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Synthetic Programming on the HP-41CV (Addendum to the Fourth Printing) 

All of the synthetic programming functions and techniques described in this book oper­
ate properly on the HP-41CV, which was introduced after this book originally went to press. 
However, the 'module-pulling' trick used in Chapter 3 to implement the 'byte-jumper' is not 
possible on the 41CV. The following procedure can be substituted (on the 41C as well): 

1. Execute steps 2 and 4 on page 25. 
2. Switch to PRGM mode; create a line 01 LBL "ABC". 
3. Execute CAT 1 (still in PRGM mode), pressing R/S imnediately so that '01 LBL "ABC" 

shows in the display. Press XEQ ALPHA "DEL" ALPHA 001 ('4094' will show briefly, then the 
.END.). Press BST, to see '4093 DEC'. BST again (wait) to see '4092 X<>06'. This is same 
line as the line 06 described in step 6 on page 25. 

4. Continue with instructions 7 through 10 on page 25, noticing that the lines to be 
deleted in step 7 are now '4089' and '4088'. Also, the LBL 01 of step 9 will be absent. 

HP-41CV owners will have to skip the 'creepy man' demonstration on page 1. 
Thi s trick depends on a 'bug' in the operati ng system of the 41C and 41CV, which may 

disappear in future versions. In that eventuality, 41CV users should obtain the use of a 
wand long enough at 1 east to scan in the "KA" key ass i gnment program from Chapter 5 in order 
to get started with synthetic programning. 

Crashes and Other Disasters: 

HP-41C 'crashes', i. e., where the di sp 1 ay freezes or blanks and the keyboard becomes 
inactive, are an operational hazard of 'synthetic programning'. No program or technique des­
cribed in this book will cause a crash if the directions are followed exactly--but occasional 
mistakes are inevitable. If you crash your calculator--don't worry, no harm will result 
to the HP-41C. Try removing then replacing the battery pack. If that fails (try it a few 
times), remove all peripherals and plug-in modules prior to removing the battery pack. 
As a 1 ast resort (I have never had to resort to thi s), remove the battery pack overni ght. 

The material contained in this book is supplied without representation or warranty of 
any kind. The publisher, Larken Publications, and the author assume no responsibility 
and shall have no liablility, consequential or otherwise, of any kind arising from the use 
of this material or any part thereof. 
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CHAPTER 1 

WHY'S AND WHEREFORE'S 

"There are more things in the heavenly HP-41C, Hewpackio, 
Than are dreamt of in your philosophy." 

--apologies to W. Shakespeare 

1A. SYNTHETIC PROGRAMMING? 

No one, from the serious student of computer science, to the occasional user of four­
function calculators, can fail to be impressed with the HP-41C calculator. This machine com­
bines amazing computing power with the convenience of complete portability. The prospective 
buyer is attracted by the long list of computing functions built into the calculator; the ex­
perienced owner fi nds that the HP-41C becomes an ever more important part of hi s probl em 
solving techniques as he masters programming and integrates his own ingenuity with the 
built-in functions. 

And yet, even when an HP-41C user has learned everything the Owner's Handbook can 
teach him, he is in for another treat: the list of HP-41C functions and programming capability 
is not limited to the properties catalogued in that Handbook. There exists, in fact, a whole 
cl aSs of functions and programmi ng appl i cat ions that can be used to enhance greatly the 
power of the calculator, even though the new functions cannot, at first, be executed or pro­
grammed with normal, simple keystrokes. The new functions, which are 'synthesized' by creating 
new combinations of normal program bytes, are called 'synthetic functions'; their appli­
cation in programs gives rise to the expression 'synthetic programming', and hence, to the 
title of this book. 

To whet your appetite, here is a sample of some of the typical applications of synthetic 
programming that are impossible or impractical without the techniques described herein: 

***Addition of twenty-one 'new' display characters for routine use. 
***Transformation of the alpha register into four additional data registers. These 

registers can provide a 'scratch pad' for a program to use without disturbing data 
stored by other programs in numbered data registers. Furthermore, the contents of 
these regi sters can be input and output wi th the Card Reader ope rat i on 'WSTS'. 

***Enhanced user control over the 56 user and system flags. Example: Two keystrokes 
can clear all 56 flags simultaneously. 

***Automatic 'SIZE-finding' in less than 2 seconds. 
***Rapid alphabetizing of alphanumeric data. 
***Alphanumeric character-string processing 
***Addition of six new TONE frequencies, plus variation of TONE duration. 
***Interchange of program lines and stored data. 
***Improved key assignment control, including two-byte function assignments (e.g., as­

signment of 'STO 65' to a key), automatic clearing of all assignments, and assignment 
register packing. 

A simple exercise will introduce you to the world of synthetic programming, and 
perhaps motivate you to expend the effort to read the rest of this book. Try the following 
hocus-pocus: 

1. Insert one memory module into the HP-41C. 
2. Execute a 'Master Clear'. 
3. Set SIZE 063 (if your module is double density, set SIZE 127). 
4. Switch to PRGM mode. 
5. Key in these program lines: 

6. Turn the HP-41C off. 

01 12345 
02 STO IND 17 
03 RDN 

7. Remove the memory module; wait 60 seconds; replace. 
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8. Turn the HP-41C on. 
9. P-ress RTN. 
10. Key in! L 43S245455- EEX 59-' • 
IT. Press· SST 
12. Swi ten ALPHA on. 

Where didthal creepyiitt're 'man' come-from? Sw-itcnPRGMon. press BST once.andyoll· 
wHl see the pr-09.ram Line '01 STO t-1'. This: 's-ynthetjc' pr-09.ram line is- the coobination of 
the! IMD 17' pr-ogram byte- and- the_ 'R-DW byte that resulted when j'ou eliminated: the 'STO' 
byte- froot'STO. HiEr 17' by' r.emoving the memory module. N-o hint of the existence of ac 'STOW 
functi orr is 9-1 ven by the Owner's Handbook, but_ you will come to- know and love' SIO M' and 
its- friends as you master synthetic programming. 

1B~ PURPOSL AND_ ORGANIZATION 

This~ book is des; gned- to impart- the_j oys- and- exp-lai n the mysteries-of synthet i c- pr-ogram­
ming to any Hr-41'c us-er, ft·Offi the no\dce progra.mrner to the expert. It is a compendium of 
the- the-ory oj- ca-1 cul ator operat; on that makes s..yntheti c_ programmi ng pass; bl e, the meehanicaj 
proc.edures for impi ement i ng the syntheti c program 1 i nes.- am:! a set of appTi cat; on programs 
that serve- practlcal purposes_ and- al so Hlustrate the- us-e oj- exotic pr-o-gramrning..- technique-s-. 

Chapter Two describes- the inner workings of the- HP-41C. from a conceptual point of 
vi ew that will probabl.x. mak-e-computer eng; neers-cringe. You.. wHl obta.i n there- a- wo.rk-ing know­
ledge of calculator programming at a deeper -level than "1S possilSle -trom "tne llwneyl"S ·tvJanu~1 
alone. Besides laying the groundwork for synthetic programming, the information in Chapter 
Two will give you a picture of HP-41C operation that will help you optimize all of your program­
ming work. 

Chapter Three introduces the fi rst and most important of the synthet i c functions, 
the 'byte jumper'. This single keystroke function opens the door to simple procedures for 
creating the entire set of synthetic program lines. We will 'create' the byte jumper using 
a 'module pulling' trick like we used to make the 'STO M'; once that is done, we will never 
again need to resort to module removal. 

In Chapter Four, a new set of HP-41C registers, the 'status registers', is introduced. 
Access to these registers, which include the alpha register, the 56 flags, memory allocation 
information, and the program address pointer and subroutine return stack, results in a host 
of practical applications like the examples given in Section 1A. 

'Programming programs', a package of HP-41C programs and techniques, are described in 
Chapter Five. The principal use of these programs is to enable the writing and deciphering 
of other programs. 

Chapter Six is a 'standard applications' chapter, in which we find a set of synthetic 
programs that in themselves are sufficient justification for the study of the material in 
the preceding chapters. But more than that, the programs illustrate general synthetic program­
ming techniques that have application to a wide range of problems, limited only by the motiva­
tion and ingenuity of the enlightened user. 

Finally, in Chapter Seven, we learn a few 'fun' tricks-of-the-trade that aren't particu­
larly practical but will gladden the heart of the confirmed calculator nut. Included, of 
course, is a supreme example of the expenditure of enormous research effort to discover a 
totally useless result, namely, how to make that doggoned goose turn around and fly backwards! 

Three appendices are included. Appendix 1 is a brief review of the decimal, binary, oc­
tal, and hexadecimal number systems. If you are unfami 1 i ar or perhaps a 1 itt1 e rusty with 
these notation systems, you will find it useful to study Appendix 1 before tackling Chapter 
Two. Appendix 2 contains the Wand barcode for the important programs of Chapter Five, "CODE", 
"REG", "KA", and "DECODE", plus the long 'Hangman' program of Chapter Six. Appendix 3 con­
tains special barcode for specific synthetic programming purposes. 

1C. THE ORIGIN OF SYNTHETIC PROGRAMMING 

It all came about by accident! Early models of the HP-41C had an unintentional flaw, 
or 'bug', in thei r i nterna 1 codi ng, that a 11 owed execut i on of the operat i on 'STO IND 01', 
for example, with values from 719 to 999 in data register ROI' This operation caused the 
contents of Register X to be stored into program memory. I wondered what would happen if 
I used this 'feature' to synthesize new program lines by storing numbers into program that 
would link together normally impossible combinations of program 'bytes'. To make a long 
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story short, it worked. Once the new functions started popping up in memory, whence they'could 
be recorded on a magnetic card and then merged into any program, the practical applications 
started coming in droves. 

Following the discovery of the synthetic functions, the major advances in synthetic pro­
gramming were 1) the development of synthetic key assignments, which permit single keystroke 
execution of the new functions, and also eliminate the need for the hardware 'bug'; and 2) the 
discovery of the byte jumper, which is perhaps the most fundamental synthetic function. Since 
the byte jumper can be created on any HP-41C, and since it can be used to generate almost 
any other synthet i c program 1 i ne, we can start from 'scratch' in thi s book and show how to 
'bootstrap' an HP-41C to have complete synthetic program capability. 

10. NO RISK TO THE HP-41C 

Synthetic functions, when keyed into the HP-41C with the methods described in this book, 
are' proper' calculator operations. As such, they constitute no physical threat to the 
HP-41C. The only risk, which really should be considered a potential annoyance rather than 
a danger, is that certain operations with synthetic functions can cause either 'MEMORY LOST' 
or a 'crash', i.e., a state where the display freezes or blanks and the keyboard becomes 
di sab 1 ed. The fi rst di saster causes a lot of teeth gnashi ng and hand wri ngi ng, but cer­
tainly doesn't harm the HP-41C. The second problem can virtually always be corrected (99.9% 
of the time) by simple removal and immediate replacement of the battery pack, followed by 
one or two on-off presses. I have heard of only one case where a crash required overnight 
removal of the batteries for recovery, but the cause of that crash is unknown. I can't 
guarantee anything, of course, but in the course of developing synthetic programming, I 
have accidentally cleared the memory or crashed my calculator literally dozens of times, yet 
the HP-41C keeps ticking along. 

Because of the risk of accidental memory loss, however, it is not appropriate for Hew­
lett-Packard itself to 'support' the use of synthetic functions. Therefore, you should not 
submit programs containing synthetic program lines to the User's Library. 

IE. SOME CONVENTIONS 

The following is a list of special notational conventions I have adopted for this 
book, to simplify the description of calculator programs, characters, numbers, instructions, 
etc. : 

1. You may have already noticed the use of the single quotation marks in place of the 
usual double, as in 'example', instead of "example". Double quotation marks are reserved to 
indicate HP-41C alphanumeric characters and text lines, much as the Printer identifies 
characters in program 1 i st i ngs. Thi s convent i on is used also in 1 i st i ng of programs in 
this book, most of which are reproductions of Printer listings. Thus you should be aware 
that a program line enclosed in quotation marks will show in the HP-41C display as preceded 
by the text symbol "T". 

In addition, I am deliberately violating the punctuation rule that requires commas and 
periods to be included within quotes when they are adjacent, i.e., "ABCD", rather than "ABCD,". 
In addition to defying logic, this rule would lead to unacceptable ambiguities in this 
book, since the comma and period are also standard HP-41C alpha characters. Their inclusion 
within quotation marks could suggest that they are part of the adjacent alpha string. 

2. Whenever possible, to provide neater copy, standard typewriter symbols will be 
used to represent HP-41C display and printer characters. The identification is usually ob­
vious, with a possible exception the use of the semicolon ";" to represent the HP-41C symbol 
"?II. 

3. Numbers in the display will be represented in the same form that they would assume 
if entered into the alpha register with 'ARCL'. Thus, numbers in SCI or ENG format will be 
listed using "E" to indicate the exponent, e.g., '1.23 ElO' rather than '1.23 10' to 
eliminate the possibly confusing spaces. 

4. Entries such as 'STO mn', 'DEL lmn', or 'SF mn' are to be understood as typi cal 
operations with the listed function, where the letters 1, m, n, etc., represent digits that 
can take any of the normal values associated with the function. Thus, for 'STO mn', 'm' and 
In' can each take the values 0 through 9. 

5. In the listing of long hexadecimal or binary numbers, it is often convenient to group 
the digits for explanatory purposes. The grouping is indicated by spaces or bars "I" placed 
in the numbers, which of course are not contained in the HP-41C's actual coding of the numbers. 
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6. A basic unit of HP-41C user memory is the 'register', a block of seven bytes of code 
which may be used for storage of one number or of seven program bytes. Regi sters wi 11 be 
identified as follows: a) 'Register lmn' indicates the register found at memory address 'lmn' 
(see Section 2C), where 'lmn' is a 3-digit hexadecimal number. b) 'Register a', where 'a' 
is a single alpha character, refers to any of the 16 'status' registers discussed in Chapter 
4. Registers X, Y, Z, T, and L are the usual RPN stack registers. The remaining 11 status 

registers, Registers M, N, 0, P, Q, 1-, a, b, c, d, and e, are so named because of the way 
the synthetic 'status register access functions' are displayed in program lines, e.g., 'STO 
M', 'RCL 1-', 'ISG d', etc. c) 'Rmn' indicates data Register number 'mn', where 'mn' is a 
two (occasionally three)-digit decimal number. --

7. Programs are reproduced in this book directly from 82143 Printer listings, to 
help avoid transcription errors. Unfortunately, the Printer lists status register access func­
tions for Registers M, N, 0, P, Q, and i- using different symbols than the HP-41C display. 
The reader will need to become familiar with the following table: 

TABLE 1-1 

Symbols For Status Registers 

D i sp 1 ay Symbo 1 
M 
N 
a 
P 
Q 
I-

Pri nter Symbol 
[ 

] 

l' 

T 

In addition, in synthetic text lines, the printer uses the symbol "." both for the 'null' 
byte '00' (shown in the HP-41C display as II-II) and for byte 'OA'. However, in this book 
there are no text lines containing character 'OA', so the "." always indicates byte '00'. 

8. Short program rout i nes wi thout alpha 1 abe 1 s wi 11 be i dent i fi ed by a number shown 
in parentheses to the right of the routine. The format is '(Section number-routine number)'. 

9. To simplify the instructions for keying in special program lines or operating pro­
grams, the instructions will be shown in most cases in three columns. Entries in the left 
column are codes to be entered into memory: either numbers to be keyed into Registerx, 
alpha characters (enclosed in double quotation marks) to be keyed into the alpha register, 
or program 1 i nes (shown wi th program 1 i ne numbers) to be keyed into the current program. 
The center column lists keystroke sequences, such as 'GTO .123' or 'DEL 005', that are not 
recorded in the program. The rig~t column will show, when appropriate, the HP-41C display 
resulting from each 'center column instruction. These 'displays' will be enclosed in square 
brackets [ ]. Example: 

(Key in) 

01 STO 01 

(Operation) 

GTO .000 

SST 

(Display) 

[00 REG 123] 

[02 X<>Y ] 

indicates that you should press 'GTO .000' (to see '00 REG 123'), key in the line '01 STO aI', 
then 'SST' once to see line '02 X<>Y'. 

IF. PREREQUISITES 

In order to reach as wide a range of HP-41C users as possible, this book is designed 
around a minimal HP-41C 'system'. All that you will require are (1) an HP-41C, (2) temporary 
use of one memory modul e, and (3) a few hours' time to wade through all of the materi a 1. 
The peripheral Card Reader, Printer, and Wand are not necessary, although they are valuable 
accessories for synthetic programming just as for any normal use of the HP-41C. The card 
reader, for example, provides a great way to store your new programs and key assignments to 
ensure against accidental memory loss. The printer is invaluable for listing the programs 
as you key them in, and keeping a running record of everything you do. If you are fortunate 
enough to have a wand available, you can save a lot of keying by using the barcodes provided 
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in Appendices 2 and 3. 
Chapter 2 is the major 'stumbling block' for beginning synthetic programmers, since 

it contains a lot of detailed descriptions without any of the fun of pushing calculator 
keys. I suggest that you read Chapter 2 rather rapidly the first time through, just carefully 
enough to get a general grasp of its contents to prepare you for the more interesting keystrok­
ing starting with Chapter 3. Then as you continue through the later chapters, you will wish 
to refer back in more detail to various sections of Chapter 2. 

IG. REFERENCES 

Most of the discoveries and techniques described in this book were first published in 
various issues of the PPC Calculator Journal. The PPC (the initials do not stand for 
anything in particular) is an independent, world-wide club of calculator enthusiasts with a 
common interest in the study and application of Hewlett-Packard programmable calculators. 
The Journal is the principal medium of information exchange among the developers of synthetic 
programming, who are scattered all over the world. Any serious HP-41C user, particularly 
if he is interested in building upon what he learns from this book, will find it a worthwhile 
investment to join the club and subscribe to the Journal. Having contact with several 
thousand other programmers can save you a lot of work! I nqu i ri es shou 1 d be directed to: 

PPC-SP 
2541 W. Camden Place 
Santa Ana, CA 92704 

Here is a list of the articles relevant to the development of synthetic programming 
(the format is 10lume, ~umber, fage): 

Cadwallader, T., 'Improved Synthetic Key Assignments' V7N3P3 
Close, C., 'Bug 2: A Practical Application' V7N3P8 
Hewlett-Packard ('Corvallis Column') 'HP-41C Function Table V6N4Pll 

'HP-41C Postfix Table' V6N5Pli 
'HP-41C Data & Program Structure' V6N6P19 

Istok, G. i Pseudo XROM' s on the HP-41C' V7N2P32 
Kennedy, J. 'The HP-41C Combined Hex Table' V6N5P27 
McGechie, J. 'HP-41C Synthetic Key Assignments' V7N2P34 
Nelson, R. 'Bugs in the Box' V6N5P27 
Wickes, W. 'Direct Status Register Access on the HP-41C' V6N7P31 

'Through the HP-41C with Gun and Camera' V6N8P27 
'HP-41C Black Box Programs' V6N2P35 
'Freedom From Bugs' V7N2P35 
'Synthetic Key Assignments' V7N2P30 
'Improved Black Box Programs' V7N2P35 
'HP-41C Synthetic Function Routines' V7N4P26 
'Byte-Jumping, or The Poor Man's Black Box' V7N4P26 
'Direct Addressing of ROM Routines' V7N5P55 
'Understanding BLDSPEC' V7N5P56 

It should be stressed that the development of synthetic programming is a continuing pro­
cess. Even as this book is being written, curious programmers are turning up new tricks and 
extending our understanding of the HP-41C. Even writing this book has increased my own under­
standing of the subject, and led to a few new discoveries, such as the 'text enabler' opera­
tion described in Chapter 5. 
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CHAPTER TWO 

INSIDE THE HP-41C 

This chapter will be, to some extent, an excursion into fantasyland. In order to give 
you a useful conception of the working of the HP-41C, I will introduce certain fictional, 
almost personified, systems to represent important operations of the calculator. These systems 
mayor may not have exact electronic counterparts inside the HP-41C case; such details are of 
interest only to electronic engineers and are outside the scope of this book. The important 
thing is that the HP-41C behaves as if these systems were present. First and foremost, you are 
asked to conceive of the 'brain' of the calculator as a device called the 'processor'. This 
processor is res pons i b 1 e for readi ng data and programs stored in the memory, then instruct i ng 
the other systems in the calculator what to do with what it has read. Depending on your imagi­
nation, you might think of the processor as an almost human taskmaster, busily reading one set 
of instructions provided by the user, then issuing its own instructions to the various 'workers' 
that make up the HP-41C system. 

2A. CALCULATOR LANGUAGE: BITS, NYBBLES, AND BYTES 

R iddl e: what do the number '1.435245455 E59', the alpha stri ng I;<iCREEPY", and the program 

01 LBL 00 
02 / 
03 SQRT 
04 X>Y? 
05 X>Y? 
06 LN 
07 SIN 

have in common? Answer: all three are stored identically in the HP-41C user memory! To under­
stand this apparently obscure concept is to grasp the basis of the entire user memory organi­
zat i on and codi ng. By' user memory', we mean that port i on of the HP-41C memory under user 
control: the data and program registers, the key assignment registers, the RPN stack registers, 
the alpha register, etc. 

At the elementary level, a calculator is really a very simple device. It can store and 
recall numbers, add them if desired, and that's about it. In order to carry out instructions 
which may seem elementary to the user, such as '+', or 'LN', the processor must initiate sequen­
ces of dozens of elementary steps. The real power of a calculator lies in its ability to 
allow a user to initiate this internal processing by means of a simple sequence of keystrokes. 
A programmable calculator is one which can also encode the keystroke sequence, and store the 
code for repeated automatic execution. 

The HP-41C represents a major advance over previous hand-held calculators in that the user 
program codes are displayed to the user in directly readable alphanumeric characters and words. 
We might imagine the 41C as containing an invisible 'translator', which takes a section of 
stored code and translates it into a displayed number or word. But, in fact, there must also 
be another translator, to call up the proper sequence of elementary steps, called 'microcode', 
for the calculator to execute. There are, in effect, three levels of 'interpretation' of the 
same stored code, illustrated in Figure 2-1. 

'Level one' is the rendering of codes into a form directly visible to the user. User input 
consists of generating codes by pressing keys; the resulting codes are read back by the 'user 
translator' in the form of numbers, characters, or program lines shown in the display. 
At 'level two', the codes are realized in a form that permits them to be stored in memory 
registers, or to be written into or read from external devices such as the card reader or 
wand. Finally, a 'machine translator' is necessary to translate the codes into 'level 
three', i.e. the set of elementary machine instructions required to carry out an operation. 

We are primarily interested in levels one and two. 'Synthetic programming' is the 
process of creating new level two codes by bypassing the keyboard logic that restricts input 
to the set of instructions listed in the Owner's Handbook. The resulting synthetic codes can 
then be interpreted by both translators, often yielding practical results such as new display 
characters and program functions. To achieve this, the user must learn to 'speak' the level 
two language so that he can interact directly with the stored codes without depending on 
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KEYBOARD 

PERIPHERALS 

USER 
TRANSLATOR 

CODE STORED IN MEMORY 

MACHINE 
TRANSLATOR 

MACHINE MICROCODE 

DISPLAY 
113 AVIEW 
114 STO 05 
115 GTO 99 
116 * 
117 STOP 

LEVEL 1: USER INPUT/OUTPUT 

F4 42 49 4C 4C F3 53 
55 45 F5 4B 45 4E 4E 
59 F4 4C 41 52 41 FF 

LEVEL 2: USER MEMORY 

••• 1 •• 11.1 
•• 1111.111 
11 ••••• 11 • 
••••• 11111 

LEVEL 3: MACHINE MICROCODE 

FIGURE 2-1. THREE LEVELS OF CODING IN THE HP-41C 
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the user translator. 
The requirement that the memory codes be storable in HP-41C memory and also be able to be 

read to or from peripherals dictates the general form the codes must take. The card reader, for 
example, uses magnetic cards for code storage; the card itself can only contain information 
stored as regions of ordered magnetic fields in the oxide film of the card. To provide repro­
ducible, reliable storage, the ordering must be the simplest possible: the code is represented 
by a string of magnetized or non-magnetized bar-shaped regions. This concept is directly analo­
gous to the barcodes used by the wand. As the wand is scanned along the line of bars, it 
Isees l either wide or narrow bars. The bar pattern can be considered as a long binary number, 
with the wide bars representing lones l and the narrow bars Izerosl. Figure 2-2 is a sample of 
the barcode, which we can use to visualize how codes are stored on a magnetic card, or indeed, 
in the HP-41C itself. 

111111111111111111111111111111111111 1111 

\ / 
1 0 

1111 
"v' 

/ 
NYBBLE 

1111111111111111111111111111111111111.11 
'--..;-J 

/ 
BYTE 

FIGURE 2-2, HP-41C BARCODE 

In the calculator, the lis and Dis are represented by the states of microscopic transis­
tors, but the central idea is the same as for the wand or the card reader: user codes are 
stored as sections of a long string of binary Ibitsl. To make sense of the code, the processor 
must know how to break the string into intelligible sections. 

Consider again the number 11.435245455 E59'. A count reveals that there are 14 Ipieces l 
of infonnation required to represent the number in decimal form: ten mantissa digits, two 
exponent digits, a mantissa sign and and exponent sign. The basic unit or building block of 
storage code must be able to represent one of the pieces, i.e., it must be able to assume at 
least ten different values so that it can represent a single decimal digit. The decimal numbers 
a ,through 9 are represented in binary as 0000 through 1001 respectively, so we conclude that 
the unit must consist of four consecutive binary bits. This unit is called a Inybblel--itls 
half a Ibyte l as we shall see (computer jocks canlt spel too wel). We shall also refer to a 
nybble as a Idigitl, referring to its role in number storage. The decimal number above is 
thus coded as 14 nybbles, like this: ~ 

0000 0001 0100 0011 0101 0010 0100 0101 0100 0101 0101 0000 0101 1001 
+ 143 5 2 4 5 4 5 5 + 5 9 

(The spaces are provided for clarity.) The lEI and the 1.1 do not require explicit coding, 
since their positions and Ivaluesl never change. For the sign digits, the first and twelfth 
nybbles counting from the left, the HP-41C uses 10000 1 for 1+1 and 11001 1 for I_I. 

You may already have observed that the four bits required to represent a decimal digit 
could take values up to binary 1111, or decimal 15. The coding is thus sufficient to represent 
Ihexadecimal l numbers, as well as decimal. This capacity would be wasted if the HP-41C only 
dealt with decimal numbers. However, even a four-bit nybble is not adequate as a basic unit 
for coding pro1ram lines. 

The HP-4 C usesT consecutive nybbles, 8 bits, as its elementary unit of program code, 
called a Ibyte l • Binary 11111111 (hex FF) is decimal 255, so there are 256 possible elementary 
program codes, which is sufficient even for a calculator with the HP-41C ls capability. As the 
41C runs a program, we can imagine it Ibytingl off successive 8-bit chunks of code for process­
ing. The meaning of the riddle at the beginning of this section should now start to become 
clear. The number 1+1.435245455 E+59 1 is stored as seven bytes, 101 43 52 45 45 50 59 1• When 
these same bytes are in program memory, they represent the program lines ILBL 001, 1/1, ISQRT I , 
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X>Y?, X>Y?, 'LN', and 'SIN' respectively. The HP-41C's user translator is even more sophisti­
cated than we might have thought. The translation to the display depends not only on the 
code read by the translator, but also on the current mode (PRGM, ALPHA, etc.) of the calculator. 
The riddle suggests yet a third way of translating the same code--if the sample code were in 
the alpha register, it would be displayed as the seven alpha characters I:j;CREEPY". 

The output medium of the user translator is the display. Whatever you see in the HP-41C 
display is a rendering of the contents of some register into an alphanumeric display. When 
you first turn the calculator on, it is in a 'default' mode, in which the contents of Register 
X are copied into the display as a number, with each number character representing one digit 
from Register X. If the HP-41C is switched to ALPHA mode, the alpha register is copied, \',ith 
one displayed character for each alpha register byte. If a 'VIEW mn' is executed, the Message 
Flag 50 is set to indicate a non-default display, with the contents of Rmn displayed. This 
di spl ay scheme permits the vi ewi ng without di sturbi ng the contents of Regi ster X. Simil arly, 
we can view the alpha register by using AVIEW. A 'CLD' clears Flag 50, restoring the default 
display. In PRGM mode, the display shows a program line made from program bytes. In a running 
program, the 'flying goose' is the default display, which can be replaced by means of a 'VIEW' 
or 'AVIEW' instruction. Figure 2-3 illustrates the logic involved in the display process. 

We have seen that user programs and data stored in the HP-41C are coded as a long string 
of l's and O's called bits. In data memory, each successive group of 4 bits, called a nybble, 
can represent a single decimal digit, or a sign for the mantissa or exponent. Since a number 
requires 14 nybbles, successive 14-nybblc sections (56 bits) of code are stored and recalled 
together from a fundamental storage 1 ocat ion ca 11 ed a regi ster. The operation 'RCL 01', for 
example, instructs the calculator to copy the 56 bits of code found in the section of rnemory 
designated as R01 into another section, Register X. In program memory, the code is recalled 
and stored one or more bytes at a time. As described in the next section, each of the 256 
possible bytes represents a unique set of program instructions. The division of memory into 
registers is less apparent in program memory than in data memory, but the addressing scheme 
described in Section 2C, nevertheless, is organized by 7-byte registers, so that registers 
can be used interchangeably for data or program storage. 

28. THE BYTE TABLE 

Before continuing with a discussion of the addressing scheme used in the HP-41C, let's 
consider in more detail the coding of program lines. The element of program coding is the 
byte; each byte has 256 possible values, from hex 00 through FF. However, there are many 
more than 256 different program lines--this variety is achieved by allowing program lines to 
use one or more bytes, up to a maximum of sixteen. Thus even though the display shows what 
appears to be just one instruction, a program line, that single line may actually consist of 
several bytes of stored code. 

Table 2-1, the 'HP-41C Byte Table', shows the 256 possible bytes in a 16x16 grid. This 
table is a powerful tool, indispensable for synthetic programming, so it is important for 
the new programmer to understand its use. It is, in effect, the dictionary used by the 
user translator. The numbers O-F labeling the horizontal rows of the table represent the 
first nybble or digit of a byte code. The numbers labeling the vertical columns give the 
second digit of the byte. The box in a particular row and column lists a number of 'features', 
i.e., the various ways that the corresponding byte can be interpreted, depending upon its 
position in memory. Figure 2-4 shows a sample box, using fictitious entries to illustrate 
all of the possibilities. 

The first number in the box, in the upper left-hand corner, is the decimal equivalent 
of the 2-digit hexadecimal byte value. This number is also the value used with the printer 
function 'ACCHR' to obtain the printer character shown in the box to the right of the decimal 
number. (The decimal equivalents will also be used as inputs for the key assignment program 
"KA" described in Chapter 5.) For example, in box 34 (row 3, column 4), we see decimal number 
52 (3x16+4=52), and the corresponding printer character "4". 

The next entry in each box is the name of an HP-41C function. For the bytes in rows 0-
B (except for bytes 1D and IE), each byte by itself constitutes an entire program line. Byte 
34 displays and executes as 'STO 04', byte 5C is 'ASIN', etc. These bytes can be called 
'one-byte functions', or 'stand-alone' bytes, since they cause operations that are independent 
of any succeeding bytes in the program. 

Thl?_I1I?,_4Jf~ rle_')M,ts .. f'r,'\!n" itS .. H'i\!:~1 P.ttc--P,,,,&,.!'.M,r\. ~,~*S,5lnC'.;) 'wJ:>J " ro~ n% "'1[,'11 t.J • .!u'jec y~I~Bl!l 
'ltnes' rather than -orily si n-gl e ... byte 'steps'. -The bytes in row 9, frytesA8":-AE,arrci bytes CE 
and GFare 'prefix! b;Yt-esfor two-byte prQgram 1 lnes. When -the processor -encountersoRenf 
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,,:>-.;.;..NO __ . __ ...,..-.,! FLY I NG GOOS E 

VIEW DATA REGISTER 

AVIEW ALPHA REGISTER 

PROGRAM LINE 

NULL 

PROGRAM LINE 

NULL 

ALPHA REGISTER 

FUNCTION NAME 

NULL 

YES ERROR MESSAGE 

PROGRAM LINE 

YES ALPHA REGISTER 

REGISTER X 

FIGURE 2-3. DISPLAY LOGIC 
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FUNCTION 
OR PREFIX 

DECIMAL 
VALUE 

302 

RAND 
POSTFIX 

(DISPLAY) ----'-132 

SPECIAL NUMBER 
DISPLAY CHARACTER 

(2C" 2L 3A) 
DISPLAY 

CHARACTER 

PRINTER 
CHARACTER 

PRINTER POSTFIX 
OR 

NUMERICAL EQUIVALENT 
OF LETTER POSTFIX 

SYNTHETIC 
FUNCTION ONLY 

""INDICATES NON-KEYABLE 
DISPLAY CHARACTER 

FIGURE 2-4, SAMPLE BYTE TABLE "Box" 

these bytes, it also must look at the following byte to complete the program instruction. 
For example, byte 90 is the prefix 'RCL', which requires a second, or 'postfix', byte to identify 
the register to be recalled. The postfix value of each byte is given by the number or letter 
listed immediately below the function name in a Byte Table box. To decipher the bytes '90 
4C', for example, we observe from the Table that the first byte, 90, is the 'RCL' prefix, so 
we must look at the next byte, 4C, as a postfix, specifically '76'. Hence bytes 90 4C consti­
tute the line 'RCL 76'. Similarly, 9210 is 'STO+29', A8 03 is 'SF 03', etc. Notice that 
for bytes 00-63, the postfix value for the byte is the same as the decimal equivalent of the 
byte value. The first 5 bytes of row 7, when used as postfixes, access the stack registers 
T, Z, Y, X, and L (Last X), so that 91 70 is 'STO T', 98 73 is 'VIEW X', and so forth. 

Some of the bytes in rows 6 and 7 are shown with two postfi x val ues, one or both of 
which is double-underlined. The underlines indicate a postfix value that is only accessible 
with synthetic program techniques. These alternate values will be explained in Chapter 4. 

