
HP-41
CODE fOR

BEG\NNERS

HP-41

MeODE

FOR

BEGINNERS

by Ken Emery

published by:

SYNTHETIX

P.O. Box 1080

Berkeley, CA 94701-1080 USA

ISBN 0-9612174-7-2

Library of Congress 85-61881

Also available from SYNTHETIX:

HP-4l Synthetic Programming Made Easy

by Keith Jarett

HP-4l Extended Functions Made Easy

by Keith Jarett

Inside the HP-41

by Jean-Daniel Dodin

HP-71 Basic Made Easy

by Joseph Horn

ENTER (for the HP-ll, 12, 15, and 16)

by Jean-Daniel Dodin

Quick Reference Card for Synthetic Programming

Copyright 1985 SYNTHETIX

This book may not be reproduced, either in whole or in part, without the

written consent of the publisher and the author. Permission is hereby given

to reproduce short portions of this book for purpose of review.

The material in this book is supplied without representation or warranty of

any kind. Neither the publisher nor the author shall have any liability,

consequential or otherwise, arising from the use of any material or sugges­

tions in this book.

-11-

ACKNOWLEDG EMENT

There are seven people who, through their tremendous contributions, helped

to make this book a reality.

The primary program contributor for this book is a person known only as

SKWID. He has written articles for the PPC JOURNAL on beginning MCODE

programming, as well as some advanced User code programs. Other programs

were written by Clifford Stern, who also served as technical consultant.

David Johanson, Pete Graves, and David Hovik provided a great deal of

insight into how the book should be structured, as well as correcting some

of the more blatant English errors. I would also like to thank David E.

White, Editor of the PPC Journal, for the editorial comments he made during

the creation of the book.

ABOUT THE AUTHOR

Ken Emery is a Chemical Engineer who graduated from Cal Poly Pomona in March

of 1985. His first calculator was an HP-4ICV purchased in August of 1981

(talk about starting at the top!). He has been addicted to HP calculators

ever since. First, he worked on becoming familar with the HP-41 operating

system through the use of Synthetic programming. With the advent of MCODE,

and the possibility of newer, faster programs, he had to enter this field to

satisfy his craving for more speed out of the little box called a 41.

-iii-

WHAT IS MCODE?

MCODE is the internal machine code used by the HP-41, one level below the

set of "user code" instructions that users and programmers are accustomed to

dealing with. Some user code instructions like CLX are implemented by the

HP-41 in just a few MCODE instructions; other user code instructions like

TAN consist of hundreds of MCODE operations.

HISTORICAL BACKGROUND

When Hewlett-Packard announced the HP-41C in July 1979 they described it as:

"A Calculator, A System, A Whole New Standard." Six years later we know

these bold statements to be true. The HP-41 has been successful beyond HP's

most optimistic expectations.

By the end of 1979, only five months after the introduction of the HP-41,

the beginnings of a new form of programming appeared. Pioneered by Dr.

William C. Wickes, it is now called synthetic programming, or SP. Synthetic

programming encompasses the creation and use of new undocumented

instructions to which the HP-41 responds. Synthetic programming is only an

extension of user code programming. Its study, however, provided an

important general overview of the HP-41's operating system and its memory

management. The next step was to find ways to list and study the internal

machine code, now called MCODE.

User community programming in MCODE was discouraged by HP. "It's too

complicated and in many cases doesn't offer an advantage," was the usual

reason given by HP's technical support staff. By the spring of 1982,

however, the first MCODE programs were written, hand compiled, and burned

into EPROM by Jim De Arras.

Four problems had to be overcome before MCODE could become popular. First,

the user community had to discover that MCODE programming is not beyond

the grasp of talented programmers. The second problem was the documentation

-iv-

of the HP-41's operating system. HP eventually released the annotated

operating system listings, but only after Jim De Arras produced his own

version, a monumental feat. The third problem was the lack of a means to

generate and store MCODE instructions. Several small manufactures now offer

the necessary hardware to the user community. The fourth and last problem

was documenting in one place the basics of MCODE programming. This book is

the result of that effort.

WHY SHOULD YOU USE MCODE?

The first reason to use MCODE is speed. MCODE programs run from 7 to 120

times faster than user code. The second reason is that you get full system

control. More efficient data register usage (data packing) and access to

all of system memory are but two examples. A third reason to use MCODE is

that greater accuracy is possible by using the internal 13-digit math

routines. A fourth reason for using MCODE is the ease of dealing with

hexadecimal (base 16) numbers. The HP-41 has MCODE instructions to do

hexadecimal arithmetic at least as easily as decimal arithmetic. Finally,

your MCODE programs are immune to MEMORY LOST because they do not reside in

normal user code program memory.

MCODE programming requires additional hardware, costing from $100 to $400.

But once you enter the world of MCODE there is nothing you can't do. To get

started, however, you need to understand the basics of MCODE. That's where

this book fits in. It will give you the background you need to write your

own MCODE programs and to start to understand the HP-41's operating system.

Understanding the operating system is the key to the most advanced

applications of MCODE.

-v-

Richard J. Nelson

Editor, CHHU Chronicle

PREFACE

With the introduction of the HP-41C in July of 1979, the world of truly

personal computing was set on its ear. In one hand, the computer user was

now able to hold what once took an entire room full of hardware. At the

time of its introduction, the HP-41C was expected to have a product life of

five years. Based on the results of a survey made of the user community in

late 1984, the projected life of the current 41 series (CY ICX) is still 5

years. The overwhelming success of the 41 is due in large part to enter­

prising users who managed to tickle ever more power out of their 41. Dr.

William Wickes first discovered and utilized "synthetic programming" for the

HP-4 1 , with Keith J arett, Roger HilI, and others expanding the bounds of

knowledge significantly. In 1981, members of the Personal Programming

Center (PPC) created an astounding collection of programs for the PPC ROM,

which combined synthetic programming techniques with improved algorithms to

come up with what is still the most advanced non-MCODE ROM around.

Hewlett-Packard has responded to the success of the HP-4l by introducing new

products (such as Extended Memory, HP-IL, and the Time module) that expand

the capabilities of the 41 manyfold. Pioneering work by Steve Jacobs and

Jim De Arras in the disassembly of HP-4l instructions led HP to unofficially

release the operating system listings for the 41, along with the original

programmers' annotations. Thus was born the art of MCODE programming.

MCODE programs can normally be executed only as part of an internal or plug­

in ROM (Read Only Memory) module. As the name implies, ROM modules cannot

be reprogrammed. Lynn Wilkins and Paul Lind originally developed the

Machine Language Development Lab (MLDL) to enable programmers to

conveniently write, test, and use MCODE programs. Later refinements by

Lynn Wilkins, Paul Lind, Nelson Crowle, and the ERAMCO company led to

today's state-of -the-art MLDL. An MLDL contains ordinary memory (RAM) that

looks like ROM to the HP-41. It also contains sockets that allow you to

plug in EPROM (erasable, programmable, read-only memory) chips. EPROM's,

which can be programmed using third-party hardware that connects to the HP-

41, let you create your own custom ROMs inexpensively.

-vi-

Most of the MLDL-type devices available today have some, if not all, of the

following features:

o 4K to 16K of RAM that emulates HP-41 ROM (with battery back-up)

o Sockets for 4K to 24K of EPROM's that emulate HP-41 ROM

o Development software to aid in MCODE programming

Once the hardware problem was solved, software needed to be tackled. MCODE

programmers all over the world developed assemblers, dissassemblers,

editors, and general-purpose MCODE programming tools. These software

development tools, which are standard on computer systems, are now available

for the HP-41.

But alas! With all of this programming power available, HP-41 users stilI

had a tough time trying to learn how to program in MCODE. To make it easy

on yourself, you needed to speak fluent Jacobs-DeArras, Hewlett-Packardian,

and ZENGRANGEish to be able to understand the various mnemonics. Further,

the only method of learning for each programmer was to start at the bottom,

with all of the appropriate documents in hand, and pull himself up by his

bootstraps. One evening, Ken Emery was bemoaning the lack of a tutorial on

MCODE to several local PPC members. "Write it yourself!", they told him.

So he did, and the rest is history.

This book will do its best to try and guide you through all of the vagaries

of HP-41 MCODE programming that you are likely to experience as a bcginning

MCODE programmer. Intermediate programmers will find a fair amount of

useful information as well, perhaps a few little-known tricks that will cut

program size or execution time. And advanced MCODE programmers will get a

kick out of remembering how they first discovered these secrets.

David E. White

Editor, PPC Journal

-vii-

T ABLE OF CONTENTS

TOPIC PAGE

INTRODUCTION .. 1

THE BASICS

Binary Number Representations 3

The Microprocessor ... 6

The CPU Registers of the HP-4I 7

Vocabulary ... 8

The Hardware , ... 13

The Software .. 15

Source Listings for the HP-4I's Operating System 16

The ROM Address Space , 17

The ROM Word .. 18

How a 4K Page is Divided ... 19

THE TOOLS

The Instruction Set .. 25

Jumps and Jumping45

-viii-

Absolute Execute's and Goto's 57

The Normal Function Return 61

Rela ti ve Execute's and Goto's 75

Tips, Short Routines, and Other Little Goodies 80

THE VISUALS

Accessing the Display ... 107

Custom Error Messages .. 122

APPENDICES

Appendix A: List of Suppliers 129

Appendix B: What's Up on Entry to an MCODE Routine 132

Appendix ZZZzzz ... : The Three CPU Modes 133

Appendix C: Other Advanced Stuff 134

Appendix D: Using the Polling Points 151

Appendix E: MCODE Debugging Program 154

Appendix V: OCTal-HEX Conversion Programs. 166

Appendix F: Table of Mnemonics 174

INDEX .. 189

-ix-

INTRODUCTION

This book will introduce you to machine language programming on Hewlett­

Packard Series 40 calculators (the HP-41C, CY, and CX). This book is suit­

able for total beginners in machine language, but experience in normal HP-41

programming will prove helpful.

Machine language (also known as MCODE) is the language used to program the

internal functions of the calculator. With machine language (MCODE), you

have total control of the calculator. The execution speed of an MCODE

program can be anywhere from 5 to 120 times as much as that of a similar

User code program.

To help you better understand HP-41 machine language programming, we will

first review the structure of the CPU registers. Next we will discuss the

instruction set, and finally we will provide examples of how to use the

various instructions. In the process, several practical routines will be

demonstrated. Each routine is fully documented to provide a clear under­

standing of why a particular instruction was chosen at each step.

Throughout this book we shall refer to machine language programming on the

HP-41 as MCODE. The term MCODE is derived from both Machine language pro­

gramming and microCODE. Machine language is the language determined by the

instruction set of the CPU. Microcode is the electronic programming that

actually determines what the CPU's instruction set will be. When machine

language programming first became possible on the HP-41, the term MCODE was

coined, and it remains in use to this day.

In order to program in MCODE, you must have an accessory that simulates the

ROM (Read Only Memory) of the HP-41. This is because the HP-41's operating

system is not designed to run MCODE programs from its normal RAM (Random

Access Memory) area. Extensive internal ROM contains the permanent code

that determines the function set of the HP-41. Several types of devices are

available for this purpose, and they are commonly referred to as MLDL's

(short for Machine Language Development Lab). These devices plug into one

-1-

of the four ports at the top of the 41. They contain RAM, memory that may

be altered by the user, suitable for holding MeODE programs. Further

explanation will be provided in the hardware section of this book.

-2-

THE BASICS

BINARY NUMBER REPRESENTATION

The CPU can only interpret binary numbers. Binary numbers are base 2 num­

bers. They can only be represented using a one or zero. For example, 6 in

base ten would become 110 in binary. Let's examine how this is done. The

rightmost digit is the one's place; it may be either one or zero. When we

get to 2 we must go to the next digit to the left. This is the two's digit.

If it is a I then we add 2 to the total. If the one's and two's digits

are set to one we have 3 (I + 2 is 3). If we want to continue counting,

then we must move to the next digit to the left, which is the four's digit

(four comes after three). If this digit is one, then we add 4 to the total.

In our example the four's digit and the two's digit are one. This means

that we have 4 + 2 (or 6). Since the one's digit is zero, we don't add one

to the total.

As you can see, counting in binary can be rather difficult (unless you only

have two fingers). When writing programs for the HP-41's CPU in binary it

is very easy to make a mistake. In the CPU of the 41 the instructions are

ten binary digits long. Each of these digits is known as a BIT (for BInary

digiT). Now, if you have a program that is 100 instructions long, then you

would have to check 1,000 (loa instructions times 10 bits per instruction)

bits to make sure that you have made no errors.

programs in binary makes them difficult to debug.

the same, particularly after a few hours of debugging.

As you can see, writing

Binary numbers all look

Since computers never get tired, and love to work with binary numbers, we

write programs to translate our inputs into binary. We input in hexadecimal

(hex for short) or base 16. Since numbers only cover from a to 9, we must

borrow letters from the alphabet for the last 6 hex digit values. We use

the letters A through F, with A corresponding to la, B to II, and so on

until we get to F, which is 15 in base ten.

-3-

Here's an example of how much easier hex is than binary. We will use ten­

bit binary numbers since this is what the 41 CPU uses.

Binary Hex

0110011110 19E

1100101001 329

0000010000 010

1111101001 3E9

1000110111 237

If you make a mistake keying in the binary instructions, then you must

examine 50 bits to see where the mistake is. Using hex, only 15 digits must

be examined. This is a reduction of 70% in the number of digits you must

check.

How do we get the CPU to use these hex digits if it only recognizes binary

numbers? We use a program which will translate our hex codes to binary.

This program is called a hex assembler. Since computers don't make mis­

takes, the translation from hex to binary will be performed without any

mistakes.

Since most people can't count too well in hex (we haven't seen anyone with

16 fingers), the hexcodes are given alphanumeric representations of the

operations that they perform. These alphanumeric representations are called

mnemonics. The program that translates these mnemonics into binary is

called an assembler. These programs are usually rather elaborate. However,

they make programming much easier, since you can actually see what each

instruction does, and you may follow the logic of the program. For example,

the binary number 000000 III 0 (OOE in hex) is the A=O ALL instruction in the

microprocessor of the 4l. It is much easier to figure out what the A=O ALL

instruction does (sets all of CPU register A equal to zero), than to trans­

late 0000001110 to a number which you may then look up on a chart.

-4-

The opposite of the assembler is the dissassembler. This is a program which

takes the binary codes at specified locations in memory and translates them

to mnemonics so that you may easily examine what instructions are in memory.

You may be wondering why the HP-41's main CPU registers are 56 bits wide.

The 41 was designed with numerical computation in mind. The number 56 is

divisible by 4, therefore it may be partitioned into 14 sections of four

bits each. The reason for using four bits is because the numbers zero to

nine may be represented using four bits. The leftmost four bits (one nyb­

ble) are used to tell whether the number is negative or positive. If this

nybble is 0, then the number is positive. If it is equal to nine (1001 in

binary), the number is negative.

The next ten nybbles are used to hold the mantissa of the number. Because

there are only ten mantissa digits the 41 is accurate in calculations to ten

decimal places. For example, the mantissa of PI is 3141592654. These are

the ten digits you see when PI is in the display and you are in FIX 9 mode.

The three rightmost nybbles are the exponent sign and the exponent. The

leftmost of the three is the sign of the exponent. This is encoded in the

same way as the sign on the mantissa. It is nine if the exponent is nega­

tive, and zero if it is positive. The next two nybbles form the exponent.

The 41 stores all numbers in scientific notation, that is, with the exponent

set so that the mantissa has only one number to the left of the decimal

point. You may remember that the exponent on the 41 may range from a to 99.

This is because the largest decimal number in two digits is 99. The CPU

cannot handle an exponent greater than 99 because there is no room to store

the three digits (100 and greater) needed to represent this. For numbers

with negative exponents the number stored in the exponent is lOa minus the

exponent. For example, for a negative exponent of 2 the actual number

stored is 98 (100-2). The reason numbers aren't always displayed in scien­

tific format is because HP was kind enough to give you a choice of whether

you want scientific, engineering, or no exponent (FIX format) displayed.

The display routines take care of all of the work to make sure the number is

displayed in the format you want.

-5-

THE MICROPROCESSOR

A microprocessor is the heart of any computer. The microprocessor chip is

made of silicon, just like any of the other integrated circuits that com­

prise a computer. However, it has been designated as the controller of the

whole show. The microprocessor has been manufactured so that it recognizes

certain inputs, and then it tells everything else what to do. It is the

brain of the computer.

When this chip is manufactured, a set of commands that will delegate the

work is etched into the chip. These commands are known as the instruction

set. The microprocessor has a set of registers where all of the operations

are carried out. These registers are known as the CPU registers. The CPU

registers are completely separate from the memory registers, as you'll see

later.

In many texts, you may have noticed references to Microprocessor, Micro

Processing Unit (MPU), and Central Processing Unit (CPU). These terms all

mean the same thing. To maintain some semblance of consistency, we will use

the term CPU throughout the book when referring to the HP-41 microprocessor.

In the CPU of the 41, ROM (Read Only Memory which may NOT be altered by

the user), and User RAM are not the same. In the ROM address space the

bytes are each 10 bits long. The CPU has a 64 Kilobyte address space for

ROM. Therefore it can have up to 65,536 bytes of functions and programs.

The way the 41 CPU was designed was to treat this whole area as ROM. The

User RAM is treated as a peripheral by the CPU, and is not part of the 64K

ROM address space. The RAM bytes are each eight bits long. The 41 CPU

further complicates matters by storing the eight bit bytes of User RAM in

56-bit registers (7 bytes per register).

Each 10-bit word of an MCODE instruction takes 155 microseconds to execute.

The only exception is FETCH S&X (introduced on page 50), which takes twice

as long. The CPU thus processes an amazing 6452 words of MCODE per second.

-6-

THE CPU REGISTERS OF THE HP-41

In order to program in MCODE you MUST know how the internal CPU

registers interact with each other. This is not like User RAM, where you do

not have to worry about the partitioning of programs and data. Remember,

with MCODE you are in eommand of the calculator at the most fundamental

level. Therefore you must know what you are doing in similar detail.

Almost anything you want to do can be done. Like a good synthetic

programmer, who must know that there are 16 status registers and how they

are used by the calculator, you must know how the data flows through the

internal CPU registers. A diagram of the flow of data in the CPU registers

is given below. The numbers in parentheses are the lengths of each register

in bits. Eaeh register is named by a letter(s).

To

RAM

Registers

M (56)

N (56)

Figure 1

-7-

Subr.

Staek

4-Levels

(16)

FI (14)

XST (6)

Now for a short vocabulary lesson, followed by a little explanation of the

uses of each of these registers.

Word

Bit

BCD

Definition

Binary digit. One bit can have a value of either I or O. It is

like a switch, either on or off.

Binary Coded Decimal. This is how the CPU represents the

numbers you see. Each decimal digit is represented by four

bits (one nybble). Each of the nybbles is separate from the

other, and may have a value from zero to nine. When one of the

nybbles tries to become ten, a one is added to the nybble to

the left, and the original nybble is set to zero.

Hexcodes The three hex digits used to symbolize the ten-bit MCODE words.

Mnemonics Alphanumeric representations of what certain hex codes do. For

example, the hexcode OOE has a mnemonic of A=O ALL. From the

mnemonic you can deduce that hex OOE sets ill of CPU register A
equal to zero. This is much easier than having to memorize

what each hexcode stands for.

Nybble

NOP

Byte

Shift

Four bits put together. The highest value that may be obtained ,
is when all 4 bits are set to 1. This is 15 decimal, or F in

hexadecimal. One nybble is also one hexadecimal (hex) digit.

No OPeration (do nothing instruction).

Two consecutive nybbles or eight consecutive bits.

Movement of data within a register, either left or right. Any

data pushed off the end of the register is lost forever. For

example, if we shift the binary number 10110111 right by 2 bits

-8-

the two rightmost bits will be lost and zeros will be placed on

the left. We then end up with 00101101.

Wraparound Movement of digits from one side of a register to the other,

during rotation of a register. Rotation is like shifting right

except instead of losing the rightmost digits they are wrapped

around to the left. For instance, if the above example was

rotated instead of shifted, we would get 11101101 as our an­

swer. Notice that the last two digits were placed on the left

end of the number and were not lost. This is wraparound. You

may also be familiar with this term as logical rotation.

Word The CPU instructions of the HP-41 are 10 bits long. So the

term Word describes a ROM memory cell that holds a single CPU

instruction. The term Byte is avoided in this context in order

to distinguish ROM words from the 8-bit bytes in RAM. However,

you will occasionally see CPU instructions referred to as

bytes, for example when the "byte count" of a routine is

quoted.

Underflow Underflow occurs when a negative number would result from an

operation. The CPU does not know what negative numbers are, so

it gives a result as if it had borrowed a one from the next

most significant digit. For example, the operation 1001 minus

1100 would result in an underflow, since 1100 is greater than

1001. The result would be 1101, which is 11001 minus 1100.

The Carry, which will be explained later, is set whenever an

underflow occurs.

Overflow Overflow is the opposite of the underflow. It is much like the

OUT OF RANGE error message we get when a number greater than

9.999999999 E99 would result from a mathematical operation. If

the operation were carried out, there would be an overflow,

since the wanted number would be too large for the CPU to

handle. The CPU just chops off anything that would be larger

-9-

than it can handle. For example, 1001 plus 1000 would be

10001. But since we are using only four bits for our example,

the leftmost bit would be eliminated and the answer would be

0001. The Carry bit is set after one of these operations.

Here is an explanation of how the CPU registers function.

Register

C

A

B

M and N

Usage

This is the main register. All communication with the RAM

registers is done through the C register. This is the only

register that can directly interact with all of the other CPU

registers (except T). This register can either be shifted one

nybble right or the whole register may be rotated from I to 13

nybbles to the right. 4-bit digits (0 to F in hex) may be

loaded into any nybble of this register. This register cor­

responds to the accumulator on other CPUs. It may be incremen­

ted or decremented by one, and it may also be zeroed.

The A register may interact with only the C and B registers.

These registers may be added to A and they may also subtracted

from A. A can also be added to C. It can be incremented or

decremented by one, shifted left or right one nybble, or

zeroed.

This register may be added to or subtracted from only the A

register. However, it may be exchanged with the A and C regis­

ters in whole or in part. It may also be shifted right one

nybble, or zeroed.

These registers may interact with only the C register. They

can not interact with each other, or with any register other

than C. They are usually used for storage.

-10-

P and Q

PC

These 2 four-bit registers are the pointers. They may be set

to any value from 0 to 13. They are used to point to digits in

the A, B, and C registers. Only one of the pointers may be

selected as the active pointer at any time. The active pointer

may be incremented or decremented by one. The active pointer

is sometimes referred to as the 'R' register.

This is the program counter. It contains the address of the

MCODE instruction that is currently being executed. It may be

modified using certain instructions.

Subroutine The subroutine stack has space for 4 pending returns. These

Stack returns may be popped into the C register. Part of the C

register may be pushed onto the subroutine stack. This stack

should not be confused with the subroutine stack used for User

code programs.

G

ST

XST

This register interacts with the C register at the nybble

pointed to by the active pointer, and the next highest nybble.

If the nybble pointed to is 13, then wraparound occurs.

This is the flag register. Flags 0 to 7 reside in this regis­

ter. They may be set, cleared, and tested. The ST register

may be zeroed and exchanged with, or set equal to, nybbles tl

and I of the C register. Nybble 0 is flags 0-3 and nybble I is

flags 4-7. Note that these flags are independent from the User

flags of the 41, although they are frequently set to match User

flags 48 to 55.

This register contains CPU flags 8 to 13. XST cannot be

directly accessed by any other register. These flags may be

set, cleared, or tested.

Note on ST and XST: Flags 0-13 are also referred to as status

bits in HP documentation.

-11-

KY

FI

Carry

This is the keyboard register. When a key is pressed, K Y is

loaded with a two-digit hexcode from a table built into the CPU

(see the table on page 150). Part of registers C and PC may be

set equal to KY.

Peripheral flag register. These flags may only be tested by

the CPU. They must be set by a peripheral.

This one bit is set when an overflow or underflow occurs. It

is also set if a test is true. After the carry is set, the

next MCODE instruction clears the carry, regardless of whether

that MCODE instruction tests the carry bit.

What follows is the ROSETTA STONE of MCODE programming. Figure 2 shows

the fields of a 56 bit register. These 56 bits are divided into 14 nybbles.

These are numbered 0 to 13 (starting from the right). The fields are used

extensively to operate on all or part of the A, B, or C registers.

Nybble: 13 12 II 10 9 8 7 6 5 4 3 2 o

Field:

Field:

Field:

Field:

< ---------- ------- --- ------- --- --- --- --- --- - ALL --->

< -MS -> < ----------------------------- M --------------------------------> <-XS->

Figure 2

<------- ADR --------><---- S&X ---->

<-- KY -->

Note that these fields also function as postfixes for a number of instruc­

tions. Here are the functions of the fields in Figure 2:

Field

ALL

S&X

Usage

All 14 nybbles.

Exponent and exponent sign (nybbles 0-2).

-12-

XS

M

ADR

Exponent sign only. (nybble 2)

The 10 nybbles of the Mantissa (nybbles 3-12).

Nybbles 3-6. This is where the address is taken from when a return

is pushed onto the subroutine stack; it is also placed here when a

return is popped from the subroutine stack.

KY Nybbles 3 and 4. This is where the contents of the KY register are

placed. C cannot be placed into KY.

@R At the nybble pointed to by the active pointer.

P-Q Uses the nybbles pointed to by each pointer. The nybbles used

depend on whether P is larger than Q. If P<=Q, digits P through Q

are used. If P>Q, digits P through 13 are used.

For example; if P=12 and Q=2 and we execute the instruction C=O P­

Q, then nyb bles 12 and 13 of C will be zeroed since P is greater

than Q. If the values were reversed, then nybbles 2 through 12

would have been zeroed. For the field designation P-Q it does not

matter which pointer is selected as the active pointer.

R< All digits from 0 through the digit pointed to by the active poin­

ter.

The last three items (@R, P-Q, and R<) are not actually fields. They are

postfixes to a group of instructions, as are the field definitions. These

last three can change position, and can not be rigidly defined as being in

one place (like the rest of the postfixes). Table 1, on page 27, contains

all of the prefix instructions for use with the postfixes mentioned above.

(By the way, a word about prefixes and postfixes. These are not before and

after fixes for something you may be considering to do or did do wrong,

rather they are descriptions of which half of the mnemonic is being

discussed. The first half is the prefix; the second half is the postfix.)

THE HARDWARE

The hardware accessory needed to program in MCODE is called a Machine Lan­

guage Development Lab, or MLDL for short. This device contains the neces­

sary electronics to interface at least one 4 Kilobyte block of CMOS RAM

-13-

with one of the ports at the top of the calculator. The total amount of RAM

available for writing MCODE depends on the device.

At the present there are several popular versions of this box. One of

these, the ERAMCO MLDL, has 8K of RAM (two 4K blocks) and space for 24K of

EPROM (Erasable Programmable ROM). This device uses a hex code that the CPU

regards as a NOP to trigger its write mode. Reading and writing to this

device is very fast. However, in order to write MCODE to this device, you

must have software written in MCODE. The ERAMCO MLDL is supplied with

one 4K EPROM set to help you get started writing MCODE.

Another MLDL device is called the Protocoder II. This device uses the ABS

function in the calculator to trigger its read and write functions. Because

of this, it takes longer to read from and write to this unit. However,

programs will run at the same speed when they are executed in either device.

The main advantage of the Protocoder II is that software written in MCODE is

not necessary, it just makes things much easier.

For those of you with an adventurous spirit, Volume 9 Number 3 of the PPC

Calculator Journal contains schematics and instructions to build your own 4K

RAM MLDL (with provision for 4K of EPROM).

Another type of add-on for the 41 is the EPROM box. This box provides the

electronic circuitry enabling you to plug in EPROM (Erasable Programmable

Read Only Memory) chips into the interface box. The calculator sees these

as Application Pacs. With this capability you can write one-of -a kind ROMs

for only the cost of a set of EPROMs (approx. $15 U.S.) and the cost of

burning (programming) the EPROMs. This is much cheaper than having a custom

ROM manufactured for you by HP (about $10,000+).

The ERAMCO MLDL comes with sockets that allow you to plug in up to 24K (six

4K sets) of these EPROMs. The Protocoder II requires the addition of an

extra board that addresses up to 16K of EPROM memory. A company called

Hand Held Products makes a variety of EPROM boxes. They even have one that

uses an HP Card Reader case. You can put up to 32K of EPROM in this device.

-14-

A company called Corvallis MicroTechnology also makes an EPROM box that

only uses one EPROM instead of the usual two. This device can hold either

4K or 8K of ROM. CMT also makes a plug-in module that has an EPROM

built into it. This module looks exactly like a HP application pac except

for the window on one side. With this module there are no extra boxes or

extent ions of the calculator. This module comes in 4K, 8K, and 16K

versions. For more information about these manufacturers see Appendix A.

THE SOFTWARE

In order to efficiently program one of these boxes, some sort of software is

needed to allow you to write to the RAM. This can be accomplished using

either hexcodes or mnemonics; however, the software for writing to the boxes

using hexcodes is much more prevalent. The main piece of software that you

will need is an assembler. An assembler takes the mnemonics (alphabetic

representations of what the hex instruction does) that you input and calcu­

lates the correct hexcodes to place into the RAM of your MLDL. A disassem­

bler will output these hexcodes, along with the corresponding mnemonics, to

a printer, video display, or the display of the 41.

The EPROM set that comes with the ERAMCO MLDL has the hexcode kind

of assembler. This EPROM set also contains many utility routines not

found elsewhere.

A 4K EPROM set written in Australia is known as the Assembler 3 EPROM.

This set contains a disassembler, as well as an assembler that can assemble

MCODE from mnemonics in the Alpha register. Working with the other func­

tions of this EPROM is also a delight.

The Nelson F. Crowle ROM (NFCROM for short), another such set, is for use

with the Protocoder II. It contains read/write functions for this device and

many other useful functions.

A new 4K EPROM came out in May of 1984 that allows you to key in mnemonics

from the keyboard. This revolutionary ROM is called DAVID ASSEM.

-15-

In order to enter instructions directly from the keyboard, each key is

redefined with a mnemonic or mnemonic prefix (more on this later). This

EPROM makes MCODE program input as easy as keying in a User code

program.

With the use of software like this you should have no problem keying in any

of the routines in this book.

For those of you who have User code (RPN) programs that you wish to put into

your MLDL RAM, Phi Trinh has written a routine that will do this for you.

The only input required is the name of the User program you wish to load

into the MLDL. The routine compiles all GTOs and XEQs and has the most

complete error checking of any routine yet written for this purpose. This

routine is intended to be used only for creating User Code ROMs with your

MLDL. The ERAMCO MLDL EPROM also has a routine that is somewhat similar

to Phi's. ERAMCO's program allows you to mix MCODE and User code.

Instructions on how to use these software packages will not be covered in

this book. Review their respective manuals for specifics of operation.

The manufacturers' addresses for these software packages may be found in

Appendix A.

SOURCE LISTINGS FOR THE HP-41'S OPERATING SYSTEM

Another very important piece of software is the operating system that is

built into your HP-41. The so-called "mainframe" of the HP-41 contains 12

kilobytes of delicately interwoven MCODE programs that make the HP-41 what

it is. The mainframe contains many routines to read the keyboard, access

the display, and perform other frequently needed "housekeeping" functions.

Rather than write a complicated subroutine every time you need a

housekeeping function in your programs, you can simply execute one of these

mainframe routines as a subroutine from your program. The variety of

mainframe functions is practically unlimited. If what you want to do has a

coun terpart in normal operation of the HP-41, chances are that the task

-16-

exists as a subroutine in the HP-41's mainframe.

A mainframe routine begins at an entry point. In order to correctly use

mainframe routines, you need to know the following:

I) The location of the en try point.

2) The initial conditions required, including which registers are used for

input, correct flag settings, mode and peripheral selection, etc. Some

routines require detailed setup; others do most of their own setup.

3) The routine's register and subroutine stack usage.

4) The output specifications, including what values are output and where,

and how the routine ends (return to calling program, or return to the

operating system).

To get this information, you need a copy of HP's annotated listings for the

operating system. These listings are commonly referred to as the V ASM

listings (HP's terminology). Appendix A has a list of organizations that

sell V ASM listings. Don't ask HP, because HP does not support MCODE.

All serious MCODE programmers should spend some time studying the V ASM

listings. The listings will give you a much better idea of how the HP-41

works, and you are bound to run across some entry points that you can use

later in your programs. You'll also get an appreciation for the complexity

of this operating system, which was written by a team of 2 or 3 very skilled

programmers.

THE ROM ADDRESS SPACE

The 64 kilobyte (64K) ROM address space of the 41 is divided into 16 pages -

each of which is 4K in length. Each of these pages contains 4096 ROM words

that are each 10 bits long. The RAM that is used for User code programs is

not included in this 64K, since it is addressed in a different manner.

Some of these 4K pages have been allocated by HP for specific uses. A list

of how these pages are allocated is given below in Figure 3.

-17-

Page Number Use Page Number Use

0 8 Lower half

Port 1

Mainframe 9 Upper half

ROMs Port 1

2 A Lower half

Port 2

3 Extended Func. (CX only) B Upper half

Not used (CY and C) Port 2

4 Service module or C Lower half

Disabled IL Printer Port 3

5 Timer Module D Upper half

Port 3

6 Printer ROM E Lower half

Port 4

7 HP-IL Control F Upper half

Functions Port 4

Figure 3

Note that the first 8 (0-7) 4K pages are reserved for specific purposes.

The upper 8 pages are the ROM address space into which we plug all of our HP

application PACs. If you plug a 4K ROM into port 1, it will use page 8.

This leaves page 9 inaccessible since nothing else can be placed into this

port.

THE ROM WORD

In the architecture of the 41, the ROM words are 10 bits long instead of the

conventional 8 bits. The nomenclature used in this book will list these 10-

bit words in hexadecimal (hex). In order to do this, 3 hex digits must be

used. All ROM words will be of the form:

-18-

VNN Where V can range from a to 3, and N can be from a to F.

There are alphabetic descriptions or mnemonics for each of these different 3

digit hex codes, but that's the subject of another chapter.

HOW A 4K PAGE IS DIVIDED

In addition to assigning specific purposes to pages, HP has assigned speci­

fic purposes to individual address areas within each 4K page. The first

section of a 4K page assigns the XROM number, the number of functions, and

the addresses of the functions within the 4K page.

Let's give the section of the ROM we are about to describe the acronym FAT,

short for Function Address Table. The first word, at address POOO, is the

XROM number. 'P' is the page number (any value from 5 to F). The number at

this address, called the XROM ID, may be from 00 1 to 01 F in hex (1 to 31 in

decimal). This is the first number that is displayed when you see a

function displayed as an XROM. For example, the Standard Applications Pac

function CLSTK is displayed as XROM 05,01 when the ROM is not plugged in.

The 05 is the decimal equivalent of the hex number at address POOO.

The word at address POOl indicates the number of functions for that 4K ROM.

This number may range from 001 to 040 hex (1 to 64 in decimal). The

functions include any global labels from User code programs contained in the

ROM, as well as any MCODE functions that are programmed into the ROM. This

number also includes any headers that are in the ROM. A header is nothing

more than an MCODE function with a name that is between eight and eleven

characters. A ROM may have more than one header. An example of this is the

HP-IL module. It has two headers, -MASS ST IH and -CTL FNS.

Now comes the tricky part. This next set of words is grouped into pairs.

They indicate to the calculator the address of the first executable instruc­

tion in a ROM routine, be it User code or MCODE. The words are of the

following format:

-19-

Address

P002

P003

Word Description

UYW This pair of words specifies a function whose starting

XYZ address is PWYZ. If U is zero, it is an MCODE function; if

U is two, it is a User code program. Digits Y and X are

normally set to zero. W, Y, and Z correspond to the last

three digits of the starting address of the function.

P004 UYW This pair of words has the same format as the first pair

POOS XYZ except they point to the address of the second ROM

function.

We continue with this format of pairing the words together until all of the

functions in our ROM have an address in the FAT. The two words after the

last entry are set to 000. This signals to the calculator that the FAT has

ended. You may start putting your programs after these final two words in

the FAT.

Let's do an example. This ROM will have two functions. The first one, a

User code program, will be located at address P 119. A function written in

MCODE will be at address P387. The XROM number for our ROM will be 14

decimal (OE hex).

Address Hexcode Description

POOO OOE

POOl 002

P002 201

This is the XROM number in hex. OOE is 14 in hex. We do

not want to put 014 here since this would be an XROM

number of 20 in decimal (014 in hex is 20 in decimal).

