
SYNTHETIC
PROGRAMMING

ON THE HP-41 C

FIXA STOb STOc STOd STOM

gggBg
STO N X <> M X <> N X <> 0 x¢> P

gBBBg
RCL M RCL N RCL 0 RCL P

IIgggg
VIEW INO 00 RCL b RCL c RCL d

~ TONE A ~l B {3 '~l
RCL 0 TONE 7 TONE 8 TONE 9

B , ~, ,~, B
STO 0 TONE 4 TONE 5 TONE 6

{~, ~~, ~ ~l ~~,

STO P TONE 1 TONE 2 TONE 3

B .VIX~l ~~, B
STO 0 TONE 0 TONE E TONE F

g ~~, ~ 'FO:J' ~~,

CE HEW LET T PAC K A R 0 41C

by
w.e. Wickes

SYNTHETIC
PROGRAMMING

ON THE HP-41 C

FIX A STO b STO c STO d STO M

,~, ,~, ,~, ,~, ,~,

STO N X .. M X .. N X .. 0 X" P ggggg
RCL M RCL N RCL 0 RCL P

agggg
VIEW INO 00 RCL b RCL c RCL d

, TONE A I' ,~, [3 ,~,
RCL a
,~,

STO 0

,~,

STO P

g
STO a

g

TONE 7 TONE 8 TONE 9

,~, ,~, '~l

TONE 4 TONE 5

'~l ,~,
TONE 1 TONE 2

'FIX~' ,~,

TONE 0 TONE E

,~,
, 'FO~ I'

by
w.e. Wickes

TONE 6

,~,

TONE 3

,~,

TONE F

,~,

Acknowledgements:

It is a pleasure to acknowledge the crucial contributions of the many people who have
helped me in the preparation of this book. The cover art was produced by William Kolb, who
a 1 so di d an exhaustive editing of the manuscri pt, and provi ded encouragement and support
throughout the whole project. Tom Cadwallader, Keith Jarett, and John McGechie, each an
important synthetic programming pioneer, also provided invaluable editing and suggestions,
along with Tom James and Lee Vogel. Charles Close has been an important contributor to our
detailed knowledge of program line coding and other subtle HP-41C properties. The discovery
of enhanced byte jumping by Roger Hill was a major advance in making synthetic programning
a 'friendly' process. Jacob Schwartz developed the Barcode Character Table in Appendix 3.
Richard Nelson, through his fine efforts in founding and maintaining the PPC, has fostered
the world-wide comnunication necessary for the collective development of synthetic program­
ming. Professor Carroll Alley of the University of Maryland has been a principal backer of
my synthetic programming efforts right from the arrival of our virgin, buggy HP-41C's.

This book is dedicated to my wife, Susan, the world's most supportive Calculator Widow.
She handl ed many of the typi ng and proofreadi ng chores, and kept all of the wolves from
the door whi le I was closeted with my HP-41C and typewriter. Al so, I am grateful to my
children, Kenny and Lara, who allow me to use 'their' HP-41C whenever I want to play with it.

Synthetic Programming on the HP-41CV (Addendum to the Fourth Printing)

All of the synthetic programming functions and techniques described in this book oper­
ate properly on the HP-41CV, which was introduced after this book originally went to press.
However, the 'module-pulling' trick used in Chapter 3 to implement the 'byte-jumper' is not
possible on the 41CV. The following procedure can be substituted (on the 41C as well):

1. Execute steps 2 and 4 on page 25.
2. Switch to PRGM mode; create a line 01 LBL "ABC".
3. Execute CAT 1 (still in PRGM mode), pressing R/S imnediately so that '01 LBL "ABC"

shows in the display. Press XEQ ALPHA "DEL" ALPHA 001 ('4094' will show briefly, then the
.END.). Press BST, to see '4093 DEC'. BST again (wait) to see '4092 X<>06'. This is same
line as the line 06 described in step 6 on page 25.

4. Continue with instructions 7 through 10 on page 25, noticing that the lines to be
deleted in step 7 are now '4089' and '4088'. Also, the LBL 01 of step 9 will be absent.

HP-41CV owners will have to skip the 'creepy man' demonstration on page 1.
Thi s trick depends on a 'bug' in the operati ng system of the 41C and 41CV, which may

disappear in future versions. In that eventuality, 41CV users should obtain the use of a
wand long enough at 1 east to scan in the "KA" key ass i gnment program from Chapter 5 in order
to get started with synthetic programning.

Crashes and Other Disasters:

HP-41C 'crashes', i. e., where the di sp 1 ay freezes or blanks and the keyboard becomes
inactive, are an operational hazard of 'synthetic programning'. No program or technique des­
cribed in this book will cause a crash if the directions are followed exactly--but occasional
mistakes are inevitable. If you crash your calculator--don't worry, no harm will result
to the HP-41C. Try removing then replacing the battery pack. If that fails (try it a few
times), remove all peripherals and plug-in modules prior to removing the battery pack.
As a 1 ast resort (I have never had to resort to thi s), remove the battery pack overni ght.

The material contained in this book is supplied without representation or warranty of
any kind. The publisher, Larken Publications, and the author assume no responsibility
and shall have no liablility, consequential or otherwise, of any kind arising from the use
of this material or any part thereof.

e 1980 Wi 11 i am C. Wickes

Published by:
Larken Publications, 4517 NW Queens Avenue, Corvallis, Oregon 97330, USA
Sixth Printing: March, 1982

i i

TABLE OF CONTENTS

CHAPTER 1. WHY'S AND WHEREFORE'S
lA. Synthetic Programming? •••••.••••••••••••••••••••••• 1
lB. Purpose and Organization ••••••••••••••••••••••••••• 2
lC. The Origin of Synthetic Programming •••••••••••••••• 2
10. No Risk to the HP-41C •••••••••••••••••••••••••••••• 3
IE. Some Conventions ••••••••••••••••••••••••••••••••••• 3
IF. Prerequisites .•...•.••••••...••..•.••.•.••.•••••••. 4
IG. References ... 5

CHAPTER 2. INSIDE THE HP-41C
2A. Calculator Language: Bits, Nybbles and Bytes ••••••• 6
2B. The Byte Table .••••.••••..•.•.••.•.•••••.••.•.•••.• 9
2C. Register, Please •••••••••••••••••••••••••••••••••• 16
20. Memory Partitioning ••••••••••••••••••••••••••••••• 18
2E. The Key Assignment Registers •••••••••••••••••••••• 20

CHAPTER 3. EXOTIC EDITING WITH THE BYTE JUMPER
3A. Nonnal Editing ..•.••.......••.....••......•.•..••. 23
3B. The Byte Jumper ••...•.•..••••••••..••.••••••.•.••• 25

CHAPTER 4. THE STATUS REGISTERS
4A. Strange Postfixes ••••••••••••••••••••••••••••••••• 29
4B. The Alpha Register •••••••••••••••••••••••••••••••• 31
4C. Register Q •• 33
40. The Flag Register •••.•••.••••••••••..•••..••.•.•.• 33
4E. The Key Assignment Flags •••••••••••••••••••••••••• 34
4F. The Address Pointer and the Return Stack •••••••••• 35
4G. Register c and Memory Partitioning •••••••••••••••• 36

CHAPTER 5. PROGRAMS FOR PROGRAMMING
SA. Unseemly Di spl ays ••.•.•••••••••••.•••••••••••••••• 38
5B. Register Exchanges and Normalization •••••••••••••• 39
5C. Getting Started: "CODE" ••••••••••••••••••••••••••• 40
50. Direct Access to Program Registers •••••••••••••••• 42
5E. Synthetic Key Assignments ••••••••••••••••••••••••• 44
5F. Creation of Synthetic Program Lines ••••••••••••••• 49
5G. Enhanced Byte Jumping ••••••••••••••••••••••••••••• 52
5H. The Text Enabler •••••••••••••••••••••••••••••••••• 53
51. The Q-Loader ••••••••• r •••••••••••••••••••••••••••• 55
5J. Backtalk from the HP-41C •••••••••••••••••••••••••• 57
5K. Code Storage •....••..•..•.•.•••.••••.•••.••.•••.•• 58

CHAPTER 6. APPLICATIONS
6A. Getting to the .END. • •••••••••••••••••••••••••••• 60
6B. SIZE-finding and Other Tricks ••••••••••••••••••••• 61
6C. Fun and Games in the Alpha Register ••••••••••••••• 63
60. Character Recognition ••••••••••••••••••••••••••••• 66
6E. Synthetic Text Lines and the Printer •••••••••••••• 68
6F. Non-Normalized Numbers and Mass Flag Control •••••• 70
6G. Raising the Curtain ••••••••••••••••••••••••••••••• 73
6H. Application Pacs: Sneaking in the Back Door ••••••• 75

CHAPTER 7. AMUSING ANOMALIES
7A. 128 Tones ••••••••••.•••••••••••••••••••••••••••••• 77
7B. Tricks with System Flags •••••••••••••••••••••••••• 79
7C. Flying the Goose Backwards •••••••••••••••••••••••• 80