The postfix values found in rows 0-7 are duplicated in rows 8-F, apparently shortchanging 
us by 127 possible postfixes. However, this is not a real dupl ication: the postfixes in the 
lower half-table enable indirect execution of the prefix functions. For example, 9152 is 
'STO 82', but 91 D2 is 'STO IND 82'. This feature allows use of any data register from ROO-R~9 
for indirect addressing. Other examples are AA AA = 'FS?C IND 42'; 9D 8F = 'SCI IND 15 ; 
9F 86 = 'TONE IND 06'. 

Byte 'AE' has a dual role when used as a prefix. If the postfix is from the upper 
half-table, AE executes as 'GTO IND'; if the postfix is from the lower half-table, AE becomes 
'XEQ IND'. For example, AE 2A is 'GTO IND 42', whereas AE AA is 'XEQ IND 42'. 

Bytes AO-A7 have 'XROM' as their 'function' names. These bytes are prefixes, but not 
in quite the same sense as described in the preceding. Each peripheral function, such as 'WDTA' 
or 'ACSPEC', including the non-programmable functions like 'WALL' or 'LIST', has a unique 
two-byte code associated with it, found in the Table in the range between AO 00 and A7 FF. 
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TABLE 2-1. THE HP-41C BYTE TABLE 
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More properly, we might consider the leading nybble 'A' as the prefix, and the remaining 3 
nybbles as a postfix identifying a specific peripheral function. 

The 'XRaM' codes that display when a peripheral is absent are derived directly from the 
byte values for the peripheral functions. The three nybbles following an 'A' prefix nybble 
are broken up into two 6-bit sections. The two numbers displayed with 'XRaM' are just the 
decimal equivalents of the two sections. For example: 

'PRX' = hex A7 54 binary 10'10'10'111 0'110'1 0'10'0' = 'XRaM 29,20" 
29 20' 

'WSTS'= hex A7 8A = binary 10'10'10'111 10'10'0' 10'10' = 'XRaM 30',10" 
30' 10' 

Some confusion might arise from the one-byte functions in rows a, 2. and 3. In order 
to allow direct storage and recall from as many as laO' registers, the 'STa' and 'RCL' functions 
must be two bytes; otherwise too much of the hex table would be used up with explicit functions 
such as STa 99 or RCL 50'. an the other hand, a.lot of two-byte functions in a program uses up 
memory rapidly. As a compromise, the HP-41C allows one-byte access to Raa-R15 by reserving 
one-byte codes for STa and RCL 0'0'-15. For R16-R99, a two-byte prefix/postfix combination 
is necessary. At the same time, there could have been direct access to R1aO-R255, byassign­
ing different numerical postfix numbers to each byte in the table, but that would have left 
no room for the versatile indirect addressing properties of the existing scheme. 

The same choice between function versatil ity and program conservation appears in the 
availability of 'short form', or one-byte, labels, as well as two-byte labels. Labels 0'0'-14 
are explicitly coded in row a of the Table, whereas labels 15-99 require two bytes each: the 
prefix CF and a postfix from the upper half-table. The two-byte labels may also use postfixes 
66-6F and 7B-7F, generating the so-called 'local alpha labels'. 'LBL A' through 'LBL J' and 
'LBL a' .through 'LBL e'. 

Matters begin to look a little more mysterious as we continue to progress downwards 
through the table, entering the regions beginning with row B. Look, for example, at row E. 
Why are there 16 different 'XEQ' prefixes? In this region of the table, the function beginning 
with each byte consists of two or more bytes, so the Byte Table as drawn becomes inadequate 
to list every detail. Consider first the 'two-byte GTa's' in row B contrasted with the 'three­
byte GTa's' found in row D--again we have the compromise between versatility and memory use 
similar to that of the one- and two-byte STa's and RCL's. 

When 'GTa 0'5'. for example, is keyed into program, these two bytes are coded into 
memory: 

10'11 0'110'10'0'0'0' 0'0'0'0' 

The first byte is 'B6', which the table tells us corresponds to 'GTa 0'5'. What, then, is the 
second byte for? Here we encounter one of the many invisible but wondrous features of the 
HP-41C: 'rapid branching'. The first time that a running program encounters the 'GTa 0'5 ' 
line, the processor must search through the current program until it finds 'LBL 0'5 ' , a (rela­
tively) slow process. ance it finds its destination, it then records the distance between 
the 'GTa 0'5' and the 'LBL 0'5' in the second byte of the 'GTa 0'5' 1 i ne code, so that ina 11 
subsequent executions of the GTa it can jump directly to the LBL. We will cover the details 
of how this information is coded in 1;he next section--suffice it to say that the one byte 
reserved for the jump information allows jumps of up to 16 registers in length, either 
forward or backward. The three-byte GTa' s of row D have an extra 5 bits for the di stance 
record, permitting jumps of up to 512 registers. A programmer's choice of two- or three­
byte GTa's thus amounts to a choice between program speed and program length: if the jump is 
less than 16 regi sters, the two-byte GTa and its correspondi ng one-byte LBL save two bytes 
without loss of speed. For longer jumps, however, the short forms will require considerably 
more execution time. 

The XEQ' s found in row E of the table are structured the same as row D three-byte 
GTa's. They also execute the same way, with the additional feature that the address of the 
XEQ line is recorded as well as the length of the jump to the LBL. The return addresses are 
stored in two special registers, as part of a 'return stack' (see Section 4F). 

Take heart--we're almost done with the table! Row F next: these bytes identify alpha 
text program lines. When the processor encounters an F (binary 1111) as the first nybble of 
a byte. it is alerted that the program line contains alpha text. The number of characters 
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in the text, from one to fifteen, is indicated by the second nybble of the text byte. In 
PRGM mode, an 'Fn' byte results in a display with the text symbol "T" followed by n characters 
derived from the next 'n' bytes of program memory. In a running program, or with SST, the 
processor simply copies the next 'n' bytes of program into the alpha register, then resumes 
execution with the byte following the last of the 'n' text bytes. Examples: 

T A = F1 41 
T BIG = F3 42 49 47 

TTHRILL = F6 54 48 52 49 4C 4C 

Text lines require explanation of the final entry in each Byte Table box. The character 
in the lower right-hand corner shows the alpha character displayed if the corresponding byte 
is either in the alpha register, in a program text line, or in a global alpha program line. 
The display mechanism is capable of generating 83 different characters. Of these, 59 constitute 
the normal character set and may be keyed in directly. Two more, the text symbol "T" and the 
append symbol lIfo-II, can be 'keyed in', but not in arbitrary positions. 

Nineteen characters, identified by the black triangle in the lower right corner of a box, 
cannot be keyed in directly. They do appear in displays resulting from use of the printer 
function 'BLDSPEC'. The 'flying goose' "~" is seen doggedly making its rounds during a run­
ning program, but its counterpart "-E" requires extraordinary effort to flush from its nest 
since the code 2C normally displays as the comma character. The bytes 2C, 2E and 3A are shown 
with two characters. The normal character is shown on the right-notice that these three 
characters, ",", ".", and ":", are displayed using the special LCD dot/comma segments between 
the main "starburst" segments. The left character can be user controlled in special number 
displays, as described in Section 7C. Finally, if a byte is not assigned one of the 82 charac­
ters mentioned so far, it 'defaults' to the full 'starburst' character "II". Except for byte 
3A, the starburst characters are not shown in the Table. 

Two notes: First, the 'append' operation is coded with byte 7F. If this byte appears 
by itself, it is 'CLD', but if is the second byte of a text line, it causes the remaining 
bytes in the line to be appended to the current contents of the alpha register. The second 
nybble 'n' of the 'Fn' text byte will have a value one greater than the number of characters 
actually appended. "LEG" is 'F3 4C 4547' but "i-LEG" is 'F4 7F 4C 4547'. Second, byte FO, or 
'text a', normally does not appear in user programs except as the 'IND T' suffix, but does 
playa role in the coding in key assignment registers (Section 2E). 

We have come to the 'END'. The bytes CO-CD, 'GLOBAL', playa dual role--they identify 
both 'END' lines and global alpha labels. If the third byte of a line starting with 'Cn' 
(O(n(E) is a text byte 'Fn', then the line is a global alpha label. Otherwise, it is a three­
byte 'END'. For both types of lines, the second, third and fourth nybbles give the distance 
from the current line to the next 'END' or alpha label preceding in memory. The distance is 
coded as in the three-byte GTO's (Section 2C). Thus, all the global lines are linked together; 
a GTO-alpha or XEQ-alpha starts searching the global chain from the end of program memory, 
the permanent .END., backwards to the first global line in memory, which is identified by its 
first two bytes 'CO 00'. 'CAT I' shows the labels and END's in order forward from the first 
global line. 

In 'END' lines, the third byte is used to provide information about the current program 
--whether it has been packed and whether it is the 1 ast program in memory, ;. e., if the END 
is the permanent .END. In the third byte, a first nybble 'a' indicates a normal END; a '2' 
identifies the permanent .END. For the second nybble, 'g' means that the program file is 
packed~ '0' indicates that the file needs,packing. 

The global alpha labels are the most complicated of the HP-41C program lines. The third 
byte is an 'Fn', where 'n' is the hex number one greater than the number of characters in the 
label name. The fourth byte in the line, the extra byte reserved by the 'Fn', contains a 
code for the key assigned to the label. '00' indicates no key assignment. The remaining 
'n-1' bytes of the line spell out the name of the label. Example: LBL "ABC" = 'Cl mn F4 ab 
41 42 43', where 'lmn' is the distance to the next label, and 'ab' identifies an assigned key. 

There are a few mavericks in the Byte Table remaining to be examined. Bytes 10 and IE, 
alien prefixes in the land of one-byte functions, are the prefixes for GTO (alpha) and XEQ 
(alpha), respectively. When one of these bytes starts a line, it is followed by an 'Fn' byte, 
reserving the next 'n' bytes for the name of the label called. For example: 

GTO "BLAZES" = 10 F6 42 4C 41 5A 55 53 
XEQ "SPY" = IE F3 53 50 59 
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Next, we have the 'invisible man', byte 'OO'--the 'null' function. These bytes are 
normally invisible to the programmer, but are used by the HP-41C to facilitate editing and as 
place holders for future coding. As an example of its use, a null is automatically inserted 
in front of the first digits of a number entry line. The null serves to isolate this line 
from the previous line in case that also is a number line; the null is equivalent to an 
invisible 'ENTER' in this context. Upon execution of 'PACK', such a null is removed if it is 
found to be unnecessary, along wi th all other superfl uous null sin current program memory. 

Finally, the bytes IF, AF, and BO are 'spare' function codes; that is, they have no 
prefix or stand-alone use, showing up in memory only as postfixes. 

2C. REGISTER, PLEASE 

We have seen that the HP-41C user memory, and its replicas on magnetic cards or in bar 
code, can be viewed as a long string of binary bits, like a machine-gun belt with a pattern 
of misSing bullets. To make sense of the string, as the processor scans along it groups the 
bits into nybb 1 es and bytes for decodi ng, and into 7 -byte regi sters for data storage and 
retrieval. But, in order for the processor to know which bits to group, there must be an ad­
dressing scheme to identify each section of memory. The scheme must permit both 'absolute' 
addressing so the processor can retrieve information in permanent locations such as the stack 
registers, and also 'relative' addressing, to ensure that program jumps such as used by 'GTO' 
or 'XEQ' will remain unchanged by the 'SIZE' operation. 

Since the smallest element of program storage is the byte, and since data registers are 
an integral number of bytes, it is sufficient to have individual addresses only down to the 
byte level, rather than for each nybble or even every bit. There should also be an address for 
each register, to facilitate data handling, and to speed up the process of finding an address 
--what we want is something like a street address, with the register and byte numbers analogous 
to the street name and house number, respectively. These simple ideas lead us right to the 
actual addressing system used in the HP-41C. Each byte in user memory has an address of the 
form: 

[ nab c J. 

'abc' is a three-digit hexadecimal number designating a particular register. We should make 
a distinction between the absolute address of a data register and its data register number, 
which is a relative address. The memory location of the number stored in data register ROO, 
for example, is not fixed. When a new 'SIZE' is executed, the contents of memory are moved 
around to change the allocation between program and data storage. For convenience to the 
user, the original contents of ROO will still be accessed by 'STO 00', etc., even though the 
location, or absolute address, of the contents may have changed (see Section 4G). 

The remaining digit of the 4-digit address, 'n', is the 'byte number'. Each register 
is 7 bytes, so 'n' can assume one of the 7 values 0 through 6. We now expand our conception 
of the processor to include an address 'pointer', which always contains the 4-digit address 
of the program byte currently being processed. The convention used by the HP-41C is that 
'forward' in program memory in the direction of increasing program line numbers corresponds 
to decreasing address (see Figure 2-5). Upon execution of 'SST', the pointer decrements the 
byte number by the number of bytes in the program line, with byte 6 as the first byte of a 
register, and 0 as the last. When a register boundary is crossed, 'n' starts over at 6, and 
'abc' is decremented by 1. The data registers are numbered in the opposite direction, so 
that if RlQ, for example, is (absolute) register '123', then Rll will be '124', R12 will be 
'125', etc. If we could place the pointer in a data register, then single-step in PRGM mode, 
we would see seven program bytes for each register, starting with a byte consisting of the 
mantissa sign nybble and first mantissa digit, and finishing with the two exponent digits. 

It was stated that program branch jumps caused by 'GTO' and 'XEQ' store the jump lengths, 
rather than the absolute addresses of the labels, in the initiating program lines. This is 
so that a shift of program register contents such as caused by 'SIZE' or by inserting a new 
program file at a higher address will not require changing the stored jumps. The distance of 
a jump is expressed as a number of whole 7-byte registers plus remaining bytes. The distance 
is measured from the byte containing the (first part of the) jump distance code, to the byte 
immediately preceding the designated label. To clarify this coding, let's look at a few 
examples. First, take the routine: 
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01 GTO 05 
02 "ABCDEFGHIJKLMNO" 
03 LBL 05 
04 "ABCDEFGHIJ" 
05 GTO 05 

B6 22 
FF 41 42 
06 
FA 41 42 
B6 82 

4E 4F 

49 4A 
(2C-1) 

where the numbers to the right of the program lines are the byte codes for the lines. Prior 
to the first execution of the routine, the code for lines 01 and 05 would have been 'B6 00'. 
The 'B6' identifies 'GTO 05'; the '00' indicates that the jump distance is unknown. Following 
execution, the codes are as shown above, with each '00' replaced by a distance code. Writing 
out the bytes in binary, we can see how the bits are interpreted: 

(line 01) 22 = 
(line 05) 82 :0 

Direction 
o 
1 

# Bytes 
010 
000 

# Registers 
0010 
0010 

If the first bit is zero, the jump is forward (to a lower address); if the bit is a one, the 
jump is backward. For two-byte GTO's, the jump information is entirely in the second byte of 
each 'GTO 05', so we count the jump di stance from there. From the '22' in 1 i ne 01, we count 
off 2 registers + 2 bytes = 16 bytes, starting with the FF in line 02, so that the pointer 
ends up at the "0" character byte of line 02. The pending instruction is then the 'LBL 05'. 
For the GTO in 1 i ne 05, we count backwards 2 regi sters + 0 bytes = 14 bytes, starti ng with 
the B6. Again, the pointer goes to the "0". The maximum length of such jumps is F registers 
+ 7 bytes = 112 bytes, or 16 registers. The 3-byte GTO's and XEQ's are similar to the 2-byte 
GTO's, but with a different ordering of the jump information. Substituting the longer forms 
in Routine 2C-1: 

01 GTO 45 D8 02 2D 
02 "ABCDEFGHIJKLMNO" FF 41 42 .... 4E 4F 
03 LBL 45 CF 2D (2C-2) 
04 "ABCDEFGHIJ" FA 41 42 .... 49 4A 
05 XEQ 45 EO 02 AD 

Again breaking the codes into bits, and grouping: 

~ # B~tes 
(line 01) 08 02 2D = ITOI 1 a # Reaisters Direction Label 

000 00010 a 0101101 
(line 05) EO 02 AD = 1110 000 000000010 1 0101101 

Only 7 bits are required for label postfixes up to decimal 99; 3 more bits are needed for the 
number of bytes, 0-6. So with 4 bits for the line type (1101 for 'GTO', 1110 for 'XEQ'), and 
1 bit for ghe direction, 9 bits remain for the number of registers. The jumps can therefore 
be up to 2 = 512 registers, which is larger than the memory. 

The first byte of the GTO or XEQ line starts the jump coding, so we count off the jump 
from that first byte. For the 'GTO 45' in line 01, we count 4 bytes + 2 registers = 18 bytes 
from the D8 byte, which pl aces the pointer on the "a" as before. Li ne '05 XEQ 45' moves the 
pointer backwards from the EO byte, 0 bytes + 2 registers = 14 bytes. 

Just as it is desirable for a data register number to be a relative rather than an 
absolute address to facilitate shifts of memory contents, there is no absolute program line 
number associated with any memory locations. The line number is a quantity that is recomputed 
each time it is required, i.e., for each program step displayed in PRGM mode or by a held SST 
or BST key. You may have noticed that the first time you switch to PRGM mode after running a 
program, or press 'BST', near the end of a long program, there is a noticeable pause before 
the current line is displayed. This 'dead time' is used for the processor to compute the 
line number, which it can only do from scratch by gojng back to the top of the current program 
file and chugging forward through the program, incrementing the line counter (stored in a 
special register) by one for each complete program line. It would be superfluous and time­
consuming for the processor to keep track of line numbers during a running program, so it must 
do the full line number computation once when the user next switches to PRGM mode. Subsequent 
SST's are fast, but a BST can be slow because the processor has no way of knowing whether the 
preceding byte is a stand-alone byte or a postfix in a multi-byte function. It must again 
return to the top of the fil e and count forward by 1 i nes until it reaches a number one 1 ess 
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than the starting line. 

20. MEMORY PARTITIONING 

Figure 2-5 is a pictorial representation of the HP-41C user memory, where we visualize 
all of the memory registers as stacked one on top of the other. The chart shows the 'mainframe' 
plus all four possible memory modules. The top of the chart is the 'top of memory', the high­
est numbered available data register. Going down the chart corresponds to decreasing data 
regi ster number and abso 1 ute address, or i ncreas i ng program 1 i ne number. The hori zontal 
direction represents the byte number, with the first byte, '6', of each register at the left, 
and the last, '0', at the right. Single-stepping moves the address pointer to the right through 
the bytes of a regi ster, then back to the 1 eft to byte '6' of the next regi ster lower. 

The first data register, ROO, and the first program line of the first user program are 
immediately adjacent in memory, with no physical boundary between them. The current absolute 
address of ROO is stored by the HP-41C, so that the processor always knows which regi sters 
are allocated for data (those above ROO) and which are reserved for program (those below). 
The current's i ze' is the number of regi sters between the top of memory and ROO' When a 
memory module is added, its 64 registers are added at the top of memory, so that the 'size' 
automatically increases by 64 (hex 40). When 'SIZE abc' is executed, the contents of data 
and program registers are moved upwards or downwards until the original contents of ROO are 
in Register 'mno' (mno is a three digit hexadecimal number), 'abc' registers from the top. 

Register 'mno-l' is the first register of program memory. If we start with no programs 
in memory, the last three bytes of Register 'mno-l' automatically contain the permanent .END. 
line. This .END. is always present in user memory, necessarily since it is the first link 
in the global address chain connecting all global labels and END's in memory. When we start 
keying in a program, the first four bytes overwrite the null bytes remaining in Register 
'mno-l'. If more bytes are added, the .END. is automatically shifted to the last 3 bytes of 
the next program register, providing 7 more bytes for program. This process is repeated 
until the program is complete, or until all available program registers are full. If we key 
in an 'END' at some point, we erect a 'barrier' in memory, serving to divide the previously 
keyed program lines into a self-contained program file. The 'END' line itself is the barrier, 
for when it is encountered using SST, or during a program search for a local label, it causes 
the address pointer to jump back to the next 'END' up the label chain, or to byte 'Omno', if 
the current program is the first in memory. 

If we have keyed in a total of 'def' registers of program (including the .END.). the 
address of the register containing the .END. will be [pqr = mno - def]. Remember that all 
such register address arithmetic is done in hexadecimal. In the HP-41C, 'pqr' can never be 
less than hex OCO (decimal 192). The choice of 'oco' for the bottom of programmable memory 
makes addresses in the 'mainframe' range from OCO to OFF. If the first digit of a register 
number is a '1', the register is in a memory module: module l--registers 100 through 13F; 
module 2--140 through 17F; module 3--180 through IBF; module 4--lCO through IFF. 

At any time, there are [pqr - OCO] registers available for program, less the current 
number of registers used for key assignments. The user function key assignments are encoded 
in a block of registers starting at OCO and going upwards in memory (the details of the coding 
are given in Section 2E). If 'jkl' registers are used for key assignments, then there are 
[ghi = mno - def - jkl - OCO] registers still available for new program lines or assignments. 
Overall we have 

(N+l)*40 = abc + def + ghi + jkl 

registers in the system, where 'N' is the number of memory modules currently inserted. 
Below Register ~ca, there is a gap in the chart, meant to represent a void in the 

addressing scheme, stnce no registers exist that would correspond to addresses in the 
region. Between addresses 000 and OaF, however, there is a highly interesting block of 16 
registers. We will call these registers the 'status registers', since their contents are 
recorded by the card reader on Track 1 of the cards generated with the 'WSTS' ( 'Write 
Status') funct i on. Access to these regi sters is the bas is of synthet i c programmi ng; thei r 
study merits an entire chapter, Chapter 4. 
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2E. THE KEV ASSIGNMENT REGISTERS 

The key assignment registers extend from Register OCO up to, but not including, the 
register containing the .END. The registers contain codes that tell the processor which 
functions are assigned to which keys (recall that user global label assignments are recorded 
in the label itself). Consider the following key sequence: 

ASN ALPHA "LN" ALPHA 8 (Assign 'LN' to the 8 key) 

If we were able by some sleight-of-hand to place the address pointer into Register OCO in 
PRGM mode and list the contents, we would see the following (with arbitrary line numbers, and 
the byte codes listed to the right): 

01 "" FO 
02 LBL 03 04 
03 LN 50 
04 RCL 05 25 

(Line 01, byte FO or 'TEXT 0', shows in the display as '01 T '.) Four bytes are not enough 
to fill a register--there are three invisible null bytes between lines 01 and 02. The nulls 
disappear when we make a second assignment: 

ASN ALPHA "LOG" ALPHA SHIFT 8 (Assign 'LOG' to the shifted 8 key) 

Now Register OCO contains: 

01 1111 FO 
02 LBL 03 04 
03 LOG 56 
04 RCL 13 2D 
05 LBL 03 04 
06 LN 50 
07 RCL 05 25 

As a program, the sequence of lines doesn't mean anything, although we recognize the 'LOG' 
and 'LN' that were aSSigned. Rather, the bytes make up a special code. The first byte, 'FO', 
identifies the register as a key assignment register and divides it off from adjacent assignment 
registers. The next three bytes are a code for the 'LOG' assignment, the second assignment 
made. The last three bytes encode the 'LN' aSSignment. In both sets of three bytes, the 
first two bytes identify the assigned function and the third designates the key. For assign­
ments of HP-41C functions, only one byte is required to identify the function, so that the 
'04' byte (LBL 03) is stuck in as a filler. If a peripheral function is assigned, both function 
bytes are required to represent the function. For example, if we had assigned 'PRP' and 'WSTS' 
instead of 'LN' and 'LOG', Register OCO would contain: 

01 "" 
02 WSTS 
03 RCL 13 
04 PRP 
05 RCL 05 

FO 
A7 8A 
2D 
A7 4D 
25 

The code for a des i gnated key is as follows: Suppose we ass i gn key 'MN', i. e., the key 
in row M and column N of the keyboard. Then the byte representing that key will be hexadecimal 
'XV', where [X = N-IJ, and [V = MJ. The '8' key assigned above is key '53', so that [X = 2J 
and [V = 5J, yielding the 'RCL 05' line in the assignment register. Other examples: the 'COS' 
key, key 24, is represented by byte 32, or 'STO 02'; 'R/S', key 84, is coded with byte 38 = 
'STO 08'. 

The code for the shifted key '-MN' is obtained from [X = N-IJ, [V = M+8J. Thus the 
aSSignment of the shifted '8' key, key -53, is coded with byte 2D = 'RCL 13'. For shifted 
keys in row 8, where N=8, we carry the '1' resulting from [8+8=10J into X. For example, the 
'VIEW' key, key -84, is coded with byte 40 = '+'. 

The keys ordinarily numbered 42, 43, and 44, i.e., 'CHS', 'EEX' and '[±J', and their 
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shifted counterparts, are physically in columns 3, 4, and 5, respectively, and must be so 
numbered for use in the key assignment byte formula. It is as if the 'ENTER' key covers an 
imaginary key 42. Figure 2-6 shows the key assignment codes in a keyboard chart form for 
easy reference. The number on each key is the key des i gnat i on byte for ass i gnment of that 
key. The codes for the shifted keys are shown above the keys. 

09 19 29 39 49 

§]~@]@]~ 
OA 1A 2A 3A 4A 

~§]§]§]~ 
OB 1B 2B 3B 4B 

§]~@J@]@) 
OC 2C 3C 4C 

10 4 I ~ ~ B 
OD 1D 2D 3D 

@]@]@] ~ 
OE 1E 2E 3E 

~~@] ~ 
OF 1F 2F 

~ @] ~ 

~ 
20 

~ 

FIGURE 2-6. KEY ASSIGNMENT BYTES 

If the assigned function is a prefix, such as 'STO', 'ISG ' , 'GTO', etc., the listing of 
the assignment register will show the function byte and the key designation byte merged into 
a single program line. The key designation byte acts as a postfix for the assigned prefix. 

When a non-programmable HP-41C function is assigned, the function byte is found in row 
a of the Byte Table, so that the corresponding program line is one of the short-form labels, 
or a null. Table 2-2 shows the correspondence. 

Although most of the entries in Table 2-2 correspond to normal assignments, bytes 01, 
as, DB, ~C, DO, and DE represent 'functions ' that are not normally assignable. Using the key 
assignment programs in Chapter 5, however, we can place these bytes into assignment registers 
with amusing results. The 'functions ' I@C I and 12 __ 1 are so named because pressing the key 
to which one is assigned produces the display indicated by the name. Execution of I@C I some­
times does nothing; at other times a 'GTO •. I executes. 12 __ I, upon entry of a two-digit 
number, causes the HP-41C to 'lock Upl for some time. The more practical use of bytes OS, 
OB, and OE allows us to reassign the 'RIS', 1r.:JI, and 'SHIFT ' functions, respectively. Pres­
sing the reassigned correction key always deletes the current program line, regardless of 
whether or not the HP-41C is in PRGM mode. Finally, the byte DC reassigns the 'rocker key I 
functions 'ALPHA ' , 'PRGM' and 'USER'. The choice of function depends upon the designated key 
(I): if the key is in row 1 or 5, 'ALPHA ' is assigned; keys in rows 2 and 6 will be assigned 
to 'PRGM'; 'USER ' results from assignments to keys in the remaining rows 3, 4, 7, and 8. 
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TABLE 2-2 

Assignment of Non-Programmable HP-41C Functions 

Function 

CAT 
@c 
DEL 
COpy 
CLP 
R/S 
SIZE 
BST 
SST 
ON 
PACK 

mHA/PRGM/USER 2 __ 
SHIFT 
ASN 

Byte 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
OD 
OE 
OF 

22 

Program Line 

null 
LBL 00 
LBL 01 
LBL 02 
LBL 03 
LBL 04 
LBL 05 
LBL 06 
LBL 07 
LBL 08 
LBL 09 
LBL 10 
LBL 11 
LBL 12 
LBL 13 
LBL 14 



CHAPTER 3 

EXOTIC EDITING WITH THE BYTE JUMPER 

3A. NORMAL EDITING 

Every HP-41C programmer knows the simple rules governing normal editing: (1) In PRGM 
mode, a program 1 i ne keyed in is inserted immedi ately foll owi ng the program 1 i ne i niti ally 
shown in the display. All subsequent lines have their line numbers increased by one. (2) 
When the correction key is pressed, the displayed program line is deleted, and subsequent 
lines have their line numbers decreased by one. The display will show the line preceding 
the deleted 1 i ne. (3) Execut i on of I DEL 1 mn I causes I 1 mn I program 1 i nes to be deleted, 
including the line displayed. (4) IPACK I does some kind of housekeeping, deleting invisible 
nulls to maximize the available program space. 

These operations provide a simple, fast editing capability for the HP-41C. But for our 
purposes, the information in steps (1) through (4) above is inadequate; we need to know exactly 
what is going on in memory at the byte level, not at the program line level. So let us rewrite 
the rules as follows: 

(1) The program line displayed in PRGM mode is the program line starting with the 
first non-null byte following the byte where the address pointer is currently situated. When 
a new program line is keyed in, the bytes constituting the new line are placed immediately 
following the last byte of the initially displayed line, by overwriting null bytes. If no 
null bytes are available, i.e., if the byte at the insertion location is not 100 1, the proces­
sor automatically inserts 7 nulls (or multiples of 7 nulls if required) before entering the 
new program bytes. The new 1 i ne then overwrites as many of the new null s as it requi res, 
leaving the rest (invisibly) in the program. Insertion of exactly seven nulls makes the 
process of moving subsequent lines down in memory simple--each register containing user 
programs is just copied into the next register down, starting at the .END. and working back 
up to the register where the insertion is occurring. 

A manual IRTN' , IGTO.OOOI, or IGTO.0011, moves the address pointer to the last byte of 
the preceding program. The first two operations, by setting the line number to 100 1, result 
in a display of 100 REG lmnl instead of a program line. When the line number is 100 1, program 
bytes are keyed in immediately after the current pointer byte rather than after the pending 
program 1 i ne • 

(2) When the correction key is pushed in PRGM mode, the bytes of the displayed line 
are replaced by an equal number of null bytes. The program pointer moves back one line. 

(3) The IDEL lmnl operation replaces all of the bytes in the next Ilmnl program lines 
with nulls. You might observe that an ISST I following the deletion of a large number of 
lines requires a noticeable pause, which is actually the time required for the processor to 
scan through all the null bytes resulting from the deletion until it finds a non-null byte 
for di spl ay. 

(4) An 
program file. 
bytes upwards 

editing session can introduce a substantial number of superfluous nulls into a 
The PACK operation removes all unnecessary nulls by moving non-null program 
in memory. Nulls found within multi-byte program lines are not removed. 

When program bytes are shifted around in memory, either by editing (inserting or deleting 
bytes) or by packing, various jump-distance codes may become invalid. Hence, following any of 
these operations, the jump-distance bytes to all local GTOls and XEQls in the file being edited 
are set to zero, so that they will have to be recomputed the next time the program is run. Fur­
thermore, the relative addresses in the global label chain must be updated. Finally, the END 
line terminating the edited file is recoded to indicate that the file needs packing. 

An example of program editing should clarify the rewritten rules. Starting from IMEMORY 
LOST I, we key in this simple program: 

01 LBL 00 
.END. 

If we write out all the bytes in the file, the program looks like this: 
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Address 

60EE 
50EE 
40EE 
30EE 
20EE 
lOEE 
OOEE 

Line Number Line Byte Code 

01 LBL 00 01 
00 
00 
00 

• END. CO 
00 
29 

The addresses follow from the consideration that the 41C 'wakes up' with 47 (hex 2F) registers 
of program space, starting with Register OCO: [OCO+02F-l=OEE]. So Register OEE is the highest 
program register. In the .END. line, the '000' nybbles indicate that this is the topmost 
global label in memory; the '29' indicates a packed file, permanent .END. Now suppose we 
insert three '+' lines following line 01: 

60EE 01 LBL 00 01 
50EE 02 + 40 
40EE 03 + 40 
30EE 04 + 40 
20EE .END. CO 
lOEE 00 
OOEE 29 

The nulls have been replaced by the '40' bytes. Now delete line 03: 

60EE 01 LBL 00 01 
50EE 02 + 40 
40EE 00 
30EE 03 + 40 
20EE .END. CO 
lOEE 00 
OOEE 20 

The '40' at address 40EE has been replaced by a null; the last byte of the .END. has changed 
to a '20' to indicate an unpacked file. If we packed at this point, the '40' at 30EE would 
move up to 40EE, but then another '00' would be inserted at 30EE to keep the .END. in the 
last three bytes of the register. If we were to insert a one-byte line after line 02, it would 
simply overwrite the null at 40EE. But if we insert a two-byte line, e.g. 'STO 65', we get: 

60EE 
50EE 
40EE 
30EE 
20EE 
lOEE 
OOEE 
60ED 
50ED 
40ED 
30ED 
20ED 
lOED 
OOED 

01 
02 
03 

04 

LBL 00 
+ 
STO 65 

+ 
.END. 

01 
40 
91 
41 
00 
00 
00 
00 
00 
00 
40 
CO 
00 
20 

Since there was only one null byte available between lines 02 and 03, 7 more nulls were inser­
ted. Two were then overwri tten by the 'STO 65' bytes. The '40' at 30EE was moved down to 
30ED. Finally, the .END. was reinserted, at the end of Register OED. Following a 'PACK', 
the program becomes: 
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60EE 
50EE 
40EE 
30EE 
20EE 
lOEE 
OOEE 
60ED 
50ED 
40ED 
30ED 
20EO 
10ED 
OOED 

01 
02 
03 

04 

LBL 00 
+ 
STO 65 

+ 

.ENO. 

01 
40 
91 
41 
40 
00 
00 
00 
00 
00 
00 
CO 
00 
29 

The user program lines have been pushed together, but since there is not room for the 
.END. in Register OEE, it remains in Register OED. 

3B. THE BYTE JUMPER 

Armed now with sufficient knowledge of normal HP-41C operation, we can boldly sally 
forth into brand-new territory. It should be re-emphasized at this time that even if some of 
the procedures we are about to use seem strange, there is no risk for the HP-41C. Follow me 
through the following procedure: (HP-41CV owners please refer to page ii.) 

1. Insert one memory module into the HP-41C. 
2. Master clear. (HP-41C off; hold down correction key; HP-41C on.) A clean break with 

the past! 
3. Execute 'SIZE 000'. This places the '.ENO.' in the module. 
4. ASN "X<>" +; ASN II E+" E+. This fills Register OCO with two assignments. 
5. HP-41C off; remove memory module; wait 60 seconds or so; replace module; HP-41C on. 

If you a have second module available, you can save the 60 seconds by plugging the 'dead' 
module in in place of the one removed. Now the .ENO., which we placed within the module has 
'evaporated'. If you had turned the calculator on before replacing the module, 'MEMORY LOST' 
would have resulted. Evidently_ the processor checks to see if the register where the .ENO. 
is supposed to be exists, but not whether the .ENO. bytes are actually present in that register. 

