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WHAT IS MCODE? 

MCODE is the internal machine code used by the HP-41, one level below the 

set of "user code" instructions that users and programmers are accustomed to 

dealing with. Some user code instructions like CLX are implemented by the 

HP-41 in just a few MCODE instructions; other user code instructions like 

TAN consist of hundreds of MCODE operations. 

HISTORICAL BACKGROUND 

When Hewlett-Packard announced the HP-41C in July 1979 they described it as: 

"A Calculator, A System, A Whole New Standard." Six years later we know 

these bold statements to be true. The HP-41 has been successful beyond HP's 

most optimistic expectations. 

By the end of 1979, only five months after the introduction of the HP-41, 

the beginnings of a new form of programming appeared. Pioneered by Dr. 

William C. Wickes, it is now called synthetic programming, or SP. Synthetic 

programming encompasses the creation and use of new undocumented 

instructions to which the HP-41 responds. Synthetic programming is only an 

extension of user code programming. Its study, however, provided an 

important general overview of the HP-41's operating system and its memory 

management. The next step was to find ways to list and study the internal 

machine code, now called MCODE. 

User community programming in MCODE was discouraged by HP. "It's too 

complicated and in many cases doesn't offer an advantage," was the usual 

reason given by HP's technical support staff. By the spring of 1982, 

however, the first MCODE programs were written, hand compiled, and burned 

into EPROM by Jim De Arras. 

Four problems had to be overcome before MCODE could become popular. First, 

the user community had to discover that MCODE programming is not beyond 

the grasp of talented programmers. The second problem was the documentation 
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of the HP-41's operating system. HP eventually released the annotated 

operating system listings, but only after Jim De Arras produced his own 

version, a monumental feat. The third problem was the lack of a means to 

generate and store MCODE instructions. Several small manufactures now offer 

the necessary hardware to the user community. The fourth and last problem 

was documenting in one place the basics of MCODE programming. This book is 

the result of that effort. 

WHY SHOULD YOU USE MCODE? 

The first reason to use MCODE is speed. MCODE programs run from 7 to 120 

times faster than user code. The second reason is that you get full system 

control. More efficient data register usage (data packing) and access to 

all of system memory are but two examples. A third reason to use MCODE is 

that greater accuracy is possible by using the internal 13-digit math 

routines. A fourth reason for using MCODE is the ease of dealing with 

hexadecimal (base 16) numbers. The HP-41 has MCODE instructions to do 

hexadecimal arithmetic at least as easily as decimal arithmetic. Finally, 

your MCODE programs are immune to MEMORY LOST because they do not reside in 

normal user code program memory. 

MCODE programming requires additional hardware, costing from $100 to $400. 

But once you enter the world of MCODE there is nothing you can't do. To get 

started, however, you need to understand the basics of MCODE. That's where 

this book fits in. It will give you the background you need to write your 

own MCODE programs and to start to understand the HP-41's operating system. 

Understanding the operating system is the key to the most advanced 

applications of MCODE. 

-v-
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PREFACE 

With the introduction of the HP-41C in July of 1979, the world of truly 

personal computing was set on its ear. In one hand, the computer user was 

now able to hold what once took an entire room full of hardware. At the 

time of its introduction, the HP-41C was expected to have a product life of 

five years. Based on the results of a survey made of the user community in 

late 1984, the projected life of the current 41 series (CY ICX) is still 5 

years. The overwhelming success of the 41 is due in large part to enter­

prising users who managed to tickle ever more power out of their 41. Dr. 

William Wickes first discovered and utilized "synthetic programming" for the 

HP-4 1 , with Keith J arett, Roger HilI, and others expanding the bounds of 

knowledge significantly. In 1981, members of the Personal Programming 

Center (PPC) created an astounding collection of programs for the PPC ROM, 

which combined synthetic programming techniques with improved algorithms to 

come up with what is still the most advanced non-MCODE ROM around. 

Hewlett-Packard has responded to the success of the HP-4l by introducing new 

products (such as Extended Memory, HP-IL, and the Time module) that expand 

the capabilities of the 41 manyfold. Pioneering work by Steve Jacobs and 

Jim De Arras in the disassembly of HP-4l instructions led HP to unofficially 

release the operating system listings for the 41, along with the original 

programmers' annotations. Thus was born the art of MCODE programming. 

MCODE programs can normally be executed only as part of an internal or plug­

in ROM (Read Only Memory) module. As the name implies, ROM modules cannot 

be reprogrammed. Lynn Wilkins and Paul Lind originally developed the 

Machine Language Development Lab (MLDL) to enable programmers to 

conveniently write, test, and use MCODE programs. Later refinements by 

Lynn Wilkins, Paul Lind, Nelson Crowle, and the ERAMCO company led to 

today's state-of -the-art MLDL. An MLDL contains ordinary memory (RAM) that 

looks like ROM to the HP-41. It also contains sockets that allow you to 

plug in EPROM (erasable, programmable, read-only memory) chips. EPROM's, 

which can be programmed using third-party hardware that connects to the HP-

41, let you create your own custom ROMs inexpensively. 
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Most of the MLDL-type devices available today have some, if not all, of the 

following features: 

o 4K to 16K of RAM that emulates HP-41 ROM (with battery back-up) 

o Sockets for 4K to 24K of EPROM's that emulate HP-41 ROM 

o Development software to aid in MCODE programming 

Once the hardware problem was solved, software needed to be tackled. MCODE 

programmers all over the world developed assemblers, dissassemblers, 

editors, and general-purpose MCODE programming tools. These software 

development tools, which are standard on computer systems, are now available 

for the HP-41. 

But alas! With all of this programming power available, HP-41 users stilI 

had a tough time trying to learn how to program in MCODE. To make it easy 

on yourself, you needed to speak fluent Jacobs-DeArras, Hewlett-Packardian, 

and ZENGRANGEish to be able to understand the various mnemonics. Further, 

the only method of learning for each programmer was to start at the bottom, 

with all of the appropriate documents in hand, and pull himself up by his 

bootstraps. One evening, Ken Emery was bemoaning the lack of a tutorial on 

MCODE to several local PPC members. "Write it yourself!", they told him. 

So he did, and the rest is history. 

This book will do its best to try and guide you through all of the vagaries 

of HP-41 MCODE programming that you are likely to experience as a bcginning 

MCODE programmer. Intermediate programmers will find a fair amount of 

useful information as well, perhaps a few little-known tricks that will cut 

program size or execution time. And advanced MCODE programmers will get a 

kick out of remembering how they first discovered these secrets. 

David E. White 

Editor, PPC Journal 
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INTRODUCTION 

This book will introduce you to machine language programming on Hewlett­

Packard Series 40 calculators (the HP-41C, CY, and CX). This book is suit­

able for total beginners in machine language, but experience in normal HP-41 

programming will prove helpful. 

Machine language (also known as MCODE) is the language used to program the 

internal functions of the calculator. With machine language (MCODE), you 

have total control of the calculator. The execution speed of an MCODE 

program can be anywhere from 5 to 120 times as much as that of a similar 

User code program. 

To help you better understand HP-41 machine language programming, we will 

first review the structure of the CPU registers. Next we will discuss the 

instruction set, and finally we will provide examples of how to use the 

various instructions. In the process, several practical routines will be 

demonstrated. Each routine is fully documented to provide a clear under­

standing of why a particular instruction was chosen at each step. 

Throughout this book we shall refer to machine language programming on the 

HP-41 as MCODE. The term MCODE is derived from both Machine language pro­

gramming and microCODE. Machine language is the language determined by the 

instruction set of the CPU. Microcode is the electronic programming that 

actually determines what the CPU's instruction set will be. When machine 

language programming first became possible on the HP-41, the term MCODE was 

coined, and it remains in use to this day. 

In order to program in MCODE, you must have an accessory that simulates the 

ROM (Read Only Memory) of the HP-41. This is because the HP-41's operating 

system is not designed to run MCODE programs from its normal RAM (Random 

Access Memory) area. Extensive internal ROM contains the permanent code 

that determines the function set of the HP-41. Several types of devices are 

available for this purpose, and they are commonly referred to as MLDL's 

(short for Machine Language Development Lab). These devices plug into one 
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of the four ports at the top of the 41. They contain RAM, memory that may 

be altered by the user, suitable for holding MeODE programs. Further 

explanation will be provided in the hardware section of this book. 
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THE BASICS 

BINARY NUMBER REPRESENTATION 

The CPU can only interpret binary numbers. Binary numbers are base 2 num­

bers. They can only be represented using a one or zero. For example, 6 in 

base ten would become 110 in binary. Let's examine how this is done. The 

rightmost digit is the one's place; it may be either one or zero. When we 

get to 2 we must go to the next digit to the left. This is the two's digit. 

If it is a I then we add 2 to the total. If the one's and two's digits 

are set to one we have 3 (I + 2 is 3). If we want to continue counting, 

then we must move to the next digit to the left, which is the four's digit 

(four comes after three). If this digit is one, then we add 4 to the total. 

In our example the four's digit and the two's digit are one. This means 

that we have 4 + 2 (or 6). Since the one's digit is zero, we don't add one 

to the total. 

As you can see, counting in binary can be rather difficult (unless you only 

have two fingers). When writing programs for the HP-41's CPU in binary it 

is very easy to make a mistake. In the CPU of the 41 the instructions are 

ten binary digits long. Each of these digits is known as a BIT (for BInary 

digiT). Now, if you have a program that is 100 instructions long, then you 

would have to check 1,000 (loa instructions times 10 bits per instruction) 

bits to make sure that you have made no errors. 

programs in binary makes them difficult to debug. 

the same, particularly after a few hours of debugging. 

As you can see, writing 

Binary numbers all look 

Since computers never get tired, and love to work with binary numbers, we 

write programs to translate our inputs into binary. We input in hexadecimal 

(hex for short) or base 16. Since numbers only cover from a to 9, we must 

borrow letters from the alphabet for the last 6 hex digit values. We use 

the letters A through F, with A corresponding to la, B to II, and so on 

until we get to F, which is 15 in base ten. 
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Here's an example of how much easier hex is than binary. We will use ten­

bit binary numbers since this is what the 41 CPU uses. 

Binary Hex 

0110011110 19E 

1100101001 329 

0000010000 010 

1111101001 3E9 

1000110111 237 

If you make a mistake keying in the binary instructions, then you must 

examine 50 bits to see where the mistake is. Using hex, only 15 digits must 

be examined. This is a reduction of 70% in the number of digits you must 

check. 

How do we get the CPU to use these hex digits if it only recognizes binary 

numbers? We use a program which will translate our hex codes to binary. 

This program is called a hex assembler. Since computers don't make mis­

takes, the translation from hex to binary will be performed without any 

mistakes. 

Since most people can't count too well in hex (we haven't seen anyone with 

16 fingers), the hexcodes are given alphanumeric representations of the 

operations that they perform. These alphanumeric representations are called 

mnemonics. The program that translates these mnemonics into binary is 

called an assembler. These programs are usually rather elaborate. However, 

they make programming much easier, since you can actually see what each 

instruction does, and you may follow the logic of the program. For example, 

the binary number 000000 III 0 (OOE in hex) is the A=O ALL instruction in the 

microprocessor of the 4l. It is much easier to figure out what the A=O ALL 

instruction does (sets all of CPU register A equal to zero), than to trans­

late 0000001110 to a number which you may then look up on a chart. 
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The opposite of the assembler is the dissassembler. This is a program which 

takes the binary codes at specified locations in memory and translates them 

to mnemonics so that you may easily examine what instructions are in memory. 

You may be wondering why the HP-41's main CPU registers are 56 bits wide. 

The 41 was designed with numerical computation in mind. The number 56 is 

divisible by 4, therefore it may be partitioned into 14 sections of four 

bits each. The reason for using four bits is because the numbers zero to 

nine may be represented using four bits. The leftmost four bits (one nyb­

ble) are used to tell whether the number is negative or positive. If this 

nybble is 0, then the number is positive. If it is equal to nine (1001 in 

binary), the number is negative. 

The next ten nybbles are used to hold the mantissa of the number. Because 

there are only ten mantissa digits the 41 is accurate in calculations to ten 

decimal places. For example, the mantissa of PI is 3141592654. These are 

the ten digits you see when PI is in the display and you are in FIX 9 mode. 

The three rightmost nybbles are the exponent sign and the exponent. The 

leftmost of the three is the sign of the exponent. This is encoded in the 

same way as the sign on the mantissa. It is nine if the exponent is nega­

tive, and zero if it is positive. The next two nybbles form the exponent. 

The 41 stores all numbers in scientific notation, that is, with the exponent 

set so that the mantissa has only one number to the left of the decimal 

point. You may remember that the exponent on the 41 may range from a to 99. 

This is because the largest decimal number in two digits is 99. The CPU 

cannot handle an exponent greater than 99 because there is no room to store 

the three digits (100 and greater) needed to represent this. For numbers 

with negative exponents the number stored in the exponent is lOa minus the 

exponent. For example, for a negative exponent of 2 the actual number 

stored is 98 (100-2). The reason numbers aren't always displayed in scien­

tific format is because HP was kind enough to give you a choice of whether 

you want scientific, engineering, or no exponent (FIX format) displayed. 

The display routines take care of all of the work to make sure the number is 

displayed in the format you want. 
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THE MICROPROCESSOR 

A microprocessor is the heart of any computer. The microprocessor chip is 

made of silicon, just like any of the other integrated circuits that com­

prise a computer. However, it has been designated as the controller of the 

whole show. The microprocessor has been manufactured so that it recognizes 

certain inputs, and then it tells everything else what to do. It is the 

brain of the computer. 

When this chip is manufactured, a set of commands that will delegate the 

work is etched into the chip. These commands are known as the instruction 

set. The microprocessor has a set of registers where all of the operations 

are carried out. These registers are known as the CPU registers. The CPU 

registers are completely separate from the memory registers, as you'll see 

later. 

In many texts, you may have noticed references to Microprocessor, Micro 

Processing Unit (MPU), and Central Processing Unit (CPU). These terms all 

mean the same thing. To maintain some semblance of consistency, we will use 

the term CPU throughout the book when referring to the HP-41 microprocessor. 

In the CPU of the 41, ROM (Read Only Memory which may NOT be altered by 

the user), and User RAM are not the same. In the ROM address space the 

bytes are each 10 bits long. The CPU has a 64 Kilobyte address space for 

ROM. Therefore it can have up to 65,536 bytes of functions and programs. 

The way the 41 CPU was designed was to treat this whole area as ROM. The 

User RAM is treated as a peripheral by the CPU, and is not part of the 64K 

ROM address space. The RAM bytes are each eight bits long. The 41 CPU 

further complicates matters by storing the eight bit bytes of User RAM in 

56-bit registers (7 bytes per register). 

Each 10-bit word of an MCODE instruction takes 155 microseconds to execute. 

The only exception is FETCH S&X (introduced on page 50), which takes twice 

as long. The CPU thus processes an amazing 6452 words of MCODE per second. 
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THE CPU REGISTERS OF THE HP-41 

In order to program in MCODE you MUST know how the internal CPU 

registers interact with each other. This is not like User RAM, where you do 

not have to worry about the partitioning of programs and data. Remember, 

with MCODE you are in eommand of the calculator at the most fundamental 

level. Therefore you must know what you are doing in similar detail. 

Almost anything you want to do can be done. Like a good synthetic 

programmer, who must know that there are 16 status registers and how they 

are used by the calculator, you must know how the data flows through the 

internal CPU registers. A diagram of the flow of data in the CPU registers 

is given below. The numbers in parentheses are the lengths of each register 

in bits. Eaeh register is named by a letter(s). 

To 

RAM 

Registers 

M (56) 

N (56) 

Figure 1 
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Now for a short vocabulary lesson, followed by a little explanation of the 

uses of each of these registers. 

Word 

Bit 

BCD 

Definition 

Binary digit. One bit can have a value of either I or O. It is 

like a switch, either on or off. 

Binary Coded Decimal. This is how the CPU represents the 

numbers you see. Each decimal digit is represented by four 

bits (one nybble). Each of the nybbles is separate from the 

other, and may have a value from zero to nine. When one of the 

nybbles tries to become ten, a one is added to the nybble to 

the left, and the original nybble is set to zero. 

Hexcodes The three hex digits used to symbolize the ten-bit MCODE words. 

Mnemonics Alphanumeric representations of what certain hex codes do. For 

example, the hexcode OOE has a mnemonic of A=O ALL. From the 

mnemonic you can deduce that hex OOE sets ill of CPU register A 
equal to zero. This is much easier than having to memorize 

what each hexcode stands for. 

Nybble 

NOP 

Byte 

Shift 

Four bits put together. The highest value that may be obtained , 
is when all 4 bits are set to 1. This is 15 decimal, or F in 

hexadecimal. One nybble is also one hexadecimal (hex) digit. 

No OPeration (do nothing instruction). 

Two consecutive nybbles or eight consecutive bits. 

Movement of data within a register, either left or right. Any 

data pushed off the end of the register is lost forever. For 

example, if we shift the binary number 10110111 right by 2 bits 
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the two rightmost bits will be lost and zeros will be placed on 

the left. We then end up with 00101101. 

Wraparound Movement of digits from one side of a register to the other, 

during rotation of a register. Rotation is like shifting right 

except instead of losing the rightmost digits they are wrapped 

around to the left. For instance, if the above example was 

rotated instead of shifted, we would get 11101101 as our an­

swer. Notice that the last two digits were placed on the left 

end of the number and were not lost. This is wraparound. You 

may also be familiar with this term as logical rotation. 

Word The CPU instructions of the HP-41 are 10 bits long. So the 

term Word describes a ROM memory cell that holds a single CPU 

instruction. The term Byte is avoided in this context in order 

to distinguish ROM words from the 8-bit bytes in RAM. However, 

you will occasionally see CPU instructions referred to as 

bytes, for example when the "byte count" of a routine is 

quoted. 

Underflow Underflow occurs when a negative number would result from an 

operation. The CPU does not know what negative numbers are, so 

it gives a result as if it had borrowed a one from the next 

most significant digit. For example, the operation 1001 minus 

1100 would result in an underflow, since 1100 is greater than 

1001. The result would be 1101, which is 11001 minus 1100. 

The Carry, which will be explained later, is set whenever an 

underflow occurs. 

Overflow Overflow is the opposite of the underflow. It is much like the 

OUT OF RANGE error message we get when a number greater than 

9.999999999 E99 would result from a mathematical operation. If 

the operation were carried out, there would be an overflow, 

since the wanted number would be too large for the CPU to 

handle. The CPU just chops off anything that would be larger 
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than it can handle. For example, 1001 plus 1000 would be 

10001. But since we are using only four bits for our example, 

the leftmost bit would be eliminated and the answer would be 

0001. The Carry bit is set after one of these operations. 

Here is an explanation of how the CPU registers function. 

Register 

C 

A 

B 

M and N 

Usage 

This is the main register. All communication with the RAM 

registers is done through the C register. This is the only 

register that can directly interact with all of the other CPU 

registers (except T). This register can either be shifted one 

nybble right or the whole register may be rotated from I to 13 

nybbles to the right. 4-bit digits (0 to F in hex) may be 

loaded into any nybble of this register. This register cor­

responds to the accumulator on other CPUs. It may be incremen­

ted or decremented by one, and it may also be zeroed. 

The A register may interact with only the C and B registers. 

These registers may be added to A and they may also subtracted 

from A. A can also be added to C. It can be incremented or 

decremented by one, shifted left or right one nybble, or 

zeroed. 

This register may be added to or subtracted from only the A 

register. However, it may be exchanged with the A and C regis­

ters in whole or in part. It may also be shifted right one 

nybble, or zeroed. 

These registers may interact with only the C register. They 

can not interact with each other, or with any register other 

than C. They are usually used for storage. 
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P and Q 

PC 

These 2 four-bit registers are the pointers. They may be set 

to any value from 0 to 13. They are used to point to digits in 

the A, B, and C registers. Only one of the pointers may be 

selected as the active pointer at any time. The active pointer 

may be incremented or decremented by one. The active pointer 

is sometimes referred to as the 'R' register. 

This is the program counter. It contains the address of the 

MCODE instruction that is currently being executed. It may be 

modified using certain instructions. 

Subroutine The subroutine stack has space for 4 pending returns. These 

Stack returns may be popped into the C register. Part of the C 

register may be pushed onto the subroutine stack. This stack 

should not be confused with the subroutine stack used for User 

code programs. 

G 

ST 

XST 

This register interacts with the C register at the nybble 

pointed to by the active pointer, and the next highest nybble. 

If the nybble pointed to is 13, then wraparound occurs. 

This is the flag register. Flags 0 to 7 reside in this regis­

ter. They may be set, cleared, and tested. The ST register 

may be zeroed and exchanged with, or set equal to, nybbles tl 

and I of the C register. Nybble 0 is flags 0-3 and nybble I is 

flags 4-7. Note that these flags are independent from the User 

flags of the 41, although they are frequently set to match User 

flags 48 to 55. 

This register contains CPU flags 8 to 13. XST cannot be 

directly accessed by any other register. These flags may be 

set, cleared, or tested. 

Note on ST and XST: Flags 0-13 are also referred to as status 

bits in HP documentation. 

-11-



KY 

FI 

Carry 

This is the keyboard register. When a key is pressed, K Y is 

loaded with a two-digit hexcode from a table built into the CPU 

(see the table on page 150). Part of registers C and PC may be 

set equal to KY. 

Peripheral flag register. These flags may only be tested by 

the CPU. They must be set by a peripheral. 

This one bit is set when an overflow or underflow occurs. It 

is also set if a test is true. After the carry is set, the 

next MCODE instruction clears the carry, regardless of whether 

that MCODE instruction tests the carry bit. 

What follows is the ROSETTA STONE of MCODE programming. Figure 2 shows 

the fields of a 56 bit register. These 56 bits are divided into 14 nybbles. 

These are numbered 0 to 13 (starting from the right). The fields are used 

extensively to operate on all or part of the A, B, or C registers. 

Nybble: 13 12 II 10 9 8 7 6 5 4 3 2 o 

Field: 

Field: 

Field: 

Field: 

< ---------- ------- --- ------- --- --- --- --- --- - ALL -------------------------------------------> 

< -MS -> < ----------------------------- M --------------------------------> <-XS-> 

Figure 2 

<------- ADR --------><---- S&X ----> 

<-- KY --> 

Note that these fields also function as postfixes for a number of instruc­

tions. Here are the functions of the fields in Figure 2: 

Field 

ALL 

S&X 

Usage 

All 14 nybbles. 

Exponent and exponent sign (nybbles 0-2). 
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XS 

M 

ADR 

Exponent sign only. (nybble 2) 

The 10 nybbles of the Mantissa (nybbles 3-12). 

Nybbles 3-6. This is where the address is taken from when a return 

is pushed onto the subroutine stack; it is also placed here when a 

return is popped from the subroutine stack. 

KY Nybbles 3 and 4. This is where the contents of the KY register are 

placed. C cannot be placed into KY. 

@R At the nybble pointed to by the active pointer. 

P-Q Uses the nybbles pointed to by each pointer. The nybbles used 

depend on whether P is larger than Q. If P<=Q, digits P through Q 

are used. If P>Q, digits P through 13 are used. 

For example; if P=12 and Q=2 and we execute the instruction C=O P­

Q, then nyb bles 12 and 13 of C will be zeroed since P is greater 

than Q. If the values were reversed, then nybbles 2 through 12 

would have been zeroed. For the field designation P-Q it does not 

matter which pointer is selected as the active pointer. 

R< All digits from 0 through the digit pointed to by the active poin­

ter. 

The last three items (@R, P-Q, and R<) are not actually fields. They are 

postfixes to a group of instructions, as are the field definitions. These 

last three can change position, and can not be rigidly defined as being in 

one place (like the rest of the postfixes). Table 1, on page 27, contains 

all of the prefix instructions for use with the postfixes mentioned above. 

(By the way, a word about prefixes and postfixes. These are not before and 

after fixes for something you may be considering to do or did do wrong, 

rather they are descriptions of which half of the mnemonic is being 

discussed. The first half is the prefix; the second half is the postfix.) 

THE HARDWARE 

The hardware accessory needed to program in MCODE is called a Machine Lan­

guage Development Lab, or MLDL for short. This device contains the neces­

sary electronics to interface at least one 4 Kilobyte block of CMOS RAM 
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with one of the ports at the top of the calculator. The total amount of RAM 

available for writing MCODE depends on the device. 

At the present there are several popular versions of this box. One of 

these, the ERAMCO MLDL, has 8K of RAM (two 4K blocks) and space for 24K of 

EPROM (Erasable Programmable ROM). This device uses a hex code that the CPU 

regards as a NOP to trigger its write mode. Reading and writing to this 

device is very fast. However, in order to write MCODE to this device, you 

must have software written in MCODE. The ERAMCO MLDL is supplied with 

one 4K EPROM set to help you get started writing MCODE. 

Another MLDL device is called the Protocoder II. This device uses the ABS 

function in the calculator to trigger its read and write functions. Because 

of this, it takes longer to read from and write to this unit. However, 

programs will run at the same speed when they are executed in either device. 

The main advantage of the Protocoder II is that software written in MCODE is 

not necessary, it just makes things much easier. 

For those of you with an adventurous spirit, Volume 9 Number 3 of the PPC 

Calculator Journal contains schematics and instructions to build your own 4K 

RAM MLDL (with provision for 4K of EPROM). 

Another type of add-on for the 41 is the EPROM box. This box provides the 

electronic circuitry enabling you to plug in EPROM (Erasable Programmable 

Read Only Memory) chips into the interface box. The calculator sees these 

as Application Pacs. With this capability you can write one-of -a kind ROMs 

for only the cost of a set of EPROMs (approx. $15 U.S.) and the cost of 

burning (programming) the EPROMs. This is much cheaper than having a custom 

ROM manufactured for you by HP (about $10,000+). 

The ERAMCO MLDL comes with sockets that allow you to plug in up to 24K (six 

4K sets) of these EPROMs. The Protocoder II requires the addition of an 

extra board that addresses up to 16K of EPROM memory. A company called 

Hand Held Products makes a variety of EPROM boxes. They even have one that 

uses an HP Card Reader case. You can put up to 32K of EPROM in this device. 
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A company called Corvallis MicroTechnology also makes an EPROM box that 

only uses one EPROM instead of the usual two. This device can hold either 

4K or 8K of ROM. CMT also makes a plug-in module that has an EPROM 

built into it. This module looks exactly like a HP application pac except 

for the window on one side. With this module there are no extra boxes or 

extent ions of the calculator. This module comes in 4K, 8K, and 16K 

versions. For more information about these manufacturers see Appendix A. 

THE SOFTWARE 

In order to efficiently program one of these boxes, some sort of software is 

needed to allow you to write to the RAM. This can be accomplished using 

either hexcodes or mnemonics; however, the software for writing to the boxes 

using hexcodes is much more prevalent. The main piece of software that you 

will need is an assembler. An assembler takes the mnemonics (alphabetic 

representations of what the hex instruction does) that you input and calcu­

lates the correct hexcodes to place into the RAM of your MLDL. A disassem­

bler will output these hexcodes, along with the corresponding mnemonics, to 

a printer, video display, or the display of the 41. 

The EPROM set that comes with the ERAMCO MLDL has the hexcode kind 

of assembler. This EPROM set also contains many utility routines not 

found elsewhere. 

A 4K EPROM set written in Australia is known as the Assembler 3 EPROM. 

This set contains a disassembler, as well as an assembler that can assemble 

MCODE from mnemonics in the Alpha register. Working with the other func­

tions of this EPROM is also a delight. 

The Nelson F. Crowle ROM (NFCROM for short), another such set, is for use 

with the Protocoder II. It contains read/write functions for this device and 

many other useful functions. 

A new 4K EPROM came out in May of 1984 that allows you to key in mnemonics 

from the keyboard. This revolutionary ROM is called DAVID ASSEM. 
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In order to enter instructions directly from the keyboard, each key is 

redefined with a mnemonic or mnemonic prefix (more on this later). This 

EPROM makes MCODE program input as easy as keying in a User code 

program. 

With the use of software like this you should have no problem keying in any 

of the routines in this book. 

For those of you who have User code (RPN) programs that you wish to put into 

your MLDL RAM, Phi Trinh has written a routine that will do this for you. 

The only input required is the name of the User program you wish to load 

into the MLDL. The routine compiles all GTOs and XEQs and has the most 

complete error checking of any routine yet written for this purpose. This 

routine is intended to be used only for creating User Code ROMs with your 

MLDL. The ERAMCO MLDL EPROM also has a routine that is somewhat similar 

to Phi's. ERAMCO's program allows you to mix MCODE and User code. 

Instructions on how to use these software packages will not be covered in 

this book. Review their respective manuals for specifics of operation. 

The manufacturers' addresses for these software packages may be found in 

Appendix A. 

SOURCE LISTINGS FOR THE HP-41'S OPERATING SYSTEM 

Another very important piece of software is the operating system that is 

built into your HP-41. The so-called "mainframe" of the HP-41 contains 12 

kilobytes of delicately interwoven MCODE programs that make the HP-41 what 

it is. The mainframe contains many routines to read the keyboard, access 

the display, and perform other frequently needed "housekeeping" functions. 

Rather than write a complicated subroutine every time you need a 

housekeeping function in your programs, you can simply execute one of these 

mainframe routines as a subroutine from your program. The variety of 

mainframe functions is practically unlimited. If what you want to do has a 

coun terpart in normal operation of the HP-41, chances are that the task 
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exists as a subroutine in the HP-41's mainframe. 

A mainframe routine begins at an entry point. In order to correctly use 

mainframe routines, you need to know the following: 

I) The location of the en try point. 

2) The initial conditions required, including which registers are used for 

input, correct flag settings, mode and peripheral selection, etc. Some 

routines require detailed setup; others do most of their own setup. 

3) The routine's register and subroutine stack usage. 

4) The output specifications, including what values are output and where, 

and how the routine ends (return to calling program, or return to the 

operating system). 

To get this information, you need a copy of HP's annotated listings for the 

operating system. These listings are commonly referred to as the V ASM 

listings (HP's terminology). Appendix A has a list of organizations that 

sell V ASM listings. Don't ask HP, because HP does not support MCODE. 

All serious MCODE programmers should spend some time studying the V ASM 

listings. The listings will give you a much better idea of how the HP-41 

works, and you are bound to run across some entry points that you can use 

later in your programs. You'll also get an appreciation for the complexity 

of this operating system, which was written by a team of 2 or 3 very skilled 

programmers. 

THE ROM ADDRESS SPACE 

The 64 kilobyte (64K) ROM address space of the 41 is divided into 16 pages -

each of which is 4K in length. Each of these pages contains 4096 ROM words 

that are each 10 bits long. The RAM that is used for User code programs is 

not included in this 64K, since it is addressed in a different manner. 

Some of these 4K pages have been allocated by HP for specific uses. A list 

of how these pages are allocated is given below in Figure 3. 
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Page Number Use Page Number Use 

0 8 Lower half 

Port 1 

Mainframe 9 Upper half 

ROMs Port 1 

2 A Lower half 

Port 2 

3 Extended Func. (CX only) B Upper half 

Not used (CY and C) Port 2 

4 Service module or C Lower half 

Disabled IL Printer Port 3 

5 Timer Module D Upper half 

Port 3 

6 Printer ROM E Lower half 

Port 4 

7 HP-IL Control F Upper half 

Functions Port 4 

Figure 3 

Note that the first 8 (0-7) 4K pages are reserved for specific purposes. 

The upper 8 pages are the ROM address space into which we plug all of our HP 

application PACs. If you plug a 4K ROM into port 1, it will use page 8. 

This leaves page 9 inaccessible since nothing else can be placed into this 

port. 

THE ROM WORD 

In the architecture of the 41, the ROM words are 10 bits long instead of the 

conventional 8 bits. The nomenclature used in this book will list these 10-

bit words in hexadecimal (hex). In order to do this, 3 hex digits must be 

used. All ROM words will be of the form: 
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VNN Where V can range from a to 3, and N can be from a to F. 

There are alphabetic descriptions or mnemonics for each of these different 3 

digit hex codes, but that's the subject of another chapter. 

HOW A 4K PAGE IS DIVIDED 

In addition to assigning specific purposes to pages, HP has assigned speci­

fic purposes to individual address areas within each 4K page. The first 

section of a 4K page assigns the XROM number, the number of functions, and 

the addresses of the functions within the 4K page. 

Let's give the section of the ROM we are about to describe the acronym FAT, 

short for Function Address Table. The first word, at address POOO, is the 

XROM number. 'P' is the page number (any value from 5 to F). The number at 

this address, called the XROM ID, may be from 00 1 to 01 F in hex (1 to 31 in 

decimal). This is the first number that is displayed when you see a 

function displayed as an XROM. For example, the Standard Applications Pac 

function CLSTK is displayed as XROM 05,01 when the ROM is not plugged in. 

The 05 is the decimal equivalent of the hex number at address POOO. 

The word at address POOl indicates the number of functions for that 4K ROM. 

This number may range from 001 to 040 hex (1 to 64 in decimal). The 

functions include any global labels from User code programs contained in the 

ROM, as well as any MCODE functions that are programmed into the ROM. This 

number also includes any headers that are in the ROM. A header is nothing 

more than an MCODE function with a name that is between eight and eleven 

characters. A ROM may have more than one header. An example of this is the 

HP-IL module. It has two headers, -MASS ST IH and -CTL FNS. 

Now comes the tricky part. This next set of words is grouped into pairs. 

They indicate to the calculator the address of the first executable instruc­

tion in a ROM routine, be it User code or MCODE. The words are of the 

following format: 
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Address 

P002 

P003 

Word Description 

UYW This pair of words specifies a function whose starting 

XYZ address is PWYZ. If U is zero, it is an MCODE function; if 

U is two, it is a User code program. Digits Y and X are 

normally set to zero. W, Y, and Z correspond to the last 

three digits of the starting address of the function. 

P004 UYW This pair of words has the same format as the first pair 

POOS XYZ except they point to the address of the second ROM 

function. 

We continue with this format of pairing the words together until all of the 

functions in our ROM have an address in the FAT. The two words after the 

last entry are set to 000. This signals to the calculator that the FAT has 

ended. You may start putting your programs after these final two words in 

the FAT. 

Let's do an example. This ROM will have two functions. The first one, a 

User code program, will be located at address P 119. A function written in 

MCODE will be at address P387. The XROM number for our ROM will be 14 

decimal (OE hex). 

Address Hexcode Description 

POOO OOE 

POOl 002 

P002 201 

This is the XROM number in hex. OOE is 14 in hex. We do 

not want to put 014 here since this would be an XROM 

number of 20 in decimal (014 in hex is 20 in decimal). 

This is the number of functions in our ROM, as specified 

above. It is also in hex. If we had 31 functions in our 

ROM this hexcode would be 0 I F. 

Since this is a User code program the U digit is set to 2. 

This tells the calculator to interpret the code starting 

at this address as RPN instructions. Notice that the Y 
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P003 019 

P004 003 

P005 087 

digit is zero. The 1 corresponds to the W digit in the 

starting address of the program. 

This is the second word of the two word set for the 

address of the first program. The X digit is set to O. 

The 1 corresponds to the Y digit in the starting address, 

and the 9 is the Z digit. 

This is the first word of the two word FAT set for an 

MeODE function, so the U digit is set to zero. The V 

digit is 0, and 3 is the W digit. 

Here is the second word of this FAT entry. The X digit is 

O. The 8 is the Y digit and the 7 corresponds to the Z 

digit. 

Now come the two 000 words at addresses P006 and P007. You could start 

programming immediately following these instructions, but you don't have to. 

It is advisable to leave space between the last FAT entry and your first 

program so that more entries may be added to the FAT as you add more fun­

ctions to your ROM If you were to start programming your ROM at address 

P008, right after address P007, you would not be able to add any more 

functions to the FAT, since there would be no space to insert two more words 

into the FAT for the function. To leave room for a FAT containing the 

maximum number of functions (64), begin your programming at P084. 

The rest of the 4096 words may be used for programs, until we reach PFF4. 

PFF4 to PFFA have been defined by HP as polling (interrupt) points. You 

should always leave these set to zero unless you know exactly what you are 

doing. 

PFFB to PFFE are reserved for the ROM revision. The 4 hexcodes at these 

addresses correspond to letters which are read in reverse order starting 

with address PFFE. An example of this is the HP-IL Development ROM. The 

revision is PD-IB. The '-' is put in the display by the ROM-checking pro­

gram. An example should help clarify this. Here are the words at addresses 

PFFB to PFFE in the HP-IL Development ROM. 
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Address Hexcode Alpha code 

PFFB 
PFFC 
PFFD 

PFFE 

002 

031 

004 

010 

B 

I 

D 

P 

As you can see, the revision is read from the highest address, the address 

with the highest number value, to the lowest address. 

The last word in the ROM is reserved for the checksum of the ROM It is 

used by the Service Module and other modules to verify that a module is 

good. It is not used by the HP-41 itself. The checksum is calculated by 

adding the the total of all the words in the ROM up to, but not including, 

the last one. Anytime there is a carry into the II th bit (ROM words are 

only 10 bits long) we add one to the total. To get the final checksum the 

2's complement is taken. With the correct checksum in place, this process 

will give a result of zero if applied to all 4096 words. 

-22-



-23-

MCOOE 
INSTRUCTIONS 





THE TOOLS 

THE INSTRUCTION SET 

And now, without further ado, the HP-41 Instruction Set! 

Instruction 

A=O 

B=O 

C=O 

A<>B 

B=A 

A<>C 

C=B 

C<>B 

A=C 

A=A+B 

A=A+C 

A=A+l 

A=A-B 

A=A-I 

A=A-C 

C=C+C 

C=C+A 

Function 

Sets the part of register A specified by the postfix to zero. 

Does the same as above, but for the B register. 

Does the same but for C. 

Exchanges the contents of the A and B registers, much like 

the function X <> Y in User code. 

Copies the specified field of the A register into the B 

register. The old contents of B at that position are lost. 

Exchanges the contents of the A and C registers. This is the 

only direct way to place the contents of A into C. 

Set C equal to B as specified by the postfix. The contents 

of B remain the same. Only the C register is altered. 

Exchange the contents of the C and B registers. 

Set A equal to C. The contents of C remain unchanged. A is 

changed as specified by the postfix. 