APPENDIX 1. NUMBER SYSTEMS ••••••••••••••••••••••••••••••••• 82

iii

APPENDIX 2. PROGRAM BARCODE
"CODE" •• 84
IIREG II

••• 85
II KA II a nd II EF II ••• 86
IIDECODE II •• 88
IIHMII •• 89

APPENDIX 3. THE BAR CODE CHARACTER TABLE •••••••••••••••••••• 91

FIGURES

TABLES

2-1 Three Levels of Coding in the HP-41C •••••••••••••• 7
2-2 HP-41C Barcode •••••••••••••••••••••••••••••••••••• 8
2-3 Di sp 1 ay Log; c 10
2-4 Sample Byte Table Box •••••••••••••••••••••••••••• 11
2-5 HP-41C User Memory Partitioning •••••••••••••••••• 19
2-6 Key Assignment Bytes ••••••••••••••••••••••••••••• 21
4-1 The Status Registers ••••••••••••••••••••••••••••• 32
4-2 Key Assignment Flag Bits ••••••••••••••••••••••••• 35
5-1 A Synthetic Programming Keyboard •••..•••••••••••• 50
6-1 A Special Graphics Character ••••••••••••••••••••• 69

1-1 Symbols for Status Registers •••••••••••••••••••••• 4
2-1 The HP-41C Byte Table •••••••••••••••••••••••••••• 12
2-2 Assignment of Non-Programmable HP-41C Functions •• 22
5-1 Non-Programmable Peripheral Functions •••••••••••• 45
5-2 "KA" Entries for the Keyboard of Figure 5-1 •••••• 51
7-1 TONE Frequencies, Numbers, and Durations ••••••••• 78

PROGRAM LISTINGS

Global Label

1- "AO"
2. "AL"
3. "BYTE"
4. "CA"
5. "CD"
6. "CODE"
7. "CR"
8. . "CS"
9. "CU"

10. "DC"
11. "DECODE"
12. "DI"
13. "EF"
14. "EN"
15. "FL"
16. "HM"
17. "ISO"
18. "KA"
19. "KP"
20. "MANT"
21. "RE"
22. "REG"
23. "REV"
24. "ROM"
25. "s"
26. "SAVE"
27. "SUB"
28. "TONE"

Description

Address Finder••.•....••..•••• 58
Alphabetize Alpha Data ••••••••••••••• 67
Determine Byte Number •••••••••••••••• 62
Clear All Key Assignments •••••••••••• 47
Character-to-Decimal Conversion •••••• 66
7-Byte Encoder ••••••••••••••••••••••• 40
Code Recall •••••••••••••••••••••••••• 59
Code Store ' 59
Move Program/Data 'Curtain' •••••••••• 73
Decimal-to-Character Conversion •••••• 67
7-Byte Decoder ••••••••••••••••••••••• 57
Turn on Display Annunciators •••••••.• 80
.END. Encoder 46
Find Last User Program ••••••••••••••• 60
Set Any Flag •.•.•.••..•••..•.......•• 79
Hangman Game ••••••••••••••••••••••••• 65
Isolate a Single Alpha Character ••••. 64
Synthetic Key Assignments •••••••••••. 46
Pack Key Assignment Registers •••••••• 47
Find Mantissa of X ••••••••••••••••••• 68
Reset All Flags •••••••••••••••••••••• 79
Store/Recall into any User Register •• 43
Reverse 6-Character Alpha String ••••• 57
Direct Access to ROM Module Programs. 75
Automatic Size-Finder •••••••••••••••• 61
Save All Flags .•••••••••••••••••••••• 79
Substitute One Alpha Character ••••••• 64
Create All Synthetic TONE lines •••••• 77

iv

CHAPTER 1

WHY'S AND WHEREFORE'S

"There are more things in the heavenly HP-41C, Hewpackio,
Than are dreamt of in your philosophy."

--apologies to W. Shakespeare

1A. SYNTHETIC PROGRAMMING?

No one, from the serious student of computer science, to the occasional user of four­
function calculators, can fail to be impressed with the HP-41C calculator. This machine com­
bines amazing computing power with the convenience of complete portability. The prospective
buyer is attracted by the long list of computing functions built into the calculator; the ex­
perienced owner fi nds that the HP-41C becomes an ever more important part of hi s probl em
solving techniques as he masters programming and integrates his own ingenuity with the
built-in functions.

And yet, even when an HP-41C user has learned everything the Owner's Handbook can
teach him, he is in for another treat: the list of HP-41C functions and programming capability
is not limited to the properties catalogued in that Handbook. There exists, in fact, a whole
cl aSs of functions and programmi ng appl i cat ions that can be used to enhance greatly the
power of the calculator, even though the new functions cannot, at first, be executed or pro­
grammed with normal, simple keystrokes. The new functions, which are 'synthesized' by creating
new combinations of normal program bytes, are called 'synthetic functions'; their appli­
cation in programs gives rise to the expression 'synthetic programming', and hence, to the
title of this book.

To whet your appetite, here is a sample of some of the typical applications of synthetic
programming that are impossible or impractical without the techniques described herein:

***Addition of twenty-one 'new' display characters for routine use.
***Transformation of the alpha register into four additional data registers. These

registers can provide a 'scratch pad' for a program to use without disturbing data
stored by other programs in numbered data registers. Furthermore, the contents of
these regi sters can be input and output wi th the Card Reader ope rat i on 'WSTS'.

***Enhanced user control over the 56 user and system flags. Example: Two keystrokes
can clear all 56 flags simultaneously.

***Automatic 'SIZE-finding' in less than 2 seconds.
***Rapid alphabetizing of alphanumeric data.
***Alphanumeric character-string processing
***Addition of six new TONE frequencies, plus variation of TONE duration.
***Interchange of program lines and stored data.
***Improved key assignment control, including two-byte function assignments (e.g., as­

signment of 'STO 65' to a key), automatic clearing of all assignments, and assignment
register packing.

A simple exercise will introduce you to the world of synthetic programming, and
perhaps motivate you to expend the effort to read the rest of this book. Try the following
hocus-pocus:

1. Insert one memory module into the HP-41C.
2. Execute a 'Master Clear'.
3. Set SIZE 063 (if your module is double density, set SIZE 127).
4. Switch to PRGM mode.
5. Key in these program lines:

6. Turn the HP-41C off.

01 12345
02 STO IND 17
03 RDN

7. Remove the memory module; wait 60 seconds; replace.

1

8. Turn the HP-41C on.
9. P-ress RTN.
10. Key in! L 43S245455- EEX 59-' •
IT. Press· SST
12. Swi ten ALPHA on.

Where didthal creepyiitt're 'man' come-from? Sw-itcnPRGMon. press BST once.andyoll·
wHl see the pr-09.ram Line '01 STO t-1'. This: 's-ynthetjc' pr-09.ram line is- the coobination of
the! IMD 17' pr-ogram byte- and- the_ 'R-DW byte that resulted when j'ou eliminated: the 'STO'
byte- froot'STO. HiEr 17' by' r.emoving the memory module. N-o hint of the existence of ac 'STOW
functi orr is 9-1 ven by the Owner's Handbook, but_ you will come to- know and love' SIO M' and
its- friends as you master synthetic programming.

1B~ PURPOSL AND_ ORGANIZATION

This~ book is des; gned- to impart- the_j oys- and- exp-lai n the mysteries-of synthet i c- pr-ogram­
ming to any Hr-41'c us-er, ft·Offi the no\dce progra.mrner to the expert. It is a compendium of
the- the-ory oj- ca-1 cul ator operat; on that makes s..yntheti c_ programmi ng pass; bl e, the meehanicaj
proc.edures for impi ement i ng the syntheti c program 1 i nes.- am:! a set of appTi cat; on programs
that serve- practlcal purposes_ and- al so Hlustrate the- us-e oj- exotic pr-o-gramrning..- technique-s-.

Chapter Two describes- the inner workings of the- HP-41C. from a conceptual point of
vi ew that will probabl.x. mak-e-computer eng; neers-cringe. You.. wHl obta.i n there- a- wo.rk-ing know­
ledge of calculator programming at a deeper -level than "1S possilSle -trom "tne llwneyl"S ·tvJanu~1
alone. Besides laying the groundwork for synthetic programming, the information in Chapter
Two will give you a picture of HP-41C operation that will help you optimize all of your program­
ming work.

Chapter Three introduces the fi rst and most important of the synthet i c functions,
the 'byte jumper'. This single keystroke function opens the door to simple procedures for
creating the entire set of synthetic program lines. We will 'create' the byte jumper using
a 'module pulling' trick like we used to make the 'STO M'; once that is done, we will never
again need to resort to module removal.

In Chapter Four, a new set of HP-41C registers, the 'status registers', is introduced.
Access to these registers, which include the alpha register, the 56 flags, memory allocation
information, and the program address pointer and subroutine return stack, results in a host
of practical applications like the examples given in Section 1A.

