
HP·41
SYNTHETIC PROGRAMMING

MADE EASY

by Keith Jarett

HP·41

SYNTHETIC PROGRAMMING

MADE EASY

By Keith Jarett

Copyright 1982, SYNTHETIX
P.O. Box 1080

Berkeley, CA 94701-1080
U.S.A.

Library of Congress Card Catalog Number: 82-62786
ISBN: 0-9612174-0-5

This book may not be reproduced, either in whole or in part,
without the written consent of the publisher, except that the
programs contained herein may be reproduced for personal use.
Permisssion is given to reproduce short portions of this book for
purposes of review.

Printed in the United States of America.

Ac~~~~!~~~~~~~!: This book would not have been possible
without the existence of PPC, the users group that has
fostered the development of synthetic programming since the
1979 introduction of the HP-41C. Several members of PPC have
made direct contributions to the recently developed
techniques in this book.

Most of these contributions were made by Clifford Stern,
one of the handful of "grand masters" of synthetic
programming. Clifford was the technical consultant for this
book, developing several programs specifically for use here
and spotting errors during several rounds of editing.

Many other members of PPC contributed indirectly through
their own discoveries and developments that advanced
synthetic programming over the last three years. Richard
Nelson, the founder of PPC, deserves a large measure of
recognition. He has single-handedly kept PPC alive for 8
years through untiring effort.

I dedicate this book to my wife, Catherine Van De
Rostyne, who has patiently endured my HP-41 addiction, and
whO provided invaluable help throughout the preparation of
this book.

The plastic Quick Reference Card for Synthetic programming on
the back cover is an indispensable tool for synthetic
programming. Its use is described in Chapter 1. For further
description see Appendix D and Appendix C, item 10.

For price information on this book, write to: SYNTHETIX, P.O. Box
1080, Berkeley CA 94701-1080, USA. Enclose an addressed return
envelope for faster reply. Dealer and distributor inquiries are
welcome.

ABOUT THE AUTHOR
---Keith Jarett has been addicted to Hewlett-Packard
calculators since he bought an HP-45 in 1973 and wrote manual
keystroke programs for it. In early 1980 he wrote his first
synthetic program for the HP-41, a forerunner of "CUlt (see
section 6C). The enormous potential of synthetic programming
quickly became clear, as the next year brought a weal th of new
discoveries by PPC members. The author coordinated the
development of 67 synthetic routines for the PPC ROM, a custom
program module bv and for HP-41 users.

He is currently a Senior Scientist for Teknekron
Communication Systems Division, after several years as with
Hughes Aircraft Space and Communications Group. He received a
B.S. in Electrical Engineering from Cornell University, and an
M.S. and Ph.D. in E.E. from Stanford University.

The material in this book is supplied without representation or
warranty of any kind. Neither the publisher nor the author shall
have any liability, consequential or otherwise, arising from the
use of any material in this book.

-ii-

TABLE OF CONTENTS

~

1 INTRODUCTION -- WHAT IS SYNTHETIC PROGRAMMING?

What will this book do for you?

5 CHAPTER ONE -- CREATING YOUR FIRST SYNTHETIC INSTRUCTION

How to create and use the Byte Grabber

How to interpret and use the Quick

Reference Card for Synthetic programming

15 CHAPTER TWO -- FREQUENTLY USED SYNTHETIC INSTRUCTIONS

16 2A. Synthetic Tones

18 2B. Short Form Exponents

23 2C. Flag Register Control

27 2D. Program Pointer Control

29 2£. Synthetic Text Lines

38 2F. The TEXT 0 instruction

39 2G. Using ALPHA for numeric storage

46 2H. Other scratch registers

49 CHAPTER THREE -- BYTE LOADING

How to create and use a byte loader program

How to make any synthetic instruction

67 CHAPTER FOUR -- SYNTHETIC KEY ASSIGNMENTS

67 4A. Create and use a key assignment program

77 4B. The "poor man's byte loader"

81 4C. Pseudo-XROlvl function previews

83 4D. The RCL b key assignment

87 4E. Save/Recall Time lvlodule alarms

97 CHAPTER FIVE -- UNDERSTANDING PROGRAM EDITING ON THE HP-41

Create the synthetic F0 label instruction

Viewing bytes of program memory

-iii-

107 CHAPTER SIX -- HP-41 MEMORY STRUCTURE AND STATUS REGISTER

APPLICATIONS

107

119

124

6A. Memory structure, functional setup,

the status registers

6B. Suspend and Reactivate key assignments

6C. Renumbering data registers under

program control

135 SOLUTIONS TO PROBLEMS

143 APPENDIX A -- INSTRUCTION TIMING

Hints for speeding up your programs

Typical instruction execution times

How to do your own instruction timing

151 APPENDIX B -- MORSE CODE AND STO b

Generate Morse code at 16 words per minute

159 APPENDIX C -- SYNTHETIC PROGRAMMING REFERENCES

Periodicals, books, etc.

165 APPENDIX D -- THE QUICK REFERENCE CARD FOR SYNTHETIC

PROGRAMMING

Description, Legend, enlarged copy

171 APPENDIX E -- BARCODE FOR PROGRAMS

187 INDEX

189 ADDENDUM

-iv-

INTRODUCTION

WHAT IS SYNTHETIC PROGRAHHING?

Have you ever wondered why the HP-41 doesn't allow more

than ten different TONEs? Or perhaps you have wondered why you

can't store and recall numbers from the ALPHA register, or why

parentheses are not available as display characters. HP-4l

SYNTHETIC PROGRAMMING MADE EASY will teach you to overcome

these limitations and add a whole new set of functions to your

UP-41's vocabulary. Examples of added capability are:

-Techniques you can use to make your programs faster,

shorter, or to reduce their SIZE requirement

-Three to six extra "scratchpad" stack-like registers for

general use

-21 additional display characters including parentheses,

quotation marks, ampersand, and others

-Over 100 additional TONEs

-Enhanced alpha string editing ability

-Suspension and reactivation of USER mode key assignments

-Simultaneous setting of all 56 system and user flags to

any desired state

-Renumbering of data registers under program control to

eliminate register usage conflicts between subroutines.

The creation and use of synthetic instructions is called

synthetic programming. Synthetic instructions are those which

cannot be entered from the keyboard by normal means. Thousands

of synthetic instructions are possible. These range from

non-standard TONEs to powerful instructions that access system

scratch registers. Synthetic programming will not harm your

HP-41 in any way, although the annoyance of occasional

"crashes" (temporary keyboard lockup and/or MEHORY LOST) is to

be expected as you are learning. Synthetic programming will

work on all calculators in the HP-41 family, including the

-1-

HP-41C and CV, regardless of date of manufacture. It depends

only on fundamental aspects of the calculator's internal

operating system that are common to all HP-41's.

As a simple example of the beauty of synthetic

programming, consider the two short programs listed below. The

one on the left is a standard, nonsynthetic program to print

out the message "Hewlett-Packard". It occupies 40 bytes of

program memory (more about bytes in Chapter 1). The program on

the right uses a synthetic instruction to do the same thing in

only 20 bytes, exactly half the space. In this example, which

you will encounter in more detail in Section 2E, synthetic

programming overcomes the lack of direct access to lowercase

printer characters on the HP-41.

HOHSYIHHETIC:

81 "W
82 fiCA
83 SF 13
84 "EWLETT-"
85 fiCA
86 CF 13
87 "p"
88 fiCA
89 SF 13
18 "flCKARD"
11 fiCA
12 PRBUF
13 CF 13
14 END

Pr01raftS to print
the ftessa<:le

Hew lett -P ac kard

SYtHHETIC:

81 "Hewlett-Packard"
82 AYIEW
83 END

CAT
END 48 BYTES
END 28 BYTES

You need not become an expert to reap the benefits of

synthetic programming. Armed with the knowledge and confidence

provided by this book, you can quickly and easily create and

run any synthetic program from the HP User's Library, the PPC

Calculator Journal l , or any other source. Also covered are the

most frequent applications of synthetic programming, so that

-2-

you may customize your own programs with synthetic

instructions.

This book is designed to provide an easy, practical

introduction to synthetic programming on the HP-41. It uses

the latest simplifiea synthetic programming techniques in a

"hands on" approach that makes it easy and fun to try the

examples on your calculator as you read.

The scope of HP-41 SYNTHETIC PROGRAMMING MADE EASY is

intentionally limited, in order to provide the most readable

introduction to synthetic programming. Details are often

bypassed, but references are given for those readers who wish

to learn more about them. The casual synthetic programmer will

be able to learn all he needs from this book. For others this

book is a ticket of admission to the growing body of synthetic

programming literature. It has all the framework you need to

build your knowledge of synthetic prograrruning.

If you own a PPC ROM2, your progress through the book can

be speeded up by using its advanced features such as synthetic

key assignment and byte-loading programs. If you have just the

calculator you will sometimes need to follow slightly more

elaborate instructions to "bootstrap" your system to full

synthetic capability. Either way it's fairly simple.

i-f~\.let t-Packard does not support synthetic programming.

Although many individuals in HP's Corvallis Division have some

familiarity with synthetic programming, HP does not have the

rna' power to answer questions about synthetic programming from

users. So please don't ask HP about synthetic programming.

Just read this book and continue into the other sources of

information (Appendix C) for answers to your questions.

The most important benefit you'll get from HP-41

SYNTHETIC PROGRAMMING MADE EASY is access to all published

synthetic programs. Many synthetic programs, especially those

-3-

in the PPC ROM, perform functions that can't be duplicated by

any nonsynthetic program. After you have read this book,

synthetic programs will no longer seem mysterious and

forbidding. There are hundreds of powerful synthetic programs

in the PPC Calculator Journal and elsewhere that will give

your HP-41 capabilities you probably never dreamed of.

1 The PPC Calculator Journal (PPC CJ) is a publication of

Perso~al Programming Center (pPC), a non-profit public benefit

California Corporation dedicated to personal computing. PPC

has several thousand members, most of whom are fellow HP-41

enthusiasts. PPC members have been responsible for virtually

every discovery in the field of synthetic programming,

beginning with the first description of synthetic programming

by William C. Wickes in the PPC CJ in 1979. The PPC Calculator

Journal continues to be the primary source for the latest

information on synthetic programming. To find out how you can

get the PPC CJ, see Appendix C.

2 The PPC ROM is a custom ROM plug-in module for the HP-41,

designed by PPC members and manufactured by Hewlett-Packard.

It contains 122 programs, most of which are usable as

subroutines in your own programs, and most of which contain

synthetic instructions. The manual is an astounding 492 pages

long and has probably not been fully read by anyone person.

See Appendix C to find out how you can get the PPC ROM.

-4-

CHAPTER ONE

CREATING YOUR FIRST SYNTHETIC INSTRUCTION

A decimal (base 10) number xyz has the value

x·10 2+y·10+z·1, where x, y, and z are any digits from 0 to 9.

Similarly a binary (base 2) number qrst 2 (the subscript 2

indicates base 2) has the value q·2 3+r·2 2+s·2+t, where q, r,

s, and t are digits from 0 to 1. q is the "eights" digit, r is

the "fours" digit, and so on. For example 1011 2 = 8+2+1 = 11,
and 111111112 = 1.27+1.26+1.25+1.24+1.23+1.22+1.2+1

128+64+32+16+8+4+2+1 = 255.

A hexadecimal (base 16) number uv16 has the value u·16+v,

where u and v are hexadecimal digits from zero to fifteen.

Since there aren't any ordinary digits that correspond to the

numbers ten through fifteen, it is standard notation to borrow

them from the alphabet: A16 = 10, B16 = 11, C16 = 12, D16 =
13, E16 = 14, F 16 = 15. For example C5 16 = 12·16+5 = 197, and

FF 16 = 15·16+15 = 255. Incidentally, the shorthand "hex" will

be used throughout this book. It means the same as hexadecimal

or base 16.

If you are not familiar with base 2 and base 16 number

systems, read the last two paragraphs again and give them a

little thought. Like the rest of this chapter, it should all

begin to fall together after a couple of readings. Hang in

there, because we're going to start having some fun by the end

of this chapter.

The basic unit of program memory in the HP-41 is called a

byte. A byte is a collection of eight bits (binary digits)

that can rang~ in value from 00000000 base 2 to 11111111 base

2, or equivalently from 0 to 255 base 10. Although a byte can

take on only 256 distinct values, there are thousands of

distinct HP-41 instructions. The STO and RCL instructions

alone have more than 400 variations. This variety is achieved

by allocating more than one byte for some types of

instructions. Simple instructions like +, LOG, and MOD occupy

-5-

only one byte of program memory. Instructions like VIEW 14,
RCL 99, and rREG IND X require two bytes -- one for the

function name, or prefix, and the second one for the suffix. A

few types of instructions require three bytes, while text

lines require up to 16 bytes (for a 15 character text line).

Synthetic instructions can be created by removing prefix

bytes from two-byte instructions, using a simple procedure

described in this chapter and the next. As you shall see in

the examples in this chapter and the next, the removal of a

prefix frees the suffix byte, which can in turn become a

prefix and attach itself to the following byte or bytes. By

carefully selecting which instructions we start with, we can

force a wide variety of synthetic instructions to appear after

the original prefix byte is removed. To remove prefixes we use

a workhorse key assignment called the ~byte grabber~,

discovered by Erwin Gosteli after some pioneering work by Jack

Baldrige. Incidentally, both Erwin and Jack are members of

PPC, and their discoveries appeared in the PPC Calculator

Journal (see Appendix C item I). In fact, all the people

mentioned in connection with discoveries or programs in this

book are members of PPC.

Since the byte grabber is not a standard key assignment,

a special procedure is required to create it. You are not

expected to understand the procedure at this point, so just

follow the required steps carefully. Turn your thinking cap

back on after you have assigned the byte grabber.

Go get your HP-41 now, if you don't already have it in

front of you. If you've got any ideas about reading this book

first, then trying the examples later, forget theml The

examples are an essential part of the learning process. Doing

the examples will also make the text much easier to follow.

When you read ~go to line 05 and delete it", you won't have to

ask yourself what line 05 is. Trying the examples as you go

may seem to be slowing you down, but it will save you time in

the long run because you won't have to read and re-read.

-6-

If you have a PPC ROM, skip to step 12.

If you do not have a PPC ROM, you can assign the byte

grabber by carefully following an alternate procedure

conceived by Keith Kendall. Follow these steps precisely or

you'll have to start over from step 1. It may take a few tries

to get it right, but be patient.

1. MASTER CLEAR to MEMORY LOST status. This is done by

holding down the backarrow key while turning on the

calculator, then releasing the backarrow key. There

is a more complicated procedure for assigning the

byte grabber that doesn't require a ~ffiSTER CLEAR, but

you should consider this step a rite of initiation to

synthetic programming. This certainly won't be the

last time you get MEMORY LOST.

2. ASN "+" to the LN key (press: shift ASN ALPHA shift +

ALPHA LN). This assignment will be replaced by the

byte grabber assignment.

3. ASN "DEL" to the LOG key. (Press: shift ASN ALPHA D E

L ALPHA LOG.)

4. Swi tch to PRG11 mode. You should see 00 REG 45.

5. Start CATalog 1 (still in PRGM mode) and press R/S

immediately before the display blinks. Repeat this

step if you didn't press R/S quickly enough.

6. Switch to ALPHA mode, then press the backarrow key

with the .END. in the display.

7. You should see the program line 4094 RCL 01. The

origin of this mysterious line number will be

explained in Section 6A. A "bug" in the riP-41's

internal programming has just allowed you to escape

the normal confines of program memory. You are now in

the system scratch register area. More about this in

Chapter 6, too. Now switch back out of ALPHA mode by

pressing the ALPHA switch again.

8. GTO .005. You can press LN for 005 to save

-7-

keystrokes. You should see 05 LBL 03. You are now in

the key assignment area, which will also be covered

in Section 6A. The next step is to remove the dummy

"+" function assignment and replace it with the

synthetic byte grabber assignment. Since the

calculator thinks it is still in a program area, this

replacement is accomplished by keying in program

instructions that correspond to the data needed for a

byte grabber assignment. This correspondence is not

straightforward, so don't expect to understand it at

this stage.

9. DEL 003. You can save several keystrokes by pressing

USER (to activate the DEL key assignment that you

made to the LOG key), LOG, SQRT (the square root

key). You should see 04 STO 01. You have now deleted

the assignment of the + function. Next we replace it

by the byte grabber.

10. Key in the ALPHA (text) line "?AAAAAA". If you don't

have an Extended Functions module plugged in you will

see 05 "?A-----". The last five A's went past the end

of memory into what would be the first part of

extended memory and appear as "ghost" characters.

11. Swi,tch out of PRGM mode and GTO .. or do CAT 1 to get

out of the key assignment registers. Skip step 12 and

go on to the following text.

12. If you have a PPC ROM, or if you are returning after

reading Chapter 4 and you already have a copy of "MK"

(Make Key assignments), assign the byte grabber using

this abbreviated procedure instead of steps 1 through

11 above:

a.) Clear any Time Module alarms that are present.

b.) ASN ALPHA ALPHA LN (this clears the LN key of

any assignment

c.) XEQ mil or "MK"

d.) When the PREtPOSTtKEY message appears, supply

-8-

the inputs 247 ENTER+ 63 ENTER+ 15 and Rls.
When the program stops again, you're done. You

can backarrow the PRE+POST+KEY message, but it

is not necessary.

If you have followed the above procedure carefully, the

byte grabber should be assigned to the LN key. But don't try

it yet: the byte grabber can be dangerous if you are not

careful. If you press LN in USER mode and hold it down, you

should see XROM 28,63, followed by the message NULL,

indicating that the time limit for releasing the key has been

exceeded. When the NULL message appears the byte grabber

operation is cancelled, and it is safe to release the key. In

a few pages you will be using the byte grabber, so don't be

impatient. A little knowledge now can save a lot of MEMORY

LOST later.

If you have a card reader, write a status card (XEQ ALPHA

W S T S ALPHA) to record this synthetic key assignment. Then,

if you ever get MEMORY LOST, you can read in track 2 of the

card to reinstate the byte grabber assignment. It is then OK

to just backarrow the prompt for track 1.

~~!~: Whenever you see the notation BG, short for byte

grabber, in the following discussion, it refers to the byte

grabber assigned key, in this case LN. Unless the text

specifies otherwise, the byte grabber key is to be pressed in

USER mode and in PRGM mode.

WARNING: Don't press BG indiscriminately in PRGM mode. If you

press it at or,just above an END, you may need to MASTER CLEAR

to restore use of Catalog 1. (The first thing to try is to BST

to the line that was displayed before you pressed BG the first

time and BG again.) If your keyboard ever "locks up", simply

remove the battery pack, and the printer if it is connected,

for a couple of seconds and replace it. If that doesn't work,

try turning the HP-4l off and on several times with the

-9-

batteries removud. Pulling out any plug-in mOdules (especially

QUAD MEMORY, XMEMOKY, and XFUNCTION modules) may help. It is a

very rare crash that requires overnight removal of the

batteries.

Now switch into PGRM mode, GTO .• , and key in these

instructions, which we will be using shortly:

01 ENTERt

02 X<> 88

03 STO IND 31

04 PI

Line 01 is a normal ENTERt.

Line 02 is obtained by XEQ, ALPHA, X, shift COS, shift

TAN·, ALPHA, 8, 8. As you may know from reading the Owner's

Manual, the HP-41 implements many more functions than could

fit on the keyboard. Functions like X<> which are not on the

keyboard must be accessed by XEQ, ALPHA, function name, ALPHA.

The shifted ALPHA characters, like < and >, are unfortunately

not shown on the keyboard. Instead you should look at the

sticker on the bottom of your HP-41 to determine which shifted

key corresponds to the desired ALPHA character.

In case you haven't used indirect instructions before,

line 03 is STO, shift, 3, 1. The PI function can be accessed

by shift, 0.

Before using the byte grabber you need to know a little

more about bytes. Put the calculator aside for a few minutes

while you digest the next two pages.

For synthetic programming, it is often convenient to

express the 256 possible values of a byte in hexadecimal (base

16). By splitting the eight bits of a byte into two four-bit

groups and converting each four-bit group to a hexadecimal

digit we get a two-digit shorthand for the value of a byte. In

base 16 the letters A through F designate the numbers ten

-10-

through fifteen. The equivalence of 4-bit groups to

hexadecimal (base 16) digits is:

binar:i hex decimal

0000 '" 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

11301 9 9

1010 A 110

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

1 00010 10 16

For example 0100 1101 base 2 = 4D base 16, and 1111 0001 base

2 = Fl base 16.

Take out your HP-41 QUICK REFERENCE CARD FOR SYNTHETIC

PROGRAMMING (the 2-7/8" by 6" plastic card that comes attached

to the back cover of this book) or refer to the full-size byte

table provided in Appendix D. The byte table contained in the

Quick Reference Card ("QRC") is the Rosetta Stone of Synthetic

Programming, illustrating the byte equivalences that are the

key to creating synthetic instructions.

The byte is based on the hexadecimal representation rC16'

where r is the row number (0 through F) and c is the column

number. Rows 10 through 7 comprise the first half of the byte

table; rows 8 through F comprise the second half. At the top

of each box in the byte table part of the QRC is the primary

function, or prefix, interpretation of that particular byte.

-11-

Immediately below is the suffix interpretation. At the bottom
of the box is the decimal equivalent for that byte. On the
right are display and printer character interpretations of the
byte; (see page 166): these will be covered in Section 2E.

As an example consider the ~NTERt instruction that you
just keyed in as line 01. Since we find ENTERt in the prefix
(top) portion of the box at row 8 column 3 of the QRC, we can
conclude that ENTERt is represented internally as 83
hexadecimal. The bottom row of the box at row 8 column 3 tells
you that 83 hexadecimal is equivalent to 131 decimal. You have
no immediate use for this decimal equivalent, but you'll find
it quite handy when you get to Chapter 3.

Next consider the X<> 88 on line 02. We find X<> at row C
column E, and 88 in the suffix portion of the box at row 5
column 8. This means that X<> 88, a two byte instruction,
represented internally as hexadecimal CE 58, occupying two
consecutive bytes. Line 03 is STO IND 31. STO appears at row 9
column 1 while IND 31 appears at row 9 column F. Thus STO IND
31 consists of the two consecutive bytes 91 9F. Line 04, PI,
is represented as hex 72 (row 7 column 2). Note that
instruction line numbers are not stored in program memory. The
HP-41 actually computes the line number by counting
instructions from the top of the program.

Suppose we could somehow get rid of the X<> byte (the hex
C~ byte) in the X<> 88 instruction. The suffix 88 (hex 58)
would be left to "fend for itself", becoming the instruction
EtX-l (see row 5 column 8 of the QRC).

The byte grabber key assignment allows us to easily get
rid of leading bytes in instructions. For this reason it is
sometimes re~erred to as a "prefix masker". The byte grabber
always operates on the program step following the one shown in
the display, grabbing its leading byte.

Now get out your HP-41 again, turn it on, and verify that
your program is still intact by switching to PRGM mode and
pressing SST to step through it.

To illustrate the prefix masking behavior of the byte

-12-

grabber on the X<> 88 instruction, first PACK (XEQ ALPHA PAC

K ALPHA). Do not GTO •• , since you want to stay where you are

in the program. GTO .• has the undesired effects of attaching

an END to your program and "kicking you out" of it. Make sure

you are in USBR mode, then GTO .001 (the step before the X<>

88 instuction). Switch to PRGM mode if you are not already in

PRGM mode, and BG (press the LN key). You'll see a strange

looking text instruction

02 ... -?----I .
The starburst (all 14 segments lit) at the end of the

text line is, or was, the X<> part of the X<> 88. This hex CE

byte has been grabbed, leaving the suffix byte to become an

instruction on its own. SST and you'll see

03 EtX-l ,

precisely as predicted.

Review this example until you feel comfortable with it.

Once you have conceptualized the byte structure of memory and

the action of the byte grabber (see Figure 1.1), you are over

the hump and on your way to some real synthetic programming.

What would happen if we grabbed the STO prefix from the

STO IND 31 instruction? According to row 9 column F of the

QRC, the IN!) 31 suffix byte would become a TONE instruction.

But wait a minute. The TONE instruction needs a suffix of its

own; after all, every TONE is a two-byte instruction. Where

will this newly exposed TONE instruction get its suffix? Let's

find out. BG at line 003 (GTO .003 if you are not already

there and press LN in PRGM mode) to grab the STO byte. SST to

see

05 TONE Y , a synthetic instruction 1

A quick check of row 7 column 2 of the QRC reveals that the

new TON£ prefix captured the PI instruction, transforming it

into the suffix Y (see Figure 1.1). It is certainly reasonable

that the TONB instruction got its suffix from the next

instruction in the program -- it had to get it from somewhere.

-13-

You can SST line 05 in RUN (non-PRGM) mode to hear your new

synthetic tone. BST and SST to hear it again if you like it.

There are more than 1~0 other synthetic TON~s waiting to be

explored.

hexadecimal

byte value:

row column

8 3

C E

5 8

9 1

9 F

7 2

program

instructions

ENTERt

X<>

88

STO

IND 31

PI

program

instructions after

byte grabbing

ENTERt
... -7----.
EtX-l
... -7----.
TONE

Y

Figure 1.1 Transformation of instructions by byte-grabbing.

-14-

CHAPTER TWO

FREQUENTLY USED SYNTHETIC INSTRUCTIONS

This chapter introduces the eight types of synthetic

instructions that are most frequently used. Regardless of

whether you get involved in writing exotic synthetic

programs, you will want to use some of these easily

understood instructions in your ordinary day-to-day

programming. The types of instructions to be discussed in

this chapter are:

A. Synthetic Tones, which personalize your programs;

B. Synthetic Exponential Data Entry Lines ("Short Form

Exponents"), which save bytes;

C. Flag Register Control, used to preserve the display

setting while constructing PROMPTs;

D. Program Pointer Control, which can freeze the

"flying goose";

E. Synthetic Text Lines, used where synthetic

characters such as parentheses or lower case letters

are needed;

F. The TEXT 0 instruction, equivalent to an HP-25 NOP

(No Operation) instruction;

G. Control of data registers "carved out of" the ALPHA

register, which provides auxiliary storage for

intermediate program results without disturbing the

numbered data registers; and

H. Use of other operating system scratch registers for

temporary data storage.

As examples of synthetic instructions are presented in

this chapter, step-by-step procedures on how to create them

will also be given. These procedures will use the byte

grabber key assignment that was constructed in Chapter 1.

Owners of the PPC ROM have the option of bypassing this

procedure and creating the instructions directly using PPC

ROM routine I!iI (Load Bytes). The appropriate IIlI inputs

-15-

will be identified for each example. If the synthetic

instruction consists of two bytes and is not a digit entry,

PPC RO~l routine _ can be used in lieu of OIl if a key

assignment of the function is also desired. It is recommended

that PPC ROM owners try at least some of the examples in this

chapter using the byte grabber instead of IimI or I!!I
For those of you without PPC ROMs, a short version of

"LE" will be introduced in Chapter 3, along with instructions

for using the byte grabber to key it up. You may do so now,

but you will learn more about using the byte grabber by

waitiny until you get to Chapter 3 to key up and use "LB".

2A. Synthetic Tones

As mentioned at the end of Chapter 1, there are over 100

possible synthetic tones of widely varying pitch and

duration. Of the 16 distinct tone frequencies, the first ten

are- the frequencies of TONE £) through TONE 9. The durations

of synthetic tones vary from several milliseconds (tones

audible only as a "click") to several seconds. For many

prompting applications a relatively short, high-pitched tone

is required. TON~ 89 is one such tone. It can be createu as

follows. Delete any leftovers from the Chapter 1 examples and

key in these program lines;

01 ENTER+ m / mel inputs;

02 STO IND 31 TONE 89 = 159, 89

03 SIN

Now, still in PRGtvi mode, GTO .001 and BG (press LN in lJSER

mode). As usual, you'll see a text line like this: 02

T-?----I . SST to see your new synthetic instruction 03 TONE

9 . It may not look synthetic but you'll soon hear the proof

that it is.

The IND 31 byte (hex 9F) became a TONE instruction after

the STO byte was grabbed. The SIN byte (row 5 column 9 =

-16-

decimal 89) became the tone number. Synthetic tone numbers

from 10 to 101 decimal are displayed in decimal with only the

rightmost (ones) digit shown. Thus in this case TONE 89

displays as TONE 9. Other tones, whose second bytes are

between row 6 column 6 and row 7 column F, carry a letter

suffix as did TONE Y in the Chapter 1 example.

Switch to RUN mode and SST to hear TONE 89. It may

become one of your favorites for prompting.

Table 2.1 summarizes the synthetic tones that are

available to you. The frequency of a tone is determined by

its column number in the table. The frequencies corresponding

to column A,D,C,D,E, and F form an upward progression, with

the highest synthetic frequency (column F) being just below

that of TONE (i, the lowest normal frequency.

The duration of each tone, in seconds, is listed in the

table. This duration is the total time the liP-41 needs to

execute the tone: therefore the actual audio output duration

will be significantly shorter for the very brief tones.

Durations may vary from those listed depending on when your

IlP-41 was produced. For example TONE Z is 0.64 seconds long

on newer HP-41's, versus only 0.061 seconds on the oldest

HP-41's.

As you scan the tone table, you'll notice that TONEs 37

and 38 are the shortest, at .020 seconds each. 'l'he following

example illustrates a use for them. Clear the previous

example and key in the program lines

01 DEG ImI / IBI inputs:

02 CLX

03 LBL 01

04 STO IND 31 TONE 37 159, 37

05 RCL 05

06 SIN

07 SQRT

08 STO IND 31 TONE 38 = 159, 38

09 RCL 06

-17-

10 SIN

11 SQRT

12 GTO 01

GTO .007, BG, and delete the text line. SST to see TONE 8

(actually TONE 38). GTO .003, BG, and delete the text line.

SST to see TONE 7 (actually TONE 37). Now switch out of PRGM

mode, RTN, and R/S. Although the HP-41's internal oscillator

is not crystal controlled, this program makes a nice

tick-tock imitation of a pendulum clock.

Synthetic tones have other applications as well. See

Appendix B for a high-speed Morse code practice program that

uses synthetic tones. You can use Figure 2.1 to help you

choose the right synthetic tones for your applications. You

can pick a tone frequency and duration, and look up which

synthetic tone is the closest to what you need. Table 2.1 and

Figure 2.1 are reprinted with permission from Robert E.

Swanson, who compiled the data they contain for the

HP-41/HP-IL SYSTEM DICTIONARY, which is unfortunately out of

print.

2B. Synthetic Exponential Data Entry Lines

Pressing EEX CHS 3 in RUN mode gives you lxlO-3 in the

X-register. But if you try to do the same thing in PRGM mode

you'll get an instruction that looks like lE-3 even though

you only pressed E-3. The calculator insists on adding a

superfluous 1, wasting a byte of program space. Now that we

have a byte grabber I'll bet you can guess how we can get rid

of that 1. Clear the previous example and key in

01 ENTER t ID inputs:

02 lE-3 E-3 = 27, 28, 19

PACK (this is necessary this time). As in the Chapter 1

example, you must press XEQ ALPHA PAC K ALPHA, and not

GTO .• , which would be easier to key in. The problem is that

GTO .• leaves you "high and dry", requiring you to execute

-18-

I
I-'
~
I

HP-41CjCV TONE TABLE: Execution Times and XROM Numbers'

-

" 1 2 3 4 5 6 7 8 9 A B C D E F

" 1 ? ~ 4 5 ~ 8 9 0 11 12 13 14 15
0.28 p.28 0.28 p.28 0.28 0.28 p.28 0.28 0.27 0.27 12.08 2.42 3.37 p.67 2.30 0.35

" ~0,03 ~0,05 ~0,06 ~0,09 ~0,1O
p.SO

60,00 0,01 0,02 60,04 bO,07 60,08 60,11 60,12 ~O, 13 0,14 60,15
16 17 18 19 20 21 2 3 24 25 6 27 28 9 30 31
1.82 0.32

1
1.43 p.29 0.48 p.94 P.45 0.82 0.29 p.49 ~.70 3.23 1. 75 ~.85 3.46 2.37

60,16 0,17 60,18 ~O, 19 60,20 bO,21 !>0,22 bO,23 60,24 ~0,25 !>0,26 ~0,27 60,28 0,29 ~0,30 60,31
32 33 ~4 135 36 37 138 39 40 ~\9 ~~83 ~~43 44 45 ~6 47
.022 1.10 2.25 1.90 1.17 .020 .020 0.35 0.65 3.80 1. 71 1.29 0.12

2
60,32 60,33 60,34 60,35 60,36 60,37 ~0,38 tJO,39 60,40 ~0,41 ~0,42 ~0,43 60,44 60,45 ~0,46 60,47
48 ~9 ~O !:>1 52 53 ~4 55 56 ~7 ~8 ~9 60 61 ~2 63
0.50 p.26 2.04 1.85 0.29 0.14 p.75 0.77 0.62 .046 r·07 3.99 3.19 3.77 p.93 0.27

3 r· 41 0.39
60,48 60,49 160,50 60,51 60,52 ~0,53 ~0,54 60,55 60,56 160,57 ~0,58 160,59 60,60 60,61 60,62 60,63
64 ~5 ~6 67 68 ~9 70 71 72 73 4 75 76 7 8 79
1. 79 12.29 P .16 p.19 1.01 p.25 .072 0.21 0.13 p.15 p.58 p.28 3.60 3.30 p.85 ~.87

4 P .40 .032
~1,09 61,00 151,01 161,02 61,03 61,04 61,05 161,06 b1,07 61,08 !>1, 10 61,11 61,12 1,13 61,14 61,15

80 ~1 182 ~3 84 ~5 ~~46 87 88 ~638 ~O r.J1 92 3 !i4 95
.075 p.22 1.68 b.72 0.30 .16 .093 0.56 12.61 p.39 3.12 3.78 0.30 2.45

5
61, 16 1,17 61,18 61,19 61,20 61,21 161,22 61,23 61,24 61,25 !>1,26 161,27 61,28 1,29 61,30 61,31
96 97 98 ~9 100 101 102 p 103 B 104 C 105 [106 E 107 F 108 G 09 t- 10 111 J
0.62 .21 0.41 1. 21 0.11 .27 0.96 p.80 0.64 0.45 12.26 P.43 3.54 3.31 12.00 2.33

6 p.23 ~.33
61,32 1,33 61,34 61,35 61,36 1,37 b1,38 !>1,39 61,40 61,41 61,42 ~1,43 61,44 bl,45 ~1,46 b1,47
112 13 L 114 115 X 116 L 17 ~ 118 ~ 119 0 120 F 121 (122 123 a 124 b 125 c 26 d 127 e
0.25 .061 0.55 1.19 0.40 .07 [p.22\ p.78] 0.13 p.32 _ p.29 .,. ~.38 0.73 3.77 .45 2.84

7 1.66 0.64 .40 b.48 1.20
61,48 1,49 61,50 ~1,51 61,52 1,53 ki 1,54 ~1,55 61,56 151,57 ~1,58 ~1,59 161,60 1,61 1,62 61,63

Key: within each box is the decimal TONE number, execution time, and XROM numbers.