This is the number of functions in our ROM, as specified

above. It is also in hex. If we had 31 functions in our

ROM this hexcode would be 0 I F.

Since this is a User code program the U digit is set to 2.

This tells the calculator to interpret the code starting

at this address as RPN instructions. Notice that the Y

-20-

P003 019

P004 003

P005 087

digit is zero. The 1 corresponds to the W digit in the

starting address of the program.

This is the second word of the two word set for the

address of the first program. The X digit is set to O.

The 1 corresponds to the Y digit in the starting address,

and the 9 is the Z digit.

This is the first word of the two word FAT set for an

MeODE function, so the U digit is set to zero. The V

digit is 0, and 3 is the W digit.

Here is the second word of this FAT entry. The X digit is

O. The 8 is the Y digit and the 7 corresponds to the Z

digit.

Now come the two 000 words at addresses P006 and P007. You could start

programming immediately following these instructions, but you don't have to.

It is advisable to leave space between the last FAT entry and your first

program so that more entries may be added to the FAT as you add more fun­

ctions to your ROM If you were to start programming your ROM at address

P008, right after address P007, you would not be able to add any more

functions to the FAT, since there would be no space to insert two more words

into the FAT for the function. To leave room for a FAT containing the

maximum number of functions (64), begin your programming at P084.

The rest of the 4096 words may be used for programs, until we reach PFF4.

PFF4 to PFFA have been defined by HP as polling (interrupt) points. You

should always leave these set to zero unless you know exactly what you are

doing.

PFFB to PFFE are reserved for the ROM revision. The 4 hexcodes at these

addresses correspond to letters which are read in reverse order starting

with address PFFE. An example of this is the HP-IL Development ROM. The

revision is PD-IB. The '-' is put in the display by the ROM-checking pro­

gram. An example should help clarify this. Here are the words at addresses

PFFB to PFFE in the HP-IL Development ROM.

-21-

Address Hexcode Alpha code

PFFB
PFFC
PFFD

PFFE

002

031

004

010

B

I

D

P

As you can see, the revision is read from the highest address, the address

with the highest number value, to the lowest address.

The last word in the ROM is reserved for the checksum of the ROM It is

used by the Service Module and other modules to verify that a module is

good. It is not used by the HP-41 itself. The checksum is calculated by

adding the the total of all the words in the ROM up to, but not including,

the last one. Anytime there is a carry into the II th bit (ROM words are

only 10 bits long) we add one to the total. To get the final checksum the

2's complement is taken. With the correct checksum in place, this process

will give a result of zero if applied to all 4096 words.

-22-

-23-

MCOOE
INSTRUCTIONS

THE TOOLS

THE INSTRUCTION SET

And now, without further ado, the HP-41 Instruction Set!

Instruction

A=O

B=O

C=O

A<>B

B=A

A<>C

C=B

C<>B

A=C

A=A+B

A=A+C

A=A+l

A=A-B

A=A-I

A=A-C

C=C+C

C=C+A

Function

Sets the part of register A specified by the postfix to zero.

Does the same as above, but for the B register.

Does the same but for C.

Exchanges the contents of the A and B registers, much like

the function X <> Y in User code.

Copies the specified field of the A register into the B

register. The old contents of B at that position are lost.

Exchanges the contents of the A and C registers. This is the

only direct way to place the contents of A into C.

Set C equal to B as specified by the postfix. The contents

of B remain the same. Only the C register is altered.

Exchange the contents of the C and B registers.

Set A equal to C. The contents of C remain unchanged. A is

changed as specified by the postfix.

Adds the A and B registers and puts the result into A. The

contents of B are undisturbed.

Same as above except use C instead of B.

Add I to A as specified by the postfix.

Subtract B from A. The contents of B are not disturbed. A

contains the result.

Subtract 1 from A as specified by the postfix.

Subtract C from A. The result is in A. C is not disturbed.

Add C to itself. This shifts all of the bits in the

specified portion of C left by one bit. This is commonly

used as a quick multiply-by-2.

Add the C and A registers. The result ends up in C; the A

register is left undisturbed.

-25-

C=C+l

C=A-C

C=C-l

C=-C-l

C=O-C

?BrfO

?CrfO

?A<C

?A<B

?ArfO

?ArfC

RSHFA

RSHFB

RSHFC

LSHFA

Add one to the C register as specified by the postfix.

Subtract C from A and put the result into the C register.

Subtract one from the C register.

Gives the l's or 9's complement of the designated field,

according to whether the CPU is in hex or decimal mode. In

hex mode, each bit is inverted; in decimal mode each digit is

subtracted from 9. For example the l's complement of 1101 is

0010, and the 9's complement of 43 is 56.

2's or 10's complement of the specified field, according to

the CPU mode (hex or decimal). This is the l's or 9's com­

plement plus one. For example, the 2's complement of EC is

13+1 = 14 hex; the 10's complement of 67 is 32+1= 33 decimal.

Two's complement is ordinarily used to represent negative

numbers in computers. In the HP-41, 10's complement is used

for both the exponent and mantissa fields of numbers. For

example, an exponent of -54 is represented as 946 999-

054+ 1. The sign digit can actually be regarded as part of

the number under the 10's complement convention.

Sets the carry bit if the specified field is not zero.

Same as above but for the C register.

Sets the carry bit if A is less than C. All register

comparisons are done on a hex basis, even if the CPU is in

decimal mode.

Sets the carry bit if A is less than B.

Sets the carry bit if A is not equal to zero.

Sets the carry if A does not equal C.

Shifts the A register right by one nybble. The rightmost

nybble of the section being shifted is lost and a zero is put

into the leftmost nybble.

Same as above but for B.

Same as above but for C.

Shifts the A register left by one nybble. The leftmost

nybble of the section being shifted is lost and a zero is put

into the rightmost nybble. The A register is the only

register that may be shifted left.

-26-

POSTFIX

Instruction ALL S&X M R< @R MS XS P-Q

A=O OOE 006 01A OOA 002 OlE 016 012

B=O 02E 026 03A 02A 022 03E 036 032

c=o 04E 046 05A 04A 042 05E 056 052

A<>B 06E 066 07A 06A 062 07E 076 072

B=A 08E 086 09A 08A 082 09E 096 092

A<>C OAE OA6 OBA OAA OA2 OBE OB6 OB2

C=B OCE OC6 ODA OCA OC2 ODE OD6 OD2

C<>B OEE OE6 OFA OEA OE2 OFE OF6 OF2

A=C 10E 106 llA lOA 102 lIE 116 112

A=A+B 12E 126 13A 12A 122 13E 136 132

A=A+C 14E 146 15A 14A 142 15E 156 152

A=A+l 16E 166 17A 16A 162 17E 176 172

A=A-B 18E 186 19A 18A 182 19E 196 192

P A=A-l lAE lA6 IBA lAA lA2 1BE IB6 IB2

R A=A-C ICE lC6 IDA lCA lC2 IDE ID6 ID2

E C=C+C lEE lE6 IFA lEA lE2 IFE IF6 IF2

F C=C+A 20E 206 21A 20A 202 21E 216 212

I C=C+l 22E 226 23A 22A 222 23E 236 232

X C=A-C 24E 246 25A 24A 242 25E 256 252

C=C-1 26E 266 27A 26A 262 27E 276 272

C=O-C 28E 286 29A 28A 282 29E 296 292

C=-C-l 2AE 2A6 2BA 2AA 2A2 2BE 2B6 2B2

?BfO 2CE 2C6 2DA 2CA 2C2 2DE 2D6 2D2

?CfO 2EE 2E6 2FA 2EA 2E2 2FE 2F6 2F2

?A<C 30E 306 31A 30A 302 31E 316 312

?A<B 32E 326 33A 32A 322 33E 336 332

?AfO 34E 346 35A 34A 342 35E 356 352

?AfC 36E 366 37A 36A 362 37E 376 372

RSHFA 38E 386 39A 38A 382 39E 396 392

RSHFB 3AE 3A6 3BA 3AA 3A2 3BE 3B6 3B2

RSHFC 3CE 3C6 3DA 3CA 3C2 3DE 3D6 3D2

LSHFA 3EE 3E6 3FA 3EA 3E2 3FE 3F6 3F2

TABLE 1

-27-

All of the above instructions use the same eight postfixes. Table I gives

the hexcode of these instructions with these eight postfixes.

There is another class of instructions whose postfixes are numeric.

Instruction

READ n

WRIT n

RCR n

SETF n

CLRF n

?FSET n

R= n

?R= n

LD@R n

?FI n

SELP n

Description

Reads the contents of a RAM register into C. RAM is divided

into 16 register blocks, or chips, that may be individually

selected (More on how to do this later.) A READ 3 instruction

would put the contents of the fourth register of that chip

into the C register (counting starts from zero). Allowed

values of n range from 1 to 15. There is no READ 0

instruction.

Same as for a READ except the contents of C are written to the

specified RAM register. N ranges from 0 to 15.

Rotate register C right by n nybbles. N can range from 1 to

13.

Set flag n. The 14 flags are numbered from 0 to 13.

Same as above but will clear the flag.

Sets the carry bit if the specified flag is set. All 14 flags

may be tested.

Sets the active pointer equal to n (0 to 13).

Sets the carry bit if the active pointer is equal to n (0 to

13).

Load the val ue n in to the digi t pointed to by the active

pointer. The active pointer is decremented by one to make

loading of consecutive numbers easy. This can only be done in

the C register.

Sets the carry flag if the specified peripheral flag is set.

Peripheral flags can not be set by the User; the peripheral

must set them. They range from 0 to 13.

Selects peripheral device n. The CPU is inactive during this

-28-

time while special instructions are being executed by the

selected peripheral.

Now we present a table of the hexcodes for all of these functions.

?

R W S C F L S

R E R R E L S ? D ? E

E A C T R E R R @ F L

G. D T R F F T R P

0 T XXX 028 XXX 388 384 38C 39C 394 010 3AC 024

I Z 078 068 33C 308 304 30C 31C 314 050 32C 064

2 Y OB8 OA8 23C 208 204 20C 21C 214 090 22C OA4

3 X OF8 OE8 03C 008 004 OOC OIC 014 ODO 02C OE4

4 L 138 128 07C 048 044 04C 05C 054 110 06C 124

5 M 178 168 OBC 088 084 08C 09C 094 150 OAC 164

6 N IB8 IA8 17C 148 144 14C 15C 154 190 16C IA4

7 0 IF8 IE8 2BC 288 284 28C 29C 294 IDO 2AC IE4

8 P 238 228 13C 108 104 10C IIC 114 210 12C 224

9 Q 278 268 27C 248 244 24C 25C 254 250 26C 264

10 f· 2B8 2A8 OFC OC8 OC4 OCC ODC OD4 290 OEC 2A4

II a 2F8 2E8 IBC 188 184 18C 19C 194 2DO lAC 2E4

12 b 338 328 37C 348 344 34C 35C 354 310 36C 324

13 c 378 368 2FC 2C8 2C4 2CC 2DC 2D4 350 2EC 364

14 d 3B8 3A8 XXX XXX XXX XXX XXX XXX 390 XXX 3A4

15 e 3F8 3E8 XXX XXX XXX XXX XXX XXX 3DO XXX 3E4

TABLE 2

Since we now have the hexcodes for the read/write instructions, we should

learn how the RAM of the calculator is structured. There are basically

three different parts: the status registers, main memory, and extended

memory. The status registers receive the most use in MCODE programs since

-29-

they contain vital information about the structure of the rest of RAM. We

will now show two tables in figures 4 and 5. The first will be the memory

structure of the calculator as a whole, and the second will highlight the

sta tus registers.

-30-

Address RAM

3FF

300

2FF

200

IFF

oeo
OBF

040

OOF

000

Extended Memory

#2

Extended Memory

#1

Top of Main Memory

-----------da ta register 0-------------

top of User programs

- -- - - - - - -- - -- - - -- 0 END 0 ------ - - - ----------

I/O Buffer area

Key Assignments

Top of X-funct. X-Memo

Bottom of X-Functo X-Mem

Nonexistent Registers

(VOID)

Status Registers

Figure 4

-31-

RAM address limit

Now a little explanation on Figure 4. The addresses on the left are the

absolute addresses of the register blocks starting from zero. They are

given in hex. The solid lines are fixed addresses; the dashed lines are

moveable address points. We will explain each section of the diagram,

starting from the top of the diagram and working our way down.

Name

Extended

Memory #2

Description

This is the location of the second set of extended memory

module registers in the addressing scheme of the calculator

RAM. The addresses of these registers are from 301 to 3EF.

There is one nonexistent register (300) at the bottom of the

module. The RAM at addresses 3FO to 3FF are used by some

peripherals and are NONEXISTENT for storing any data.

Extended Just like Extended Memory #2, except that the addresses are

Memory #1 changed to protect the innocent. The new addresses of the

RAM that exists are from 201 to 2EF.

Main Memory IFF is the top register in the Main Memory of a 41CV, 41CX,

or a 41 C with a quad memory module. The bottom of Main

Memory is at address OCO. The main memory is divided into

four major sections. They are: data registers, User

programs, the I/O buffer, and key assignments. If this order

isn't always followed your calculator will probably lock up.

The data registers start at address IFF and go down until the

imaginary line between data and program memory is reached.

The address of this line is kept in one of the status

registers (more on this later). The next area is where the

User programs that you write are placed. Then comes the

.END.. After this is the free register area, or I/O buffer.

These are the unused program registers. This area also

includes the buffers set up by some of HP's ROMs, the most

famous being the Time module. This is the area where the

timer alarm information is stored. Right below these

-32-

Extended

Functions/

Extended

Memory

Void

registers are the User key assignments. They start at

register oeo and are pushed upward every time a new assign­

ment register is needed. These assignments do not include

those for programs in User RAM. Two assignments are put in

each register before a new register is used.

This is the Extended memory that comes with the Extended

Functions module. It is addressed from OBF to 040. There

are no voids between this and main memory, as there are with

the other extended memory modules.

A void occupies the RAM address space from 010 to 03F. These

registers are NONEXISTENT.

Here is a diagram of the 16 status registers located at absolute addresses

000 to OOF:

-33-

Nybble 13 12 II 10 9 8 7 6 5 4 3 2 0

e Shifted Key Assign. Bit Map PTEMP2 Line #

d 56 User Flags

c ;: REG start unused Cold start Reg. 0 addr. .END.

b Return stack Prgm pointer

a Return stack

1-- Unshifted Key Assign. Bit Map Scratch

Q Scratch

P Scratch Alpha Characters 22 to 24

o Alpha Characters 15 to 21

N Alpha Characters 8 to 14

M Alpha Characters I to 7

L Last X Register

X X Register

y Y Register

z Z Register

T T Register

Figure 5

-34-

Here is how the registers listed in Figure 5 are used:

Register

e

d

c

b

Description

The 36 leftmost bits of this register are used for a shifted key

assignment bit map. When a shifted key is pressed while in USER

mode, the calculator looks in this register to see if the key

being pressed has been assigned. If the corresponding bit has

been set, then the search for the key assignment starts. If the

bi t is not set, then the built-in (keyboard) function is

executed. Nybbles 3 and 4 contain a set of status bits from the

last partial key sequence (see Appendix C). The right three

nybbles store the current program line number.

This is the register where all 56 User flags of the calculator

are kept. Flag zero is on the left and flag 55 is on the far

right.

This register holds a number of interesting goodies. Starting

from the left, the first three nybbles are used as the absolute

address of the first register of the Statistics Registers. The

next two nybbles are not used by the calculator (they are used by

some custom ROMs). Nybbles 6, 7, and 8 are the cold start

constant. They are set to 169 hex. If changed from this value,

the calculator will give MEMORY LOST (no accommodations for

errant MCODE programming). The next three nybbles hold the

absolute address for data register zero. The last three nybbles

are the absolute address of the register in which the .END.

resides. Don't mix this register up with the CPU C register.

You will notice that this is a small c and the internal CPU

register is a capital C. This is an easy way to tell them apart.

The four rightmost nybbles of this register hold the pointer to

the address where you happen to be in program memory. The other

ten nybbles are the first two and one half return addresses on

-35-

a

}.

Q

P

M,N,O

Last X

X

y

the user subroutine return stack. Each return address takes up

four nybbles.

This register is the last three and one half returns on the user

subroutine return stack.

The leftmost 36 bits of this register hold the unshifted key

assignment bit map. These are used in the same way as the bits

for the shifted keys in register e. The rest of the register is

used by the calculator as a scratch area.

This register is used by the calculator as a scratch register.

Scratch means that there is no set purpose for that register

area. It may have several different uses.

The eight leftmost nybbles are used as a scratch area. The other

six nybbles are the last three characters of the Alpha register

when there are 24 characters.

These three registers are the first 21 characters of the Alpha

register. The M register is filled with the first seven

characters. At the eighth character the N register starts

filling with characters. It will accumulate characters until we

get to the fifteenth character. Then the ° register starts to

accumulate characters. It takes characters until there are 21 of

them. Finally, the P register takes the last three characters of

the Alpha register.

This is the Last X register and is accessed with the Last X

function.

This is the familiar X register where all of the numbers we see

are placed.

The second register in the RPN stack.

-36-

Z The third register in the RPN stack.

T The top (fourth) register in the RPN stack.

If you don't quite understand this the first time, read it a few times and

let the subject matter sink in. This knowledge will be very helpful for

creating simple MCODE routines. You might consult a copy of "HP-41

Synthetic Programming Made Easy" for more detailed information on the status

registers.

Here is a hexcode list of alpha characters displayable in the names of

MCODE functions.

CHARACTER TABLE FOR MCODE FUNCTION NAMES

0 2 3 4 5 6 7 8 9 A B C D E F

00 @ A B C D E F G H J K L M N 0

01 P Q R S T U V W X Y Z \ 7'

02 sp. # % $ & * + ·E I· I

03 0 2 3 4 5 6 7 8 9 18 < > ?

04 f· a b c d e T "{ J.. .. Tt ,oJ t
,.. ..

" <-

sp. = blank space

TABLE 3

Let's look at how the name of a function is coded. The name of the function

is put in reverse order from what would be read. An example should help.

Let's do the name for a Y <>Z function.

-37-

Hexcode Letter

09A liZ"

03£ ">"

03C "<"

019 ny"

start of executable code.

You will notice that the letters are in the reverse order from what we would

expect. They start with the last letter and work down to the first. Notice

that the last letter in the function name (Z) has hex 080 added to its

hex code (09 A = 01 A + 080 in hex). This signals to the processor that this

is the last letter in the function name. Function names may be up to seven

characters in length.

Now we have the knowledge to write a Y <>Z routine. But first, let's set up

our 4K block of RAM. First set your MLDL address switches to page 8 and

clear out the entire 4K block of RAM. The software you have probably has a

function to do this. Consult the instruction manual of your software

package on how to clear the RAM block.

We are going to use XROM 1, so the hex code at address 8000 will be 00l. We

shall leave space in the FAT for the maximum number of functions (64) or 40

hex, so that our ROM name can start at address 8084 (1J*2+4, where JJ=40

hex). If you don't want to be able to have 64 functions in your RAM, then

you just decrease the JJ number to however many functions you want and use

that hex number instead of 040 in the formula to find the address of the

first instruction. The name of our ROM shall be SKWID IA. (At least 8

letters must be used so that the header will show up in the CAT 2 listing of

a CX. Up to 11 letters may be used in this name). The code for the ROM

name is shown in the following listing:

-38-

Address Hexcode Letter or function

8000 001

8001 001

8002 000

8003 08C

8004 000

8005 000

8084 081

8085 031

8086 020

8087 004

8088 009

8089 017

808A OOB

808B 013

808C 3£0

XROM number in hex

Number of functions in the FAT.

Address of the first executable instruction in the ROM

header.

Indica tes end of FAT.

We now jump down to 8084 so that there will be room for

more entries in the FAT. This entire area is clear.

"An

"lit

"DtI

"I"
ItWtf

"Kit

liS"

RTN

Recall that hex 080 is added to the hex code

for the letter A.

This is the return function, so that if this

function is synthetically entered into a

program, the function just executes the return

and acts as a NOP.

There is one entry in the FAT, as shown by the hex code at address 8001.

This is the ROM header. When you execute CAT 2 you should see SKWID lA in

the display; if you don't, make sure that you keyed everything in correctly.

We shall now write our Y <>Z routine. First we must update the FAT. The

number at address 8001 must be increased by 1 and the address of the first

executable instruction must be added to the FAT. Since the name is 4

letters long and the last instruction was entered at 808C, we will then add

5 to this address to come up with the address of the first executable

instruction for the FAT. 808C+5 is 8091 in hex, so the FAT now looks like

the following:

-39-

Address Hexcode Function

8000 001 XROM Number

8001 002 Number of functions in the FAT.

8002 000 Address of ROM header.

8003 08C

8004 000 Address of Y <>Z function.

8005 091

The rest of the FAT is zeros since there are no more functions. Now that

this is done we can get down to the real business of writing the Y <>Z

routine.

"Y<>Z"

Address Hexcode Mnemonic Description

808D

808E

808F

8090

8091

8092

8093

09A

03E

03C

019

OB8

10E

078

"Zit

n>"

"<It

"yn

Last letter of function name. Has hex 080

added to its hexcode.

The rest of the name is the next 3

hexcodes.

READ 2(Y) Put the Y register into C. We may now

manipulate the contents of the Y register

or save them for later usage.

A=C ALL Save Y, which is in C, in A. This will

allow us to use the C register for another

purpose. The choice of register A is

arbitrary; any of the other 56-bit CPU

registers would do just as well.

READ I(Z) Put the Z register into C. The old

contents of C, the Y register, are lost

from C. This is why we had to save them

-40-

8094 OA8

8095 OAE

8096 068

8097 3EO

WRIT 2(Y)

A<>C ALL

WRIT I(Z)

RTN

elsewhere.

We shall now write the Z register out to

the Y register. We can do this since Z is

in the C register.

We now bring back the original contents of

the Y register to C. You can only write

to RAM registers through the C register.

Put the contents of the original Y

register out to the Z register.

Return.

In case you're wondering, the letter behind the number in the read and write

instruction is the letter of the status register that corresponds to that

number. This is used since these instructions are usually used only on the

status registers. The letters would not be appropriate for any other part

of RAM.

THE CPU FLAGS

The 14 flags of the CPU should not be confused with the 56 User flags that

are in the calculator. Flags zero to seven are contained in the ST regis­

ter. This register may be zeroed. It may also be set equal to, or ex­

changed with, nybbles zero and one of the C register. These flags may be

set, cleared, and tested. Flags eight and nine have no special meaning.

Although they may be set, cleared, and tested, they are contained in a

special register (XST) which we cannot access except by instructions that

manipulate the individual flags. Flags 10, II, 12, and 13 are given a

special meaning by the CPU. Otherwise they share the same characteristics

as flags eight and nine. The designations of these flags are given below.

-41-

Flag If Set

10 The User code program counter (contained in status register b) points

to a ROM program.

11 The RPN stack lift is enabled.

12 The User program pointer is in a private program.

13 A User code program is being run.

Now let's write a program to show the use of some of these flags. The

program we will write is a "go to .END." program. This program will put

you at the top of the last program in User RAM. That is the one with the

.END. as its END. This is useful to avoid having to go through Catalog 1 to

get to the scratch area at the end of User program memory.

The strategy of this program is to execute the permanent .END. with no

pending return in the return stack, so that the program pointer will be set

to the top of the last program in User RAM This is accomplished by forming

the address which points to the permanent .END., and placing it along with a

zeroed pending return in the status register b. CPU flag 13 is then set to

force the HP-41 to execute the .END. as a program instruction.

We now write the program to implement this procedure. It shall be called

GE. Here is the annotated listing;

Address Hexcode Mnemonic

8098

8099

809A

809B

085

007

378

05A

"Ell

fiG"

READ 13(c)

C=O M

"GE"

Description

Last letter of name. Hex 080 is added to

the hexcode for E.

First letter of name.

Get the address of the .END. register. It

is in nybbles 0-2 of c.

Zero the mantissa of register C. This is

nybbles 3-12. This clears the 1st return

so that the calculator will return control

-42-

809C OIC

809D ODO

809E OC4

809F 2C8

80AO 328

80Al 3EO

R= 3

LD@R 3

CLRF 10

SETF 13

WRIT 12(b)

RTN

to the keyboard

executed.

when the .END. is

Set the active pointer to 3 so that the

required digit may be loaded into nybble

3.

Load a 3 into nybble 3 so that the first

byte of the .END. will be executed.

Clear flag 10 so that the calculator is

set to RAM.

Set flag 13 so the calculator thinks a

program is running, even if this routine

is .executed from the keyboard. This will

allow us to execute the .END.

Write the address of the .END. to the b

register. This will put the program

pointer, which is in the last four nybbles

of status register b, at the first byte of

the .END.

Return.

Now that the routine is written the FAT must be updated. The first execu­

table instruction, Read 13(c), is at address 809A. So the update of the FAT

would be:

Address Hexcode Meaning

8000 001 XROM number

8001 003 This was increased to 3. This is the number of functions

in our sample ROM.

8002 000 First ROM function. SKWID lA header.

8003 08C

8004 000 Address of Y <>Z function.

8005 091

8006 000 Address of GE function.

8007 09A

-43-

That's what the FAT should now look like. These two functions we've just

created may be used in programs and from the keyboard just like any of the

functions that are built into the calculator. However, the MLDL box they

are in must be plugged into your calculator at the time they are executed or

you will get NONEXISTENT in the display.

-44-

JUMPS and JUMPING

Okay everyone, now it is time for you to put on your bunny suits (in Aus-

tralia

ping.

light,

you may substitute Kangaroo suits), as we are going to introduce jum­

There are two kinds of jumps. For those of you who like to travel

there is the Jump No Carry (JNC). Or, if you like to bring along the

kitchen sink, there is the Jump on Carry (JC). The length of the jump may

be up to 63 (3F in hex) steps forward (+) or 64 (40 in hex) steps backwards

(-). The Jump on Carry instruction will only jump if the step preceding it

sets the carry bit. Otherwise, the Jump on Carry instruction will be

treated as if it were a NOP. The same is true for the Jump No Carry, except

that the carry bit must not be set for the jump to occur. If the carry bit

is set, the JNC instruction will be treated as a NOP. Table 4 shows the

hexcodes for the JC and JNC instructions.

SKWID practicing his jumps.

-45-

DIST JNC JC

ANCE -

01 3FB 3FF

03 3EB 3EF

05 3DB 3DF

3CB 3CF

3BB 3BF

3AB 3AF

39B 39F

38B 38F

37B 37F

36B 36F

JNC JC

+ +

OOB OOF

OIB OIF

02B 02F

03B 03F

04B 04F

05B 05F

06B 06F

07B 07F

08B 08F

09B 09F

07

09

OB

OD

OF

II

13

15

17

19

IB

10

IF

21

23

25

27

29

2B

2D

2F

31

33

35

37

39

3B

3D

3F

35B 35F OAB OAF

34B 34F OBB OBF

33B 33F OCB OCF

32B 32F

31B 31F

30B 30F

ODB ODF

OEB OEF

OFB OFF

2FB 2FF lOB 10F

2EB 2EF lIB IIF

2DB 2DF

2CB 2CF

2BB 2BF

2AB 2AF

29B 29F

28B 28F

27B 27F

26B 26F

25B 25F

24B 24F

23B 23F

22B 22F

21B 21F

20B 20F

12B 12F

13B 13F

14B 14F

15B 15F

16B 16F

17B 17F

18B 18F

19B 19F

lAB IAF

IBB IBF

ICB ICF

lOB 10F

IEB IEF

17F IFF

TABLE 4

-46-

DIST JNC JC

ANCE

02 3F3 3F7

04 3E3 3E7

06 3D3 3D7

3C3 3C7

3B3 3B7

3A3 3A7

393 397

383 387

373 377

363 367

353 357

343 347

333 337

323 327

313 317

303 307

JNC JC

+ +

013 017

023 027

033 037

043 047

053 057

063 067

073 077

083 087

093 097

OA3 OA7

OB3 OB7

OC3 OC7

OD3 OD7

OE3 OE7

OF3 OF7

103 107

08

OA

OC

OE

10

12

14

16

18

IA

IC

IE

20

22

24

26

28

2A

2C

2E

30

32

34

36

38

3A

3C

3E

40

2F3 2F7 113 117

2E3 2E7 123 127

2D3 2D7

2C3 2C7

2B3 2B7

2A3 2A7

293 297

283 287

273 277

263 267

253 257

243 247

233 237

223 227

213 217

203 207

133 137

143 147

153 157

163 167

173 177

183 187

193 197

IA3 IA7

IB3 IB7

IC3 IC7

103 107

IE3 IE7

IF3 IF7

XXX XXX

To use Table 4 the jump distance must be known. This is the 2-digit hex

number listed under distance. Next, you must decide whether the jump is a

JNC or a JC. Then look down the appropriate column and use the ones with

the + for forward jumps and the columns with the· for backward jumps.

Now we will introduce a few miscellaneous instructions. A table of their

hex codes and mnemonics is given below.

ST=O 3C4 XQ>GO 020 N=C 070

CLRKEY 3C8 POWOFF 060 C=N OBO

?KEY 3CC SLCT P OAO C<>N OFO

R=R-l 3D4 SLCT Q OEO LDI S&X 130

R=R+l 3DC ?P=Q 120 PUSH ADR 170

G=C 058 ?LOWBAT 160 POP ADR lBO

C=G 098 A=B=C=O lAO GTO KEY 230

C<>G OD8 GOTO ADR lEO RAMSLCT 270

M=C 158 C=KEY 220 WRITE DATA 2FO

C=M 198 SETHEX 260 READ DATA 038

C<>M ID8 SETDEC 2AO FETCH S&X 330

T=ST 258 DSPOFF 2EO C=C OR A 370

ST=T 298 DSPTOG 320 C=C AND A 3BO

ST<>T 2D8 ?C RTN 360 PRPH SLCT 3FO

ST=C 358 ?NC RTN 3AO RTN 3EO

C=ST 398 C<>ST 3D8

TABLE 5

Explanations on how most of these instructions operate follows.

Instruction Description

ST=O Clears the ST register (flags 0 through 7).

CLRKEY Clears the KY register. Usually followed by ?KEY. If a key is

still down then the keyboard flag will be immediately reset.

-47-

?KEY

R=R-I

R=R+I

XQ>GO

POWOFF

SLCT P

SLCT Q

?P=Q

?LOWBAT

A=B=C=O

If no key is being pressed the key flag will stay clear. An

example will be shown in the next program.

Sets the carry bit if there is anything in the K Y register;

i.e., if a key has been pressed.

Decrements the active pointer by one.

Increments the active pointer by one.

Deletes the next return on the return stack and pushes the

other returns down one notch. Le. the second becomes the

first return and the third becomes the second return. A 0000

is put in for the fourth return spot.

This instruction places the calculator into standby mode or

deep sleep depending on whether the display is on or off. If

the display is on then we go into standby mode, in which the

calculator is on and just sitting there doing nothing. If the

display is off then the result is the same as if we turn the

calculator off using the ON button. This instruction must be

followed by the 000 instruction. The PC register is reset to

0000 and the CPU stops there waiting for a key to be pressed.

Selects register P as the active pointer. Does not change the

value of either of the pointer registers.

As above but selects the Q register.

Sets the carry bit if the values of the P and Q registers are

the same.

Sets the carry bit if the battery voltage is low.

Sets the A, B, and C registers equal to zero.

-48-

GOTO ADR Replaces the program counter (PC) register with nybbles three

through six of the C register.

C=KEY

SETHEX

SETDEC

DSPOFF

DSPTOG

?C RTN

?NC RTN

LDI S&X

Places the contents of the K Y register into nybbles 3 and 4 of

the C register.

Puts the CPU into hexadecimal mode. All calculations are now

done using the digits 0 to F.

Puts the CPU into decimal mode. All calculations are done

using the digits 0 to 9. However, register exchanges may still

be done with hex numbers while in this mode.

Turns off the display.

Toggles the display between on and off. This switches it to

which ever state it was not in before the instruction was

executed.

Return if the carry bit was set by the preceding instruction.

Return if the carry bit was not set by the preceding

instruction.

This instruction places the hexcode of the next ROM word into

the S&X field of the C register.

PUSH ADR Places nybbles 3 - 6 of the C register onto the subroutine

stack. All pending returns are moved up one. The C register

is not changed.

POP ADR Takes the 1st return from the subroutine stack and places it at

digits 3 - 6 of the C register. All of the remaining returns

are moved down one and 0000 is placed into the fourth return

-49-

GTO KEY

position on the stack.

Places the contents of the KY register into the last two

nybbles of the program counter (PC) register.

FETCH S&X Uses the address in nybbles 3 - 6 of the C register to copy the

ROM word at that location into the S&X field of the C register.

C=C OR A Performs a logical OR of the A and C registers and puts the

answer in C. Looks at each bit position in both registers and

sets the corresponding bit in the C register result if it is

set in either the original C register or the A register.

C=C AND A Same as above except that both matching bits in the A and C

registers must be set in order for that bit to be set in the C

register. Neither of these functions disturb the A register.

PRPH SLCT Uses digits I and 0 of register C as the number of the peri­

pheral to select.

As an example, the program below is a counting program. It will count by

ones (in MCODE of course) from the moment the program is executed until a

key on the keyboard is pressed. We shall input the program to show the use

of some of the functions that are described above, and also to show how the

JC and JNC instructions work.

Address Hexcode Mnemonic

80A2 094 "T"

80A3 OOE "N"

"COUNT"

Description

Last letter of the name of the rou tine

COUNT. Hex 080 is added to the hex code

for T.

The next four words are the rest of the

name.

-50-

80A4

80A5

80A6

80A7

80A8

80A9

80AA

80AB

80AC

80AD

80AE

80AF

80BO

80Bl

80B2

80B3

80B4

015

OOF

003

2AO

04E

23A

3CC

3F3

130

009

35C

llA

342

027

266

3FA

3E3

"U"
"0

"C"

SETDEC

C=O ALL

C=C+l M

?KEY

JNC -02

LDI S&X

HEX: 009

R= 12

A=C M

?A~O @R

JC +04

C=C-l S&X

LSHFA M

JNC -04

Set the CPU so that counting will be in

decimal mode.

Zero C so that counting will start at

zero.

Add one to the Mantissa of C. This is the

start of the counting loop.

If a key is pressed the carry bit will be

set, and the JNC instruction will act as a

NOP. If no key is pressed, the carry will

not be set and we jump back to the

beginning of the loop.

The largest exponent a 10 digit number may

may have is nine. This is loaded into the

exponent field. The number that we

counted up to is right justified in the

mantissa of C. If this number is not 10

digits long, we will decrement the expo­

nent.

Set the active pointer to the leftmost

nybble of the mantissa. This allows us

to check if this digit is zero. If it is,

we shift the whole mantissa left one and

subtract one from the exponent. If it is

not zero, the carry will be set and we

jump out (JC) to the rest of the routine.

The reason we check for leading

zeros, that is, the zeros in the leftmost

nybbles of the mantissa, is because the

number we counted up to is right justified

in the mantissa of C. We shift this left

to remove these leading zeros, if

necessary. If there are leading zeros, we

-51-

80B5

80B6

80B7

80B8

80B9

80BA

3C8

3CC

3F7

OBA

OE8

3EO

CLRKEY

?KEY

JC -02

A<>C M

WRIT 3(X)

RTN

loop around to check for more leading

zeros again.

Loop to check if the key that stopped the

counting has been released. If it is still

down, the carry will be set during the

?KEY step. If it is not down, the ?KEY

will not set the carry, and the JC

instruction will not be executed.

Get back the mantissa and write out the

number to X. The exponent is in C so we

only need to retrieve the mantissa from A.

Return.

To update the FAT you should increase the number at address 8001 from 003 to

004. The rest of the FAT update looks like the following:

Address Hexcode Description

8001

8008

8009

004

000

OA7

Number of functions in our sample ROM.

First word of the address of the COUNT function.

Second word of the FAT Address for COUNT.

Running this program on one calculator for 60 seconds produced an answer of

129,686. Compare this with 1,056 for a User code version of the same

program and the MCODE version is about 120 times as fast. This program

really shows you what kind of speed advantage can be enjoyed using MCODE.

We will now write another program, using jumps, that introduces a few more

instructions to your vocabulary. We shall introduce the· RAMSLCT, WRITE

DATA, and READ DATA instructions.