6. Switch to PRGM mode; you shoul d see '00 REG 126' (190 if your modul e is doubl e 
density). Now press SST once. After a few seconds' wait, you will see '01 T'. The address 
pointer is now in Register OCO, the first assignment register! With the .ENO. absent, there 
was nothing to stop the pointer from rolling merrily through empty memory until it encountered 
the first non-null byte, which in this case is the 'FO' from the key assignments we made in 
step 4. If you SST 5 more times, the following should appear in sequence: 

02 LBL 03 
03 E+ 
04 LBL 00 
05 LBL 03 
06 X<>06 

(If you press SST again, the pointer will end up in the status registers.) You will recognize 
this set of lines as the code for the key assignments made in Step 4. 

7. Use BST to return to line 03. Don't be distressed if some of these SST's and BST's 
take a few seconds. Now push the correction key twice to delete lines 03 and 02. 

8. Now key in ALPHA "A" ALPHA, resulting in line '02TA'. (Actually, any single char­
acter will work as well as "A".) 

9. Press 'GTO •• '; the display 'GTO •• ' will persist for a few seconds, followed by a 
quick 'PACKING'. SST once, and delete the line '01 LBL 01'. For the second and last time in 
this book, you have carried out a synthetic programming operation by the trick of 'module 
pulling'. From now on, we will be able to achieve all our goals without having to resort to 
such unpleasant tactics. 

10. Press and hold the' E+' key in USER mode. You should see a display of 'XROM 
05,01'. If this does not occur, you must have made a mistake, so repeat steps 1 through 9. 
By direct editing of an assignment register, you have created a brand new key assignment, 
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called the Ibyte jumper l • 
The best explanation of the operation of the byte-jumper is that it is, in effect, a 

manually executed program text line. To understand this, recall from Section 2B what happens 
when the automatic execution of a text line occurs: the processor looks at the second nybble 
of the current program byte, i.e., the IFni byte that signals the text instruction, copies the 
next In l bytes of program code into the alpha register, and advances the pointer by In l bytes. 
The byte jumper is the manual equivalent of this operation, not to be confused with the single 
stepping of a text line. The IFI nybble that starts the process is Iprovided l by pressing 
the USER key to which we have assigned "A" (IF! 41 1). To see why this operation is of interest, 
key in these lines: 

01 STO 04 34 (3B-1) 
02 "ABCOEFG" F7 41 42 43 44 45 46 47 

With line 02 still showing in the display, switch PRGM off, USER on, and press the byte 
jumper key (E+). Switch to PRGM mode again, and you will see by single stepping: 

02 X<Y? 44 
03 X>Y? 45 
04 X <=Y? 46 
05 E+ 47 

Where did these program lines come from? As you can see by looking at the byte values of the 
Inewl program lines, the lines are simply the stand-alone functions corresponding to the 
characters "0", "E", "F", and "G" in the original text line "ABCOEFG". We started with the 
display showing the line 102 "ABCOEFG III , i.e., the address pointer was positioned on the 1341 
byte, line 01. Then we executed the byte jumper, which made the processor think it was execu­
ting a text line (donlt confuse this imaginary text line with the real line 02). So it looked 
at the second nybble of the current byte, 134 1, copied the next 4 bytes into the alpha register, 
and advanced the pointer by 4 bytes to the 143 1 byte. With the pointer there, the display 
will show the next program line, which is the one-byte line 102 X<Y?1 corresponding to the 
1441 byte. If you now press PRGM (off), ALPHA, you will see the four characters "IIABC", which 
are the four bytes copied from the program. The starburst character is the IF71 byte. Since 
the byte jumper is a manually executed function, it does not change the current program line 
number, even though the pOinter moves, so that the line 102 X<Y?I has the same line number as 
the 102 "ABCOEFG" I line from which the jump was executed. 

While the pointer is linside l the text line, ISST I operates normally, but a IBST I from 
any of the bytes sends the pointer back to the ISTO 04 1 line. Remember that IBST I sends the 
processor back to the start of the program file, whence it counts forwards by lines, refusing 
naturally to jump into the middle of a multi-byte line. 

Letls see what use can be made of byte jumping. To condense future instructions, I 
will introduce a new instruction, IJUMP • lmnl, which means I byte jump from line lmnl. That is: 

IJUMP .1mn l means: 1. GTO. lmn (do even if the displayed 
line number is already Ilmnl) 

2. PRGM off 
3. Press the byte jumper key 
4. PRGM on 

IJUMp l without a line number means I byte jumpl from the current line, i.e., step 1 is omitted. 
Now, using Routine 3B-1, try IJUMP .0021. After step 4 of the jump you will see displayed 

102 X<y?l. Press the correction key once, then ISSTI. You should now see 102 "ABC-EFG". 
The I_I is the display character for a null, in this case the null with which the liD" byte 
was replaced by the deletion. You have modified a program text line, without having to delete 
the entire line! This is only the beginning--now change line 01 of the routine to ISTO 03 1• 
(If you make any mistakes while editing that may introduce invisible nulls, eliminate them 
with IPACK I• If, for example, a null preceded line 02, which we wou1dn l t know from the display, 
IJUMP .0021 would do nothing, since the second nybb1e of the null is 10 1.) Next, IJUMP .0021 
to see the line 102 /1, i.e., the "c" byte. Key in 103 LBL 00 1, then press IGTO .0021. The 
display will show 102 "ABCi'~EFGIIi. You have replaced the null following the "c" with byte 
1011, from the ILBL 00 1, which displays as the Ifull man l character "iii" when the full text 
line is displayed. The following sequence will produce the program steps shown to its right: 
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JUMP .002 
Key in: 

03 LBL 11 
04 DEC 
05 RCL 09 
06 ACOS 

GTO .002 

01 STO 03 
02 "ABCIl )]" 
03 LBL 00 
04 X>Y? 
05 X<=Y? 
06 E+ 

.END. 

This is your first serious example of Isynthetic programming l , where non-keyable byte combina­
tions are synthesized by extraordinary means. According to the byte-level editing rules of 
Section 3A, when we tried to insert the ILBL 111, the processor had to insert 7 nulls to clear 
space for the new line. This also provided room for the IDEC I, IRCL 09 1, and I ACOS I , but 
at the same time pushed the "DEFG" bytes down in memory, clear out of the Irange l of the IF71 
byte. Those four bytes thus I become I stand-alone program lines 03-06. 

Any such synthetic text line created with the byte jumper will execute normally, as you 
can verify by single-stepping the new line 02 (PRGM off), then checking the alpha register to 
see the resulting characters. We may use this technique to place in a program text line any 
of the 19 non-keyable HP-41C display characters, plus the append and text symbols (but not 
the geese). Each of these characters is found in the upper half of the Byte Table, so that 
each may be edited in as above using a directly keyable one-byte program 1 ine. Furthermore, 
any of the 128 printer characters can be placed in a text line (those without display equiva­
lents will display as starbursts), for transfer to the print buffer using IACA I (see Section 
6E). 

Program lines that lappend nulls l to the existing character string in alpha are used 
frequently in synthetic programs. Here is an example of the creation of such a line--in this 
case, to append 5 nulls: 

Key in: 

01 ASTO 02 
02 "~ABCDE" 

JUMP 
DEL 005 
DEL 001 

The line 102 "~ABCDE" is chosen to have the same number of characters as the number of nulls 
to be appended. The IDEL 005 1 changes the characters to nulls. The IDEL 001 1 removes the 
IASTO 02 1 used to control the byte jump. 

The byte jumper editing described so far has the limitation that the first character in 
a text line cannot be changed, except to delete it to a null. In "ABCDEFGlrf'Or example, the 
"A" cannot be altered, since to key a new byte into the "A" position would require that the 
preceding byte be displayed prior to insertion of the replacement byte, but since the byte 
preceding the "A" is the IF7 1, the display insists upon showing the entire text line. Inserted 
bytes will enter the program following the full text line. 

However, arbitrary text lines, with non-keyable characters in any or all positions, can 
be created through an elaboration of the byte jumping procedure. Suppose we wish to make the 
text line "(#)", i.e. bytes IF3 28 23 29 1• In the previous example, the text bytes were 
created normally along with Itemporaryl characters, which are then pushed out of the line by 
the desired characters. This time it will be the text byte itself that is created within yet 
another text 1 i nee The des i red text characters wi 11 be fi rst entered as normal one-byte 
instructions. Start with this routine: 

01 STO 01 
02 "BJ" 

31 
F2 42 4A 

(3B-2) 

The line 101 STO 011 is used to provide the 111 nybble to produce a byte jump of one byte; 
we shall refer to such a line as the Icontroller l , since it controls the length of a byte 
jump. Similarly the line 102 "BJ III is a temporary text line we shall call the Igeneratorl. 
The Icontroller l and the Igeneratorl are to be deleted once the byte jump editing is completed. 
Now execute IJUMP .0021 and key in the line 103 "ABC"I. The full program is now: 
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01 STO 01 31 
02 "BII" F2 42 F3 
03 - 41 
04 * 42 
05 / 43 
06 HMS- 00 00 00 4A 

The entry of the line 103 "ABC'" places an IF3 1 right after the 142 1, where it becomes the 
last byte of the generator line. The 141 42 43 1 ("ABC") do not Ifitl in the generator, so 
these three bytes will show up as three independent program lines 03-05. Finally, we have 
the 14AI byte, the original "J", which was pushed out of the generator by the insertion, so 
it b€comes line 106 HMS-I. The three nulls left over from the insertion are, as usual, invis­
ible. 

Next, press IGTO .0021 and key in: 

02 RCL 08 
03 RCL 03 
04 RCL 09 

to place the bytes 128 23 29 1 in position immediately following the IF3 1 byte. Then IJUMP 
.002 1, key in 103 HMS-I. Now the program is: 

01 STO 01 
02 "BJ" 
03 "( #) " 
04 -
05 * 
06 / 
07 HMS-

31 
F2 42 4A 
00 00 00 00 00 00 F3 28 23 29 
00 00 00 00 41 
42 
43 
00 00 00 4A 

The insertion of the IHMS-I pushes the IF3 1 out of the generator, whereupon it reassumes its 
role as a ITEXT 31, grabbing the bytes 128 23 29 1 to complete the text line as the characters 
ITI, "#", and ")", respectively. The various nulls are left over from the groups of 7 nulls 
placed into program for each insertion. To clean up, we delete lines 01, 02, and 04-07, then 
IPACK I• With some practice, you will find that the whole procedure goes quite rapidly. 

Byte jumper editing is in no way restricted to text lines, particularly using the 
Icontro11er-generator l method described last. As an amusing example, try the fo110win~: 
start again with Routine 3B-2 (recall the instruction format described in Section IE): 

JUMP .002 [02 * ] 
03 TONE 1 

GTO .002 [02 "BII" ] 
03 LBL 09 

JUMP .002 [02 * ] 
03 HMS-

SST [04 TONE 0 ] 

The ITONE 01 looks normal, but try executing it by single-stepping with PRGM off. You should 
hear a new, low frequency tone lasting over 2 seconds! 

With the controller-generator method, we can create almost any combination of prefix 
and postfix that we want, to make synthetic two-byte functions. The most important set of 
such funct ions are the status regi ster access funct ions that we wi 11 invest i gate in Chapter 
4. 
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CHAPTER 4 

THE STATUS REGISTERS 

4A. STRANGE POSTFIXES 

By the end of Section 2B, we had examined the Byte Table in great detail, accounting 
for almost every entry in the Table. But there is still one important feature still to explore: 
Notice that bytes 64-65 have their postfixes shown with a double underline, and that each of 
bytes 66-6F has two postfix 'values ' , the second of which ;s underlined. The underlined 
postfixes never arise in I normal I HP-41C programming. Consider postfixes 66 through 6F, 
shown as the letters II A" through "J". These letter postfixes are only seen in program 1 ines 
involving the 'local alpha labels ' , such as 'LBL CI or 'XEQ Fl. The keyboard logic prevents 
us from attaching these postfixes to other prefixes. For example, when we press 'STO ' , the 
ALPHA key is disabled so that only numerical postfixes can be entered. But the byte jumper 
has freed us from keyboard constraints, so let's try making a 'STO AI. 

01 STO 01 
02 "BJ" 

JUMP .002 
03 STO 22 (arbitrary postfix) 

GTO .002 
03 X<O? 

JUMP .002 

[02 * 

[02 "BII" 

[02 * 

] 

] 

] 

At this point, welre ready to push the 'STO ' prefix out of the generator. But while welre 
at it, 1 et I sal so make a I RCL A I : 

The program is now: 

03 RCL 22 (pushes out the 'STO ' , puts 'RCL ' in the 
generator) 

03 X<O? 

03 HMS -

GTO .002 

JUMP .002 

01 STO 01 
02 "BJ" 
03 RCL A 
04 6 
05 STO A 
06 6 
07 HMS-

[02 "B." 

[02 * 

(4A-1 ) 

] 

] 

The '6 1s in lines 04 and 06 are the stand-alone equivalents of the 1221 postfix bytes. Now try: 

12345 

SIZE 103 
PRGM (off) 

GTO .005 
SST 
CLX [0.0000 ] 

At this point, the number 112345 1 has disappeared from the display. To retrieve it, press 
'GTO .003 1, SST. The number reappears, showing that it was stored in Register 'A'. To see 
where the number actually went, store 1102 1 in ROO, then press 'VIEW IND 00 1• As you might 
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have expected, 'STO A' is equivalent to 'STO 102'. If the numerical postfixes were continued 
past decimal 99, the 'A' postfix would be '102'. Synthetic programming thus allows us to 
extend direct data register access up to R111(postfix 'J'), leading to the underlined 
postfixes for bytes 66-6F in the Byte Table. 

But why stop at Ill? There is another row of postfixes available; could we not use 
them to access up to Register 127? Notice first that postfixes 70, 71, 72, 73, and 74 are 
already used to access the stack registers T, Z, Y, X, and L, respectively But the remaining 
bytes beckon to us: they turn out to be the keys to 'Pandora's Box' of synthetic programming! 
Let's try a dramatic example: Using Routine 4A-1: 

JUMP .002 [02 * ] 
03 STO 22 

GTO .002 [02 "BR" ] 
03 AVIEW 

JUMP .002 [02 * ] 
03 HMS-

GTO .003 [03 STO d ] 

Now switch PRGM off; press 'SF 00, SF 01, SF 02, SF 03, SF 04, FIX 9, SF 28, GRAD, USER, CLX, 
ALPHA', which turns on various display annunciators. Now press 'SST' once. As the resulting 
display makes quite clear, the simple operation 'STO d', with zero in Register X, clears all 
56 HP-41C flags in one fell swoop! The implication is obvious--the two-byte code '91 7E', 
or 'STO d', that we made with the byte jumper, allows us to store directly into a special 
register, which we shall call 'Register d', that contains the 56 flags. 

The 'status registers' (Registers OOO-OOF) mentioned at the end of Section 20 are recorded 
by the card reader 'WSTS' operation. The status of all user and system flags is part of the 
information stored on the status card, so we infer that Register d is one of the 16 status 
registers. The observation that the stack registers, also accessed by postfixes in row 7 of 
the Byte Table, are status registers, leads us~ in a bold leap of inspiration, to guess that 
all of the postfixes in row 7 refer to status regi sters--16 postfi xes, 16 regi sters. It only 
remains to identify the roles of the 16 registers. From the 'WSTS' and 'WALL' operations, we 
wou 1 d expect the status regi sters to conta in, in addition, the alpha regi ster, the address 
pointer, the subroutine returns, the current 'size', and the location of the summation regis­
ters. 

As shown in the Byte Table, postfixes 75 through 7F display as 'M', 'N', '0', 'P', 'Q', 
'~', 'a', 'b', 'c', 'd', and 'e', respectively. The second postfix values shown for bytes 75 
through 7A are the postfixes shown with printer listing of the status register functions. 
Thus the line 'STO M' shown in the display would print as 'STO ['. The correspondence is 
also shown in Table 1-1. 

In order to study the properties and uses of each of the status regi sters, we wi 11 
synthes i ze program 1 i nes that allow us to vi ew or change the contents of these regi sters. 
The function 'X<>' serves this purpose admirably, since it can act both as 'STO' and 'RCL'. 
Since storage into Registers a, b, and c can produce occasionally unpleasant results ('0, 
STO c' causes 'MEMORY LOST', as the most unpleasant example), we will limit ourselves to 
verbal descriptions of those registers for the time being. As an exercise, you should try to 
use the byte jumper to create Routine 4A-2 without guidance. Refer to the instructions in 
the next paragraph if you get lost. As we did in the creation of 'STO A' and 'RCL A', we 
will save keystrokes by using each successive 'X<>' prefix to push the previous one out of 
the generator. If you have cleared the assignment of 'X<>' that you made in Chapter 3, you 
should restore it now. 

Start with Routine 3B-2. As usual, the choice of a temporary postfix for the 'X<>' 
prefixes is arbitrary (just don't use 'X<>29, 30, or 31', since the corresponding postfix 
bytes are prefixes themselves). The best choice is 'X<>OO', since the '00' is hex '00', the 
null. All the leftover postfixes are 'invisible' ,and will be eliminated by packing. Now 
try: 

JUMP .002 [02 * ] 
03 X<>OO 

GTO .002 [02 "Ba" ] 
03 CLD (e) 

JUMP .002 [02 * ] 
03 X<>OO 
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GTO .002 [02 "BE" ] 
03 AVIEW (d) 

JUMP .002 [02 * ] 
03 X<>OO 

GTO .002 [02 "BII" ] 
03 SIGN (r) 

JUMP .002 [02 * ] 
03 X<>OO 

GTO .002 [02 " Bill" ] 
03 XiV? (Q) 

JUMP .002 [02 * ] 
03 X<>OO 

GTO .002 [02 ,"BIB" ] 
03 X=Y? (P) 

JUMP .002 [02 * ] 
03 X<>OO 

GTO .002 [02 "BIB" ] 
03 CLX (0) 

JUMP .002 [02 * ] 
03 X<>OO 

GTO .002 [02 "Bill" ] 
03 LAST X (N) 

JUMP .002 [02 * ] 
03 X<>OO 

GTO .002 [02 "BS" ] 
03 RON (M) 

JUMP .002 [02 * ] 
03 HMS-

Following this sequence, we are 1 eft with Routine 4A-2 (delete line '11 HMS-'): 

01 STO 01 06 X<>P 
02 "BJ" 07 X<>Q 
03 X<>M 08 X<>!- (4A-2) 
04 X<>N 09 X<>d 
05 X<>O 10 X<>e 

Now, if we want to execute an 'XOW, for example, then with PRGM off we press 'GTO .003', 
'SST'. In the remainder of this chapter, we will use the program lines in the above routine 
to explore the status registers. The practical programming applications of the properties we 
discover will be discussed in Chapter 6. Figure 4-1 is a diagram summarizing the use of the 
various parts of the status registers, in a format similar to that of Figure 2-5. 

4B. THE ALPHA REGISTER 

A HP-41C programmable memory register is 7 bytes long. The 'alpha re9ister' appears to 
be an exception to this rule, since we can store up to 24 bytes (characters) in alpha. In 
fact, the alpha register consists of four status registers, Registers M, N, 0, and P. Four 
registers gives us a total of 28 bytes, but only 24 of these can be displayed, or accessed 
with 'ASTO' and 'ARCL'. 

To illustrate the structure of the alpha register, we can use Routine 4A-2. Start by 
keying in 24 characters into alpha, such as "ABCOEFGHIJKLMNOPQRSTUVWX". If Flag 26 is set, 
you will hear the warning tone upon entering the "X" to inform you that the alpha register is 
full. Now press 'GTO .003', 'CLX', 'ALPHA(on)', 'SST', to see "ABCOEFGHIJKLMNOPQ-------". 
The overline II-II is the character corresponding to a null byte '00'. The 'CLX' filled Register 
X with nulls; the 'SST' executed an 'X<>M', moving the nulls to Register M, which is revealed 
to be the rightmost 7 bytes of the al pha regi ster. If you switch the HP-41C out of ALPHA 
mode, then set 'FIX 9', you will see '-2.5354555 E-42' in X. The hex code for the character 
string "RSTUVWX" is '52 53 54 55 56 57 58'. These bytes are now in Register X, where the 
processor is trying valiantly to display a decimal number. There is a '5' in the mantissa 
sign digit, and a '7' for the exponent sign, resulting in the minus signs (see Section 5A). 
The mantissa digits are all normal decimal digits, so the mantissa shows as '2.5354555565', 
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the last two digits of which are suppressed to make room for the exponent. The byte code 
for a negative exponent '-xy' is the complement of the exponent, '100-xy'{decimal); in this 
case we see an exponent [100-58=42]. 

To continue your exp 1 orat ions, try 'ALPHA (on) " 'SST', to see" ABCDEFGH IJRSTUVWX-------". 
The 'SST' executed line '04 X<>N', so that now the original contents of Register M, "RSTUVWX", 
have been moved to Register N, the next 7 bytes of the alpha register. To complete the exer­
cise, key 'ALPHA{off)', 'GTO .003', 'SST', 'ALPHA'; the display is "ABCDEFGHIJRSTUVWXKLMNOPQ" 
--the original contents of M and N are interchanged. All told, the original 24-character 
alpha string divided up like this: 

xxxxABCIDEFGHIJIKLMNOPQIRSTUVWX 
Regi ster: P 0 N M 

When a fresh character stri ng is keyed into the alpha regi ster, the fi rst character keyed 
enters the 1 ast byte (the exponent byte) of Regi ster M, address 0005. The next character 
also goes to 0005, pushing the previous character leftwards in the alpha register, i.e., to 
the next-to-1 ast byte of Regi ster M, byte 1005. ,Subsequent characters continue the process; 
when Mis full, the next character entry wi 11 push the fi rst into the 1 ast byte of Regi ster 
N, byte 0006, and so on up into Registers 0 and P. When a character enters the third-to-last 
byte of Register P, 2008, the warning tone sounds. Appending further characters shoves the 
leading characters into the first four bytes of P{shown above as "xxxx"), where they vanish 
from the display. 

Now press 'GTO .006', turn ALPHA on, and append four more characters "YZ=?" to the 
original 24. "ABCD" disappears, but surprisingly, it is still present in Register P. Press 
'SST' once, to execute 'X<>P', then 'ALPHA{off)'. You will see '-1.4243444 E-53'. To translate 
this into characters, try 'GTO .003', 'ALPHA', 'CLA', 'SST'{'X<>M'). The characters "ABCDEFG" 
reappear--these were the initial contents of Register P, which we moved into Register M via 
Register X. However, if we repeat the whole process starting with the keying in of the 28 
characters, but, this time, switching out of ALPHA mode before the 'SST' that executes the 
X<>P, we end up with "IISCDEFG". The processor occasionally uses the first four bytes of 
Register P for 'scratch' purposes, wiping out part or all of the original contents. Evidently, 
pressing the 'ALPHA' key requires processor use of Register P. Studies by Charles Close have 
revealed that, during a program execution, only 'VIEW', 'AVIEW', and number entry program 
lines cause loss of the leading bytes of P. If these steps are avoided, we can use a full 
28.,.byte ALPHA register for character string manipulations. As an example of the processor 
use of Register P, bytes 1, 2, and 3 are used to record the current size and summation registers 
location on a magnetic card with the 'WSTS' operation. 

There are two important areas of application of direct access to Registers M, N, 0, and 
P. First, as demonstrated in the above examples, we have obtained a new class of alpha string 
manipulations, which when added to the conventional 'ASTO', 'ARCL', 'APPEND', and 'ASHF', 
provides efficient, fast character sorting useful for displays, games, word sorting, etc. The 
second application is the use of the alpha register as an additional three (or four, if Register 
P is included) data registers, with the same capabilities as ordinary data registers, but 
with the advantage of fixed memory locations and non-normalizing recall{Section 5B). These 
applications will be explored in detail in Chapters 5 and 6. 

4C. REGISTER Q 

Regi ster Q is primarily a scratch regi ster for the processor. It is used so frequently 
that it is virtually useless as an additional data register. Of primary interest for synthetic 
programming is the use of Register Q for temporary storage of alpha strings that don't directly 
enter the alpha register. Such strings are obtained during execution of functions or programs 
that are 'spelled out' by the user, or during the entry of program text lines. For example, 
using Routine 4A-2, try 'XEQ' 'ALPHA' "GTO" 'ALPHA' '.007', 'SST', 'GTO .003', 'ALPHA', 'ClA', 
'SST'. The "OTG" now in the alpha register is the reverse of the letters "G", "T", "0" that 
you used to spell out "GTO". This feature can be used to simplify the creation of non-keyable 
program text lines (Section 51). 

4D. THE FLAG REGISTER 

We discovered at the beginning of this chapter that Register d 'contains' all 56 HP-41C 
user and system flags. When we recall that a register consists of exactly 56 bits, it is 
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obvious that each of the flags is just one of the bits of Register d. The 'first' (or leftmost, 
or highest, or most significant, depending on how you like to visualize a register) bit is 
Flag 00, the second Flag 01, and so forth to the 56th bit, Flag 55. 

As a sample of the behavior of Register d, configure your HP-41C as follows: SF 04, 
SF 09, SF 17, SF 18, SF 26, USER (on), SF 28, FIX 9, RAD; all other user flags clear. Now, using 
Routine 4A-2, call up the contents of Register d by pressing: 'GTO .009', 'SST', 'ENTER', 'BST', 
'SST', 'RDN', 'ALPHA', 'ClA', 'ARCl X'. This sequence allows us to view the contents of d 
without changing them. We use the 'ARCl X' so that we can view all 10 mantissa digits as 
well as the exponent. Recalling that the positive exponent and mantissa correspond to zeros 
in the sign digits, we conclude from the alpha display that the bytes of Register dare '08 
40 60 38 09 90 10', which is, writing out all 56 bits (grouped by nybb1es): 

Flags: 4 9 17 18 26 27 28 36 39 40 43 51 
I I \/ \/ / \ \ I I I 

Bits: 0000 1000 0100 0000 0110 0000 0011 1000 0000 1001 1001 0000 0001 0000 

Each '1' in the string corresponds to one of the flags we set. The first 'I' from the left, 
in the second nybb1e, is Flag 04, for example. The next 'I' is Flag 9, and so forth, over to 
the last '1', in the second nybb1e from the right, which is Flag 51, the 'SST' Flag, which 
was set momentarily because we used an 'SST' to execute the 'X<>d'. 

To give yourself a taste of what can be done through use of the flag register, multiply 
the existing number '8.406038099 EI0' in Register X by '1 E30'. Then execute 'GTO .009', 'SST'. 
No--you don't have a low battery, you just set Flag 49, the low battery flag. (To clear it, 
turn the HP-41C off, then on.) This is an example of the use of user-controlled bytes, i.e., 
the number you placed in Register X, to control system flags through exchanges with Register 
d. Now conceive of the reverse process--using explicit control over the user flags to create 
arbitrary bytes in Regi ster d, whence they can be transferred to Regi ster X and e1 sewhere 
with status register access functions (see Chapter 5). It was, in fact, the implementation 
of this concept that originally led to the development of serious synthetic prograll11ling. 

4E. THE KEY ASSIGNMENT FLAGS 

When a key is pressed USER mode, if that key is assigned to other than its default 
function, the processor must check the user global labels and the key assignment registers to 
discover what program or function the key is intended to execute. To save a lot of fruitless 
searches, the HP-41C keeps a set of 72 'key assignment flags', one for each key and shifted 
key (counting the imaginary key under the ENTER key). When a user key is pressed, the proces­
sor first checks the corresponding assignment flag. Only if the flag is set does the assign­
ment search begin. 

As in Register d, a memory bit is used for each assignment flag. Since 72 bits are too 
many for a single register, the assignment flags are divided between Register ~ and Register 
e. The 36 unshifted key flags are the first 36 bits of Register ~; the shifted key flags are 
Similarly situated in Register e. Figure 4-2 shows the correspondence between bit number and 
key location. 

To see one of these registers 'in action', we will use Register ~ as an illustration. 
The only key ass ignments we have made so far were made in Chapter 3, i.e., the assignment of 
the byte jumper to the' l:+ ' key, and the assignment of the 'X<>' function to the '+' key. 
If you have made additional assignments in the meantime, your results in the following will 
differ from what is shown here, so you might want to delete those extra assignments. 

To view the contents of Register ~ using Routine 4A-2, press 'GTO .008', 'ClX', 'SST', 
'FIX 7'. You should see '0.0000021'. The 6 zeros plus the positive sign show that the first 
[7x4=28] bits of the number (which is the original content of Register ~) are zeros. The '2' 
digit, which is 0010 binary, indicates that assignment bit 31 is set; the '1', binary 0001, 
comes from setting assignment bit 36. Referring to Figure 4-2, we see that those bits corres­
pond to the '+' key and the' l:+' key respectively, which are just the keys we had assigned. 

Inspection of the contents of Registers ~ and e thus provides a quick means of finding 
which USER keys are assigned, without requiring use of the printer. We used 'FIX 7' because 
we were only interested for this purpose in the first 9 nybb1es of the register. This trick 
is not completely general in its app1ication--if too many keys are assigned, the numbers 
derived from a 'RCl ~' or 'RCl e' may contain hex digits A-F, which can be hard to decipher 
in the display (see Section 5A). You must be sure to restore the original values to the key 
assignment registers; otherwise, you will lose the user key assignments, including the portion 
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of user memory used to encode the assignments. If you now press the '+' key in USER mode, the 
HP-41C will execute '+' rather than 'X<>', because the zero we stored into Register ~ with 
'X<>~' cleared the key assignment flags. To recover, press ('LASTX', if you executed the '+') 
'GTO .008', 'SST'. If you accidentally lose the contents of Register I- or e while playing 
such games, execution of a card reader 'WSTS' followed by reading back the resulting status 
card will restore the original key assignments. 

The last three nrbbles of Register e are the storage location for the program line number 
(coded in hexadecimal). If the line number nybbles are '000', as when following a 'GTO .000', 
a manual 'RTN', or program execution that terminates with an 'END', the next program display 
shows '~O REG lmn'. When program execution halts at a position other than an 'END', the line 
number is set to 'FFF'. When the processor 'sees' that mythical line number, it knows that 
it must recompute the actual 1 i ne number before showi ng the current program 1 i ne upon the 
next activation of PRGM mode or 'SST'. 

§J@]§]§J[D 

@]@]@]~0 

GEJ@]~0 

133 1@]00 
§J ~ E1 0 
~ @] @] [2] 

~ @] @] CD 
@] @] @] QJ 

FIGURE 4-2. KEY ASSIGNMENT FLAG BITS 

4F. THE ADDRESS POINTER AND THE RETURN STACK 

In Chapter 2 we learned that the address pointer uses a 4-digit address consisting of 
the byte number plus three register number digits. The address pointer itself is the last 
four nybbles of Register b. That is, if the address pointer is positioned at byte 'n' of 
Register 'abc', then Register b will contain the number 'OOOOOOOOOOnabc'. If a subroutine is 
called, the return address is recorded in the next four nybbles to the left of the address 
pointer, with the new current address, following the jump to the subroutine, entered into the 
pointer nybbles. As further subroutine calls occur, previous return addresses are pushed to 
the left. When Register b is full, the addresses continue on into Register a, so that there 
is sufficient room in Registers a and b for the current address plus six pending return addres­
ses. At any time, the contents of Registers a and b look like this: 

Iyzab uvwx qrst mnlop ijkl efgh abcdl 

Register a Register b 
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where 'efgh' is the fi rst pendi ng return address, 'ij kl' the second, and so forth. When a 
'RTN' or 'END' is executed, the 'stack' of return addresses shifts to the right, so that the 
fi rst return address becomes the new pointer address, the second return address becomes the 
fi rst, etc. The only compl i cat i on in thi s ni fty scheme is that the return addresses are 
written in a slightly different format than the pointer addresses. For example, if the return 
is to address '3160', the address would be stored in the return stack as '0760'. The '0760' 
is actually a compressed form of '3160'. If we write out all the bits of '3160' we get: 

3160 = 0011 0001 0110 0000 

For user program addresses (i.e. locations in the HP-41C or memory modules) the first, fifth, 
sixth, and seventh bits are always zero, since the first nybble only takes values up to 6 
(0110) and the second is always 0000 or 0001. So in the return addresses the three 'used' 
bi ts of the fi rst nybb 1 e are moved to the three 'unused' bi ts of the second. The' 3160' 
becomes: 

0760 = 0000 0111 0110 0000 

This compression of the address code frees the first nybble to contain additional information. 
Specifically, if the first nybble is zero, the return is to a user program address; whereas 
if it is nonzero, the processor knows to return to an address contained in some peripheral 
dev ice. For exampl e, all addresses in the pri nter memory start wi th the nybb 1 e '0110'. 

The most obvi ous appl i cat i on of knowl edge of the str'ucture of the return stack and of 
synthetic function access to the stack through functions such as 'STO b' or 'RCL a' is to allow 
the user to move the address pointer to arbitrary positions in memory, including to the key 
assignment registers or even into the status registers themselves. Also, using a 'STO b', we 
can move the pointer directly to any byte of a multi-byte program line for editing just as we 
did with the byte-jumper. For full control of such operations, we first need to develop a 
facility that allows us to generate arbitrary 7-byte hex codes, and to decipher such codes. 
This facility will be developed in Chapter 5. 

4G. REGISTER c AND MEMORY PARTITIONING 

The last unexplored section of user memory in the HP-41C is Register c, which is full 
of interesting nybbles and bytes. The 14 hexadecimal digits of Register c are laid out as 
follows: 

stulvwl1691mnolpqr 

where the letters representing the digits are grouped as the digits are used by the processor. 
The 1 etters are chosen to correspond to the memory part i t i oni ng shown in Fi gure 2-5. The 
first three digits, 'stu' are the absolute register address of the first of the six summation 
registers as specified by the function' REG'. This address is changed each time either 
'EREG' or 'SIZE' is executed. When' L+ " 'E-', 'ClL " 'SDEV', or 'MEAN' is executed, the 
processor refers to digits 'stu' to find out which registers are currently designated as the 
summation registers. 

The next two di gi ts, 'vw' are used for scratch purposes by the pri nter. Di gi ts 6, 7, 
and 8, shown with the explicit value '169', are interesting in a perverse sort of way, since 
they are the so-called 'cold-start constant'. At various times during routine operation, 
particularly when the HP-41C is turned on, the processor checks the value of the three digits 
and compares it with the fixed value '169'. If the digits are other than '169', the processor 
assumes that somethi ng drast i c has occurred to the memory, and so takes the i rrevers i b 1 e 
step of clearing the user memory and displaying 'MEMORY lOST'. This explains why '0, STO c' 
causes memory loss--that operation clears the '169'. 