Actual tone duration is about .015 seconds less, and may depend on the date of manufacture

I
N
!S
I

IHEX
Col. A B C D E F ~ 2 3 4 5 6 7 8 9

Rel. I -6
frf;!Q. -5 -4 -3 -2 -1 ~ 2 3 4 5 6 7 8 9

197 629 ~~~. I 105 I 113 I 121 1 131 1 143 1 158 1 175 1 197 1 225 1 263 1 315 I 394 I 525 I 629 1 788 11051

m ' ,--+--J23 176!kY931_1-l2J '! , l:rr.,;;, .J

1 : 121 131 143 158 175 225 263 788 394 525

5.. ?6 1 O'(a)(G)J 4411~j 29 (d),',,:, ii, i'l ;I'lIIIJ ',' . I
5,8 -----t1'f's q 10€~ ttfST' 1'_ 1<\0 ' ' " " , , ' " , '1:1" I ':,',,"

IY 0 2~~f2 -~61 Y'" I~(e)" ,:, ' , ,
_. ~ 9~ 1------1 '----L ~2~ ~-t?7 _.J L_ _ Jf --'l _.~ ,~' " ' ,,', I , I ,I

2 ,I ,pj'106 11', II :914 R"~5 I 16 I ?~~34' ,:,,' I" I'; 'I ',' I,;: 1 ! II II:i I in
.v 10 110 31 91' ' 50~ 35:, " " I'.':', I,' ,. T I i < 28 ~ 45 ,j' 111 ~tl. ~ 11 1 82, 'fs~, I, ' ,I ii, I I}! I '" "fl II. 1,1,11 : I :.' , ! " ii" :1 i II il 1,1 -r-l-- - .,,+- ._- (J) -f '--I - -- (L)m 117 " " "".,. 1IIIIn,

I 46 '" (TJ 64 ~;.A 18 Jil' ,99i' 1 I (M 1'10.).1 ii II;il ''':',,:; I,: Ii ~ 1 :,' _ ~ __ ' 1-" I 33(Y) ,:I! 1i1:~115l1ill:' i~fl"~~5 " :,110m+?l,lilli I,:t !I:: I'"
~1.u '42 ' ~2~t---. 79- J 1---1--- (X)I-- 6~_ 2' (A)-G23

1
?C

4
)

Vl , 1 ... 12~_ ,78 1 I 83 " ", OS4,..,.......:~ _", i.lC 4°'--H
UJ (b ' 13 96 IA , I. ",' , ''',,,·If:119 ~ 41 2S
~o. 43 (z) (Wi I Ii iii! • 20111 ii ,1/,1 ,~, ~5:-(O), ;1;61105.}E
I- ", 1 107 15 48 ~ '1I,i! ~lllt~! J""I~:"j'l; Il' 'i: ~i86~.j=F.i:'II.,' ·11" 8,811 D\ -I'
Z ..c98'-'-'-~ (X) f-!ff'; , ' ", ," ,'" , rr .-' 11'"

~ il 9f ~Jh-~- !-'-r--i (Jt --,'=.-- 17--' i'" 8~~ , ' F 'H1 3~ , " 121

G _122 1075 (H) 94 1;163_.P1 ~ J---jI,I_ 2',,': '9",/ittk~52 , j 5_., ~ 6,+c-~, .. \~t--~ t:-Hi4-r-~~9(~~~
UJ (r) 112 rcl~9 ' "I, I ,." 'i' ' ! '" . '. J' 69" ' ... =1" 'I 8, 1-'-,. ;:;0... (T)- 8,1, ';',1" .. ' ,11 t, ,~;;. 118, .n:' ,1;",:
~ __ .!- ... ~_;._~_q~;t66 J iTt I !'!ll ,~+ lit ~ 1:-111 I -. .1. J_ - Ii-/- 11-' I I :ll+' Iii, , ,:iIIA'I, lj!:I~p7'I:J I'iltlf.,,,~ I(N) ,It: ,1 . "I'fflH'L~': 1,·",-
o I . ' I': :;: I 1.1 iii J _ : i I T _ -' 53 -)! : -1- _1._ _ ;120) ~ ~_
I- : I:' I~ 47 I,; : .:I'I'111 i 1:~f11 . "I'O'O,f, I!UW :-fW i fFf ~ . ~'I(P)ti,II" o. 1 ' , I I I I I I II I " " n~8- I 72 I I 1 i

. --- , 87'
-80 .

'UG 70' , ! , J
0" .< z , " ,I I , i , ' -, ! . , ' ' I' ,.;, : LI 1

• oJ Ii, • : II! U i ~! ,I 'Ij, r Ii: : Lilli wi ,F 571/ ri
----! ' , 1Q~9UL:..

] I ., I' ,:,"r::-:-
',::1

ItISw>"'~_

.- 1-60 ...OI~

ef-e- vv
A-flat A B CD-flat E-flat F G A C E-flat G C E-flat G C

Catalog 1 and interrupt it to get back into your program. You

may save a little time in the long run by assigning PACK to a

key; just ASN ALPHA PAC K ALPHA and press any key that

doesn't already carry an assignment that you need.

~ow GTe .001 and BG. Delete the text line -- the

starburst at the end of the text line is the captured

superfluous 1. SST to see 02 £-3 , a synthetic exponential

data entry line, often called a "short-form exponent".

You can try this synthetic instruction by SSTing in RU~

mode. ~ou'll find that E-3 works just as well as 1£-3. It

obviously saves a byte of program memory, but you should also

be aware that it executes faster than lE-3 to boot.

Lxecution time, but not memory, can also be saved by

using the decimal ~oint instead of the digit ~ for a zero

entry, and E instead of the digit 1 for an entry of one. Th~

lone decinlal point is not a synthetic instruction, but the

lone £ is. To create it, just grab the STO prefix from a STO

27 instruction. Row 1 column B of the uRC shows that the 27

suffix v.ill become an EEX instruction.

It was stated earlier that l'ACI(ing is necessary when you

want to grab the leading 1 from an exponential data entry

instruction. ri'he reason is that all digit entry instructions

are preceded by an invisible HULL byte (row 0 column 0) that

serves solely to separate the new digit entry instruction

from the previous instruction. Do not confuse NULL bytes

with the NULL message that appears when you hold a key down

for 2 seconds after the function preview appears. As its name

implies, a NULL byte is a place holder that does nothing when

executed (except when it is a suffix in an instruction like

X<> 00 or EREG 00). NULL bytes, which are always invisible

except when they are within text instructions, are created

when instructions are deleted and are removed by PACKing.

This behavior will be explained and illustrated in Chapter 5.

In the first example of this section we used PACK to

remove the null that the l1P-41 inserted between 01 ENTER + and

02 lL-3 . If line 01 had been a digit entry instruction, the

-21-

null would not have been removed by PACKing. It would have

been needed to maintain the separation of lines 01 and 02.

Except for this special case, PACKing will always remove the

null.

But there is another way to remove the null. One can

simply key in a one-byte instruction to fill the space that

is being held open by the null. Let's try this on the E-3

example. Clear line 02 and key ip

01 ENTERt

02 lE-3

There is now an invisible null between lines 01 and 02. Since

we want to grab the 1 from 1E-3, not the null, we fill the

null first. GTO .001, or just BST, and press RDN (roll down).

This is a one-byte instruction that overwrites the NULL byte.

Now BG and capture the leading 1. Backarrow twice and you'll

have

01 ENTERt

02 E-3

Thus the addition of two keystrokes to the procedure

introduced at the beginning of this section eliminates the

need for PACKing. This can be especially advantageous when

you're adding a synthetic exponential data entry instruction

to a long program which takes several seconds to PACK.

Chapter 5 will fully explain and illustrate the elusive

behavior of nulls. It uses a synthetic technique to make them

visible. Ambitious synthetic programmers who want to try

fancy tricks like constructing a synthetic line -E should

note that whenever you want to inciude a negative sign in a

digit entry line the appropriate byte is row 1 column C, NEG,

not row 5 column 4, CHS. The CHS key governs two different

operations: negating a digit entry and negating an existing

number.

-22-

2C. Flag Register Control

Normally when a program constructs an alpha message

containing numbers, the display mode is altered. For example

the sequence

01 1. 01

02 STO 00

03 FIX 0
04 CF 29

05 LBL 01

06 "INPUT

07 ARCL 010

08 "~-? "

09 TONE 9

10 PROMPT

11 STO ING

12 ISG 010

13 GTO 01

"

00

Register number index -- 1 to 10

These two steps are needed to make

the register number appear without

a decimal point in the prompt

(Note there is a space following T)

Append the register number

(key in input here)

Store the input in the current

register; add 1 to register index

Line 07 is obtained by ALPHA shift EeL

o 0 ALPHA, line 08 is ALPHA shift XEQ 3

ALPHA, line 109 is XEQ ALPHA TON E

ALPHA 9

prompts for inputs numbered 1 to 110 and stores them in data

registers 1 through 10. It has the undesirable feature that

lines 103 and 04 change the display mode to FIX 0. Synthetic

programming offers an easy way to avoid altering the display

mode in cases like this one.

It's time for a brief digression about flags. Since a

flag has only two possible states, set and clear, it makes

sense for the calculator to use one bit (binary digi!) to

represent each flag. As it happens, the set state is

represented by 1 and the clear state is represented by 0. We

saw in Chapter 1 that a byte consists of eight bits. The

HP-4l Owner's Handbook reveals that a register consists of

seven bytes. Thus there are 8x7 = 56 bits in a register. If

-23-

the number 56 sounds familiar, perhaps it's because the HP-41

has 56 user and system flags, numbered kl through 55. So it

shouldn't be too surprising that all 56 flags occupy exactly

one register in the HP-41.

The flag register is one of the sixteen HP-41 system

scratch registers. You already know the first five: the stack

registers T, Z, Y, X, and L. The names of the rest are found

along row 7 of the QRC. The name of the flag register is d

(row 7 col Ulilll E).

Now to the case at hand. We want to preserve the display

setting while constructing a numerical message. 'I'o do this we

can RCL d before forming the message, saving the original

flag register in X. After forming the message we STO d ,

transferring the original flag register contents from X back

iGto the flag register. This restores all 56 original flag

settings, il1cluding the display setting.

For the example given at the beginning of this section,

this is accomplished as follows. Key in

01 1. 01 ID / liD inputs:

02 STO 00

03 LBL 01

04 "INPUT "
05 STO IND 16 RCL d 144,126

06 AVIEW

07 FIX 0

08 CF 29

09 ARCL 00

10 STO IND 17 STO d 145,126

11 AVIEW

12 "~.? "

13 TONE 9

14 PRQt.1PT

15 STO IND 00

16 ISG 00

17 GTO 01

-24-

GTO .009, BC, and delete the text line. SST to see STC d .

GTe .004, BG, backarrow, and SST to see RCL d . The IND 17

byte (row 9 column 1) became STa, the IND 16 byte (row 9

column 0) became RCL, and both AVIEW instructions (row 7

column E) became d suffixes. This version of the program will

prompt for input for data registers 1 through HJ. When it is

finished, the display mode will be unchanged, rather than the

distinctly unfriendly FIX 0.

81 1.81
82 STO 88

83tLBL 81
84 "INPUT"
85 RCL d
86 FI>=: 8
87 CF 29
88 ~RCL 88
89 STO d
18 .~?

11 TONE 9
12 PROI'IPT

13 STO IHD 813
14 ISG 88
15 GTO 81

'I'he RCL d / STO d combination can be used anywhere you

want to preserve the status of the display mode, trig mode,

or other flags. The original flag register can be stored

anywhere in the stack, but it should not be stored in a

numbered data register. Data retrieved from a numbered data

register is subject to normalization. If the 56 bits aren't

in a configuration that the HP-41 recognizes as an alphabetic

or numeric form, it will change bits as necessary to make it

an alphabetic or numeric value.

The detailed specification of what bit patterns are

recognized as alphabetic or numeric data is beyond the scope

of this book but for our purposes here an abbreviated rule on

normalization will suffice. Any 56-bit data pattern whose

-25-

first four bits are 0001 can be safely stored into and

retrieved from a numbered data register. If the first four

bits are other than 0001 the data is subject to normalization

(hence possible alteration) when retrieved. 'This is of course

no problem if the data is actually numeric or alphabetic.

Normalization is only a problem when dealing with

non-standard bit patterns such as flag register contents.

If you wish to store a set of flag settings in a

nUliliered register, you need to set the first four bits to

0001 beforehand. This is easily done as the following example

will illustrate. Clear the previous example except for its

RCL d and STO d instructions. Then GTO .000 and key in

01

02

03

04

05

06

07

08

09

10

11

12

CF 00

CF 01

CF G2

SF 03

RCL d

STO 01

GRAD

SF 01

CF f:3

STOt'

RCL 01

STO d

These first four lines set the

first four bits of the flag

register to the pattern 0001.

Switch out of PRGi'l mode, RTN, and Ris. Note that flag 1 and

CRAL r;,ode are set. Ris again to see the flags returned to

their original state, with flags 0, 1, and 2 clear and flag 3

set. If you don't mind an example that requires a little

cleanup work with your flags you can change line 01 to SF 00

and verify that many flags are changed when the program is

executed. For a quicker cleanup you may wish to use the copy

of the original flags that will be residing in stack register

Y at the completion of the program. Since this copy wasn't

stored in a numbered data register it's unchanged. Just RDU,

GTO .012, and SST to restore the flags.

-26-

2D. Program Pointer Control

The HP-41 maintains a program pointer in one of its

operating system scratch registers. This poiuter designates
what part of memory will be displayed when PRGM mode is

selected. The system scratch register that contains the

program pointer (together with some of the return pointers -­

these are discussed in Section 6A of this book and in the PPC

ROM User's Hanual under "Line by Line Analysis of 1!iI") is

designated the "b" register by the i-iP-41 operating system.

To illustrate the ease of program pointer control on the

HP-41 try the following example. Clear the previous example

and key in

01 ENTERt I!i.I / IimI inputs:

02 STO IND 16 RCL b = 144, 124

03 HEAN

04 STO IND 31 TONE 89 159, 89

05 SIN

06 8'1'0 IND 17 STO b 145; 124

07 MEAN

GTO .005 , bG, backarrow, GTO .003 , BG, backarrow, GTO .001,

BG , backarrow twice, and PACK (do not GTO ..). Switch to RUN

(non-PRGM) mode, RTN, and R/S. You'll hear the rapid staccato

of repeated TONE 89's. The "flying goose" is frozen in place.

How does this work? The RCL b instruction copies the

program pointer into the X register. The TONE 89 is executed,

then the STO b puts the previously recalled value back into

the program pointer. At the time the program pointer was

originally recalled the next instruction to be executed was

TONE 89. Therefore the STO b instruction causes execution to

jump back to the TONE 69 instruction. If you RTN and SST this

program you can verify that the sequence of execution is RCL

b, TONE 89, STO b, TONE 89, etc.

The reason that the flying goose holds still when this

program is run is quite simple. The goose is programmed to

move one position each time a LBL is executed. But there are

-27-

no labels in this program, despite the looping. Thus the

goose is unable to move.

The next example provides the answer to an HP-41 trivia

question: What is the shortest "infinite loop" on the hP-41?

The answer is one program line, 2 bytes. Delete the TONE 89

from the previous example and PACK. You now have

01 RCL b

02 STO b

If you RTN and SST this program, you'll find that the

execution sequence is RCL b, STO b, STO b, STO b, STO b,

ad infinitum, although the line number keeps increasing. For

SST execution the HP-41 always increments the line number

unless it executes a GTO, XEQ, RTN or END instruction, in

which case the line number is recomputed. The calculator does

not recognize STO b as a "jump" instruction, so it doesn't

bother to recompute the line number. If your SST finger were

extremely durable, you would find out that the line number

counts all the way up to 4094 before starting over at 02. As

you will learn in section 6A, the number 4095 has a special

meaning to the HP-41's internal programming. This number

means that the line number needs to be recomputed.

For non-SST, free-running program execution, the

calculator does not update the line number at each step. That

would needlessly slow execution.

Advanced synthetic programming techniques are needed to

fully utilize the power of the STO b instruction. The

ultra-fast Morse code program in Appendix B illustrates

precompiled indirect branching, a relatively straightforward

application of program pointer control. Also, the sequence 0,

STO b, GTO .002 is an easy way to move the program pointer

into the key assignment registers. Details of how information

is stored in the key assignment registers can be found in the

PPC ROM User's Manual, under "Background fora"

-28-

2E. Synthetic Text Lines

The HP-41 differs from its predecessors most notably in

that it provides alphanumeric capability. This capability can

be used to label outputs or prompt for inputs. However the

set of display characters available seems to be rather

limited. For example there are no parentheses or quotation

marks.

Synthetic programming techniques permit 21 additional

distinct display characters to be used in text instructions,

including parentheses, quotation marks, apostrophe,

ampersand, and others. These synthetic display characters can

be edited into a text instruction in a way which we shall

describe here. PPC ROM programs provide two alternate

methods. The simplest is to use I!I to create synthetic text

instructions directly. The "Q-transfer" method, which

requires a supportive program such as PPC ROtvl program ID ,
is also available. The first of these methods will be

presented in Chapter 3. The second shall be introduced in

Section 4B.

The byte-grabber method of creating synthetic text

instructions, which is introduced in this section, is fa1rly

simple and requires very little setup (just a byte grabber

key assignment). Therefore regardless of the availability of

other methods you should follow through the byte grabber

examples of this section. You may find it the most convenient

method for creating one or two synthetic text instruction&.

Owners of a printer or an Extended Functions module n~y

be acquainted (through the functions BLDSPEC and XTOA,

respectively) with other, more cumbersome ways of creating

synthetic display characters. In this section we will show

that synthetic text lines can be used to save many bytes over

the normal methods which use BLDSPEC or XTOA.

The structure of a n-character text instruction is quite

simple. A hex Fn byte (row F column n) precedes n bytes, each

of which represents a character. Thus n+l bytes of program

-29-

memory are needed to hold an n-character text instruction.

The character-byte correspondence is illustrated in the byte

table, which is part of the Quick Reference Card for

Synthetic Programming. For example a row 5 column F byte

displays and prints as Certain synthetic characters

appear substantially different on the printer compared with

their displayed form. For example row 0 column 4 displays as

A but prints as a . A byte is only interpreted as a character

when it is preceded by a row F byte that brings the byte in

question into the scope of the text instruction. In the

absence of a row F byte, program bytes are interpreted in the

normal manner, as instructions or suffixes for previous

instructions. Row F bytes can thus be regarded as TEXT

instructions that require suffix bytes. The difference

between TEXT instructions and most other instructions is that

the number of suffix bytes is variable and that a TEXT

instruction triggers a very different interpretation of

suffix bytes, namely the character interpretation.

Synthetic text lines can be created using the byte

grabber in a four-step procedure. First a text line of the

desired length is created, with X's in the positions where

synthetic characters are required. Then the TEXT instruction

prefix is grabbed. This frees the suffix bytes to be

instructions, rather than characters. In this form the X's

can be replaced by instructions corresponding to synthetic

characters. The final step is to release the grabbed TEXT

prefix, which then captures the edited bytes and converts

them to characters.

An example should make this procedure clear. Suppose we

want to create the text line "HP'S #1" . Clear the previous

example and key in

01 ENTERt Oil inputs:

02 "liPXS Xl" 247, 72, 80, 39,

83, 32, 35, 49 .
GTO .001 and BG but do not backarrow the text line. It

contains the captured TEXT 7 prefix that you'll need later.

-30-

SST several tunes and you'll see that you now have:

01 ENTER+

03 1:-

04 LN

05 E+X-l

66 y+x

07 RCL 00

08 E+X-l

09 STa 161

Lines 03 through 09 each correspond to a character from the

original text line. For instance, RCL 00 corresponds to the

space. Row 2 column 0 of the QRC verifies this

correspondence. What we'd like to do now is to .. replace the

E+X-l instructions that correspond to the X's. GTO .008 and

backarrow the £+;(-1 . We wanted a # symbol in this position.

Checking row 2 column 3 of the ~RC we find that the

corresponding instruction is RCL 03 . Key in RCL 03 as the

replacement for line 08. Now GTO .005 and backarrow the

E+X-l. Row 2 column 7 of the QRC tells us to key in RCL 07 as

the new line 05 to get the apostrophe character.

If you have followed the instructions carefully you

don't really need to PACK, but it can't hurt. You should have

01 ENTER+

03 1:-

04 LU

05 RCL 07

06 Y+X

07 RCL 00

08 RCL 03

09 STO 01

Now GTO .001, and DG. You have grabbed the TEXT prefix from

line 02. This released the question mark and the starburst to

become instructions. SST and you'll see that the question

mark became STO 15 (check row 3 column F). SST again and

-31-

you'll see that the starburst has regained its former

identity as a TEXT 7 instruction, in turn capturing the

following 7 bytes as text characters. 'l'hus we now have

01 ENTERt

02 "-?----II"
03 STO 15

04 "liP'S :J:Jl"

If you have a printer you may wish to compare the way

these synthetic characters print with the way they display.

(If you don't have a printer just look at the lower right

corner of each box in the QRC to see the way that byte prints

as a character.) You'll find that the apostrophe and the #

symbol print as expected, but the starburst vanishes without

a trace. This vanishing behavior is to be expected in program

listings from any character in rows 8 through F. This point

will be discussed further toward the end of this section.

The append instruction is unique among HP-41

instructions in its implementation. An append instruction is

a te~t instruction whose first character is the append

character f- (row 7 column F). Since the append character

takes up the first character byte of the text line and the

text line cannot exceed fifteen characters, the maximum

number of characters that can be appended is fourteen. If the

append character is synthetically inserted into a text

instruction in a position other than the first character

byte, it loses its privileged "control character" status and

becomes an ordinary character.

Let's edit some synthetic characters into an append

instruction. Clear the previous example and key in

01 ENTERt

02 "f-ABCDEFGHIJKL" .
GTO .001 and BG but do not backarrow. The byte grabber's text

line will hold the TEXT 13 byte from the former line 02 until

we are finished editing. SST through the program and you

should see

-32-

01 ENTER+

02 "-?----I'"

03 CLD

04 -
05 *
06 /
07 X<Y?

08 X>Y?

09 X<=Y?

HJ 1:+

11 1:-

12 HMS+

13 HMS-

14 NOD

15 % .
Line 03 is the append control character (row 7 column F).

Lines 04 through 15 correspond to the characters A through L.

See row 4 of the QRC for the correspondence. Now GTO .004 and

DEL 012 (XEc.. ALPHA DEL ALPHA 0 1 2). This deletes lines 04

through 15. We're going to replace all 12 characters by

synthetic characters. We can simply key in the instructions

corresponding to the characters we want. Try keying in these

instructions:

instruction: character:

04 - A

05 LBL 00

06 LBL 11

07 RCL 02

08 RCL 08

09 RCL 09

10 STO 11 7 (semicolon)

11 ASIN \
12 DEC

13 CLD

14 l/X
,..

15 + @

-33-

Now PACK just to be sure there aren't any nulls present.

Delete line 04 to create a NULL, then GTO .0101, BG, and

backarrow. You should see

Cll ENTERt

02 STO 15

03 "~_-1</J II (), _~_T@"

The I!iI inputs for this example are 253, 127, 0, 1, 12, 34,

40, 41, 59, 92, 95, 127, 96, and 64.

Put "ABC" in the ALPHA register and execute line 103. The

ALPHA register v,ill then contain "ABC-1</J,,(),_~-T@". If you

CLA and execute line 03 you'll get a surprise. The ALPHA

register will contain "l</J"(),_~-T0". The NULL (overline

character) disappearedl The general rule is that NULL

characters are visible only when they are interior or

trailing characters in the ALPHA register.

If you execute ASTO X, even the interior and trailing

nulls will be invisible in the X register, but they will

still be present. This can be verified by trying the X=Y?

test. The result will be NO if, for example, the X register

contains an invisible null while Y does not, even if the two

registers display the same way. This behavior is not useful

enough to merit an example, but you should be aware that

viewing an ASTOred string that contains nulls will not reveal

the full structure. You should use ARCL and AVIEW when in

doubt.

Printer owners may be aware that the printer function

BLDSPEC can be used to generate any synthetic display

character. E'or example the instruction sequence

01 (decimal point)

02 X<>Y

103 BLDSPEC

04 PRX

will create a single display character corresponding to the

decimal value (0 to 127) in the X register. It will then

print the character as well.

Try 38, GTO .001, R/S and you'll get the ampersand, a

-34-

synthetic character. Row 2 column 6 of the QRC shows how the

displayed version of the ampersand compares to the printed

version. Try 5, R/S and you'll get the one-armed man T. in the

display and the Greek letter ~ on the printer. Row 0 column 5

of the QRC verifies this result. A large number of the 128

standard printer characters display as starbursts. Something

like this must be expected since the 14 segment display does

not have the flexibility of the printer's dot matrix output.

Owners of the Extended Functions module have available a

powerful function, XTOA, that can be used to create synthetic

display characters. XTOA is a much faster version of PPC RQII1

routine liB . Assign XTOA (or ID) to a convenient key and

try CLA, 38, XTOA. Switch to ALPHA mode and you should see

the synthetic display character &. If you now do ALPhA(off),

5, XTOA, AL~hA(on), you'll see &T.. The one-armed man

character (decimal equivalent 5) has been appended to ~he

alpha resister. To compare the printed versions you can

execute PIU..

Printer mvners will appreciate the byte savings that are

possible by using synthetic text instructions to generate

lower-case and mixed-case text. Consider the normal method of

creating the printed output "Hewlett-Packard"

01 "H"

102 ACA

03 SF 13

(load H into the print buffer from ALPHA)

(switch to lower case)

04 "EHLETT-"

05 ACA

06 CF 13

07 lip"

08 ACA

09 SF 13

10 " ACKARD "

11 ACA

12 PRBUF

13 CF 13

(add lower case characters to the buffer)

(switch back to upper case)

(print the buffer contents)

(back to upper case mode)

-35-

The byte count for this monstrosity is 37 bytes, compared

with 18 bytes for the synthetic text line "Hewlett-Packard"

followed by a PRA command. Moreover every mode change,

between upper and lower case in this example, uses a valuable

print buffer "register" (actually a byte). This is discussed

in more detail on page 19 of the July 1980 PPC Calculator

Journal. The synthetic text line approach conserves print

buffer space as well as program memory. Of course most of the

lower case characters (all but a,b,c,d,e) in the synthetic

text line appear only as starbursts in the display, although

the text line prints properly in a program listing. If you

can tolerate the somewhat messy SST display, you can achieve

dramatic everyday byte savings by using synthetic text lines

wherever you require lower-case or mixed-case printing.

Synthetic text instructions have much wider application

than just generation of nonstandard display characters. They

provide a simple, fast method to enter needed bytes under

program control. Byte loader programs (Chapter 3), key

assignment programs (Chapter 4), and other very powerful

synthetic programs use synthetic text lines extensively.

Using the first example from this section, we can illustrate

the simplicity of synthetic text lines compared to the next

best alternative, the XTOA function of the Extended Functions

module.

Goal: Create the synthetic text "HP'S #1"

Best Method: synthetic instruction 01 "hP'S #1"

Total bytes used: 8 Execution speed: fast

Next Best: use XTOA 01 "HP"

or liB 02 39

03 XTOA (or XROM ID)
04 "~-S " (note the space)

05 35

06 XTOA (or XROM lim)

07 II ~.l"

Total bytes used: 18 Execution speed: slower.

-36-

Printer owners who like to use BLDSPEC to manufacture

"custom" printer characters can save bytes and speed up their

programs by using synthetic text instructions. The sequence:

7-character synthetic text instruction, RCL M, ACSPEC,

substitutes for the normal sequence: number, BLDSPEC, number,

BLDSPEC, ... ,number, BLDSPEC, ACSPEC. The RCL M instruction

will be explained in section 2G. Details of the

correspondence between the normal BLDSPEC numbers and the

required 7-character synthetic text instruction can be found

in the PPC ROM User's Manual under 1mI, or in the June 1980

PPC Calculator Journal.

For more exotic synthetic programming, synthetic text

instructions often need to contain bytes from rows 9 through

F of the QRC, which correspond to multi-byte instructions.

The byte-grabber technique presented earlier in this section

does not usually allow creation of such text instructions.

The easiest way to create these instructions is to use a byte

loader program, as you will see in Chapter 3. But bewarel

Synthetic text instructions containing bytes from rows 8

through F appear as expected in the display but print

strangely. These row 8 to F bytes all display as starbursts.

If they are printed via PRA, they will appear as shown on the

QRC. For example a row C column D character displays as a

starburst but prints as M. However if you list the program,

all the row 8 to F characters in the text instructions will

disappear, without even leaving spaces to hint at their

presence. Certain of these characters, the ones that are

shaded on the QRC, will cause additional strange behavior

when listed (skipping spaces, switching to lower case, etc.)

If this messes up your listing, manually GTO the following

line and LIST the rest of the program. Incidentally, NORMAL

mode listings give a slight hint of the presence of synthetic

characters in that the statement number will usually be

indented if an invisible character is present. If you're

interested in learning more, consult the July 1980 PPC

-37-

Calculator Journal for an extensive, clearly written

description of these printer control characters.

2F. The TEXT " instruction

The HP-41 allows text instructions up to 15 characters

long, or 14 characters plus the append symbol. The first byte

of a text instruction is taken from row F of the QRC, with

the column number denoting the number of characters in the

instruction.

But what about column zero? By logical extension, a row

F column 0 byte would appear to denote a text line of length

zero. One might therefore expect such a TEX'r 0 instructions

to be the equivalent of CLA. Let's find out. Key in

01 "ABC"

02 STO IND T

IIiJ input:

240

_ input:

240, 240

To key in line 02, press STO shift

(decimal point) 9 (T).

GTO .001, BG, and backarrow. The STO has been removed, and

the IND 'I (row F column 0) now assumes the identity of a TEXT

ki instruction. This instruction displays as a text symbol

with nothing following. It prints as "" (nothing between

quotation marks). Now run the program and switch to ALPHA

mode. Surprise! The "ABC" that was loaded into the ALPHA

register by line 01 is still there. The TEXT 0 instruction is

not equivalent to CLA. Further experimentation will reveal

that TEXT 0 has no effect on the ALPHA register or any other

register (including the flag register). TEXT 0 will, like

virtually all other program instructions, enable the stack

1 i ft. (S ee the Owner's Manual for a discussion of stack

lift.)

What is an instruction like TEXT 0 good for if it

doesn't do anything? Suppose we want to increment an unknown

integer in the Y register without disturbing the stack. ISG Y

does this but it will also skip a line if Y was non-negative.

-38-

Therefore we need to follow ISG Y by an instruction that will

not affect the calculator's state whether it is executed or

not. TEXT 0 is precisely the kind of instruction we want.

Moreover it is the only such one-byte instruction on the

HP-41. "Do nothing" instructions like TEXT 0 are called NOPs,

short for no operation. NOP keys can be found on the HP-25,

hP-33, liP-55, and some other calculators. Synthetic

techniques have now given your ilP-41 a similar capability.

You'll see sequences like

01 ISG X

02 TEXT I:)

in many synthetic programs. You can use such a sequence

anywhere you need an "increment but do not skip" capability.

Of course TEXT " can also be used following a DSE' instruction

to decrement without skipping.

2G. Usirl'J the ALPhA register for data storage

We have seen that one byte of program memory is required

to represent each character in a text instruction. We might

therefore expect that the 24-character ALPHA register would

require 24 bytes of non-program memory. This is equivalent to

24/7 = 3 registers plus 3 leftover bytes. These registers,

together with the stack registers, the flag register, and

others, are located in a separate section of memory called

either system scratch or the status registers. The name

status registers comes from the fact that the card reader's

WS'l'S (write status) function records these registers on track

1 of a status card.

Since the flag register and the program pointer can be

accessed directly by synthetic instructions, perhaps we can

similarly access the 3+ registers that comprise the ALPHA

register. The suffix bytes for the flag register and the

program pointer register are from row 7, columns E and C

respectively, of the QRC. You have probably begun to suspect

-39-

that the other row 7 suffixes correspond to the other system

scratch registers. But before you start experimenting,

beware. You can safely RCL any of the status registers (the

"normalization" of stored data mentioned in section 2C does

not apply to status register operations), but don't alter

their contents until you know what you're doing, unless you

are prepared for the worst. For example if you clear status

register c you'll get MEMORY LOST.

The ALPHA register occupies status registers M, N, 0,

and part of P. As long as you don't mind altering whatever

was in the ALPHA register, you may use M, N, and 0 freely,

just as you would use numbered data registers. From what you

have learned about using the byte grabber you should be able

to create the following program:

01 LBL"RSHF"
02 CLX

03 X<> 0

04 X<> N

05 X<> M

If you need help, see the instructions at the end of this

section.

For the moment let's concentrate on the X<> M

instruction. Try the sequence CLA, 1.274065002 E-40, X<> M.

For the X<> M you can GTO .005 and SST in RUN (non-PRGM)

mode. Now switch into ALPHA mode and you'll see r.'@e-)T

What's going on? Let's refer to the QRC to identify the 7

bytes that comprise this character string. Designated by row

number r and column number c the 7 bytes are shown below.

BYTE IN HEXADECIMAL 01

BYTE IN CHARACTER FORM ~

REGISTER IN NUMERIC FORM +1.

t'
SIGN

27

.
27

-40-

40 65

• e

40 65

MANTISSA
(10 DIGITS)

00 29 60

- I T

00 2E- 40

EXPONENT I I L-..J

SIGN

The fourteen hexadecimal digits that comprise the seven bytes

are 01274065002960. The ten digits of the original X-resister

contents are immediately recognizable as the second through

the eleventh of these 14 digits. The first of the 14 digits

is a sign digit. It is zero for positive numbers, 9 for

negative numbers, and 1 for alpha data. The last three of the

14 digits represent the exponent and its sign. If the twelfth

disit is zero the exponent is positive; if the twelfth digit

is 9 the exponent is negative. The last two digits are the

exponent digits if the exponent is positive. If the exponent

is negative, the last two digits are 100 plus the negative

exponent. In this case the exponent is -40, so the last two

digits are 100+(-40) = 60. A simple rule that works for

either positive or negative exponents is: add 1000 to the

sisned exponent (that is, add the exponent to 1000 if it's

positive, subtract the exponent from 1000 if it's negative).

heep only the last three aigits of the result. This gives the

correct exponent digits for the HP-41 internal

representation. In this case 10010-40 = 960.

If we execute CTO .005 and SST again to execute xc> M,

the number 1.2740651302 E-40 returns to the X-register and

;,LPhA is again clear. Now try another example. Vi'ith the same

number still in X, execute Xc> 1'1, switch to ALPHA mode, press

append, backarrow, and A. You now have the string ;';'@e-)A .

Switch out of ALPhA mode and execute Xc> 1'1 again to get

1.274065002 E-59 . Since the character A is hexadecimal 41,

the exponent became 41-100 -59.

Feel free to explore further the equivalence of numbers

and seven-character alpha strings using the Xc> M

instruction. Most numbers will consist primarily of starburst

characters. You should be aware that if you bring an alpha

string into the X register using Xc> M, the result may behave

strangely if the two sign digits are not zero or 9 or if

there are digits other than 0-9 (that is, nonde c imal di 9 its)

present.

When you're using M as a scratch register to store a

-41-

number you probably won't care what the number looks like as

a character string, but the character/number equivalence can

be exploited in some advanced synthetic programming

techniques. For example, if we wanted to enter the number

1.274065002 x 10-40 in a program we could save 5 bytes of

program memory by using "1<'@e-)TI followed by RCL M.

The xc> ~ and xc> U instructions behave similarly to xc>

~1. The difference is that X<> H places the number in the

rightmost 7 positions of the ALPHA register. The instructions

Xc> N and Xc> 0 access the next two groups of 7 characters,

moving from right to left. Figure 2.2 should make this more

clear. You may also wish to try this short example. Load

"ABCDEFGHIJKLMNOPQRSTUV" into the ALPHA register. Execute CLX

and X <> 0 (use GTO .002, SST, SST). The ALPHA register now

contains "A-------IJKLMNOPQRSTUV". The seven characters that

were occupying the 0 register (see Figure 2.2) have been

replaced by the over line characters that result from null

bytes (row 0 column 0). The 0 register now contains the

number zero. Execute Xc> N and ALPHA will contain

"A-------BCDEF'GHPQRSTUV". Execute Xc> 0 now and you'll get

"AIJKLMNOBCDEFGHPQRSTUV". Thus, in addition to their utility

as data storage instructions, the STO, RCL, and Xc>

instructions for status registers M, N, and 0 can be used to

slice up and reassemble character strings in the ALPHA

register. These character manipulation capabilities are used

extensively in advanced synthetic programming to isolate

bytes for decoding or to replace certain bytes of a string.

One easily understood string manipulation application is

a 7-character righe-handed alpha shift. The program "RSHF"

performs such a shift for strings of up to 21 characters,

removing the rightmost 7 characters.

01 LBL"RSHF"

02 CLX

03 Xc> 0

04 Xc> N

05 Xc> H .

-42-

P 0 • ..
II II II

I I I I I
I . at CHARAmlllYTEI

.,
EXAMPLES: I

I I I I I A III C I

I I I

Figure 2.2 The ALPHA register. Character strings of

length 1 to 24 are always right-justified. Leading positions

are null (hexadecimal 00) and are invisible.

For example "ABCDEFGHIJKLt-1NOP", XEQ "RSHF", yields

"ABCDEFGHI". You can SST in ALPHA mode to see how "RSHF"

works.

