.

814E 303 JNC -20 This jump goes back to the A=C S&X in-
struction at address 812E of the BIN-BCD
routine. This routine will decode the

contents of the S&X field of C and put the
answer into the X register.
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Many of the outputs from routines in the mainframe ROMs are in binary
format. We need this routine, or one like it, to decode the binary form to
decimal so we can output it to the X register for use in our programs.
Don’t forget to update the FAT. We now have 11 functions in our sample ROM.

Now, what about taking decimal numbers from the X register and converting
them to binary? This can be done in 2 ways. The easiest way, as we have
seen is to execute the routine in the mainframe ROMs at address 02E3. But
what if we want to code a number greater than 999 into the S&X field of X?
After all, 3 hex digits may be a number as large as 4,095 (FFF). To do so
we must write our own routine to decode numbers greater than 999. This
routine will decode numbers from 0 to 9,999. For numbers greater than 4,095
the answer will be the remainder of the original number divided by 4,096.
This conversion routine is called BCD-BIN.

"BCD-BIN"

Address Hexcode Mnemonic Description

814F 08E "N" Last letter of the name. Notice that hex
080 is added to the hexcode for "N".

8150 009 " Now come the next six letters.

8151 002 "B"

8152 02D "

8153 004 "D"

8154 003 "C"

8155 002 "B"

8156 0F8 READ 3(X) Get the decimal number to be converted and
put it into C.

8157 10E A=C ALL Save the integer number in A for later

8158 1BE A=A-1 MS use. Check for alpha data. If the number

8159 1BE A=A-1 MS is alpha data, then the mantissa sign will

815A 389 2C GO be 1. By subtracting 1 twice, we first

815B 053 14E2 hit zero then create an underflow (sub-
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815C
815D
815E
815F
8160

8161
8162
8163
8164

8165
8166

8167

8168
8169
816A
816B
816C

130
004
306
289
002

266
0AE
366
023

38D
008

07B

27C
11A
05A
3El
008

[ERRAD]

LDI S&X
HEX: 004
7A<C S&X
INC GO
00A2
[ERROF]

C=C-1 S&X
A<>C ALL
7A#C S&X
JNC +04

INC XQ
02E3
[BCDBIN]
JNC +0F

RCR 9
A=C M
C=0 M
INC XQ
02F8
[GOTINT]

tract 1 from 0) which will set the carry
if the mantissa sign is 1. The GOTO is to
the ALPHA DATA error message (ERRAD =
ERRor - Alpha Data) only if the carry is
set.

Load the exponent that the number cannot
be greater than or equal to (exponent for
10,000). Then check to see if the
exponent of the decimal number is less
than this number. If it is less, the
carry will be set and the next instruction
will not be executed. However, if the
carry is not set, the instruction will be
executed. This instruction is a GOTO to
the OUT OF RANGE error message (ERROF =
ERRor - OverFlow).

Now we check if the number is less than
1,000 (the exponent is 2 or less). If the
exponents are not equal (3) then the
number is less than 1,000 (the exponent
will be 0, 1, or 2). The carry will be
set and the JNC is treated as a NOP.

If the carry is set we end up here. We
execute the BCDBIN routine in the
mainframe and then jump to the spot in our
routine that clears the rest of C and
writes it to X.

If we got this far we know that the number
is between 1,000 and 9,999; i.. it is 4
digits long. The mainframe subroutine
will only take up to 3 digits. So we peel
off the 1000’s digit and save it in the
last nybble of the mantissa of A by ro-
ating it to nybble three of C and then
saving it in A. We must then zero the
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816D
816E
816F
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179

Make sure that you update the FAT. There are now 12 functions.

106

01C
130

3E8
1A2
146

1A2
3F3
0A6
05E
05A
OES8
3EO

A=C S&X
R= 3

LDI S&X
HEX: 3E8
A=A-1 @R
A=A+C S&X
A=A-1 @R
JNC -02
A<>C S&X
C=0 MS
C=0 M
WRIT 3(X)
RTN

mantissa of C because the subroutine at
02F8 requires this. The last three digits
of the original decimal number are now in
the S&X field of C. The GOTINT subroutine
then converts them to binary in the S&X
field of C.
Save the binary equivalent of the last 3
digits in A. The number of 1000’s to add
to this number is in nybble 3 of A. We
load 1,000 into the S&X of C. We subtract
1 from the 1000’s counter and add 1,000 to
If there
the carry will

the answer in A. are no more
1,000’s to add,
(there will be an underflow) and we will
If the

around to

be set

not jump back to add more 1,000’s.
carry is not set we will loop
add more 1000’s until it does get set. We
then place the answer in the S&X of C so
that it may be written out to X. The
mantissa and its sign are cleared to get
rid of extraneous digits. We then write
the answer out to X so we it may be used
in some way by one of our User code pro-

grams.

The last

entry in the FAT should look like this:

Address

8018

8019

Hexcode Description

001

056

The first word of the FAT entry for BCD-BIN. The number
is one because we have now recached the portion of RAM

where there is not a zero in the third digit from the

right in the starting address of the routine.

This is the 2 least significant digits of the address.
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Now let us go on to another subject: how to call a routine as a subroutine
from another program in our example ROM.

RELATIVE EXECUTEs and GOTOs

In order to call any program as a subroutine from another MCODE routine in
our example ROM, you must use a 3-word execute instruction. These
instructions are known as relative executes. This is because it does not
matter in which page the MCODE routine resides; the execute statement will
always jump the same number of steps ahead or back and then return. The
absolute executes that we described before always jumped to the same place
regardless of the location of these instructions. These relative execute’s
and goto’s are usually referred to as Port Dependent Execute’s and Goto’s.
A drawback to this type of execute is that the C register is used by the
routine that computes the branching address. Now for an explanation on how
these three words are coded. The CPU of the 41 does not contain any three
word instructions, so we shall describe how we come up with the mnemonics
for them.

First, a discussion of how ROMs are divided up by these instructions. The
4K ROM page is divided into four blocks of 1024 words each. These 1024 word
blocks are known as quads. The beginning addresses of each of the quads are
at P000, P400, P800, and PCO00 (in our example P = 8). The quads are numbered
from zero to three. The first two words of the instruction is a subroutine
call to a routine in the mainframe. There are 5 such routines. The first
four handle subroutine calls to a specific quad. They take the third word of
the execute instruction and add it to the number that is the start of their
quad. The fifth entry point is used only when the subroutine being executed
is in the same quad as the execute instruction. All five of these executes
may only be of the No Carry execute variety. The hexcodes of these five
entry points are given below.

In order for these relative execute’s and goto’s to properly function, the
CPU must be in HEX mode, or you WILL end up at the wrong spot.
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Hexcodes Description

349 This is the routine you call when you want to use an execute

08C statement to access code in quad 0. This is at addresses 8000 to
83FF. The third word would be the 3 least significant digits of
the address being called. For example, on a call to 8291, the
third word would be 291.

36D This is the code for the first two words of a call to quad I,

08C which is at addresses 8400 to 87FF. The third word is the number
of words after address 8400 at which you want to start executing
the code. An example: for an execute to 8567 the third word would
be 167 (167 + 8400 = 8567 in hex).

391 These are the hexcodes for the first two words of an execute

08C statement that calls a subroutine in quad 2. These are at
addresses 8800 to 8BFF. The third word is added to 8800 to get
the starting address of the subroutine that is being called.
Therefore, to call a subroutine at address 8BFE, hex 3FE would be
the third word of the instruction (3FE + 8800 = 8BFE).

3B5 These are the hexcodes for subroutine calls to quad 3, at

08C addresses 8C00 to 8FFF. The third word is added to 8C00 and the
value for the starting address of the subroutine is obtained. For
example, to execute code at 8E34, the third word would be 234
(234 + 8C00 = 8E34).

These instructions are subroutine calls themselves, and each uses an
additional subroutine call of its own. They can therefore only be called
when there are no more than two pending returns in the subroutine return
stack. Otherwise the third and fourth subroutine returns, if any, will be
lost. Don’t confuse this with the User subroutine stack of the calculator.
This is the CPU subroutine return stack, and may only have four pending
returns, not six like the User subroutine stack.

The fifth set of hexcodes has the advantage of not using the additonal
subroutine level required for each of the above types. This means that you

-76-



can have three pending returns on the subroutine stack. However, its use is
restricted to branches within the same quad. Also, it destroys the C
register just like the other four types of calls. Here are the hexcodes and
a description of them.

Hexcodes Description

379 This pair of words is always the same regardless of which quad is

03C involved. The third word is the difference between the address of
the first word in the quad you are in, and the address of the
subroutine you are calling. For example, if you are in quad 2
(8800-8BFF), and the subroutine is at 8964 then the third word
would be 164 (8964 - 8800 = 164). A call to a subroutine outside
of quad 2 if the subroutine call originates from inside quad 2
would have to use one of the instruction hexcodes described above.

All addresses have been given with the most significant digit being 8 since
our sample ROM is in page 8. However, this digit may be changed to any
other page without affecting any of the values of the hexcodes.

If you want a relative GOTO instruction, then subtract hex 008 from the
first word of the three word instruction. This only applies to the first
four hexcode sets. For the last one given subtract hex 010 from the first
of the three words. The interpretation of the third word is the same as for
the execute instructions. These relative GOTO’s use only one subroutine
level, so each allows three pending returns on the stack. Again, to make
things easy on yourself, it is highly recommended that you get an assembler.

There are actually no three word instructions in the instruction set of the
41 CPU. The relative execute’s and goto’s are disassembled correctly by
most dissassemblers since whomever wrote the dissassembler knew that the
five entry points mentioned above would use the ROM word directly after them
to form a relative jump instruction. This type of dissassembly is called a
MACRO. The actual instruction dissassembled is a combination of two or more
instructions. The HP mainframe ROM listings use C=A even though there is no
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such instruction in the CPU instruction set. The actual dissassembly is
A<>C, A=C.

Now we shall use one of these execute instructions to modify the BCD-BIN
routine that we just wrote so that it may be used as a subroutine by other
programs in our sample ROM. It may be called as a subroutine right now as
is, except that it overwrites the decimal number in the X register with the
hex equivalent of the original number. Since it would be nice to leave the
X register alone as much as possible, we will modify the routine so this
won’t happen.

"BCD-BIN" revised

Address Hexcode Mnemonic Description

814F 08E "N" Name of the routine.

8150 009 "I

8151 002 "B"

8152 02D "

8153 004 "D"

8154 003 "C"

8155 002 "B"

8156 379 This is the call to the entry point in our
8157 03C GOSUB ROM which is at 815B. This is just the
8158 15B 815B BCD-BIN routine without the WRIT 3(X)
8159 0ES8 WRIT 3(X) instruction as the second to last step.
815A 3E0 RTN Instead, this step 1is placed after the

subroutine call and will be executed when
the routine returns.

815B OF8 READ 3(X) This is the entry point to be used by
815C 10E A=C ALL other programs in our ROM. The rest of
815D 1BE A=A-1 MS the routine is the same from this point
815E 1BE A=A-1 MS on until we get to the second to last
815F 389 2C GO step of the original routine. The WRIT
8160 053 14E2 3(X) instruction should be removed and the
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[ERRAD] RTN instruction should be moved up 1 word
So essentially the rest of the routine is

just moved down by 5 words.

SKWID relaxing after a hard day of MCODE
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TIPS, SHORT ROUTINES, and OTHER LITTLE GOODIES

This section will cover some exciting ways of programming useful functions
that HP did not provide in the calculator. We will discuss how to shift
bits right in the C register (you already learned how to shift bits left in
the IF routine) and some other interesting tidbits.

In our first tip we will shift the C register right by one bit. In order to
do this the following sequence of instructions are used.

Mnemonic Description

C=C+C ALL We shift the C register left by three bits (use C=C+C
C=C+C ALL three times) and then shift right by one nybble. The
C=C+C ALL end result is that the bit(s) are shifted right one.
RSHFC ALL However, this does have its drawbacks. If there is a

bit that is within the last three bits of the left
side of register C when we start this sequence, then
that bit will be lost (because it will cause an
overflow when you do C=C+C with the leftmost bit
set). So this routine does not work for the three
Ieftmost bits of C.

The above sequence can be done on all or part of the C register. The same
rules apply. The three leftmost bits of the field should be zero.

Some of you computer scientists will appreciate this next short routine. It
is an XOR routine. HP gave us functions for AND and OR, so why not make one
for EXCLUSIVE OR? The XOR function is a bit flipping function. We
synthesized this in the IF flag routine by using calls to the mainframe
ROMs. However, what if you want to do an EXCLUSIVE OR on the whole 56 bits
of two registers? You should use the eight word routine below. This routine
uses the A, B, and C registers. There are two inputs: the number to be
changed, and the mask against which it will be compared. At the start the
mask is in C and the number to be changed is in A. The way this routine
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works can best be illustrated by an example. For this example let’s use
just eight bits. The number to be changed will be 01001110 and the mask
will be 00111011. The only bits that get inverted from their original
position will be the ones that correspond to a bit in the mask that is equal

to one.

bit number 76 543210
Mask 00111011
Number 01001110
Since bits 0, 1, 3, 4, and 5 are one in the mask, these bits will be
inverted in the original number; all of the other bits in the original
number are left unchanged. Therefore, the final answer is 01110101. We

assume the CPU is set to hex mode upon entry to this routine. The routine
is given below.

Hexcode Mnemonic Description
0OEE C<>B ALL Save the mask in B for later use, and get it
0CE C=B ALL back into C. B was picked because register A

will be used for something else and we need to
have a register that can interact with A. B
meets all of these requirments.

370 C=COR A Set all of the bits in the C register which are

0EE C<>B ALL set in either the A or C registers. Then
exchange this result with the original mask
value.

3B0O C=C AND A Set all of the corresponding bits in register C

2AE C=-C-1 ALL that are set in C and A. This tells us which

bits must be cleared. The next instruction in-
verts every bit in the whole register. We now
have set all of the bits that were not set in
both registers.
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06E A<>B ALL Get back the answer from the OR instruction.

3B0 C=C AND A Since we have zeroed all of the bits that were
set in the previous AND instruction, these bits
will now be cleared. The bits set by the OR
instruction and C=-C-1 will now be set.

Well, that’s the routine. There is no entry in the FAT for this routine.
It is just a sample of how short instruction sequences may be used to form
instructions that are not in the CPU chip. The answer is left in the C
register. Maybe you can find a place to put it in one of your programs.

You may wonder how it’s possible to save four nybbles away someplace without
altering the contents of the C register or any of the other 56-bit regis-
ters. There are many places that you could use for storage, but the follow-
ing procedure is used in several mainframe routines. If you are not using
the G register or any of the flags in ST, you can rotate the desired nybbles
until they are right justified in the C register (in positions 0 thorugh 3).
Then you can put 2 nybbles in ST and the other 2 nybbles in G. When you
need the data again, the reverse of this procedure brings the 4 nybbles back
into C. Here are the instructions you need:

Hexcode Mnemonic Description
RCR n Rotate C right by n nybbles so that the nybbles you

want to store are in positions 0 through 3. The
value of n depends on which nybbles are to be saved.

358 ST=C Copy nybbles 0 and | into the ST register.
21C R=2 Set the pointer to 2.
058 G=C Copy nybbles 2 and 3 into G.
RCR m Rotate C right by m = 14-n nybbles so that the four

nybbles you stored away are put back in their
original positions.
This represents the rest of the routine before you
bring back the four saved nybbles. This section
. should not use G or ST. To recover the data, use:
398 C=ST Copy ST into nybbles 0 and 1 of C.

-82-



21C R=2 Set the pointer to 2.
098 C=G Copy G into nybbles 2 and 3 of C.

Our next routine will be very helpful to some of you. It is a routine to
check if a RAM register exists. If you remember, when we wrote our AM and
MA routines, we assumed that you had a 41CV, 41CX, or 41C with a Quad memory
module. With the following routine you can find out whether or not a RAM
register actually exists without putting any constraints on the user of the
program. The routine assumes that the register to be checked has been
selected using the RAMSLCT instruction and that the CPU is in hex mode.

Hexcode Mnemonic Description

038 READ DATA Reads the contents of the selected RAM register
into C; remember the register to be tested must be
selected before starting this routine.

2A6 C=-C-1 S&X This instruction inverts all of the bits in S&X of

10E A=C ALL C. All of the 1 bits, in the sign and exponent,
become 0’s, and all of the 0 bits become 1’s.
This result is then stored there because we will
later test the A and C registers to see if they
are not equal. These are the only two CPU regis-
ters that may be used if a not equal test is
wanted between registers.

2F0 WRIT DATA We write the results of the bit inversion out to
038 READ DATA the RAM register we are checking for existence.
36E 7A#C ALL We immediately read back this same register. If
381 7C GO the register exists then the data will not change;
00B 02E0 the test will not be true, and we skip the GOTO

[ERRNE] to the NONEXISTENT error routine. If the

register does not exist then the data we stored
there will not be the same since there is no RAM
in which to save it. Therefore the two values
will test unequal so we exit to the NONEXISTENT
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€rror message.

2A6 C=-C-1 S&X If we get this far, then A and C are equal so we
2F0 WRIT DATA invert C back to what was originally read from the
3E0 RTN RAM register. If you do C=-C-1 twice, each logic

1 bit will have been inverted to zero and then
back to 1, so, we should get the same answer
returned. The same applies for the 0 bits. We
then write the result out to the RAM register and
then return. The contents of the register that is
selected are in C at the end of this routine. The
RAM select pointer is not changed.

Ten bonus points for anyone who figures out how to integrate this routine
into the AM/MA routine combination. This way we don’t have to put any
constraints on the user of the routine.

Now we will place this routine into our sample ROM and write a program to
use it. The routine we shall write will be a Non-normalized Recall routine.
By using it we shall be able to recall the contents of any RAM register in
the calculator. The number input into the X register before this function
is executed is the absolute address of the register you wish to recall. If
192 is in X, then the bottom register of Main Memory will be recalled (see
page 32 for an explanation on this subject). If a register is recalled that
does not exist, then the NONEXISTENT error message will be displayed. Non-
normalization means recalling the contents of a register without modifying
it.  When you use the RCL function on a register which does not contain
ALPHA DATA and there are hex digits greater than 9 in the register, then
those digits are converted to BCD values.

"NR"
Address Hexcode Mnemonic Description
817F 092 "R" Second letter of the routine name.
8180 00E "N" First letter of the name.
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8181
8182
8183
8184
8185
8186

8187
8188
8189
818A
818B
818C

818D
818E
818F

8190
8191
8192
8193
8194
8195
8196
8197

8198
8199

OF8
128
379
03C
15B
270

379
03C
1950
10E
04E
270

0AE
OE8
3E0

038
2A6
10E
2F0
038
36E
381
00B

2A6
2F0

READ 3(X)
WRIT 4(L)

GOSUB
815B
RAMSLCT

GOSUB
8190

A=C ALL
C=0 ALL
RAMSLCT

A<>C ALL
WRIT 3(X)
RTN

READ DATA

C=-C-1 S&X
A=C ALL

WRITE DATA
READ DATA

7A#C ALL
2C GO
02E0
[ERRNE]
C=-C-1 S&X

WRITE DATA

Get the contents of the X register, then
save X in the LASTX register.

This subroutine call is to our entry point
to convert decimal numbers to hexadecimal
numbers (see page 78). We need this in
hex so that we may use RAMSLCT to
select the desired RAM register.

This is a call to another entry point in
It is at 8190. It is

we wrote to tell whether or

our sample ROM.
the routine
not a RAM register exists. Upon retur-
ning from the subroutine, the contents of
the desired register are in C. We need to
select chip 0 so we may write the answer
the X

register

out to
tested
entry to our subroutine and our subroutine
does not change this. We save C in A and
then zero C so the RAMSLCT instruction
will select chip 0.

register. Remember, the

must be selected upon

We now retrieve the contents of the
This value is

Then

recalled register from A.
then written out to the X register.
we return.

This is the start of our routine to find
out if the register we want to access
exists. 8190 is the address which you
call if you want to execute this as a
subroutine. For an explanation of how this
routine works see page 83.
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815A 3E0 RTN

Don’t forget to update the FAT. We now have 13 functions in the FAT.
Therefore, 00D would be placed at address 8001 of our ROM. We would not put
013. The number of functions is in hex and 00D is 13 in hex.

What’s this you are saying? You think the NR routine is a complete waste
and want to get rid of it but you say you like the routine to tell if RAM
registers exist. Well, not everyone is perfect. You can’t just delete the
routine, you must also delete the FAT entry for this routine. We’ll show
you how to do this now. First, let’s see how the whole FAT currently looks.

Address Hexcode Description

8000 001 XROM number of our ROM.

8001 00D This is the number of entries in the FAT, in hex.

8002 000 These two words are the address of the first executable
8003 08C instruction of the ROM header SKWID 1A. All of the

rest of the FAT will be grouped into sets of two words
which are the three rightmost digits of the first executa-
ble instruction of each function (see page 20).

8004 000 Address of first executable instruction of Y<>Z.
8005 091

8006 000 Address of first executable instruction of GE.
8007 09A

8008 000 Address of first executable instruction of COUNT.
8009 0A7

800A 000 Address of first executable instruction of MA.
800B 0BD

800C 000 Address of first executable instruction of AM.
800D 0C1
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800E 000 Address of first executable instruction of IF.
800F 0E4

8010 001 Address of first executable instruction of FS?S.
8011 002

8012 001 Address of first executable instruction of FC?S.
8013 008

8014 001 Address of first executable instruction of BIN-BCD.
8015 02D

8016 001 Address of first executable instruction of F?.

8017 04C

8018 001 Address of first executable instruction of BCD-BIN.
8019 056

801A 001 Address of first executable instruction of NR.

801B 081

Well, there’s what the FAT should look like. The rest of the FAT words are
000 instructions since we haven’t put anything in them. If it doesn’t look
like this something went wrong somewhere. The problem is probably that you
forgot to add one of the entries into the FAT.

If you want to delete the last entry in the FAT, you must decrease the
number at address 8001 by one. Then you may put a 000 hexcode at addresses
801A and 801B since that is where the last FAT entry is in our ROM. Now you
may delete the NR routine from your ROM starting with address 817F, the
address of the last letter of the NR name, until 819A, the last instruction
in routine. Or you could leave the routine in place and just delete the FAT
entry. The calculator will think that the routine has been deleted and you
will still have the entry point at 8190 for checking if RAM registers exist.

-87-



Now suppose you want to delete the IF routine from the FAT. That is a
little harder. For starters, you can’t just delete the two words that point
to the first executable instruction of IF. This would leave a void of two
000 words in the middle of the FAT. These would tell the calculator that
the first executable instruction of some routine is at 8000. Also, when you
decrease the number at address 8001 by one you are making the last routine
in the FAT (NR), inaccessible.

The best way to illustrate this is for you to try it out. Set the two words
at addresses 800E and 800F to 000. Now do a CATALOG 2. The calculator
starts through the catalog correctly, until the place where the IF function
was. At this point the calculator should lock up with "@" in all twelve
positions of the display. The calculator is looking for a routine that
begins at 8000. It is trying to read the function name from the last few
words of page 7, which immediately precedes address 8000.

To get out of this lockup condition pull the batteries out of the calculator
and put them back in after about 5 seconds. You may be able to use a simpler
method as well. HP-41’s manufactured since the introduction of the HP-41CV
incorporate two hardware reset sequences that permit recovery from most
crashes. To use the first reset method press and hold the ENTER key while
turning the calculator off and on. Then release the ENTER key. The second
method is to hold the backarrow key down while turning the calculator off
and on. Then release the backarrow key. If you have an earlier HP-41, the
only way to recover from a microcode "infinite loop" involves removal of the
batteries and possibly additional steps. See page 214 of "HP-41 Extended
Functions Made Easy" for more crash recovery tips applicable to older
machines.

Now decrease the number at address 8001. Doa CATALOG 2 and the same lockup
will occur. What you have to do to fix this situation is to fill the gap
left in the FAT by the absence of the IF function. One way to fill the gap
is to move all of the FAT entries after the IF function up by two words.
Another way is to just MOVE the FAT entry for NR to the position that was
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occupied by IF. This second approach will naturally change the order of
functions displayed in Catalog 2.