Adds the A and B registers and puts the result into A. The 

contents of B are undisturbed. 

Same as above except use C instead of B. 

Add I to A as specified by the postfix. 

Subtract B from A. The contents of B are not disturbed. A 

contains the result. 

Subtract 1 from A as specified by the postfix. 

Subtract C from A. The result is in A. C is not disturbed. 

Add C to itself. This shifts all of the bits in the 

specified portion of C left by one bit. This is commonly 

used as a quick multiply-by-2. 

Add the C and A registers. The result ends up in C; the A 

register is left undisturbed. 
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C=C+l 

C=A-C 

C=C-l 

C=-C-l 

C=O-C 

?BrfO 

?CrfO 

?A<C 

?A<B 

?ArfO 

?ArfC 

RSHFA 

RSHFB 

RSHFC 

LSHFA 

Add one to the C register as specified by the postfix. 

Subtract C from A and put the result into the C register. 

Subtract one from the C register. 

Gives the l's or 9's complement of the designated field, 

according to whether the CPU is in hex or decimal mode. In 

hex mode, each bit is inverted; in decimal mode each digit is 

subtracted from 9. For example the l's complement of 1101 is 

0010, and the 9's complement of 43 is 56. 

2's or 10's complement of the specified field, according to 

the CPU mode (hex or decimal). This is the l's or 9's com­

plement plus one. For example, the 2's complement of EC is 

13+1 = 14 hex; the 10's complement of 67 is 32+1= 33 decimal. 

Two's complement is ordinarily used to represent negative 

numbers in computers. In the HP-41, 10's complement is used 

for both the exponent and mantissa fields of numbers. For 

example, an exponent of -54 is represented as 946 999-

054+ 1. The sign digit can actually be regarded as part of 

the number under the 10's complement convention. 

Sets the carry bit if the specified field is not zero. 

Same as above but for the C register. 

Sets the carry bit if A is less than C. All register 

comparisons are done on a hex basis, even if the CPU is in 

decimal mode. 

Sets the carry bit if A is less than B. 

Sets the carry bit if A is not equal to zero. 

Sets the carry if A does not equal C. 

Shifts the A register right by one nybble. The rightmost 

nybble of the section being shifted is lost and a zero is put 

into the leftmost nybble. 

Same as above but for B. 

Same as above but for C. 

Shifts the A register left by one nybble. The leftmost 

nybble of the section being shifted is lost and a zero is put 

into the rightmost nybble. The A register is the only 

register that may be shifted left. 
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POSTFIX 

Instruction ALL S&X M R< @R MS XS P-Q 

A=O OOE 006 01A OOA 002 OlE 016 012 

B=O 02E 026 03A 02A 022 03E 036 032 

c=o 04E 046 05A 04A 042 05E 056 052 

A<>B 06E 066 07A 06A 062 07E 076 072 

B=A 08E 086 09A 08A 082 09E 096 092 

A<>C OAE OA6 OBA OAA OA2 OBE OB6 OB2 

C=B OCE OC6 ODA OCA OC2 ODE OD6 OD2 

C<>B OEE OE6 OFA OEA OE2 OFE OF6 OF2 

A=C 10E 106 llA lOA 102 lIE 116 112 

A=A+B 12E 126 13A 12A 122 13E 136 132 

A=A+C 14E 146 15A 14A 142 15E 156 152 

A=A+l 16E 166 17A 16A 162 17E 176 172 

A=A-B 18E 186 19A 18A 182 19E 196 192 

P A=A-l lAE lA6 IBA lAA lA2 1BE IB6 IB2 

R A=A-C ICE lC6 IDA lCA lC2 IDE ID6 ID2 

E C=C+C lEE lE6 IFA lEA lE2 IFE IF6 IF2 

F C=C+A 20E 206 21A 20A 202 21E 216 212 

I C=C+l 22E 226 23A 22A 222 23E 236 232 

X C=A-C 24E 246 25A 24A 242 25E 256 252 

C=C-1 26E 266 27A 26A 262 27E 276 272 

C=O-C 28E 286 29A 28A 282 29E 296 292 

C=-C-l 2AE 2A6 2BA 2AA 2A2 2BE 2B6 2B2 

?BfO 2CE 2C6 2DA 2CA 2C2 2DE 2D6 2D2 

?CfO 2EE 2E6 2FA 2EA 2E2 2FE 2F6 2F2 

?A<C 30E 306 31A 30A 302 31E 316 312 

?A<B 32E 326 33A 32A 322 33E 336 332 

?AfO 34E 346 35A 34A 342 35E 356 352 

?AfC 36E 366 37A 36A 362 37E 376 372 

RSHFA 38E 386 39A 38A 382 39E 396 392 

RSHFB 3AE 3A6 3BA 3AA 3A2 3BE 3B6 3B2 

RSHFC 3CE 3C6 3DA 3CA 3C2 3DE 3D6 3D2 

LSHFA 3EE 3E6 3FA 3EA 3E2 3FE 3F6 3F2 

TABLE 1 
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All of the above instructions use the same eight postfixes. Table I gives 

the hexcode of these instructions with these eight postfixes. 

There is another class of instructions whose postfixes are numeric. 

Instruction 

READ n 

WRIT n 

RCR n 

SETF n 

CLRF n 

?FSET n 

R= n 

?R= n 

LD@R n 

?FI n 

SELP n 

Description 

Reads the contents of a RAM register into C. RAM is divided 

into 16 register blocks, or chips, that may be individually 

selected (More on how to do this later.) A READ 3 instruction 

would put the contents of the fourth register of that chip 

into the C register (counting starts from zero). Allowed 

values of n range from 1 to 15. There is no READ 0 

instruction. 

Same as for a READ except the contents of C are written to the 

specified RAM register. N ranges from 0 to 15. 

Rotate register C right by n nybbles. N can range from 1 to 

13. 

Set flag n. The 14 flags are numbered from 0 to 13. 

Same as above but will clear the flag. 

Sets the carry bit if the specified flag is set. All 14 flags 

may be tested. 

Sets the active pointer equal to n (0 to 13). 

Sets the carry bit if the active pointer is equal to n (0 to 

13). 

Load the val ue n in to the digi t pointed to by the active 

pointer. The active pointer is decremented by one to make 

loading of consecutive numbers easy. This can only be done in 

the C register. 

Sets the carry flag if the specified peripheral flag is set. 

Peripheral flags can not be set by the User; the peripheral 

must set them. They range from 0 to 13. 

Selects peripheral device n. The CPU is inactive during this 

-28-



time while special instructions are being executed by the 

selected peripheral. 

Now we present a table of the hexcodes for all of these functions. 

? 

R W S C F L S 

R E R R E L S ? D ? E 

E A C T R E R R @ F L 

G. D T R F F T R P 

0 T XXX 028 XXX 388 384 38C 39C 394 010 3AC 024 

I Z 078 068 33C 308 304 30C 31C 314 050 32C 064 

2 Y OB8 OA8 23C 208 204 20C 21C 214 090 22C OA4 

3 X OF8 OE8 03C 008 004 OOC OIC 014 ODO 02C OE4 

4 L 138 128 07C 048 044 04C 05C 054 110 06C 124 

5 M 178 168 OBC 088 084 08C 09C 094 150 OAC 164 

6 N IB8 IA8 17C 148 144 14C 15C 154 190 16C IA4 

7 0 IF8 IE8 2BC 288 284 28C 29C 294 IDO 2AC IE4 

8 P 238 228 13C 108 104 10C IIC 114 210 12C 224 

9 Q 278 268 27C 248 244 24C 25C 254 250 26C 264 

10 f· 2B8 2A8 OFC OC8 OC4 OCC ODC OD4 290 OEC 2A4 

II a 2F8 2E8 IBC 188 184 18C 19C 194 2DO lAC 2E4 

12 b 338 328 37C 348 344 34C 35C 354 310 36C 324 

13 c 378 368 2FC 2C8 2C4 2CC 2DC 2D4 350 2EC 364 

14 d 3B8 3A8 XXX XXX XXX XXX XXX XXX 390 XXX 3A4 

15 e 3F8 3E8 XXX XXX XXX XXX XXX XXX 3DO XXX 3E4 

TABLE 2 

Since we now have the hexcodes for the read/write instructions, we should 

learn how the RAM of the calculator is structured. There are basically 

three different parts: the status registers, main memory, and extended 

memory. The status registers receive the most use in MCODE programs since 
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they contain vital information about the structure of the rest of RAM. We 

will now show two tables in figures 4 and 5. The first will be the memory 

structure of the calculator as a whole, and the second will highlight the 

sta tus registers. 
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Address RAM 

3FF 

300 

2FF 

200 

IFF 

oeo 
OBF 

040 

OOF 

000 

Extended Memory 

#2 

Extended Memory 

#1 

Top of Main Memory 

-----------da ta register 0-------------

top of User programs 

- -- - - - - - -- - -- - - -- 0 END 0 ------ - - - ----------

I/O Buffer area 

Key Assignments 

Top of X-funct. X-Memo 

Bottom of X-Functo X-Mem 

Nonexistent Registers 

(VOID) 

Status Registers 

Figure 4 
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Now a little explanation on Figure 4. The addresses on the left are the 

absolute addresses of the register blocks starting from zero. They are 

given in hex. The solid lines are fixed addresses; the dashed lines are 

moveable address points. We will explain each section of the diagram, 

starting from the top of the diagram and working our way down. 

Name 

Extended 

Memory #2 

Description 

This is the location of the second set of extended memory 

module registers in the addressing scheme of the calculator 

RAM. The addresses of these registers are from 301 to 3EF. 

There is one nonexistent register (300) at the bottom of the 

module. The RAM at addresses 3FO to 3FF are used by some 

peripherals and are NONEXISTENT for storing any data. 

Extended Just like Extended Memory #2, except that the addresses are 

Memory #1 changed to protect the innocent. The new addresses of the 

RAM that exists are from 201 to 2EF. 

Main Memory IFF is the top register in the Main Memory of a 41CV, 41CX, 

or a 41 C with a quad memory module. The bottom of Main 

Memory is at address OCO. The main memory is divided into 

four major sections. They are: data registers, User 

programs, the I/O buffer, and key assignments. If this order 

isn't always followed your calculator will probably lock up. 

The data registers start at address IFF and go down until the 

imaginary line between data and program memory is reached. 

The address of this line is kept in one of the status 

registers (more on this later). The next area is where the 

User programs that you write are placed. Then comes the 

.END.. After this is the free register area, or I/O buffer. 

These are the unused program registers. This area also 

includes the buffers set up by some of HP's ROMs, the most 

famous being the Time module. This is the area where the 

timer alarm information is stored. Right below these 
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Extended 

Functions/ 

Extended 

Memory 

Void 

registers are the User key assignments. They start at 

register oeo and are pushed upward every time a new assign­

ment register is needed. These assignments do not include 

those for programs in User RAM. Two assignments are put in 

each register before a new register is used. 

This is the Extended memory that comes with the Extended 

Functions module. It is addressed from OBF to 040. There 

are no voids between this and main memory, as there are with 

the other extended memory modules. 

A void occupies the RAM address space from 010 to 03F. These 

registers are NONEXISTENT. 

Here is a diagram of the 16 status registers located at absolute addresses 

000 to OOF: 
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Nybble 13 12 II 10 9 8 7 6 5 4 3 2 0 

e Shifted Key Assign. Bit Map PTEMP2 Line # 

d 56 User Flags 

c ;: REG start unused Cold start Reg. 0 addr. .END. 

b Return stack Prgm pointer 

a Return stack 

1-- Unshifted Key Assign. Bit Map Scratch 

Q Scratch 

P Scratch Alpha Characters 22 to 24 

o Alpha Characters 15 to 21 

N Alpha Characters 8 to 14 

M Alpha Characters I to 7 

L Last X Register 

X X Register 

y Y Register 

z Z Register 

T T Register 

Figure 5 
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Here is how the registers listed in Figure 5 are used: 

Register 

e 

d 

c 

b 

Description 

The 36 leftmost bits of this register are used for a shifted key 

assignment bit map. When a shifted key is pressed while in USER 

mode, the calculator looks in this register to see if the key 

being pressed has been assigned. If the corresponding bit has 

been set, then the search for the key assignment starts. If the 

bi t is not set, then the built-in (keyboard) function is 

executed. Nybbles 3 and 4 contain a set of status bits from the 

last partial key sequence (see Appendix C). The right three 

nybbles store the current program line number. 

This is the register where all 56 User flags of the calculator 

are kept. Flag zero is on the left and flag 55 is on the far 

right. 

This register holds a number of interesting goodies. Starting 

from the left, the first three nybbles are used as the absolute 

address of the first register of the Statistics Registers. The 

next two nybbles are not used by the calculator (they are used by 

some custom ROMs). Nybbles 6, 7, and 8 are the cold start 

constant. They are set to 169 hex. If changed from this value, 

the calculator will give MEMORY LOST (no accommodations for 

errant MCODE programming). The next three nybbles hold the 

absolute address for data register zero. The last three nybbles 

are the absolute address of the register in which the .END. 

resides. Don't mix this register up with the CPU C register. 

You will notice that this is a small c and the internal CPU 

register is a capital C. This is an easy way to tell them apart. 

The four rightmost nybbles of this register hold the pointer to 

the address where you happen to be in program memory. The other 

ten nybbles are the first two and one half return addresses on 
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a 

}. 

Q 

P 

M,N,O 

Last X 

X 

y 

the user subroutine return stack. Each return address takes up 

four nybbles. 

This register is the last three and one half returns on the user 

subroutine return stack. 

The leftmost 36 bits of this register hold the unshifted key 

assignment bit map. These are used in the same way as the bits 

for the shifted keys in register e. The rest of the register is 

used by the calculator as a scratch area. 

This register is used by the calculator as a scratch register. 

Scratch means that there is no set purpose for that register 

area. It may have several different uses. 

The eight leftmost nybbles are used as a scratch area. The other 

six nybbles are the last three characters of the Alpha register 

when there are 24 characters. 

These three registers are the first 21 characters of the Alpha 

register. The M register is filled with the first seven 

characters. At the eighth character the N register starts 

filling with characters. It will accumulate characters until we 

get to the fifteenth character. Then the ° register starts to 

accumulate characters. It takes characters until there are 21 of 

them. Finally, the P register takes the last three characters of 

the Alpha register. 

This is the Last X register and is accessed with the Last X 

function. 

This is the familiar X register where all of the numbers we see 

are placed. 

The second register in the RPN stack. 
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Z The third register in the RPN stack. 

T The top (fourth) register in the RPN stack. 

If you don't quite understand this the first time, read it a few times and 

let the subject matter sink in. This knowledge will be very helpful for 

creating simple MCODE routines. You might consult a copy of "HP-41 

Synthetic Programming Made Easy" for more detailed information on the status 

registers. 

Here is a hexcode list of alpha characters displayable in the names of 

MCODE functions. 

CHARACTER TABLE FOR MCODE FUNCTION NAMES 

0 2 3 4 5 6 7 8 9 A B C D E F 

00 @ A B C D E F G H J K L M N 0 

01 P Q R S T U V W X Y Z \ 7' 

02 sp. # % $ & * + ·E I· I 

03 0 2 3 4 5 6 7 8 9 18 < > ? 

04 f· a b c d e T "{ J.. .. Tt ,oJ t 
,.. .. 

" <-

sp. = blank space 

TABLE 3 

Let's look at how the name of a function is coded. The name of the function 

is put in reverse order from what would be read. An example should help. 

Let's do the name for a Y <>Z function. 
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Hexcode Letter 

09A liZ" 

03£ ">" 

03C "<" 

019 ny" 

start of executable code. 

You will notice that the letters are in the reverse order from what we would 

expect. They start with the last letter and work down to the first. Notice 

that the last letter in the function name (Z) has hex 080 added to its 

hex code (09 A = 01 A + 080 in hex). This signals to the processor that this 

is the last letter in the function name. Function names may be up to seven 

characters in length. 

Now we have the knowledge to write a Y <>Z routine. But first, let's set up 

our 4K block of RAM. First set your MLDL address switches to page 8 and 

clear out the entire 4K block of RAM. The software you have probably has a 

function to do this. Consult the instruction manual of your software 

package on how to clear the RAM block. 

We are going to use XROM 1, so the hex code at address 8000 will be 00l. We 

shall leave space in the FAT for the maximum number of functions (64) or 40 

hex, so that our ROM name can start at address 8084 (1J*2+4, where JJ=40 

hex). If you don't want to be able to have 64 functions in your RAM, then 

you just decrease the JJ number to however many functions you want and use 

that hex number instead of 040 in the formula to find the address of the 

first instruction. The name of our ROM shall be SKWID IA. (At least 8 

letters must be used so that the header will show up in the CAT 2 listing of 

a CX. Up to 11 letters may be used in this name). The code for the ROM 

name is shown in the following listing: 
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Address Hexcode Letter or function 

8000 001 

8001 001 

8002 000 

8003 08C 

8004 000 

8005 000 

8084 081 

8085 031 

8086 020 

8087 004 

8088 009 

8089 017 

808A OOB 

808B 013 

808C 3£0 

XROM number in hex 

Number of functions in the FAT. 

Address of the first executable instruction in the ROM 

header. 

Indica tes end of FAT. 

We now jump down to 8084 so that there will be room for 

more entries in the FAT. This entire area is clear. 

"An 

"lit 

"DtI 

"I" 
ItWtf 

"Kit 

liS" 

RTN 

Recall that hex 080 is added to the hex code 

for the letter A. 

This is the return function, so that if this 

function is synthetically entered into a 

program, the function just executes the return 

and acts as a NOP. 

There is one entry in the FAT, as shown by the hex code at address 8001. 

This is the ROM header. When you execute CAT 2 you should see SKWID lA in 

the display; if you don't, make sure that you keyed everything in correctly. 

We shall now write our Y <>Z routine. First we must update the FAT. The 

number at address 8001 must be increased by 1 and the address of the first 

executable instruction must be added to the FAT. Since the name is 4 

letters long and the last instruction was entered at 808C, we will then add 

5 to this address to come up with the address of the first executable 

instruction for the FAT. 808C+5 is 8091 in hex, so the FAT now looks like 

the following: 
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Address Hexcode Function 

8000 001 XROM Number 

8001 002 Number of functions in the FAT. 

8002 000 Address of ROM header. 

8003 08C 

8004 000 Address of Y <>Z function. 

8005 091 

The rest of the FAT is zeros since there are no more functions. Now that 

this is done we can get down to the real business of writing the Y <>Z 

routine. 

"Y<>Z" 

Address Hexcode Mnemonic Description 

808D 

808E 

808F 

8090 

8091 

8092 

8093 

09A 

03E 

03C 

019 

OB8 

10E 

078 

"Zit 

n>" 

"<It 

"yn 

Last letter of function name. Has hex 080 

added to its hexcode. 

The rest of the name is the next 3 

hexcodes. 

READ 2(Y) Put the Y register into C. We may now 

manipulate the contents of the Y register 

or save them for later usage. 

A=C ALL Save Y, which is in C, in A. This will 

allow us to use the C register for another 

purpose. The choice of register A is 

arbitrary; any of the other 56-bit CPU 

registers would do just as well. 

READ I(Z) Put the Z register into C. The old 

contents of C, the Y register, are lost 

from C. This is why we had to save them 
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8094 OA8 

8095 OAE 

8096 068 

8097 3EO 

WRIT 2(Y) 

A<>C ALL 

WRIT I(Z) 

RTN 

elsewhere. 

We shall now write the Z register out to 

the Y register. We can do this since Z is 

in the C register. 

We now bring back the original contents of 

the Y register to C. You can only write 

to RAM registers through the C register. 

Put the contents of the original Y 

register out to the Z register. 

Return. 

In case you're wondering, the letter behind the number in the read and write 

instruction is the letter of the status register that corresponds to that 

number. This is used since these instructions are usually used only on the 

status registers. The letters would not be appropriate for any other part 

of RAM. 

THE CPU FLAGS 

The 14 flags of the CPU should not be confused with the 56 User flags that 

are in the calculator. Flags zero to seven are contained in the ST regis­

ter. This register may be zeroed. It may also be set equal to, or ex­

changed with, nybbles zero and one of the C register. These flags may be 

set, cleared, and tested. Flags eight and nine have no special meaning. 

Although they may be set, cleared, and tested, they are contained in a 

special register (XST) which we cannot access except by instructions that 

manipulate the individual flags. Flags 10, II, 12, and 13 are given a 

special meaning by the CPU. Otherwise they share the same characteristics 

as flags eight and nine. The designations of these flags are given below. 
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Flag If Set 

10 The User code program counter (contained in status register b) points 

to a ROM program. 

11 The RPN stack lift is enabled. 

12 The User program pointer is in a private program. 

13 A User code program is being run. 

Now let's write a program to show the use of some of these flags. The 

program we will write is a "go to .END." program. This program will put 

you at the top of the last program in User RAM. That is the one with the 

.END. as its END. This is useful to avoid having to go through Catalog 1 to 

get to the scratch area at the end of User program memory. 

The strategy of this program is to execute the permanent .END. with no 

pending return in the return stack, so that the program pointer will be set 

to the top of the last program in User RAM This is accomplished by forming 

the address which points to the permanent .END., and placing it along with a 

zeroed pending return in the status register b. CPU flag 13 is then set to 

force the HP-41 to execute the .END. as a program instruction. 

We now write the program to implement this procedure. It shall be called 

GE. Here is the annotated listing; 

Address Hexcode Mnemonic 

8098 

8099 

809A 

809B 

085 

007 

378 

05A 

"Ell 

fiG" 

READ 13(c) 

C=O M 

"GE" 

Description 

Last letter of name. Hex 080 is added to 

the hexcode for E. 

First letter of name. 

Get the address of the .END. register. It 

is in nybbles 0-2 of c. 

Zero the mantissa of register C. This is 

nybbles 3-12. This clears the 1st return 

so that the calculator will return control 
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809C OIC 

809D ODO 

809E OC4 

809F 2C8 

80AO 328 

80Al 3EO 

R= 3 

LD@R 3 

CLRF 10 

SETF 13 

WRIT 12(b) 

RTN 

to the keyboard 

executed. 

when the .END. is 

Set the active pointer to 3 so that the 

required digit may be loaded into nybble 

3. 

Load a 3 into nybble 3 so that the first 

byte of the .END. will be executed. 

Clear flag 10 so that the calculator is 

set to RAM. 

Set flag 13 so the calculator thinks a 

program is running, even if this routine 

is .executed from the keyboard. This will 

allow us to execute the .END. 

Write the address of the .END. to the b 

register. This will put the program 

pointer, which is in the last four nybbles 

of status register b, at the first byte of 

the .END. 

Return. 

Now that the routine is written the FAT must be updated. The first execu­

table instruction, Read 13(c), is at address 809A. So the update of the FAT 

would be: 

Address Hexcode Meaning 

8000 001 XROM number 

8001 003 This was increased to 3. This is the number of functions 

in our sample ROM. 

8002 000 First ROM function. SKWID lA header. 

8003 08C 

8004 000 Address of Y <>Z function. 

8005 091 

8006 000 Address of GE function. 

8007 09A 

-43-



That's what the FAT should now look like. These two functions we've just 

created may be used in programs and from the keyboard just like any of the 

functions that are built into the calculator. However, the MLDL box they 

are in must be plugged into your calculator at the time they are executed or 

you will get NONEXISTENT in the display. 
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JUMPS and JUMPING 

Okay everyone, now it is time for you to put on your bunny suits (in Aus-

tralia 

ping. 

light, 

you may substitute Kangaroo suits), as we are going to introduce jum­

There are two kinds of jumps. For those of you who like to travel 

there is the Jump No Carry (JNC). Or, if you like to bring along the 

kitchen sink, there is the Jump on Carry (JC). The length of the jump may 

be up to 63 (3F in hex) steps forward (+) or 64 (40 in hex) steps backwards 

(-). The Jump on Carry instruction will only jump if the step preceding it 

sets the carry bit. Otherwise, the Jump on Carry instruction will be 

treated as if it were a NOP. The same is true for the Jump No Carry, except 

that the carry bit must not be set for the jump to occur. If the carry bit 

is set, the JNC instruction will be treated as a NOP. Table 4 shows the 

hexcodes for the JC and JNC instructions. 

SKWID practicing his jumps. 
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DIST JNC JC 

ANCE -

01 3FB 3FF 

03 3EB 3EF 

05 3DB 3DF 

3CB 3CF 

3BB 3BF 

3AB 3AF 

39B 39F 

38B 38F 

37B 37F 

36B 36F 

JNC JC 

+ + 

OOB OOF 

OIB OIF 

02B 02F 

03B 03F 

04B 04F 

05B 05F 

06B 06F 

07B 07F 

08B 08F 

09B 09F 

07 

09 

OB 

OD 

OF 

II 

13 

15 

17 

19 

IB 

10 

IF 

21 

23 

25 

27 

29 

2B 

2D 

2F 

31 

33 

35 

37 

39 

3B 

3D 

3F 

35B 35F OAB OAF 

34B 34F OBB OBF 

33B 33F OCB OCF 

32B 32F 

31B 31F 

30B 30F 

ODB ODF 

OEB OEF 

OFB OFF 

2FB 2FF lOB 10F 

2EB 2EF lIB IIF 

2DB 2DF 

2CB 2CF 

2BB 2BF 

2AB 2AF 

29B 29F 

28B 28F 

27B 27F 

26B 26F 

25B 25F 

24B 24F 

23B 23F 

22B 22F 

21B 21F 

20B 20F 

12B 12F 

13B 13F 

14B 14F 

15B 15F 

16B 16F 

17B 17F 

18B 18F 

19B 19F 

lAB IAF 

IBB IBF 

ICB ICF 

lOB 10F 

IEB IEF 

17F IFF 

TABLE 4 
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DIST JNC JC 

ANCE 

02 3F3 3F7 

04 3E3 3E7 

06 3D3 3D7 

3C3 3C7 

3B3 3B7 

3A3 3A7 

393 397 

383 387 

373 377 

363 367 

353 357 

343 347 

333 337 

323 327 

313 317 

303 307 

JNC JC 

+ + 

013 017 

023 027 

033 037 

043 047 

053 057 

063 067 

073 077 

083 087 

093 097 

OA3 OA7 

OB3 OB7 

OC3 OC7 

OD3 OD7 

OE3 OE7 

OF3 OF7 

103 107 

08 

OA 

OC 

OE 

10 

12 

14 

16 

18 

IA 

IC 

IE 

20 

22 

24 

26 

28 

2A 

2C 

2E 

30 

32 

34 

36 

38 

3A 

3C 

3E 

40 

2F3 2F7 113 117 

2E3 2E7 123 127 

2D3 2D7 

2C3 2C7 

2B3 2B7 

2A3 2A7 

293 297 

283 287 

273 277 

263 267 

253 257 

243 247 

233 237 

223 227 

213 217 

203 207 

133 137 

143 147 

153 157 

163 167 

173 177 

183 187 

193 197 

IA3 IA7 

IB3 IB7 

IC3 IC7 

103 107 

IE3 IE7 

IF3 IF7 

XXX XXX 



To use Table 4 the jump distance must be known. This is the 2-digit hex 

number listed under distance. Next, you must decide whether the jump is a 

JNC or a JC. Then look down the appropriate column and use the ones with 

the + for forward jumps and the columns with the· for backward jumps. 

Now we will introduce a few miscellaneous instructions. A table of their 

hex codes and mnemonics is given below. 

ST=O 3C4 XQ>GO 020 N=C 070 

CLRKEY 3C8 POWOFF 060 C=N OBO 

?KEY 3CC SLCT P OAO C<>N OFO 

R=R-l 3D4 SLCT Q OEO LDI S&X 130 

R=R+l 3DC ?P=Q 120 PUSH ADR 170 

G=C 058 ?LOWBAT 160 POP ADR lBO 

C=G 098 A=B=C=O lAO GTO KEY 230 

C<>G OD8 GOTO ADR lEO RAMSLCT 270 

M=C 158 C=KEY 220 WRITE DATA 2FO 

C=M 198 SETHEX 260 READ DATA 038 

C<>M ID8 SETDEC 2AO FETCH S&X 330 

T=ST 258 DSPOFF 2EO C=C OR A 370 

ST=T 298 DSPTOG 320 C=C AND A 3BO 

ST<>T 2D8 ?C RTN 360 PRPH SLCT 3FO 

ST=C 358 ?NC RTN 3AO RTN 3EO 

C=ST 398 C<>ST 3D8 

TABLE 5 

Explanations on how most of these instructions operate follows. 

Instruction Description 

ST=O Clears the ST register (flags 0 through 7). 

CLRKEY Clears the KY register. Usually followed by ?KEY. If a key is 

still down then the keyboard flag will be immediately reset. 
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?KEY 

R=R-I 

R=R+I 

XQ>GO 

POWOFF 

SLCT P 

SLCT Q 

?P=Q 

?LOWBAT 

A=B=C=O 

If no key is being pressed the key flag will stay clear. An 

example will be shown in the next program. 

Sets the carry bit if there is anything in the K Y register; 

i.e., if a key has been pressed. 

Decrements the active pointer by one. 

Increments the active pointer by one. 

Deletes the next return on the return stack and pushes the 

other returns down one notch. Le. the second becomes the 

first return and the third becomes the second return. A 0000 

is put in for the fourth return spot. 

This instruction places the calculator into standby mode or 

deep sleep depending on whether the display is on or off. If 

the display is on then we go into standby mode, in which the 

calculator is on and just sitting there doing nothing. If the 

display is off then the result is the same as if we turn the 

calculator off using the ON button. This instruction must be 

followed by the 000 instruction. The PC register is reset to 

0000 and the CPU stops there waiting for a key to be pressed. 

Selects register P as the active pointer. Does not change the 

value of either of the pointer registers. 

As above but selects the Q register. 

Sets the carry bit if the values of the P and Q registers are 

the same. 

Sets the carry bit if the battery voltage is low. 

Sets the A, B, and C registers equal to zero. 
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GOTO ADR Replaces the program counter (PC) register with nybbles three 

through six of the C register. 

C=KEY 

SETHEX 

SETDEC 

DSPOFF 

DSPTOG 

?C RTN 

?NC RTN 

LDI S&X 

Places the contents of the K Y register into nybbles 3 and 4 of 

the C register. 

Puts the CPU into hexadecimal mode. All calculations are now 

done using the digits 0 to F. 

Puts the CPU into decimal mode. All calculations are done 

using the digits 0 to 9. However, register exchanges may still 

be done with hex numbers while in this mode. 

Turns off the display. 

Toggles the display between on and off. This switches it to 

which ever state it was not in before the instruction was 

executed. 

Return if the carry bit was set by the preceding instruction. 

Return if the carry bit was not set by the preceding 

instruction. 

This instruction places the hexcode of the next ROM word into 

the S&X field of the C register. 

PUSH ADR Places nybbles 3 - 6 of the C register onto the subroutine 

stack. All pending returns are moved up one. The C register 

is not changed. 

POP ADR Takes the 1st return from the subroutine stack and places it at 

digits 3 - 6 of the C register. All of the remaining returns 

are moved down one and 0000 is placed into the fourth return 
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GTO KEY 

position on the stack. 

Places the contents of the KY register into the last two 

nybbles of the program counter (PC) register. 

FETCH S&X Uses the address in nybbles 3 - 6 of the C register to copy the 

ROM word at that location into the S&X field of the C register. 

C=C OR A Performs a logical OR of the A and C registers and puts the 

answer in C. Looks at each bit position in both registers and 

sets the corresponding bit in the C register result if it is 

set in either the original C register or the A register. 

C=C AND A Same as above except that both matching bits in the A and C 

registers must be set in order for that bit to be set in the C 

register. Neither of these functions disturb the A register. 

PRPH SLCT Uses digits I and 0 of register C as the number of the peri­

pheral to select. 

As an example, the program below is a counting program. It will count by 

ones (in MCODE of course) from the moment the program is executed until a 

key on the keyboard is pressed. We shall input the program to show the use 

of some of the functions that are described above, and also to show how the 

JC and JNC instructions work. 

Address Hexcode Mnemonic 

80A2 094 "T" 

80A3 OOE "N" 

"COUNT" 

Description 

Last letter of the name of the rou tine 

COUNT. Hex 080 is added to the hex code 

for T. 

The next four words are the rest of the 

name. 
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80A4 

80A5 

80A6 

80A7 

80A8 

80A9 

80AA 

80AB 

80AC 

80AD 

80AE 

80AF 

80BO 

80Bl 

80B2 

80B3 

80B4 

015 

OOF 

003 

2AO 

04E 

23A 

3CC 

3F3 

130 

009 

35C 

llA 

342 

027 

266 

3FA 

3E3 

"U" 
"0 

"C" 

SETDEC 

C=O ALL 

C=C+l M 

?KEY 

JNC -02 

LDI S&X 

HEX: 009 

R= 12 

A=C M 

?A~O @R 

JC +04 

C=C-l S&X 

LSHFA M 

JNC -04 

Set the CPU so that counting will be in 

decimal mode. 

Zero C so that counting will start at 

zero. 

Add one to the Mantissa of C. This is the 

start of the counting loop. 

If a key is pressed the carry bit will be 

set, and the JNC instruction will act as a 

NOP. If no key is pressed, the carry will 

not be set and we jump back to the 

beginning of the loop. 

The largest exponent a 10 digit number may 

may have is nine. This is loaded into the 

exponent field. The number that we 

counted up to is right justified in the 

mantissa of C. If this number is not 10 

digits long, we will decrement the expo­

nent. 

Set the active pointer to the leftmost 

nybble of the mantissa. This allows us 

to check if this digit is zero. If it is, 

we shift the whole mantissa left one and 

subtract one from the exponent. If it is 

not zero, the carry will be set and we 

jump out (JC) to the rest of the routine. 

The reason we check for leading 

zeros, that is, the zeros in the leftmost 

nybbles of the mantissa, is because the 

number we counted up to is right justified 

in the mantissa of C. We shift this left 

to remove these leading zeros, if 

necessary. If there are leading zeros, we 
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80B5 

80B6 

80B7 

80B8 

80B9 

80BA 

3C8 

3CC 

3F7 

OBA 

OE8 

3EO 

CLRKEY 

?KEY 

JC -02 

A<>C M 

WRIT 3(X) 

RTN 

loop around to check for more leading 

zeros again. 

Loop to check if the key that stopped the 

counting has been released. If it is still 

down, the carry will be set during the 

?KEY step. If it is not down, the ?KEY 

will not set the carry, and the JC 

instruction will not be executed. 

Get back the mantissa and write out the 

number to X. The exponent is in C so we 

only need to retrieve the mantissa from A. 

Return. 

To update the FAT you should increase the number at address 8001 from 003 to 

004. The rest of the FAT update looks like the following: 

Address Hexcode Description 

8001 

8008 

8009 

004 

000 

OA7 

Number of functions in our sample ROM. 

First word of the address of the COUNT function. 

Second word of the FAT Address for COUNT. 

Running this program on one calculator for 60 seconds produced an answer of 

129,686. Compare this with 1,056 for a User code version of the same 

program and the MCODE version is about 120 times as fast. This program 

really shows you what kind of speed advantage can be enjoyed using MCODE. 

We will now write another program, using jumps, that introduces a few more 

instructions to your vocabulary. We shall introduce the· RAMSLCT, WRITE 

DATA, and READ DATA instructions. 

The RAMSLCT instruction uses the S&X field of register C for the number of 

the RAM register to be selected. The number in the S&X field of C is 

interpreted as a hex number, not a decimal number. First, some explanation 

on how the User RAM is set up from the CPU's point of view. RAM is divided 
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into 16 register blocks, or chips, as they are known. The addresses of chip 

xy are xyO to xyF; xy may be from 00 to 3F (0 to 63 in decimal). Each of 

these chips may only be accessed if a register in that chip has been 

selected using the RAMSLCT instruction. The RAMSLCT instruction selects 

both a chip and a register within that chip. If S&X of C is xyz, RAMSLCT 

selects chip xy and register xyz. The 15 read/write instructions introduced 

earlier will only operate on a register within the selected chip. In addi­

tion, the read and write instructions change the RAMSLCT pointer to the 

designated register within the selected chip. Thus if chip xy is selected, 

READ n or WRIT n will address register xyn and change the RAMSLCT pointer to 

register xyn. Here's an example to clarify this mess. 

Hexcode Mnemonic 

130 LDI S&X 

OCO HEX: OCO 

270 RAMSLCT 

Description 

Load hex OCO into C register S&X field. The RAMSLCT 

instruction will then select this register (number 

192). This is register zero of the selected chip 

(the last digit in the hex number is the register 

number in the chip that is selected). 

OF8 READ 3(X) Reads the fourth register in this chip (decimal 195) 

into the C register. The selected RAM register is 

now OC3. This would be the same if we used a write 

instead of a .read. 

Sometimes we don't know exactly where in a RAM chip we will be, and we can't 

have the RAMSLCT pointer being moved on us. How do we read or write to the 

selected RAM register without moving the RAMSLCT pointer? We use the READ 

DAT A and WRITE DATA instructions. These instructions read and write data 

between the C register and RAM without modifying the RAMSLCT pointer. 

The READ DATA instruction is sometimes listed as READ 0 by some disassem­

blers. THIS IS INCORRECT! There is no such thing as a READ 0 instruction. 

This was a mistake made by some of the early pioneers in the MCODE field, 

working without factory documentation that appeared later. 
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Disassemblers typically place a letter after the register number of each 

read/write instruction. These letters correspond to the status registers, 

and only apply if chip 0 is selected. 

Next we will write a combination Alpha-to-Memory and Memory-to-Alpha 

routine. These programs will take the four registers that comprise the 

Alpha register and put them into User data registers. This data can not be 

safely recalled from the data registers using the RCL function. 

These routines are good for storing the contents of Alpha and then retriev­

ing the Alpha register unaltered. The routine will use four data registers 

starting with data register O. The next 3 data registers will also be used. 

Fill the Alpha register with the desired characters. You now can execute 

the AM (Alpha to Memory) function. Next, clear the Alpha register. Then 

execute the MA (Memory to Alpha) function. The old Alpha data reappears. 