The RAMSLCT instruction uses the S&X field of register C for the number of

the RAM register to be selected. The number in the S&X field of C is

interpreted as a hex number, not a decimal number. First, some explanation

on how the User RAM is set up from the CPU's point of view. RAM is divided

-52-

into 16 register blocks, or chips, as they are known. The addresses of chip

xy are xyO to xyF; xy may be from 00 to 3F (0 to 63 in decimal). Each of

these chips may only be accessed if a register in that chip has been

selected using the RAMSLCT instruction. The RAMSLCT instruction selects

both a chip and a register within that chip. If S&X of C is xyz, RAMSLCT

selects chip xy and register xyz. The 15 read/write instructions introduced

earlier will only operate on a register within the selected chip. In addi­

tion, the read and write instructions change the RAMSLCT pointer to the

designated register within the selected chip. Thus if chip xy is selected,

READ n or WRIT n will address register xyn and change the RAMSLCT pointer to

register xyn. Here's an example to clarify this mess.

Hexcode Mnemonic

130 LDI S&X

OCO HEX: OCO

270 RAMSLCT

Description

Load hex OCO into C register S&X field. The RAMSLCT

instruction will then select this register (number

192). This is register zero of the selected chip

(the last digit in the hex number is the register

number in the chip that is selected).

OF8 READ 3(X) Reads the fourth register in this chip (decimal 195)

into the C register. The selected RAM register is

now OC3. This would be the same if we used a write

instead of a .read.

Sometimes we don't know exactly where in a RAM chip we will be, and we can't

have the RAMSLCT pointer being moved on us. How do we read or write to the

selected RAM register without moving the RAMSLCT pointer? We use the READ

DAT A and WRITE DATA instructions. These instructions read and write data

between the C register and RAM without modifying the RAMSLCT pointer.

The READ DATA instruction is sometimes listed as READ 0 by some disassem­

blers. THIS IS INCORRECT! There is no such thing as a READ 0 instruction.

This was a mistake made by some of the early pioneers in the MCODE field,

working without factory documentation that appeared later.

-53-

Disassemblers typically place a letter after the register number of each

read/write instruction. These letters correspond to the status registers,

and only apply if chip 0 is selected.

Next we will write a combination Alpha-to-Memory and Memory-to-Alpha

routine. These programs will take the four registers that comprise the

Alpha register and put them into User data registers. This data can not be

safely recalled from the data registers using the RCL function.

These routines are good for storing the contents of Alpha and then retriev­

ing the Alpha register unaltered. The routine will use four data registers

starting with data register O. The next 3 data registers will also be used.

Fill the Alpha register with the desired characters. You now can execute

the AM (Alpha to Memory) function. Next, clear the Alpha register. Then

execute the MA (Memory to Alpha) function. The old Alpha data reappears.

That was pretty fast wasn't it? One other note: this routine assumes that

you have a HP-4ICX, HP-4ICV, or a HP-4IC with a quad memory module. Now

here's the routine:

Address Hexcode Mnemonic

80BB

80BC

80BD

80BE

80BF

80CO

80CI

081

OOD

248

023

08D

001

244

itA"

"M"

SETF 9

JNC +04

"M"

"A"

CLRF 9

"AM & MA"

Description

Second letter of the Memory to Alpha name.

First letter of the name.

We set this flag to tell which routine we

are executing. If it is set we are using

MA. If it is clear we are using AM.

Jump to READ 3(X) instruction. We do this

so that the AM name is not executed as

MeODE instructions.

Name for Alpha to Memory routine.

Clearing flag nine means we are in AM

routine (see address 80BD).

-54-

80C2

80C3

80C4

80C5

80C6

80C7

80C8

80C9

80CA

80CB

80CC

80CD

80CE

80CF

80DO

80D1

80D2

378

03C

106

130

1FD

306

027

04E

OE8

3EO

39C

130

005

24C

013

OA6

270

READ 13(c)

RCR 3

A=C S&X

LDI S&X

HEX: 1FD

?A<C S&X

IC +04

C=O ALL

WRIT 3(X)

RTN

R= 0

LDI S&X

HEX: 005

?FSET 9

INC +02

A<>C S&X

RAMSLCT

Get the absolute address of data register

zero. It is in nybbles 3, 4, and 5 of

status register c.

Rotate the address of data register zero

into the S&X field of the C register.

Sa ve the address of data register zero in

A. Load the highest absolute address that

can be used without overflowing main

memory.

If A is less than C, then the registers

wanted will not overflow into extended

memory. The carry bit will be set and we

will jump out. Otherwise we will zero the

C register and write it out to X, so X

will be zero if we error. We then return

to the calling program without finishing

the routine.

Set active pointer to zero for use as a

counter.

Load the absolute address of the start of

the Alpha register. This is the M

register. As you remember, the other

three registers that comprise the Alpha

register are numbered 6, 7, and 8 (for N,

0, and P).

Check which of the two routines is being

run. Right now the address pointer to the

the Alpha registers is in C and the data

register pointer is in A. If we are run­

ning the MA routine then we want to

reverse this and not jump over the A<>C

S&X instruction. The register pointer in

C after this will be the one from which

the data is transferred.

Select the RAM register of the pointer in

-55-

80D3

80D4

80D5

80D6

80D7

80D8

80D9

80DA

80DB

80DC

80DD

80DE

80DF

226

OE6

038

OAE

270

OAE

2FO

166

3DC

OE6

054

360

39B

C=C+l S&X

C<>B S&X

READ DATA

A<>C ALL

RAMSLCT

A<>C ALL

WRITE DATA

A=A+l S&X

R=R+l

C<>B S&X

?R= 4

?C RTN

INC -OD

C. This is the beginning of the loop.

Increment the register pointer of the RAM

register from which the data is being

transf erred.

Save the RAM register pointer in B.

Read the selected RAM register into C.

Exchange the data with the other RAM

pointer.

Select the other set of RAM registers.

Get the data back and put the second RAM

pointer back into A.

Write out the data to the selected regis­

ter.

Increment the second RAM pointer.

Increment the active pointer.

Put the first RAM pointer back into C.

Have we been through the loop 4 times?

Remember there are 4 registers that make

up the Alpha register. If so, the carry

will be set and we return. Otherwise,

jump back to the beginning of the loop.

Well, that's the end of the routine. Hope you liked it and learned how the

RAM registers may be selected and written to. For these routines there are

2 entries in the FAT. One for the MA routine and one for the AM routine.

It does not matter that the two routines are combined. The names must still

have an address in the FAT in order to show up in Catalog 2. The entries

into the FAT are shown below. The number at address 8001 should be in­

creased by 2 from 004 to 006 since we are adding two routines to the FAT.

Address Hexcode Description

8001 006 This is the number of functions in our sample ROM. Notice

it has been increased by 2 since the last time we modified

the FAT since we have two new routines.

-56-

800A

800B

800C

800D

000

OBD

000

OCI

First word of the address of the MA routine.

Second word of the address of the MA routine.

First word of the address of the AM routine.

Second word of the address of the AM routine.

Before we demonstrate the use of any more instructions, we need to introduce

a new subject area which will make our programming easier and far more

versatile.

ABSOLUTE EXECUTEs AND GOTOs

There are 4 different types of instructions in this group. If the last two

bits of the first word of an instruction are 01 then they fall into this

category. These instructions all use two words to form one instruction.

They differ based on how the last two bits in the second word are set. The

4 types of instructions are:

Instruction Mnemonic

?NC XQ ----

?C XQ ----

?NC GO ----

?C GO ----

How it Works

This is the No Carry EXecute. This instruction will

only jump to the specified address if the carry bit

is not set when the instruction is executed. If

the carry bit is set the instruction is treated as a

NOP.

This is the EXecute on Carry. This instruction is

the same as the one above except the carry must be

set for it to jump.

This is the No Carry GOTO instruction. It will go

to the specified address only if the carry bit is

not set when the instruction is executed. If the

carry is set it is treated as a NOP instruction.

Here is the GOTO on Carry. This is the opposite of

the above instruction. If the carry bit is set the

instruction will go to the specified address.

-57-

Don't forget, the Carry bit is cleared by any instruction. To use a jump on

Carry, the Carry bit must be set by the instruction immediately preceding

the jump instruction.

The dash after each instruction is the address you want to GOTO/EXECUTE,

when the instruction is displayed as a mnemonic.

An EXECUTE is a subroutine call: it loads a return address onto the

subroutine return stack. A GOTO is merely an exit to a specified address.

If the first word that an EXECUTE branches to is the NOP 000, then that

instruction produces an immediate return. This feature of the EXECUTE

instructions allows calls to possibly nonexistent ROMs.

Now we will show you how these 4 instructions are put into hexcodes. The way

the CPU tells that the instruction is either a GOTO or an EXECUTE is by the

last two bits in the first word. If these are set to 01 the next word is

interpreted as the second half of a GOTO or EXECUTE instruction. The way it

differentiates between these is by the last two bits of the second word. A

table for the interpretation of these two bits is given below.

Instruction Value of bit 0

from 2nd word

?NC XQ 0 0

?C XQ 0 1

?NC GO 0

?C GO

Note that the 0 bit corresponds to the setting of the Carry flag (1 for

Carry set, 0 for Carry clear).

The numbers are the values of the last two bits of the second word of the

instruction, the two least significant bits. Now we will show you how the

rest of the instruction is formatted.

-58-

Instruction Bit number

Value of the four bits

?NC XQ 8432 first word

Value of the four bits

second word

9 8 7 6

3

o 0

8

5 4 3 2 I 0

2

001001

4

100 0 0 I 0 0 0 0

You will notice that after taking away the 0 and I bits we are left with the

digits from the address that we want in the remaining 4 nybbles. The first

hex digit of the address is in the 4 most significant bits (6 to 9) of the

second word. The second digit of the address is in the next 4 bits (2 to 5)

of the second word. Then we jump up to bits 6 to 9 of the first word for

the third digit of the address. That leaves bits 2 through 5 of the first

word for the last digit in the address.

Again, notice that bit I is zero and bit 0 is equal to one in the first

word. This signals to the CPU that the instruction is a GOTO/EXECUTE in­

struction. Since both bits 0 and I are zero in the second word, the CPU

knows that it is a ?NC XQ instruction. For a ?C XQ to the same location

only bit zero of the second word would have to be changed, since the address

information is coded in the same way for all 4 types of instructions. In

order to make the input of these instructions into your MLDL box easier, it

is recommended that you use an assembler to figure out the details of the

hexcode. This way, all you have to do is input the mnemonic, such as ?C GO

14E2. The assembler program does the rest.

These instructions are usually not used to EXECUTE or GOTO another part of a

routine that you are writing in MCODE. This is because if we put a ?NC XQ

8432 in our example ROM page and then move the page to another port, the

code we wish to execute will no longer be at address 8432. However, the

EXECUTE may still end up going there, sometimes with fatal results. There

is another kind of EXECUTE and GOTO for use within a 4K page, which will be

discussed later.

-59-

The absolute EXECUTEs and GOTOs are used for accessing code in the

mainframe ROMs. These are the 12K of ROM that contain the code for con-

trolling the User portion of the calculator. They contain many useful

routines that may be used as subroutines in our programs.

If you remember, the MA and AM routines that we programmed earlier could

only save data in registers 0 to 3. Now we shall rewrite them to use some

entry points in the mainframe ROMs so that you can specify the first data

register to be used by entering its number in the X register.

We shall use two entry points, one to convert the number in X to a

hexadecimal number in the S&X field of C, and another entry point for the

NONEXISTENT error routine in case the registers that would be used are not

part of the calculator's RAM memory. We still assume that you have a 4ICX,

4ICV, or 41C with a quad memory module. So let's rewrite the routine.

Address

80BB

80BC

80BD

80BE

80BF

80CO

80CI

80C2

80C3

80C4

Hexcode Mnemonic

081 "A"

OOD 11M"

248 SETF 9

023 JNC +04

08D "M"

001 "A'l

244 CLRF 9

"AM & MA" revised

Description

Name for the MA routine. Notice that the

address of the first executable instruc­

tion for each routine has not changed.

The first seven instructions are exactly

the same.

OF8 READ 3(X)

38D ?NC XQ

008 02E3

[BCD BIN]

This execute instruction accesses a sub­

routine that takes the number in C and

converts the number to its hexadecimal

equivalent in the S&X field of C. For

example, the conversion for 999 decimal

-60-

80C5

80C6

80C7

80C8

80C9

80CA

80CB

80CC

80CD

106

378

03C

146

130

IFD

306

381

OOA

A=C S&X

READ 13

RCR 3

A=A+C S&X

LDI S&X

HEX: IFD

?A<C S&X

?NC GO

02EO

[ERRNE]

would be 3E7. This mainframe entry point

is called BCDBIN (BCD to binary) in HP's

annotated V ASM listings for the operating

system of the 41.

We save the result in A and get the

absolute address of data register zero

from the c register and rotate it into the

S&X field of C. We then add these two to

get the absolute address of the first data

register to which we will write.

Load the largest absolute address that can

be used without ,overflowing main memory

when we store data in the following 3

registers.

If A is less than C, the registers used

by the routine will not be NONEXISTENT, so

the carry will be set and the ?NC GO

instruction will be ignored. If A is

greater than or equal to C, we go to the

entry point at 02EO, called ERRNE (error -

NONEXISTENT), which is the NONEXIS­

TENT error message routine.

The instructions from 80CC to 80El have been moved down to 80CE through

80DF. This routine is much more versatile. In order to use it you just

place the number of the data register where you want to start saving data

into X, and place the Alpha characters to be saved into Alpha. Then just

execute the revised routine, and bingo, it's all done.

THE NORMAL FUNCTION RETURN

Before a function is executed, a special return address called the Normal

Function Return is loaded in to the CPU su brou tine return stack; this is

address OOFO. The code at this address does the necessary processing that

is required after any function is executed. If you use all four levels of

-61-

the subroutine return stack, this address will have been pushed off and you

will have to end your program by exiting to address OOFO. Otherwise, the

pending return will be 0000 if you try to finish with a R TN, and you will

end up at that address of the mainframe. This sends the 41 directly into

standby mode whether you should be there or not, and fails to do the

necessary processing tha t follows function execution. When this happens,

the calculator appears to have crashed, because the display freezes instead

of reverting to a default display such as the X-register. However, unlike

an ordinary crash, the calculator will respond to keystrokes, and you can

then conclude that your routine has not exited through the Normal Function

Return. You should place an ?NC GO OOFO as the ending instruction of your

program instead of a return. If the calculator does not respond to

keystrokes, then you are in an infinite loop and something else is wrong

with your program.

Another interesting routine that we have provided for your programming

pleasure is an Invert Flag routine. This routine takes the number in X to

be the flag that you wish to invert. Invert means that if the flag was set

the routine will clear it; and if the flag was clear, the routine will set

it. The routine may be used with all 56 User flags (0 to 55).

This routine utilizes three mainframe ROM entry points. These are: BCD BIN

at address 02E3 (converts a decimal number into hexidecimal in S&X of C),

the clear flag routine at address 164D, and the set flag routine at address

164A. This program also introduces some other interesting tricks. It uses

the C=C+C ALL instruction to shift the C register left by only one bit at a

time. The other instruction that will be introduced is the C=C AND A

instruction. Its use will be explained with the routine.

Address Hexcode Mnemonic

80E2

80E3

086

009

ifF"

"I"

"IF"

Description

Name of routine.

-62-

80E4

80E5

80E6

80E7

80E8

80E9

80EA

80EB

80EC

80ED

80EE

80EF

80FO

80FI

80F2

80F3

80F4

80F5

80F6

80F7

80F8

80F9

OF8

38D

008

10E

130

037

OAE

IC6

381

OOB

04E

226

IA6

OIF

lEE

3EB

OEE

3B8

10E

OCE

3BO

2EE

READ 3(X)

?NC XQ

02E3

[BCDBIN]

A=C ALL

LDI S&X

HEX: 037

A<>C ALL

A=A-C S&X

?C GO

02EO

C=O ALL

C=C+I S&X

A=A-I S&X

IC +03

C=C+C ALL

INC -03

C<>B ALL

READ 14(d)

A=C ALL

C=B ALL

C=C AND A

?C"O ALL

Get the flag number from the X register

and convert it to binary in the S&X field

of C. This is the hex representation of

the decimal number that is in X (46

decimal would be 02E in hex).

Save the answer in A. Load S&X of C with

the largest value the number may have (55

decimal) because there are only flags 0

to 55 and for numbers over 55 the flag is

NONEXISTENT. Exchange the two numbers

and then subtract them. If the carry is

set, there was an underflow during the

subtraction and the number in X was

greater than 55. This causes us to go to

the NONEXISTENT error routine at 02EO in

the mainframe ROMs. Otherwise, we

continue on with the routine.

We now have 55 minus the original flag

number in S&X of A. We zero C and then

add one to it. This sets only the least

significant bit of register C. Then one

is subtracted from S&X of A. This serves

as a counter for the number of times we

must go through the bit shifting loop. If

we have an underflow (0 minus 1) then the

carry will be set and we jump out of the

loop. The next step shifts the bit in C

one to the left and the following step

jumps back to the start of the loop.

In order to use the set flag and clear

flag entry points you need a mask with the

bit set corresponding to the flag that you

want to manipulate. This mask must be put

into B. Register A must contain the flag

register, which is register d of the RAM

-63-

80FA 135 ?C GO

80FB 05B 164D

[XCFj

80FC 129 ?NC GO

80FD 05A 164A

[XSFj

status registers. These conditions are

met and then the mask is put back into C.

We next AND it with the flag register

which is now in A. If the bit in the flag

register that corresponds to the bit set

in the mask is also set, then this bit

will be set. All other bits in the mask

are 0 so the answer when these are AND'ed

will always be O. If the corresponding

bit is not set in A, then C will be

zeroed. We then check whether or not C is

O. If not, the carry will be set and we

want to go to entry point XCF (execute

CF), the clear flag routine (I64D). If C

is 0 the flag was clear and we want to set

it; so, we go to XSF (execute SF), the set

flag routine (I 64A). The routine returns

through one of the mainframe flag rou­

tines.

Remember to update the FAT. We now have seven functions. The address of

the first executable instruction in this routine is at 80E4.

The next routine has a pair of functions HP should have built as standard

functions into the calculator. These are the FS?S and FC?S functions.

These functions are analogous to the FS?C and FC?C functions built into the

calculator. They leave the specified flag set and check to see whether the

test is true or not. If it is not true, one step is skipped in a running

program. A YES or NO will appear in the display if they are executed from

the keyboard.

We have another one of those handy entry points to help in these functions.

The only difference is that our routines take the flag number from X, while

the HP routines prompt for the flag number. One advantage of our routines

is that they work on all 56 flags. HP's only work for flags 0 to 29. These

-64-

programs use the FS? and FC? routines in the mainframe ROMs. They test the

flag and automatically skip a step in a program if the test is false. They

share a lot of code with the IF routine as well. We will leave the combi­

ning of these two routines as an exercise for you to do. The combination

takes a total of 60 words. See if you can match this. For now, here are

the FS?S and FC?S routines.

Address Hexcode

80FE 093

80FF 03F

8100 013

8101 006

8102 244

8103 033

8104 093

8105 03F

8106 003

8107 006

8108 248

8109 OF8

810A 38D

810B 008

810C 106

Mnemonic

"s"
It?"

"s"
"Fit

CLRF 9

JNC +06

"s"
"?,.

"e"
"F"

SETF 9

READ 3(X)

?NC XQ

02E3

[BCD BIN]

A=C S&X

"FS?S & FC?S"

Description

Name for the FS?S routine.

This flag is used to tell which routine is

being executed. Clear is the FS?S routine

and with flag nine set the FC?S routine as

being executed. This flag is used later

in the routine to figure out which routine

was executed.

Jump over the FC?S name to the READ 3(X)

instruction.

Name for the FC?S routine.

See the description for the CLRF 9

instruction.

Get the flag number from the X register.

Convert the flag number to hex in S&X of

C.

Sa ve this in A. Then load the largest

-65-

810D

810E

810F

8110

8111

8112

8113

8114

8115

8116

8117

8118

8119

811A

81IB

811C

81lD

811E

811F

8120

8121

8122

8123

130

037

OAE

lC6

381

OOB

04E

226

1A6

01F

lEE

3EB

10E

OEE

3B8

070

370

3A8

OBO

10E

24C

169

047

LDI S&X

HEX: 037

A<>C ALL

A=A-C S&X

?C GO

02EO

[ERRNE]

C=O ALL

C=C+l S&X

A=A-1 S&X

JC +03

C=C+C ALL

JNC -03

A=C ALL

C<>B ALL

READ 14(d)

N=C

C=C OR A

WRIT 14(d)

C=N

A=C ALL

?FSET 9

?C GO

115A

possible flag number (55) into S&X of C.

Exchange the number of the flag to be

tested and the highest possible flag num­

ber. These are then subtracted. If the

carry is set, we will have an underflow

since the flag number to be tested is

greater than 55 (037 hex) and we will go

to the NONEXISTENT routine. Otherwise,

we have the number of times we wish to go

through the bit shifting loop in the S&X

field of A. We now have a counter for the

number of times we wish to move the bit in

the mask over from the rightmost position.

We first zero C and set the rightmost bit

using the C=C+ 1 instruction.

This is the mask making loop. We want to

set the bit that corresponds to the number

in X. If A is zero (55 minus 55), then an

underflow will occur and the carry will be

set and we jump out of the loop. If

there is no underflow, we shift the bit

left by one and jump back to the start of

the loop to try again.

Save the mask in A. Then put it into B

for later use by the mainframe routines.

Get the flag register. We save this in N

for later use. The flag register and mask

are ORed so that the mask bit will be set

in the flag register. This is then writ­

ten out to the flag register.

Get back the original flag register con­

tents and place them into A for use with

the mainframe routines. Check to see

which routine is being executed. These

routines require that the flag register is

-66-

8124

8125

115

05A

[FC?]

?NC GO

1645

[XFS?]

in A and that the mask is in B upon entry

to them. If the carry is set we GO TO the

FC? routine (lISA). Otherwise we GO TO the

XFS? (eXecute FS?) entry point (1645).

The programs return through these main­

frame routines.

Don't forget to update the FAT. These two programs are combined into one.

Bu t we still need two en tries in the FAT to be able to access both of the

routines. Here is what the FAT should look like.

Address Hexcode Description

8010 001

8011 002

8012 001

8013 008

Since the third digit from the right of the address of the

FS?S routine is not zero we have to put the number of this

digit into the rightmost digit of the first word of the

two word F AT entry (see page 20). The starting address

for this routine is 8102.

The last two digits of this word are the last two digits

of the address of the FS?S routine. This is no different

than the entries we did before.

The purpose of this word is the same as the one at address

8010 except that the second word of the two word FAT set

will be different. It will be the starting address of the

FC?S routine.

These are the two rightmost digits of the first executable

instruction in the FC?S routine.

Remember to update the word at address 8001. This tells the calculator the

number of entries in the FAT. It is now 009.

The next routine uses an entry point called GENNUM (generate number) in the

mainframe ROMs to decode a 3 digit hex number into decimal. This entry

point is at address 05E8 in the mainframe. This routine takes a binary

number in the S&X field of the A register and converts it to a decimal

-67-

number. The answer ends up in the mantissa of the A register. However,

things are never simple and this routine is no exception. It does not place

an exponent on the decimal number, and in addition leaves garbage in the

rest of A. Since the mainframe routine assumes that the display is selec­

ted, a nonexistent chip must be selected in order to keep the mainframe

routine from writing to RAM registers. The number of digits output by the

routine can be from 1 to 4. In order to guarantee a fixed number of output

digits, a number from 1 to 4 is placed in the mantissa sign of A as an input

to the routine. We shall use the number 4 to provide a 4-digit result

(possibly with leading zeros). Basically, that is all there is to the

routine; it is called BIN-BCD (binary to binary coded decimal).

-68-

Address Hexcode Mnemonic

8126

8127

8128

8129

812A

812B

812C

812D

812E

812F

8130

8131

8132

8133

8134

8135

8136

8137

8138

8139

813A

084

003

002

02D

OOE
009

002

OF8

106

130

010

270

2DC

110

lIE

3Al

014

OAE
llC

04A

270

"D"

"C"

"B"
"_"

"N"
"lit

"Btl

READ 3(X)

A=C S&X

LDI S&X

HEX: 010

RAMSLCT

R= 13

LD@R 4

A=C MS

?NC XQ

05E8

[GENNUM]

A<>C ALL

R= 8

C=O R<

RAMSLCT

"BIN-BCD"

Description

Last letter of the routine name with hex

080 added to its hex code.

The next six words are the rest of the

routine name.

Get the number to be decoded from the X

register.

Put the number into the A register.

Load the address of a nonexistent RAM chip

into the S&X field and RAMSLCT it.

Set the pointer to the mantissa sign so

that a 4 may be loaded. This number will

be put into the A register. The mainframe

routine uses this number to set the number

of output digits. If the number output is

not 4 digits, leading zeros are inserted.

Execute the mainframe routine to do most

of the dirty work. The result is in the

mantissa of A.

Put the answer into C. Set the pointer to

8. The least significant digit of the

mantissa of the answer will be in nybble

9. Zero register C from digit 8, the

digit pointed to by the pointer, to digit

O.

Select the RAM status registers, chip O.

-69-

813B

813C

813D

813£

813F

8140

8141

8142

8143

8144

8145

8146

8147

8148

8149

39C

ODO

010

OA£

342

027

3FA

1A6

3£3

OA£

2FA

017

04£

0£8

3£0

R= 0

LD@R 3

LD@R 0

A<>C ALL

?AfO @R

JC +04

LSHFA M

A=A-1 S&X

JNC -04

A<>C ALL

?CfO M

JC +02

C=O ALL

WRIT 3(X)

RTN

The S&X field of C was zeroed by the

previous instruction.

Set the pointer equal to 0 so that we may

load in the exponent. Remember the main­

frame routine does not provide this. The

largest exponent possible is 3. Four

decimal digits are i.jkl * 103. The man­

tissa sign is then zeroed because garbage

is left there by the routine. Remember

that LD@R decrements the pointer by one.

After loading the value 3 in nybble zero,

we wrapped back around to nybble 13, the

mantissa sign digit.

Put everything back into A. Check to see

if there are any leading zeros in the

mantissa of A. If there are no leading

zeros, jump out (the carry will be set).

Otherwise, we can shift out any leading

zeros in the mantissa (nybble 12 will be

zero) using the LSHFA M instruction. We

decrement the exponent by one since there

is one less digit in the mantissa than

before. We loop around again to check

for more leading zeros in the mantissa.

Put the final answer into the C register.

Check to see if the mantissa is zero. If

it is the exponent will be FFF. If not

zero, the carry will be set and we jump

to the WRIT 3(X) instruction and return.

If the mantissa is zero, then zero the

whole C register, write it out to X, and

return.

Don't forget to update the FAT. We now have ten functions. The hexcode at

address 8001 would be OOA (ten in hex), not 010 (which is sixteen).

-70-

The way you may use the above routine, in a program or from the keyboard, is

to put the number you want to decode into X. The last three nybbles of

whatever is in X will be decoded and placed into X. For example, if the

number in X is 987234.92 the BIN-BCD routine will give an answer of 5. This

is because the exponent of this number is 5 and the exponent sign is zero.

The S&X field of X upon entry would be 005 in hex.

However, the real use of this routine is as a subroutine to decode binary

numbers that we get as results in MCODE routines that we write. Our next

routine is a Free Register Finder routine. It finds the number of empty

registers below the permanent .END.. This result is the same number you see

after you key GTO .. in program mode. The routine is very short (only 3

words long) and shows the power of MCODE. In particular, it illustrates how

useful the BIN-BCD routine can be.

Address Hexcode Mnemonic

814A OBF "?"
814B 006 "Ft!

814C 285 ?NC XQ

8l4D 014 05Al

[MEMLFT]

814E 303 JNC -20

"F?"

Description

Name

This routine in the mainframe calculates

the number of free registers left (MEMory

LeFT). No inputs are needed. The answer

is given in binary form in the S&X field

of C.

This jump goes back to the A=C S&X in­

struction at address 812E of the BIN-BCD

routine. This routine will decode the

contents of the S&X field of C and put the

answer into the X register.

-71-

Many of the outputs from routines in the mainframe ROMs are in binary

format. We need this routine, or one like it, to decode the binary form to

decimal so we can output it to the X register for use in our programs.

Don't forget to update the FAT. We now have 11 functions in our sample ROM.

Now, what about taking decimal numbers from the X register and converting

them to binary? This can be done in 2 ways. The easiest way, as we have

seen is to execute the routine in the mainframe ROMs at address 02E3. But

what if we want to code a number greater than 999 into the S&X field of X?

After all, 3 hex digits may be a number as large as 4,095 (FFF). To do so

we must write our own routine to decode numbers greater than 999. This

routine will decode numbers from 0 to 9,999. For numbers greater than 4,095

the answer will be the remainder of the original number divided by 4,096.

This conversion routine is called BCD-BIN.

Address Hexcode Mnemonic

814F 08E "N"

8150 009 "I"
8151 002 "B"
8152 02D ,,_It

8153 004 "0"

8154 003 "c"
8155 002 "B"

8156 OF8 READ 3(X)

8157 10E A=C ALL

8158 IBE A=A-l MS

8159 IBE A=A-l MS

815A 389 ?C GO

815B 053 14E2

"BCD-BIN"

Description

Last letter of the name. Notice that hex

080 is added to the hexcode for "N".

Now come the next six letters.

Get the decimal number to be converted and

put it into C.

Save the integer number in A for later

use. Check for alpha data. If the number

is alpha data, then the mantissa sign will

be 1. By subtracting twice, we first

hit zero then create an underflow (sub-

-72-

815C

815D

815E

815F

8160

8161

8162

8163

8164

8165

8166

8167

8168

8169

816A

816B

816C

130

004

306

289

002

266

OAE

366

023

38D

008

07B

27C

llA

05A

3El

008

[ERRAD]

LDI S&X

HEX: 004

?A<C S&X

?NC GO

00A2

[ERROF]

C=C-l S&X

A<>C ALL

?A",C S&X

JNC +04

?NC XQ

02E3

[BCDBIN]

JNC +OF

RCR 9

A=C M

C=O M

?NC XQ

02F8

[GOTINT]

tract 1 from 0) which will set the carry

if the mantissa sign is l. The GOTO is to

the ALPHA DATA error message (ERRAD =

ERRor - Alpha Data) only if the carry is

set.

Load the exponent that the number cannot

be greater than or equal to (exponent for

10,000). Then check to see if the

exponent of the decimal number is less

than this number. If it is less, the

carry will be set and the next instruction

will not be executed. However, if the

carry is not set, the instruction will be

executed. This instruction is a GOTO to

the OUT OF RANGE error message (ERROF =

ERRor - OverFlow).

Now we check if the number is less than

1,000 (the exponent is 2 or less). If the

exponents are not equal (3) then the

number is less than 1,000 (the exponent

will be 0, I, or 2). The carry will be

set and the JNC is treated as a NOP.

If the carry is set we end up here. We

execute the BCDBIN routine in the

mainframe and then jump to the spot in our

routine that clears the rest of C and

writes it to X.

If we got this far we know that the number

is between 1,000 and 9,999; i.e., it is 4

digits long. The mainframe subroutine

will only take up to 3 digits. So we peel

off the 1000's digit and save it in the

last nybble of the mantissa of A by ro­

ating it to nybble three of C and then

saving it in A. We must then zero the

-73-

816D 106

816E 01C

816F 130

8170 3E8

8171 1A2

8172 146

8173 1A2

8174 3F3

8175 OA6

8176 05E

8177 05A

8178 OE8

8179 3EO

A=C S&X

R= 3

LDI S&X

HEX: 3E8

A=A-1 @R

A=A+C S&X

A=A-1 @R

JNC -02

A<>C S&X

C=O MS

C=O M

WRIT 3(X)

RTN

mantissa of C because the subroutine at

02F8 requires this. The last three digits

of the original decimal number are now in

the S&X field of C. The GOTINT subroutine

then converts them to binary in the S&X

field of C.

Save the binary equivalent of the last 3

digits in A. The number of 1000's to add

to this number is in nybb1e 3 of A. We

load 1,000 into the S&X of C. We subtract

1 from the 1000's counter and add 1,000 to

the answer in A. If there are no more

1,000's to add, the carry will be set

(there will be an underflow) and we will

not jump back to add more 1,000's. If the

carry is not set we will loop around to

add more 1000's until it does get set. We

then place the answer in the S&X of C so

that it may be written out to X. The

mantissa and its sign are cleared to get

rid of extraneous digits. We then write

the answer out to X so we it may be used

in some way by one of our User code pro­

grams.

Make sure that you update the FAT. There are now 12 functions. The last

en try in the FAT should look like this:

Address Hexcode Description

8018 001

8019 056

The first word of the FAT entry for BCD-BIN. The number

is one because we have now reached the portion of RAM

where there is not a zero in the third digit from the

right in the starting address of the routine.

This is the 2 least significant digits of the address.

-74-

Now let us go on to another subject: how to call a routine as a subroutine

from another program in our example ROM.

RELATIVE EXECUTEs and GOTOs

In order to call any program as a subroutine from another MCODE routine in

our example ROM, you must use a 3-word execute instruction. These

instructions are known as relative executes. This is because it does not

matter in which page the MCODE routine resides; the execute statement will

always jump the same number of steps ahead or back and then return. The

absolute executes that we described before always jumped to the same place

regardless of the location of these instructions. These rela ti ve execute's

and goto's are usually referred to as Port Dependent Execute's and Goto's.

A drawback to this type of execute is that the C register is used by the

routine that computes the branching address. Now for an explanation on how

these three words are coded. The CPU of the 41 does not contain any three

word instructions, so we shall describe how we come up with the mnemonics

for them.

First, a discussion of how ROMs are divided up by these instructions. The

4K ROM page is divided into four blocks of 1024 words each. These 1024 word

blocks are known as quads. The beginning addresses of each of the quads are

at PO 00, P400, P800, and PCOO (in our example P = 8). The quads are numbered

from zero to three. The first two words of the instruction is a subroutine

call to a routine in the mainframe. There are 5 such routines. The first

four handle subroutine calls to a specific quad. They take the third word of

the execute instruction and add it to the number that is the start of their

quad. The fifth entry point is used only when the subroutine being executed

is in the same quad as the execute instruction. All five of these executes

may only be of the No Carry execute variety. The hexcodes of these five

entry points are given below.

In order for these relative execute's and goto's to properly function, the

CPU must be in HEX mode, or you WILL end up at the wrong spot.

-75-

Hexcodes Description

349 This is the routine you call when you want to use an execute

08C statement to access code in quad O. This is at addresses 8000 to

83FF. The third word would be the 3 least significant digits of

the address being called. For example, on a call to 8291, the

third word would be 29l.

36D This is the code for the first two words of a call to quad 1,

08C which is at addresses 8400 to 87FF. The third word is the number

of words after address 8400 at which you want to start executing

the code. An example: for an execute to 8567 the third word would

be 167 (167 + 8400 = 8567 in hex).

391 These are the hexcodes for the first two words of an execute

08C statement that calls a subroutine in quad 2. These are at

addresses 8800 to 8BFF. The third word is added to 8800 to get

the starting address of the subroutine that is being called.

Therefore, to call a subroutine at address 8BFE, hex 3FE would be

the third word of the instruction (3FE + 8800 = 8BFE).

3B5 These are the hexcodes for subroutine calls to quad 3, at

08C addresses 8COO to 8FFF. The third word is added to 8COO and the

value for the starting address of the subroutine is obtained. For

example, to execute code at 8E34, the third word would be 234

(234 + 8COO = 8E34).

These instructions are subroutine calls themselves, and each uses an

additional subroutine call of its own. They can therefore only be called

when there are no more than two pending returns in the subroutine return

stack. Otherwise the third and fourth subroutine returns, if any, will be

lost. Don't confuse this with the User subroutine stack of the calculator.

This is the CPU subroutine return stack, and may only have four pending

returns, not six like the User subroutine stack.

The fifth set of hexcodes has the advantage of not using the additonal

subroutine level required for each of the above types. This means that you

-76-

can have three pending returns on the subroutine stack. However, its use is

restricted to branches within the same quad. Also, it destroys the C

register just like the other four types of calls. Here are the hexcodes and

a description of them.

Hexcodes Description

379 This pair of words is always the same regardless of which quad is

03C involved. The third word is the difference between the address of

the first word in the quad you are in, and the address of the

subroutine you are calling. For example, if you are in quad 2

(8800-8BFF), and the subroutine is at 8964 then the third word

would be 164 (8964 - 8800 = 164). A call to a subroutine outside

of quad 2 if the subroutine call originates from inside quad 2

would have to use one of the instruction hexcodes described above.

All addresses have been given with the most significant digit being 8 since

our sample ROM is in page 8. However, this digit may be changed to any

other page without affecting any of the values of the hexcodes.

If you want a relative GOTO instruction, then subtract hex 008 from the

first word of the three word instruction. This only applies to the first

four hexcode sets. For the last one given subtract hex 010 from the first

of the three words. The interpretation of the third word is the same as for

the execute instructions. These relative GO TO's use only one subroutine

level, so each allows three pending returns on the stack. Again, to make

things easy on yourself, it is highly recommended that you get an assembler.