After you have removed the gap in the FAT, decrease the number at address
8001 by one. The FAT should now look like the lisiting that follows. We
will just put the routine name next to the first of the two words that tell
where the first executable instruction is located.

Address Hexcode Description

8000 001 XROM number.

8001 00C Number of functions in the FAT. This is decreased by one
from what it was before.

8002 000 SKWID 1A

8003 08C

8004 000 Y<>Z

8005 091

8006 000 GE

8007 09A

8008 000 COUNT

8009 0A7

800A 000 MA

800B 0BD

800C 000 AM

800D 0Cl1

800E 001 FS?S. This is where the address for the IF function was.

800F 002 The rest of the function addresses are moved up by two
words from where they were before.

8010 001 FC?S

8011 008

8012 001 BIN-BCD

8013 02D

8014 001 F?

8015 04C

8016 001 BCD-BIN
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8017 056
8018 001 NR
8019 081

The words at 801A and 801B should now be set to 000. This will signal to
the calculator that the FAT has ended (see page 20). Now you may do a
CATALOG 2; the IF function will be gone and the calculator will no longer
lock up. You may also use the space where the IF routine resides, addresses
80E2 through 80FD, for some other program. However, the new program must fit
completely into the space left by the IF routine.

SKWID really gets into his programming.

You say that you like math functions. We’ve come up with a neat little
routine for you. It is a Quotient Remainder routine. This routine will
place Y modulo X (integer number of times that the X register will divide
into the original number in the Y register) into the Y register. It places
the remainder in the X register. The formulas used are:
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Input Qutput

X:x X: y MOD x
Y.y Y: (y - y MOD x)/x

The Z and T stack registers are left undisturbed. The old X register is
saved in LASTX. The routine checks for Alpha Data and also if X is zero
since we can’t divide by zero. Just in case you are not familiar with the
MOD function in the calculator we shall explain its use. The MOD function
uses both the X and Y registers. The formula is the following: Y -
[Y/X]*X, where the brackets denote "integer part". What this gives us is
the remainder of a division represented as a whole number instead of a
decimal number less than 1. It is represented as Y MOD X.

As an example, if Y equals 5 and X is 2 then 5 MOD 2 is 1. Our program will
call the MOD routine in the mainframe as a subroutine. There are many other
useful math subroutines used in this program. Our program shall be called
QR and will be placed in the vacant space left by the IF program. We will
start QR at address 80E2, the same place where IF started.

"QR"

Address Hexcode Mnemonic Description

80E2 092 "R" Last letter of the routine name; hex 080

has been added to its hexcode.

80E3 011 "Q" First letter of routine name.

80E4 0F8 READ 3(X) Get the X register and put it into C. We

80ES 128 WRIT 4(L) then write it out to the LASTX register.

80E6 10E A=C ALL We now save the X register, which was in

80E7 0B8 READ 2(Y) C, into A and put the Y register into C.

80E8 355 INC XQ The call to the mainframe subroutine at

80E9 050 14D5 14D5 checks both the A and C registers, X
[unlabeled] and Y, to see if they contain Alpha data.

80EA 070 N=C If either of them do, then the mainframe

91-



80EB
80EC

80ED
80EE
80EF
80F0
80F1
80F2

80F3
80F4
80F5
80F6

80F7
80F8

171
064

070
2BE
10E
0B8
01D
060

10E
OF8
261

060

0A8
0BO

INC XQ
195C
[MOD10]

N=C
=-C-1 MS
A=C ALL
READ 2(Y)
INC XQ
1807
[AD2-10]

A=C ALL
READ 3(X)
INC XQ
1898
[DV2-10]
WRIT 2(Y)
C=N

routine exits to the ALPHA DATA error
message. If neither of the registers
contain Alpha data, the routine returns
with the A and C registers exchanged
and with the CPU in decimal mode. This
does exactly what we want for the next
steps. We must then save C in N to
satisfy the requirements of the MOD rou-
tine.

This is a call to the MOD routine. It
requires that the CPU be in decimal mode.
Notice that the call to the routine at
14D5 made sure of that. The MODI10 (modulo
in base 10) routine takes A MOD C. We
want Y to be in the A register and X to be
in C. Also notice that Y was put into A
and X was switched into C by the last
mainframe subroutine.

We now have the answer for the X register,
Y MOD X, but we can’t put it there yet,
so we save it in  N. We then invert the
sign of the mantissa. In order to sub-
tract using the mainframe routine you
change the sign and add. We then save this
in A and get the Y register again. The
mainframe subroutine AD2-10 at 1807
performs C=A+C on two normalized decimal
numbers. The answer will end up in C.

We now have Y - (Y MOD X) in C. We place
this in A so we may call the X register
into C for the last step. We must now
divide A by C.
routine at address 1898 of the mainframe

Fortunately there is a

ROMs where this is done. It even checks

for division by zero. After the routine

-92-



80F9 0ES8 WRIT 3(X) is done we have (Y- YMOD X)/X inC and Y
80FA 3E0 RTN MOD X in the N register. So now we
write C out to Y. Then we retrieve Y MOD
X from N and write this out to X before

returning.

You will notice that this routine barely fits into the space left by IF.
There are only three words left unused. Now we must update the FAT. We do
not have to open up the place where the address for the IF routine was and
place the address of the first executable instruction of QR in its place.
Instead, we may place the FAT entry for QR after the last address now in the
FAT. The calculator does not care whether or not the addresses for the
functions are in sequencial order. They may be put into any order you
choose as long as each set of two words points to the first executable
instruction of a routine. There are now 13 functions in our ROM. (We left
the NR routine in and only deleted the IF routine.)

This next routine will be a welcome relief to those of you who need to see
all ten digits of a number but find that the exponent keeps getting in the
way. It is a View Mantissa routine. This routine allows you to view all
ten digits of the mantissa of a number without changing the setting of the
display or getting rid of the exponent of the number. This routine only
views the mantissa and does not change any RAM registers. The way this is
done is to put the value to be displayed into C and execute the mainframe
entry point that places the contents of C into the display. A few other
things must be done so everything will work right. These are explained in
the listing below. This routine will allow you to view all ten mantissa
digits of whatever number is in the X register.

llVM“
Address Hexcode Mnemonic Description
819B 08D "M" Last letter of the routine’s name.
819C 016 A First letter of the routine’s name.
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819D
819E
819F

81A0

81A1
81A2
81A3
81A4
81AS5

81A6

81A7

81A8

81A9
81AA

OF8
361
050

260

3B8
158
0s5C
250
210

3A8

0F8

046

099
02C

READ 3(X)
INC XQ
14D8

[CHK #S]
SETHEX

READ 14(d)
M=C

R= 4
LD@R 9
LD@R 8

WRIT 14(d)

READ 3(X)
C=0 S&X

INC XQ
0B26
[DSPCRG]

First we check X to make sure it is not
alpha data. We read in X and then we use
an entry point that checks the C register
for alpha data. If there is alpha data we
exit to the ALPHA DATA error message.
Otherwise the routine returns with the
original contents of C intact and the CPU
in decimal mode. We want to be in hex
mode s0 we reselect it.

In order to fool the calculator into
thinking that we are in FIX 9 mode, we
must modify the flag register so that the
mainframe view routine will think we are
in FIX 9. The bits that determine how
many digits are to be displayed are in
nybble 4. To get a setting of 9, we load
a 9 into this spot. The bits for the
current display mode, FIX, SCI, or ENG,
are in nybble 3. In order to set FIX
notation we must clear bit 2 of this
nybble and set bit 3. We do this by
loading eight into this nybble. Before we
do all of this we save the original
contents of the flag register so that they
may be restored.

We now write this modified register out to
the flag register. The calculator now
thinks that it is in FIX 9 mode.

Get the contents of the X register.

We then zero the exponent and its sign
since we only want to view the mantissa.
Now we can execute the mainframe view
routine called DSPCRG (DiSPlay C
ReGister.) What is to be viewed is in C
upon entry to this routine. It sends this
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to the display and does not overwrite the

X register.
81AB 198 C=M We now retrieve the old flag register back
81AC 205 INC GO from M. Then we must set flag 50, the
81AD 00E 0381 message flag; the purpose of this flag is
[unlabeled] to tell the calculator to preserve the

contents of the display when we go into
standby mode. Otherwise the 41 defaults
to the display corresponding to the cur-
rent mode. The three modes are RUN,
ALPHA, and PRGM. Fortunately there is a
routine in the mainframe to do this. Ac-
tually we enter three words into the rou-
tine since we are restoring the old con-
tents of the flag register which were
saved in M.

Upon execution of this routine you will notice that the status of the
decimal point does not change. If you normally use the comma as the decimal
point then this is what will be used; if you use the period as the decimal
point the answer will show up in that format. Now execute the routine and
hit the backarrow key. The displayed answer went away but the X register
stayed the same, just like HP’s VIEW functions. Remember to update the FAT.
We now have 14 functions, 00E in hex.

To skip, or not to skip, that is the question. Our next routine will show
you the sequence used for skipping lines in a User code program. This is
the same sequence that all of the functions in the calculator that have a
"M use. If the "?" is false they skip a step in your program. The func-
tion we will write is a multiple compare function. It shall be called
X=Y? Z?. It will first check to see if X is equal to Y. If this is true we
will end the routine and the program will continue at the next step.
However, if X does not equal Y, then our routine will cause the User code
program to skip either one or two steps, depending whether X equals Z. So
at this point in the routine, just after we find out that X does not equal
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Y, we skip one User program step.

Next we compare the X and Z registers.

If they are equal we exit our routine having skipped only one program line.

If X does not equal Z we skip another program line and then end our routine.

This routine illustrates the sequence of instructions you use to tell the

calculator to skip a User code program line.

Address Hexcode Mnemonic

81B2
81B3
81B4
81B5
81B6
81B7
81B8
81B9

81BA
81BB
81BC
81BD
81BE
81BF

81CO
81C1
81C2

OBF
OIA
020
03F
019
03D
018
244

0F8
10E
0B8
36E
3A0
03B

248
OF8
10E

n?n
nzn

u?n

nY"

IIXII
CLRF 9

READ 3(X)
A=C ALL
READ 2(Y)
A#C ALL
INC RTN
JNC +07

SETF 9
READ 3(X)
A=C ALL

"X=Y? Z2"

Description

This is the last letter of the name of our
routine. Notice that a space separates
the two words. This space must be keyed

in when executing the routine.

This flag is used to tell if we have
reached the X=Z part of the routine. If
it is clear we are doing the X=Y part of
the routine. If it is set then we are in
the X=Z part.

Put the X register into C and then save it
in A. We choose A so that we may use the
?7A#C instruction to compare these two reg-
isters later in the routine. Then we
retrieve the Y register and compare it
with X. If X=Y the carry will not be set
and we can return. If X#Y the carry will
be set and we go to the section of our
routine that has the instructions for
skipping a program line.

Setting this flag tells the routine that
we have reached the X=Z portion of our

routine. We then get X and put it into A
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81C3
81C4
81C5
81C6
81C7

81C8
81C9

81CA
81CB

81CC
81CD
81CE

078
36E
3A0
141
0A4

3ES
0A8

0BD
08C

24C
360
393

READ 1(2)
7A#C ALL
INC RTN
INC XQ
2950
[GETPC]
INC XQ
2AF9
[SKPLIN]
INC XQ
232F
[PUTPCX]

?FSET 9
7C RTN
JNC -0E

so we may go through the same sequence of
steps as at addresses 8§1B8-81BC except we
use Z in place of Y. This is the start of
the sequence for skipping one line of a
First ?2NC XQ 2950
GETs the Program Counter in the format

User code program.

required by other mainframe ROM routines.
This format is called "MM form", and
entails doubling the byte digit of the
User code program counter when the pointer
is in RAM.
pointer by the number of bytes in the next

Then we increment this

program line using the mainframe SKPLIN
(skip line) routine at 2AF9. There may be
anywhere from one to sixteen bytes in a
program line. Then we update the User
program pointer by storing the new value
in register b (using the routine at 232F)
so that the program has now skipped a
program line without executing it. PUTPCX
is one of the PUT Program Counter
entry points.

Now we check to see if this is the first
time through the line skipping loop. If
it is, flag 9 will be clear and the carry
will not be set, so the ?C RTN instruction
will not be executed. Since we have not
yet gone through the X=Z section of our
routine we will jump back to this section
(at 81C0) if If flag 9
is set, the carry will be set and the ?C

flag 9 is clear.

RTN instruction will be executed. This
tells us that we have been through the
loop to skip a program line twice, once
for the X=Y part and once for the X=Z
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part. Since we have asked both questions

we may return.

Try out this function in one of your programs. A sample setup could be as
follows:

Instruction Description
Steps preceding the X=Y? Z? instruction.

X=Y? 27

GTO 01 Go to label 01 if X is equal to Y.

GTO 02 Go to label 02 if X is equal to Z but is not equal to Y.
Continue on with the program if X does not equal to either Y
or Z.

Remember to update the FAT. You should get into the habit of doing this
right after you finish writing a routine. We now have 15 functions in our
sample ROM (00F in hex).

The next routine is an Alpha View routine that will never stop a program.
The AVIEW function will stop a program for no apparent reason if flag 21 is
set and there is no printer plugged into the calculator. This routine
allows you to view Alpha without sending anything to the printer as does
AVIEW. It is an excellent example of the power of using the mainframe ROM
entry points. The routine is five words long and four of these words are
used to call mainframe entry points. This is very efficient. The routine
is called VA.

IIVA"
Address Hexcode Mnemonic Description
81CF 081 "A" Routine name.

81D0 016 "V
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8§1D1 104 CLRF 8 The first mainframe entry point at address

81D2 041 INC XQ 2C10, ARGOUT = Alpha ReGister OUT,
8§1D3 0BO 2C10 outputs the Alpha register to the display.
[ARGOUT] Clearing flag 8 tells the routine not to
81D4 201 INC GO treat this as a prompt, as this would stop
81D5 00E 0380 the routine. The GOTO instruction to
[unlabeled] address 0380 recalls the contents of the

flag register and then sets the message
flag (50) and restores the flag register
with the message flag set (see page 95).
Our routine returns through this mainframe
routine.

All these addresses for the mainframe entry points we are using came from
HP’s documented listings of the 12K of mainframe ROMs. These listings are
partially annotated by the programmers who developed the HP-41. The entry
points are usually very well described with the kind of setup your routine
needs to do before calling on one of these entry points. They also tell
what the output should be.

One of the drawbacks of these documents is that they are listed in octal,
not hexadecimal. So you need some way of converting from octal to hex.
This little problem should not stop you from getting these documents. They
are much too valuable a tool to let such a little thing like this interfere.
How do you get hold of one of these documents? Well, for starters, don’t
call HP, they will refuse to answer any questions regarding MCODE program-
ming on the 41. In fact, that is one of the reasons for this book. The
place to get these listings, or VASM as they are called, is from a worldwide
HP calculator wuser’s group called PPC. PPC’s address is given in
Appendix A.

Since seeing the examples of how entry points can be used, you have probably

ordered your VASM listings and are anxiously awaiting their arrival. But

for now let’s get on with some more examples.
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This next routine is a Random Number generator program. There is nothing
fancy about this program. We use the brute force method on this one. Just
load in the numbers and crank away. This algorithm has been used in the HP-
34C Applications book and the 41C Standard Applications Pac. The input for
the program is in the X register. It can be any number; just don’t make it
too big. This input is the seed for the algorithm. The program takes this
seed and then multiplies it by 9,821, adds 0.211327, then takes the
The old X is saved in
LASTX. This program is just over 7 times as fast as a User code program

fractional portion. The answer is output to X.

that performs the same calculations. Arithmetic operations are already
relatively efficient in User code, because most of the work is done within
highly optimized mainframe MCODE routines. The overhead of going to the
User level (approximately 10 milliseconds per instruction) is less on a
percentage basis for the more complicated User code instructions. Guess we
can’t always be 100 times faster.

IIRN"

Address Hexcode Mnemonic Description

81D6 08E "N" Routine name.

81D7 012 "R"

81D8 00E A=0 ALL First we zero A and get the Random number

81D9 0F8 READ 3(X) seed. Then we save the seed in the LASTX

81DA 128 WRIT 4(L) register.

8§1DB 355 INC XQ The reason we zeroed A was so that there

81DC 050 14D5 would not be Alpha data there when we
executed the mainframe routine at address
14D5. This routine checks A and C for
Alpha data and sets the CPU to decimal
mode. It then exchanges A and C from what
they were originally.

81DD 35C R= 12 We now set the pointer to the first digit

81DE 250 LD@R 9 of the mantissa so we can load in our

81DF 210 LD@R 8 first constant. It is 9,821. We load in
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81E0
81EI
81E2
81E3
81E4
81E5

81E6
81E7
81E8
81ES
81EA
81EB
81EC
81ED
81EE
81EF
81F0
81F1
81F2

81F3
81F4

81F5
81F6
81F7

81F8
81F9

090
050
130
003
135
060

10E
35C
04E
090
050
050
0D0
050
1DO
21C
250
250
250

01D
060

084
0ED
064

0E8
3EO0

LD@R 2
LD@R 1
LDI S&X
HEX: 003
INC XQ
184D
[MP2-10]
A=C ALL
R= 12
C=0 ALL
LD@R 2
LD@R 1
LD@R |
LD@R 3
LD@R 2
LD@R 7
R=2
LD@R 9
LD@R 9
LD@R 9

INC XQ
1807
[AD2-10]
CLRF 5
INC XQ
193B
[INTFRC]
WRIT 3(X)
RTN

the mantissa and also the exponent (003).
We are now set up to do the multiplication
of these two numbers. Mainframe routine
MP2-10 at 184D multiplies A times C.
The answer is left in C.

We save the answer from the multiplica-
tion in A so we may load C with the next
constant. Before we start to load C with
the constant, we zero it so that we start
with a clean slate. We set the pointer to
the first digit of the mantissa and start
to load the mantissa of the constant. We
set the pointer to the first digit of the
exponent sign. The exponent sign is 9
since the exponent is negative (see page
5). Why is the exponent 99 instead of
01? The calculator represents negative
exponents by subtracting them from 100
(100-1=99) so for a number with a negative
exponent of 3 the exponent would be 97
(100-3).
last four instructions is to use a C=C-1
S&X.

Now that we have the two numbers all set

Another way to accomplish the

up, we call on the mainframe routine that
will add the normalized values in the A
and C registers. The answer from this is
left in C. The routine at address 193B is
a dual-purpose integer/fraction routine.
Here we use it as a fraction routine by
(Setting flag 5 gives

INC XQ 193B takes
the fractional portion of the number in C

clearing flag 5.
the integer routine.)
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and outputs it back to C. We then write
our answer out to X and return.

Don’t forget to update the FAT. There are now seventeen functions in our
ROM. Therefore you would put 011 hex at address 8001.

The next routine sounds like it will be very easy to program. However, this
is deceiving. It is a SIZE-finder routine. It will give the number of RAM
registers that are allocated for data storage. This number will be put into
the X register. This routine will work on any 41 Calculator with any amount
of memory. The object of this routine is to find the largest existent RAM
register in the calculator. Since RAM may be added in blocks of 64 (one
memory module for the 41C) we start at the highest possible RAM address and
check to see if it exists. If the register exists we’ve found the top of
RAM. This is why we start from the highest possible address and work our
way down. We do some manipulations before calling on the BIN-BCD routine
that we wrote earlier. The routine will be called "S?".

IIS?II
Address Hexcode Mnemonic Description
81FA OBF " Second letter of name.
81FB 013 "St First letter of name.
81FC 130 LDI S&X We load into C the highest possible
81FD 1FF HEX: 1FF address of an existent RAM register. If

you have the full 320 RAM registers in
your calculator the top address will be

1FF.
81FE 158 M=C This is the start of the loop to find out
81FF 270 RAMSLCT the address of the topmost RAM register.

We first save the RAM register pointer in
M and then select that register. Now we
will check to see if the register exists.
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8200
8201
8202
8203
8204
8205
8206
8207
8208

8209
820A
820B
820C
820D
820E
820F
8210
8211
8212
8213

038
2A6
10E
2F0
038
36E
077
2A6
2F0

198
106
046
270
378
03C
166
1C6
369
03C
12F

READ DATA
=-C-1 S&X
A=C ALL
WRITE DATA
READ DATA
72A#C ALL
JC +0E
C=-C-1 S&X
WRITE DATA

C=M

A=C S&X
C=0 S&X
RAMSLCT
READ 13(c)
RCR 3
A=A+1 S&X
A=A-C S&X

GOTO
812F

This is the start of the section that
figures out whether or not the RAM regis-
ter exists. You are probably wondering
why we did not jump to the entry point in
our ROM that does this. The only problem
with that approach is that if the RAM
register does not exist we would go to the
NONEXISTENT error message. In this rou-
tine if the register does not exist then
we decrement the RAM register pointer by
64 and check again. We do this until we
find a register that exists. This section
is exactly like the entry point in our ROM
except that instead of going to the NON-
EXISTENT error message we jump to another
part of the routine (JC +0E to 8214). For
an explanation of this routine see page
83.

We now retrieve the RAM register pointer
into C and save it in A for later use.
This pointer is the address of the top-
most existent RAM data register. Chip 0
is then selected (remember the last regis-
ter sclected was the topmost register of
RAM) and the address of data register 0 is
obtained from nybbles 3, 4, and 5 of
status register ¢ (see page 35). In order
to put this into the S&X field of C, we
must rotate right 3 nybbles. We then add
one to the address of the topmost existent
RAM register. This is because the actual
top address is one more than the highest
register we can address. These two num-
bers are then subtracted and the answer is
left in A. This is done because the GOTO
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812F statement uses the C register. This
is a GOTO to the BIN-BCD routine that we
wrote earlier. The answer is placed into

X.
8214 198 C=M This section of our routine gets the RAM
8215 106 A=C S&X register pointer from M and then puts it
8216 130 LDI S&X into A. We then load 040 (64 decimal) into
8217 040 HEX: 040 C. Since the calculator memory is ar-
8218 246 C=A-C S&X ranged into blocks of 64, the next try
8219 32B JNC -1B will be a register that is 64 less than

the previous one. This is subtracted from
the current RAM register pointer. Then we
go back to the start of the loop at ad-
dress 81FE.

Remember to update the FAT. There are now 18 functions in our ROM. The
number at address 8001 should be 012. The last entry in the FAT should look
like this:

Address Hexcode Description

8024 001 The 1 is the third digit from the right in the address of
the first executable instruction of the "S?" routine. It
has the two leading zeros like all of the other functions.

8025 OFC This is the two rightmost digits of the address of the
first executable instruction. As always, the leading 0
has been placed in front.

The next routine will be one of the comparison functions that HP left out of
the calculator mainframe. It is the "X>=Y?" function. This routine is
rather short and is an excellent routine to show how a good knowledge of the
mainframe entry points can be put to use. In this routine we shall use two
such entry points. The first will be at address 1619. This will tell the
calculator not to skip a line if we are running or single-stepping a
program. If we execute it from the keyboard then a YES is put into the
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display.

The other entry point

is to address 15F8. This is just the

routine to see if X is greater than Y. The necessary setup must be done

before either routine can be executed.

Address Hexcode Mnemomic

821A
821B
821C
821D
821E
821F
8220
8221
8222

8223
8224
8225

8226
8227

OBF
019
03D
03E
018
0B8
10E
0F8
070

36E
065
05A

3E1
056

non
llY"
n_n

n_n

>

e

READ 2(Y)
A=C ALL

READ 3(X)
N=C

7A#C ALL
INC GO
1619
[NOSKP]

INC GO
15F8
[XX>Y?]

"X>=Y?"

Description

Routine name.

We put the Y register into C and then save
it in A. Then we get the X register into
C and place it into N. These two condi-
tions must be met because the entry point
at address 15F8 must have X in N and Y in
A in order to correctly perform its du-
ties.

We now check to see if X (C) is equal to Y
(A). If it is, the carry will not be set
and we will not want to skip a step if a
program is running. The NOSKP routine
at 1619 does this and will put YES into
the display if the function is executed
from the keyboard.