That was pretty fast wasn't it? One other note: this routine assumes that 

you have a HP-4ICX, HP-4ICV, or a HP-4IC with a quad memory module. Now 

here's the routine: 

Address Hexcode Mnemonic 

80BB 

80BC 

80BD 

80BE 

80BF 

80CO 

80CI 

081 

OOD 

248 

023 

08D 

001 

244 

itA" 

"M" 

SETF 9 

JNC +04 

"M" 

"A" 

CLRF 9 

"AM & MA" 

Description 

Second letter of the Memory to Alpha name. 

First letter of the name. 

We set this flag to tell which routine we 

are executing. If it is set we are using 

MA. If it is clear we are using AM. 

Jump to READ 3(X) instruction. We do this 

so that the AM name is not executed as 

MeODE instructions. 

Name for Alpha to Memory routine. 

Clearing flag nine means we are in AM 

routine (see address 80BD). 
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80C2 

80C3 

80C4 

80C5 

80C6 

80C7 

80C8 

80C9 

80CA 

80CB 

80CC 

80CD 

80CE 

80CF 

80DO 

80D1 

80D2 

378 

03C 

106 

130 

1FD 

306 

027 

04E 

OE8 

3EO 

39C 

130 

005 

24C 

013 

OA6 

270 

READ 13(c) 

RCR 3 

A=C S&X 

LDI S&X 

HEX: 1FD 

?A<C S&X 

IC +04 

C=O ALL 

WRIT 3(X) 

RTN 

R= 0 

LDI S&X 

HEX: 005 

?FSET 9 

INC +02 

A<>C S&X 

RAMSLCT 

Get the absolute address of data register 

zero. It is in nybbles 3, 4, and 5 of 

status register c. 

Rotate the address of data register zero 

into the S&X field of the C register. 

Sa ve the address of data register zero in 

A. Load the highest absolute address that 

can be used without overflowing main 

memory. 

If A is less than C, then the registers 

wanted will not overflow into extended 

memory. The carry bit will be set and we 

will jump out. Otherwise we will zero the 

C register and write it out to X, so X 

will be zero if we error. We then return 

to the calling program without finishing 

the routine. 

Set active pointer to zero for use as a 

counter. 

Load the absolute address of the start of 

the Alpha register. This is the M 

register. As you remember, the other 

three registers that comprise the Alpha 

register are numbered 6, 7, and 8 (for N, 

0, and P). 

Check which of the two routines is being 

run. Right now the address pointer to the 

the Alpha registers is in C and the data 

register pointer is in A. If we are run­

ning the MA routine then we want to 

reverse this and not jump over the A<>C 

S&X instruction. The register pointer in 

C after this will be the one from which 

the data is transferred. 

Select the RAM register of the pointer in 
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80D3 

80D4 

80D5 

80D6 

80D7 

80D8 

80D9 

80DA 

80DB 

80DC 

80DD 

80DE 

80DF 

226 

OE6 

038 

OAE 

270 

OAE 

2FO 

166 

3DC 

OE6 

054 

360 

39B 

C=C+l S&X 

C<>B S&X 

READ DATA 

A<>C ALL 

RAMSLCT 

A<>C ALL 

WRITE DATA 

A=A+l S&X 

R=R+l 

C<>B S&X 

?R= 4 

?C RTN 

INC -OD 

C. This is the beginning of the loop. 

Increment the register pointer of the RAM 

register from which the data is being 

transf erred. 

Save the RAM register pointer in B. 

Read the selected RAM register into C. 

Exchange the data with the other RAM 

pointer. 

Select the other set of RAM registers. 

Get the data back and put the second RAM 

pointer back into A. 

Write out the data to the selected regis­

ter. 

Increment the second RAM pointer. 

Increment the active pointer. 

Put the first RAM pointer back into C. 

Have we been through the loop 4 times? 

Remember there are 4 registers that make 

up the Alpha register. If so, the carry 

will be set and we return. Otherwise, 

jump back to the beginning of the loop. 

Well, that's the end of the routine. Hope you liked it and learned how the 

RAM registers may be selected and written to. For these routines there are 

2 entries in the FAT. One for the MA routine and one for the AM routine. 

It does not matter that the two routines are combined. The names must still 

have an address in the FAT in order to show up in Catalog 2. The entries 

into the FAT are shown below. The number at address 8001 should be in­

creased by 2 from 004 to 006 since we are adding two routines to the FAT. 

Address Hexcode Description 

8001 006 This is the number of functions in our sample ROM. Notice 

it has been increased by 2 since the last time we modified 

the FAT since we have two new routines. 
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800A 

800B 

800C 

800D 

000 

OBD 

000 

OCI 

First word of the address of the MA routine. 

Second word of the address of the MA routine. 

First word of the address of the AM routine. 

Second word of the address of the AM routine. 

Before we demonstrate the use of any more instructions, we need to introduce 

a new subject area which will make our programming easier and far more 

versatile. 

ABSOLUTE EXECUTEs AND GOTOs 

There are 4 different types of instructions in this group. If the last two 

bits of the first word of an instruction are 01 then they fall into this 

category. These instructions all use two words to form one instruction. 

They differ based on how the last two bits in the second word are set. The 

4 types of instructions are: 

Instruction Mnemonic 

?NC XQ ----

?C XQ ----

?NC GO ----

?C GO ----

How it Works 

This is the No Carry EXecute. This instruction will 

only jump to the specified address if the carry bit 

is not set when the instruction is executed. If 

the carry bit is set the instruction is treated as a 

NOP. 

This is the EXecute on Carry. This instruction is 

the same as the one above except the carry must be 

set for it to jump. 

This is the No Carry GOTO instruction. It will go 

to the specified address only if the carry bit is 

not set when the instruction is executed. If the 

carry is set it is treated as a NOP instruction. 

Here is the GOTO on Carry. This is the opposite of 

the above instruction. If the carry bit is set the 

instruction will go to the specified address. 
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Don't forget, the Carry bit is cleared by any instruction. To use a jump on 

Carry, the Carry bit must be set by the instruction immediately preceding 

the jump instruction. 

The dash after each instruction is the address you want to GOTO/EXECUTE, 

when the instruction is displayed as a mnemonic. 

An EXECUTE is a subroutine call: it loads a return address onto the 

subroutine return stack. A GOTO is merely an exit to a specified address. 

If the first word that an EXECUTE branches to is the NOP 000, then that 

instruction produces an immediate return. This feature of the EXECUTE 

instructions allows calls to possibly nonexistent ROMs. 

Now we will show you how these 4 instructions are put into hexcodes. The way 

the CPU tells that the instruction is either a GOTO or an EXECUTE is by the 

last two bits in the first word. If these are set to 01 the next word is 

interpreted as the second half of a GOTO or EXECUTE instruction. The way it 

differentiates between these is by the last two bits of the second word. A 

table for the interpretation of these two bits is given below. 

Instruction Value of bit 0 

from 2nd word 

?NC XQ 0 0 

?C XQ 0 1 

?NC GO 0 

?C GO 

Note that the 0 bit corresponds to the setting of the Carry flag (1 for 

Carry set, 0 for Carry clear). 

The numbers are the values of the last two bits of the second word of the 

instruction, the two least significant bits. Now we will show you how the 

rest of the instruction is formatted. 
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Instruction Bit number 

Value of the four bits 

?NC XQ 8432 first word 

Value of the four bits 

second word 

9 8 7 6 

3 

o 0 

8 

5 4 3 2 I 0 

2 

001001 

4 

100 0 0 I 0 0 0 0 

You will notice that after taking away the 0 and I bits we are left with the 

digits from the address that we want in the remaining 4 nybbles. The first 

hex digit of the address is in the 4 most significant bits (6 to 9) of the 

second word. The second digit of the address is in the next 4 bits (2 to 5) 

of the second word. Then we jump up to bits 6 to 9 of the first word for 

the third digit of the address. That leaves bits 2 through 5 of the first 

word for the last digit in the address. 

Again, notice that bit I is zero and bit 0 is equal to one in the first 

word. This signals to the CPU that the instruction is a GOTO/EXECUTE in­

struction. Since both bits 0 and I are zero in the second word, the CPU 

knows that it is a ?NC XQ instruction. For a ?C XQ to the same location 

only bit zero of the second word would have to be changed, since the address 

information is coded in the same way for all 4 types of instructions. In 

order to make the input of these instructions into your MLDL box easier, it 

is recommended that you use an assembler to figure out the details of the 

hexcode. This way, all you have to do is input the mnemonic, such as ?C GO 

14E2. The assembler program does the rest. 

These instructions are usually not used to EXECUTE or GOTO another part of a 

routine that you are writing in MCODE. This is because if we put a ?NC XQ 

8432 in our example ROM page and then move the page to another port, the 

code we wish to execute will no longer be at address 8432. However, the 

EXECUTE may still end up going there, sometimes with fatal results. There 

is another kind of EXECUTE and GOTO for use within a 4K page, which will be 

discussed later. 
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The absolute EXECUTEs and GOTOs are used for accessing code in the 

mainframe ROMs. These are the 12K of ROM that contain the code for con-

trolling the User portion of the calculator. They contain many useful 

routines that may be used as subroutines in our programs. 

If you remember, the MA and AM routines that we programmed earlier could 

only save data in registers 0 to 3. Now we shall rewrite them to use some 

entry points in the mainframe ROMs so that you can specify the first data 

register to be used by entering its number in the X register. 

We shall use two entry points, one to convert the number in X to a 

hexadecimal number in the S&X field of C, and another entry point for the 

NONEXISTENT error routine in case the registers that would be used are not 

part of the calculator's RAM memory. We still assume that you have a 4ICX, 

4ICV, or 41C with a quad memory module. So let's rewrite the routine. 

Address 

80BB 

80BC 

80BD 

80BE 

80BF 

80CO 

80CI 

80C2 

80C3 

80C4 

Hexcode Mnemonic 

081 "A" 

OOD 11M" 

248 SETF 9 

023 JNC +04 

08D "M" 

001 "A'l 

244 CLRF 9 

"AM & MA" revised 

Description 

Name for the MA routine. Notice that the 

address of the first executable instruc­

tion for each routine has not changed. 

The first seven instructions are exactly 

the same. 

OF8 READ 3(X) 

38D ?NC XQ 

008 02E3 

[BCD BIN] 

This execute instruction accesses a sub­

routine that takes the number in C and 

converts the number to its hexadecimal 

equivalent in the S&X field of C. For 

example, the conversion for 999 decimal 
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80C5 

80C6 

80C7 

80C8 

80C9 

80CA 

80CB 

80CC 

80CD 

106 

378 

03C 

146 

130 

IFD 

306 

381 

OOA 

A=C S&X 

READ 13 

RCR 3 

A=A+C S&X 

LDI S&X 

HEX: IFD 

?A<C S&X 

?NC GO 

02EO 

[ERRNE] 

would be 3E7. This mainframe entry point 

is called BCDBIN (BCD to binary) in HP's 

annotated V ASM listings for the operating 

system of the 41. 

We save the result in A and get the 

absolute address of data register zero 

from the c register and rotate it into the 

S&X field of C. We then add these two to 

get the absolute address of the first data 

register to which we will write. 

Load the largest absolute address that can 

be used without ,overflowing main memory 

when we store data in the following 3 

registers. 

If A is less than C, the registers used 

by the routine will not be NONEXISTENT, so 

the carry will be set and the ?NC GO 

instruction will be ignored. If A is 

greater than or equal to C, we go to the 

entry point at 02EO, called ERRNE (error -

NONEXISTENT), which is the NONEXIS­

TENT error message routine. 

The instructions from 80CC to 80El have been moved down to 80CE through 

80DF. This routine is much more versatile. In order to use it you just 

place the number of the data register where you want to start saving data 

into X, and place the Alpha characters to be saved into Alpha. Then just 

execute the revised routine, and bingo, it's all done. 

THE NORMAL FUNCTION RETURN 

Before a function is executed, a special return address called the Normal 

Function Return is loaded in to the CPU su brou tine return stack; this is 

address OOFO. The code at this address does the necessary processing that 

is required after any function is executed. If you use all four levels of 
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the subroutine return stack, this address will have been pushed off and you 

will have to end your program by exiting to address OOFO. Otherwise, the 

pending return will be 0000 if you try to finish with a R TN, and you will 

end up at that address of the mainframe. This sends the 41 directly into 

standby mode whether you should be there or not, and fails to do the 

necessary processing tha t follows function execution. When this happens, 

the calculator appears to have crashed, because the display freezes instead 

of reverting to a default display such as the X-register. However, unlike 

an ordinary crash, the calculator will respond to keystrokes, and you can 

then conclude that your routine has not exited through the Normal Function 

Return. You should place an ?NC GO OOFO as the ending instruction of your 

program instead of a return. If the calculator does not respond to 

keystrokes, then you are in an infinite loop and something else is wrong 

with your program. 

Another interesting routine that we have provided for your programming 

pleasure is an Invert Flag routine. This routine takes the number in X to 

be the flag that you wish to invert. Invert means that if the flag was set 

the routine will clear it; and if the flag was clear, the routine will set 

it. The routine may be used with all 56 User flags (0 to 55). 

This routine utilizes three mainframe ROM entry points. These are: BCD BIN 

at address 02E3 (converts a decimal number into hexidecimal in S&X of C), 

the clear flag routine at address 164D, and the set flag routine at address 

164A. This program also introduces some other interesting tricks. It uses 

the C=C+C ALL instruction to shift the C register left by only one bit at a 

time. The other instruction that will be introduced is the C=C AND A 

instruction. Its use will be explained with the routine. 

Address Hexcode Mnemonic 

80E2 

80E3 

086 

009 

ifF" 

"I" 

"IF" 

Description 

Name of routine. 
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80E4 

80E5 

80E6 

80E7 

80E8 

80E9 

80EA 

80EB 

80EC 

80ED 

80EE 

80EF 

80FO 

80FI 

80F2 

80F3 

80F4 

80F5 

80F6 

80F7 

80F8 

80F9 

OF8 

38D 

008 

10E 

130 

037 

OAE 

IC6 

381 

OOB 

04E 

226 

IA6 

OIF 

lEE 

3EB 

OEE 

3B8 

10E 

OCE 

3BO 

2EE 

READ 3(X) 

?NC XQ 

02E3 

[BCDBIN] 

A=C ALL 

LDI S&X 

HEX: 037 

A<>C ALL 

A=A-C S&X 

?C GO 

02EO 

C=O ALL 

C=C+I S&X 

A=A-I S&X 

IC +03 

C=C+C ALL 

INC -03 

C<>B ALL 

READ 14(d) 

A=C ALL 

C=B ALL 

C=C AND A 

?C"O ALL 

Get the flag number from the X register 

and convert it to binary in the S&X field 

of C. This is the hex representation of 

the decimal number that is in X (46 

decimal would be 02E in hex). 

Save the answer in A. Load S&X of C with 

the largest value the number may have (55 

decimal) because there are only flags 0 

to 55 and for numbers over 55 the flag is 

NONEXISTENT. Exchange the two numbers 

and then subtract them. If the carry is 

set, there was an underflow during the 

subtraction and the number in X was 

greater than 55. This causes us to go to 

the NONEXISTENT error routine at 02EO in 

the mainframe ROMs. Otherwise, we 

continue on with the routine. 

We now have 55 minus the original flag 

number in S&X of A. We zero C and then 

add one to it. This sets only the least 

significant bit of register C. Then one 

is subtracted from S&X of A. This serves 

as a counter for the number of times we 

must go through the bit shifting loop. If 

we have an underflow (0 minus 1) then the 

carry will be set and we jump out of the 

loop. The next step shifts the bit in C 

one to the left and the following step 

jumps back to the start of the loop. 

In order to use the set flag and clear 

flag entry points you need a mask with the 

bit set corresponding to the flag that you 

want to manipulate. This mask must be put 

into B. Register A must contain the flag 

register, which is register d of the RAM 
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80FA 135 ?C GO 

80FB 05B 164D 

[XCFj 

80FC 129 ?NC GO 

80FD 05A 164A 

[XSFj 

status registers. These conditions are 

met and then the mask is put back into C. 

We next AND it with the flag register 

which is now in A. If the bit in the flag 

register that corresponds to the bit set 

in the mask is also set, then this bit 

will be set. All other bits in the mask 

are 0 so the answer when these are AND'ed 

will always be O. If the corresponding 

bit is not set in A, then C will be 

zeroed. We then check whether or not C is 

O. If not, the carry will be set and we 

want to go to entry point XCF (execute 

CF), the clear flag routine (I64D). If C 

is 0 the flag was clear and we want to set 

it; so, we go to XSF (execute SF), the set 

flag routine (I 64A). The routine returns 

through one of the mainframe flag rou­

tines. 

Remember to update the FAT. We now have seven functions. The address of 

the first executable instruction in this routine is at 80E4. 

The next routine has a pair of functions HP should have built as standard 

functions into the calculator. These are the FS?S and FC?S functions. 

These functions are analogous to the FS?C and FC?C functions built into the 

calculator. They leave the specified flag set and check to see whether the 

test is true or not. If it is not true, one step is skipped in a running 

program. A YES or NO will appear in the display if they are executed from 

the keyboard. 

We have another one of those handy entry points to help in these functions. 

The only difference is that our routines take the flag number from X, while 

the HP routines prompt for the flag number. One advantage of our routines 

is that they work on all 56 flags. HP's only work for flags 0 to 29. These 
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programs use the FS? and FC? routines in the mainframe ROMs. They test the 

flag and automatically skip a step in a program if the test is false. They 

share a lot of code with the IF routine as well. We will leave the combi­

ning of these two routines as an exercise for you to do. The combination 

takes a total of 60 words. See if you can match this. For now, here are 

the FS?S and FC?S routines. 

Address Hexcode 

80FE 093 

80FF 03F 

8100 013 

8101 006 

8102 244 

8103 033 

8104 093 

8105 03F 

8106 003 

8107 006 

8108 248 

8109 OF8 

810A 38D 

810B 008 

810C 106 

Mnemonic 

"s" 
It?" 

"s" 
"Fit 

CLRF 9 

JNC +06 

"s" 
"?,. 

"e" 
"F" 

SETF 9 

READ 3(X) 

?NC XQ 

02E3 

[BCD BIN] 

A=C S&X 

"FS?S & FC?S" 

Description 

Name for the FS?S routine. 

This flag is used to tell which routine is 

being executed. Clear is the FS?S routine 

and with flag nine set the FC?S routine as 

being executed. This flag is used later 

in the routine to figure out which routine 

was executed. 

Jump over the FC?S name to the READ 3(X) 

instruction. 

Name for the FC?S routine. 

See the description for the CLRF 9 

instruction. 

Get the flag number from the X register. 

Convert the flag number to hex in S&X of 

C. 

Sa ve this in A. Then load the largest 
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810D 

810E 

810F 

8110 

8111 

8112 

8113 

8114 

8115 

8116 

8117 

8118 

8119 

811A 

81IB 

811C 

81lD 

811E 

811F 

8120 

8121 

8122 

8123 

130 

037 

OAE 

lC6 

381 

OOB 

04E 

226 

1A6 

01F 

lEE 

3EB 

10E 

OEE 

3B8 

070 

370 

3A8 

OBO 

10E 

24C 

169 

047 

LDI S&X 

HEX: 037 

A<>C ALL 

A=A-C S&X 

?C GO 

02EO 

[ERRNE] 

C=O ALL 

C=C+l S&X 

A=A-1 S&X 

JC +03 

C=C+C ALL 

JNC -03 

A=C ALL 

C<>B ALL 

READ 14(d) 

N=C 

C=C OR A 

WRIT 14(d) 

C=N 

A=C ALL 

?FSET 9 

?C GO 

115A 

possible flag number (55) into S&X of C. 

Exchange the number of the flag to be 

tested and the highest possible flag num­

ber. These are then subtracted. If the 

carry is set, we will have an underflow 

since the flag number to be tested is 

greater than 55 (037 hex) and we will go 

to the NONEXISTENT routine. Otherwise, 

we have the number of times we wish to go 

through the bit shifting loop in the S&X 

field of A. We now have a counter for the 

number of times we wish to move the bit in 

the mask over from the rightmost position. 

We first zero C and set the rightmost bit 

using the C=C+ 1 instruction. 

This is the mask making loop. We want to 

set the bit that corresponds to the number 

in X. If A is zero (55 minus 55), then an 

underflow will occur and the carry will be 

set and we jump out of the loop. If 

there is no underflow, we shift the bit 

left by one and jump back to the start of 

the loop to try again. 

Save the mask in A. Then put it into B 

for later use by the mainframe routines. 

Get the flag register. We save this in N 

for later use. The flag register and mask 

are ORed so that the mask bit will be set 

in the flag register. This is then writ­

ten out to the flag register. 

Get back the original flag register con­

tents and place them into A for use with 

the mainframe routines. Check to see 

which routine is being executed. These 

routines require that the flag register is 
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8124 

8125 

115 

05A 

[FC?] 

?NC GO 

1645 

[XFS?] 

in A and that the mask is in B upon entry 

to them. If the carry is set we GO TO the 

FC? routine (lISA). Otherwise we GO TO the 

XFS? (eXecute FS?) entry point (1645). 

The programs return through these main­

frame routines. 

Don't forget to update the FAT. These two programs are combined into one. 

Bu t we still need two en tries in the FAT to be able to access both of the 

routines. Here is what the FAT should look like. 

Address Hexcode Description 

8010 001 

8011 002 

8012 001 

8013 008 

Since the third digit from the right of the address of the 

FS?S routine is not zero we have to put the number of this 

digit into the rightmost digit of the first word of the 

two word F AT entry (see page 20). The starting address 

for this routine is 8102. 

The last two digits of this word are the last two digits 

of the address of the FS?S routine. This is no different 

than the entries we did before. 

The purpose of this word is the same as the one at address 

8010 except that the second word of the two word FAT set 

will be different. It will be the starting address of the 

FC?S routine. 

These are the two rightmost digits of the first executable 

instruction in the FC?S routine. 

Remember to update the word at address 8001. This tells the calculator the 

number of entries in the FAT. It is now 009. 

The next routine uses an entry point called GENNUM (generate number) in the 

mainframe ROMs to decode a 3 digit hex number into decimal. This entry 

point is at address 05E8 in the mainframe. This routine takes a binary 

number in the S&X field of the A register and converts it to a decimal 
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number. The answer ends up in the mantissa of the A register. However, 

things are never simple and this routine is no exception. It does not place 

an exponent on the decimal number, and in addition leaves garbage in the 

rest of A. Since the mainframe routine assumes that the display is selec­

ted, a nonexistent chip must be selected in order to keep the mainframe 

routine from writing to RAM registers. The number of digits output by the 

routine can be from 1 to 4. In order to guarantee a fixed number of output 

digits, a number from 1 to 4 is placed in the mantissa sign of A as an input 

to the routine. We shall use the number 4 to provide a 4-digit result 

(possibly with leading zeros). Basically, that is all there is to the 

routine; it is called BIN-BCD (binary to binary coded decimal). 
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Address Hexcode Mnemonic 

8126 

8127 

8128 

8129 

812A 

812B 

812C 

812D 

812E 

812F 

8130 

8131 

8132 

8133 

8134 

8135 

8136 

8137 

8138 

8139 

813A 

084 

003 

002 

02D 

OOE 
009 

002 

OF8 

106 

130 

010 

270 

2DC 

110 

lIE 

3Al 

014 

OAE 
llC 

04A 

270 

"D" 

"C" 

"B" 
"_" 

"N" 
"lit 

"Btl 

READ 3(X) 

A=C S&X 

LDI S&X 

HEX: 010 

RAMSLCT 

R= 13 

LD@R 4 

A=C MS 

?NC XQ 

05E8 

[GENNUM] 

A<>C ALL 

R= 8 

C=O R< 

RAMSLCT 

"BIN-BCD" 

Description 

Last letter of the routine name with hex 

080 added to its hex code. 

The next six words are the rest of the 

routine name. 

Get the number to be decoded from the X 

register. 

Put the number into the A register. 

Load the address of a nonexistent RAM chip 

into the S&X field and RAMSLCT it. 

Set the pointer to the mantissa sign so 

that a 4 may be loaded. This number will 

be put into the A register. The mainframe 

routine uses this number to set the number 

of output digits. If the number output is 

not 4 digits, leading zeros are inserted. 

Execute the mainframe routine to do most 

of the dirty work. The result is in the 

mantissa of A. 

Put the answer into C. Set the pointer to 

8. The least significant digit of the 

mantissa of the answer will be in nybble 

9. Zero register C from digit 8, the 

digit pointed to by the pointer, to digit 

O. 

Select the RAM status registers, chip O. 
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813B 

813C 

813D 

813£ 

813F 

8140 

8141 

8142 

8143 

8144 

8145 

8146 

8147 

8148 

8149 

39C 

ODO 

010 

OA£ 

342 

027 

3FA 

1A6 

3£3 

OA£ 

2FA 

017 

04£ 

0£8 

3£0 

R= 0 

LD@R 3 

LD@R 0 

A<>C ALL 

?AfO @R 

JC +04 

LSHFA M 

A=A-1 S&X 

JNC -04 

A<>C ALL 

?CfO M 

JC +02 

C=O ALL 

WRIT 3(X) 

RTN 

The S&X field of C was zeroed by the 

previous instruction. 

Set the pointer equal to 0 so that we may 

load in the exponent. Remember the main­

frame routine does not provide this. The 

largest exponent possible is 3. Four 

decimal digits are i.jkl * 103. The man­

tissa sign is then zeroed because garbage 

is left there by the routine. Remember 

that LD@R decrements the pointer by one. 

After loading the value 3 in nybble zero, 

we wrapped back around to nybble 13, the 

mantissa sign digit. 

Put everything back into A. Check to see 

if there are any leading zeros in the 

mantissa of A. If there are no leading 

zeros, jump out (the carry will be set). 

Otherwise, we can shift out any leading 

zeros in the mantissa (nybble 12 will be 

zero) using the LSHFA M instruction. We 

decrement the exponent by one since there 

is one less digit in the mantissa than 

before. We loop around again to check 

for more leading zeros in the mantissa. 

Put the final answer into the C register. 

Check to see if the mantissa is zero. If 

it is the exponent will be FFF. If not 

zero, the carry will be set and we jump 

to the WRIT 3(X) instruction and return. 

If the mantissa is zero, then zero the 

whole C register, write it out to X, and 

return. 

Don't forget to update the FAT. We now have ten functions. The hexcode at 

address 8001 would be OOA (ten in hex), not 010 (which is sixteen). 
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The way you may use the above routine, in a program or from the keyboard, is 

to put the number you want to decode into X. The last three nybbles of 

whatever is in X will be decoded and placed into X. For example, if the 

number in X is 987234.92 the BIN-BCD routine will give an answer of 5. This 

is because the exponent of this number is 5 and the exponent sign is zero. 

The S&X field of X upon entry would be 005 in hex. 

However, the real use of this routine is as a subroutine to decode binary 

numbers that we get as results in MCODE routines that we write. Our next 

routine is a Free Register Finder routine. It finds the number of empty 

registers below the permanent .END.. This result is the same number you see 

after you key GTO .. in program mode. The routine is very short (only 3 

words long) and shows the power of MCODE. In particular, it illustrates how 

useful the BIN-BCD routine can be. 

Address Hexcode Mnemonic 

814A OBF "?" 
814B 006 "Ft! 

814C 285 ?NC XQ 

8l4D 014 05Al 

[MEMLFT] 

814E 303 JNC -20 

"F?" 

Description 

Name 

This routine in the mainframe calculates 

the number of free registers left (MEMory 

LeFT). No inputs are needed. The answer 

is given in binary form in the S&X field 

of C. 

This jump goes back to the A=C S&X in­

struction at address 812E of the BIN-BCD 

routine. This routine will decode the 

contents of the S&X field of C and put the 

answer into the X register. 
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Many of the outputs from routines in the mainframe ROMs are in binary 

format. We need this routine, or one like it, to decode the binary form to 

decimal so we can output it to the X register for use in our programs. 

Don't forget to update the FAT. We now have 11 functions in our sample ROM. 

Now, what about taking decimal numbers from the X register and converting 

them to binary? This can be done in 2 ways. The easiest way, as we have 

seen is to execute the routine in the mainframe ROMs at address 02E3. But 

what if we want to code a number greater than 999 into the S&X field of X? 

After all, 3 hex digits may be a number as large as 4,095 (FFF). To do so 

we must write our own routine to decode numbers greater than 999. This 

routine will decode numbers from 0 to 9,999. For numbers greater than 4,095 

the answer will be the remainder of the original number divided by 4,096. 

This conversion routine is called BCD-BIN. 

Address Hexcode Mnemonic 

814F 08E "N" 

8150 009 "I" 
8151 002 "B" 
8152 02D ,,_It 

8153 004 "0" 

8154 003 "c" 
8155 002 "B" 

8156 OF8 READ 3(X) 

8157 10E A=C ALL 

8158 IBE A=A-l MS 

8159 IBE A=A-l MS 

815A 389 ?C GO 

815B 053 14E2 

"BCD-BIN" 

Description 

Last letter of the name. Notice that hex 

080 is added to the hexcode for "N". 

Now come the next six letters. 

Get the decimal number to be converted and 

put it into C. 

Save the integer number in A for later 

use. Check for alpha data. If the number 

is alpha data, then the mantissa sign will 

be 1. By subtracting twice, we first 

hit zero then create an underflow (sub-
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815C 

815D 

815E 

815F 

8160 

8161 

8162 

8163 

8164 

8165 

8166 

8167 

8168 

8169 

816A 

816B 

816C 

130 

004 

306 

289 

002 

266 

OAE 

366 

023 

38D 

008 

07B 

27C 

llA 

05A 

3El 

008 

[ERRAD] 

LDI S&X 

HEX: 004 

?A<C S&X 

?NC GO 

00A2 

[ERROF] 

C=C-l S&X 

A<>C ALL 

?A",C S&X 

JNC +04 

?NC XQ 

02E3 

[BCDBIN] 

JNC +OF 

RCR 9 

A=C M 

C=O M 

?NC XQ 

02F8 

[GOTINT] 

tract 1 from 0) which will set the carry 

if the mantissa sign is l. The GOTO is to 

the ALPHA DATA error message (ERRAD = 

ERRor - Alpha Data) only if the carry is 

set. 

Load the exponent that the number cannot 

be greater than or equal to (exponent for 

10,000). Then check to see if the 

exponent of the decimal number is less 

than this number. If it is less, the 

carry will be set and the next instruction 

will not be executed. However, if the 

carry is not set, the instruction will be 

executed. This instruction is a GOTO to 

the OUT OF RANGE error message (ERROF = 

ERRor - OverFlow). 

Now we check if the number is less than 

1,000 (the exponent is 2 or less). If the 

exponents are not equal (3) then the 

number is less than 1,000 (the exponent 

will be 0, I, or 2). The carry will be 

set and the JNC is treated as a NOP. 

If the carry is set we end up here. We 

execute the BCDBIN routine in the 

mainframe and then jump to the spot in our 

routine that clears the rest of C and 

writes it to X. 

If we got this far we know that the number 

is between 1,000 and 9,999; i.e., it is 4 

digits long. The mainframe subroutine 

will only take up to 3 digits. So we peel 

off the 1000's digit and save it in the 

last nybble of the mantissa of A by ro­

ating it to nybble three of C and then 

saving it in A. We must then zero the 
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816D 106 

816E 01C 

816F 130 

8170 3E8 

8171 1A2 

8172 146 

8173 1A2 

8174 3F3 

8175 OA6 

8176 05E 

8177 05A 

8178 OE8 

8179 3EO 

A=C S&X 

R= 3 

LDI S&X 

HEX: 3E8 

A=A-1 @R 

A=A+C S&X 

A=A-1 @R 

JNC -02 

A<>C S&X 

C=O MS 

C=O M 

WRIT 3(X) 

RTN 

mantissa of C because the subroutine at 

02F8 requires this. The last three digits 

of the original decimal number are now in 

the S&X field of C. The GOTINT subroutine 

then converts them to binary in the S&X 

field of C. 

Save the binary equivalent of the last 3 

digits in A. The number of 1000's to add 

to this number is in nybb1e 3 of A. We 

load 1,000 into the S&X of C. We subtract 

1 from the 1000's counter and add 1,000 to 

the answer in A. If there are no more 

1,000's to add, the carry will be set 

(there will be an underflow) and we will 

not jump back to add more 1,000's. If the 

carry is not set we will loop around to 

add more 1000's until it does get set. We 

then place the answer in the S&X of C so 

that it may be written out to X. The 

mantissa and its sign are cleared to get 

rid of extraneous digits. We then write 

the answer out to X so we it may be used 

in some way by one of our User code pro­

grams. 

Make sure that you update the FAT. There are now 12 functions. The last 

en try in the FAT should look like this: 

Address Hexcode Description 

8018 001 

8019 056 

The first word of the FAT entry for BCD-BIN. The number 

is one because we have now reached the portion of RAM 

where there is not a zero in the third digit from the 

right in the starting address of the routine. 

This is the 2 least significant digits of the address. 
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Now let us go on to another subject: how to call a routine as a subroutine 

from another program in our example ROM. 

RELATIVE EXECUTEs and GOTOs 

In order to call any program as a subroutine from another MCODE routine in 

our example ROM, you must use a 3-word execute instruction. These 

instructions are known as relative executes. This is because it does not 

matter in which page the MCODE routine resides; the execute statement will 

always jump the same number of steps ahead or back and then return. The 

absolute executes that we described before always jumped to the same place 

regardless of the location of these instructions. These rela ti ve execute's 

and goto's are usually referred to as Port Dependent Execute's and Goto's. 

A drawback to this type of execute is that the C register is used by the 

routine that computes the branching address. Now for an explanation on how 

these three words are coded. The CPU of the 41 does not contain any three 

word instructions, so we shall describe how we come up with the mnemonics 

for them. 

First, a discussion of how ROMs are divided up by these instructions. The 

4K ROM page is divided into four blocks of 1024 words each. These 1024 word 

blocks are known as quads. The beginning addresses of each of the quads are 

at PO 00, P400, P800, and PCOO (in our example P = 8). The quads are numbered 

from zero to three. The first two words of the instruction is a subroutine 

call to a routine in the mainframe. There are 5 such routines. The first 

four handle subroutine calls to a specific quad. They take the third word of 

the execute instruction and add it to the number that is the start of their 

quad. The fifth entry point is used only when the subroutine being executed 

is in the same quad as the execute instruction. All five of these executes 

may only be of the No Carry execute variety. The hexcodes of these five 

entry points are given below. 

In order for these relative execute's and goto's to properly function, the 

CPU must be in HEX mode, or you WILL end up at the wrong spot. 
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Hexcodes Description 

349 This is the routine you call when you want to use an execute 

08C statement to access code in quad O. This is at addresses 8000 to 

83FF. The third word would be the 3 least significant digits of 

the address being called. For example, on a call to 8291, the 

third word would be 29l. 

36D This is the code for the first two words of a call to quad 1, 

08C which is at addresses 8400 to 87FF. The third word is the number 

of words after address 8400 at which you want to start executing 

the code. An example: for an execute to 8567 the third word would 

be 167 (167 + 8400 = 8567 in hex). 

391 These are the hexcodes for the first two words of an execute 

08C statement that calls a subroutine in quad 2. These are at 

addresses 8800 to 8BFF. The third word is added to 8800 to get 

the starting address of the subroutine that is being called. 

Therefore, to call a subroutine at address 8BFE, hex 3FE would be 

the third word of the instruction (3FE + 8800 = 8BFE). 

3B5 These are the hexcodes for subroutine calls to quad 3, at 

08C addresses 8COO to 8FFF. The third word is added to 8COO and the 

value for the starting address of the subroutine is obtained. For 

example, to execute code at 8E34, the third word would be 234 

(234 + 8COO = 8E34). 

These instructions are subroutine calls themselves, and each uses an 

additional subroutine call of its own. They can therefore only be called 

when there are no more than two pending returns in the subroutine return 

stack. Otherwise the third and fourth subroutine returns, if any, will be 

lost. Don't confuse this with the User subroutine stack of the calculator. 

This is the CPU subroutine return stack, and may only have four pending 

returns, not six like the User subroutine stack. 

The fifth set of hexcodes has the advantage of not using the additonal 

subroutine level required for each of the above types. This means that you 
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can have three pending returns on the subroutine stack. However, its use is 

restricted to branches within the same quad. Also, it destroys the C 

register just like the other four types of calls. Here are the hexcodes and 

a description of them. 

Hexcodes Description 

379 This pair of words is always the same regardless of which quad is 

03C involved. The third word is the difference between the address of 

the first word in the quad you are in, and the address of the 

subroutine you are calling. For example, if you are in quad 2 

(8800-8BFF), and the subroutine is at 8964 then the third word 

would be 164 (8964 - 8800 = 164). A call to a subroutine outside 

of quad 2 if the subroutine call originates from inside quad 2 

would have to use one of the instruction hexcodes described above. 

All addresses have been given with the most significant digit being 8 since 

our sample ROM is in page 8. However, this digit may be changed to any 

other page without affecting any of the values of the hexcodes. 

If you want a relative GOTO instruction, then subtract hex 008 from the 

first word of the three word instruction. This only applies to the first 

four hexcode sets. For the last one given subtract hex 010 from the first 

of the three words. The interpretation of the third word is the same as for 

the execute instructions. These relative GO TO's use only one subroutine 

level, so each allows three pending returns on the stack. Again, to make 

things easy on yourself, it is highly recommended that you get an assembler. 

There are actually no three word instructions in the instruction set of the 

41 CPU. The relative execute's and go to's are disassembled correctly by 

most dissassemblers since whomever wrote the dissassembler knew that the 

five entry points mentioned above would use the ROM word directly after them 

to form a relative jump instruction. This type of dissassembly is called a 

MACRO. The actual instruction dissassembled is a combination of two or more 

instructions. The HP mainframe ROM listings use C=A even though there is no 
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such instruction in the CPU instruction set. The actual dissassembly is 

A<>C, A=C. 

Now we shall use one of these execute instructions to modify the BCD-BIN 

routine that we just wrote so that it may be used as a subroutine by other 

programs in our sample ROM. It may be called as a subroutine right now as 

is, except that it overwrites the decimal number in the X register with the 

hex equivalent of the original number. Since it would be nice to leave the 

X register alone as much as possible, we will modify the routine so this 

won't happen. 