There are actually no three word instructions in the instruction set of the

41 CPU. The relative execute's and go to's are disassembled correctly by

most dissassemblers since whomever wrote the dissassembler knew that the

five entry points mentioned above would use the ROM word directly after them

to form a relative jump instruction. This type of dissassembly is called a

MACRO. The actual instruction dissassembled is a combination of two or more

instructions. The HP mainframe ROM listings use C=A even though there is no

-77-

such instruction in the CPU instruction set. The actual dissassembly is

A<>C, A=C.

Now we shall use one of these execute instructions to modify the BCD-BIN

routine that we just wrote so that it may be used as a subroutine by other

programs in our sample ROM. It may be called as a subroutine right now as

is, except that it overwrites the decimal number in the X register with the

hex equivalent of the original number. Since it would be nice to leave the

X register alone as much as possible, we will modify the routine so this

won't happen.

"BCD-BIN" revised

Address Hexcode Mnemonic Description

814F 08E

8150 009

8151 002

8152 02D

8153 004

8154 003

8155 002

8156 379

8157 03C

8158 15B

8159 OE8

815A 3EO

815B OF8

815C 10E

815D IBE

815E IBE

815F 389

8160 053

"N"

"I"

"Bit
It .. 1t

"D"

"e"
"B"

GOSUB

815B

WRIT 3(X)

RTN

READ 3(X)

A=C ALL

A=A-I MS

A=A-l MS

?C GO

14E2

Name of the routine.

This is the call to the entry point in our

ROM which is at 815B. This is just the

BCD-BIN routine without the WRIT 3(X)

instruction as the second to last step.

Instead, this step is placed after the

subroutine call and will be executed when

the routine returns.

This is the entry point to be used by

other programs in our ROM. The rest of

the routine is the same from this point

on until we get to the second to last

step of the original routine. The WRIT

3(X) instruction should be removed and the

-78-

[ERRAD] RTN instruction should be moved up 1 word

So essentially the rest of the routine is

just moved down by 5 words.

SKWID relaxing after a hard day of MeODE

-79-

TIPS, SHORT ROUTINES, and OTHER LITTLE GOODIES

This section will cover some exciting ways of programming useful functions

that HP did not provide in the calculator. We will discuss how to shift

bits right in the C register (you already learned how to shift bits left in

the IF routine) and some other interesting tidbits.

In our first tip we will shift the C register right by one bit. In order to

do this the following sequence of instructions are used.

Mnemonic

C=C+C ALL

C=C+C ALL

C=C+C ALL

RSHFC ALL

Description

We shift the C register left by three bits (use C=C+C

three times) and then shift right by one nybble. The

end result is that the bites) are shifted right one.

However, this does have its drawbacks. If there is a

bit that is within the last three bits of the left

side of register C when we start this sequence, then

that bit will be lost (because it will cause an

overflow when you do C=C+C with the leftmost bit

set). So this routine does not work for the three

leftmost bits of C.

The above sequence can be done on all or part of the C register. The same

rules apply. The three leftmost bits of the field should be zero.

Some of you computer scientists will appreciate this next short routine. It

is an XOR routine. HP gave us functions for AND and OR, so why not make one

for EXCLUSIVE OR? The XOR function is a bit flipping function. We

synthesized this in the IF flag routine by using calls to the mainframe

ROMs. However, what if you want to do an EXCLUSIVE OR on the whole 56 bits

of two registers? You should use the eight word routine below. This routine

uses the A, B, and C registers. There are two inputs: the number to be

changed, and the mask against which it will be compared. At the start the

mask is in C and the number to be changed is in A. The way this routine

-80-

works can best be illustrated by an example. For this example let's use

just eight bits. The number to be changed will be 01001110 and the mask

will be 0011101l. The only bits that get inverted from their original

position will be the ones that correspond to a bit in the mask that is equal

to one.

bit number 7 6 5 4 3 2 I 0

Mask 00111011

Number o I 001 I I 0

Since bits 0, I, 3, 4, and 5 are one in the mask, these bits will be

inverted in the original number; all of the other bits in the original

number are left unchanged. Therefore, the final answer is 011101Ol. We

assume the CPU is set to hex mode upon entry to this routine. The routine

is given below.

Hexcode

OEE

OCE

370

OEE

3BO

2AE

Mnemonic

C<>B ALL

C=B ALL

C=C OR A

C<>B ALL

C=C AND A

C=-C-l ALL

Description

Save the mask in B for later use, and get it

back into C. B was picked because register A

will be used for something else and we need to

have a register that can interact with A. B

meets all of these requirments.

Set all of the bits in the C

set in either the A or C

exchange this result with

value.

register which are

registers. Then

the original mask

Set all of the corresponding bits in register C

that are set in C and A. This tells us which

bits must be cleared. The next instruction in­

verts every bit in the whole register. We now

have set all of the bits that were not set in

both registers.

-81-

06£

3BO
A<>B ALL

C=C AND A

Get back the answer from the OR instruction.

Since we have zeroed all of the bits that were

set in the previous AND instruction, these bits

will now be cleared. The bits set by the OR

instruction and C=-C-I will now be set.

Well, that's the routine. There is no entry in the FAT for this routine.

It is just a sample of how short instruction sequences may be used to form

instructions that are not in the CPU chip. The answer is left in the C

register. Maybe you can find a place to put it in one of your programs.

You may wonder how it's possible to save four nybbles away someplace without

altering the contents of the C register or any of the other 56-bit regis­

ters. There are many places that you could use for storage, but the follow­

ing procedure is used in several mainframe routines. If you are not using

the G register or any of the flags in ST, you can rotate the desired nybbles

until they are right justified in the C register (in positions 0 thorugh 3).

Then you can put 2 nybbles in ST and the other 2 nybbles in G. When you

need the data again, the reverse of this procedure brings the 4 nybbles back

into C. Here are the instructions you need:

Hexcode Mnemonic

358
2lC

058

398

RCR n

ST=C

R= 2

G=C

RCR m

C=ST

Description

Rotate C right by n nybbles so that the nybbles you

want to store are in positions 0 through 3. The

value of n depends on which nybbles are to be saved.

Copy nybbles 0 and I into the ST register.

Set the pointer to 2.

Copy nybbles 2 and 3 into G.

Rotate C right by m = 14-n nybbles so that the four

nybbles you stored away are put back in their

original positions.

This represents the rest of the routine before you

bring back the four saved nybbles. This section

should not use G or ST. To recover the data, use:

Copy ST into nybbles 0 and I of C.

-82-

21C

098

R= 2

C=G

Set the pointer to 2.

Copy G into nybbles 2 and 3 of C.

Our next routine will be very helpful to some of you. It is a routine to

check if a RAM register exists. If you remember, when we wrote our AM and

MA routines, we assumed that you had a 41CV, 41CX, or 41C with a Quad memory

module. With the following routine you can find out whether or not a RAM

register actually exists without putting any constraints on the user of the

program. The routine assumes that the register to be checked has been

selected using the RAMSLCT instruction and that the CPU is in hex mode.

Hexcode Mnemonic

038

2A6

10E

2FO

038

36E

381

OOB

READ DATA

C=-C-l S&X

A=C ALL

WRIT DATA

READ DATA

?A",C ALL

?C GO

02EO

[ERRNE]

Description

Reads the contents of the selected RAM register

into C; remember the register to be tested must be

selected before starting this routine.

This instruction inverts all of the bits in S&X of

C. All of the 1 bits, in the sign and exponent,

become a's, and all of the a bi ts become 1 'So

This result is then stored there because we will

later test the A and C registers to see if they

are not equal. These are the only two CPU regis­

ters that may be used if a not equal test is

wanted between registers.

We write the results of the bit inversion out to

the RAM register we are checking for existence.

We immediately read back this same register. If

the register exists then the data will not change;

the test will not be true, and we skip the GO TO

to the NONEXISTENT error routine. If the

register does not exist then the data we stored

there will not be the same since there is no RAM

in which to save it. Therefore the two values

will test unequal so we exit to the NONEXISTENT

-83-

2A6

2FO
3EO

C=-C-l S&X

WRIT DATA

RTN

error message.

If we get this far, then A and C are equal so we

invert C back to what was originally read from the

RAM register. If you do C=-C-l twice, each logic

1 bit will have been inverted to zero and then

back to 1, so, we should get the same answer

returned. The same applies for the 0 bits. We

then write the result out to the RAM register and

then return. The contents of the register that is

selected are in C at the end of this routine. The

RAM select pointer is not changed.

Ten bonus points for anyone who figures out how to integrate this routine

into the AM/MA routine combination. This way we don't have to put any

constraints on the user of the routine.

Now we will place this routine into our sample ROM and write a program to

use it. The routine we shall write will be a Non-normalized Recall routine.

By using it we shall be able to recall the contents of any RAM register in

the calculator. The number input into the X register before this function

is executed is the absolute address of the register you wish to recall. If

192 is in X, then the bottom register of Main Memory will be recalled (see

page 32 for an explanation on this subject). If a register is recalled that

does not exist, then the NONEXISTENT error message will be displayed. Non­

normalization means recalling the contents of a register without modifying

it. When you use the RCL function on a register which does not contain

ALPHA DATA and there are hex digits greater than 9 in the register, then

those digits are converted to BCD values.

Address Hexcode Mnemonic

817F

8180

092

OOE

"R"

ttN"

"NR"

Description

Second letter of the routine name.

First letter of the name.

-84-

8181

8182

8183

8184

8185

8186

8187

8188

8189

818A

818B

818C

818D

818E

818F

8190

8191

8192

8193

8194

8195

8196

8197

8198

8199

OF8

128

379

03C

15B

270

379

03C

190

10E

04E

270

OAE

OE8

3EO

038

2A6

10E

2FO

038

36E

381

OOB

2A6

2FO

READ 3(X)

WRIT 4(L)

GOSUB

815B

RAMSLCT

GOSUB

8190

A=C ALL

C=O ALL

RAMSLCT

A<>C ALL

WRIT 3(X)

RTN

READ DATA

C=-C-1 S&X

A=C ALL

WRITE DATA

READ DATA

?AfC ALL

?C GO

02EO

[ERRNE]

C=-C-1 S&X

WRITE DATA

Get the contents of the X register, then

save X in the LASTX register.

This subroutine call is to our entry point

to convert decimal numbers to hexadecimal

numbers (see page 78). We need this in

hex so that we may use RAMSLCT to

select the desired RAM register.

This is a call to another entry point in

our sample ROM. It is at 8190. It is

the routine we wrote to tell whether or

not a RAM register exists. Upon retur­

ning from the subroutine, the contents of

the desired register are in C. We need to

select chip 0 so we may write the answer

out to the X register. Remember, the

tested register must be selected upon

entry to our subroutine and our subroutine

does not change this. We save C in A and

then zero C so the RAMSLCT instruction

will select chip O.

We now retrieve the contents of the

recalled register from A. This value is

then written out to the X register. Then

we return.

This is the start of our routine to find

out if the register we want to access

exists. 8190 is the address which you

call if you want to execute this as a

subroutine. For an explanation of how this

routine works see page 83.

-85-

819A 3EO RTN

Don't forget to update the FAT. We now have 13 functions in the FAT.

Therefore, OOD would be placed at address 8001 of our ROM. We would not put

013. The number of functions is in hex and OOD is 13 in hex.

What's this you are saying? You think the NR routine is a complete waste

and want to get rid of it but you say you like the routine to tell if RAM

registers exist. Well, not everyone is perfect. You can't just delete the

routine, you must also delete the FAT entry for this routine. We'll show

you how to do this now. First, let's see how the whole FAT currently looks.

Address Hexcode Description

8000

8001

8002

8003

8004

8005

8006

8007

8008

8009

800A

800B

800C

800D

001

OOD

000

08C

000

091

000

09A

000

OA7

000

OBD

000

OCI

XROM number of our ROM.

This is the number of entries in the FAT, in hex.

These two words are the address of the first executable

instruction of the ROM header SK WID 1 A. All of the

rest of the FAT will be grouped into sets of two words

which are the three rightmost digits of the first executa­

ble instruction of each function (see page 20).

Address of first executable instruction of Y <>z.

Address of first executable instruction of GE.

Address of first executable instruction of COUNT.

Address of first executable instruction of MA.

Address of first executable instruction of AM.

-86-

SOOE 000 Address of first executable instruction of IF.

SOOF OE4

SOlO 001 Address of first executable instruction of FS?S.

SOIl 002

SOl2 001 Address of first executable instruction of FC?S.

S013 008

SOl4 001 Address of first executable instruction of BIN-BCD.

SOl5 02D

SOl6 001 Address of first executable instruction of F?

SOl7 04C

SOlS 001 Address of first executable instruction of BCD-BIN.

SOl9 056

SOIA 001 Address of first executable instruction of NR.

SOIB OSI

Well, there's what the FAT should look like. The rest of the FAT words are

000 instructions since we haven't put anything in them. If it doesn't look

like this something went wrong somewhere. The problem is probably that you

forgot to add one of the entries into the FAT.

If you want to delete the last entry in the FAT, you must decrease the

number at address SOOI by one. Then you may put a 000 hexcode at addresses

SOIA and SOlD since that is where the last FAT entry is in our ROM. Now you

may delete the NR routine from your ROM starting with address 817F, the

address of the last letter of the NR name, until SI9A, the last instruction

in routine. Or you could leave the routine in place and just delete the FAT

entry. The calculator will think that the routine has been deleted and you

will still have the entry point at Sl90 for checking if RAM registers exist.

-S7-

Now suppose you want to delete the IF routine from the FAT. That is a

Ii ttle harder. F or starters, you can't just delete the two words that po in t

to the first executable instruction of IF. This would leave a void of two

000 words in the middle of the FAT. These would tell the calculator that

the first executable instruction of some routine is at 8000. Also, when you

decrease the number at address 8001 by one you are making the last routine

in the FAT (NR), inaccessible.

The best way to illustrate this is for you to try it out. Set the two words

at addresses 800E and 800F to 000. Now do a CATALOG 2. The calculator

starts through the catalog correctly, until the place where the IF function

was. At this point the calculator should lock up with "@" in all twelve

positions of the display. The calculator is looking for a routine that

begins at 8000. It is trying to read the function name from the last few

words of page 7, which immediately precedes address 8000.

To get out of this lockup condition pull the batteries out of the calculator

and put them back in after about 5 seconds. You may be able to use a simpler

method as well. HP-41's manufactured since the introduction of the HP-4lCV

incorporate two hardware reset sequences that permit recovery from most

crashes. To use the first reset method press and hold the ENTER key while

turning the calculator off and on. Then release the ENTER key. The second

method is to hold the backarrow key down while turning the calculator off

and on. Then release the backarrow key. If you have an earlier HP-41, the

only way to recover from a microcode "infinite loop" involves removal of the

batteries and possibly additional steps. See page 214 of "HP-4l Extended

Functions Made Easy" for more crash recovery tips applicable to older

machines.

Now decrease the number at address 8001. Do a CATALOG 2 and the same lockup

will occur. What you have to do to fix this situation is to fill the gap

left in the FAT by the absence of the IF function. One way to fill the gap

is to move all of the FAT entries after the IF function up by two words.

Another way is to just MOVE the FAT entry for NR to the position that was

-88-

occupied by IF. This second approach will naturally change the order of

functions displayed in Catalog 2.

After you have removed the gap in the FAT, decrease the number at address

8001 by one. The FAT should now look like the lisiting that follows. We

will just put the routine name next to the first of the two words that tell

where the first executable instruction is located.

Address Hexcode Description

8000 001 XROM number.

8001 DOC Number of functions in the FAT. This is decreased by one

from what it was before.

8002 000 SKWID 1A

8003 08C

8004 000 Y<>Z

8005 091

8006 000 GE

8007 09A

8008 000 COUNT

8009 OA7

800A 000 MA

800B OBD

800C 000 AM

800D OC1

800E 001 FS?S. This is where the address for the IF function was.

800F 002 The rest of the function addresses are moved up by two

words from where they were before.

8010 001 FC?S

8011 008

8012 001 BIN-BCD

8013 02D

8014 001 F?

8015 04C

8016 001 BCD-BIN

-89-

8017

8018

056

001

8019 081

NR

The words at 80lA and 80lB should now be set to 000. This will signal to

the calculator that the FAT has ended (see page 20). Now you may do a

CA T ALOG 2; the IF function will be gone and the calculator will no longer

lock up. You may also use the space where the IF routine resides, addresses

80E2 through 80FD, for some other program. However, the new program must fit

completely into the space left by the IF routine.

SKWID really gets into his programming.

You say that you like math functions. We've come up with a neat little

routine for you. It is a Quotient Remainder routine. This routine will

place Y modulo X (integer number of times that the X register will divide

into the original number in the Y register) into the Y register. It places

the remainder in the X register. The formulas used are:

-90-

Input

X: x

Y: y

Output

X: y MOD x

Y: (y - y MOD x)/x

The Z and T stack registers are left undisturbed. The old X register is

saved in LASTX. The routine checks for Alpha Data and also if X is zero

since we can't divide by zero. Just in case you are not familiar with the

MOD function in the calculator we shall explain its use. The MOD function

uses both the X and Y registers. The formula is the following: Y­

[Y /X]*X, where the brackets denote "integer part". What this gives us is

the remainder of a division represented as a whole number instead of a

decimal number less than 1. It is represented as Y MOD X.

As an example, if Y equals 5 and X is 2 then 5 MOD 2 is 1. Our program will

call the MOD routine in the mainframe as a subroutine. There are many other

useful math subroutines used in this program. Our program shall be called

QR and will be placed in the vacant space left by the IF program. We will

start QR at address 80E2, the same place where IF started.

Address Hexcode Mnemonic

80E2 092 "R"

80E3 011 ttQ"

80E4 OF8 READ 3(X)

80E5 128 WRIT 4(L)

80E6 10E A=C ALL

80E7 OB8 READ 2(Y)

80E8 355 ?NC XQ

80E9 050 14D5

[unlabeled]

80EA 070 N=C

"QR"

Description

Last letter of the routine name; hex 080

has been added to its hex code.

First letter of routine name.

Get the X register and put it into C. We

then write it out to the LASTX register.

We now save the X register, which was in

C, into A and put the Y register into C.

The call to the mainframe subroutine at

14D5 checks both the A and C registers, X

and Y, to see if they contain Alpha data.

If either of them do, then the mainframe

-91-

80EB

80EC

80ED

80EE

80EF

80FO

80FI

80F2

80F3

80F4

80F5

80F6

80F7

80F8

171

064

070

2BE

10E

OB8

OlD

060

10E

OF8

261

060

OA8

OBO

?NC XQ

195C

[MODIO]

N=C

C=-C-I MS

A=C ALL

READ 2(Y)

?NC XQ

1807

[AD2-10]

A=C ALL

READ 3(X)

?NC XQ

1898

[DV2-10]

WRIT 2(Y)

C=N

routine exits to the ALPHA DATA error

message. If neither of the registers

contain Alpha data, the routine returns

wi th the A and C registers exchanged

and with the CPU in decimal mode. This

does exactly what we want for the next

steps. We must then save C in N to

satisfy the requirements of the MOD rou­

tine.

This is a call to the MOD routine. It

requires that the CPU be in decimal mode.

Notice that the call to the routine at

14D5 made sure of that. The MODIO (modulo

in base 10) routine takes A MOD C. We

want Y to be in the A register and X to be

in C. Also notice that Y was put into A

and X was switched into C by the last

mainframe subroutine.

We now have the answer for the X register,

Y MOD X, but we can't put it there yet,

so we save it in N. We then invert the

sign of the mantissa. In order to sub­

tract using the mainframe routine you

change the sign and add. We then save this

in A and get the Y register again. The

mainframe subroutine AD2-10 at 1807

performs C=A+C on two normalized decimal

numbers. The answer will end up in C.

We now have Y - (Y MOD X) in C. We place

this in A so we may call the X register

into C for the last step. We must now

divide A by C. Fortunately there is a

routine at address 1898 of the mainframe

ROMs where this is done. It even checks

for division by zero. After the routine

-92-

80F9

80FA

OE8
3EO

WRIT 3(X)

RTN

is done we have (Y- Y MOD X)/X in C and Y

MOD X in the N register. So now we

write C out to Y. Then we retrieve Y MOD

X from N and write this out to X before

returning.

You will notice that this routine barely fits into the space left by IF.

There are only three words left unused. Now we must update the FAT. We do

not have to open up the place where the address for the IF routine was and

place the address of the first executable instruction of QR in its place.

Instead, we may place the FAT entry for QR after the last address now in the

FAT. The calculator does not care whether or not the addresses for the

functions are in sequencial order. They may be put into any order you

choose as long as each set of two words points to the first executable

instruction of a routine. There are now 13 functions in our ROM. (We left

the NR routine in and only deleted the IF routine.)

This next routine will be a welcome relief to those of you who need to see

all ten digits of a number but find that the exponent keeps getting in the

way. It is a View Mantissa routine. This routine allows you to view all

ten digits of the mantissa of a number without changing the setting of the

display or getting rid of the exponent of the number. This routine only

views the mantissa and does not change any RAM registers. The way this is

done is to put the value to be displayed into C and execute the mainframe

entry point that places the contents of C into the display. A few other

things must be done so everything will work right. These are explained in

the listing below. This routine will allow you to view all ten mantissa

digits of whatever number is in the X register.

Address Hexcode Mnemonic

8l9B

8l9C

08D

016

"M"

"V"

"VM"

Description

Last letter of the routine's name.

First letter of the rou tine's name.

-93-

819D

819E

819F

81AO

81AI

81A2

81A3

81A4

81A5

81A6

81A7

81A8

81A9

81AA

OF8

361

050

260

3B8

158

05C

250

210

3A8

OF8

046

099

02C

READ 3(X)

?NC XQ

14D8

[CHK#S]

SETHEX

READ 14(d)

M=C

R= 4

LD@R 9

LD@R 8

WRIT 14(d)

READ 3(X)

C=O S&X

?NC XQ

OB26

[DSPCRG]

First we check X to make sure it is not

alpha data. We read in X and then we use

an entry point that checks the C register

for alpha data. If there is alpha data we

exit to the ALPHA DATA error message.

Otherwise the routine returns with the

original contents of C intact and the CPU

in decimal mode. We want to be in hex

mode so we reselect it.

In order to fool the calculator into

thinking that we are in FIX 9 mode, we

must modify the flag register so that the

mainframe view routine will think we are

in FIX 9. The bits that determine how

many digits are to be displayed are in

nybble 4. To get a setting of 9, we load

a 9 into this spot. The bits for the

current display mode, FIX, SCI, or ENG,

are in nybble 3. In order to set FIX

notation we must clear bit 2 of this

nybble and set bit 3. We do this by

loading eight into this nybble. Before we

do all of this we save the original

contents of the flag register so that they

may be restored.

We now write this modified register out to

the flag register. The calculator now

thinks that it is in FIX 9 mode.

Get the contents of the X register.

We then zero the exponent and its sign

since we only want to view the mantissa.

Now we can execute the mainframe view

routine called DSPCRG (DiSPlay C

ReGister.) What is to be viewed is in C

upon entry to this routine. It sends this

-94-

81AB

81AC

81AD

198

205

ODE

C=M

?NC GO

0381

[unlabeled]

to the display and does not overwrite the

X register.

We now retrieve the old flag register back

from M. Then we must set flag 50, the

message flag; the purpose of this flag is

to tell the calculator to preserve the

contents of the display when we go into

standby mode. Otherwise the 41 defaults

to the display corresponding to the cur­

rent mode. The three modes are RUN,

ALPHA, and PRGM. Fortunately there is a

routine in the mainframe to do this. Ac-

tually we enter three words into the rou-

tine since we are restoring the old con-

tents of the flag register which were

saved in M.

Upon execution of this routine you will notice that the status of the

decimal point does not change. If you normally use the comma as the decimal

point then this is what will be used; if you use the period as the decimal

point the answer will show up in that format. Now execute the routine and

hit the backarrow key. The displayed answer went away but the X register

stayed the same, just like HP's VIEW functions. Remember to update the FAT.

We now have 14 functions, ODE in hex.

To skip, or not to skip, that is the question. Our next routine will show

you the sequence used for skipping lines in a User code program. This is

the same sequence that all of the functions in the calculator that have a

"?" use. If the "?" is false they skip a step in your program. The func­

tion we will write is a multiple compare function. It shall be called

X= Y? z? It will first check to see if X is equal to Y. If this is true we

will end the routine and the program will continue at the next step.

However, if X does not equal Y, then our routine will cause the User code

program to skip either one or two steps, depending whether X equals Z. So

at this point in the routine, just after we find out that X does not equal

-95-

Y, we skip one User program step. Next we compare the X and Z registers.

If they are equal we exit our routine having skipped only one program line.

If X does not equal Z we skip another program line and then end our routine.

This routine illustrates the sequence of instructions you use to tell the

calculator to skip a User code program line.

Address Hexcode Mnemonic

81B2 OBF "?"
81B3 OIA liZ"

81B4 020

81BS 03F n?1t

81B6 019 Ity"

81B7 03D fI fI

81B8 018 "X"

81B9 244 CLRF 9

81BA OF8 READ 3(X)

81BB 10E A=C ALL

81BC OB8 READ 2(Y)

81BD 36E kfC ALL

81BE 3AO ?NC RTN

81BF 03B JNC +07

81CO 248 SETF 9

81CI OF8 READ 3(X)

81C2 10E A=C ALL

"X=Y? Z?"

Description

This is the last letter of the name of our

routine. Notice that a space separates

the two words. This space must be keyed

in when executing the routine.

This flag is used to tell if we have

reached the X=Z part of the routine. If

it is clear we are doing the X= Y part of

the routine. If it is set then we are in

the X=Z part.

Put the X register into C and then save it

in A. We choose A so that we may use the

? A",C instruction to compare these two reg­

isters later in the routine. Then we

retrieve the Y register and compare it

with X. If X=Y the carry will not be set

and we can return. If X",Y the carry will

be set and we go to the section of our

routine that has the instructions for

skipping a program line.

Setting this flag tells the routine that

we have reached the X=Z portion of our

routine. We then get X and put it into A

-96-

8IC3

8IC4

8IC5

8IC6

8IC7

8IC8

8IC9

8ICA

8ICB

8ICC

8ICD

8ICE

078

36E

3AO

141

OA4

3E5

OA8

OBD

08C

24C

360

393

READ I(Z)

?A-,jC ALL

?NC RTN

?NC XQ

2950

[GETPC]

?NC XQ

2AF9

[SKPLINj

?NC XQ

232F

[PUTPCXj

?FSET 9

?C RTN

JNC -OE

so we may go through the same sequence of

steps as at addresses 8IB8-8IBC except we

use Z in place of Y. This is the start of

the sequence for skipping one line of a

User code program. First ?NC XQ 2950

GETs the Program Counter in the format

required by other mainframe ROM routines.

This format is called "MM form", and

entails doubling the byte digit of the

User code program counter when the pointer

is in RAM. Then we increment this

pointer by the number of bytes in the next

program line using the mainframe SKPLIN

(skip line) routine at 2AF9. There may be

anywhere from one to sixteen bytes in a

program line. Then we update the User

program pointer by storing the new value

in register b (using the routine at 232F)

so that the program has now skipped a

program line without executing it. PUTPCX

is one of the PUT Program Counter

entry points.

Now we check to see if this is the first

time through the line skipping loop. If

it is, flag 9 will be clear and the carry

will not be set, so the ?C R TN instruction

will not be executed. Since we have not

yet gone through the X=Z section of our

routine we will jump back to this section

(at 8ICO) if flag 9 is clear. If flag 9

is set, the carry will be set and the ?C

RTN instruction will be executed. This

tells us that we have been through the

loop to skip a program line twice, once

for the X=Y part and once for the X=Z

-97-

part. Since we have asked both questions

we may return.

Try .out this function in one of your programs. A sample setup could be as

follows:

Instruction

X=Y? Z?

GTO 01

GTO 02

Description

Steps preceding the X= Y? Z? instruction.

Go to label 01 if X is equal to Y.

Go to label 02 if X is equal to Z but is not equal to Y.

Continue on with the program if X does not equal to either Y

or Z.

Remember to update the FAT. You should get into the habit of doing this

right after you finish writing a routine. We now have 15 functions in our

sample ROM (OOF in hex).

The next routine is an Alpha View routine that will never stop a program.

The A VIEW function will stop a program for no apparent reason if flag 21 is

set and there is no printer plugged into the calculator. This routine

allows you to view Alpha without sending anything to the printer as does

A VIEW. It is an excellent example of the power of using the mainframe ROM

entry points. The routine is five words long and four of these words are

used to call mainframe entry points. This is very efficient. The routine

is called VA.

Address Hexcode Mnemonic

81CF

8lDO

081

016

"A"

"V"

"VA"

Description

Routine name.

-98-

8IDI 104

81D2 041

8ID3 OBO

81D4 201

8ID5 OOE

CLRF 8

?NC XQ

2CIO

[ARGOUT]

?NC GO

0380

[unlabeled]

The first mainframe entry point at address

2CIO, ARGOUT = Alpha ReGister OUT,

outputs the Alpha register to the display.

Clearing flag 8 tells the routine not to

treat this as a prompt, as this would stop

the routine. The GOTO instruction to

address 0380 recalls the contents of the

flag register and then sets the message

flag (50) and restores the flag register

with the message flag set (see page 95).

Our routine returns through this mainframe

routine.

All these addresses for the mainframe entry points we are using came from

HP's documented listings of the 12K of mainframe ROMs. These listings are

partially annotated by the programmers who developed the HP-41. The entry

points are usually very well described with the kind of setup your routine

needs to do before calling on one of these entry points. They also tell

what the output should be.

One of the drawbacks of these documents is that they are listed in octal,

not hexadecimal. So you need some way of converting from octal to hex.

This little problem should not stop you from getting these documents. They

are much too valuable a tool to let such a little thing like this interfere.

How do you get hold of one of these documents? Well, for starters, don't

call HP, they will refuse to answer any questions regarding MCODE program­

ming on the 41. In fact, that is one of the reasons for this book. The

place to get these listings, or V ASM as they are called, is from a worldwide

HP calculator user's group called ppc. PPC's address is given in

Appendix A.

Since seeing the examples of how entry points can be used, you have probably

ordered your V ASM listings and are anxiously awaiting their arrival. But

for now let's get on with some more examples.

-99-

This next routine is a Random Number generator program. There is nothing

fancy about this program. We use the brute force method on this one. Just

load in the numbers and crank away. This algorithm has been used in the HP-

34C Applications book and the 41C Standard Applications Pac. The input for

the program is in the X register. It can be any number; just don't make it

too big. This input is the seed for the algorithm. The program takes this

seed and then multiplies it by 9,821, adds 0.211327, then takes the

fractional portion. The answer is output to X. The old X is saved in

LASTX. This program is just over 7 times as fast as a User code program

that performs the same calculations. Arithmetic operations are already

relatively efficient in User code, because most of the work is done within

highly optimized mainframe MCODE routines. The overhead of going to the

User level (approximately 10 milliseconds per instruction) is less on a

percentage basis for the more complicated User code instructions. Guess we

can't always be 100 times faster.

Address Hexcode Mnemonic

8ID6

8ID7

8ID8

8ID9

8IDA

8IDB

81DC

8IDD

8IDE

81DF

08E

012

OOE

OF8

128

355

050

35C

250

210

lIN"

ItR"

A=O ALL

READ 3(X)

WRIT 4(L)

?NC XQ

14D5

R= 12

LD@R9

LD@R 8

"RN"

Description

Routine name.

First we zero A and get the Random number

seed. Then we save the seed in the LASTX

register.

The reason we zeroed A was so that there

would not be Alpha data there when we

executed the mainframe routine at address

14D5. This routine checks A and C for

Alpha data and sets the CPU to decimal

mode. It then exchanges A and C from what

they were originally.

We now set the pointer to the first digit

of the mantissa so we can load in our

first constant. It is 9,821. We load in

-100-

8lEO

8lEI

8lE2

8lE3

8lE4

8lE5

8lE6

81E7

8lE8

8lE9

8lEA

8lEB

8lEC

8lED

8lEE

8lEF

8lFO

8lFI

8lF2

8lF3

8lF4

8lF5

8lF6

81F7

8lF8

8lF9

090

050

130

003

135
060

10E

35C

04E

090

050

050

ODO

090

IDO
2lC

250

250

250

OID
060

084

OED

064

OE8

3EO

LD@R 2

LD@R 1

LDI S&X

HEX: 003

?NC XQ

184D

[MP2-10j

A=C ALL

R= 12

C=O ALL

LD@R 2

LD@R 1

LD@R 1

LD@R 3

LD@R 2

LD@R 7

R= 2

LD@R 9

LD@R 9

LD@R 9

?NC XQ

1807

[AD2-10j

CLRF 5

?NC XQ

193B

[INTFRC]

WRIT 3(X)

RTN

the mantissa and also the exponent (003).

We are now set up to do the multiplication

of these two numbers. Mainframe routine

MP2-10 at 184D multiplies A times C.

The answer is left in C.

We save the answer from the multiplica­

tion in A so we may load C with the next

constant. Before we start to load C with

the constant, we zero it so that we start

with a clean slate. We set the pointer to

the first digit of the mantissa and start

to load the mantissa of the constant. We

set the pointer to the first digit of the

exponent sign. The exponent sign is 9

since the exponent is negative (see page

5). Why is the exponent 99 instead of

01? The calculator represents negative

exponents by subtracting them from 100

(100-1=99) so for a number with a negative

exponent of 3 the exponent would be 97

(100-3). Another way to accomplish the

last four instructions is to use a C=C-I

S&X.

Now that we have the two numbers all set

up, we call on the mainframe routine that

will add the normalized values in the A

and C registers. The answer from this is

left in C. The routine at address 193B is

a dual-purpose integer/fraction routine.

Here we use it as a fraction routine by

clearing flag 5. (Setting flag 5 gives

the integer routine.) ?NC XQ 193B takes

the fractional portion of the number in C

-101-

and outputs it back to C. We then write

our answer out to X and return.

Don't forget to update the FAT. There are now seventeen functions in our

ROM. Therefore you would put 011 hex at address 8001.

The next routine sounds like it will be very easy to program. However, this

is deceiving. It is a SIZE-finder routine. It will give the number of RAM

registers that are allocated for data storage. This number will be put into

the X register. This routine will work on any 41 Calculator with any amount

of memory. The object of this routine is to find the largest existent RAM

register in the calculator. Since RAM may be added in blocks of 64 (one

memory module for the 41C) we start at the highest possible RAM address and

check to see if it exists. If the register exists we've found the top of

RAM. This is why we start from the highest possible address and work our

way down. We do some manipulations before calling on the BIN-BCD routine

that we wrote earlier. The routine will be called "S?".

Address Hexcode Mnemonic

81FA

81FB

81FC

81FD

81FE

81FF

OBF
013

130

IFF

158

270

"?"

"s"
LDI S&X

HEX: IFF

M=C

RAMSLCT

"S?"

Description

Second letter of name.

First letter of name.

We load into C the highest possible

address of an existent RAM register. If

you have the full 320 RAM registers in

your calculator the top address will be

IFF.

This is the start of the loop to find out

the address of the topmost RAM register.

We first save the RAM register pointer in

M and then select that register. Now we

will check to see if the register exists.

-102-

8200

8201

8202

8203

8204

8205

8206

8207

8208

8209

820A

820B

820C

820D

820E

820F

8210

8211

8212

8213

038

2A6

10E

2FO

038

36E

077

2A6

2FO

198

106

046

270

378

03C

166

lC6

369

03C

12F

READ DATA

C=-C-l S&X

A=C ALL

WRITE DATA

READ DATA

?Ai'C ALL

JC +OE

C=-C-l S&X

WRITE DATA

C=M

A=C S&X

C=O S&X

RAMSLCT

READ l3(c)

RCR 3

A=A+l S&X

A=A-C S&X

GOTO

812F

This is the start of the section that

figures out whether or not the RAM regis­

ter exists. You are probably wondering

why we did not jump to the entry point in

our ROM that does this. The only problem

with that approach is that if the RAM

register does not exist we would go to the

NONEXISTENT error message. In this rou­

tine if the register does not exist then

we decrement the RAM register pointer by

64 and check again. We do this until we

find a register that exists. This section

is exactly like the entry point in our ROM

except that instead of going to the NON­

EXISTENT error message we jump to another

part of the routine (JC +OE to 8214). For

an explanation of this routine see page

83.

We now retrieve the RAM register pointer

into C and save it in A for later use.