'Programming programs', a package of HP-41C programs and techniques, are described in
Chapter Five. The principal use of these programs is to enable the writing and deciphering
of other programs.

Chapter Six is a 'standard applications' chapter, in which we find a set of synthetic
programs that in themselves are sufficient justification for the study of the material in
the preceding chapters. But more than that, the programs illustrate general synthetic program­
ming techniques that have application to a wide range of problems, limited only by the motiva­
tion and ingenuity of the enlightened user.

Finally, in Chapter Seven, we learn a few 'fun' tricks-of-the-trade that aren't particu­
larly practical but will gladden the heart of the confirmed calculator nut. Included, of
course, is a supreme example of the expenditure of enormous research effort to discover a
totally useless result, namely, how to make that doggoned goose turn around and fly backwards!

Three appendices are included. Appendix 1 is a brief review of the decimal, binary, oc­
tal, and hexadecimal number systems. If you are unfami 1 i ar or perhaps a 1 itt1 e rusty with
these notation systems, you will find it useful to study Appendix 1 before tackling Chapter
Two. Appendix 2 contains the Wand barcode for the important programs of Chapter Five, "CODE",
"REG", "KA", and "DECODE", plus the long 'Hangman' program of Chapter Six. Appendix 3 con­
tains special barcode for specific synthetic programming purposes.

1C. THE ORIGIN OF SYNTHETIC PROGRAMMING

It all came about by accident! Early models of the HP-41C had an unintentional flaw,
or 'bug', in thei r i nterna 1 codi ng, that a 11 owed execut i on of the operat i on 'STO IND 01',
for example, with values from 719 to 999 in data register ROI' This operation caused the
contents of Register X to be stored into program memory. I wondered what would happen if
I used this 'feature' to synthesize new program lines by storing numbers into program that
would link together normally impossible combinations of program 'bytes'. To make a long

2

story short, it worked. Once the new functions started popping up in memory, whence they'could
be recorded on a magnetic card and then merged into any program, the practical applications
started coming in droves.

Following the discovery of the synthetic functions, the major advances in synthetic pro­
gramming were 1) the development of synthetic key assignments, which permit single keystroke
execution of the new functions, and also eliminate the need for the hardware 'bug'; and 2) the
discovery of the byte jumper, which is perhaps the most fundamental synthetic function. Since
the byte jumper can be created on any HP-41C, and since it can be used to generate almost
any other synthet i c program 1 i ne, we can start from 'scratch' in thi s book and show how to
'bootstrap' an HP-41C to have complete synthetic program capability.

10. NO RISK TO THE HP-41C

Synthetic functions, when keyed into the HP-41C with the methods described in this book,
are' proper' calculator operations. As such, they constitute no physical threat to the
HP-41C. The only risk, which really should be considered a potential annoyance rather than
a danger, is that certain operations with synthetic functions can cause either 'MEMORY LOST'
or a 'crash', i.e., a state where the display freezes or blanks and the keyboard becomes
di sab 1 ed. The fi rst di saster causes a lot of teeth gnashi ng and hand wri ngi ng, but cer­
tainly doesn't harm the HP-41C. The second problem can virtually always be corrected (99.9%
of the time) by simple removal and immediate replacement of the battery pack, followed by
one or two on-off presses. I have heard of only one case where a crash required overnight
removal of the batteries for recovery, but the cause of that crash is unknown. I can't
guarantee anything, of course, but in the course of developing synthetic programming, I
have accidentally cleared the memory or crashed my calculator literally dozens of times, yet
the HP-41C keeps ticking along.

Because of the risk of accidental memory loss, however, it is not appropriate for Hew­
lett-Packard itself to 'support' the use of synthetic functions. Therefore, you should not
submit programs containing synthetic program lines to the User's Library.

IE. SOME CONVENTIONS

The following is a list of special notational conventions I have adopted for this
book, to simplify the description of calculator programs, characters, numbers, instructions,
etc. :

1. You may have already noticed the use of the single quotation marks in place of the
usual double, as in 'example', instead of "example". Double quotation marks are reserved to
indicate HP-41C alphanumeric characters and text lines, much as the Printer identifies
characters in program 1 i st i ngs. Thi s convent i on is used also in 1 i st i ng of programs in
this book, most of which are reproductions of Printer listings. Thus you should be aware
that a program line enclosed in quotation marks will show in the HP-41C display as preceded
by the text symbol "T".

In addition, I am deliberately violating the punctuation rule that requires commas and
periods to be included within quotes when they are adjacent, i.e., "ABCD", rather than "ABCD,".
In addition to defying logic, this rule would lead to unacceptable ambiguities in this
book, since the comma and period are also standard HP-41C alpha characters. Their inclusion
within quotation marks could suggest that they are part of the adjacent alpha string.

2. Whenever possible, to provide neater copy, standard typewriter symbols will be
used to represent HP-41C display and printer characters. The identification is usually ob­
vious, with a possible exception the use of the semicolon ";" to represent the HP-41C symbol
"?II.

3. Numbers in the display will be represented in the same form that they would assume
if entered into the alpha register with 'ARCL'. Thus, numbers in SCI or ENG format will be
listed using "E" to indicate the exponent, e.g., '1.23 ElO' rather than '1.23 10' to
eliminate the possibly confusing spaces.

4. Entries such as 'STO mn', 'DEL lmn', or 'SF mn' are to be understood as typi cal
operations with the listed function, where the letters 1, m, n, etc., represent digits that
can take any of the normal values associated with the function. Thus, for 'STO mn', 'm' and
In' can each take the values 0 through 9.

5. In the listing of long hexadecimal or binary numbers, it is often convenient to group
the digits for explanatory purposes. The grouping is indicated by spaces or bars "I" placed
in the numbers, which of course are not contained in the HP-41C's actual coding of the numbers.

3

6. A basic unit of HP-41C user memory is the 'register', a block of seven bytes of code
which may be used for storage of one number or of seven program bytes. Regi sters wi 11 be
identified as follows: a) 'Register lmn' indicates the register found at memory address 'lmn'
(see Section 2C), where 'lmn' is a 3-digit hexadecimal number. b) 'Register a', where 'a'
is a single alpha character, refers to any of the 16 'status' registers discussed in Chapter
4. Registers X, Y, Z, T, and L are the usual RPN stack registers. The remaining 11 status

registers, Registers M, N, 0, P, Q, 1-, a, b, c, d, and e, are so named because of the way
the synthetic 'status register access functions' are displayed in program lines, e.g., 'STO
M', 'RCL 1-', 'ISG d', etc. c) 'Rmn' indicates data Register number 'mn', where 'mn' is a
two (occasionally three)-digit decimal number. --

7. Programs are reproduced in this book directly from 82143 Printer listings, to
help avoid transcription errors. Unfortunately, the Printer lists status register access func­
tions for Registers M, N, 0, P, Q, and i- using different symbols than the HP-41C display.
The reader will need to become familiar with the following table:

TABLE 1-1

Symbols For Status Registers

D i sp 1 ay Symbo 1
M
N
a
P
Q
I-

Pri nter Symbol
[

]

l'

T

In addition, in synthetic text lines, the printer uses the symbol "." both for the 'null'
byte '00' (shown in the HP-41C display as II-II) and for byte 'OA'. However, in this book
there are no text lines containing character 'OA', so the "." always indicates byte '00'.

8. Short program rout i nes wi thout alpha 1 abe 1 s wi 11 be i dent i fi ed by a number shown
in parentheses to the right of the routine. The format is '(Section number-routine number)'.

9. To simplify the instructions for keying in special program lines or operating pro­
grams, the instructions will be shown in most cases in three columns. Entries in the left
column are codes to be entered into memory: either numbers to be keyed into Registerx,
alpha characters (enclosed in double quotation marks) to be keyed into the alpha register,
or program 1 i nes (shown wi th program 1 i ne numbers) to be keyed into the current program.
The center column lists keystroke sequences, such as 'GTO .123' or 'DEL 005', that are not
recorded in the program. The rig~t column will show, when appropriate, the HP-41C display
resulting from each 'center column instruction. These 'displays' will be enclosed in square
brackets []. Example:

(Key in)

01 STO 01

(Operation)

GTO .000

SST

(Display)

[00 REG 123]

[02 X<>Y]

indicates that you should press 'GTO .000' (to see '00 REG 123'), key in the line '01 STO aI',
then 'SST' once to see line '02 X<>Y'.