"BCD-BIN" revised 

Address Hexcode Mnemonic Description 

814F 08E 

8150 009 

8151 002 

8152 02D 

8153 004 

8154 003 

8155 002 

8156 379 

8157 03C 

8158 15B 

8159 OE8 

815A 3EO 

815B OF8 

815C 10E 

815D IBE 

815E IBE 

815F 389 

8160 053 

"N" 

"I" 

"Bit 
It .. 1t 

"D" 

"e" 
"B" 

GOSUB 

815B 

WRIT 3(X) 

RTN 

READ 3(X) 

A=C ALL 

A=A-I MS 

A=A-l MS 

?C GO 

14E2 

Name of the routine. 

This is the call to the entry point in our 

ROM which is at 815B. This is just the 

BCD-BIN routine without the WRIT 3(X) 

instruction as the second to last step. 

Instead, this step is placed after the 

subroutine call and will be executed when 

the routine returns. 

This is the entry point to be used by 

other programs in our ROM. The rest of 

the routine is the same from this point 

on until we get to the second to last 

step of the original routine. The WRIT 

3(X) instruction should be removed and the 
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[ERRAD] RTN instruction should be moved up 1 word 

So essentially the rest of the routine is 

just moved down by 5 words. 

SKWID relaxing after a hard day of MeODE 
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TIPS, SHORT ROUTINES, and OTHER LITTLE GOODIES 

This section will cover some exciting ways of programming useful functions 

that HP did not provide in the calculator. We will discuss how to shift 

bits right in the C register (you already learned how to shift bits left in 

the IF routine) and some other interesting tidbits. 

In our first tip we will shift the C register right by one bit. In order to 

do this the following sequence of instructions are used. 

Mnemonic 

C=C+C ALL 

C=C+C ALL 

C=C+C ALL 

RSHFC ALL 

Description 

We shift the C register left by three bits (use C=C+C 

three times) and then shift right by one nybble. The 

end result is that the bites) are shifted right one. 

However, this does have its drawbacks. If there is a 

bit that is within the last three bits of the left 

side of register C when we start this sequence, then 

that bit will be lost (because it will cause an 

overflow when you do C=C+C with the leftmost bit 

set). So this routine does not work for the three 

leftmost bits of C. 

The above sequence can be done on all or part of the C register. The same 

rules apply. The three leftmost bits of the field should be zero. 

Some of you computer scientists will appreciate this next short routine. It 

is an XOR routine. HP gave us functions for AND and OR, so why not make one 

for EXCLUSIVE OR? The XOR function is a bit flipping function. We 

synthesized this in the IF flag routine by using calls to the mainframe 

ROMs. However, what if you want to do an EXCLUSIVE OR on the whole 56 bits 

of two registers? You should use the eight word routine below. This routine 

uses the A, B, and C registers. There are two inputs: the number to be 

changed, and the mask against which it will be compared. At the start the 

mask is in C and the number to be changed is in A. The way this routine 
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works can best be illustrated by an example. For this example let's use 

just eight bits. The number to be changed will be 01001110 and the mask 

will be 0011101l. The only bits that get inverted from their original 

position will be the ones that correspond to a bit in the mask that is equal 

to one. 

bit number 7 6 5 4 3 2 I 0 

Mask 00111011 

Number o I 001 I I 0 

Since bits 0, I, 3, 4, and 5 are one in the mask, these bits will be 

inverted in the original number; all of the other bits in the original 

number are left unchanged. Therefore, the final answer is 011101Ol. We 

assume the CPU is set to hex mode upon entry to this routine. The routine 

is given below. 

Hexcode 

OEE 

OCE 

370 

OEE 

3BO 

2AE 

Mnemonic 

C<>B ALL 

C=B ALL 

C=C OR A 

C<>B ALL 

C=C AND A 

C=-C-l ALL 

Description 

Save the mask in B for later use, and get it 

back into C. B was picked because register A 

will be used for something else and we need to 

have a register that can interact with A. B 

meets all of these requirments. 

Set all of the bits in the C 

set in either the A or C 

exchange this result with 

value. 

register which are 

registers. Then 

the original mask 

Set all of the corresponding bits in register C 

that are set in C and A. This tells us which 

bits must be cleared. The next instruction in­

verts every bit in the whole register. We now 

have set all of the bits that were not set in 

both registers. 
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06£ 

3BO 
A<>B ALL 

C=C AND A 

Get back the answer from the OR instruction. 

Since we have zeroed all of the bits that were 

set in the previous AND instruction, these bits 

will now be cleared. The bits set by the OR 

instruction and C=-C-I will now be set. 

Well, that's the routine. There is no entry in the FAT for this routine. 

It is just a sample of how short instruction sequences may be used to form 

instructions that are not in the CPU chip. The answer is left in the C 

register. Maybe you can find a place to put it in one of your programs. 

You may wonder how it's possible to save four nybbles away someplace without 

altering the contents of the C register or any of the other 56-bit regis­

ters. There are many places that you could use for storage, but the follow­

ing procedure is used in several mainframe routines. If you are not using 

the G register or any of the flags in ST, you can rotate the desired nybbles 

until they are right justified in the C register (in positions 0 thorugh 3). 

Then you can put 2 nybbles in ST and the other 2 nybbles in G. When you 

need the data again, the reverse of this procedure brings the 4 nybbles back 

into C. Here are the instructions you need: 

Hexcode Mnemonic 

358 
2lC 

058 

398 

RCR n 

ST=C 

R= 2 

G=C 

RCR m 

C=ST 

Description 

Rotate C right by n nybbles so that the nybbles you 

want to store are in positions 0 through 3. The 

value of n depends on which nybbles are to be saved. 

Copy nybbles 0 and I into the ST register. 

Set the pointer to 2. 

Copy nybbles 2 and 3 into G. 

Rotate C right by m = 14-n nybbles so that the four 

nybbles you stored away are put back in their 

original positions. 

This represents the rest of the routine before you 

bring back the four saved nybbles. This section 

should not use G or ST. To recover the data, use: 

Copy ST into nybbles 0 and I of C. 
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21C 

098 

R= 2 

C=G 

Set the pointer to 2. 

Copy G into nybbles 2 and 3 of C. 

Our next routine will be very helpful to some of you. It is a routine to 

check if a RAM register exists. If you remember, when we wrote our AM and 

MA routines, we assumed that you had a 41CV, 41CX, or 41C with a Quad memory 

module. With the following routine you can find out whether or not a RAM 

register actually exists without putting any constraints on the user of the 

program. The routine assumes that the register to be checked has been 

selected using the RAMSLCT instruction and that the CPU is in hex mode. 

Hexcode Mnemonic 

038 

2A6 

10E 

2FO 

038 

36E 

381 

OOB 

READ DATA 

C=-C-l S&X 

A=C ALL 

WRIT DATA 

READ DATA 

?A",C ALL 

?C GO 

02EO 

[ERRNE] 

Description 

Reads the contents of the selected RAM register 

into C; remember the register to be tested must be 

selected before starting this routine. 

This instruction inverts all of the bits in S&X of 

C. All of the 1 bits, in the sign and exponent, 

become a's, and all of the a bi ts become 1 'So 

This result is then stored there because we will 

later test the A and C registers to see if they 

are not equal. These are the only two CPU regis­

ters that may be used if a not equal test is 

wanted between registers. 

We write the results of the bit inversion out to 

the RAM register we are checking for existence. 

We immediately read back this same register. If 

the register exists then the data will not change; 

the test will not be true, and we skip the GO TO 

to the NONEXISTENT error routine. If the 

register does not exist then the data we stored 

there will not be the same since there is no RAM 

in which to save it. Therefore the two values 

will test unequal so we exit to the NONEXISTENT 
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2A6 

2FO 
3EO 

C=-C-l S&X 

WRIT DATA 

RTN 

error message. 

If we get this far, then A and C are equal so we 

invert C back to what was originally read from the 

RAM register. If you do C=-C-l twice, each logic 

1 bit will have been inverted to zero and then 

back to 1, so, we should get the same answer 

returned. The same applies for the 0 bits. We 

then write the result out to the RAM register and 

then return. The contents of the register that is 

selected are in C at the end of this routine. The 

RAM select pointer is not changed. 

Ten bonus points for anyone who figures out how to integrate this routine 

into the AM/MA routine combination. This way we don't have to put any 

constraints on the user of the routine. 

Now we will place this routine into our sample ROM and write a program to 

use it. The routine we shall write will be a Non-normalized Recall routine. 

By using it we shall be able to recall the contents of any RAM register in 

the calculator. The number input into the X register before this function 

is executed is the absolute address of the register you wish to recall. If 

192 is in X, then the bottom register of Main Memory will be recalled (see 

page 32 for an explanation on this subject). If a register is recalled that 

does not exist, then the NONEXISTENT error message will be displayed. Non­

normalization means recalling the contents of a register without modifying 

it. When you use the RCL function on a register which does not contain 

ALPHA DATA and there are hex digits greater than 9 in the register, then 

those digits are converted to BCD values. 

Address Hexcode Mnemonic 

817F 

8180 

092 

OOE 

"R" 

ttN" 

"NR" 

Description 

Second letter of the routine name. 

First letter of the name. 
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8181 

8182 

8183 

8184 

8185 

8186 

8187 

8188 

8189 

818A 

818B 

818C 

818D 

818E 

818F 

8190 

8191 

8192 

8193 

8194 

8195 

8196 

8197 

8198 

8199 

OF8 

128 

379 

03C 

15B 

270 

379 

03C 

190 

10E 

04E 

270 

OAE 

OE8 

3EO 

038 

2A6 

10E 

2FO 

038 

36E 

381 

OOB 

2A6 

2FO 

READ 3(X) 

WRIT 4(L) 

GOSUB 

815B 

RAMSLCT 

GOSUB 

8190 

A=C ALL 

C=O ALL 

RAMSLCT 

A<>C ALL 

WRIT 3(X) 

RTN 

READ DATA 

C=-C-1 S&X 

A=C ALL 

WRITE DATA 

READ DATA 

?AfC ALL 

?C GO 

02EO 

[ERRNE] 

C=-C-1 S&X 

WRITE DATA 

Get the contents of the X register, then 

save X in the LASTX register. 

This subroutine call is to our entry point 

to convert decimal numbers to hexadecimal 

numbers (see page 78). We need this in 

hex so that we may use RAMSLCT to 

select the desired RAM register. 

This is a call to another entry point in 

our sample ROM. It is at 8190. It is 

the routine we wrote to tell whether or 

not a RAM register exists. Upon retur­

ning from the subroutine, the contents of 

the desired register are in C. We need to 

select chip 0 so we may write the answer 

out to the X register. Remember, the 

tested register must be selected upon 

entry to our subroutine and our subroutine 

does not change this. We save C in A and 

then zero C so the RAMSLCT instruction 

will select chip O. 

We now retrieve the contents of the 

recalled register from A. This value is 

then written out to the X register. Then 

we return. 

This is the start of our routine to find 

out if the register we want to access 

exists. 8190 is the address which you 

call if you want to execute this as a 

subroutine. For an explanation of how this 

routine works see page 83. 
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819A 3EO RTN 

Don't forget to update the FAT. We now have 13 functions in the FAT. 

Therefore, OOD would be placed at address 8001 of our ROM. We would not put 

013. The number of functions is in hex and OOD is 13 in hex. 

What's this you are saying? You think the NR routine is a complete waste 

and want to get rid of it but you say you like the routine to tell if RAM 

registers exist. Well, not everyone is perfect. You can't just delete the 

routine, you must also delete the FAT entry for this routine. We'll show 

you how to do this now. First, let's see how the whole FAT currently looks. 

Address Hexcode Description 

8000 

8001 

8002 

8003 

8004 

8005 

8006 

8007 

8008 

8009 

800A 

800B 

800C 

800D 

001 

OOD 

000 

08C 

000 

091 

000 

09A 

000 

OA7 

000 

OBD 

000 

OCI 

XROM number of our ROM. 

This is the number of entries in the FAT, in hex. 

These two words are the address of the first executable 

instruction of the ROM header SK WID 1 A. All of the 

rest of the FAT will be grouped into sets of two words 

which are the three rightmost digits of the first executa­

ble instruction of each function (see page 20). 

Address of first executable instruction of Y <>z. 

Address of first executable instruction of GE. 

Address of first executable instruction of COUNT. 

Address of first executable instruction of MA. 

Address of first executable instruction of AM. 
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SOOE 000 Address of first executable instruction of IF. 

SOOF OE4 

SOlO 001 Address of first executable instruction of FS?S. 

SOIl 002 

SOl2 001 Address of first executable instruction of FC?S. 

S013 008 

SOl4 001 Address of first executable instruction of BIN-BCD. 

SOl5 02D 

SOl6 001 Address of first executable instruction of F? 

SOl7 04C 

SOlS 001 Address of first executable instruction of BCD-BIN. 

SOl9 056 

SOIA 001 Address of first executable instruction of NR. 

SOIB OSI 

Well, there's what the FAT should look like. The rest of the FAT words are 

000 instructions since we haven't put anything in them. If it doesn't look 

like this something went wrong somewhere. The problem is probably that you 

forgot to add one of the entries into the FAT. 

If you want to delete the last entry in the FAT, you must decrease the 

number at address SOOI by one. Then you may put a 000 hexcode at addresses 

SOIA and SOlD since that is where the last FAT entry is in our ROM. Now you 

may delete the NR routine from your ROM starting with address 817F, the 

address of the last letter of the NR name, until SI9A, the last instruction 

in routine. Or you could leave the routine in place and just delete the FAT 

entry. The calculator will think that the routine has been deleted and you 

will still have the entry point at Sl90 for checking if RAM registers exist. 
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Now suppose you want to delete the IF routine from the FAT. That is a 

Ii ttle harder. F or starters, you can't just delete the two words that po in t 

to the first executable instruction of IF. This would leave a void of two 

000 words in the middle of the FAT. These would tell the calculator that 

the first executable instruction of some routine is at 8000. Also, when you 

decrease the number at address 8001 by one you are making the last routine 

in the FAT (NR), inaccessible. 

The best way to illustrate this is for you to try it out. Set the two words 

at addresses 800E and 800F to 000. Now do a CATALOG 2. The calculator 

starts through the catalog correctly, until the place where the IF function 

was. At this point the calculator should lock up with "@" in all twelve 

positions of the display. The calculator is looking for a routine that 

begins at 8000. It is trying to read the function name from the last few 

words of page 7, which immediately precedes address 8000. 

To get out of this lockup condition pull the batteries out of the calculator 

and put them back in after about 5 seconds. You may be able to use a simpler 

method as well. HP-41's manufactured since the introduction of the HP-4lCV 

incorporate two hardware reset sequences that permit recovery from most 

crashes. To use the first reset method press and hold the ENTER key while 

turning the calculator off and on. Then release the ENTER key. The second 

method is to hold the backarrow key down while turning the calculator off 

and on. Then release the backarrow key. If you have an earlier HP-41, the 

only way to recover from a microcode "infinite loop" involves removal of the 

batteries and possibly additional steps. See page 214 of "HP-4l Extended 

Functions Made Easy" for more crash recovery tips applicable to older 

machines. 

Now decrease the number at address 8001. Do a CATALOG 2 and the same lockup 

will occur. What you have to do to fix this situation is to fill the gap 

left in the FAT by the absence of the IF function. One way to fill the gap 

is to move all of the FAT entries after the IF function up by two words. 

Another way is to just MOVE the FAT entry for NR to the position that was 
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occupied by IF. This second approach will naturally change the order of 

functions displayed in Catalog 2. 

After you have removed the gap in the FAT, decrease the number at address 

8001 by one. The FAT should now look like the lisiting that follows. We 

will just put the routine name next to the first of the two words that tell 

where the first executable instruction is located. 

Address Hexcode Description 

8000 001 XROM number. 

8001 DOC Number of functions in the FAT. This is decreased by one 

from what it was before. 

8002 000 SKWID 1A 

8003 08C 

8004 000 Y<>Z 

8005 091 

8006 000 GE 

8007 09A 

8008 000 COUNT 

8009 OA7 

800A 000 MA 

800B OBD 

800C 000 AM 

800D OC1 

800E 001 FS?S. This is where the address for the IF function was. 

800F 002 The rest of the function addresses are moved up by two 

words from where they were before. 

8010 001 FC?S 

8011 008 

8012 001 BIN-BCD 

8013 02D 

8014 001 F? 

8015 04C 

8016 001 BCD-BIN 
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8017 

8018 

056 

001 

8019 081 

NR 

The words at 80lA and 80lB should now be set to 000. This will signal to 

the calculator that the FAT has ended (see page 20). Now you may do a 

CA T ALOG 2; the IF function will be gone and the calculator will no longer 

lock up. You may also use the space where the IF routine resides, addresses 

80E2 through 80FD, for some other program. However, the new program must fit 

completely into the space left by the IF routine. 

SKWID really gets into his programming. 

You say that you like math functions. We've come up with a neat little 

routine for you. It is a Quotient Remainder routine. This routine will 

place Y modulo X (integer number of times that the X register will divide 

into the original number in the Y register) into the Y register. It places 

the remainder in the X register. The formulas used are: 

-90-



Input 

X: x 

Y: y 

Output 

X: y MOD x 

Y: (y - y MOD x)/x 

The Z and T stack registers are left undisturbed. The old X register is 

saved in LASTX. The routine checks for Alpha Data and also if X is zero 

since we can't divide by zero. Just in case you are not familiar with the 

MOD function in the calculator we shall explain its use. The MOD function 

uses both the X and Y registers. The formula is the following: Y­

[Y /X]*X, where the brackets denote "integer part". What this gives us is 

the remainder of a division represented as a whole number instead of a 

decimal number less than 1. It is represented as Y MOD X. 

As an example, if Y equals 5 and X is 2 then 5 MOD 2 is 1. Our program will 

call the MOD routine in the mainframe as a subroutine. There are many other 

useful math subroutines used in this program. Our program shall be called 

QR and will be placed in the vacant space left by the IF program. We will 

start QR at address 80E2, the same place where IF started. 

Address Hexcode Mnemonic 

80E2 092 "R" 

80E3 011 ttQ" 

80E4 OF8 READ 3(X) 

80E5 128 WRIT 4(L) 

80E6 10E A=C ALL 

80E7 OB8 READ 2(Y) 

80E8 355 ?NC XQ 

80E9 050 14D5 

[unlabeled] 

80EA 070 N=C 

"QR" 

Description 

Last letter of the routine name; hex 080 

has been added to its hex code. 

First letter of routine name. 

Get the X register and put it into C. We 

then write it out to the LASTX register. 

We now save the X register, which was in 

C, into A and put the Y register into C. 

The call to the mainframe subroutine at 

14D5 checks both the A and C registers, X 

and Y, to see if they contain Alpha data. 

If either of them do, then the mainframe 
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80EB 

80EC 

80ED 

80EE 

80EF 

80FO 

80FI 

80F2 

80F3 

80F4 

80F5 

80F6 

80F7 

80F8 

171 

064 

070 

2BE 

10E 

OB8 

OlD 

060 

10E 

OF8 

261 

060 

OA8 

OBO 

?NC XQ 

195C 

[MODIO] 

N=C 

C=-C-I MS 

A=C ALL 

READ 2(Y) 

?NC XQ 

1807 

[AD2-10] 

A=C ALL 

READ 3(X) 

?NC XQ 

1898 

[DV2-10] 

WRIT 2(Y) 

C=N 

routine exits to the ALPHA DATA error 

message. If neither of the registers 

contain Alpha data, the routine returns 

wi th the A and C registers exchanged 

and with the CPU in decimal mode. This 

does exactly what we want for the next 

steps. We must then save C in N to 

satisfy the requirements of the MOD rou­

tine. 

This is a call to the MOD routine. It 

requires that the CPU be in decimal mode. 

Notice that the call to the routine at 

14D5 made sure of that. The MODIO (modulo 

in base 10) routine takes A MOD C. We 

want Y to be in the A register and X to be 

in C. Also notice that Y was put into A 

and X was switched into C by the last 

mainframe subroutine. 

We now have the answer for the X register, 

Y MOD X, but we can't put it there yet, 

so we save it in N. We then invert the 

sign of the mantissa. In order to sub­

tract using the mainframe routine you 

change the sign and add. We then save this 

in A and get the Y register again. The 

mainframe subroutine AD2-10 at 1807 

performs C=A+C on two normalized decimal 

numbers. The answer will end up in C. 

We now have Y - (Y MOD X) in C. We place 

this in A so we may call the X register 

into C for the last step. We must now 

divide A by C. Fortunately there is a 

routine at address 1898 of the mainframe 

ROMs where this is done. It even checks 

for division by zero. After the routine 
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80F9 

80FA 

OE8 
3EO 

WRIT 3(X) 

RTN 

is done we have (Y- Y MOD X)/X in C and Y 

MOD X in the N register. So now we 

write C out to Y. Then we retrieve Y MOD 

X from N and write this out to X before 

returning. 

You will notice that this routine barely fits into the space left by IF. 

There are only three words left unused. Now we must update the FAT. We do 

not have to open up the place where the address for the IF routine was and 

place the address of the first executable instruction of QR in its place. 

Instead, we may place the FAT entry for QR after the last address now in the 

FAT. The calculator does not care whether or not the addresses for the 

functions are in sequencial order. They may be put into any order you 

choose as long as each set of two words points to the first executable 

instruction of a routine. There are now 13 functions in our ROM. (We left 

the NR routine in and only deleted the IF routine.) 

This next routine will be a welcome relief to those of you who need to see 

all ten digits of a number but find that the exponent keeps getting in the 

way. It is a View Mantissa routine. This routine allows you to view all 

ten digits of the mantissa of a number without changing the setting of the 

display or getting rid of the exponent of the number. This routine only 

views the mantissa and does not change any RAM registers. The way this is 

done is to put the value to be displayed into C and execute the mainframe 

entry point that places the contents of C into the display. A few other 

things must be done so everything will work right. These are explained in 

the listing below. This routine will allow you to view all ten mantissa 

digits of whatever number is in the X register. 

Address Hexcode Mnemonic 

8l9B 

8l9C 

08D 

016 

"M" 

"V" 

"VM" 

Description 

Last letter of the routine's name. 

First letter of the rou tine's name. 
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819D 

819E 

819F 

81AO 

81AI 

81A2 

81A3 

81A4 

81A5 

81A6 

81A7 

81A8 

81A9 

81AA 

OF8 

361 

050 

260 

3B8 

158 

05C 

250 

210 

3A8 

OF8 

046 

099 

02C 

READ 3(X) 

?NC XQ 

14D8 

[CHK#S] 

SETHEX 

READ 14(d) 

M=C 

R= 4 

LD@R 9 

LD@R 8 

WRIT 14(d) 

READ 3(X) 

C=O S&X 

?NC XQ 

OB26 

[DSPCRG] 

First we check X to make sure it is not 

alpha data. We read in X and then we use 

an entry point that checks the C register 

for alpha data. If there is alpha data we 

exit to the ALPHA DATA error message. 

Otherwise the routine returns with the 

original contents of C intact and the CPU 

in decimal mode. We want to be in hex 

mode so we reselect it. 

In order to fool the calculator into 

thinking that we are in FIX 9 mode, we 

must modify the flag register so that the 

mainframe view routine will think we are 

in FIX 9. The bits that determine how 

many digits are to be displayed are in 

nybble 4. To get a setting of 9, we load 

a 9 into this spot. The bits for the 

current display mode, FIX, SCI, or ENG, 

are in nybble 3. In order to set FIX 

notation we must clear bit 2 of this 

nybble and set bit 3. We do this by 

loading eight into this nybble. Before we 

do all of this we save the original 

contents of the flag register so that they 

may be restored. 

We now write this modified register out to 

the flag register. The calculator now 

thinks that it is in FIX 9 mode. 

Get the contents of the X register. 

We then zero the exponent and its sign 

since we only want to view the mantissa. 

Now we can execute the mainframe view 

routine called DSPCRG (DiSPlay C 

ReGister.) What is to be viewed is in C 

upon entry to this routine. It sends this 
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81AB 

81AC 

81AD 

198 

205 

ODE 

C=M 

?NC GO 

0381 

[unlabeled] 

to the display and does not overwrite the 

X register. 

We now retrieve the old flag register back 

from M. Then we must set flag 50, the 

message flag; the purpose of this flag is 

to tell the calculator to preserve the 

contents of the display when we go into 

standby mode. Otherwise the 41 defaults 

to the display corresponding to the cur­

rent mode. The three modes are RUN, 

ALPHA, and PRGM. Fortunately there is a 

routine in the mainframe to do this. Ac-

tually we enter three words into the rou-

tine since we are restoring the old con-

tents of the flag register which were 

saved in M. 

Upon execution of this routine you will notice that the status of the 

decimal point does not change. If you normally use the comma as the decimal 

point then this is what will be used; if you use the period as the decimal 

point the answer will show up in that format. Now execute the routine and 

hit the backarrow key. The displayed answer went away but the X register 

stayed the same, just like HP's VIEW functions. Remember to update the FAT. 

We now have 14 functions, ODE in hex. 

To skip, or not to skip, that is the question. Our next routine will show 

you the sequence used for skipping lines in a User code program. This is 

the same sequence that all of the functions in the calculator that have a 

"?" use. If the "?" is false they skip a step in your program. The func­

tion we will write is a multiple compare function. It shall be called 

X= Y? z? It will first check to see if X is equal to Y. If this is true we 

will end the routine and the program will continue at the next step. 

However, if X does not equal Y, then our routine will cause the User code 

program to skip either one or two steps, depending whether X equals Z. So 

at this point in the routine, just after we find out that X does not equal 
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Y, we skip one User program step. Next we compare the X and Z registers. 

If they are equal we exit our routine having skipped only one program line. 

If X does not equal Z we skip another program line and then end our routine. 

This routine illustrates the sequence of instructions you use to tell the 

calculator to skip a User code program line. 

Address Hexcode Mnemonic 

81B2 OBF "?" 
81B3 OIA liZ" 

81B4 020 

81BS 03F n?1t 

81B6 019 Ity" 

81B7 03D fI fI 

81B8 018 "X" 

81B9 244 CLRF 9 

81BA OF8 READ 3(X) 

81BB 10E A=C ALL 

81BC OB8 READ 2(Y) 

81BD 36E kfC ALL 

81BE 3AO ?NC RTN 

81BF 03B JNC +07 

81CO 248 SETF 9 

81CI OF8 READ 3(X) 

81C2 10E A=C ALL 

"X=Y? Z?" 

Description 

This is the last letter of the name of our 

routine. Notice that a space separates 

the two words. This space must be keyed 

in when executing the routine. 

This flag is used to tell if we have 

reached the X=Z part of the routine. If 

it is clear we are doing the X= Y part of 

the routine. If it is set then we are in 

the X=Z part. 

Put the X register into C and then save it 

in A. We choose A so that we may use the 

? A",C instruction to compare these two reg­

isters later in the routine. Then we 

retrieve the Y register and compare it 

with X. If X=Y the carry will not be set 

and we can return. If X",Y the carry will 

be set and we go to the section of our 

routine that has the instructions for 

skipping a program line. 

Setting this flag tells the routine that 

we have reached the X=Z portion of our 

routine. We then get X and put it into A 
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8IC3 

8IC4 

8IC5 

8IC6 

8IC7 

8IC8 

8IC9 

8ICA 

8ICB 

8ICC 

8ICD 

8ICE 

078 

36E 

3AO 

141 

OA4 

3E5 

OA8 

OBD 

08C 

24C 

360 

393 

READ I(Z) 

?A-,jC ALL 

?NC RTN 

?NC XQ 

2950 

[GETPC] 

?NC XQ 

2AF9 

[SKPLINj 

?NC XQ 

232F 

[PUTPCXj 

?FSET 9 

?C RTN 

JNC -OE 

so we may go through the same sequence of 

steps as at addresses 8IB8-8IBC except we 

use Z in place of Y. This is the start of 

the sequence for skipping one line of a 

User code program. First ?NC XQ 2950 

GETs the Program Counter in the format 

required by other mainframe ROM routines. 

This format is called "MM form", and 

entails doubling the byte digit of the 

User code program counter when the pointer 

is in RAM. Then we increment this 

pointer by the number of bytes in the next 

program line using the mainframe SKPLIN 

(skip line) routine at 2AF9. There may be 

anywhere from one to sixteen bytes in a 

program line. Then we update the User 

program pointer by storing the new value 

in register b (using the routine at 232F) 

so that the program has now skipped a 

program line without executing it. PUTPCX 

is one of the PUT Program Counter 

entry points. 

Now we check to see if this is the first 

time through the line skipping loop. If 

it is, flag 9 will be clear and the carry 

will not be set, so the ?C R TN instruction 

will not be executed. Since we have not 

yet gone through the X=Z section of our 

routine we will jump back to this section 

(at 8ICO) if flag 9 is clear. If flag 9 

is set, the carry will be set and the ?C 

RTN instruction will be executed. This 

tells us that we have been through the 

loop to skip a program line twice, once 

for the X=Y part and once for the X=Z 
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part. Since we have asked both questions 

we may return. 

Try .out this function in one of your programs. A sample setup could be as 

follows: 

Instruction 

X=Y? Z? 

GTO 01 

GTO 02 

Description 

Steps preceding the X= Y? Z? instruction. 

Go to label 01 if X is equal to Y. 

Go to label 02 if X is equal to Z but is not equal to Y. 

Continue on with the program if X does not equal to either Y 

or Z. 

Remember to update the FAT. You should get into the habit of doing this 

right after you finish writing a routine. We now have 15 functions in our 

sample ROM (OOF in hex). 

The next routine is an Alpha View routine that will never stop a program. 

The A VIEW function will stop a program for no apparent reason if flag 21 is 

set and there is no printer plugged into the calculator. This routine 

allows you to view Alpha without sending anything to the printer as does 

A VIEW. It is an excellent example of the power of using the mainframe ROM 

entry points. The routine is five words long and four of these words are 

used to call mainframe entry points. This is very efficient. The routine 

is called VA. 

Address Hexcode Mnemonic 

81CF 

8lDO 

081 

016 

"A" 

"V" 

"VA" 

Description 

Routine name. 
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8IDI 104 

81D2 041 

8ID3 OBO 

81D4 201 

8ID5 OOE 

CLRF 8 

?NC XQ 

2CIO 

[ARGOUT] 

?NC GO 

0380 

[unlabeled] 

The first mainframe entry point at address 

2CIO, ARGOUT = Alpha ReGister OUT, 

outputs the Alpha register to the display. 

Clearing flag 8 tells the routine not to 

treat this as a prompt, as this would stop 

the routine. The GOTO instruction to 

address 0380 recalls the contents of the 

flag register and then sets the message 

flag (50) and restores the flag register 

with the message flag set (see page 95). 

Our routine returns through this mainframe 

routine. 

All these addresses for the mainframe entry points we are using came from 

HP's documented listings of the 12K of mainframe ROMs. These listings are 

partially annotated by the programmers who developed the HP-41. The entry 

points are usually very well described with the kind of setup your routine 

needs to do before calling on one of these entry points. They also tell 

what the output should be. 

One of the drawbacks of these documents is that they are listed in octal, 

not hexadecimal. So you need some way of converting from octal to hex. 

This little problem should not stop you from getting these documents. They 

are much too valuable a tool to let such a little thing like this interfere. 

How do you get hold of one of these documents? Well, for starters, don't 

call HP, they will refuse to answer any questions regarding MCODE program­

ming on the 41. In fact, that is one of the reasons for this book. The 

place to get these listings, or V ASM as they are called, is from a worldwide 

HP calculator user's group called ppc. PPC's address is given in 

Appendix A. 

Since seeing the examples of how entry points can be used, you have probably 

ordered your V ASM listings and are anxiously awaiting their arrival. But 

for now let's get on with some more examples. 
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This next routine is a Random Number generator program. There is nothing 

fancy about this program. We use the brute force method on this one. Just 

load in the numbers and crank away. This algorithm has been used in the HP-

34C Applications book and the 41C Standard Applications Pac. The input for 

the program is in the X register. It can be any number; just don't make it 

too big. This input is the seed for the algorithm. The program takes this 

seed and then multiplies it by 9,821, adds 0.211327, then takes the 

fractional portion. The answer is output to X. The old X is saved in 

LASTX. This program is just over 7 times as fast as a User code program 

that performs the same calculations. Arithmetic operations are already 

relatively efficient in User code, because most of the work is done within 

highly optimized mainframe MCODE routines. The overhead of going to the 

User level (approximately 10 milliseconds per instruction) is less on a 

percentage basis for the more complicated User code instructions. Guess we 

can't always be 100 times faster. 

Address Hexcode Mnemonic 

8ID6 

8ID7 

8ID8 

8ID9 

8IDA 

8IDB 

81DC 

8IDD 

8IDE 

81DF 

08E 

012 

OOE 

OF8 

128 

355 

050 

35C 

250 

210 

lIN" 

ItR" 

A=O ALL 

READ 3(X) 

WRIT 4(L) 

?NC XQ 

14D5 

R= 12 

LD@R9 

LD@R 8 

"RN" 

Description 

Routine name. 

First we zero A and get the Random number 

seed. Then we save the seed in the LASTX 

register. 

The reason we zeroed A was so that there 

would not be Alpha data there when we 

executed the mainframe routine at address 

14D5. This routine checks A and C for 

Alpha data and sets the CPU to decimal 

mode. It then exchanges A and C from what 

they were originally. 

We now set the pointer to the first digit 

of the mantissa so we can load in our 

first constant. It is 9,821. We load in 
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8lEO 

8lEI 

8lE2 

8lE3 

8lE4 

8lE5 

8lE6 

81E7 

8lE8 

8lE9 

8lEA 

8lEB 

8lEC 

8lED 

8lEE 

8lEF 

8lFO 

8lFI 

8lF2 

8lF3 

8lF4 

8lF5 

8lF6 

81F7 

8lF8 

8lF9 

090 

050 

130 

003 

135 
060 

10E 

35C 

04E 

090 

050 

050 

ODO 

090 

IDO 
2lC 

250 

250 

250 

OID 
060 

084 

OED 

064 

OE8 

3EO 

LD@R 2 

LD@R 1 

LDI S&X 

HEX: 003 

?NC XQ 

184D 

[MP2-10j 

A=C ALL 

R= 12 

C=O ALL 

LD@R 2 

LD@R 1 

LD@R 1 

LD@R 3 

LD@R 2 

LD@R 7 

R= 2 

LD@R 9 

LD@R 9 

LD@R 9 

?NC XQ 

1807 

[AD2-10j 

CLRF 5 

?NC XQ 

193B 

[INTFRC] 

WRIT 3(X) 

RTN 

the mantissa and also the exponent (003). 

We are now set up to do the multiplication 

of these two numbers. Mainframe routine 

MP2-10 at 184D multiplies A times C. 

The answer is left in C. 

We save the answer from the multiplica­

tion in A so we may load C with the next 

constant. Before we start to load C with 

the constant, we zero it so that we start 

with a clean slate. We set the pointer to 

the first digit of the mantissa and start 

to load the mantissa of the constant. We 

set the pointer to the first digit of the 

exponent sign. The exponent sign is 9 

since the exponent is negative (see page 

5). Why is the exponent 99 instead of 

01? The calculator represents negative 

exponents by subtracting them from 100 

(100-1=99) so for a number with a negative 

exponent of 3 the exponent would be 97 

(100-3). Another way to accomplish the 

last four instructions is to use a C=C-I 

S&X. 

Now that we have the two numbers all set 

up, we call on the mainframe routine that 

will add the normalized values in the A 

and C registers. The answer from this is 

left in C. The routine at address 193B is 

a dual-purpose integer/fraction routine. 

Here we use it as a fraction routine by 

clearing flag 5. (Setting flag 5 gives 

the integer routine.) ?NC XQ 193B takes 

the fractional portion of the number in C 
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and outputs it back to C. We then write 

our answer out to X and return. 

Don't forget to update the FAT. There are now seventeen functions in our 

ROM. Therefore you would put 011 hex at address 8001. 

The next routine sounds like it will be very easy to program. However, this 

is deceiving. It is a SIZE-finder routine. It will give the number of RAM 

registers that are allocated for data storage. This number will be put into 

the X register. This routine will work on any 41 Calculator with any amount 

of memory. The object of this routine is to find the largest existent RAM 

register in the calculator. Since RAM may be added in blocks of 64 (one 

memory module for the 41C) we start at the highest possible RAM address and 

check to see if it exists. If the register exists we've found the top of 

RAM. This is why we start from the highest possible address and work our 

way down. We do some manipulations before calling on the BIN-BCD routine 

that we wrote earlier. The routine will be called "S?". 

Address Hexcode Mnemonic 

81FA 

81FB 

81FC 

81FD 

81FE 

81FF 

OBF 
013 

130 

IFF 

158 

270 

"?" 

"s" 
LDI S&X 

HEX: IFF 

M=C 

RAMSLCT 

"S?" 

Description 

Second letter of name. 

First letter of name. 

We load into C the highest possible 

address of an existent RAM register. If 

you have the full 320 RAM registers in 

your calculator the top address will be 

IFF. 

This is the start of the loop to find out 

the address of the topmost RAM register. 

We first save the RAM register pointer in 

M and then select that register. Now we 

will check to see if the register exists. 
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8200 

8201 

8202 

8203 

8204 

8205 

8206 

8207 

8208 

8209 

820A 

820B 

820C 

820D 

820E 

820F 

8210 

8211 

8212 

8213 

038 

2A6 

10E 

2FO 

038 

36E 

077 

2A6 

2FO 

198 

106 

046 

270 

378 

03C 

166 

lC6 

369 

03C 

12F 

READ DATA 

C=-C-l S&X 

A=C ALL 

WRITE DATA 

READ DATA 

?Ai'C ALL 

JC +OE 

C=-C-l S&X 

WRITE DATA 

C=M 

A=C S&X 

C=O S&X 

RAMSLCT 

READ l3(c) 

RCR 3 

A=A+l S&X 

A=A-C S&X 

GOTO 

812F 

This is the start of the section that 

figures out whether or not the RAM regis­

ter exists. You are probably wondering 

why we did not jump to the entry point in 

our ROM that does this. The only problem 

with that approach is that if the RAM 

register does not exist we would go to the 

NONEXISTENT error message. In this rou­

tine if the register does not exist then 

we decrement the RAM register pointer by 

64 and check again. We do this until we 

find a register that exists. This section 

is exactly like the entry point in our ROM 

except that instead of going to the NON­

EXISTENT error message we jump to another 

part of the routine (JC +OE to 8214). For 

an explanation of this routine see page 

83. 