~ow let's see how access to status registers M, N, and 0

can help us in numeric programming. Having three extra

registers "on the side" can greatly alleviate register usage

conflicts. You can now write many of your subroutines so they

don't use any numbered data registers. That makes them

compatible with any program that only uses numbered

registers. For example many of the routines in the PPC ROM

use no numbered registers, so that programs that call these

routines are free to use any and all numbered data registers.

As a further aid to compatibility it is good programming

practice not to rely on the contents of M, N, and 0 to remain

the same when a subroutine is called.

Very short subroutines can often use part of the ALPHA

register to avoid using either stack registers or numbered

data registers. The ideal goal is operation equivalent to

internal functions saving X in LASTX, saving the T

register contents (in T), and providing the result in X.

-43-

As an example let's write a subroutine named "CNK" that
will compute the statistical combination function,

C(n,k) = nl

kl(n-k)l

(n-k+l)(n-k+2) ••• n

k(k-l) •.. 1

the number of possible combinations of n items taken k at a
time. This routine is to take the values of nand k from
stack registers Y and X respectively and is to provide the
result C(n,k) in X. The previous contents of Z and T are to
end up in Y and Z as they would for a built-in function. The
value k is to be saved in LASTX, while n is to be saved in T.

Due to the complexity of the calculation, "CNK" cannot
preserve the contents 0= Z and T without using a scratch
register. We will use status re~ister M. This makes "CNK"
compatible with any callin~ program that uses only numbered
data registers. A sample "CNK" ro~tine is listed below so you
can key it up and try

01 LBLICl.K"

02 -
03 E

04 STO t-l

05 RDH

06 LASTX

07 X>Y?

08 X<>Y

09 LBL 01

HJ X<>Y

11 ISG X

12 TEXT 0

13 ST* M

14 X<>Y

15 ST/ M

16 DSE X

17 GTO 01

18 X<>Y

19 RDN

it out.

-44-

m / _ inputs:

27 or 27, 0

145, 117

240 or 240, 240

148, 117

149, 117

2121 X<> M

21 END

206, 117

To create the synthetic lines use STO 27, STO IND 17, RDN,

STO IND T, STO IND 20, RDN, STO IND 21, RDN, STO IND 78, RDN.

For each of the six STO instructions, grab the prefix byte by

going to the preceding step in PRGM mode then pressing BG and

backarrow.

Test "CNK" using 88 ENTERt 3 XEQ"CNK", then 88 ENTERt 85

R/S. Both should give a result of 109,736. This is the number

of three-note chords on an 88-key piano.

Here's how "CNK" works. At the beginning X contains k

and Y contains n. "CNK" initializes status register Iv1 to 1 on

line 04 so that the ST* M and ST/ t-l instructions in the LBL

01 loop will work as required the first time through the

loop. After the execution of line 06, M contains 1,X

contains k, and Y contains n-k. ~hen lines 07 and 08

interchange the roles of k and n-k if n-k is smaller. rfhis

makes use of the identity C(n,k) C(n,n-k) to speed

execution where possible. The LBL 01 loop increments n-k and

multiplies the result into H. Then at line 14, k is brought

back into X, after which it is divided into M and

decremented. At this point (back at LBL 01 ready for the

second pass through the loop), X contains k-l, Y contains

n-k+l, and M contains (n-k+l)/k, the first factor in the

expanded expression for C(n,k) that was given above. The loop

is executed k times, after which X is zero and Y is n. The

last three lines put Y in T, and bring the result from M to

X, clearing tvi.

You may wish to change lines 1214, 13, 15, and 20 of "CNK"

to use status register 0 instead of H. This will allow alpha

strings of up to 14 characters to remain undisturbed in Nand

M when "CNK" is used.

-45-

Here is the promised step-by-step procedure for creating

ALPHA register access instructions. Key in

01 LBL" RSHP II IIlI / em inputs:

02 CLX

03 STO IND 78 X<> 0 206, 119

04 CLX

05 STO IHD 78 x<> N 206, 118

12.16 LASTX

07 STO IND 78 X<> ~l 206, 117

08 RDN

GTO .006, BG, backarrow, GTO .004, BG, backarrow, GTO .012.12,

BG, and backarrow. You now have the required synthetic

intructions for "RSHF".

2H. Using other status registers for data storage

Status registers P, Q, and a can be used under limited

conditions as temporary data storage. More details of how the

HP-41 operating system uses these registers can be found in

Section 6A of this book and on page 19 of the September 1979

PPC Calculator Journal, but we'll give a brief sUIlUnary here.

Status register P can be used for storage in a progra@,

but its contents will be altered if a digit entry line is

executed, or if any operation is performed that causes a

nurr~er to be displayed.

Status register Q can be used for storage as well, but

its contents are also susceptible to alteration. If you

execute a global ALPHA GTO or XEQ instruction (that is, a GTO

or XLQ that refers to a Catalog 1 or 2 label), you'll lose

whatever was in Q. This does not apply to ALPHA LBL

instructions. Nor does it apply to XROM instructions, which

are different in structure from ALPHA XEQ instructions, as we

shall see in the next chapter. U will also be altered if you

spell out an alpha name from the keyboard for a GTO, XEQ, or

LBL. Other jnstructions that alter Q are: any digit entry,

-46-

SIN, COS, R-P, P-R, ytX, SDEV, and any instruction that

causes the alpha register to be displayed (AVIEW, PROMPT, or

PSE with AON). Status register U is used extensively by the

82143A peripheral printer in its exchange of information with

the 41 mainframe. If you plan to have the 82143A printer

attached when you run your programs you should avoid using

the Q register for data storage.

Status register a can be used by any program that will

not cause the subroutine depth to exceed 2. This means that

if the program contains no XEQ instructions it must not be

called as more than a first level subroutine. If a routine

that uses status register a is called as a second level

subroutine, the END or RTN in the main calling program may

not halt execution as it should. If register a wasn't empty

(zero) a RTN will be attempted to an address given partially

by the former contents of register a. You should also realize

that any XEQ or RTN will disrupt the contents of the a

register, shifting it by two bytes. Don't execute PSIZE (from

the Extended Functions module) with anything in status

register a either. The calculator will think that your data

is a set of return addresses and it will adjust them as if

they were return addresses to be revised according to the new

SIZE. All this should be more clear after you read Chapter 6.

Problems (Solutions follow Chapter Six)

2.1 Using synthetic TONE P and normal TONE 8, construct a

sequence of instructions to produce a Morse code "CQ"

(dah-di-dah-dit, dah-dah-di-dah).

2.2 Using the byte grabber, make the synthetic instruction

-El. Hint: Make El first.

-47-

2.3 Using RCL d / STO d , write a short routine to view all

ten digits of the number in the X register without

altering the display mode. Hint: tvlodify the routine

below so that the display mode is restored.

01 LBL"VX"

02" "

03 GCI 9

04 ARCL X

05 AVIE\{

06 END

(2 spaces)

2.4 Using a RCL b / STO b loop, compute the Golden Ratio x

l+l/x, displaying successive approximations.

2.5 a) Construct a sequence using synthetic text instructions

that will generate a pronpt "X(n)=?", where n is an

integer from data register 00.

b) f-'lodify this sequence to preserve the display mode.

~.6 Construct an output labeling sequence that will displuy

"OUT=x,"'V" without altering the display setting, where x

is to ARCLed in FIX 2 from the X register.

2.7 Construct a complete MOD function that operates like a

built-in function. Registers Z and T are to be

preserved, L replaced by x, Y by Y mod x, and X by (y-y

mod x)/x. You will need to use a scratch register such

as t1.

2.8 Using the byte grabber, make the two-byte instruction hex

Fl FO (a single-character text instruction, where the

character is hexadecimal F0).

-48-

CHAPTER THREE

BYTE LOADING

If you constructed the examples of Chapter 2 by using

the byte grabber, you will probably agree that the byte

grabber is a powerful tool for rapidly creating many types of

synthetic instructions. However, if you need to create

several synthetic instructions at a time, another approach

may be even faster. A special program, called a byte loader,

can be used to create the desired instructions, loading them

directly into program memory. You need only specify the

decimal value (0 to 255) for each byte in the desired

sequence.

The theory behind byte loaders is described in the PPC

RO['; User's hanual under m and also in the December 19810

PPC Calculator Journal. Byte loading programs were pioneered

by several PPC members, including William Cheeseman, Roger

Hill, John tvlcGechie, William Wickes, and the author. This

book will confine itself to a discussion of how byte loaders

are used.

There are three different byte loading programs that are

available for your use in this chapter. The first of these is

called "LB" (load bytes) and requires only a "bare" HP-41 to

operate. This byte loader program, written by Clifford Stern,

occupies 214 bytes and fits on a single magnetic card.

The second is the PPC Rot,1 program m, a superb byte

loader written by Roger Hill. If you have a PPC ROM,

familiarize yourself with the instructions for BI They are

similar, but not quite identical, to those for "LB".

The third byte loader, called "LOX", requires an

Extended Functions tvlodule. This program, also written by

Clifford Stern, is a shorter, faster version of "LB" that

makes extensive use of Extended Functions module functions

like XTOA. If you decide to use "LOX", refer to problem 3.5

for the program listing.

-49-

Despite its compactness, "LB" does most of what the PPC

ROI'J vers ion m doe s, lacking on ly such di spe n sa b 1 e

conveniences as interruptibility and cleanup messages. All

the conveniences of the ROM version could not be incorporated

without unduly enlarging the program. RUM programs are not

constrained by length because they don't take up any of the

user memory. In any case, what "LB" gives up in amenities, it

gains in speed. If you have an Extended Functions Module, you

should probably use "LEX" (see problem 3.5), since it is both

shorter and faster than "LB".

If you have access to an HP-41 optical wand, you have

the option of enterinCj "LO" or "LBX" directly from barcode.

Appendix E contains barcode for all the utility routines in

this book, providing a fast, error-free method to enter these

synthetic programs into your HP-41. Be sure to use a

protective plastic sheet to avoid damaging the barcode. Of

course if you would like more practice with the byte grabber,

you can ignore the barcode for now.

If you do not have a PPC ROM or an ~xtended Functions

Module, start with the following instructions to create the

synthetic lines needed for Clifford Stern's "LB" :

01

02

03

04

05

06

07

08

09

10

11

12

13

14

ENTER+

STO IND 16

MEAN

STO IND 17

RDlJ

STO IND L

CLD

ENTER+

EUTER+

LBL 01

STO IND 78

lWN

STO IND 78

AVIEW

(Press STO shift 1 6)

(Press XEQ ALPfffi MEA N ALPHA)

(Press STO shift decimal L)

(Press XEQ ALPHA C L 0 ALPHA)

(Press ALPHA shift Ris ALPHA)

-50-

15 STO IND 78

16 AVIE~J

17 STO HID 17

18 RDN

19 S'1'O IND 78

20 AVIEW

21 S'l'O ItlJD 78

22 AVIEW

23 S'l'O IND 78

24 RDN

25 STO IND 17

26 LAS'I'X

27 S'l'O IND 78

28 LASTX

29 S'I'O IND 78

30 SDEV

31 STu IND 17

32 SDEV

33 STO IND Y (Press STO shift decimal y)

34 CLD

35 ENTERt

36 5'l'0 IND 78

37 SDEV

38 S'I'O IND 16

39 RDN

40 STO IND 17

41 SDEV

Now grab and delete the STO bytes from lines 40, 38, and 36

(for example for line 40 GTO .039, press the byte grabber

key, and backarrow) . Dackarrow line 35 (do not PACK) then

grab and delete the 5'1'0 bytes from lines 33, 31, 29, 27, 25,

23, 21, 19, 17, 15, 13, and 11. Delete lines 08 and lO9

(again, do not PACK), then grab and delete the S'l'O bytes from

lines 06, 04, and 02. uelete line 01 and key in the

nonsynthetic lines that are required to complete the

-51-

following listing of "LB". Line 61 is a text line containing

a single space. Use lE4 for line 71. If you like, the byte

grabber can be used to remove the leading 1. In fact, if

you're getting into the spirit of synthetic programming,

you'll probably want to replace the "I" digit entries by "E"

synthetic digit entry instructions.

If you're using the Extended Functions version of "LB",

the above procedure gives you all the synthetic lines you

need (plus a few extras to be deleted), except for line 34,

STO l~. To form this line, start wi th STO IlHJ 1 7, LASTX, aud

grab and delete the STO byte.

Clifford btern's byte loader "LB":

91*L8L 01
82 CLST
93 BEEP
94 STOP
95 GTO 'H"

96*L8l alB"
97 FS? 59
88 GTO 82
99 1
18 ENTERt
11 ENTERt
12 CUI
13 CF 21
14 AYIEW
15 -18
16 GTO 'H n

17tLBL 82
18 7
19 I

29 INT
21 FIX 9
22 CF 29

23 ARCL X
24 .~ REGS,"

25 TONE 8
26 AYIEW
27 P5E
28 RCL b
29 5TO {
39 ·~*tX·
31 XO [
32 XO d
33 CF 84
34 CF 85
35 CF 86
36 FS?C 87
37 SF 85
38 FS?C 88-
39 SF 86
48 FS?C 89

-41 SF 87
42 FS?C 18
43 SF 89
44 FS?C 11
45 SF 18
46 FS?C 12

47 SF 11
48 XO d
49 INT
58 DEC
51 1
52 +
53 ,I
54 %
55 +
56 +

57*L8l 83
58 1.887
59 ENTERt

68*L8l 94
61 • •
62 ARCL V
63 .~?

64 AVIEW
65 STO [
66 RDN
67 STOP
68 FC?C 22

69 GTO 85
78 OCT
71 E4
72+
73 XO d
74 FS?C 19
75 SF 28
76 FS?C 18
77 SF 19
78 FS?C 17
79 SF 18
88 FS? 15
81 SF 17
82 FS? 14
83 SF 16
84 XO d
85 XO [
86 '~**'
87 5TO \
88 ARCL V
89 XO \
98 ISG V
91 GTO 84
92 SIGH

93 XO t
94 LASTX

95 STO IND T
96 X<>V
97 STO t

98 Rt
99 DSE X

188 GTO 83
181 GTO 81

U12tL8l 85
183 '~*'
184 ISG X
185 GTO 85
186 XO t

197 RCl [
188 STO IND Z
189 XOY
119 STO t
111 GTO 81
112 END

LBlTlB
END 214 BYTES

Notes: suffix [means M line 30 is hexadecimal F4 7F 00 00 02

suffix \ means N line 61 is a single space

line 103 is hexadecimal F2 7F 00

-52-

Check your program very carefully against the listing.

As w~th any program that uses status register c, any errors

in it might be sufficient to cause MEMORY LOST when you run

it. Therefore it is a good idea to record the program on a

magnetic card so you will not have to start allover again

because of a minor mistake. Note that some of the synthetic

lines are displayed differently than they appear in the

printed listing. For example line 30 displays as T~--I and

line 103 displays as T~- • The instructions that involve

status registers M and N also appear differently in the

listing than in the display. H is printed as [and N as \.

This correspondence, which is important for several of the

status registers, is illustrated in row 7 of the QRC. For

example the suffix 0 prints as J.

INSTRUCTIONS:

Here's the procedure for using Clifford Stern's "LB".

The procedure for the PPC ROM's am is substantially

similar; details can be found in the PPC ROM user's manual.

At whatever location in program memory where you want to

create a group of synthetic instructions, key in the sequence

LBL"++"

+
+

+
etc.

+

+
XEQ"LD" •

(If you're using the PPC ROM, this last instruction will

change itself to XROM"LB".) The number of + instructions

should exceed the number of bytes you want to create by 16.

-53-

If you didn't key up the above set of instructions in

sequence, that is to say if you went back and inserted more

+'s, you should PACK. If a multiple of 7 +'s was inserted

then you don't need to PACK. The reason for this will be

apparent after you read Chapter 5.

Since you'll be using "LB" frequently, it is a good idea

to record the LBL"++" sequence on a card. If you key in 99

+'s (so that line 101 is XEQ"LB"), G'1'O •. , and GTO"++", the

sequence will fit on one side of a card. If you have an

extended memory module you could key in "++", SAVEP, to

create an extended memory file for the LBL"++" sequence. It

could then be called up as necessary by GETP. The magnetic

card approach has the advantage of being immune to MEMORY

LOST.

At this point you can switch out of PRGIvl mode and XEQ

"LB" from the keyboard or just press Rls if you're at the

last line of the sequence. "LB" will first tell you how many

registers are available for loading bytes, then it will

prompt for each of the seven bytes that comprise each

resister. 'l'he number of registers available is INT ((p-10)/7),

where p is the number of +'s that you keyed in. Table 3.1 is

a handy quick reference to determine the number of +'s

needed.

Number of +'s Number of registers Number of bytes

used available available

0-16 0 0

17-23 1 7

24-310 2 14

31-37 3 21

HJ+7n n 7n

Table 3.1. Number of +'s needed for "LB" setup.

-54-

In response to each prompt for a byte, you need merely

key in the decimal equivalent (0 through 255) of the desired

byte and press Rls. WARNING: If you wish to correct a numeric

entry before pressing Rls, you must press RDN (roll down)

before keying in the correct entry. This is necessary because

very important data is being held in the stack for use by

"LB". This warning does not apply to the ROM version of 1!lI.
When you have entered all the bytes that you need, just

press Ris without a numeric entry. This terminates the byte

loading process. If you run out of registers, "LB" will

terminate automatically. Let's try an example.

Suppose you want to create a copy of the "CMOD" program

from problem 2.7 Recall that the program listing (in the

Solutions section that follows Chapter 6) included LB inputs:

01 LBL"CHOD" Oil I _ inputs:

02 X<>Y

03 STO t-'i 145, 117

04 X<>Y

05 MOD

06 ST- M 147, 1.17

07 LASTX

08 S'1'1 M 149, 117

09 CLX

10 X<> M 206, 117

These decimal equivalents can be used to create the required

4 synthetic two-byte instructions.

Set up as described above with LBL"++", 24 +' s, and

XEQ"LB". Switch out of PRGM mode and Rls. You'll see the

message "2 REGS." followed by a prompt "l?". The "2 REGS."

message means that you can create up to 14 bytes (2 registers

times 7 bytes per register).

In response to the prompt "l?", key in the first decimal

input, 145, and Rls. Key in responses to each of the prompts

-55-

as shown below:

Prompt

17

27

37

47

57

67

7?

17

27

Response

145, R/S

117, R/S

147, R/S

117, R/S

149, R/S

117, R/S

206, R/S

117, R/S

R/S

The first seven inputs completed the construction of one

register, which was then inserted into the LBL"++" area. This

restarted the byte index at 1 (the first byte of the second

register). Then pressing R/S without a digit entry in

response to the prompt "27" terminated the byte loading

processing, completing the second register with NULL bytes

and storing it in the LBL"++" area before halting. When "LB"

halts you can press SST once to get to LDL"++". Then you can

switch to PRGM mode and examine your new synthetic

instructions. It is a simple matter to clean up the remaining

+'s and key in the nonsynthetic part of the "CMOD" program.

As you can see, very little knowledge of synthetic

programming is needed to operate the "LS" program. The only

part of the process that requires such knowledge is the

determination of what decimal inputs are needed to create the

desired synthetic instructions. In Chapter 2 you gained much

of this knowledge through using the QRC. For example you

should be able to look at row 1 of the QRC to determine that

-El can be created using LB inputs 28, 27, and 17.

There are still large areas of the QRC, particularly

rows A through E, that have not been explained here. These

areas are explained in some detail in Corvallis Division

columns in the PPC Calculator Journal July, August, and

September 1979 issues. This chapter will give an outline of

-56-

these areas, together with specific references for more

detailed information where appropriate.

What follows is a summary of how to determine which

decimal inputs are needed to create a given instruction. In

most cases you will also need to consult the QRC. Decimal

values are found at the lower left corner of each box in the

QRC. For example the decimal number 126 (row 7 column E)

corresponds to either the AVIEW instruction, the suffix d, or

the character t.

I. One-byte instructions

All these are nonsynthetic except for TEXT 0 (row F,

column 0, decimal 240). Any decimal value from row 0

or rows 2 through 8 will create a nonsynthetic

one-byte instruction unless it is preceded by another

byte that requires a suffix.

Digit entry instructions will merge themselves into a

single multi-digit numeric entry line unless they are

separated by a null or some other type of instruction.

Use decimal values from row 1, columns 0 through C, to

make synthetic digit entry lines. For example -E-3 is

decimal 28, 27, 28, 19.

II. Two byte instructions

Two-byte instructions have a prefix, or first, byte

from the yellow shaded area of the QRC.

The first category of two-byte instructions is those

in row 9, plus columns 8 through D of row A, and

columns E and F of row C of the QRC. These take the

first byte from the box containing the function name,

plus a second byte from the box containing the desired

suffix. Thus STO M is 145, 117; TONE C is 159, 104;

RCL IND N is 144, 246; LBL X (local label) is 207,

115.

-57-

The second category of two-byte instructions contains

the short form GTO instructions. These take the first

byte from row B plus a second byte of zero. The zero

is filled in by the IiP-41 the first time the GTO is

executed. The filled-in byte tells the processor the

jump distance and direction.

The third category of two-byte instructions contains

the GTO IND and XEG IND instructions. These take a

first byte of 174 (row A, column E). The second byte

is 0 through 127 for GTU IND, or 128 through 255 for

XEQ IND. Thus 174, 117 is GTO IND 1'1, while 174, 245 is

XEQ IND i'f.

The final category of two-byte instructions contains

all XRO!Vf's. These are peripheral functions that reside

in an external ROl'i (Read-Only Memory). Hhen the

peripheral is not plugged in, the function appears as

XROM i,j , where i and j are two-digit decimal numbers

from £) to 63 (actually'" to 31 for i). The number i

designates the identity of the peripheral -- i is

therefore called the ROM ID number. Certain

peripherals contain two 4-kilobyte Rm1s, each of which

has its own ROM ID. The number j is a sequential

number of the function (in Catalog 2 order) within the

4K ROM.

XROM instructions consist of a hexadecimal A (binary

1010) followed by two groups of six bits. The first

group of six bits denotes, in standard binary, the

identification number (0 through 31) of the external

ROM. For example, the printer is XROM 29, and the card

reader is XROM 30. The second group of six bits

denotes, again in standard binary, the number (0

through 63) of the function within the external ROl~.

For example, WSTS is the tenth function in the card

reader. This can be checked by executing CAT 2 with

-58-

the card reader in place and noting that WSTS is the
tenth function name to appear after the CARD READER

header. Thus WSTS is XROM 30, 10. In decimal byte

numbers this is 167, 138 (See Figure 3.1) In general,

the decimal byte number for XROM i, j are:

byte 1 = 160 + INT(i/4)

byte 2 64 * (i mod 4) + j

WSTS XROM 30, 10

1010 0111 1000 1010 --
A 7 8 A

167 138

FIGURE 3.1

A typical XROM instruction

and its decimal byte numbers.

III. Three-byte instructions

Three-byte instructions take a prefix, or first, byte

from the green shaded area of the QRC.

The first category of three-byte instructions consists

of the long-form GTO's. All GTO's that refer to labels

other than 00 through 14 are three-byte GTO's. However

with LB you can also create three-byte GTO's for

labels 00 through 14. This valuable synthetic

programming technique eliminates the 112-byte jump

distance limitation normally associated with LBLs 00

-59-

through 14. It's not that you can't get to a LBL 00-14

with a normal two-byte GTO instruction; it's just that

the GTO will be much slower. Jump distances of more

than III bytes cannot be "remembered" by the GTO

instruction as shorter ones can, because the binary

form of the jump distance doesn't fit into the space

allocated for it in the GTO instruction. The

three-byte GTO instructions have a larger space for

storing the jump distance, so there is no artificial

constraint on jump distance.

Jumps to a short-form label (00 to 14) that are

shorter than 112 bytes can use the normal two-byte

GTO, while for longer jumps you should in most cases

use a synthetic three-byte GTO. The difference between

a three-byte GTO 14 and a three-byte GTO 99, other

than the fact that the first is synthetic and the

second is not, is that the first requires a one-byte

label (LEL 14), while the second requires a two-byte

label (LBL 99). Thus there is an overall savings of

one byte by using the synthetic three-byte GTO

instruction.

Three-byte GTOs require the following decimal inputs:

byte 1

byte 2

byte 3

208

CJ

o to 127

Byte 3 designates the label nun~er. For example ~08,

0, 1 is a three-byte GTO 01, while 208, 0, 115 is GTO

X (this requires a local LilL X -- decimal 207,115).

The second category of three-byte instructions

consists of the non-alpha X£Q's. These are quite

similar to the long form GTO's. The only difference is

that the required byte 1 input is 224. 'I'hus 224, 0, 98

is XEQ 98; 224, 0, 116 is XEQ L (which requires a LBL

L -- decimal 207, 116).

-60-

To construct "compiled" GTOs and XEQs (that is, those

for which the jump distance has already been filled

in), refer to page 21 of the August 1979 PPC

Calculator Journal for the detailed byte structure

required.

The third type of three-byte instruction is the END

instruction. 'l'he appropriate "LB" inputs to create an

BND are 192 and 0 followed by a third input that

determine the type of END (see Table 3-2).

type of END byte 3 ioB input

packed END 9

unpacked END 13

packed .END. 41

unpacked .END. 45

TABLE 3-2

"LB" inputs for byte 3 of an END

Always pack immediately after creating an END or an

alpha LBL in order to incorporate it into CAT 1.

The LBLs and ENDs in Catalog 1 form a linked lis.t

upward from the .END. , with the distance to the next

higher LBL or END stored in the first and second bytes

of the LBL or END. The encoding of the distance is the

same as for a three-byte GTO or XEQ, except that the

direction bit is not used. (The direction is always

upward in program memory.) The instructions given here

for creating ENDs simplify matters by allowing the

calculator's PACK operation to fill in the correct

distance for Catalog 1 linkage.

-61-

IV. Instructions involving ALPhA strings

Text strings require a leading byte from row F of the

QRC (decimal 240 plus the number of characters in the

string) as explained in section 2E. Each character

then requires a single decimal input, usually between

o and 127. For example "X(5)=?" is decimal 246

followed by the six character bytes 88, 40, 53, 41,

61, and 63.

Append instructions are text instructions which have

an append symbol (row 7 column F = decimal 127) as the

first character. The leading byte should be chosen to

allow for the append symbol in the length of the

string. For example "H~" is decimal 242, 127, G4.

Alpha GTO instructions are simply text lines preceded

by a row 1 column D byte (decimal 29). Thus decimal

29, 243, 65, 66, 67 is GTO "AIlC". Alpha XE(,2

instructions consist of a row 1 column E byte (decimal

30) followed by a text string. For example XEQ "FX" is

decimal 30, 242, 70, 88. The mysterious WT instruction

found at row 1 column F is constructed much the same

as an alpha GTO or XEQ, but it is only good for

producing a crash condition that can be cleared by

removing and replacing the battery pack.

Alpha labels are composed of 4 + n bytes, where n is

the number of ~haracters in the label. The appropriate

LB inputs are 192, 0, 241 + n, 0, followed by the n

character bytes. Thus LBL"A", a synthetic global (that

is, CAT 1) label, is decimal 192, 0, 242, 0, 65. If

you want the synthetic label to be assigned to a key,

you'll need to use a nonzero value for the fourth

decimal input. You'll also need to set a bit in status

register ~ or e (see Section 6A). The correspondence

-62-

of decimal byte codes and bit numbers to key locations

is covered in the PPC ROM User's Manual under

background for m.

A much easier way to assign a synthetic global label

to a key is to use the built-in function ASN. For any

synthetic label that can't be assigned by ASN, you can

use the Extended Functions module's PASN function.

Only very strange labels like LBL ":" fall in the

class that requires PASN.

NOTE: You should always PACK immediately after

creatin~ an alpha LBL or END in order to incorporate

it into CATalog 1.

Practice with.LB until you're familiar with creating

the types of synthetic instructions that were

introduced in Chapter 2.

Problems

3.1 Use LB to create the sequence of instructions

E

STO 0

ST+ 0

X<> 0

STO t-l

ISG M

TEXT 0

EREG IND H

VIEH 0

FS? IND M

TONE E
II TT~TII

7'\1\1\ I

-63-

II}_ r II

ASTO N

VIEW N

This set of instructions is not particularly useful, but it

does illustrate a broad spectrum of synthetic instructions

that can be individually quite useful.

3.2 Write a short nonsynthetic program to convert XRON

numbers to the corresponding LB inputs. For an input of i

ENTER+ j the two outputs should be 160+INT(i/4) and 64*(i

mod 4)+j as explained in the section on two-byte

instructions. These two outputs are the decimal inputs

required by LB to create XROM i,j.

Write a synthetic version of this program that replaces i and

j by the two outputs without disturbing the contents of stack

registers Z and T.

3.3 Illustrate the use of synthetic local labels by creating

the sequence

LBL P

TONE 37

GTO P

(not LBL"P")

(displays as TONE 7)

(not GTO " P ")

3.4 Create a synthetic CAT 1 alpha label longer than 7

characters, for example LBL"RPN CALCULATOR" .

3.5 If you do not have a PPC RON, but you do have an Extended

Functions module, here is a shorter, faster version of "LB",

also written by Clifford Stern. The instructions for "LBX"

are iden.tical to "LB", and you can use "LB" to help key it

up. The required LB inputs to create "LBX" can be found in

the Solutions section following Chapter 6 if you're having

trouble. If you plan to use "LBX" regularly, you should

probably rename it "LB" and put away the original "LB".

-64-

81*LBL 8i 19 / 39 ytX 57 ufo?' 77 GTO 81
82 GLST 28 INT 48 j:ITO~: 58 AVIEW
83 BEEP 21 FIX 8 41 • 59 STO [78*LBL 135
84 STOP 22 CF 29 42 512 68 RDN 79 "f-t"

85 GTO "H" 23 ARCL X 43 HOD 61 STOP 88 ISG X
24 of- REGS." 44 ATOX 62 FC?C 22 81 GTO 85

86*LBL "LBX" 25 TOHE 8 45 + 63 GTG 135 82 ~:O c

87 FS-j 58 26 AYIEW 46 + 64 XTOA 83 RCL [

88 GTO 82 27 PSE 47 .1 65 :':0 [84 STO IND Z

89 1 28 RCL Ii 48 % 66 ISG Y 85 XOY

18 EHTERt 29 ••• 49 + 67 GTO 84 86 STU (,

11 EHTERt 38 XO [58 + 68 SIGH 87 GTO 81

12 CUI 31 -2 69 XO (, 88 END

13 CF 21 32 AROT 51tLBL 113 78 LASTX
14 AVIEW 33 RDN 52 1.887 71 STO INIi T
15 -18 34 STO \ 53 EHTERt 72 X()Y LBLTLBX
16 GTO "H" 35 ASHF n STO c END 168 BYTES

36 SIGH 54*LBL 84 74 Rt
17+LBL 82 37 ALEHG 55 " " 75 DSE X
18 7 38 8 56 ARCL Y 76 GTO 83

-65-

(Intentionally blank)

-66-

CHAPTER FOUR

SYNTHE'l'IC KEY ASSIGNMENTS

4A. Key assignment programs

Byte loader programs are a big step forward in

convenience from the byte grabber. Synthetic key assignment

programs add even more convenience. A synthetic key

assignment program can assign any one- or two-byte synthetic

or nonsynthetic intruction to any key. For maximum

convenience you can make a set of commonly used synthetic

function key assignments and use LB to create, any other

synthetic functions that are needed in your programs.

Key assignment programs are similar to byte loaders in

that decimal equivalents are used to construct bytes which

are stored in the appropriate section of main memory. Rather

than entering the decimal equivalents one at a time as with

LB, you load the stack with two decimal byte numbers plus a

row/column keycode.

The first key assignment programs were written by John

HcGechie in early 1980. They were a truly awesome achievement

given the state of the synthetic programming art at that

time.

Just as for LB, there are three different key assignment

programs that are available for your use in this chapter. '.l'he

first is called "MK" (Hake Key assignments) and requires only

the basic fIP-41. This program occupies three tracks on two

magnetic cards. It was written by Clifford Stern.

The second key assignment program is Em in the PPC

ROM, written by Roger hill. Em is a true masterpiece of

synthetic programming and is virtually immune to user errors.

If you have a PPC ROM, review the instructions for om in

the User's Manual.

-67-

The third program, called "MKX", requires an Extended

Functions Module. written by Tapani Tarvainen, it requires

only one magnetic card. It is shorter and faster than "MK" or

IimI , and is more forgiving of user errors than either. The

listing for "MKX" can be found at the end of this chapter

under problem 4.4.

Although it is quite a short program, Clifford Stern's

"[viK" incorporates many of the desirable features of the PPC

ROJYJ 's 1imI. As was the case for ID, all the conveniences

and error traps of IimI could not be incorporated in "r-1K"

without unduly enlarging the program. However the most

important error trap, KEY TAKEN, is implemented. A little

error checking by the user instead of the program saves many

bytes.

If you have an optical wand, you may enter "MK" or "t-'.KX"

directly into your iU·'-41 from the barcode in Appendix E. The

first time, though, it might be better for you to practice

using LB by keying up one of these programs.

"[V(K", wh~ch requires nothing but a "bare" hP-41, is

listed below followed by the decimal inputs needed to create

the synthetic instructions using LB. After you have used LB

to create the synthetic instructions, fill in the

non synthetic instructions in the normal way to complete the

program. Once again the suffixes N, N, 0, P, Q, and ~- appear

as [, \, J, +, , and T respectively in a printed listing,

although P and U are not used in this program.

Note that lines 11, 20, and 38 are not as they appear in

the listing. Especially misleading is line 20. Consult the

list of "LB" inputs following the program listing to

determine the composition of these and the other synthetic

program lines.

-68-

91+LBL "MK" 32 AYIEW 63 ISG Z 95 -1-*" 126 XOY

92 CLST 33 PSE 64 '" 96 XO \ 127 GTO 16
83 CF 02 65 ST+ X 97 XO d
94 CF 95 34+LBL 16 66 EHTERt 98 FS? IHD Z 128+LBL 93

95 CF 06 35 -PREtPOSTtKEY" 67 Rt 99 DSE Y 129 Rt

86 CF 21 36 TOHE B 68 * 188 SF IHD Z 139 OCT

07 192 37 AnEW 69 EHTERt 181 XO d 131 STO \

88 SIGH 38 "" 78 Rt 182 STO \ 132 (;LX

89 XO c 39 FS? 82 71 + 193 "1-+*****" 133 E4
18 :':0 Z 49 STO [72 ST+ Y 184 FC?C 86 134 ST+ \

11 •• 41 CLST 73 RDH 195 "1-*" 135 XO \

12 RCL b 42 STOP 74 FS? 85 186 XO] 136 XO d

13 RDH 43 UiSTX 75 + 187 FS? 95 137 FS?C 19

14 XO IND L 44 XEQ 93 76 Rt 188 STO t- 138 SF 29

15 X='i? 45 XEQ In 77 RCL \ 189 FC?C 85 139 FS?C 18
16 GTO 92 46 Rt 78 ri- 119 STO ' 149 SF 19

17 XO [47 X{8? 79 XEQ 83 111 XOY 141 (S?(; 17

IB -1-*" 48 SF 05 89 XO T 112 X=9? 142 SF 18

19 STO \ 49 ABS 81 X{P 113 GTO 91 143 FS? 15

29 "1-*****" 59 STO \. 82 SF 96 114 XO c 144 SF 17
21 XO \. 51 Rt 83 36 115 RCL \ 145 FS? 14

22 XO IHD L 52 XO \. 84 - 116 FC? 92 146 SF 16

23 Rt 53 El 85 FS? 96 117 '1-***" 147 XO d

24 ISG l 54 MOD 86 + 118 RCL \ 148 xo [

25 - 55 X{>Y 87 Rt 119 STO IND L 149 "1-**"
26 STO b 56 UISTX 88 SIGH 129 FS?C 92 159 STO \

57 j 89 FS? 95 121 ISG L 151 "1-*"
27+LBL 91 58 IHT 99 RCL e 122 SF 92 152 xo \

28 "1-****" 59 4 91 FC? 95 153 STO [

29 XO] 69 DSE Z 92 RCL ' 123+LBL 92 154 EHD

39 'KEY TAKEN" 61 X~Y? 93 STO \ 124 XO Z LBL'"K

31 TOHE 0 62 X=0? 94 FS? 96 125 STO c EHD 313 BYTES

LB inputs:

Line 09 206, 125 Line 11 241, 240* Line 12 144, 124

Line 17 206, 117 Line 19 145, 118

Line 20 247, 127, 42, 42, 42, 42, 42, 240 *

Line 21 206, 118 Line 26 145, 124 Line 29 206, 119

Line 38 241, 240* Line 40 145, 117 Line 50 145, 11ti

Line 52 206, 118 Line 53 27, 17 Line 64 240

Line 77 144, 118 Line 90 144, 127 Line 92 144, 122

-69-

Line 93 145, 118 Line 96 206, 118 Line 97 206, 126

Line 101 206, 126 Line 102 145, 118

Line 103 247, 1:<: 7, 0, 0, 0, 42, 42, 42

Line 106 206, 119 Line 1108 145, 127 Line 1110 145, 122

Line 114 2106, 125 Line 115 144, 118 Line 118 144, 118

Line 125 145, 125 Line 131 14:", 118 Line 133 27, 20

Line 134 146, 118 Line 135 206, 118 Line 136 206, 126

Line 147 206, 126 Line 148 206, 117 Line 1510 145, 118

Line 152 2106, 118 Line 153 145, 117

*Indicates an invisible character from rows 8 through F in a

text instruction.

t-iake very sure that you have keyed up "l'lK" correctly

before you try to use it. As ,lith "LB", 1'1EjVjOl<Y LOST is

possible if this program is keyed up or used incorrectly. 'I'he

theory behind "r.1K" is far too complex to discuss here. In

fact, writing a SIZL 000 key assignment program (one that

uses no numbered data registers) is the premier challenge in

synthetic programming. In this book we shall confine

ourselves to a discussion of how to use MK.