IF. PREREQUISITES

In order to reach as wide a range of HP-41C users as possible, this book is designed
around a minimal HP-41C 'system'. All that you will require are (1) an HP-41C, (2) temporary
use of one memory modul e, and (3) a few hours' time to wade through all of the materi a 1.
The peripheral Card Reader, Printer, and Wand are not necessary, although they are valuable
accessories for synthetic programming just as for any normal use of the HP-41C. The card
reader, for example, provides a great way to store your new programs and key assignments to
ensure against accidental memory loss. The printer is invaluable for listing the programs
as you key them in, and keeping a running record of everything you do. If you are fortunate
enough to have a wand available, you can save a lot of keying by using the barcodes provided

4

in Appendices 2 and 3.
Chapter 2 is the major 'stumbling block' for beginning synthetic programmers, since

it contains a lot of detailed descriptions without any of the fun of pushing calculator
keys. I suggest that you read Chapter 2 rather rapidly the first time through, just carefully
enough to get a general grasp of its contents to prepare you for the more interesting keystrok­
ing starting with Chapter 3. Then as you continue through the later chapters, you will wish
to refer back in more detail to various sections of Chapter 2.

IG. REFERENCES

Most of the discoveries and techniques described in this book were first published in
various issues of the PPC Calculator Journal. The PPC (the initials do not stand for
anything in particular) is an independent, world-wide club of calculator enthusiasts with a
common interest in the study and application of Hewlett-Packard programmable calculators.
The Journal is the principal medium of information exchange among the developers of synthetic
programming, who are scattered all over the world. Any serious HP-41C user, particularly
if he is interested in building upon what he learns from this book, will find it a worthwhile
investment to join the club and subscribe to the Journal. Having contact with several
thousand other programmers can save you a lot of work! I nqu i ri es shou 1 d be directed to:

PPC-SP
2541 W. Camden Place
Santa Ana, CA 92704

Here is a list of the articles relevant to the development of synthetic programming
(the format is 10lume, ~umber, fage):

Cadwallader, T., 'Improved Synthetic Key Assignments' V7N3P3
Close, C., 'Bug 2: A Practical Application' V7N3P8
Hewlett-Packard ('Corvallis Column') 'HP-41C Function Table V6N4Pll

'HP-41C Postfix Table' V6N5Pli
'HP-41C Data & Program Structure' V6N6P19

Istok, G. i Pseudo XROM' s on the HP-41C' V7N2P32
Kennedy, J. 'The HP-41C Combined Hex Table' V6N5P27
McGechie, J. 'HP-41C Synthetic Key Assignments' V7N2P34
Nelson, R. 'Bugs in the Box' V6N5P27
Wickes, W. 'Direct Status Register Access on the HP-41C' V6N7P31

'Through the HP-41C with Gun and Camera' V6N8P27
'HP-41C Black Box Programs' V6N2P35
'Freedom From Bugs' V7N2P35
'Synthetic Key Assignments' V7N2P30
'Improved Black Box Programs' V7N2P35
'HP-41C Synthetic Function Routines' V7N4P26
'Byte-Jumping, or The Poor Man's Black Box' V7N4P26
'Direct Addressing of ROM Routines' V7N5P55
'Understanding BLDSPEC' V7N5P56

It should be stressed that the development of synthetic programming is a continuing pro­
cess. Even as this book is being written, curious programmers are turning up new tricks and
extending our understanding of the HP-41C. Even writing this book has increased my own under­
standing of the subject, and led to a few new discoveries, such as the 'text enabler' opera­
tion described in Chapter 5.

5

CHAPTER TWO

INSIDE THE HP-41C

This chapter will be, to some extent, an excursion into fantasyland. In order to give
you a useful conception of the working of the HP-41C, I will introduce certain fictional,
almost personified, systems to represent important operations of the calculator. These systems
mayor may not have exact electronic counterparts inside the HP-41C case; such details are of
interest only to electronic engineers and are outside the scope of this book. The important
thing is that the HP-41C behaves as if these systems were present. First and foremost, you are
asked to conceive of the 'brain' of the calculator as a device called the 'processor'. This
processor is res pons i b 1 e for readi ng data and programs stored in the memory, then instruct i ng
the other systems in the calculator what to do with what it has read. Depending on your imagi­
nation, you might think of the processor as an almost human taskmaster, busily reading one set
of instructions provided by the user, then issuing its own instructions to the various 'workers'
that make up the HP-41C system.

2A. CALCULATOR LANGUAGE: BITS, NYBBLES, AND BYTES

R iddl e: what do the number '1.435245455 E59', the alpha stri ng I;<iCREEPY", and the program

01 LBL 00
02 /
03 SQRT
04 X>Y?
05 X>Y?
06 LN
07 SIN

have in common? Answer: all three are stored identically in the HP-41C user memory! To under­
stand this apparently obscure concept is to grasp the basis of the entire user memory organi­
zat i on and codi ng. By' user memory', we mean that port i on of the HP-41C memory under user
control: the data and program registers, the key assignment registers, the RPN stack registers,
the alpha register, etc.

At the elementary level, a calculator is really a very simple device. It can store and
recall numbers, add them if desired, and that's about it. In order to carry out instructions
which may seem elementary to the user, such as '+', or 'LN', the processor must initiate sequen­
ces of dozens of elementary steps. The real power of a calculator lies in its ability to
allow a user to initiate this internal processing by means of a simple sequence of keystrokes.
A programmable calculator is one which can also encode the keystroke sequence, and store the
code for repeated automatic execution.

The HP-41C represents a major advance over previous hand-held calculators in that the user
program codes are displayed to the user in directly readable alphanumeric characters and words.
We might imagine the 41C as containing an invisible 'translator', which takes a section of
stored code and translates it into a displayed number or word. But, in fact, there must also
be another translator, to call up the proper sequence of elementary steps, called 'microcode',
for the calculator to execute. There are, in effect, three levels of 'interpretation' of the
same stored code, illustrated in Figure 2-1.

'Level one' is the rendering of codes into a form directly visible to the user. User input
consists of generating codes by pressing keys; the resulting codes are read back by the 'user
translator' in the form of numbers, characters, or program lines shown in the display.
At 'level two', the codes are realized in a form that permits them to be stored in memory
registers, or to be written into or read from external devices such as the card reader or
wand. Finally, a 'machine translator' is necessary to translate the codes into 'level
three', i.e. the set of elementary machine instructions required to carry out an operation.

We are primarily interested in levels one and two. 'Synthetic programming' is the
process of creating new level two codes by bypassing the keyboard logic that restricts input
to the set of instructions listed in the Owner's Handbook. The resulting synthetic codes can
then be interpreted by both translators, often yielding practical results such as new display
characters and program functions. To achieve this, the user must learn to 'speak' the level
two language so that he can interact directly with the stored codes without depending on

6

KEYBOARD

PERIPHERALS

USER
TRANSLATOR

CODE STORED IN MEMORY

MACHINE
TRANSLATOR

MACHINE MICROCODE

DISPLAY
113 AVIEW
114 STO 05
115 GTO 99
116 *
117 STOP

LEVEL 1: USER INPUT/OUTPUT

F4 42 49 4C 4C F3 53
55 45 F5 4B 45 4E 4E
59 F4 4C 41 52 41 FF

LEVEL 2: USER MEMORY

••• 1 •• 11.1
•• 1111.111
11 ••••• 11 •
••••• 11111

LEVEL 3: MACHINE MICROCODE

FIGURE 2-1. THREE LEVELS OF CODING IN THE HP-41C

7

the user translator.
The requirement that the memory codes be storable in HP-41C memory and also be able to be

read to or from peripherals dictates the general form the codes must take. The card reader, for
example, uses magnetic cards for code storage; the card itself can only contain information
stored as regions of ordered magnetic fields in the oxide film of the card. To provide repro­
ducible, reliable storage, the ordering must be the simplest possible: the code is represented
by a string of magnetized or non-magnetized bar-shaped regions. This concept is directly analo­
gous to the barcodes used by the wand. As the wand is scanned along the line of bars, it
Isees l either wide or narrow bars. The bar pattern can be considered as a long binary number,
with the wide bars representing lones l and the narrow bars Izerosl. Figure 2-2 is a sample of
the barcode, which we can use to visualize how codes are stored on a magnetic card, or indeed,
in the HP-41C itself.

111111111111111111111111111111111111 1111

\ /
1 0

1111
"v'

/
NYBBLE

1111111111111111111111111111111111111.11
'--..;-J

/
BYTE

FIGURE 2-2, HP-41C BARCODE

In the calculator, the lis and Dis are represented by the states of microscopic transis­
tors, but the central idea is the same as for the wand or the card reader: user codes are
stored as sections of a long string of binary Ibitsl. To make sense of the code, the processor
must know how to break the string into intelligible sections.

Consider again the number 11.435245455 E59'. A count reveals that there are 14 Ipieces l
of infonnation required to represent the number in decimal form: ten mantissa digits, two
exponent digits, a mantissa sign and and exponent sign. The basic unit or building block of
storage code must be able to represent one of the pieces, i.e., it must be able to assume at
least ten different values so that it can represent a single decimal digit. The decimal numbers
a ,through 9 are represented in binary as 0000 through 1001 respectively, so we conclude that
the unit must consist of four consecutive binary bits. This unit is called a Inybblel--itls
half a Ibyte l as we shall see (computer jocks canlt spel too wel). We shall also refer to a
nybble as a Idigitl, referring to its role in number storage. The decimal number above is
thus coded as 14 nybbles, like this: ~

0000 0001 0100 0011 0101 0010 0100 0101 0100 0101 0101 0000 0101 1001
+ 143 5 2 4 5 4 5 5 + 5 9

(The spaces are provided for clarity.) The lEI and the 1.1 do not require explicit coding,
since their positions and Ivaluesl never change. For the sign digits, the first and twelfth
nybbles counting from the left, the HP-41C uses 10000 1 for 1+1 and 11001 1 for I_I.