We now retrieve the RAM register pointer 

into C and save it in A for later use. 

This pointer is the address of the top­

most existent RAM data register. Chip 0 

is then selected (remember the last regis­

ter selected was the topmost register of 

RAM) and the address of data register 0 is 

obtained from nybbles 3, 4, and 5 of 

sta tus register c (see page 35). In order 

to put this into the S&X field of C, we 

must rotate right 3 nybbles. We then add 

one to the address of the topmost existent 

RAM register. This is because the actual 

top address is one more than the highest 

register we can address. These two num­

bers are then subtracted and the answer is 

left in A. This is done because the GOTO 
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8214 198 

8215 106 

8216 130 

8217 040 

8218 246 

8219 32B 

C=M 

A=C S&X 

LDI S&X 

HEX: 040 

C=A-C S&X 

JNC -lB 

812F statement uses the C register. This 

is a GOTO to the BIN-BCD routine that we 

wrote earlier. The answer is placed into 

X. 
This section of our routine gets the RAM 

register pointer from M and then puts it 

into A. We then load 040 (64 decimal) into 

C. Since the calculator memory is ar­

ranged into blocks of 64, the next try 

will be a register that is 64 less than 

the previous one. This is subtracted from 

the current RAM register pointer. Then we 

go back to the start of the loop at ad­

dress 81FE. 

Remember to update the FAT. There are now 18 functions in our ROM. The 

number at address 8001 should be 012. The last entry in the FAT should look 

like this: 

Address Hexcode Description 

8024 

8025 

001 

OFC 

The 1 is the third digit from the right in the address of 

the first executable instruction of the "S?" routine. It 

has the two leading zeros like all of the other functions. 

This is the two rightmost digits of the address of the 

first executable instruction. As always, the leading 0 

has been placed in front. 

The next routine will be one of the comparison functions that HP left out of 

the calculator mainframe. It is the "X>=Y?" function. This routine is 

rather short and is an excellent routine to show how a good knowledge of the 

mainframe entry points can be put to use. In this routine we shall use two 

such entry points. The first will be at address 1619. This will tell the 

calculator not to skip a line if we are running or single-stepping a 

program. If we execute it from the keyboard then a YES is put into the 
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display. The other entry point is to address l5F8. This is just the 

routine to see if X is greater than Y. The necessary setup must be done 

before either routine can be executed. 

Address 

82lA 

82lB 

82lC 

82ID 

82lE 

82lF 

8220 

8221 

8222 

8223 

8224 

8225 

8226 

8227 

Hexcode 

OBF 

019 

03D 

03E 

018 

OB8 

10E 

OF8 

070 

36E 

065 

05A 

3El 

056 

Mnemomic 

"?" 
"Y" 

"=" 
It>" 

"X" 

READ 2(Y) 

A=C ALL 

READ 3(X) 

N=C 

?AfC ALL 

?NC GO 

1619 

[NOSKPj 

?NC GO 

l5F8 

[XX>Y?j 

"X>=Y?" 

Description 

Routine name. 

We put the Y register into C and then save 

it in A. Then we get the X register into 

C and place it into N. These two condi­

tions must be met because the entry point 

at address l5F8 must have X in Nand Y in 

A in order to correctly perform its du­

ties. 

We now check to see if X (C) is equal to Y 

(A). If it is, the carry will not be set 

and we will not want to skip a step if a 

program is running. The NOSKP routine 

at 1619 does this and will put YES into 

the display if the function is executed 

from the keyboard. 

This is the call to the routine to check 

if X is greater than Y. Since we know 

that they are not equal (if we get this 

far) X is either greater or less than Y. 

The XX> Y? routine (eXecute X> V?) will 

figure out which is true and skip a pro­

gram step if X is less than Y or put a NO 

into the display if it was executed from 
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the keyboard. If X is greater than Y a 

program step will not be skipped or a YES 

will be placed into the display. 

Remember to update the FAT. You can program the X>=O? function by just 

replacing the READ 2(Y) statement with a C=O ALL instruction. This will 

compare X with zero instead of Y. 
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THE VISUALS 

ACCESSING THE DISPLAY 

The display is treated by the CPU as a peripheral. In order to access the 

display you must select it using the PRPH SLCT command. This instruction 

uses digits I and 0 of C to specify the peripheral to be selected. This is 

much like the RAMSLCT instruction, except that in order to select the 

display you must always use the same value in digits I and 0 of C. This 

number is FD. Once the display is selected it may be read from and written 

to. To do this you use the READ/WRIT instructions. If we write to the 

display using these functions and RAM registers are selected that exist, 

then these registers will also be written to. Therefore we should select a 

nonexistent chip whenever we select a peripheral. The nonexistent RAM chip 

that is usually used is chip 1 which starts at address 010 and goes through 

address OIF. To select this chip we must put 010 into the S&X field of C 

and use the RAMSLCT instruction to select the nonexistent RAM at this 

address. 

There have been three different displays in the life of the 41. The first 

appeared in 41C's manufactured before 1981. The second display appeared in 

1981 and has been in all HP-41 calculators manufactured up until about the 

time this book came out. These two displays cannot access the last three 

rows of the LCD character table (see next page). If a hexcode from these 

last three rows is used, a space will be displayed. The third display can 

access the entire LCD table and also allows you to change the contrast 

(viewing angle). 
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The display is divided into three registers. They are called the A, B, and 

C registers. These are not the same as the main CPU registers and should 

not be confused with them. The A register contains the lower four bits of 

each character, the B register contains bits four to seven of each 

character, and the C register holds bit 8 of each character. 

The display READ/WRIT functions each have certain, well-defined, tasks that 

they perform. Data transfers can be in 1, 4, 8, or 9 bit format. These may 

be transferred one character at a time, or in multicharacter formats, depen­

ding on the instruction. The READ instructions give varied outputs 

depending upon which display your calculator has. These variations only 

apply to the bits and nybbles which are not the recipient of the data 

obtained during a READ instruction. The scope of these output variations 

will not be covered in this book, so your programs should not depend on 

getting particular values in these "unused" bits or nybbles. 
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The display is set up so that each of the 12 character positions in the 

display uses 9 bits (4 bits from A, 4 bits from B, and 1 bit from C). Bits 

o through 5 specify a character from rows 0 to 3 of the LCD character table. 

Bits six and seven are the punctuation field. The table below shows how to 

set/clear bits 6 and 7 for various punctuation symbols. 

bit I Q. punctua tion symbol 

0 0 no punctuation symbol 

0 period 

0 colon 

comma 

Here is the table of all of the HP display mnemonics which correspond to the 

READ/WRIT instructions. These instructions, which appear in the HP 

documentation for the display and mainframe, are not correctly dissassembled 

by any of the currently available dissassemblers. 

READ WRIT 

15 FLSABC* SLSABC 

14 FRSABC** SRSABC 

13 FLSDAB SLSDAB 

12 FRSDAB SRSDAB 

11 FLSDB SLSDB READ DATA: FLLDA 

10 FLSDA SLSDA WRITE DATA: WRTEN 

9 FRSDC SRSDC 

8 FRSDB SRSDB 

7 FRSDA SRSDA 

6 FLSDC SLLABC 

5 READEN SLLDAB 

4 FLLABC SRLABC 

3 FLLDAB SRLDAB 

2 FLLDC SRLDC 

1 FLLDB SRLDB *appears as RABCL in HP listings 

0 SRLDA **a1so given as RABCR in HP listings 
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Now we shall describe how to decipher these mnemonics. 

The first character is either F or S corresponding to FETCH or SHIFT. The 

second letter is an L or R for LEFT or RIGHT. The third character is an S 

or L for SHORT or LONG. The remaining characters identify the registers on 

which the operation is to be performed: A, B, C, AB, or ABC. All one-or 

two-letter suffixes are preceded by the character D (display), which has no 

significance other than its value as a mnemonic. 

FETCH reads data from the display into the C register. SHIFT pushes data 

from the C register into the display. LEFT or RIGHT specifies which 

direction the designated fields rotate within the display. (Rotation only 

occurs for the specified register or registers.) SHOR T or LONG specifies 

the number of character positions which are to be read from or written to. 

SHORT means a single character position. LONG is the maximum number of 

character positions for which the corresponding data can fit in 12 nybbles. 

This is 4 positions for ABC, 6 for AB, and 12 for A, B, or C. 

For example, consider SLSABC. This instruction writes data to the display 

(SHIFT), shifting in a single character (SHORT) in from the right (forcing a 

shift to the LEFT). The data written is 9 bits (ABC), which completely 

defines the character and punctuation. 

Next consider FRLDC. This instruction FETCHes data from the right side of 

the display (forcing rotation to the RIGHT). The rightmost bit is placed 

into bit zero of nybble 0 of C and the second bit is put into nybble two and 

so on until the last bit is placed into nybble II of C. The display is not 

affected by this instruction since twelve characters are involved and the 

display will be rotated all the way around. 

What follows are descriptions of the display instructions that are most 

commonly used within the HP-41's operating system ROMs. They are all 9 bit 

transfers, operating simultaneously on A, B, and C. 
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Instruction Description 

READ l4(d) Reads the rightmost character in the display into the S&X of 

(RABCR or C. All characters are rotated right by one. 

FRS ABC) 

READ l5(e) Reads the leftmost character in the display into the S&X of C 

(RABCL or 

FRSABC) 

WRIT l4(d) 

(SRSABC) 

WRIT l5(e) 

(SLSABC) 

and rotates the display left by one character. 

Takes the rightmost 9 bits of the S&X of C and pushes them 

into the leftmost position of the display. 

existing characters are shifted right by one. 

All of the 

Takes a single nine-bit character from S&X of C and writes it 

to the rightmost character of the display. The characters in 

the display are shifted left by one. 

WRIT 4(L) Writes four characters from C to the left of the display. The 

(SRLABC) characters that were in the display are shifted right by four. 

The first character is in digits 0 to 2 of C, the second is in 

digits 3 to 5 and so on. The character in digits 0 to 2 is 

pushed onto the left of the display first then the character 

in digits 3 to 5 is pushed to the left of that character and 

so on. 

Now that we have gone through the instructions for writing and reading the 

display characters, we still have to deal with the annunciators at the 

bottom of the display. The status of these 12 annunciators is kept in a 

fourth display register, called E. Annunciators are set using the WRITE 

DA T A (WR TEN) instruction. They may be read by using READ 5(M) (READEN). 

The transfer is to and from the S&X field of C. Below is a list of the bit 

in the S&X field of C which corresponds to each annunciator. 

bit Annunciator bit Annunciator 

0 ALPHA 3 Flag 3 

PRGM 4 Flag 2 

2 Flag 4 5 Flag 1 
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6 

7 

8 

Flag 0 

SHIFT 

RAD 

9 

10 

II 

G (for GRAD) 

USER 

BAT 

As can be seen, the leftmost bits are for the leftmost annunciators. In 

normal operation, these annunciators do not stay on unless the corresponding 

condition is actually in effect. For instance, if you write a program that 

turns the ALPHA annunciator on and makes the standard exit to the normal 

function return, then you must be in Alpha mode or the annunciator will 

turn off. 

Now let's have some fun and write a routine using some of these display 

instructions. We shall write a display test routine. This routine first 

displays twelve commas and pauses for a second or so. Then there are twelve 

star bursts in the display. Each of these is followed by a colon. The 

annunciators at the bottom of the display are also lit up. Now every 

display segment is on except the comma tails, which is why we viewed them 

first. This routine does not use any RAM registers, only the display. Ah, 

the beauty of MCODE. We shall call the routine DISTEST. 

Address 

8228 

8229 

822A 

822B 

822C 

822D 

822E 

822F 

8230 

8231 

8232 

Hexcode Mnemonic 

094 IlTIt 

013 ItS" 

005 11£" 

014 "T" 

013 liS" 

009 "I" 

004 liD" 

130 LDI S&X 

010 HEX: 010 

270 RAMSLCT 

130 LDI S&X 

"DISTEST" 

Description 

Routine name. 

First we shall disable the RAM. Since 

we will be using WRIT instructions we must 

choose a nonexistent RAM chip so that RAM 

won't be written to. Then we enable the 
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8233 

8234 

8235 

8236 

8237 

8238 

8239 

823A 

823B 

823C 

823D 

823E 

823F 

8240 

8241 

OFD 

3FO 

130 

OOB 

106 

130 

020 

3A8 

IA6 

3F3 

19C 

390 

010 

2D4 

3EB 

HEX: OFD 

PRPH SLCT 

LDI S&X 

HEX: OOB 

A=C S&X 

LDI S&X 

HEX: 020 

WRIT 14(d) 

A=A-l S&X 

INC -02 

R= 11 

LD@R E 

LD@R 0 

?R= 13 

INC -03 

display by selecting peripheral FD. 

We shall now fill the display with 

spaces. This is what the calculator 

places into the display when it clears it. 

First we load a counter into C and save it 

in A. This will be decremented, and when 

underflow occurs, we jump out of the loop 

that fills the display with spaces. The 

hexcode for a space is 020. We load this 

into the S&X field of C and write it out 

to the display using the nine bit trans­

fer instruction WRIT 14(d). This places a 

space into the left of the display and 

shifts all of the other characters right 

by one. The counter in A is then decremen­

ted and we jump back to the WRIT instruc­

tion and write another space to the dis­

play. When the counter underflows we 

drop out of the loop. [Due to steps 8242 

and 8243, this section really needs only 

to clear bit 9 of each display position. 

The 9-bit WRIT accomplishes this.] 

The pointer is set to II, the largest 

digit used when six characters (12 nybbles 

of data), are sent to the display using an 

eight bit transfer instruction. We load 

up each eight bits with the value EO = 

1110 0000. Bits six and seven are set to 

signify a comma. The lower six bits are 

set to the hexcode for a space (20 in hex 

or 100000 in binary). The character­

loading loop is cycled 6 times. After the 

sixth time through, the pointer will equal 

thirteen since we just loaded a number 
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8242 

8243 

8244 

8245 

8246 

8247 

8248 

8249 

824A 

824B 

824C 

824D 

824E 

824F 

8250 

OE8 

OE8 

046 

2A6 

266 

3FB 

19C 

2DO 

290 

2D4 

3EB 

OE8 

OE8 

046 

2A6 

WRIT 3(X) 

WRIT 3(X) 

C=O S&X 

C=-C-I S&X 

C=C-I S&X 

JNC -01 

R= II 

LD@R B 

LD@RA 

?R= 13 

JNC -03 

WRIT 3(X) 

WRIT 3(X) 

C=O S&X 

C=-C-I S&X 

into nybble zero. (The pointer decrements 

when we use the LD@R instruction.) When 

this happens, the carry will be set and we 

will not jump back to load more digits. 

These two instructions fill the display 

with commas. The first puts six commas 

into the display. There are spaces be­

tween the commas. The spaces we original­

ly put into the display are shifted to the 

right by six characters. The second WRIT 

instruction finishes filling the display 

with commas. 

This is the delay loop so that you can see 

the twelve commas in the display. First C 

is zeroed and then all twelve bits are 

inverted to ones using the C=-C-I instruc­

tion. Then we subtract one from the S&X 

field until the carry is set. The carry 

will be set when we subtract I from o. 
When this happens we will not jump back 

and the pause will be over. 

This is the loop to fill the display with 

the starburst character and the colon. 

The LD@R B instruction sets bit 7 which is 

the colon if bit 6 is not set. The other 

six bits are set so that the star burst 

character (hex 3A) is put into the dis­

play. The logic behind the loop is the 

same as for the steps at 823D to 8241. 

These two steps write six star bursts each 

out to the display. The commas are shif­

ted off the display after the second in­

struction. 

First we zero the S&X field of C so that 

when we invert all the bits, using C=-C-l, 
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8251 

8252 

8253 

8254 

8255 

8256 

8257 

2FO 

046 

3FO 

IFD 

OOC 

060 

000 

WRITE DATA they will all go to one. Then we use the 

WRITE DATA instruction to turn on all of 

the annunciators at the bottom of the 

display. 

C=O S&X 

PRPH SLCT 

?NC XQ 

037F 

POWOFF 

NOP 

Now the message flag is set only to keep 

the X register from being cleared when the 

user presses the backarrow key to clear 

the display. Normally the message flag is 

set for the main purpose of preventing the 

display from being altered upon return of 

control to the operating system. Here we 

are not returning control to the operating 

system, but we still need to set the 

message flag. First we must deselect the 

display as a peripheral and then we enter 

the mainframe routine at a spot which 

selects chip 0 and sets the message flag. 

Since we want the display to stay as it is 

we go directly into standby mode so as to 

skip over the processing normally done 

after a function is executed in order to 

avoid having the annunciators updated. 

Remember that a NOP is required after the 

POWOFF instruction. 

When the DISTEST routine is executed every display segment will have been 

lit up. You can amaze your friends with this little routine. 

For those of you with the new display (the one with rounded edges) HP has 

added a new peripheral address, hex 10. This allows you to make use of six 

new READ/WRIT commands. Two of these, READ 5(M) and WRIT 5(M), are 

extremely useful. When peripheral 10 is selected these instructions read or 

write the contrast nybble of the display to or from digit zero of C. This 

allows you to control the contrast of the display. The default setting is 

5. Here's an example of how to change the contrast setting. 
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Hexcode Mnemonic Description 

130 LDI S&X Load the address of a nonexistent RAM chip and 

010 HEX: 010 the new peripheral. 

270 RAMSLCT Deselect RAM and Select the peripheral. 

3FO PRPH SLCT 

130 LDI S&X Load in a value for the contrast. Let's try O. 

000 HEX: 000 

168 WRIT 5(M) Write the zero to the contrast nybble. 

3EO RTN Return. 

The display should become very dim, except when viewed from a shallow angle. 

Place OOF in place of the 000 and see what happens. The display should 

become very dark. If nothing happens when you execute this routine, then 

you have an older display that does not have this feature. 

The other READ/WRIT commands are not fully understood at this time. However 

it is known that the WRIT 15(e) instruction with this peripheral selected 

will crash the display, simultaneously lighting all segments, including the 

comma tails. The only way to recover from this particular crash is to 

remove the batteries for about one minute and then replace them. 

A SKWID display test. 
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Our next routine will be a little more useful. It's a base conversion 

routine. This little beauty will convert a decimal number in X into a 

number of base b. The answer for the base b will end up in the display. 

Any base from two to thirty-six may be used. Sorry, but for bases over 

thirty-six we run out of letters in the alphabet. This base number is put 

into Y and the decimal number to be converted is put into X. Since the 

answer comes out in the display it will be lost if you clear the display. 

The algorithm for this routine is taken from the PPC ROM routine "TB". This 

routine converts base ten to base b. First we compute X MOD Y. This gives 

us the value of the rightmost digit of the base b number. This number is 

then output to the display. Then we divide X, the decimal number, by Y, the 

base b, and take the integer of the result to get rid of the remainder that 

we already stripped off using the MOD function. We then check to see if we 

are at zero and jump back to the beginning of the loop if zero has not been 

reached. The routine is called IO-BASE. 

Address Hexcode Mnemonic 

8258 085 "E" 
8259 013 "s" 
825A 001 "A" 

825B 002 "B" 
825C 02D It_" 

825D 030 110" 

825E 031 "}" 

825F OB8 READ 2(Y) 

8260 10E A=C ALL 

8261 OF8 READ 3(X) 

8262 355 ?NC XQ 

8263 050 14D5 

[unlabeled] 

"IO-BASE" 

Description 

Routine name. 

First we read Y and place it into A and 

then get X and put it into C. We then 

check to see if either of them contain 

Alpha data (call to 14D5). If so, the 

mainframe call will exit to the ALPHA DATA 

error message. At the end of this routine 

Y is in C and X is in A. This routine 
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8264 

8265 

8266 

8267 

8268 

8269 

826A 

826B 

826C 

826D 

826E 

826F 

8270 

8271 

8272 

8273 

8274 

8275 

8276 

8277 

088 

OED 

064 

OA8 

260 

38D 

008 

266 

2E6 

OB5 

OA2 

106 

130 

024 

306 

OB5 

OA2 

130 

OOC 

268 

SETF 5 

?NC XQ 

193B 

[INTFRC] 

WRIT 2(Y) 

SETHEX 

?NC XQ 

02E3 

[BCDBIN] 

C=C-l S&X 

?C"O S&X 

?NC GO 

282D 

[ERR DE] 

A=C S&X 

LDI S&X 

HEX: 024 

?A<C S&X 

?NC GO 

282D 

[ERRDE] 

LDI S&X 

HEX: OOC 

WRIT 9(Q) 

also sets decimal mode so that we may do 

decimal number manipulations. 

Y is left in C by the routine at address 

14D5. So then we take the integer of this 

and write it out to Y. This ensures that 

this number will be an integer. If it is 

not an integer the rest of the routine 

will not work correctly. The ?NC XQ 193B 

calls the integer/fraction routine in the 

mainframe ROMs. Flag 5 must be set to get 

the integer portion of the number in C. 

(the fractional part is taken when flag 5 

is clear.) Hex mode is then selected. 

Since we have the base number in C, we can 

convert it to binary in S&X of C. Then 

one is subtracted and we see if the S&X 

field of C is equal to zero. If it is, 

the carry will not be set and we go to the 

DA T A ERROR message since a base of one is 

not valid. If we get through this we save 

the base b-l number in A. We then load 

one greater than the highest allowable 

base minus one (37-1 dec. or 25-1 in hex). 

Then we compare these two numbers to see 

if the base b number is greater than 36. 

If it is, the carry will not be set and we 

go to the DATA ERROR error message. 

Now we load the digit counter into the Q 

register. If you remember, this register 

is used as a scratch register by the main­

frame. All we have to do is make sure 

that none of the routines we call use this 

register for scratch. The hex number OOC 

is loaded into Q to count the number of 
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8278 

8279 

827A 

827B 

827C 

827D 

827E 

827F 

8280 

8281 

8282 

8283 

8284 

8285 

8286 

8287 

8288 

3Cl 

OBO 

149 

024 

OF8 

2AO 

088 

OED 

064 

2FA 

201 

OOE 

158 

10E 

OB8 

070 

171 

?NC XQ 

2CFO 

[CLLCDE] 

?NC XQ 

0952 

[ENCPOO] 

READ 3(X) 

SETDEC 

SETF 5 

?NC XQ 

193B 

[INTFRC] 

?CfO M 

?NC GO 

0380 

[unlabeled] 

M=C 

A=C ALL 

READ 2(Y) 

N=C 

?NC XQ 

characters loaded into the display. It is 

decremented each time a number is loaded 

into the display. 

This call to the mainframe enables the 

display and then clears it (fills it with 

spaces). This does the same thing that we 

did at addresses 822F to 823C of the DIS­

TEST routine. The only difference is that 

this only takes two words instead of four­

teen. 

This call to the mainframe ROMs disables 

the display and selects chip O. 

We retrieve X and set the CPU to decimal 

mode as required by the next steps. 

This is the beginning of the loop to con­

vert the decimal number to base b. The 

first thing we do is take the integer of 

the number in C. The first time through 

this is done to make sure the number in X 

is an integer. The next time through, 

when we loop back, we get rid of the 

fractional portion of the number in C. 

The mantissa is checked to see if it is 

zero. If it is not zero we skip over the 

mainframe GOTO so we may continue on 

with the routine. Otherwise, we go to 

the subroutine in the mainframe that sets 

the message flag (User flag 50, sec page 

95 for full details). 

First we save the decimal number in M so 

that we may use it later. Now we set up 

for the MOD function. We do a decimal MOD 

base b. To do this we put the decimal 

number into A and get the base b from Y. 
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8289 

828A 

828B 

828C 

828D 

828E 

828F 

8290 

8291 

8292 

8293 

8294 

8295 

8296 

8297 

8298 

8299 

829A 

829B 

829C 

064 

260 

38D 

008 

106 

130 

030 

146 

130 

03A 

306 

01F 

1C6 

166 

3D9 

01C 

OA6 

328 

149 

024 

195C 

[MOD10] 

SETHEX 

?NC XQ 

02E3 

[BCDBIN] 

A=C S&X 

LDI S&X 

HEX: 030 

A=A+C S&X 

LDI S&X 

HEX: 03A 

?A<C S&X 

JC +03 

A=A-C S&X 

A=A+1 S&X 

?NC XQ 

07F6 

[ENLCD] 

A<>C S&X 

WRIT 12(b) 

?NC XQ 

0952 

[ENCPOO] 

This must be copied into N before entry 

into the MOD routine. 

We now have the remainder of the decimal 

number in C. This is the number we want 

to convert to an LCD display character. 

The represen ta tion of these characters are 

the same as for the characters that you 

use for the names of your functions. We 

SETH EX since the BCD-BIN routine requires 

this setting. Then we convert the decimal 

remainder to hex in S&X of C. This is 

saved in A so we may add 030 hex to it to 

get the LCD character representation of 

this number. The numbers are in row three 

and start at zero and work up to nine. 

This result ends up in A. 

Now we will check to see if the number we 

want to display is greater than 9. This 

would mean that the hexcode in A would be 

03A or greater. We load 03A into C and 

check to see if A is less than C. If it 

is, we want to display a decimal number 

and skip the next two steps. If the num­

ber we want is greater than 9, i.e. an 

Alpha character, we subtract 03A from it 

and add one to get the Alpha LCD repre­

sentation of the number. 

Now we enable the display but do not clear 

it. We get the LCD character we want to 

write to the display into the S&X of C so 

that it may be written out to the left 

side of the display using the WRIT l2(b) 

instruction. We then call the mainframe 

routine to disable the display and select 

chip O. 
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829D 278 

829E 266 

829F 289 

82AO 003 

82Al 268 

82A2 2AO 

82A3 198 

82A4 10E 

82A5 OB8 

82A6 261 

82A7 060 

82A8 2B3 

READ 9(Q) 

C=C-l S&X 

?C GO 

00A2 

[ERROFj 

WRIT 9(Q) 

SETDEC 

C=M 

A=C ALL 

READ 2(Y) 

?NC XQ 

1898 

[DV2-10j 

JNC -2A 

Now we shall decrement the display counter 

number that is kept in Q. If this number 

should reach zero we have twelve digits in 

the display. If we go through the loop 

again we will push the rightmost digit off 

the display. To prevent this we put a 

call to the OUT OF RANGE error message. 

This tells us that the number of digits 

wanted was larger than the display could 

hold. The carry will be set on the 

thirteenth time through the loop since we 

will be subtracting one from zero. Then 

we shall go to the error message. If we 

make it past the error message the decre­

mented counter is restored to Q. 

Now we shall divide the decimal number by 

the base b number. This puts the remain­

der into the fractional portion of the 

number which is removed when we loop back. 

First we must set the CPU back to decimal 

mode so we may do a decimal divide. We 

get the decimal number from M and put it 

into A and put the base b into C. Then 

the divide routine in the mainframe ROMs 

is executed and we loop back to the start 

of the loop at address 827E. 

Try this routine a few times. Place sixteen into Y and 999 into X. Then 

execute 10-BASE. The result in the display will be 3E7 pushed to the left 

of the display. Now if you hit the CLX button the characters in the display 

will be erased. The number in the X register will not be changed. If you 

hit the CLX button again then the number in the X register will be cleared. 

This routine does not provide for an input of zero in the X register. Don't 

forget to update the FAT before you try to execute this routine or you will 

get NONEXISTENT. 
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WRITING CUSTOM ERROR MESSAGES 

This section will deal with how to place your own error messages into the 

display. For example, if the base b in the last routine is greater than 36, 

you might want to display the error message BASE> 36. This would be much 

better than using the DATA ERROR message, which is used for many other 

purposes by the HP-41 system. A customized message would also give you the 

exact problem with your inputs to the routine. In order to do this we will 

show you how to program a routine that will output a message of up to 

twelve characters to the display. Three instructions will be introduced. 

They are FETCH S&X, POP ADR, and GOTO ADR. First we will show you 

a sample of what you would have to do for setup to use the routine that 

displays the message for you. We will use the addresses starting at 8400 

for our example. 

BASE> 36. 

The message we will display in our example will be 

Address Hexcode Mnemonic Description 

8400 

8401 

8402 

8403 

8404 

8405 

8406 

8407 

3Al 

088 

379 

03C 

020 

002 

001 

013 

?NC XQ 

22E8 

[ERRSUBj 

GOSUB 

8420 

"Bit 

"All 

"Sit 

This routine checks if user flag 25 is 

set; if this is the case we exit to a 

Normal Function Return, otherwise we re­

turn and continue on with this error pro­

cessing. 

This is the call to our subroutine that 

will output the characters in the message 

we wish to display. The characters are 

input immediately after the subroutine 

call. 

This is the first letter in the message we 

will display. Notice that the message is 

not in reverse order like the names of our 

routines. 

These are the second through the next to 

last letters. The hexcodes are just the 

-122-



8408 005 "E" 
8409 020 

840A 03E ">" 

840B 020 

840C 033 "3" 

840D 236 "6" 

840E 201 ?NC XQ 

840F 070 lC80 

[MSGl05] 

8410 3ED ?NC GO 

8411 08A 22FB 

[ERRllO] 

LCD representation of the characters as 

presented on page 108. 

This is the last letter of our 

message. Notice that the leftmost 

digit in the hexcode has been set to 2. 

In our routine when bit nine is set, the 

leftmost hexcode digit is either 2 or 3. 

This signals to the routine that this word 

contains the last character to be 

displayed. 

This mainframe routine enables chip 0, 

sets the message flag, and prints the 

message if the printer is in trace mode. 

This routine checks if we need to back-

step, due to an error while we were 

single-stepping or running a program, 

stops a running program, and computes a 

valid line number. It then exits to a 

Normal Function Return. 

Now we know how to set up for the routine but don't know how to get thl! 

message out to the display. This next little routine will send the 

characters out to the display and then left justify them. 

Address Hexcode Mnemonic 

8420 3Cl ?NC XQ 

8421 OBO 2CFO 

[CLLCDE] 

8422 lBO POP ADR 

8423 330 FETCH S&X 

Description 

This is a call to the mainframe routine 

that enables the display and then clears 

it (fills it with spaces). 

This instruction places the return address 

from the GOSUB statement into nybbles 3 to 

6 of C. This is the address of the first 
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8424 

8425 

8426 

8427 

8428 

8429 

842A 

842B 

842C 

842D 

842E 

23A 

3E8 

276 

3E7 

276 

3D7 

130 

020 

10E 

31C 

3F8 

C=C+I M 

WRIT 15(e) 

C=C-I XS 

JC -04 

C=C-I XS 

JC -06 

LDI S&X 

HEX: 020 

A=C ALL 

R= I 

READ 15(e) 

instruction after the GOSUB statement. 

This would be the "B" character. We then 

use the FETCH S&X instruction to get the 

hexcode of the instruction at the address 

in nybbles 3 to 6 of C. The hexcode for 

this instruction is placed in to the S&X 

field of C. The FETCH S&X instruction is 

the beginning of the loop to output the 

characters to the display. 

We now increment the return address by one 

so that we may get the next instruction if 

we loop back again to the FETCH S&X in­

struction. 

Now the character in the S&X of C is 

written out to the display using a nine 

bit transfer instruction. We then sub­

tract one from the exponent sign. If the 

exponent sign is zero we get an underflow 

which sets the carry and we jump back. We 

subtract one again to see if the exponent 

sign was one. If this was the case then 

we will get an underflow which sets the 

carry and we jump back. If the carry 

still has not been set then we know the 

9th bit was logic one and the character 

is the last in the message. 

This loads the hexcode for the space 

character into C and then it is saved in 

A. This part of the routine will strip 

off the spaces to the left of the message 

if there are any. The contents of the ADR 

field of C is also saved in A. 

Set pointer to I so we may compare digits 

o and I of A and C. 

This instruction reads the leftmost char-
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842F 

8430 

8431 

8432 

8433 

36A 

3F3 

3A8 

OAE 

lEO 

AIC R< 

INC -02 

WRIT 14(d) 

A<>C ALL 

GO TO ADR 

acter in the display lllto S&X of C and 

rotates the display left by one character. 

The character just read in becomes the 

rightmost character in the display. 

This is now compared to the hexcode for a 

space. If the two are equal we want to 

rotate the display so that the message 

will be moved toward the left and a space 

will be put at the right. Then we jump 

back to the READ instruction to get the 

next character. If A and C are not equal, 

we have hit a character that is not a 

space, i.e., the beginning of our message; 

we don't want to rotate this to the left 

of the display so we use the WRIT 14(d) 

instruction. This will write out the 

hexcode to the left of the display and 

shift all of the other characters right by 

one. 

Now we get the address of the next 

instruction, which we saved in nybbles 3 

to 6 of register A, and push it into the 

PC register using the GOTO ADR 

instruction. 

If you want to use this routine, you must change the call to the DATA ERROR 

message at address 8273. The new sequence should be put into the place of 

this call. 

Address Hexcode Mnemonic Description 

8273 027 IC +04 If the carry is set by the preceding in-

8274 365 struction (?A<C), we don't want to go to 

8275 08C GOTO the error message. We jump over the error 

8276 000 8400 exit because the calculator will interpret 
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the first two words as a ?NC XQ. If the 

carry is set, then this instruction will 

be skipped, but the third word of the 

relative GO TO will then be executed as 

an instruction. If the carry is not set, 

the JC instruction will be skipped and we 

shall go to the error message. The rest 

of the routine must be moved down by two 

words. None of the instructions after the 

GOTO change, they are just moved down. 

Now try the lO-BASE routine with a base greater than 36 and the error 

message BASE> 36 should come into the display. 

The mainframe ROMs have a routine that does almost the same thing as the 

routine that we wrote to display messages. There is one main difference 

between the routine we wrote and the one in the mainframe. With ours you 

may put characters from rows 10-13 of the LCD character table into the 

message at any point. With the one in the mainframe ROMs you may only have 

the last letter of the message from rows 10-13 of the LCD table. This is 

because the mainframe ROM routine only checks to see if the exponent sign 

(bits 8 and 9) of the character is not equal to zero. If it does not equal 

zero then the end of the message is reached. In our routine we check to see 

if bit 9 is set before we end our message. If bit eight is set and the 

middle digit is zero, then the character to be displayed will be from row 10 

of the LCD table. This only occurs if we are using nine bit transfers. The 

character "a" would have the hexcode 101. Our routine also left justifies 

the message in the display. The mainframe routine at address 07EF leaves 

the message right justified. In order to use the routine at 07EF you just 

replace the GOSUB 8420 statement in the error message with the ?NC XQ 07EF 

instruction. 

Well, that's all folks. hope this book has helped to give you an insight 

into how to program in the native language of the 41. There are many 

routines that need to be programmed using MCODE because of the speed 
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advantage or just because the desired result cannot be achieved using User 

code programming. 
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THE END 
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APPENDIX A-List of suppliers 

You may obtain MCODE storage devices (MLDL) from the following 

organiza tions. 

ERAMCO MLDL - ERAMCO Systems, Valentynkade 27-11, 

NL-1094 SR Amsterdam, The Netherlands. 

In the U.S.A. contact: PPC, P.O. Box 9599 

Fountain VaHey CA 92728-9599 USA. 

phone 714-754-6226 

or EduCalc Mail Store, 27953 Cabot Road, 

Laguna Niguel CA 92677 USA. 

phone 714-831-2637 

PROTOCODER II - ProtoTECH Inc., P.O. Box 12104 Boulder, CO 80303 USA 

Phone 303-499-5541 

For the annotated listing of the HP-41 mainframe ROMs contact: 

PPC, P.O. Box 9599 

Fountain Valley, CA 92728-9599 USA. 

phone 714-754-6226 

or Zengrange LTD., Greenfield road, 

GB-Leeds, WYORKS LS9 8DB, England. 

phone 0532 489048 

or Editions de Cagire, 77 rue de Cagire, 

F-31100 Toulouse, France. 

ZENROM: The ZENROM is a custom programmers module manufactured by 

Hewlett-Packard for Zengrange Ltd. It has the best 

dissassembler for MCODE to date. With this module you can key 
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in any synthetic instructions from the keyboard without the 

help of key assignments. To obtain the ZEN ROM write to: 

In the United States: 

Zengrange Ltd., Greenfield Road, 

GB-Leeds, WYORKS, LS9 8DB, England 

Phone 0532 489048 

EduCalc Mail Store, 27953 Cabot Road, 

Laguna Nigel CA 92667 USA. 

phone 714-831-2637 

or PPC, P. O. Box 9599, 

Fountain VaIIey CA 92728-9599 USA. 

phone 714-754-6226. 

Information on EPROM boxes may be obtained from the foIIowing sources. 

Contact them for the dealer nearest you. 

CorvaIIis MicroTechnology, Inc. 33815 Eastgate Circle, CorvaIIis OR 97333 

USA. phone 503-752-5456 

Hand Held Products, P.O. Box 2388, Charlotte, North Carolina 28211 USA 

Phone 704-541-1380 

Prototech Inc., P. O. Box 12104, Boulder, CO 80303 USA. Phone 303-499-5541 

The ASSEMBLER 3 EPROM may be obtained from: 

Deep Thinking Software C/O Michael Thompson, 24 Canterbury Road, 

CamberweII, Victoria 3124, Australia. 

The DAVID ASSEMBLER EPROM may be obtained from: 

ERAMCO Systems, Kromboomsloot 16-3 

101 I GW Amsterdam, The Netherlands 
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Phi Trinh's LOADP software package may be obtained from: 

Phi Trinh, P.O. Box 184, Rockport WA 98283 USA 

Two Users' Groups support HP-41 MCODE activity. For information on either 

one, send $1 or a self-addressed envelope with 3 ounces of postage to: 

Handheld Programming Exchange (HPX), P.O. Box 566727, Atlanta GA 30356. 

Phone (404) 391-0367 6-8 PM Eastern time. Publication plans are not firm as 

of Spring 1987. For back issues of the CHHU Chronicle, write: CHHU Back 

Issues, P.O. Box 10758, Santa Ana, CA 92711-0758, U.S.A., ph (714) 472-9580. 

PPC, P.O. Box 9599, Fountain Valley, CA 92728-9599 USA. Phone 714-754-6226 

Publishes the PPC Journal. 