Instructions for using Clifford Stern's "MK"

1.) If you are using the time module, clear all alarrns. Any

alarms that are present when "MK" (or 1imI) is executea will

be turned into garbase, rendered useless by normalizatiotl.

You may replace the alarms after you've finished creatin9

your synthetic key assignments. Section 4E presents a handy

pair of routines that can automatically save all alarms in

extended memory and bring them back from extended melliory.

Executing the "SA" (save alarms) routine before "MK" clears

the alarms but saves them "off-line" for later restoration by

"HA" (recall alarms). PPC ROM users should take note that

alarms must be cleared before using ua or any routine that

-710-

calls ... (ICI, 113, ,. , or iii).
This restriction on alarms does not apply to "MKX" (see

problem 4.4).

2.) Make sure that a sufficient number of key assignment

registers is available before executing "}1I\". The number of

free re",isters may be checked by executing G'1'O .000 in PRGtJJ

mode. The number of key assignments that can be made using

" ['J f... " i s t wi c e the n u m be r 0 f f r e ere 9 i s t e r s , sin c e e a c h

register can hold two key assignments. 'fhe ppe ROt'l's IimI is

more elaborate and can detect the absence of free registers,

producing a "NO ROO~'l" error message.

3.) E;xecute "HK" to initialize the key assignment process.

The program will find the first unused key assignment

register so that previous key assignments are not disturbed.

Never interrupt "l'1K" (or "MKX"). If you interrupt "NK", there

is a small chance of getting MEt-lORY L05'I. Restart "~jK"

immediately if you interrupt it. If you interrupt "MKX" you

will not get MEMORY LOST, but you may lose access to Catalog

1. Therefore you should restart "NKX" immediately without

attempting to enter PRGM mode. Your attempt to enter program

mode may kick you out of the "MKX" program. 'l'his will force

you to MASTER CLEAR to regain control unless you can find the

former contents of status register c in the stack and execute

a s'ro c. This will make more sense after Chapter 6.

4.) When the prompt "PREtPOSTtKEY" appears, key in the three

components of the key assignment -- decimal byte 1, ENTER t,

decimal byte 2, I::l:J'l'ERt, user keycode (row/column), H/S. For

example to assign RCL b to the l/x key you would key in 144

EN'rcRt 12.4 l!.NTERt 12 R/S. The decimal equivalent of the RCL

prefix is 144, the decimal equivalent of the suffix byte b is

124, and the row/column user keycode for the l/x key is 12

(row 1 column 2 unshifted). The first two decimal numbers

must be integers from (() to 255, while the third input must be

a valid user keycode. A user keycode is a decimal number of

-71-

the form :.!:.rc, where r is the row number of the key, c is the

column number of the key, and the sign is negative if the key

is shifted. This is precisely the same form of keycode that

is displayed momentarily when you execute ASN, or that is

required as input for PASN (Extended Functions programmable

assignment). Both a Cind "Ii!;." allow you to assign the

shifted shift key (keycode -31), although "f.1KX" does not. If

you do assign a function to the shifted shift key, a function

that requires filling in a prompt is a good choice to prevent

accidental execution.

ldarning: Do not PACK, reSIZE, turn off, or use ASN when "M!',"

is halted for input, unless you are finished using it. Also

do not disturb the alpha register or LASTX.

5.) When the prompt "PREtPOSTtKEY" reappears (with the flag

2 annunciator set if you are using "MK"), you may enter the

three inputs for a second key assignment. This will canplete

one key assignment register.

6.) The prompt "PREtPOSTtKEY" will appear once again (without

the flag 2 annunciator if you are using "MK"), requesting an

input for the first key assignment of the next free register.

Repeat steps 4 and 5 until you have made all the key

assignments you want to make. Remember that you must not use

more registers than the number of free registers that you

observed before executing "t-IK".

7 .) v;llE:!n you have made all the assignments you need, you may

simply ignore the prompt for the next input. This is true

even if your last assignment did not complete the register.

however if you quit while flag 2 is set ("r-lK" only) you waste

half a register unless you plan to fill it with a normal

assignment using the built-in AS~ function or its cousin, the

E;xtended Functions module PASN function. Unlike "MIe", hSN (or

PASN) will always look for gaps in the key assignment

registers before taking a new register.

-72-

8.) If you try to make an assignment to a key that is already

assigned, the message "KEY TAKEL~" will appear. At this point

you have two choices. (But remember not to disturb ALPHA or

LASTX.) Your first option is to clear the key of its

assignment (ASN, ALPHA, ALPHA, key), re-enter the desired

assignment information, and Rls. The second choice is to

enter a new set of inputs specifying two decimal equivalents

and a different user keycode.

As an example of the power of "MK", let I s make the

following synthetic function assignments:

STO b -11

RCL b 11

tiC -21

!:ITO d -12

RCL d 12

x<> d -22

The steps are as follows:

STO I-I -13

RCL t-1 13

x<> ~'l -23

STO N -14

RCL t..j 14

X<> N -24

8'1'0 0 -15

RCL () 15

X<> 0 -25

1) Manually clear any assignments trom the top row, shifted

and unshifted, and the second row, shifted only.

2) Check that at least <3 registers (is assi<jnments at two

per register) are availaule by executing GTO .00u in

PRGl-i mode.

3) Swi tch out of PRGM mode and XEQ "MK". 0upply inputs as

shown.

Flag 2 Input

("MK" only) ("r-1K" , IimI , or "MKX")

clear 145, 124, -11, Ris
set 144, 124, 11, Ris
clear 145, 126, -12, Rls
set 144, 126, 12, Ris
clear 145, 117, -13, Rls
set 144, 117, 13, P../S

clear 145, 118, -14, Ris
set 144, 118, 14, Rls

-73-

clear 145, 119, -15, Ris
set 144, 119, 15, His
clear 247, 63, -21, Ris
set 206, 126, -22, Ris
clear 206, 117, -23, Ris
set 206, 118, -24, Ris
clear 206, 119, -25, Ris
set backarrow or ~gnore.

These synthetic functions are sufficient for about two

thirds of all synthetic program lines on average. For example

only one third of the synthetic lines in "LB" and "MK" are

outside this set of functions.

A few nonsynthetic functions are also handy to have

assigned. ~ecommended are

ASN "x<>y" 21 (press X-.>Y key for 21)

ASN "RDN" 22 (R. key for 22)

ASN "SIZE" 23 (SIN key for 23)

ASN "PACK" 24 (COS key for 24)

ASN "DEL" 25 (TAN key for 25).

'I'he first two of these assignments will eliminate the

search for LBL F or LBL G when you press X<>Y or RDN in USER

mode. This speeds response noticeably in many cases. The

other functions are just handy to have immediately available,

although the choice of key location is a matter of individual

preference. PACK and DEL are useful with the Byte Grabber.

The byte grabber or "LB" can be used to create any synthetic

function that you don't have assigned to a key.

Although you would normally use ASN to assign

nonsynthetic functions, as we did in this example, "MK" does

allow assignment of non synthetic as well as synthetic

functions. In response to the prompt "PREtPOSTtKEY", simply

key in a single decimal number from 0 to 255, followed by a

-74-

keycode. For X<>Y the decimal equivalent is 1137 for RDN it's

117. Check the QRC to verify the correspondence. For

multibyte instructions, it's the same idea: DSE is 151, FC?C

is 171, END is 192, G'I'O is 208, XEQ is 224, LBL is 207.

Non-programmable functions use decimal byte numbers from row

o of the QRC. For example to assign SIZE, PACK, and DEL using

"MK", you would use the single decimal inputs 6, 10, and 2,

respectively.

If you ever assign STO c or X<> c to a key you should

either clear it as soon as you have finished keying up

whatever program you're making or else plan to be very

careful. Accidentally pressing STO c or X<> c gives a

virtually certain t-IEMORY LOST.

For my own personal use, I find it convenient to have

X<> c on the keyboard. To help prevent disaster I assign it

to the relatively obscure location -21 (normally CLr). My

complete synthetic keyboard looks like this:

column: 1 2 3 4 5

row 1 shifted STO M STO H STO b

row 1 unshifted RCL M RCL N RCL b

row 2 shifted X<> c X< > d X<> M X<> l~ X<> 0

row 2 unshifted X<>Y RDN "EFT" eGOBEEP BG

row 3 no assignments

row 4 shifted DEL

row 5 shifted PACK

row 6 shifted SIZE XROM_ 114T XTOA

row I shifted STO Q X<>

["ow 8 shifted Q-LOAD

-75-

I find that this arrangement of key assignments is easy to

remember and requires very little switching in and out of

USER rrode when keying in synthetic programs, or even most

other programs.

On row I, 4 unused keys leave space for temporary

program or function key assignments.

On row 2, "EFT" is a program described in problem 4.5.

"EFT" allows you to execute Extended Functions or Time Nodule

functions from the keyboard, calling them by number.

The eGOBEEP function is a synthetic one-byte key

assignment that was discovered by Hobert Edelen. ~se the

decimal inputs 0 ENTERt 167 ENTERt keycode R/S. When you

press the key, the display shows eGOBEEP . If you till in

a decimal number k from (:) to 63, you'll get X HO!Vj 28, k , \vhich

includes the mass storage functions. If you fill in a k

between 64 and 99, you'll get XRO!Vl 29,k-64 , which covers the

full range of printer functions. For example PRKEYS is XROM

29,12, so eGOBEEP 76 will generate the PRKEYS command. The

printer function PRP (print program) requires an ALPHA input.

If you press eGOBEEP 77, you will not be prompted for the

ALPHA input. Instead the byte-reversed contents of status

register Q will be used, exactly as for the u-loader, which

is covered on the next few pages.

The "EFT" and eGOBEEP key assignments can be time savers

after you've learned the numeric equivalents for the

functions you use most often. A complete list of numeric

equivalents for "EF'l'" and eGOBEEP is presented at the end of

this chapter, accompa-nying the "EFT" program in problem 4.5.

Also on row 2 is the byte grabber, which requires

decimal inputs 247 and 63 plus a keycode. On row 6, XROM iii
is a PPC ROM function that consists of a sequence of short

synthetic tones. It provides a pleasant alternative to BEEP,

at the cost of an additional byte in a program. XTOA is

another assignment from the extended functions module. Its

usefulness will become apparent in the next section.

-76-

4B. The "poor man's byte loader"

'l'he last two key assignments on the preceding synthetic

function keyboard, STO Q and Q-LOAD, require additional

explanation. Together with one of several byte-building

programs, these assignments constitute a "poor man's byt~

loader". Assign these functions to convenient keys using

"MK". The decimal byte values are 145, 121 for STO Q and 27,

o for Q-LOAD. You'll also need the byte grabber and a RCL M

key assignment which you should still have on the keyboard.

If you are fortunate enough to have an extended

functions module, its XTOA function will serve very well as a

byte builder. If you have a PPC ROf.'i, its liS function will

work. These functions take a decimal input between 0 and 255

from the X re<;iister and create the corresponding byte, which

is then appended to the ALPhA register (meaning that it

becomes the last byte in status resister M). If you don't

have an extended functions ncdule or a PPC ROM, create this

short synthetic routine to do the same job.

01*LBL -DC"
02 OCT
03 E4
04 +
05 XO d
06 FS?C 19
07 SF 20
08 FS?C 18
09 SF 19

LB inputs:

Line 03 27, 20

Line 17 206, 117

Line 23 145, 117

18 FS?C 17 19 STO \
11 SF 18 28 "1-*-
12 FS? 15 21 CLX
13 SF 17 22 XO \
14 FS? 14 23 STO [
15 SF 16 24 RDN
16 XO d 25 END
17 ;':0 [LBLTDC
18 "1-**" END

Line 05 206, 126

Line 19 145, 118

-77-

54 BYTES

Line 16 206, 126

Line 22 206, 118

Note that this is the basic byte-building routine that

Clifford Stern wrote for his "MI<" and "LB" programs.

Use ASN to assign XTOA, m, or "DC", whichever you are

using, to a convenient key. Now we're ready to start. The

~-LOAV function creates a text instruction of up to 7

characters from the reversed contents of status register Q.

For instance to create the string "liP'S #1", we would first

create the string "1# S'Pb" in the ALPhA register, perform a

RCL M to extract it from the ALPHA register to X, then

transfer it to status register ~ and press the Q-LOAD key.

Let's try it:

CLA

49

35

32

83

39

80

72

XTOA

XTOA

XTOA

XTOA

XTOA

XTOA

x'rOA

(Use 1m or "DC" if you don't have

XTOA. Some of these characters are

nonsynthetic and can be appended

directly, but it's probably not

worth the bother.)

At this point you have the string "1# S'Pl-l" in the ALP"A

register. Now find a suitable place in program memory where

you'd like to insert the text instruction "HP'S #1". If you

don't already have such a place, just GTO .. and use the

bottom of program memory. When you're at the right spot in

PRGt>'l mode, switch back to RUN mode and use key assignments to

do RCL M, STO Q. Now switch back to PRGM mode and press the

Q-LOAD key. You'll see the synthetic digit entry instruction

E, which comes from the decimal value 27 of the Q-LOAD key

assignment (see row 1 column B of the byte table). SST once

to see the text instruction "HP'S #1". Press Q-LOAD again and

you'll get the two synthetic instructions E and TEXT 0. The

first use of the Q-loader cleared status register Q. The

second use therefore produced a text instruction with no

characters. So in addition to its ability to create synthetic

-78-

text instructions, the U-LOAD key assignment provides a quick

and easy way to get both the synthetic digit entry E and the

TEXT 0 NuP instruction.

But the real power of the Q-loader is unleashed by using

it in combination with the byte grabber. First you use the

u-loader to create a text instruction of up to seven

characters, then you grab and delete the text prefix,

releasing the character bytes to become instructions. The

following rather lengthy example will illustrate the power of

this "poor man's byte loader" technique. Follo\v through it

very carefully a couple of times until you understand the

techniques that are being used.

In this example we will create the synthetic

instructions needed for the "CMOD" routine of problem 2.7.

THe four instructions are STO M, ST- M, ST/ M and X<> M. The

decimal equivalents are 145,117,147,117,149,117,206,

and 117. \Je proceed from the last byte to the first one:

CLA

117 XTOA

206 XTOA

117 XTOA

149 XTOA

117 XTOA

147 XTOA

117 XTOA

The first group of 7 bytes is now ready to be loaded into

program memory. GTO •. and key in LBL "CMOD" as a place

holder. Switch out of PRGN mode, RCL M, and STO U. blow switch

back into PRGM mode and press the Q-LOAD key. You'll see the

familiar E instruction. Do not SST yeti instead press the BG

key. This removes the text prefix from the Q-loaded text

instruction. Backarrow twice to remove the grabbed byte and

the E instruction. You now have

01 LBL "CtvJOD"

02 RDt,

-79-

03 ST- N

04 STI M

05 X<> M

.END.

It rer,min5 to load the STu byte. Switch out of PRGM mode and

CLA

145 X'IOA .

Now GTO "CMOD", FeCL f>l, STO Q, switch to PRGJVl mode, and

Q-LOAD. PACK to remove the invisible nulls between this new

~-loaded text instruction and the seven bytes we loaded

before. :"till at the .c instruction in PRGlv] mode, press BG and

backarrow twice. SST throuSlh the program and you should see

01 LBL "CMOD"

02 STO 111

03 ST- lJI

04 STI l''!

05 x< > M

.END.

'l'lle STO byte was loaded in the text line. As soon as it "Jas

released from the text line, it absorbed the RDN byte, which

oecame the suffix t".

vlith a little practice, this "poor man's byte loader"

can be used to yuickly create synthetic instructions with a

minimal amount of setup. All that is required are key

assignments for RCL M, STO ~, Q-LOAD, and BG, plus an

extended functions module or a PPC ROJVl or the "DC" program,

and of course, the QRC.

It is good practice not to create pieces of instructions

with the Q-Ioader as we did in the first group of seven bytes

in the above example. It would have been better to stop at

the sixth byte, creating three instructions, then pick up the

remaining two bytes on the second loading. This eliminates

the need for time-consuming PACKing. The PACKing procedure

was shown here because it is necessary when creating

-80-

synthetic instructions that are more than 7 bytes long.

The only limitation of Q-loading is that trailing nulls

are suppressed. Thus for example if you want to create the

instruction hex F2 7F 00 (append one null), you'll need to

add a dummy II filler II instruction such as ENTER +. For this

example the full procedure is CLA, 1·31 (the ENTER+

instruction), XTOA, 0 (null), XTOA, 127 (append), XTOA, 24~

(TEXT 2 prefix), XTOA, move to desired location, RUN mode,

RCL M, STO Q, PROM mode, Q-LOAD, BG, and backarrow twice.

You'll also have to get rid of the ENTER+ following your new

synthetic instruction. If the dummy 131 byte were not

included, the steps 0, XTOA, would not do anything and you'd

end up loading only the two decimal bytes 242, 127.

Further discussion of ~-10adin9 appears o~ page 27 of

the October 1980 PPC Calculator Journal.

4C. Pseudo-XROM previews

The only two-byte functions that are nonsynthetically

assignable to keys are peripheral functions. When the

corresponding peripheral is not plugged in, the function

appears as XROM i,j when the key is held down, where i and j

are two-digit decimal numbers from 00 to 63. The notation

XROM means that the assigned function resides in an e~ternal

Ror.; (Read-Only Ivlemory). 'l'he number i designates the identity

of the peripheral -- i is therefore called the ROl'f ID number.

Certain peripherals contain two 4-kilobyte ROMs, each of

which has its own ROM ID. The number j is a sequential number

of the function (in Catalog 2 order) within the 4K ROM.

Hhen a key that carries a synthetic two-byte function

assignment is depressed, the hP-41 assumes for purposes of

displaying the function preview that the key assignment is a

normal X ROl>l function. I f the two decimal bytes of the key

assignment are x and y, the XROM numbers i and j that are

-81-

displayed in the XROM i,j preview are

i 4(x mod 16) + int(y/64) , and

j y mod 64

where mod signifies the modulo function (see MOD in your

HP-41 Owner's Handbook). For example ST+ IND M = 146,245

appears as XROM 11,53 while TONE Y = 1~9, 114 appears as XKO/Vl

61,50. This correspondence can be visualized on the QRC. The

column number of the first byte x is, in fact, x mod 16. This

pins down i to four possible values, which are shown in row A

of the CkC, at least for columns 0 through 7. For example,

ST+ is in column 2. Checking column 2 of row A we see the

notation XI<.8-11, indicatin<;; that the first of the two XROM

numbers displayed will be 8, 9, lU, or 11.

The exact value of i is determined by which block of 4

rows the second byte y is in. The heavier horizontal lines on

the ~RC help you to visualize the block boundaries. kows 0 to

J correspond to the first value of i, rows 4 through 7 to the

second, rows 8 through B to the third, and rows C through F

to the fourth. If you then visually move the second byte up

to a corresponding box in rows 0 to 3 (this is equivalent to

taking y mod 64), you can read off the value of j from the

bottom line of the box.

Let's contLme with the ST+ IND H example. Since the IND

l'l suffix is in the fourth group of 4 rows, the value of i is

11. Next we visually translate the IND M suffix from row F

column 5 up to row 3 column 5, which is the corresponding

position in the first block of 4 rows. Checking the decimal

value at the bottom of the row 3 column 5 box, we see that

the value of j is 53. So ST+ IND M previews as XROfv1 11, 53.

The XROM preview numbers reveal much about the assigned

synthetic function, but they do not quite uniquely determine

it. For example an assignment of DSE IND 10 previews as XROM

30,10, or as WSTS if the card reader is attached. This

assignment is indistinguishable from the WSTS function until

the key is released. If you're ever in doubt about the

identity of a particular assignment, try it in PRGM mode

-82-

first. But just in case it's a byte grabber, don't press it

when you're in the vicinity of the .END. or any nonpermanent

EIW. Kemember the byte grabbing constraints from Chapter 11

For more details on XI{Ot-'l preview correspondence see page

47 of the March 1981 PPC Calculator Journal. Page 45 of the

August 1981 PPC CJ contains a fascinating article by Roger

Hill on how the XHOf·l correspondence can affect the behavior

of synthetic key assignments in PRGM mode.

4lJ. 'l'he RCL b key assi':lnn~ent

Uni4ue among assignable synthetic functions is RCL b.

Unlike other key assignments, which aren't essential if one

uses "LB", the RCL b key assignment is much more Vowerful

than a RCL b instruction located in program memory. Executed

from the keyboard, RCL b brings the current program pointer

to the X register. Lxecuted in a program the result woula

always be the same, namely the location of the KCL b

instruction in progran. memory.

'l'he result of a RCL b instruction is a program pointer

encoden in the last two bytes of X, expressible in four

hexadecimal digits. In the encoded form the pointer is not

especially useful. Two routines are presented here that

convert the RCL b IJrograill pointer to a decimal number of

bytes. ~wo more routines provide a convenient way to

determine the number of bytes between two locations in

progran. memory.

The RAI'1BYT routine performs exactly the same function as

PPC ROI''; routine iii!) '1'0 use the RAhBY'l' routine, just go to

any point in Catalog 1 pro~ram memory ana press the RCL b

assigned key in RUtJ mode. The result is a program pointer for

that location. Execute RAt'lbY'I' (or 1m) to convert this

pointer to a decimal value.

The ROl'1BY'l' routine is siIf\ilar to RAMBYT, except that it

-83-

expects as input a program pointer from a ROM location. If

you have a PPC ROM or any application ROM, you can try out

ROMBYT. Just go to a label or any other location in the ROM,

execute RCL b from the keyboard in RUN mode, and XEQ "ROMBYT"

to see the decimal byte number corresponding to the program

pointer.

The most common application of program pointer decoding

is counting the number of bytes between two locations in a

program. For instance you may wish to know the total byte

count of a program. The RAHBC program determines the distance

between two program pointers by using RAHBYT to decode each

pointer, and subtracting the resulting decimal numbers. RAMBC

is functionally equivalent to the PPC ROl-l routine BiI (count

bytes) .

To illustrate RAMEC, let's find out how many bytes long

the RAMBC/RAMBYT/ROMBC/ROMBYT group of routines is. PACK

program memory if it isn't already packed. Go to LBL "Rr'\I'1BC",

RCL b in RUN mode, BST (to the END), RCL b in RUN mode, and

X£\.J "IillNBC". 'l'he result should be 156, indicating that the

program is 156 bytes long, from the beginning of I...BL "RAHBC"

to the beginning of the END. If you want to include the END

in your byte count, add 3 bytes to get 159. If the last line

6f the RAMBC program group is .END., your byte count will be

up to 6 bytes more. In this case you can GTO .• and repeat the

above RCL b procedure to get the true byte count.

Divide by 112 to find out how many tracks the program
will require when recorded on magnetic cards. The END is

recorded on the cards, but if you have a program that is 112

bytes without the END, you don't have to read in track 2. In

a case like this the prompt for the last track can be

backarrowed for both recording and reading in. The only thing

on the last track will be the END, which carries no

information.

A more advanced use of RAHBC is to determine whether a

long-form (three-byte) GTO is required, or whether a

short-form (two-byte) GTO will suffice. Short-form GTO's (GTO

-84-

00 through GTO 14) should only be used where the jump

distance is less than 112 bytes. This allows the jump

distance to be compiled, or stored in the instruction itself,

the first time the GTO is executed. Subsequent executions

will be much faster because the search for the LBL is

avoided. Only long-form GTO's can store jump distances longer

than 112 bytes, so that if you use a short-form GT0 where the

jump distance is too long, your program will be slowed down

noticeably by the continual label searching.

To determine whether a two-byte GTO, and its

corresponding one-byte label, can be used without losing the

advantage of the compiled branch, first key in the GTO and

LBL in their desired positions in the program. Use GTO nn and

LBL nn, where nn is between 00 and 14, inclusive. PACK to

remove any superfluous nulls. Go to the line following the

GTO instruction (if it happens to be the .END. insert a dummy

instruction and PACK again) and RCL b in RUN mode. Then go to

the corresponding LBL instruction (you can use B5T, SST) and

RCL b again. XEQ "RAt,mC" to see the jump distance in bytes.

If this jump distance is between -Ill and +111 bytes,

inclusive, then the two-byte GTO is sufficient. Otherwise

you'll need a three-byte GTO.

An alternative procedure is to RCL b at the GTO

instruction, SS'f to get to the LBL, RCL b, and XEQ "RAHBC".

The result should be between -109 and +113, inclusive.

If you need a three-byte GTO, you can construct a

synthetic one using LB inputs 208, 0, nn, where nn is between

00 and 14. Or you can key in the sequence STO nm 80, ISG nn,

BST twice, BG and backarrow to remove the STO byte. Either

way, this allows you to use the one-byte LBL nn, saving one

byte over the standard instructions GTO xx, LBL xx, for xx

from 15 to 99. Once created, a synthetic three-byte GTO will

never change to a two-byte GTO, and it will always compile

the branch distance properly. It can be distinguished from a

two-byte GTO by using RAHBC to determine its length in bytes.
Here are the listings for RAt·mC, RAMBYT, ROHBC, and

-85-

ROt-mYT. ROt-mc is of course analogous to RAHBC, except that it

operates on ROM program pointers.

01*LBL "RAttBe"
02 XUr'
03 XEG 91
94 X<>Y
85 XEQ 91
96 -
87 RTN

0S*LBL "RAI'1BYT"
99*LBL 91
18 XEQ 93
11 E41
12 I

13 HiT
14 LASTX

LB inputs:

15 FRC
16 E4
17 *
18 DEC
19 7
29 *
21 +
22 RTN

29*LBL "ROI'IBYT"
39*LBL 82
31 XEQ 83
32 E37
33 I

34 DEC
35 RTN

23*LBL "RO"BC'"
24 XEQ 92
25 X{}Y

36*LBL 93
37 "*"
38 XO [
39 STO \
48 ASHF 26 XEG 82

27 -
28 RTN

41 "/-"*A"
42 XO [

43 XO d
44 GF 08
45 FS?G 09
46 SF 85
47 FS?C 19
48 SF 86
49 FS?C 11
59 SF 87
51 FS?C 12
52 SF 09
53 FS?C 13
54 SF Hi
55 FS?C 14
56 SF 11
57 FS?C 15

58 SF 13
59 FS?C 16
68 SF 14
61 FS?C 17
62 SF 15
63 FS?C 18
64 SF 17
65 FS?C 19
66 SF 18
67 FS?C 20
68 SF 19
69 XO d
78 END

LBLTRAI'IBG
LBLTRAI'IB'r'T
LBLTROI'IBG
LBLTROI'IBYT
END 159 BYTES

Line 11 27, 20, 17, 0 Line 16 27, 20, 0

Line 32 27, 19, 23 Line 38 206, 117 Line 39 145, 118

Line 41 245, 127, 0, 0, 0, 65

Line 42 206, 117 Line 43 206, 126 Line 69 206, 126

The core of this group of routines is the LBL 03 subroutine,

which uses a couple· of tricks of the advanced synthetic

programming trade. Its first four steps isolate the last two

bytes of X in the ALPhA register. These bytes are then

shifted left (line 41) and transferred to the flag register.

At this point the 15 program pointer bits (the leftmost bit

is not needed here) reside in flags 9 through 23. Flag

operations are used to shift the bits into octal (base 8)

format, with three bits per digit (see below). This leaves

five octal digits in flags 4 through 23, with flags 4, 8, 12,

-86-

16, and 20 clear. These five octal digits are extracted from

the flag register in the form a.bcde x 10 41 . Regular

arithmetic operations can then be used to separate the digits

if necessary, after which the DEC function converts the

digits to decimal. This trick of shifting bits into octal

format and converting to decimal was pioneered by Roger Hill,

the author of many routines for the PPC ROM.

• • ,. 11 11 13 14 11 ,. 17 ,. ,. ZI ZI ZZ Zl

~~////// J J J
4 Ii • 1 •• ,. 11 IZ 13 14 11 1. 17 ,. ,. ZI ZI ZZ Zl

You'll have to read the discussion of program pointer

formats in Chapter 6 to understand the manipulation of the

octal digits in the "RAMBYT" and "ROMBYT" routines.

4~. Saving and Recalling Timer Alarms PPC ROM REQUIRED

Most key assignment programs (except "MKX" -- .see

problem 4.4) have one feature in common: they will not work

properly if any alarms are present, and they will disrupt the

alarms as well. One solution is to manually clear the alarms

using the time module's ALt-lCAT function. This is tedious and

it requires writing down the alarm information and

re-entering it later.

If you have an extended functions module and a PPC ROM,

you can use Clifford Stern's "SA" (save alarms) and "RA"

(recall alarms) to automatically transfer the alarms to

extended memory, then back to main memory when you're done

using the key assignment programs. "SA" uses the extended

function module's SAVERX function, which, unlike RCL, permits

extraction of data from main memory without normalization

(Section 2C discussed normalization). Actually the first and

-87-

last registers of the alarm block are normalized, but this

damage is repaired by "RA".

Here are the instructions for using "SA" and "RA"

1) Make sure there is at least one END somewhere above LBL

"SA" in Catalog 1.

backwards GTO (line

This is necessary to permit the

66) to work properly with the

curtain lowered. This will be explained in Section 6e.
2) After you have verified that there is at least one BUD

above LBL "SA", XEfJ "SA" to save the alarms in extended

memory in a file named "ALM" and to clear the alarm c.lata

out of main memory. DATA ERROR at line 86 weans there

are no alarms to be stored. DUP FL at line 86 indicates

that a file named "AL~1" already exists 1n exteno.ed

memory. Execute PURFL, then press R/S to complete

program execution. NO RouM at line 86 signifies that

there aren't enough unused registers remaining in

extendec.l memory to store the alarms. At your option you

may continue execution after purging one or more files

and re-loac.ling "ALH" into the ALPhA register.

3) Use any key assignment program you like. When you have

your synthetic key assignments set up the way you want

them, XL\.< "KA" to restore the alarms and purge the "ALI'i"

file from extended memory. The "RA" routine uses the

Extended Functions module's programmable SIZE function

if needed to open enough free registers below the .END.

for the alarms. If the current total of free reqisters

and SIZE 1S insufficient to accomodate the alarms,

you'll get a DA'l'A LRRCJH. message at line 1:'. If thi s

happens, PACK and/or clear a program and XEG "l{A" a<:jain.

"RA" terrr,ina tes with an OFF instruction, requiring you

to turn the UP-41 back on. This CJFF instruction is

required to take care of the case in which you turn the

calculator off after executin9 "SA" but before executing

"RA". The Time Hodule saw no alarms the last time the

calculator was turned off, so its countdown timer is not

-88-

active. The OFF instruction starts the Time Module

counting down for the nearest alarm immediately, and

enables it to advise you of any past-due alarms. A CLOCK

instruction would serve the same purpose. For subroutine

use, you may replace the OFF instruction by R'I'N, as long

as you keep in mind the fact that if the calculator is

turned off while the alarms are saved the 'rime Module's

countdown timer will not be accurate until the next time

you turn the HP-41 off.

Here's the listing of Clifford Stern's "SA" and "RA"

91+LBL aRA" 22 FLSIZE 42 XROI1 a[in 62 XO \ 81 ENTERt
92 XROH ap" 23 ,. 43 17 63 STO IND L 82 DSE X

03 lin 24 RCL [44 - 64 RDN 83 RTOX
94 XROI1 aE")" 25 ' 45 X{Y? 65 ISG L 84 ·AU~·

95 XOi' 26"STO \ 46 GTO 83 66 GTO 81 85 CF 25
96 - 27 ARCL 99 47 E3 67 CUi 86 CRFLD
07 SIZE? 28 RCL [48 / 68 GTO 83 87 +
88 ENTERt 29 STO 88 49 + 88 E3
99 'RLMa 39 XO \ 58 SII~N 69*LBL 82 89 /
18 LRSTX 31 DSE Z 51 -e' 78 RRCl IND L 98 +
11 + 32 STO IND Z 52 XO [71 X=8? 91 X()Y
12 FLSIZE 33 Rt 72 CUI 92 XO G

13 - 34 STO G 53*LBL 81 73 XO [93 XOY
14 X<8? 35 aAUI' 54 .a 74 STO IND L 94 SAYERX
15 SQRT 36 PURFL 55 RCl IND L 95 XROI'I ·BC·
16 X(i'? 37 BEEP 56 XO [75*LBL 83 96 XOi'
17 PSIZE 38 OFF 57 "l- n IlTOX 97 STO (;
18 Rt 58 :':0 \ 77 Rt 98 BEEP

19 XROI1 'C;';" 39*lBL "SilO 59 XtY? 78 XO (; 99 END
28 GETR 49 XROI'I "0"" 68 GTO 82 79 LASTX LBlTRA
21 Rt 41 176 61 ARCL (; 89 INT LBLTSil

EHD 175 BYTES

-89-

LB inputs:

Line 23 241, 240* Line 24 144, 117 Line 25 241, 170*

Line 26 145, 118 Line 28 144, 117 Line 30 206, 118

Line 34 145, 125 Line 47 27, 19 Line 51 241, 16

Line 52 206, 117 Line 54 241, 240* Line 56 206, 117

Line 57 242, 127, 170 *

Line 58 21Ob, 117 Line 61 155, 125 Line 62 206, 118

Line 73 206, 117 Line 78 "206, 125 Line 88 27, 19

Line Sl2 206, 125 Line 97 145, 125

*lndicates an invisible character from rows 8 through F of

the QRe (decinlal values 128 through 255) .

twte that lines 25 and 57 contain the character AA16

(decimal 170), which is a printer control character that

causes 10 spaces to be skippea. Printer control characters,

discussed at the end of Section 2E, can cause even stranger

behavior in program listings. The shaded characters in rows A

through E of the QRC are printer control characters.

Problems

4.1 Review the solutions to the Chapter 2 problems and

consider how synthetic key assignments could speed up

keying in those programs.

4.2 Try keying up Clirford Stern's "LB" program by first

using the "poor man's byte loader" technique to create

the following instructions

hex F4 7F 00 00 02

E4

x<> c

STO c

hex F2 7F 00

-90-

X<> c

STO c

Fill in the rest of the synthetic instructions using your

"working" keyboard of synthetic function assignments.,

You can then fill in the nonsynthetic instructions to

complete the "LB" program.

4.3 Predict and verify the XROr.l number previews for the

following synthetic key assignments:

a) TONE 89

b) X<> P

c) ISG IND N

4.4 liere is a new key assignment program that useS the

Extended Functions Nodule. Called "r.lKX", it was

conceived and written by Tapani Tarvainen, and revised

and optimized by Clifford Stern. It uses a totally

different approach, made possible by the capabilities of

the PASN (programmable key assignment) function .