You may already have observed that the four bits required to represent a decimal digit
could take values up to binary 1111, or decimal 15. The coding is thus sufficient to represent
Ihexadecimal l numbers, as well as decimal. This capacity would be wasted if the HP-41C only
dealt with decimal numbers. However, even a four-bit nybble is not adequate as a basic unit
for coding pro1ram lines.

The HP-4 C usesT consecutive nybbles, 8 bits, as its elementary unit of program code,
called a Ibyte l • Binary 11111111 (hex FF) is decimal 255, so there are 256 possible elementary
program codes, which is sufficient even for a calculator with the HP-41C ls capability. As the
41C runs a program, we can imagine it Ibytingl off successive 8-bit chunks of code for process­
ing. The meaning of the riddle at the beginning of this section should now start to become
clear. The number 1+1.435245455 E+59 1 is stored as seven bytes, 101 43 52 45 45 50 59 1• When
these same bytes are in program memory, they represent the program lines ILBL 001, 1/1, ISQRT I ,

8

X>Y?, X>Y?, 'LN', and 'SIN' respectively. The HP-41C's user translator is even more sophisti­
cated than we might have thought. The translation to the display depends not only on the
code read by the translator, but also on the current mode (PRGM, ALPHA, etc.) of the calculator.
The riddle suggests yet a third way of translating the same code--if the sample code were in
the alpha register, it would be displayed as the seven alpha characters I:j;CREEPY".

The output medium of the user translator is the display. Whatever you see in the HP-41C
display is a rendering of the contents of some register into an alphanumeric display. When
you first turn the calculator on, it is in a 'default' mode, in which the contents of Register
X are copied into the display as a number, with each number character representing one digit
from Register X. If the HP-41C is switched to ALPHA mode, the alpha register is copied, \',ith
one displayed character for each alpha register byte. If a 'VIEW mn' is executed, the Message
Flag 50 is set to indicate a non-default display, with the contents of Rmn displayed. This
di spl ay scheme permits the vi ewi ng without di sturbi ng the contents of Regi ster X. Simil arly,
we can view the alpha register by using AVIEW. A 'CLD' clears Flag 50, restoring the default
display. In PRGM mode, the display shows a program line made from program bytes. In a running
program, the 'flying goose' is the default display, which can be replaced by means of a 'VIEW'
or 'AVIEW' instruction. Figure 2-3 illustrates the logic involved in the display process.

We have seen that user programs and data stored in the HP-41C are coded as a long string
of l's and O's called bits. In data memory, each successive group of 4 bits, called a nybble,
can represent a single decimal digit, or a sign for the mantissa or exponent. Since a number
requires 14 nybbles, successive 14-nybblc sections (56 bits) of code are stored and recalled
together from a fundamental storage 1 ocat ion ca 11 ed a regi ster. The operation 'RCL 01', for
example, instructs the calculator to copy the 56 bits of code found in the section of rnemory
designated as R01 into another section, Register X. In program memory, the code is recalled
and stored one or more bytes at a time. As described in the next section, each of the 256
possible bytes represents a unique set of program instructions. The division of memory into
registers is less apparent in program memory than in data memory, but the addressing scheme
described in Section 2C, nevertheless, is organized by 7-byte registers, so that registers
can be used interchangeably for data or program storage.

28. THE BYTE TABLE

Before continuing with a discussion of the addressing scheme used in the HP-41C, let's
consider in more detail the coding of program lines. The element of program coding is the
byte; each byte has 256 possible values, from hex 00 through FF. However, there are many
more than 256 different program lines--this variety is achieved by allowing program lines to
use one or more bytes, up to a maximum of sixteen. Thus even though the display shows what
appears to be just one instruction, a program line, that single line may actually consist of
several bytes of stored code.

Table 2-1, the 'HP-41C Byte Table', shows the 256 possible bytes in a 16x16 grid. This
table is a powerful tool, indispensable for synthetic programming, so it is important for
the new programmer to understand its use. It is, in effect, the dictionary used by the
user translator. The numbers O-F labeling the horizontal rows of the table represent the
first nybble or digit of a byte code. The numbers labeling the vertical columns give the
second digit of the byte. The box in a particular row and column lists a number of 'features',
i.e., the various ways that the corresponding byte can be interpreted, depending upon its
position in memory. Figure 2-4 shows a sample box, using fictitious entries to illustrate
all of the possibilities.

The first number in the box, in the upper left-hand corner, is the decimal equivalent
of the 2-digit hexadecimal byte value. This number is also the value used with the printer
function 'ACCHR' to obtain the printer character shown in the box to the right of the decimal
number. (The decimal equivalents will also be used as inputs for the key assignment program
"KA" described in Chapter 5.) For example, in box 34 (row 3, column 4), we see decimal number
52 (3x16+4=52), and the corresponding printer character "4".

The next entry in each box is the name of an HP-41C function. For the bytes in rows 0-
B (except for bytes 1D and IE), each byte by itself constitutes an entire program line. Byte
34 displays and executes as 'STO 04', byte 5C is 'ASIN', etc. These bytes can be called
'one-byte functions', or 'stand-alone' bytes, since they cause operations that are independent
of any succeeding bytes in the program.

Thl?_I1I?,_4Jf~ rle_')M,ts .. f'r,'\!n" itS .. H'i\!:~1 P.ttc--P,,,,&,.!'.M,r\. ~,~*S,5lnC'.;) 'wJ:>J " ro~ n% "'1[,'11 t.J • .!u'jec y~I~Bl!l
'ltnes' rather than -orily si n-gl e ... byte 'steps'. -The bytes in row 9, frytesA8":-AE,arrci bytes CE
and GFare 'prefix! b;Yt-esfor two-byte prQgram 1 lnes. When -the processor -encountersoRenf

9

,,:>-.;.;..NO __ . __ ...,..-.,! FLY I NG GOOS E

VIEW DATA REGISTER

AVIEW ALPHA REGISTER

PROGRAM LINE

NULL

PROGRAM LINE

NULL

ALPHA REGISTER

FUNCTION NAME

NULL

YES ERROR MESSAGE

PROGRAM LINE

YES ALPHA REGISTER

REGISTER X

FIGURE 2-3. DISPLAY LOGIC

10

FUNCTION
OR PREFIX

DECIMAL
VALUE

302

RAND
POSTFIX

(DISPLAY) ----'-132

SPECIAL NUMBER
DISPLAY CHARACTER

(2C" 2L 3A)
DISPLAY

CHARACTER

PRINTER
CHARACTER

PRINTER POSTFIX
OR

NUMERICAL EQUIVALENT
OF LETTER POSTFIX

SYNTHETIC
FUNCTION ONLY

""INDICATES NON-KEYABLE
DISPLAY CHARACTER

FIGURE 2-4, SAMPLE BYTE TABLE "Box"

these bytes, it also must look at the following byte to complete the program instruction.
For example, byte 90 is the prefix 'RCL', which requires a second, or 'postfix', byte to identify
the register to be recalled. The postfix value of each byte is given by the number or letter
listed immediately below the function name in a Byte Table box. To decipher the bytes '90
4C', for example, we observe from the Table that the first byte, 90, is the 'RCL' prefix, so
we must look at the next byte, 4C, as a postfix, specifically '76'. Hence bytes 90 4C consti­
tute the line 'RCL 76'. Similarly, 9210 is 'STO+29', A8 03 is 'SF 03', etc. Notice that
for bytes 00-63, the postfix value for the byte is the same as the decimal equivalent of the
byte value. The first 5 bytes of row 7, when used as postfixes, access the stack registers
T, Z, Y, X, and L (Last X), so that 91 70 is 'STO T', 98 73 is 'VIEW X', and so forth.

Some of the bytes in rows 6 and 7 are shown with two postfi x val ues, one or both of
which is double-underlined. The underlines indicate a postfix value that is only accessible
with synthetic program techniques. These alternate values will be explained in Chapter 4.

The postfix values found in rows 0-7 are duplicated in rows 8-F, apparently shortchanging
us by 127 possible postfixes. However, this is not a real dupl ication: the postfixes in the
lower half-table enable indirect execution of the prefix functions. For example, 9152 is
'STO 82', but 91 D2 is 'STO IND 82'. This feature allows use of any data register from ROO-R~9
for indirect addressing. Other examples are AA AA = 'FS?C IND 42'; 9D 8F = 'SCI IND 15 ;
9F 86 = 'TONE IND 06'.