Other HP-41 Users' Groups include: 

CCD (ComputerClub Deutschland), 

Postfach 2129, D-6242 Kronberg 2, West Germany. 

Publishes PRISMA (German) supporting synthetic programming and MCODE. 

PPC-Holland, c/o TH Boekhandel Prins, Binnenwatersloot 30, NL-2611 BK Delft, 

The Netherlands. 

PPC-Melbourne, P.O. Box 512, Ringwood, Victoria 3134, Australia. 

Membership enquiries: Edition du Cagire, 77 rue du Cagire, F-31100 Toulouse, 

France. Publishes PPC Technical Notes, supporting advanced synthetic 

programming and MCODE. 

PPC-Toulouse, 77 rue du Cagire, F-31100 Toulouse, France. 

Publishes PPC-T (French) supporting synthetic programming and MCODE. 

PPC-UK, c/o Astage, Rectory Lane, GB - Windlesham, Surrey, GU20 6BW, 

England. Membership enquiries: c/o Dave Bundy, 9 Kings Court, Kings Avenue, 

GB - Buckhurst Hill, Essex, IG9 5LP, England. Publishes "Datafile" 

(English) supporting synthetic programming and beginning MCODE. 
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APPENDIX B - What's up on entry to an MCODE routine 

~ 

Here we shall explain the status of the CPU upon entry to an XROM function. 

Here's the low down on what's up: 

l.) CPU is set to hex mode. 

2.) Pointer P is selected and set to l. The value of Q is variable. 

3.) Flags 48 to 55 of the user flag register are placed into ST. CPU flag 

7 corresponds to user flag 48 and 0 to 55. This is called Status Set 0 

(SSO). When this is contained in ST the User flag number may be 

calculated from a bit in ST by subtracting its number from 55 (i.e. 

status bit 5 is the message flag (50) since 50 = 55 - 5). Flags I and 

2 can be assumed to be clear upon entry to an XROM function since they 

correspond to the pause and 1/0 flags (the pause flag is cleared 

whenever any function is executed). 

4.) RAM chip zero is selected. 

5.) G is equivalent to the first byte of the XROM instruction. This is Aj 

in hex, where j may range from 0 to 7. Therefore bit three is always 

clear upon entry to an XROM function. This is useful for partial key 

sequencing which will be explained in detail later. 

6.) The address of the first line of the MCODE program is in nybbles 3 to 6 

of C. Nybbles 12 and 13 are always zero. 

If your function is executed as a global execute in a program (XEQ 

"ABCDEFG"), then some of the above are different. In particular, the 

pointer is set to 3 instead of I, register G contains the ROM ID number (l 

to 31), and it cannot be assumed that nybbles 12 and 13 of C are zero. You 

will not normally encounter this situation, because the instruction will 

change to an XROM when it is keyed into the program, unless the correspon­

ding module is not present at that time. 
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APPENDIX ZZZzzz ... - The 3 CPU modes 

There are three principal CPU modes. They are Deep sleep (calculator is 

off), Light sleep (41 on but CPU not running; also known as standby mode.), 

and Running (41 is execu ting code). If the CPU PC is at address 0000 as the 

result of a POWOFF instruction, it is fixed there and the 41 is in light 

sleep or deep sleep, waiting for a key to be pressed. If the ON key is 

pressed while in deep sleep, the carry is set, providing for a branch to the 

deep sleep wakeup routine at DIAD. If any key is pressed while in standby 

mode, the carry flag is clear and the light sleep wakeup routine at 0180 is 

executed. 
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APPENDIX C - Other Advanced Stuff 

In this section we shall cover the various keycodes used by the mainframe, 

and how to make your MCODE programs nonprogrammable and/or prompting. First 

we cover the special key tables. 

The mainframe has three tables listed in its coding that define keycodes for 

different keyboards. They are the default function keyboard (this is used 

when an unassigned key is pressed), the ALPHA keyboard (used when we are in 

alpha mode), and the partial key table, which is consulted during a partial 

key sequence. There is also a table contained in the hardware of the micro­

processor. Its values are placed into the KY register whenever a key is 

pressed. From these values two more key tables are computed. They are the 

logical key table and the assignment key table. The tables are shown on 

pages 149-150. 

In order to make a MCODE function non programmable (so the function will run 

instead of being inserted when executed in program mode), just make the 

first executable instruction of the function a NOP. For example, if the 

first line of the GE routine were a NOP and all of the rest of the code was 

pushed down by one word, you could execute "GE" in program mode and you 

would end up at line 000 of the last program in memory. It would not be 

inserted as a program line. We shall rename the routine and make it nonpro­

grammable. The new name is GEE. 

Address Hexcode Mnemonic 

82AB 

82AC 

82AD 

82AE 

085 

005 

007 

000 

"£" 
"£" 
"Gil 

NOP 

"GEE" 

Description 

Name for GEE function. 

This is the start of the routine. The 

address in the FAT points to this 

instruction. 
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82AF 378 

82BO 05A 

82Bl OIC 

82B2 ODO 

82B3 OC4 

82B4 2C8 

82B5 328 

82B6 3EO 

READ 13(c) 

C=O M 

R= 3 

LD@R 3 

CLRF 10 

SETF 13 

WRIT 12(b) 

RTN 

This was the first instruction in the old 

routine. The rest of the routine is the 

same as before. 

The address in the FAT points to the NOP instruction, not the READ 13(e) 

instruction. Now if you execute "GEE" in program mode you will end up at 

line 000 of the last program in memory; the instruction will not be inserted 

as a program line. 

In order to allow a function to become prompting, the first and second 

letters of the program name have the leftmost digit of their hexcode set to 

something other than zero. For example, here is what the name for the COPY 

function in the calculator looks like. 

Hexcode Letter 

099 "Y" 

010 "P" 

OOF "0" 

103 "c" 
first exeeu ta ble instruction 

Notice that leftmost digit of the hexcode of "c" is a one. This signals to 

the calculator that some kind of prompt is needed. This digit may also be a 

two or three. The leftmost digit in the second letter of the function can 

range from zero to three. Here is a chart of the different combinations 

that produce prompts. 
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Example Leftmost digit of 

1 st Chr 2nd Chr 

SIN 

COpy 

DEL 

FIX 

STO 

ASTO 

FS?C 

LBL 

XEQ 

GTO 

o 

2 

2 

2 

2 

3 

3 

3 

3 

o 

2 

3 

o 

2 

3 

o 

2 

3 

Type of prompt 

If the leftmost digit of the first character of 

the name is zero, the second character is not 

looked at. 

Alpha input only (null input okay). 

Three digits or four by pressing EEX. 

Same as for COPY except null input is not 

accepted (hitting the ALPHA key twice while 

entering no letters). 

Allows entry of a single digit, an indirect 

register, or indirect stack. 

Accepts two digit entries, indirect, indirect 

stack, and stack. When the +, -, *, or / key 

is pressed at the double prompt the function 

defaults to the storage arithmetic function. 

Same as above except the storage arithmetic 

part does not work. 

Allows two digit entries, indirect, or indirect 

stack. 

Same as above. 

Allows non-null alpha input or two digit num­

bers. 

Accepts non-null alpha, indirect stack, stack, 

or two digits inputs. 

Allows two digit input or non-null alpha. 

Accept two digit entries, non-null alpha, 

indirect, indirect stack. If the decimal key 

is pressed while there are two prompts showing, 

the function changes to GTO . __ _ 

For numeric entries the hex equivalent of the number entered is put into the 

S&X field of CPU register A. For example, if you entered 46 at the double 
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prompt, then 02E would end up in S&X of A. For indirect inputs just add hex 

80 to the hex value of the number entered. NOTE: Stack suffixes (the ones 

that appear in the display as ST _ ) apply only to mainframe functions. 

These suffixes will not operate as might be expected in your XROM functions. 

Alpha entries are placed into register Q of the status registers. They are 

put there in reverse order and right justified with unfilled places being 

filled with 00 bytes. For example, if you filled in "QWERTY" at the prompt 

the Q register would look like the following: 00 Y T R E W Q. The 00 is the 

filler byte since there were only six letters entered. 

Any function that uses one of these prompts should also be made nonprogram­

mabie. If it is executed in program mode the function will be inserted as a 

program line, and the value keyed in at the prompt will be lost. Only 

mainframe functions can use that value when inserted in a program. 

The prompts for the above functions are dictated by a process called partial 

key sequencing. This is an esoteric procedure that has not previously been 

documented. Very few people fully understand its intricacies. The leftmost 

hex digit of the first two characters of the name in these MeaDE functions 

are called op bits. These are used by the mainframe to tell what kind of a 

prompting function is being executed. The op bits for the first character 

are called opl, and the bits for the second character are called op2 (these 

are the leftmost hex digits in the first two characters of the name as 

previously described). 

These op bits form part of a special pair of status bytes called PTEMPI and 

PTEMP2. PTEMP2 is saved in register G during partial key sequence proces­

sing and in nybbles 3 and 4 of status register e during standby mode while 

in a partial key sequence. The eight bits of PTEMP2 are designated as 

follows: 
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Bit Description 

OBit 0 of op2 (bit 8 of the second character of the function name). 

I Bit I of op2 (bit 9 of the second character of the function name). 

2 Bit 0 of opl (bit 8 of the first character of the function name). 

3 This bit is always zero. Bit I of opl initially accompanies the 

preceding 3 bits, but it is left in bit 3 of ST, before PTEMP2 is fully 

formed. 

needed. 

Bit I of opl is tested at that point, then it is no longer 

4 If this bit is set the function will be inserted as a line in a program. 

This is called the INSERT bit. Before setting this bit, the mainframe 

checks that you are in program mode and that the function is 

programma ble. 

5 This is the XROM bit indicating the function resides in a non-mainframe 

ROM. This bit only affects numeric entries. When clear, it indicates 

that the numeric entry value from the S&X field of A is to be merged 

with the function code as the postfix of a mainframe function. When the 

XROM bit is set, the value is left in S&X of A for use by the XROM 

program. 

6 This is the IND bit. When set, hex 80 is added to the number in S&X of 

A. This bit's use is associated with the partial key sequencing of 

mainframe functions using an indirect operand. 

7 This bit is unused by PTEMP2. 

PTEMPI is formed by setting aside the rightmost digit of the corresponding 

key from the partial key table, and multiplying the two leftmost digits by 

4. Bits 0 to 3 of PTEMP2 are then added to this value. Note that there is 

no overlap in this addition, since the middle digit of the key table entry 

is always divisible by two, and since bit 3 of PTEMP2 is always zero. From 

this we get the following definitions for the 8 bits of PTEMPI: 

Bit Description 

o This is bit 0 from PTEMP2 (bit 0 of op2). 

Bit I of PTEMP2 (bit I of op2). 
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2 Bit 2 of PTEMP2 (bit 0 of opl). 

3 If a digit key was pressed then this bit will be set. This is for 

digi ts 0 to 9. 

4 If a key from row one or two of the keyboard (A through J) was pushed 

then this bit will be set. 

5 When the ALPHA mode key is pressed this bit is set. 

6 This bit is set when the SHIFT key is pushed. 

7 When the decimal point is pressed this bit is set. 

Upon return from a partial key sequence keystroke, PTEMP 1 is in register ST, 

PTEMP2 is in register G, the rightmost digit of the keycode from the partial 

key table is in the mantissa sign of A, and the keycode from the logical key 

table is in nybbles and 2 of register N. 

In order to write your own partial key sequencing routine you must merely 

ensure that bit three of register G is zero upon entry. The rest of PTEMP2 

is generally meaningful only for functions whose prompting is dictated by 

the op bits in its name, and can usually be ignored when setting up partial 

key sequences in the coding of an MeODE program. There are four entry points 

used for this purpose. They are at OE45, OE48, OE4B, and OE50. Upon entry 

to these locations the display must be enabled. These addresses must be 

called as a subroutine so control can be returned to your program once a key 

has been pressed. Now we shall describe each entry point. 

Address Description 

OE45 This entry appends a single underscore to the display. The 

[NEXTl] display is then left justified. The FIX instruction is an 

example of a single underscore function. 

OE48 

[NEXT2] 

OE4B 

[NEXT3] 

Here two underscores are appended to the display before left 

justification takes place. The STO function is an example of 

this type of prompt. 

Three underscores are placed into the display by this entry 

point. The display is then left justified. The DEL instruction 

is an example of this type of prompt. 
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OE50 

[NEXT] 

This entry point does not append an underscore to the display. 

The display must have at least one character present which is not 

a space, otherwise the left justify routine will go into an 

infinite loop since it looks for a non-space character. 

These routines set the partial key (46) flag and the message flag (50). 

(Setting the message flag turns out to be unnecessary in this particular 

case.) They then update the annunciators in case the ALPHA key was pressed 

in preparation for entry of a function name or the SHIFT key was pressed 

during entry of the characters of a function name. Finally the keyboard is 

reset, and we go into standby mode. 

When a key is pressed, the calculator starts executing code and figures out 

that we are in the middle of a partial key sequence (the partial key flag is 

set). The partial key table is then consulted in order to construct PTEMPl. 

Then the display is right-justified and all of the prompts (underscores) are 

removed. Finally a check is made to see if the backarrow key was pressed. 

If it was, a return is made to the step immediately following the execute 

statement of the partial key sequence routine. If some other key is 

pressed, the step immediately after the execute statement is skipped. Your 

program may now use PTEMPI and the contents of the mantissa sign of A 

(and/or the logical keycode in nybbles I and 2 of register N), to figure out 

which key was pressed and go off and do the appropriate stuff. If you have 

a multiple prompt you will want to place the pertinent character into the 

display and call one of the above routines which appends one less prompt 

than was previously in the display. When you are finished prompting for 

input you should execute the routine at 0385 to clear the message flag (50) 

and the partial key flag (46) in order to tell the calculator you are no 

longer in a partial key sequence. 

We now introduce a program which uses one of the partial key sequence entry 

points. It is a routine for entering non-normalized numbers directly from 

the keyboard. The 0-9 and A-F keys are reassigned to allow them to be 

executed from an unshifted keyboard. The routine places the ASCII digits 

into alpha and then codes the rightmost fourteen characters into X upon 
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exit. This routine was written by Clifford Stern. It is called HXENTRY. 

Address Hexcode Mnemonic 

82B7 

82B8 

82B9 

82BA 

82BB 

82BC 

82BD 

82BE 

82BF 

82CO 

82Cl 

82C2 

82C3 

82C4 

82C5 

82C6 

82C7 

82C8 

099 

012 

014 

OOE 

005 

018 

008 

345 

040 

3Cl 

OBO 

115 

038 

07B 

04C 

lIB 

35E 

3D3 

"Y" 

"R" 

"T" 

"N" 

"E" 
"X" 
"Hit 

?NC XQ 

10Dl 

[CLA] 

?NC XQ 

2CFO 

[CLLCDE] 

?NC XQ 

OE45 

[NEXTl] 

JNC +OF 

?FSET 4 

JNC +23 

?AfO MS 

JNC -06 

"HXENTRY" 

Description 

Routine name 

These first two executes clear the alpha 

register (l OD 1) and clear and enable the 

display (2CFO). 

Next a single underscore is ·pushed into 

the right of the display which is then 

left justified. Chip 0 is then enabled so 

the partial key sequence flag (46) and the 

message flag (50) can be set. The key­

board is then reset and we go into standby 

mode. 

If the back arrow key is pressed we return 

here and jump to a routine which deletes 

the rightmost character from both the 

display and the alpha register. 

If flag 4 is set, a key from row 1 or 2 

has been pressed. We jump to another flag 

test if the flag is clear. 

If we make it to here a row 1 or 2 key has 

been pressed. The least significant digit 
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82C9 

82CA 

82CB 

82CC 

82CD 

82CE 

82CF 

82DO 

82Dl 

82D2 

82D3 

82D4 

130 

007 

33C 

31E 

3AB 

OBE 

2FC 

3E8 

110 

OEB 

3B8 

149 

LDI S&X 

HEX: 007 

RCR 1 

?A<C MS 

JNC -OB 

A<>C MS 

RCR 13 

WRIT 15(e) 

LD@R 4 

JNC +1D 

READ 14(d) 

?NC XQ 

of the keycode (see partial key table on 

page 150) is placed into the mantissa sign 

of A. If it is zero, the J key has been 

pressed. Since this is not a hex digit we 

ignore the key and jump back to 82C2. 

Now we load a seven and rotate it into the 

mantissa sign of C so we may compare it to 

the number in the mantissa sign of A. 

This has the additional feature of 

clearing what is now digits zero and one 

of C. 

If the key pressed is not less than G (7) 

then we ignore it and jump back to 82C2. 

If we get to here we know that a key from 

A to F has been pressed. First we place 

the least significant digit of the keycode 

from the partial key table into nybble 0 

of C. Then we send it to the right end of 

the display. The partial key sequence 

routine leaves the pointer set to one so 

we may load a 4 to obtain the ASCII equi­

valent. We then jump to the code that 

appends this to alpha. 

This is where we jump to if the backarrow 

key was pressed. Upon return from a par­

tial key sequence the display is right 

justified and the prompts are deleted. 

Therefore the character we want to remove 

is the rightmost in the display. The READ 

14(d) instruction rotates the display 

right by one character. When we return to 

82C2 a prompt is pushed into the right of 

the display and the character to be de­

leted is shifted off the display. 

First chip 0 is enabled and the display is 
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82D5 

82D6 

82D7 

82D8 

82D9 

82DA 

82DB 

82DC 

82DD 

82DE 

82DF 

82EO 

82EI 

82E2 

82E3 

82E4 

82E5 

82E6 

82E7 

82E8 

82E9 

82EA 

82EB 

82EC 

82ED 

82EE 

024 

238 

10E 

IF8 

OAA 

23C 

2FO 

IB8 

OAA 

23C 

2FO 

178 

04A 

OAA 

23C 

2FO 

OAE 

23C 

228 

073 

OOC 

07B 

OBE 

2FC 

ODO 

368 

0952 

[ENCPOO] 

READ 8(P) 

A=C ALL 

READ 7(0) 

A<>C R< 

RCR 2 

WRITE DATA 

READ 6(N) 

A<>C R< 

RCR 2 

WRITE DATA 

READ 5(M) 

C=O R< 

A<>C R< 

RCR 2 

WRITE DATA 

A<>C ALL 

RCR 2 

WRIT 8(P) 

JNC +OE 

?FSET 3 

JNC +OF 

A<>C MS 

RCR 13 

LD@R 3 

WRIT 13(c) 

disa bled. The pointer has been left at 

one upon exit from the partial key sequen­

ce routine. What is now done is to delete 

the rightmost character from the alpha 

register. This is done by successive 

manipulation of the first and last digits 

of each register of alpha. We then jump 

down to a point that enables the display 

and goes back to 82C2. 

This is where we end up if the key that is 

pressed is not a key from row 1 or 2. If 

flag 3 is set then a numeric key was 

pressed. If a numeric key was not pressed 

then we go to a point to check if the 

decimal point was pressed. 

Now we know a numeric key has been pres­

sed. The number is retrieved from the 

mantissa sign of A and rotated into nybble 

zero of C and a three is loaded into 

nybble 1. This is then written out to the 

right of the display. We use an eight bit 

display transfer since we can't depend on 

nybble 2 being even. 
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82EF 

82FO 

82FI 

82F2 

82F3 

82F4 

82F5 

82F6 

82F7 

82F8 

82F9 

82FA 

82FB 

82FC 

82FD 

82FE 

82FF 

8300 

8301 

8302 

058 

149 

024 

051 

OB4 

042 

058 

3D9 

OIC 

253 

28C 

OIB 

2C4 

03B 

130 

370 

106 

OBO 

366 

207 

G=C 

?NC XQ 

0952 

[ENCPOO] 

?NC XQ 

2DI4 

[APNDNW] 

C=O @R 

G=C 

?NC XQ 

07F6 

[ENLCD] 

JNC -36 

?FSET 7 

JNC +03 

CLRF 13 

JNC +07 

LDI S&X 

HEX: 370 

A=C S&X 

C=N 

?A",C S&X 

JC -40 

This is the place we enter to append 

characters to alpha. The pointer is now 

zero so nybbles zero and one of Care 

saved in G. We then enable chip 0 and 

disable the display (0952). The append 

routine (2DI4) takes the contents of G and 

places it as the last character in alpha. 

The purpose of this pair of instructions 

is to clear bit 3 of register G. This 

will provide for PTEMP I to be correct upon 

return from the next execution of partial 

key sequencing. 

We now enable the display so that we may 

return to address 82C2. 

This routine may be inserted as a line in 

a program. If we are in a running program 

the R/S key will halt digit entry and the 

program will continue. However if the 

decimal key is pressed the program will be 

terminated. If flag 7 is set the decimal 

key was pressed. CPU flag 13 is cleared 

in order to halt a running program. We 

then go on to finish the routine. 

If flag 7 is not set then a key other than 

a hex entry or the decimal point has been 

pressed. We shall now check if the R/S 

key was pushed. We load the logical key­

code of R/S into nybbles one and two of C 

then transfer this to A. The logical 

keycode for the key that was pressed is in 

nybbles one and two of N. We retrieve 

this into C and they are compared. If the 

R/S key was pressed we continue on with 
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8303 

8304 

8305 

8306 

8307 

8308 

8309 

830A 

830B 

830C 

830D 

830E 

830F 

8310 

8311 

8312 

8313 

3D9 

OBO 

261 

000 

149 

024 

215 

OOC 

130 

049 

23C 

OEE 

35C 

OOE 

IB8 

OAE 

33E 

?NC XQ 

2CF6 

[CLRLCD] 

?NC XQ 

0098 

[RSTKB] 

?NC XQ 

0952 

[ENCPOO] 

?NC XQ 

0385 

[RSTSQ] 

LDI S&X 

HEX: 049 

RCR 2 

C<>B ALL 

R= 12 

A=O ALL 

READ 6(N) 

A<>C ALL 

?A<B MS 

the routine. Otherwise, we ignore the key 

and jump back to 82C2. 

The display is cleared (2CF6) to clean it 

up. The keyboard is then reset (0098). 

This is just waiting for the release of 

the key. If this is not done the routine 

could finish and the function on the 

depressed key would be executed. 

Chip 0 is now enabled and the display is 

disabled (0952). The message (50), and 

the partial key sequence (46) flags are 

cleared (0385). User flags 48 to 55 are 

loaded into register ST. 

This value is used to CODE the rightmost 

fourteen digits of alpha. We shall now 

rotate these digits into nybbles 12 and 13 

of register C. They are then transferred 

to register B so we may do a series of 

comparisons and possible additions with 

register A. 

The pointer is set to 12 so we may add the 

two nybbles in A and B when an alphabetic 

character is processed. 

Clear what will become the accumulator 

register. If there are fewer than eight 

characters in alpha the inner loop won't 

be executed 14 times so we must have 

leading zeros in C to account for this. 

Characters eight through fourteen are 

placed into C so we may begin coding them. 

This is the beginning of the outer loop. 

The contents of C are either status regis­

ter M or N. 

We now check to see if we have an alpha 
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8314 

8315 

8316 

8317 

8318 

8319 

831A 

831B 

831C 

83lD 

017 

122 

3EE 

OBE 

3EE 

2FC 

34E 

3C7 

30C 

02F 

JC +02 

A=A+B @R 

LSHFA ALL 

A<>C MS 

LSHFA ALL 

RCR 13 

?A;ofO ALL 

JC -08 

?FSET I 

JC +05 

character, or instead a digit character or 

a null byte. If the mantissa sign of A is 

less than four the latter is the case (the 

most significant hex digit of an alpha 

character is four). If that is true then 

we skip the addition step because the 

least significant digit of that byte is 

the correct hex equivalent. For alpha hex 

numbers a nine must be added to this digit 

to correct it (i.e. A is 41 in ASCII and 

we add 9 to get 4A which sets the right­

most digit to the character it repre­

sents). This is the start of the inner 

loop. 

The A register is shifted left to discard 

the left n yb ble of the character just 

examined. This places the desired digit 

in the mantissa sign of A. We now place 

this into C and shift A left again to 

bring up the next character to be coded. 

The digit in the mantissa sign of C is now 

rotated to the right end. 

If there are more characters to be coded, 

A will not be equal to zero and we jump 

back to the start of the inner loop at 

address 8313. 

If this is the first time through the loop 

this flag will be clear. We know this 

because status set zero was placed in 

register ST. Status set 0 is in ST as a 

result of the call to 0385, and flag 

corresponds to the pause flag which is 

cleared by that routine. If it is set we 

jump to the end of the routine and finish 

up. 
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831E 

831F 

8320 

8321 

8322 

8323 

8324 

308 

10E 

178 

38B 

OEE 
OB9 

04A 

SETF I 

A=C ALL 

READ 5(M) 

JNC -OF 

C<>B ALL 

?NC GO 

122E 

[RCL] 

Setting this flag tells us that this is 

the second time through the inner loop. 

The result from the first execution of the 

inner loop is temporarily saved in A so we 

may fetch the rightmost seven characters 

of alpha. We then jump back to the begin­

ning of the outer loop at address 8312. 

The final value is in C and we save it in 

B as required by the routine at address 

122E, which sends register B to X accor­

ding to the status of the stack enable 

flag (CPU flag 11). 

To use this routine execute HXENTRY. The program will place a single prompt 

in the left of the display. You may now press any key, with only the 0 to F 

keys entering digits into the display. The ON, R/S, and Decimal Point keys 

will terminate the routine. If the R/S key is pressed when the function was 

executed in a running program the program resumes running. With the decimal 

point the program is terminated. The backarrow key deletes the rightmost 

character in the display and alpha. All other keys are ignored. 

We are providing another routine that executes just the CODE section of 

HXENTRY; the contents of alpha are coded into X. However, you must enter 

the alpha characters manually (or from a program) and then execute CODE. 

Here is the routine. It simply uses the CODE portion of HXENTRY to do all 

of the dirty work. 
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Address Hexcode 

8325 085 

8326 004 

8327 OOF 

8328 003 

8329 313 

Mnemonic 

liE" 

liD" 

ItO" 

ttC" 

JNC -IE 

CODE 

Description 

Routine name. 

This is a jump back to the CODE section of 

HXENTRY. 
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MAINFRAME KEY TABLES 

Alpha Keyboard Default Function Table Logical Keycodes 

10C 10C 10C 10C 10C IOC 46 45 44 

61 62 63 64 65 148 153 151 157 155 08 18 28 38 48 

41 42 43 44 45 147 160 152 156 150 00 10 20 30 40 

7E 25 ID 3C 3E 170 14C 15C 15D 15E 09 19 29 39 49 

46 47 48 49 4A 171 175 159 15A 15B 01 11 21 31 41 

IDE 7F 19A 19B 207 IDE 10F 1CF IDO 107 OA 1A 2A 3A 4A 
IDE 4B 4C 4D 108 IDE lEO 191 190 108 02 12 22 32 42 

5E D 24 187 100 196 185 177 DB 2B 3B 4B 
4E 4F 50 0 183 1C 1B 0 03 23 33 43 

2D 37 38 39 178 1A8 1A9 lAC DC 1C 2C 3C 
51 52 53 54 141 17 18 19 04 14 24 34 

2B 34 35 36 146 186 14E 14F OD ID 2D 3D 

55 56 57 58 140 14 15 16 05 15 25 35 

2A 31 32 33 145 19C 19D 19E DE IE 2E 3E 

59 5A 3D 3F 142 11 12 13 06 16 26 36 

2F 30 2E 17E 167 172 176 198 OF IF 2F 3F 

3A 20 2C 105 143 10 IA 105 07 17 27 37 
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MORE MAINFRAME KEY TABLES 

PAR TIAL KEY TABLE KEY CODES from K Y ASSIGNMENT KEY TABU 

000 000 080 18 C6 C5 C4 (top keys not assignable) 

09 19 29 39 49 
041 042 043 044 045 10 30 70 80 CO 01 11 21 31 41 

OA lA 2A 3A 4A 
046 047 048 049 040 11 31 71 81 Cl 02 12 22 32 42 

OB IB 2B 3B 4B 
100 000 000 000 000 12 32 72 82 C2 03 13 23 33 43 

OC 2C 3C 4C 
000 000 000 OOF 13 73 83 C3 04 24 34 44 

OD 1D 2D 3D 
002 027 028 029 14 34 74 84 05 15 25 35 

DE IE 2E 3E 
001 024 025 026 15 35 75 85 06 16 26 36 

OF IF 2F 3F 
003 021 022 023 16 36 76 86 07 17 27 37 

10 20 30 40 
004 020 200 000 17 37 77 87 08 18 28 38 
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APPENDIX D - Using the Polling Points 

You may remember when we were describing which words in a 4K page had been 

set aside for specific purposes, the words from addresses PFF4 to PFFA were 

off limits unless you knew exactly what you were doing. During certain 

This entails specific times the 41 conducts a process called polling. 

checking a fixed polling point in all ROMs from page 5 to F. In order to 

use these points several conditions must be observed. We shall now describe 

how these may be used. First, if there is any nonzero word in one of the 

polling point addresses and the calculator polls that address then it will 

branch there and start executing code. Usually we put a JNC that jumps to 

the start of the routine we wish to execute. The seven different polling 

points are polled at specified times. These times are given below. 

Address Description of poll 

PFF4 This is the pause loop interrupt. Any time the calculator 

executes the PSE instruction this address is polled. 

PFF5 

PFF6 

PFF7 

PFF8 

PFF9 

PFFA 

This address is polled after any RPN function is executed, if user 

flag 53 or peripheral flag 13 is set. This includes execu tion of 

functions during a User code program, and is called the main 

running loop interrupt. 

This is polled when the calculator is turned on by something other 

than the ON button (for example, an alarm). 

This location is polled when the calculator is being turned off. 

This is polled whenever the calculator goes into standby mode, and 

is called the I/O interrupt. 

The calculator polls this address when it is turned on using the 

ON button. 

Whenever there is a MEMORY LOST this location is polled. 

Once you have taken control by using one of these interrupts you MUST 

observe some rules. 
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Your routine must exit with the following intact: 

1.) Restore nybbles 10 through 3 of register C to what they were when you 

took control at the interrupt. 

2.) Have P as the selected pointer. 

3.) Load flags 48 to 55 of the user flag register into CPU register ST. 

This set of flags is called status set zero (SSO). 

4.) Have chip 0 (the status registers) selected. 

5.) The CPU must be in HEX mode. 

6.) You must do a GO TO to 27F3 to end the interrupt and give control back to 

the calculator so that it may continue polling. 

If any of these rules are not observed the calculator could end up doing 

some strange things (like locking up the keyboard). To clarify this mess we 

shall do an example. In our example we shall use the MEMORY LOST interrupt. 

Whenever a MEMORY LOST occurs we shall resize the calculator to a size of 25 

instead of the normal 273 (CV) or 100 (CX). Here is the routine. 

Address Hexcode Mnemonic 

8FE8 

8FE9 

8FEA 

8FEB 

8FEC 

8FED 

8FEE 

268 

130 

019 

106 

244 

259 

05C 

WRIT 9(Q) 

LDI S&X 

HEX: 019 

A=C S&X 

CLRF 9 

?NC XQ 

1796 

Description 

This is the entry to our routine. The 

first thing we do is save register C in Q 

so that we may retrieve it later as re­

quired. 

We shall now load the size (25 in decimal) 

into S&X of C and then transfer it to A. 

This is done because the size routine 

requires the specified size to be in A 

(remember SIZE is a prompting function). 

We shall now call the routine in the main­

frame that changes the size. Flag 9 is 

cleared in case we should get an error. 

If we get an error, the routine will just 

return and do nothing if flag 9 is 

cleared. If it were set we would go to the 
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8FEF 

8FFO 

8FFI 

8FF2 

8FF3 

25D 

OIC 

278 

3CD 

09E 

?NC XQ 

0797 

[LDSSTO] 

READ 9(Q) 

?NC GO 

27F3 

PACKING error message and would not be 

able to return control to the polling 

process. 

This entry point selects chip zero, and 

then places the user flag register into C. 

Flags 48 to 55 are then placed into the ST 

register. 

Now we retrieve the original contents of C 

upon entry to the poll. 

We then exit back to the mainframe after 

having satisfied all of the described 

conditions. The size routine does not 

change the selected pointer so we didn't 

have to do anything about that. 

Now we shall place the jump from the MEMORY LOST interrupt location at 8FFA 

to the beginning of our routine which is at 8FE8, by using a INC -12 

(hexcode 373). Always remove the word at the interrupt location before you 

modify the routine that uses the interrupt. After you have updated the 

routine make sure that the interrupt jumps back to the correct place or you 

could lose control of the calculator when the interrupt is polled. 

If you happen to place the jump to a wrong location and the calculator goes 

crazy, try the following: unplug you MLDL and regain control of the 

calculator. Now change the selected page of your MLDL to page 2. Then 

write NOPs (000) to all of the interrupt locations (2FF4-2FFA). You may now 

place your MLDL back to the original page. 
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APPENDIX E - MeODE Debugging Program 

Clifford Stern has written a program to allow you to interrupt your MCODE 

routine. This routine saves the contents of all the CPU registers at the 

point of interruption in the RAM of the calculator. The 16 status registers 

are also saved away. The name of the routine is BREAK. 

To use BREAK you must have the address of the point you wish to insert the 

breakpoint in X. Place it there using HXENTR Y (example, for address 8967 

press the 8, 9, 6, and 7 keys at the prompt and then press R/S). Then 

execute BREAK. The breakpoint is inserted automatically by the program and 

user flag 1 will be set. Flag 1 should be cleared before you execute BREAK. 

You must be sure that the carry is not set by the instruction immediately 

preceding the breakpoint. This is because the BREAK routine writes an ?NC 

GO to the debugging routine. Now load the appropriate data and execute the 

function to be debugged. When the breakpoint is reached during execution of 

your function, the CPU and status registers are written into the last 25 

data registers of the calculator RAM (lE7-lFF), the original program bytes 

are restored, and flag 1 is cleared. The routine assumes that you have a 

41CX, 41CV, or a 41C with a quad memory module. If the number of data 

registers available is less than 25 then BREAK exits to the NONEXISTENT 

error message. If flag 1 is still set when the routine finishes (crashes?) 

the breakpoint was not reached. To restore the original bytes just clear X 

and execute BREAK. Registers IFE and IFF are reserved for use by the BREAK 

program, and must not be altered by the routine being debugged. 

The Data is saved in the RAM registers in the order shown on the next page. 

Note: The MCODE debugging program does not work with the PROTOCODER MLDL 

device because of the different method of writing to the device. 
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a bs. Contents 

reg.# 13 12 1 1 10 

487 0 0 <---R TN 

488 <-K Y-> <---R TN 

Detail of XY: 

BIT # 7 6 5 4 3 

FLAG#13121110 9 

of register by nybble 

9 8 7 6 5 4 3 2 0 

#3---> <---R TN #2---> <---R TN # 1---> 

#4---> <-XY-> P Q <-G-> <-ST-> 

2 0 

8 v w 

v=O/l denotes hex/dec mode 

w=O/l denotes SLCT P/Q 

489 <------------------- CPU REGISTER C -----------------------> 

490 <------------------- CPU REGISTER A -----------------------> 

491 

492 

493 

494 

495 

496 

497 

498 

499 

500 

501 

510 

51 1 

<-------------------

<-------------------

<-------------------

<------------------

<------------------

<------------------

<------------------

<------------------

<------------------

<------------------

<------------------

<------------------

CPU REGISTER B -----------------------> 
CPU REGISTER M -----------------------> 
CPU REGISTER N -----------------------> 

STATUS REGISTER T -------------------> 
STATUS REGISTER Z -------------------> 
STATUS REGISTER Y -------------------> 
STATUS REGISTER X -------------------> 
STATUS REGISTER L -------------------> 
STATUS REGISTER M -------------------> 
ST ATUS REGISTER N -------------------> 
STATUS REGISTER 0 -------------------> 
ST ATUS REGISTER P 

<breakpoin t ADR> <break word> 

< break ADR + 1 > <break word> 
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In order to examine this output use the following User-code routine. The 

DECODE function is given after the listing for BREAK. It decodes the 

contents of X into its hexidecimal representations and puts the result into 

alpha and the display. The program is called "RR". To view the contents of 

the desired register just place the absolute address in X and XEQ "RR". The 

hexidecimal representation of the contents of the desired register will be 

viewed, and printed if possible. Just hit R/S to examine each successive 

register. 

LBL "RR" 

NR 

DECODE 

PROMPT 

LASTX 

+ 
GTO "RR" 

END 

This is the non-normalized recall from our sample ROM. 

This routine is listed at the end of this appendix. 

In order to efficiently use BREAK you should use the following short User­

code program. 

LBL "?" 

HXENTR Y Enter the address at which you wish to insert the breakpoint. 

BREAK 

This is where you place the steps to load the data for your 

function. Then place the function after the data is loaded. 

487 This number points to the lowest register in which data is saved 

by BREAK. It may be changed to start at any other register you 

wish to examine. 

GTO "RR" 

END 
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After assigning n?n to a key, this routine can be used to efficiently probe 

for errors in an MCODE program. To view the contents of the display at the 

breakpoint, set user flag 2 and place a STOP instruction before the 487 

program line. 

There are two values that the BREAK program does not give you. They are the 

value of the RAMSLCT pointer and the contents of register T. In order to 

obtain these values a second program was integrated into the BREAK program. 

It is called RSCL T. This routine uses the breakpoint location that was used 

by the last execution of BREAK. So BREAK must be executed before RSLCT is 

used. The results from RSLCT are placed in the X register. The RAMSLCT 

value is in the S&X field and the contents of register T are placed into 

nybbles 3 and 4. If the selected RAM register is nonexistent, the S&X field 

of X will be set to FFF. To use this function just execute RSLCT and then 

load the same data used for the previous execution of BREAK. Now execute 

the function you are debugging. To view the results of RSLCT just execute 

DECODE. The system RSLCT uses to compute the RAMSLCT value was pioneered by 

Paul Cooper. 

Another routine we are providing for your programming pleasure is called 

LOOP. This function allows you to debug a loop within a program. You can 

execute the loop a specified number of times before the debugging routine 

dumps the CPU registers to RAM for inspection. 