This is the call to the routine to check
than Y.
that they are not equal (if we get this

if X is greater Since we know
far) X is either greater or less than Y.
The XX>Y? routine (eXecute X>Y?) will
figure out which is true and skip a pro-
gram step if X is less than Y or put a NO
into the display if it was executed from

-105-



the keyboard. If X is greater than Y a
program step will not be skipped or a YES
will be placed into the display.

Remember to update the FAT. You can program the X>=0? function by just

replacing the READ 2(Y) statement with a C=0 ALL instruction. This will
compare X with zero instead of Y.
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THE VISUALS

ACCESSING THE DISPLAY

The display is treated by the CPU as a peripheral. In order to access the
display you must select it using the PRPH SLCT command. This instruction
uses digits 1 and 0 of C to specify the peripheral to be selected. This is
much like the RAMSLCT instruction, except that in order to select the
display you must always use the same value in digits 1 and 0 of C. This
number is FD. Once the display is selected it may be read from and written
to. To do this you use the READ/WRIT instructions. If we write to the
display using these functions and RAM registers are selected that exist,
then these registers will also be written to. Therefore we should select a
nonexistent chip whenever we select a peripheral. The nonexistent RAM chip
that is usually used is chip 1 which starts at address 010 and goes through
address 01F. To select this chip we must put 010 into the S&X field of C
and use the RAMSLCT instruction to select the nonexistent RAM at this
address.

There have been three different displays in the life of the 41. The first
appeared in 41C’s manufactured before 1981. The second display appeared in
1981 and has been in all HP-41 calculators manufactured up until about the
time this book came out. These two displays cannot access the last three
rows of the LCD character table (see next page). If a hexcode from these
last three rows is used, a space will be displayed. The third display can
access the entire LCD table and also allows you to change the contrast
(viewing angle).
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LCD CHARACTER TABLE

o 1 2 3 4 5 6 7 8 9 A B C D E F

pid
L]

1 F 3 R & T O v W x v Z2 T N~ 3 7 -

2 o d % % X X ¢ -/

3 & ! 2 34 4 5 B B 9 8 £ = N 7
10 s v b oA e T T 7 X xox5 M £ L £
11 ” o £ T B v - I b X S 7 M # N £
12 T I ST~ B D T ! IU m om0
l 3 P B, I < 'i [ 14 (3] A ™~ 7 3 L( 9 Z vL

The display is divided into three registers. They are called the A, B, and
C registers. These are not the same as the main CPU registers and should
not be confused with them. The A register contains the lower four bits of
each character, the B register contains bits four to seven of each
character, and the C register holds bit 8 of each character.

The display READ/WRIT functions each have certain, well-defined, tasks that
they perform. Data transfers can be in 1, 4, 8, or 9 bit format. These may
be transferred one character at a time, or in multicharacter formats, depen-
ding on the instruction. The READ instructions give varied outputs
depending upon which display your calculator has. These variations only
apply to the bits and nybbles which are not the recipient of the data
obtained during a READ instruction. The scope of these output variations
will not be covered in this book, so your programs should not depend on

getting particular values in these "unused” bits or nybbles.
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The display is set up so that each of the 12 character positions in the
display uses 9 bits (4 bits from A, 4 bits from B, and 1 bit from C). Bits
0 through 5 specify a character from rows 0 to 3 of the LCD character table.
Bits six and seven are the punctuation field. The table below shows how to
set/clear bits 6 and 7 for various punctuation symbols.

bit

6 punctuation symbol
0 no punctuation symbol
1 period
0 colon
1

»—-b-—ool\]

comma

Here is the table of all of the HP display mnemonics which correspond to the
READ/WRIT instructions. These instructions, which appear in the HP
documentation for the display and mainframe, are not correctly dissassembled
by any of the currently available dissassemblers.

READ WRIT
15 FLSABC* SLSABC
14 FRSABC** SRSABC
13 FLSDAB SLSDAB
12 FRSDAB SRSDAB
11 FLSDB SLSDB READ DATA : FLLDA
10 FLSDA SLSDA WRITE DATA : WRTEN
9 FRSDC SRSDC
8 FRSDB SRSDB
7 FRSDA SRSDA
6 FLSDC SLLABC
5 READEN SLLDAB
4 FLLABC SRLABC
3 FLLDAB SRLDAB
2 FLLDC SRLDC
1 FLLDB SRLDB *appears as RABCL in HP listings
0 - SRLDA **31s0 given as RABCR in HP listings
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Now we shall describe how to decipher these mnemonics.

The first character is either F or S corresponding to FETCH or SHIFT. The
second letter is an L or R for LEFT or RIGHT. The third character is an S
or L for SHORT or LONG. The remaining characters identify the registers on
which the operation is to be performed: A, B, C, AB, or ABC. All one-or
two-letter suffixes are preceded by the character D (display), which has no
significance other than its value as a mnemonic.

FETCH reads data from the display into the C register. SHIFT pushes data
from the C register into the display. LEFT or RIGHT specifies which
direction the designated fields rotate within the display. (Rotation only
occurs for the specified register or registers.) SHORT or LONG specifies
the number of character positions which are to be read from or written to.
SHORT means a single character position. LONG is the maximum number of
character positions for which the corresponding data can fit in 12 nybbles.
This is 4 positions for ABC, 6 for AB, and 12 for A, B, or C.

For example, consider SLSABC. This instruction writes data to the display
(SHIFT), shifting in a single character (SHORT) in from the right (forcing a
shift to the LEFT). The data written is 9 bits (ABC), which completely
defines the character and punctuation.

Next consider FRLDC. This instruction FETCHes data from the right side of
the display (forcing rotation to the RIGHT). The rightmost bit is placed
into bit zero of nybble 0 of C and the second bit is put into nybble two and
so on until the last bit is placed into nybble 11 of C. The display is not
affected by this instruction since twelve characters are involved and the
display will be rotated all the way around.

What follows are descriptions of the display instructions that are most

commonly used within the HP-41’s operating system ROMs. They are all 9 bit
transfers, operating simultaneously on A, B, and C.
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Instruction Description

READ 14(d) Reads the rightmost character in the display into the S&X of

(RABCR or C. All characters are rotated right by one.

FRSABC)

READ 15(e) Reads the leftmost character in the display into the S&X of C

(RABCL or and rotates the display left by one character.

FRSABC)

WRIT 14(d) Takes the rightmost 9 bits of the S&X of C and pushes them

(SRSABC) into the leftmost position of the display. All of the
existing characters are shifted right by one.

WRIT 15(¢) Takes a single nine-bit character from S&X of C and writes it

(SLSABC) to the rightmost character of the display. The characters in
the display are shifted left by one.

WRIT 4(L) Writes four characters from C to the left of the display. The

(SRLABC) characters that were in the display are shifted right by four.
The first character is in digits 0 to 2 of C, the second is in
digits 3 to 5 and so on. The character in digits 0 to 2 is
pushed onto the left of the display first then the character
in digits 3 to 5 is pushed to the left of that character and

SO on.

Now that we have gone through the instructions for writing and reading the
display characters, we still have to deal with the annunciators at the
bottom of the display. The status of these 12 annunciators is kept in a
fourth display register, called E. Annunciators are set using the WRITE
DATA (WRTEN) instruction. They may be read by using READ 5(M) (READEN).
The transfer is to and from the S&X field of C. Below is a list of the bit
in the S&X field of C which corresponds to each annunciator.

bit Annunciator bit Annunciator
0 ALPHA 3 Flag 3
1 PRGM 4 Flag 2
2 Flag 4 5 Flag 1
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6 Flag 0 9 G (for GRAD)
SHIFT 10 USER
RAD 11 BAT

As can be seen, the leftmost bits are for the leftmost annunciators. In
normal operation, these annunciators do not stay on unless the corresponding
condition is actually in effect. For instance, if you write a program that
turns the ALPHA annunciator on and makes the standard exit to the normal
function return, then you must be in Alpha mode or the annunciator will

turn off.

Now let’s have some fun and write a routine using some of these display
instructions. We shall write a display test routine. This routine first
displays twelve commas and pauses for a second or so. Then there are twelve
starbursts in the display. Each of these is followed by a colon. The
annunciators at the bottom of the display are also lit up. Now every
display segment is on except the comma tails, which is why we viewed them
first. This routine does not use any RAM registers, only the display. Ah,
the beauty of MCODE. We shall call the routine DISTEST.

"DISTEST"
Address Hexcode Mnemonic Description
8228 094 "T" Routine name.
8229 013 "S"
822A 005 "E"
822B 014 "T"
822C 013 "S"
822D 009 "T"
822E 004 “D"
822F 130 LDI S&X First we shall disable the RAM. Since
8230 010 HEX: 010 we will be using WRIT instructions we must
8231 270 RAMSLCT choose a nonexistent RAM chip so that RAM
§232 130 LDI S&X won’t be written to. Then we enable the

-112-



8233 OFD HEX: OFD display by selecting peripheral FD.
8234 3F0 PRPH SLCT

8235 130 LDI S&X We shall now fill the display with
8236 00B HEX: 00B spaces. This is what the calculator
8237 106 A=C S&X places into the display when it clears it.
8238 130 LDI S&X First we load a counter into C and save it
8239 020 HEX: 020 in A. This will be decremented, and when
823A 3A8 WRIT 14(d) underflow occurs, we jump out of the loop
823B 1A6 A=A-1 S&X that fills the display with spaces. The
823C 3F3 INC -02 hexcode for a space is 020. We load this

into the S&X field of C and write it out
to the display using the nine bit trans-
fer instruction WRIT 14(d). This places a
space into the left of the display and
shifts all of the other characters right
by one. The counter in A is then decremen-
ted and we jump back to the WRIT instruc-
tion and write another space to the dis-
play. When the counter underflows we
drop out of the loop. [Due to steps 8242
and 8243, this section really needs only
to clear bit 9 of ecach display position.
The 9-bit WRIT accomplishes this.)

823D 19C R= 11 The pointer is set to 11, the largest
823E 390 LD@R E digit used when six characters (12 nybbles
823F 010 LD@R 0 of data), are sent to the display using an
8240 2D4 7R= 13 eight bit transfer instruction. We load
8241 3EB JNC -03 up each eight bits with the value EQ0 =

1110 0000. Bits six and seven are set to
signify a comma. The lower six bits are
set to the hexcode for a space (20 in hex
or 100000 in binary). The character-
loading loop is cycled 6 times. After the
sixth time through, the pointer will equal
thirteen since we just loaded a number
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8242
8243

8244
8245
8246
8247

8248
8249
824A
824B
824C

824D
824E

824F
8250

0OE8
OE8

046
2A6
266
3FB

19C
2D0
290

2D4
3EB

0E8
OES8

046
2A6

WRIT 3(X)
WRIT 3(X)

C=0 S&X
C=-C-1 S&X
C=C-1 S&X
IJNC -01

R= 11
LD@R B
LD@R A
!R= 13
JNC -03

WRIT 3(X)
WRIT 3(X)

C=0 S&X
C=-C-1 S&X

into nybble zero. (The pointer decrements
when we use the LD@R instruction.) When
this happens, the carry will be set and we
will not jump back to load more digits.
These two instructions fill the display
with commas. The first puts six commas
into the display. There are spaces be-
tween the commas. The spaces we original-
ly put into the display are shifted to the
right by six characters. The second WRIT
instruction finishes filling the display
with commas.

This is the delay loop so that you can see
the twelve commas in the display. First C
is zeroed and then all twelve bits are
inverted to ones using the C=-C-1 instruc-
tion. Then we subtract one from the S&X
field until the carry is set. The carry
will be set when we subtract 1 from 0.
When this happens we will not jump back
and the pause will be over.

This is the loop to fill the display with
the starburst character and the colon.
The LD@R B instruction sets bit 7 which is
the colon if bit 6 is not set. The other
six bits are set so that the starburst
character (hex 3A) is put into the dis-
play. The logic behind the loop is the
same as for the steps at 823D to 8241.

These two steps write six starbursts each
out to the display. The commas are shif-
ted off the display after the second in-
struction.

First we zero the S&X field of C so that
when we invert all the bits, using C=-C-1,
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8251 2F0 WRITE DATA they will all go to one. Then we use the
WRITE DATA instruction to turn on all of
the annunciators at the bottom of the

display.
8252 046 C=0 S&X Now the message flag is set only to keep
8253 3F0 PRPH SLCT the X register from being cleared when the
8254 IFD INC XQ user presses the backarrow key to clear
8255 00C 037F the display. Normally the message flag is

set for the main purpose of preventing the
display from being altered upon return of
control to the operating system. Here we
are not returning control to the operating
system, but we still need to set the
message flag. First we must deselect the
display as a peripheral and then we enter
the mainframe routine at a spot which
selects chip 0 and sets the message flag.

8256 060 POWOFF Since we want the display to stay as it is

8257 000 NOP we go directly into standby mode so as to
skip over the processing normally done
after a function is executed in order to
avoid having the annunciators updated.
Remember that a NOP is required after the
POWOFF instruction.

When the DISTEST routine is executed every display segment will have been
lit up. You can amaze your friends with this little routine.

For those of you with the new display (the one with rounded edges) HP has
added a new peripheral address, hex 10. This allows you to make use of six
new READ/WRIT commands. Two of these, READ 5(M) and WRIT 5(M), are
extremely useful. When peripheral 10 is selected these instructions read or
write the contrast nybble of the display to or from digit zero of C. This
allows you to control the contrast of the display. The default setting is
5. Here’s an example of how to change the contrast setting.
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Hexcode Mnemonic Description

130 LDI S&X Load the address of a nonexistent RAM chip and
010 HEX: 010 the new peripheral.

270 RAMSLCT Deselect RAM and Select the peripheral.

3F0 PRPH SLCT

130 LDI S&X Load in a value for the contrast. Let’s try O.

000 HEX: 000

168 WRIT 5(M) Write the zero to the contrast nybble.

3E0 RTN Return,

The display should become very dim, except when viewed from a shallow angle.
Place OOF in place of the 000 and see what happens. The display should
become very dark. If nothing happens when you execute this routine, then
you have an older display that does not have this feature.

The other READ/WRIT commands are not fully understood at this time. However
it is known that the WRIT 15(e) instruction with this peripheral selected
will crash the display, simultaneously lighting all segments, including the
comma tails. The only way to recover from this particular crash is to
remove the batteries for about one minute and then replace them.

A SKWID display test.
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Our next routine will be a little more wuseful. It’s a base conversion

routine. This little beauty will convert a decimal number in X into a
number of base b. The answer for the base b will end up in the display.
Any base from two to thirty-six may be used. Sorry, but for bases over
thirty-six we run out of letters in the alphabet. This base number is put
into Y and the decimal number to be converted is put into X. Since the

answer comes out in the display it will be lost if you clear the display.

The algorithm for this routine is taken from the PPC ROM routine "TB". This
routine converts base ten to base b. First we compute X MOD Y. This gives
us the value of the rightmost digit of the base b number. This number is
then output to the display. Then we divide X, the decimal number, by Y, the
base b, and take the integer of the result to get rid of the remainder that
we already stripped off using the MOD function. We then check to see if we

are at zero and jump back to the beginning of the loop if zero has not been

reached. The routine is called 10-BASE.

Address Hexcode Mnemonic

"10-BASE"

Description

8258 085 "E" Routine name.

8259 013 "S"

825A 001 "A"

825B 002 "B"

825C 02D "

825D 030 "o"

825E 031 "

825F 0B8 READ 2(Y) First we read Y and place it into A and

8260 10E A=C ALL then get X and put it into C. We then

8261 OF8 READ 3(X) check to see if either of them contain

8262 355 INC XQ Alpha data (call to 14D5). If so, the

8263 050 14D5 mainframe call willexittothe ALPHA DATA
[unlabeled] error message. At the end of this routine

Y is in C and X is in A. This routine
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8264
8265
8266

8267
8268

8269
826A

826B
826C
826D
826E

826F
8270
8271
8272
8273
8274

8275
8276
8277

088
0ED
064

0AS8
260

38D
008

266

2E6
0BS5S
0A2

106
130
024
306
0BS5
0A2

130
00C
268

SETF 5
INC XQ
193B
[INTFRC]
WRIT 2(Y)
SETHEX

INC XQ
02E3
[BCDBIN]
C=C-1 S&X
2C40 S&X
INC GO
282D
[ERRDE]
A=C S&X
LDI S&X
HEX: 024
2A<C S&X
INC GO
282D
[ERRDE]
LDI S&X
HEX: 00C
WRIT 9(Q)

also sets decimal mode so that we may do
decimal number manipulations.

Y is left in C by the routine at address
14D5. So then we take the integer of this
and write it out to Y. This ensures that
this number will be an integer. If it is
not an integer the rest of the routine
will not work correctly. The ?NC XQ 193B
calls the integer/fraction routine in the
mainframe ROMs. Flag 5 must be set to get
the integer portion of the number in C.
(the fractional part is taken when flag 5
is clear.) Hex mode is then selected.

Since we have the base number in C, we can
convert it to binary in S&X of C. Then
one is subtracted and we see if the S&X
field of C is equal to zero. If it is,
the carry will not be set and we go to the
DATA ERROR message since a base of one is
not valid. If we get through this we save
the base b-1 number in A. We then load
one greater than the highest allowable
base minus one (37-1 dec. or 25-1 in hex).
Then we compare these two numbers to see
if the base b number is greater than 36.
If it is, the carry will not be set and we
go to the DATA ERROR error message.

Now we load the digit counter into the Q

register. If you remember, this register
is used as a scratch register by the main-
frame. All we have to do is make sure
that none of the routines we call use this
register for scratch. The hex number 00C

is loaded into Q to count the number of
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8278
8279

827A
827B

827C
827D
827E
827F
8280

8281
8282
8283

8284
8285
8286
8287
8288

3Cl1
0BO

149
024

0F8
2A0
088
OED
064

2FA
201
00E

158
10E
0B8
070
171

INC XQ
2CF0
[CLLCDE]

INC XQ
0952
[ENCP00]
READ 3(X)
SETDEC
SETF 5
INC XQ
193B
[INTFRC]

7C£0 M
INC GO
0380
[unlabeled]

M=C

A=C ALL
READ 2(Y)
N=C

INC XQ

characters loaded into the display. It is
decremented each time a number is loaded
into the display.

This call to the mainframe enables the
display and then clears it (fills it with
spaces). This does the same thing that we
did at addresses 822F to 823C of the DIS-
TEST routine. The only difference is that
this only takes two words instead of four-
teen.

This call to the mainframe ROMs disables
the display and selects chip O.

We retrieve X and set the CPU to decimal
mode as required by the next steps.

This is the beginning of the loop to con-
vert the decimal number to base b. The
first thing we do is take the integer of
the number in C. The first time through
this is done to make sure the number in X
is an integer. The next time through,
when we loop back, we get rid of the
fractional portion of the number in C.

The mantissa is checked to see if it is
zero. If it is not zero we skip over the
mainframe GOTO so we may continue on
with the routine. Otherwise, we go to
the subroutine in the mainframe that sets
the message flag (User flag 50, see page
95 for full details).

First we save the decimal number in M so
that we may use it later. Now we set up
for the MOD function. We do a decimal MOD
base b.

number into A and get the base b from Y.

To do this we put the decimal
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8289

828A
828B
828C

828D
828E
828F
8290

8291
8292
8293
8294
8295
8296

8297
8298

8299
829A
829B
829C

064

260
38D
008

106
130
030
146

130
03A
306
01F
1C6
166

3D9
01C

0A6
328
149
024

195C
[MOD10]
SETHEX
INC XQ
02E3
[BCDBIN]
A=C S&X
LDI S&X
HEX: 030
A=A+C S&X

LDI S&X
HEX: 03A
?2A<C S&X
JC +03
A=A-C S&X
A=A+l S&X

INC XQ
07F6
[ENLCD]
A<>C S&X
WRIT 12(b)
INC XQ
0952
[ENCPO0]

This must be copied into N before entry
into the MOD routine.

We now have the remainder of the decimal
number in C. This is the number we want
to convert to an LCD display character.
The representation of these characters are
the same as for the characters that you
use for the names of your functions. We
SETHEX since the BCD-BIN routine requires
this setting. Then we convert the decimal
remainder to hex in S&X of C. This is
saved in A so we may add 030 hex to it to
get the LCD character representation of
this number. The numbers are in row three
and start at zero and work up to nine.
This result ends up in A.

Now we will check to see if the number we
want to display is greater than 9. This
would mean that the hexcode in A would be
03A or greater. We load 03A into C and
check to see if A is less than C. If it
is, we want to display a decimal number
and skip the next two steps. If the num-
ber we want is greater than 9, ie. an
Alpha character, we subtract 03A from it
and add one to get the Alpha LCD repre-
sentation of the number.

Now we enable the display but do not clear
it. We get the LCD character we want to
write to the display into the S&X of C so
that it may be written out to the left
side of the display using the WRIT 12(b)
instruction. We then call the mainframe
routine to disable the display and select
chip 0.
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829D
829E
829F
82A0

82A1

82A2
82A3
82A4
82A5
82A6
82A7

82A8

278
266
289
003

268

2A0
198
10E
0B8
261
060

2B3

READ 9(Q)
C=C-1 S&X
7C GO
00A2
[ERROF]
WRIT 9(Q)

SETDEC
C=M

A=C ALL
READ 2(Y)
INC XQ
1898
[DV2-10]
JNC -2A

Try this routine a few times.
execute 10-BASE. The result in the display will be 3E7 pushed to the left
of the display. Now if you hit the CLX button the characters in the display

will be erased. The number in the X register will not be changed.

Now we shall decrement the display counter
number that is kept in Q. If this number
should reach zero we have twelve digits in
the display. If we go through the loop
again we will push the rightmost digit off
the display. To prevent this we put a
call to the OUT OF RANGE error message.
This tells us that the number of digits
wanted was larger than the display could
hold. The carry will be set on the
thirteenth time through the loop since we
will be subtracting one from zero. Then
we shall go to the error message. If we
make it past the error message the decre-
mented counter is restored to Q.

Now we shall divide the decimal number by
the base b number. This puts the remain-
der into the fractional portion of the
number which is removed when we loop back.
First we must set the CPU back to decimal
mode so we may do a decimal divide. We
get the decimal number from M and put it
into A and put the base b into C. Then
the divide routine in the mainframe ROMs
is executed and we loop back to the start
of the loop at address 827E.

Place sixteen into Y and 999 into X. Then

If you

hit the CLX button again then the number in the X register will be cleared.

This routine does not provide for an input of zero in the X register. Don’t

forget to update the FAT before you try to execute this routine or you will
get NONEXISTENT.

-121-



WRITING CUSTOM ERROR MESSAGES

This section will deal with how to place your own error messages into the
display. For example, if the base b in the last routine is greater than 36,
you might want to display the error message BASE > 36. This would be much
better than using the DATA ERROR message, which is used for many other
purposes by the HP-41 system. A customized message would also give you the
exact problem with your inputs to the routine. In order to do this we will
show you how to program a routine that will output a message of up to
twelve characters to the display. Three instructions will be introduced.
They are FETCH S&X, POP ADR, and GOTO ADR. First we will show you
a sample of what you would have to do for setup to use the routine that
displays the message for you. We will use the addresses starting at 8400
for our example. The message we will display in our example will be
BASE > 36.

Address Hexcode Mnemonic Description

8400 3A1 INC XQ This routine checks if user flag 25 is

8401 088 22E8 set; if this is the case we exit to a
[ERRSUB] Normal Function Return, otherwise we re-

turn and continue on with this error pro-

cessing,
8402 379 This is the call to our subroutine that
8403 03C GOSUB will output the characters in the message
8404 020 8420 we wish to display. The characters are
input immediately after the subroutine
call.
8405 002 "B" This is the first letter in the message we

will display. Notice that the message is
not in reverse order like the names of our

routines.
8406 001 "A" These are the second through the next to
8407 013 "S" last letters. The hexcodes are just the
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8408
8409
840A
840B
840C
840D

840E
840F

8410
8411

005
020
03E
020
033
236

201
070

3ED
08A

“E"

" on
n_n

v|3"
“6"

INC XQ
1C80
[MSG105]
INC GO
22FB
[ERR110]

LCD representation of the characters as
presented on page 108.