Byte 'AE' has a dual role when used as a prefix. If the postfix is from the upper
half-table, AE executes as 'GTO IND'; if the postfix is from the lower half-table, AE becomes
'XEQ IND'. For example, AE 2A is 'GTO IND 42', whereas AE AA is 'XEQ IND 42'.

Bytes AO-A7 have 'XROM' as their 'function' names. These bytes are prefixes, but not
in quite the same sense as described in the preceding. Each peripheral function, such as 'WDTA'
or 'ACSPEC', including the non-programmable functions like 'WALL' or 'LIST', has a unique
two-byte code associated with it, found in the Table in the range between AO 00 and A7 FF.

11

.....
N

TABLE 2-1. THE HP-41C BYTE TABLE

o 1 2 3 4 5 6 7 8 9 A B C D E F

8.~1 X62X
10 \NULL LBL 00 L 01 LBL 02 LBL 03 LBL 04 LBL 05 LBL 0 LBL 07 LBL 08 LBL 09 LBL 1 LBL 11 LBL 12 LBL 13 LBL 14fo

3 + 4 0: 5 IS j 6 r j 7 , 8 A 9 a 18. 11)0.1 12
II 113 ~ 14 I(15 ..

03 04 05 06 07 08 09 10 11 12 13 14 15
T .J T l' /
A ~ , , 4

00 _ 1 _ 2
';~

16 e 17 0 18 6 19 21 Fe 22 a I 23 01 24 0 25 0 26 (; 27fE 28e 29 ~ J8 £ 31 •

11 0
16

1
17

2 3
AI 28 0.

4 5
21

6
22

7
23

8
24

9
25

EEX CHS GTO a XEQ a SPARE 11
18 19 20 26 27 28 29 30 31

t

32 33!~ 34 "j 35 *J36:$ 37" 38 "'j 39 0

1
48 <J 41)j 42 * 43 +, 44 ~ 45 - 46 -4 47

./
2 I RCL 00 RCL 01 R"CL 02 RCL 03 RCL 04 RCL 05 RCL 06, RCL 0 RCL 08 RCL 09 RCL 10 RCL 1 RCL 12 RCL 13 RCL 1 RCL 1512

32 33 34 35 36 _ 37 38 _ 39 40 41 42 43 44 45 46 47
, 1/ _'-' LL I),{ " , , , ~I! ..L' I - I \ (SPIce) , ..J..J.LJ /\1 d \ / AI 1-" ;-0

/
/

3 j STO 00 STO 01 STO 02 STO 03 STO 04 STO 05 STO 06 STO 0 STO 08 STO 09 STO 10 STO 11 STO 12 STO 13 STO 14 STO 1!i 3
48 0 49 1 58 2 51 3 52 4 53 5 54 6 55 7

1
56 8 57 9' 58 : 59; 68 < 161 = 62 > 6J ?

48 ill 49 50 _ 51 _ 52 53 54 _ 55 56 57 _ 58 59 60 61 62 63
v , " L-J --: l_,' ~ 0'- ., CJ l_' IY~" J / I -- I '
- ~ -I I 0 -1la)}' -; L _ .-\ ?

64 @ 65AI66BI67C 68D

41+
64

* / X<Y?

_ 65 166 \67 _ 68
III J if LJ I 'TI C ,--, .1J L .1J

69 E I 78 F I 71 Gin H
X>Y?
69

r­t-

x ~ Y? E+
70 71 ,- ,-r- u

E-
72

H

73 I
HMS+
73 T

-L

74. J
HMS-
74 ,

u

75 KI76 L
MOD
75

,,-(

%
76 •

, ,
L

nMI78NI7CJO
%CH
77 ,,,, , ,

P-R
78

t-J

R-P
79

n u
88 P I 81 Q I 82 R I 83 S I 84 T I 85 U I 86 Y I 87 W I 88 X I 89 Y I 98 Z I 91 [I 92 I 93] I 94 I 95 _

51 LN x2 SQRT
80 ,..., 81 82

lJ n CI , /...lI f,\

yX
83 c­

:J

CHS
84

eX

T .85
I

, ,
U

LOG
86 , /

V

lOX
87

I ,
V\I

eX-1
88

" /\

SIN
89

" ,
COS
90

7
L

96 ...

61 1/ X
96

97 a

ABS
97

98 b 99 G ule d lei e 182 f" 183 '9 184 h 185 i 186 J
FACT X~O? X>O? LN1+X X<O? X=O? INT FRC D-R

T
98 99 00 100 01 101 A 102 B 103 C 104 D 105 E 106

l = ,== = = = = =,
LJ C 0 IZ.. at

TAN
91 ,­

L

AS IN
92 ,

\

ACOS
93 -,

J

ATAN
94

n
I

DEC
95

187 k 188 1 189 " 118 n 111 0

R-D HMS HR RND OCT
F 107 G 108 H 109 I 110 JIll

==z = ==

112 p 113 CI. 114 r 115 s 116 1. 117 u 118 v 119 w 128 x 121 y 122 z 123 • 124 I 125 .. I 126 E I 127 ~
71 CL E X<>Y PI CLST Rt RDN LASTX CLX X=Y? X~Y? SIGN X~O? MEAN

T Z Y X L M.l N ~ 0] 1. ± .Q. _ J: ~ a b
==- -- == -- -=--

o 1 2 3 4 5 6 7 R Q A B c

SDEV
c

D

AVIEW CLD
d \" e ,

L ,--

E F

4

5

6

7

~

w

_0

128 •

8 DEG
00

144 a
9 RCL

16

168

A XROM
32

176 0

B SPARE
48

192 @

C GL6BAL
64

288 P

D GTO
80

224 T

E XEQ
96

249 flo

F TEXT 0
T

0

1

129 x

RAD
01

145 (}

STO
17

161 !

XROM
33

177 1

GTO 00
49

193 A

GLOBAL
65

299 Q

GTO
81

225 a

XEQ
97

241 q

TEXT 1
Z

1

2 3

138 X 131 +
GRAD ENTER
02 03

146 .& 147 A

STO+ STO-
18 19

162 .. 163 .,

XROM XROM
34 35

178 2 179 3

GTO 01 GTO 02
50 51

194 B 195 C

GLOBAL GLOBAL
66 67

219 R 211 S

GTO GTO
82 83

226 b 227 e-

XEQ XEQ
98 99

242 r 243 s-

TEXT 2 TEXT 3
Y X

2 3

4 5 6 7

132 ex 133 fS 134 r 135
STOP RTN BEEP CLA
04 05 06 07

148 d 149 PI 159 a 151 0

STO* STO/ ISG DSE
20 21 22 23

164 '$ 165 % 166 8c 167
,

XROM XROM XROM XROM
36 37 38 39

189 4 181 5 182 6 183 7

GTO 03 GTO 04 GTO 05 GTO 06
52 53 54 55

196]) 197 E 198 F 199 G

GLOBAL GLOBAL GLOBAL GLOBAL
68 69 70 71

212 T 213 U 214 V 215 W

GTO GTO GTO GTO
84 85 86 87

228 d 229 e- 239 of 231 "'31

XEQ XEQ XEQ XEQ
00 lQQ 01 100 A 102 B 103 == =

244 t- 245 I..~ 246 '--' 247 1_,"

TEXT 4 TEXT 5 TEXT 6 TEXT 7
L M [

= = ~ ~ Q, 1

4 5 6 7

8 9 A B C D E F

136 A 137 (J' 138 • 139 >. 148 p 141 .t!. 142 143 .f-
ASHF PSE CLRG AOFF AON OFF PROMPT ADV 8 08 09 10 11 12 13 14 15

152 0 153 0 154 U 155 fE 156 ~ 157 :I; 158 £ 159 If

VIEW I REG AS TO ARCL FIX SCI ENG TONE 9
24 25 26 27 28 29 30 31

168 (169) 179 * 171 + 172 173 - 174 175 ./ I .
SF CF FS?C FC?C FS? FC? GTO INI SPARE

A
40 41 42 43 44 45 iXEQ INI 47

46

184 B 185 9 186 : 187 ; 188 < 189 = 199 > 191 ?

GTO 07 GTO 08 GTO O~ GTO 10 GTO 11 GTO 12 GTO 13 GTO 14 B
56 57 58 59 60 61 62 63

299 H 291 I 292 J 283 K 284 L 285 M 286 H 297 0

GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL X<> LBL C
72 73 74 75 76 77 78 79

216 X 217 Y 218 Z 219 [229 221] 222 l' 223 _

GTO GTO GTO GTO GTO GTO GTO GTO D
88 89 90 91 92 93 94 95

232 h 233 i 234 J 235 k 236 1 237 Pl 238 n 239 0

XEQ XEQ XEQ XEQ XEQ XEQ XEQ XEQ E
C 1Qi D 105 E 106 F 107 G 108 H 109 I 110 JIll = = = - = = =

248){ 249 -:--- 250 z 251 n- 252 I 253 "* 254 E 255 l-

TEXT 8 TEXT 9 TEXT 10 TEXT 11 TEXT 1 TEXT 1 TEXT lit TEXT 15 F

! i ,g, == f- -r a b c d e
= =

I
8 9 A B C D E F

More properly, we might consider the leading nybble 'A' as the prefix, and the remaining 3
nybbles as a postfix identifying a specific peripheral function.