This pointer is the address of the top­

most existent RAM data register. Chip 0

is then selected (remember the last regis­

ter selected was the topmost register of

RAM) and the address of data register 0 is

obtained from nybbles 3, 4, and 5 of

sta tus register c (see page 35). In order

to put this into the S&X field of C, we

must rotate right 3 nybbles. We then add

one to the address of the topmost existent

RAM register. This is because the actual

top address is one more than the highest

register we can address. These two num­

bers are then subtracted and the answer is

left in A. This is done because the GOTO

-103-

8214 198

8215 106

8216 130

8217 040

8218 246

8219 32B

C=M

A=C S&X

LDI S&X

HEX: 040

C=A-C S&X

JNC -lB

812F statement uses the C register. This

is a GOTO to the BIN-BCD routine that we

wrote earlier. The answer is placed into

X.
This section of our routine gets the RAM

register pointer from M and then puts it

into A. We then load 040 (64 decimal) into

C. Since the calculator memory is ar­

ranged into blocks of 64, the next try

will be a register that is 64 less than

the previous one. This is subtracted from

the current RAM register pointer. Then we

go back to the start of the loop at ad­

dress 81FE.

Remember to update the FAT. There are now 18 functions in our ROM. The

number at address 8001 should be 012. The last entry in the FAT should look

like this:

Address Hexcode Description

8024

8025

001

OFC

The 1 is the third digit from the right in the address of

the first executable instruction of the "S?" routine. It

has the two leading zeros like all of the other functions.

This is the two rightmost digits of the address of the

first executable instruction. As always, the leading 0

has been placed in front.

The next routine will be one of the comparison functions that HP left out of

the calculator mainframe. It is the "X>=Y?" function. This routine is

rather short and is an excellent routine to show how a good knowledge of the

mainframe entry points can be put to use. In this routine we shall use two

such entry points. The first will be at address 1619. This will tell the

calculator not to skip a line if we are running or single-stepping a

program. If we execute it from the keyboard then a YES is put into the

-104-

display. The other entry point is to address l5F8. This is just the

routine to see if X is greater than Y. The necessary setup must be done

before either routine can be executed.

Address

82lA

82lB

82lC

82ID

82lE

82lF

8220

8221

8222

8223

8224

8225

8226

8227

Hexcode

OBF

019

03D

03E

018

OB8

10E

OF8

070

36E

065

05A

3El

056

Mnemomic

"?"
"Y"

"="
It>"

"X"

READ 2(Y)

A=C ALL

READ 3(X)

N=C

?AfC ALL

?NC GO

1619

[NOSKPj

?NC GO

l5F8

[XX>Y?j

"X>=Y?"

Description

Routine name.

We put the Y register into C and then save

it in A. Then we get the X register into

C and place it into N. These two condi­

tions must be met because the entry point

at address l5F8 must have X in Nand Y in

A in order to correctly perform its du­

ties.

We now check to see if X (C) is equal to Y

(A). If it is, the carry will not be set

and we will not want to skip a step if a

program is running. The NOSKP routine

at 1619 does this and will put YES into

the display if the function is executed

from the keyboard.

This is the call to the routine to check

if X is greater than Y. Since we know

that they are not equal (if we get this

far) X is either greater or less than Y.

The XX> Y? routine (eXecute X> V?) will

figure out which is true and skip a pro­

gram step if X is less than Y or put a NO

into the display if it was executed from

-105-

the keyboard. If X is greater than Y a

program step will not be skipped or a YES

will be placed into the display.

Remember to update the FAT. You can program the X>=O? function by just

replacing the READ 2(Y) statement with a C=O ALL instruction. This will

compare X with zero instead of Y.

-106-

THE VISUALS

ACCESSING THE DISPLAY

The display is treated by the CPU as a peripheral. In order to access the

display you must select it using the PRPH SLCT command. This instruction

uses digits I and 0 of C to specify the peripheral to be selected. This is

much like the RAMSLCT instruction, except that in order to select the

display you must always use the same value in digits I and 0 of C. This

number is FD. Once the display is selected it may be read from and written

to. To do this you use the READ/WRIT instructions. If we write to the

display using these functions and RAM registers are selected that exist,

then these registers will also be written to. Therefore we should select a

nonexistent chip whenever we select a peripheral. The nonexistent RAM chip

that is usually used is chip 1 which starts at address 010 and goes through

address OIF. To select this chip we must put 010 into the S&X field of C

and use the RAMSLCT instruction to select the nonexistent RAM at this

address.

There have been three different displays in the life of the 41. The first

appeared in 41C's manufactured before 1981. The second display appeared in

1981 and has been in all HP-41 calculators manufactured up until about the

time this book came out. These two displays cannot access the last three

rows of the LCD character table (see next page). If a hexcode from these

last three rows is used, a space will be displayed. The third display can

access the entire LCD table and also allows you to change the contrast

(viewing angle).

-107-

o

2

3

10

11

12

13

LCD CHARACTER TABLE

o 2 3 4 567 8 9 ABC D E F

I1J ,-

p

"

T

R]

" 'J R

r
'-

s

T,
JJ

T

E

, ,
u " ,

G H

, , .. " "

2 3 Y S 5 1 8

c d

-, to< r

" J h

T ...

" ,

9

7
I...

r ,-

,
'-

* -:- -~

L

,
I...

1'\11 I'Ij

" 1'4

-,
...J

1-

;­
L

,
"

n u

, ,

'?

, ..
, ..

rn n 0

;­
L

The display is divided into three registers. They are called the A, B, and

C registers. These are not the same as the main CPU registers and should

not be confused with them. The A register contains the lower four bits of

each character, the B register contains bits four to seven of each

character, and the C register holds bit 8 of each character.

The display READ/WRIT functions each have certain, well-defined, tasks that

they perform. Data transfers can be in 1, 4, 8, or 9 bit format. These may

be transferred one character at a time, or in multicharacter formats, depen­

ding on the instruction. The READ instructions give varied outputs

depending upon which display your calculator has. These variations only

apply to the bits and nybbles which are not the recipient of the data

obtained during a READ instruction. The scope of these output variations

will not be covered in this book, so your programs should not depend on

getting particular values in these "unused" bits or nybbles.

-108-

The display is set up so that each of the 12 character positions in the

display uses 9 bits (4 bits from A, 4 bits from B, and 1 bit from C). Bits

o through 5 specify a character from rows 0 to 3 of the LCD character table.

Bits six and seven are the punctuation field. The table below shows how to

set/clear bits 6 and 7 for various punctuation symbols.

bit I Q. punctua tion symbol

0 0 no punctuation symbol

0 period

0 colon

comma

Here is the table of all of the HP display mnemonics which correspond to the

READ/WRIT instructions. These instructions, which appear in the HP

documentation for the display and mainframe, are not correctly dissassembled

by any of the currently available dissassemblers.

READ WRIT

15 FLSABC* SLSABC

14 FRSABC** SRSABC

13 FLSDAB SLSDAB

12 FRSDAB SRSDAB

11 FLSDB SLSDB READ DATA: FLLDA

10 FLSDA SLSDA WRITE DATA: WRTEN

9 FRSDC SRSDC

8 FRSDB SRSDB

7 FRSDA SRSDA

6 FLSDC SLLABC

5 READEN SLLDAB

4 FLLABC SRLABC

3 FLLDAB SRLDAB

2 FLLDC SRLDC

1 FLLDB SRLDB *appears as RABCL in HP listings

0 SRLDA **a1so given as RABCR in HP listings

-109-

Now we shall describe how to decipher these mnemonics.

The first character is either F or S corresponding to FETCH or SHIFT. The

second letter is an L or R for LEFT or RIGHT. The third character is an S

or L for SHORT or LONG. The remaining characters identify the registers on

which the operation is to be performed: A, B, C, AB, or ABC. All one-or

two-letter suffixes are preceded by the character D (display), which has no

significance other than its value as a mnemonic.

FETCH reads data from the display into the C register. SHIFT pushes data

from the C register into the display. LEFT or RIGHT specifies which

direction the designated fields rotate within the display. (Rotation only

occurs for the specified register or registers.) SHOR T or LONG specifies

the number of character positions which are to be read from or written to.

SHORT means a single character position. LONG is the maximum number of

character positions for which the corresponding data can fit in 12 nybbles.

This is 4 positions for ABC, 6 for AB, and 12 for A, B, or C.

For example, consider SLSABC. This instruction writes data to the display

(SHIFT), shifting in a single character (SHORT) in from the right (forcing a

shift to the LEFT). The data written is 9 bits (ABC), which completely

defines the character and punctuation.

Next consider FRLDC. This instruction FETCHes data from the right side of

the display (forcing rotation to the RIGHT). The rightmost bit is placed

into bit zero of nybble 0 of C and the second bit is put into nybble two and

so on until the last bit is placed into nybble II of C. The display is not

affected by this instruction since twelve characters are involved and the

display will be rotated all the way around.

What follows are descriptions of the display instructions that are most

commonly used within the HP-41's operating system ROMs. They are all 9 bit

transfers, operating simultaneously on A, B, and C.

-110-

Instruction Description

READ l4(d) Reads the rightmost character in the display into the S&X of

(RABCR or C. All characters are rotated right by one.

FRS ABC)

READ l5(e) Reads the leftmost character in the display into the S&X of C

(RABCL or

FRSABC)

WRIT l4(d)

(SRSABC)

WRIT l5(e)

(SLSABC)

and rotates the display left by one character.

Takes the rightmost 9 bits of the S&X of C and pushes them

into the leftmost position of the display.

existing characters are shifted right by one.

All of the

Takes a single nine-bit character from S&X of C and writes it

to the rightmost character of the display. The characters in

the display are shifted left by one.

WRIT 4(L) Writes four characters from C to the left of the display. The

(SRLABC) characters that were in the display are shifted right by four.

The first character is in digits 0 to 2 of C, the second is in

digits 3 to 5 and so on. The character in digits 0 to 2 is

pushed onto the left of the display first then the character

in digits 3 to 5 is pushed to the left of that character and

so on.

Now that we have gone through the instructions for writing and reading the

display characters, we still have to deal with the annunciators at the

bottom of the display. The status of these 12 annunciators is kept in a

fourth display register, called E. Annunciators are set using the WRITE

DA T A (WR TEN) instruction. They may be read by using READ 5(M) (READEN).

The transfer is to and from the S&X field of C. Below is a list of the bit

in the S&X field of C which corresponds to each annunciator.

bit Annunciator bit Annunciator

0 ALPHA 3 Flag 3

PRGM 4 Flag 2

2 Flag 4 5 Flag 1

-111-

6

7

8

Flag 0

SHIFT

RAD

9

10

II

G (for GRAD)

USER

BAT

As can be seen, the leftmost bits are for the leftmost annunciators. In

normal operation, these annunciators do not stay on unless the corresponding

condition is actually in effect. For instance, if you write a program that

turns the ALPHA annunciator on and makes the standard exit to the normal

function return, then you must be in Alpha mode or the annunciator will

turn off.

Now let's have some fun and write a routine using some of these display

instructions. We shall write a display test routine. This routine first

displays twelve commas and pauses for a second or so. Then there are twelve

star bursts in the display. Each of these is followed by a colon. The

annunciators at the bottom of the display are also lit up. Now every

display segment is on except the comma tails, which is why we viewed them

first. This routine does not use any RAM registers, only the display. Ah,

the beauty of MCODE. We shall call the routine DISTEST.

Address

8228

8229

822A

822B

822C

822D

822E

822F

8230

8231

8232

Hexcode Mnemonic

094 IlTIt

013 ItS"

005 11£"

014 "T"

013 liS"

009 "I"

004 liD"

130 LDI S&X

010 HEX: 010

270 RAMSLCT

130 LDI S&X

"DISTEST"

Description

Routine name.

First we shall disable the RAM. Since

we will be using WRIT instructions we must

choose a nonexistent RAM chip so that RAM

won't be written to. Then we enable the

-112-

8233

8234

8235

8236

8237

8238

8239

823A

823B

823C

823D

823E

823F

8240

8241

OFD

3FO

130

OOB

106

130

020

3A8

IA6

3F3

19C

390

010

2D4

3EB

HEX: OFD

PRPH SLCT

LDI S&X

HEX: OOB

A=C S&X

LDI S&X

HEX: 020

WRIT 14(d)

A=A-l S&X

INC -02

R= 11

LD@R E

LD@R 0

?R= 13

INC -03

display by selecting peripheral FD.

We shall now fill the display with

spaces. This is what the calculator

places into the display when it clears it.

First we load a counter into C and save it

in A. This will be decremented, and when

underflow occurs, we jump out of the loop

that fills the display with spaces. The

hexcode for a space is 020. We load this

into the S&X field of C and write it out

to the display using the nine bit trans­

fer instruction WRIT 14(d). This places a

space into the left of the display and

shifts all of the other characters right

by one. The counter in A is then decremen­

ted and we jump back to the WRIT instruc­

tion and write another space to the dis­

play. When the counter underflows we

drop out of the loop. [Due to steps 8242

and 8243, this section really needs only

to clear bit 9 of each display position.

The 9-bit WRIT accomplishes this.]

The pointer is set to II, the largest

digit used when six characters (12 nybbles

of data), are sent to the display using an

eight bit transfer instruction. We load

up each eight bits with the value EO =

1110 0000. Bits six and seven are set to

signify a comma. The lower six bits are

set to the hexcode for a space (20 in hex

or 100000 in binary). The character­

loading loop is cycled 6 times. After the

sixth time through, the pointer will equal

thirteen since we just loaded a number

-113-

8242

8243

8244

8245

8246

8247

8248

8249

824A

824B

824C

824D

824E

824F

8250

OE8

OE8

046

2A6

266

3FB

19C

2DO

290

2D4

3EB

OE8

OE8

046

2A6

WRIT 3(X)

WRIT 3(X)

C=O S&X

C=-C-I S&X

C=C-I S&X

JNC -01

R= II

LD@R B

LD@RA

?R= 13

JNC -03

WRIT 3(X)

WRIT 3(X)

C=O S&X

C=-C-I S&X

into nybble zero. (The pointer decrements

when we use the LD@R instruction.) When

this happens, the carry will be set and we

will not jump back to load more digits.

These two instructions fill the display

with commas. The first puts six commas

into the display. There are spaces be­

tween the commas. The spaces we original­

ly put into the display are shifted to the

right by six characters. The second WRIT

instruction finishes filling the display

with commas.

This is the delay loop so that you can see

the twelve commas in the display. First C

is zeroed and then all twelve bits are

inverted to ones using the C=-C-I instruc­

tion. Then we subtract one from the S&X

field until the carry is set. The carry

will be set when we subtract I from o.
When this happens we will not jump back

and the pause will be over.

This is the loop to fill the display with

the starburst character and the colon.

The LD@R B instruction sets bit 7 which is

the colon if bit 6 is not set. The other

six bits are set so that the star burst

character (hex 3A) is put into the dis­

play. The logic behind the loop is the

same as for the steps at 823D to 8241.

These two steps write six star bursts each

out to the display. The commas are shif­

ted off the display after the second in­

struction.

First we zero the S&X field of C so that

when we invert all the bits, using C=-C-l,

-114-

8251

8252

8253

8254

8255

8256

8257

2FO

046

3FO

IFD

OOC

060

000

WRITE DATA they will all go to one. Then we use the

WRITE DATA instruction to turn on all of

the annunciators at the bottom of the

display.

C=O S&X

PRPH SLCT

?NC XQ

037F

POWOFF

NOP

Now the message flag is set only to keep

the X register from being cleared when the

user presses the backarrow key to clear

the display. Normally the message flag is

set for the main purpose of preventing the

display from being altered upon return of

control to the operating system. Here we

are not returning control to the operating

system, but we still need to set the

message flag. First we must deselect the

display as a peripheral and then we enter

the mainframe routine at a spot which

selects chip 0 and sets the message flag.

Since we want the display to stay as it is

we go directly into standby mode so as to

skip over the processing normally done

after a function is executed in order to

avoid having the annunciators updated.

Remember that a NOP is required after the

POWOFF instruction.

When the DISTEST routine is executed every display segment will have been

lit up. You can amaze your friends with this little routine.

For those of you with the new display (the one with rounded edges) HP has

added a new peripheral address, hex 10. This allows you to make use of six

new READ/WRIT commands. Two of these, READ 5(M) and WRIT 5(M), are

extremely useful. When peripheral 10 is selected these instructions read or

write the contrast nybble of the display to or from digit zero of C. This

allows you to control the contrast of the display. The default setting is

5. Here's an example of how to change the contrast setting.

-115-

Hexcode Mnemonic Description

130 LDI S&X Load the address of a nonexistent RAM chip and

010 HEX: 010 the new peripheral.

270 RAMSLCT Deselect RAM and Select the peripheral.

3FO PRPH SLCT

130 LDI S&X Load in a value for the contrast. Let's try O.

000 HEX: 000

168 WRIT 5(M) Write the zero to the contrast nybble.

3EO RTN Return.

The display should become very dim, except when viewed from a shallow angle.

Place OOF in place of the 000 and see what happens. The display should

become very dark. If nothing happens when you execute this routine, then

you have an older display that does not have this feature.

The other READ/WRIT commands are not fully understood at this time. However

it is known that the WRIT 15(e) instruction with this peripheral selected

will crash the display, simultaneously lighting all segments, including the

comma tails. The only way to recover from this particular crash is to

remove the batteries for about one minute and then replace them.

A SKWID display test.

-116-

Our next routine will be a little more useful. It's a base conversion

routine. This little beauty will convert a decimal number in X into a

number of base b. The answer for the base b will end up in the display.

Any base from two to thirty-six may be used. Sorry, but for bases over

thirty-six we run out of letters in the alphabet. This base number is put

into Y and the decimal number to be converted is put into X. Since the

answer comes out in the display it will be lost if you clear the display.

The algorithm for this routine is taken from the PPC ROM routine "TB". This

routine converts base ten to base b. First we compute X MOD Y. This gives

us the value of the rightmost digit of the base b number. This number is

then output to the display. Then we divide X, the decimal number, by Y, the

base b, and take the integer of the result to get rid of the remainder that

we already stripped off using the MOD function. We then check to see if we

are at zero and jump back to the beginning of the loop if zero has not been

reached. The routine is called IO-BASE.

Address Hexcode Mnemonic

8258 085 "E"
8259 013 "s"
825A 001 "A"

825B 002 "B"
825C 02D It_"

825D 030 110"

825E 031 "}"

825F OB8 READ 2(Y)

8260 10E A=C ALL

8261 OF8 READ 3(X)

8262 355 ?NC XQ

8263 050 14D5

[unlabeled]

"IO-BASE"

Description

Routine name.

First we read Y and place it into A and

then get X and put it into C. We then

check to see if either of them contain

Alpha data (call to 14D5). If so, the

mainframe call will exit to the ALPHA DATA

error message. At the end of this routine

Y is in C and X is in A. This routine

-117-

8264

8265

8266

8267

8268

8269

826A

826B

826C

826D

826E

826F

8270

8271

8272

8273

8274

8275

8276

8277

088

OED

064

OA8

260

38D

008

266

2E6

OB5

OA2

106

130

024

306

OB5

OA2

130

OOC

268

SETF 5

?NC XQ

193B

[INTFRC]

WRIT 2(Y)

SETHEX

?NC XQ

02E3

[BCDBIN]

C=C-l S&X

?C"O S&X

?NC GO

282D

[ERR DE]

A=C S&X

LDI S&X

HEX: 024

?A<C S&X

?NC GO

282D

[ERRDE]

LDI S&X

HEX: OOC

WRIT 9(Q)

also sets decimal mode so that we may do

decimal number manipulations.

Y is left in C by the routine at address

14D5. So then we take the integer of this

and write it out to Y. This ensures that

this number will be an integer. If it is

not an integer the rest of the routine

will not work correctly. The ?NC XQ 193B

calls the integer/fraction routine in the

mainframe ROMs. Flag 5 must be set to get

the integer portion of the number in C.

(the fractional part is taken when flag 5

is clear.) Hex mode is then selected.

Since we have the base number in C, we can

convert it to binary in S&X of C. Then

one is subtracted and we see if the S&X

field of C is equal to zero. If it is,

the carry will not be set and we go to the

DA T A ERROR message since a base of one is

not valid. If we get through this we save

the base b-l number in A. We then load

one greater than the highest allowable

base minus one (37-1 dec. or 25-1 in hex).

Then we compare these two numbers to see

if the base b number is greater than 36.

If it is, the carry will not be set and we

go to the DATA ERROR error message.

Now we load the digit counter into the Q

register. If you remember, this register

is used as a scratch register by the main­

frame. All we have to do is make sure

that none of the routines we call use this

register for scratch. The hex number OOC

is loaded into Q to count the number of

-118-

8278

8279

827A

827B

827C

827D

827E

827F

8280

8281

8282

8283

8284

8285

8286

8287

8288

3Cl

OBO

149

024

OF8

2AO

088

OED

064

2FA

201

OOE

158

10E

OB8

070

171

?NC XQ

2CFO

[CLLCDE]

?NC XQ

0952

[ENCPOO]

READ 3(X)

SETDEC

SETF 5

?NC XQ

193B

[INTFRC]

?CfO M

?NC GO

0380

[unlabeled]

M=C

A=C ALL

READ 2(Y)

N=C

?NC XQ

characters loaded into the display. It is

decremented each time a number is loaded

into the display.

This call to the mainframe enables the

display and then clears it (fills it with

spaces). This does the same thing that we

did at addresses 822F to 823C of the DIS­

TEST routine. The only difference is that

this only takes two words instead of four­

teen.

This call to the mainframe ROMs disables

the display and selects chip O.

We retrieve X and set the CPU to decimal

mode as required by the next steps.

This is the beginning of the loop to con­

vert the decimal number to base b. The

first thing we do is take the integer of

the number in C. The first time through

this is done to make sure the number in X

is an integer. The next time through,

when we loop back, we get rid of the

fractional portion of the number in C.

The mantissa is checked to see if it is

zero. If it is not zero we skip over the

mainframe GOTO so we may continue on

with the routine. Otherwise, we go to

the subroutine in the mainframe that sets

the message flag (User flag 50, sec page

95 for full details).

First we save the decimal number in M so

that we may use it later. Now we set up

for the MOD function. We do a decimal MOD

base b. To do this we put the decimal

number into A and get the base b from Y.

-119-

8289

828A

828B

828C

828D

828E

828F

8290

8291

8292

8293

8294

8295

8296

8297

8298

8299

829A

829B

829C

064

260

38D

008

106

130

030

146

130

03A

306

01F

1C6

166

3D9

01C

OA6

328

149

024

195C

[MOD10]

SETHEX

?NC XQ

02E3

[BCDBIN]

A=C S&X

LDI S&X

HEX: 030

A=A+C S&X

LDI S&X

HEX: 03A

?A<C S&X

JC +03

A=A-C S&X

A=A+1 S&X

?NC XQ

07F6

[ENLCD]

A<>C S&X

WRIT 12(b)

?NC XQ

0952

[ENCPOO]

This must be copied into N before entry

into the MOD routine.

We now have the remainder of the decimal

number in C. This is the number we want

to convert to an LCD display character.

The represen ta tion of these characters are

the same as for the characters that you

use for the names of your functions. We

SETH EX since the BCD-BIN routine requires

this setting. Then we convert the decimal

remainder to hex in S&X of C. This is

saved in A so we may add 030 hex to it to

get the LCD character representation of

this number. The numbers are in row three

and start at zero and work up to nine.

This result ends up in A.

Now we will check to see if the number we

want to display is greater than 9. This

would mean that the hexcode in A would be

03A or greater. We load 03A into C and

check to see if A is less than C. If it

is, we want to display a decimal number

and skip the next two steps. If the num­

ber we want is greater than 9, i.e. an

Alpha character, we subtract 03A from it

and add one to get the Alpha LCD repre­

sentation of the number.

Now we enable the display but do not clear

it. We get the LCD character we want to

write to the display into the S&X of C so

that it may be written out to the left

side of the display using the WRIT l2(b)

instruction. We then call the mainframe

routine to disable the display and select

chip O.

-120-

829D 278

829E 266

829F 289

82AO 003

82Al 268

82A2 2AO

82A3 198

82A4 10E

82A5 OB8

82A6 261

82A7 060

82A8 2B3

READ 9(Q)

C=C-l S&X

?C GO

00A2

[ERROFj

WRIT 9(Q)

SETDEC

C=M

A=C ALL

READ 2(Y)

?NC XQ

1898

[DV2-10j

JNC -2A

Now we shall decrement the display counter

number that is kept in Q. If this number

should reach zero we have twelve digits in

the display. If we go through the loop

again we will push the rightmost digit off

the display. To prevent this we put a

call to the OUT OF RANGE error message.

This tells us that the number of digits

wanted was larger than the display could

hold. The carry will be set on the

thirteenth time through the loop since we

will be subtracting one from zero. Then

we shall go to the error message. If we

make it past the error message the decre­

mented counter is restored to Q.

Now we shall divide the decimal number by

the base b number. This puts the remain­

der into the fractional portion of the

number which is removed when we loop back.

First we must set the CPU back to decimal

mode so we may do a decimal divide. We

get the decimal number from M and put it

into A and put the base b into C. Then

the divide routine in the mainframe ROMs

is executed and we loop back to the start

of the loop at address 827E.

Try this routine a few times. Place sixteen into Y and 999 into X. Then

execute 10-BASE. The result in the display will be 3E7 pushed to the left

of the display. Now if you hit the CLX button the characters in the display

will be erased. The number in the X register will not be changed. If you

hit the CLX button again then the number in the X register will be cleared.

This routine does not provide for an input of zero in the X register. Don't

forget to update the FAT before you try to execute this routine or you will

get NONEXISTENT.

-121-

WRITING CUSTOM ERROR MESSAGES

This section will deal with how to place your own error messages into the

display. For example, if the base b in the last routine is greater than 36,

you might want to display the error message BASE> 36. This would be much

better than using the DATA ERROR message, which is used for many other

purposes by the HP-41 system. A customized message would also give you the

exact problem with your inputs to the routine. In order to do this we will

show you how to program a routine that will output a message of up to

twelve characters to the display. Three instructions will be introduced.

They are FETCH S&X, POP ADR, and GOTO ADR. First we will show you

a sample of what you would have to do for setup to use the routine that

displays the message for you. We will use the addresses starting at 8400

for our example.

BASE> 36.

The message we will display in our example will be

Address Hexcode Mnemonic Description

8400

8401

8402

8403

8404

8405

8406

8407

3Al

088

379

03C

020

002

001

013

?NC XQ

22E8

[ERRSUBj

GOSUB

8420

"Bit

"All

"Sit

This routine checks if user flag 25 is

set; if this is the case we exit to a

Normal Function Return, otherwise we re­

turn and continue on with this error pro­

cessing.

This is the call to our subroutine that

will output the characters in the message

we wish to display. The characters are

input immediately after the subroutine

call.

This is the first letter in the message we

will display. Notice that the message is

not in reverse order like the names of our

routines.

These are the second through the next to

last letters. The hexcodes are just the

-122-

8408 005 "E"
8409 020

840A 03E ">"

840B 020

840C 033 "3"

840D 236 "6"

840E 201 ?NC XQ

840F 070 lC80

[MSGl05]

8410 3ED ?NC GO

8411 08A 22FB

[ERRllO]

LCD representation of the characters as

presented on page 108.

This is the last letter of our

message. Notice that the leftmost

digit in the hexcode has been set to 2.

In our routine when bit nine is set, the

leftmost hexcode digit is either 2 or 3.

This signals to the routine that this word

contains the last character to be

displayed.

This mainframe routine enables chip 0,

sets the message flag, and prints the

message if the printer is in trace mode.

This routine checks if we need to back-

step, due to an error while we were

single-stepping or running a program,

stops a running program, and computes a

valid line number. It then exits to a

Normal Function Return.

Now we know how to set up for the routine but don't know how to get thl!

message out to the display. This next little routine will send the

characters out to the display and then left justify them.

Address Hexcode Mnemonic

8420 3Cl ?NC XQ

8421 OBO 2CFO

[CLLCDE]

8422 lBO POP ADR

8423 330 FETCH S&X

Description

This is a call to the mainframe routine

that enables the display and then clears

it (fills it with spaces).

This instruction places the return address

from the GOSUB statement into nybbles 3 to

6 of C. This is the address of the first

-123-

8424

8425

8426

8427

8428

8429

842A

842B

842C

842D

842E

23A

3E8

276

3E7

276

3D7

130

020

10E

31C

3F8

C=C+I M

WRIT 15(e)

C=C-I XS

JC -04

C=C-I XS

JC -06

LDI S&X

HEX: 020

A=C ALL

R= I

READ 15(e)

instruction after the GOSUB statement.

This would be the "B" character. We then

use the FETCH S&X instruction to get the

hexcode of the instruction at the address

in nybbles 3 to 6 of C. The hexcode for

this instruction is placed in to the S&X

field of C. The FETCH S&X instruction is

the beginning of the loop to output the

characters to the display.

We now increment the return address by one

so that we may get the next instruction if

we loop back again to the FETCH S&X in­

struction.

Now the character in the S&X of C is

written out to the display using a nine

bit transfer instruction. We then sub­

tract one from the exponent sign. If the

exponent sign is zero we get an underflow

which sets the carry and we jump back. We

subtract one again to see if the exponent

sign was one. If this was the case then

we will get an underflow which sets the

carry and we jump back. If the carry

still has not been set then we know the

9th bit was logic one and the character

is the last in the message.

This loads the hexcode for the space

character into C and then it is saved in

A. This part of the routine will strip

off the spaces to the left of the message

if there are any. The contents of the ADR

field of C is also saved in A.

Set pointer to I so we may compare digits

o and I of A and C.

This instruction reads the leftmost char-

-124-

842F

8430

8431

8432

8433

36A

3F3

3A8

OAE

lEO

AIC R<

INC -02

WRIT 14(d)

A<>C ALL

GO TO ADR

acter in the display lllto S&X of C and

rotates the display left by one character.

The character just read in becomes the

rightmost character in the display.

This is now compared to the hexcode for a

space. If the two are equal we want to

rotate the display so that the message

will be moved toward the left and a space

will be put at the right. Then we jump

back to the READ instruction to get the

next character. If A and C are not equal,

we have hit a character that is not a

space, i.e., the beginning of our message;

we don't want to rotate this to the left

of the display so we use the WRIT 14(d)

instruction. This will write out the

hexcode to the left of the display and

shift all of the other characters right by

one.

Now we get the address of the next

instruction, which we saved in nybbles 3

to 6 of register A, and push it into the

PC register using the GOTO ADR

instruction.

If you want to use this routine, you must change the call to the DATA ERROR

message at address 8273. The new sequence should be put into the place of

this call.

Address Hexcode Mnemonic Description

8273 027 IC +04 If the carry is set by the preceding in-

8274 365 struction (?A<C), we don't want to go to

8275 08C GOTO the error message. We jump over the error

8276 000 8400 exit because the calculator will interpret

-125-

the first two words as a ?NC XQ. If the

carry is set, then this instruction will

be skipped, but the third word of the

relative GO TO will then be executed as

an instruction. If the carry is not set,

the JC instruction will be skipped and we

shall go to the error message. The rest

of the routine must be moved down by two

words. None of the instructions after the

GOTO change, they are just moved down.

Now try the lO-BASE routine with a base greater than 36 and the error

message BASE> 36 should come into the display.

The mainframe ROMs have a routine that does almost the same thing as the

routine that we wrote to display messages. There is one main difference

between the routine we wrote and the one in the mainframe. With ours you

may put characters from rows 10-13 of the LCD character table into the

message at any point. With the one in the mainframe ROMs you may only have

the last letter of the message from rows 10-13 of the LCD table. This is

because the mainframe ROM routine only checks to see if the exponent sign

(bits 8 and 9) of the character is not equal to zero. If it does not equal

zero then the end of the message is reached. In our routine we check to see

if bit 9 is set before we end our message. If bit eight is set and the

middle digit is zero, then the character to be displayed will be from row 10

of the LCD table. This only occurs if we are using nine bit transfers. The

character "a" would have the hexcode 101. Our routine also left justifies

the message in the display. The mainframe routine at address 07EF leaves

the message right justified. In order to use the routine at 07EF you just

replace the GOSUB 8420 statement in the error message with the ?NC XQ 07EF

instruction.

Well, that's all folks. hope this book has helped to give you an insight

into how to program in the native language of the 41. There are many

routines that need to be programmed using MCODE because of the speed

-126-

advantage or just because the desired result cannot be achieved using User

code programming.

-127-

THE END

-128-

APPENDIX A-List of suppliers

You may obtain MCODE storage devices (MLDL) from the following

organiza tions.

ERAMCO MLDL - ERAMCO Systems, Valentynkade 27-11,

NL-1094 SR Amsterdam, The Netherlands.

In the U.S.A. contact: PPC, P.O. Box 9599

Fountain VaHey CA 92728-9599 USA.

phone 714-754-6226

or EduCalc Mail Store, 27953 Cabot Road,

Laguna Niguel CA 92677 USA.

phone 714-831-2637

PROTOCODER II - ProtoTECH Inc., P.O. Box 12104 Boulder, CO 80303 USA

Phone 303-499-5541

For the annotated listing of the HP-41 mainframe ROMs contact:

PPC, P.O. Box 9599

Fountain Valley, CA 92728-9599 USA.

phone 714-754-6226

or Zengrange LTD., Greenfield road,

GB-Leeds, WYORKS LS9 8DB, England.

phone 0532 489048

or Editions de Cagire, 77 rue de Cagire,

F-31100 Toulouse, France.

ZENROM: The ZENROM is a custom programmers module manufactured by

Hewlett-Packard for Zengrange Ltd. It has the best

dissassembler for MCODE to date. With this module you can key

-129-

in any synthetic instructions from the keyboard without the

help of key assignments. To obtain the ZEN ROM write to:

In the United States:

Zengrange Ltd., Greenfield Road,

GB-Leeds, WYORKS, LS9 8DB, England

Phone 0532 489048

EduCalc Mail Store, 27953 Cabot Road,

Laguna Nigel CA 92667 USA.

phone 714-831-2637

or PPC, P. O. Box 9599,

Fountain VaIIey CA 92728-9599 USA.

phone 714-754-6226.

Information on EPROM boxes may be obtained from the foIIowing sources.

Contact them for the dealer nearest you.

CorvaIIis MicroTechnology, Inc. 33815 Eastgate Circle, CorvaIIis OR 97333

USA. phone 503-752-5456

Hand Held Products, P.O. Box 2388, Charlotte, North Carolina 28211 USA

Phone 704-541-1380

Prototech Inc., P. O. Box 12104, Boulder, CO 80303 USA. Phone 303-499-5541

The ASSEMBLER 3 EPROM may be obtained from:

Deep Thinking Software C/O Michael Thompson, 24 Canterbury Road,

CamberweII, Victoria 3124, Australia.

The DAVID ASSEMBLER EPROM may be obtained from:

ERAMCO Systems, Kromboomsloot 16-3

101 I GW Amsterdam, The Netherlands

-130-

Phi Trinh's LOADP software package may be obtained from:

Phi Trinh, P.O. Box 184, Rockport WA 98283 USA

Two Users' Groups support HP-41 MCODE activity. For information on either

one, send $1 or a self-addressed envelope with 3 ounces of postage to:

Handheld Programming Exchange (HPX), P.O. Box 566727, Atlanta GA 30356.

Phone (404) 391-0367 6-8 PM Eastern time. Publication plans are not firm as

of Spring 1987. For back issues of the CHHU Chronicle, write: CHHU Back

Issues, P.O. Box 10758, Santa Ana, CA 92711-0758, U.S.A., ph (714) 472-9580.

PPC, P.O. Box 9599, Fountain Valley, CA 92728-9599 USA. Phone 714-754-6226

Publishes the PPC Journal.

Other HP-41 Users' Groups include:

CCD (ComputerClub Deutschland),

Postfach 2129, D-6242 Kronberg 2, West Germany.

Publishes PRISMA (German) supporting synthetic programming and MCODE.

PPC-Holland, c/o TH Boekhandel Prins, Binnenwatersloot 30, NL-2611 BK Delft,

The Netherlands.

PPC-Melbourne, P.O. Box 512, Ringwood, Victoria 3134, Australia.

Membership enquiries: Edition du Cagire, 77 rue du Cagire, F-31100 Toulouse,

France. Publishes PPC Technical Notes, supporting advanced synthetic

programming and MCODE.

PPC-Toulouse, 77 rue du Cagire, F-31100 Toulouse, France.

Publishes PPC-T (French) supporting synthetic programming and MCODE.

PPC-UK, c/o Astage, Rectory Lane, GB - Windlesham, Surrey, GU20 6BW,

England. Membership enquiries: c/o Dave Bundy, 9 Kings Court, Kings Avenue,

GB - Buckhurst Hill, Essex, IG9 5LP, England. Publishes "Datafile"

(English) supporting synthetic programming and beginning MCODE.