.t;ssentially, "NKX" uses PASN to make a dummy assignment

to the designated key, then it finds and replaces that

dunUllY assignment in the key assignment registers.

is sufficiently different from "NK" and IimI that a

separate set of instructions is called for:

"j\1KX"

1) Make sure that Catalog 1 contains no LBL"ANUM", and that

it does contain an END above LBL"MKX" (you can GTO

."MKX", GTO .000, and XEQ "END"). Failure to observe

either of these constraints before executing "MKX" will

require you to MASTER CLEAR. "cu" constraint 1 in

Section 6C explains why the END is needed. The second

constraint ensures that line 04 creates an "ANUM"

function (not global label) assignment. See Section 6A.

2) Load the stack with three inputs and execute "MKX". The

three inputs required for "MKX" are the same as you

would use for "r.lK" or _ The difference is that you

load the stack with the two decimal inputs and the

-91-

keycode (in Z, Y, and X, respectively, as for MK)

before executing "MKX".

3) Alarms need not be saved or cleared. They will not be

disrupted.

4) If you don't have enough free registers, you'll get

PACKING, TRY AGAIN at line 04. This is much more

forgiving than "MK".

5) Like "MK", "lvJ.KX" is not interruptible.

6) If you try to assign a key that is already taken, the

new assignment will replace the old one, with no

indication that this has occurred. If this isn't what

you want to happen, check the key before executing

"MKXII.

7) To assign another key, simply load the stack with the

three required inputs and execute "MKX" again or simply

R/S since the last assignment left you at the top of the

"NKX" program anyway.

8) There are no wasted half-registers with "~lKX". Each new

assignment is treated identically, and a new register is
opened only if there are no existing "holes" to be

filled in the assignment registers.

81.LBL "!!KX' 12 STO] 23 • 33 X~Y? 44 FC?C 25
82 oAHU"" 13 XO [24 SIGH 34 XO \ 45 ISG L
83 CF 25 14 "1-+" B" 35 X=Y? 46 X=Y?
84 PASN 15 XO] 25.LBL 81 36 SF 25 47 GTO 81 85 "lip.· 16 XO [26 XO IND L 37 X=Y? 48 Rt
86 RCL [17 STO \ 27 XO [38 Rt 49 STO t
87 Rt 18 "~" 28 .~." 39 .~.** •• 58 CLST
88 XTOA 19 >:0 J 29 STO \ 48 STO J 51 END
89 Rt 28 Rt 38 .~** •• 41 "1-+ ••
18 XTOR 21 XO t 31 XO \ 42 XO] LBL'"KX
11 RCL T 22 RCL \ 32 .~.*." 43 STO IHD LEND 123 BYTES

LB inputs:

Line 05 245, 1, Hl5, 12, 0, 240*

Line 06 144, 117 Line 11 144, 122 Line 12 145, 119

Line 13 206, 117

-92-

Line 14 247, 127, 0, 0, 0, 2410*, 166 *, 66

Line 15 206, 119 Line 16 206, 117 Line 17 145, 118

Line 18 242, 127, 240*

Line 19 206, 119 Line 21 206, 125 Line 22 144, 118

Line 27 2106, 117 Line 29 145, 118 Line 31 206, 118

Line 34 206, 118

Line 39 245, 127, 42, 42, 42, 0

Line 40 145, 119

Line 41 244, 127, 10, 0, 240*

Line 42 21216, 119 Line 49 145, 125

*Indicates a character from the second half of the QRC,
normally invisible in printed listings, but visible as a
starburst i.n the display.

4.~ If you like the eGOBEEP key assignment that provides fast

access to all the printer and mass storage functions,

you may wish to try this short routine by Clifford

Stern. It provides a capability similar to eGOBEEP for

the Extended Functions and Time Modules.

Just key in the required stack input if any,

ENTER+, then key in the number of the desired function

and XEu "EFT". The "EFT" program will PAUtiE for about a

second to allow you to key in an ALPHA argument such as

a file name. If the ALPHA argument you want was already

in the ALPlffi register, you won't have to key anything

in. ALPHA inputs are limited to seven characters or

less. "EFT" builds a short sequence of bytes containing

the requested XROM instruction, then it executes the

sequence. The byte sequence is actually contained in

status registers band a.

There are two notable constraints on "EFT". The

first is that unlike eGOBEEP, "EFT" works only in RUN

(non-PRGM) mode, so it cannot be used to enter program

lines for Extended Function Nodule or 'i'ime fo.jodule

-93-

Functions. 'rhe second is that you must not use "EF'!''' to

execute PSIZE (function number 30), or to execute XYZAL~j

(function number 93) where a nonzero Z input is needed.

PSIZ~ will alter the byte sequence in status registers band

a that "EF'!''' is executing there. The XYZALH constraint is

due to the fact that the Z register contents are altered to a

value that is effectively zero by the time the XYZALM

instruction is executed from the status registers. You should

also avoid using "EFT" to execute peLPS (function number 27)

if this would clear "EFT" itself, because you would then

begin executing the key assignment registers.

Incidentally, the reason for lines 15 and 23 is to defer

any error stop until after the return to program memory. If

you halt in the status registers, the processor takes a very

long time to compute a line number.

81*lBl "EFT" 88 elX i5 SF 25 22 RDN
82 RCl [89 64 16 'I-I-ti n 23 FS?C 25
83 ClA 18 + 17 RDN 24 STOP
84 STO Ii RCl [18 XO [25 SF 38
85 HON 12 'pTJiu 19 XO a 26 END
86 PSE 13 XO'!' 28 xn \ lBlTEFT
87 HOFF 14 XTOH 21 XO b END, 58 BYTES

Barcode for "EFT" can be found in Appendix E.

LB inputs:

Line 62 144, 117 Line 04 145, 117 Line 11 144, ,
Line 12 247, 145 *, 112, 176 *, 84, 12, 117, 166 *

Line 16 245, 127, 127, 116, 145*, 124

Line 18 2106, 117 Line 19 206, 123 Line 20 206,

Line 21 206, 124

*Indicates an invisible printer character. The hex A6

(decimal 166) character in line 12 causes 6 spaces to be

skipped.

-94-

117

118

Numeric function codes for IIEF1,1I and eGO BEEP
(XROIvJ. numbers are also included for reference)

"EFT" eGOI3EEP
(XFUNCTIONS, TIME, WAND) (HP-IL, PRINTI:;R)

-EXT FeN 18 -TII'IE- C -!'lASS ST lH -PPli-!TER 2Ii
ALENG 25,81 65 ADRTE 26,81 1 CRE~TE 2(l, 81 65 ACA 29,81

-. ilHUI'I 25,82 66 AUiCIH 26,82 2 IiIP 28,82 66 V"HR 29,82 l.

3 APPCHR 25 .. 83 67 AL!'INOW 26,83 3 HE~1'1 28,83 67 HCCOl 29 .. 83
4 ilPPREC 25,84 63 ilTII'IE 26,84 4 PURGE 28,84 68 HCSPEC 29,84
" .J ilRCLREC 25,85 69 ATII'IE24 26,85 5 WHiA 23 .. 85 69 HCX 29,85
6 AROT 25,86 70 CLK12 26 .. 96 6 READK 28,86 78 BLDSPEC 29,96
7 ilTOX 25 .. 87 71 CLK24 26,87 7 READP 28,97 71 LIST 29,87
8 CLFL 25,88 72 cm 26,98 8 REA DR 28,88 72 F'RH 29..98
9 ClKEYS 25,89 7J CLKTD 26,89 9 REHDRX 28 .. 89 73 TPRAXI:; 29,89
1\3 CRFUlS 25 .. Hl 74 CLOCK 26,18 hi REAItS 28,18 74 PRBUF 29,18
11 CRFLD 25,11 75 CORRECT 26,11 11 RERDSIJB 28,11 75 PRFlHGS 29,11
i'J DELCHR 25 .. 12 76 DilTE 26,12 12 RENAME 28,12 76 PRKEYS 29,12 ,~

13 DELREC 25,13 77 DATE+ 26,13 13 SEC 28,13 77 PRP 29,13
14 E!'IDIR 25 .. 14 73 DDAYS 26,14 14 SEEKR 28,14 78 TPRPLOT 29,14
15 FlSIZE 25 .. 15 79 Dl'fi 26,15 15 UNSEC 28,15 79 TPI/PLOTP 29,15 , ..
,I:> GETHS 25,16 88 DOW 26,16 16 VERIFY 28,16 88 PRREG 29,16
17 GETKEY 25,17 81 I'IDY 26,17 17 WRTA 28,17 81 PRREGX 29,17 ..
1:3 GnP 25,18 82 RCLilF 26 .. 18 18 WRTK 28,18 82 PRE 29,18
19 GETR 25 .. 19 83 RCLSW 26,19 19 WRTP 28,19 83 PRSTK 29,19
2& GETREC 25 .. 28 84 RUHSW 26 .. 20 29 IoIRTPIi 28,29 84 PRX 29,20
·-,t GETRX 25J21 85 SETilF 26,21 21 WRTR 28 .. 21 85 REGPLOT 29,21 '::1

22 GETSUB 25 .. 22 86 SETDATE 26,22 22 WRTRX 28,22 86 SKPCHR 29,22
-Ti GETX 25 .. 23 B7 SHIitE 26,23 23 WRTS 28 .. 23 87 SKPCOL 29 .. 23J

24 INSCHR 25 .. 24 83 SETSW 26,24 24 ZERO 28,24 88 STKPLOT 29 .. 24
·-,e IHSREC 25 .. 25 8'3 STOPSW 26,25 25 28,25 89 HIT 29,25 i...)

26 PASH 25 .. 26 9~ Siol 26,26 26 -CTL FHS 28,26
--,., PClPS 25,27 91 T+l< 26,27 27 PIJTCiIO 28,27 l.f

v· ,-0 POSil 25 .. 28 92 TII'IE 26,28 28 FlHDlIi 28,28
29 POSFl 25,29 93 XYZAU'! 26,29 29 INA 28,29
313 PS!ZE 25 .. 38 38 IND 28,38
31 PIJRFL 25,31 31 INSHH 28,31 CARD Rl::ADLR
32 RCLFUlG 25,32 - WAND IF - 32 LISTEH 28,32 (XROH 30)
33 RCLPT 25,3:3 129 WHDDTA 27,O1 J3 LOCHL 28,33 is not
34 RCLPTR 25,34 13il WHD[lTX 27,82 34 HilNIO 28 .. 34 accessible
35 REGI'IOYE 25,35 131 IoIHDLHK 27,83 35 OUTA 28,35 through
36 REGSIolAP 25,36 132 WNDSUB 27,84 36 PWRDH 28 .. 36 eGOBEEP. 37 SAYEIlS 25 .. 37 133 WNDSCH 27,85 37 PWRUP 28,37
33 SIlYEP 25,38 134 T WHDTST 27 .. 96 38 mOTE 28,38
39 SilYER 25,39 39 SELECT 28,39
49 SilVERX 25,48 48 STOPIO 213,40
41 SAVE); 25,41 41 TRIGGER 28,41
42 SEEKPT 25,42
43 SEEKPTIl 25,43
44 SIZE? 25,44
45 STOFlAG 25,45
46 XOF 25,46
47 XTOil 25,47

-95-

(Intentionally blank)

-96-

CHAPTER FIVE

UNDERSTANDING PROGRAM EDITING ON THE HP-41

In Section 2B you were promised an explanation of how

nulls are created when programs are keyed up and edited and

under what conditions they can be removed by PACKing. This

explanation is simplified by the construction of a very

special synthetic instruction called an F0 label. The F0

label is capable of displaying several following instructions

as text characters without actually absorbing them as the

byte grabber does.

First construct this special synthetic instruction using

"LB", with inputs 192, 0, 240. Alternatively, if you have the

byte grabber assigned to a key, you may key in the

instructions ENTERt, STO IND 64, RCL IND T, BST twice, BG,

and oackarrow twice, removing the STO byte. Either way, you

should PACK immediately so that the calculator can

incorporate this synthetically-created LBL into Catalog 1.

You now have a synthetic global label instruction. It is

synthetic since its third byte is 240 decimal =·F0

hexadecimal (hence the name F0 label). Normally the third

byte of a Catalog 1 LBL instruction is 241 + n, where n is

the number of characters in the label name. A third byte of

240 gives a name length of -1. It turns out that the

calculator interprets this highly nonstandard length

parameter in contradictory ways. For displaying the F0 label

in PRGM mode, the processor uses n = 15, which is -1 modulo

16. So you see LBLT followed by 15 characters. The processor

skips one byte (which is normally the byte containing the key

assignment information for the label), and displays the

following 15 bytes as characters. However if you SST in PRGM

mode you'll see that these character bytes have not really

been absorbed into the F0 LBL instruction.

An example should make this point clear. But first a

-97-

word of caution. Do not SST the F0 label in non-PRGM mode or

run a program containing an F0 label. That will "crash" the

HP-4l, locking out the keyboard until the battery pack is

removed and replaced to clear the crash. Removing the

batteries halts an internal "infinite loop" condition, in

this case without disturbinq the memory contents. Executing

an F0 label is one of the friendliest crashes. Others (such

as byte-grabbing the .END. and deleting it) cause an almost
unavoidable MEMORY LOST.

Starting with your F0 label in the display (PRGM mode),

key in the sequence of instructions -, *, I, X<Y? (Press XEQ

ALPHA X shift COS Y ? ALPHA), X>Y?, X<=Y?, t+, X-, HMS+,

Hl'lS-, MOD, %, %CH, P-R, R-P, LN, X+2, SQRT, Y+X, CBS, EtX,

LOG, l0 t X, EtX-l, SIN, and COS. Now go back to the F0 label

and you'll see

LBL "BCDEFGHIJKLMNOP"

(If you don't see this display, PACK and you should get it.)

The characters B through P are actually the instructions

* I, through LN, that follow tile FO label. Rows 4 and 5 of

the QRC show the correspondence of instructions to these

characters. To further illustrate this correspondence, locate

and backarrow the I instruction and go back to the F0 label.

You'll see

LBL "B-DEFGHIJKLMNOP"

This illustrates that when instructions are deleted, they are

replaced by nulls, which are normally invisible. The overline

character is the character representation of a null

(hexadecimal 00 = decimal 0) byte. Now PACK and you'll see

LBL "BDEFGHIJKLMNOPQ" ,

which shows the removal of nulls by packing.

The F0 label enables us to see a striking demonstration

of the operation of the processor when instructions are

inserte~ in a program. Single step to the X<Y? instruction,

corresponding to the character D, and insert a + instruction.

Go back to the F0 label and you'll see

LBL "BD~------EFGHIJ"

-98-

The @ character corresponds to the + instruction. But you

probably didn't expect the six nulls (overline characters).

This example illustrates that whenever an instruction is

inserted where there is no room (that is, where an

insufficient number of nulls are present), seven null bytes

are opened for the new instruction, even though only one null

may actually be used. The rest of program memory, down to and

including the final .END. is shifted down one register

(seven bytes), decreasing the number of free registers by

one. (Refer to Chapter 6 for a description of how program

memory is organized and where the free registers are.)

Because of the register operations available to the

processor, this one-register shift is much faster than a

one-byte shift would be.

Insertions where sufficient nulls are already present

will not disturb the rest of program memory. For example,

single step to the + instruction and key in the instructions

STO 01, STO 02, STO 03, STO 04, STO 05, and STU 06. Go back

to the F0 label and you'll see

LBL IBD[?123456EFGHIJ"

The six new instruction bytes exactly filled the available

space. Any additional insertion would open another seven

bytes.

~ow that you have seen how insertion of instructions is

accomplished by the processor, you can understand why the

byte grabber works. When pressed in PRGM mode, the byte

grabber creates a TEXT 7 prefix, followed by a null byte and

a third byte that has always been decimal 63 in this book (MK

can make it any value you like). A TEXT 7 instruction

occupies 8 bytes of program memory, consisting of a one-byte

TEXT 7 prefix followed by 7 character bytes. But the

processor only knows that it has to make room for the three

bytes that are being inserted. In the usual case there are no

nulls present for the insertion, so 7 new ones are created.

Therefore the eighth byte -- that is, the seventh character

-- is taken from the existing program. Figure 5.1 illustrates

-99-

the capture of this byte from program memory for the example

of Chapter 1.

Instructions:

Hex equivalent:

Decimal equivalent:

Instructions:

Hex:

Decimal:

ENTERt

83

131

ENTER t

83

131

BEFORE

STO

91

145

IND 31 PI

9F 72

159 114

AFTER

"-?----II" TONE Y

F7 0 3F 0 0 0 0 91 9F 72

247 0 63 0 0 0 0 145 159 114

Figure 5.1 Creation of TONE Y using the Byte Grabber

The byte grabber can be used to grab up to 5 bytes if

you like. Simply PACK or otherwise make sure there are no

nulls ahead of the bytes you want to grab, just as you would

for using the byte grabber normally. Then, before pressing

the BG key, insert one to four bytes of "filler"

instructions. For example, to grab two bytes you could insert

a "filler" X<>Y before pressing BG. We did this in Chapter 2

to grab the 1 from exponential entry instructions without

packing. To grab three bytes, you could insert the digit 9

and BG. To grab four ,bytes, insert EEX and BG. To grab five

bytes, insert EEX 9 and BG. In all these cases, the idea is

the same. ~he processor only requires three bytes for the

byte grabber. If you open 7 bytes with an insertion and fill

four of them (for example by inserting lE 9) and press BG,

the byte grabber will drop into the three remaining nulls.

But since the TEXT 7 instruction is 8 bytes long, it must get

its last 5 character bytes from the existing program.

-HJ0-

Be very careful when grabbing more than one byte. You

might accidentally grab part of the .END .. If you do this,

don't backarrowl Immediately EST and BG again to release the

.END. from the previous byte-grabber text line.
You might be under the impression that packing removes

any and all nulls from a program. Not so. Occasionally a null

carries essential information and cannot be deleted.

The first such case occurs when the null is located

between successive numeric entry instructions. Let's continue

where we left off with the F0 label, which when we left it

looked like this:

LBL "BD~123456EFGHIJ"

SST once to the - (subtract) instruction just ahead of the *
instruction which corresponds to the character B. Key in the

two successive numeric entry instructions lE3 and 56. Switch

into ALPHA mode and back to terminate the lE3 instruction

before starting on the 56. Now go back to the F0 label and

you'll see
LBL II -1111-1111-------3 II

The first three starburst characters comprise the lE3

instruction, while the next pair of starbursts is the 56

digit entry. Now PACK to see the result

LBL "11I1-IIIBJj~123456" •

All the nulls disappeared except the one between the two

numeric entry instructions. That null is needed to prevent

the two instructions from merging into a single program line.

This is why a null between successive numeric entry

instructions is nonpackable. The need for nulls to separate

numeric entry instructions from each other explains the nulls

we saw before packing in this example. The HP-41 operating

system insists on adding a null in front of every numeric

entry instruction at the time it is keyed in. 'l'his null will

be removed by packing unless the previous instruction is also

a numeric entry. The operating system also insists, for

similar reasons, that there be at least one null separating

the numeric entry instruction from the following instruction

-Ull-

as the numeric entry is being keyed in. In the preceding

example, seven bytes were opened up when the 6 of the 56

numeric entry was keyed in. If no bytes had been opened,

there would have been no space isolating the 56 from the

following program instruction. If that following instruction

had been a numeric entry, the 56 would have merged into it to

create a single (incorrect) numeric entry instruction. Thus

at least one null separator byte was required. Since the

HP-41 opens 7 bytes at a time, seven nulls were created.

Any null byte that is part of a multi-byte instruction

is nonpackable. For instance the instruction ST+ 00 appears

in an FU label as 1- . ~he second byte is a null. This byte

cannot be removed by packing, since it is part of an

instruction and thus carries essential information, in this

case the register number. Given the complex rules for

removing nulls, it's no wonder that the PACI~ instruction can

take a long ti~e to execute.

0ne additional obscure point involving nulls deserves to

be covered. ~ormally when you key in an instruction, it is

inserte~ after the current instruction, overwriting any

existing nulls and opening seven new nulls if space is

needed. However if the current instruction is an l:.i~D (or tile

• Ll~D.), the new instruction is inserted precisely where the

Li,u was, with the END being shifted down 7 bytes. This occurs

even if there were sufficient nulls preceding the END.

~o illustrate this behavior at ~Nus, start with the

sequence: FO label, -, *, END. Go to the 1<'0 label, PACK, and

you'll see L13L T 131-1 followed by more characters. 'I'he second,

third, and fourth characters visible are the END. Now delete

the * instruction. If you inserted a new * instruction here

it would exactly take the place of the old one. If however

you SST to the END and then insert a new * instruction, the

result is

LBLT -B------IIr.1I plus four more characters.

-102-

The * instruction was inserted where the END used to be,

while the END was shifted down 7 bytes. Six additional nulls

were created where none were really needed. Therefore it is

good programming practice not to make insertions into a

program with the END in the display. Instead BST before

making the insertion to take advantage of any nulls preceding

the END. Of course PACK will eliminate the nulls anyway, but

this technique may help you avoid having to resize to key in

a program that barely fits in memory.

You'll note that in the last example the END changed its

appearance when it moved. This is because part of the first

two bytes of an END or a global alpha label is used to store

a relative address to the preceding element in Catalog 1.

Thus if Catalog 1 contains LBL "ABC", END, .END., then the

.END. contains a pointer to the END, the END contains a

pointer to LBL "ABC", and LBL "ABC" contains a blank relative

address field, indicating the top of Catalog 1. The

calculator uses this linked list, climbing the chain of

labels and ENDs from the . END. up each time a global label

search is undertaken. The linked list is also used for

backstepping. When BST is pressed the calculator finds the

nearest preceding global label or END and counts down from

there to find the correct instruction. This is necessary

because line number information is not stored in program

memory. Without starting from a known position like a Catalog

1 label or END, the calculator cannot know whether a given

byte constitutes an instruction or a suffix for a preceding

instruction. The BST operation is implemented the only way it

can be, by counting downward from a known position. This

explains why BST can take so long near the end of a long

program that has a lone global label at line 01.

Relative address information is also contained within

local (non-text) GTO and XEQ instructions, as was mentioned

in Chapter 3. The first execution of one of these

instructions requires a time-consuming search for the

corresponding LBL. But when this search is completed the

-1103-

relative address is filled in, allowing much faster branching

on subsequent executions. With the F0 label it is possible to

observe GTO and XEQ instructions before and after the

relative address information is filled in. The structure of

this relative address information is explained in detail on

page 21 of the August 1979 PPC Calculator Journal.

Problems

5.1 Predict the result of the following steps, including the

number and location of invisible nulls. Use the F0 label to

verify your prediction.

a) Key in the instructions +, 3, -, 4, 5, and *. Insert E+

and E- after the +. Insert RCL 05 after the 4.

b) Key in the instructions +, -, XEQ 00, GTO 99, *, and /.

Delete the GTO 99 and key in ST+ 75.

-104-

(Intentionally blank)

-105-

Off·
LINE

MEMORY

ON·
LINE

MEMORY

OFF·LlNE
MEMORY

SYSTEM
SCRATCH I

ABSOLUTE LOCATION
OF REGISTER

HEX DECIMAL

3FF 1023

3FO 1001
3EF 1007

301
300
2FF

7&9
768
767

2FO 752
2EF 751

201 513
200 512
lFF 511

lCO 441
lBF 447

110 314
17F 383

140 320
13F 319

100 256
OFF 255

OCO 192
OBF 191

040 64
03F 63

OlD 16
OOF 15

000 D

-,-

VOID

EXTENDED

239
MEMORY

REGISTERS MODULE 2

VOID
- '-

VOID

EXTENDED

239
MEMORY

REGISTERS MODULE 1

VOID

64
REGISTERS

64
REGISTERS

ONE HP·8217DA

64 QUAD MEMORY

REGISTERS OR
4 HP-821D6A
MEMORY MODULES

64
REGISTERS

I- f-

64
REGISTERS

128
REGISTERS

(VOID)

16 STATUS
REGISTERS
~----I

HP-41C INTERNAL
MEMORY

EXTENDED
FUNCTIONS MODULE

_L-

I HP-41
INTERNAL
SCRATCH REGISTERS

Figure 6.1 Overlll Structure of HP-41 Memory

-HI6-

HP-41CV
INTERNAL
MEMORY

CHAPTER SIX

HP-41 MEMORY STRUCTURE AND STATUS REGISTER APPLICATIONS

This chapter will complete your knowledge of the basics

of the workings of the HP-41. Some of the details given here

may not be of immediate use, but they are presented to

provide a reference. They also provide a point of departure

for those of you who want to write your own "bit-fiddling"

synthetic programs. Even if you plan only to use the simpler

techniques of synthetic programming, and use "canned"

synthetic programs from the PPC ROM or the HP User's Library

for the fancy stuff, this information will help you get a

general idea of how such "bit-fiddling" syntheti .. c programs

work.

6A. Memory Structure

Figure 6.1 on the facing page illustrates the

organization of program, data, system scratch, and extended

memory on the HP-41. The extended memory, including that

portion contained in the extended functions module, is called

off-line because programs cannot be executed directly from

extended memory. They must first be brought into the main

(on-line) memory.

Details of the contents and structure of extended memory

can be found on page 18 of the March 1982 PPC Calculator

Journal. Another article on page 26 of the April 1982 PPC CJ

shows how synthetic techniques can permit execution of

programs directly from extended memory.

The functional organization of main memory is shown in

Figure 6.2 on the next page. The data registers extend upward

from a partition (more about this when we discuss status

-107-

TOP OF ON-LINE
MEMORY
(511 FOR HP-41CV)

OATA/PROGRAM PARTITION
CONTROLLED BY SIZE
FUNCTION

THESE PARTITIONS ARE
MAINTAINED AND MOVED
AUTOMATICALL Y BY THE
CALCULATOR

BOTTOM OF ON-LINE
MEMORY (HEX DCI = 192)

SIZE -1

10 -------
LBL "ABC"

END
LBL "NEXT"

END

.END. -- ------
"FREE"

REGISTERS

ALARMS

FUNCTION

KEY
ASSIGNMENTS

,-r-,

-

I-I-

1-

I-I-

1--

DATA
REGISTERS

PROGRAM
MEMORY
(CATALOG 1
PROGRAMS)

NUMBER OF REGISTERS
AVAILABLE IS SHOWN
AS II REG nn OR AS
.END. REG nn.

TIME MODULE
ALARM DATA

CAT 2 OR CAT 3
FUNCTION KEY
ASSIGNMENTS AT
TWO PER REGISTER

Fiture 6.2 On-LiRe Memory Usage

-108-

register c) to the top of ~ain memory. User programs extend

downward from the same partition to the . El~D., which is moved

automatically by the calculator as required. Below the .END.

are the "free" registers -- those available for additional

programs, timer alarms, or key assignments. They can also be

converted to data registers by increasing the SIZE, which

pushes down all data and programs into the free register

block. Decreasing the SIZE pushes the program and data

upwards in memory, adding to the number of free registers and

causing some of the higher numbered data registers to be lost

off the top of memory. The number of free registers present

at any time can be checked by executing GTO .000 in PRGl'l mode

or else RTU in RUN mode then switch to PRG!Vl mode. In either

case the display will show 00 REG nn, where nn is the number

of free registers.

Below the free registers are the alarms and key

assignments. Key assignments of Catalog 2 (peripheral) or

Catalog 3 (built-in) functions occupy registers starting at

decimal location 192 and proceeding upward. Each register

that contains key assignments begins with a hex FI2J marker

byte. The other six bytes of the key assignment register

contain a pair of function key assignments, each of which

requires three bytes. Of these three bytes, the first two

define the function. These are the two bytes that you provide

decimal values for when using MK. The third byte defines

which key the function is assigned to. The specifics of what

byte is used to define a given key can be found in William C.

Wickes's classic article on page 28 (second column) of the

November 1979 PPC Calculator Journal. Page 280 of the PPC RO!1

User's Hanual has a clear summary as well.

Timer alarms reside immediately above the key assignment

registers. Each alarm requires one register for the alarm

time, plus additional spaces if there is a message and/or a

repeat interval associated with the alarm. One "header"

register at the bottom of the alarm registers, just above the

-109-

BYTE NUMBER WITHIN REGISTER

I I 5 I 4 I 3 I 2 I 1 I
I

• BIT MAP FOR SHIFTED : SCRATCH i LINE
ASSIGNED KEYS

I i
NUMBER

., USER FLAGS: I TO 29
I

i SYSTEM FLAGS: 3D TO 55

l: REG I NOT i COLD START : CURTAIN I .END.
POINTER : USED I CONSTANT : POINTER I POINTER

c

THIRD : SECOND RTI I FIRS! RTN I PROGRAM
RTN i POINTER I POINTER ! POINTER

: I I SIXTH RTN FIFTH RTN I FOURTH RTN THIRD
POINTER : POINTER I POINTER I RTN

I

a

BIT MAP FOR UNSHIFTEO I SCRATCH ASSIGNED KEYS :
TEMPORARY SCRATCH FOR ALPHA LBL, GTO, XED,
OR WHEN KEYING IN DIGIT ENTRY INSTRUCTIONS D

I I

DISPLAY I CAT LN I ALPHA REGISTER
FORMAT : NUMBER: 126) 125) 24 23 22

P

ALPHA REGISTER
o

21 ZD 19 18 17 16 15

ALPHA REGISTER
14 13 12 11 II 9 • N

M ALPHA REGISTER
7 6 5 4 3 2 1

L LAST X REGISTER

X STACK REGISTER X

Y STACK REGISTER Y

Z STACK REGISTER Z

T STACK REGISTER T

SIGN r MANTISSA III DIGITS) I SIGN IEXPONENT

Filii" &.3 The StmIs R s

-1110-

REGISTER
NUMBER

15

14

13

12

11

II

9

•
7

6

5

4

3

2

I

uppermost key assignment register, is required to define the

total number of alarm registers in use. Another register

delimits the top of the alarms.

This completes the description of HP-41 memory

structure, except for one very important area -- the status,

or system scratch, registers. The name "status registers" is

due to the fact that the contents of these 16 registers is

recorded on track 1 of a status card by the card reader's

WSTS function.

The 16 system scratch registers reside at the very

bottom of the HP-41 address space, at locations 0 through 15

(decimal). The register names are T, Z, Y, X, L',M, N, 0, P,

Q, ~, a, b, c, d, and e, respectively. You are already

familiar with most of these registers: the first five are

described in your Owner's Manual, while several of the others

were introduced in Chapter 2. Figure 6.3 is a brief summary

of the processor's usage of these registers.

The stack registers, T, Z, Y, X, and L are available to

the user through normal means. In addition to the ENTERt,

RDN, Rt, and LASTX instructions that have been incorporated

in many HP calculators, the HP-41 allows direct access to all

the stack registers through instructions like RCL Z or X<> L.

\"lith synthetic programming, the use of STO, RCL, and X<> can

be extended to the other status registers as well.

Registers 1-1, N, 0, and P contain the 24-character ALPHA

register. The ALPHA register contents are always

right-justified in the status registers. The rightmost byte,

byte 0, of the M register contains the rightmost character.

Byte 1 contains the second-to-last character, and so on. If

the ALPHA register contains 7 or fewer characters, only the M

regiscer is used. As more characters are appended, the

leading characters are bumped right-to-left then upward into

registers N, 0, and P. When the 24th position is filled (in

-111-

register p), a warning tone sounds. Appending more characters

will then push the leftmost characters into the scratch

portion of register P. However if you remain in ALPHA mode,

or at least have a non-numeric display, the four characters

in positions 25 to 28 (the leftmost 4 bytes of p) will remain

in place for extraction by synthetic methods such as RCL P.

The t10rse code program in Appendix 13 uses this 28-character

capability.

'i'he leftmost two bytes of P are used by the processor

under some conditions. The first byte is an encoded

representation of the numeric display status (FIX, SCI, Li~G,

Fla9 28, Flag 29, and the number of digits). This byte is set

up by the processor whenever a numeric display is needed or

when a digit entry instruction is executed. The second byte

of P is used for digit entry, whether it be manual or in a

running program.

Executing the CATalog function also alters the first and

second bytes of P. The first byte contains the catalos number

(1, 2, or 3), while the second byte contains the line number

within the catalog.

Details of the bit usage in the first two bytes of the P

register can be found on page 13 of the July 1981 PPC

Calculator Journal.

The Q register is used whenever an ALPHA label name is

spelled out. 'I'his happens when the label instruction is keyed

in or when the corresponding GTO or XEQ is keyed in or

executed. The label name is placed, in byte-reversed order,

in Q.

The Q register is also used during digit entry, whether

manual or in a running program. The number is composed in Q

before being transferred to the X register.

Details of Q register usage can be found on page 78 of

the August 1981 PPC Calculator Journal. Be aware that the Q

register is also used by the printer if one is connected.

-112-

Th~_t_E~~ister contains a bit map for the unshifted

assigned keys in its first four bytes and half of the fifth

byte. This is part of a clever technique that the HP-4l

operating system uses to speed execution of functions from

the keyboard. When an unshifted key is pressed in USER mode,

the processor checks the corresponding bit of the ~- register.

If the bit is clear, the processor knows that the key has not

been assigned, and one of two actions is taken.

If the key in question is not in the top row or in the

unshifted second row (ALPHA keys A-J and a-e), the default

function (that is, the one that is printed on the key) is

executed. If the key is in the top row or unshifted second

row, a search of the current program for the corresponding

local label (A through J or a through e) is initiated. If the

label is found, program execution begins at that point. If

the entire program is searched without finding the label, the

processor (finally1) executes the default function.

If the bit in the ~- register is set the processor knows

that the key has been assigned. It then searches for the key

assignment information first in the key assignment registers.

If no function assignment is found, the processor checks the

key assignment byte (the fourth byte) in each global label in

Catalog 1, from the .END. up to the curtain. If no global

label assignment is found (this is not a normal case), then a

function like CAT, ABS, or l/x is executed.

Thanks in part to the key assignment bit map, the first

step in the above USER mode execution sequence occurs 9uite

rapidly. llowever the local label search can be very time

consuming if the current program is more than 100 lines or

so. This is why it is a good idea to assign X<>Y and RDN to

their default keys. In USER mode the seemingly redundant

function assignment takes precedence over the local label

search, eliminating the delay associated with that search.

The rightmost two and a half bytes of the ~ register

contain the hexadecimal code for the last function executed

from the keyboard. The printer may make use of this area as

well.
-113-

Registers a and b contain the program pointer and the

stack of return pointers. Each pointer occupies two bytes,

expressible in four hexadecimal digits. Bytes 1 and 0 of

register b contain the current program pointer. vfuen an XEQ

instruction is encountered, this pointer is pushed onto the

return stack -- that is, into bytes 3 and 2 of register b. If

another XEQ is encountered before the RTN from the first one,

the program pointer and the first return are pushed leftward

two more bytes. The return stack in registers a and b can

accommodate up to six pending return addresses in this way.

When a RTLJ instruction is encountered, the first return

address in bytes 3 and 2 of register b is checked. If its

value is zero, the current program pointer is retained and

control returns to the keyboard. Otherwise the return stack

is shifted leftward two bytes, with the former first return

address being moved into the program pointer slot. Execution

continues from that location in program memory, one step past

the XEQ instruction that caused the return address to be

pushed onto the return stack.

~ow for a little technical detail on program pointers.

'i'he four hexadecimal digits of the program pointer are

interpreted one way for lWl (read/write Random Access t-lemory)

and another way for t;'OI1 pointers (those from a plug-in Read

Only Memory). For I;.1.t-'i the first four bits denote the byte

number within the register, while the other 12 bits denote

the register I s absolute address from the bottom of memory.

The format is

Obbb,000r,rrrr,rrrr ,

where bbb denotes the byte number (expressible in three bits

since the maximum value is 6 = 0110 base 2) and where

r,rrrr,rrrr denotes the register number (expressible in 9

bits since the maximum value is 511 = 0001,1111,1111 base 2).

For example 0101,0001,1010,1110 = hex 51AE denotes byte 5 of

register lA~ = 430 decimal). Byte numbers range from 6 to 0

as the program pointer moves downward through one register of

a program. Thus 61AE is above 41AE in a program, and 41AE is

above GlAD.