The 'XRaM' codes that display when a peripheral is absent are derived directly from the
byte values for the peripheral functions. The three nybbles following an 'A' prefix nybble
are broken up into two 6-bit sections. The two numbers displayed with 'XRaM' are just the
decimal equivalents of the two sections. For example:

'PRX' = hex A7 54 binary 10'10'10'111 0'110'1 0'10'0' = 'XRaM 29,20"
29 20'

'WSTS'= hex A7 8A = binary 10'10'10'111 10'10'0' 10'10' = 'XRaM 30',10"
30' 10'

Some confusion might arise from the one-byte functions in rows a, 2. and 3. In order
to allow direct storage and recall from as many as laO' registers, the 'STa' and 'RCL' functions
must be two bytes; otherwise too much of the hex table would be used up with explicit functions
such as STa 99 or RCL 50'. an the other hand, a.lot of two-byte functions in a program uses up
memory rapidly. As a compromise, the HP-41C allows one-byte access to Raa-R15 by reserving
one-byte codes for STa and RCL 0'0'-15. For R16-R99, a two-byte prefix/postfix combination
is necessary. At the same time, there could have been direct access to R1aO-R255, byassign­
ing different numerical postfix numbers to each byte in the table, but that would have left
no room for the versatile indirect addressing properties of the existing scheme.

The same choice between function versatil ity and program conservation appears in the
availability of 'short form', or one-byte, labels, as well as two-byte labels. Labels 0'0'-14
are explicitly coded in row a of the Table, whereas labels 15-99 require two bytes each: the
prefix CF and a postfix from the upper half-table. The two-byte labels may also use postfixes
66-6F and 7B-7F, generating the so-called 'local alpha labels'. 'LBL A' through 'LBL J' and
'LBL a' .through 'LBL e'.

Matters begin to look a little more mysterious as we continue to progress downwards
through the table, entering the regions beginning with row B. Look, for example, at row E.
Why are there 16 different 'XEQ' prefixes? In this region of the table, the function beginning
with each byte consists of two or more bytes, so the Byte Table as drawn becomes inadequate
to list every detail. Consider first the 'two-byte GTa's' in row B contrasted with the 'three­
byte GTa's' found in row D--again we have the compromise between versatility and memory use
similar to that of the one- and two-byte STa's and RCL's.

When 'GTa 0'5'. for example, is keyed into program, these two bytes are coded into
memory:

10'11 0'110'10'0'0'0' 0'0'0'0'

The first byte is 'B6', which the table tells us corresponds to 'GTa 0'5'. What, then, is the
second byte for? Here we encounter one of the many invisible but wondrous features of the
HP-41C: 'rapid branching'. The first time that a running program encounters the 'GTa 0'5 '
line, the processor must search through the current program until it finds 'LBL 0'5 ' , a (rela­
tively) slow process. ance it finds its destination, it then records the distance between
the 'GTa 0'5' and the 'LBL 0'5' in the second byte of the 'GTa 0'5' 1 i ne code, so that ina 11
subsequent executions of the GTa it can jump directly to the LBL. We will cover the details
of how this information is coded in 1;he next section--suffice it to say that the one byte
reserved for the jump information allows jumps of up to 16 registers in length, either
forward or backward. The three-byte GTa' s of row D have an extra 5 bits for the di stance
record, permitting jumps of up to 512 registers. A programmer's choice of two- or three­
byte GTa's thus amounts to a choice between program speed and program length: if the jump is
less than 16 regi sters, the two-byte GTa and its correspondi ng one-byte LBL save two bytes
without loss of speed. For longer jumps, however, the short forms will require considerably
more execution time.

The XEQ' s found in row E of the table are structured the same as row D three-byte
GTa's. They also execute the same way, with the additional feature that the address of the
XEQ line is recorded as well as the length of the jump to the LBL. The return addresses are
stored in two special registers, as part of a 'return stack' (see Section 4F).

Take heart--we're almost done with the table! Row F next: these bytes identify alpha
text program lines. When the processor encounters an F (binary 1111) as the first nybble of
a byte. it is alerted that the program line contains alpha text. The number of characters

14

in the text, from one to fifteen, is indicated by the second nybble of the text byte. In
PRGM mode, an 'Fn' byte results in a display with the text symbol "T" followed by n characters
derived from the next 'n' bytes of program memory. In a running program, or with SST, the
processor simply copies the next 'n' bytes of program into the alpha register, then resumes
execution with the byte following the last of the 'n' text bytes. Examples:

T A = F1 41
T BIG = F3 42 49 47

TTHRILL = F6 54 48 52 49 4C 4C

Text lines require explanation of the final entry in each Byte Table box. The character
in the lower right-hand corner shows the alpha character displayed if the corresponding byte
is either in the alpha register, in a program text line, or in a global alpha program line.
The display mechanism is capable of generating 83 different characters. Of these, 59 constitute
the normal character set and may be keyed in directly. Two more, the text symbol "T" and the
append symbol lIfo-II, can be 'keyed in', but not in arbitrary positions.

Nineteen characters, identified by the black triangle in the lower right corner of a box,
cannot be keyed in directly. They do appear in displays resulting from use of the printer
function 'BLDSPEC'. The 'flying goose' "~" is seen doggedly making its rounds during a run­
ning program, but its counterpart "-E" requires extraordinary effort to flush from its nest
since the code 2C normally displays as the comma character. The bytes 2C, 2E and 3A are shown
with two characters. The normal character is shown on the right-notice that these three
characters, ",", ".", and ":", are displayed using the special LCD dot/comma segments between
the main "starburst" segments. The left character can be user controlled in special number
displays, as described in Section 7C. Finally, if a byte is not assigned one of the 82 charac­
ters mentioned so far, it 'defaults' to the full 'starburst' character "II". Except for byte
3A, the starburst characters are not shown in the Table.

Two notes: First, the 'append' operation is coded with byte 7F. If this byte appears
by itself, it is 'CLD', but if is the second byte of a text line, it causes the remaining
bytes in the line to be appended to the current contents of the alpha register. The second
nybble 'n' of the 'Fn' text byte will have a value one greater than the number of characters
actually appended. "LEG" is 'F3 4C 4547' but "i-LEG" is 'F4 7F 4C 4547'. Second, byte FO, or
'text a', normally does not appear in user programs except as the 'IND T' suffix, but does
playa role in the coding in key assignment registers (Section 2E).

We have come to the 'END'. The bytes CO-CD, 'GLOBAL', playa dual role--they identify
both 'END' lines and global alpha labels. If the third byte of a line starting with 'Cn'
(O(n(E) is a text byte 'Fn', then the line is a global alpha label. Otherwise, it is a three­
byte 'END'. For both types of lines, the second, third and fourth nybbles give the distance
from the current line to the next 'END' or alpha label preceding in memory. The distance is
coded as in the three-byte GTO's (Section 2C). Thus, all the global lines are linked together;
a GTO-alpha or XEQ-alpha starts searching the global chain from the end of program memory,
the permanent .END., backwards to the first global line in memory, which is identified by its
first two bytes 'CO 00'. 'CAT I' shows the labels and END's in order forward from the first
global line.

In 'END' lines, the third byte is used to provide information about the current program
--whether it has been packed and whether it is the 1 ast program in memory, ;. e., if the END
is the permanent .END. In the third byte, a first nybble 'a' indicates a normal END; a '2'
identifies the permanent .END. For the second nybble, 'g' means that the program file is
packed~ '0' indicates that the file needs,packing.

The global alpha labels are the most complicated of the HP-41C program lines. The third
byte is an 'Fn', where 'n' is the hex number one greater than the number of characters in the
label name. The fourth byte in the line, the extra byte reserved by the 'Fn', contains a
code for the key assigned to the label. '00' indicates no key assignment. The remaining
'n-1' bytes of the line spell out the name of the label. Example: LBL "ABC" = 'Cl mn F4 ab
41 42 43', where 'lmn' is the distance to the next label, and 'ab' identifies an assigned key.

There are a few mavericks in the Byte Table remaining to be examined. Bytes 10 and IE,
alien prefixes in the land of one-byte functions, are the prefixes for GTO (alpha) and XEQ
(alpha), respectively. When one of these bytes starts a line, it is followed by an 'Fn' byte,
reserving the next 'n' bytes for the name of the label called. For example:

GTO "BLAZES" = 10 F6 42 4C 41 5A 55 53
XEQ "SPY" = IE F3 53 50 59

15

Next, we have the 'invisible man', byte 'OO'--the 'null' function. These bytes are
normally invisible to the programmer, but are used by the HP-41C to facilitate editing and as
place holders for future coding. As an example of its use, a null is automatically inserted
in front of the first digits of a number entry line. The null serves to isolate this line
from the previous line in case that also is a number line; the null is equivalent to an
invisible 'ENTER' in this context. Upon execution of 'PACK', such a null is removed if it is
found to be unnecessary, along wi th all other superfl uous null sin current program memory.