This is the last letter of our
message. Notice that the leftmost
digit in the hexcode has been set to 2.
In our routine when bit nine is set, the
leftmost hexcode digit is either 2 or 3.
This signals to the routine that this word
contains the last character to be
displayed.

This mainframe routine enables chip O,
sets the message flag, and prints the
message if the printer is in trace mode.

This routine checks if we need to back-
step, due to an error while we were
single-stepping or running a program,
stops a running program, and computes a
valid line number. It then exits to a
Normal Function Return.

Now we know how to set up for the routine but don’t know how to get the

message

out

the display.

This next little routine will send the

characters out to the display and then left justify them.

Address Hexcode Mnemonic

8420
8421

8422
8423

3Cl1
0BO

1BO
330

INC XQ
2CF0
[CLLCDE]
POP ADR
FETCH S&X

Description

This is a call to the mainframe routine
that enables the display and then clears
it (fills it with spaces).

This instruction places the return address
from the GOSUB statement into nybbles 3 to
6 of C. This is the address of the first
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8424

8425
8426
8427
8428
8429

842A
842B
842C

842D

842E

23A

3E8
276
3E7
276
3D7

130
020
10E

31C

3F8

C=C+1 M

WRIT 15(e)
C=C-1 XS
IC -04
C=C-1 XS
iC -06

LDI S&X
HEX: 020
A=C ALL

R=1

READ 15(e)

instruction after the GOSUB statement.
This would be the "B" character. We then
use the FETCH S&X instruction to get the
hexcode of the instruction at the address
in nybbles 3 to 6 of C. The hexcode for
this instruction is placed into the S&X
field of C. The FETCH S&X instruction is
the beginning of the loop to output the
characters to the display.

We now increment the return address by one
so that we may get the next instruction if
we loop back again to the FETCH S&X in-
struction.

Now the character in the S&X of C is
written out to the display using a nine
We then sub-
If the
exponent sign is zero we get an underflow

bit transfer instruction.
tract one from the exponent sign.

which sets the carry and we jump back. We
subtract one again to see if the exponent
sign was one. If this was the case then
we will get an underflow which sets the
carry and we jump back. If the carry
still has not been set then we know the
9th bit was logic one and the character
is the last in the message.

This loads the hexcode for the space
character into C and then it is saved in
A. This part of the routine will strip
off the spaces to the left of the message
if there are any. The contents of the ADR
field of C is also saved in A.

Set pointer to 1 so we may compare digits
Oand I of A and C.

This instruction reads the leftmost char-
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acter in the display into S&X of C and
rotates the display left by one character.
The character just read in becomes the
rightmost character in the display.

842F 36A A#C R« This is now compared to the hexcode for a
8430 3F3 JNC -02 space. If the two are equal we want to
8431 3A8 WRIT 14(d) rotate the display so that the message

will be moved toward the left and a space
will be put at the right. Then we jump
back to the READ instruction to get the
next character. If A and C are not equal,
we have hit a character that is not a
space, i.e., the beginning of our message;
we don’t want to rotate this to the left
of the display so we use the WRIT 14(d)
instruction. This will write out the
hexcode to the left of the display and
shift all of the other characters right by

one.
8432 0AE A<>C ALL Now we get the address of the next
8433 1EQ GOTO ADR instruction, which we saved in nybbles 3

to 6 of register A, and push it into the
PC register using the GOTO ADR
instruction.

If you want to use this routine, you must change the call to the DATA ERROR
message at address 8273. The new sequence should be put into the place of
this call.

Address Hexcode Mnemonic Description

8273 027 JC +04 If the carry is set by the preceding in-
8274 365 struction (?A<C), we don’t want to go to
8275 08C GOTO the error message. We jump over the error
8276 000 8400 exit because the calculator will interpret
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the first two words as a ?NC XQ. If the
carry is set, then this instruction will
be skipped, but the third word of the
relative GOTO will then be executed as
an instruction. If the carry is not set,
the JC instruction will be skipped and we
shall go to the error message. The rest
of the routine must be moved down by two
words. None of the instructions after the
GOTO change, they are just moved down.

Now try the 10-BASE routine with a base greater than 36 and the error
message BASE > 36 should come into the display.

The mainframe ROMs have a routine that does almost the same thing as the
routine that we wrote to display messages. There is one main difference
between the routine we wrote and the one in the mainframe. With ours you
may put characters from rows 10-13 of the LCD character table into the
message at any point. With the one in the mainframe ROMs you may only have
the last letter of the message from rows 10-13 of the LCD table. This is
because the mainframe ROM routine only checks to see if the exponent sign
(bits 8 and 9) of the character is not equal to zero. If it does not equal
zero then the end of the message is reached. In our routine we check to see
if bit 9 is set before we end our message. If bit eight is set and the
middle digit is zero, then the character to be displayed will be from row 10
of the LCD table. This only occurs if we are using nine bit transfers. The
character "a" would have the hexcode 101. Our routine also left justifies
the message in the display. The mainframe routine at address 07EF leaves
the message right justified. In order to use the routine at 07EF you just
replace the GOSUB 8420 statement in the error message with the ?NC XQ 07EF
instruction.

Well, that’s all folks. I hope this book has helped to give you an insight

into how to program in the native language of the 41. There are many
routines that need to be programmed using MCODE because of the speed
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advantage or just because the desired result cannot be achieved using User

code programming.
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THE END
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APPENDIX A-List of suppliers

You may obtain MCODE storage devices (MLDL) from the following

organizations.

ERAMCO MLDL - ERAMCO Systems, Valentynkade 27-11,
NL-1094 SR Amsterdam, The Netherlands.

In the U.S.A. contact: PPC, P.O. Box 9599
Fountain Valley CA 92728-9599 USA.
phone 714-754-6226

or EduCalc Mail Store, 27953 Cabot Road,
Laguna Niguel CA 92677 USA.
phone 714-831-2637

PROTOCODER 1II - ProtoTECH Inc., P.O. Box 12104 Boulder, CO 80303 USA
Phone 303-499-5541

For the annotated listing of the HP-41 mainframe ROMs contact:

PPC, P.O. Box 9599
Fountain Valley, CA 92728-9599 USA.
phone 714-754-6226

or Zengrange LTD., Greenfield road,
GB-Leeds, WYORKS LS9 8DB, England.
phone 0532 489048

or Editions de Cagire, 77 rue de Cagire,
F-31100 Toulouse, France.

ZENROM: The ZENROM is a custom programmers module manufactured by

Hewlett-Packard for Zengrange Ltd. It has the best
dissassembler for MCODE to date. With this module you can key
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in any synthetic instructions from the keyboard without the
help of key assignments. To obtain the ZENROM write to:

Zengrange Ltd., Greenfield Road,
GB-Leeds, WYORKS, LS9 8DB, England
Phone 0532 489048

In the United States: EduCalc Mail Store, 27953 Cabot Road,
Laguna Nigel CA 92667 USA.
phone 714-831-2637

or PPC, P. O. Box 9599,
Fountain Valley CA 92728-9599 USA.
phone 714-754-6226.

Information on EPROM boxes may be obtained from the following sources.
Contact them for the dealer nearest you.

Corvallis MicroTechnology, Inc. 33815 Eastgate Circle, Corvallis OR 97333
USA. phone 503-752-5456

Hand Held Products, P.O. Box 2388, Charlotte, North Carolina 28211 USA
Phone 704-541-1380

Prototech Inc., P. O. Box 12104, Boulder, CO 80303 USA. Phone 303-499-5541
The ASSEMBLER 3 EPROM may be obtained from:
Deep Thinking Software C/O Michael Thompson, 24 Canterbury Road,
Camberwell, Victoria 3124, Australia.
The DAVID ASSEMBLER EPROM may be obtained from:

ERAMCO Systems, Kromboomsloot 16-3
1011 GW Amsterdam, The Netherlands
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Phi Trinh’s LOADP software package may be obtained from:
Phi Trinh, P.O. Box 184, Rockport WA 98283 USA

Two Users’ Groups support HP-41 MCODE activity. For information on either
one, send $1 or a seif-addressed envelope with 3 ounces of postage to:

Handheld Programming Exchange (HPX), P.O. Box 566727, Atlanta GA 30356.
Phone (404) 391-0367 6-8 PM Eastern time. Publication plans are not firm as
of Spring 1987. For back issues of the CHHU Chronicle, write: CHHU Back
Issues, P.O. Box 10758, Santa Ana, CA 92711-0758, U.S.A., ph (714) 472-9580.

PPC, P.O. Box 9599, Fountain Valley, CA 92728-9599 USA. Phone 714-754-6226
Publishes the PPC Journal.

Other HP-41 Users’ Groups include:

CCD (ComputerClub Deutschland),
Postfach 2129, D-6242 Kronberg 2, West Germany.
Publishes PRISMA (German) supporting synthetic programming and MCODE.

PPC-Holland, c/o TH Boekhandel Prins, Binnenwatersloot 30, NL-2611 BK Delft,
The Netherlands.

PPC-Melbourne, P.O. Box 512, Ringwood, Victoria 3134, Australia.

Membership enquiries: Edition du Cagire, 77 rue du Cagire, F-31100 Toulouse,
France. Publishes PPC Technical Notes, supporting advanced synthetic
programming and MCODE.

PPC-Toulouse, 77 rue du Cagire, F-31100 Toulouse, France.
Publishes PPC-T (French) supporting synthetic programming and MCODE.

PPC-UK, c¢/o Astage, Rectory Lane, GB - Windlesham, Surrey, GU20 6BW,
England. Membership enquiries: ¢c/o Dave Bundy, 9 Kings Court, Kings Avenue,
GB - Buckhurst Hill, Essex, IG9 S5LP, England. Publishes "Datafile"
(English) supporting synthetic programming and beginning MCODE.
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APPENDIX B - What’s up on entry to an MCODE routine

&
Here we shall explain the status of the CPU upon entry to an XROM function.
Here’s the low down on what’s up:

1.)  CPU is set to hex mode.

2) Pointer P is selected and set to 1. The value of Q is variable.

3.) Flags 48 to 55 of the user flag register are placed into ST. CPU flag
7 corresponds to user flag 48 and 0 to 55. This is called Status Set 0
(SS0). When this is contained in ST the User flag number may be
calculated from a bit in ST by subtracting its number from 55 (i.e.
status bit 5 is the message flag (50) since 50 = 55 - 5). Flags 1 and
2 can be assumed to be clear upon entry to an XROM function since they
correspond to the pause and I/O flags (the pause flag is cleared
whenever any function is executed).

4.) RAM chip zero is selected.

5.) G is equivalent to the first byte of the XROM instruction. This is Aj
in hex, where j may range from 0 to 7. Therefore bit three is always
clear upon entry to an XROM function. This is useful for partial key
sequencing which will be explained in detail later.

6.) The address of the first line of the MCODE program is in nybbles 3 to 6
of C. Nybbles 12 and 13 are always zero.

If your function is executed as a global execute in a program (XEQ
"ABCDEFG"), then some of the above are different. In particular, the
pointer is set to 3 instead of 1, register G contains the ROM ID number (1
to 31), and it cannot be assumed that nybbles 12 and 13 of C are zero. You
will not normally encounter this situation, because the instruction will
change to an XROM when it is keyed into the program, unless the correspon-
ding module is not present at that time.
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APPENDIX ZZZzzz... - The 3 CPU modes

There are three principal CPU modes. They are Deep sleep (calculator is
off), Light sleep (41 on but CPU not running; also known as standby mode.),
and Running (41 is executing code). If the CPU PC is at address 0000 as the
result of a POWOFF instruction, it is fixed there and the 41 is in light
sleep or deep sleep, waiting for a key to be pressed. If the ON key is
pressed while in deep sleep, the carry is set, providing for a branch to the
deep sleep wakeup routine at 01AD. If any key is pressed while in standby
mode, the carry flag is clear and the light sleep wakeup routine at 0180 is
executed.
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APPENDIX C - Other Advanced Stuff

In this section we shall cover the various keycodes used by the mainframe,
and how to make your MCODE programs nonprogrammable and/or prompting. First
we cover the special key tables.

The mainframe has three tables listed in its coding that define keycodes for
different keyboards. They are the default function keyboard (this is used
when an unassigned key is pressed), the ALPHA keyboard (used when we are in
alpha mode), and the partial key table, which is consulted during a partial
key sequence. There is also a table contained in the hardware of the micro-
processor. Its values are placed into the KY register whenever a key is
pressed. From these values two more key tables are computed. They are the
logical key table and the assignment key table. The tables are shown on
pages 149-150.

In order to make a MCODE function nonprogrammable (so the function will run
instead of being inserted when executed in program mode), just make the
first executable instruction of the function a NOP. For example, if the
first line of the GE routine were a NOP and all of the rest of the code was
pushed down by one word, you could execute "GE" in program mode and you
would end up at line 000 of the last program in memory. It would not be
inserted as a program line. We shall rename the routine and make it nonpro-
grammable. The new name is GEE.

llGEEll

Address Hexcode Mnemonic Description

82AB 085 "E" Name for GEE function.

82AC 005 "E"

82AD 007 "G"

82AE 000 NOP This is the start of the routine. The
address in the FAT points to this
instruction,
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82AF 378 READ 13(c) This was the first instruction in the old
routine. The rest of the routine is the
same as before.

82B0 05A C=0 M
82B1 01C R= 3
82B2 0DO0 LD@R 3
82B3 0C4 CLRF 10
82B4 2C8 SETF 13
82B5 328 WRIT 12(b)
82B6 3E0 RTN

The address in the FAT points to the NOP instruction, not the READ 13(c)
instruction. Now if you execute "GEE" in program mode you will end up at
line 000 of the last program in memory; the instruction will not be inserted
as a program line.

In order to allow a function to become prompting, the first and second
letters of the program name have the leftmost digit of their hexcode set to
something other than zero. For example, here is what the name for the COPY
function in the calculator looks like.

Hexcode Letter

099 "y
010 "P"
00F  "O"
103 "’

first executable instruction

Notice that leftmost digit of the hexcode of "C" is a one. This signals to
the calculator that some kind of prompt is needed. This digit may also be a
two or three. The leftmost digit in the second letter of the function can
range from zero to three. Here is a chart of the different combinations
that produce prompts.
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Example Leftmost digit of Type of prompt
Ist Chr 2nd Chr

SIN 0 - If the leftmost digit of the first character of
the name is zero, the second character is not
looked at.

COPY 1 0 Alpha input only (null input okay).

DEL 1 1 Three digits or four by pressing EEX.

1 2 Same as for COPY except null input is not

accepted (hitting the ALPHA Kkey twice while
entering no letters).

FIX 1 3 Allows entry of a single digit, an indirect
register, or indirect stack.

STO 2 0 Accepts two digit entries, indirect, indirect
stack, and stack. When the +, -, *, or / key
is pressed at the double prompt the function
defaults to the storage arithmetic function.

ASTO 2 1 Same as above except the storage arithmetic
part does not work.

FS?C 2 2 Allows two digit entries, indirect, or indirect
stack.

3 Same as above.

LBL 3 0 Allows non-null alpha input or two digit num-
bers.

XEQ 3 1 Accepts non-null alpha, indirect stack, stack,

or two digits inputs.
Allows two digit input or non-null alpha.

GTO 3 3 Accept two digit entries, non-null alpha,
indirect, indirect stack. If the decimal key
is pressed while there are two prompts showing,
the function changes to GTO . _ _ _

For numeric entries the hex equivalent of the number entered is put into the

S&X field of CPU register A. For example, if you entered 46 at the double
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prompt, then 02E would end up in S&X of A. For indirect inputs just add hex
80 to the hex value of the number entered. NOTE: Stack suffixes (the ones
that appear in the display as ST _ ) apply only to mainframe functions.
These suffixes will not operate as might be expected in your XROM functions.

Alpha entries are placed into register Q of the status registers. They are
put there in reverse order and right justified with unfilled places being
filled with 00 bytes . For example, if you filled in "QWERTY" at the prompt
the Q register would look like the following: 00 Y T R E W Q. The 00 is the
filler byte since there were only six letters entered.

Any function that uses one of these prompts should also be made nonprogram-
mable. If it is executed in program mode the function will be inserted as a
program line, and the value keyed in at the prompt will be lost. Only
mainframe functions can use that value when inserted in a program.

The prompts for the above functions are dictated by a process called partial
key sequencing. This is an esoteric procedure that has not previously been
documented. Very few people fully understand its intricacies. The leftmost
hex digit of the first two characters of the name in these MCODE functions
are called op bits. These are used by the mainframe to tell what kind of a
prompting function is being executed. The op bits for the first character
are called opl, and the bits for the second character are called op2 (these
are the leftmost hex digits in the first two characters of the name as

previously described).

These op bits form part of a special pair of status bytes called PTEMP1 and
PTEMP2. PTEMP2 is saved in register G during partial key sequence proces-
sing and in nybbles 3 and 4 of status register e during standby mode while
in a partial key sequence. The eight bits of PTEMP2 are designated as
follows:
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Bit Description

w N = O

Bit 0 of op2 (bit 8 of the second character of the function name).

Bit 1 of op2 (bit 9 of the second character of the function name).

Bit 0 of opl (bit 8 of the first character of the function name).

This bit is always zero. Bit 1 of opl initially accompanies the
preceding 3 bits, but it is left in bit 3 of ST, before PTEMP2 is fully
formed. Bit 1 of opl is tested at that point, then it is no longer
needed.

If this bit is set the function will be inserted as a line in a program.
This is called the INSERT bit. Before setting this bit, the mainframe
checks that you are in program mode and that the function is
programmable.

This is the XROM bit indicating the function resides in a non-mainframe
ROM. This bit only affects numeric entries. When clear, it indicates
that the numeric entry value from the S&X ficld of A is to be merged
with the function code as the postfix of a mainframe function. When the
XROM bit is set, the value is left in S&X of A for use by the XROM
program.

This is the IND bit. When set, hex 80 is added to the number in S&X of
A. This bit’s use is associated with the partial key sequencing of
mainframe functions using an indirect operand.

This bit is unused by PTEMP2,

PTEMPI is formed by setting aside the rightmost digit of the corresponding

key from the partial key table, and multiplying the two leftmost digits by

4,

Bits 0 to 3 of PTEMP2 are then added to this value. Note that there is

no overlap in this addition, since the middle digit of the key table entry

is always divisible by two, and since bit 3 of PTEMP2 is always zero. From
this we get the following definitions for the 8 bits of PTEMPI:

Bit Description

0
1

This is bit 0 from PTEMP2 (bit 0 of op2).
Bit 1 of PTEMP2 (bit 1 of op2).
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Bit 2 of PTEMP2 (bit 0 of opl).
If a digit key was pressed then this bit will be set. This is for
digits 0 to 9.

4 If a key from row one or two of the keyboard (A through J) was pushed
then this bit will be set.

5 When the ALPHA mode key is pressed this bit is set.
This bit is set when the SHIFT key is pushed.

7  When the decimal point is pressed this bit is set.

Upon return from a partial key sequence keystroke, PTEMPI1 is in register ST,
PTEMP2 is in register G, the rightmost digit of the keycode from the partial
key table is in the mantissa sign of A, and the keycode from the logical key
table is in nybbles 1 and 2 of register N.

In order to write your own partial key sequencing routine you must merely
ensure that bit three of register G is zero upon entry. The rest of PTEMP2
is generally meaningful only for functions whose prompting is dictated by
the op bits in its name, and can usually be ignored when setting up partial
key sequences in the coding of an MCODE program. There are four entry points
used for this purpose. They are at 0E45, 0E48, 0E4B, and 0E50. Upon entry
to these locations the display must be enabled. These addresses must be
called as a subroutine so control can be returned to your program once a key
has been pressed. Now we shall describe each entry point.

Address Description

0E45 This entry appends a single underscore to the display. The

[NEXTI1] display is then left justified. The FIX instruction is an
example of a single underscore function.

0E48 Here two underscores are appended to the display before left

[NEXT2] justification takes place. The STO function is an example of
this type of prompt.

0E4B Three underscores are placed into the display by this entry

[NEXT3] point. The display is then left justified. The DEL instruction
is an example of this type of prompt.
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0ES50 This entry point does not append an underscore to the display.

[NEXT] The display must have at least one character present which is not
a space, otherwise the left justify routine will go into an
infinite loop since it looks for a non-space character.

These routines set the partial key (46) flag and the message flag (50).
(Setting the message flag turns out to be unnecessary in this particular
case.) They then update the annunciators in case the ALPHA key was pressed
in preparation for entry of a function name or the SHIFT key was pressed
during entry of the characters of a function name. Finally the keyboard is
reset, and we go into standby mode.

When a key is pressed, the calculator starts executing code and figures out
that we are in the middle of a partial key sequence (the partial key flag is
set). The partial key table is then consulted in order to construct PTEMPI.
Then the display is right-justified and all of the prompts (underscores) are
removed. Finally a check is made to see if the backarrow key was pressed.
If it was, a return is made to the step immediately following the execute
statement of the partial key sequence routine. If some other key is
pressed, the step immediately after the execute statement is skipped. Your
program may now use PTEMPI and the contents of the mantissa sign of A
(and/or the logical keycode in nybbles 1 and 2 of register N), to figure out
which key was pressed and go off and do the appropriate stuff. If you have
a multiple prompt you will want to place the pertinent character into the
display and call one of the above routines which appends one less prompt
than was previously in the display. When you are finished prompting for
input you should execute the routine at 0385 to clear the message flag (50)
and the partial key flag (46) in order to tell the calculator you are no
longer in a partial key sequence.

We now introduce a program which uses one of the partial key sequence entry
points. It is a routine for entering non-normalized numbers directly from
the keyboard. The 0-9 and A-F keys are reassigned to allow them to be
executed from an unshifted keyboard. The routine places the ASCII digits
into alpha and then codes the rightmost fourteen characters into X upon
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exit. This routine was written by Clifford Stern. It is called HXENTRY.

"HXENTRY"
Address Hexcode Mnemonic Description
82B7 099 "Y" Routine name
82B8 012 "R"
82B9 014 T
82BA 00E “N"
82BB 005 "E"
82BC 018 X"
82BD 008 "H"
82BE 345 INC XQ These first two executes clear the alpha
82BF 040 10D1 register (10D1) and clear and enable the
[CLA] display (2CF0).
82C0 3Cl1 INC XQ
82C1 0BO 2CF0
[CLLCDE]
82C2 115 INC XQ Next a single underscore is ‘pushed into
82C3 038 0E45 the right of the display which is then
[NEXTI] left justified. Chip 0 is then enabled so
the partial key sequence flag (46) and the
message flag (50) can be set. The key-
board is then reset and we go into standby
mode.
82C4 07B JNC +0F If the backarrow key is pressed we return
here and jump to a routine which deletes
the rightmost character from both the
display and the alpha register.
82C5 04C 7FSET 4 If flag 4 is set, a key from row 1 or 2
82C6 11B JNC +23 has been pressed. We jump to another flag
test if the flag is clear.
82C7 35E 7A#0 MS If we make it to here a row 1 or 2 key has
82C8 3D3 JNC -06 been pressed. The least significant digit
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82C9
82CA
82CB

82CC
82CD
82CE
82CF
82D0
82D1

82D2

82D3

82D4

130
007
33C

31E
3AB
0BE
2FC
3E8
110

OEB

3B8

149

LDI S&X
HEX: 007
RCR 1

72A<C MS
JNC -0B
A<>C MS
RCR 13
WRIT 15(e)
LD@R 4
JNC +1D

READ 14(d)

INC XQ

of the keycode (see partial key table on
page 150) is placed into the mantissa sign
of A.

pressed.

If it is zero, the J key has been
Since this is not a hex digit we
ignore the key and jump back to 82C2.
Now we load a seven and rotate it into the
mantissa sign of C so we may compare it to
the number in the mantissa sign of A.
This has the
clearing what is now digits zero and one
of C.
If the key pressed is not less than G (7)
then we ignore it and jump back to 82C2.

additional feature of

If we get to here we know that a key from
A to F has been pressed. First we place
the least significant digit of the keycode
from the partial key table into nybble 0
of C. Then we send it to the right end of
the display. The partial key sequence
routine leaves the pointer set to one so
we may load a 4 to obtain the ASCII equi-
valent. We then jump to the code that
appends this to alpha.