Digits 'mno' and 'pqr' are three-digit register numbers that correspond to the Registers 
'mno' and 'pqr' shown in Figure 2-5. 'mno' is the absolute address of the lowest numbered 
data regi ster, ROO. The processor refers to 'mno' for each use of a data regi ster. Data 
register Rat> is the memory register with absolute address [mno+ab] (with lab' converted to 
hexadecimal). 

Digits 'pqr' indicate the current location of the permanent '.END.'. Since the global 
label/END chain starts with the '.END.', a 'GTO (alpha)' or 'XEQ (alpha)' instruction starts 
the label search in Register 'pqr'. 
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Despite the risk of memory loss when dealing with Register c. there are many important 
appl ications of the mani pul ation of its contents. Foremost among these are control of the 
program/data memory dividing line, and the capability of storing data into program registers, 
as will be described in Chapter 5. 
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CHAPTER 5 

PROGRAMS FOR PROGRAMMING 

The central theme of this chapter is to develop a set of HP-41C programs that allows us 
to create, decipher, store and recall arbitrary 7-byte hexadecimal codes, giving us great 
power for synthetic programmming. The Iprogrammingl programs and techniques are intended to 
perform specific synthetic programming tasks, while acting as examples of the uses of synthetic 
functions. Even if you do not use every program from this chapter, you will find it instructive 
to study the techniques and programming philosophy embodied in the routines. It is assumed 
at this point that you have mastered the byte jumping techniques of Chapters 3 and 4 suffi­
ciently to be able to I key inl any two byte synthetic function, such as IRCL MI or IX<>d l , when­
ever it is required in a program. As we did when creating Routine 4A-2, you will find it con­
venient, when byte jumping a series of functions, to start at the bottom of the program and work 
upwards, using each prefix entered into the byte jumper generator to leject l the previous 
one. After all the synthetic functions are keyed in, you can insert normal functions with 
ordinary keystrokes. 

Three crucial synthetic programming techniques are featured in the programs: 

1. Multiple use of flags. Direct access to Register d allows a set of user flags to 
be used for several purposes simultaneously, simply by saving a current flag status with IRCL 
dl or IX<>d l , using the flags for a second purpose, then restoring the original status of all 
flags with a ISTO dl or I X<>d I. This permits, for example, a program to employ different 
display or trigonometric statuses yet always return the HP-41C to the userls favorite flag 
status at the end of the program. 

2. Use of flags as bits. User control and testing of Flags 0-29 allow programmable 
conversion of 3d-bit binary numbers to and from decimal or octal. This technique is the indis­
pensable key to creating and deciphering memory bytes and multiple-byte codes automatically. 

3. Alpha string manipulations. The powerful synthetic alpha register access functions, 
used in this chapter's programs to assemble individual bytes into 7-byte codes, and vice-versa, 
are encountered aga in and aga in in pract i ca 1 synthet i c programmi ng, as we wi 11 see in Chapter 
6. 

The HP-41C is designed to process only program- or user-generated data that are normal 
decimal numbers. We might, therefore, anticipate that asking the processor to deal with 
numbers containing digits IAI through IFI will at least cause some unexpected behavior. 
Before exploring the promised programming programs, we should first learn how various 7-byte 
codes are I interpreted I by the display, and also study how the codes are affected by register 
exchanges such as caused by ISTO I or IRCLI. 

5A. UNSEEMLY DISPLAYS 

When presented with a sequence of bytes to be di spl ayed (PRGM off) the processor must 
first decide whether to display the bytes as a number or as a string of alpha characters. If 
ALPHA mode is on, or if IAVIEW I is executed, there is no choice: all bytes in the alpha register 
are displayed as characters. But if ALPHA is off, so that the display is showing a data 
register, the choice is determined by the value of the mantissa sign digit. We already know 
that if the sign digit is 10 1 (0000) or 19 1 (1001), the register contents are displayed as a 
positive or a negative number, respectively. The only other I normal I sign digit is 111 (0001), 
for which the register is assumed to contain a six character alpha data string, such as might 
result from an IASTO I operation. Each of the last six bytes in the register is displayed as 
a character; the first byte is not shown. Any sign digit other than the normal 10 1, 111, or 
19 1 will cause the register contents to display as a negative number, but to be treated as 
lalpha datal in many arithmetic operations. 

When the displayed register contains alpha data, as indicated by the sign digit 111, 
the display is simplified through suppression of null bytes. All null bytes, rather than 
just leading nulls as in alpha register displays, are not only blanked but are also leliminated l 
by moving the non-null characters into adjacent positions. For example, the alpha data coded 
110 00 41 00 00 42 001, which would show as "A--B- II if viewed in the alpha register following 
an IARCL I, would display simply as "AB" in Register X. 
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Number displays have the additional feature of user choice of the number of digits that 
will be shown, including appropriate rounding, using the display format functions IFIX I , 
IENG I and ISCI I • We should remember that this choice is only a display feature--the number 
is still stored as a full seven bytes. 

In many situations numbers containing any of digits IAI through IFI will display using 
only ordinary decimal characters 10 1 through 19 1• Since A through F are greater than 9, each 
such digit found in the mantissa of a number Icarries l a 111 into the next digit to the left. 
For example, the bytes 101 03 BO OF 00 00 00 1, which Ishould l be the number 11.03BOOF I , will 
display in FIX 6 format as 11.041015 1• The F digit shows as 115 1, using two positions. The 
Bbecomes an 111 1, but since there was already a 3 in the next digit, the combination 13BI 
displays as 1411. 

An exception to this general rule occurs when the displayed number has a non-negative 
exponent, and is displayed in a format that shows all ten mantissa digits. These requirements 
can only be satisfied by IFIX I format displays of numbers with exponents between 00 and 09. 
If we switch to IFIX 9 1 format, the number 11.03BOOF I will be displayed as 11.03;00?0001. 
The digits Band F are represented by single characters II; II and II?II respectively. These charac­
ters are found in row 3 of the Byte Table, just as are the decimal number characters 110 11 

through 119 11 • Similarly, digits ICI, 10 1, and lEI display as characters 11<11,11=11, and 11>11, 
respectively. An I'A I digit is represented by the starburst character shown in the lower left 
corner of the table box for byte 3A. If a number is Icopied l into the alpha register using 
IARCL I, the speci al characters are preserved, except that the starburst wi 11 I change I to 
the alpha character ";". 

Numbers with an exponent zero as 11.03BOOF I are displayed with ten mantissa digits only 
in FIX 9 format. If the number were 110.3BOOF I (11.03BOOF E01 1), the special display would 
result with FIX 8 as well as FIX 9. In general, we obtain the special display characters 
with formats FIX In l through FIX 9, where In l is nine minus the exponent. However, when the 
exponent itself contains any digits A-F, the exponent will display using the special characters 
(but not the mantissa, since 10 mantissa digits cannot be displayed with an exponent). 

5B. REGISTER EXCHANGES AND NORMALIZATION 

As we prepare to deal with data registers containing arbitrary 7-byte codes, let us intro­
duce the following classification of codes: first, an lalpha data stringl is any 7-byte code 
for which the first nybble is 100011. A Inumber l is any code for which the first and twelfth 
nybbles are either 10000 1 or 11001 1, and the remaining twelve nybbles are any of the decimal 
digits 10 1 through 19 1• Any other code will henceforth be called a INon-Normalized Number l , 
or simply an INNN I• 

That this classification is useful follows from consideration of the treatment of 7-
byte codes by register exchange functions ISTO I , IRCLI, IX<>I, and IVIEW'. ISTO I is the 
most straightforward--ISTO mnl, where Imn l refers to ~ register whether addressed directly 
or indirectly, exactly copies the content of Register X into the designated register. Unfor­
tunately for synthetic programming, the other three exchange functions are not so benign. 
IRCL pql, IX<>pql, or IVIEW pql, if Ipql refers to a numbered data register, causes the content 
of Rpq to be Inormalizedl before it is copied. (Exchanges between status registers do not 
cause normalization.) By Inormalizedl, we mean that NNN's are changed, either into ordinary 
decimal numbers (containing no heretical digits greater than 9) if the original mantissa sign 
digit was 0 or 9, or into alpha data with a sign digit of 1 if the original sign was other 
than 0 or 9. For example, an NNN coded with bytes 101 OC 00 DO OE 00 FFI, which displays as 
11.1201301 E??I, is normalized following ISTO 011, IRCL 011 to the number 11.120130140 E-35 1• 
The bytes have actually changed to 10112 0130 14 09 65 1• The NNN 121 OC 42 34 7E 40 ~Ol, 
which has an abnormal sign digit, displays as 1-1.1242348 E==I. If normalized, it will change 
to the alpha data "j.lB4E@.", i.e., bytes 111 OC 42 34 7E 40 ~Ol. 

IASTO I and IARCL I perform still different kinds of register exchanges. IASTO I takes 
the first six bytes in the alpha register, starting with the first non-null byte, adds a 110 1 

alpha-identifier byte to the I front I to make a total of seven bytes, then stores the resulting 
bytes in the addressed register. IARCL I reverses the process if the addressed register contains 
alpha data, dropping the 110 1 byte and appending the alpha characters to the right end of the 
existing string in the alpha register. Leading nulls in the alpha data are dropped; trailing 
or intermediate nulls are retained. For example, start with IIABC II in alpha. Then IARCL XI, 
where Register X contains 110 44 45 46 47 48 49 1 (IIOEFGHIII) will result in IIABCOEFGHI Ii

• If 
Register Y contains 110 00 4A 00 00 4B 00 1 (displayed as IIJKII), IARCL yl yields the string 
"ABCOEFGHIJ--K- II in the alpha register. Finally, if the register addressed by IARCL I contains 
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a number or an NNN, the operation does not copy the bytes of the number into alpha, but rather 
changes each digit, as shown in a number display, into the corresponding row 3 character for 
storage in the alpha register. 'ARCL' also normalizes the contents of the addressed register. 

SC. GETTING STARTED: "CODE" 

The byte jumper is so far the only tool we have for creation of non-standard program 
lines and NNN's (from 'RCL M', etc.) However, the byte jumper is strictly a manual operation, 
and has some limitations in the byte codes it can generate (bytes from the lower half of the 
Byte Table are difficult to handle). We are now going to write a program called "CODE" which 
will automatically generate ~ 7-byte code specified by the user, placing the code into both 
Registers X and M. This program will, through use of an accompanying routine "REG" (which 
allows storage of the code into any register), enable generation of any program sequence, 
NNN, or non-standard alpha character string. Furthermore, we will be able to make 'synthetic 
key assignments' that assign any two-byte functions to user keys. This ability will finally 
place the synthetic functions on an equal footing with any normal HP-41C or peripheral function: 
namely, they will be able to be executed manually or inserted anywhere into a program with 
single keystrokes. 

"CODE" is designed to satisfy several requirements. Upon execution, the program should 
halt and prompt the user for entry of an easy-to-key code that specifies a 14-digit hexadecimal 
number. Following entry, the program should run with no further user intervention, yielding 
the desired number coded with the proper bytes. Even though the flag register will be required 
for the byte creation, the program should restore the original flag status at the finish. 
Finally, for reasons which will become clear later (Section 6G), "CODE" should use no numbered 
data registers. This set of requirements is rather difficult to implement--the version of 
"CODE" described here is many times revised from the original (see 'HP-41C Black Box Programs', 
PPC Calculator Journal, V6 N8 P27). 

81*LBL "CODE" 24 CHS 
82 "CODE:?" 25 FS? 86 
83 AOH 26 CHS 
84 STOP 27 SF 86 
85 AOFF 28 Wl? 
86*LBL "CO" 29 CF 86 
87 "I-ABCDEFC" 38 X(8' 
88 .886 31 SF 85 
89 STO L 32*LBL 81 
18*LBL "HB" 33 Sh X 
111 34 FS?C 84 
12 RCL ] 35 SF 88 
13 XO d 36 FS'C 85 
14 XOY 37 SF 81 
15 CF 88 38 FS?C 86 
16 CF 81 39 SF 02 
17 CF 82 48 FS?C 97 
18 FS?C 93 41 SF 83 
19 GTO 81 42 FS?C 11 
28 SF 84 43 CTO 91 
21 FC?C 87 44 SF 12 
22 SF 07 45 FPC 15 
23 FS' 07 

Instructions for use of "CODE": 
1. XEQ "CODE". 

46 SF 15 
47 FS"j 15 
48 CHS 
49 FS? 14 
58 CHS 
51 SF 14 
52 X(8' 
53 CF 14 
54 X(8' 
55 SF 13 
56*LBL 81 
57 FS? 12 
58 SF 84 
59 FS? 13 
68 SF 85 
61 FS? 14 
62 SF 06 
63 FS? 15 
64 SF 07 
65 RDN 
66 XO d 
67 RCL ] 

68 RCL \ 
69 RCL [ 
78 STO \ 
71 Rt 
72 STO [ 
73 "1-*" 
74 XO \ 
75 Rt 
76 STO ] 
77 Rt 
78 STO \ 
79 "1-**" 
88 RCL Z 
81 STO [ 
82 ISG L 
83 GTO "HB" 
84 RCL [ 
85 CLA 
86 STO [ 
87 AYIEW 
88 TOHE 9 
89 EHII 

"CODE" 
191 BYTES 

2. At the prompt "CODE=?", key in 14 alpha characters to represent the desired code, 
using the characters "0" through "9" and II A" through "F" for the nybbles '0' through 
'F',respectively. 
3. RIS. 
4. At the beep, the requested code will be in Registers X and M (shown with 'AVIEW'). 
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To test that your version of "CODE" is correct, try these examples: 

Input Output (AVIEW) 

"41 42 43 44 45 46 47" ~ "ABCDEFG" 
"ad 01 28 29 00 7F 7E" --+ "~()- ... t H 

[The remainder of this section is a detailed discussion of the operation of "CODE", and 
may be skipped at a first reading.] 

The task for "CODE" is to convert 14 characters, entered by the user following the 
halt at line 04, into the corresponding bytes. (The global labels "CO" and "HB" are for use by 
other programs calling portions of "CODE" as subroutines.) To minimize program length, this 
task is handled by a routine that converts one pair of input characters into one output byte. 
The routine is run 7 times, using the alpha register to append the successive output bytes 
together. The problem is complicated by the requirement that we use no data registers, leaving 
only the alpha register(s) and the stack for juggling the input code, the output code, the 
original contents of the flag register, and any arithmetic that might be required for the 
conversions. 

The basic conversion routine is found in lines 10-64. To understand how It works, 
let's start by assuming that one pair of input characters has been moved into the first two 
bytes of Regi ster d. For exampl e, take the characters "49", which are to be changed into the 
single byte '49'. The initial characters are actually bytes '34 39'--what we must do is 
ignore the '3's and move the '4' into the first nybble, and the '9' into the second: 

34 39 -+ 49 39 

after which we will concentrate only on the first of the two bytes. The shifting of digits 
is done with ordinary flag operations--recall that in Register d, the first four bits are 
Fl ags 0-3, the next four are Fl ags 4-7, etc. The program 1 ines to do the copyi ng are as 
follows (to the right of each line is shown the effect of execution of the line on the first 
16 bits of Register d): 

Program.Line 

(initial value '34 39') 
15 CF 00 
16 CF 01 
17 CF 02 
18 FS?C 03 
19 GTO 01 

32 LBL 01 

34 FS?C 04 
35 SF 00 
36 FS?C 05 
37 SF 01 
38 FS?C 06 
39 SF 02 
40 FS?C 07 
41 SF 03 
42 FS? 11 
43 GTO 01 

56 LBL 01 
57 FS? 12 
58 SF 04 
59 FS? 13 
60 SF 05 

61 FS? 14 

41 

Flags 00-15 

0011 0100 0011 1001 
" 
" 

0001 0100 0011 1001 
0000 0100 0011 1001 

" 
" 

0000 0000 0011 1001 
0100 0000 0011 1001 

" 
" 
" 
" 
" 
" 

" 
" 

0100 1000 0011 1001 
" 
" 

" 



62 SF 06 
63 FS? 15 
64 SF 07 

" 
" 

0100 1001 0011 1001 = 49 39 

The simplicity of the preceding set of program lines arises from the circumstance that 
the second nybble of each character "a" through "9" is the same as the numerical equivalent 
of the character. Unfortunately, thi sis not true for characters "A" through "F", requiri ng 
a more complicated conversion process. The program must test each input character to determine 
whether it is 'greater' than "9" and thus needs extra processing. The testing is done for 
the first of the pair of input characterS in line 18. The additional conversion is performed 
in lines 20-31 (and uses line 11). The second input character of the pair is tested in line 
42; lines 33 and 44-55 provide the corresponding conversion. 

The remainder of "CODE" is centered around the basic routine described so far: the 
program must pl ace two input character bytes in the fi rst two bytes of Regi ster d, run the 
routine, then extract one output byte from Register d. Registers N and a are used to store 
the input characters; Register M contains the 'growing' output code. You may find it of 
interest to single-step through lines 66-81 to see how the leading byte from Register d is 
appended to the last character position in Register M, while simultaneously the user input 
code is moved left by two positions in Registers Nand O. After seven iterations (Register L 
is used as a counter) M contains the final output bytes. 

When the input characters are stored into Register d (line 13), numerous system flags 
are set or cleared (half the fun of "CODE" is watching the various annunciators blink on and 
off), including possibly Flag 52, the PRGM mode flag. If this flag is set during a running 
program, certain operations will cause the HP-41C to go berserk and start to program itself! 
(See Section 7B.) Included among these operations are ordinary number entry 1 ines, so to 
avoid such a catastrophe, the entry of a 'I' in line 11 precedes line '13 X<>d', necessitating 
the otherwise wasteful inclusion of line '14 X<>Y'. 

5D. DIRECT ACCESS TO PROGRAM REGISTERS 

The program "CODE" developed in the last section is a powerful synthetic prograrraning 
tool, but so far there's not much we can do with it, beyond creating strings of non-keyable 
alpha characters, since the output codes can only be transferred into other data registers. 
But consider this: the division of the HP-41C memory into program and data registers is entirely 
controlled by one number--namely, the absolute address of ROO, stored in Register c. Changing 
that address is normally done only with the 'SIZE' function, which also shifts the contents 
of memory registers so that program stays program and data stays data. As ambitious program­
mers, we will not let this minor detail deter us--synthetic functions give us access to Register 
c, and now "CODE" allows us to create any bytes we mi ght wi sh to store there. By p 1 ac i ng the 
proper code into Register c, we can move the 'curtain' separating program and data registers 
anywhere we want without using 'SIZE', and thereby transform the contents of data registers 
into program lines, or vice-versa! 

Furthermore, to maintain the proper spirit, we will write a program to perform the 
whole process of storing into program registers automatically. The general approach is this: 
we use "CODE" twice, once to create a temporary value to store into Register c that will 
specify as ROO the program register into which we wish to store; and again, to create the 
special code to be stored. Then we swap the new value for Register c with the original, 
using 'X<>c', execute 'STO 00' with the special code in X, then restore the original contents 
of Register c so that access to existing programs and data is preserved. 

The specific value that we wish to store into Register c is '10 00 01 69 xy zl 00', 
where 'xyz' is the 3-digit absolute address of the program register we wish to access. The 
'169' is the 'coldstart' constant needed to prevent 'MEMORY LOST'. '100' is chosen for simpli­
city for both the 'EREG' address and the '.END.' address--since this value for Register c is 
only temporary, it is not too important which values we use. Having the byte '10' starting 
the code is convenient because it makes the string 'alpha data', which can be stored and 
recalled without normalization. The only variable in the new Register c value are the digits 
'xyz', so we can save execution time by only using "CODE" to create two bytes (in this case 
'xy zll) rather than a full seven. The next program, 'REG', is an implementation of these 
ideas. 
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91*LBL "RREG· 
92 SF 18 
93 GTO 81 
94*LBL "REG" 
85 CF 19 
86*LBL 91 
97 ·REG"i n 

98 AOH 
89 STOP 
18 AOFF 
11 ASTO 81 
12 "f-!. 
13 RGL [ 

Instructions for "REG": 

14 STO \ 
15 ·1-+ .... +8+ z i· 
16 .881 
17 STO L 
18 XEQ "HB" 
19 "1-+" 
29 RGL [ 
21 STO 00 
22 CLD 
23 FC? 10 
24 XEQ "CODE" 
25 RCL e0 

26 XO c 
27 RCL [ 
28 xo ge 
29 FS")C Ie 
39 STO 99 
31 XOY 
32 STO c 
33 x,. >y 
34 ·REG-" 
35 ARCl. 01 
36 iWIEW 
37 END 

"REG" 
101 BYTES 

SIZE 002 

1. XEQ "REG". (If you only wish to recall the contents of a register, XEQ "RREG".) 
2. At the prompt "REG?", enter three alpha characters to identify the absolute address 
of a register, then RIS. 
3. At the prompt "CODE=?', enter 14 alpha characters to specify the code to be stored, 
then RIS. 
4. The display "REli-abc" (abc is the register address) announces that program execution 
is compl ete. 

Line 15 of "REG" is a synthetic program line, code 'FB 7F 00 00 00 00 00 00 10 00 01 69'. 
It can be created by byte jumping as follows: 

15 STO 07 
16 STO 02 
17 "~ABCDEFGH IJ" 

17 0 
18 I 
19 LBL 00 
20 FRC 

JUMP .016 

JUMP .016 
SST, SST 
DEL 001 
JUMP .017 
DEL 005 
GTO .018 
DEL 005 
GTO .015 
DEL 002 

[16 X>Y? ] 

[16 X>Y? ] 
[18 I ] 
[17 STO 02 ] 
[17 - ] 
[16 STO 02 ] 
[18 X<=Y? ] 
[17 "1-------II-~." ] 
[15 STO 07 ] 
[14 STO N ] 

The label "RREG" is provided in case you want only to recall the contents of a register. 
Remember, however, that the recalled register will be normalized by the recall. 

As an example of the use of "REG", execute 'SIZE OlD' (if no memory modules are inserted 
--use 'SIZE 074' for one module, 'SIZE 138' for two, 'SIZE 202' for three, or 'SIZE 266' for 
four). Now use 'CAT l' to place the pointer in the first program in memory, then press 'RTN' 
to put the pointer at the start of the program. The address of the first program register in 
this configuration is 'OF5'. In PRGM mode, key in seven 'ENTER' lines, which just fill Register 
OF5, pushing the already existing programs down in memory. To create the synthetic text line 
"######' : 

XEQ "REG" ["REG?" ] 
"OF5" 

RIS ["CODE=?" ] 
"F6232323232323" 

RIS ["REG-OF5" ] 
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GTO first program (use CAT 1) 
GTO .001 
PRGM (on) [01 "######" ] 

If you repeat the above sequence, replacing the "F6232323232323" with "0191759FOA9676", the 
following program lines will be placed at the top of program memory: 

01 LBL 00 
02 STO M 
03 TONE 0 
04 ISG N 

(The 'TONE 0' in line 03 is actually 'TONE 10'--see Section 7A.) 
Any synthetic program lines can be created in this manner. To make a line requlrlng 

more than 7 bytes, we simply use "REG" twice (or even three times), storing 7 bytes of the 
code at a time into adjacent registers. 

5E. SYNTHETIC KEY ASSIGNMENTS 

A powerful application of "REG" is for the generation of 'synthetic key assignments', 
i.e., assigning synthetic two-byte functions to user keys so that they can be executed manually 
or entered directly into programs. To achieve the assignments, we simply use "REG" to store 
special codes into the key assignment registers. Each such use of "REG" can assign two user 
keys. The procedure. is best illustrated by use of an example: we will assign the functions 
'RCL M' and 'STO M' to the 'TAN' (25) key and the 'ATAN' (-25) key respectively. 

1. Clear all existing key assignments except the byte-jumper. (This drastic step is 
not usually necessary, but you should do it this time.) 'PACK', then assign any function to 
any key. 

2. Assign ~ HP-41C function to the two keys to be assigned (for the example, assign 
the 'TAN' key ancItl1e 'ATAN' key). This puts a 'dummy' code into Register OCO, the lowest 
assignment register, and also sets the proper key assignment flags in Registers }- and e. 

3. Determine the required code to overwrite the dummy code in Register OCO. This code 
follows the format described in Section 2E. The byte codes for the functions to be assigned 
can be found in the Byte Table; the key assignment bytes are shown in Figure 2-6. In this 
case the code is: 

FO 
90 75 
42 
91 75 
4A 

starts a key assignment register 
'RCL M' 
assignment of 'TAN' key 
'STO M' 
assignment of 'ATAN' key 

4. Use "REG" to store the assignment register code into Register OCO. For this example, 
we enter "oco" at the "REG?" prompt, and "F090754291754A" at the "CODE=?" prompt. After 
"REG-OCO" displays, we will find that pressing the 'TAN' key executes 'RCL M'; the 'ATAN' key 
executes 'STO M'. 

This synthetic assignment technique is by no means limited to synthetic functions. The 
whole point of key assignments is to allow the user to replace frequently-used multi-key 
sequences with single keystrokes. Ordinarily, a single instruction like 'ST+IND X' takes 
five keystrokes; the best we can do normally is reduce it to four by assigning 'ST+' to a 
user key. But with synthetic assignment techniques, there is no reason not to assign the 
entire function 'ST+IND X' to a key (the function code in this case would be '92 F3'.) 

In addition, synthetic assignments are not limited to HP-41C functions; we can also 
assign peripheral functions to keys. We simply obtain the 'XROM' code for the desired function 
from the appropriate peripheral manual, convert the 'XROM' code to hexadecimal using the 
conversion described in Section 2B, then store the resulting byte codes into an assignment 
register. This method allows a user to enter programs containing peripheral functions into 
memory even when the peripheral is unavailable. Also, we can enter 'nonprogrammable' functions, 
such as 'LIST' or 'WALL', into programs. The codes for nonprogrammab 1 e card reader and 
printer functions are shown in Table 5-1. 

When a normal HP-41C function is assigned to a key, only one of the two function bytes 
in one half of an assignment register is used to identify the function. The first of the two 
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TABLE 5-1 

Non Programmable Peripheral Functions 

Function XROM Number B~te Code Execution? 

CARD READER 30,00 A7 80 Clears digits f1 ags 
VER 30,05 A7 85 Normal 
WALL 30,06 A7 86 Normal 
WPRV 30,09 A7 89 Normal 
-PRINTER- 29,00 A7 40 Crash 
LIST 29,07 A7 47 Lists from next line 
PRP 29,13 A7 40 NONEXISTENT 

bytes is always '04' (LBL 03). If the first byte is other than '04', the processor knows that 
the assignment corresponds to a two-byte peripheral function. If the peripheral is absent 
pressing the assigned key produces the appropriate 'XROM' code. In the case of two-byte syn­
thetic assignments, the first function byte differs from '04', again with the result that 
pressing and holding the key displays an 'XROM' code. In our example of assigning 'RCL M' to 
the 'TAN' key, pressing the TAN key gives a display 'XROM 01,53'. Releasing the key prior to 
the 'NULL' display causes 'RCL M' to execute. 

Synthetic XROM codes can be deciphered in the same manner as normal XROM's, as described 
in Section 2B. For example, to determine the XROM code corresponding to 'RCL M', we write 
out the hex code '90 75' for 'RCL M' in binary, then group the last 12 bits into two 6-bit 
numbers, which we convert to decimal: 

hex: 
binary: 
decimal: 

9 0 7 5 
1001 10000 01111 01011 

01 53 

Hence 'RCL M' = 'XROM 01,53'. Similarly, 'STO M' = 'XROM 05,53'. 
To facilitate the construction of a large set of key assignments, it is convenient to 

automate the synthetic assignment procedure more than is possible through use of "REG". Use 
of the 'fey ~ssignment' program, "KA", listed next, eliminates preliminary manual keyassign­
ments, use of Figure 2-6 to determine key codes, and any necessity for worrying about the 
current contents of the key assignment registers. "KA" will refuse to overwrite an existing 
assignment unless the user manually clears the assignment when prompted. 

Three additional utility routines are listed with "KA". "KP" 'packs' the key assignment 
registers. Although two key assignments use only one key assignment register, clearing two 
key assignments will not recover one register for further use unless both assignments were 
recorded in the same register. It is thus possible to have a number of half-filled assignment 
registers. "KP" compresses the code in the assignment registers, leaving at most one half­
filled register when there are an odd number of active key assignments. The half-filled regis­
ter will be Register OCO, so that a new assignment will fill that register. 

The "Clear Assignments" program "CA" automatically clears all function and user program 
assignments-:- However, "CA" does not clear the key assignment bytes in global labels, so that 
if a program is assigned to a key that was first assigned to another program lower in memory 
then cleared by "CA", that first assignment will be reactivated. 

"EF", or 'End Finder', is a routine used by "KA", "CA", and "KP" to locate the '.END.'. 
If 'xyz' is the number of registers separating Register OCO and the '.END.' register, then "EF" 
places the number 'O.xyz' into Register X, to control iterations involving recalling each of 
the assignment registers in turn. Line 31 of "EF" places the code 'FO 00 00 00 DC DC ~C' 
into Register M. This NNN is stored by the other programs into Register c so that Register 
OCO temporarily becomes data register ROO. When this value is in Register c, a program 
halt will cause 'MEMORY LOST'. To avoid this, do not halt the execution of "KA", "CA" or 
"KP" while they are running. Furthermore, always be sure that none of the four routines is 
the first program file in memory. There must be at least one 'END' preceding the routines so 
that their backward-jumping 'GTO's will function properly. When a GTO causes a jump to a 
label higher in memory, the label search proceeds downwards to the 'END' of the file, then 
resumes at the top until the label is found. With the program/data 'curtain' moved to Register 
OCO, the search will jump into data memory unless there is an 'END' in a program file higher 
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in memory. 

81+lBl 'KA' 51 SF 88 199.lBl 91 149 SF 18 
92 XEQ 'EF' 52 ABS 191 SF IHD Y 159 FS?C 15 
93 CF 89 53 .1 192 XO d 151 SF 17 
94 CF 91 54 * 183 STO [ 152 FS?C 14 
85 SF 93 55 lASTX 194 .1-..... 153 SF 16 
96 RCl [ 56 - 195 FC?C 81 154 CF 87 
87 EHTERt 57 IHT 196 .1-.... 155 SF 83 
88 XO c 58 ST- a 187 RCl \ 156 XO d 
89 X<>Y 59 lASTX 198 FS? 88 157 ARCl X 
19 XO 88 69 FRC 199 STO e 158 'I-ABC' 
11.lBl 88 61 88 118 FC?C 88 159 8 
12 •• 62 * 111 STO T 168 XO \ "KA" 
13 XO [ 63 ST- a 112 ClA 161 STO [ 
14 '1-.' 64 2 113 ARCl l 162 RDH 334 BYTES 
15 XO \ 65 * 114 RCl a 163 RDH 
16 X=8? 66 + 115 XEQ 92 164 END 
17 GTO 91 67 8 116 FS?C 93 
18 .1-------. 68 FC? 88 117 GTO 95 81.lBl 'EF" 
19 XO \ 69 ClX 118.lBL 86 82 RCL c 
29 ISG Z 79 + 119 ASTO X 93 STO [ 
21 GTO 93 71 XO a 129 •• 84 ·I-.... x· 
22 STO 88 72 24 121 FC?C 22 85 RCL [ 
23 RDH 73 X(=Y? 122 .,... ••• 86 XO d 
24 STO c 74 SF 81 123 ARCL X 87 CF 89 
25 GTO 15 75 FC? 91 124 RCL [ 88 CF 91 
26.LBL 93 76 CLX 125 'ppp' 89 CF 82 
27 XO IND Z 77- 126 RCL [ 19 CF 83 
28 GTO 88 78 FS? 89 127 XO c 11 FS?C 97 
29.LBL 81 79 RCL e 128 X<>Y 12 SF 95 
38 RDH 88 FC? 98 129 STO 89 13 FS?C 98 
31 STO c 81 RCL T 139 X<>Y 14 SF 86 
32 CLA 82 AS TO L 131 XO c 15 FS?C 99 
33.LBL 85 83 STO [ 132 'DONE' 16 SF 87 "EF" 
34 CF 22 84 FS? 81 133 BEEP 17 FS?C 18 
35 ASTO L 85 ........ 134 PROI'IPT 18 SF 89 79 BYTES 
36 'PREtPOSTtKEY' 86 XO [ 135.LBL 82 19 FS?C 11 
37 TO HE 8 87 XO d 136 X=8? 28 SF 18 
38 PROI'IPT 88 FC? IND Y 137 .,... .... 21 FS?C 12 
39 CLA 89 GTO 81 138 OCT 22 SF 11 
48 ARCL L 99 XO d 139 E3 23 XO d 
41 FC? 22 91 RCL \ 148 I 24 DEC 
42 GTO 86 92 FIX 8 141 18 25 193 
43 XO Z 93 'CLEAR • 142 + 26 -
44 XEQ 82 94 ARCL T 143 XO d 27 X<8? 
45 XEQ 82 95 TOHE 4 144 FS?C 19 28 GTO 15 
46 36 96 PROI'IPT 145 SF 28 29 1 E3 
47 STO a 97 STO \ 146 FS?C 18 38 I 
48 RDH 98 RDH 147 SF 19 31 .... ppp. 

49 EHTERt 99 XO d 148 FS?C 17 32 END 
58 X<8? 

Instructions for "KA". (Should not be first program in memory.) To make one or two assignments: 
1. XEQ "KA". The display will show 'NONEXISTENT ' if no registers are available for 
assignments. DO NOT ATTEMPT TO HALT EXECUTION; IF STARTED, MAKE AT LEAST ONE ASSIGNMENT. 
2. At the prompt "PRE POST KEY", key in three numbers: 

'prefix', 'ENTERt ' , 'postfix', 'ENTERt ' , 'keycode ' , R/S 

The I prefix' and I postfix I are the decimal values of the prefix and postfix bytes of 
the function to be assigned, which can be determined from the Byte Table. For example, 
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the function ISTO N' ('9176') would be entered as prefix '145', postfix '118'. The 
'keycode' is the same row-column code that is displayed during ordinary assignments. 
Thus the '1/X' key has keycode '12', the 'FS?' key has code '-54', etc. The 'CHS', 
'EEX', and l±1 keys (and their shifted counterparts) should be entered with keycodes 
'43', '44', and '45' (negative for shifted keys), respectively, as if the 'ENTERt' 
key covers an imaginary key '42'. 
3. If the key designated in Step 2 is already assigned, TONE 4 will sound, and the 
display will shown "CLEAR nm", where 'nm' is the keycode. The user should manually 
clear the assignment, then press 'R/S' to continue. 
4. Step 2 will repeat automatically for the second assignment. If only one assignment 
is desired, press 'R/S' at the prompt. At the completion of "KA", the BEEP will sound, 
and "DONE" will be displayed. For further assignments, return to Step 1. 