In order to use this routine you must be a genius on the order of Albert 

Einstein (just kidding). The number of times the breakpoint is bypassed is 

taken from the Y register. The address of the breakpoint is placed in X and 

is of the same format as for BREAK. The breakpoint location must be at a 

pair of NOPs since processing continues past the breakpoint a number of 

times. The LOOP routine uses one subroutine level and in addition utilizes 

the tone register (T) to store the loop counter. This precludes use of 

register T in your program and you cannot have more than three pending 

returns in the subroutine stack at the breakpoint. LOOP places the 41 into 

buzz mode (nonzero value in register T). If the debugging is not allowed to 

finish, the calculator can be removed from buzz mode by executing BEEP with 
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flag 26 set. 

LOOP requires two NOPs for its ?NC XQ to be inserted into your program. If 

this is not possible use the following procedure. 

1.) Insert a jump to a location that contains the NOPs. 

2.) Place the instruction that was replaced by the jump at the location to 

which you jump. Follow this instruction with two NOPs and then a jump 

to the step after the first jump instruction. Here's an example. 

Address Mnemonic 

Pabc ABC 

XXXX NOP 

XXXX NOP 

XXXX JNC +Pxyz 

Pxyy JNC -Pabc 

Pxyz ??? 

Description 

This is the instruction that was replaced by the 

first jump instruction. 

Here are the two NOPs. 

This is the second jump to the instruction after the 

first jump. 

This is the spot where the first jump is placed and 

the jump goes to the spot where the instruction ABC 

is placed. 

This is where the second jump goes to so the program 

may continue. 

LOOP can be executed from the keyboard or a running program. An example of 

the later is given below. 

LBL "??" 

RCL 00 

ISG 00 

NOP 

This is the register containing the loop counter. 

Increment the loop counter by one so the next time you execute 

this program the number of loops will be different. 

Insert a NOP here. STO X for example. 
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"ABCD" 

CODE 

LOOP 

489 

GTO "RR" 

END 

This is the address where the LOOP breakpoint is to be placed. 

Code the address in the alpha register and push it onto the 

stack. The CODE routine is listed on page 148. 

Execution of LOOP to insert the breakpoint and store the loop 

counter. 

As in BREAK this is where you place the steps to load data for 

your function. Then place the function after the appropriate 

data is loaded. 

This number points to the first register you wish to view after 

the Nth iteration (N is in register 00) of the loop. 

Simply assign "??" to a key and place a starting loop counter (such as zero) 

into register 00. Then press the assigned key repeatedly to obtain 

successive outputs from the loop. 

LOOP and RSLCT are separable from the BREAK program, and can be omitted if 

desired. BREAK runs from 847 A to 8545 in the following listing. The BREAK 

program must be present in order for RSLCT and LOOP to function. 
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Address Hexcode Mnemonic Address Hexcode Mnemonic 

8440 090 "P" 8461 OB3 JNC +16 

8441 OOF "0" 8462 008 SETF 3 

8442 OOF "0" 8463 04C ?FSET 4 

8443 OOC "L" 8464 01B JNC +03 

8444 OB8 REAO 2(Y) 8465 044 CLRF 4 

8445 380 ?NC XQ 8466 08B JNC +11 

8446 008 02E3 [BCOBIN] 8467 048 SETF 4 

8447 2F6 ?CfO XS 8468 08C ?FSET 5 

8448 OB5 ?C GO 8469 01B JNC +03 

8449 OA3 2820 [ERROE] 846A 084 CLRF 5 

844A 358 ST=C 846B 063 JNC +OC 

844B 258 T=ST 846C 088 SETF 5 

844C 308 SETF 1 8460 14C ?FSET 6 

8440 163 JNC +2C 846E 01B JNC +03 

844E 208 ST<>T«< 846F 144 CLRF 6 

844F 38C ?FSET 0 8470 03B JNC +07 

8450 01B JNC +03 8471 148 SETF 6 

8451 384 CLRF 0 8472 28C ?FSET 7 

8452 12B JNC +25 8473 01F JC +03 

8453 388 SETF 0 8474 020 XQ>GO 

8454 30C ?FSET 1 8475 033 JNC +06 

8555 01B JNC +03 8476 284 CLRF 7 

8556 304 CLRF 1 8477 208 ST<>T 

8457 103 JNC +20 8478 3EO RTN 

8458 308 SETF 1 8479 16B JNC +20 

8459 20C ?FSET 2 847A 258 T=ST«< 

845A 01B JNC +03 847B 3C4 ST=O 

845B 204 CLRF 2 847C 308 C<>ST 

845C OOB JNC +IB 8470 3FO PRPH SLCT 

8450 208 SETF 2 847E 308 C<>ST 

845E OOC ?FSET 3 847F 308 SETF 1 

845F 01B JNC +03 8480 208 SETF 2 

8460 004 CLRF 3 8481 008 SETF 3 
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Address Hexcode Mnemonic Address Hexcode Mnemonic 

8482 048 SETF 4 84A3 308 SETF 1 

8483 33C RCR 1 84A4 03C RCR 3 

8484 3D8 C<>ST 84A5 023 JNC +04 

8485 2FC RCR 13 84A6 173 JNC +2E 

8486 270 RAMSLCT 84A7 23E C=C+l MS 

8487 33C RCR 1 84A8 3D4 R=R-l 

8488 398 C=ST 84A9 394 ?R= 0 

8489 2FC RCR 13 84AA 3EB JNC -03 

848A 268 WRIT 9(Q) 84AB 33C RCR 1 

848B OAE A<>C ALL 84AC 120 ?P=Q 

848C 2A8 WRIT 10(f-) 84AD 03B JNC +07 

848D OCE C=B ALL 84AE 35C R= 12 

848E 2E8 WRIT II(a) 84AF OAO SLCT P 

848F 198 C=M 84BO 354 ?R= 12 

8490 328 WRIT 12(b) 84Bl 06F JC +OD 

8491 OBO C=N 84B2 388 SETF 0 

8492 368 WRIT 13(c) 84B3 053 JNC +OA 

8493 046 C=O S&X 84B4 OEO SLCT Q 

8494 IBO POP ADR 84B5 394 ?R= 0 

8495 07C RCR 4 84B6 01B JNC +03 

8496 IBO POP ADR 84B7 388 SETF 0 

8497 07C RCR 4 84B8 OAO SLCT P 

8498 IBO POP ADR 84B9 23E C=C+l MS 

8499 27C RCR 9 84BA 3D4 R=R-l 

849A lE8 WRIT 7(Q) 84BB 394 ?R= 0 

849B lAO A=B=C=O 84BC 3EB JNC -03 

849C 298 ST=T 84BD 35C R= 12 

849D 3D8 C<>ST 84BE OD8 C<>G 

849E 258 T=ST 84BF 23C RCR 2 

849F 27E C=C-l MS 84CO 38C ?FSET 0 

84AO 260 SETH EX 84Cl 01F JC +03 

84Al 23E C=C+l MS 84C2 2DC R= 13 

84A2 017 JC +02 84C3 3D4 R=R-l 
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Address Hexcode Mnemonic Address Hexcode Mnemonic 

84C4 098 C=G 84E5 OA6 A<>C S&X 

84C5 10C ?FSET 8 84E6 270 RAMSLCT 

84C6 013 JNC +02 84E7 106 A=C S&X 

84C7 208 SETF 2 84E8 038 READ DATA 

84C8 24C ?FSET 9 84E9 OEE C<>B ALL 

84C9 013 JNC +02 84EA 270 RAMSLCT 

84CA 008 SETF 3 84EB 226 C=C+I S&X 

84CB OCC ?FSET 10 84EC OEE C<>B ALL 

84CC 013 JNC +02 84ED 2FO WRITE DATA 

84CD 048 SETF 4 84EE 162 A=A+I @R 

84CE 18C ?FSET II 84EF 3B3 JNC -OA 

84CF 013 JNC +02 84FO 3F8 READ 15(e) 

84DO 088 SETF 5 84FI 106 A=C S&X 

84DI 34C ?FSET 12 84F2 330 FETCH S&X 

84D2 023 JNC +04 84F3 OA6 A<>C S&X 

84D3 013 JNC +02 84F4 040 WRIT S&X 

84D4 IA3 JNC +34 84F5 OA6 A<>C S&X 

84D5 148 SETF 6 84F6 3E8 WRIT 15(e) 

84D6 2CC ?FSET 13 84F7 3B8 READ 14(d) 

84D7 013 JNC +02 84F8 106 A=C S&X 

84D8 288 SETF 7 84F9 330 FETCH S&X 

84D9 398 C=ST 84FA OA6 A<>C S&X 

84DA 2FC RCR 13 84FB 040 WRIT S&X 

84DB IBO POP ADR 84FC OA6 A<>C S&X 

84DC 07C RCR 4 84FD 2FO WRITE DATA 

84DD 220 C=KEY 84FE 046 C=O S&X 

84DE 3C8 CLRKEY 84FF 270 RAMSLCT 

84DF OBC RCR 5 8500 215 ?NC XQ 

84EO 228 WRIT 8(P) 8501 OOC 0385 [RSTSQ] 

84EI 130 LDI S&X 8502 2FC RCR 13 

84E2 lEE HEX: lEE 8503 358 ST=C 

84E3 OE6 C<>B S&X 8504 20C ?FSET 2 

84E4 39C R= 0 8505 027 JC +04 
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Address Hexcode Mnemonic Address Hexcode Mnemonic 

8506 208 SETF 2 8526 270 RAMSLCT 

8507 01B JNC +03 8527 2FA ?C"'O M 

8508 093 JNC +12 8528 243 JNC -38 

8509 204 CLRF 2 8529 130 LDI S&X 

850A 398 C=ST 852A OB9 HEX: OB9 

850B 33C RCR 1 852B 30C ?FSET 1 

850C 2FO WRITE DATA 852C 01B JNC +03 

8500 20C ?FSET 2 8520 130 LDI S&X 

850E 027 JC +04 852E OE5 HEX: OE5 

850F 30C ?FSET 1 852F 286 C=O-C S&X 

8510 205 ?C XQ 8530 10E A=C ALL 

8511 000 0381 8531 350 ?NC XQ 

8512 3Cl ?NC GO 8532 000 0007 [PCTOC] 

8513 002 OOFO [NFRPUj 8533 03C RCR 3 

8514 2F3 JNC -22 8534 206 C=C+A S&X 

8515 08B "K" 8535 2FC RCR 13 

8516 001 "A" 8536 3C6 RSHFC S&X 

8517 005 "En 8537 lE6 C=C+C S&X 

8518 012 "R" 8538 lE6 C=C+C S&X 

8519 002 liB" 8539 226 C=C+l S&X 

851A 130 LDI S&X 853A IFA C=C+C M 

851B lE7 HEX: lE7 853B IFA C=C+C M 

851C 106 A=C S&X 853C 30C ?FSET 1 

8510 378 READ 13(c) 8530 01F JC +03 

851E 03C RCR 3 853E 23A C=C+l M 

851F 306 ?A<C S&X 853F 23A C=C+l M 

8520 381 ?C GO 8540 106 A=C S&X 

8521 OOB 02EO [ERRNEj 8541 03C RCR 3 

8522 OF8 READ 3(X) 8542 OAE A<>C ALL 

8523 IBC RCR 11 8543 2FO WRITE DATA 

8524 130 LDI S&X 8544 23A C=C+l M 

8525 IFE HEX: IFI:: 8545 27B JNC -31 
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Address Hexcode Mnemonic Address Hexcode Mnemonic 

8546 094 "T" 8567 3CF JC -07 

8547 003 "C" 8568 198 C=M 

8548 OOC "L" 8569 2FO WRITE DATA 

8549 013 "S" 856A 130 LDI S&X 

854A 012 "R" 856B 3FF HEX: 3FF 

854B 130 LDI S&X 856C 06E A<>B ALL 

854C IFE HEX: IFE 856D 3BO C=C AND A 

854D 270 RAMSLCT 856E 266 C=C-l S&X 

854E 038 READ DATA 856F 03C RCR 3 

854F 130 LDI S&X 8570 270 RAMSLCT 

8550 020 HEX: 020 8571 3C4 ST=O 

8551 2FB JNC -21 8572 2D8 ST<>T 

8552 293 JNC -2E 8573 398 C=ST 

8553 038 READ DATA«< 8574 IBC RCR 11 

8554 158 M=C 8575 OE8 WRIT 3(X) 

8555 lAO A=B=C=O 8576 05A C=O M 

8556 3FO PRPH SLCT 8577 2DB JNC -25 

8557 21C R= 2 

8558 310 LD@RC 

8559 OE6 C<>B S&X 

855A 260 SETHEX 

855B 26E C=C-l ALL 

855C 29C R= 7 

855D 010 LD@RO 

855E 2FO WRITE DATA 

855F 10E A=C ALL 

8560 OC6 C=B S&X 

8561 270 RAMSLCT 

8562 226 C=C+l S&X 

8563 05F JC +OB 

8564 OE6 C<>B S&X 

8565 038 READ DATA 

8566 36E ?A",C ALL 
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Here's the DECODE routine, written by Clifford Stern. It places the ASCII 

equivalent of the contents of X into ALPHA, and suppresses leading zeros. 

The routine ends by viewing alpha and printing if in RUN mode. The method 

used to convert hex digits to ASCII characters was invented by Michael 

Thompson. 

Address Hexcode Mnemonic Address Hexcode Mnemonic 

8578 085 "E" 8590 308 SETF 1 

8579 004 "0" 8591 30C ?FSET 1 

857A OOF "0" 8592 033 JNC +06 

857B 003 "C" 8593 062 A<>B @R 

857C 005 "E" 8594 206 C=C+A S&X 

857D 004 "0" 8595 362 ?AfC @R 

857E OF8 READ 3(X) 8596 013 JNC +02 

857F OEE C<>B ALL 8597 222 C=C+l @R 

8580 2AO SETDEC 8598 IBA A=A-l M 

8581 04E C=O ALL 8599 38B JNC -OF 

8582 228 WRIT 8(P) 859A 20C ?FSET 2 

8583 IE8 WRIT 7(0) 859B 027 JC +04 

8584 OIC R= 3 859C 208 SETF 2 

8585 190 LD@R6 859D IA8 WRIT 6(N) 

8586 31C R= I 859E 31B JNC -lD 

8587 ODO LD@R 3 859F 30C ?FSET I 

8588 10E A=C ALL 85AO 017 JC +02 

8589 04E C=O ALL 85AI OA6 A<>C S&X 

858A 37C RCR 12 85A2 168 WRIT 5(M) 

858B OEE C<>B ALL 85A3 2CC ?FSET 13 

858C 2FC RCR 13 85A4 360 ?C RTN 

858D OEE C<>B ALL 85A5 260 SETH EX 

858E 2C2 BfO @R 85A6 191 ?NC GO 

858F 013 JNC +02 85A7 OOE 0364 
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APPENDIX V - OCTal-HEX Conversion Programs 

OCTal - Hex 

The following program converts mainframe addresses from the octal (base 8) 

form that appears in HP's documentation to hexadecimal (base 16), the form 

that you will need in constructing an MCODE execute or goto instruction. 

To use this program, just execute OCT-HEX. The program uses partial key 

sequencing to make your life easier. 

The program comes back with the display 

o 
The first number you should key in is the page number, which may be anywhere 

from 0 to 7. Other keys (except backarrow and R/S, as explained below) will 

be ignored. The number you select will appear in the display followed by a 

dash and another underscore prompt. Next key in the quad number, a digit 

from 0 to 3. The program will not accept any other values. 

The program comes back with 

o p-q-_ 

where p and q are the page number and quad number, respectively. Now key in 

the four-digit octal address within the quad. The range of legal addresses 

is 0000 to 1777. Digits outside this range will not be accepted by the 

program. If the address is less than 1000, you must key in a leading zero. 

If you make a mistake (who me?) while keying in a number, you can use the 

backarrow key to remove digits. If there are no digits in the display and 

the backarrow key is pressed, the routine is terminated. This behavior of 

the backarrow key is consistent with mainframe functions, and you should 

strive for this kind of consistency in the behavior of your own programs. 

To get the result, just press the R/S key. The hexadecimal equivalent of 

your octal address will be put into the display preceded by the word 

ADDRESS. Try the routine out a few times on addresses for which you know 

the hex equivalent so you can get the hang of it. Here is the listing for 

the routine. 
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Address Hexcode Mnemonic Address Hexcode Mnemonic 

85DD 130 LDI S&X 85FE 146 A=A+C S&X 

85DE 370 HEX: 370 85FF 130 LDI S&X 

85DF 106 A=C S&X 8600 03A HEX: 03A 

85EO OBO C=N 8601 306 ?A<C S&X 

85E1 366 ArC S&X 8602 01F JC +03 

85E2 18F JC +31 8603 266 C=C-1 S&X 

85E3 3BD ?NC XQ 8604 1C6 A=A-C S&X 

85E4 01C 07EF 8605 OA6 A<>C S&X 

85E5 001 "A" 8606 3E8 WRIT 15(e) 

85E6 004 "0" 8607 046 C=O S&X 

85E7 004 "0" 8608 2FC RCR 13 

85E8 012 "R" 8609 3D4 R=R-1 

85E9 005 "£" 860A 394 ?R= 0 

85EA 013 "S" 860B 383 JNC -10 

85EB 013 "S" 860C 261 ?NC XQ 

85EC 220 860D 000 0098 

85ED 149 ?NC XQ 860E 046 C=O S&X 

85EE 024 0952 860F 3FO PRPH SLCT 

85EF 215 ?NC XQ 8610 1FD ?NC GO 

85FO OOC 0385 8611 OOE 037E 

85F1 278 READ 9(Q) 8612 25B JNC -35 

85F2 10E A=C ALL 8613 183 JNC +30 

85F3 3D9 ?NC XQ 8614 149 ?NC XQ 

85F4 01C 07F6 8615 024 0952 

85F5 04E C=O ALL 8616 278 READ 9(Q) 

85F6 OBA A<>C M 8617 OAE A<>C ALL 

85F7 33C RCR 1 8618 1BE A=A-1 MS 

85F8 20E C=C+A ALL 8619 049 ?C GO 

85F9 03C RCR 3 861A 037 OD12 

85FA 05C R= 4 861B 35E ?ArO MS 

85FB 106 A=C S&X 861C OFB JNC +IF 

85FC 130 LDI S&X 86lD 05E C=O MS 

85FD 030 HEX: 030 861E 23E C=C+l MS 
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Address Hexcode Mnemonic Address Hexcode Mnemonic 

861F 3D9 ?NC XQ 863F 3BD ?NC XQ 

8620 01C 07F6 8640 01C 07EF 

8621 37E A",C MS 8641 OOF "0" 

8622 037 JC +06 8642 220 

8623 01C R= 3 8643 115 ?NC XQ 

8624 002 A=O @R 8644 038 OE45 

8625 130 LDI S&X 8645 27B JNC -31 

8626 020 HEX: 020 8646 OOC ?FSET 3 

8627 3A8 WRIT 14(d) 8647 25B JNC -35 

8628 130 LDI S&X 8648 130 LDI S&X 

8629 020 HEX: 020 8649 038 HEX: 038 

862A 3A8 WRIT 14(d) 864A 33C RCR 1 

862B 149 ?NC XQ 864B 31E ?A<C MS 

862C 024 0952 864C 3BB JNC -09 

862D OAE A<>C ALL 864D OBE A<>C MS 

862E lE6 C=C+C S&X 864E lIE A=C MS 

862F 3C6 RSHFC S&X 864F 2FC RCR 13 

8630 268 WRIT 9(Q) 8650 3E8 WRIT 15(e) 

8631 3D9 ?NC XQ 8651 149 ?NC XQ 

8632 01C 07F6 8652 024 0952 

8633 083 JNC +10 8653 278 READ 9(Q) 

8634 098 "X" 8654 2FE ?C",O MS 

8635 005 "£" 8655 067 JC +OC 

8636 008 "H" 8656 23E C=C+l MS 

8637 02D It_" 8657 OBE A<>C MS 

8638 014 "T" 8658 27C RCR 9 

8639 003 "C" 8659 OBE A<>C MS 

863A OOF "0" 865A 268 WRIT 9(Q) 

863B 04E C=O ALL 865B 3D9 ?NC XQ 

863C 268 WRIT 9(Q) 865C 01C 07F6 

863D 3Cl ?NC XQ 865D 130 LDI S&X 

863E OBO 2CFO 865E 02D HEX: 02D 

-168-



Address Hexcode Mnemonic Address Hexcode Mnemonic 

865F 3E8 WRIT 15(e) 867E 353 JNC -16 

8660 31B JNC -ID 867F 3DC R=R+l 

8661 27E C=C-l MS 8680 ODO LD@R 3 

8662 2FE ?C"O MS 8681 37E ?A"C MS 

8663 OA7 JC +14 8682 077 JC +OE 

8664 2DC R= 13 8683 07E A<>B MS 

8665 110 LD@R4 8684 27E C=C-l MS 

8666 31E ?A<C MS 8685 31E ?A<C MS 

8667 03F JC +07 8686 313 JNC -IE 

8668 3D9 ?NC XQ 8687 05E C=O MS 

8669 01C 07F6 8688 33C RCR 1 

866A 130 LDI S&X 8689 OBE A<>C MS 

866B 020 HEX: 020 868A 2FC RCR 13 

866C 3A8 WRIT 14(d) 868B ODE C=B MS 

866D 2B3 JNC -2A 868C 268 WRIT 9(Q) 

866E 05E C=O MS 868D 3D9 ?NC XQ 

866F 07C RCR 4 868E 01C 07F6 

8670 OBE A<>C MS 868F 2F3 JNC -22 

8671 IFE C=C+C MS 8690 278 READ 9(Q) 

8672 IFE C=C+C MS 8691 lE6 C=C+C S&X 

8673 OFC RCR 10 8692 lE6 C=C+C S&X 

8674 23E C=C+l MS 8693 lE6 C=C+C S&X 

8675 23E C=C+l MS 8694 OAE A<>C ALL 

8676 323 JNC -IC 8695 046 C=O S&X 

8677 09E B=A MS 8696 ODE C=B MS 

8678 23E C=C+l MS 8697 2FC RCR 13 

8679 23E C=C+l MS 8698 146 A=A+C S&X 

867A lIE A=C MS 8699 OAE A<>C ALL 

867B 2DC R= 13 869A 23E C=C+l MS 

867C IDO LD@R 7 869B 38B JNC -OF 

867D 31E ?A<C MS 
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HEX - OCTal 

The HEX-OCT program is an inverse to the OCT -HEX program, allowing you to 

convert a hexadecimal entry address to the octal form suitable for looking 

up the entry point in HP's annotated listings. 

HEX-OCT starts by placing an H, followed by a space and an underscore in the 

left of the display (partial key sequencing to the rescue again). The digit 

keys and the A through F keys are the only ones which are allowed for 

inputs. Once four digits have been entered, no more may be keyed in. The 

functions of the backarrow and run/stop keys are the same as for the OCT-HEX 

program. The output is of the form p-q-aaaa, where p is the page number, q 

is the quad number in the page, and aaaa is the octal address in the 

specified quad. A listing for this program starts on the next page. 
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Address Hexcode Mnemonic Address Hexcode Mnemonic 

869C 149 ?NC XQ 86BD 3D3 JNC -06 

869D 024 09S2 86BE 130 LDI S&X 

869E 278 READ 9(Q) 86BF 007 HEX: 007 

869F 27E C=C-I MS 86CO 33C RCR I 

86AO 049 ?C GO 86CI 31E ?A<C MS 

86AI 037 ODI2 86C2 3AB JNC -OB 

86A2 liE A=C MS 86C3 OBE A<>C MS 

86A3 OSE C=O MS 86C4 2FC RCR 13 

86A4 3CE RSHFC ALL 86CS 3E8 WRIT IS(e) 

86AS OBE A<>C MS 86C6 106 A=C S&X 

86A6 268 WRIT 9(Q) 86C7 130 LDI S&X 

86A7 IBB JNC +37 86C8 009 HEX: 009 

86A8 094 "T" 86C9 146 A=A+C S&X 

86A9 003 "C" 86CA 149 ?NC XQ 

86AA OOF "0" 86CB 024 09S2 

86AB 02D " .. " 86CC 130 LDI S&X 

86AC 018 "X" 86CD 004 HEX: 004 

86AD OOS "E" 86CE 33C RCR I 

86AE 008 "Hit 86CF liE A=C MS 

86AF 04E C=O ALL 86DO 278 READ 9(Q) 

86BO 268 WRIT 9(Q) 86DI OBE A<>C MS 

86BI 3CI ?NC XQ 86D2 31E ?A<C MS 

86B2 OBO 2CFO 86D3 OSB JNC +OB 

86B3 3BD ?NC XQ 86D4 OSE C=O MS 

86B4 OIC 07EF 86DS 2FC RCR 13 

86BS 008 ttH" 86D6 39C R= 0 

86B6 220 86D7 OA2 A<>C @R 

86B7 liS ?NC XQ 86D8 OBE A<>C MS 

86B8 038 OE4S 86D9 23E C=C+I MS 

86B9 31B JNC -lD 86DA 268 WRIT 9(Q) 

86BA 04C ?FSET 4 86DB 3D9 ?NC XQ 

86BB 14B JNC +29 86DC OIC 07F6 

86BC 3SE A#O MS 86DD 2D3 JNC -26 

-171-



Address Hexcode Mnemonic Address Hexcode Mnemonic 

86DE 3D9 ?NC XQ 86FF 042 C=O @R 

86DF 01C 07F6 8700 lEE C=C+C ALL 

86EO 130 LDI S&X 8701 lEE C=C+C ALL 

86E1 020 HEX: 020 8702 33C RCR 1 

86E2 3A8 WRIT 14(d) 8703 3D4 R=R-1 

86E3 2A3 JNC -2C 8704 102 A=C @R 

86E4 OOC ?FSET 3 8705 3D9 ?NC XQ 

86E5 043 JNC +08 8706 01C 07F6 

86E6 130 LDI S&X 8707 3BD ?NC XQ 

86E7 003 HEX: 003 8708 01C 07EF 

86E8 OBE A<>C MS 8709 OOF "0" 

86E9 2FC RCR 13 870A 003 "C" 

86EA 3E8 WRIT 15(e) 870B 014 "Til 

86EB 106 A=C S&X 870C 220 

86EC 2F3 JNC -22 870D OAE A<>C ALL 

86ED 130 LDI S&X 870E OBC RCR 5 

86EE 370 HEX: 370 870F 31C R= 1 

86EF 106 A=C S&X 8710 ODO LD@R 3 

86FO OBO C=N 8711 106 A=C S&X 

86F1 366 A",C S&X 8712 130 LDI S&X 

86F2 22F JC -3B 8713 OOA HEX: OOA 

86F3 149 ?NC XQ 8714 302 ?A<C @R 

86F4 024 0952 8715 027 JC +04 

86F5 278 READ 9(Q) 8716 262 C=C-1 @R 

86F6 39C R= 0 8717 242 C=A-C @R 

86F7 102 A=C @R 8718 013 JNC +02 

86F8 lEE C=C+C ALL 8719 OA6 A<>C S&X 

86F9 3DC R=R+1 871A 3E8 WRIT 15(e) 

86FA 054 ?R= 4 871B 130 LDI S&X 

86FB 3E3 JNC -04 871C 02D HEX: 02D 

86FC 2FC RCR 13 87lD 3E8 WRIT 15(e) 

86FD 3DC R=R+1 871E 2FC RCR 13 

86FE 102 A=C @R 871F 3DC R=R+1 
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Address Hexcode Mnemonic Address Hexcode Mnemonic 

8720 000 LO@R 3 872F 3E8 WRIT 15(e) 

8721 3E8 WRIT 15(e) 8730 2FC RCR 13 

8722 130 LDI S&X 8731 056 c=o XS 

8723 020 HEX: 020 8732 30C R=R+l 

8724 3E8 WRIT 15(e) 8733 308 C<>ST 

8725 2FC RCR 13 8734 054 ?R= 4 

8726 308 C<>ST 8735 3A3 JNC -OC 

8727 304 CLRF 1 8736 149 ?NC XQ 

8728 204 CLRF 2 8737 024 0952 

8729 004 CLRF 3 8738 215 ?NC XQ 

872A 048 SETF 4 8739 OOC 0385 

872B 088 SETF 5 873A 261 ?NC XQ 

872C 144 CLRF 6 873B 000 0098 

8720 284 CLRF 7 873C 201 ?NC GO 

872E 308 C<>ST 8730 OOE 0380 
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APPENDIX F - Table of Mnemonics 

The following table shows the differences between the three types of 

mnemonics in use. We will only tabulate the mnemonics for the single word 

instructions. The three types of mnemonics are: HP mnemonics used by HP in 

all of the annotated listings of their ROMs; Jacobs/De Arras, developed in 

the early days of the development of MCODE programming by the user 

community; and ZENROM mnemonics, this version was developed in England and 

is used in the disassembler of a ROM that is put out by Zengrange Ltd. The 

Jacobs/De Arras mnemonics were used throughout this book. 

Hexcode Octal Binary 

000 

OOE 

006 
OIA 

OOA 

002 

OlE 

016 

012 

02E 

026 

03A 

02A 

022 

03E 

036 

032 

04E 

046 

05A 

04A 

0000 0000000000 

0016 0000001110 

0006 0000000110 

0032 0000011010 

0012 0000001010 

0002 0000000010 

0036 0000011110 

0026 0000010110 

0022 0000010010 

0056 0000101110 

0046 0000100110 

0072 0000111010 

0052 0000101010 

0042 0000100010 

0076 0000111110 

0066 0000110110 

0062 0000110010 

0116 0001001110 

0106 0001000110 

0132 0001011010 

0112 0001001010 

HP 

mnemonic 

NOP 

A=O 

A=O X 

A=O M 

A=O WPT 

A=O PT 

A=O S 

A=O XS 

A=O PQ 

B=O 

B=O X 

B=O M 

B=O WPT 

B=O PT 

B=O S 

B=O XS 

B=O PQ 

C=O 

C=O X 

C=O M 

C=O WPT 
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Jacobs/ 

De Arras 

NOP 

A=O ALL 

A=O S&X 

A=O M 

A=O R< 

A=O@R 

A=O MS 

A=O XS 

A=O P-Q 

B=O ALL 

B=O S&X 

B=O M 

B=O R< 

B=O @R 

B=O MS 

B=O XS 

B=O P-Q 

C=O ALL 

C=O S&X 

C=O M 

C=O R< 

ZENROM 

mnemonic 

NOP 

A=O ALL 

A=O X 

A=O M 

A=O WPT 

A=O PT 

A=O S 

A=O XS 

A=O PQ 

B=O ALL 

B=O X 

B=O M 

B=O WPT 

B=O PT 

B=O S 

B=O XS 

B=O PQ 

C=O ALL 

C=O X 

C=O M 

C=O WPT 



Hexcode Octal Binary HP Jacobs/ ZENROM 

mnemonic De Arras mnemonic 

042 0102 0001000010 C=O PT C=O @R C=O PT 

05E 0136 0001011110 C=O S C=O MS C=O S 

056 0126 0001010110 C=O XS C=O XS C=O XS 

052 0122 0001010010 C=O PQ C=O P-Q C=O PQ 

06E 0156 0001101110 AB EX A<>B ALL A<>B ALL 

066 0146 0001100110 AB EX X A<>B S&X A<>B X 

07A 0172 0001111010 AB EX M A<>B M A<>B M 

06A 0152 0001101010 AB EX WPT A<>B R< A<>B WPT 

062 0142 0001100010 AB EX PT A<>B @R A<>B PT 

07E 0176 0001111110 AB EX S A<>B MS A<>B S 

076 0166 0001110110 AB EX XS A<>B XS A<>B XS 

072 0162 0001110010 AB EX PQ A<>B P-Q A<>B PQ 

08E 0216 0010001110 B=A B=A ALL B=A ALL 

086 0206 0010000110 B=A X B=A S&X B=A X 

09A 0232 0010011010 B=AM B=AM B=AM 

08A 0212 0010001010 B=A WPT B=A R< B=A WPT 

082 0202 0010000010 B=A PT B=A@R B=A PT 

09E 0236 0010011110 B=A S B=AMS B=A S 

096 0226 0010010110 B=A XS B=A XS B=A XS 

092 0222 0010010010 B=A PQ B=A P-Q B=A PQ 

OAE 0256 0010101110 AC EX A<>C ALL A<>C ALL 

OA6 0246 0010100110 AC EX X A<>C S&X A<>C X 

OBA 0272 0010111010 ACEXM A<>C M A<>C M 

OAA 0252 0010101010 AC EX WPT A<>C R< A<>C WPT 

OA2 0242 0010100010 AC EX PT A<>C @R A<>C PT 

OBE 0276 0010111110 AC EX S A<>C MS A<>C S 

OB6 0266 0010110110 AC EX XS A<>C XS A<>C XS 

OB2 0262 0010110010 AC EX PQ A<>C P-Q A<>C PQ 

OCE 0316 0011001110 C=B C=B ALL C=B ALL 

OC6 0306 0011000110 C=B X C=B S&X C=B X 

ODA 0332 0011011010 C=B M C=B M C=B M 

OCA 0312 0011001010 C=B WPT C=B R< C=B WPT 
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Hexcode Octal Binary HP Jacobs/ ZENROM 

mnemonic De Arras mnemonic 

OC2 0302 0011000010 C=B PT C=B@R C=B PT 

ODE 0336 0011011110 C=B S C=B MS C=B S 

OD6 0326 0011010110 C=B XS C=B XS C=B XS 

OD2 0322 0011010010 C=B PQ C=B P-Q C=B PQ 

OEE 0356 0011101110 BC EX C<>B ALL B<>C ALL 

OE6 0346 0011100110 BC EX X C<>B S&X B<>C X 

OFA 0372 0011111010 BC EX M C<>B M B<>CM 

OEA 0352 0011101010 BC EX WPT C<>B R< B<>C WPT 

OE2 0342 0011100010 BC EX PT C<>B @R B<>C PT 

OFE 0376 0011111110 BC EX S C<>B MS B<>C S 

OF6 0366 0011110110 BC EX XS C<>B XS B<>C XS 

OF2 0362 0011110010 BC EX PQ C<>B P-Q B<>C PQ 

10E 0416 0100001110 A=C A=C ALL A=C ALL 

106 0406 0100000110 A=C X A=C S&X A=C X 

llA 0432 0100011010 A=C M A=C M A=CM 

lOA 0412 0100001010 A=C WPT A=C R< A=C WPT 

102 0402 0100000010 A=C PT A=C@R A=C PT 

lIE 0436 0100011110 A=C S A=C MS A=C S 

116 0426 0100010110 A=C XS A=C XS A=C XS 

112 0422 0100010010 A=C PQ A=C P-Q A=C PQ 

12E 0456 0100101110 A=A+B A=A+B ALL A=A+B ALL 

126 0446 0100100110 A=A+B X A=A+B S&X A=A+B X 

13A 0472 0100111010 A=A+B M A=A+B M A=A+B M 

12A 0452 0100101010 A=A+B WPT A=A+B R< A=A+B WPT 

122 0442 0100100010 A=A+B PT A=A+B @R A=A+B PT 

13E 0476 0100111110 A=A+B S A=A+B MS A=A+B S 

136 0466 0100110110 A=A+B XS A=A+B XS A=A+B XS 

132 0462 0100110010 A=A+B PQ A=A+B P-Q A=A+B PQ 

14E 0516 0101001110 A=A+C A=A+C ALL A=A+C ALL 

146 0506 0101000110 A=A+C X A=A+C S&X A=A+C X 

15A 0532 0101011010 A=A+C M A=A+C M A=A+C M 

14A 0512 0101001010 A=A+C WPT A=A+C R< A=A+C WPT 
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Hexcode Octal Binary HP Jacobs/ ZEN ROM 

mnemonic De Arras mnemonic 

142 0502 0101000010 A=A+C PT A=A+C @R A=A+C PT 

15E 0536 0101011110 A=A+C S A=A+C MS A=A+C S 

156 0526 0101010110 A=A+C XS A=A+C XS A=A+C XS 

152 0522 0101010010 A=A+C PQ A=A+C P-Q A=A+C PQ 

16E 0556 0101101110 A=A+l A=A+l ALL A=A+l ALL 

166 0546 0101100110 A=A+l X A=A+l S&X A=A+l X 

17A 0572 0101111010 A=A+l M A=A+l M A=A+l M 

16A 0552 0101101010 A=A+l WPT A=A+l R< A=A+l WPT 

162 0542 0101100010 A=A+l PT A=A+l @R A=A+l PT 

17E 0576 0101111110 A=A+l S A=A+l MS A=A+l S 

176 0566 0101110110 A=A+l XS A=A+l XS A=A+l XS 

172 0562 0101110010 A=A+l PQ A=A+l P-Q A=A+l PQ 

18E 0616 0110001110 A=A-B A=A-B ALL A=A-B ALL 

186 0606 0110000110 A=A-B X A=A-B S&X A=A-B X 

19A 0632 0110011010 A=A-B M A=A-B M A=A-B M 

18A 0612 0110001010 A=A-B WPT A=A-B R< A=A-B WPT 

182 0602 0110000010 A=A-B PT A=A-B @R A=A-B PT 

19E 0636 0110011110 A=A-B S A=A-B MS A=A-B S 

196 0626 0110010110 A=A-B XS A=A-B XS A=A-B XS 

192 0622 0110010010 A=A-B PQ A=A-B P-Q A=A-B PQ 

lAE 0656 0110101110 A=A-l A=A-l ALL A=A-l ALL 

lA6 0646 0110100110 A=A-l X A=A-l S&X A=A-l X 

IBA 0672 0110111010 A=A-l M A=A-l M A=A-l M 

lAA 0652 0110101010 A=A-l WPT A=A-l R< A=A-l WPT 

lA2 0642 0110100010 A=A-l PT A=A-l @R A=A-l PT 

IBE 0676 0110111110 A=A-l S A=A-l MS A=A-l S 

IB6 0666 0110110110 A=A-l XS A=A-l XS A=A-l XS 

IB2 0662 0110110010 A=A-l PQ A=A-l P-Q A=A-l PQ 

ICE 0716 0111001110 A=A-C A=A-C ALL A=A-C ALL 

lC6 0706 0111000110 A=A-C X A=A-C S&X A=A-C X 

IDA 0732 0111011010 A=A-C M A=A-C M A=A-C M 

lCA 0712 0111001010 A=A-C WPT A=A-C R< A=A-C WPT 
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Hexcode Octal Binary HP Jacobs/ ZENROM 