This is where we jump to if the backarrow
key was pressed. Upon return from a par-
tial key sequence the display is right
justified and the prompts are deleted.
Therefore the character we want to remove
is the rightmost in the display. The READ
14(d)

right by one character. When we return to

instruction rotates the display
82C2 a prompt is pushed into the right of
the display and the character to be de-
leted is shifted off the display.

First chip 0 is enabled and the display is
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82D5

82D6
82D7
82D8
82D%
82DA
82DB
82DC
82DD
82DE
82DF
82E0
82E1
82E2
82E3
82E4
82E5
82E6
82E7
82E8
82E9
82EA

82EB
82EC
82ED
82EE

024

238
10E
1F8
0AA
23C
2F0
1B8
0AA
23C
2F0
178
04A
0AA
23C
2F0
0AE
23C
228
073
00C
07B

0BE
2FC
0D0
368

0952
[ENCPO00]
READ 8(P)
A=C ALL
READ 7(0)
A<>C R«
RCR 2
WRITE DATA
READ 6(N)
A<>C R<
RCR 2
WRITE DATA
READ 5(M)
C=0 R«
A<>C R«
RCR 2
WRITE DATA
A<>C ALL
RCR 2

WRIT 8(P)
JNC +0E
7FSET 3

JNC +0F

A<>C MS
RCR 13
LD@R 3
WRIT 13(c)

disabled. The pointer has been left at
one upon exit from the partial key sequen-
ce routine. What is now done is to delete
the rightmost character from the alpha
register. This is done by successive
manipulation of the first and last digits
of each register of alpha. We then jump
down to a point that enables the display
and goes back to 82C2.

This is where we end up if the key that is
pressed is not a key from row 1 or 2. If
flag 3 is set then a numeric key was
pressed. If a numeric key was not pressed
then we go to a point to check if the
decimal point was pressed.

Now we know a numeric key has been pres-
sed. The number is retrieved from the
mantissa sign of A and rotated into nybble
zero of C and a three is loaded into
nybble 1. This is then written out to the
right of the display. We use an eight bit
display transfer since we can’t depend on
nybble 2 being even.
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82EF
82F0
82F1

82F2
82F3

82F4
82F5

82F6
82F7

82F8
82F9
82FA
82FB
82FC

82FD
82FE
82FF
8300
8301
8302

058
149
024

051
0B4

042
058

3D9S
01C

253
28C
01B
2C4
03B

130
370
106
0BO
366
207

G=C
INC XQ
0952
[ENCP00]
INC XQ
2D14
[APNDNW]
C=0 @R
G=C

INC XQ
07F6

[ENLCD]
INC -36
PFSET 7
JNC +03
CLRF 13
INC +07

LDI S&X

HEX: 370

A=C S&X
C=N

?A#C S&X
JC -40

This is the place we enter to append
characters to alpha. The pointer is now
zero so nybbles zero and one of C are
saved in G. We then enable chip 0 and
disable the display (0952). The append
routine (2D14) takes the contents of G and
places it as the last character in alpha.

The purpose of this pair of instructions
is to clear bit 3 of register G. This
will provide for PTEMPI to be correct upon
return from the next execution of partial
key sequencing.

We now enable the display so that we may
return to address 82C2.

This routine may be inserted as a line in
a program. If we are in a running program
the R/S key will halt digit entry and the
program will continue. However if the
decimal key is pressed the program will be
If flag 7 is set the decimal
CPU flag 13 is cleared

in order to halt a running program. We

terminated.
key was pressed.

then go on to finish the routine.

If flag 7 is not set then a key other than
a hex entry or the decimal point has been
We shall now check if the R/S
key was pushed. We load the logical key-

pressed.

code of R/S into nybbles one and two of C
then transfer this to A. The logical
keycode for the key that was pressed is in
nybbles one and two of N. We retrieve
this into C and they are compared. If the
R/S key was pressed we continue on with
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8303
8304

8305
8306

8307
8308

8309
830A

830B
830C
830D
830E

830F

8310

8311

8312

8313

3DS
0BO

261
000

149
024

215
00C

130
049
23C
OEE

35C

00E

1B8

0AE

33E

INC XQ
2CF6
[CLRLCD]
INC XQ
0098
[RSTKB]
INC XQ
0952
[ENCP00]
INC XQ
0385
[RSTSQ]
LDI S&X
HEX: 049
RCR 2
C<>B ALL

A=0 ALL

READ 6(N)

A<>C ALL

7A<B MS

the routine. Otherwise, we ignore the key
and jump back to 82C2.

The display is cleared (2CF6) to clean it
up. The keyboard is then reset (0098).
This is just waiting for the release of
the key. If this is not done the routine
could finish and the function on the
depressed key would be executed.

Chip 0 is now enabled and the display is
disabled (0952). The message (50), and
the partial key sequence (46) flags are
cleared (0385). User flags 48 to 55 are
loaded into register ST.

This value is used to CODE the rightmost
fourteen digits of alpha. We shall now
rotate these digits into nybbles 12 and 13
of register C. They are then transferred
to register B so we may do a series of
comparisons and possible additions with
register A.

The pointer is set to 12 so we may add the
two nybbles in A and B when an alphabetic
character is processed.

Clear what will become the accumulator
register. If there are fewer than ecight
characters in alpha the inner loop won’t
be executed 14 times so we must have
leading zeros in C to account for this.
Characters eight through fourteen are
placed into C so we may begin coding them.
This is the beginning of the outer loop.
The contents of C are either status regis-
ter Mor N.

We now check to see if we have an alpha
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8314
8315

8316
8317
8318
8319

831A

831B

831C
831D

017
122

3EE
O0BE
3EE
2FC

34E

3C7

30C
02F

JC +02
A=A+B @R

LSHFA ALL
A<>C MS
LSHFA ALL
RCR 13

?A#0 ALL

JC -08

?7FSET 1
JC +05

character, or instead a digit character or
a null byte. If the mantissa sign of A is
less than four the latter is the case (the
most significant hex digit of an alpha
character is four)., If that is true then
we skip the addition step because the
least significant digit of that byte is
the correct hex equivalent. For alpha hex
numbers a nine must be added to this digit
to correct it (i.e. A is 41 in ASCII and
we add 9 to get 4A which sets the right-
most digit to the character it repre-
sents). This is the start of the inner
loop.

The A register is shifted left to discard
the left nybble of the character just
examined. This places the desired digit
in the mantissa sign of A, We now place
this into C and shift A left again to
bring up the next character to be coded.
The digit in the mantissa sign of C is now
rotated to the right end.

If there are more characters to be coded,
A will not be equal to zero and we jump
back to the start of the inner loop at
address 8313.

If this is the first time through the loop
this flag will be clear. We know this
because status set zero was placed in
register ST. Status set 0 is in ST as a
result of the call to 0385, and flag 1
corresponds to the pause flag which is
cleared by that routine. If it is set we
jump to the end of the routine and finish

up.
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831E 308 SETF 1 Setting this flag tells us that this is
the second time through the inner loop.

831F 10E A=C ALL The result from the first execution of the
8320 178 READ 5(M) inner loop is temporarily saved in A so we
8321 38B JNC -0F may fetch the rightmost seven characters

of alpha. We then jump back to the begin-
ning of the outer loop at address 8312,

8322 OEE C<>B ALL The final value is in C and we save it in
8323 0B9 INC GO B as required by the routine at address
8324 04A 122E 122E, which sends register B to X accor-

[RCL] ding to the status of the stack enable

flag (CPU flag 11).

To use this routine execute HXENTRY. The program will place a single prompt
in the left of the display. You may now press any key, with only the 0 to F
keys entering digits into the display. The ON, R/S, and Decimal Point keys
will terminate the routine. If the R/S key is pressed when the function was
executed in a running program the program resumes running. With the decimal
point the program is terminated. The backarrow key deletes the rightmost
character in the display and alpha. All other keys are ignored.

We are providing another routine that executes just the CODE section of
HXENTRY; the contents of alpha are coded into X. However, you must enter
the alpha characters manually (or from a program) and then execute CODE.
Here is the routine. It simply uses the CODE portion of HXENTRY to do all
of the dirty work.
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Address Hexcode Mnemonic

8325
8326
8327
8328
8329

085
004
00F
003
313

wgn
"
Qo
nen
JNC -1E

CODE

Description

Routine name.

This is a jump back to the CODE section of
HXENTRY.
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61
41

7E
46

10C

62
42

25
47

10C 10C

Alpha Keyboard

63 64 65
43 44 45

1D 3C 3E
48 49 4A

10E 7F 19A 19B 207
10E4B 4C 4D 108

5E
4E

2D
51

2B
35

2A
59

2F
3A

37

34

56

31
5A

30
20

D 24 187

4F 50

38
33

35
57

32
3D

2E
2C

0

39
54

36
58

33
3F

17E
105

MAINFRAME KEY TABLES

Default Function Table

148
147

170
171

10E
10E

10C

153 151

10C

157

160 152 156

14C 15C 15D

175 159

15A

10F ICF 1DO

1E0 191

100 196

183

178
141

146
140

145
142

167
143

1A8
17

186
14

19C
11

172
10
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190

185

1C 1B

1A9
18

14E
15

19D
12

176
1A

10C

155
150

I5E
15B

107
108

177
0

1AC

14F

16

19E
13

198
105

Logical Keycodes

46
08 18 28
00 10 20
09 19 29
01 11 21
0A 1A 2A
02 12 22
0B 2B
03 23
0C 1C
04 14
0D 1D
05 15
0E 1E
06 16
OF 1IF
07 17

45

38
30

39
31

3A
32

3B
33

2C
24

44

48
40

49
41

4A
42

4B
43

3C
34

3D
35

3E
36

3F
37



MORE MAINFRAME KEY TABLES

PARTIAL KEY TABLE KEYCODES from KY ASSIGNMENT KEY TABL!

000 000 080 18 Cé6 C5 C4 (top keys not assignable)

09 19 29 39 49
041 042 043 044 045 10 30 70 80 CO 01 11 21 31 41

0A 1A 2A 3A 4A
046 047 048 049 040 11 31 71 81 Cl 02 12 22 32 42

0B 1B 2B 3B 4B
100 000 000 000 000 12 32 72 82 C2 03 13 23 33 43

0C 2C 3C 4cC
000 000 000 OOF 13 73 83 C3 04 24 34 44

0D 1ID 2D 3D
002 027 028 029 14 34 74 84 05 15 25 35

0E 1IE 2E 3E
001 024 025 026 15 35 75 85 06 16 26 36

OF 1IF 2F 3F
003 021 022 023 16 36 76 86 07 17 27 37

10 20 30 40
004 020 200 000 17 37 17 87 08 18 28 38
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APPENDIX D - Using the Polling Points

You may remember when we were describing which words in a 4K page had been
set aside for specific purposes, the words from addresses PFF4 to PFFA were
off limits unless you knew exactly what you were doing. During certain
specific times the 41 conducts a process called polling. This entails
checking a fixed polling point in all ROMs from page 5 to F. In order to
use these points several conditions must be observed. We shall now describe
how these may be used. First, if there is any nonzero word in one of the
polling point addresses and the calculator polls that address then it will
branch there and start executing code. Usually we put a JNC that jumps to
the start of the routine we wish to execute. The seven different polling
points are polled at specified times. These times are given below.

Address Description of poll

PFF4 This is the pause loop interrupt. Any time the calculator
executes the PSE instruction this address is polled.

PFF5 This address is polled after any RPN function is executed, if user
flag 53 or peripheral flag 13 is set. This includes execution of
functions during a User code program, and is called the main
running loop interrupt.

PFF6 This is polled when the calculator is turned on by something other
than the ON button (for example, an alarm).

PFF7 This location is polled when the calculator is being turned off.

PFF8 This is polled whenever the calculator goes into standby mode, and
is called the I/O interrupt.

PFF9 The calculator polls this address when it is turned on using the
ON button.

PFFA Whenever there is a MEMORY LOST this location is polled.

Once you have taken control by using one of these interrupts you MUST
observe some rules.
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Your routine must exit with the following intact:

1.) Restore nybbles 10 through 3 of register C to what they were when you
took control at the interrupt.

2.) Have P as the selected pointer.

3.)) Load flags 48 to 55 of the user flag register into CPU register ST.
This set of flags is called status set zero (SS0).

4.) Have chip 0 (the status registers) selected.

5.) The CPU must be in HEX mode.

6.) You must do a GOTO to 27F3 to end the interrupt and give control back to
the calculator so that it may continue polling.

If any of these rules are not observed the calculator could end up doing
some strange things (like locking up the keyboard). To clarify this mess we
shall do an example. In our example we shall use the MEMORY LOST interrupt.
Whenever a MEMORY LOST occurs we shall resize the calculator to a size of 25
instead of the normal 273 (CV) or 100 (CX). Here is the routine.

Address Hexcode Mnemonic Description
8FES8 268 WRIT 9(Q) This is the entry to our routine. The

first thing we do is save register C in Q
so that we may retrieve it later as re-

quired.
8FE9 130 LDI S&X We shall now load the size (25 in decimal)
8FEA 019 HEX: 019 into S&X of C and then transfer it to A.
8FEB 106 A=C S&X This is done because the size routine

requires the specified size to be in A
(remember SIZE is a prompting function).

8FEC 244 CLRF 9 We shall now call the routine in the main-
8FED 259 INC XQ frame that changes the size. Flag 9 is
S8FEE 05C 1796 cleared in case we should get an error.

If we get an error, the routine will just
return and do nothing if flag 9 is
cleared. If it were set we would go to the
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PACKING error message and would not be
able to return control to the polling

process.
8FEF 25D INC XQ This entry point selects chip zero, and
8FF0 01C 0797 then places the user flag register into C.
[LDSSTO] Flags 48 to 55 are then placed into the ST
register.
8FF1 278 READ 9(Q) Now we retrieve the original contents of C
upon entry to the poll.
8FF2 3CD INC GO We then exit back to the mainframe after
8FF3 09E 27F3 having satisfied all of the described

conditions. The size routine does not
change the selected pointer so we didn’t
have to do anything about that.

Now we shall place the jump from the MEMORY LOST interrupt location at 8FFA
to the beginning of our routine which is at 8FE8, by using a JNC -12
(hexcode 373). Always remove the word at the interrupt location before you
modify the routine that uses the interrupt. After you have updated the
routine make sure that the interrupt jumps back to the correct place or you
could lose control of the calculator when the interrupt is polled.

If you happen to place the jump to a wrong location and the calculator goes
crazy, try the following: unplug you MLDL and regain control of the
calculator. Now change the selected page of your MLDL to page 2. Then
write NOPs (000) to all of the interrupt locations (2FF4-2FFA). You may now
place your MLDL back to the original page.
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APPENDIX E - MCODE Debugging Program

Clifford Stern has written a program to allow you to interrupt your MCODE
routine. This routine saves the contents of all the CPU registers at the
point of interruption in the RAM of the calculator. The 16 status registers
are also saved away. The name of the routine is BREAK.

To use BREAK you must have the address of the point you wish to insert the
breakpoint in X. Place it there using HXENTRY (example, for address 8967
press the 8, 9, 6, and 7 keys at the prompt and then press R/S). Then
execute BREAK. The breakpoint is inserted automatically by the program and
user flag 1 will be set. Flag | should be cleared before you execute BREAK.
You must be sure that the carry is not set by the instruction immediately
preceding the breakpoint. This is because the BREAK routine writes an ?NC
GO to the debugging routine. Now load the appropriate data and execute the
function to be debugged. When the breakpoint is reached during execution of
your function, the CPU and status registers are written into the last 25
data registers of the calculator RAM (1E7-1FF), the original program bytes
are restored, and flag 1 is cleared. The routine assumes that you have a
41CX, 41CV, or a 41C with a quad memory module. If the number of data
registers available is less than 25 then BREAK exits to the NONEXISTENT
error message. If flag 1 is still set when the routine finishes (crashes?)
the breakpoint was not reached. To restore the original bytes just clear X
and execute BREAK. Registers 1FE and 1FF are reserved for use by the BREAK
program, and must not be altered by the routine being debugged.

The Data is saved in the RAM registers in the order shown on the next page.

Note: The MCODEdebugging program doesnot work withthe PROTOCODER MLDL
device because of the different method of writing to the device.
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abs.

reg.# 13 12 11 10
487 0 0 <---RTN
488 <-KY-> <---RTN

Detail of XY:

BIT # 7 6 5 4 3

FLAG #13 12 11 10 9
489 L s
490 B it
491 Cmmmmmmmmem s
492 Cmmmmmmmmmmm e
493 e Lt
494 Cmmmmemmmam———————e
495 P s
496 T ittt
497 Kmmmmmmmecemam—aaas
498 Cmmmmmmmmm————aas
499 Cmmmmmmmmmmecenaan
500 <mmmmmemeeceaooaas
501 <o
502 <mmmmmmmccccnciaen
503 LR EEE LT PEEE T
504 B Rt
505 e
506 P SEETTEEEEEEEEEEREE
507 D L LT
508 S SEEEELEEEEEEEERELE
509 Cmmmmmmm e
510
511

Contents of register by nybble

9 8 7 6 5 4 3 2 1 0

#3---> <---RTN #2---> <---RTN #1--->
#4---> <-XY-> P Q <-G-> <-ST->
2 1 0 v=0/1 denotes hex/dec mode

8 v w w=0/1 denotes SLCT P/Q
CPU REGISTER C =--cccmommmmmmacaaee >
CPU REGISTER A --cessemmmmcmaaammaaas >
CPU REGISTER B ------ccmmmcoccacanane >
CPU REGISTER M ----ccememmmmcaammeeae >
CPU REGISTER N ---mmmommmmmcciaanaes >
STATUS REGISTER T ----cccccmemmnnnnn- >
STATUS REGISTER Z =---cccemmmemmmmmn- >
STATUS REGISTER Y --v-ccccmmmmmmmaaen >
STATUS REGISTER X ---z-cccccmmcoces >
STATUS REGISTER L -ccccemmmmmaaaan >
STATUS REGISTER M --ccommmccccccnnan- >
STATUS REGISTER N ----mocmommmccaaa-- >
STATUS REGISTER O ---cccceecacnnnman- >
STATUS REGISTER P -----ccemmmmccnaaes >
STATUS REGISTER Q ---------ccemecnns >
STATUS REGISTER } --ccemmcmmaommcnans >
STATUS REGISTER a -e-c-mmcmommccnnn-- >
STATUS REGISTER b --cesszcccomcceuas >
STATUS REGISTER € --ceecommmmmmmmnne- >
STATUS REGISTER d -eececmccmmmccnnnn >
STATUS REGISTER € ---------esuemmmnn- >

<breakpoint ADR> <break word>
< break ADR +1 > <break word>
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In order to examine this output use the following User-code routine. The
DECODE function is given after the listing for BREAK. It decodes the
contents of X into its hexidecimal representations and puts the result into
alpha and the display. The program is called "RR". To view the contents of
the desired register just place the absolute address in X and XEQ "RR". The
hexidecimal representation of the contents of the desired register will be
viewed, and printed if possible. Just hit R/S to examine each successive
register.

LBL "RR"

NR This is the non-normalized recall from our sample ROM.
DECODE This routine is listed at the end of this appendix.
PROMPT

LASTX

1

+

GTO "RR"

END

In order to efficiently use BREAK you should use the following short User-

code program.

LBL "?"
HXENTRY Enter the address at which you wish to insert the breakpoint.
BREAK

This is where you place the steps to load the data for your
function. Then place the function after the data is loaded.

487 This number points to the lowest register in which data is saved
by BREAK. It may be changed to start at any other register you
wish to examine.

GTO "RR"

END
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After assigning "?" to a key, this routine can be used to efficiently probe
for errors in an MCODE program. To view the contents of the display at the
breakpoint, set user flag 2 and place a STOP instruction before the 487
program line.

There are two values that the BREAK program does not give you. They are the
value of the RAMSLCT pointer and the contents of register T. In order to
obtain these values a second program was integrated into the BREAK program.
It is called RSCLT. This routine uses the breakpoint location that was used
by the last execution of BREAK. So BREAK must be executed before RSLCT is
used. The results from RSLCT are placed in the X register. The RAMSLCT
value is in the S&X field and the contents of register T are placed into
nybbles 3 and 4. If the selected RAM register is nonexistent, the S&X field
of X will be set to FFF. To use this function just execute RSLCT and then
load the same data used for the previous execution of BREAK. Now execute
the function you are debugging. To view the results of RSLCT just execute
DECODE. Thesystem RSLCT uses to compute the RAMSLCT value was pioneered by
Paul Cooper.

Another routine we are providing for your programming pleasure is called
LOOP. This function allows you to debug a loop within a program. You can
execute the loop a specified number of times before the debugging routine
dumps the CPU registers to RAM for inspection.

In order to use this routine you must be a genius on the order of Albert
Einstein (just kidding). The number of times the breakpoint is bypassed is
taken from the Y register. The address of the breakpoint is placed in X and
is of the same format as for BREAK. The breakpoint location must be at a
pair of NOPs since processing continues past the breakpoint a number of
times. The LOOP routine uses one subroutine level and in addition utilizes
the tone register (T) to store the loop counter. This precludes use of
register T in your program and you cannot have more than three pending
returns in the subroutine stack at the breakpoint. LOOP places the 41 into
buzz mode (nonzero value in register T). If the debugging is not allowed to
finish, the calculator can be removed from buzz mode by executing BEEP with
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flag 26 set.

LOOP requires two NOPs for its 2NC XQ to be inserted into your program. If
this is not possible use the following procedure.

1.) Insert a jump to a location that contains the NOPs.

2.) Place the instruction that was replaced by the jump at the location to
which you jump. Follow this instruction with two NOPs and then a jump
to the step after the first jump instruction. Here’s an example.

Address Mnemonic Description

Pabe ABC This is the instruction that was replaced by the
first jump instruction.

XXXX NOP Here are the two NOPs.

XXXX NOP

XXXX JNC +Pxyz This is the second jump to the instruction after the
first jump.

Pxyy JNC -Pabc This is the spot where the first jump is placed and
the jump goes to the spot where the instruction ABC
is placed.

Pxyz 7? This is where the second jump goes to so the program

may continue.

LOOP can be executed from the keyboard or a running program. An example of
the later is given below.

LBL "2?"

RCL 00 This is the register containing the loop counter.

ISG 00 Increment the loop counter by one so the next time you execute
this program the number of loops will be different.

NOP Insert a NOP here. STO X for example.
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"ABCD" This is the address where the LOOP breakpoint is to be placed.

CODE Code the address in the alpha register and push it onto the
stack. The CODE routine is listed on page 148.

LOOP Execution of LOOP to insert the breakpoint and store the loop
counter.

As in BREAK this is where you place the steps to load data for
your function. Then place the function after the appropriate
data is loaded.

489 This number points to the first register you wish to view after
the Nth iteration (N is in register 00) of the loop.

GTO "RR"

END

Simply assign "??" to a key and place a starting loop counter (such as zero)
into register 00. Then press the assigned key repeatedly to obtain
successive outputs from the loop.

LOOP and RSLCT are separable from the BREAK program, and can be omitted if
desired. BREAK runs from 847A to 8545 in the following listing. The BREAK
program must be present in order for RSLCT and LOOP to function.