Instructions for "CA": 

81tLBL ·CH" 
82 8 
83 STO e 
84 STO T 

85 XEQ "EF' 
86 XO [ 
87 XO c 
88tLBL 88 
89 8 
18 EHTERt 

11 ~o IND [ 

13 GTO 01 
i4 RCL Z 
15 ISG ( 
16 GTO 00 
!"{ RUN 
lStLBL 01 
15 RCL Z 
20 STO c 
21 END 

"CA" 
42 BYTES 

1. XEQ "CA". DO NOT HALT EXECUTION. "NONEXISTENT" will display if no program registers 
are available for key assignments. 

81tLBL 'KP' 25 CLX 49 CLA 73 XO \ 
82 Xt::Q 'EF' 26 '~t' 58 ARCL L 74 STO \ 
83 STO 'i 27 STO \ 51 ARCL X 75 X=8? 
84 RCL [ 28 '~ .. ' 52 SF 83 76 GTO 14 
85 XO c 29 XO \ 53 ISG Z 77 ASTO X 
86 EHTERt 38 'H' 54 CF 83 78 ASHF 
87 CLA 31 XO \ 55 GTO 85 79 ASTO L 
88 CF 83 32 X=8? 56tLBL 97 89 " 
89tLBL 14 33 GTO 91 57 XO [ 81 ARCL X 
18 FS?C 83 34 XO \ 58 XEQ 99 82 CLX 
11 GTO 87 35 ASTO ( 59 XO 99 83 XO ( 
12 CLX 36 '~t' 68 SIGH 84 STO IHD T 
13 XO IHD Z 37 STO \ 61 X;t9? 85 ARCL L "KP" 
14 SF 25 38 '~t' 62 GTO 93 86 ISG T 
15 X=8? 39 XO \ 63 CLX 87 GTO 14 190 BYTES 
16 FS?C 25 49tLBL 81 64 LASTX 88 RTH 
17 GTO 97 41 STO \ 65 XEQ 99 89tLBL 99 
18 ASTO L 42 FC?C 81 66 SID IND T 99 ,-
19 CF 91 43 -H"- 67tLBL 83 91 XO [ 
28 STO [ 44 XO \ 68 RDH 92 -H-
21 ASHF 45 CUl 69 STO c 93 XO \ 
22 XO ( 46 STO [ 78 TONE 9 94 -Httttt-
23 X=9? 47tLBL 89 71 RTN 95 XO \ 
24 SF 81 48 ASTO X ntLBL 85 96 EHD 

Instructions for "KP": 
1. XEQ "KP". "NONEXISTENT" will display if'the key assignment registers are empty. 
DO NOT HALT EXECUTION. 

Certain lines in the key assignment programs require careful byte-jumping. Step-by­
step procedures for keying the lines into program are listed next. 
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Lines 12 and 120 in "KA", and lines 80 and 90 in "KP" all have the byte code 'F! FO'. 
To make one of these, e.g., "KA" line 12, use this procedure: 

12 STO 01 
13 "BJ" 

14 GTO 07 
15 STO IND T 

14 "A" 

14 X<>Y 

JUMP 

PACK 
JUMP .013 

GTO .014 
DEL 002 
PACK 
JUMP 

GTO .015 
DEL 001 
GTO .012 
DEL 002 

Line 125 in "KA" is code • F 3 OC OC OC': 

125 STO 01 
126 "BJ" 

JUMP 
127 "ABC" 

GTO .127 
DEL 004 

127 LBL 11 
128 LBL 11 
129 LBL 11 

JUMP .126 
127 X<>Y 

GTO .125 
DEL 002 

The code for "EF" line 04 is 'F6 7F 00 00 00 00 02': 

04 STO 02 
05 "f-ABCDE" 

JUMP 
SST 3 times 

09 LBL 01 
JUMP .005 
DEL 004 
DEL 001 
GTO .005 
DEL 001 

Finally, line 31 of "EF", 'F7 Fa 00 00 00 OC OC OC': 

31 STO 01 
32 "BJ" 

JUMP 
33 GTO 10 
34 STO IND T 

PACK 
JUMP .032 

33 "ABCDEFG" 
GTO .033 
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[13* 

[14 STO IND T 
[13 * 

[14 -
[13 "BII" 

[13 * 

[15 HMS-
[14 "III" 
[12 STO 01 
[11 LBL 00 

[126 * 

[127 -
[126 "BII" 

[126 * 

[125 STO 01 
[124 RCL M 

[05 -
[08 X<Y? 

[05 -
[04 STO 02 
[03 STO M 
[05 X>Y? 
[04 "f-----II" 

[32 * 

[33 STO IND T 
[32 * 

[33 -

] 

] 
] 

] 
] 

] 

] 
] 
] 
] 

] 

] 
] 

] 

] 
] 

] 
] 

] 
] 
] 
] 
] 

] 

] 
] 

] 



DEL 008 [32 "B.'" ] 
PACK 
GTO .033 [33 1111 ] 

34 + 
35 + 
36 + 
37 LBL 11 
38 LBL 11 
39 LBL 11 

GTO .034 [34 + ] 
DEL 003 [33 "" ] 
JUMP .032 [32 * ] 

33 X<>Y 
GTO .031 [31 STO 01 ] 
DEL 002 [30 / ] 
GTO .032 [32 HMS- ] 
DEL 001 [31 "1I---111111" ] 

As an example of the use of "KA", use it to assign the functions 'RCL b' (prefix 
144/postfi x 124) and I STO b I (145/124) to keys. These funct ions enab 1 e us to move the 
address pointer to usually inaccessible locations in memory. Try this (follow exactly; 
keying in extra lines while the pointer is in the status registers will cause 'MEMORY LOST ' .) 

XEQ "CODE" [CODE=? ] 
"00000000000006" 

R/S [II/II ] 
ALPHA [IIi II ] 

"ABCDEFGHIJ" 
ALPHA [0,000,000.000 ] 
STO b (use the assigned key) 
PRGM, SST [01 X<Y? ] 
DEL 003 [00 REG --- ] 

01 RCL 08 
02 STO 15 
03 RCL 09 

PRGM (off) 
ALPHA [ABC(?)GHIJ ] 

You actually edited the alpha register--the 'STO b' sent the address pOinter to address 0006, 
the last byte of Register N. The 'DEL 003 1 wiped out the first three bytes of Register M, 
which you then replaced with the characters "(?)" by inserting the corresponding program 
lines. Similarly, if you change the characters in the alpha register, you will see new program 
lines in PRGM mode. 

5F. CREATION OF SYNTHETIC PROGRAM LINES 

Synthetic program lines may be grouped into four general types: (1) two-byt~ synthetic 
'functions ' , usually a combination of a status register postfix with a normal prefix; (2) 
synthetic text lines, containing at least one non-keyable character; (3) other non-stc :lard 
multi-byte lines, principally global labels, 'GTO's and 'XEQ's, where the label name contains 
non-keyab 1 e characters; (4) I En I 1 i nes, where a normal 1 i ne lIEn I, enteri ng a power of ten 
such as 11 E3 1, is shortened to 'En' by removing the superfluous 111 byte. Of these four, 
types 1 and 2 are most common. Type 3 lines, given the abundance of normally available global 
labels, are primarily just curiosities which will interest only advanced program tinkerers. 
Generation of type 4 lines will appeal to the purist to whom a single wasted byte is offensive. 
We will discuss in detail methods of making types 1 and 2, and learn in passing how to make 
type 4 lines. Type 3 lines will be given little attention; in general they can be created 
using the same methods as for type 2. 

We have studied three approaches to the task of creating synthetic program lines. The 
most powerful of these is use of a custom byte preparing routine, "CODE", to create arbitrary 
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byte sequences that can be stored into program memory using "REG". This 'programmed program­
ming' method is unlimited in its application--with it, we can create all four types of synthetic 
program lines, with any combinations of bytes. The price of this power is the program 'over­
head' of the nearly 300 bytes required for "CODE" and "REG". Furthermore, we need a means of 
determining the address of the register where the new lines are to be stored, requiring yet 
another program (see Section 5J). 

The second program line-generating technique is to use "KA" to assign synthetic functions 
to keys so that they can be entered into programs at will. This method is limited to type 1 
lines. Since "KA" is such a long program, it is best used to create several assignments in one 
session, followed by its removal from memory. 

The availability of certain special key assignments, which depend upon quirks in HP-41C 
operation, provides a third approach to synthetic line generation. The prototype of such 
assignments is the byte jumper, which we used to start the whole synthetic programming process. 
As we shall see in the next section, the use of key-assigned 'RCL e' and 'STO e' results in an 
important improvement of the byte jumper process. Sections 5H and 51 describe two new special 
ass~gnments for exotic editing, the 'text-enabler' and the 'Q-loader'. The text-enabler allows 
us to convert arbitrary existing program lines into text lines, and vice-versa. The Q-loader 
is used with "CODE" to store arbitrary 7 -byte codes into program as text 1 i nes. The byte 
jumper and the text enabler require very little program overhead, but are limited somewhat in 
the byte combinations they can produce separately (used together, the byte-jumper and the 
text-enabler can make any· byte combinations except those containing bytes E4 through EF). 
Any combination of seven or fewer bytes can be made using the Q-loader with "CODE". 

From the above considerations, a recommended approach to synthetic programming is to 
use a 'standard synthetic programming keyboard', such as that shown in Figure 5-1, with key 
assignments for the most frequently used synthetic functions. When the need arises for other 
synthetic program lines, use the byte jumper and/or the text enabler. When these are insuffi­
cient, load in "CODE" and use the Q-loader. Finally, if necessary, use "REG" for any strange 
byte combinations that defy the other methods. 

ITO b IlCL c x< >d STO d o IIlCL bl I CODE I a IIlCt dl 

·yo 0 [::::1 I:~ 1::1 
DDGGD 
~[ ----JI D D D 
DODD 
DODD 
DODD 
DODD 

FIGURE 5-1. A SYNTHETIC PROGRAMMING KEYBOARD 
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A study of the various programs in this book will reveal that the following synthetic 
functions are used frequently enough to justify permanent key assignments: STO M. RCL M. 
X<>M, STO N. RCL N. and X<>N, for ready access to the alpha registers; STO band RCL b to 
move the program pointer around; X<>c and RCL c for mani pul at i ng data regi ster addresses; 
STO d, RCL d, and X<>d, for flag register access; STO e and RCL e for 'enhanced byte jumping' 
(Section 5G); STO Q and the Q-loader (see Section 51); the byte jumper. If memory space 
permits, it is convenient to have "CODE", "REG". "cs" and "CR" (Section 5K). and "AD" (and 
even "DECODE"--see Section 5J) in memory and assigned to user keys. Figure 5-1 shows a con­
venient set of user keys assigned to make a 'synthetic programming keyboard'. Note that all 
'STO' and most 'X<>' functions are assigned to shifted keys to reduce the risk of accidental 
storage into a sensitive register. 

"KA" can be used to make the function key assignments required for the user keyboard 
shown in Figure 5-1. Table 5-2 lists the prefixes, postfixes and keycodes required, as well 
as the 'XROM' code that will display when one of the assigned keys is pressed and held. 

The 

TABLE 5-2 

"KA" Entries for the Keyboard of Figure 5-1 

Function Prefix Postfix Ke~code XROM Code 
STO b 145 124 -12 05,60 
RCL b 144 124 12 01,60 
RCL c 144 125 -13 01,61 
X<>d 206 126 -14 57,62 
STO d 145 126 -15 05,62 
RCL d 144 126 15 01,62 
X<>c 206 125 -22 57,61 
X<>N 206 118 -23 57,54 
X<>M 206 117 23 57,53 
RCL N 144 118 24 01,54 
STO N 145 118 -24 05.54 
RCL M 144 117 25 01,53 
STO M 145 117 -25 05,53 
STO Q 145 121 -51 05,57 
RCL e 144 127 -62 01,63 
STO e 145 127 -63 05,63 
Q-Loader 4 25 -82 "OD" 
Byte Jumper 241 65 -21 05,01 

following sequence will also assign the functions from Table 5-2: 

1. Assign any HP-41C function to the foll owi ng keys: 

1jX yX X=Y? 
lOx x2 ASIN 
LN eX ACOS 
% TAN ATAN 
SIN CU: P-R 
COS BEEP 11' 

2. Execute."REG" nine times, entering the codes as listed, at the corresponding prompts: 

RUN 
--r 

2 
3 
4 
5 
6 
7 
8 
9 

"REG?" Entry 
OcO 
OC1 
OC2 
OC3 
OC4 
OC5 
OC6 
OC7 
OC8 
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"CODE=?" Entr* 
F091763A91754 
F0F1410ACE762A 
FOCE7E39CE7522 
F0917C19907Cll 
FOCE7D1A907D29 
F0917E49907E41 
F0907542907632 
F091790D041920 
F0907F1E917F2E 



5G. ENHANCED BYTE JUMPING (eJUMP) 

The principal defect of byte jumper editing is its inability to alter directly the 
second byte of a multi-byte program line. As a result, we have to resort to use of the 'gener­
ator', a dummy text line used to 'hide' prefix bytes so that postfixes can be inserted into 
program then attached to the prefix when it is 'pushed' out of the generator. Besides requiring 
a double use of the byte jumper, this method leaves a lot of leftover bytes that must be 
deleted, including the generator itself. 

This inability to alter 'second bytes' arises from the fact that bytes are normally 
inserted in program following the last byte of the currently displayed line. But as was 
first pointed out by Roger Hill, this rule is not applied if the current program line number 
is '00'. In that case, inserted bytes enter program immediately after the current address 
pOinter byte. 'Enhanced byte jumping' takes advantange of this feature to eliminate the need 
for the generator line. 

The easiest method of setting the line number to zero is to press 'RTN', although this 
returns the poi nter to the top of the current program fil e. But the s impl e sequence (PRGM 
off) 'RTN', 'RCL e', 'GTO .lmn', 'STO e', changes the line number of~program line from 
its normal value 'lmn' to '00'. Register e contains the line number--at any point, restoring 
to Register e the value it contained following a 'RTN', resets an arbitrary line number to zero. 
Switching to PRGM mode following this sequence always results in the display '~O REG lmn'. 
You can also achieve the same result with 'GTO • lmn', 'RCL b', 'RTN', 'STO b'. 

As we did for the original byte jumper, it is convenient for simplification of programming 
instructions to introduce a new instruction 'eJUMP • lmn', which instructs the user to make the 
following keystrokes: 

'eJUMP .lmn' means 1- PRGM off 1- PRGM off 
2. RTN 2. GTO .lmn 
3. RCL e 3. Press byte jumper 
4. GTO .lmn OR 4. RCL b 
5. Press byte jumper 5. RTN 
6. STO e 6. STO b 
7. PRGM on 7. PRGM on 

For an extended program editing session, the first method is preferred. If steps 2 and 3 are 
performed at the beginning of the session, then as long as the Register e contents are left 
undisturbed in Register X (and as long as no shifted key assignments are changed), these two 
steps can be omitted from the sequence. 

To illustrate the use of enhanced byte jumping, let's create a 'RCL M'. 

01 STO 01 (controller) 
02 RCL 99 (any data register number greater than 15) 

eJUMP .002 [00 REG lmn ] 
DEL 001* [00 REG lmn ] 

01 RDN 
GTO .001 [01 STO 01 ] 
DEL 001 
SST [01 RCL M ] 

*In this case, DEL 001 is not equivalent to ~. You can substitute 'SST' , 1!1. 
Two-byte functions, other than 'STO', 'RCL', and 'LBL' (which have one-byte forms for 

'STO ~O', 'RCL 00, and 'LBL ~O'), are easiest to edit if they are initially keyed with '~O' 
as their postfixes, for then the 'DEL DOl' following the 'eJUMP' is not necessary: 

01 STO 01 
02 ISG 00 

eJUMP .002 [00 REG lmn ] 
01 LASTX 

GTO .001 [01 STO 01 ] 
DEL 001 
SST [01 ISG N ] 
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This method is not limited to two-byte functions--in the following, we create the 9-
character text line found as line 90 of the 'Hangman' program in Section 6C. The code is 
'F9 40 40 40 40 40 40 43 4C 5F'. 

90 STO 01 
91 "ABCDEFGHI" 

eJUMP .091 [00 REG lmn ] 
DEL 009 [00 REG lmn ] 

01 + 
02 + 
03 + 
04 + 
05 + 
06 + 
07 j 
08 % 
09 DEC 

GTO .090 [01 STO 01 ] 
DEL 001 
SST ["@@@@@@CL_" ] 

5H. THE TEXT ENABLER 

Creat i on of program text 1 i nes is an interest i ng process. When the user presses the 
initial character key, in PRGM-ALPHA mode, the processor writes an 'F1' text byte, followed by 
the character byte, into memory. For each subsequent character added to the string, the 
processor must update the text byte as well as adding the new character byte. The information 
required for the processor to keep track of this operation is recorded in Register Q during 
the text line entry. The first nybble of Q is the current number of characters in the string; 
the last four nybbles record the address of the last byte entered. Flag 45, the 'Data Entry 
Flag', is set during the line entry. Once Flag 45 is cleared by any keystrokes that terminate 
the entry of characters, it is normally not possible to resume adding characters to the line. 
Thus there should be no way to alter characters in an existing text line except by deleting 
the entire line and starting over. 

But aga in, synthetic programmi ng 1 eads us into dark and uncharted territory. We can 
turn on any fl ag we want (see Sect i on 6F) by stori ng the appropri ate NNN into Regi ster d. In 
particular, if we use 'STO d' to set simultaneously Flags 45 (Data Entry), 48 (ALPHA) and 52 
(PRGM), we can actually add characters to an existing program text line. Furthermore, we 
will find that we can change any sequence of program bytes into a text line, and vice versa! 

But a word of caution. These are 'deep waters', so that the tnstructions below must be 
carried out exactly, to avoid HP-41C 'crashes' that require battery pack removal for recovery. 
Furthermore, not all HP-41C's will behave exactly alike. So be prepared to experiment. 

The act of storing the magic NNN into Register d will be referred to as the 'Text Enabler', 
and the NNN itself will be called the 'TEN' (Text Enabler Number). A suitable 'TEN' is any 
NNN that has '0' as its first nybble and '488' as its last three nybbles. The '488' comes 
from the three bits of Register d that correspond to Flags 45, 48, and 52. Since the storage 
into Register d affects all 56 flags, we might as well choose the unspecified nybbles of the 
'TEN' to produce some 'nice' display format. The NNN '00 00 02 3C 04 84 88' used in the 
examples below acts as a 'TEN', while setting Flags 26 (audio), 27 (USER), 28 and 29. FIX 4 
format, and DEG mode. 

Use "CODE" to generate the 'TEN': 

XEQ "CODE" 
"0000023C048488" 

RjS 
AS TO 00 

[CODE=? 

[aa •• 

] 

] 

The 'ASTO 00' saves the 'TEN' for future use. If you wi sh to recall the 'TEN', however. use 
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'CLA', 'ARCL 00', 'RCL M', rather than 'RCL 00', to e 1 imi nate the a 1 ph a- i dent i fi er byte that 
the 'ASTO 00' adds to the NNN. 

Now execute 'GTO •• " to start a new program fi 1 e. Swi tch to PRGM mode, and key in the 
text line "ABC". If you switch 'ALPHA' off following entry of the "C", the line is 'terminated'. 
But if you next turn 'PRGM' off, and press 'STO d' (with the 'TEN' in Register X), you will 
see the line '01 "ABC" in PRGM mode, with 'ALPHA' on; pressing any character key adds that 
character to the text line (plus the "_" to prompt for further characters). Pressing the 
correction key deletes characters from the string, including the original "ABC" if desired. 
However, this trick only works if the contents of Register Q are undisturbed since the original 
string entry was terminated. In general, returning to a text line by means of the text enabler 
after some intervening instructions have been executed will not enable further character addi­
tion but will most likely cause a crash. The processor needs the correct information in Regi­
ster Q to continue with text line building, otherwise it gets hopelessly lost. 

So we resort to an even stranger process. Rather than try to add to an existing text 
line from the end of the line, we deliberately set the first nybble of Register Q to zero by 
storing the 'TEN' into Q immediately before we store it into Register d. Remarkably, with 
the 'TEN' in Q, the processor will make text lines out of bytes that are already present in 
memory. If the starting byte doesn't happen to be an 'Fn' the processor simply replaces it 
with an 'Fn', changing In' whenever characters are added to or deleted from the text line. 

All of this is best explained with examples. One more 'shorthand' notation is required: 

'TE .lmn' means 
1. PRGM off 
2. Place the 'TEN' in Register X (e.g., CLA, 

ARCL 00, RCL M) 
3. GTO. lmn 
4. STO Q 
5. STO d 

Now clear the existing program, and key in: 

01 "ABC" 
02 X<Y? 
03 X>Y? 
04 X<=Y? 

Press "A" 
Press II All 
Press "A" 
Press II A" 
Press "A" 
Press II A" 

PACK 
TE .001 

key 
key 
key 
key 
key 
key 

SST 

[01 "ABC" ] 

[01 "A_" ] 
[01 "AB_" ] 
[01 "ABC_" ] 
[01 "ABCD_" ] 
[01 "ABCDL" ] 
[01 "ABCDEF_" ] 
[.END. ] 

Each pressing of the "A" key took an existing byte from program and incorporated it 
into the text line. Any 'character key' would have acted the same way as the "A" key, i.e., 
any key other than 'SST', 'BST', 'SHIFT', 'RIS', and· the correction key. If we had continued 
beyond the six "A" keystrokes, the '.END.' itself would have been absorbed into the text. 
However, some HP-41C's will not continue beyond a 7-character text line; pressing an eighth 
key causes a crash. Unfortunately, the only way to determine which type of HP-41C you have 
is to try to make an eight character text line with the text enabler. 

The correction key works in a unique manner with the text enabler. If it is pressed 
anytime after the text line has been started with at least one character, the rightmost char­
acter will be 'deleted' from the text line but remains in memory as a stand-alone line (or 
prefix). At present, you have the line '01 "ABCDEF iii in memory. Try: 

TE .001 [01 "ABCDEF" ] 
Press "A" six times [01 "ABCDEF_" ] 

~ [01 "ABCDE_" ] 
SST [02 X<=Y? ] 
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As you see, the "F" byte was not deleted, only rejected' from the text 1 ine to resume its role 
as line '02 X<=Y?'. If you had not pressed the 'SST' key, further use of the correction key 
would have removed the "E", "0", "C", and "B" from the line, leaving their bytes in memory. 
But one more deletion, with '01 "A_"' displayed, deletes the II A" and the 'Fl' text byte from 
memory entirely. 

If the correction key is the first key pressed following the 'STO d' of the text enabler, 
the first byte of the displayed lin~replaced with an 'FF', and the next 15 bytes of program 
are incorporated into a text 1 i nee Subsequent presses of the correct i on key 'back up' the 
process, restoring each successive rightmost character to its original role and shrinking the 
text 1 i nee 

The text enabler makes it quite simple to generate text 1 ines containing non-keyable 
characters. Each desired character is entered into program as a one-byte program line. The 
stri ng shoul d be preceded by one 'dummy' one-byte 1 i ne, whi ch will be converted to the text 
byte. Once we are happy with the sequence of characters, we s imply use the text enabl er to 
transform the one-byte lines into a text line, like adding beads to a string: 

01 X<>Y (dummy) 
02 LBL 11 
03 X<=Y? 
04 RCL 08 
05 EtX-1 
06 RCL 09 

TE .001 
Press 5 character keys 

ALPHA [01 "J.lF(X)" ] 

If you want a line of more than 7 characters but your HP-41C won't cooperate, you can 
press the correction key following the text enabler, then use it to delete characters until 
you are left with the desired line. 

The text enab 1 er can be used to generate synthet i c funct ions, by us i ng it to move an 
existing prefix into a text line, editing in a new postfix, then using the text enabler again 
to eject the prefix. This procedure is usually more complicated for two-byte functions than 
use of the enhanced byte jumper. But we shall see in the next section that a combination of 
the text enabler and the Q-loader provides a neat way of making synthetic lines directly from 
NNN's in Register X. 

Making Type 4 program lines is a pleasant exercise with the text enabler: 

01 1 E25 
TE .001 

Press one character key 
Press correction key, SST 

[01 1 E25 

[01 "." [01 E25 

] 
] 
] 

This works so cleanly because the null automatically inserted in front of the 'I' byte 
acts as the 'dummy' byte to be turned into an 'F1', then deleted along with the 'I'. If you 
want to delete the 'I' from an already existing line, in a packed program file, you must edit 
in a dummy byte first, then PACK prior to using the text enabler. 

51. THE Q-LOAOER 

In Section 4C it was shown how Register Q is used for the temporary storage of alpha 
stri ngs that are not stored either in program or in the alpha regi ster. Through another 
quirk in HP-41C operation, we can exploit this behavior to assist in the creation of text 
lines up to seven characters in length. We need key assignments for 'STO Q' and the 'Q-loader' 
(prefix 4, postfix 25) that we made in Section SF. 

The 'Q-loader' is at first glance just the assignment to a user key of the number '9', 
i.e., byte '19'. Actually, the assignment of any byte from '10' to 'lC' will work as a Q­
loader, but the '19' assignment is easy to use, and gives an easily recognizable display ''~O'' 
when pressed and held. If pressed with PRGM off, the Q-loader enters a '9' into Register X. 
But in PRGM mode, the Q-loader enters two program lines: the first is just a '9' entry line, 
but the second is a text line, containing whatever characters were present in Register Q. To 
illustrate, execute 'PACK' (PRGM on) by spelling out 'XEQ "PACK"', then press the Q-loader. 
You will see the '9' line, followed by a text line "PACK". The letters "P-A-C-K" were placed 
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in Register Q by the 'XEQ "PACK''', then transferred to the text line by the Q-loader. 
By using 'STO Q', we are not limited to sequences that we can 'spell out'--any NNN can 

be placed in Q. For complete versatil ity, we can use "CODE" to make the NNN. Hence, to make 
a text line of up to seven arbitrary bytes: 

1. Use "CODE" to create a stri ng of seven bytes correspondi ng to the characters you want 
in the text line, entered in reverse order. If you want only 'n' characters, where 'n' is less 
than seven, then the first [7 - nJ bytes entered for "CODE" should be nulls (00). Note that 
text lines ending with one or more nulls cannot be created directly with this method. 

2. 'GTO' the program line preceding the point where you want to insert the new text 
1 i ne. 

3. With PRGM off, press 'STO Q'. 
4. Switch PRGM on, and press the Q-loader key. Delete the resulting '9' line, then 

SST to see the new text line. 
As an example, 1 et us use the Q-1oader to make 1 i ne 81 from the 'Hangman' program in 

Section 6C. The code for this line is 'F5 60 06 04 05 01': 

"00000105040660" 
XEQ "CODE" 

R/S 
GTO .000* 
STO Q 
PRGM (on) 
Q-loader 
DEL 001 
SST 

[CODE=? 

[01 9 

[01 "T.nJ;~" 

J 

J 

J 

J 

*In the actual construction of the 'Hangman' program, this would be 'GTO .080'. 

The Q-loader inserts its text line anywhere in a program, without any consideration of 
the register boundaries or addresses required for the use of "REG". By using the text enabler 
to transform Q-loader generated text lines into separate program lines, we can make arbitrary 
synthetic program lines of up to seven bytes in length, or several shorter lines simultaneously. 
Let us make the sequence '01 "(#)''', '02 ASTO M': 

"0000759A292328" 

Press three character keys. 

XEQ "CODE" 

R/S 
GTO 
STO Q 
PRGM on 
Q-loader 
DEL 001 
PACK 
PRGM off 
TE • 001 

SST 

[CODE=? 

["IIB)# ( " 

[01 9 

[01 "(#)" 
[02 ASTO M 

J 

J 

J 

J 
J 

If we want none of the seven characters in the text line to remain as text characters, 
we could use the text enabler to remove the text byte from the string, just as we eliminated 
the 'I' from 'I En' lines in Section 5-H. 

There are other types of Q-loader assignments available, corresponding to the other 
uses of program text strings. The following assignments have been developed by Tom Cadwallader: 

Byte Code 
04 10 
04 IE 
CD 00 

"KA" Prefix/Postfix 
4729 
4/30 

205/00 
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One minor annoyance in the use of the Q-loader is the requirement for encoding the byte 
sequences in reverse order, which is easy to forget. However, if the desired byte sequence 
is 6 bytes or fewer, the following routine will reverse the sequence automatically: 

01 LBL "REV" 
02 ASTO M 
03 SF 25 
04 GTO IND M 
05 RCL Q 
06 STO M 
07 END 

"REV" 
20 BYTES 

"REV" is designed to reverse a string of up to 6 characters in the alpha register. To reverse 
a string in Register X, execute a 'STO M' prior to 'XEQ REV'. Notice that "REV" will not 
work properly if there is a global label anywhere with the same name as the alpha string, but 
that is a rare occurrence. Also, "REV" will fail if the printer is attached. 

5J. BACKTALK FROM THE HP-41C 

At this point, we can 'tell' the HP-41C anything we want, by using "CODE" to translate 
user-readable characters into HP-41C internal byte codes. But for a complete dialogue with 
the mach i ne, we also need a program to take ex i st i ng codes and dec i pher them into readable 
characters. The program "DECODE", listed next, exactly reverses the operation of "CODE", 
taking an arbitrary 7-byte code in Register X and translating it into 14 characters in the 
alpha register. As an added touch, the output characters are grouped into pairs (bytes) by 
using colons as separators., The basic operation of "DECODE" is quite similar to that of 
"CODE". "DECODE" serves as an illustration of the use of Register P as a full 7-byte extension 
of the alpha register, as described in Section 4B. 

81+LBL "DECODE" 27 CF 89 53 RCL t 79 FC? 14 
82 CLA 28 SF 18 54 STO ] 88 RTH 
83 .886 29 SF 11 55 Rt 81 CF 13 
84 STO L 38 FS?C 84 56 ISG L 82 RTH 
85 XOY 31 XEQ 81 57 GTO 13 83+LBL 82 
86 GTO 14 32 FS? 83 58 8 84 FS? 85 
87+LBL 13 33 SF 87 59 STO t 85 CF 82 
88 !>TO t 34 FS? 82 68 TO HE 9 86 FS? 86 
89 "1-:" 35 SF 86 61 AYIEW 87 CF 82 
18 RCL t 36 FS?C 81 62 RTN 88 FS? 82 
l1+LBL 14 37 SF 85 63+LBL 81 89 RTH 
12 EHTERt 38 FS?C 88 64 FS? 13 98 CF 84 
13 XO d 39 SF 84 65 CF 18 91 CF 83 
14 CF 12 48 SF 82 66 FS? 14 92 SF 81 
15 CF 13 41 SF 83 67 CF 18 93 FC?C 87 
16 CF 14 42 FS? 84 68 FS? 18 94 SF 87 
17 CF 15 43 XEQ 82 69 RTH 95 FC? 87 
18 FS?C 87 44 FIX 5 78 CF 12 96 RTH 
19 SF 15 45 ARCL L 71 CF .11 97 FC?C 86 
28 FS?C 86 46 XO d 72 SF 89 98 SF 86 
21 SF 14 47 STO [ 73 FC?C 15 99 FC? 86 
22 FS?C 85 48 "1-12" 74 SF 15 188 RTN 
23 SF 13 49 XO \ 75 FC? 15 181 CF 85 
24 FS? 84 58 STO [ 76 RTH 182 EHD 
25 SF 12 51 RCL J 77 FC?C 14 
26 CF 88 52 STO \ 78 SF 14 

Instructions for "DECODE": 
1. Place the code to be deciphered in Register X. 
2. XEQ "DECODE". 
3. 'Output characters' are placed in alpha, shown with AVIEW. 
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Examples: 
ALPHA "ABCDEFG" ALPHA, RCL M, XEQ "DECODE"~ "41:42:43:44:45:46:47" 
-1.234567891 E-56, XEQ "DECODE" ---+ "91:23:45:67:89:19:44" 

"DECODE" is designed to handle full 7-byte codes, which is a bit of I overkill I for one 
particul ar appl ication, namely, for determini ng the current program pointer address. If we 
have IRCL b l assigned to a key, then IRCL b l , IXEQ "DECODE III will certainly decipher Register b 
for us. Usually, however, we are not interested in the first 5 bytes of Register b (subroutine 
return addresses). "AD" (for IAddress l ) is a quick and dirty routine that will decode a two­
byte address, sacrificing the power and elegance of "DECODE" for execution speed. 

"AD" is Iquick because it is so short, but Idirtyl because it uses the display properties 
of IFIX 91 for rapid conversion of hex codes into characters. Notice that since the output 
is viewed in the alpha register, a digit IAI will be represented by the colon ":" rather than 
the Istarburst l• Refer to Section 5A. 

"AD" leaves the original address in Register X, so that a ISTO bl executed following 
"AD" will return the pointer to that address. This feature requires the otherwise superfluous 
line 115 STOP I , to ensure that a switch to PRGM mode after the ISTO bl will give the correct 
line number (if the IENDI terminated execution of "AD" we would end up with line number 100 1). 

81.LBL ·RD· 89 • . 
82 STO [ 18 XO [ 
83 .1-.... 11 STO \ 
84 RCL d 12 IlSTO L 
85 FIX 9 13 RDH "AD" 
86 IlRCL [ 14 VIEW L 
87 STO d 15 STOP 39 BYTES 
88 :<0 [ 16 EHD 

Instructions for "AD": 
1. Press RCL b (PRGM off). 
2. XEQ "AD" 
3. Output is four alpha characters (shown with AVIEW) corresponding to the four digit 
pointer address obtained with the IRCL bl• The hexadecimal digits greater than 19 1 are 
represented as follows: IAI = ":", IBI = ";", ICI = "<", 10 1 = "=", lEI = ")", and 
IF I = 11111. 
4. To return to the original byte (where the IRCL b l was executed), press ISTO bl • 

5K. CODE STORAGE 

A pair of short routines will round out our Ilibraryl of special Iprogramming programs l • 
There are many occasions when it is desirable to store an NNN into a data register for future 
recall, but the normalization of NNNls during any recall from a numbered data register is a 
major obstacle. 