-114-

RAM return address pointers ~re the same as ordinary RAM

pointers, except that the three bits that designate the byte

number within the register are shifted to the right. These

bits, normally the second, third, and fourth from the left of

the 16-bit pointer, are shifted three positions over, to the

fifth, sixth, and seventh bit positions. The RAM return

pointer format is

0000,bbbr,rrrr,rrrr

ROH pointers consist of a port address in the first four

bits plus a 12-bit byte number within that port:

pppp,bbbb,bbbb,bbbb .

The port address part of a Rot/J pointer is not the same as the

physical port number. The correspondence is:

port address physical port or device

0 internal ROM " 1 internal ROt-I 1

2 internal ROH 2

3 not used

4 Service ROl-l module

5 '.l'ime module

6 Printer

7 Tape Drive (IL monitor)

8 Port 1, Lower 4K

9 Port 1, Upper 4K

A Port 2, Lower 4K

B Port 2, Upper 4K

C Port 3, Lower 4K

D Port 3, Upper 4K

C Port 4, Lower 4K

F Port 4, Upper 4K

Each port address can

FFF +1 bytes) . The

accomodate a 4 Kilobyte ROM (4096 = hex

12-bit byte number starts at zero and

increases toward FFF as sequential ROM program instructions

are executed.

-1l5-

Another important detail: When you RCL b in RUN mode at

a specific line of program memory, the pointer value is

usually one byte above the location where the instruction

resides. Thus if a RCL M instruction is located in bytes 6

and 5 of register lAE, and you RCL b at this line of program

memory, the resulting pointer value will be 01AF hex, one

byte above the actual location of the RCL M instruction.

Where nulls are present, the pointer will be farther above

the instruction. In fact it will be one byte above the group

of nulls preceding the instruction.

Status register c contains essential pointer information

needed to define the configuration of memory usage. Referring

to Figure 6.3, we'll proceed right to left through the c

register.

The last (rightmost) three hexadecimal digits of

register c contain a pointer to the resister containing the

. LNG. I which marks the bot tom of user program memory. 'rhe

.END. is always positioned in the rightmost three bytes of

the register, with nulls preceding it as needed to occupy the

space between the last instruction and the .END.

The next three hex digits of c contain a pointer to data

register 00. This pointer, often called the "curtain",

effects the separation of program and data memory. Any time

the SIZE is changed, this pointer is adjusted and the

contents of memory are shifted. Several short synthetic

programs have been written to move the curtain, transforming

program steps to data or vice versa. In Section 6C you will

encounter one such program, together with an introduction to

curtain moving. 'VIi thin m and _ are instruction

sequences that temporarily place the curtain at 0lk:J hex = 16

decimal. 'l'his allows program memory or the key assignment

registers to be accessed by STO IND and RCL IND instructions.

RCL will, of course, normalize the register contents. The

previous contents of register c are held in the stack or in

-116-

other status registers for replacement before the program

halts. LB and MK illustrate the power of curtain control.

The next three hex digits of c contain the "cold start

constant". These three digits are 1, 6, and 9 in every HP-41

manufactured so far. If the processor ever finds that these

digits have been altered, it clears all of memory, giving the

MEMORY LOST message in the display. The rationale behind this

action is that since the processor never alters these digits,

any alteration must be due to power failure. (No provisions

were made for errant synthetic programmers.) Presumably other

parts of memory would also have been altered, so clearing the

memory is required to prevent an unsuspecting user from

getting erroneous results. The main thing to remember about

the cold start constant is not to store anything in c unless

these three hex digits are 169, under penalty of MEMORY LOST;

Incidentally, if the register in~ediately below the curtain

pointer is nonexistent, you'll also get MEMORY LOST. So watch

what you store in c.

The fourth and fifth hex digits from the left are

apparently not used by the operating system or the printer.

The leftmost three hex digits of c constitute a pointer

to the lowest register of the summation register block. For

example if the curtain is at hex lEB (SIZE 021 with full

memory) and a EREG 01 command is executed, the EREG pointer

will be set to hex lEC which is lEB + 1.

Th~~~~~!~~~£ contains all 56 flags. Byte 6, £he

leftmost byte, contains flags 0 through 7, while byte 0

contains flags 48 to 55. The flag register is used as the

cornerstone of synthetic programming. Until the advent of the

extended functions module, most bit manipulation could be

done only by dropping one or more bytes of data into the flag

register. Once in the flag register, the first thirty bits of

the data can be directly modified as flags 00 through 29. A

prime example of this technique is the "RAMBYT" program of

Chapter 4. You'll find pairs of X<> d instructions, separated

-117-

by several lines of bit-fiddling flag operations, in many of

the synthetic routines in the PPC ROM.

The e register contains a bit map for shifted assigned

keys. This bit map is precisely analogous to the one for

unshifted keys in the ~ register. It also occupies the

leftmost four and a half bytes of the register.

The next two hex digits, half of byte number 2 and half

of byte 1, are used as scratch by the processor.

The last three hex digits of the e register constitute

the program line number. Since the line number is not stored

with the instructions in program memory, and since

instructions vary in length from 1 to several bytes, the

processor must calculate the line number. This calculation is

time consuming and must be redone every time you execute the

Catalog function, SST a G'I'Ci or XLQ instruction in RUH mode,

or otherwise jump to a location with an unknown line number.

Because the calculation is time consuming, it is not

performed in a running program. This speeds program

execution, but it also causes a noticeable delay when you try

to switch to PRGM mode after running a program. The processor

will not show you the program instruction until it has

computed the line number that goes with it. how does the

processor know that the line number needs to be recomputed?

It's simple. Before the processor starts running a program

(SST execution does not count as "running a program" in this

context), it sets the line number to hex FFF decimal 4095.

The line number remains FFF as the program is executed. vfuen

you try to SST or to switch to PRGM mode, the processor sees

that the line number is FFF and automatically recomputes the

correct line number for the current program pointer by

counting down from the preceding I::ND.

The mysterious line 4094 you saw in Chapter 1 when you

created the byte ~rabber was due to the fact that when you

pressed backarrow in ALPfffi mode, the calculator decremented

the line number by 1 without realizing that the FFF line

-118-

number was invalid. The RCL 01 that you saw was a phantom

instruction that appears when the program pointer register

(status register b) contains zero.

6B. Status Register Application 1 -- Suspend Key Assignments

As part of its compatibility with HP-67 operation, the

HP-41 has 15 keys (top two rows unshifted plus top row

shifted) which, when pressed in USER mode, will find and

execute the corresponding local label (A-J and a-e). But this

feature conflicts with any global label or function key

assignments to these keys, since the HP-41 gives precedence

to function and global label assignments. How many times have

you wanted to use the automatic assignment of local labels

A-J and a-e, but found a function or global label key

assignment in your way? You press LOG to execute LBL V, but

instead you get another function that you have assigned to

that key. Wouldn't it be nice if there were a way to

temporarily eliminate the conflicting key assignment, then

bring it back later?

Synthetic programming techniques permit this to be done,

and the PPC ROM contains two routines that do it. You use

Ba to suspend the function and global label key

assignments, and mIl to reactivate them.

e.co use _ , simply key in a register number k, and XEQ

"SK". The key assignment bit maps from status registers ~- and

e are stored in data registers k and k+l, while the bit map

areas in the ~- and e registers are cleared. Because the bit

maps are clear, the calculator thinks that there are no key

assignments' present. Therefore you can press the LOG key in

USER mode to execute LBL D. Any function or global label key

assignments that are present are held in suspended animation.

When you want to reactivate the global label and

function key assignments, just key in the same data register

number k, and XEQ "RK". The contents of data registers k and

-119-

k+l are recalled and put into status registers ~ and e. Since

the calculator now has the proper bit maps, the key

assignments operate normally again.

There is another way to reactivate your function key

assignments. You need only read in a program card on the card

reader. It doesn't matter whether you read the card in USER

mode or not, but it must be a program card. This technique is

valuable if you accidentally disturb data registers k and k+l

that hold the key assignment bit maps after you execute "SK".

Let's analyze the workings of PPC ROM routines m and

mI (suspend and reactivate key assignments). If you don't

have a PPC ROH, key in EI3 and ImI using LB:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

LBL "SK"

SIGN

CLX

X<> ~-

XEQ 14

ISG L

TEXT 0

X<> e

LBL 14

11*"

X<> 1'1

STO N

ASTO lND

RDN

RT1,

LilL "RK"

SIGN

ARCL IND

hex F2 7F

ISG L

L

L

00

-120-

"LS" inputs:

206, 122

240

206, 127

206, 117

145, 118

242, 127, 0

22 TEXT 0 240

23 ARCL IND L

24 hex F3 7F 0F FF 243, 127, 15, 255

25 X<> N 206, 118

26 STO ~- 145, 122

27 x<> M 206, 117

28 STO e 145, 127

29 RDN

30 CLA

31 END

The accompanying "Stack and ALPHA Register Analysis

Form" is an indispensible tool for step-by-step tracing of

synthetic programs. You'll understand its value after you've

used it to trace ImI and ImI .
When you execute UI, the register number k is first

stored in LASTX by the SIGN function. Th~n an X<> ~

instruction is used to extract the contents of the ~- register

and simultaneously clear it. The LBL 14 subroutine uses the

ASTO function to store a six-character string in register k.

This six-character string consists of an asterisk character

followed by the first five bytes of the former ~ register

contents. The asterisk is needed as a place holder in case

the leftmost byte of the ~- register is zero. The three-step

sequence "*", X < > ~1, STO N, sets up the ALPHA reg i ster

contents for the ASTO operation, as you can see on the ALPHA

register analysis form. Take the time to understand this

three-step sequence if you want to write your own synthetic

programs.

The rest of the UI routine performs a similar

operation, extracting the contents of register e and clearing

it, and storing a similar six-character string in data

register k+l.

When you execute ImI the data register number k is first

stored in LASTX by the SIGN function. Then the six-character

string is ARCL'ed from register k and shifted left one byte

-121-

,
I-'
N
N
I

LINE

53
54
55
56
57
62
63
64
65
66
67
68
58
59
60
61
62
fi,
64
65
66
67
68

84
85
Rfi
87
88
89
qo
91
92
q,
94
95
96

-if7

CJ8

INSTRUCTION

LBL SK"
SIGN
CLX
X<>J-
XEO 14
LBL 14
* X<> M

STO N
ASTO IND L
RDN
RTN
ISG L
'If' (NOP)

X<> e
LBL 14
n*"
X<> M
STO N
ASTO IND L
RDN
R'T'N

LBT,"RK"
SIGN
ARrT. TNn T
"~-"
ISG L
"" (NOP)
ARrL TNn T
"~4>"
X<> N
~1'nT
X<> M
STO '"
RDN
r.T:A
R1'N

L X Y

x v
x 1

0
H

*

v 7

x+1

0 y
e

*

z

x v

x 1

x+1

1-'

e'

y z

STACK AND ALPHA ANALYSIS FORM

Z T P 0 N M

7. t

Cleared Cleared Cleared *
1 ') , 14 ') I'; 7

*
r *

z t

Cleared Cleared Cleared * R q '1 n 111 I') 14

*
--

t *

7 r

* 1 2 3 4 5
* 1 2 3 4 5 -

* 1 2 345 * 8 9 o 1 2
* 1 2 3 14 5 * 8 9 10 1 2 OF F

...

1 2 3 4 5 *
t e'

Cleared Cleared Cleared
I I I I I I I I -

I I I (I I

I I T I I I- I I I I I I T I I I I I I T I I I I I I I I I IT I ITT I T Tn
l-

l- l-
2

l-
I-

I-

• l-
l-

I-

-

r-f-
:IE 0

a:
0

I-

U.
en
c;;
>

r-
I-

...J
oes: --
Z
oes: ... ---I-

oes:
J:

l-

a.. -...J
oes: l-

I-

I-

N

>-

)(

...

z
0
I-
0
::l
a:
I-en
~

w
Z
...J

-123-

by appending a null, though an asterisk would do just as

well. Register k+l is then ARCL'ed, shifting the previous

string another six characters to the left. Two more bytes,

hex OF and FF, are appended, causing a further two-byte shift

to the left. The ALPHA analysis form reveals all this action

in detail.

At this point the N register contains the required 7

bytes for ~-, while the M register contains the correct bytes

for e. The last several lines of CGI extract the contents of

l~ and M, store them in ~- and e, and clean up ALPHA and the

stack. Note that the last two bytes of e are 0F FF, requiring

the calculator to compute a correct line number. Earlier

versions of mI stored 00 00 in the rightmost bytes of e,

causing the line number to be incorrect if the program was

single-stepped or run in TRACE mode.

6C. Status Register Application 2 -- Register Renumbering

Suppose you have a program which calls a user-supplied

program as a subroutine. A typical example would be a root

finder program which finds a value of x such that f(x) = 0.

In this case f(x) is calculated by a user-supplied

subroutine. The user supplies the name of the f(x) program,

the root finder stores the name in a data register and calls

it as needed with an XEQ IND nn instruction.

In writing such'a root finder program, you have a

difficult decision to make. The root finder will need to use

some numbered data registers to hold its data, and it is

essential that these registers not be disturbed by the user's

f(x) program. No matter which registers you choose, there is

always the possibility of a register usage conflict between

the root finder and the f(x) program. You might try using

data registers 50 and up for the root finder, figuring that

-124-

most reasonable f(x) programs wouldn't be using those

registers. But even if this would work, it is wasteful. In

most cases the user's f(x) program won't use anywhere near 50

registers.

Synthetic programming provides a way out of this

predicament. A short synthetic routine can reposition the

curtain that separates data registers from program memory,

effectively renumbering the data registers.

For example, suppose the root finder program uses the

five data registers 00 through 04. Just before calling the

f(x) program, the root finder calls the synthetic routine

.. CU .. (curtain up) to raise the curtain five registers. The

figure below shows the effect of raising the curtain five

registers. Although the contents of the registers haven't

changed, a RCL 00 will now extract the contents of what used

to be called data register 05.

BEFORE AFTER

ROI R' 01

R 05 R' 00

NEW"CURTAIN"

RM R'_01 THESE DATA REGISTERS

R 03 R'_IZ HAVE TE .. ORARILY

Raz R'-03 BECOME PROGRAM STEPS

R 11 R' -04 IN THE TOP PROGRAM

ROO R'_OS OF CATALOG 1.

LBL -rOP" .- LBL "TOP"

END .- END
PROGRAM
MEMORY

. END. +-.END •

Similarly a RCL 01 instruction will produce the contents of

what used to be register 06. The important registers that the

-125-

root finder needs to protect from the user's f(x) program are

now inaccessible by STO and RCL instructions. The contents of

what used to be called data registers 00 through 04 are now

regarded as part of program memory by the calculator. In fact

if you were to go to the top program of Catalog 1, you'd find

this data at the top of the program. Of course it would appear

in the form of program instructions rather than as numbers.

The important point is that after raising the curtain by

five registers, the root finder program can call the f(x)

program without fear that its essential data will be

disturbed. The f(x) program will have free use of what it

thinks are data registers 00 and up.

When the f(x) program returns control to the root finder

program, the first thing the root finder does is to lower the

curtain back to the original location. This restores the

original data register numbering and makes the root finder's

data accessible again as data registers 00 through 04.

The accompanying program listings for the curtain-raising

routine "CUD and a typical root finder program "SOLV~"

illustrate the principles we've been discussing. This version

of "CUD was written by Tapani Tarvainen, and represents a

major breakthrough from previous versions.

LB inputs for "CU" :

Line 03 144, 125 Line 04 145, 117

Line 05 245, 127, 0, p, 0, 33

Line 08 206, 117 Line 09 206, 126 Line 10 145, 119

Line 13 170, 245 Line 15 240 Line 21 168, 245

Line 22 151, 117 Line 27 2136, 119 Line 28 206, 126

Line 29 145, 117

Line 30 244, 127, 0, 13, 13

Line 31 2136, 118 Line 32 2136, 125

-126-

01*LBl 'SOLYE" 18*LBl 10 36 E-6 91+lBl "CU· 19 FRC
02 "FNIl"E?" 19 RCL 89 37 X(=Y? 92 INT 28 X'8?
93 AOH 29 Rel 93 38 GTO 19 93 RCl c. 21 SF IND [
94 STOP 21 XEQ 14 39 RCL 83 94 STO [22 DSE [
95 ASTO 08 22 ENTERt 48 BEEP 05 "H**I- 23 ABS
96 HOFF 23 ENTERt 41 RTN 96 RDN 24 -

97 'XGUESS1?" 24 XO 81 97 11 25 X'9?
98 PRO"PT 25 - 42*LBL 14 88 XO [26 GTO 83
89 STO 83 26 / 43 4 99 XO d 27 XO]

18 'XGUEssn" 27 RCL 92 44 XEQ 'CU" 18 STO] 28 XO d
11 PRO"PT 28 * 45 XEQ IND Y 11 RDN 29 STO [
12 - 29 CHS 46 4 38 'Hu'
13 STO 92 39 STO 82 47 CHS 12*LBL 83 31 XO \
14 ReL 88 31 Rel 93 48 XEQ 'CU" 13 FS?C IND 32 XO c.
15 LIlSTX 32 + 49 END 14 ISG X 33 RDN
16 XEQ 14 33 STO 93 lBL'SOlYE 15 •• 34 CLIl
17 STO 91 34 RCl 81 END 16 2 35 END

35 ABS 97 BYTES 17 / lBl'CU
18 ENTERt END 67 BYTES

Barcode for "SOLVE" and "CU" can be found in Appendix E.

The SOLVE routine starts by asking for the name of the

user-supplied f(x) program and for two initial guesses at the

root, that is, the value of x such that f(x) = 0. SOLVE then

proceeds to apply Newton's method to find the actual root of

f(x) = 0. To do this it will need to evaluate f(x) at several

points. Each evaluation of f(x) is accomplished through the

LBL 14 subroutine, which raises the curtain 4 registers, ca~ls

f(x), then lowers the curtain 4 registers to its original

location.

The "CU" routine raises the curtain by the number of

registers specified in X. If this number is negative the

curtain is lowered. Two stack registers are preserved, so that

the original contents of Y and Z (before executing "CU") end

up in X and Y. This feature is used in the "SOLVE" program to

preserve the function name and the trial value of x in the

-127-

stack. Then an XEQ IND Y instruction is sufficient to call the

f(x) function with the correct input.

To tryout the SOLVE/CU combination, try this example.

GTO .. and key in:

01 LBL"TEST"

02 l/X

03 LASTX

04 -

05 1

06 +
This short program calculates f(x)=(l/x)-x+l. Comparing

problem 2.4, you can confirm that the solution to f(x)=0 is

x=l+l/x, which is the Golden Ratio.

XEQ"SOLVE" now and supply the requested information:

Prompt

FNAME?

XGUE;SSl?

XGUESS2?

Response

'rEST (R/S)

1 (R/ S)

2 (R/S)

After about 40 seconds you'll hear a BEEP and see the result

1.618033989. This example does not really make use of the full

capabilities of the SOLVE/CU combination, but you can be

assured that SOLVE and CU will work just as well with any

user-supplied f(x) program, regardless of any apparent

register usage conflicts. Of course the usual limitations of

root finding by Newton's method still apply. Certain

ill-behaved functions can cause problems, as can bad initial

guesses. But in most real-world cases, it works quickly and

well.

Constraints on the use of "CU"

1.) While the curtain is in a raised position, data registers

temporarily become program steps at the top of the first

program in program memory. Some of these temporary

program steps may be labels. Therefore do not branch

-128-

backwards to a local label in the first program block

when the curtain is up.

2.) Don't PACK program memory while the curtain is raised. It

is more than likely that the protected data registers

will contain null bytes which will be removed by packing.

You can partially protect yourself from data alteration

by PACKing before raising the curtain. This way the

processor thinks your top program is already packed. Also

make sure that several free registers (below the .END.)

are present before using "CU". Then if you ins ert a

program instruction, make a key assignment, or set an

alarm you won't inadvertently cause a PACK to occur.

3.) Always restore the curtain to its original position. This

is a matter of good programming practice. If you

accidentally leave the curtain up you'll have to go into

the first program in memory, delete the extraneous

instructions at the top (thereby clearing your protected

data), and PACK to bring the program up to the new

curtain.

4.) Don't put the curtain immediately above a void, or

nonexistent, location. For example a curtain location of

16 (decimal) is OK since register 15 (status register e)

exists. But if you put the curtain at 17 you'll get

MEMORY LOST, since register 16 does not exist. M~MORY

LOST can be avoided if you bring the curtain back to an

allowable location before halting ("MK" and "LB" do

this), but you'd better know exactly what you're doing.

With the "CU" program, not only can one program renumber

the registers before calling another program, but this second

-129-

program can do a second renumbering before calling a third

program. The process can be continued indefinitely, creating

a multi-level data "stack". The critical sequence of steps to

be embedded in any program to allow it to guard data

registers 0 through k-l from a subroutine is:

k

XEQ "CU"

XEQ subroutine

-k

XEQ "CU"

Register renumbering through curtain control adds

greatly to program flexibility. For example a program that

uses data registers 10 through 19 can be run with a SIZE of

only 10. You need only lower the curtain 10 registers before

executing the program, transforming registers 00 through 09

into registers 10 through 19. Don't forget to put the curtain

back where it was immediately after running the program -- an

inadvertent RCL 00 could wipe out part of your programs.

Tapani Tarvainen's "CU" program is functionally

equivalent to Bill Wickes's lID (curtain up) program that is

in the PPC ROM, so they may be used interchangeably. If speed

is important you should be aware that Tapani's "CU" is

significantly faster than lID. Also available are the

even-faster PPC ROM curtain control routines am , l!JD, and

... These three routines have additional restrictions on

their use which you should understand before you use them.

For background information on curtain moving in general and

on the routines named here, see the PPC Calculator Journal:

May 1980 page 23, June 1980 page 45, July 1980 page 2, and

March 1981 page 2. The programs "MS" and "RS" discussed in

the PPC CJ articles are earlier versions of IDD and I!ID •

The PPC ROM User's Manual contains helpful information in the

-130-

writeups for IB!I, DID, am, and ... Appendix M of the

ROM Manual contains even more background material on curtain

moving.

How the "CU" routine works

First the contents of status register c are placed in

the rightmost part of the ALPHA register. Then line 05

appends four bytes. At this point status register M, which

consists of the the last seven characters of ALPHA, contains

the last three bytes of c, followed by three null bytes and a

hexadecimal 21 byte. The curtain pointer resides in the first

byte and a half of M.

Next M is extracted and swapped with the flags. The

curtain pointer now resides in flags 0 through 11. Actually

flags 0 and 1 are guaranteed to be clear, since the curtain

is always less than or equal to 512 = 0010,0000,0000 base 2.

The original flags are saved in status register 0 for later

restoration, while the number 11 is stored in M for later use

as a loop index.

The mysterious hex 21 byte sets flags 50 and 55. Flag 50

prevents any message in the display from moving (see Example

6 under IIII in the PPC ROM User's Hanual). Flag 55 must be

set to allow "CU" to be interrupted or single-stepped with a

printer attached. If flag 55 were clear, flags 55 and 21

would both be set on interruption, possibly altering the

.l:Jortion of the flag register that corresponds to the .END.

pointer.

The LBL 03 loop performs binary addition in the flag

register using Tapani's unique, elegant algorithm. The binary

number in flags 0 through 11 is converted to decimal and

added to the decimal increment (the number of registers by

which the curtain is to be raised). Then the resulting

decimal sum is converted back to binary and placed in flags 0

through 11.

-131-

The feature that makes Tapani's program unique is that

this binary to decimal to binary conversion is completed at

each bit before the next bit is considered. Each time through

the LBL 03 loop one bit of the current curtain pointer is

replaced by the correct bit for the new curtain pointer.

Consider the way this process works for the least significant

bit, the first time through the LBL 03 loop.

When LBL 03 is encountered for the first time, X

contains the curtain increment you asked for. Lines 13 and 14

clear flag 11, the "ones" bit of the curtain pointer, and add

1 to X if flag 11 was set. This effectively converts the flag

11 bit to decimal, adding it to X. The flag 11 bit of the new

curtain pointer will be set if and only if the number in X is

now odd. If you don't see why this is so, consider that the

new curtain pointer is the sum of the number in X plus the

binary number residing in flags 0 through 11. Since flag 11

is clear, the binary number is divisible by 2. Thus the sum

is odd, and flag 11 is to be set, if and only if X is odd.

Lines 15 through 24 perform several operations that are

equivalent in effect to setting flag 11 and subtracting 1

from X if X is odd, otherwise leaving flag 11 clear, then

dividing X by two. This division has an integer as the result

because the previous step ensured that X would be even. The

flag index is decremented from 11 to 10 for the next pass

through the loop. Flag 11 attains the proper state for the

new curtain pointer: set if and only if X was odd. Lines 25

and 26 cause the addition to proceed to the next most

significant bit if the increment has not been reduced to zero

yet.

The second time through the loop the binary number is

only 11 bits long (flags 0 through 10). \ve had to divide X by

2 so that it would be a decimal increment consistent with the

new "ones" bit at flag 10. The number in X does not merely

represent the originally requested curtain increment. It now

-132-

contains a component corresponding to a "carry", if there was

any, from the previous bit.

This time through the loop flag 10 is cleared and

transferred to X, then flag 10 is set if and only if X is

odd. Once again, X is made even and divided by 2 for the next

pass. This procedure continues until X is reduced to zero, as

it must eventually be because of the repeated division by 2.

Notice that nowhere in the routine do we require

knowledge of whether X is posi ti ve or negative. "cu" works

the same in either case. When a flag is cleared X is

incremented. When a flag is set X is decremented. Each time

through the loop X is divided by 2, until eventually X

becomes zero.

Lines 27 through 29 extract the contents of the flag

register and place them in status register M, res~oring the

original flags and placing the modified last three bytes of c

adjacent to the first four bytes of c which still occupy the

rightmost 4 bytes of N. The ALPhA register is shifted left

three bytes by an append instruction. All seven bytes of the

new c register are now in status register N. They are

extracted and stored in c. The X<> c instruction is used in

case you want to restore the old curtain later with a simple

STO c. Of course to do that you'll have to find the old c

register contents in the stack, if it's still there.

The last few lines clear the ALPlffi register for neatness

and straighten out the stack. The former Y and Z end up in X

and Y: Z contains the previous c register contents, and T

contains zero.

Follow through this analysis a few times until you

understand it. It may help to load the stack with 4 ENTER+ 3

ENTER+ 2 ENTERt 1 and GTO "CU". l'lake sure the SIZE is at

least 001. Then you can SST through the routine and see

What's going on for this simple case of raising the curtain 1

register.

-133-

Don't be concerned if much or even most of this Chapter

is difficult to fathom at first reading. After all, that's

why I saved it for last. Consider that the byte grabber and

the "bootstrap" method of assigning it to a key were both

discovered two years after synthetic programming began. There

is undoubtedly much more yet to be discovered about your

HP-41. Perhaps you will be the one to do it.

-134-

SOLUTIONS TO PROBLElviS

CHAPTER 2

2.1 Here's one version of "COli :

01 LBL"CQ" ID / m inputs:

02 RAD

03 CLX

04 TONE 8

05 TONE P 159, 120

06 TONE 8

07 TONE P 159, 120

08 SIN

09 TONE 8

10 TONE 8

11 TONE P 159, 120

12 TONE 8

13 END

2.2 Key in

01 EUTER+

02 lEl

GTO .001, key in HDN, BG, and backarrow twice. You now have

El on line 02. uext key in STO 28, PACK, BST, BG, and

backarrow. The PACI~ing placed the 28 suffix byte adjacent to

the El instruction, purging the intervening nulls. \Vhen the

STO prefix is grabbed, the 28 suffix becomes a NEG digit

entry byte and is incorporated in the adjacent El

instruction.

2.3

ID inputs for -£1 are 28, 27, 17.

01 LBL"VX"

02 " "
03 RCL d

04 SCI 9

ID / ID inputs:

(2 spaces)

144, 126

05 ARCL Y (not X since the stack was raised by RCLd)

-135-

06 STO d

07 RDN

108 Avn.:VJ
09 END

145, 126

In cases like this you should get in the habit of doing the

AVIEW after the STO d rather than before. This prevents

altering system flags. In this particular case the display

will revert to normal (the AVIEWed number will disappear) at

completion of the program if the AVIEW is done first, since

STO d clears flag 50, the message flag.

2.4 Here's one solution to the Golden Ratio problem.

01 LBL"GR" ID / IimI inputs:

02 FIX 9

03 E 27 or 27, 0

04 RCL b 144, 124

05 X<>Y

06 l/X

07 E 27 or 27, (1

08 +
09 X<>Y

10 VIEW Y

11 STO b 145, 124

It converges to a H'-digit solution in 8 seconds.

2.5 a) 01 LBL II PX" ID inputs:

102 FIX 0

03 CF 29

04 "X (II 242, 88, 40

05 ARCL 00

06 "~.)=,?" 244, 127, 41, 61, 63

07 PROMPT

-136-

To generate the synthetic lines using the byte grabber,

key in
01 ENTEfd

02 "XX"

03 "f-X=?"

GTO .002, BG, GTO .005, backarrow, WCL 09, GTO .002, BG, DEL

002, GTO .001, BU, GTO .004, backarrow, RCL 08, GTO .001, BG,

DEL 002, backarrow, and key in the nonsynthetic lines.

b) To preserve the display mode, insert RCL d and STO d as

shown:

01 LBL"PX"

02 RCi. d

03 CF 29

04 FIX 0

05 "X ("

06 ARCL 00
07 II :._)=:11

08 S'l'O d

09 RDN

10 PkOHP'r

ID / _ inputs:

144, 124

145, 124

lt is possible to save one byte by replacing lines 02 - 03 of

this program by

02 (decimal point)

03 Xo d 20G, 12G

'l'his stores zero in the fla,:! register, clearing all 56 flags.

The we need only to FIX 0 to get the desired status of flags

29 and 36-41. The old fla'.:l reyister contents are in X just

as before, ready for the subsequent S'l'O d that restores the

previous flag settings. To make the X<>d instruction using

the byte grabber, start with S'l'O I1'<D 78 followed by AVIEW.

Grab the STO byte and backarrow. The IND 78 becomes XO and

the AVIEW becomes the d suffix.

-137-

2.6 01 LBL"OX"

02 l<.CL d

03 FIX 2

04 "GUT="

05 ARCL Y

06 5'1'0 d

07 RDN

08 "r-,'JV II

Line 08 can be constructed

Key in

01 ENTERt

02 "~·XV"

using

1m! inputs:

144, 126

145, 126

243, 127, 12,

the byte grabber

86

as follows.

GTO .D01, llG, GTG .004, backarrow, LBL 11, GTO .001, BG, DEL

0102, backarrow.

2.7 LBL"CMOD" I!lI / mil inputs:

02 X<>Y

03 STO M 145, 117

04 X<>Y

05 t-lCiD

06 ST- M 147, 117

07 LAS'I'X

U8 ST/ tv! 149, 117

09 CLX

10 X<>M 206, 117

Lines 01-04 save y in M and x in L. Then y mod x is

subtacteti from M. Lines 07-10 divide M by X, bring M back to

X, and clear M.

2.8 (See page 192 in the Addendum section)

CHAPTER 3

3.1 GTO .. and key in LBL"++", at least 45 +'s, and XEQ"LB".

Switch out of PRGM mode, R/S, and respond to the prompts as

follows:

-138-

prompt response

17 27 Ris
27 145 Rls
37 119 Ris
47 146 Ris
57 119 Rls
67 206 Rls
7? 119 Ris
17 145 Rls
27 117 Ris
37 150 1<../5

47 117 Ris
57 2413 Ris
6? 153 Rls
7? 245 Ris
17 152 Ris
27 119 Ris
3? 172 Ris
47 245 [{IS

57 159 Ris
67 106 Rls
7? 244 Ris
17 1 Rls
:'::7 4 Rls
37 5 Rls
47 6 Ris
5? 242 H./S

67 127 Rls
7? 96 Rls
l? 154 Rls
27 118 Ris
37 152 Rls
47 118 Ris
57 1<./5

When the program stops you can press 55'1' to get back to

-139-

LBL"++" and see your new synthetic instructions.

3.2 Here's a simple nonsynthetic program to compute the LB

inputs from X ROl-l numbers. This program takes advantage of

the fact that 64*{i mod 4) is the same as 256*FRC{i/4). At

the right we note how the stack register contents change

through the program. Where there is no entry, the contents

of that register are unchanged from the previous step.

LBLOOXRLB" L X Y Z T

X<>Y i j z t

4 4 i j z

/ 4 i/4 .J z z

IN'l' i/4 INT{i/4)

X<>Y j INT{i/4)

LAS'I'X i/4 j HiT (i/4) z
F[{C i/4 FRC{i/4)

256 256 FRC{i/4) j INT{i/4)

* 256 64{i mod 4) j INT{i/4) IN'l'{i/4)

+ 64{i mod 4) byte 2 INT{i/4)

X<>y INT{ i/4) byte 2

160 160 INT{i/4) byte 2

+ 160 byte 1 byte 2 INT{i/4) INT{i/4)

END

'1'0 use XRLB, key in i ENTER+ j and XEQ"XRLB". The output

in X is byte 1 in decimal. Byte 2 is in the Y register.

Here's a synthetic version of "XRLB" that does not disturb

stack registers Z and T. At the right are noted the

important stack and status register contents as they change

through the program.

-1410-

LBL"XRLB" N M L X Y Z T

STO M j j i z t

RDN i z t j

4 4 i z t

/ 4 i/4 z t t

S'1'O N i/4

FRC i/4 FRC(i/4)

256 256 FRC(i/4) z t

* 256 64(i mod 4) z t t

RCL t'l j 64(i mod 4) z t

+ j byte 2 z t t

1610 160 byte 2 z t

ST+ N 161O+i/4

x<> N lb0 160+i/4

INT 16fl+i/4 byte 1 byte 2 z t

CLA 10

END byte 1 byte 2 z t

3.3 Use at least 17 +'s and execute LB. The 7 inputs are

207, 1210, 159, 37, 208, 0, 1210.

3.4 Use at least 31 +'s and load decimal values 192, (i, 255,

0, 82, 80, 78, 32, 67, 65, 76, 67, 85, 76, 65, 84, 79, 82.

PACK to incorporate this new global label into Catalog 1.

Since this label 18 longer than I:) characters it cannot be the

object of a GTO HlD or XEQ IND instruction.

3.5 The proper LB inputs are 144, 124, 206, 117, 206, 118,

145, 117, 206, 117, 206, 125, 145, 125, 242, 127, 0, 2106,

125, 144, 117, 145, 1:l5.

CHAPTER 4

4.2 The decimal byte equivalents required are 244, 127, 10,

10, 2, 27, 20, 2106, 125, 145, 125, 242, 127, 0, 2106, 125, 145,

-141-

125. GTO •. and key in LBL "LB". Then in RUN mode do CLA,

125, XTOA, 145, XTOA, 125, XTOA, 206, XTOA, 0, XTOA, 127,

XTOA, 242, XTOA. GTO "LB", RCL M, STO Q, enter PRGM mode,

Q-LOAD, BG, and backarrow twice.

Switch back to RUN mode and do CLA, 125, XTOA, 145, X'l'OA,

125, XTOA, 206, XTOA, 20, XTOA, 27, XTOA. GTO "LB", RCL M,

STO Q, and enter PRGM mode. No PACKing is required here

since the 242 byte is not part of a preceding instruction.

Thus no direct attachment to the new bytes is required.

Still in PRGM mode at LBL "LB", U-LOAD, BG, and backarrow

twice.

Continue with CLA, 2, XTOA, 0, XTOA, 0, XTOA, 127, XTOA, 244,

XTOA. GTO "LB", RCL M, STO Q, enter PRGIvI mode, Q-LOAD, BG,

and backarrow twice. The fact that we did not include the

decimal 2 byte in the second group of bytes saved us from the

need to PACK before loading the third group. Moreover, this

procedure was essential anyhow since the one weakness of

U-loading is its inability to load trailing null bytes. We

could not have loaded the sequence hex F4 7F' 00 00

successfully by itself.