-131-

APPENDIX B - What's up on entry to an MCODE routine

~

Here we shall explain the status of the CPU upon entry to an XROM function.

Here's the low down on what's up:

l.) CPU is set to hex mode.

2.) Pointer P is selected and set to l. The value of Q is variable.

3.) Flags 48 to 55 of the user flag register are placed into ST. CPU flag

7 corresponds to user flag 48 and 0 to 55. This is called Status Set 0

(SSO). When this is contained in ST the User flag number may be

calculated from a bit in ST by subtracting its number from 55 (i.e.

status bit 5 is the message flag (50) since 50 = 55 - 5). Flags I and

2 can be assumed to be clear upon entry to an XROM function since they

correspond to the pause and 1/0 flags (the pause flag is cleared

whenever any function is executed).

4.) RAM chip zero is selected.

5.) G is equivalent to the first byte of the XROM instruction. This is Aj

in hex, where j may range from 0 to 7. Therefore bit three is always

clear upon entry to an XROM function. This is useful for partial key

sequencing which will be explained in detail later.

6.) The address of the first line of the MCODE program is in nybbles 3 to 6

of C. Nybbles 12 and 13 are always zero.

If your function is executed as a global execute in a program (XEQ

"ABCDEFG"), then some of the above are different. In particular, the

pointer is set to 3 instead of I, register G contains the ROM ID number (l

to 31), and it cannot be assumed that nybbles 12 and 13 of C are zero. You

will not normally encounter this situation, because the instruction will

change to an XROM when it is keyed into the program, unless the correspon­

ding module is not present at that time.

-132-

APPENDIX ZZZzzz ... - The 3 CPU modes

There are three principal CPU modes. They are Deep sleep (calculator is

off), Light sleep (41 on but CPU not running; also known as standby mode.),

and Running (41 is execu ting code). If the CPU PC is at address 0000 as the

result of a POWOFF instruction, it is fixed there and the 41 is in light

sleep or deep sleep, waiting for a key to be pressed. If the ON key is

pressed while in deep sleep, the carry is set, providing for a branch to the

deep sleep wakeup routine at DIAD. If any key is pressed while in standby

mode, the carry flag is clear and the light sleep wakeup routine at 0180 is

executed.

-133-

APPENDIX C - Other Advanced Stuff

In this section we shall cover the various keycodes used by the mainframe,

and how to make your MCODE programs nonprogrammable and/or prompting. First

we cover the special key tables.

The mainframe has three tables listed in its coding that define keycodes for

different keyboards. They are the default function keyboard (this is used

when an unassigned key is pressed), the ALPHA keyboard (used when we are in

alpha mode), and the partial key table, which is consulted during a partial

key sequence. There is also a table contained in the hardware of the micro­

processor. Its values are placed into the KY register whenever a key is

pressed. From these values two more key tables are computed. They are the

logical key table and the assignment key table. The tables are shown on

pages 149-150.

In order to make a MCODE function non programmable (so the function will run

instead of being inserted when executed in program mode), just make the

first executable instruction of the function a NOP. For example, if the

first line of the GE routine were a NOP and all of the rest of the code was

pushed down by one word, you could execute "GE" in program mode and you

would end up at line 000 of the last program in memory. It would not be

inserted as a program line. We shall rename the routine and make it nonpro­

grammable. The new name is GEE.

Address Hexcode Mnemonic

82AB

82AC

82AD

82AE

085

005

007

000

"£"
"£"
"Gil

NOP

"GEE"

Description

Name for GEE function.

This is the start of the routine. The

address in the FAT points to this

instruction.

-134-

82AF 378

82BO 05A

82Bl OIC

82B2 ODO

82B3 OC4

82B4 2C8

82B5 328

82B6 3EO

READ 13(c)

C=O M

R= 3

LD@R 3

CLRF 10

SETF 13

WRIT 12(b)

RTN

This was the first instruction in the old

routine. The rest of the routine is the

same as before.

The address in the FAT points to the NOP instruction, not the READ 13(e)

instruction. Now if you execute "GEE" in program mode you will end up at

line 000 of the last program in memory; the instruction will not be inserted

as a program line.

In order to allow a function to become prompting, the first and second

letters of the program name have the leftmost digit of their hexcode set to

something other than zero. For example, here is what the name for the COPY

function in the calculator looks like.

Hexcode Letter

099 "Y"

010 "P"

OOF "0"

103 "c"
first exeeu ta ble instruction

Notice that leftmost digit of the hexcode of "c" is a one. This signals to

the calculator that some kind of prompt is needed. This digit may also be a

two or three. The leftmost digit in the second letter of the function can

range from zero to three. Here is a chart of the different combinations

that produce prompts.

-135-

Example Leftmost digit of

1 st Chr 2nd Chr

SIN

COpy

DEL

FIX

STO

ASTO

FS?C

LBL

XEQ

GTO

o

2

2

2

2

3

3

3

3

o

2

3

o

2

3

o

2

3

Type of prompt

If the leftmost digit of the first character of

the name is zero, the second character is not

looked at.

Alpha input only (null input okay).

Three digits or four by pressing EEX.

Same as for COPY except null input is not

accepted (hitting the ALPHA key twice while

entering no letters).

Allows entry of a single digit, an indirect

register, or indirect stack.

Accepts two digit entries, indirect, indirect

stack, and stack. When the +, -, *, or / key

is pressed at the double prompt the function

defaults to the storage arithmetic function.

Same as above except the storage arithmetic

part does not work.

Allows two digit entries, indirect, or indirect

stack.

Same as above.

Allows non-null alpha input or two digit num­

bers.

Accepts non-null alpha, indirect stack, stack,

or two digits inputs.

Allows two digit input or non-null alpha.

Accept two digit entries, non-null alpha,

indirect, indirect stack. If the decimal key

is pressed while there are two prompts showing,

the function changes to GTO . __ _

For numeric entries the hex equivalent of the number entered is put into the

S&X field of CPU register A. For example, if you entered 46 at the double

-136-

prompt, then 02E would end up in S&X of A. For indirect inputs just add hex

80 to the hex value of the number entered. NOTE: Stack suffixes (the ones

that appear in the display as ST _) apply only to mainframe functions.

These suffixes will not operate as might be expected in your XROM functions.

Alpha entries are placed into register Q of the status registers. They are

put there in reverse order and right justified with unfilled places being

filled with 00 bytes. For example, if you filled in "QWERTY" at the prompt

the Q register would look like the following: 00 Y T R E W Q. The 00 is the

filler byte since there were only six letters entered.

Any function that uses one of these prompts should also be made nonprogram­

mabie. If it is executed in program mode the function will be inserted as a

program line, and the value keyed in at the prompt will be lost. Only

mainframe functions can use that value when inserted in a program.

The prompts for the above functions are dictated by a process called partial

key sequencing. This is an esoteric procedure that has not previously been

documented. Very few people fully understand its intricacies. The leftmost

hex digit of the first two characters of the name in these MeaDE functions

are called op bits. These are used by the mainframe to tell what kind of a

prompting function is being executed. The op bits for the first character

are called opl, and the bits for the second character are called op2 (these

are the leftmost hex digits in the first two characters of the name as

previously described).

These op bits form part of a special pair of status bytes called PTEMPI and

PTEMP2. PTEMP2 is saved in register G during partial key sequence proces­

sing and in nybbles 3 and 4 of status register e during standby mode while

in a partial key sequence. The eight bits of PTEMP2 are designated as

follows:

-137-

Bit Description

OBit 0 of op2 (bit 8 of the second character of the function name).

I Bit I of op2 (bit 9 of the second character of the function name).

2 Bit 0 of opl (bit 8 of the first character of the function name).

3 This bit is always zero. Bit I of opl initially accompanies the

preceding 3 bits, but it is left in bit 3 of ST, before PTEMP2 is fully

formed.

needed.

Bit I of opl is tested at that point, then it is no longer

4 If this bit is set the function will be inserted as a line in a program.

This is called the INSERT bit. Before setting this bit, the mainframe

checks that you are in program mode and that the function is

programma ble.

5 This is the XROM bit indicating the function resides in a non-mainframe

ROM. This bit only affects numeric entries. When clear, it indicates

that the numeric entry value from the S&X field of A is to be merged

with the function code as the postfix of a mainframe function. When the

XROM bit is set, the value is left in S&X of A for use by the XROM

program.

6 This is the IND bit. When set, hex 80 is added to the number in S&X of

A. This bit's use is associated with the partial key sequencing of

mainframe functions using an indirect operand.

7 This bit is unused by PTEMP2.

PTEMPI is formed by setting aside the rightmost digit of the corresponding

key from the partial key table, and multiplying the two leftmost digits by

4. Bits 0 to 3 of PTEMP2 are then added to this value. Note that there is

no overlap in this addition, since the middle digit of the key table entry

is always divisible by two, and since bit 3 of PTEMP2 is always zero. From

this we get the following definitions for the 8 bits of PTEMPI:

Bit Description

o This is bit 0 from PTEMP2 (bit 0 of op2).

Bit I of PTEMP2 (bit I of op2).

-138-

2 Bit 2 of PTEMP2 (bit 0 of opl).

3 If a digit key was pressed then this bit will be set. This is for

digi ts 0 to 9.

4 If a key from row one or two of the keyboard (A through J) was pushed

then this bit will be set.

5 When the ALPHA mode key is pressed this bit is set.

6 This bit is set when the SHIFT key is pushed.

7 When the decimal point is pressed this bit is set.

Upon return from a partial key sequence keystroke, PTEMP 1 is in register ST,

PTEMP2 is in register G, the rightmost digit of the keycode from the partial

key table is in the mantissa sign of A, and the keycode from the logical key

table is in nybbles and 2 of register N.

In order to write your own partial key sequencing routine you must merely

ensure that bit three of register G is zero upon entry. The rest of PTEMP2

is generally meaningful only for functions whose prompting is dictated by

the op bits in its name, and can usually be ignored when setting up partial

key sequences in the coding of an MeODE program. There are four entry points

used for this purpose. They are at OE45, OE48, OE4B, and OE50. Upon entry

to these locations the display must be enabled. These addresses must be

called as a subroutine so control can be returned to your program once a key

has been pressed. Now we shall describe each entry point.

Address Description

OE45 This entry appends a single underscore to the display. The

[NEXTl] display is then left justified. The FIX instruction is an

example of a single underscore function.

OE48

[NEXT2]

OE4B

[NEXT3]

Here two underscores are appended to the display before left

justification takes place. The STO function is an example of

this type of prompt.

Three underscores are placed into the display by this entry

point. The display is then left justified. The DEL instruction

is an example of this type of prompt.

-139-

OE50

[NEXT]

This entry point does not append an underscore to the display.

The display must have at least one character present which is not

a space, otherwise the left justify routine will go into an

infinite loop since it looks for a non-space character.

These routines set the partial key (46) flag and the message flag (50).

(Setting the message flag turns out to be unnecessary in this particular

case.) They then update the annunciators in case the ALPHA key was pressed

in preparation for entry of a function name or the SHIFT key was pressed

during entry of the characters of a function name. Finally the keyboard is

reset, and we go into standby mode.

When a key is pressed, the calculator starts executing code and figures out

that we are in the middle of a partial key sequence (the partial key flag is

set). The partial key table is then consulted in order to construct PTEMPl.

Then the display is right-justified and all of the prompts (underscores) are

removed. Finally a check is made to see if the backarrow key was pressed.

If it was, a return is made to the step immediately following the execute

statement of the partial key sequence routine. If some other key is

pressed, the step immediately after the execute statement is skipped. Your

program may now use PTEMPI and the contents of the mantissa sign of A

(and/or the logical keycode in nybbles I and 2 of register N), to figure out

which key was pressed and go off and do the appropriate stuff. If you have

a multiple prompt you will want to place the pertinent character into the

display and call one of the above routines which appends one less prompt

than was previously in the display. When you are finished prompting for

input you should execute the routine at 0385 to clear the message flag (50)

and the partial key flag (46) in order to tell the calculator you are no

longer in a partial key sequence.

We now introduce a program which uses one of the partial key sequence entry

points. It is a routine for entering non-normalized numbers directly from

the keyboard. The 0-9 and A-F keys are reassigned to allow them to be

executed from an unshifted keyboard. The routine places the ASCII digits

into alpha and then codes the rightmost fourteen characters into X upon

-140-

exit. This routine was written by Clifford Stern. It is called HXENTRY.

Address Hexcode Mnemonic

82B7

82B8

82B9

82BA

82BB

82BC

82BD

82BE

82BF

82CO

82Cl

82C2

82C3

82C4

82C5

82C6

82C7

82C8

099

012

014

OOE

005

018

008

345

040

3Cl

OBO

115

038

07B

04C

lIB

35E

3D3

"Y"

"R"

"T"

"N"

"E"
"X"
"Hit

?NC XQ

10Dl

[CLA]

?NC XQ

2CFO

[CLLCDE]

?NC XQ

OE45

[NEXTl]

JNC +OF

?FSET 4

JNC +23

?AfO MS

JNC -06

"HXENTRY"

Description

Routine name

These first two executes clear the alpha

register (l OD 1) and clear and enable the

display (2CFO).

Next a single underscore is ·pushed into

the right of the display which is then

left justified. Chip 0 is then enabled so

the partial key sequence flag (46) and the

message flag (50) can be set. The key­

board is then reset and we go into standby

mode.

If the back arrow key is pressed we return

here and jump to a routine which deletes

the rightmost character from both the

display and the alpha register.

If flag 4 is set, a key from row 1 or 2

has been pressed. We jump to another flag

test if the flag is clear.

If we make it to here a row 1 or 2 key has

been pressed. The least significant digit

-141-

82C9

82CA

82CB

82CC

82CD

82CE

82CF

82DO

82Dl

82D2

82D3

82D4

130

007

33C

31E

3AB

OBE

2FC

3E8

110

OEB

3B8

149

LDI S&X

HEX: 007

RCR 1

?A<C MS

JNC -OB

A<>C MS

RCR 13

WRIT 15(e)

LD@R 4

JNC +1D

READ 14(d)

?NC XQ

of the keycode (see partial key table on

page 150) is placed into the mantissa sign

of A. If it is zero, the J key has been

pressed. Since this is not a hex digit we

ignore the key and jump back to 82C2.

Now we load a seven and rotate it into the

mantissa sign of C so we may compare it to

the number in the mantissa sign of A.

This has the additional feature of

clearing what is now digits zero and one

of C.

If the key pressed is not less than G (7)

then we ignore it and jump back to 82C2.

If we get to here we know that a key from

A to F has been pressed. First we place

the least significant digit of the keycode

from the partial key table into nybble 0

of C. Then we send it to the right end of

the display. The partial key sequence

routine leaves the pointer set to one so

we may load a 4 to obtain the ASCII equi­

valent. We then jump to the code that

appends this to alpha.

This is where we jump to if the backarrow

key was pressed. Upon return from a par­

tial key sequence the display is right

justified and the prompts are deleted.

Therefore the character we want to remove

is the rightmost in the display. The READ

14(d) instruction rotates the display

right by one character. When we return to

82C2 a prompt is pushed into the right of

the display and the character to be de­

leted is shifted off the display.

First chip 0 is enabled and the display is

-142-

82D5

82D6

82D7

82D8

82D9

82DA

82DB

82DC

82DD

82DE

82DF

82EO

82EI

82E2

82E3

82E4

82E5

82E6

82E7

82E8

82E9

82EA

82EB

82EC

82ED

82EE

024

238

10E

IF8

OAA

23C

2FO

IB8

OAA

23C

2FO

178

04A

OAA

23C

2FO

OAE

23C

228

073

OOC

07B

OBE

2FC

ODO

368

0952

[ENCPOO]

READ 8(P)

A=C ALL

READ 7(0)

A<>C R<

RCR 2

WRITE DATA

READ 6(N)

A<>C R<

RCR 2

WRITE DATA

READ 5(M)

C=O R<

A<>C R<

RCR 2

WRITE DATA

A<>C ALL

RCR 2

WRIT 8(P)

JNC +OE

?FSET 3

JNC +OF

A<>C MS

RCR 13

LD@R 3

WRIT 13(c)

disa bled. The pointer has been left at

one upon exit from the partial key sequen­

ce routine. What is now done is to delete

the rightmost character from the alpha

register. This is done by successive

manipulation of the first and last digits

of each register of alpha. We then jump

down to a point that enables the display

and goes back to 82C2.

This is where we end up if the key that is

pressed is not a key from row 1 or 2. If

flag 3 is set then a numeric key was

pressed. If a numeric key was not pressed

then we go to a point to check if the

decimal point was pressed.

Now we know a numeric key has been pres­

sed. The number is retrieved from the

mantissa sign of A and rotated into nybble

zero of C and a three is loaded into

nybble 1. This is then written out to the

right of the display. We use an eight bit

display transfer since we can't depend on

nybble 2 being even.

-143-

82EF

82FO

82FI

82F2

82F3

82F4

82F5

82F6

82F7

82F8

82F9

82FA

82FB

82FC

82FD

82FE

82FF

8300

8301

8302

058

149

024

051

OB4

042

058

3D9

OIC

253

28C

OIB

2C4

03B

130

370

106

OBO

366

207

G=C

?NC XQ

0952

[ENCPOO]

?NC XQ

2DI4

[APNDNW]

C=O @R

G=C

?NC XQ

07F6

[ENLCD]

JNC -36

?FSET 7

JNC +03

CLRF 13

JNC +07

LDI S&X

HEX: 370

A=C S&X

C=N

?A",C S&X

JC -40

This is the place we enter to append

characters to alpha. The pointer is now

zero so nybbles zero and one of Care

saved in G. We then enable chip 0 and

disable the display (0952). The append

routine (2DI4) takes the contents of G and

places it as the last character in alpha.

The purpose of this pair of instructions

is to clear bit 3 of register G. This

will provide for PTEMP I to be correct upon

return from the next execution of partial

key sequencing.

We now enable the display so that we may

return to address 82C2.

This routine may be inserted as a line in

a program. If we are in a running program

the R/S key will halt digit entry and the

program will continue. However if the

decimal key is pressed the program will be

terminated. If flag 7 is set the decimal

key was pressed. CPU flag 13 is cleared

in order to halt a running program. We

then go on to finish the routine.

If flag 7 is not set then a key other than

a hex entry or the decimal point has been

pressed. We shall now check if the R/S

key was pushed. We load the logical key­

code of R/S into nybbles one and two of C

then transfer this to A. The logical

keycode for the key that was pressed is in

nybbles one and two of N. We retrieve

this into C and they are compared. If the

R/S key was pressed we continue on with

-144-

8303

8304

8305

8306

8307

8308

8309

830A

830B

830C

830D

830E

830F

8310

8311

8312

8313

3D9

OBO

261

000

149

024

215

OOC

130

049

23C

OEE

35C

OOE

IB8

OAE

33E

?NC XQ

2CF6

[CLRLCD]

?NC XQ

0098

[RSTKB]

?NC XQ

0952

[ENCPOO]

?NC XQ

0385

[RSTSQ]

LDI S&X

HEX: 049

RCR 2

C<>B ALL

R= 12

A=O ALL

READ 6(N)

A<>C ALL

?A<B MS

the routine. Otherwise, we ignore the key

and jump back to 82C2.

The display is cleared (2CF6) to clean it

up. The keyboard is then reset (0098).

This is just waiting for the release of

the key. If this is not done the routine

could finish and the function on the

depressed key would be executed.

Chip 0 is now enabled and the display is

disabled (0952). The message (50), and

the partial key sequence (46) flags are

cleared (0385). User flags 48 to 55 are

loaded into register ST.

This value is used to CODE the rightmost

fourteen digits of alpha. We shall now

rotate these digits into nybbles 12 and 13

of register C. They are then transferred

to register B so we may do a series of

comparisons and possible additions with

register A.

The pointer is set to 12 so we may add the

two nybbles in A and B when an alphabetic

character is processed.

Clear what will become the accumulator

register. If there are fewer than eight

characters in alpha the inner loop won't

be executed 14 times so we must have

leading zeros in C to account for this.

Characters eight through fourteen are

placed into C so we may begin coding them.

This is the beginning of the outer loop.

The contents of C are either status regis­

ter M or N.

We now check to see if we have an alpha

-145-

8314

8315

8316

8317

8318

8319

831A

831B

831C

83lD

017

122

3EE

OBE

3EE

2FC

34E

3C7

30C

02F

JC +02

A=A+B @R

LSHFA ALL

A<>C MS

LSHFA ALL

RCR 13

?A;ofO ALL

JC -08

?FSET I

JC +05

character, or instead a digit character or

a null byte. If the mantissa sign of A is

less than four the latter is the case (the

most significant hex digit of an alpha

character is four). If that is true then

we skip the addition step because the

least significant digit of that byte is

the correct hex equivalent. For alpha hex

numbers a nine must be added to this digit

to correct it (i.e. A is 41 in ASCII and

we add 9 to get 4A which sets the right­

most digit to the character it repre­

sents). This is the start of the inner

loop.

The A register is shifted left to discard

the left n yb ble of the character just

examined. This places the desired digit

in the mantissa sign of A. We now place

this into C and shift A left again to

bring up the next character to be coded.

The digit in the mantissa sign of C is now

rotated to the right end.

If there are more characters to be coded,

A will not be equal to zero and we jump

back to the start of the inner loop at

address 8313.

If this is the first time through the loop

this flag will be clear. We know this

because status set zero was placed in

register ST. Status set 0 is in ST as a

result of the call to 0385, and flag

corresponds to the pause flag which is

cleared by that routine. If it is set we

jump to the end of the routine and finish

up.

-146-

831E

831F

8320

8321

8322

8323

8324

308

10E

178

38B

OEE
OB9

04A

SETF I

A=C ALL

READ 5(M)

JNC -OF

C<>B ALL

?NC GO

122E

[RCL]

Setting this flag tells us that this is

the second time through the inner loop.

The result from the first execution of the

inner loop is temporarily saved in A so we

may fetch the rightmost seven characters

of alpha. We then jump back to the begin­

ning of the outer loop at address 8312.

The final value is in C and we save it in

B as required by the routine at address

122E, which sends register B to X accor­

ding to the status of the stack enable

flag (CPU flag 11).

To use this routine execute HXENTRY. The program will place a single prompt

in the left of the display. You may now press any key, with only the 0 to F

keys entering digits into the display. The ON, R/S, and Decimal Point keys

will terminate the routine. If the R/S key is pressed when the function was

executed in a running program the program resumes running. With the decimal

point the program is terminated. The backarrow key deletes the rightmost

character in the display and alpha. All other keys are ignored.

We are providing another routine that executes just the CODE section of

HXENTRY; the contents of alpha are coded into X. However, you must enter

the alpha characters manually (or from a program) and then execute CODE.

Here is the routine. It simply uses the CODE portion of HXENTRY to do all

of the dirty work.

-147-

Address Hexcode

8325 085

8326 004

8327 OOF

8328 003

8329 313

Mnemonic

liE"

liD"

ItO"

ttC"

JNC -IE

CODE

Description

Routine name.

This is a jump back to the CODE section of

HXENTRY.

-148-

MAINFRAME KEY TABLES

Alpha Keyboard Default Function Table Logical Keycodes

10C 10C 10C 10C 10C IOC 46 45 44

61 62 63 64 65 148 153 151 157 155 08 18 28 38 48

41 42 43 44 45 147 160 152 156 150 00 10 20 30 40

7E 25 ID 3C 3E 170 14C 15C 15D 15E 09 19 29 39 49

46 47 48 49 4A 171 175 159 15A 15B 01 11 21 31 41

IDE 7F 19A 19B 207 IDE 10F 1CF IDO 107 OA 1A 2A 3A 4A
IDE 4B 4C 4D 108 IDE lEO 191 190 108 02 12 22 32 42

5E D 24 187 100 196 185 177 DB 2B 3B 4B
4E 4F 50 0 183 1C 1B 0 03 23 33 43

2D 37 38 39 178 1A8 1A9 lAC DC 1C 2C 3C
51 52 53 54 141 17 18 19 04 14 24 34

2B 34 35 36 146 186 14E 14F OD ID 2D 3D

55 56 57 58 140 14 15 16 05 15 25 35

2A 31 32 33 145 19C 19D 19E DE IE 2E 3E

59 5A 3D 3F 142 11 12 13 06 16 26 36

2F 30 2E 17E 167 172 176 198 OF IF 2F 3F

3A 20 2C 105 143 10 IA 105 07 17 27 37

-149-

MORE MAINFRAME KEY TABLES

PAR TIAL KEY TABLE KEY CODES from K Y ASSIGNMENT KEY TABU

000 000 080 18 C6 C5 C4 (top keys not assignable)

09 19 29 39 49
041 042 043 044 045 10 30 70 80 CO 01 11 21 31 41

OA lA 2A 3A 4A
046 047 048 049 040 11 31 71 81 Cl 02 12 22 32 42

OB IB 2B 3B 4B
100 000 000 000 000 12 32 72 82 C2 03 13 23 33 43

OC 2C 3C 4C
000 000 000 OOF 13 73 83 C3 04 24 34 44

OD 1D 2D 3D
002 027 028 029 14 34 74 84 05 15 25 35

DE IE 2E 3E
001 024 025 026 15 35 75 85 06 16 26 36

OF IF 2F 3F
003 021 022 023 16 36 76 86 07 17 27 37

10 20 30 40
004 020 200 000 17 37 77 87 08 18 28 38

-150-

APPENDIX D - Using the Polling Points

You may remember when we were describing which words in a 4K page had been

set aside for specific purposes, the words from addresses PFF4 to PFFA were

off limits unless you knew exactly what you were doing. During certain

This entails specific times the 41 conducts a process called polling.

checking a fixed polling point in all ROMs from page 5 to F. In order to

use these points several conditions must be observed. We shall now describe

how these may be used. First, if there is any nonzero word in one of the

polling point addresses and the calculator polls that address then it will

branch there and start executing code. Usually we put a JNC that jumps to

the start of the routine we wish to execute. The seven different polling

points are polled at specified times. These times are given below.

Address Description of poll

PFF4 This is the pause loop interrupt. Any time the calculator

executes the PSE instruction this address is polled.

PFF5

PFF6

PFF7

PFF8

PFF9

PFFA

This address is polled after any RPN function is executed, if user

flag 53 or peripheral flag 13 is set. This includes execu tion of

functions during a User code program, and is called the main

running loop interrupt.

This is polled when the calculator is turned on by something other

than the ON button (for example, an alarm).

This location is polled when the calculator is being turned off.

This is polled whenever the calculator goes into standby mode, and

is called the I/O interrupt.

The calculator polls this address when it is turned on using the

ON button.

Whenever there is a MEMORY LOST this location is polled.

Once you have taken control by using one of these interrupts you MUST

observe some rules.

-151-

Your routine must exit with the following intact:

1.) Restore nybbles 10 through 3 of register C to what they were when you

took control at the interrupt.

2.) Have P as the selected pointer.

3.) Load flags 48 to 55 of the user flag register into CPU register ST.

This set of flags is called status set zero (SSO).

4.) Have chip 0 (the status registers) selected.

5.) The CPU must be in HEX mode.

6.) You must do a GO TO to 27F3 to end the interrupt and give control back to

the calculator so that it may continue polling.

If any of these rules are not observed the calculator could end up doing

some strange things (like locking up the keyboard). To clarify this mess we

shall do an example. In our example we shall use the MEMORY LOST interrupt.

Whenever a MEMORY LOST occurs we shall resize the calculator to a size of 25

instead of the normal 273 (CV) or 100 (CX). Here is the routine.

Address Hexcode Mnemonic

8FE8

8FE9

8FEA

8FEB

8FEC

8FED

8FEE

268

130

019

106

244

259

05C

WRIT 9(Q)

LDI S&X

HEX: 019

A=C S&X

CLRF 9

?NC XQ

1796

Description

This is the entry to our routine. The

first thing we do is save register C in Q

so that we may retrieve it later as re­

quired.

We shall now load the size (25 in decimal)

into S&X of C and then transfer it to A.

This is done because the size routine

requires the specified size to be in A

(remember SIZE is a prompting function).

We shall now call the routine in the main­

frame that changes the size. Flag 9 is

cleared in case we should get an error.

If we get an error, the routine will just

return and do nothing if flag 9 is

cleared. If it were set we would go to the

-152-

8FEF

8FFO

8FFI

8FF2

8FF3

25D

OIC

278

3CD

09E

?NC XQ

0797

[LDSSTO]

READ 9(Q)

?NC GO

27F3

PACKING error message and would not be

able to return control to the polling

process.

This entry point selects chip zero, and

then places the user flag register into C.

Flags 48 to 55 are then placed into the ST

register.

Now we retrieve the original contents of C

upon entry to the poll.

We then exit back to the mainframe after

having satisfied all of the described

conditions. The size routine does not

change the selected pointer so we didn't

have to do anything about that.

Now we shall place the jump from the MEMORY LOST interrupt location at 8FFA

to the beginning of our routine which is at 8FE8, by using a INC -12

(hexcode 373). Always remove the word at the interrupt location before you

modify the routine that uses the interrupt. After you have updated the

routine make sure that the interrupt jumps back to the correct place or you

could lose control of the calculator when the interrupt is polled.

If you happen to place the jump to a wrong location and the calculator goes

crazy, try the following: unplug you MLDL and regain control of the

calculator. Now change the selected page of your MLDL to page 2. Then

write NOPs (000) to all of the interrupt locations (2FF4-2FFA). You may now

place your MLDL back to the original page.

-153-

APPENDIX E - MeODE Debugging Program

Clifford Stern has written a program to allow you to interrupt your MCODE

routine. This routine saves the contents of all the CPU registers at the

point of interruption in the RAM of the calculator. The 16 status registers

are also saved away. The name of the routine is BREAK.

To use BREAK you must have the address of the point you wish to insert the

breakpoint in X. Place it there using HXENTR Y (example, for address 8967

press the 8, 9, 6, and 7 keys at the prompt and then press R/S). Then

execute BREAK. The breakpoint is inserted automatically by the program and

user flag 1 will be set. Flag 1 should be cleared before you execute BREAK.

You must be sure that the carry is not set by the instruction immediately

preceding the breakpoint. This is because the BREAK routine writes an ?NC

GO to the debugging routine. Now load the appropriate data and execute the

function to be debugged. When the breakpoint is reached during execution of

your function, the CPU and status registers are written into the last 25

data registers of the calculator RAM (lE7-lFF), the original program bytes

are restored, and flag 1 is cleared. The routine assumes that you have a

41CX, 41CV, or a 41C with a quad memory module. If the number of data

registers available is less than 25 then BREAK exits to the NONEXISTENT

error message. If flag 1 is still set when the routine finishes (crashes?)

the breakpoint was not reached. To restore the original bytes just clear X

and execute BREAK. Registers IFE and IFF are reserved for use by the BREAK

program, and must not be altered by the routine being debugged.

The Data is saved in the RAM registers in the order shown on the next page.

Note: The MCODE debugging program does not work with the PROTOCODER MLDL

device because of the different method of writing to the device.

-154-

a bs. Contents

reg.# 13 12 1 1 10

487 0 0 <---R TN

488 <-K Y-> <---R TN

Detail of XY:

BIT # 7 6 5 4 3

FLAG#13121110 9

of register by nybble

9 8 7 6 5 4 3 2 0

#3---> <---R TN #2---> <---R TN # 1--->

#4---> <-XY-> P Q <-G-> <-ST->

2 0

8 v w

v=O/l denotes hex/dec mode

w=O/l denotes SLCT P/Q

489 <------------------- CPU REGISTER C ----------------------->

490 <------------------- CPU REGISTER A ----------------------->

491

492

493

494

495

496

497

498

499

500

501

510

51 1

<-------------------

<-------------------

<-------------------

<------------------

<------------------

<------------------

<------------------

<------------------

<------------------

<------------------

<------------------

<------------------

CPU REGISTER B ----------------------->
CPU REGISTER M ----------------------->
CPU REGISTER N ----------------------->

STATUS REGISTER T ------------------->
STATUS REGISTER Z ------------------->
STATUS REGISTER Y ------------------->
STATUS REGISTER X ------------------->
STATUS REGISTER L ------------------->
STATUS REGISTER M ------------------->
ST ATUS REGISTER N ------------------->
STATUS REGISTER 0 ------------------->
ST ATUS REGISTER P

<breakpoin t ADR> <break word>

< break ADR + 1 > <break word>

-155-

In order to examine this output use the following User-code routine. The

DECODE function is given after the listing for BREAK. It decodes the

contents of X into its hexidecimal representations and puts the result into

alpha and the display. The program is called "RR". To view the contents of

the desired register just place the absolute address in X and XEQ "RR". The

hexidecimal representation of the contents of the desired register will be

viewed, and printed if possible. Just hit R/S to examine each successive

register.

LBL "RR"

NR

DECODE

PROMPT

LASTX

+
GTO "RR"

END

This is the non-normalized recall from our sample ROM.

This routine is listed at the end of this appendix.

In order to efficiently use BREAK you should use the following short User­

code program.

LBL "?"

HXENTR Y Enter the address at which you wish to insert the breakpoint.

BREAK

This is where you place the steps to load the data for your

function. Then place the function after the data is loaded.

487 This number points to the lowest register in which data is saved

by BREAK. It may be changed to start at any other register you

wish to examine.

GTO "RR"

END

-156-

After assigning n?n to a key, this routine can be used to efficiently probe

for errors in an MCODE program. To view the contents of the display at the

breakpoint, set user flag 2 and place a STOP instruction before the 487

program line.

There are two values that the BREAK program does not give you. They are the

value of the RAMSLCT pointer and the contents of register T. In order to

obtain these values a second program was integrated into the BREAK program.

It is called RSCL T. This routine uses the breakpoint location that was used

by the last execution of BREAK. So BREAK must be executed before RSLCT is

used. The results from RSLCT are placed in the X register. The RAMSLCT

value is in the S&X field and the contents of register T are placed into

nybbles 3 and 4. If the selected RAM register is nonexistent, the S&X field

of X will be set to FFF. To use this function just execute RSLCT and then

load the same data used for the previous execution of BREAK. Now execute

the function you are debugging. To view the results of RSLCT just execute

DECODE. The system RSLCT uses to compute the RAMSLCT value was pioneered by

Paul Cooper.

Another routine we are providing for your programming pleasure is called

LOOP. This function allows you to debug a loop within a program. You can

execute the loop a specified number of times before the debugging routine

dumps the CPU registers to RAM for inspection.

In order to use this routine you must be a genius on the order of Albert

Einstein (just kidding). The number of times the breakpoint is bypassed is

taken from the Y register. The address of the breakpoint is placed in X and

is of the same format as for BREAK. The breakpoint location must be at a

pair of NOPs since processing continues past the breakpoint a number of

times. The LOOP routine uses one subroutine level and in addition utilizes

the tone register (T) to store the loop counter. This precludes use of

register T in your program and you cannot have more than three pending

returns in the subroutine stack at the breakpoint. LOOP places the 41 into

buzz mode (nonzero value in register T). If the debugging is not allowed to

finish, the calculator can be removed from buzz mode by executing BEEP with

-157-

flag 26 set.

LOOP requires two NOPs for its ?NC XQ to be inserted into your program. If

this is not possible use the following procedure.

1.) Insert a jump to a location that contains the NOPs.

2.) Place the instruction that was replaced by the jump at the location to

which you jump. Follow this instruction with two NOPs and then a jump

to the step after the first jump instruction. Here's an example.

Address Mnemonic

Pabc ABC

XXXX NOP

XXXX NOP

XXXX JNC +Pxyz

Pxyy JNC -Pabc

Pxyz ???

Description

This is the instruction that was replaced by the

first jump instruction.

Here are the two NOPs.

This is the second jump to the instruction after the

first jump.

This is the spot where the first jump is placed and

the jump goes to the spot where the instruction ABC

is placed.

This is where the second jump goes to so the program

may continue.

LOOP can be executed from the keyboard or a running program. An example of

the later is given below.

LBL "??"

RCL 00

ISG 00

NOP

This is the register containing the loop counter.

Increment the loop counter by one so the next time you execute

this program the number of loops will be different.

Insert a NOP here. STO X for example.

-158-

"ABCD"

CODE

LOOP

489

GTO "RR"

END

This is the address where the LOOP breakpoint is to be placed.

Code the address in the alpha register and push it onto the

stack. The CODE routine is listed on page 148.

Execution of LOOP to insert the breakpoint and store the loop

counter.

As in BREAK this is where you place the steps to load data for

your function. Then place the function after the appropriate

data is loaded.

This number points to the first register you wish to view after

the Nth iteration (N is in register 00) of the loop.