mnemonic De Arras mnemonic 

lC2 0702 0111000010 A=A-C PT A=A-C @R A=A-C PT 

IDE 0736 0111011110 A=A-C S A=A-C MS A=A-C S 

ID6 0726 0111010110 A=A-C XS A=A-C XS A=A-C XS 

ID2 0722 0111010010 A=A-C PQ A=A-C P-Q A=A-C PQ 

lEE 0756 0111101110 C=C+C C=C+C ALL C=C+C ALL 

lE6 0746 0111100110 C=C+C X C=C+C S&X C=C+C X 

IFA 0772 0111111010 C=C+C M C=C+CM C=C+CM 

lEA 0752 0111101010 C=C+C WPT C=C+C R< C=C+C WPT 

lE2 0742 0111100010 C=C+C PT C=C+C @R C=C+C PT 

IFE 0776 0111111110 C=C+C S C=C+C MS C=C+C S 

IF6 0766 0111110110 C=C+C XS C=C+C XS C=C+C XS 

IF2 0762 0111110010 C=C+C PQ C=C+C P-Q C=C+C PQ 

20E 1016 1000001110 C=A+C C=C+A ALL C=A+C ALL 

206 1006 1000000110 C=A+C X C=C+A S&X C=A+C X 

21A 1032 1000011010 C=A+C M C=C+AM C=A+CM 

20A 1012 1000001010 C=A+C WPT C=C+A R< C=A+C WPT 

202 1002 1000000010 C=A+C PT C=C+A @R C=A+C PT 

21E 1036 1000011110 C=A+C S C=C+A MS C=A+C S 

216 1026 1000010110 C=A+C XS C=C+A XS C=A+C XS 

212 1022 1000010010 C=A+C PQ C=C+A P-Q C=A+C PQ 

22E 1056 1000101110 C=C+l C=C+l ALL C=C+l ALL 

226 1046 1000100110 C=C+l X C=C+l S&X C=C+l X 

23A 1072 1000111010 C=C+l M C=C+l M C=C+l M 

22A 1052 1000101010 C=C+l WPT C=C+l R< C=C+l WPT 

222 1042 1000100010 C=C+l PT C=C+l @R C=C+l PT 

23E 1076 1000111110 C=C+l S C=C+l MS C=C+l S 

236 1066 1000110110 C=C+l XS C=C+l XS C=C+l XS 

232 1062 1000110010 C=C+l PQ C=C+l P-Q C=C+l PQ 

24E 1116 1001001110 C=A-C C=A-C ALL C=A-C ALL 

246 1106 1001000110 C=A-C X C=A-C S&X C=A-C X 

25A 1132 1001011010 C=A-C M C=A-C M C=A-C M 

24A 1112 1001001010 C=A-C WPT C=A-C R< C=A-C WPT 
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Hexcode Octal Binary HP Jacobs! ZENROM 

mnemonic De Arras mnemonic 

242 1102 1001000010 C=A-C PT C=A-C @R C=A-C PT 

25E 1136 1001011110 C=A-C S C=A-C MS C=A-C S 

256 1126 1001010110 C=A-C XS C=A-C XS C=A-C XS 

252 1122 1001010010 C=A-C PQ C=A-C P-Q C=A-C PQ 

26E 1156 1001101110 C=C-l C=C-l ALL C=C-l ALL 

266 1146 1001100110 C=C-l X C=C-I S&X C=C-I X 

27A 1172 1001111010 C=C-l M C=C-l M C=C-l M 

26A 1152 1001101010 C=C-l WPT C=C-l R< C=C-l WPT 

262 1142 1001100010 C=C-l PT C=C-l @R C=C-l PT 

27E 1176 1001111110 C=C-l S C=C-l MS C=C-l S 

276 1166 1001110110 C=C-l XS C=C-l XS C=C-l XS 

272 1162 1001110010 C=C-l PQ C=C-l P-Q C=C-l PQ 

28E 1216 1010001110 C=-C C=O-C ALL C=-C ALL 

286 1206 1010000110 C=-C X C=O-C S&X C=-C X 

29A 1232 1010011010 C=-C M C=O-C M C=-C M 

28A 1212 1010001010 C=-C WPT C=O-C R< C=-C WPT 

282 1202 1010000010 C=-C PT C=O-C @R C=-C PT 

29E 1236 1010011110 C=-C S C=O-C MS C=-C S 

296 1226 1010010110 C=-C XS C=O-C XS C=-C XS 

292 1222 1010010010 C=-C PQ C=O-C P-Q C=-C PQ 

2AE 1256 1010101110 C=-C-l C=-C-l ALL C=-C-l ALL 

2A6 1246 1010100110 C=-C-l X C=-C-l S&X C=-C-l X 

2BA 1272 1010111010 C=-C-l M C=-C-l M C=-C-l M 

2AA 1252 1010101010 C=-C-l WPT C=-C-I R< C=-C-l WPT 

2A2 1242 1010100010 C=-C-l PT C=-C-l @R C=-C-l PT 

2BE 1276 1010111110 C=-C-l S C=-C-I MS C=-C-l S 

2B6 1266 1010110110 C=-C-l XS C=-C-l XS C=-C-l XS 

2B2 1262 1010110010 C=-C-l PQ C=-C-l P-Q C=-C-l PQ 

2CE 1316 1011001110 ?BfO ?BfO ALL ?BfO ALL 

2C6 1306 1011000110 ?BfO X ?BfO S&X ?BfO X 

2DA 1332 1011011010 ?BfO M ?BfO M ?BfO M 

2CA 1312 1011001010 ?BfO WPT ?BfO R< ?BfO WPT 
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Hexcode Octal Binary HP Jacobs/ ZENROM 

mnemonic De Arras mnemonic 

2C2 1302 1011000010 ?BrO PT ?BrO @R ?BrO PT 

2DE 1336 1011011110 ?BrO S ?BrO MS ?MO S 

2D6 1326 1011010110 ?BrO XS ?BrO XS ?BrO XS 

2D2 1322 1011010010 ?BrO PQ ?BrO P-Q ?MO PQ 

2EE 1356 1011101110 ?CrO ?CrO ALL ?CrO ALL 

2E6 1346 1011100110 ?CrO X ?CrO S&X ?CrO X 

2FA 1372 1011111010 ?CrO M ?CrO M ?CrO M 

2EA 1352 1011101010 ?CrO WPT ?CrO R< ?CrO WPT 

2E2 1342 1011100010 ?CrO PT ?CrO @R ?CrO PT 

2FE 1376 1011111110 ?CrO S ?CrO MS ?CrO S 

2F6 1366 1011110110 ?CrO XS ?CrO XS ?CrO XS 

2F2 1362 1011110010 ?CrO PQ ?CrO P-Q ?CrO PQ 

30E 1416 1100001110 ?A<C ?A<C ALL ?A<C ALL 

306 1406 1100000110 ?A<C X ?A<C S&X ?A<C X 

31A 1432 1100011010 ?A<CM ?A<CM ?A<C M 

30A 1412 1100001010 ?A<C WPT ?A<C R< ?A<C WPT 

302 1402 1100000010 ?A<C PT ?A<C @R ?A<C PT 

31E 1436 1100011110 ?A<C S ?A<C MS ?A<C S 

316 1426 1100010110 ?A<C XS ?A<C XS ?A<C XS 

312 1422 1100010010 ?A<C PQ ?A<C P-Q ?A<C PQ 

32E 1456 1100101110 ?A<B ?A<B ALL ?A<B ALL 

326 1446 1100100110 ?A<B X ?A<B S&X ?A<B X 

33A 1472 1100111010 ?A<B M ?A<B M ?A<B M 

32A 1452 1100101010 ?A<B WPT ?A<B R< ?A<B WPT 

322 1442 1100100010 ?A<B PT ?A<B @R ?A<B PT 

33E 1476 1100111110 ?A<B S ?A<B MS ?A<B S 

336 1466 1100110110 ?A<B XS ?A<B XS ?A<B XS 

332 1462 1100110010 ?A<B PQ ?A<B P-Q ?A<B PQ 

34E 1516 1101001110 ?ArO ?ArO ALL ?ArO ALL 

346 1506 1101000110 ?ArO X ?ArO S&X ?ArO X 

35A 1532 1101011010 ?ArO M ?ArO M ?ArO M 

34A 1512 1101001010 ?ArO WPT ?ArO R< ?ArO WPT 
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Hexcode Octal Binary HP Jacobs! ZENROM 

mnemonic De Arras mnemonic 

342 1502 1101000010 ?k,O PT ?A"O @R ?A"O PT 

35E 1536 1101011110 ?A"O S ?A"O MS ?A"O S 

356 1526 1101010110 ?A"O XS ?A"O XS ?A"O XS 

352 1522 1101010010 ?A"O PQ ?A"O P-Q ?A"O PQ 

36E 1556 1101101110 ?A"C ?A"C ALL ?A"C ALL 

366 1546 1101100110 ?A"C X ?AfC S&X ?AfC X 

37A 1572 1101111010 ?A"C M ?A"C M ?A"CM 

36A 1552 1101101010 ?A"C WPT ?A"C R< ?A"C WPT 

362 1542 1101100010 ?A"C PT ?A"C @R ?A"C PT 

37E 1576 1101111110 ?A"C S ?A"C MS ?A"C S 

376 1566 1101110110 ?A"C XS ?A"C XS ?A"C XS 

372 1562 1101110010 ?A"C P.Q ?A"C P-Q ?A"C PQ 
38E 1616 1110001110 A SR RSHFA ALL ASR ALL 

386 1606 1110000110 A SR X RSHFA S&X ASR X 

39A 1632 1110011010 A SRM RSHFA M ASRM 

38A 1612 1110001010 A SR WPT RSHFA R< ASR WPT 

382 1602 1110000010 A SR PT RSHFA @R ASR PT 

39E 1636 1110011110 A SR S RSHFA MS ASR S 

396 1626 1110010110 A SR XS RSHFA XS ASR XS 

392 1622 1110010010 A SR PQ RSHFA P-Q ASR PQ 

3AE 1656 1110101110 B SR RSHFB ALL BSR ALL 

3A6 1646 1110100110 B SR X RSHFB S&X BSR X 

3BA 1672 1110111010 B SR M RSHFB M BSRM 

3AA 1652 1110101010 B SR WPT RSHFB R< BSR WPT 

3A2 1642 1110100010 B SR PT RSHFB @R BSR PT 

3BE 1676 1110111110 B SR S RSHFB MS BSR S 

3B6 1666 1110110110 B SR XS RSHFB XS BSR XS 

3B2 1662 1110110010 B SR PQ RSHFB P-Q BSR PQ 

3CE 1716 1111001110 C SR RSHFC ALL CSR ALL 

3C6 1706 1111000110 C SR X RSHFC S&X CSR X 

3DA 1732 1111011010 C SR M RSHFC M CSRM 

3CA 1712 1111001010 C SR WPT RSHFC R< CSR WPT 
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Hexcode Octal Binary HP Jacobs/ ZENROM 

mnemonic De Arras mnemonic 

3C2 1702 IlIIOOOOIO C SR PT RSHFC @R CSR PT 

3DE 1736 lIlI011110 C SR S RSHFC MS CSR S 

3D6 1726 1111010110 C SR XS RSHFC XS CSR XS 

3D2 1722 Illl 0 1 00 1 0 C SR PQ RSHFC P-Q CSR PQ 

3EE 1756 IlIII0III0 A SL LSHFA ALL ASL ALL 

3E6 1746 1111100110 A SL X LSHFA S&X ASL X 

3FA 1772 1111111010 A SL M LSHFA M ASL M 

3EA 1752 1111101010 A SL WPT LSHFA R< ASL WPT 

3E2 1742 1111100010 A SL PT LSHFA @R ASL PT 

3FE 1776 lIlII11110 A SL S LSHFA MS ASL S 

3F6 1766 1111110110 A SL XS LSHFA XS ASL XS 

3F2 1762 1111110010 A SL PQ LSHFA P-Q ASL PQ 

038 0070 0000111000 C=DATA READ DATA RDATA 

078 0170 0001111000 C=REGN 1 READ I(Z) C=REG I/Z 

OB8 0270 0010111000 C=REGN 2 READ 2(Y) C=REG 2/Y 

OF8 0370 0011111000 C=REGN 3 READ 3(X) C=REG 3/X 

138 0470 0100111000 C=REGN 4 READ 4(L) C=REG 4/L 

178 0570 0101111000 C=REGN 5 READ 5(M) C=REG 5/M 

IB8 0670 0110111000 C=REGN 6 READ 6(N) C=REG 6/N 

IF8 0770 0111111000 C=REGN 7 READ 7(0) C=REG 7/0 

238 1070 1000111000 C=REGN 8 READ 8(P) C=REG 8/P 

278 1170 1001111000 C=REGN 9 READ 9(Q) C=REG 9/Q 

2B8 1270 1010111000 C=REGN 10 READ 10(~·) C=REG 10/:-· 

2F8 1370 1011111000 C=REGN 11 READ II(a) C=REG II/a 

338 1470 1100111000 C=REGN 12 READ 12(b) C=REG 12/b 

378 1570 1101111000 C=REGN 13 READ 13(c) C=REG 13/c 

3B8 1670 1110111000 C=REGN 14 READ 14(d) C=REG 14/d 

3F8 1770 1111111000 C=REGN 15 READ 15(e) C=REG 15/e 

028 0050 0000101000 REGN=C 0 WRIT OCT) REG=C OfT 

068 0150 0001101000 REGN=C 1 WRIT I(Z) REG=C I/Z 

OA8 0250 0010101000 REGN=C 2 WRIT 2(Y) REG=C 2/Y 

OE8 0350 0011101000 REGN=C 3 WRIT 3(X) REG=C 3/X 
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Hexcode Octal Binary HP Jacobs/ ZEN ROM 

mnemonic De Arras mnemonic 

128 0450 0100101000 REGN=C 4 WRIT 4(L) REG=C 4/L 

168 0550 0101101000 REGN=C 5 WRIT 5(M) REG=C 5/M 

IA8 0650 0110101000 REGN=C 6 WRIT 6(N) REG=C 6/N 

lE8 0750 0111101000 REGN=C 7 WRIT 7(0) REG=C 7/0 

228 1050 1000101000 REGN=C 8 WRIT 8(P) REG=C 8/P 

268 1150 1001101000 REGN=C 9 WRIT 9(Q) REG=C 9/Q 

2A8 1250 1010101000 REGN=C 10 WRIT 10(1--) REG=C 10/~-

2E8 1350 10 III 0 I 000 REGN=C II WRIT II(a) REG=C 11/a 

328 1450 1100101000 REGN=C 12 WRIT 12(b) REG=C 12/b 

368 1550 1101101000 REGN=C 13 WRIT 13(c) REG=C 13/c 

3A8 1650 1110101000 REGN=C 14 WRIT 14(d) REG=C 14/d 

3E8 1750 1111101000 REGN=C 15 WRIT 15(e) REG=C 15/e 

33C 1474 1100111100 RCR I RCR 1 RCR 1 

23C 1074 1000111100 RCR 2 RCR 2 RCR 2 

03C 0074 0000111100 RCR 3 RCR 3 RCR 3 

07C 0174 0001111100 RCR 4 RCR 4 RCR 4 

OBC 0274 0010111100 RCR 5 RCR 5 RCR 5 

17C 0574 0101111100 RCR 6 RCR 6 RCR 6 

2BC 1274 1010111100 RCR 7 RCR 7 RCR 7 

13C 0474 0100111100 RCR 8 RCR 8 RCR 8 

27C 1174 1001111100 RCR 9 RCR 9 RCR 9 

OFC 0374 0011111100 RCR 10 RCR 10 RCR 10 

IBC 0674 0110111100 RCR II RCR II RCR II 

37C 1574 1101111100 RCR 12 RCR 12 RCR 12 

2FC 1374 10 111111 00 RCR 13 RCR 13 RCR 13 

388 1610 1110001000 SO=I SETF 0 SF 0 

308 1410 1100001000 SI=I SETF 1 SF 1 

208 1010 1000001000 S2=1 SETF 2 SF 2 

008 0010 0000001000 S3=1 SETF 3 SF 3 

048 OliO 0001001000 S4=1 SETF 4 SF 4 

088 0210 0010001000 S5=1 SETF 5 SF 5 

148 0510 0101001000 S6=1 SETF 6 SF 6 
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Hexcode Octal Binary HP Jacobs! ZENROM 
mnemonic De Arras mnemonic 

288 1210 1010001000 S7=1 SETF 7 SF 7 
108 0410 0100001000 S8=1 SETF 8 SF 8 
248 1110 1001001000 S9=1 SETF 9 SF 9 
OC8 0310 0011001000 S10=1 SETF 10 SF 10 
188 0610 0110001000 Sll=l SETF 11 SF 11 
348 1510 1101001000 S12=1 SETF 12 SF 12 
2C8 1310 1011001000 S13=l SETF 13 SF 13 
384 1604 1110000100 SO=O CLRF 0 CF 0 
304 1404 1100000100 Sl=O CLRF 1 CF 1 
204 1004 1000000100 S2=0 CLRF 2 CF 2 
004 0004 0000000100 S3=0 CLRF 3 CF 3 
044 0104 0001000100 S4=0 CLRF 4 CF 4 
084 0204 0010000100 S5=0 CLRF 5 CF 5 
144 0504 0101000100 S6=0 CLRF 6 CF 6 
284 1204 1010000100 S7=0 CLRF 7 CF 7 
104 0404 0100000100 S8=0 CLRF 8 CF 8 
244 1104 1001000100 S9=0 CLRF 9 CF 9 
OC4 0304 0011000100 S10=0 CLRF10 CF 10 
184 0604 0110000100 Sll=O CLRF 11 CF 11 

344 1504 1101000100 S12=0 CLRF 12 CF 12 
2C4 1304 1011000100 S13=0 CLRF13 CF 13 

38C 1614 1110001100 ?SO=l ?FSET 0 ?FS 0 
30C 1414 1100001100 ?Sl=l ?FSET 1 ?FS 1 
20C 1014 1000001100 ?S2=1 ?FSET 2 ?FS 2 
OOC 0014 0000001100 ?S3=1 ?FSET 3 ?FS 3 

04C 0114 0001001100 ?S4=1 ?FSET 4 ?FS 4 

08C 0214 0010001100 ?S5=1 ?FSET 5 ?FS 5 
14C 0514 0101001100 ?S6=1 ?FSET 6 ?FS 6 
28C 1214 1010001100 ?S7=1 ?FSET 7 ?FS 7 

10C 0414 0100001100 ?S8=1 ?FSET 8 ?FS 8 

24C 1114 1001001100 ?S9=1 ?FSET 9 ?FS 9 

OCC 0314 0011001100 ?S10=1 ?FSET 10 ?FS 10 

-184-



Hexcode Octal Binary HP Jacobs! ZENROM 

mnemonic De Arras mnemonic 

18C 0614 0110001100 ?SII =1 ?FSET II ?FS II 

34C 1514 1101001100 ?SI2=1 ?FSET 12 ?FS 12 

2CC 1314 1011001100 ?S13=1 ?FSET 13 ?FS 13 

39C 1634 1110011100 PT=O R= 0 PT= 0 

31C 1434 1100011100 PT=1 R= 1 PT= 1 

21C 1034 1000011100 PT=2 R= 2 PT= 2 

OIC 0034 0000011100 PT=3 R= 3 PT= 3 

05C 0134 0001011100 PT=4 R= 4 PT= 4 

09C 0234 0010011100 PT=5 R= 5 PT= 5 

15C 0534 0101011100 PT=6 R= 6 PT= 6 

29C 1234 1010011100 PT=7 R= 7 PT= 7 

llC 0434 0100011100 PT=8 R= 8 PT=: 8 

25C 1134 1001011100 PT=9 R= 9 PT= 9 

ODC 0334 0011011100 PT=IO R= 10 PT= 10 

19C 0634 0110011100 PT=ll R= II PT= II 

35C 1534 1101011100 PT=12 R= 12 PT= 12 

2DC 1334 1011011100 PT=13 R= 13 PT= 13 

394 1624 1110010100 ?PT=O ?R= 0 ?PT= 0 

314 1424 1100010100 ?PT=1 ?R= 1 ?PT= 1 

214 1024 1000010100 ?PT=2 ?R= 2 ?PT= 2 

014 0024 0000010100 ?PT=3 ?R= 3 ?PT= 3 

054 0124 0001010100 ?PT=4 ?R= 4 ?PT= 4 

094 0224 0010010100 ?PT=5 ?R= 5 ?PT= 5 

154 0524 0101010100 ?PT=6 ?R= 6 ?PT= 6 

294 1224 1010010100 ?PT=7 ?R= 7 ?PT= 7 

114 0424 0100010100 ?PT=8 ?R= 8 ?PT= 8 

254 1124 1001010100 ?PT=9 ?R= 9 ?PT= 9 

OD4 0324 0011010100 ?PT=10 ?R= 10 ?PT= 10 

194 0624 0110010100 ?PT=11 ?R= 11 ?PT= 11 

354 1524 1101010100 ?PT=12 ?R= 12 ?PT= 12 

2D4 1324 1011010100 ?PT=13 ?R= 13 ?PT= 13 

010 0020 0000010000 LC 0 LD@RO LC 0 
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Hexcode Octal Binary HP Jacobsj ZENROM 
mnemonic De Arras mnemonic 

050 0120 0001010000 LC 1 LD@R 1 LC 1 

090 0220 0010010000 LC 2 LD@R 2 LC 2 

ODO 0320 0011010000 LC 3 LD@R 3 LC 3 

110 0420 0100010000 LC 4 LD@R 4 LC 4 
150 0520 0101010000 LC 5 LD@R 5 LC 5 
190 0620 0110010000 LC 6 LD@R6 LC 6 

IDO 0720 0111010000 LC 7 LD@R 7 LC 7 

210 1020 1000010000 LC 8 LD@R 8 LC 8 
250 1120 1001010000 LC 9 LD@R 9 LC 9 

290 1220 1010010000 LC A LD@RA LC A 

2DO 1320 1011010000 LC B LD@RB LC B 

310 1420 1100010000 LC C LD@RC LC C 

350 1520 1101010000 LC D LD@RD LC D 

390 1620 1110010000 LC E LD@RE LC E 

3DO 1720 1111010000 LC F LD@R F LC F 

3AC 1654 1110101100 ?FO=1 ?FI= 0 ?PBSY 
32C 1454 1100101100 ?Fl=1 ?FI= 1 ?CRDR 

22C 1054 1000101100 ?F2=1 ?FI= 2 ?WNDB 

02C 0054 0000101100 ?F3=1 ?FI= 3 ?PF= 3 

06C 0154 0001101100 ?F4=1 ?FI= 4 ?PF= 4 

OAC 0254 0010101100 ?F5=1 ?FI= 5 ?EDAV 

16C 0554 0101101100 ?F6=1 ?FI= 6 ?IFCR 

2AC 1254 1010101100 ?F7=1 ?FI= 7 ?SRQR 

12C 0454 0100101100 ?F8=1 ?FI= 8 ?FRAV 

26C 1154 1001101100 ?F9=1 ?FI= 9 ?FRNS 

OEC 0354 0011101100 ?FI0=1 ?FI= 10 ?ORAV 

lAC 0654 0110101100 ?F 11=1 ?FI= 11 ?TFAIL 

36C 1554 1101101100 ?FI2=1 ?FI= 12 ?ALM 

2EC 1354 1011101100 ?F13=1 ?FI= 13 ?SERV 

024 0044 0000100100 SELPRF 0 SELP 0 PERTCT 0 

064 0144 0001100100 SELPRF 1 SELP 1 PERTCT 1 

OA4 0244 0010100100 SELPRF 2 SELP 2 PERTCT 2 
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Hexcode Octal Binary HP Jacobs/ ZENROM 

mnemonic De Arras mnemonic 

OE4 0344 0011100100 SELPRF 3 SELP 3 PERTCT 3 

124 0444 0100100100 SELPRF 4 SELP 4 PERTCT 4 

164 0544 0101100100 SELPRF 5 SELP 5 PERTCT 5 

lA4 0644 0110100100 SELPRF 6 SELP 6 PERTCT 6 

lE4 0744 0111100100 SELPRF 7 SELP 7 PERTCT 7 

224 1044 1000100100 SELPRF 8 SELP 8 PERTCT 8 

264 1144 1001100100 SELPRF 9 SELP 9 PERTCT 9 

2A4 1244 1010100100 SELPRF A SELP A PERTCT A 

2E4 1344 1011100100 SELPRF B SELP B PERTCT B 

324 1444 1100100100 SELPRF C SELP C PERTCT C 

364 1544 1101100100 SELPRF D SELP D PERTCT D 

3A4 1644 1110100100 SELPRF E SELP E PERTCT E 

3E4 1744 1111100100 SELPRF F SELP F PERTCT F 

3C4 1704 1111000100 CLR ST ST=O ST=O 

3C8 1710 1111001000 RST KB CLRKEY CLRKEY 

3CC 1714 1111001100 CHK KB ?KEY ?KEY 

3D4 1724 1111010100 DEC PT R=R-l -PT 

3DC 1734 1111011100 INC PT R=R+l +PT 

058 0130 0001011000 G=C G=C G=C 

098 0230 0010011000 C=G C=G C=G 

OD8 0330 0011011000 CG EX C<>G C<>G 

158 0530 0101011000 M=C M=C M=C 

198 0630 0110011000 C=M C=M C=M 

ID8 0730 0111011000 CMEX C<>M C<>M 

258 1130 1001011000 F=SB T=ST F=ST 

298 1230 1010011000 SB=F ST=T ST=F 

2D8 1330 1011011000 FEXSB ST<>T ST<>F 

358 1530 1001011000 ST=C ST=C ST=C 

398 1630 1010011000 C=ST C=ST C=ST 

3D8 1730 1111011000 CST EX C<>ST C<>ST 

020 0040 0000100000 SPOPND XQ>GO CLRRTN 

060 0140 0001100000 POWOFF POWOFF POWOFF 
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Hexcode Octal Binary HP Jacobs/ ZEN ROM 

mnemonic De Arras mnemonic 

OAO 0240 0010100000 SEL P SLCT P PT=P 

OEO 0340 0011100000 SEL Q SLCT Q PT=Q 

120 0440 0100100000 ?P=Q ?P=Q ?P=Q 

160 0540 0101100000 LLD ?LOWBAT ?BAT 

lAO 0640 0110100000 CLRABC A=B=C=O ABC=O 

lEO 0740 0111100000 GOTOC GOTO ADR GTOC 

220 1040 1000100000 C = KEYS C=KEY C=KEY 

260 1140 1001100000 SETHEX SETHEX SETHEX 

2AO 1240 1010100000 SETDEC SETDEC SETDEC 

2EO 1340 1011100000 DISOFF DSPOFF DISOFF 

320 1440 1100100000 DISTOG DSPTOG DISTOG 

360 1540 1101100000 RTN C ?C RTN CRTN 

3AO 1640 1110100000 RTN NC ?NC RTN NCRTN 

3EO 1740 1111100000 RTN RTN RTN 

070 0160 0001110000 N=C N=C N=C 

OBO 0260 0010110000 C=N C=N C=N 

OFO 0360 0011110000 CN EX C<>N C<>N 

130 0460 0100110000 LDI LDI S&X LDI 

170 0560 0101110000 STK = C PUSH ADR STK=C 

IBO 0660 0110110000 C = STK POP ADR C=STK 

230 1060 1000110000 GOKEYS GTO KEY GTOKEY 

270 1160 1001110000 DADD = C RAMSLCT RAMSLCT 

2FO 1360 1011110000 DATA = C WRITE DATA WDATA 

330 1460 1100110000 CXISA FETCH S&X RDROM 

370 1560 1101110000 C=CORA C=C OR A C=CORA 

3BO 1660 1110110000 C=C.A C=C AND A C=CANDA 

3FO 1760 1111110000 PFAD=C PRPH SLCT PERSLCT 
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"IO-BASE", 117-121 

? functions, 64,96,104 

alpha register, 36,54-56 

"AM & MA", 54-56 

"AM & MAlt revised, 60-61 

Annunciators, 111,112,115 

Assembler, 4,59 

base conversions, 117 

BCD, 8,68 

BCD-BIN", 72-7 4,87,89 

"BCD-BIN" revised, 78,79 

"BIN-BCD", 69-71 

bi t, 3,6,8,108 

"BREAK", 154-164 

byte, 6,8 

Carry, 12,45,57,58 

Character tables, 

LCD, 108 

MCODE function name, 37 

"CODE", 148,159 

"COUNT", 50-52,86,89 

CPU, 1,3,5,6,9,51 

CPU 

registers, 5,7 

A, 7,10,25,26,40 

B,7,10,25,26 

C, 7,10,25,26,40 

FI, 7,12 

G,7,11,132 

KY,7,I2,134 

M,7,10 

N,7,10,66 

INDEX 

CPU registers (cont.) 

P,7,l1 

PC, 7,11 

Q,7,11 

ST, 7,11 

return stack, 7,11,61,76, 

77 

T,7 

XST,7,l1 

Flags, 41 

Modes, 

deep sleep, 133 

light sleep, 133 

running, 133 

status, 132 

crash, 88,116 

debugging programs, 154-164 

"DECODE", 156,165 

display, 107-128 

clearing, 119 

custim error messages, 122-126 

disabling, 119 

enabling, 107,120,141 

mnemonics, 109-111 

type, 107,115-116 

display contrast, 115,116 

Dissassembler, 5,77,109 

"DISTEST", 112-115 

.END.,35,42 

EPROM 
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box, 14,130 

software, 15 



EXECUTEs 

Absolute, 57,58,60 

Relative, 75,78,85,122 

"F?",71,87,89 

FA T, 19,20,21,38,39,40,43,56,63, 

67,70,72,74,86,89,93,98,102,104, 

121,135 

FETCH, 110 

fields 

ALL, 12,40 

ADR, 12,13 

KY, 12,13 

M, 12,13,42 

MS, 12,13,69 

S&X, 12,51,52 

XS, 12,13,124 

@R, 13,51 

P-Q, 13,82 

R<, 13,69 

"FS?S & FC?C", 65-67,87,89 

"GE", 42,43,86,89 

"GEE",134-135 

GOTOs 

Absolute, 57,58,61 

Relative, 75,77,103,125 

Graves, Pete, iii 

Hexcodes, 8.28,29,76 

Hovik, David, iii 

"HXENTRY", 140-147 

"IF", 62-64,87,89 

I/O buffers, 32 

INSERT, 138 

Instruction set 

?A<B, 26,27 

?A<C,26,27,55 

Instruction set (cont.) 

?krO, 26,27,51 

?AofC,26,27,73 

?B;ofO, 26,27 

?C;ofO, 26,27,63 

?C RTN, 47,49,56 

?FI n, 28,29 

?FSET n, 28,29,55 

?KEY,47,48,51 

?LOWBAT, 47,48 

?NC RTN, 47,49,97 

?P=Q,47,48 

?R= n, 28,29,56 

A=0,25,27 

A=A+l,25,27,56 

A=A+B, 25,27 

A=A+C, 25,27 

A=A-l,25,27,63 

A=A-B, 25,27 

A=A-C, 25,27,63 

A=B=C=O, 47,48 

A=C, 25,27,40 

A<>B, 25,27,82 

A<>C, 25,27,40 

B=O, 25,27 
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B=A, 25,27 

C=O, 25,27,42 

C=O-C, 26,27 

C=B,25,27 

C=C+l, 26,27,56 

C=C+A, 25,27 

C=C+C, 25,27,63 

C=A-C, 26,27 

C=C-l, 26,27,51 

C=-C-l, 26,27,83 



Instruction set (cant.) 

C=C AND A, 47,50,63,82 

C=C OR A, 47,50,66,82 

C=KEY,47,49 

C=G,47 

C=M,47,95 

C=N,47,66 

C=ST,47 

C<>B, 25,27,56 

C<>G,47 

C<>M,47 

C<>N,47 

CLRF n, 28,29,43 

CLRKEY,47,51 

DSPOFF,47,49 

DSPTOG,47,49 

FETCH S&X, 47,50 

G=C,47,144 

GO TO ADR, 47,49,122 

GTO KEY, 47,50 

JC, 45,46,47,51 

JNC, 45,46,47,51 

LD@R n, 28,29,43 

LDI S&X, 47,49,51 

LSHFA,26,27,51 

M=C,47,94 

N=C,47,66 

NOP, 115 

POP ADR, 47,49,83,122 

POWOFF, 47,48,115 

PRPH SLCT,47,50,107,112 

PUSH ADR, 47,49,82,122 

R= n, 28,29,43 

R=R-l,47,48 

R=R+l, 47,48,56 

Instruction set (cant.) 

RAMSLCT,47,52,53,55 

RCR n, 28,29,55 

READ n, 28,29,40 

READ DATA, 47,52,53,56 

RSHF A, 26,29 

RSHFB, 26,29 

RSHFC, 26,29,80 

RTN,39 

SELP n, 28,29 

SETF n, 28,29,43 

SETDEC,47,49,51 

SETH EX, 47,49,118 

SLCT P, 47,48 

SLCT Q, 47,48 

ST=0,47 

ST=C,47 

ST=T,47 

ST<>T, 47 

T=ST,47 

WRITE DATA, 47,52,56 

WRIT n, 28,29,41 

XQ>GO, 47,48 

interupt (polling) points, 21, 

151-153 

Johanson, David, iii 

Jumps, 45,46 

"LOOP", 157-164 

MACRO, 77 

Mainframe 

functions, 16 

key tables, 149,150 

subroutine, 16,91 

en try point, 17,60 

MCODE, iii,1,7,126 
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MLDL, 1,13,38,44,129 

MEMOR Y LOST, 35 

microCODE, 1 

Microprocessor, 4,6 

mnemonics, 4,8,19,109 

MOD, 91,117,119 

Negative exponents, 5,101 

NOP, 8,115,134 

"NR", 84-86,87,90 

number systems 

base 10, 3 

Binary, 3,4 

Hex, 3,67,86,99 

Hexadecimal, 3 

Octal, 99 

nybble, 5,8,13,35,82,108 

"OCT-HEX", 166-169 

op bits, 137-139 

overflow, 9 

partial key sequencing, 35,137-147 

PTEMPl,34,35,138 

PTEMP2, 138,139 

prefix, 13,25-29 

Programming, 

Machine language, 1 

MCODE, 1,12,16,19,20,29,52, 

99,139 

User code, 1,19 

Synthetic, 7,37 

pointers, 11,28 

postfix, 13,25-29 

prompting, 135-147 

"QR",91-93 

RAM, 

Addresses, 31,32,83 

RAM (cont.) 

Chip, 53 

Extended Memory, 29,31,32 

Main Memory,29,31,32 

RAM, 1,6,9,13,17,30,52,60 

Status Registers, 29,33-37, 

VOID, 31,33 

random numbers, 100 

"RN", 100-102 

ROM, 1,6,9,17,19,20 

ROM 

address space, 6,17 

checksum, 22 

header, 19,38,86 

page, 17,18,19 

program name, 37,38 

revision, 21 

word, 18 

"RSLCT", 157,160-164 

"S?", 102-104 

shift, 8,62,80,110 

SKWID, iii 

"SKWID IA", 38-40,86,89 

SYNTHETIX, ii 

underflow, 9,72 

underscores, 136,139 

user flag 46, 140,146 

user flag 50, 95,115,119,146 

"VA", 98,99 

VASM, 17,99 

VASM octal to hex conversions, 166-

169 

"VM",93-95 

White, David, iii 

word, 9,77 
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wraparound, 9,70 

"X=Y? Z?", 96-98 

"X>= Y?", 1 04-1 06 

XOR,80-82 

XROM, 19,20,38,39,40,43,86,89, 

132,138 

"Y<>Z",40,41,86,89 

ZENROM,129 
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Ken Emery, the author of this book, also does custom M-Code software 

development for HP-41's and HP-IL systems. If you have an HP-41 application 

that needs the speed and user-convenience capabilities of M-Code, you may 

want to contact Ken. In his consulting role, Ken can tell you what 

capabilities M-Code would bring to your application. Ken is one of the few 

true experts in M-Code, so you can be confident that he will give you an 

accurate estimate of what is possible and how much effort it will take. You 

can contact Ken through SYNTHETIX at P.O. Box 1080, Berkeley, CA 94701-1080 

USA, phone (415) 339-0601. 
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HP-41 MeaDE FOR BEGINNERS 
by Ken Emery 

MCODE is the internal machine code used by the HP-41, one level below the 

set of "user code" instructions that users and programmers are accustomed to 
dealing with. Some user code instructions like CLX are implemented by the 

HP-41 in just a few MCODE instructions; other user code instructions like 

TAN may need hundreds of MCODE operations. 

Programs in MCODE are FAST. They run 7 to 120 times faster than user code 

programs. But the advantage that enthusiasts will appreciate the most is 

that MCODE gives you total control of the machine. You can make the HP-41 

do whatever you want it to do, completely redefining its "personality" and 

customizing it for your particular applications. MCODE programming requires 

additional hardware, generally an external box' called an MLDL (Machine 

Language Development Lab). But once you enter the world of MCODE there is 

nothing you can't do. 

This book is your ticket to the world of MCODE. 

Simple programming examples lead you step-by-step to an understanding of the 

principles and practice of MCODE programming. Later examples show you how 

to use parts of the built-in operating system as subroutines to do input, 

output, and other useful functions. Even before you finish the examples, 

you will be able to write your own simple MCODE programs. 

For advanced MCODE programmers, there are several features of interest. 

Complete details of the display instructions are given. ' This includes the 

new display that accesses additional LCD characters, and that allows 
alteration of the contrast. Also explained for the first time is partial 

key sequencing, which allows you to create functions that prompt for inputs 
in the same user-friendly way as the built-in functions like STO and LBL. 

Two utility programs are included to help in your programming. A debugging 

program allows you to interrupt an MCODE routine at any point, dumping the 

contents of the CPU registers for viewing. Also included are base con­

version programs to help you use HP's annotated operating system listings. 

Move into the FAST lane. Get started programming in MCODE today! 

ISBN 0-9612174-7-2 
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