4.3 a) XROM 61,25

b) XROM 57,56

c) XROM 27,54

CHAPTER 5

5.1 The byte sequences in hexadecimal are as follows:

a) 40, 47, 48, 00, 00, 121121, l2Je, 0121, 1210, 13, 41, 121121, 14, 25,

15, 42. There was room for the I+ (hex 47), but the I- opened

seven bytes. The RCL 1215 fit in the null that was already

present between the 4 and 5 digit entry instructions.

b) 40, 41, EI2J, 0121, 0121, 92, 4B, 121121, 42, 43. The ST+ 75 takes

two of the 3 bytes formerly used by GTO 99.

-142-

APPENDIX A

INSTRUCTION TIMING

In reading Chapter 2, you might have wondered how anyone

could determine that the synthetic digit entry instruction E

executes faster than 1, or that the decimal point executes

faster than the digit zero. In HP-67 days, these results were

obtained by keying in a sequence of 100 or more identical

instructions, measuring the time needed to execute the entire

sequence, then dividing by the number of instructions in the

sequence. Needless to say, this procedure was both laborious

and time-consuming.

Synthetic programming permits automation of .. the procedure

of entering hundreds of copies of a particular instruction (or

even copies of a short sequence of instructions). The proper

byte sequences are created and stored, in 7-byte groups, in

contiguous registers. The bytes can then be executed as

program instructions by placing the pr0per code in the program

pointer register.

As a measure of the capability of the HP-41 system, the

HP 82182A time module allows even the timing of the sequence

of synthetically stored instructions to be automated. Clifford

Stern has written a synthetic program which uses the time

module to time an arbitrary group of one to seven bytes. The

program creates and stores as many replicas of the byte group

as it can within the unused portion of program memory. I~ then

executes the full sequence of byte groups, measures the

elapsed time, divides by the number of identical groups, and

displays the resulting time per group.

Table A.l gives typical results for instruction execution

time. Emphasis has been placed on instructions for which

alternatives are available. If you need a LOG function, it

doesn't realy matter how long it takes since you don't have

any faster way to calculate the logarithm. But to increment a

register, you may be interested to know that the sequence E,

-143-

+, at 78.7 msec, is slightly slower than the sequence ISG X,

TEXT 0, at about 74 msec. If you need the speed you may be

willin9 to use the extra byte of program memory to get it.

Other conclusions from the timing chart are:

ld Rt is faster than RDN PillN :

X<> is faster than RCL but slower than S'I'O :

Status register operations are always faster than the

corresponding numbered register operations :

compiled GTO's are very fast, with XEQ being a bit

slower

digit entry is very slow. This is due to the fact

that status registers P and Q must be loaded before

the X register :

For faster numeric entry use E instead of 1, and the

decimal point instead of zero. Note that CLX, SIGN is

a much faster way to get 1.

For faster entry of negative numbers, use a positive

number entry followed by a separate CKS instruction,

rather tnan a sinsle iastruction containins the

nesative liur.jber. Fress ALPHA llliPHA to tern,inate the

positive nun\Oer entry, then press CHS to get the

separate CdS lDstruction. CBS is much faster than NEG

(nesation \Ii thir: 0. number erltry instruction).

These results from the tir.lin<j program are another example

of how knowledge of synthetic ~r09rammins can improve your

general programming technique.

If you have a PPC ROt.'J, an extended functions module, and

a time module, you can use Clifford Stern's program to do some

instruction timing of your own. Here are the instructions:

1) Make sure that there is an END above this program in the

Catalog 1 list. This is necessary to allow the GTO

instructions to work properly with the program/data

"curtain" positioned at hex 010. For further explanation,

see "cu" constraint 1 in Section 6C.

-144-

Table A.l Typical execution times (in milliseconds)

Stack operations

ENTER+
X<>Y
RDN
Rt
CLX
LASTX
CLST
SIGN
CHS
CLA
RCL status
STO status
X<> status

Misc instructions
LBL 00-14
two-byte LBL
CLD
TEXT £)
AON, AOFF
ADV (no printer)
~EEP (flag 26 set)

DEG
RAD
GRAD
PSE
NULL

(flag 26 clear)

Storage register operations

STO 00-15
STO 16-99
STO status
STO IND 00-99
STO IND status

RCL 00-15
RCL 16-99
RCL status
RCL IND 00-99
RCL IND status

X<> 00-99
X<> status
X<> IND 00-99
X<> IND status

-145-

11. 7
10.3
16.9
12.0
9.8

13.0
10.5
13.3
12.5
9.5

20.3
16.8
19.7

10.6
13.1
20.6
12.3
19.0

9.2
1042.4

14.9
19.8
19.9
20.5

1333.2
5.7

19.3
20.6
16.8
32.3
32.1

22.8
24.1
20.3
35.7
35.6

23.4
19.7

35.1
35.0

ST+ 00-99
ST+ status
ST- 00-99
s'r- status
ST* 016-99
ST* status
ST/ 00-99
ser/ status

ISG X TEXT 0 (skip)
(non-skip)

DSE X TEXT 0 (skip)
(non-skip)

Digit Entry

o
1 through 9

E
(NEG, negates the
mantissa or exponent.
By itself, it places
a zero in X.)

38.9
35.3
40.8
37.3
46.8
43.0
49,5
45.8

73.2
74.4
72.9
74.0

69.7
59.8
61. 8
53.6
60.9

Miscellaneous multi-byte instructions

GTO 00-14 , compiled
G'l'O(three byte),compiled
XEQ, compiled
global LUL, 1 character

2 character
3 character

17.3
24.5
35.2
45.4
49.3
51. 9

(x 1)
(x -1)
(x 1)
(x = 2)

2) Clear flag 02 and set SIZE at least 004. Clear all timer

alarms (you can use the "SA" program from Section 4E).

Hake any key assignments you want now. Do not make any

key assignment~ (except global labels) after you've

started step 3 and before you've finished step 9.

3) Enter the number of registers to be used for storing the

byte sequence. The number of registers should be selected

to provide an exact multiple of the number of bytes per

group of instructions, except that 1- and 7-byte groups

are always OK. E'or example if the group is 3 bytes long,

the number of registers should be a multiple of 3. If it

-146-

is not a mUltiple of the number of bytes per group,

you 'll eventually get DA'l'A ERROR at line 114. If you pick

a multiple of 610 registers, you can I t go wrong. XEQ "IN"

to initialize to this number of registers. The timing

program will adjust the SIZE if needed to provide the

requested number of free registers below the .END. If

the existing combination of SIZE and free registers is

not sufficient to allow the requested number of free

registers to be provided for timing, a DATA ERROR message

will appear at line 49. I f this happens, clear a program

or reduce the number of free registers requested and

repeat from the beginning of step 3.

4) The "IN" procedure automatically falls into LBL "S", the

instruction storage routine. The "5" routine will prompt

you for a group of one to seven bytes. Key in a decimal

number between 0 and 255 for each byte, and press Ris
without an input to indicate the end of a byte group. The

group of bytes will then be duplicated and stored

throughout the initialized block of registers below the

.END. and above the key assignments.

5) With flag ul clear the "5" routine halts at LBL "T", the

timing routine. At this point the stack is clear. You are

free to load the stack as needed for your instruction

sequence. Press Ris or XEQ "T" to start the timing. The

result, expressed in milliseconds per group of bytes, is

returned in the X register when the timing routine halts.

If you happen to have an error condition that causes a

halt in the stored instruction sequence, you must press

GTO "s" and XEQ 10. You can then store a new sequence of

instructions as in step 4, or simply enter a valid

argument and XEQ "T".

6) To repeat the timing for another initial condition,

reload the stack and XEQ "T" again (do not simply press

Ris -- see step 9). If you want to set up the alpha

register as well as stack contents, just set flags 1 and

2 before executing "T". 'I'he timing routine will stop for

-147-

7)

you to load the alpha register (as well as the stack, if

you like) . Note that "T" can be called as a subroutine

for automated timing of the same function with a var1ety

of stack inputs.

To switch to timing a different group of instructions,

XEQ "s" again. You have the option of setting flag 1

first if you wish the timing to proceed automatically

with a clear stack. Set flags 1 and 2 if you need to load

the alpha register for timing.

8) To select a different number of registers for instruction

storage, enter the number and XEQ "IN" again.

9) To clear out the free register block at the end of the

timing session, press RTN and RIs, or just Ris after
using the "T" routine.

10) Three additional convenience routines are provided in

this program. They are each non-prompting versions of the

instruction storage routine "S".

XEQ "1" with a decimal input (0 to 255) to store a

sequence of one-byte instructions.

XEQ "2" with a decimal input to store the repeating

sequence: one-byte instruction, LASTX. This sequence is

helpful when timing unary operations like SIN or LN.

XEQ "3" with a decimal input to store the repeating

sequence: one-byte instruction, X<> L. This is useful for

timing binary operations like + or MOD. Just initialize

by filling the stack with "y" arguments, then putting the

"X" argument in X and executing "T".

When you use "2" or "3" you'll have to separately

time LASTX or X<> L and subtract to get the net execution

time for the particular function you're timing.

When you time numeric entry instructions, you must

separate them so they don't run together into a single

huge instruction. Use a null or LASTX, and subtract the

time for the separator.

Barcode for the complete instruction timer program is

included in Appendix E.

-148-

81 XROI'I "RF" 38 GTO 16 73+ 114 OCT 153 E
82 AYIEW 74 2561 115 GTO IHD a 154 ST- l

83 XROI'I "IF" 31*LBl "IN" 75 + 155 ARCL X
84 XROI'I "OM" 32 STO 83 76 7 116*LBl 87 156 LAST X
85 X{}Y 33 XROI'I "n" n. 117 XO [157 Rt
86 ISG X 34 IHT 78 XROI'I "DP" 118 XO] 158 RCl]

87 XROI'I "BC' 35 EHTERt 79 AS TO 82 119 STO a
88 GTO 13 36 XROI'I "E?" 88 BEEP 128 GTO 12 159*lBl 99

37 X()Y J68 STO HID Z
89*LBl "3" 38 - 81*lBl 10 121tlBl 84 161 DSE Z

18 "t" 39 STO 81 82 STOPSW 122 FIX 1 162 GTO 89
11 3 48 SIZE? 83 ClX 163 DSE a
12 GTO 81 41 EHTERt 84 SETSW 123*lBl 85 164 GTO 80

42 Rt 124 SF 29
13*lBl "2" 43 + 85*lBl "S" 165*lBl 13
14 "v' 44 RCl 83 86 CF 29 125*lBl 86 166 ClD
15 2 45 - 87 FIX 8 126*LBl 83 167 XOY
16 GTO 81 46 7 88 ClA 127*LBl 02 168 STO t

47 - 89 ClX 128*LBl 81 169 ClST
17*LBl "I' 48 X{8? 129 ASTO X 178 Fe? 82
18 CUi 49 SQRT 98*LBl 11 138 17 171 FC? 81
19 E 58 4 91 XTOA 131 RCl a 172 TOHE 8

51 + 92 ISG a 132 / 173 FC? 01
28*LBl 81 52 X{Y? 93 - 133 INT 174 RTN
21 STO a 53 PSIZE 94 XO [134 RCL b
22 ASTO X 54 XROtl 'Otl" 95 "DEC. " 135 ARCL Z 175*LBl 'T"
23 CLA 55 Rt 96 ARCl a 136 nSE Y 176 ARCL 82
24 AYIEW 56 E 97 "I-?" 137 STO b 177 XROtl "XE"
25 CF 29 57 + 98 AYIEW 138 "1-.' 178 SETSW
26 FIX 8 58 XROtl "CX" 99 STO [139 FC? 29 179 XOY
27 XOY 59 XO t 188 STOP 148 "1-•• " 188 36 E5
28 XTOA 68 RCL 83 181 FS?C 22 141 RCL a 181 •
29 ARCl Y 61 E 182 GTO 11 142 E5 182 RCl 88

62 + 183 ClA 143 / 183 /
63 X(}Y 184 AYIEW 184 FIX 9
64 XO t 185 STO [144*LBl 12 185 TOHE 8

65 " ftt" 186 DSE a 145 RCL 83 186 EHD
66 RCl [146 + LBlT3
67 STO 88 187*LBl 16 147 ASS LSlT2

68 • x 188 RCl 83 148 RCl 81 LBl T1
189 7 149 :':0 t lBlTIH

69 ASTO IHD Z 110 • 158 RCl] LSLTS
78 RDH 111 RCl a 151 GTO 89 LBLTT
71 XO t 112/ END 329 BYTES
72 XO 81 113 STO 98 152*LBl 98

-149-

The complete instruction timer program listing is shown

on the previous page. A few of the synthetic lines have

ambiguous representations in the printout. These are listed

here together with their decimal equivalents for LB:

Line hex decimal

10 F2 CE 74 242 206 116

241 118 14 FI 76

6~ F7 A6 99 A6 93 6D lC 8~ 247 166 153 166 147 109 28 133

245 172 2 132 166 148 68 F5 AC 02 84 A6 94

Lines 65 and 68 contain printer control characters. The hex

A6 character causes 6 spaces to be skipped; hex AC causes 12

spaces to be skipped.

Summary of Error Traps:

Line 49 DATA ERROR means available memory is

insufficient to produce the requested

number of storage registers.

Line 114 DATA ERROR means that the number of bytes per

group does not evenly divide the number of

registers allocated ("IN") for storage of the

full instruction sequence.

Line 115 NONEXISTENT means that you tried to time an

e-byte group. This program will handle 1- to

7-byte groups.

Timer program data register usage:

RC)0 scratch (number of instruction groups)

R01 curtain lowering code (temporarily placed in c)

R02 return pointer for the stored byte sequence

R03 number of storage registers

If any of R01 through R03 are altered, you must

re-initialize (enter the number of registers and XEQ"IN").

-1513-

APPENDIX B

MORSE CODE AND STO b

The idea of using the HP-41 to produce machine-perfect

Morse code was introduced by Richard Nelson (the founder of

PPC and editor of the PPC Calculator Journal) on page 50 of

the February 1980 PPC CJ. His program employed the synthetic

TONE P, but at that time synthetic programming was in its

infancy, so the execution logic was confined to standard

techniques. As a result, transmission speed was only about 6

words per minute. However a General class amateur radio

license requires you to be able to receive 13 words per

minute. conventional methods are clearly inadequate to produce

code at this speed.

Clifford Stern has written a Morse code program that

brings the full power of synthetic programming to bear on the

problem. To understand the technique used, first consider the

following execution loop which appeared in an earlier version

of this program:

LBL 01

RCL IND L

XEQ IND X

ISG L

GTO 01

The individual characters of the message have been stored in a

series of data registers, and the LASTX register contains a

counter for those registers. '1'he RCL n~D L instruction puts a

single character in the X register, then XEQ IND X calls a

short tone routine corresponding to the character in X. For

example if X contains the letter "C", then the following

sequence is executed:

-151-

LBL "C"

TONE 8

TOOE P

TONE 8

TO~E P

RTN

The simplicity of this procedure is due to the use of

synthetic single-character global labels. These are used for

three of the punctuation marks and the letters A through J.

The non-synthetic labels for those letters are local, not

global, and cannot be the object of indirect addressing.

However, speed is still a problem with this approach.

Because XEQ IUD X has to search Catalog 1 to find the proper

tone sequence, it requires a relatively long time to execute.

In fact, 16 milliseconds per label is spent climbing up the

global label chain from the .END. in the search for a

specified global label. This causes a noticeable delay for

labels placed high in the catalog.

The major breakthrough for this Morse code program is

replacing XEQ IND X with a STO b instruction so as to jump

directly to each tone sequence. Not only does this provide a

dramatic breakthrough in speed, but it is a striking example

of how synthetic programming makes possible that which cannot

be done by normal means, no matter how elaborate. In effect,

synthetic techniques are used to compile indirect branching

addresses.

Some details have to be considered when applying this

procedure. First, there must be a method to determine the

correct address to branch to. This is accomplished here by

inserting a RCL b instruction before each set of tones~ for

example:

-152-

LBL "ell

RCL b

TONE 8 (STO b will cause execution to pick up here)

TONE P

Totm 8

TONE P

RTN

The sequences are called with flag 26 clear during the setup

process. The RCL b results are incorporated into codes which

are stored in a series of data registers. The other detail to

be taken care of is the inclusion of return addresses in the

code so that the RTN at the end of each tone sequence brings

execution back to the ISG L instruction.

For the ultimate in speed, the GTO 01 instruction is

replaced by a RTN. A second return address is included with

the one just discussed to make this work. This second return

address is set up to transfer execution directly to the RCL

IND L instruction, eliminating the need for LBL 01.

Furthermore, RTN is 15% faster than a compiled two-byte GTO.

The primary pointer and two return pointers account for

six bytes of each STO b code. The leading byte is taken from

row 1 of the QRC to avoid normalization problems when

recalling the stored codes from data registers. (The fact that

the first byte is from row 1 guarantees that the code will be

treated as legitimate alpha data.) Because the leftmost Gyte

is nonzero, a STOP instruction, rather than a RTN, is required

to halt execution.

In the system used here, both of the return pointers are

constructed by normal subroutine calls. This technique is much

simpler than synthesizing the pointers because it does not

require calculation of the program's location in memory or

merging return addresses onto a program pointer. The first

return pointer is constructed by the XEQ IND T instruction at

line 58, while the second pointer is constructed by XEQ 05 at

-153-

line 45. Thus the RCL b instruction preceding each set of

tones provides the complete code for storage, since the two

returns are pending at that time.

The result is a Morse code program that produces code at

16 words per minute -- a substantial improvement over

conventional methods. Also, the true capacity of the ALPHA

register is highlighted, as 28 characters may be entered at a

time during the setup phase. This capability is made possible

by the fact that the calculator remains in ALPHA mode during

data entry (see the information on status register P in

Section 6A). Ambitious synthetic programmers should also

consult the P register su~nary on page 13 of the July 1981 PPC

CJ for full details of how the digit entries on lines 42 and

52 are used to modify the P register.

Here are the instructions for using Clifford's Morse code

program "NC":

1) Execute a SIZE of at least one greater than the number of

characters in the message.

2) XEQ "HC". Enter the message in groups of 1 to ~8

characters. 'l'he tone prompt that signals the end of the

standard ALPHA register indicates here that 4 more

characters can still be entered. Press R/8 to process

each group. If you get NONEXISTENT, increase the SIZE and

start over.

3) Push R/S without making an entry to transmit the message.

Press R/S or XEQ 10 to repeat the message.

4) To get slower code output, insert any instructions which

do not affect LASTX between lines 45 and 46 and XEQ "MC"

again. This change increases the character spacing.

If you have an optical wand, use the barcode in Appendix

E to load the 1'10rse code program. If you do not have a wand,

-154-

there are a few things you can do to speed up keying in the

program.

The following synthetic key assignments will facilitate

keying in "MC" from the listing: 159, 120 (TONE p): 159, 8

(TONE 8): and 205, 0 (the global label counterpart of the

Q-loader). This last assignment was discovered by Tom

Cadwallader, and can be used to produce'the required synthetic

labels. For example to create LBL "A", key in XEO A or LBL A.

This loads the character "A" into the 0 register. Delete that

instruction (if you were in PRGM mode when you keyed it in),

and press the assigned key in PRGM mode to create LBL "A".

This procedure was discovered by Valentin Albillo, another

synthetic programming pioneer, and can be used to key in the

program's global labels for A-J.

A different process must be used to produce labels for

the colon, period, and comma. One method is to enter the

punctuation mark into the ALPHA register, ASTO X, and press

GTO IND X (all in RUN mode). This loads the punctuation mark

into Q. After NONEXISTENT appears, switch to PRGM mode and

press the assigned key to obtain the corresponding global

label.

As an alternative, the byte grabber can be used to

synthesize any of these labels:

01 ENTER+

02 STO IND 66

03 SIN
04 HZ:"

_ inputs:

192,

0, (any value is OK)

242, 0, character byte.

Pressing the byte grabber at line 01 removes the STO byte and

creates LBL ":" • PACKing is essential to incorporate these

synthetic labels into the global chain, regardless of the

means by which they are created.

-155-

81*LBL "HC" 44 GTO 85 84 SIGN 123*LBL "," 164 RTN
82 SF 26 45 XEQ 85 85 STOP 124 RCL b

83 "." 46 RCL INn L 125 TONE t 165*LBL "r
84 XO [47 STO b 86*LBL 19 126 TONE 8 166 RCL b
85 XO d 87 RCL 91 127 TONE t 167 TONE 8
86 RCL b 48*LBL 93 88 STO b 128 TONE 8 168 TONE 8
87 FC?C 26 49 STO IND L 129 TONE t 169 TONE t
88 GTO 91 58 RDN 89*LBL ":" 138 TONE 8 178 TONE t
89 CLA 99 RCL b 131 RTN 171 TONE t
18 ASTO Z 51*LBL 84 91 TONE 8 172 RTN
11 XO [52 , 92 TONE 8 132*LBL ",.
12 SIGN 53 "H" 93 TONE 8 133 RCL b 173*LBL "6"
13 ASTO X 94 TONE t 134 TONE 8 174 RCL b
14 "~" 54*LBL 95 95 TONE t 135 TONE 8 175 TONE 8
15 ARCL X 55 xo t 96 TONE t 136 TONE t 176 TONE t
16 AS TO b 56 RDN 97 RTN 137 TONE t 177 TONE t

57 SF 25 138 TONE 8 178 TONE t
17*LBL 91 58 XEQ IND T 98*LBL "_H 139 TONE 8 179 TONE t
18 SF 26 59 ISG L 99 RCL b 148 RTN 188 RTN

19 "CHARACTERS?· 68 RTN 189 TONE 8
28 PRO"PT 61 FS?C 25 181 TONE t 141*LBL "e" 181*LBL "5·
21 FC?C 23 62 GTO 83 182 TONE t 142 RCL b 182 RCL b
22 GTO 86 63 FS? 26 183 TONE t 143 TONE 8 183 TONE t
23 VIEW Z 64 GTO 87 184 TONE 8 144 TONE 8 184 TONE t
24 CF 26 65 DSE L 185 RTN 145 TONE 8 185 TONE t
25 CLX 66 FC?C 85 146 TONE 8 186 TONE t
26 ENTERt 67 GTO 91 186*LBL "/" 147 TONE 8 187 TONE t
27 xo t 68 STO] 197 RCL b 148 RTN 188 RTN
28 X=Y? 69 GTO 84 188 TONE 8
29 GTO 82 189 TONE t 149*LBL "9" 189*LBL "4"
38 SF 85 78*LBL 96 118 TONE t 158 RCL b 199 RCl b
31 XO] 71 LASTX 111 TONE 8 151 TONE 8 191 TONE t
32 XO \ 72 E3 112 TONE t 152 TONE 8 192 TONE t
33 XO [73+ 113 RTN 153 TONE 8 193 TONE t
34 X<}Y 74 LASTX 154 TONE 8 194 TONE t

75 / 114*LBL "?" 155 TONE t 195 TONE 8
35*LBL 92 76 STO 89 115 RCL b 156 RTN 196 RTN
36 "H" 77 SIGN 116 TONE t
37 XO t 78 Rt 117 TONE t 157*LBL "8" 197*LBl "3"
38 X=8? 79 STO d 118 TONE 8 158 RCl b 198 ReL b
39 GTO 92 88 RCL 91 119 TONE 8 159 TONE 8 199 TONE t
48 STO t 81 STO b 128 TONE t 168 TONE 8 288 TONE t
41 RDN 121 TONE t 161 TONE 8 291 TONE t
42 8 82*LBL 97 122 RTN 162 TONE t 292 TONE 8
43 FC?C 29 83 RCL 99 163 TONE t 283 TONE 8

-156-

284 RTH 243" RCl b 282 RCl b 321 RCl b 368 TOHE t lBlTI'IC
244 TONE 8 283 TOHE 3 322 TOHE 8 361 TONE 8 lBLT:

28StlBl "2" 245 TONE t 284 TONE t 323 TONE t 362 TONE t lBlT-
286 RCl b 246 TONE t 285 TONE 8 324 TONE 8 363 RTH lBlTI
287 TONE t 247 TONE 8 286 TONE 8 325 TONE t lBlT?
288 TONE t 248 RTN 287 RTN 326 RTH 364tlBl "H" lBlT.
289 TONE 8 365 RCl b lBLT,
218 TONE 8 249tlBl OK" 288tlBl "p" 327tlBL "l" 366 TONE 8 LBlT8
211 TONE 8 258 RCl b 289 RCl b 328 RCl b 367 TONE t lBL T9
212 RTH 251 TOHE 8 298 TOHE t 329 TOHE t 368 RTH LBlTa

252 TONE t 291 TONE 8 338 TOHE B LBlT7
213tlBl "I" 253 TOHE a 292 TONE 8 331 TOHE t 369tlBl "0" LBL T6
214 RCl b 254 RTH 293 TOHE t 332 TOHE t 378 RCl b lBlT5
215 TONE t 294 RTN 333 RTH 371 TOHE 8 lBLT4
216 TOHE 8 25StlBL "yc 372 TOHE 8 lBL i3
217 TOHE 8 256 RCl b 295tLBL " • 334tLBl "D" 373 TOHE 8 LBLT2
218 TONE 8 257 TOHE t 296 RCl b 335 RCl b 374 RTH Lalli
219 TOHE 8 258 TOHE t 297 FC? 26 336 TONE 8 lBlit
228 RTH 259 TOHE 1- 298 RTH 337 TONE t 375tLBl "H" lBL'Q

268 TOHE 8 299 LHSTX 338 TOHE t 376 RCl b lBL'J
221tlBl -z- 261 RTH 388 lH 339 RTN 377 TONE t lBVX
222 RCl b 381 RTN 378 TONE 8 lBL'i(
223 TONE 8 262tlBl "B" 348tLBL "w 379 RTN lBlTY
224 TONE 8 263 RCl b 382tlBl "M" 341 RCL b lBlTB
225 TONE t 264 TOHE 8 383 RCl b 342 TONE t 388tlBl "T" lBlTG
226 TONE t 265 TOHE t 384 TOHE 8 343 TONE t 381 RCl b lBLTW
227 RTH 266 TONE t 385 TONE 8 344 TONE t 382 TONE 8 lBlTY

267 TONE t 386 ~:TN 345 TOHE t 383 RTN LBLiP
22StLBL "Q- 268 RTN 346 RTN lBLT
229 RCl b 387tLBL "Un 384tlBl "En lBLTI'l
238 TONE 8 269tlBL "G- 388 RCL b 347tlBl 'S' 385 RCl b lBLTU
231 TONE 8 278 RCL b 389 TOHE t 348 RCL b 386 TONE t LBLTF
232 TOHE t 271 TONE 8 318 TOHE t 349 TONE t 387 EHD LBL'C
233 TONE 3 272 TOHE 8 311 TONE :3 358 TONE t LBLTL
234 RTH 273 TONE. t 312 RTN 351 TONE t LBLTD

274 RTN 352 RTN LBLiH
235tLBl "oj" 313tLBL "F" LBLTS
236 RCl b 275tlBl "W" 314 RCl b 353tLBL "I" LBLTI
237 TONE t 276 RCL b 315 TOHE t 354 RCL b lBLTR
238 TONE 8 277 TOHE t 316 TOHE t 355 TONE t LBl!H
239 TOHE 8 278 TONE 8 317 TONE 8 356 TONE t lBLTO
248 TOHE 8 279 TOHE 8 318 TOHE t 357 RTH LBlTA
241 RTN 288 RTN 319 RTN LBlTT

358tLBl "R- lBLTE
242tLBl "X" 281tLBl 'Y- 328tLBL "Cn 359 RCl b EHD

845 BYTES

-157-

Three of the text instructions in the Morse code program

appear in an ambiguous form in the printed listing. These

are:

line hex decimal

03 F4 2C 01 80 81 244 44 1 128 129

36 F2 7F 00 242 127 0

53 F2 7F 00 242 127 0

-158-

APPENDIX C

SYUTHETIC PROGRAMMING REFERENCES

Here is a list of sources for information on HP-41

synthetic programming:

1. £~~_~~l£~l~!~E_Jo~EE~l, published by Personal

Programming Center, a non-profit, public benefit California

corporation dedicated to personal computing. The issues from

July 1979 (Volume 6, Number 4) to the present contain a wealth

of information on the HP-41 in general, and on synthetic

programming in particular. The PPC CJ is still the most

up-to-date and comprehensive source for synthetic programs,

techniques, and discoveries.

To obtain a PPC membership application and a price list

for back issues of PPC CJ, send a 9" by 12" self-addressed

stamped envelope with 3 ounces of postage to:

PPC Dept. SPME

2545 W. Camden Place

Santa Ana, CA, 92704 USA

To speed the processing, mark the lower left corner of your

outer envelope with "New member info plus HP-41 back issues."

You don't need to enclose a letter; it will only slow things

down.

2. PPC Technical Notes, published by the Melbourne,

Australia chapter of PPC. PPC TN is a smaller-scale

publication than PPC CJ, but it specializes in synthetic

programming. Issue number 9 contains the best summary of

HP-41 microcode currently available. The current subscription

price is 20 Australian dollars per year to US and Europe. Mail

Australian currency, a check payable through an Australian

bank, or an Australian currency money order to:

-159-

R.M. Eades

P.o. Box 15

Hampton, Victoria, 3188

AUS'I'RALIA

Since the subscription rate may have changed by the time

you read this, be prepared to send an additional payment.

3. PPC-UK Journal, published by the United Kinydom

chapter of PPC. PPC-UK J is a relatively new publication, but

so far it has placed considerable emphasis on tutorials and

other helpful information for beginners. For more information

and a membership application, send a self-addressed stamped

envelope to:

David H. Burch

Astage

H.ectory Lane

Windlesham, Surrey

GU20 6BW

ENGLAND

Overseas inquiries should include an addressed envelope

with an international postal reply coupon or two magnetic

cards in lieu of postage.

4. The Hewlett-Packard Users' Library catalog contains a

few synthetic programs. The Users' Library did not accept

synthetic programs u~til January 1982, so the current catalog

may not reflect the extent of synthetic programs in the

Library.

The current membership fee for the Users' Library is

$25.00 in the US or Canada, and $4~.00 elsewhere. Mail your

payment in the form of a check payable through a US bank to:

HP Users Library

1000 N.E. Circle Boulevard

Corvallis, Oregon 97330

-160-

5. HP Key Notes, formerly published by Hewlett-Packard,

but no longer available as a newsletter. A limited number of

synthetic programs have appeared in Key Notes since the

January 1982 initiation of synthetic programing to the Users'

Library. Starting in August 1983, Key Notes will reappear as a

section in the new quarterly HP Portable-Computation Guide.

The portable-Computation Guide will be free with a membership

in the HP Users' Library (see item 4). For information on

price and availability of back issues of Key Notes, write to:

HP Key Notes

1000 N.E. Circle Boulevard

Corvallis, OR 97330 USA

6. Synthetic Programming on the HP-41C, a book by Bill

\vickes, published by Larken Publications. This book was the

first compilation of synthetic programming information and

techniques. Because it was written in 1980, Wickes' book does

not contain any examples using the byte grabber or Extended

Functions module or Time Module functions. Nevertheless it

remains a excellent reference book. Wickes's approach is

substantially different than that of BP-41 Synthetic

Programming Made Easy. Each subject is covered in full depth

before the next subject is begun.

If you want to learn more about synthetic programming, I

strongly recommend that you read "Synthetic Programming on the

HP-41C". The knowledge you've gained from reading BP-41

Synthetic Programming Made Easy will enable you to get through

Bill \hckes' s book more quickly and with better understanding

of the details. Wickes's book contains several interesting

synthetic programs together with line-by-line analysis that

will help complete your mastery of synthetic programming.

"Synthetic Programming on the HP-41C" is available at

many calculator dealers and college bookstores. Alternatively,

-161-

you may mail your order to:

Larken Publications

Dept. SPME

4517 NW Queens Ave.

Corvallis, Oregon, 97330

U.S.A.

The current price is $11 postpaid, by surface mail. For

airmail, add: for USA, Mexico, Canada $1, for Europe and South

America $2, for elsewhere $3. Payment should be in the form of

a check payable through a US bank.

7. The PPC ROM User's Manual, which accompanies the PPC

ROM. The PPC RON is a custom ROM module for the HP-41 designed

by PPC members and manufactured by hewlett-Packard. The PPC

ROM contains over 60 synthetic programs, each of which is

analyzed line-by-line in the User's Manual.

By the time you read this, the PPC ROM may be available

at calculator dealers. You may also order the PPC RON from

Personal Programming Center. For price and ordering

information mail a self-addressed stamped envelope to :

PPC

2545 W Camden Place

Santa Ana, CA 92704

Mark the lower left corner of your outer envelope "PPC ROM

ordering info". A substantial discount is available to PPC

members. 'l'his discount could almost pay for your first year's

membership.

8. Calculator Tips and Routines (EsE~£!~~~z_i~~_!~~

HP-41C/ 41CV), ed.i ted by John Dearing, published by Corvallis

Software Inc. This book contains listings for many of the PPC

ROM routines, some of which are synthetic. A great number of

nonsynthetic programming tricks are also described.

"Calculator Tips and Routines" is available from dealers

or directly from

-162-

Corvallis Software, Inc.

Dept. SPME

P.O. Box 1412

Corvallis, uregon 97339-1412

U.S.A.

The current price is $15 within the USA and Canada, $20

elsewhere, airmail postpaid. Payment should be in the form of

a check in US dollars, payable through a US bank.

9. ~~~_~~~!~_~~~!~~!!~_Qui£~_~~!~£~~£~_~~i~~, a
pocket-sized (3-1/2 inch by 6 inch) compilation of synthetic

programming information. Slightly wider than the plastic

Quick Reference Card for Synthetic Programming (so that the

card will fit inside), the booklet contains XROM listings, a

memory map, a byte table, tone tables, function timings, and

some more exotic goodies. This is a reference book and not a

"how to" book. However reference to the PPC Calculator Journal

and other sources are included where further explanation is

required. The HP-41 SYNTHETIC Quick Reference Guide is

available from:

J.J. Smith

Dept. SPME

226 24th Place

Costa Mesa, CA 92626

USA

The price is $5.00 plus postage of $1.00 (US or Canada) or

$2.00 (elsewhere). Instead of postage you may include a

self-addressed stamped envelope with sufficient postage for

two ounces.

10. The HP-41C Quick Reference Card for Synthetic

Programming. Extra copies of this 2-7/8 inch by 6 inch plastic

card are available from some dealers and college bookstores.

Check the dealer from whom you bought this book.

-163-

Alternatively you may mail your order to:

Synthetix

Dept. SPME

P.O. Box 113

Manhattan Beach CA 90266 USA

The price is $3 per card plus $1.50 per order shipping charge.

US orders can enclose a self-addressed stamped envelope in

lieu of the shipping charge. Payment should be in the form of

a check payable through a US bank. If this is a problem, US

currency is equally acceptable.

An earlier, more compact, black-and-white version of the

ORC is also available while supplies last. It is 2-5/8 inch by

4-1/2 inch, so like the ORC it fits in the HP-41 carrying case

alongside the calculator. Called the "~P-41C Combined

Hex/Decimal Byte Table", it contains essentially the same

basic byte table as the ORC. The only noticeable differences

are the lack of a flag listing, multi-byte structure summary,

and color tinting. The price is lower than the ORe at $2 for

one card plus either $1 shipping or a self-addressed stamped

envelope. Additional cards on the same order are $1 each to

USA, Canada, and Mexico, $1.20 each to other countries. Checks

(payable through a US bank) should be made payable and mailed

to SYNTHETIX at the above address.

-164-

APPENDIX D

THE QUICK REFERENCE CARD FOR SYNTHETIC PROGRAMMING (" QRC")

The QRC is a 2-7/8 inch by 6 inch plastic card that

contains a wealth of information that is essential for

synthetic programming. Each copy of HP-41 Synthetic

Programming Made Easy comes with a QRC on the back cover.

The leftmost two-thirds of the QRC is occupied by a byte

table. Each box in the byte table illustrates the several

possible interpretations of a byte. Refer to the "Legend for

the QRC" on the next page. These equivalences are introduced

and explained in Chapters 1 and 2.

Display characters are not shown for the second half of

the byte table (rows 8 through F), since they are all

starbursts (all 14 segments lit). This allows the full

indirect suffix eC[uivalents to be shown on the second line of

each box. l!rinter characters shown are those that result froIn

PM when the byte in question resides in the ALPHA register.

At the bottom of each half of the byte table are binary

equivalents for the hexadecimal digits 0 through F.