-159-



Address Hexcode Mnemonic

8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
844A
844B
844C
844D
844E
844F
8450
8451
8452
8453
8454
8555
8556
8457
8458
8459
845A
845B
845C
845D
845E
845F
8460

090
00F
00F
00C
0B8
38D
008
2F6
0BS5S
0A3
358
258
308
163
2D8
38C
01B
384
12B
388
30C
01B
304
103
308
20C
01B
204
0DB
208
0oC
01B
004

opn
"o

"o

wp

READ 2(Y)
INC XQ

02E3 [BCDBIN]

7C#0 XS
7C GO

282D [ERRDE]

ST=C
T=ST
SETF 1
INC +2C
ST<>T<<<
7FSET 0
JNC +03
CLRF 0
JNC +25
SETF 0
7FSET 1
JNC +03
CLRF 1
INC +20
SETF 1
?7FSET 2
JNC +03
CLRF 2
IJNC +1B
SETF 2
7FSET 3
IJNC +03
CLRF 3
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Address Hexcode Mnemonic

8461
8462
8463
8464
8465
8466
8467
8468
8469
846A
846B
846C
846D
846E
846F
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
847A
847B
847C
847D
847E
847F
8480
8481

0B3
008
04C
01B
044
08B
048
08C
01B
084
063
088
14C
01B
144
03B
148
28C
01F
020
033
284
2D8
3E0
16B
258
3C4
3D8
3F0
3D8
308
208
008

INC +16
SETF 3
7FSET 4
JNC +03
CLRF 4
IJNC +11
SETF 4
7FSET 5
JNC +03
CLRF 5
JNC +0C
SETF 5
7FSET 6
IJNC +03
CLRF 6
IJNC +07
SETF 6
7FSET 7
JC +03
XQ>GO
JNC +06
CLRF 7
ST<>T
RTN
JNC +2D
T=ST<<<
ST=0
C<>ST
PRPH SLCT
C<>ST
SETF 1
SETF 2
SETF 3



Address Hexcode Mnemonic

8482
8483
8484
8485
8486
8487
8488
8489
848A
848B
848C
848D
848E
848F
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
849A
849B
849C
849D
849E
849F
84A0
84A1
84A2

048
33C
3D8
2FC
270
33C
398
2FC
268
0AE
2A8
0CE
2E8
198
328
0BO
368
046
1BO
07C
1BO
07C
1B0
27C
1E8
1A0
298
3D8
258
27E
260
23E
017

SETF 4
RCR 1
C<>ST
RCR 13
RAMSLCT
RCR 1
C=ST

RCR 13
WRIT 9(Q)
A<>C ALL
WRIT 10¢-)
C=B ALL
WRIT 11(a)
C=M
WRIT 12(b)
C=N

WRIT 13(c)
C=0 S&X
POP ADR
RCR 4
POP ADR
RCR 4
POP ADR
RCR 9
WRIT 7(Q)
A=B=C=0
ST=T
C<>ST
T=ST
C=C-1 MS
SETHEX
C=C+1 MS
JC +02

Address Hexcode Mnemonic

84A3
84A4
84A35
84A6
84A7
84A8
84A9
84AA
84AB
84AC
84AD
84AE
84AF
84B0
84B1
84B2
84B3
84B4
84B5
84B6
84B7
84B8
84B9
84BA
84BB
84BC
84BD
84BE
84BF
84CO
84Cl1
84C2
84C3

308
03C
023
173
23E
3D4
394
3EB
33C
120
03B
35C
0A0Q
354
06F
388
053
0EO
394
01B
388
0AO
23E
3D4
394
3EB
35C
0D8
23C
38C
O1F
2DC
3D4

SETF 1
RCR 3
JNC +04
JNC +2E
C=C+1 MS
R=R-1
RR=0
JNC -03
RCR 1
P=Q
JNC +07
R= 12
SLCT P
7R= 12
JC +0D
SETF 0
JNC +0A
SLCT Q
R=0
JNC +03
SETF 0
SLCT P
C=C+1 MS
R=R-1
R=0
JNC -03
R= 12
C<>G
RCR 2
7FSET 0
JC +03
R=13
R=R-1



Address Hexcode Mnemonic

84C4
84C5
84C6
84C7
84C8
84C9
84CA
84CB
84CC
84CD
84CE
84CF
84D0
84D1
84D2
84D3
84D4
84D5
84D6
84D7
84D8
84D9
84DA
84DB
84DC
84DD
84DE
84DF
84E0
84E1
84E2
84E3
84E4

098
10C
013
208
24C
013
008
0CC
013
048
18C
013
088
34C
023
013
1A3
148
2CC
013
288
398
2FC
1BO
07C
220
3C8
0BC
228
130
1EE
OE6
39C

C=G
7FSET 8
INC +02
SETF 2
7FSET 9
IJNC +02
SETF 3
?7FSET 10
JNC +02
SETF 4
7FSET 11
INC +02
SETF 5
?FSET 12
INC +04
INC +02
INC +34
SETF 6
?FSET 13
IJNC +02
SETF 7
C=ST
RCR 13
POP ADR
RCR 4
C=KEY
CLRKEY
RCR 5
WRIT 8(P)
LDI S&X
HEX: 1EE
C<>B S&X
R=0
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Address Hexcode Mnemonic

84ES
84E6
84E7
84E8
84E9
84EA
84EB
84EC
84ED
84EE
84EF
84F0
84F1
84F2
84F3
84F4
84F5
84F6
84F7
84F8
84F9
84FA
84FB
84FC
84FD
84FE
84FF
8500
8501
8502
8503
8504
8505

0A6
270
106
038
OEE
270
226
OEE
2F0
162
3B3
3F8
106
330
0A6
040
0A6
3ES8
3B8
106
330
0A6
040
0A6
2F0
046
270
215
00C
2FC
358
20C
027

A<>C S&X
RAMSLCT
A=C S&X
READ DATA
C<>B ALL
RAMSLCT
C=C+1 S&X
C<>B ALL
WRITE DATA
A=A+l @R
IJNC -0A
READ 15(e)
A=C S&X
FETCH S&X
A<>C S&X
WRIT S&X
A<>C S&X
WRIT 15(¢)
READ 14(d)
A=C S&X
FETCH S&X
A<>C S&X
WRIT S&X
A<>C S&X
WRITE DATA
C=0 S&X
RAMSLCT
INC XQ

0385 [RSTSQ]
RCR 13
ST=C

?FSET 2

JC +04



Address Hexcode Mnemonic

8506
8507
8508
8509
850A
850B
850C
850D
850E
850F
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
851A
851B
851C
851D
851E
851F
8520
8521
8522
8523
8524
8525

208
01B
093
204
398
33C
2F0
20C
027
30C
205
00D
3C1
002
2F3
08B
001
005
012
002
130
1E7
106
378
03C
306
381
00B
OF8
1BC
130
IFE

SETF 2
JNC +03
IJNC +12
CLRF 2
C=ST

RCR 1
WRITE DATA
7FSET 2

JC +04
7FSET 1

7C XQ

0381

INC GO
00F0 [NFRPU]
JNC -22
g

A

s

"R

"

LDI S&X
HEX: 1E7
A=C S&X
READ 13(c)
RCR 3
7A<C S&X
7C GO
02E0 [ERRNE]
READ 3(X)
RCR 11
LDI S&X
HEX: IFL
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Address Hexcode Mnemonic

8526
8527
8528
8529
852A
852B
852C
852D
852E
852F
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
853A
853B
853C
853D
853E
853F
8540
8541
8542
8543
8544
8545

270
2FA
243
130
0B9
30C
01B
130
0ES
286
10E
35D
000
03C
206
2FC
3C6
1E6
1E6
226
IFA
1IFA
30C
O01F
23A
23A
106
03C
0AE
2F0
23A
27B

RAMSLCT
7C40 M
JNC -38
LDI S&X
HEX: 0B9
7FSET 1
JNC +03
LDI S&X
HEX: OE5
C=0-C S&X
A=C ALL
INC XQ
00D7 [PCTOC]
RCR 3
C=C+A S&X
RCR 13
RSHFC S&X
C=C+C S&X
C=C+C S&X
C=C+1 S&X
C=C+C M
C=C+C M
?FSET 1

JC +03
C=C+! M
C=C+1 M
A=C S&X
RCR 3

A<>C ALL
WRITE DATA
C=C+1 M
JNC -31



Address Hexcode Mnemonic

8546
8547
8548
8549
854A
854B
854C
854D
854E
854F
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
855A
8558
855C
855D
855E
855F
8560
8561
8562
8563
8564
8565
8566

094
003
00C
013
012
130
IFE
270
038
130
020
2FB
293
038
158
1A0
3F0
21C
310
O0E6
260
26E
29C
010
2F0
10E
0Cé6
270
226
OSF
0E6
038
36E

wpn
nem

L

ng

"R

LDI S&X
HEX: IFE
RAMSLCT
READ DATA
LDI S&X
HEX: 020
IJNC -21

IJNC -2E
READ DATA<<<
M=C
A=B=C=0
PRPH SLCT
R=2

LD@R C
C<>B S&X
SETHEX
C=C-1 ALL
R=7

LD@R 0
WRITE DATA
A=C ALL
C=B S&X
RAMSLCT
C=C+1 S&X
JC +0B
C<>B S&X
READ DATA
?A#C ALL
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Address Hexcode Mnemonic

8567
8568
8569
856A
856B
856C
856D
856E
856F
8570
8571

8572

8573

8574
8575

8576
8577

3CF
198
2F0
130
3FF
06E
3B0O
266
03C
270
3C4
2D8
398
1BC
0E8
05A
2DB

JC -07
C=M
WRITE DATA
LDI S&X
HEX: 3FF
A<>B ALL
C=C AND A
C=C-1 S&X
RCR 3
RAMSLCT
ST=0

ST<>T
C=ST

RCR 11
WRIT 3(X)
C=0 M
JNC -25



Here’s the DECODE routine, written by Clifford Stern. It places the ASCII
equivalent of the contents of X into ALPHA, and suppresses leading zeros.
The routine ends by viewing alpha and printing if in RUN mode. The method
used to convert hex digits to ASCII characters was invented by Michael

Thompson.
Address Hexcode Mnemonic Address Hexcode Mnemonic
8578 085 "E" 8590 308 SETF 1
8579 004 "D" 8591 30C ?FSET 1
857A 00F "o" 8592 033 IJINC +06
857B 003 "C" 8593 062 A<>B @R
857C 005 "E" 8594 206 C=C+A S&X
857D 004 "D" 8595 362 7A#C @R
857E OF8 READ 3(X) 8596 013 JNC +02
857F OEE C<>B ALL 8597 222 C=C+1 @R
8580 2A0 SETDEC 8598 1BA A=A-1 M
8581 04E C=0 ALL 8599 38B JNC -0F
8582 228 WRIT 8(P) 859A 20C ?7FSET 2
8583 1E8 WRIT 7(0) 859B 027 JC +04
8584 01C R=3 859C 208 SETF 2
8585 190 LD@R 6 859D 1A8 WRIT 6(N)
8586 31C R=1 859E 31B JNC -1D
8587 0DO0 LD@R 3 859F 30C ?7FSET 1
8588 10E A=C ALL 85A0 017 JC +02
8589 04E C=0 ALL 85A1 0A6 A<>C S&X
858A 37C RCR 12 85A2 168 WRIT 5(M)
858B OEE C<>B ALL 85A3 2CC ?FSET 13
858C 2FC RCR 13 85A4 360 7C RTN
858D OEE C<>B ALL 85A5 260 SETHEX
858E 2C2 B#0 @R 85A6 191 INC GO
858F 013 JNC +02 85A7 00E 0364
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APPENDIX V - OCTal-HEX Conversion Programs

OCTal - Hex

The following program converts mainframe addresses from the octal (base 8)
form that appears in HP’s documentation to hexadecimal (base 16), the form
that you will need in constructing an MCODE execute or goto instruction.
To use this program, just execute OCT-HEX. The program uses partial key
sequencing to make your life easier.

The program comes back with the display

o _
The first number you should key in is the page number, which may be anywhere
from 0 to 7. Other keys (except backarrow and R/S, as explained below) will
be ignored. The number you select will appear in the display followed by a
dash and another underscore prompt. Next key in the quad number, a digit
from 0 to 3. The program will not accept any other values.

The program comes back with
O p-q_ ,

where p and q are the page number and quad number, respectively. Now key in
the four-digit octal address within the quad. The range of legal addresses
is 0000 to 1777. Digits outside this range will not be accepted by the
program. If the address is less than 1000, you must key in a leading zero.
If you make a mistake (who me?) while keying in a number, you can use the
backarrow key to remove digits. If there are no digits in the display and
the backarrow key is pressed, the routine is terminated. This behavior of
the backarrow key is consistent with mainframe functions, and you should
strive for this kind of consistency in the behavior of your own programs.

To get the result, just press the R/S key. The hexadecimal equivalent of
your octal address will be put into the display preceded by the word
ADDRESS. Try the routine out a few times on addresses for which you know
the hex equivalent so you can get the hang of it. Here is the listing for

the routine.
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Address Hexcode Mnemonic

85DD
85DE
85DF
85E0
85E1
85E2
85E3
85E4
85ES
85E6
85E7
85E8
85E9
85EA
85EB
85EC
85ED
85EE
85EF
85F0
85F1
85F2
85F3
85F4
85F5
85F6
85F7
85F8
85F9
85FA
85FB
85FC
85FD

130
370
106
0BO
366
18F
3BD
01C
001
004
004
012
005
013
013
220
149
024
215
00C
278
I0E
3D9
01C
04E
0BA
33C
20E
03C
0s5C
106
130
030

LDI S&X
HEX: 370
A=C S&X
C=N

A#C S&X
JC +31
INC XQ
07EF

N

"D

"D

"R

g

ngn

nge

INC XQ
0952

INC XQ
0385
READ 9(Q)
A=C ALL
INC XQ
07F6

C=0 ALL
A<>C M
RCR 1
C=C+A ALL
RCR 3
R= 4
A=C S&X
LDI S&X
HEX: 030
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Address Hexcode Mnemonic

85FE
85FF
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
860A
860B
860C
860D
860E
860F
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
861A
861B
861C
861D
861E

146
130
03A
306
O1F
266
1C6
0A6
3E8
046
2FC
3D4
394
383
261
000
046
3F0
1FD
00E
25B
183
149
024
278
0AE
1BE
049
037
35E
0FB
0SE
23E

A=A+C S&X
LDI S&X
HEX: 03A
7A<C S&X
JC +03
C=C-1 S&X
A=A-C S&X
A<>C S&X
WRIT 15(e)
C=0 S&X
RCR 13
R=R-1

7R= 0

INC -10
INC XQ
0098

C=0 S&X
PRPH SLCT
INC GO
037E

JNC -35
INC +30
INC XQ
0952

READ 9(Q)
A<>C ALL
A=A-1 MS
7C GO
0D12

7A#0 MS
IJNC +IF
C=0 MS
C=C+1 MS



Address Hexcode Mnemonic

861F
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
862A
862B
862C
862D
862E
862F
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
863A
863B
863C
863D
863E

3D9
01C
37E
037
01C
002
130
020
3A8
130
020
3A8
149
024
0AE
1E6
3C6
268
3D9S
01C
083
098
005
008
02D
014
003
00F
04E
268
3Cl1
0BO

INC XQ
07F6

A#C MS
JC +06
R=3

A=0 @R
LDI S&X
HEX: 020
WRIT 14(d)
LDI S&X
HEX: 020
WRIT 14(d)
INC XQ
0952

A<>C ALL
C=C+C S&X
RSHFC S&X
WRIT 9(Q)
INC XQ
07F6

JNC +10
'

wgn

R

wpw

ol

"o

C=0 ALL
WRIT 9(Q)
INC XQ
2CFO
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Address Hexcode Mnemonic

863F
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
864A
864B
864C
864D
864E
864F
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
865A
865B
865C
865D
865E

3BD
01C
00F
220
115
038
27B
00C
25B
130
038
33C
31E
3BB
0BE
11E
2FC
3E8
149
024
278
2FE
067
23E
0BE
27C
OBE
268
3D9
01C
130
02D

INC XQ
07EF

oM

INC XQ
0E45

JNC -31
7FSET 3
INC -35
LDI S&X
HEX: 038
RCR 1
2A<C MS
IJINC -09
A<>C MS
A=C MS
RCR 13
WRIT 15(e)
INC XQ
0952
READ 9(Q)
7C#0 MS
JC +0C
C=C+1 MS
A<>C MS
RCR 9
A<x>C MS
WRIT Q)
INC XQ
07F6

LDI S&X
HEX: 02D



Address Hexcode Mnemonic

865F
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
866A
866B
866C
866D
866E
866F
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
867A
867B
867C
867D

3E8
31B
27E
2FE
0A7
2DC
110
31E
03F
3D9
01C
130
020
3A8
2B3
05E
07C
O0BE
1FE
IFE
OFC
23E
23E
323
0SE
23E
23E
11E
2DC
1DO
31E

WRIT 15(e)
JNC -1D
C=C-1 MS
2C#£0 MS
JC +14
R= 13
LD@R 4
7A<C MS
JC +07
INC XQ
07F6

LDI S&X
HEX: 020
WRIT 14(d)
INC -2A
C=0 MS
RCR 4
A<>C MS
C=C+C MS
C=C+C MS
RCR 10
C=C+1 MS
C=C+1 MS
JNC -1C
B=A MS
C=C+1 MS
C=C+1 MS
A=C MS
R=13
LD@R 7
72A<C MS
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Address Hexcode Mnemonic

867E
867F
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
868A
868B
868C
868D
868E
868F
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
869A
869B

353
3DC
0DO
37E
077
07E
27E
31E
313
05E
33C
OBE
2FC
ODE
268
3D9
01C
2F3
278
1E6
1E6
1E6
0AE
046
O0DE
2FC
146
0AE
23E
38B

JNC -16
R=R+]
LD@R 3
7A#£C MS
JC +0E
A<>B MS
C=C-1 MS
7A<C MS
JNC -1E
C=0 MS
RCR 1
A<>C MS
RCR 13

C=B MS
WRIT 9(Q)
INC XQ
07F6

JNC -22
READ 9(Q)
C=C+C S&X
C=C+C S&X
C=C+C S&X
A<>C ALL
C=0 S&X
C=B MS
RCR 13
A=A+C S&X
A<>C ALL
C=C+1 MS
JNC -0F



HEX - OCTal

The HEX-OCT program is an inverse to the OCT-HEX program, allowing you to
convert a hexadecimal entry address to the octal form suitable for looking

up the entry point in HP’s annotated listings.

HEX-OCT starts by placing an H, followed by a space and an underscore in the
left of the display (partial key sequencing to the rescue again). The digit
keys and the A through F keys are the only ones which are allowed for
inputs. Once four digits have been entered, no more may be keyed in. The
functions of the backarrow and run/stop keys are the same as for the OCT-HEX
program. The output is of the form p-q-aaaa, where p is the page number, g
is the quad number in the page, and aaaa is the octal address in the
specified quad. A listing for this program starts on the next page.
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Address Hexcode Mnemonic

869C
869D
869E
869F
86A0
86A1
86A2
86A3
86A4
86AS5
86A6
86A7
86A8
86A9
86AA
86AB
86AC
86AD
86AE
86AF
86B0
86B1
86B2
86B3
86B4
86B5
86B6
86B7
8§6B8
86B9
86BA
86BB
86BC

149
024
278
27E
049
037
11E
05E
3CE
O0BE
268
1BB
094
003
00F
02D
018
005
008
04E
268
3C1
0BO
3BD
01C
008
220
115
038
31B
04C
14B
35E

INC XQ
0952
READ 9(Q)
C=C-1 MS
2C GO
0D12

A=C MS
C=0 MS
RSHFC ALL
A<>C MS
WRIT 9(Q)
IJNC +37
nw

ncn

"o

nyen

wE

"

C=0 ALL
WRIT 9(Q)
INC XQ
2CF0

INC XQ
07EF

"H

INC XQ
0E45

JNC -1D
7FSET 4
JNC +29

A#0 MS
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Address Hexcode Mnemonic

86BD
86BE
86BF
86C0
86Cl1
86C2
86C3
86C4
86C5
86C6
86C7
86C8
86C9
86CA
86CB
86CC
86CD
86CE
86CF
86D0
86D1
86D2
86D3
86D4
86D5
86D6
86D7
86D8
86D9
86DA
86DB
86DC
86DD

3D3
130
007
33C
31E
3AB
0BE
2FC
3E8
106
130
009
146
149
024
130
004
33C
11E
278
OBE
31E
05B
05SE
2FC
39C
0A2
0BE
23E
268
3D9%
01C
2D3

JNC -06
LDI S&X
HEX: 007
RCR 1
?7A<C MS
JNC -0B
A<>C MS
RCR 13
WRIT 15(e)
A=C S&X
LDI S&X
HEX: 009
A=A+C S&X
INC XQ
0952

LDI S&X
HEX: 004
RCR 1
A=C MS
READ 9(Q)
A<>C MS
?7A<C MS
JNC +0B
C=0 MS
RCR 13
R=0

A<>C @R
A<>C MS
C=C+1 MS
WRIT 9(Q)
INC XQ
07F6

JNC -26



Address Hexcode Mnemonic

86DE
86DF
86E0
86E1
86E2
86E3
86E4
86ES5
86E6
86E7
86E8
86E9
86EA
86EB
86EC
86ED
86EE
86EF
86F0
86F1
86F2
86F3
86F4
86F5
86F6
86F7
86F8
86F9
86FA
86FB
86FC
86FD
86FE

3D9
01C
130
020
3A8
2A3
00C
043
130
003
O0BE
2FC
3E8
106
2F3
130
370
106
0BO
366
22F
149
024
278
39C
102
1EE
3DC
054
3E3
2FC
3DC
102

INC XQ
07F6

LDI S&X
HEX: 020
WRIT 14(d)
JNC -2C
7FSET 3
JNC +08
LDI S&X
HEX: 003
A<>C MS
RCR 13
WRIT 15(e)
A=C S&X
JNC -22
LDI S&X
HEX: 370
A=C S&X
C=N

A#C S&X
JC -3B
INC XQ
0952
READ 9(Q)
R=0

A=C @R
C=C+C ALL
R=R+1

R= 4

JNC -04
RCR 13
R=R+1
A=C @R
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Address Hexcode Mnemonic

86FF
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
870A
870B
870C
870D
870E
870F
8710
8711
8712
8713
8714
8715
8716
87117
8718
8719
871A
871B
871C
871D
871E
871F

042
1EE
1EE
33C
3D4
102
3D9
01C
3BD
01C
00F
003
014
220
0AE
0BC
31C
0DO0
106
130
00A
302
027
262
242
013
0A6
3E8
130
02D
3E8
2FC
3DC

C=0 @R
C=C+C ALL
C=C+C ALL
RCR 1
R=R-1
A=C @R
INC XQ
07F6

INC XQ
07EF

"o

new

nepn

A<>C ALL
RCR 5

=1
LD@R 3
A=C S&X
LDI S&X
HEX: 00A
?7A<C @R
JC +04
C=C-1 @R
C=A-C @R
JNC +02
A<x>C S&X
WRIT 15(e)
LDI S&X
HEX: 02D
WRIT 15(e)
RCR 13
R=R+1



Address Hexcode Mnemonic

8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
872A
872B
872C
872D
872E

0DO0
3E8
130
02D
3E8
2FC
3D8
304
204
004
048
088
144
284
3D8

LD@R 3
WRIT 15(¢)
LDI S&X
HEX: 02D
WRIT 15(e)
RCR 13
C<>ST
CLRF 1
CLRF 2
CLRF 3
SETF 4
SETF 5
CLRF 6
CLRF 7
C<>ST
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Address Hexcode Mnemonic

872F
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
873A
873B
873C
873D

3E8
2FC
056
3DC
3D8
054
3A3
149
024
215
0oC
261
000
201
00E

WRIT 15(e)
RCR 13
C=0 XS
R=R+1
C<>ST
R= 4
JNC -0C
INC XQ
0952
INC XQ
0385
INC XQ
0098
INC GO
0380



APPENDIX F - Table of Mnemonics

The following table shows the differences between the three types of
mnemonics in use. We will only tabulate the mnemonics for the single word
instructions. The three types of mnemonics are: HP mnemonics used by HP in
all of the annotated listings of their ROMs; Jacobs/De Arras, developed in
the early days of the development of MCODE programming by the user
community; and ZENROM mnemonics, this version was developed in England and
is used in the disassembler of a ROM that is put out by Zengrange Ltd. The
Jacobs/De Arras mnemonics were used throughout this book.