One means of recalling an NNN without normalization is to use the byte jumper to transfer 
the NNN to the alpha register. For example, suppose the NNN of interest is in ROO, which 
we determine to be Register 123 by decoding Register c. Then we store 11 E71 into Register 124, 
i.e., ROI. Next we use "CODE" to make the I address I 100 00 00 00 00 01 24 1, followed by 
ISTO bl • Pressing the byte jumper key will then copy the NNN in ROO into Register M. The 
11 E71 in ROI placed the byte 107 1 at address 10124 1, providing for a byte jump of se~en bytes. 

This method is rather clumsy, and can only be used manually. For automatic storage 
and recall, we can use the routines "cs" and "CR". "cs" takes an NNN and breaks it into two 
pieces, each of which is converted to alpha data for ordinary storage. This requires two 
data registers to store the entire NNN code. "CR" reverses the process, recalling the two 
alpha data strings and reassembling them into a single 7-byte NNN. For- convenience, the 
routines are designed to execute manually just like ordinary ISTO I and IRCL I: Assign "cs" 
and "CR" to user keys, then execute either by pressing the appropriate key followed (during 
the subsequent pause, which starts almost immediately) by the desired data register number. 
Each routine uses the designated data register plus the next higher-numbered register. 
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91.LBL 'CS' 91.LBL 'CR' 
92 CUI 92 PSE 
93 STO [ 93 STO L 
94 STO L 94 CLA 
95 RDH 95 ARCL IHD L 
96 PSE 96 '1-'" 
97 XO l 97 ISG L 

"CS" 98 ...... 98 ClD "CR" 
99 .9 99 CLX 

40 BYTES 19 S1+ l 19 RCl IHD L 37 BYTES 
11 xo \ 11 STO \ 

SIZE 002 12 ASHF 12 .1-...... SIZE 002 13 AS TO IHD l 13 XO \ 
14 ISG l 14 CLA 
15 CUI 15 EHD 
16 STO [ 
17 ASTO IHD L 
18 CLA 
19 RDH 
29 EHD 

Instructions for "eS": 
1. Manual use: XEQ "eS"; during the subsequent pause, enter a data register number 
Imn l .The NNN will be stored in Rmn and Rmn+l' The contents of Registers X, V, and Z 
are preserved. 
2. Subroutine use: the calling program should have the NNN in X, and Imnl in V. 
Following execution, the contents of Registers T and Z will 'drop' to Z and V, respec­
tively. 

Instructions for "eR": 
1. Manual use: XEQ "eR"; during the subsequent pause, enter a data register number 
Imn'. The NNN in Rmn and Rmn+l will be placed in Register X, replacing Imnl and, in 
effect, 'raising ' the stack contents present prior to execution of HeR" 
2. Subroutine use: the calling program should place Imnl in X prior to calling "eR". 
Following execution, the recalled NNN will replace Imn l in X. 
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CHAPTER 6 

APPLICATIONS 

This chapter is intended to serve as a 'standard applications handbook' for synthetic 
prograrrvning. Included are numerous HP-41C routines, which, like the programs of Chapter 5, 
illustrate the creative use of synthetic functions as well as having powerful practical appli­
cations. The purpose and justification of synthetic programming is embodied in these routines. 
First, the use of synthetic functions enables the HP-41C to perform various important operations 
faster and with less program memory usage than is possible with the standard functions alone. 
Examples are the 'SIZE-Finder' (Section 6B) and the alpha string manipulations (Section 6C). 
Second, synthetic programming provides a new class of operations that cannot be carried out 
at all using only standard functions. Such operations include alpha character identification 
and comparison (Section 60) and direct access to 'Application Pac' programs (Section 6H). 

The set of routines described in this chapter by no means constitutes a complete list 
of the uses of synthetic functions--no list of programs can ever exhaust the capability of the 
HP-41C, especially as enhanced with synthetic functions. The development of the techniques 
and applications of synthetic programming is an ongoing process. (As an example, the discovery 
of the 'text enabler' described in Section 5H came from a typographical error in a preliminary 
draft of this book!) When you have completed studying the material in this book, you will be 
ready to use synthetic functions routinely in your own programs, as readily and with little 
more effort than you would use standard HP-41C functions. You might even discover a few new 
'tricks of the trade' yourself. In this regard, an appropriate slogan is 'take nothing for 
granted'. If you get an idea, try it to see if it works, no matter how outlandish it might 
seem. It took months of widespread synthetic programming before anybody noticed, for example, 
that Register P acts as a full 7-byte continuation of the alpha register. Since the display 
shows a maximum of 24 characters, it was assumed that characters lost from the left side of 
the alpha register were gone forever. Yet, there they were, hiding in Register P. 

6A. GETTING TO THE .END. 

More often than not, a program under development is the 1 ast program fil e in memory, 
i.e., the file containing the '.END. '. If the address pointer is moved to some other file, 
there are only two ways to return it to that last file: use 'GTO' and spell out a global 
label within the program, or use 'CAT 1', running to the end of the catalog. If the new 
program does not have a global label, the first method is eliminated. If there are several 
memory modules and many programs in the HP-41C, the second method can be annoyingly slow. 
The program "EN" adds a third method, which you will find to be a great convenience during 
many editing sessions, particularly when you are programming using the routines of Chapter 5. 

Instructions for "EN": 
1. XEQ "EN". 

81.LBL "EN" 
e2 RCL c. 
83 STO [ 
e4 • f-..... " 
8S XC- [ 
e6 XC> d 
e7 CF 8e 
88 CF 81 
89 SF 82 

18 SF 83 
i 1 XC- d 
12 CLR 
13 STO [ 
14 .f-.. -
IS X<:;' \. 
16 STO b 
17 END 

liEN II 

45 BYTES 

2. At completion, the program pointer will be at the top of the program file containing 
the' .END.' 

The '.END.' is situated in bytes 2, 1, and 0 of the register identified by the address 
recorded in the last three nybb1es of Register c. "EN" takes that address 'lmn' (line 02), 
shifts it into the first two bytes of Register d (lines 03-06), and makes the code '31mn' by 
clearing Flags 0 & 1, and setting Flags 2 & 3 (lines 07-10). That code is next shifted to 
the last two bytes of Register N (lines 11-15). When the code is finally transferred to 
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Register b in line 16, the address pointer immediately jumps to the byte immediately preceding 
the .END. The program continues to run, so that the .END. itself is executed, which stops 
execution with the pointer at the top of the file. 

6B. SIZE-FINDING AND OTHER TRICKS 

An e1 egant demonstration of how synthetic functions allow improved HP-41C performance 
is found in the following 'SIZE-Finder' routine, written by Keith Jarett (PPC Calculator Jour­
nal, V7 N5 P57): 

91tLBL "S" 
92 "RB" 
93 RCL (', 
94 XO [ 
95 STO \ 
96 IlSHF 
97 .~ .... 
98 XO [ 
99 XO d 
19 FS?C 11 
11 SF 99 
12 FS?C 12 
13 SF 19 

Instructions for "S": 
1. XEQ "S". 

14 FS?C 13 
15 SF 11 
16 FS?C 14 
17 SF 13 
18 FS?C 15 
19 SF 14 
29 FS?C 16 
21 SF 15 
22 XO d 
23 1 E3 
24 * 
25 INT 
26 DEC 

27 CHS 
28 64 
29 lion 
38 SF 25 
31tLBL 14 
32 VIEW IND X 
33 FC? 25 
34 RTM 
35 64 
36 + 
37 ·~TO 14 
38 HW 

2. At completion, the current 'size' will be displayed in R~gister X. 

"S" 
75 BYTES 

There is, unfortunately, no direct way to determine the current program/data 'size' in 
the HP-41C. No 'top of memory' address is maintained in memory, since it changes with each 
insertion or removal of a memory module. The only way of determining the size is to try to 
access successively higher numbered data regi sters until a 'NONEXISTENT' message i ndi cates 
that the last existing data register has been passed. This method can be automated in a 
program, taking advantage of the Error Ignore Flag 25, but if the number of data registers is 
J arge, the process can be very slow. Even the c1 everest of such programs takes at 1 east 
four seconds to run. The routine "s" takes a maximum of 1. 5 seconds. The improvement arises 
from a partial decoding of Register c, which provides a starting value for the size that 
needs only to be increased by 64 times the number of memory modules present. Only a maximum 
of four registers must be tested to determine the number of modules. 

The 'heart' of the size finder routine is found in lines 09-26, which constitute a 3-
digit hexadecima1-to-decima1 conversion routine developed by Roger Hill. The three hex digits 
of interest are digits 9, 10 and 11 of Register c--the absolute address of ROO. Lines 01-09 
of "s" place those digits in Register d as the third, fourth, and fifth digits, i.e., as 
Flags 8-19. 

Consider a typical ROO address, say '12A', which in decimal is [256+32+10 = 298]; use 
the 'OCT' function to find that 29810 equals 4528. Let's write out both of the numbers 
'12A' and '452' as they are coded in the HP-41C: 

Hexadecimal 
Octal 

12A 0001 0010 1010 binary 
452 0100 0101 0010 binary 

Notice that the two numbers have the same number of bits with the value 'I'. The difference 
between the two representations is that the first bit of each octal digit is always '0', 
since octal digits have a maximum value of 7 (0111). To convert the hexadecimal bit pattern 
to octal, we only have to shift the values of certain bits 'leftward' to 'make room' for the 
extra 'a' bits. Here's a second example, with arrows showing the shifting of the bits from 
the hexadecimal pattern to octal: 

Hexadecimal 1BC = 

Octal 674 
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This shifting of bits is easily accomplished though explicit user flag operations, as seen in 
lines 10-21 of "S". Lines 22-26 complete the hex-to-decimal conversion, taking the three digits 
from Register d and converting them to a decimal integer in Register X. 

The result 's' in X is still the absolute address of ROO, now expressed in decimal. If 
there are no memory modules in the calculator,·the 'size ' is [256- ' 5 ' ], where the '256 ' is the 
decimal address of the top of memory. However, since [256- ' 5 ' ] is always less than 256 (for 
no modules), and since 256 is an integral multiple of 64, [-s mod 64] (which, since '-5 ' is 
negative, is the smallest positive number obtained by adding multiples of 64 to 's') is the 
same as [256 + N*64 -s]mod 64, where 'N ' is the number of modules. Thus, lines 27-29 yield 
the distance, in registers, from ROO to the next higher module boundary. The size is this num­
ber plus an unknown multiple of 64. Lines 30-37 are a trial-and-error method of determining 
'N ' , by incrementing 's' in steps of 64 until 'VIEW IND X' causes an error that clears Flag 
25. 

The hexadecimal-to-octal-to-decimal conversion scheme in "S" can be used in a variety 
of programs. Only a slight modification of "S" would be required, for example, to yield the 
current location of the statistics registers block from the first three digits of Register c. 
A di fferent example is prov i ded by the next rout i ne, "BYTE", wh i ch is des i gned to give the 
current address pointer location as a decimal number of bytes, counting from the bottom of 
user program memory. In this context, byte '1' is byte 'OOCO ' • 

81tLBL 'BYTE" 12 SF IS 23 UISTX 
82 CLA 13 FS?C 18 24 FRC 
83 STO ( 14 SF 17 2S 1 E3 
84 .1-..... IS FS?C 19 26 * "BYTE" 8S xo [ 16 SF 18 27 DEC 
86 XO d 17 FS?C 29 28 7 69 BYTES 97 FS?C IS 18 SF 19 29 * 
88 SF 13 19 XO d 38 + 
99 FS?C 16 28 18 31 1343 
18 SF 14 21 * 32 -
11 FS?C 17 22 INT 33 END 

Instructions for "BYTE": 
1. Press 'RCL b' • 
2. XEQ "BYTE". 
3. Output is byte number in decimal. 

Following the user-executed 'RCL b' , which places the current pointer address into the 
1 ast two bytes of Regi ster X, 1 i nes 01-06 of "BYTE" move the two bytes into the second and 
third bytes of Register d (Flags 08-23). The first digit of the address is a byte number, 
which never exceeds six. The remaining three digits number registers of 7 bytes, taking a 
maximum value of hex IFF or octal 777. Thus Flag 12 will always be zero. Lines 07-21 perform 
the hex-to-octal conversion, placing in X the number 'n.abc ' , where 'n' is the byte number, 
and 'abe' is the number of the register in three octal digits. Line 22 isolates 'n', where­
upon lines 23-27 convert 'abc ' into a decimal integer. Lines 28-30 compute the total bytes 
[n + 7*abc], measured from '0000 ' • Lines 31-32 subtract 1343, so that the output byte number 
1s measured from the bottom of normal program memory, byte 'OOCO ' • 

There are two obvious appl ications for "BYTE", both of which require two executions. 
More useful than the byte number of any single address is the distance in bytes between two 
memory locations. "BYTE" saves the original value in Register X present prior to the manual 
'RCL b' , placing it in Register Y above the output value at the end of program execution. 
Thus the sequence 

GTO 'point A' 
RCL b 
GTO 'point B' 
RCL b 
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XEQ "BYTE" 
X<>Y 
XEQ "BYTE" 

which can be executed manually or by a program, will give the distance in bytes between 'point 
A' and 'point B' in memory. The first application of this procedure is to have 'point B' be 
the first line of a program, and 'point A' the first line of the next program down in memory. 
Then the byte difference is the length of the program, as is also given by a 'CAT I' using 
the printer. The second type of use is to have 'point B' be a two-byte 'GTO' program line 
and' point A' the corresponding label, to determine whether the jump between the 'GTO' and 
the label is fewer than 112 bytes. The only other means of determining this result is by labor­
ious counting of program bytes, line-by-line. 

6C. FUN AND GAMES IN THE ALPHA REGISTER 

Perhaps the ,single most useful group of synthetic functions is those which access the alpha 
register, such as 'STO M, 'RCl N' or 'X<>IND 0'. The fact that the 'M', 'N', '0', and 'P' 
postfixes can be attached to any normal data register function prefix means that the alpha 
register can be used as four (with some limitation on the use of P) extra data registers. This 
is obviously advantageous when memory space is 1 imited--the use of the alpha register frees 
four ordinary registers for additional program or data storage. The best use of these 'extra' 
data registers is for 'scratch' purposes (almost like an extension of the RPN stack) that can 
be sandwi ched in between normal uses of the alpha reg; ster for messages, etc. Examples are 
indirect function indexing (e.g., 'ISG M', 'DSE 0', 'STO+ IND N'), accumulations ('STO+M', 
'STO-N', etc.), and temporary storage of intermediate numerical results. Note that all four 
alpha registers are cleared simultaneously by the one-byte function 'ClA'. The alpha registers 
(and the stack registers) can only be addressed indirectly through the extraordinary step of 
adjusting the contents of Register c so that one of the status registers (any will work except 
Register T) becomes ROO, but that is seldom practical. 

The alpha register access functions combine with the standard alpha functions 'APPEND', 
'ASTO', 'ARCl', 'ASHF', and 'ClA' to provide alpha character string manipulations of a speed 
and flexibility greatly exceeding that possible with the standard functions alone. Consider, 
as a first example, the problem of isolating a particular character from an alpha string, 
such as might be required by a variety of word-guessing games. Here is a routine that will 
isolate (i.e., leave by itself in the alpha register) the 'nth' character (counting from the 
left) in a string of up to six characters, using only standard functions: 

81*LBL A 18*LBL 81 
82 7 

11 "." 83 - 12 ARCL Y (6C-I) 84 CHS 13 ASTO Y 
85 1 E3 14 ASHF 
86 I 15 ISG X 
87 1 16 CTO 81 
88 + 17 AVIEII 
89 ASTO Y 18 .END. 

To use the routine, either the user or program places 'n' into Register X. Then 'XEQ 
"A'" isolates the 'nth' character in the alpha register. There are two problems with this 
routine that make it less than satisfactory: first, it is relatively slow, requiring from 
0.9 to 2.1 seconds to execute, depending upon the value of 'n'; second, it is not directly 
extendable to strings of more than six characters. If the strings to be processed can be 
more than six characters, the program has no way of knowing where the 'first' character is 
situated in the alpha register. This latter problem can be overcome to some extent by numbering 
the characters from right-to-left so that 'n = I' corresponds to the last (rightmost) character 
in the alpha string. Then the string can be broken into up to four 6-character strings, with 
the appropriate string, depending on 'n', being searched by Routine 6C-I for the desired 
character. But, as advert i sed, the use of synthet i c funct ions provi des a better method. 

The invisible boundaries between Registers M, N, 0, and P simplify the task of chopping 
up alpha strings. All we have to do is find an automated procedure for shifting the strings 
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around so that the desired character is at one of the boundaries. Consider the sequence ICLXI, 
IFIX 41, IARCL XI. Following execution of these steps, the alpha register wil·l contain its 
original contents, now shifted left by the appending of the six characters "0.0000". If we 
had used IFIX 61 instead of IFIX 41, the original string would have been shifted by eight posi­
tions. This demonstrates a non-iterative (and hence, fast) method of shifting alpha strings 
by a variable amount, which is used in the following version of "ISO". If you Isingle-stepl 
through the program, with the HP-41C in ALPHA mode, you can see the characters shifted around 
and selectively cleared to leave only one character. 

Instructions for "ISO" 

91*LSL "ISO· 
92 19 
83 -
94 CHS 
95 SCI HID X 
96 ARCL X 
97 CLX 

98 XO ] 
99 "I-t· 
lIi XO ] 
11 CLA 
12 STO [ 
13 AVIEII 
14 END 

1. Start with a string of up to 10 characters in the alpha register. 
2. Place a number Inl between 1 and 10 into Register X. 
3. XEQ II ISO". 

"ISO" 
30 BYTES 

4. At completion, only the Inth l character from the original string will remain. In l 
is counted from the right. 

This routine is both shorter and faster than Routine 6C-l, requlrlng only 0.8 seconds 
for execution, independent of Inl. ISCI IND XI is used (line 05) rather than IFIX IND XI, to 
provide shifts of between 4 (for n=lO) and 13 (n=l) characters. "ISO" has the disadvantage 
of changing the HP-41C display mode, but this can be corrected at an expense of 4 additional 
program bytes by replacing steps 05 and 06 with: 

05 X<>d 
06 SCI IND d 
07 ARCL d 
08 X<>d 

Similar operations are found in the next routine, "SUB", which is used to replace a 
character in an alpha string, leaving the string otherwise intact: 

91*LSL 'SUS' 12 "H" 23 XO ] 34 ARCL X 
92 19 13 XO T 24 LASTX 35 Rt 
93 - 14 XO ] , 25 XO t 36 STO d 
94 CHS 15 "1-======" 26 XO T 37 CLX 
95 RCL d 16 CLX 27 9 38 XO ] "SUB" 
96 SCI IND Y 17 XO \ 28 - 39 STO [ 
97 ARCL Y 18 STO [ 29 CHS 49 CLX 86 BYTES 
98 RCL t 19 CLX 39 FIX 9 41 XO t, 
99 STO L 29 XO ] 31 RND 42 STO \ 
19 CLX 21 STO \ 32 CF 29 43 AYIEW 
11 XO ] 22 XO T 33 19tX 44 END 

Instructions for "SUB" 
1. Start with a string of up to ten characters in alpha. 
2. Place one alpha character in Register Y. 
3. Place a number Inl between 1 and 10 in X. 
4. XEQ "SUB" 
5. Fo 11 owi ng execut i on, the character from Y wi 11 replace the I nth I character in the 
alpha string. Inl is counted from the right. 
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In lines 30-34 of "SUB" we see another type of variable character shift. using the func­
tion 'lOx' to produce a number 'x+l' characters long in Register X. 

The 'Hangman' game ("HM") listed next demonstrates a practical application of the string 
manipulations made possible with routines "ISO" and "SUB". Versions of these routines are 
found in lines 169-183 and 114-168 respectively. 

8ltlBl "H"' 47 RCl d 
82 8 48 IIYIEW 
83 STO d 49 STO d 
84 .909 58*lBl 82 
85 STO 87 51 FS? IND 96 
86 FIX 8 52 GTO 84 
87 SF 26 53 RCl 85 
88 'WORD?' 54 CllI 
89 liON 55 IIRCl 98 
18 STOP 56 IIRCl 91 

!IE 11 '1- 57 RCl 96 
12 IISTO 98 58 INT 
13 IISHF 59 XEQ 98 
14 IISTO X 69 115TO X 
15 CUI 61 X=V? 
16 IIRCl X 62 XEQ 93 
17 ·I-tttt· 63*lBl 94 
18 RCl \ 64 ISG 96 
19 CUl 65 GTO 92 
29 STO [ 66 FS?C 19 
21 IISTO 91 67 GTO 91 
22 '---' 68 ISG 97 
23 IISTO 03 69 GTO 96 
24 IIRCl 93 79 ·ARRRRGGH ••• • 
25 IISTO 92 71 IIYIEW 
26 ClA 72 TONE 9 
27 IISTO 94 73 TONE 9 
28 1.989 74 PSE 
29 STO 88 75 'WORD IS: • 
39 STO 96 76 IIRCl 99 
31 SF 19 77 IIRCl 91 
32 •• 78 1I0FF 
33 IISTO 95 79 PRO"PT 
34 GTO 92 89*lBl 86 
35*lBl 91 81 • 'ratl-· 
36 1.989 82 t8 
37 STO 96 83 RCL 87 
38 ClA 84 INT 
39 IIRCl 82 85 -
48 IIRCl 83 86 XEQ 8B 
4t '1- • 87 IISTO X 
42 IIRCl 84 88 RCL 87 
43 TONE 9 89 INT 
44 ClD 99 ·tltltltltltlCL· 
45 STOP 91 XEQ 88 
46 IISTO 85 92 IIRCl V 

* APPEND tt SPliCES 

93 IISTO M 
94 GTO 81 
95*lBl 03 
96 ISG 83 
97 GTO 85 
98 • **DONE**" 
99 IIYIEW 

188 TONE 3 
181 TONE 4 
182 TONE 5 
183 TONE 8 
184 TONE 7 
185 TONE 8 
186 CUl 
187 PSE 
188 RCl 97 
189 INT 
119 IIRCl X 
111 '1- WRONG.' 
112 1I0FF 
113 PRO"PT 
114*lBl 95 
115 SF IND 96 
116 SF 19 
117 RCl 86 
118 INT 
119 CUI 
129 IIRCl 92 
121 IIRCl 93 
122 19 
123 -
124 CHS 
125 RCl d 
126 sci IND V 
127 ARCl V 
128 RCl t 
129 STO l 
138 ClX 
131 XO' ] 
132 'H" 
133 XO T 
134 XO ] 
135 ClX 
136 FIX 4 
137 IIRCl X 
138 ClX 
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139 XO \ 
148 STO [ 
141 CUi 
142 XO ] 
143 STO \ 
144 XO T 
145 XO ] 
146 U1STX 
147 XO t 
148 XO T 
149 9 
158 -
151 CHS 
152 FIX 8 
153 RND 
154 CF 29 
155 19tX 
156 IIRCl X 
157 Rt 
158 STO d 
159 ClX 
169 XO ] 
161 STO [ 
162 ClX 
163 xo t 
164 STO \ 
165 IISTO 92 
166 IISHF 
167 IISTO 93 
168 RTN 
169*lBl 88 
179 19 
171 -
172 CHS 
173 XO d 
174 SCI IND d 
175 IIRCl d 
176 XO d 
177 ClX 
178 XO ] 
179 'H' 
188 XO ] 
181 ClA 
182 STO [ 
183 END 

"HM" 
386 BYTES 

SIZE 009 



Instructions for "HM": 
1. XEQ "HM". 
2. First player keys in a word of up to nine letters; RIS. 
3. At the tone, the display will show as many dashes "-" as there are letters in the 
unknown word. The second player guesses a letter by pressing the corresponding letter 
key, then RIS. 
4. At the next tone, all occurrences of the guessed letter will be shown in the display. 
If the guessed letter is not present, one 'piece' will be added to the 'gallows' "~" 
or to the 'man' "~" at the right of the display. Play resumes with step 3. 
5. If the full word is guessed with fewer than 10 wrong guesses, "**DONE**" is displayed, 
followed by the total number of wrong guesses. 
6. On the tenth wrong guess, the 'man' is 'hung', and the unknown word is displayed. 

'Hangman' works with words of up to nine letters. If the first player enters fewer 
than ni ne 1 etters, the program fi 11 s out the word with spaces (l i nes 11-21), then 'guesses' 
the 'space' character, the same way a player would, in order to display the correct number of 
unknown letters to the second player. 

Some synthetic programming notes for "HM": Lines 72 and 73 are "TONE 10", hex '9F OA', 
which can be created with the byte jumper. The construction of line 81, 'FS 60 06 04 05 01', 
was described in Section 51; Line 90, 'F9 40 40 40 40 40 40 43 4C SF', was made as an example 
of enhanced byte jumping in Section SG. The trick used to make the guessed letters 'goose-step' 
around the display (lines 47-49) is described in Section 7B. 

Data storage is allocated by "HM" as follows: 

60. CHARACTER RECOGNITION 

ROO & ROl 
R02 & R03 
R04 
ROS 
R06 
R07 
R08 

mystery word 
current guessed word 
'hangman' 
current guessed letter 
loop counter 
wrong guess counter 
right guess counter 

Although a user can simply look at an alphanumeric display to read its contents, the 
HP-41C itself has no means of determining what characters, if any, are present in the alpha 
register, except by laborious one-by-one comparisons with known characters. Thus, for example, 
alphabetizing a group of alpha data strings is a prohibitively slow, memory-expensive process. 
However, synthetic functions can extend the capability of the HP-41C into the domain of 'word­
processing', by allowing conversions of characters into numbers and vice-versa. 

Suppose we wish to identify or give a numerical value to a single alpha character. 
Since there are 256 characters (not all display differently, of course), the identification 
should consist of a decimal number in the range 0 to 2SS--i.e., the decimal equivalent of the 
byte code for the character. The same hexadecimal-to-octal-to-decimal conversion used in Sec­
tion 6B can be used for this purpose, as shown in this 'fharacter-to-Qecimal ("CD") program: 

81tLBL 'CD' 
82 ·I-.... x· 
83 XO [ 
84 XO d 
85 FS?C 88 
86 SF 86 
87 FS?C 89 
88 SF 87 
89 FS?C 18 

18 SF 8.9 
11 FS?C U 
12 SF 18 
13 FS?C 12 
14 SF 11 
15 XO d 
16 DEC 
17 END 

43 BYTES 

(Line 02 is 'F6 7F 0000 00 00 02', the same as in the program "EF" in Section SEe) 
Examples: "A", XEQ "CD" gives '65'; "$", XEQ "CD" gives '36'. 
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The reverse process, 'Decimal-to-Character' ("DC"), is only slightly more complicated. 
Lines 03-06 of "DC" ensure tnat the three octal digits of the input number always go into the 
same set of flags in Register d, even if the number is only a one- or two-digit decimal integer. 

81tLBL 'DC' 11 SF ·19 28 'f-... 
82 OCT 12 FS?C 17 21 CLX 
83 E3 13 SF 18 22 STO \ 
84 / 14 FS?C 15 23 'Hl' "DC" 
85 18 15 SF 17 24 XO \ 
86 + 16 FS?C 14 25 CLJ:! 58 BYTES 
87 XO d 17 SF 16 26 XO [ 
88 FS?C 19 18 XO d 27 AYIEW 
89 SF 28 19 STO [ 28 END 
18 FS?C 18 

Examples: '37 ' , XEQ "DC" gives "%"; I 64 I, XEQ "DC" gives II@". 

The problem of alphabetizing a set of alpha data strings requires a more complicated 
character recognition scheme than provided by "CD". Since the only alpha comparison the HP-
41C can make is 'X=Y?", we need numerical equivalents for entire alpha data strings in order 
to make the 'X<Y?' comparison necessary for alphabetizing. Once such a comparison is made, 
standard number sorting techniques can be used to alphabetize a list of alpha strings. A 
straightforward way of generating such an equivalent would be to use "CD" on each character 
of an alpha data string and combine the results into a single number. Notice that since the 
decimal equivalent of the character "l" is 90, the maximum value of a six-letter string is 
906 = 5.3 Ell, which is greater than the largest integer the HP-41C can handle. Therefore, 
this conversion process should subtract 64 from the decimal value of each character (making 
"A" = 1, "B" = 2, etc.) before making the combination of the six values into a single number. 

Synthetic programming offers a method of generating numerical equivalents for alpha 
stri ngs that is much shorter and faster than a character-by-character convers i on. The next 
routine, "AL" , alphabetizes a single pair of alpha data strings. It should be combined with 
the user's choice of ordinary number-sorting routines to alphabetize a set of alpha data. 

81.LBL 'AL' 12 RrN 22 RCL [ 
92 XEQ 81 13 XO IND T 23 RIN 
83 XH! 81 14 XO IND l 24.LBl 81 
84 X~Y? 15 XO IND T 25 .... (F2 81 81} "AL" 8S GTO 83 16 RTN 26 ARCL IND V 
86 RDN 17.LBL 82 27 .f-.... 70 BYTES 87 RDN 18 'x II' (F3 81 81 91) 28 ASTO [ 
88 XEQ 82 19 IlRCL IND Y 29 "f-•• ' SIZE 002 89 XEQ 02 28 ASHF 38 RCl [ 
18.LSL 83 21 "1-•• " 31 END 
11 X}Y? 

Instructions for "AL": 
1. Two alpha data strings to be ordered should be in numbered data registers. The 
strings can be 1 to 6 characters. 
2. Place the number of one data register in X, the number of the other in Y. 
3. XEQ "AL ". 
4. "AL" places the string that comes first alphabetically in the register originally 
designated in Y; the other string goes to the register originally designated in X. 

"AL" fi rst uses subrout i ne 01 (1 i nes 24-31) to change the fi rst four characters of the 
two strings into numbers for comparison. A 'number ' is characterized by a first nybble of 
'0 ' or '9 ' ; furthermore, numerical comparisons of alpha strings are only meaningful if the 
assigned numbers have common exponents. These two considerations restrict the alpha comparisons 
to four characters at a time, since we need to put a number identifier ("AL" uses byte '01') 
at the left of the string, and two bytes '00 00 ' on the right to standardize the exponents. 
This leaves only four 'free' bytes in a seven-byte register. Four characters are usually 
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sufficient to distinguish two strings; if the remalnlng two bytes of the original strings are 
required, subroutine 02 (lines 17-23) provides for that additional comparison. 

The trick of changing an alpha data string into a number can be 'reversed'. The next 
routine, "MANT", shows how a number can be changed into alpha characters to use alpha instruc­
tions like 'APPEND ' or 'ASTO ' to change the number. In this case, we want to replace a number 
with its mantissa by chopping off its exponent. We could do this using the 'LOG ' and 'lOx' 
functions, but that occasionally introduces error into the last digit of the mantissa. "MANT" 
always gives an exact result. Upon execution of "MANT", the number in Register X is replaced 
by its mantissa (including the sign); Y and Z are undisturbed; T, L, and the alpha register 
are lost. 

81+LBL "~lQNT" 89 1 ES8 
82 STO [ 18 * 
83 CLX 11 UISTX 

"MANT" 94 FIX 4 12 X),(? 

9S ARCL X 13 lIX 
86 XO [ 14 ! 36 BYTES 
87 "H" 1S FIX 9 
88 XO \ 16 END 

6E. SYNTHETIC TEXT LINES AND THE PRINTER 

Synthetic text lines, created by any of the methods described in Chapters 3 and 5, are 
particularly useful for printer applications. Any of the 128 standard printer characters can 
be included in a program text line by placing the corresponding byte (as found in the Byte 
Table) in the line. This eliminates the necessity for repeated use of the printer function 
'ACCHR ' • For example, try writing a routine that would print the characters "Big Deal #7". 
Using Flag 13 and 'ACCHR ' , you will require a total of 40 bytes. But the desired result can 
be obtained in only 14 bytes by writing a synthetic text line that contains the lower case 
letters and the "#" symbol explicitly: 

I 01 TB_ Dealt # 7 
02 PRA 

Line 01 is coded 'FB 42 69 67 20 44 65 61 6C 20 23 37 1
• It can be created easily with byte 

jumping, or with the text enabler: 

01 + 
02 * 
03 FRC 
04 X=O? 
05 RCL 00 
06 X<Y? 
07 LN1+X 
08 ABS 
09 HMS 
10 RCL 00 
11 RCL 03 
12 STO 07 
13 PRA 

("B") 
(" i") 
("g") 
(II II) 
("0") 
("e") 
("a") 
("1" ) 
(" ") 
("#" ) 
("7") 

TE .001 
Press correction 
key 5 times. 

[Ol"BIlIIi Dealt #7 II ] 

In a similar manner, we can replace the printer function 'BLOSPEC ' • Consider the special 
graphics character shown in Figure 6-1, where we show the dot pattern and the corresponding 
'values' and 'column print numbers ' as called for by the 'BLOSPEC ' instructions (82143A Printer 
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Owner's Handbook, pp. 64-66). 

V 
A 
L 
U 
E 

COLUMN NUMBERS 

1 2 3 4 5 6 7 

10000eoo 
20000eeo 
40000e __ 
aeooeooo 

16 e 0 e 0 0 00 
32 __ e 000 00 
64 e _ e eo 0 0 

120 96 80 72 7 6 4 

COLUMN PRINT NUMBERS 

FIGURE 6-1. A SPECIAL GRAPHICS CHARACTER 

The column print numbers are just the decimal equivalents of numbers made by treating 
each column as a 7-bit binary number, with dark dots as l's and blank dots as O's. The first 
time 'BLDSPEC' is executed, with zero in Register Y and the first column print number (l20) 
in X, an alpha data string is created in X which uses the seven bits of the first column 
print number (1111000) as the last seven bits of the string: 

X = 000100000000000000000000000000000000000000000000011111000 

When 'BLDSPEC' operates on the next column print number (96), its seven bits are copied into 
the last seven bits of X, with the previous entry 'pushed' to the left: 

X = 0001000000000000000000000000000000000000001111100011100000 

After the last column print number is entered, Register X contains: 

120 96 ao 72 7 6 4 

X = 0001 00011 1110 00111 0000 01101 0000 11001 00010 0001 11100 0011 01000 0100 

(hex) 1 1 E 3 o 5 o 9 o 1 C 3 o 4 

The successive column print numbers are shown above the binary representation of X. Below 
X, we show the byte codes corresponding to the bit pattern. This byte code is entered into 
program as a 7-character text line 'F7 11 E3 05 09 01 C3 04' that will place the byte code 
into the alpha register, whence it can be transferred to Register X using 'RCL M'. Then the 
printer function 'ACSPEC' can be executed normally. 