Simply assign "??" to a key and place a starting loop counter (such as zero)

into register 00. Then press the assigned key repeatedly to obtain

successive outputs from the loop.

LOOP and RSLCT are separable from the BREAK program, and can be omitted if

desired. BREAK runs from 847 A to 8545 in the following listing. The BREAK

program must be present in order for RSLCT and LOOP to function.

-159-

Address Hexcode Mnemonic Address Hexcode Mnemonic

8440 090 "P" 8461 OB3 JNC +16

8441 OOF "0" 8462 008 SETF 3

8442 OOF "0" 8463 04C ?FSET 4

8443 OOC "L" 8464 01B JNC +03

8444 OB8 REAO 2(Y) 8465 044 CLRF 4

8445 380 ?NC XQ 8466 08B JNC +11

8446 008 02E3 [BCOBIN] 8467 048 SETF 4

8447 2F6 ?CfO XS 8468 08C ?FSET 5

8448 OB5 ?C GO 8469 01B JNC +03

8449 OA3 2820 [ERROE] 846A 084 CLRF 5

844A 358 ST=C 846B 063 JNC +OC

844B 258 T=ST 846C 088 SETF 5

844C 308 SETF 1 8460 14C ?FSET 6

8440 163 JNC +2C 846E 01B JNC +03

844E 208 ST<>T«< 846F 144 CLRF 6

844F 38C ?FSET 0 8470 03B JNC +07

8450 01B JNC +03 8471 148 SETF 6

8451 384 CLRF 0 8472 28C ?FSET 7

8452 12B JNC +25 8473 01F JC +03

8453 388 SETF 0 8474 020 XQ>GO

8454 30C ?FSET 1 8475 033 JNC +06

8555 01B JNC +03 8476 284 CLRF 7

8556 304 CLRF 1 8477 208 ST<>T

8457 103 JNC +20 8478 3EO RTN

8458 308 SETF 1 8479 16B JNC +20

8459 20C ?FSET 2 847A 258 T=ST«<

845A 01B JNC +03 847B 3C4 ST=O

845B 204 CLRF 2 847C 308 C<>ST

845C OOB JNC +IB 8470 3FO PRPH SLCT

8450 208 SETF 2 847E 308 C<>ST

845E OOC ?FSET 3 847F 308 SETF 1

845F 01B JNC +03 8480 208 SETF 2

8460 004 CLRF 3 8481 008 SETF 3

-160-

Address Hexcode Mnemonic Address Hexcode Mnemonic

8482 048 SETF 4 84A3 308 SETF 1

8483 33C RCR 1 84A4 03C RCR 3

8484 3D8 C<>ST 84A5 023 JNC +04

8485 2FC RCR 13 84A6 173 JNC +2E

8486 270 RAMSLCT 84A7 23E C=C+l MS

8487 33C RCR 1 84A8 3D4 R=R-l

8488 398 C=ST 84A9 394 ?R= 0

8489 2FC RCR 13 84AA 3EB JNC -03

848A 268 WRIT 9(Q) 84AB 33C RCR 1

848B OAE A<>C ALL 84AC 120 ?P=Q

848C 2A8 WRIT 10(f-) 84AD 03B JNC +07

848D OCE C=B ALL 84AE 35C R= 12

848E 2E8 WRIT II(a) 84AF OAO SLCT P

848F 198 C=M 84BO 354 ?R= 12

8490 328 WRIT 12(b) 84Bl 06F JC +OD

8491 OBO C=N 84B2 388 SETF 0

8492 368 WRIT 13(c) 84B3 053 JNC +OA

8493 046 C=O S&X 84B4 OEO SLCT Q

8494 IBO POP ADR 84B5 394 ?R= 0

8495 07C RCR 4 84B6 01B JNC +03

8496 IBO POP ADR 84B7 388 SETF 0

8497 07C RCR 4 84B8 OAO SLCT P

8498 IBO POP ADR 84B9 23E C=C+l MS

8499 27C RCR 9 84BA 3D4 R=R-l

849A lE8 WRIT 7(Q) 84BB 394 ?R= 0

849B lAO A=B=C=O 84BC 3EB JNC -03

849C 298 ST=T 84BD 35C R= 12

849D 3D8 C<>ST 84BE OD8 C<>G

849E 258 T=ST 84BF 23C RCR 2

849F 27E C=C-l MS 84CO 38C ?FSET 0

84AO 260 SETH EX 84Cl 01F JC +03

84Al 23E C=C+l MS 84C2 2DC R= 13

84A2 017 JC +02 84C3 3D4 R=R-l

-161-

Address Hexcode Mnemonic Address Hexcode Mnemonic

84C4 098 C=G 84E5 OA6 A<>C S&X

84C5 10C ?FSET 8 84E6 270 RAMSLCT

84C6 013 JNC +02 84E7 106 A=C S&X

84C7 208 SETF 2 84E8 038 READ DATA

84C8 24C ?FSET 9 84E9 OEE C<>B ALL

84C9 013 JNC +02 84EA 270 RAMSLCT

84CA 008 SETF 3 84EB 226 C=C+I S&X

84CB OCC ?FSET 10 84EC OEE C<>B ALL

84CC 013 JNC +02 84ED 2FO WRITE DATA

84CD 048 SETF 4 84EE 162 A=A+I @R

84CE 18C ?FSET II 84EF 3B3 JNC -OA

84CF 013 JNC +02 84FO 3F8 READ 15(e)

84DO 088 SETF 5 84FI 106 A=C S&X

84DI 34C ?FSET 12 84F2 330 FETCH S&X

84D2 023 JNC +04 84F3 OA6 A<>C S&X

84D3 013 JNC +02 84F4 040 WRIT S&X

84D4 IA3 JNC +34 84F5 OA6 A<>C S&X

84D5 148 SETF 6 84F6 3E8 WRIT 15(e)

84D6 2CC ?FSET 13 84F7 3B8 READ 14(d)

84D7 013 JNC +02 84F8 106 A=C S&X

84D8 288 SETF 7 84F9 330 FETCH S&X

84D9 398 C=ST 84FA OA6 A<>C S&X

84DA 2FC RCR 13 84FB 040 WRIT S&X

84DB IBO POP ADR 84FC OA6 A<>C S&X

84DC 07C RCR 4 84FD 2FO WRITE DATA

84DD 220 C=KEY 84FE 046 C=O S&X

84DE 3C8 CLRKEY 84FF 270 RAMSLCT

84DF OBC RCR 5 8500 215 ?NC XQ

84EO 228 WRIT 8(P) 8501 OOC 0385 [RSTSQ]

84EI 130 LDI S&X 8502 2FC RCR 13

84E2 lEE HEX: lEE 8503 358 ST=C

84E3 OE6 C<>B S&X 8504 20C ?FSET 2

84E4 39C R= 0 8505 027 JC +04

-162-

Address Hexcode Mnemonic Address Hexcode Mnemonic

8506 208 SETF 2 8526 270 RAMSLCT

8507 01B JNC +03 8527 2FA ?C"'O M

8508 093 JNC +12 8528 243 JNC -38

8509 204 CLRF 2 8529 130 LDI S&X

850A 398 C=ST 852A OB9 HEX: OB9

850B 33C RCR 1 852B 30C ?FSET 1

850C 2FO WRITE DATA 852C 01B JNC +03

8500 20C ?FSET 2 8520 130 LDI S&X

850E 027 JC +04 852E OE5 HEX: OE5

850F 30C ?FSET 1 852F 286 C=O-C S&X

8510 205 ?C XQ 8530 10E A=C ALL

8511 000 0381 8531 350 ?NC XQ

8512 3Cl ?NC GO 8532 000 0007 [PCTOC]

8513 002 OOFO [NFRPUj 8533 03C RCR 3

8514 2F3 JNC -22 8534 206 C=C+A S&X

8515 08B "K" 8535 2FC RCR 13

8516 001 "A" 8536 3C6 RSHFC S&X

8517 005 "En 8537 lE6 C=C+C S&X

8518 012 "R" 8538 lE6 C=C+C S&X

8519 002 liB" 8539 226 C=C+l S&X

851A 130 LDI S&X 853A IFA C=C+C M

851B lE7 HEX: lE7 853B IFA C=C+C M

851C 106 A=C S&X 853C 30C ?FSET 1

8510 378 READ 13(c) 8530 01F JC +03

851E 03C RCR 3 853E 23A C=C+l M

851F 306 ?A<C S&X 853F 23A C=C+l M

8520 381 ?C GO 8540 106 A=C S&X

8521 OOB 02EO [ERRNEj 8541 03C RCR 3

8522 OF8 READ 3(X) 8542 OAE A<>C ALL

8523 IBC RCR 11 8543 2FO WRITE DATA

8524 130 LDI S&X 8544 23A C=C+l M

8525 IFE HEX: IFI:: 8545 27B JNC -31

-163-

Address Hexcode Mnemonic Address Hexcode Mnemonic

8546 094 "T" 8567 3CF JC -07

8547 003 "C" 8568 198 C=M

8548 OOC "L" 8569 2FO WRITE DATA

8549 013 "S" 856A 130 LDI S&X

854A 012 "R" 856B 3FF HEX: 3FF

854B 130 LDI S&X 856C 06E A<>B ALL

854C IFE HEX: IFE 856D 3BO C=C AND A

854D 270 RAMSLCT 856E 266 C=C-l S&X

854E 038 READ DATA 856F 03C RCR 3

854F 130 LDI S&X 8570 270 RAMSLCT

8550 020 HEX: 020 8571 3C4 ST=O

8551 2FB JNC -21 8572 2D8 ST<>T

8552 293 JNC -2E 8573 398 C=ST

8553 038 READ DATA«< 8574 IBC RCR 11

8554 158 M=C 8575 OE8 WRIT 3(X)

8555 lAO A=B=C=O 8576 05A C=O M

8556 3FO PRPH SLCT 8577 2DB JNC -25

8557 21C R= 2

8558 310 LD@RC

8559 OE6 C<>B S&X

855A 260 SETHEX

855B 26E C=C-l ALL

855C 29C R= 7

855D 010 LD@RO

855E 2FO WRITE DATA

855F 10E A=C ALL

8560 OC6 C=B S&X

8561 270 RAMSLCT

8562 226 C=C+l S&X

8563 05F JC +OB

8564 OE6 C<>B S&X

8565 038 READ DATA

8566 36E ?A",C ALL

-164-

Here's the DECODE routine, written by Clifford Stern. It places the ASCII

equivalent of the contents of X into ALPHA, and suppresses leading zeros.

The routine ends by viewing alpha and printing if in RUN mode. The method

used to convert hex digits to ASCII characters was invented by Michael

Thompson.

Address Hexcode Mnemonic Address Hexcode Mnemonic

8578 085 "E" 8590 308 SETF 1

8579 004 "0" 8591 30C ?FSET 1

857A OOF "0" 8592 033 JNC +06

857B 003 "C" 8593 062 A<>B @R

857C 005 "E" 8594 206 C=C+A S&X

857D 004 "0" 8595 362 ?AfC @R

857E OF8 READ 3(X) 8596 013 JNC +02

857F OEE C<>B ALL 8597 222 C=C+l @R

8580 2AO SETDEC 8598 IBA A=A-l M

8581 04E C=O ALL 8599 38B JNC -OF

8582 228 WRIT 8(P) 859A 20C ?FSET 2

8583 IE8 WRIT 7(0) 859B 027 JC +04

8584 OIC R= 3 859C 208 SETF 2

8585 190 LD@R6 859D IA8 WRIT 6(N)

8586 31C R= I 859E 31B JNC -lD

8587 ODO LD@R 3 859F 30C ?FSET I

8588 10E A=C ALL 85AO 017 JC +02

8589 04E C=O ALL 85AI OA6 A<>C S&X

858A 37C RCR 12 85A2 168 WRIT 5(M)

858B OEE C<>B ALL 85A3 2CC ?FSET 13

858C 2FC RCR 13 85A4 360 ?C RTN

858D OEE C<>B ALL 85A5 260 SETH EX

858E 2C2 BfO @R 85A6 191 ?NC GO

858F 013 JNC +02 85A7 OOE 0364

-165-

APPENDIX V - OCTal-HEX Conversion Programs

OCTal - Hex

The following program converts mainframe addresses from the octal (base 8)

form that appears in HP's documentation to hexadecimal (base 16), the form

that you will need in constructing an MCODE execute or goto instruction.

To use this program, just execute OCT-HEX. The program uses partial key

sequencing to make your life easier.

The program comes back with the display

o
The first number you should key in is the page number, which may be anywhere

from 0 to 7. Other keys (except backarrow and R/S, as explained below) will

be ignored. The number you select will appear in the display followed by a

dash and another underscore prompt. Next key in the quad number, a digit

from 0 to 3. The program will not accept any other values.

The program comes back with

o p-q-_

where p and q are the page number and quad number, respectively. Now key in

the four-digit octal address within the quad. The range of legal addresses

is 0000 to 1777. Digits outside this range will not be accepted by the

program. If the address is less than 1000, you must key in a leading zero.

If you make a mistake (who me?) while keying in a number, you can use the

backarrow key to remove digits. If there are no digits in the display and

the backarrow key is pressed, the routine is terminated. This behavior of

the backarrow key is consistent with mainframe functions, and you should

strive for this kind of consistency in the behavior of your own programs.

To get the result, just press the R/S key. The hexadecimal equivalent of

your octal address will be put into the display preceded by the word

ADDRESS. Try the routine out a few times on addresses for which you know

the hex equivalent so you can get the hang of it. Here is the listing for

the routine.

-166-

Address Hexcode Mnemonic Address Hexcode Mnemonic

85DD 130 LDI S&X 85FE 146 A=A+C S&X

85DE 370 HEX: 370 85FF 130 LDI S&X

85DF 106 A=C S&X 8600 03A HEX: 03A

85EO OBO C=N 8601 306 ?A<C S&X

85E1 366 ArC S&X 8602 01F JC +03

85E2 18F JC +31 8603 266 C=C-1 S&X

85E3 3BD ?NC XQ 8604 1C6 A=A-C S&X

85E4 01C 07EF 8605 OA6 A<>C S&X

85E5 001 "A" 8606 3E8 WRIT 15(e)

85E6 004 "0" 8607 046 C=O S&X

85E7 004 "0" 8608 2FC RCR 13

85E8 012 "R" 8609 3D4 R=R-1

85E9 005 "£" 860A 394 ?R= 0

85EA 013 "S" 860B 383 JNC -10

85EB 013 "S" 860C 261 ?NC XQ

85EC 220 860D 000 0098

85ED 149 ?NC XQ 860E 046 C=O S&X

85EE 024 0952 860F 3FO PRPH SLCT

85EF 215 ?NC XQ 8610 1FD ?NC GO

85FO OOC 0385 8611 OOE 037E

85F1 278 READ 9(Q) 8612 25B JNC -35

85F2 10E A=C ALL 8613 183 JNC +30

85F3 3D9 ?NC XQ 8614 149 ?NC XQ

85F4 01C 07F6 8615 024 0952

85F5 04E C=O ALL 8616 278 READ 9(Q)

85F6 OBA A<>C M 8617 OAE A<>C ALL

85F7 33C RCR 1 8618 1BE A=A-1 MS

85F8 20E C=C+A ALL 8619 049 ?C GO

85F9 03C RCR 3 861A 037 OD12

85FA 05C R= 4 861B 35E ?ArO MS

85FB 106 A=C S&X 861C OFB JNC +IF

85FC 130 LDI S&X 86lD 05E C=O MS

85FD 030 HEX: 030 861E 23E C=C+l MS

-167-

Address Hexcode Mnemonic Address Hexcode Mnemonic

861F 3D9 ?NC XQ 863F 3BD ?NC XQ

8620 01C 07F6 8640 01C 07EF

8621 37E A",C MS 8641 OOF "0"

8622 037 JC +06 8642 220

8623 01C R= 3 8643 115 ?NC XQ

8624 002 A=O @R 8644 038 OE45

8625 130 LDI S&X 8645 27B JNC -31

8626 020 HEX: 020 8646 OOC ?FSET 3

8627 3A8 WRIT 14(d) 8647 25B JNC -35

8628 130 LDI S&X 8648 130 LDI S&X

8629 020 HEX: 020 8649 038 HEX: 038

862A 3A8 WRIT 14(d) 864A 33C RCR 1

862B 149 ?NC XQ 864B 31E ?A<C MS

862C 024 0952 864C 3BB JNC -09

862D OAE A<>C ALL 864D OBE A<>C MS

862E lE6 C=C+C S&X 864E lIE A=C MS

862F 3C6 RSHFC S&X 864F 2FC RCR 13

8630 268 WRIT 9(Q) 8650 3E8 WRIT 15(e)

8631 3D9 ?NC XQ 8651 149 ?NC XQ

8632 01C 07F6 8652 024 0952

8633 083 JNC +10 8653 278 READ 9(Q)

8634 098 "X" 8654 2FE ?C",O MS

8635 005 "£" 8655 067 JC +OC

8636 008 "H" 8656 23E C=C+l MS

8637 02D It_" 8657 OBE A<>C MS

8638 014 "T" 8658 27C RCR 9

8639 003 "C" 8659 OBE A<>C MS

863A OOF "0" 865A 268 WRIT 9(Q)

863B 04E C=O ALL 865B 3D9 ?NC XQ

863C 268 WRIT 9(Q) 865C 01C 07F6

863D 3Cl ?NC XQ 865D 130 LDI S&X

863E OBO 2CFO 865E 02D HEX: 02D

-168-

Address Hexcode Mnemonic Address Hexcode Mnemonic

865F 3E8 WRIT 15(e) 867E 353 JNC -16

8660 31B JNC -ID 867F 3DC R=R+l

8661 27E C=C-l MS 8680 ODO LD@R 3

8662 2FE ?C"O MS 8681 37E ?A"C MS

8663 OA7 JC +14 8682 077 JC +OE

8664 2DC R= 13 8683 07E A<>B MS

8665 110 LD@R4 8684 27E C=C-l MS

8666 31E ?A<C MS 8685 31E ?A<C MS

8667 03F JC +07 8686 313 JNC -IE

8668 3D9 ?NC XQ 8687 05E C=O MS

8669 01C 07F6 8688 33C RCR 1

866A 130 LDI S&X 8689 OBE A<>C MS

866B 020 HEX: 020 868A 2FC RCR 13

866C 3A8 WRIT 14(d) 868B ODE C=B MS

866D 2B3 JNC -2A 868C 268 WRIT 9(Q)

866E 05E C=O MS 868D 3D9 ?NC XQ

866F 07C RCR 4 868E 01C 07F6

8670 OBE A<>C MS 868F 2F3 JNC -22

8671 IFE C=C+C MS 8690 278 READ 9(Q)

8672 IFE C=C+C MS 8691 lE6 C=C+C S&X

8673 OFC RCR 10 8692 lE6 C=C+C S&X

8674 23E C=C+l MS 8693 lE6 C=C+C S&X

8675 23E C=C+l MS 8694 OAE A<>C ALL

8676 323 JNC -IC 8695 046 C=O S&X

8677 09E B=A MS 8696 ODE C=B MS

8678 23E C=C+l MS 8697 2FC RCR 13

8679 23E C=C+l MS 8698 146 A=A+C S&X

867A lIE A=C MS 8699 OAE A<>C ALL

867B 2DC R= 13 869A 23E C=C+l MS

867C IDO LD@R 7 869B 38B JNC -OF

867D 31E ?A<C MS

-169-

HEX - OCTal

The HEX-OCT program is an inverse to the OCT -HEX program, allowing you to

convert a hexadecimal entry address to the octal form suitable for looking

up the entry point in HP's annotated listings.

HEX-OCT starts by placing an H, followed by a space and an underscore in the

left of the display (partial key sequencing to the rescue again). The digit

keys and the A through F keys are the only ones which are allowed for

inputs. Once four digits have been entered, no more may be keyed in. The

functions of the backarrow and run/stop keys are the same as for the OCT-HEX

program. The output is of the form p-q-aaaa, where p is the page number, q

is the quad number in the page, and aaaa is the octal address in the

specified quad. A listing for this program starts on the next page.

-170-

Address Hexcode Mnemonic Address Hexcode Mnemonic

869C 149 ?NC XQ 86BD 3D3 JNC -06

869D 024 09S2 86BE 130 LDI S&X

869E 278 READ 9(Q) 86BF 007 HEX: 007

869F 27E C=C-I MS 86CO 33C RCR I

86AO 049 ?C GO 86CI 31E ?A<C MS

86AI 037 ODI2 86C2 3AB JNC -OB

86A2 liE A=C MS 86C3 OBE A<>C MS

86A3 OSE C=O MS 86C4 2FC RCR 13

86A4 3CE RSHFC ALL 86CS 3E8 WRIT IS(e)

86AS OBE A<>C MS 86C6 106 A=C S&X

86A6 268 WRIT 9(Q) 86C7 130 LDI S&X

86A7 IBB JNC +37 86C8 009 HEX: 009

86A8 094 "T" 86C9 146 A=A+C S&X

86A9 003 "C" 86CA 149 ?NC XQ

86AA OOF "0" 86CB 024 09S2

86AB 02D " .. " 86CC 130 LDI S&X

86AC 018 "X" 86CD 004 HEX: 004

86AD OOS "E" 86CE 33C RCR I

86AE 008 "Hit 86CF liE A=C MS

86AF 04E C=O ALL 86DO 278 READ 9(Q)

86BO 268 WRIT 9(Q) 86DI OBE A<>C MS

86BI 3CI ?NC XQ 86D2 31E ?A<C MS

86B2 OBO 2CFO 86D3 OSB JNC +OB

86B3 3BD ?NC XQ 86D4 OSE C=O MS

86B4 OIC 07EF 86DS 2FC RCR 13

86BS 008 ttH" 86D6 39C R= 0

86B6 220 86D7 OA2 A<>C @R

86B7 liS ?NC XQ 86D8 OBE A<>C MS

86B8 038 OE4S 86D9 23E C=C+I MS

86B9 31B JNC -lD 86DA 268 WRIT 9(Q)

86BA 04C ?FSET 4 86DB 3D9 ?NC XQ

86BB 14B JNC +29 86DC OIC 07F6

86BC 3SE A#O MS 86DD 2D3 JNC -26

-171-

Address Hexcode Mnemonic Address Hexcode Mnemonic

86DE 3D9 ?NC XQ 86FF 042 C=O @R

86DF 01C 07F6 8700 lEE C=C+C ALL

86EO 130 LDI S&X 8701 lEE C=C+C ALL

86E1 020 HEX: 020 8702 33C RCR 1

86E2 3A8 WRIT 14(d) 8703 3D4 R=R-1

86E3 2A3 JNC -2C 8704 102 A=C @R

86E4 OOC ?FSET 3 8705 3D9 ?NC XQ

86E5 043 JNC +08 8706 01C 07F6

86E6 130 LDI S&X 8707 3BD ?NC XQ

86E7 003 HEX: 003 8708 01C 07EF

86E8 OBE A<>C MS 8709 OOF "0"

86E9 2FC RCR 13 870A 003 "C"

86EA 3E8 WRIT 15(e) 870B 014 "Til

86EB 106 A=C S&X 870C 220

86EC 2F3 JNC -22 870D OAE A<>C ALL

86ED 130 LDI S&X 870E OBC RCR 5

86EE 370 HEX: 370 870F 31C R= 1

86EF 106 A=C S&X 8710 ODO LD@R 3

86FO OBO C=N 8711 106 A=C S&X

86F1 366 A",C S&X 8712 130 LDI S&X

86F2 22F JC -3B 8713 OOA HEX: OOA

86F3 149 ?NC XQ 8714 302 ?A<C @R

86F4 024 0952 8715 027 JC +04

86F5 278 READ 9(Q) 8716 262 C=C-1 @R

86F6 39C R= 0 8717 242 C=A-C @R

86F7 102 A=C @R 8718 013 JNC +02

86F8 lEE C=C+C ALL 8719 OA6 A<>C S&X

86F9 3DC R=R+1 871A 3E8 WRIT 15(e)

86FA 054 ?R= 4 871B 130 LDI S&X

86FB 3E3 JNC -04 871C 02D HEX: 02D

86FC 2FC RCR 13 87lD 3E8 WRIT 15(e)

86FD 3DC R=R+1 871E 2FC RCR 13

86FE 102 A=C @R 871F 3DC R=R+1

-172-

Address Hexcode Mnemonic Address Hexcode Mnemonic

8720 000 LO@R 3 872F 3E8 WRIT 15(e)

8721 3E8 WRIT 15(e) 8730 2FC RCR 13

8722 130 LDI S&X 8731 056 c=o XS

8723 020 HEX: 020 8732 30C R=R+l

8724 3E8 WRIT 15(e) 8733 308 C<>ST

8725 2FC RCR 13 8734 054 ?R= 4

8726 308 C<>ST 8735 3A3 JNC -OC

8727 304 CLRF 1 8736 149 ?NC XQ

8728 204 CLRF 2 8737 024 0952

8729 004 CLRF 3 8738 215 ?NC XQ

872A 048 SETF 4 8739 OOC 0385

872B 088 SETF 5 873A 261 ?NC XQ

872C 144 CLRF 6 873B 000 0098

8720 284 CLRF 7 873C 201 ?NC GO

872E 308 C<>ST 8730 OOE 0380

-173-

APPENDIX F - Table of Mnemonics

The following table shows the differences between the three types of

mnemonics in use. We will only tabulate the mnemonics for the single word

instructions. The three types of mnemonics are: HP mnemonics used by HP in

all of the annotated listings of their ROMs; Jacobs/De Arras, developed in

the early days of the development of MCODE programming by the user

community; and ZENROM mnemonics, this version was developed in England and

is used in the disassembler of a ROM that is put out by Zengrange Ltd. The

Jacobs/De Arras mnemonics were used throughout this book.