Hexcode Octal Binary HP Jacobs/ ZENROM
mnemonic De Arras mnemonic
000 0000 0000000000 NOP NOP NOP
00E 0016 0000001110 A=0 A=0 ALL A=0 ALL
006 0006 0000000110 A=0X A=0 S&X A=0 X
01A 0032 0000011010 A=0M A=0M A=0 M
00A 0012 0000001010 A=0 WPT A=0 R< A=0 WPT
002 0002 0000000010 A=0PT A=0 @R A=0 PT
01E 0036 0000011110 A=0S A=0 MS A=0S
016 0026 0000010110 A=0 XS A=0 XS A=0 XS
012 0022 0000010010 A=0 PQ A=0 P-Q A=0 PQ
02E 0056 0000101110 B=0 B=0 ALL B=0 ALL
026 0046 0000100110 B=0X B=0 S&X B=0 X
03A 0072 0000111010 B=OM B=0 M B=0 M
02A 0052 0000101010 B=0 WPT B=0 R< B=0 WPT
022 0042 0000100010 B=0 PT B=0 @R B=0 PT
03E 0076 0000111110 B=0S B=0 MS B=0 S
036 0066 0000110110 B=0 XS B=0 XS B=0 XS
032 0062 0000110010 B=0 PQ B=0 P-Q B=0 PQ
04E 0116 0001001110 C=0 C=0 ALL C=0 ALL
046 0106 0001000110 C=0X C=0 S&X C=0 X
05A 0132 0001011010 C=0M C=0M C=0M
04A 0112 0001001010 C=0 WPT C=0 R< C=0 WPT
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Hexcode Octal

042
05E
056
052
06E
066
07A
06A
062
07E
076
072
08E
086
09A
08A
082
09E
096
092
0AE
0A6
0BA
0AA
0A2
0BE
0B6
0B2
0CE
0Cé6
0DA
0CA

0102
0136
0126
0122
0156
0146
0172
0152
0142
0176
0166
0162
0216
0206
0232
0212
0202
0236
0226
0222
0256
0246
0272
0252
0242
0276
0266
0262
0316
0306
0332
0312

Binary

0001000010
0001011110
0001010110
0001010010
0001101110
0001100110
0001111010
0001101010
0001100010
0001111110
0001110110
0001110010
0010001110
0010000110
0010011010
0010001010
0010000010
0010011110
0010010110
0010010010
0010101110
0010100110
0010111010
0010101010
0010100010
0010111110
0010110110
0010110010
0011001110
0011000110
0011011010
0011001010

HP

mnemonic

C=0 PT
C=0S$

C=0 XS
C=0 PQ
AB EX
AB EX X
AB EX M
AB EX WPT
AB EX PT
ABEX S
AB EX XS
AB EX PQ
B=A

B=A X
B=A M
B=A WPT
B=A PT
B=A S
B=A XS
B=A PQ
AC EX
AC EX X
ACEX M
AC EX WPT
AC EX PT
AC EX S
AC EX XS
AC EX PQ
C=B

C=B X
C=BM
C=B WPT
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Jacobs/
De Arras

C=0 @R
C=0 MS
C=0 XS
C=0 P-Q
A<>B ALL
A<>B S&X
A<>B M
A<>B R«
A<>B @R
A<>B MS
A<>B XS
A<>B P-Q
B=A ALL
B=A S&X
B=A M
B=A R<
B=A @R
B=A MS
B=A XS
B=A P-Q
A<>C ALL
A<>C S&X
A<>CM
A<>C R<
A<>C @R
A<>C MS
A<>C XS
A<>C P-Q
C=B ALL
C=B S&X
C=B M
C=B R«

ZENROM

mnemonic

C=0 PT
C=0 S

C=0 XS
C=0 PQ
A<>B ALL
A<>B X
A<>B M
A<>B WPT
A<>B PT
A<>B S
A<>B XS
A<>B PQ
B=A ALL
B=A X
B=A M
B=A WPT
B=A PT
B=A S
B=A XS
B=A PQ
A<>C ALL
A<>C X
A<>CM
A<>C WPT
A<>C PT
A<>C S
A<>C XS
A<>C PQ
C=B ALL
C=B X
C=BM
C=B WPT



Hexcode Octal

0C2
0DE
0D6
0D2
OEE
0E6
0FA
0EA
0E2
OFE
0F6
0F2
10E
106
11A
10A
102
11E
116
112
12E
126
13A
12A
122
13E
136
132
14E
146
15A
14A

0302
0336
0326
0322
0356
0346
0372
0352
0342
0376
0366
0362
0416
0406
0432
0412
0402
0436
0426
0422
0456
0446
0472
0452
0442
0476
0466
0462
0516
0506
0532
0512

Binary

0011000010
0011011110
0011010110
0011010010
0011101110
0011100110
0011111010
0011101010
0011100010
0011111110
0011110110
0011110010
0100001110
0100000110
0100011010
0100001010
0100000010
0100011110
0100010110
0100010010
0100101110
0100100110
0100111010
0100101010
0100100010
0100111110
0100110110
0100110010
0101001110
0101000110
0101011010
0101001010

HP

mnemonic

C=B PT
C=B S
C=B XS
C=B PQ
BC EX

BC EX X
BC EX M
BC EX WPT
BC EX PT
BC EX §
BC EX XS
BC EX PQ
A=C

A=C X
A=CM
A=C WPT
A=C PT
A=C S
A=C XS
A=C PQ
A=A+B
A=A+B X
A=A+B M
A=A+B WPT
A=A+B PT
A=A+B S
A=A+B XS
A=A+B PQ
A=A+C
A=A+C X
A=A+CM
A=A+C WPT
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Jacobs/
De Arras

C=B @R
C=B MS
C=B XS
C=B P-Q
C<>B ALL
C<>B S&X
C<>B M
C<>B R<
C<>B @R
C<>B MS
C<>B XS
C<>B P-Q
A=C ALL
A=C S&X
A=CM

A=C R<
A=C @R
A=C MS
A=C XS
A=C P-Q
A=A+B ALL
A=A+B S&X
A=A+B M
A=A+B R«
A=A+B @R
A=A+B MS
A=A+B XS
A=A+B P-Q
A=A+C ALL
A=A+C S&X
A=A+C M
A=A+C R<

ZENROM

mnemonic

C=B PT
C=B S

C=B XS
C=B PQ
B<>C ALL
B<>C X
B<>C M
B<>C WPT
B<>C PT
B<>C S
B<>C XS
B<>C PQ
A=C ALL
A=C X
A=CM

A=C WPT
A=C PT
A=CS

A=C XS
A=C PQ
A=A+B ALL
A=A+B X
A=A+B M
A=A+B WPT
A=A+B PT
A=A+B S
A=A+B XS
A=A+B PQ
A=A+C ALL
A=A+C X
A=A+C M
A=A+C WPT



Hexcode Octal

142
15E
156
152
16E
166
17A
16A
162
17E
176
172
18E
186
19A
18A
182
19E
196
192
1AE
1A6
1BA
1AA
1A2
1BE
1B6
1B2
1CE
1C6
1DA
ICA

0502
0536
0526
0522
0556
0546
0572
0552
0542
0576
0566
0562
0616
0606
0632
0612
0602
0636
0626
0622
0656
0646
0672
0652
0642
0676
0666
0662
0716
0706
0732
0712

Binary

0101000010
0101011110
0101010110
0101010010
0101101110
0101100110
0101111010
0101101010
0101100010
0101111110
0101110110
0101110010
0110001110
0110000110
0110011010
0110001010
0110000010
0110011110
0110010110
0110010010
0110101110
0110100110
0110111010
0110101010
0110100010
0110111110
0110110110
0110110010
0111001110
0111000110
0111011010
0111001010

HP

mnemonic

A=A+C PT
A=A+CS
A=A+C XS
A=A+C PQ
A=A+1
A=A+1 X
A=A+1 M
A=A+1 WPT
A=A+1 PT
A=A+l S
A=A+1 XS
A=A+l PQ
A=A-B
A=A-B X
A=A-BM
A=A-B WPT
A=A-B PT
A=A-BS
A=A-B XS
A=A-B PQ
A=A-1
A=A-1 X
A=A-1 M
A=A-1 WPT
A=A-1 PT
A=A-18
A=A-1 XS
A=A-1 PQ
A=A-C
A=A-C X
A=A-CM
A=A-C WPT

-177-

Jacobs/
De Arras

A=A+C @R
A=A+C MS
A=A+C XS
A=A+C P-Q
A=A+1 ALL
A=A+1 S&X
A=A+l M
A=A+l R<
A=A+l @R
A=A+l MS
A=A+1 XS
A=A+l P-Q
A=A-B ALL
A=A-B S&X
A=A-BM
A=A-B R«
A=A-B @R
A=A-B MS
A=A-B XS
A=A-B P-Q
A=A-1 ALL
A=A-1 S&X
A=A-1 M
A=A-1 R<
A=A-1 @R
A=A-1 MS
A=A-1 XS
A=A-1 P-Q
A=A-C ALL
A=A-C S&X
A=A-CM
A=A-C R«

ZENROM

mnemonic

A=A+C PT
A=A+C S
A=A+C XS
A=A+C PQ
A=A+l ALL
A=A+1 X
A=A+1 M
A=A+1 WPT
A=A+l PT
A=A+1 S
A=A+l XS
A=A+1 PQ
A=A-B ALL
A=A-B X
A=A-BM
A=A-B WPT
A=A-B PT
A=A-B S
A=A-B XS
A=A-B PQ
A=A-1 ALL
A=A-1 X
A=A-1 M
A=A-1 WPT
A=A-1 PT
A=A-1S8S
A=A-1 XS
A=A-1 PQ
A=A-C ALL
A=A-CX
A=A-CM
A=A-C WPT



Hexcode Octal

1C2
IDE
1D6
1D2
1EE
1E6
IFA
1EA
1E2
1FE
1F6
1F2
20E
206
21A
20A
202
21E
216
212
22E
226
23A
22A
222
23E
236
232
24E
246
25A
24A

0702
0736
0726
0722
0756
0746
0772
0752
0742
0776
0766
0762
1016
1006
1032
1012
1002
1036
1026
1022
1056
1046
1072
1052
1042
1076
1066
1062
1116
1106
1132
1112

Binary

0111000010
0111011110
0111010110
0111010010
0111101110
0111100110
0111111010
0111101010
0111100010
0111111110
0111110110
0111110010
1000001110
1000000110
1000011010
1000001010
1000000010
1000011110
1000010110
1000010010
1000101110
1000100110
1000111010
1000101010
1000100010
1000111110
1000110110
1000110010
1001001110
1001000110
1001011010
1001001010

HP
mnemonic

A=A-C PT
A=A-C S
A=A-C XS
A=A-C PQ
C=C+C
C=C+C X
C=C+C M
C=C+C WPT
C=C+C PT
C=C+C S
C=C+C XS
C=C+C PQ
C=A+C
C=A+C X
C=A+C M
C=A+C WPT
C=A+C PT
C=A+C S
C=A+C XS
C=A+C PQ
C=C+1
C=C+1 X
C=C+1 M
C=C+! WPT
C=C+1 PT
C=C+1 S
C=C+1 XS
C=C+1 PQ
C=A-C
C=A-C X
C=A-CM
C=A-C WPT
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Jacobs/
De Arras

A=A-C @R
A=A-C MS
A=A-C XS
A=A-C P-Q
C=C+C ALL
C=C+C S&X
C=C+C M
C=C+C R«
C=C+C @R
C=C+C MS
C=C+C XS
C=C+C P-Q
C=C+A ALL
C=C+A S&X
C=C+A M
C=C+A R<
C=C+A @R
C=C+A MS
C=C+A XS
C=C+A P-Q
C=C+1 ALL
C=C+1 S&X
C=C+1 M
C=C+1 R«
C=C+1 @R
C=C+1 MS
C=C+1 XS
C=C+1 P-Q
C=A-C ALL
C=A-C S&X
C=A-CM
C=A-C R«

ZENROM

mnemonic

A=A-C PT
A=A-CS
A=A-C XS
A=A-C PQ
C=C+C ALL
C=C+C X
C=C+C M
C=C+C WPT
C=C+C PT
C=C+C S
C=C+C XS
C=C+C PQ
C=A+C ALL
C=A+C X
C=A+C M
C=A+C WPT
C=A+C PT
C=A+C S
C=A+C XS
C=A+C PQ
C=C+1 ALL
C=C+1 X
C=C+1 M
C=C+1 WPT
C=C+1 PT
C=C+1 S
C=C+1 XS
C=C+1 PQ
C=A-C ALL
C=A-C X
C=A-CM
C=A-C WPT



Hexcode Octal

242
25E
256
252
26E
266
27A
26A
262
27E
276
272
28E
286
29A
28A
282
29E
296
292
2AE
2A6
2BA
2AA
2A2
2BE
2B6
2B2
2CE
2C6
2DA
2CA

1102
1136
1126
1122
1156
1146
1172
1152
1142
1176
1166
1162
1216
1206
1232
1212
1202
1236
1226
1222
1256
1246
1272
1252
1242
1276
1266
1262
1316
1306
1332
1312

Binary

1001000010
1001011110
1001010110
1001010010
1001101110
1001100110
1001111010
1001101010
1001100010
1001111110
1001110110
1001110010
1010001110
1010000110
1010011010
1010001010
1010000010
1010011110
1010010110
1010010010
1010101110
1010100110
1010111010
1010101010
1010100010
1010111110
1010110110
1010110010
1011001110
1011000110
1011011010
1011001010

HP

mnemonic

C=A-C PT
C=A-CS
C=A-C XS
C=A-C PQ
C=C-1
Cc=C-1 X
C=C-1 M
C=C-1 WPT
C=C-1 PT
C=C-18
C=C-1 XS
C=C-1 PQ
C=-C
C=-C X
C=-CM
C=-C WPT
C=-C PT
C=CS
C=-C XS
C=-C PQ
C=-C-1
C=-C-1 X
C=-C-1 M
C=-C-1 WPT
C=-C-1 PT
C=-C-18
C=-C-1 XS
C=-C-1 PQ
7B#0

7B£0 X
7B£0 M
7B40 WPT

-179-

Jacobs/
De Arras

C=A-C @R
C=A-C MS
C=A-C XS
C=A-C P-Q
C=C-1 ALL
C=C-1 S&X
C=C-1M
C=C-1 R«
C=C-1 @R
C=C-1 MS
C=C-1 XS
C=C-1 P-Q
C=0-C ALL
C=0-C S&X
C=0-CM
C=0-C R<
C=0-C @R
C=0-C MS
C=0-C XS
C=0-C P-Q
C=-C-1 ALL
C=-C-1 8&X
C=-C-1 M
C=-C-1 R«
C=-C-1 @R
C=-C-1 MS
C=-C-1 XS
C=-C-1 P-Q
7B#0 ALL
7B#0 S&X
7B£0 M
7B#0 R<

ZENROM

mnemonic

C=A-C PT
C=A-C S
C=A-C XS
C=A-C PQ
C=C-1 ALL
C=C-1 X
C=C-1 M
C=C-1 WPT
C=C-1 PT
C=C-1S
C=C-1 XS
C=C-1 PQ
C=-C ALL
C=-C X
C=-CM
C=-C WPT
C=-C PT
=CS
C=-C XS
C=-C PQ
C=-C-1 ALL
C=-C-1 X
C=-C-1 M
C=-C-1 WPT
C=-C-1 PT
C=-C-18
C=-C-1 XS
C=-C-1 PQ
7B#0 ALL
IBA0 X
7B£0 M
7B£0 WPT



Hexcode Octal

2C2
2DE
2D6
2D2
2EE
2E6
2FA
2EA
2E2
2FE
2F6
2F2
30E
306
31A
30A
302
31E
316
312
32E
326
33A
32A
322
33E
336
332
34E
346
35A
34A

1302
1336
1326
1322
1356
1346
1372
1352
1342
1376
1366
1362
1416
1406
1432
1412
1402
1436
1426
1422
1456
1446
1472
1452
1442
1476
1466
1462
1516
1506
1532
1512

Binary

1011000010
1011011110
1011010110
1011010010
1011101110
1011100110
1011111010
1011101010
1011100010
1011111110
1011110110
1011110010
1100001110
1100000110
1100011010
1100001010
1100000010
1100011110
1100010110
1100010010
1100101110
1100100110
1100111010
1100101010
1100100010
1100111110
1100110110
1100110010
1101001110
1101000110
1101011010
1101001010

HP
mnemonic

7B#0 PT
7B#0 S
7B#£0 XS
7B#0 PQ
2C#0
7C#0 X
C£0 M
7C#£0 WPT
7C#0 PT
7C#0 S
7C£0 XS
7C#£0 PQ
7A<C
7A<C X
7A<C M
7A<C WPT
7A<C PT
7A<C S
7A<C XS
7A<C PQ
7A<B
7A<B X
7A<B M
?7A<B WPT
?7A<B PT
?7A<B S
?7A<B XS
?A<B PQ
7A#0
7A#0 X
7A#0 M
7A#0 WPT
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Jacobs/
De Arras

7B#0 @R
7B#£0 MS
7B#0 XS
7B#0 P-Q
?7C#0 ALL
7C#0 S&X
C# 0 M
7C#£0 R<
7C#£0 @R
7C#0 MS
7C£0 XS
7C#£0 P-Q
?7A<C ALL
7A<C S&X
7A<CM
7A<C R<
7A<C @R
?7A<C MS
?7A<C XS
?7A<C P-Q
?7A<B ALL
?A<B S&X
7A<B M
7A<B R<
7A<B @R
?7A<B MS
?7A<B XS
?7A<B P-Q
?7A#0 ALL
7A#0 S&X
TA#0 M
7A#0 R<

ZENROM
mnemonic

7B#0 PT
7B#0 S
7B#0 XS
?7B#0 PQ
?C#0 ALL
2C#0 X
C#0 M
7C#0 WPT
7C#0 PT
?C#0 S
7C#0 XS
7C#0 PQ
?7A<C ALL
7A<C X
7A<C M
?7A<C WPT
7A<C PT
?7A<C S
?7A<C XS
?7A<C PQ
?7A<B ALL
?7A<B X
7A<B M
7A<B WPT
?A<B PT
?A<B S
?7A<B XS
?7A<B PQ
7A#0 ALL
7A#0 X
7A#0 M
7A#0 WPT



Hexcode Octal

342
35E
356
352
36E
366
37A
36A
362
37E
376
372
38E
386
39A
38A
382
39E
396
392
3AE
3A6
3BA
3AA
3A2
3BE
3B6
3B2
3CE
3C6
3DA
3CA

1502
1536
1526
1522
1556
1546
1572
1552
1542
1576
1566
1562
1616
1606
1632
1612
1602
1636
1626
1622
1656
1646
1672
1652
1642
1676
1666
1662
1716
1706
1732
1712

Binary

1101000010
1101011110
1101010110
1101010010
1101101110
1101100110
1101111010
1101101010
1101100010
1101111110
1101110110
1101110010
1110001110
1110000110
1110011010
1110001010
1110000010
1110011110
1110010110
1110010010
1110101110
1110100110
1110111010
1110101010
1110100010
1110111110
1110110110
1110110010
1111001110
1111000110
1111011010
1111001010

HP

mnemonic

7A#0 PT
2A#0 S
7A#0 XS
2A#0 PQ
2A#C
2A#C X
2A#C M
2A#C WPT
7A%£C PT
2A#C S
2A%£C XS
2A#C PQ
A SR
ASR X
ASRM

A SR WPT
A SR PT
ASR S

A SR XS
A SR PQ
B SR

B SR X

B SR M

B SR WPT
B SR PT
BSR S

B SR XS
B SR PQ
C SR
CSR X
CSRM

C SR WPT
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Jacobs/
De Arras

7A#£0 @R
7A+#0 MS
2A#£0 XS
7A#0 P-Q
7A#C ALL
7A#C S&X
7A#C M
?2A#C R<
7A#C @R
?7A#C MS
7A#£C XS
2A4C P-Q
RSHFA ALL
RSHFA S&X
RSHFA M
RSHFA R«
RSHFA @R
RSHFA MS
RSHFA XS
RSHFA P-Q
RSHFB ALL
RSHFB S&X
RSHFB M
RSHFB R«
RSHFB @R
RSHFB MS
RSHFB XS
RSHFB P-Q
RSHFC ALL
RSHFC S&X
RSHFC M
RSHFC R«

ZENROM

mnemonic

2A#0 PT
7A#0 S
2A#0 XS
2A#0 PQ
2A#C ALL
2A#C X
7A#C M
7A4C WPT
2A#C PT
2A#C S
2A#C XS
2A#C PQ
ASR ALL
ASR X
ASR M
ASR WPT
ASR PT
ASR S
ASR XS
ASR PQ
BSR ALL
BSR X
BSR M
BSR WPT
BSR PT
BSR S
BSR XS
BSR PQ
CSR ALL
CSR X
CSR M
CSR WPT



Hexcode Octal

3C2
3DE
3D6
3D2
3EE
3E6
3FA
3EA
3E2
3FE
3F6
3F2
038
078
0BS8
OF8
138
178
1B8
1F8
238
278
2B8
2F8
338
378
3B8
3F8
028
068
0A8
OE8

1702
1736
1726
1722
1756
1746
1772
1752
1742
1776
1766
1762
0070
0170
0270
0370
0470
0570
0670
0770
1070
1170
1270
1370
1470
1570
1670
1770
0050
0150
0250
0350

Binary

1111000010
1111011110
1111010110
1111010010
1111101110
1111100110
1111111010
1111101010
1111100010
1111111110
1111110110
1111110010
0000111000
0001111000
0010111000
0011111000
0100111000
0101111000
0110111000
0111111000
1000111000
1001111000
1010111000
1011111000
1100111000
1101111000
1110111000
1111111000
0000101000
0001101000
0010101000
0011101000

HP

mnemonic

C SR PT
CSR S

C SR XS

C SR PQ

A SL

A SL X
ASLM

A SL WPT
A SL PT
ASLS

A SL XS

A SL PQ
C=DATA
C=REGN 1
C=REGN 2
C=REGN 3
C=REGN 4
C=REGN 5
C=REGN 6
C=REGN 7
C=REGN 8
C=REGN 9
C=REGN 10
C=REGN 11
C=REGN 12
C=REGN 13
C=REGN 14
C=REGN 15
REGN=C 0
REGN=C 1
REGN=C 2
REGN=C 3
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RSHFC @R
RSHFC MS
RSHFC XS
RSHFC P-Q
LSHFA ALL
LSHFA S&X
LSHFA M
LSHFA R<
LSHFA @R
LSHFA MS
LSHFA XS
LSHFA P-Q

READ DATA

READ 1(2)
READ 2(Y)
READ 3(X)
READ 4(L)
READ 5(M)
READ 6(N)
READ 7(0)
READ 8(P)
READ 9(Q)
READ 10(+)
READ 11(a)
READ 12(b)
READ 13(c)
READ 14(d)
READ 15(¢)
WRIT 0(T)
WRIT 1(Z)
WRIT 2(Y)
WRIT 3(X)

ZENROM
mnemonic

CSR PT
CSR S

CSR XS
CSR PQ
ASL ALL
ASL X

ASL M

ASL WPT
ASL PT
ASL S

ASL XS
ASL PQ
RDATA
C=REG 1/Z
C=REG 2/Y
C=REG 3/X
C=REG 4/L
C=REG 5/M
C=REG 6/N
C=REG 7/0
C=REG 8/P
C=REG 9/Q
C=REG 10/}
C=REG 11/a
C=REG 12/b
C=REG 13/c
C=REG 14/d
C=REG 15/¢
REG=C 0/T
REG=C 1/Z
REG=C 2/Y
REG=C 3/X



Hexcode Octal

128
168
1A8
1E8
228
268
2A8
2E8
328
368
3A8
3E8
33C
23C
03C
07C
0BC
17C
2BC
13C
21C
OFC
1BC
37C
2FC
388
308
208
008
048
088
148

0450
0550
0650
0750
1050
1150
1250
1350
1450
1550
1650
1750
1474
1074
0074
0174
0274
0574
1274
0474
1174
0374
0674
1574
1374
1610
1410
1010
0010
0110
0210
0510