In practice, the step of computing the column print numbers is unnecessary. All you 
have to do is write out a 49-bit binary number to represent the 7 x 7 dot grid, using l's for 
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dark dots and O's for blanks. Start with the lower left corner of the grid as the leftmost 
bit, then work up to the top of the first column, then bottom-to-top on the second column, 
etc. When all the dots are encoded, add the 7 bits '0001000' to the left of the number for a 
total of 56 bits. Group the 56 bits into 4-bit digits, then make a 7-character text line from 
the hexadecimal equivalents. Since these bytes may come from anywhere in the Byte Table, use 
of "CODE" plus the Q-loader is an ideal way of creating the desired text line. 

Th is procedure may seem 1 ike a lot of t roub 1 e, but wi th pract i ce, it's scarcely more 
difficult than the normal 'BLDSPEC' method. The savings in program memory are obvious from 
the following comparison: 

'Normal' Program: 

01 0 10 BLDSPEC 
02 ENTER 11 7 
03 120 12 BLDSPEC 
04 BLDSPEC 13 6 
05 96 14 BLDSPEC 
06 BLDSPEC 15 4 
07 80 16 BLDSPEC 
08 BLDSPEC 17 ACSPEC 
09 72 

--30 bytes 

Synthetic Program: 

01 "II. ~.;u!lit II 
02 RCL M 
03 ACSPEC 

--12 bytes 

Of course, you could execute the normal 'BLDSPEC' sequence manually and store the result­
ing special character alpha data string in a data register for use by a program, ending up 
with a tota'l memory use (counting the data register) of only 10 bytes. But if the program is 
read from magnetic cards, a data card must also be read; furthermore, the data register used 
must be guarded against use by any other program as long as you desire to use the special 
character program. 

If you are bothering to read this section, you are probably using a printer to list 
the programs. On printer output, line 01 of the synthetic program last described will print 
as: 

01 "Qf5cr x o:" 

There are only five characters shown, because the program 1 i sti ng of a text 1 i ne wi 11 only 
show characters from the top half of the Byte Table. Characters correspondi ng to bytes in 
the lower half of the table are invisible. Furthermore, the print buffer uses bytes from 
rows A, B, 0, and E for internal purposes related to special character printouts, single and 
double width instructions, etc. Hence, text lines containing characters from those four rows 
may print out in very strange ways. For example, if a text line contains the character corres­
ponding to byte '05', a program listing containing that line will ha~ all printout following 
that character printed double-wide and lower case. 

6F. NON-NORMALIZED NUMBERS AND MASS FLAG CONTROL 

The use of synthet i c text 1 i nes is by no means restri cted to the programmed generat ion 
of non-standard character strings in the alpha register. A synthetic text line of up to seven 
characters, followed by a 'RCL M', wi.ll place an NNN into Register X. An important use of 
NNN's so created is for 'mass flag control' through storage of the NNN into Register d. We 
have already seen one application of mass flag control in the use of the text enabler. 

The programs described in previous sections have contained numerous examples of the use 
of instructions such as 'X<>d' to restore an initial flag status after the flag register has 
been used as a 'binary encoder'. The ability to create any NNN allows us to set or clear all 
56 flags in one operation. The basic sequence is: 

01 "xxxxxxx" 
02 RCL M 
03 STO d 

70 

(6F -1) 



where "xxxxxxx" represents the synthet i c text 1 i ne used to generate the NNN. Routine 6F-1 
uses 12 program bytes, the same as would be required for six ISF mnl or ICF mn l program lines. 
In general, therefore, it is more efficient to use Routine 6F-1 rather than individual ISF I 
or ICF I lines whenever more than six flags are to be set or cleared. Such occasions arise 
frequently in program initialization routines, where various user flags are set or cleared, 
and desired display and trigonometric formats are established. 

As an illustration, let us write a routine to set the HP-41C flags as follows: Flags 1, 
2, 3, 26 (audio enable), 28 (radix), and 29 (separator) are set; IFIX/ENG 31 display format 
(Flags 38, 39, 40, and 41 set); IRADI mode (Flag 43 set); continuous ON (Flag 44); all other 
flags clear. The IFIX/ENG I display is chosen particularly because it is a number display 
format that is not available without synthetic programming. In ordinary IFIX I format (Flag 
40 set, Flag 41 clear), numbers which are too large or too small to display properly cause 
the display to default to the ISCI I format. In the IFIX/ENG I format, however, the default is 
to IENG I mode. 

To determine the synthetic text line required to generate the desired flag status, we 
write out the states of all of the flags as a 56-bit binary number, with lis for set flags 
and OIS for clear flags, then group the bits into eight-bit hexadecimal bytes: 

audio radix digits RAD 
1 2 3 enab 1 e I separator ~ FI X/ENG //ON 
\ I / \ / \\ to. / / 

0111 000010000 000010000 000010010 110010000 001111101 100010000 0000 

7 010 010 012 C 1 0 310 810 o 

We see that the required text line is IF7 70 00 00 2C 03 08 00 1• This particular byte code 
is a challenge to each of the synthetic text 1 ine generating methods we have studied. For 
example, because the line is eight bytes long, it canlt be created with a single operation of 
"REG". However, we can key into program a I dummy I 7 -character text 1 i ne and jockey it around 
in memory by adding or deleting bytes higher in memory until the seven character bytes are 
positioned all in the same register (i.e., with the program display showing the dummy line, 
IRCL bl , XEQ "AD" should give an address starting with a byte number 111). Then we can use 
"REG" to store the code 170 00 00 2C 030800 1 into the register containing the dumlllY characters, 
leaving the IF71 byte intact. 

It is tricky to use the byte jumper or the text enabler to edit in the text line because 
of the 108 1 byte, which cannot be keyed in as a stand-alone line. Also, the Q-loader wonlt 
work because of the 100 1 byte on the end. If we used the Q-loader on the code, we would 
obtain a six-character text line, since the Q-loader lignores l any leading nulls in the input 
code. But a combination of the byte jumper and the Q-loader will do the trick. We first use 
the Q-loader with the code 101 08 03 2C 00 00 70 1, where we have replaced the 100 1 byte with 
an 1011. Then we byte-jump to the 1011 and delete it. 

"01 08 03 2C 00 00 70" 

01 'STO 07 

XEQ "CODE" 
R/S 
GTO new program 
PRGM off 
STO Q 
PRGM on 
press Q-loader 
DEL 001 
PACK, SST 
JUMP .002 
DEL 001 
DEL 001 

[CODE=? ] 
["~ .. , --... ] 

[02 9 ] 
[01 STO 07 ] 
[02 ... -- I ",~~I ] 
[02 LBL 00 ] 
[01 STO 07 ] 
[00 REG abc ] 

We finish by adding the lines 102 RCL MI, 103 STO dl to match Routine 6F-1. 
Storing NNNls into Register d is the only way we can set many of the Isysteml flags, 

i.e., Flags 30-35, 45-47, and 49-55. Although control of these flags usually leads to some 
amusing but not particularly useful effects (see Section 7B), an example of a practical appli­
cation involves setting the system Data Entry Flag 45 (already encountered through use of the 
text enabler). 
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Often, especially during calculations using statistical accumulations, we are required 
to enter a string of numbers that differ only in the last digit or two, like 1123456 1, 1123457 1, 
1123460 1, etc. To save entering the 11234 1 each time, we could add a few program steps that 
add 1123400 1 to our entries so that we only have to enter the final two digits of each number. 
But we can make the process even more Ifriendlyl by asking the HP-41C to enter and display 
the 11234 1 in such a way that when we key in the final two digits, we see the 11234 1 at the 
same time. Setting Flag 45 allows this kind of operation: 

01 "111-" (F2 84 00) 
02 RCL M 
03 X<> d 
04 1234 (6F-2) 
05 STOP 
06 X<>Y 
07 STO d 

The first character of line 01, byte 184 1, sets Flags 40 and 45 when stored into Register 
d. When the program halts at line 05, with Flag 45 set, the processor thinks it is still in 
the process of data entry. At the halt, the display will show 11234 1 (Register X). If we 
press a number key, 15 1 for example, the display will become 112345_ 1, with the underline 
indicating that further digit entry is possible. Lines 06 and 07 are optional--they serve to 
restore the initial flag status, leaving the newly entered number in Register Y. 

The same trick used in Routine 6F-2 works with alpha character entry, so that we can 
add alpha characters to a current alpha string while displaying the entire string. Or, to 
go one better, we can append alpha characters to a display message, yet have only the newly 
entered characters remain in alpha for processing. To illustrate, replace the first five 
lines of "CODE" with this sequence: 

01 LBL "CODE" 
02 "A II" (F2 04 80) 
03 RCL M 
04 X<>d 
05 "CODE=" 
06 AVIEW 
07 CLA 
08 STOP 
09 X<>d 

(6F-3) 

Lines 02-04 set Flags 45 and 48 (ALPHA on). Lines 05-07 arrange that when the program halts 
at line 08, the display will show "CODE=", even though the alpha register has been cleared. 
When we key in the alpha characters for the code, they enter the alpha register normally, but 
also appear in the display appended to the "CODE=". If, during the halt, we clear the display 
by turning ALPHA off, then on, the phantom "CODE=" will disappear, leaving only the keyed-in 
characters in the display. This is not a profound achievement, but it does make the HP-41C 
even Ifriendlier l • Unfortunately, there doesnlt (yet) seem to be a way to add numerical 
entries to alpha prompts. 

A cautionary note is in order regarding the use of NNNls in the HP-41C. The arithmetic 
routines in the calculator were designed to handle only normal decimal numbers. Their use 
with NNNls can have surprising and occasionally unpleasant results. For example, use "CODE" 
to generate the NNN 100 00 01 00 00 00 00 1, which will be displayed in ISCI 51 format as 
10.00010 EOOI. Now execute II/XI, and watch what happens. The display will blank for about 
5 seconds, during which time the keyboard is Ilocked out l , i.e., the HP-41C will not respond 
to any key presses, inc 1 udi ng the ION' switch. The NNN denomi nator causes the del ay: the 
Idivide l process (or l/X) assumes that both numerator and denominator are stored in proper 
scientific format. Dividing is carried out as a series of subtractions--the two exponents 
are subtracted, then the denominator is repeatedly subtracted from the numerator--in effect, 
a reverse of multiplication by repeated adding. The process doesnlt take long if both numerator 
and denominator mantissas are of order unity, as they should be, but in our example, the denom­
inator mantissa is only 0.0001, so that 104 times as many subtractions are necessary to 
complete the division. Five seconds is not long, but other NNN's could easily require 5000 
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seconds or more for divisions. Other functions may take even longer: 'LOG (0.0001 EO)' takes 
45 seconds, compared to the 5 seconds for 'I/X'. The' normal i zat i on' of regi ster contents 
that occurs when register recall functions are executed is specifically designed to eliminate 
the danger of calculator 'lockups' caused by NNN's that might be introduced into data registers 
when a memory module·is inserted. So, be careful. As with most other crashes, battery removal 
and replacement will unlock the machine. 

6G. RAISING THE CURTAIN 

Because of the savings in program bytes associated with the use of theone-byte 'STO' 
and 'RCL' functions, it is desirable for programs to use data registers ROO-RI5 whenever 
possible. Thus, it is quite common to have several programs in the HP-41C memory which each use 
the same block of data registers, so that execution of one program would destroy the data 
used by another. One solution is to write a data transfer program that moves the contents of 
a block of data registers to another block, clearing the first set of registers for use by 
another program. If the number of registers involved is large, this will be a slow process. 
The program "CU" (for 'Curtain') offers an alternate, faster solution. 

81*LBL "CU" 13 CLX 25*LBL 12 37 DSE [ 
82 STO L 14 UlSTX 26 FC?C IND Y 38 GTO 11 
93 CLX 15 IHT 27 SF IND Y 39*LBL 14 
94 RCL c 16 X=9? 28 FC? IND Y 48 XO ] 
85 STO [ 17 GTO 14 29 CHS 41 XO d "CU" 96 .1-..... 18 2 38 X)9? 42 STO [ 
87 11 19 I 31 GTO 13 43 'HlBC' 87 BYTES 88 XO [ 29 RCL [ 32 FC? IND Y 44 XO \ 
89 XO d 21 X< >Y 33 CHS 45 STO c 
18 STO ] 22 FRC 34 DSE Y 46 RDN 
l1*LBL 11 23 X=9? 35 GTO 12 47 END 
12 RDH 24 GTO 13 36*LBL 13 

Instructions for "CU": 
1. Enter an integer number 'n' into Register X. 
2. XEQ "CU". 
3. If n)O, Rn will become the new ROO. If n(O, R_ n will become the new ROO. All other 
data registers will shift accordingly. 

"CU" takes an integer number 'n' from Regi ster X (entered manually or by another program) 
and adds it to the address of ROO stored in Register c. If 'n' is positive, data registers 
ROO through Rn-l will be 'transformed' into program registers, by raising the imaginary 
'curtain' that separates data and program memory from its initial position below ROO to a 
new position below Rn; Rn becomes the new ROO. If 'n' is negative, the curtain is lowered, 
so that 'n'registers of program memory are transformed into data registers. All of this occurs 
without alteration or moving of the contents of the registers involved. 

Suppose 'Program I' is executed, 1 eavi ng data i n ROO-R~O that is required for future 
use. But in the meantime we wish to execute 'Program 2', WhlCh uses registers ROO-R25 for 
its own purposes. In thi s case, we enter '51' into X and execute "CU" (the's i ze' shou 1 d be 
77 or greater). Following execution of Program 2, we can prepare for a second run of Program 
1 by pressing '-51', 'XEQ "CU'''. 

**Warni ng: Ra i si ng the curta i n above the top of memory, i. e., executing "CU" for 'n' 
greater than the current's i ze', or 1 oweri ng it to (hex) addresses from '010' through 'OCO', 
or to '000', will cause 'MEMORY LOST'. 

"CU" works by performing a binary addition of the number 'n' to the hexadecimal digits 
9-11 of Register c that constitute the 'curtain' address. The corresponding Flags 32-43 in 
Register d cannot be controlled individually, so the contents of Register c are transferred 
to Regi ster M and shi fted '1 eft' by appendi ng nu 11 bytes (l i ne 06). Then 1 i nes 08-09 place 
the curtain address into Register d as Flags 00-11. 

Binary addition is a very simple process. To add 1 to a binary number, we merely switch 
the value of the last bit, from 1 to 0 or vice versa. If the last bit becomes a 1, we stop. 
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If it becomes a 0, we switch the next bit to the left. If the next bit becomes a I, we stop; 
if it becomes a 0, we go on to the next bit to the left, and so forth until we stop at a bit 
that changes from 0 to 1. Subtracting 1 is almost the same--we follow the same procedure, 
starting on the rightmost bit and working left until we encounter a bit that changes from 1 
to O. Adding 2 (binary 10) works the same way, only we start with the next-to-last bit. In 
general, to add 2m, we start with the 'm+ll bit, counting from the right. 

Binary addition is performed in lines 11-35 of "CU". The entered number Inl is broken 
up into binary bits through repeated division by 2 (1 ines 18-19). The successive bits are 
added or subtracted to the address bits according to the test in line 30. Once the addition 
; s comp1 ete, the three bytes of the Reg; ster c code that are in Regi ster dare rejoi ned to 
the first four bytes waiting in Register N (lines 41-42). Then the full code is bumped into 
N (line 43), and finally restored to Register c in line 45. When "CU" is finished, the contents 
of stack Registers X and Y prior to entry of In l are restored. 

The HP-41C will operate quite normally while the curtain is raised or lowered from the 
position last established by a 'SIZE ' operation. However, if the curtain is raised, changing 
data into program, the memory should not be 'PACKed ' , since that will most likely change the 
data stored below the curtain irreversibly by removing all the null bytes in the data. This 
difficulty can be avoided if an 'END' is placed at the top of program memory, followed by 
execution of 'PACK ' • If the curtain is subsequently raised, the data registers transformed 
to program memory wi 11 be unaffected by any I PACK I. They are protected by the I END I, wh i ch 
was coded to indicate a packed file. 

A second important application of "CU" is to change data into program permanently, 
providing us with yet another means of generating synthetic program lines. This method is 
most useful when several consecutive registers of program, or perhaps an entire program, 
contains sufficient synthetic program 1 ines to justify being written entirely with "CODE". 
In that case, we use "CODE" to generate the byte code for each seven bytes of program, storing 
the successive codes into adjacent data registers. The last seven bytes go into ROO, the 
next-to-1ast into ROl, etc. (This, incidentally, is a major justification for writing "CODE" 
so that it uses no numbered data registers.) When the coding is complete, we use "CU" to 
raise the curtain above the highest data register containing program. The synthetic codes 
will then appear as program lines, starting at the top of program memory. To access the new 
lines, we use 'CAT 11, stopping at the first global label or 'END', followed with a manual 
'RTN'. Here's a sample: 

"COOOF400600401" 

IF32801297E8685" 

2 

XEQ "CODE" [CODE=? 

R/S [".-11- TAiIi II 

STO 01 
XEQ "CODE" [CODE=? 

R/S ["IB (iii) EIIII" 
STO 00 

XEQ "CU" 
CAT I--stop at first label or END 
RTN 
SST to see new program: 

01 LBL II TA;!; II 

02 II (iii) II 
03 AVIEW 
04 BEEP 
05 RTN 

] 

] 

] 

] 

At this point, the LBL II TAiIi II will not show up in the user catalog since it is not part 
of the global chain. This can be fixed by inserting then deleting a temporary program line 
anywhere among the new lines, followed by 'PACK ' • 
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6H. APPLICATION PACS: SNEAKING IN THE BACK DOOR 

The_Aqn,.1.ir-.i!jjrut. p.".C_ 'RE'.ad:n.nl)!, Mt:'mor.vol (P.OM),' ITJruWJp.s~ f(1.J'. t-.h'i'~ J.\1?-4}L ;u".'\.. ~. il'lr.)ru'.+a.r.t .. 
meansofextendifl9thememo~y -£apacityof the -calcuiatortoincludean _extensive 1 ibraryof 
~preprogrammed rout iRes. Un-fortunately. many of the routines suffer from the limitation that 
-they cannot be call-edasatltomatic subrout inesfrom user prO-gr-ams becaus_e of-thevartous halts 
for manual input and output -included in the ~outhles. -Inmauycases, _thislimttatton can be 
overcome b-yusing the followiRgroutine.which permits directbranthingto any po tnt in any 
ROM routine: 

I 8t+LBL -WROI'I" ux<y[ 21-XO ~] I 
I 82 SF 91 12XO \ ~22 X(>-a I 
I 83 XOa _13XO [ 23XO \ I 

-84XO \ HARCL-eO 245lOb 
I 

If ROW' 
I 

I 

85 elX -lS -.i-----~. .-25+[BL99 I 
I 86RCLb _16XOt 26-X{> \ I 73 .BVTES I 
I 87F"C?C-61 17-XO J 27Cl-1l I 

88 G10-80 lS"!-++" 28 END I $IZ£OOl 
I 

I 
e9STO [ 19S10 [ I 18 -"i-ttttt" 28-"i-**" I I I 

Instructions 'for "ROMI!: 
Prior to execution of"ROW • store in ROO -the _aosoiuteadctl"'ess of -the _point in the 

ROt-1 routine Where yo-uwiSh -execution to begin. Then, your program shaul-d eail "ROM" .as-a 
subroutine rather than_caHingthe ROMrautinedire-c.tly. TheRPN stack.and _d.ata register'S 

-shouldbeconfigul"ed-.as expe.cted ,bytheROMprQgr..am at the 'Point -of entry."ROM"tl"ansfers 
-executtontothespeCifted addressintheROM,foil owing wni chthe routine executesnonnally. 
returning to the origin-almain .-program upon -encoonteringthefinal LRTN' _or 'END' -in the -ROM 

-routtne. Although orciin-arHyaROM pr.ogr-amcall-ed _by tts-global Tabel -can_be a -sixth-level 
~subroutine(i.e •• J:!uring Ttsexecution, there can b-eup-tosi-x peRdtng -addres.sesinthereturn 
s.tack~,"ROM" -can only -be ccnledasa fifth level subroutiAe. 

-The 1 oss ofoflesub~outi-ne1-eve l.arisesITomthe way that "ROf.1" works. Followingexecu­
tionof line.09, _the -alJ3ha re.gi-sterwHlcontaina r-eplic-a -of ther.eturn statkinRegistersa 
andb: 

R6R5R4R-3~R2RIA6 

where • A6 1 is -the _absolute -addr..es-s ~(jfthe second byte of ~line-06 (that I-swher..e theRCLb was 
made) ;'Rl 'icsthe return aCidr-ess of the .pr-oJ}r.am -Unefrom which'~OWwas -called =asa subrou­
tine; 'R2 I is the second pend i ngsubrout i He r-eturn ,etc. Li-ne-s 10-20shuffl ethe th-~acters 
in the -alpha regist-er -around until Registers 0 _aFld -N contatn a newl"eturn stack ~ofthe form: 

R5R4R3R2 -R1 cERM 

where !ERi~sthe -add r-e s-s of-the _entry point -i,nth.eexternal-ROM, recalledfr0'!1RoO' tiotice 
that the 'Ro ' addressnaslYeenlost, -ac..countHl.9fortheios-sofonesubroutlp.e level -when 
executiFlg"ROW'.The -new 1".eturn stack -isstore-dinto -R.egistersa -and b.by liRes 21-24. At 
the ·e-xecutionofl-ine '24 -STOb', 'A6 ' -becomes -the-pointer -address, so -that.e-x-ecution wHi 
resl.lmewithlrne OZ. Thi stimethl"ough, -PiagOlis c1ear-.sotheprogramjumpstoltne 
~Z5 LBL 00 I • Lines 26,;.27compi ete some I ho.usekeepi-ng I. restori-ngthe RPN -staGkto its -state 

..at the point when "-ROM"was -cal1_ed.The IEND ' dropsthe)"et.urn =stack, so that IER'.the 
address intheROM,hecomesthe .pointer -atldl"ess, whereupon execution transfers, to the ROM 
program. At the -fi na l' END I or ~RTN'enCOUriteredthere, execut ionr.eturnstothe user program 
at :the -can ingaddress 'RI'. Remember that the -ROM routine itself may ..add ~subrolitine -levels.. 
causin:g 'R5 '-, IR4' ,.etc. to -be lost. 

Thepr-oc-edur-efor determining -the-correct~ROMentry point address isquit-€ simple. First, 
-execute a I GTO I -to any _9 lob-a 1 ~labelwithintheROM -program-of interest. Then press I_GTO .lmn I, 
wher-e ! lmn 'ts -the line Rumber -of the Hne where you want program exeCtlt ion to _tr-ansfer. -Then 
presst-ReL bl,'eLA i

, 'STO M' ,I-ASmOO'-,whiehpl-acesthe -addressin:Roo.inthe -prop.erform 
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for use by "ROM". The choice of ROO is arbitrary; if that register is required for some other 
purpose, any data register may be used if line 14 is altered accordingly. 

An an example of the use of "ROM", suppose we want to use the "SSS" routine in the Math 
Pac. This routine prompts for manual entry of the lengths of three sides of a triangle, then 
outputs the angles, sides, and area of the triangle. If the printer is not attached to the 
HP-41C, the output requ ires manua 1 I RjS I S to produce each of the seven outputs, prec 1 udi ng 
use of "SSS" as an automatic subroutine. 

Use of "ROM" can eliminate this difficulty by allowing "SSS" to be Icalled l at a point 
in the program after the input halts, and also after the ISF 211 instruction (line 65) that 
causes the output halts in the absence of the pri nter. A good entry poi nt is 1 i ne 106 LBL 
05 1• At this point, the program assumes that the lengths IS11, IS21, and IS3 1 are already 
in ROO, R02, and R04, respectively, so we must arrange the calling program to accomplish that 
storage: 

1I1tLBL ""'!lIN' 
112 25 
113 STO lie 
114 35 
115 STO 112 
86 45 
117 STO 114 
118 XEQ "RO"" 
119 'DONE" 
HI !lYlE'" 
11 END 

In this sample program "MAIN", we include explicit side lengths of 25, 35, and 45. Notice 
that since "SSS" uses ROO, we can not use that register for the ROM address. To run the 
program: 

1. Change line 14 of "ROM" to 114 ARCL 10 1• 
2. GTO ."SSS" 
3. CLA 
4. GTO 05 (or GTO .006) 
5. RCL b 
6. STO M 
7. ASTO 10 
8. XEQ "MAIN" 

When "DONE" appears in the di spl ay, we wi 11 fi nd the results 

Al 
A2 
A3 
AREA 

95.74 
33.56 
50.70 

435.31 

in R01 
in R03 
in R05 
in X. 

For subsequent executions of "MAIN", steps 1 through 7 above may be omitted, providing the 
ROM address stored in RIO are undisturbed. 
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CHAPTER 7 

AMUSING ANOMALIES 

The primary purpose of synthetic programming is to extend the programming capability of 
the HP-41C. The application programs in Chapter 6 are the results of straightforward use of 
synthetic functions, plus a lot of experimentation, wild ideas, diligent searching, etc. It 
should not be surprising that this exploration of the inner workings of the HP-41C has also 
turned up a number of oddities, which have no important practical uses, but are nevertheless 
amusing to play with. This chapter contains descriptions of several of these oddities. 

7A. 128 TONES? 

In normal operation, the HP-41C can execute the ten tones 'TONE 01 through 'TONE 91, 
corresponding to the byte codes '9F 00 1 through '9F 09 1• We saw at the the end of Chapter 3, 
however, that the code '9F OA ' executes a new tone, longer in duration and lower in frequency 
than any of the standard tones. '9F OA ' displays in program mode as 'TONE 01, as we saw in 
the 'Hangman ' program of Section 6C. We can use synthetic programming techniques to attach 
to the '9F' prefix any of the 128 postfixes from rows 0 through 7 of the Byte Table. It turns 
out that almost every combination gives a different tone. There are 16 frequencies, correspond­
ing to the 16 possible values of the second nybble of the tone line postfix. Two tone codes 
differing only in the first nybble of the postfix produce tones of the same frequency, but 
usually of varying duration. 

In program mode, any 'TONE ' line with postfix less than hex 165 1 (decimal 101) will dis­
play as 'TONE n' , where In l is the second digit of the decimal equivalent of the postfix byte 
For higher postfixes, the lines will display as 'TONE ai, where la l is a single alpha character 
postfix, such as 'TONE 01 for code '9F 69 1 or 'TONE pi for code '9F 78 1• Table 7-1 shows the 
tone durations and frequencies for each of the 128 possible postfixes. The data in the table 
was assembled by Richard Nelson (PPC Calculator Journal, V7 Nl P21, 1980). There are a few 
cases of duplication, so that there are actually only 114 'different ' tones. 

In order to experiment with these tones, you can execute the program "TONE", which wi 11 
automatically create 127 'TONE ' program lines (all but 'TONE 01, '9F 00 1, which can be made 
normally). After execution of "TONE", the first 127 lines of the first program in memory will 
be 'TONE ' lines, with the line number of each line being the same as the tone number, from 1 
to 127. "TONE" calls "DC" (Section 60) and "CU" (Section 6G). Prior to execution, set 'SIZE 
046 (or greater) I. After execution the size will be reduced by 43 registers. 

The 'synthetic tones l are no more 'musical ' than the standard tones. Nevertheless, the 
additional frequencies and variety of tone durations allows much more interesting audible 
output from the HP-41C. 

81+LBL "TONE· 
El2 .13 
83 STO 43 
84 42 
8'5 STO 44 
86.LBL 81 
87 (LA 
98 XEQ 83 
89 XEQ 83 
10 XEQ 83 
11 "1-." 
12 RCL [ 

13 STn HiD 44 
14 DSE 44 
1'5 GTO 01 
16 " .. " 
17 RCL l 
18 STn 99 
19 43 
28 XEii "CU" 
21 BEEP 
n RTI! 
23.LBL 03 
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24 "I-" 
25 ASTO X 
26 ISG 43 
27 RCL 43 
28 IIH 
29 XHi. "DC" 
38 ASTO X 
31 CUi 
32 IlRCL 'r' 
33 HRCL X 
34 END 

"TONE" 
78 BYTES 

SIZE 045 

,' .. " 



....., 
co 

Fre 
0 

:to (Hz) 175 

0 TONE 0 

0.28 

1 TONE 6 

2.00 

!rONE 2 

2 0.025 

!rONE 8 

3 0.54 

4 
IroNE 4 

1.88 

1r0NE 0 
5 

0.085 

!rONE 6 

6 
0.65 

!rONE T 
7 

1.70 

0 

1 2 
197 225 

1 2 

0.28 0.28 

7 8 

0.34 1.50 

3 4 

1.13 2.35 

9 0 

0.37 2.10 

5 6 

2.35 0.40 

1 2 

0.22 1. 75 

7 8 

2.32 0.43 

Z Y 

0.65 1.45 

1 2 

TABLE 7-1. TONE FREQUENCIES 1 NUMBERS 1 AND DURATIONS (SEC) 

3 4 5 6 7 8 9 A B C 
263 315 394 525 629 788 1051 105 113 121 

3 4 5 6 7 8 9 0 1 2 

0.28 0.28 0.28 0.28 0.28 0.28 0.28 2.20 2.20 2.70 

9 0 1 2 3 4 5 6 7 8 

0.33 0.50 1.00 0.45 0.84 0.30 0.55 5.00 3.50 2.00 

5 6 7 8 9 0 1 2 3 4 

2.00 1.35 0.023 0.023 0.35 0.70 0.52 0.85 0.45 3.20 

1 2 3 4 5 6 7 8 9 0 

1.95 0.28 0.15 0.80 0.77 0.65 0.058 0.42 0.41 3.30 

7 8 9 0 1 2 3 4 5 6 

0.24 1.05 0.29 0.032 0.24 0.14 0.15 3.70 0.30 3.76 

3 4 5 6 7 8 9 0 1 2 

0.74 0.28 1.25 0150 0.14 0.58 0.050 2.70 0.42 3.21 

9 0 1 A B C D E F G 

1.25 0.12 1.00 0.99 0.84 0.70 0.52 0.23 0.45 3.62 

X L M N 0 p Q f- a b 

0.52 1.25 1.30 0.24 0.84 0.14 0.33 0.25 4.60 0.76 

3 4 5 6 7 8 9 A B C 

SECOND POSTFIX DIGIT 

D E 
131 143 

3 4 

3.50 0.80 

9 0 

4.10 0.30 

5 6 

0.18 1.36 

1 2 

0.39 0.97 

7 8 

3.40 0.89 

3 4 

2.95 0.30 

H I 

0.33 2.10 

c d 

4.00 3.50 

D E 

F 
158 

5 

2.30 

1 

2.40 

7 

0.13 

3 

0.30 

9 

0.90 

5 

2.40 

J 

0.35 

e 

2.90 

,to" 

0 

1 

2 

3 

4 

5 

6 

7 

" -::0 
CJ) 

-I 

""tI 
o 
CJ) 

-I 

" -x 
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7B. TRICKS WITH SYSTEM FLAGS 

In our development of synthetic programming, we have encountered several examples of the 
deliberate setting of normally inaccessible system flags to produce surprising (such as the 
setting of the Low Battery Flag 49 in Section 40) or useful (the text enabler, Section 5H) 
results. Some further amusing effects can be produced by setting system flags. Here is a 
set of routines for use in flag register explorations: 

"SAVE" 
16 BYTES 91*LBL ·SAVE· 19 RTH 19 SF IHD X 

92 9 l1*LBL "FL" 29 RCL d 

SIZE 002 93 RCL d 12 24 21 STO [ "FL" 
94 XEQ ·CS· 13 - 22 ·f-ABCD" 

"RE" 95 RTH 1'1 XO d 23 XO \ Lll BYTES 
96*LBL ·RE· 15 STO [ 24 STO d 

14 BYTES 
97 9 16 .1-.... 25 EHD 
98 XEQ ·CR· 17 RCL [ 

SIZE 002 89 STO d 18 XO d 

Prior to experimenting with the system flags, you should execute "SAVE", which recalls the 
current content of Register d and stores it (using "CS") in ROO and ROl. Then, at any time, 
you can return your calculator to its initial flags status by executing "RE" (which calls 
"CR"). 

"FL" provides a means of setting any system flag (up to Flag 53) by moving the content 
of Register d 'to the left', where control of user flags allows us to set the bit in the 
'shifted' location of the system flag of interest. Then the Register d bytes are shifted 
back to their original position; when the program halts, the chosen system flag will be set. 
For example, '49 XEQ "FL'" turns on the BAT annunciator; '47 XEQ "FL'" halts execution with 
the SHIFT annunciator active (and the next key pressed will execute its shifted function). 

Setting Flag 30 will produce some unusual 'catalog' displays. These phantom catalogs 
don't have any particular application, but it is interesting to watch the various 'entries' 
in the catalogs as they cycle through. According to Thomas Cadwallader, different catalogs 
are accessed by choosing various number display formats before setting the catalog flag. To 
see one such catalog, try 'FIX 9, 30, XEQ "FL", RIS'. Notice that these catalogs can be 
halted and single-stepped just as any normal catalog. 

For whatever it's worth, we can turn on program mode wi th '52 XEQ "FL"'. You may have 
wondered how, in programs like "CODE" and "DECODE", we could be so cavalier about storing 'any 
old thing' into Register d--why, for example, doesn't the HP-41C switch to PRGM mode when 
Flag 52 is set during a running program? The answer lies in the fact that the processor only 
checks the statuses of the various flags at particular times, not continuously, so as long as 
potentially dangerous flags are cleared before they are checked, nothing untoward happens. But 
there certainly are pitfalls: to see what can happen, alter "FL" by inserting aline '25 I' 
following line '24 STO d', then press '52 XEQ "FL'''. The processor does turn on PRGM mode, 
but since the program is still running, the HP-41C starts to program itself, filling up avail­
able space with 'I' lines until memory is full, at which point the display shows 'PACKING, 
TRY AGAIN'! Evidently, one of the times Flag 52 is 'checked' is at number entr~ program lines. 