To the right of the first half of the byte tatle is a

summary listing of the functions of all 56 hP-41 flags. Next

to the second half of the byte table is a quick reference

surrunary of LB inputs (decimal byte equivalents) for each type

of instruction. Chapter 3 covers this subject.

Obscure aspects of the QRC: Characters from rows 8

through F disappear in printed program listings (not PRA

output), except that characters that are shaded will cause

additional strange behavior (see Section 2E). Row 0 shows the

required MK inputs, 0 through 15, for non-programmable

functions in small letters. See Section 4A for details. Row 1

includes the WT function which has no effect except to lock

up the keyboard until the batteries are removed. The SPARE

bytes will form two-byte No Operation instructions.

If this surrunary of the QRC seems confusing, you probably

haven't read Chapters 1 and 2. Go back and read them1

-165-

"FIRST
HALF"

(ROWSaTO 71

"'SECOND
HALF"

(ROWS ITO F)

a
a

7

• •

F

PRIMARY (PREFIX)

SUFFIX
DISPLAY

CHARACTER

DECIMAL PRINTER
EQUIVALENT CHARACTER

F

BIT OR FLAG NUMBERS. TO Iifi t
7 BYTES x • BITS "ER BYTE .. 51 BITS

" B.NARY EQUIVALENTS FOR
EACH HEXADECIMAL DI61T

F

Legend for the QRC

-166-

FLAG FUNCTIONS

TWO-lYTE
(YELLOW)

THREE-BYTE
(GREEN)

VARIABLE
LENGTH
(BLUE)

t
BYTE STRUCTURE
FOR LlAND MK

I
f-'
0'\
~
I

FLAGS (Register d)

00-1 0 general
purpose

11 auto execute
12 doublewide
13 lower case
14 overwrite
15-16 Il printer
o 0 MAN
o 1 NORM
1 0 TRACE
1 1 TR/STACK

17 record
incomplete

18]general use
19 cleared at
20 turn-on
21 prtr enable
22 num. entry
23 alpha entry
24 range ignore
25 error ignore
26 audio enable
27 USER mode
28 dec. / comma
29 digit grouping
30 CAT
31 timer

DMY/MDY
32 manualll I/O

33 Il absolute
manual

34 not used
35 not used
36-39 number

of digits
40-41 display
o 0 SCI
o 1 ENG
1 0 FIX
1 1 FIX/ENG

42-43 trig mode
o ODEG
o 1 RAD
1 0 GRAD
1 1 RAD

44 cont. ON
45 system

data entry
46 partial key

sequence
47 SHIFT
48 ALPHA
49 low BAT
50 message
51 SST
52 PGRM
53 I/O
54 PSE
55 printer

existence

Structure of multi-byte instructions
Two-byte instructions

ST016=145,16 DSE IND 55 =151,183
lBl e = 207,127 FS?C IND Y = 170,242
RCl b =144,124 TONE 89 =159,89
X<>M=206,117 ST+ IND N =146,246
lBl Q = 207,121 VIEW H(l 09)= 152,109

Two-byte special cases
GTO IND=174,reg. XEQ IND=174,128+r
GTOIND 09=174,9 XEQ IND X =174,243

XROM i,j =160+i/4,64(i mod 4)+j
WSTS =XROM 30,10 =167,138

short form GTO = 177 + label,O
GTO 12 = 189,0

Three-byte instructions
long form GTO =208,0,label

GTO 32 = 208,0,32
XEQ = 224,0,label

XEQ 0 =224,0,105
END = 192,0,9+ sum of status indicators

32(.END.). 4(rePACK). 2(decompile)
Variable length instructions

TEXT =240+n, n character bytes
Append symbol counts as first char.
'1'& =241,38 T",)? =243,127,41,63

GTO T =29,240+n, n character bytes
GTO TXYZ =29,243,88,89,90

XEQ'" =30,240+n, n character bytes
XEQ .,. A =30,241,65 (synthetic)

lBl'" = 192,0,241 + n, (key), n chars.
lBl '1': = 192,0,242,0,58 (synthetic)

I
t-­
C\
0')
I

0

1

2

3

4

5

6

7

HP-41C QUICK REFERENCE CARD FOR SYNTHETIC PROGRAMMING © 1982, SYNTHETIX
0 "1 2 3 4 5 6 7 8 9 A B C 0 E F

CAT @t(GTO . .) DEL COPY ClP RIS SIZE aST SST ON PACK +-(PRGM) USR/P/A 2 __ SHIFT ASN
NULL LBL 00 LBL 01 LBL 02 LBL 03 LBL 04 LBL 05 LBL 06 LBL 07 LBL 08 LBL 09 LBL 10 LBL 11 LBL 12 LBL 13 LBL 14
00 - 01 1< 02 I 03 I 04 :.. 05 r.. 06 T 07 I 08 I 09 I 10 I 11 I 12 ,oj 13 .:. 14 I 15 I 0
0 • 1 " 2 X 3 ~ 4 a 5 f3 6 r 7 .J. 8 A 9 (]' 10 • 11 A 12 p 13 &. 14 - 15 t-
O 1 2 3 4 5 6 7 8 9 . EEX NEG GTOT XEQ T WT
16 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I 24 I 25 I 26 I 27 I 28 I 29 ~ 30 I 31 I 1
16 8 17 Q 18 .5 19 A 20 a. 21 A 22 0. 23 0 24 0 25 0 26 (j 27 IE 28 Ge 29 ~ 30 £ 31 lI!!

RCL 00 RCL 01 RCL 02 ReL 03 RCL 04 RCL 05 RCL 06 RCL 07 RCL 08 RCL 09 RCL 10 RCL 11 RCL 12 RCL 13 RCL 14 RCL 15
32 33 ; 34 ,. 35 :l:I 36 ~ 37 ,~ 38 :; 39 40 ~ 41 , 42 « 43 -;- 44 , .(45 -- 46 . 1- 47 " 2 ,
32 33 ! 34 .. 35 # 36 $ 37 ~,~ 38 8c 39 40 (41) 42 * 43 + 44 ' 45 - 46 . 47 ./
STO 00 STO 01 STO 02 STO 03 STO 04 STO 05 STO 06 STO 07 STO 08 STO 09 STO 10 STO 11 STO 12 STO 13 STO 14 STO 15
48 C 49

, 50 2· 51 3 52 l~ 53 :; 54 5 55 1 56 8 57 9 58 :. 59 , 60 ,: 61 .- 62 ..l 63 '? 3 , -
48 13 49 1 50 2 51 3 52 4 53 5 54 6 55 7 56 8 57 9 58 : 59 ; 60 < 61 = 62 :::- 63 ?

+ - * I X<Y? X>Y? X~Y? r+ r- HMS+ HMS- MOD % %CH P-+R R-+P
64 ~ 65 R 66 B 67 C 68 II 69 E 70 F 71 G 72 H 73 I 74 IJ 75 f~ 76 L 77 r1 78 rJ 79 IJ 4
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G 72H 73 I 74 J 75 K 76 L 77 M 78 N 79 0

LN Xt2 SQRT Y1X CHS EtX LOG 10tx Et X-l SIN COS TAN ASIN ACOS ATAN ~OEC

80 F' 81 ,-, 82 R 83 S 84 T 85 U 86 ;' 87 ;J 88 g 89 \' 90 Z 91 r 92 , 93 J 94 7' 95 - 5 1.:1 L

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W 88 X 89 y 90 Z 91 [92 --... 93] 94 l' 95 -
I/X ABS FACT X*O? X>O? LN1+X X<O? X=O? INT FRC O-+R R-+O ~HMS -+HR RNO ~OCT
96 .,. 97 '-" 98 b 99 r.: 100 d 101 t. A I B I C • 0 I E • F • G I H I I I J I 6
96 T 97 a 98 b 99 C- 100 d 101 IE' 102 f 103 '31 104 h 105 i 106 j 107 k 108 1 109 M 110n 1110
CLr X<>Y PI CLST Rt RON LASTX CLX X=Y? X*Y? SIGN X~O? MEAN SOEV AVIEW CLO
T I Z I Y I X I L I M[I N \ I 0] I P t I Q-I I- T I a I b • c • d .- e 1-- 7 '-
112p 113<\ 114 r 1155 116t 117u 118 v 119w 120 x 121 y 122 z 123 "Ii 124 I 125 ~ 126 E 127 ~

0 1 2 3 4 5 6 7 8 9 A B C 0 E F
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

o _ C"ot ('f') "IIIt.."..o,....,. co 0- 0 _ N ('f') "lit' &1"1 ..0" co 0- 0 _ C'I ('f') "IIIt.."..o..... GO 0- 0 _ C'<I ('f') .. &n ..0,.... CD 00 0 _ N ('f') .. U"'I ..0,..... CD 0- 0 _ N ('I') ..,. lI"I .. bit numbers in a
0000° 0000 00 __ -- -- - - -- C'iC'lC"'olC""l NC"oIN(""4 NN('f')('I') ('f')('f')(W)('f') ('f')(I')C"')C"') "IIiI',...." ..".."..".." 7-byte register

I
t--
0\
\0
I

HP-41 C QUICK REFERENCE CARD FOR SYNTHETIC PROGRAMMING © 1982, SYNTHETIX
0 1 2 3 4 5 6 7 8 9 A B C D E F

DEG RAD GRAD ENTERt STOP RTN BEEP CLA ASHF PSE CLRG AOFF AON OFF PROMPT ADV
8 IND 00 IND 01 IND 02 IND 03 IND 04 IND 05 IND 06 IND 07 IND 08 IND 09 IND 10 IND 11 IND 12 IND 13 IND 14 IND 15 8

128 • 129 " 130 X 131 -t- 132 a 133 j5 134 r 135 J. 136 A 137 0: 138 • 139 A 140 J.J 141 .£. 142 ..,.. 143 +
RCL STO ST+ ST- ST. STI ISG DSE VIEW rREG ASTO ARCL FIX SCI ENG TONE

9 IND 16 IND 17 IND 18 IND 19 IND 20 IND 21 IND 22 IND 23 IND 24 IND 25 IND 26 IND 27 IND 28 IND 29 IND 30 IND 31 9
144 8 145 Q 146 6- 147 A 148 a. 149 A 150 a 151 0 152 6 153 0 154 0 155 IE 156 oOe 157 * 158 £ 159 •
XR 0-3 XR 4-7 XR8-11 X12-15 X16-19 X20-23 X24-27 X28-31 SF CF FS?C FC?C FS? FC? ~mIND SPARE

A IND 32 IND 33 IND 34 IND 35 IND 36 IND 37 IND 38 IND 39 IND 40 IND 41 IND 42 IND 43 IND 44 IND 45 IND 46 IND 47 A
160 161 t 162 ~ 163 'If 164. 165 " 166. 167 .11: 168 ~i 169 .. 170 .. 171 .11 172. 173fjt 174:", 175it
SPARE GTO 00 GTO 01 GTO 02 GTO 03 GTO 04 GTO 05 GTO 06 GTO 07 GTO 08 GTO 09 GTO 10 GTO 11 GTO 12 GTO 13 GTO 14

BIND 48 IND 49 IND 50 IND 51 IND 52 IND 53 IND 54 IND 55 IND 56 IND 57 IND 58 IND 59 IND 60 IND 61 IND 62 IND 63 B
176. 177 t 1782 1793 180 .. 181 S 182 6 183 ? 184. 185 .. 186 't 187 ;f; 188 .. 189., 190,. 191 :II
GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL X<>-- LBL --

C IND 64 IND 65 IND 66 IND 67 IND 68 IND 69 IND 70 IND 71 IND 72 IND 73 IND 74 IND 75 IND 76 IND 77 IND 78 IND 79 C
192 @ 193 R 194 B 195 C 196 D 197 E 198 F 199 G 200 H 201 I 202 J 203 K 204 L 205 M 206 N 2070
GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO -- GTO --

D IND 80 IND 81 IND 82 IND 83 IND 84 IND 85 IND 86 IND 87 IND 88 IND 89 IND 90 IND 91 IND 92 IND 93 IND 94 IND 95 D
208 P 209 Q 210 II 211. 212 T 213 U 214 Y 215 II 216 X 217 Y 218 Z 219 [220 "'- 221] 222 l' 223 -
XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ -- XEQ --

E IND 96 IND 97 IND 98 IND 99 INOIOO IND10l IND102 IND103 IND104 INDIOS IND106 IND107 IND108 IND109 INDll0 INDlll E
224 .. 225 a 226b 227 Co 228 d 229 e 230 f 231 9 232 h 233 i 234 j 235 k 236 1 237 PI 238 n 239 0

TEXT 0 TEXT 1 TEXT 2 TEXT 3 ITEXT 4 TEXT 5 TEXT 6 TEXT 7 TEXT 8 TEXT 9 TEXT 1 0 TEXTll TEXTl2 TEXT13 TEXT14 TEXT15
FIND T IND Z IND Y IND X IND L INDM[IND N\ INDO] IND Pf INDQ_ INDI-T IND a IND b IND c IND d IND e F

240 p 241 COl. 242 r 243 s 244 t. 245 u 246 v 247 w 248 x 249 y 250 z 251 Yf 252 I 253 -+ 254 I: 255 I-

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 ~10_ ~lL cnO<L ~OL ~1.<L ~ln

~.

For price information and a list of dealers in ywr area, send a self-addressed stamped envelope to: SYNTHETlX, 1540 Mathews Ave., Manhattan Beach, CA 90266, USA

(Intentionally blank)

-170-

APPENDIX E

BARCODE FOR PROGRAMS

Barcode is provided here for all of the utility programs

in this book, so that you may conveniently enter these

programs into your HP-41 using the 82153A Optical Wand. If

you have a wand or if you can borrow one, this will save you

some time.

Always protect the surface of the barcode with a clear

plastic sheet. It may also be helpful to place a clean dark

sheet of paper behind the barcode to improve the contrast.

This barcode was tested in a trial printing and found to

be readable. If your barcode is not readable, t~y inking in

any incomplete bars, scanning the rows faster with the aid of

a straightedge, or holding the wand at a different angle. If

all else fails, try another wand.

If you have a card reader, you should record these

programs in case your dog finds this book. Other methods of

storing the programs include mass storage (IL tape drive) or

extended memory. Extended memory should not be considered as

a permanent storage. however, since it is susceptible to

MEMORY LOST.

DECIMAL TO CHARACTER PROGRAM REGISTERS NEEDED: 8

~~~III(III:liillllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111111 
~mlillillllilllllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111111 
~~ilrillilillillllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111111111 
~~ililliiillliilllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111111 
~i[lfllliilliiilllllllllllllllllllllllllil 

-171-



LOAD BYTES 

PROGRAM REGISTERS NEEDED: 31 

PAGE 1 
OF 1 

~iUillrllliiillllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111111111111111 
~ililil(llilli~11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
~ilililliillilillllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111111111111111 
~i[lilii~lllijllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 6 (32: 38) 

~iililiiillliilllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 8 (45: 

lillillilliillliilllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 11 (89: 76) 

li~ijllil(lliiIlUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111111111111111111111111111111111111111111111111111111111111111111111111 
~iiliill(l)iillliii(11111111111111111111111II111111111111111111111111111111 

-172-



LOAD BYTES 
(EXTENDED FUNCTIONS VERSION) 
PROGRAM REGISTERS NEEDED: 23 

PAGE 1 
OF 1 

~~ijlillll:liillllllllllllllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111 
Ilij]liliilllliilllllllllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111 

~ijililliillliilllllllllllllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111 
~mlillIllliiillllllllllllllllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111 
Ili[lillliillliillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111 

Ilmlilliilliflllllllllllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111 
ROW 7 . 

~ijililiiillifllllllllllllllllllllllllllllllllllllllllllllllllllllllllli11111111111111111111111111111111111111111111111111111111111 
~iijlillifllliillllllllllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111 
Ilmliilliilliilllllllllllllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111 
ROW 11 (73: 80) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

Ilmliillrlll1mlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111 

Il~ijliiliiflliillllllllllllllllllllllllllllllllllllllllll! 

-173-



MAKE KEY ASSIGNMENTS 

PROGRAM REGISTERS NEEDED: 45 

PAGE 1 
OF 2 

liiUlIIIIII:liilllllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111111 

lillililllil:liilllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW3 

1IIIIIillillliiilllllllllllllllllllllllllllllllllllllili1111111111111111111111111111111111111111111111111111111111111111111111111111 

limlillii~lliiilllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW6 

li~~illii~liliillllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111111111111 
li~ijlillliillilllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111111111111 
liilililbilillilllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 12 (68: 

lill]11111liiliillllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111111111111111 

li~iliillllilliilllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111111111111111 
~~ijlrllll1illl)iillllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 18 (109: 116) 

-174-



MAKE KEY ASSIGNMENTS 

liililiilllliilli~11111111111111111111111111111111II1111I11111111111111111111111111111111111111111111111111111111111111111111111111 

liiUliill(lliillimilllllllllllllll 

-175-

PAGE 2 
OF 2 



MAKE KEY ASSIGNMENTS 
(EXTENDED FUNCTIONS VERSION) 
PROGRAM REGISTERS NEEDED: 18 

PAGE 1 
OF 1 

~~ilill)il:llillllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111111111 
liiilil(llillllillllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111 

~iUill(lillliiillllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111 
ROW 6 . 

~iiliilliillilllll"I"IIIIIIIIIIIIIIIII"IIII"II""11II1111111111 

-176-



RAM BYTE COUNTER 

PROGRAM REGISTERS NEEDED: 23 

~imlllllllillllllllllllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111 
~~ilillillillllllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111111111 
Ilmilliilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111 

Il~~lillml:liillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli1111111111111111111111111111111111111111111111111 
~~ililll~II1r1111111ll1l1111l11l11l1l11111l1l11111ll111l11ll111ll11l1ll1ll1l1ll1ll11111111111111111111111111111111111111111111111 
~~ililrlillilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111 
liimllillilliillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111 

Ilrlililiiillifllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111 

~ijililli~llilllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111 
Ilmijilf~illiilllllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111111 
~iHllllliflliillllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111 
~~jllllf~iIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1111111111111111111111111111111111111111111111111111111111111111II 
Ilij]111If~ili~)111II1I1111I111II1II1I1II1111II111 

-177-

PAGE 1 
OF 1 



SAVE ALARMSI RECALL ALARMS 

PROGRAM REGISTERS NEEDED: 25 

~~illlllllliilllllllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111 
ROW 2 

1111111111 
"' 

"' , 

111111 
" , , , 

.. ; ; 

"' 

IIIII 1111111 111111 
•• ; t 

.• = , 

"' , , 

III 
"' , 

II 
"' " " 

II 
"' ;; =; 

II 1111111111 
"' --

III II 1111111111 IIIIIII 

-178-

PAGE 1 
OF 1 

II 

III 

III 



EXTENDED FUNCTIONS I TIME 
MODULE 

PAGE 1 
OF 1 

PROGRAM REGISTERS NEEDED: 9 

~iHlll(llIIillllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111111111 
li~~lilllil:liillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111 
~mlllllillllilllllllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111111111 
~rl]lilli~lliillllllllllllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111111 
~i~lilli~lliillllllllllllllllllllllllllllllllllllllllllllll11111111111111 

SUSPEND KEY ASSIGNMENTS/ 
REACTIVATE KEY ASSIGNMENTS 
PROGRAM REGISTERS NEEDED: 10 

~ilillllllllilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli11111111111111111111111111111111111111111 
liimlilllil:liflllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli111111111111111111111111111111111111111 

~imlllii~lliilllllllllllllllllllllllllllllllllll 1111111111111111111111111111111 

PAGE 1 
OF 1 

liiHlilliillilillllllllllllllllllllllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111111111111111111111111 

limliliiillllllllllllllllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111 

-179-



SOLVE f(x) = 0 for x 

PROGRAM REGISTERS NEEDED: 14 

PAGE 1 
OF 1 

li~jllllll:liilllllllllllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111 
~i~lillillfjllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111 
liilillllll1iilllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111 

lifl]lll1liilllilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111 

liijililliillifllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllil11111111111111111111111111111111111111111 

~rl]ilfiflillilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111 
~rlilfififlillillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllil1111111111111111111111111111111111111111111111111111 
~~ililliilliflllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli 

CURTAIN UP 

PROGRAM REGISTERS NEEDED: 10 

PAGE 1 
OF 1 

~ijillllllIliilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111 
liiUillillliillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllli1111111111111111111111111111111111111111111111 

liijililiiillillllllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111 

liijililiililliillllllllllllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111 

limlilii~lllillllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111 
liij]lilii~1111111111111111111111111111111 

-180-



INSTRUCTION TIMER 

PROGRAM REGISTERS NEEDED: 47 

PAGE 1 
OF 2 

~rlilillijllf(1111111111111I1111111111I1111II1II11111111111111111111111111111111111111111111111111111111111111111111111111111111111 
~~ijillillillilllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111111111 
~imlllij~lljiillllllllllllllllllllllllllllllllllllllllllli1111111111111111111111111111111111111111111111111111111111111111111111 
~~ijl~IIlII:lrillllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111III 
~iilililliliflilllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111111111 
lliililillilliiillllllllllllllllllllllllllllllllllllllllill11111111I111111111111II11111111111II1111II111111111111~1I11111111111111 
~~ililli~lllillllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111 
Iliilill(~Illilllllllllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 9 (62: 66) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111III 

limlill~illiiillllllllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111111 
ROW 11 (72: 79) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 12 (79: 85) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~i[llilliilliiilllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111 
~i[liillrliIlI(11111111111II1111I1II1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
Ilm11

5

1111il'tliilllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111111111111111 

~iillillilllljliilllllllllllllllllllllllllllllllllllllllill11111111111111111111111111111111111111111111111111111111111111111111111 
~~ilifilliflllli~iilllllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111 
~iillilijililliiiillllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111111111111111111 

-181-



INSTRUCTION TIMER PAGE 2 
OF 2 

~i]lillli~ljllililllllllllllllllllllllllllllllllllllll11111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 21 148: 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUII11111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 24 . 

-182-



MORSE CODE 

PROGRAM REGISTERS NEEDED: 121 

~~ililiilllilllllllllllllllllllllllllllllllllllllllllllllill 1111111111111111111111111111111111111111111111111111111111111111111111 
ROW 2 (4: 10) 

PAGE 1 
OF 4 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 3 (11 : 18) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 4 (18: 19) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 5 (20: 27) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 6 (28: 35) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 7 (36: 43) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 8 (43: 49) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 9 (50: 58) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~~~11111)liIIWIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11111111111111111111111111111111111111111111111111 
ROW 11 (65: 72)

11
ROW 12 (73: 83)

11

~i~liillrliIlI(1I111
ROW 14 (91 : 97)

11
ROW 15 (98: 102)

11
ROW 16 (103: 108)

11

Ilmiflllliilllli~11I111I1I11II11I1I11I11I1I1II11I1I1II111II1I111I111II11II11II11I11I11
ROW 18 (114: 120)

11

-183-

MORSE CODE PAGE 2
OF 4

~i~ljilljflllllirlll111III
~i]lrllliiillllliill111
~~ilflll(lllilli~II111
~i~IIlljrlillliiilllill111
limliill(lliillliilll11

~imiilljilillIilll111
~~jliillliiillllmlll111
ROW 26

I~IIlffllliiilllfllill111
liifliillifllillill11

~miilllifliljillilllill11
ROW 30 (184: 189)

li~ilrlll(lliilliliilli111
~i~liillliiillHjilll111
~~ijilillirlllli~illl11
~ifliiliirlillijflli11
li~jllrlllijrllliiilllill111
~mliiliillilliiiilll111

-184-

MORSE CODE PAGE 3
OF4

~~ijlillliufliiillllllllllllllllllllllllllllllllllllllill111
ROW 45 (269:

1IIIIIIIIiiliillIiilllllllllllllllllllllllllllllllllili111

limliillliiilili~illlllllllllllllllllllllllllllllllill111
ROW 50 .

1IIIIIIIIIIIIIiliilillllllllllllllllllllllllllllllllllili111
ROW 52

-185-

MORSE CODE PAGE 4
OF 4

~iUllillrliil:limlll 111
~mliilrliil:liiiilllllllllllllllllllllllllllllllllllllillI
~rliliilirliilli~iillllllllllllllllllllllllllllllllllllill11
~mliilffliilliiilllill111
~~]Ililliril:li~iillill11
~i~lillirlilfI6i111I
ROW 61 (361: 366)

11

~~ilrlilrliilllijilllill11
liiUiillllllllillill111

liililijilifilliiiillllllllllllllllllllllllllllllllllllllill11

~~]Iib~iillllifllill111

-186-

INDEX

Absolute location .•••••..••..•••.••....•..••.•......•...•. 166

Bit ••••...••....•..••••••......••••••..•.•.••.••..•. 5, 23, 26

Bit maps •• 113, 118, 119

BG (Byte Grabber) •.••..•.•.•••......•••••.......••..•...•..• 9

B~DSPEC ...•..••••.••••...••........•••.••..•..••••..... 34, 37

Byte .•.••....•....•.••••••...•.••••••.....•.••.....•. 5, 11-14

Byte Grabber •....•••.••••••..•..••••••.••.•••..••..•..••.. 6-9

Byte Jumper ...•. see PPC Calculator Journal: May and July 1980

Byte Loader, poor man's (also see LB) ..•••.•.••••...•... 77,79

Byte Structure ...•.............•...•.•.•....•.....• 57-62, 167

Byte Table •.•..•.•.••..••.•.••••..•.•••....••.•.....•• 11, 165

Catalog 1 •.....•.•...•.....•.•.•........•••...••.. 61, 71, 116

Complete MOD function .••..•...•..••.••.•••.•...•••.... 48, 138

Curtain •••.......•••••.•....•...•..•....••...••.. 88, 116, 127

Curtain Moving ...•.•..••.••....••..••...•.••.... 116, 124, 130

Default Function ••••....•.•.•.•.....••••..•..••.•••..•.•.. 113

Disclaimer •...•.•••••..•••••.•....••••.....••......•..•••.. ii

Display mode ••• 23

eGOBEEP •• 76, 95

Extended Functions Module ••••••... 35, 49, 64, 68, 77, 93, 144

Flag register •••.•••.•.•••••.•....•..•••. 23, 24, 86, 117, 131

GLOBAL instruction (Alpha LBL or END in Catalog 1) ..•.. 61, 62

Golden Ratio •..•••••••..•••...•...•.••.•...•••••.••.•• 48, 128

Hex Table .•..•.•.••..••.••••..•..••.•....••..•. see Byte Table

IND (indirect) •••••...••.••.....••.••••.••...•.......•..•.. 16

Key assignments, synthetic•.....••............• 67-76

LB -- Load Bytes:

Basic version "LB" •..•...............•.•.•....•.•...•• 52

PPC ROM version III 49

Extended Functions version "LBX" ••••...••....•...•••.. 65

Line numbers •••.••••••••••..•.•.•.•. 12, 28, 94, 103, 118, 124

HASTER CLEAR •.•.•••••.••.•••••.•••••••...••.•.•...••........ 7

-187-

MEMORY LOST ...•...•......•••••••••••••••••• 7, 40,53,70,117

MK -- Make Key assignments:

Basic version "HK" ..•...•....•....•...•.•••.........•• 69

PPC ROl-l version _ •......•...•.••.....••••.••••..•.• 67

Extended Functions version "l'lKX" ••..•••••.•••••••..... 91

Non-programmable functions ..•....•..••••••••••....•.••.••.. 75

NOP (also see TEXT 0)•..•••...•••....•.•••.. 15, 38, 39

Normalization ...••....•••.••..•....••.....••.••.•..•••••• •• 25

NULL ..••.•.•.......•.••.•..••..•.•........••.. . 21, 34, 98-103

Plastic card (see QRC) ••..•••••..•.••••••••••••.••...••..•. ii

PPC (Personal Programming Center) •..•....••.••...••. 4, 6, 159

PPC CJ (PPC Calculator Journal) •.••••.••••••••••....... 4, 159

PPC ROH•••••......••....•.........•....••...•.•• 4, 162

Prefix Hasker (see Byte Grabber) ..•...•••••••••••.•.•..•.•. 12

Printer:

control characters .••......•••.•..••.••..••.••..•••... 37

shaded characters 37

invisible characters in listings •.........•••••..•.... 37

Program pointer ...•••.....•....••••..•....•. 27, 114, 150, 152

Q-loader ..••.....•......•••...•.......•.••.•.•...... 29, 77-81

QRC (guick ~eference ~ard for Synthetic Programming) •• ll, 165

Return addresses ••••...•.....•.•••.•....••...•••••.•• 114, 115

Root finder ...•.•.•...•...••.••..•.•.••..••..•••. 124-128, 127

Shaded characters •••••••......••••••....••...•••.••••• 37, 165

Stack and ALPHA register analysis .•.•••.•.••••••• 121-124, 123

Starburst character (also called Boxed Star) •••.•••.•.• 13, 41

Status card •....•••.....•...•••••.•.••.•...••••••..••.. 9, III

Status registers •.•...••...••••...•.....•..••..•..•... 39, III

Suspend Key assignments ..•...••••.•..•.....•.•••••.......• 119

Synthetic Programming .•.•...•.•..•••.••.•....•••••.••••..•.. 1

System scratch registers .••..•....••..••• see Status Registers

TEXT instruction •.•..•.•....•....•••••....•..•••••••.••• 29-30

TEXT 0 ... 15, 38, 39

Wife •••.......••........•.••.........••...................• ii

-188-

ADDENDUM

Errata and Selected Useful Facts

Printer slows execution

Having a printer attached to your HP-41 will slow

execution of your programs, regardless of whether flag 21 is

set or the printer is turned on. Even instructions that are

not intended to involve the printer are slowed.

This speed penalty can be reduced by synthetically

clearing flag 55, the printer existence flag. Any of the

following sequences of instructions will accomplish this:

with "bare"

HP-41:

SF 07**

RCL d

CLA

STO M

ASTO M
,-r-

X<> 11

STO d

RDN

with XFUNCTIONS

nlodule *:

RCLFLAG

SIGN

STO d

X<> L

STOFLAG

RDN

with PPC ROM:

55

FC? 55

RDN

F8? 55

XROM IIJI

*this routine was written by Steve Wandzura

**any flag from 00 to 07 can be used.

As long as your program continues to run withou~

encountering a printer function, flag 55 will remain clear and

execution will be speeded. If flag 21 is clear, encountering a

printer function will not set flag 55 either. The function

will be ignored just as it would normally.

If flag 21 is set, the behavior depends on the type of

printer present. With an 82143A printer, all printer functions

are disabled until the program halts, at which time flags 21

and 55 are immediately set (even if 21 was clear). With an

HP-IL printer, the set status of flag 21 will cause the

printer function to be executed and flag 55 to be set. Simply

-189-

halting execution will not set flag 55 as for the 82143A

printer, but executing a flag test, VIEW, or related

instruction from the keyboard will set flag 55.

Avoid decompiling

Suppose you record a program on magnetic cards after

executing it once to compile all the GTO's and XEQ's. (Refer

to page 60 for a definition and explanation of compiling.)

When you read the cards back in, the GTO's and XEQ's will

still be compiled, so that no searches for the LBL's are

required. However the branching information contained in the

GTO's and XEQ's will be lost the next time you GTO .. or PACK.

A simple synthetic technique invented by Clifford Stern allows

you to pack without losing this information:

After reading the program into memory, switch to PRGM

mode and BST. This puts you at the .END., which is the last

line of the program. Make sure that there are at least 2 free

registers (.END. REG 02 or greater). Press ENTERt, STO IND 66,

BST, BG, backarrow twice, and PACK (not GTO ..). The IND 66

suffix becomes the first byte of a packed END, which prevents

the processor from clearing the compiled branch information.

No bytes are wasted because the PACK operation removes all

packable nulls from the program. The presence of the new END

eliminates the decompiling which would ordinarily follow.

This method applies identically to programs read in from

tape, extended memory, or any other source.

ROM/RAM distinction with STO b

l>1ost RAM program pointers would constitute equally valid

ROM program pointers (see pages 114 and 115). The HP-41

therefore must remember internally with some sort of flag

whether the current location is in ROM or RAM. This flag

cannot be changed by STO b.

Thus STO b can only be used to jump from one ROM location

to another or one RAM location to another. A common mistake is

-190-

to press a STO b assigned key while the program pointer is in

ROM, expecting to jump to a particular location in RAM. This

will not work. In;tead you should execute Catalog 1 (it is OK

to R/S immediately) to get back to RAM before pressing STO b.

Q-register shortcuts

Hhen you spell out an ALPHA label name from the keyboard

(while keying in a LBL, a GTO, or an XEQ), the name will be

loaded into the Q register. This fact is helpful when using

eGOBEEP 77 to execute PRP (see page 76). For example, to print

a program that contains LBL"ABC", you can press GTO ALPHA A B

C ALPHA, eGOBEEP 77. An obscure fact, discovered by Robert

Edelen, is that eGOBEEp"name" has the same result as

LBL"name", although this does not work when the printer is

attached.

Another useful shortcut, discovered by Clifford Stern, is

to clear the Q register by pressing XEQ ALPHA backarrow. You

can then obtain a TEXT 0 instruction by pressing Q-LOAD (MK

inputs 27, 0) and backarrow. Refer to page 70. If you press

eGOBEEP 77 after clearing Q, you will cause the current

program to be printed, just as if you had pressed PRP ALPHA

ALPHA.

Subroutine use of "RA"

If "RA" (recall alarms, see page 89) must be called as a

subroutine, replace line 38 (the OFF instruction) with ALMNOW

and RTN. The ALl'lNOW instruction will reset the Time module IS

countdown to the next alarm. Also note that "SA" and "RA"

cannot be used if non-timer I/O buffers are present.

"EFT" use of PCLPS

The useful PCLPS function can be executed by means of the

"EFT" routine (page 94) as long as "EFT" itself is not cleared

in the process. PCLPS provides the fastest method of clearing

main memory programs.

-191-

Time module conflicts with "MK" programs

The conflict between Time module alarms and most key

assignment programs was described on page 70. There is,

unfortunately, another type of Time module conflict,

discovered by Bill Childers and analyzed by Clifford Stern.

If, with a Time module present, you use "MK" or _ to

make an assignment to any key other than rows 1 to 7 of column

1, an undesirable side effect will occur. If you assigned an

unshifted key, any assignment to key 61 (normally +) will be

suspended. If you assigned a shifted key, the assignment to

key -61 will be suspended. If you lose use of an assignment to

key 61 or -61, just read in a program card to reconstruct the

key assignment bit maps (see page 120) and reactivate the

suspended assignment. Another approach is to clear keys 61 and

-61 before using "MK", and reassign them just before ending

the "MK" session if the assignments were synthetic. When

constructing sets of key assignments, do 61 and -61 last.

These restrictions do not apply to "MKX", since "MKX"

does not directly manipulate the key assignment bit maps.

solution to problem 2.8

First create the F0 byte. Key in 01 ENTER+, 02 RCL IND T,

then BST, BG, and backarrow. Key in 02 RCL IND Z and PACK to

remove nulls. Transform the IND Z suffix into a TEXT 1 prefix

by pressing BST and BG. Backarrow twice to clean up the

leftovers.

Congratulations!

By now you should be well beyond any fear of synthetic

programming, and on your way to becoming an expert. The

sources of information listed in Appendix C will help you get

there, should you decide to learn more.

-192-

"SOUP UP" YOUR HP·41 - It's Easy and Fun!

Synthetic programming encompasses the creation and use of synthetic
instructions -those instructions that cannot be keyed up by normal means.
Applications of synthetic instructions included expanded key assignment
capability (assign SF 14 or GTO INO X to a key), 21 additional display
characters, and renumbering of data registers under program control.

If you have heard about synthetic programming and want to know more,
or if you have found other sources of information on synthetic programming
confusing or difficult to read, try this book. HP-41 SYNTHmC PROGRAM­
MING MADE EASY uses all the latest synthetic programs and techniques,
and gives many cross-references to other sources, all of which will be much
more readable after you have been through this book. Barcode for all
programs is included for those readers who have access to an optical wand.
Also included is the handy plastic QUICK REFERENCE CARD FOR
SYNTHETIC PROGRAMMING, a $3.00 value.

If you like your HP-41 , you'll like HP-41 SYNTHETIC PROGRAMMING
MADE EASY. Thousands of HP-41 owners have learned synthetic
programming. Shouldn't you?

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