Hexcode Octal Binary

000

OOE

006
OIA

OOA

002

OlE

016

012

02E

026

03A

02A

022

03E

036

032

04E

046

05A

04A

0000 0000000000

0016 0000001110

0006 0000000110

0032 0000011010

0012 0000001010

0002 0000000010

0036 0000011110

0026 0000010110

0022 0000010010

0056 0000101110

0046 0000100110

0072 0000111010

0052 0000101010

0042 0000100010

0076 0000111110

0066 0000110110

0062 0000110010

0116 0001001110

0106 0001000110

0132 0001011010

0112 0001001010

HP

mnemonic

NOP

A=O

A=O X

A=O M

A=O WPT

A=O PT

A=O S

A=O XS

A=O PQ

B=O

B=O X

B=O M

B=O WPT

B=O PT

B=O S

B=O XS

B=O PQ

C=O

C=O X

C=O M

C=O WPT

-174-

Jacobs/

De Arras

NOP

A=O ALL

A=O S&X

A=O M

A=O R<

A=O@R

A=O MS

A=O XS

A=O P-Q

B=O ALL

B=O S&X

B=O M

B=O R<

B=O @R

B=O MS

B=O XS

B=O P-Q

C=O ALL

C=O S&X

C=O M

C=O R<

ZENROM

mnemonic

NOP

A=O ALL

A=O X

A=O M

A=O WPT

A=O PT

A=O S

A=O XS

A=O PQ

B=O ALL

B=O X

B=O M

B=O WPT

B=O PT

B=O S

B=O XS

B=O PQ

C=O ALL

C=O X

C=O M

C=O WPT

Hexcode Octal Binary HP Jacobs/ ZENROM

mnemonic De Arras mnemonic

042 0102 0001000010 C=O PT C=O @R C=O PT

05E 0136 0001011110 C=O S C=O MS C=O S

056 0126 0001010110 C=O XS C=O XS C=O XS

052 0122 0001010010 C=O PQ C=O P-Q C=O PQ

06E 0156 0001101110 AB EX A<>B ALL A<>B ALL

066 0146 0001100110 AB EX X A<>B S&X A<>B X

07A 0172 0001111010 AB EX M A<>B M A<>B M

06A 0152 0001101010 AB EX WPT A<>B R< A<>B WPT

062 0142 0001100010 AB EX PT A<>B @R A<>B PT

07E 0176 0001111110 AB EX S A<>B MS A<>B S

076 0166 0001110110 AB EX XS A<>B XS A<>B XS

072 0162 0001110010 AB EX PQ A<>B P-Q A<>B PQ

08E 0216 0010001110 B=A B=A ALL B=A ALL

086 0206 0010000110 B=A X B=A S&X B=A X

09A 0232 0010011010 B=AM B=AM B=AM

08A 0212 0010001010 B=A WPT B=A R< B=A WPT

082 0202 0010000010 B=A PT B=A@R B=A PT

09E 0236 0010011110 B=A S B=AMS B=A S

096 0226 0010010110 B=A XS B=A XS B=A XS

092 0222 0010010010 B=A PQ B=A P-Q B=A PQ

OAE 0256 0010101110 AC EX A<>C ALL A<>C ALL

OA6 0246 0010100110 AC EX X A<>C S&X A<>C X

OBA 0272 0010111010 ACEXM A<>C M A<>C M

OAA 0252 0010101010 AC EX WPT A<>C R< A<>C WPT

OA2 0242 0010100010 AC EX PT A<>C @R A<>C PT

OBE 0276 0010111110 AC EX S A<>C MS A<>C S

OB6 0266 0010110110 AC EX XS A<>C XS A<>C XS

OB2 0262 0010110010 AC EX PQ A<>C P-Q A<>C PQ

OCE 0316 0011001110 C=B C=B ALL C=B ALL

OC6 0306 0011000110 C=B X C=B S&X C=B X

ODA 0332 0011011010 C=B M C=B M C=B M

OCA 0312 0011001010 C=B WPT C=B R< C=B WPT

-175-

Hexcode Octal Binary HP Jacobs/ ZENROM

mnemonic De Arras mnemonic

OC2 0302 0011000010 C=B PT C=B@R C=B PT

ODE 0336 0011011110 C=B S C=B MS C=B S

OD6 0326 0011010110 C=B XS C=B XS C=B XS

OD2 0322 0011010010 C=B PQ C=B P-Q C=B PQ

OEE 0356 0011101110 BC EX C<>B ALL B<>C ALL

OE6 0346 0011100110 BC EX X C<>B S&X B<>C X

OFA 0372 0011111010 BC EX M C<>B M B<>CM

OEA 0352 0011101010 BC EX WPT C<>B R< B<>C WPT

OE2 0342 0011100010 BC EX PT C<>B @R B<>C PT

OFE 0376 0011111110 BC EX S C<>B MS B<>C S

OF6 0366 0011110110 BC EX XS C<>B XS B<>C XS

OF2 0362 0011110010 BC EX PQ C<>B P-Q B<>C PQ

10E 0416 0100001110 A=C A=C ALL A=C ALL

106 0406 0100000110 A=C X A=C S&X A=C X

llA 0432 0100011010 A=C M A=C M A=CM

lOA 0412 0100001010 A=C WPT A=C R< A=C WPT

102 0402 0100000010 A=C PT A=C@R A=C PT

lIE 0436 0100011110 A=C S A=C MS A=C S

116 0426 0100010110 A=C XS A=C XS A=C XS

112 0422 0100010010 A=C PQ A=C P-Q A=C PQ

12E 0456 0100101110 A=A+B A=A+B ALL A=A+B ALL

126 0446 0100100110 A=A+B X A=A+B S&X A=A+B X

13A 0472 0100111010 A=A+B M A=A+B M A=A+B M

12A 0452 0100101010 A=A+B WPT A=A+B R< A=A+B WPT

122 0442 0100100010 A=A+B PT A=A+B @R A=A+B PT

13E 0476 0100111110 A=A+B S A=A+B MS A=A+B S

136 0466 0100110110 A=A+B XS A=A+B XS A=A+B XS

132 0462 0100110010 A=A+B PQ A=A+B P-Q A=A+B PQ

14E 0516 0101001110 A=A+C A=A+C ALL A=A+C ALL

146 0506 0101000110 A=A+C X A=A+C S&X A=A+C X

15A 0532 0101011010 A=A+C M A=A+C M A=A+C M

14A 0512 0101001010 A=A+C WPT A=A+C R< A=A+C WPT

-176-

Hexcode Octal Binary HP Jacobs/ ZEN ROM

mnemonic De Arras mnemonic

142 0502 0101000010 A=A+C PT A=A+C @R A=A+C PT

15E 0536 0101011110 A=A+C S A=A+C MS A=A+C S

156 0526 0101010110 A=A+C XS A=A+C XS A=A+C XS

152 0522 0101010010 A=A+C PQ A=A+C P-Q A=A+C PQ

16E 0556 0101101110 A=A+l A=A+l ALL A=A+l ALL

166 0546 0101100110 A=A+l X A=A+l S&X A=A+l X

17A 0572 0101111010 A=A+l M A=A+l M A=A+l M

16A 0552 0101101010 A=A+l WPT A=A+l R< A=A+l WPT

162 0542 0101100010 A=A+l PT A=A+l @R A=A+l PT

17E 0576 0101111110 A=A+l S A=A+l MS A=A+l S

176 0566 0101110110 A=A+l XS A=A+l XS A=A+l XS

172 0562 0101110010 A=A+l PQ A=A+l P-Q A=A+l PQ

18E 0616 0110001110 A=A-B A=A-B ALL A=A-B ALL

186 0606 0110000110 A=A-B X A=A-B S&X A=A-B X

19A 0632 0110011010 A=A-B M A=A-B M A=A-B M

18A 0612 0110001010 A=A-B WPT A=A-B R< A=A-B WPT

182 0602 0110000010 A=A-B PT A=A-B @R A=A-B PT

19E 0636 0110011110 A=A-B S A=A-B MS A=A-B S

196 0626 0110010110 A=A-B XS A=A-B XS A=A-B XS

192 0622 0110010010 A=A-B PQ A=A-B P-Q A=A-B PQ

lAE 0656 0110101110 A=A-l A=A-l ALL A=A-l ALL

lA6 0646 0110100110 A=A-l X A=A-l S&X A=A-l X

IBA 0672 0110111010 A=A-l M A=A-l M A=A-l M

lAA 0652 0110101010 A=A-l WPT A=A-l R< A=A-l WPT

lA2 0642 0110100010 A=A-l PT A=A-l @R A=A-l PT

IBE 0676 0110111110 A=A-l S A=A-l MS A=A-l S

IB6 0666 0110110110 A=A-l XS A=A-l XS A=A-l XS

IB2 0662 0110110010 A=A-l PQ A=A-l P-Q A=A-l PQ

ICE 0716 0111001110 A=A-C A=A-C ALL A=A-C ALL

lC6 0706 0111000110 A=A-C X A=A-C S&X A=A-C X

IDA 0732 0111011010 A=A-C M A=A-C M A=A-C M

lCA 0712 0111001010 A=A-C WPT A=A-C R< A=A-C WPT

-177-

Hexcode Octal Binary HP Jacobs/ ZENROM

mnemonic De Arras mnemonic

lC2 0702 0111000010 A=A-C PT A=A-C @R A=A-C PT

IDE 0736 0111011110 A=A-C S A=A-C MS A=A-C S

ID6 0726 0111010110 A=A-C XS A=A-C XS A=A-C XS

ID2 0722 0111010010 A=A-C PQ A=A-C P-Q A=A-C PQ

lEE 0756 0111101110 C=C+C C=C+C ALL C=C+C ALL

lE6 0746 0111100110 C=C+C X C=C+C S&X C=C+C X

IFA 0772 0111111010 C=C+C M C=C+CM C=C+CM

lEA 0752 0111101010 C=C+C WPT C=C+C R< C=C+C WPT

lE2 0742 0111100010 C=C+C PT C=C+C @R C=C+C PT

IFE 0776 0111111110 C=C+C S C=C+C MS C=C+C S

IF6 0766 0111110110 C=C+C XS C=C+C XS C=C+C XS

IF2 0762 0111110010 C=C+C PQ C=C+C P-Q C=C+C PQ

20E 1016 1000001110 C=A+C C=C+A ALL C=A+C ALL

206 1006 1000000110 C=A+C X C=C+A S&X C=A+C X

21A 1032 1000011010 C=A+C M C=C+AM C=A+CM

20A 1012 1000001010 C=A+C WPT C=C+A R< C=A+C WPT

202 1002 1000000010 C=A+C PT C=C+A @R C=A+C PT

21E 1036 1000011110 C=A+C S C=C+A MS C=A+C S

216 1026 1000010110 C=A+C XS C=C+A XS C=A+C XS

212 1022 1000010010 C=A+C PQ C=C+A P-Q C=A+C PQ

22E 1056 1000101110 C=C+l C=C+l ALL C=C+l ALL

226 1046 1000100110 C=C+l X C=C+l S&X C=C+l X

23A 1072 1000111010 C=C+l M C=C+l M C=C+l M

22A 1052 1000101010 C=C+l WPT C=C+l R< C=C+l WPT

222 1042 1000100010 C=C+l PT C=C+l @R C=C+l PT

23E 1076 1000111110 C=C+l S C=C+l MS C=C+l S

236 1066 1000110110 C=C+l XS C=C+l XS C=C+l XS

232 1062 1000110010 C=C+l PQ C=C+l P-Q C=C+l PQ

24E 1116 1001001110 C=A-C C=A-C ALL C=A-C ALL

246 1106 1001000110 C=A-C X C=A-C S&X C=A-C X

25A 1132 1001011010 C=A-C M C=A-C M C=A-C M

24A 1112 1001001010 C=A-C WPT C=A-C R< C=A-C WPT

-178-

Hexcode Octal Binary HP Jacobs! ZENROM

mnemonic De Arras mnemonic

242 1102 1001000010 C=A-C PT C=A-C @R C=A-C PT

25E 1136 1001011110 C=A-C S C=A-C MS C=A-C S

256 1126 1001010110 C=A-C XS C=A-C XS C=A-C XS

252 1122 1001010010 C=A-C PQ C=A-C P-Q C=A-C PQ

26E 1156 1001101110 C=C-l C=C-l ALL C=C-l ALL

266 1146 1001100110 C=C-l X C=C-I S&X C=C-I X

27A 1172 1001111010 C=C-l M C=C-l M C=C-l M

26A 1152 1001101010 C=C-l WPT C=C-l R< C=C-l WPT

262 1142 1001100010 C=C-l PT C=C-l @R C=C-l PT

27E 1176 1001111110 C=C-l S C=C-l MS C=C-l S

276 1166 1001110110 C=C-l XS C=C-l XS C=C-l XS

272 1162 1001110010 C=C-l PQ C=C-l P-Q C=C-l PQ

28E 1216 1010001110 C=-C C=O-C ALL C=-C ALL

286 1206 1010000110 C=-C X C=O-C S&X C=-C X

29A 1232 1010011010 C=-C M C=O-C M C=-C M

28A 1212 1010001010 C=-C WPT C=O-C R< C=-C WPT

282 1202 1010000010 C=-C PT C=O-C @R C=-C PT

29E 1236 1010011110 C=-C S C=O-C MS C=-C S

296 1226 1010010110 C=-C XS C=O-C XS C=-C XS

292 1222 1010010010 C=-C PQ C=O-C P-Q C=-C PQ

2AE 1256 1010101110 C=-C-l C=-C-l ALL C=-C-l ALL

2A6 1246 1010100110 C=-C-l X C=-C-l S&X C=-C-l X

2BA 1272 1010111010 C=-C-l M C=-C-l M C=-C-l M

2AA 1252 1010101010 C=-C-l WPT C=-C-I R< C=-C-l WPT

2A2 1242 1010100010 C=-C-l PT C=-C-l @R C=-C-l PT

2BE 1276 1010111110 C=-C-l S C=-C-I MS C=-C-l S

2B6 1266 1010110110 C=-C-l XS C=-C-l XS C=-C-l XS

2B2 1262 1010110010 C=-C-l PQ C=-C-l P-Q C=-C-l PQ

2CE 1316 1011001110 ?BfO ?BfO ALL ?BfO ALL

2C6 1306 1011000110 ?BfO X ?BfO S&X ?BfO X

2DA 1332 1011011010 ?BfO M ?BfO M ?BfO M

2CA 1312 1011001010 ?BfO WPT ?BfO R< ?BfO WPT

-179-

Hexcode Octal Binary HP Jacobs/ ZENROM

mnemonic De Arras mnemonic

2C2 1302 1011000010 ?BrO PT ?BrO @R ?BrO PT

2DE 1336 1011011110 ?BrO S ?BrO MS ?MO S

2D6 1326 1011010110 ?BrO XS ?BrO XS ?BrO XS

2D2 1322 1011010010 ?BrO PQ ?BrO P-Q ?MO PQ

2EE 1356 1011101110 ?CrO ?CrO ALL ?CrO ALL

2E6 1346 1011100110 ?CrO X ?CrO S&X ?CrO X

2FA 1372 1011111010 ?CrO M ?CrO M ?CrO M

2EA 1352 1011101010 ?CrO WPT ?CrO R< ?CrO WPT

2E2 1342 1011100010 ?CrO PT ?CrO @R ?CrO PT

2FE 1376 1011111110 ?CrO S ?CrO MS ?CrO S

2F6 1366 1011110110 ?CrO XS ?CrO XS ?CrO XS

2F2 1362 1011110010 ?CrO PQ ?CrO P-Q ?CrO PQ

30E 1416 1100001110 ?A<C ?A<C ALL ?A<C ALL

306 1406 1100000110 ?A<C X ?A<C S&X ?A<C X

31A 1432 1100011010 ?A<CM ?A<CM ?A<C M

30A 1412 1100001010 ?A<C WPT ?A<C R< ?A<C WPT

302 1402 1100000010 ?A<C PT ?A<C @R ?A<C PT

31E 1436 1100011110 ?A<C S ?A<C MS ?A<C S

316 1426 1100010110 ?A<C XS ?A<C XS ?A<C XS

312 1422 1100010010 ?A<C PQ ?A<C P-Q ?A<C PQ

32E 1456 1100101110 ?A<B ?A<B ALL ?A<B ALL

326 1446 1100100110 ?A<B X ?A<B S&X ?A<B X

33A 1472 1100111010 ?A<B M ?A<B M ?A<B M

32A 1452 1100101010 ?A<B WPT ?A<B R< ?A<B WPT

322 1442 1100100010 ?A<B PT ?A<B @R ?A<B PT

33E 1476 1100111110 ?A<B S ?A<B MS ?A<B S

336 1466 1100110110 ?A<B XS ?A<B XS ?A<B XS

332 1462 1100110010 ?A<B PQ ?A<B P-Q ?A<B PQ

34E 1516 1101001110 ?ArO ?ArO ALL ?ArO ALL

346 1506 1101000110 ?ArO X ?ArO S&X ?ArO X

35A 1532 1101011010 ?ArO M ?ArO M ?ArO M

34A 1512 1101001010 ?ArO WPT ?ArO R< ?ArO WPT

-180-

Hexcode Octal Binary HP Jacobs! ZENROM

mnemonic De Arras mnemonic

342 1502 1101000010 ?k,O PT ?A"O @R ?A"O PT

35E 1536 1101011110 ?A"O S ?A"O MS ?A"O S

356 1526 1101010110 ?A"O XS ?A"O XS ?A"O XS

352 1522 1101010010 ?A"O PQ ?A"O P-Q ?A"O PQ

36E 1556 1101101110 ?A"C ?A"C ALL ?A"C ALL

366 1546 1101100110 ?A"C X ?AfC S&X ?AfC X

37A 1572 1101111010 ?A"C M ?A"C M ?A"CM

36A 1552 1101101010 ?A"C WPT ?A"C R< ?A"C WPT

362 1542 1101100010 ?A"C PT ?A"C @R ?A"C PT

37E 1576 1101111110 ?A"C S ?A"C MS ?A"C S

376 1566 1101110110 ?A"C XS ?A"C XS ?A"C XS

372 1562 1101110010 ?A"C P.Q ?A"C P-Q ?A"C PQ
38E 1616 1110001110 A SR RSHFA ALL ASR ALL

386 1606 1110000110 A SR X RSHFA S&X ASR X

39A 1632 1110011010 A SRM RSHFA M ASRM

38A 1612 1110001010 A SR WPT RSHFA R< ASR WPT

382 1602 1110000010 A SR PT RSHFA @R ASR PT

39E 1636 1110011110 A SR S RSHFA MS ASR S

396 1626 1110010110 A SR XS RSHFA XS ASR XS

392 1622 1110010010 A SR PQ RSHFA P-Q ASR PQ

3AE 1656 1110101110 B SR RSHFB ALL BSR ALL

3A6 1646 1110100110 B SR X RSHFB S&X BSR X

3BA 1672 1110111010 B SR M RSHFB M BSRM

3AA 1652 1110101010 B SR WPT RSHFB R< BSR WPT

3A2 1642 1110100010 B SR PT RSHFB @R BSR PT

3BE 1676 1110111110 B SR S RSHFB MS BSR S

3B6 1666 1110110110 B SR XS RSHFB XS BSR XS

3B2 1662 1110110010 B SR PQ RSHFB P-Q BSR PQ

3CE 1716 1111001110 C SR RSHFC ALL CSR ALL

3C6 1706 1111000110 C SR X RSHFC S&X CSR X

3DA 1732 1111011010 C SR M RSHFC M CSRM

3CA 1712 1111001010 C SR WPT RSHFC R< CSR WPT

-181-

Hexcode Octal Binary HP Jacobs/ ZENROM

mnemonic De Arras mnemonic

3C2 1702 IlIIOOOOIO C SR PT RSHFC @R CSR PT

3DE 1736 lIlI011110 C SR S RSHFC MS CSR S

3D6 1726 1111010110 C SR XS RSHFC XS CSR XS

3D2 1722 Illl 0 1 00 1 0 C SR PQ RSHFC P-Q CSR PQ

3EE 1756 IlIII0III0 A SL LSHFA ALL ASL ALL

3E6 1746 1111100110 A SL X LSHFA S&X ASL X

3FA 1772 1111111010 A SL M LSHFA M ASL M

3EA 1752 1111101010 A SL WPT LSHFA R< ASL WPT

3E2 1742 1111100010 A SL PT LSHFA @R ASL PT

3FE 1776 lIlII11110 A SL S LSHFA MS ASL S

3F6 1766 1111110110 A SL XS LSHFA XS ASL XS

3F2 1762 1111110010 A SL PQ LSHFA P-Q ASL PQ

038 0070 0000111000 C=DATA READ DATA RDATA

078 0170 0001111000 C=REGN 1 READ I(Z) C=REG I/Z

OB8 0270 0010111000 C=REGN 2 READ 2(Y) C=REG 2/Y

OF8 0370 0011111000 C=REGN 3 READ 3(X) C=REG 3/X

138 0470 0100111000 C=REGN 4 READ 4(L) C=REG 4/L

178 0570 0101111000 C=REGN 5 READ 5(M) C=REG 5/M

IB8 0670 0110111000 C=REGN 6 READ 6(N) C=REG 6/N

IF8 0770 0111111000 C=REGN 7 READ 7(0) C=REG 7/0

238 1070 1000111000 C=REGN 8 READ 8(P) C=REG 8/P

278 1170 1001111000 C=REGN 9 READ 9(Q) C=REG 9/Q

2B8 1270 1010111000 C=REGN 10 READ 10(~·) C=REG 10/:-·

2F8 1370 1011111000 C=REGN 11 READ II(a) C=REG II/a

338 1470 1100111000 C=REGN 12 READ 12(b) C=REG 12/b

378 1570 1101111000 C=REGN 13 READ 13(c) C=REG 13/c

3B8 1670 1110111000 C=REGN 14 READ 14(d) C=REG 14/d

3F8 1770 1111111000 C=REGN 15 READ 15(e) C=REG 15/e

028 0050 0000101000 REGN=C 0 WRIT OCT) REG=C OfT

068 0150 0001101000 REGN=C 1 WRIT I(Z) REG=C I/Z

OA8 0250 0010101000 REGN=C 2 WRIT 2(Y) REG=C 2/Y

OE8 0350 0011101000 REGN=C 3 WRIT 3(X) REG=C 3/X

-182-

Hexcode Octal Binary HP Jacobs/ ZEN ROM

mnemonic De Arras mnemonic

128 0450 0100101000 REGN=C 4 WRIT 4(L) REG=C 4/L

168 0550 0101101000 REGN=C 5 WRIT 5(M) REG=C 5/M

IA8 0650 0110101000 REGN=C 6 WRIT 6(N) REG=C 6/N

lE8 0750 0111101000 REGN=C 7 WRIT 7(0) REG=C 7/0

228 1050 1000101000 REGN=C 8 WRIT 8(P) REG=C 8/P

268 1150 1001101000 REGN=C 9 WRIT 9(Q) REG=C 9/Q

2A8 1250 1010101000 REGN=C 10 WRIT 10(1--) REG=C 10/~-

2E8 1350 10 III 0 I 000 REGN=C II WRIT II(a) REG=C 11/a

328 1450 1100101000 REGN=C 12 WRIT 12(b) REG=C 12/b

368 1550 1101101000 REGN=C 13 WRIT 13(c) REG=C 13/c

3A8 1650 1110101000 REGN=C 14 WRIT 14(d) REG=C 14/d

3E8 1750 1111101000 REGN=C 15 WRIT 15(e) REG=C 15/e

33C 1474 1100111100 RCR I RCR 1 RCR 1

23C 1074 1000111100 RCR 2 RCR 2 RCR 2

03C 0074 0000111100 RCR 3 RCR 3 RCR 3

07C 0174 0001111100 RCR 4 RCR 4 RCR 4

OBC 0274 0010111100 RCR 5 RCR 5 RCR 5

17C 0574 0101111100 RCR 6 RCR 6 RCR 6

2BC 1274 1010111100 RCR 7 RCR 7 RCR 7

13C 0474 0100111100 RCR 8 RCR 8 RCR 8

27C 1174 1001111100 RCR 9 RCR 9 RCR 9

OFC 0374 0011111100 RCR 10 RCR 10 RCR 10

IBC 0674 0110111100 RCR II RCR II RCR II

37C 1574 1101111100 RCR 12 RCR 12 RCR 12

2FC 1374 10 111111 00 RCR 13 RCR 13 RCR 13

388 1610 1110001000 SO=I SETF 0 SF 0

308 1410 1100001000 SI=I SETF 1 SF 1

208 1010 1000001000 S2=1 SETF 2 SF 2

008 0010 0000001000 S3=1 SETF 3 SF 3

048 OliO 0001001000 S4=1 SETF 4 SF 4

088 0210 0010001000 S5=1 SETF 5 SF 5

148 0510 0101001000 S6=1 SETF 6 SF 6

-183-

Hexcode Octal Binary HP Jacobs! ZENROM
mnemonic De Arras mnemonic

288 1210 1010001000 S7=1 SETF 7 SF 7
108 0410 0100001000 S8=1 SETF 8 SF 8
248 1110 1001001000 S9=1 SETF 9 SF 9
OC8 0310 0011001000 S10=1 SETF 10 SF 10
188 0610 0110001000 Sll=l SETF 11 SF 11
348 1510 1101001000 S12=1 SETF 12 SF 12
2C8 1310 1011001000 S13=l SETF 13 SF 13
384 1604 1110000100 SO=O CLRF 0 CF 0
304 1404 1100000100 Sl=O CLRF 1 CF 1
204 1004 1000000100 S2=0 CLRF 2 CF 2
004 0004 0000000100 S3=0 CLRF 3 CF 3
044 0104 0001000100 S4=0 CLRF 4 CF 4
084 0204 0010000100 S5=0 CLRF 5 CF 5
144 0504 0101000100 S6=0 CLRF 6 CF 6
284 1204 1010000100 S7=0 CLRF 7 CF 7
104 0404 0100000100 S8=0 CLRF 8 CF 8
244 1104 1001000100 S9=0 CLRF 9 CF 9
OC4 0304 0011000100 S10=0 CLRF10 CF 10
184 0604 0110000100 Sll=O CLRF 11 CF 11

344 1504 1101000100 S12=0 CLRF 12 CF 12
2C4 1304 1011000100 S13=0 CLRF13 CF 13

38C 1614 1110001100 ?SO=l ?FSET 0 ?FS 0
30C 1414 1100001100 ?Sl=l ?FSET 1 ?FS 1
20C 1014 1000001100 ?S2=1 ?FSET 2 ?FS 2
OOC 0014 0000001100 ?S3=1 ?FSET 3 ?FS 3

04C 0114 0001001100 ?S4=1 ?FSET 4 ?FS 4

08C 0214 0010001100 ?S5=1 ?FSET 5 ?FS 5
14C 0514 0101001100 ?S6=1 ?FSET 6 ?FS 6
28C 1214 1010001100 ?S7=1 ?FSET 7 ?FS 7

10C 0414 0100001100 ?S8=1 ?FSET 8 ?FS 8

24C 1114 1001001100 ?S9=1 ?FSET 9 ?FS 9

OCC 0314 0011001100 ?S10=1 ?FSET 10 ?FS 10

-184-

Hexcode Octal Binary HP Jacobs! ZENROM

mnemonic De Arras mnemonic

18C 0614 0110001100 ?SII =1 ?FSET II ?FS II

34C 1514 1101001100 ?SI2=1 ?FSET 12 ?FS 12

2CC 1314 1011001100 ?S13=1 ?FSET 13 ?FS 13

39C 1634 1110011100 PT=O R= 0 PT= 0

31C 1434 1100011100 PT=1 R= 1 PT= 1

21C 1034 1000011100 PT=2 R= 2 PT= 2

OIC 0034 0000011100 PT=3 R= 3 PT= 3

05C 0134 0001011100 PT=4 R= 4 PT= 4

09C 0234 0010011100 PT=5 R= 5 PT= 5

15C 0534 0101011100 PT=6 R= 6 PT= 6

29C 1234 1010011100 PT=7 R= 7 PT= 7

llC 0434 0100011100 PT=8 R= 8 PT=: 8

25C 1134 1001011100 PT=9 R= 9 PT= 9

ODC 0334 0011011100 PT=IO R= 10 PT= 10

19C 0634 0110011100 PT=ll R= II PT= II

35C 1534 1101011100 PT=12 R= 12 PT= 12

2DC 1334 1011011100 PT=13 R= 13 PT= 13

394 1624 1110010100 ?PT=O ?R= 0 ?PT= 0

314 1424 1100010100 ?PT=1 ?R= 1 ?PT= 1

214 1024 1000010100 ?PT=2 ?R= 2 ?PT= 2

014 0024 0000010100 ?PT=3 ?R= 3 ?PT= 3

054 0124 0001010100 ?PT=4 ?R= 4 ?PT= 4

094 0224 0010010100 ?PT=5 ?R= 5 ?PT= 5

154 0524 0101010100 ?PT=6 ?R= 6 ?PT= 6

294 1224 1010010100 ?PT=7 ?R= 7 ?PT= 7

114 0424 0100010100 ?PT=8 ?R= 8 ?PT= 8

254 1124 1001010100 ?PT=9 ?R= 9 ?PT= 9

OD4 0324 0011010100 ?PT=10 ?R= 10 ?PT= 10

194 0624 0110010100 ?PT=11 ?R= 11 ?PT= 11

354 1524 1101010100 ?PT=12 ?R= 12 ?PT= 12

2D4 1324 1011010100 ?PT=13 ?R= 13 ?PT= 13

010 0020 0000010000 LC 0 LD@RO LC 0

-185-

Hexcode Octal Binary HP Jacobsj ZENROM
mnemonic De Arras mnemonic

050 0120 0001010000 LC 1 LD@R 1 LC 1

090 0220 0010010000 LC 2 LD@R 2 LC 2

ODO 0320 0011010000 LC 3 LD@R 3 LC 3

110 0420 0100010000 LC 4 LD@R 4 LC 4
150 0520 0101010000 LC 5 LD@R 5 LC 5
190 0620 0110010000 LC 6 LD@R6 LC 6

IDO 0720 0111010000 LC 7 LD@R 7 LC 7

210 1020 1000010000 LC 8 LD@R 8 LC 8
250 1120 1001010000 LC 9 LD@R 9 LC 9

290 1220 1010010000 LC A LD@RA LC A

2DO 1320 1011010000 LC B LD@RB LC B

310 1420 1100010000 LC C LD@RC LC C

350 1520 1101010000 LC D LD@RD LC D

390 1620 1110010000 LC E LD@RE LC E

3DO 1720 1111010000 LC F LD@R F LC F

3AC 1654 1110101100 ?FO=1 ?FI= 0 ?PBSY
32C 1454 1100101100 ?Fl=1 ?FI= 1 ?CRDR

22C 1054 1000101100 ?F2=1 ?FI= 2 ?WNDB

02C 0054 0000101100 ?F3=1 ?FI= 3 ?PF= 3

06C 0154 0001101100 ?F4=1 ?FI= 4 ?PF= 4

OAC 0254 0010101100 ?F5=1 ?FI= 5 ?EDAV

16C 0554 0101101100 ?F6=1 ?FI= 6 ?IFCR

2AC 1254 1010101100 ?F7=1 ?FI= 7 ?SRQR

12C 0454 0100101100 ?F8=1 ?FI= 8 ?FRAV

26C 1154 1001101100 ?F9=1 ?FI= 9 ?FRNS

OEC 0354 0011101100 ?FI0=1 ?FI= 10 ?ORAV

lAC 0654 0110101100 ?F 11=1 ?FI= 11 ?TFAIL

36C 1554 1101101100 ?FI2=1 ?FI= 12 ?ALM

2EC 1354 1011101100 ?F13=1 ?FI= 13 ?SERV

024 0044 0000100100 SELPRF 0 SELP 0 PERTCT 0

064 0144 0001100100 SELPRF 1 SELP 1 PERTCT 1

OA4 0244 0010100100 SELPRF 2 SELP 2 PERTCT 2

-186-

Hexcode Octal Binary HP Jacobs/ ZENROM

mnemonic De Arras mnemonic

OE4 0344 0011100100 SELPRF 3 SELP 3 PERTCT 3

124 0444 0100100100 SELPRF 4 SELP 4 PERTCT 4

164 0544 0101100100 SELPRF 5 SELP 5 PERTCT 5

lA4 0644 0110100100 SELPRF 6 SELP 6 PERTCT 6

lE4 0744 0111100100 SELPRF 7 SELP 7 PERTCT 7

224 1044 1000100100 SELPRF 8 SELP 8 PERTCT 8

264 1144 1001100100 SELPRF 9 SELP 9 PERTCT 9

2A4 1244 1010100100 SELPRF A SELP A PERTCT A

2E4 1344 1011100100 SELPRF B SELP B PERTCT B

324 1444 1100100100 SELPRF C SELP C PERTCT C

364 1544 1101100100 SELPRF D SELP D PERTCT D

3A4 1644 1110100100 SELPRF E SELP E PERTCT E

3E4 1744 1111100100 SELPRF F SELP F PERTCT F

3C4 1704 1111000100 CLR ST ST=O ST=O

3C8 1710 1111001000 RST KB CLRKEY CLRKEY

3CC 1714 1111001100 CHK KB ?KEY ?KEY

3D4 1724 1111010100 DEC PT R=R-l -PT

3DC 1734 1111011100 INC PT R=R+l +PT

058 0130 0001011000 G=C G=C G=C

098 0230 0010011000 C=G C=G C=G

OD8 0330 0011011000 CG EX C<>G C<>G

158 0530 0101011000 M=C M=C M=C

198 0630 0110011000 C=M C=M C=M

ID8 0730 0111011000 CMEX C<>M C<>M

258 1130 1001011000 F=SB T=ST F=ST

298 1230 1010011000 SB=F ST=T ST=F

2D8 1330 1011011000 FEXSB ST<>T ST<>F

358 1530 1001011000 ST=C ST=C ST=C

398 1630 1010011000 C=ST C=ST C=ST

3D8 1730 1111011000 CST EX C<>ST C<>ST

020 0040 0000100000 SPOPND XQ>GO CLRRTN

060 0140 0001100000 POWOFF POWOFF POWOFF

-187-

Hexcode Octal Binary HP Jacobs/ ZEN ROM

mnemonic De Arras mnemonic

OAO 0240 0010100000 SEL P SLCT P PT=P

OEO 0340 0011100000 SEL Q SLCT Q PT=Q

120 0440 0100100000 ?P=Q ?P=Q ?P=Q

160 0540 0101100000 LLD ?LOWBAT ?BAT

lAO 0640 0110100000 CLRABC A=B=C=O ABC=O

lEO 0740 0111100000 GOTOC GOTO ADR GTOC

220 1040 1000100000 C = KEYS C=KEY C=KEY

260 1140 1001100000 SETHEX SETHEX SETHEX

2AO 1240 1010100000 SETDEC SETDEC SETDEC

2EO 1340 1011100000 DISOFF DSPOFF DISOFF

320 1440 1100100000 DISTOG DSPTOG DISTOG

360 1540 1101100000 RTN C ?C RTN CRTN

3AO 1640 1110100000 RTN NC ?NC RTN NCRTN

3EO 1740 1111100000 RTN RTN RTN

070 0160 0001110000 N=C N=C N=C

OBO 0260 0010110000 C=N C=N C=N

OFO 0360 0011110000 CN EX C<>N C<>N

130 0460 0100110000 LDI LDI S&X LDI

170 0560 0101110000 STK = C PUSH ADR STK=C

IBO 0660 0110110000 C = STK POP ADR C=STK

230 1060 1000110000 GOKEYS GTO KEY GTOKEY

270 1160 1001110000 DADD = C RAMSLCT RAMSLCT

2FO 1360 1011110000 DATA = C WRITE DATA WDATA

330 1460 1100110000 CXISA FETCH S&X RDROM

370 1560 1101110000 C=CORA C=C OR A C=CORA

3BO 1660 1110110000 C=C.A C=C AND A C=CANDA

3FO 1760 1111110000 PFAD=C PRPH SLCT PERSLCT

-188-

"IO-BASE", 117-121

? functions, 64,96,104

alpha register, 36,54-56

"AM & MA", 54-56

"AM & MAlt revised, 60-61

Annunciators, 111,112,115

Assembler, 4,59

base conversions, 117

BCD, 8,68

BCD-BIN", 72-7 4,87,89

"BCD-BIN" revised, 78,79

"BIN-BCD", 69-71

bi t, 3,6,8,108

"BREAK", 154-164

byte, 6,8

Carry, 12,45,57,58

Character tables,

LCD, 108

MCODE function name, 37

"CODE", 148,159

"COUNT", 50-52,86,89

CPU, 1,3,5,6,9,51

CPU

registers, 5,7

A, 7,10,25,26,40

B,7,10,25,26

C, 7,10,25,26,40

FI, 7,12

G,7,11,132

KY,7,I2,134

M,7,10

N,7,10,66

INDEX

CPU registers (cont.)

P,7,l1

PC, 7,11

Q,7,11

ST, 7,11

return stack, 7,11,61,76,

77

T,7

XST,7,l1

Flags, 41

Modes,

deep sleep, 133

light sleep, 133

running, 133

status, 132

crash, 88,116

debugging programs, 154-164

"DECODE", 156,165

display, 107-128

clearing, 119

custim error messages, 122-126

disabling, 119

enabling, 107,120,141

mnemonics, 109-111

type, 107,115-116

display contrast, 115,116

Dissassembler, 5,77,109

"DISTEST", 112-115

.END.,35,42

EPROM

-189-

box, 14,130

software, 15

EXECUTEs

Absolute, 57,58,60

Relative, 75,78,85,122

"F?",71,87,89

FA T, 19,20,21,38,39,40,43,56,63,

67,70,72,74,86,89,93,98,102,104,

121,135

FETCH, 110

fields

ALL, 12,40

ADR, 12,13

KY, 12,13

M, 12,13,42

MS, 12,13,69

S&X, 12,51,52

XS, 12,13,124

@R, 13,51

P-Q, 13,82

R<, 13,69

"FS?S & FC?C", 65-67,87,89

"GE", 42,43,86,89

"GEE",134-135

GOTOs

Absolute, 57,58,61

Relative, 75,77,103,125

Graves, Pete, iii

Hexcodes, 8.28,29,76

Hovik, David, iii

"HXENTRY", 140-147

"IF", 62-64,87,89

I/O buffers, 32

INSERT, 138

Instruction set

?A<B, 26,27

?A<C,26,27,55

Instruction set (cont.)

?krO, 26,27,51

?AofC,26,27,73

?B;ofO, 26,27

?C;ofO, 26,27,63

?C RTN, 47,49,56

?FI n, 28,29

?FSET n, 28,29,55

?KEY,47,48,51

?LOWBAT, 47,48

?NC RTN, 47,49,97

?P=Q,47,48

?R= n, 28,29,56

A=0,25,27

A=A+l,25,27,56

A=A+B, 25,27

A=A+C, 25,27

A=A-l,25,27,63

A=A-B, 25,27

A=A-C, 25,27,63

A=B=C=O, 47,48

A=C, 25,27,40

A<>B, 25,27,82

A<>C, 25,27,40

B=O, 25,27

-190-

B=A, 25,27

C=O, 25,27,42

C=O-C, 26,27

C=B,25,27

C=C+l, 26,27,56

C=C+A, 25,27

C=C+C, 25,27,63

C=A-C, 26,27

C=C-l, 26,27,51

C=-C-l, 26,27,83

Instruction set (cant.)

C=C AND A, 47,50,63,82

C=C OR A, 47,50,66,82

C=KEY,47,49

C=G,47

C=M,47,95

C=N,47,66

C=ST,47

C<>B, 25,27,56

C<>G,47

C<>M,47

C<>N,47

CLRF n, 28,29,43

CLRKEY,47,51

DSPOFF,47,49

DSPTOG,47,49

FETCH S&X, 47,50

G=C,47,144

GO TO ADR, 47,49,122

GTO KEY, 47,50

JC, 45,46,47,51

JNC, 45,46,47,51

LD@R n, 28,29,43

LDI S&X, 47,49,51

LSHFA,26,27,51

M=C,47,94

N=C,47,66

NOP, 115

POP ADR, 47,49,83,122

POWOFF, 47,48,115

PRPH SLCT,47,50,107,112

PUSH ADR, 47,49,82,122

R= n, 28,29,43

R=R-l,47,48

R=R+l, 47,48,56

Instruction set (cant.)

RAMSLCT,47,52,53,55

RCR n, 28,29,55

READ n, 28,29,40

READ DATA, 47,52,53,56

RSHF A, 26,29

RSHFB, 26,29

RSHFC, 26,29,80

RTN,39

SELP n, 28,29

SETF n, 28,29,43

SETDEC,47,49,51

SETH EX, 47,49,118

SLCT P, 47,48

SLCT Q, 47,48

ST=0,47

ST=C,47

ST=T,47

ST<>T, 47

T=ST,47

WRITE DATA, 47,52,56

WRIT n, 28,29,41

XQ>GO, 47,48

interupt (polling) points, 21,

151-153

Johanson, David, iii

Jumps, 45,46

"LOOP", 157-164

MACRO, 77

Mainframe

functions, 16

key tables, 149,150

subroutine, 16,91

en try point, 17,60

MCODE, iii,1,7,126

-191-

MLDL, 1,13,38,44,129

MEMOR Y LOST, 35

microCODE, 1

Microprocessor, 4,6

mnemonics, 4,8,19,109

MOD, 91,117,119

Negative exponents, 5,101

NOP, 8,115,134

"NR", 84-86,87,90

number systems

base 10, 3

Binary, 3,4

Hex, 3,67,86,99

Hexadecimal, 3

Octal, 99

nybble, 5,8,13,35,82,108

"OCT-HEX", 166-169

op bits, 137-139

overflow, 9

partial key sequencing, 35,137-147

PTEMPl,34,35,138

PTEMP2, 138,139

prefix, 13,25-29

Programming,

Machine language, 1

MCODE, 1,12,16,19,20,29,52,

99,139

User code, 1,19

Synthetic, 7,37

pointers, 11,28

postfix, 13,25-29

prompting, 135-147

"QR",91-93

RAM,

Addresses, 31,32,83

RAM (cont.)

Chip, 53

Extended Memory, 29,31,32

Main Memory,29,31,32

RAM, 1,6,9,13,17,30,52,60

Status Registers, 29,33-37,

VOID, 31,33

random numbers, 100

"RN", 100-102

ROM, 1,6,9,17,19,20

ROM

address space, 6,17

checksum, 22

header, 19,38,86

page, 17,18,19

program name, 37,38

revision, 21

word, 18

"RSLCT", 157,160-164

"S?", 102-104

shift, 8,62,80,110

SKWID, iii

"SKWID IA", 38-40,86,89

SYNTHETIX, ii

underflow, 9,72

underscores, 136,139

user flag 46, 140,146

user flag 50, 95,115,119,146

"VA", 98,99

VASM, 17,99

VASM octal to hex conversions, 166-

169

"VM",93-95

White, David, iii

word, 9,77

-192-

wraparound, 9,70

"X=Y? Z?", 96-98

"X>= Y?", 1 04-1 06

XOR,80-82

XROM, 19,20,38,39,40,43,86,89,

132,138

"Y<>Z",40,41,86,89

ZENROM,129

-193-

Ken Emery, the author of this book, also does custom M-Code software

development for HP-41's and HP-IL systems. If you have an HP-41 application

that needs the speed and user-convenience capabilities of M-Code, you may

want to contact Ken. In his consulting role, Ken can tell you what

capabilities M-Code would bring to your application. Ken is one of the few

true experts in M-Code, so you can be confident that he will give you an

accurate estimate of what is possible and how much effort it will take. You

can contact Ken through SYNTHETIX at P.O. Box 1080, Berkeley, CA 94701-1080

USA, phone (415) 339-0601.

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
J

j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j

j
j
j

j

j
j
j

ORDER BLANK

Price
per

copy

For HP-7I'S
HP-71 Basic Made Easy, by Joseph Horn $18.95

For HP-7I'S & HP-4I'S
Control the World with HP-IL, by Gary Friedman $24.95

For HP-4I'S
HP-41 Advanced Programming Tips, by A. McCornack & K. Jarett $20.95

HP-41 M-Code for Beginners, by Ken Emery

Inside the HP-41, by Jean-Daniel Dodin

Extend Your HP-41, by W. Mier-J~drzejowicz

HP-41 Extended Functions Made Easy, by Keith Jarett

HP-41 Synthetic Programming Made Easy, by Keith Jarett
(Includes one Quick Reference Card)

Quick Reference Card for Synthetic Programming

Synthetic Quick Reference Guide (SQRG)

For HP-IOC. IIC. 15C. AND 16C
ENTER (Reverse Polish Notation Made Easy), by J.Dodin

Humor
It's Amazing How These Things Can Simplify Your Life:
The Harold Guide to Computer Literacy

ROM's
Barcode Generating ROM by Ken Emery

AECROM by Redshift Software

Sales tax (California orders only, 6 or 7%)

$24.95

$12.95

$29.95

$16.95

$16.95

$2.00

$5.95

$4.95

$4.95

$199.95

$ 99.00

Add'i
Shipping 1st book books

within USA, book rate (4th class) $1.50 $0.50
USA 48 states, United Parcel Service $2.50 $1.00
USA, Canada, air mail $3.00 $1.50
elsewhere, book rate (6 to 8 week wait) $2.00 $1.00
elsewhere, air mail $12.05 for Extend Your HP-41, $6.05 for others

Qty

Free shipping for ENTER and It's Amazing ... with purchase of any other book
Free shipping for QRC plastic cards or SQRG (any number)
Free shipping for ROM's

Enter shipping total here

Total due

Checks must be in U.S. funds, and payable through a U.S. bank.

Amount

$_----

$._----

Name
Addr~e-ss---

Clty ___________________ ,State _____ Zlpcode ________ _
Country ______________________________________ _

Mail to:
SYNTHETIX, P.O.Box 1080, Berkeley, CA 94701-1080, USA Phone (415) 339-0601

HP-41 MeaDE FOR BEGINNERS
by Ken Emery

MCODE is the internal machine code used by the HP-41, one level below the

set of "user code" instructions that users and programmers are accustomed to
dealing with. Some user code instructions like CLX are implemented by the

HP-41 in just a few MCODE instructions; other user code instructions like

TAN may need hundreds of MCODE operations.

Programs in MCODE are FAST. They run 7 to 120 times faster than user code

programs. But the advantage that enthusiasts will appreciate the most is

that MCODE gives you total control of the machine. You can make the HP-41

do whatever you want it to do, completely redefining its "personality" and

customizing it for your particular applications. MCODE programming requires

additional hardware, generally an external box' called an MLDL (Machine

Language Development Lab). But once you enter the world of MCODE there is

nothing you can't do.

This book is your ticket to the world of MCODE.

Simple programming examples lead you step-by-step to an understanding of the

principles and practice of MCODE programming. Later examples show you how

to use parts of the built-in operating system as subroutines to do input,

output, and other useful functions. Even before you finish the examples,

you will be able to write your own simple MCODE programs.

For advanced MCODE programmers, there are several features of interest.

Complete details of the display instructions are given. ' This includes the

new display that accesses additional LCD characters, and that allows
alteration of the contrast. Also explained for the first time is partial

key sequencing, which allows you to create functions that prompt for inputs
in the same user-friendly way as the built-in functions like STO and LBL.

Two utility programs are included to help in your programming. A debugging

program allows you to interrupt an MCODE routine at any point, dumping the

contents of the CPU registers for viewing. Also included are base con­

version programs to help you use HP's annotated operating system listings.

Move into the FAST lane. Get started programming in MCODE today!

ISBN 0-9612174-7-2

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