Flag 50, the Message Flag, is perhaps the most interesting of the system flags. At the 
time Flag 50 is set, whatever happens to be in the display is 'frozen in'. To see four dif­
ferent possibilities, key in (after cleaning up all the 'I' program lines made in the last 
experiment) a line '24 STOP' following line '23 X<>N'. Then try '50 XEQ "FL''', and observe 
the display when the program halts. Press and release 'SST' quickly. The number displayed 
(in 'SCI A' format) remains as it is, although various annunciators may change at the 'SST'. 
Pressing the correction key will return the display to its 'pre-"FL'" format. Now try '50, 
XEQ "FL", SST' again, only this time press and hold the SST key to see '25 STO d', then release 
--the '25 STO d' remains in the display. Next, run '50 XEQ "FL''', and execute a 'STO d' manu­
ally (you will have to turn on USER mode to access the 'STO d' key assignment). This time 
the display will freeze as 'XROM 05,62'. Finally, do one more '50 XEQ "FL", then press 'RIS'. 
The flying goose is brought to roost! To move the little fellow to a different position, 
insert a few 'LBL aI' lines into "FL", delete the 'STOP' line, and try another '50 XEQ "FL'''. 

Judicious clearing of Flag 50 can also produce an interesting result. During a running 
program, if Flag 50 is clear, the display shows the flying goose. However, if a 'VIEW mn' 
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or an 'AVIEW' is executed, Flag 50 is set and the content of the specified register is displayed. 
A 'CLD' clears Flag 50, and returns the goose to the display. But if, during a 'VIEW', we 
clear Flag 50 without use of 'CLD', the processor restarts the default display, but steps the 
'VIEW' display around instead of the goose. In effect, we can replace the flying goose with 
any other character, or string of up to twelve characters. The easiest way to accomplish 
this trick is to have the program execute an 'RCL d' just before the 'VIEW' line, i.e., at a 
time when Flag 50 is clear. Then immediately after the 'VIEW' is executed, the program does 
a 'STO d', restoring the pre-VIEW status of Flag 50: 

01 "ABCD" 
02 RCL d 
03 AVIEW 
04 STO d 

05 0 
06 LBL 01 
07 SIN 
08 GTO 01 

When you run this routine, you will see "ABCD" stepping around the display. Lines 05-08 
prov i de an end 1 ess loop to make our ersatz goose f1 y. Lines 01-04 can be inc 1 uded in any 
program, using any 12-character display to 'personalize' your running program. This trick is 
used in the 'Hangman' program of Section 6C to display the 'guessed letter' in a novel manner. 

Here's a one question quiz to test your HP-41C ingenuity. There are 216 independent LCD 
segments in the HP-41C di sp1 ay--12 'starburst' characters times 14 segments = 168 segments; 
p1 us 12 'colon & comma' characters times 3 segments = 36 segments; p1 us 12 number and word 
segments in the annunciators; [168 + 36 + 12 = 216]. The question: How many segments can be 
'on' simultaneously, with the 41C in 'standby' mode (i.e., on, but not running a program)? 
When you think you have the answer, and can demonstrate your number with an actual display, 
try running the routine "01". If you can turn on more segments than "01", you have learned 
more than this book can teach you! 

ill *LBL "DI· 

83 RCL f 
84 .:::" 
85 ~STO Y 
86 ARCL Y 
87 QRCL i' 

8B ~~:cL Y 
89 AVIEW 
II! ;0,\ :.'"d 
I! END 

7C. FLYING THE GOOSE BACKWARDS 

82 • .. e*1 (F7 F8 00 00 10 00 21 E8) line 02 

(F6 80 3A 80 3A 80 3A) 
"DI" 
37 BYTES 

To wrap up the exposition of synthetic programming, I'd like to give you one more example 
of 'they said it couldn't be done, but we did it (with synthetic programming, of course)!' 
As far as the user community was concerned, the best kept secrets of the HP-41C were the 
existence of the backward-facing goose character, and the means to display it. (Of course, 
there may be better-kept secrets, but they're still secrets.) To coax this shy creature 
into the display, we need one last new synthetic function, 'FIX 10'. 

Numeric displays in the HP-41C are controlled by Flags 36-41. The 'FIX' format, for 
example, is established if Flag 40 is set and Flag 41 is clear. Digits Flags 36-39 control 
the number of digits that are displayed following the decimal point. The four flags constitute 
one hexadecimal digit; the number of digits displayed is equal to the value of that digit. 
Normally, the 'FIX' format is chosen from among 'FIX 0' through 'FIX 9', where the corresponding 
values of the four Digits Flags range from '0000' to '1001'. 

With synthetic programming techniques, we can place any values we wish into the Digits 
Flags, extending the range of 'FIX' formats to include 'FIX 10' through 'FIX 15'. The display 
can't show more than ten digits, of course; in fact, 'FIX II' through 'FIX 15' produce displays 
identical to that of 'FIX 0'. But' FIX 10' does produce a new displ ay format. For numbers 
with positive exponents, only the full ten mantissa digits are shown, with the exponent sup­
pressed. Thus, for example, '1.234567891 E56', will show in 'FIX 10' as '1.234567891', whereas 
in 'FIX 9' it would display as '1.2345678 E56'. 
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There are several ways to place the HP-41C in 'FIX 10' format. As suggested above, we 
can directly set the value 10 (1010, or hex 'A') into the Digits Flags by storing an appropriate 
NNN into Register d. Another easy way is to set 'FIX 8', which sets Flag 36 and clears Flags 
37-39, then use '38 XEQ "FL"'. Or, the synthetic function 'FIX 10' (code 9C OA) can be used, 
either as a program line (it displays as 'FIX 0') or by assigning it to a user key (the pre­
fix/postfix for "KA" is 156/10). Finally, we could place the NNN 'OA 00 00 00 00 00 00' into 
Register X, and execute 'FIX IND X'. 

'FIX 10' has a moderately useful practical appl ication as a means to display only the 
mantissa of a number with a positive exponent. Unfortunately, the method isn't quite clean: 
if the exponent is 10, 11, 12, or 13, when taken modulo 14, some of the mantissa digits will 
be represented in the di spl ay by character from row 2 of the Byte Tabl e rather than by the 
proper number characters from row 3. The most dramati c exampl e is when the exponent is 13 
(or 27, or 41, etc.) and Flags 28 and 29 are clear. In this case, only the first mantissa 
digit will display normally. '1.234567891 E13' will display in this mode as '1"#$%&'(): ' 
--still decipherable, if you have your Byte Table handy, but not very convenient. 

The display of row 2 characters is by no means limited to the normal decimal digits '0' 
through '9'. Referri ng to the Byte Table, you wi 11 observe that bytes '2C', '2E', and '3A' 
each have two associated characters. In alpha displays, these bytes always show up as the 
characters ",", ".", and ":", respectively. But in number displays, the individual number 
digits are each represented by a character--lo and behold, in a number with the proper exponent, 
mantissa digits 'C' and 'E' are represented by the geese "~" and" :c+-", respectively. The 
'3A' number character is the 'starburst'--as we found out jn Section SA. 

To catch a couple of geese, set 'FIX 10' by any method, and clear Flags 28 and 29. Then: 

"0100EOOC000013" 
XEQ "CODE" 

R/S 
press iii 

[CODE=? 

["f.;-II~--IIB" 

[1 ~ ~ 

] 

] 
] 

A maximum of nine goose characters can be made in a single display. The first 
character in the number display will always come from row 3--perhaps the most innocuous of 
these is the 'semicolon' character (byte '3B'). For example, the NNN 'OB CC CC CC CC CO 13' 
will dis play as: 

At the risk of gilding the lily, let us return once more to "CODE", the quintessential 
synthetic program. What could be more fitting than making the goose fly backwards while 
"CODE" is running? Line 07 of "CODE" (line 11 if you modified "CODE" as suggested in Section 
6F) is '07 "i-ABCDEFG"'. The seven characters appended can be any characters--they might as 
well be a 7-byte NNN containing a backwards goose. Replace line 07 with: 

07 "i-lIa 
08 RCL d 
09 FIX 0 
10 CF 28 
11 CF 29 
12 CF 21 
13 VIEW M 
14 STO d 

II " F8 7F OB CO 00 00 00 00 13 

9C OA 

(necessary only with printer) 

As the goose flies backwards around the display, he will be pursued by a ":?". Perhaps that's 
a goose dropping??? 

* * * 
On this charming note, we come to the end of this book. You've done a lot of work, and 

learned a lot about the HP-41C. Henceforth, 'synthetic programming' should mean 'normal 
programming' for you. You are now entitled to call yourself an 'NNU'--a 'Non-Normalized 
User' ! 
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APPENDIX 1 

NUMBER SYSTEMS 

Every HP-41C user is familiar with the decimal number system, in which the fundamental 
quantity, or 'base' of the system is the number ten. Consider the following group of letters: 

ABC D E F G H I J K L M 

If we count the letters, we say we have 'thirteen' letters; as a shorthand notation for the 
number thirteen we write, in 'decimal ': 

13 

The short notation possible with the decimal system arises from the repeated use of a 
limited set of symbols, i.e., the numerals 0, 1, 2, 3,4, 5, 6, 7, 8, and 9, rather than 
having a different symbol, for each possible number. When we write the double symbol '13', 
the value represented by each of the numerals depends upon its position in the '13'. That 
is, '13' means 'one times ten plus three'. Each numeral is multiplied by the base number 
raised to an integer power: 

13 = (1 x 101) + ( 3 x 100 ) 

Each numeral in a number is called a digit; we say '13' is a 'two-digit number'. For an 'N­
digit number': 

ab ••• de = (a x lON-I) + (b x 10N-2) + ••• + (d x 101 ) + (e x 100 ) 

The digits a, b, ••• , can take values from 0 through 9, i.e., up to one less than the base 
of the number system, ten. 

There is nothing sacred to a mathematician, however, about the number ten: we can equally 
well choose any number as the base of a number system. For example, try eight: in 'base 
eight', usually called the 'octal number system' or just 'octal', the maximum value of a 
digit is seven. The number thirteen is represented by: 

158 = (1 x 81 ) + (5 x 80 ) = 1310 

When more than one number system is in use, numbers with two or more digits should be 
written with subscripts to identify the base to which they are referred. We can write equali­
ties like: 

158 = 1310 

129510= 24178 

The 'OCT' and 'DEC' functions in the HP-41C provide an easy means of converting numbers back 
and forth between the octal and decimal systems. It is important to remember that such conver­
sions do not change number, but only the symbols used to represent the number. 76548 apples 
remain the same quantity of apples even if we write 401210 apples. 

Two other number systems are of interest in our study of the HP-41C. The first is the 
'binary number system' in which the base is two. Only two symbols are needed, 'I' and '0'. 
Our lucky number thirteen is represented in binary as 

11012 = (1 x 23 ) + (1 x 22) + (0 x 21) + (1 x 20 ) = 1310 

The binary system is ideal for computer use, since each digit can take only two values, which 
is very easy to implement mechanically or electronically. Each digit, or 'bit' as binary 
digits are usually called, can be represented by the state of any kind of simple switch, 
where 'on' means 'I', and 'off' means '0'. All calculator computations are carried out in 
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binary--the conversion to a decimal display is only for the convenience of the user. As a 
matter of fact, even the decimal numbers in the HP-41C are represented internally in 'binary­
coded-decimal', or 'BCD', where each decimal digit is coded with four binary bits. For example, 
'13' is stored as 

13 ---+- 0001 0011 

Each group of four bits can represent a number up to 1510 = 11112, which leads us to 
the last number system that we need to consider--the 'hexadecimal' system, base sixteen. In 
hexadecimal notation, each digit can take a value from zero to fifteen, so the symbols 'a' 
through '9' alone are insufficient. We add the symbols 'A' through 'F'; 

So, for example, 

A = ten 
B = eleven 
C = twelve 
D = thirteen 
E = fourteen 
F = fifteen 

8A16 = (8 x 1610) + (1010) = 13810 

IFF 16 = 51110 

Notice that the values of single digit numbers are always unambiguous. It is only when 
two or more symbols are combined into a multi-digit number that we need a subscript to specify 
the number system in use. 
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ApPENDIX 2. PROGRAM BARCODE 
CODE 

PROGRAM REGISTERS NEEDED: 28 

illllllll~IIIIIIIIIIIIIIII 111111111111111111111111111111111111 

Illililililllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllil11111111111111111111111111111111111111111111111 

im I iii f I jilllllllllllll 11111111111111 111111 III 111111111111111111111111111111111 11111111111 

Milil!'" , 15, 111111 1111I 

M~ lillilili 1'11111111111111111 III 1111 111111111111111111111 III II 111111 II 1111111111111111111 1111 

111111111111111111111111111111111111111111111111 111111111 111111111 

1111111111111 1111111111111111111111111111111111111111111111111111 11111111111111111111111111111 

iilil ~~ II ~'IIIIIII 1111111 1111111111111111111 II 11111111 11111111 11111111 1111 

iililliilljjill 1111111111111111111111 11111111111 

iUlllllli III m 11111111111 1111111111111111111 II 1111111 1111 111111 II 111111111111 11111111111111111111111111111 

oo~jjlll[limlllllllllllllllllllllllllllllllllllllil 1111 111111111111111111 

ROW " lilliji III 1111111111 II II II II 11111111 II II II II 1111111111111111111111111111111111 

PAGE 1 
OF 1 

I 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 14 (79: 84) 

1IIIIIIIIImllllllll 111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 15 (85: 89) 

1111111111111111 111111111111111111111111 11111111111111 
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REG 

PROGRAM REGISTERS NEEDED: 15 

ROW 1 (1: 4) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111 

OO~ I ilii 11111 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~IIIIIIIIIII1111111111111111111111111111111111111111111 
ROW 3 (7: 14) 

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111I1111111111111 
ROW 4 (15: 16) 

11111111 11111111111111111111 111111111111111111111111 
ROW 5 (16: 20) 

1111111111111111111111111111111111111111111111111111111111I11111111111111111111I111111I11111111111I 111111I1I 
ROW 6 (20: 26) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 7 (26: 34) 

11111111111I111111111111111111111111111111111111111111II 11111111I1111111111111I1111111111I11111111111111111111111111111111 
ROW 6 (34: 37) 

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

[Due to an overs i ght in the adaptat i on of the author's programs 
for barcoding, line 34 of "REG" is '34 "B2-"' rather than the '34 "REG'" 
described in the text. The "B2" refers to the PPC designation of the 
hardware bug (' Bug 2') in the HP-41C that 1 ed to synthet i c programmi ng. 
You may, of course, alter the line once the program is scanned into the 
calculator.] 
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KEY ASSIGNMENT PROGRAM 

PROGRAM REGISTERS NEEDED: 59 "KA" AND "EF" 

ROW 1 (1: 4) 

111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111 
ROW 2 (4: 12) 

11111111111111111111111111111111111111 11111111 111111111111 
ROW 3 12: 18) 

PAGE 1 
OF 2 

1111111111111111111111111111111111111111111111111111111 111111111111111111111111 
ROW 4 (18: 22) 

1111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111 
ROW 5 (23: 30) 

111111111111111111 11111111111111111111111 11111111111111111 11111111111 
ROW 6 (31 : 36) 

11111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111 
ROW 7 (36: 40) 

""11111111111111 11111111111111111111111111111 111111111111111111111 111111111111 
ROW 8 (40: 45) 

111111111111111111111111111111111111111111111111111111III 1111111111111111 1111111111 
ROW 9 

111111 1111111111111111111111111111111111111111111111111111111111 111111111111111111111111111111111111 
ROW 10 (55: 64) 

1111111111111111111111 1111111111 111111111111111111111111111111 
ROW 11 (65: 74) 

II I II 11111111111 II 111111111 II 11111111111111111 1111111111111111111 11111111111111111111111111 

~i~liilj~il~fllllllll 1111111 111111111111111111 11111111111 
ROW 13 (82: 86) 

111111111111111111111111111111111111111111111111111111111111111 1111111111111111 11111111111111111 

~mlliliiflliillllllllllllllllllllllllllllllllllllllllill111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 15 (93: 97) 

11111111111111111111 111111111111111111111111111 111111 1111111111111111111111 
ROW 16 : 104) 

III 1111111111111 111111111111111111111111 

iml~1111 11111111111111111111111 111111 

111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111 
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KEY ASStGNMENT PROGRAM 

~ilillliill12' 1111111111111111111111111111111111111111111 11111111111111111111111111111111 

iUlilillmllllllllllllllllllllllllll1 1111111111111111 

i lillill mlli~ii 111111111111111111111111111111111111111111111111111111111111111111111111111 111111111111111111 
ROW 22 (132: 139) 

11111111 111111 11111111 11111111 11111 11111111111111111111 

mUlllliiil1 1111111111111111111111111111111111111 1111111111111111111111 

~OOliilliiillmill 1111111111111111111111111111111 1111111111111111111111111111111111111111111 
ROW 25 

111111 111111 1111111111111111111111111111111111111111111 111111111111111 1111111111 
ROW : 165) 

1111 11111111111111111111111111111111111111111111111 111111111111111111 

ilili~ijlliiii 11111111111111111111111111111 1111111111111 111111 111111 

ilUll'Iilliii'lIIllllllllllllllllIllllllllllllllllllllllllll11111 111111111111111111111111111 
ROW 29 175: 1 

111111 1111 1111111111111 11111111 I11111111111111 

~ml~lllillimlllllllllllllllllllllllllllllllllllllllllll 1111111111 11111111111111 

iii' ,.89. '95, 11111111111111111111 1111111111111111111111 111111111111111111111111111111111111 

~mmlillijllliillllllllllllllill 1111111111 1111111111111111111111 
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DECODE 

PROGRAM REGISTERS NEEDED: 29 

ROW 1 (1: 3) 

I 1111111111111" 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~~ilililllillllllllllllllll"llllllllllllllllllllllllllll11111111111111 1111111111111111111111111111111111111111111111111 

~~ lili jill [Ii 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

~flililiijllili'111II11II1I1II111111111111I1I1I1I11111 1111111 1111111111111111111111111111111111111 

~f[liliiillirjllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111 
ooij Ii I ii~lliillllllll 111111111111111111111111111111111111111111111111111111111111 11111111111111111 

OO]III~~lliilllllllllllll 11111111 11111 11111111 11111111111111111 

mililiilliijlllllllllllill 11111 11111111111111111111111111111111111111111111111111111111111111111111 

Irn]illiilllillllllllllllllllllllllllllllllllllllllllllllllllllllllill11111 1111111111111111 

lin 1111 iiill iill 111111111 11111111111 II 111111111 111111111111111111111111111111111111111111111111 

~mljfllilil~illlllllllllllllllllllllllllllllllllllllllllllllllllill 11111111 111111111111 

~mljillijrllliilllllllllllllllllllllllllllllllllllllllllllllllllllllill1111111111111111111111111111111111111111111111111111111111 
~f[liilmlliiilllllllllllllllllllllllllllllllllllllllllllllllllllllll111111111111111111111111111111111111111111111111111111111111 
~~i liilliiill iii 11111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111 

~~iliilili II 0111111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111 

~~]Iiilimlliiillllllllllllllllllllllllllllllllllllill 11111111111111 
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HANGMAN 

PROGRAM REGISTERS NEEDED: 56 

ROW 1 (1: 4) 

11111111111111111111111 111111 1111111111111111111111111111111111111111111111 111111 
ROW 2 (5: 10) 

11111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 3 (11 : 11) 

1111111111111111111111111111111111111111111111111111111111II 111111111111111 11I111111111111 I 
ROW 4 (12: 17) 

PAGE 1 
OF 2 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 5 (17: 23) 

111111111111111111111111111111111111111111111111111111I 111111111111111111111111111111111111111111 
ROW 6 (23: 28) 

11111111111111111111111111111111111111111 1111111 11111111 111111111111111111111 11111111111111 
ROW 7 (29: 36) 

1111111111111111 11111111111111111 111111111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 8 (36: 42) 

1111111 11111111111111111111111 111111111111111111111111111 11111111111111111111111111111111111111 
ROW 9 (42: 50) 

111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111 
ROW 10 (51 : 59) 

1111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111 
ROW 11 (59: 65) 

11111111111111111111111 11111111111111111111111111111111 1111111111111111111111111111111111 III 
ROW 12 (66: 70) 

11111111111111111 1111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111111111111 
ROW 13 (70: 74) 

111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111 
ROW 14 (75: 77) 

111111111111111111111111111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111111II 
ROW 15 (77: 83) 

11111111111111111111111111111111111111111111111111111111111111111111 11111111 111111111111111111111111111111111 
ROW 16 (84: 90) 

111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111 
ROW 17 (90: 93) 

11111111111111111111111111111111111 11111111111111111111 1111111111111111111111111111111111111111111 
ROW 18 (94: 98) 

11111111111111111111111111111111 1111111111111111111111 111111 111111111111111111111 
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HANGMAN 

ROW 19 (98: 103) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111 111111 1111111111111111111111111111 
ROW 20 (103: 111) 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

IOOlilll'llilliilillllllllllllllllllllllllllllllllllll11111111 11111111111111111111111111111 
ROW 22 116: 1 

II 1111111111111 11111111111111111111 111111111111111111 
ROW 23 (125: 132) 

PAGE 2 
OF 2 

1111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111 

iliililUlllilllllllllllllllmllllllllllllllllllllllllll1111111111 1111111111111111111111111111111111111111 

ROW" ('39, '46, 1111111111 111111111111111111111111111111111111111111111111111111111111111111111111111 ... 

1111111111111111111111111111111111111111111 111111111111111111111111111111111 

iilUlilmill1 

ililillijlliiiilllllllllllllllllllllllllill 
ROW 29 (173: 179) 

11111 11111 
ROW 30 (179: 183) 

111111111111111111111111111111 111111111111111 

1111111111111111111111111111111111111111111 
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APPENDIX 3 

THE BARCODE CHARACTER TABLE 

This book represents the results of a year of experimentation with synthetic programming 
on the HP-41C. At this time, it is clear that the Wand will be a powerful tool for synthetic 
programming, largely due to the work of Jacob Schwartz (a PPC member who is also responsible 
for the eminently sensible layout of the Wand Paper Keyboard). Most of the wand techniques 
for synthetic programming are still in their infancy, but a few examples will convince you of 
the promise of this device. 

**Always use a protective sheet over the barcodes while you are scanning with the wand!** 

Fi rst, you can add to your I Paper Keyboard I barcodes for the byte jumper and the Q­
loader: 

BYTE JUMPER: 

11111111111111111111 

Q-LOADER: 

11111111111111111111 

The 'Bar Code Character Table ' on the following page was supplied by Jacob Schwartz. 
Any non-standard alpha character from the upper half of the Byte Table can be added directly 
to an alpha string, either in the alpha register, or in a program text line, by simply scan­
ning the barcode in the appropriate location in the chart. 
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THE BARCODE CHARACTER TABLE 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

:: - - - - - - - == -- - - - -- - - - - -
; - - - - = - -- - - -- - - - - - - - - - - - -0 - - - ;; -- - - - - - -~ - = - - - - - -- - - - - -- ~ - - - = - - - - - -

II + x 2 X 
;It GI 

3 ... 4 <I. m A 
5 "Krl 6 

T r 7 IH~ S I!II '" 9 lIJeT 10/11+ llmA 12p" 131. '" 14!N'" 15f!J* 

- - - - - - == - - - - -- - - - - - - -- - - - -- - - - ;:;;; - - - -
~ - - - - - - - - - - - - - = - - - - - - - ;; - - - - - - -1 - - - - - - - - - == - - -- - - - - - - - -~ - - - - - - - - - = - - - ~ - - - - - -

16;e e 17 ten 18m ;:, 19;eA 20m 0. 21/1/' 221lf1a 23mO 2411!/j ,2m 0 26elj 21llff. 28m'" 29 "$ 30;0£ 31 mii 
t:. 

- - - - - - - ~ - - - - -= - - - - -- - - - - - - - - - -- - - -- - - - - - :: ~ - - - - - -- -- - - - - - - - - - - -2 - -= == - - - - - -- - - - - - - - 55 ~ - - - - - - -- - = - - -- - - - - -
32 33 I 34 /I "" 35:JJ # 36'li $ 37 % % 38 Ell. 39 40 < ( 41 > ) 42** 43+ + 44 45 - 4'; 47 // c,po<&) I I ; I / 

== : - - - - - - - -- - - - - - - - - - -- - ;; - - - -- - - - -:: - - - - - - - - - - -:: - -3 - : - - -
== 

- - - - - - -- - - - = - - - - - - -- § - - - - - - -- - - - - - -- - - -- - - - -- - - - - - - - - - --
48 ff" 49 I 1. 50 -::J 2 51 3 3 52 Lf 4 53 5 5 545 6 55,7 568 8 57 0 9 S8. 59 6°L < 61 __ = 62, > 63/?? 

I C. I -i . 7 - ~ 

= - - - - - - - - - - -
~ 

- - - - - - -- - - - - - -- - - -
~ = = - - - - = - - - - - -- - - - - - - - -4 - - -

55 - - - - - -- - -= - - - - - - -~ - - - - - - - - - - == - - - - - -
64~@ 6SRI'! 66 ]B 67, C 68ED 69EE 7°FF 71GG 72fr 73T I 74 I.J 75 I / I( 76{ L 77MM 78,'\/t-! 79DO 

L ..L --1 n I- / / 

:: - - - - - - - - - - -- - - - - -= - - - - - - - -- - - - - -- - - - - - - - -
~ § - -= - - - - - - - - - - - - -5 : - - - - - - - - -- - - - - - -- - - = - - - -- - - - - -- - - -- - - - - - - - -- - - - i - ~ - - - -- - - - - - --- -- - -

85/ I Ul8611 
I S0pP Sla Q 82RR 835 S 84,T v 87/ / W 88v X89 y yl90ZZ 91, [92, '93, ] 

947' l' 95 -I L.J v IAI A L \ -J -
- - - I - - - - - - - - - -- - - - - -- - - - -

~ 
- - -- - -

I - - - -- - - - - - = - - - - - -- - - -- - - - - - - - - - - - - -6 - - - - - ~ - - - - - - -- - - == - - - - - - -- - - - - - - -- - - - - - - - -- - - = - - - - -- -
9~T' 97 a98b b 99 c IOdd 1.01 e 102m' I03~" IO~h 105mi 10~j I07fJNk P38fill 12'imM 11 '1!J.n 11 tl!i0 

OJ c (Z.. 

= - - - - -- - - - - - - - -- - - - - - - - - - -= - - - - - -::::: - - -:: - - - - - -
~ 

- - - - - -- - - - - - - - -- - ! - - - - - - -- - - -
== 

- - -7 - - - - - - - - - -- - - - - - -- - - - - - - - - - - -- - - = - - - - - -- - - - - - -- - - - - - -= - - - - --
112WP I 13fjfJ'" II1!lr II":'§JS 116lf1t I 17e;U l1SUJV 1198/1» 120§JX 12?Jff' 121f1Z 12:<1!l!" 12~1 125/lll'" 1262:'>: 12'1-1-

92 



11111111111111111111 
I rACT! 

11111111111111111111 
!SOEVI 

11111111111111111111 
IwuNi 

IIIIIIIIIIIIIUIIIII 
I'-;CHI 

11111111111111111111 
ItREG! 

11111111111111111111 
[ill] 

11111111111111111111 
[El 

11111111111111111111 
!OSEI 

11111111111111111111 
IXH?! 

11111111111111111111 
i X( V?I 

11111111111111111111 
IHWS-I 

11111111111111111111 
I TONE I 

11111111111111111111 
IHws+1 

11111111111111111111 
Ix) O?\ 

11111111111111111111 
IX( 0?1 

11111111111111111111 
i X ,,01! 

. 11111111111111111111 
!XI -O? I 

11111111111111111111 
Iwool 

WAND PAPER KEYBOARD 

11111111111111111111 11111111111111111111 
lorrl ~ 

mill··· _ .. .... 11111111111111111111 11111111111111111111 
I PRowl IALPHA I 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
IE !V- xl I x-21 [IE8J IE-X! 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
III ... - - IIZI 

11111111111111111111 11111111111111111111 11111111111111111111 1IIIIIIIIIJlIIIIIIII 11111111111111111111 
ICLt! ~ lAS IN! IAcosl IATANi 

11111111111111111111 11111111111111111111 1I11111111UIIIIIIII 11111111111111111111 11111111111111111111 
a=- m IIIl lBI 1m 

11111111111111111111 
11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
IASNI ILUI IGTO! IBST! 

[ill] 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
£lID .. - -

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
ICAT! rn IUNI ICLXI 

11111111111111111111 111111111111 111111111111 111111111111 
IIZIIIIJI - l1li II 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
IXan! [ill 1m Irs?! 

11111111111111111111 111111111111 111111111111 111111111111 
II • II iii 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
Ix(.n I I BEEP! Ip-R! IR-pj 

11111111111111111111 111111111111 111111111111 111111111111 
a a D III 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
i X) V?! [!J]] [ED IENOI 

11111111111111111111 111111111111 111111111111 111111111111 • • fJ D 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
Ixa01! (ill !LASTXI Iv I Ewl 

11111111111111111111 111111111111 111111111111 11111111111111111111 • II • -
11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 m lo-,,! IHws! 10CTI IA.sl 

11111111111111111111 11111111111111111111 11111111111111111111 1I11111UIIIIIIIIIII 11111111111111111111 
IrRcl p,-ol ffi!l 10EC! iSIONI 

11111111111111111111 
l!.:.!.:.!J 
11111111111111111111 
ILNI +X! 

11111111111111111111 
IUD! 

11111111111111111111 
louo! 

11111111111111111111 
IDEO! 

11111111111111111111 
iCLROI 

11111111111111111111 
ICLST I 

IIIIIIUIIIIIIIIIIII 
ICLOI 

11111111111111111111 
Irs?cI 

11111111111111111111 
Irc?cl 

11111111111111111111 
I rc?! 

11111111111111111111 
IRNO! 

11111111111111111111 
IpSEI 

11111111111111111111 
ISTopl 

11111111111111111111 
IPROWPTI 

11111111111111111111 
IAovl 

11111111111111111111 11111111111111111111 11111111111111111111 1111111111111111110 11111111111111111111 11111111111111111111 . 11111111111111111111 
[Ell] @E] Icopy! lEND! IPACK! ICLP! 10EL! 

r,,=- HEWLETT 
a:~ PACKARD 1000 N.W. Circle Blvd .• Corvallis, OR 97330 82153·90008 Printed in U.S.A. (6/80) 



11111111111111111111 
~ 

11111111111111111111 
~ 

11111111111111111111 
~ 

11111111111111111111 
wRei 

11111111111111111111 
VERi 

11111111111111111111 
~ 

11111111111111111111 
WOT""AX 

11111111111111111111 
~ 

11111111111111111111 
iWS rSI 

11111111111111111111 
WAL L I 

11111111111111111111 
!PUXlsl 

WAND PAPER KEYBOARD 

11111111111111111111 11111111111111111111 
E\ 
~ 11111111111111111111 11111111111111111111 

iorr! iUSER! iPRG ... ! IALPHAI 

ALPHA 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
~ Ibi 0 [!] [!J 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
II III B ID II 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 w (K] [iJ [] OJ 
11111111111111111111 11111111111111111111 11111111111111111111 1111 1111111111111111 11111111111111111111 
II l!I m D .. 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 

11111111111111 ! ""ilililllllllllll iUI'll11lll1ll miliilillllllllill 111111111111111 
13 II CI EBI 

11111111111111111111 
8 
11111111111111111111 
m 

11111111111111111111 
8 
11111111111111111111 
EI 

11111111111111111111 
G 

11111111111111111111 
l!I 

11111111111111111111 
o 

11111111111111111111 
D 

11111111111111111111 
G 
1111111" 11111I11111 • 

11111111111111111111 11111111111111111111 11111111111111111111 
00 m ICLAI 

11111111111111111111 11111111111111111111 111111111111 
ID iii II 

111111111111 . 
o 

11111111111111111111 
a 

111111111111 
II] 

11111111111111111111 
II 

111111111111 
OJ 

11111111111111111111 
EI 

111111 II 1111 
@] 

11111111111111111111 
BmI 

111111111111 
[!] 

11111111111111111111 
B 

111111111111 
rn 

11111111111111111111 
a 

111111111111 m 
11111111111111111111 
II 

111111111111 o 
11111111111111111111 • 

111111111111 
[!] 

11111111111111111111 
11 

111111111111 
[!] 

1111""111111111111 
EI 

1I111111UII m 
11111111111111111111 
g 

11111111111111111111 
JAV I £wl 

11111111111111111111 -
11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
!REGPLOrl IpRPLorj IACxl !ACC .. R I IACCOL I 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
ISTKPLOTI : PRPLOTPI IACA! j SKPCHR! j SKPCOLI 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
! PRr LAGsl I lOllS TK I : PRxl iPRR£Gi I PRPI 

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 
I PUEYSI IPRl:1 IpRAI iPRREGxl [III!] 

11111111111111111111 
IAON! 

11111111111111111111 
I ... orr I 

11111111111111111111 
IASHr i 

<5(5-
11111111111111111111 
IWHOLNK! 

11111111111111111111 
iWNOSUS! 

11111111111111111111 
IWNOOU! 

11111111111111111111 
IWHOOTX! 

11111111111111111111 
!WHOSCN! 

"" 1111111111111111 
IWHOTST! 

11111111111111111111 
IACSPEC! 

11111111111111111111 
IIILOSPEcl 

11111111111111111111 
jPRlLur I 



KEYBOARDLOCKY 

'Twas octal, and the synthetic codes 
Wepe scanned without a loss. 
In and out of PRGM mode, 
Byte-jumpeps nybbled the CMOS. 

'~ewape ~ STO c, my son, 
The MEMORY LOST, the keyboapd lock. 
Bewape the NNN, and shun 
The cupious phase 1 clock." 

He took his black box codes in hand, 
Long time the backwapds goose he sought; 
The secpet beast fpom Aitchpee land-­
All seapches came to nought. 

In demented thought he stood, and then: 
The goose, with LCD's alight, 
A leap fop evepy LBL 1.0, 
Came honking left-to-pight! 

STO b! STO d!, and RCL P! 
His keyboapd went clickety-clack. 
With the ppopep code in numbep mode 
The goose came flapping back. 

'~nd hast thou found the phantom fowl? 
Come to my apms, my binapy boy. 
Let Copvallis heap us howl 
As we choptle in oup joy!" 

'Twas octal, and the synthetic codes 
Wepe scanned without a loss. 
In and out of PRGM mode, 
Byte-jumpeps nybbled the CMOS. 

--Apologies to Lewis Cappoll 
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