Binary

0100101000
0101101000
0110101000
0111101000
1000101000
1001101000
1010101000
1011101000
1100101000
1101101000
1110101000
1111101000
1100111100
1000111100
0000111100
0001111100
0010111100
0101111100
1010111100
0100111100
1001111100
0011111100
0110111100
1101111100
1011111100
1110001000
1100001000
1000001000
0000001000
0001001000
0010001000
0101001000

HP

mnemonic

REGN=C 4
REGN=C 5
REGN=C 6
REGN=C 7
REGN=C 8
REGN=C 9
REGN=C 10
REGN=C 11
REGN=C 12
REGN=C 13
REGN=C 14
REGN=C 15
RCR 1
RCR 2
RCR 3
RCR 4
RCR 5
RCR 6
RCR 7
RCR 8
RCR 9

RCR 10
RCR 11
RCR 12
RCR 13
S0=1

Si=1

S2=1

S3=1

S4=1

S5=1

S6=1
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WRIT 4(L)
WRIT 5(M)
WRIT 6(N)
WRIT 7(0)
WRIT 8(P)
WRIT 9(Q)
WRIT 10(+)
WRIT 11(a)
WRIT 12(b)
WRIT 13(c)
WRIT 14(d)
WRIT 15(¢)
RCR 1
RCR 2
RCR 3
RCR 4
RCR 5
RCR 6
RCR 7
RCR 8
RCR 9
RCR 10
RCR 11
RCR 12
RCR 13
SETF 0
SETF 1
SETF 2
SETF 3
SETF 4
SETF 5
SETF 6

ZENROM

mnemonic

REG=C 4/L
REG=C 5/M
REG=C 6/N
REG=C 7/0
REG=C 8/P
REG=C 9/Q
REG=C 10/}
REG=C 11/a
REG=C 12/b
REG=C 13/c
REG=C 14/d
REG=C 15/¢
RCR 1

RCR 2

RCR 3

RCR 4

RCR 5

RCR 6

RCR 7

RCR 8

RCR 9

RCR 10
RCR 11
RCR 12
RCR 13

SF 0

SF 1

SF 2

SF 3

SF 4

SF 5

SF 6



Hexcode Octal

288
108
248
0C8
188
348
2C8
384
304
204
004
044
084
144
284
104
244
0C4
184
344
2C4
38C
30C
20C
00C
04C
08C
14C
28C
10C
24C
0CC

1210
0410
1110
0310
0610
1510
1310
1604
1404
1004
0004
0104
0204
0504
1204
0404
1104
0304
0604
1504
1304
1614
1414
1014
0014
0114
0214
0514
1214
0414
1114
0314

Binary

1010001000
0100001000
1001001000
0011001000
0110001000
1101001000
1011001000
1110000100
1100000100
1000000100
0000000100
0001000100
0010000100
0101000100
1010000100
0100000100
1001000100
0011000100
0110000100
1101000100
1011000100
1110001100
1100001100
1000001100
0000001100
0001001100
0010001100
0101001100
1010001100
0100001100
1001001100
0011001100

HP
mnemonic

S7=1
S8=1
S9=1
S10=1
Sii=1
S12=1
S13=1
S0=0
S1=0
S2=0
S3=0
S4=0
S5=0
S6=0
S$7=0
S8=0
S9=0
S10=0
S11=0
S12=0
S13=0
780=1
781=1
782=1
783=1
754=1
785=1
786=1
787=1
758=1
759=1
7S10=1
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SETF 7
SETF 8
SETF 9
SETF 10
SETF 11
SETF 12
SETF 13
CLRF 0
CLRF 1
CLRF 2
CLRF 3
CLRF 4
CLRF 5
CLRF 6
CLRF 7
CLRF 8
CLRF 9
CLRF 10
CLRF 11
CLRF 12
CLRF 13
?FSET 0
?FSET 1
7FSET 2
7FSET 3
7FSET 4
7FSET 5
7FSET 6
7FSET 7
?FSET 8
?FSET 9
?7FSET 10

ZENROM

mnemonic

SF 7
SF 8
SF 9
SF 10
SF 11
SF 12
SF 13
CF O
CF 1
CF 2
CF 3
CF 4
CF 5
CF 6
CF 7
CF 8
CF 9
CF 10
CF 11
CF 12
CF 13
?FS 0
?7FS 1
?7FS 2
7FS 3
?FS 4
7FS 5
7FS 6
FS 7
7FS 8
7FS 9
?7FS 10



Hexcode Octal

18C
34C
2CC
39C
31C
21C
01C
05C
09C
15C
29C
11C
25C
0DC
19C
35C
2DC
394
314
214
014
054
0954
154
294
114
254
0D4
194
354
2D4
010

0614
1514
1314
1634
1434
1034
0034
0134
0234
0534
1234
0434
1134
0334
0634
1534
1334
1624
1424
1024
0024
0124
0224
0524
1224
0424
1124
0324
0624
1524
1324
0020

Binary

0110001100
1101001100
1011001100
1110011100
1100011100
1000011100
0000011100
0001011100
0010011100
0101011100
1010011100
0100011100
1001011100
0011011100
0110011100
1101011100
1011011100
1110010100
1100010100
1000010100
0000010100
0001010100
0010010100
0101010100
1010010100
0100010100
1001010100
0011010100
0110010100
1101010100
1011010100
0000010000

HP

mnemonic

?2511=1
?512=1
?513=1
PT=0
PT=1
PT=2
PT=3
PT=4
PT=5
PT=6
PT=7
PT=8
PT=9
PT=10
PT=11
PT=12
PT=13
PT=0
7PT=1
PT=2
PT=3
7PT=4
7PT=5
PT=6
PT=7
7PT=8
2PT=9
PT=10
WPT=11
PT=12
PT=13
LC 0
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7FSET 11
?7FSET 12
?FSET 13
R=0

AR AA
mowowo

~
[}

AA RN R AR
(T |
»—s\DOO\IO\UIAwN

w
(!
o

7R= 4
7R=5
IR= 6
IR= 7
7R= 8
7R=9
7R= 10
7R= 11
R= 12
7R= 13
LD@R 0

ZENROM
mnemonic

7FS 11
7FS 12
?FS 13
PT=0
PT=1
PT=2

o )

— x|

1 ]
= - - JEEN B~ NV R N U}

(=]

o g
-~
o

o e~ B - My -1
e Blee ML B |
| A | N

PT= 11

PT= 12
PT= 13
PT=0

PT=1

PT=2

7PT=3

PT= 4

PT=5

PT=6

PT=7

7PT=8

PT=9

7PT= 10
7PT= 11
PT= 12
7PT= 13
LCO



Hexcode Octal

050
050
0D0
110
150
190
1D0
210
250
290
2D0
310
350
390
3D0
3AC
32C
22C
02C
06C
0AC
16C
2AC
12C
26C
0EC
1AC
36C
2EC
024
064
0A4

0120
0220
0320
0420
0520
0620
0720
1020
1120
1220
1320
1420
1520
1620
1720
1654
1454
1054
0054
0154
0254
0554
1254
0454
1154
0354
0654
1554
1354
0044
0144
0244

Binary

0001010000
0010010000
0011010000
0100010000
0101010000
0110010000
0111010000
1000010000
1001010000
1010010000
1011010000
1100010000
1101010000
1110010000
1111010000
1110101100
1100101100
1000101100
0000101100
0001101100
0010101100
0101101100
1010101100
0100101100
1001101100
0011101100
0110101100
1101101100
1011101100
0000100100
0001100100
0010100100

HP
mnemonic
LC1
LC2
LC 3
LC 4
LCS5
LC 6
LC 7
LC 8
LC9
LC A
ILCB
LCC
LCD
LCE
LCF
7F0=1
7F1=1
7F2=1
7F3=1
7F4=1
7F5=1
7F6=1
7F7=1
7F8=1
?7F9=1
7F10=1
F11=1
?7F12=1
7F13=1
SELPRF 0
SELPRF 1
SELPRF 2
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LD@R 1
LD@R 2
LD@R 3
LD@R 4
LD@R 5
LD@R 6
LD@R 7
LD@R 8
LD@R 9
LD@R A
LD@R B
LD@R C
LD@R D
LD@R E
LD@R F
7FI= 0
?FI= 1
?FI= 2
7FI= 3
7FI= 4
7FI=5
7FI= 6
7FI= 7
7FI= 8
7FI=9
?FI= 10
7FI= 11
?FI= 12
7FI= 13
SELP 0
SELP 1
SELP 2

ZENROM

mnemonic

LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
LC 9
LC A
LCB
LC C
LCD
LCE
LCF
7PBSY
7CRDR
7WNDB
7PF= 3
7PF= 4
7EDAV
?2IFCR
7SRQR
7FRAV
9FRNS
20RAV
ITFAIL
2ALM
9SERV
PERTCT 0
PERTCT 1
PERTCT 2



Hexcode Octal

OE4
124
164
1A4
1E4
224
264
2A4
2E4
324
364
3A4
3E4
3C4
3C8
3CC
3D4
3DC
058
098
0D8
158
198
1D8
258
298
2D8
358
398
3D8
020
060

0344
0444
0544
0644
0744
1044
1144
1244
1344
1444
1544
1644
1744
1704
1710
1714
1724
1734
0130
0230
0330
0530
0630
0730
1130
1230
1330
1530
1630
1730
0040
0140

Binary

0011100100
0100100100
0101100100
0110100100
0111100100
1000100100
1001100100
1010100100
1011100100
1100100100
1101100100
1110100100
1111100100
1111000100
1111001000
1111001100
1111010100
1111011100
0001011000
0010011000
0011011000
0101011000
0110011000
0111011000
1001011000
1010011000
1011011000
1001011000
1010011000
1111011000
0000100000
0001100000

HP
mnemonic

SELPRF 3
SELPRF 4
SELPRF 5
SELPRF 6
SELPRF 7
SELPRF 8
SELPRF 9
SELPRF A
SELPRF B
SELPRF C
SELPRF D
SELPRF E
SELPRF F
CLR ST
RST KB
CHK KB
DEC PT
INC PT
G=C

C=G

CG EX
M=C

C=M

CM EX
F=SB
SB=F
FEXSB
ST=C
C=ST

CST EX
SPOPND
POWOFF
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SELP 3
SELP 4
SELP 5
SELP 6
SELP 7
SELP 8
SELP 9
SELP A
SELP B
SELP C
SELP D
SELP E
SELP F
ST=0
CLRKEY
KEY
R=R-1
R=R+l1
G=C
C=G
C<>G
M=C
C=M
C<>M
T=ST
ST=T
ST<>T
ST=C
C=ST
C<>ST
XQ>GO
POWOFF

ZENROM

mnemonic

PERTCT 3
PERTCT 4
PERTCT 5
PERTCT 6
PERTCT 7
PERTCT 8
PERTCT 9
PERTCT A
PERTCT B
PERTCT C
PERTCT D
PERTCT E
PERTCT F
ST=0
CLRKEY
7KEY

-PT

+PT

G=C

C=G

C<>G

M=C

C=M
C<>M
F=ST
ST=F
ST<>F
ST=C
C=ST
C<>ST
CLRRTN
POWOFF



Hexcode Octal

0A0Q 0240
0EO 0340
120 0440
160 0540
1A0 0640
1EO 0740
220 1040
260 1140
2A0 1240
2EQ 1340
320 1440
360 1540
3A0 1640
3E0 1740
070 0160
0BO 0260
0F0 0360
130 0460
170 0560
1BO 0660
230 1060
270 1160
2F0 1360
330 1460
370 1560
3BO 1660
3F0 1760

Binary

0010100000
0011100000
0100100000
0101100000
0110100000
0111100000
1000100000
1001100000
1010100000
1011100000
1100100000
1101100000
1110100000
1111100000
0001110000
0010110000
0011110000
0100110000
0101110000
0110110000
1000110000
1001110000
1011110000
1100110000
1101110000
1110110000
1111110000

HP

mnemonic

SEL P
SEL Q
7P=Q
LLD
CLRABC
GOTOC
C = KEYS
SETHEX
SETDEC
DISOFF
DISTOG
RTN C
RTN NC
RTN

N=C

C=N

CN EX
LDI
STK = C
C = STK
GOKEYS
DADD = C
DATA = C
CXISA
C=CORA
C=C.A
PFAD=C

-188-

Jacobs/
De Arras

SLCT P
SLCT Q
P=Q
7LOWBAT
A=B=C=0
GOTO ADR
C=KEY
SETHEX
SETDEC
DSPOFF
DSPTOG

7C RTN
INC RTN
RTN

N=C

C=N

C<>N

LDI S&X
PUSH ADR
POP ADR
GTO KEY
RAMSLCT
WRITE DATA
FETCH S&X
C=COR A
C=C AND A
PRPH SLCT

ZENROM

mnemonic

PT=P
PT=Q
P=Q
7BAT
ABC=0
GTOC
C=KEY
SETHEX
SETDEC
DISOFF
DISTOG
CRTN
NCRTN
RTN

N=C

C=N
C<>N

LDI
STK=C
C=STK
GTOKEY
RAMSLCT
WDATA
RDROM
C=CORA
C=CANDA
PERSLCT



INDEX

"10-BASE", 117-121 CPU registers (cont.)
? functions, 64,96,104 P, 7,11
alpha register, 36,54-56 PC, 7,11
"AM & MA", 54-56 Q, 7,11
"AM & MA" revised, 60-61 ST, 7,11
Annunciators, 111,112,115 return stack, 7,11,61,76,
Assembler, 4,59 77
base conversions, 117 T, 7
BCD, 8,68 XST, 7,11
BCD-BIN",72-74,87,89 Flags, 41
"BCD-BIN" revised, 78,79 Modes,
"BIN-BCD", 69-71 deep sleep, 133
bit, 3,6,8,108 light sleep, 133
"BREAK", 154-164 running, 133
byte, 6,8 status, 132
Carry, 12,45,57,58 crash, 88,116
Character tables, debugging programs, 154-164
LCD, 108 "DECODE", 156,165
MCODE function name, 37 display, 107-128
"CODE", 148,159 clearing, 119
"COUNT", 50-52,86,89 custim error messages, 122-126
CPU, 1,3,5,6,9,51 disabling, 119
CPU enabling, 107,120,141
registers, 5,7 mnemonics, 109-111
A, 7,10,25,26,40 type, 107,115-116
B, 7,10,25,26 display contrast, 115,116
C, 7,10,25,26,40 Dissassembler, 5,77,109
FI, 7,12 "DISTEST", 112-115
G, 7,11,132 .END,, 35,42
KY, 7,12,134 EPROM
M, 7,10 box, 14,130
N, 7,10,66 software, 15
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EXECUTEs
Absolute, 57,58,60
Relative, 75,78,85,122
"F?", 71,87,89

FAT, 19,20,21,38,39,40,43,56,63,
67,70,72,74,86,89,93,98,102,104,

121,135
FETCH, 110
fields

ALL, 12,40

ADR, 12,13

KY, 12,13

M, 12,13,42

MS, 12,13,69

S&X, 12,51,52

XS, 12,13,124

@R, 13,51

P-Q, 13,82

R<, 13,69
"FS?S & FC?C", 65-67,87,89
"GE", 42,43,86,89
"GEE",134-135
GOTOs

Absolute, 57,58,61

Relative, 75,77,103,125
Graves, Pete, iii
Hexcodes, 8.28,29,76
Hovik, David, iii
"HXENTRY", 140-147
"IF", 62-64,87,89
1/0 buffers, 32
INSERT, 138
Instruction set

?2A<B, 26,27

?7A<C, 26,27,55

Instruction set (cont.)
7A#0, 26,27,51
2A#C, 26,27,73
7B#0, 26,27
2C#0, 26,27,63
?7C RTN, 47,49,56
?FI n, 28,29
?FSET n, 28,29,55
7KEY, 47,48,51
7.OWBAT, 47,48
INC RTN, 47,49,97
7P=Q, 47,48
7R= n, 28,29,56
A=0, 25,27
A=A+1, 25,27,56
A=A+B, 25,27
A=A+C, 25,27
A=A-1, 25,27,63
A=A-B, 25,27
A=A-C, 25,27,63
A=B=C=0, 47,48
A=C, 25,27,40
A<>B, 25,27,82
A<>C, 25,27,40
B=0, 25,27
B=A, 25,27
C=0, 25,27,42
C=0-C, 26,27
C=B, 25,27
C=C+1, 26,27,56
C=C+A, 25,27
C=C+C, 25,27,63
C=A-C, 26,27
C=C-1, 26,27,51
C=-C-1, 26,27,83
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Instruction set (cont.)

C=C AND A, 47,50,63,82
C=C OR A, 47,50,66,82
C=KEY, 47,49

C=G, 47

C=M, 47,95

C=N, 47,66

C=ST, 47

C<>B, 25,27,56

C<>G, 47

C<>M, 47

C<>N, 47

CLRF n, 28,29,43
CLRKEY, 47,51
DSPOFF, 47,49
DSPTOG,47,49

FETCH S&X, 47,50
G=C, 47,144

GOTO ADR, 47,49,122
GTO KEY, 47,50

JC, 45,46,47,51

JNC, 45,46,47,51
LD@R n, 28,29,43

LDI S&X, 47,49,51
LSHFA, 26,27,51

M=C, 47,94

N=C, 47,66

NOP, 115

POP ADR, 47,49,83,122
POWOFF, 47,48,115
PRPH SLCT,47,50,107,112
PUSH ADR, 47,49,82,122
R= n, 28,2943

R=R-1, 47,48

R=R+1, 47,48,56

¥

Instruction set (cont.)
RAMSLCT, 47,52,53,55
RCR n, 28,29,55
READ n, 28,29,40
READ DATA, 47,52,53,56
RSHFA, 26,29
RSHFB, 26,29
RSHFC, 26,29,80
RTN, 39
SELP n, 28,29
SETF n, 28,29,43
SETDEC, 47,49,51
SETHEX, 47,49,118
SLCT P, 47,48
SLCT Q, 47,48
ST=0, 47
ST=C, 47
ST=T, 47
ST<>T, 47
T=ST, 47
WRITE DATA, 47,52,56
WRIT n, 28,29,41
XQ>GO, 47,48

interupt (polling) points, 21,

151-153

Johanson, David, iii

Jumps, 45,46

"LOOP", 157-164

MACRO, 77

Mainframe
functions, 16
key tables, 149,150
subroutine, 16,91
entry point, 17,60

MCODE, iii,1,7,126
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MLDL, 1,13,38,44,129
MEMORY LOST, 35
microCODE, 1
Microprocessor, 4,6
mnemonics, 4,8,19,109
MOD, 91,117,119
Negative exponents, 5,101
NOP, 8,115,134
"NR", 84-86,87,90
number systems
base 10, 3
Binary, 3,4
Hex, 3,67,86,99
Hexadecimal, 3
Octal, 99
nybble, 5,8,13,35,82,108
"OCT-HEX", 166-169
op bits, 137-139
overflow, 9
partial key sequencing, 35,137-147
PTEMPI, 34,35,138
PTEMP2, 138,139
prefix, 13,25-29
Programming,
Machine language, 1
MCODE, 1,12,16,19,20,29,52,
99,139
User code, 1,19
Synthetic, 7,37
pointers, 11,28
postfix, 13,25-29
prompting, 135-147
"QR", 91-93
RAM,
Addresses, 31,32,83

RAM (cont.)
Chip, 53
Extended Memory, 29,31,32
Main Memory,29,31,32
RAM, 1,6,9,13,17,30,52,60
Status Registers, 29,33-37,
VOID, 31,33
random numbers, 100
"RN", 100-102
ROM, 1,6,9,17,19,20
ROM
address space, 6,17
checksum, 22
header, 19,38,86
page, 17,18,19
program name, 37,38
revision, 21
word, 18
"RSLCT", 157,160-164
"S?", 102-104
shif't, 8,62,80,110
SKWID, iii
"SKWID 1A", 38-40,86,89
SYNTHETIX, ii
underflow, 9,72
underscores, 136,139
user flag 46, 140,146
user flag 50, 95,115,119,146
"V A", 98,99
VASM, 17,99

VASM octal to hex conversions, 166-

169

"VM", 93-95
White, David, iii
word, 9,77
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wraparound, 9,70

"X=Y? Z?", 96-98

"X>=Y?", 104-106

XOR, 80-82

XROM, 19,20,38,39,40,43,86,89,
132,138

"Y<>Z", 40,41,86,89

ZENROM, 129
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Ken Emery, the author of this book, also does custom M-Code software
development for HP-41’s and HP-IL systems. If you have an HP-41 application
that needs the speed and user-convenience capabilities of M-Code, you may
want to contact Ken. In his consulting role, Ken can tell you what
capabilities M-Code would bring to your application. Ken is one of the few
true experts in M-Code, so you can be confident that he will give you an
accurate estimate of what is possible and how much effort it will take. You
can contact Ken through SYNTHETIX at P.O. Box 1080, Berkeley, CA 94701-1080
USA, phone (415) 339-0601.
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For HP-41'S
[HHP-41 Advanced Programming Tips, by A. McCornack & K. Jarett $20.95
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HP-41 Synthetic Programming Made Easy, by Keith Jarett $16.95
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Quick Reference Card for Synthetic Programming $2.00
Synthetic Quick Reference Guide (SQRG) $5.95
For HP-10C, 11C, 15C. AND 16C
ENTER (Reverse Polish Notation Made Easy), by J.Dodin $4.95
Humor
It’s Amazing How These Things Can Simplify Your Life:
The Harold Guide to Computer Literacy $4.95
ROM’s
Barcode Generating ROM by Ken Emery $199.95
AECROM by Redshift Software $ 99.00
Sales tax (California orders only, 6 or 7%)
Add’l
Shipping Ist book books
within USA, book rate (4th class) $1.50 $0.50
USA 48 states, United Parcel Service $2.50 $1.00
USA, Canada, air mail $3.00 $1.50
elsewhere, book rate (6 to 8 week wait) $2.00 $1.00
elsewhere, air mail $12.05 for Extend Your HP-41, $6.05 for others

Free shipping for ENTER and It’s Amazing... with purchase of any other book
Free shipping for QRC plastic cards or SQRG (any number)
Free shipping for ROM’s

Enter shipping total here $
Total due $
Checks must be in U.S. funds, and payable through a U.S. bank.

Name

Address

City State Zipcode

Country

Mail to:
SYNTHETIX, P.O.Box 1080, Berkeley, CA 94701-1080, USA Phone (415) 339-0601






HP-41 MCODE FOR BEGINNERS
by Ken Emery

MCODE is the internal machine code used by the HP-41, one level below the
set of "user code" instructions that users and programmers are accustomed to
dealing with. Some user code instructions like CLX are implemented by the
HP-41 in just a few MCODE instructions; other user code instructions like
TAN may need hundreds of MCODE operations.

Programs in MCODE are FAST. They run 7 to 120 times faster than user code
programs. But the advantage that enthusiasts will appreciate the most is
that MCODE gives you total control of the machine. You can make the HP-41
do whatever you want it to do, completely redefining its "personality" and
customizing it for your particular applications. MCODE programming requires
additional hardware, generally an external box' called an MLDL (Machine
Language Development Lab). But once you enter the world of MCODE there is
nothing you can’t do.

This book is your ticket to the world of MCODE.

Simple programming examples lead you step-by-step to an understanding of the
principles and practice of MCODE programming. Later examples show you how
to use parts of the built-in operating system as subroutines to do input,
output, and other useful functions. Even before you finish the examples,
you will be able to write your own simple MCODE programs.

For advanced MCODE programmers, there are several features of interest.
Complete details of the display instructions are given. = This includes the
new display that accesses additional LCD characters, and that allows
alteration of the contrast. Also explained for the first time is partial
key sequencing, which allows you to create functions that prompt for inputs
in the same user-friendly way as the built-in functions like STO and LBL.

Two utility programs are included to help in your programming. A debugging
program allows you to interrupt an MCODE routine at any point, dumping the
contents of the CPU registers for viewing. Also included are base con-
version programs to help you use HP’s annotated operating system listings.

Move into the FAST lane. Get started programming in MCODE today!

ISBN 0-9612174-7-2
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