Finally, the bytes IF, AF, and BO are 'spare' function codes; that is, they have no
prefix or stand-alone use, showing up in memory only as postfixes.

2C. REGISTER, PLEASE

We have seen that the HP-41C user memory, and its replicas on magnetic cards or in bar
code, can be viewed as a long string of binary bits, like a machine-gun belt with a pattern
of misSing bullets. To make sense of the string, as the processor scans along it groups the
bits into nybb 1 es and bytes for decodi ng, and into 7 -byte regi sters for data storage and
retrieval. But, in order for the processor to know which bits to group, there must be an ad­
dressing scheme to identify each section of memory. The scheme must permit both 'absolute'
addressing so the processor can retrieve information in permanent locations such as the stack
registers, and also 'relative' addressing, to ensure that program jumps such as used by 'GTO'
or 'XEQ' will remain unchanged by the 'SIZE' operation.

Since the smallest element of program storage is the byte, and since data registers are
an integral number of bytes, it is sufficient to have individual addresses only down to the
byte level, rather than for each nybble or even every bit. There should also be an address for
each register, to facilitate data handling, and to speed up the process of finding an address
--what we want is something like a street address, with the register and byte numbers analogous
to the street name and house number, respectively. These simple ideas lead us right to the
actual addressing system used in the HP-41C. Each byte in user memory has an address of the
form:

[nab c J.

'abc' is a three-digit hexadecimal number designating a particular register. We should make
a distinction between the absolute address of a data register and its data register number,
which is a relative address. The memory location of the number stored in data register ROO,
for example, is not fixed. When a new 'SIZE' is executed, the contents of memory are moved
around to change the allocation between program and data storage. For convenience to the
user, the original contents of ROO will still be accessed by 'STO 00', etc., even though the
location, or absolute address, of the contents may have changed (see Section 4G).

The remaining digit of the 4-digit address, 'n', is the 'byte number'. Each register
is 7 bytes, so 'n' can assume one of the 7 values 0 through 6. We now expand our conception
of the processor to include an address 'pointer', which always contains the 4-digit address
of the program byte currently being processed. The convention used by the HP-41C is that
'forward' in program memory in the direction of increasing program line numbers corresponds
to decreasing address (see Figure 2-5). Upon execution of 'SST', the pointer decrements the
byte number by the number of bytes in the program line, with byte 6 as the first byte of a
register, and 0 as the last. When a register boundary is crossed, 'n' starts over at 6, and
'abc' is decremented by 1. The data registers are numbered in the opposite direction, so
that if RlQ, for example, is (absolute) register '123', then Rll will be '124', R12 will be
'125', etc. If we could place the pointer in a data register, then single-step in PRGM mode,
we would see seven program bytes for each register, starting with a byte consisting of the
mantissa sign nybble and first mantissa digit, and finishing with the two exponent digits.

It was stated that program branch jumps caused by 'GTO' and 'XEQ' store the jump lengths,
rather than the absolute addresses of the labels, in the initiating program lines. This is
so that a shift of program register contents such as caused by 'SIZE' or by inserting a new
program file at a higher address will not require changing the stored jumps. The distance of
a jump is expressed as a number of whole 7-byte registers plus remaining bytes. The distance
is measured from the byte containing the (first part of the) jump distance code, to the byte
immediately preceding the designated label. To clarify this coding, let's look at a few
examples. First, take the routine:

16

01 GTO 05
02 "ABCDEFGHIJKLMNO"
03 LBL 05
04 "ABCDEFGHIJ"
05 GTO 05

B6 22
FF 41 42
06
FA 41 42
B6 82

4E 4F

49 4A
(2C-1)

where the numbers to the right of the program lines are the byte codes for the lines. Prior
to the first execution of the routine, the code for lines 01 and 05 would have been 'B6 00'.
The 'B6' identifies 'GTO 05'; the '00' indicates that the jump distance is unknown. Following
execution, the codes are as shown above, with each '00' replaced by a distance code. Writing
out the bytes in binary, we can see how the bits are interpreted:

(line 01) 22 =
(line 05) 82 :0

Direction
o
1

Bytes
010
000

Registers
0010
0010

If the first bit is zero, the jump is forward (to a lower address); if the bit is a one, the
jump is backward. For two-byte GTO's, the jump information is entirely in the second byte of
each 'GTO 05', so we count the jump di stance from there. From the '22' in 1 i ne 01, we count
off 2 registers + 2 bytes = 16 bytes, starting with the FF in line 02, so that the pointer
ends up at the "0" character byte of line 02. The pending instruction is then the 'LBL 05'.
For the GTO in 1 i ne 05, we count backwards 2 regi sters + 0 bytes = 14 bytes, starti ng with
the B6. Again, the pointer goes to the "0". The maximum length of such jumps is F registers
+ 7 bytes = 112 bytes, or 16 registers. The 3-byte GTO's and XEQ's are similar to the 2-byte
GTO's, but with a different ordering of the jump information. Substituting the longer forms
in Routine 2C-1:

01 GTO 45 D8 02 2D
02 "ABCDEFGHIJKLMNO" FF 41 42 4E 4F
03 LBL 45 CF 2D (2C-2)
04 "ABCDEFGHIJ" FA 41 42 49 4A
05 XEQ 45 EO 02 AD

Again breaking the codes into bits, and grouping:

~ # B~tes
(line 01) 08 02 2D = ITOI 1 a # Reaisters Direction Label

000 00010 a 0101101
(line 05) EO 02 AD = 1110 000 000000010 1 0101101

Only 7 bits are required for label postfixes up to decimal 99; 3 more bits are needed for the
number of bytes, 0-6. So with 4 bits for the line type (1101 for 'GTO', 1110 for 'XEQ'), and
1 bit for ghe direction, 9 bits remain for the number of registers. The jumps can therefore
be up to 2 = 512 registers, which is larger than the memory.

The first byte of the GTO or XEQ line starts the jump coding, so we count off the jump
from that first byte. For the 'GTO 45' in line 01, we count 4 bytes + 2 registers = 18 bytes
from the D8 byte, which pl aces the pointer on the "a" as before. Li ne '05 XEQ 45' moves the
pointer backwards from the EO byte, 0 bytes + 2 registers = 14 bytes.

Just as it is desirable for a data register number to be a relative rather than an
absolute address to facilitate shifts of memory contents, there is no absolute program line
number associated with any memory locations. The line number is a quantity that is recomputed
each time it is required, i.e., for each program step displayed in PRGM mode or by a held SST
or BST key. You may have noticed that the first time you switch to PRGM mode after running a
program, or press 'BST', near the end of a long program, there is a noticeable pause before
the current line is displayed. This 'dead time' is used for the processor to compute the
line number, which it can only do from scratch by gojng back to the top of the current program
file and chugging forward through the program, incrementing the line counter (stored in a
special register) by one for each complete program line. It would be superfluous and time­
consuming for the processor to keep track of line numbers during a running program, so it must
do the full line number computation once when the user next switches to PRGM mode. Subsequent
SST's are fast, but a BST can be slow because the processor has no way of knowing whether the
preceding byte is a stand-alone byte or a postfix in a multi-byte function. It must again
return to the top of the fil e and count forward by 1 i nes until it reaches a number one 1 ess

17

than the starting line.

20. MEMORY PARTITIONING

Figure 2-5 is a pictorial representation of the HP-41C user memory, where we visualize
all of the memory registers as stacked one on top of the other. The chart shows the 'mainframe'
plus all four possible memory modules. The top of the chart is the 'top of memory', the high­
est numbered available data register. Going down the chart corresponds to decreasing data
regi ster number and abso 1 ute address, or i ncreas i ng program 1 i ne number. The hori zontal
direction represents the byte number, with the first byte, '6', of each register at the left,
and the last, '0', at the right. Single-stepping moves the address pointer to the right through
the bytes of a regi ster, then back to the 1 eft to byte '6' of the next regi ster lower.

The first data register, ROO, and the first program line of the first user program are
immediately adjacent in memory, with no physical boundary between them. The current absolute
address of ROO is stored by the HP-41C, so that the processor always knows which regi sters
are allocated for data (those above ROO) and which are reserved for program (those below).
The current's i ze' is the number of regi sters between the top of memory and ROO' When a
memory module is added, its 64 registers are added at the top of memory, so that the 'size'
automatically increases by 64 (hex 40). When 'SIZE abc' is executed, the contents of data
and program registers are moved upwards or downwards until the original contents of ROO are
in Register 'mno' (mno is a three digit hexadecimal number), 'abc' registers from the top.

Register 'mno-l' is the first register of program memory. If we start with no programs
in memory, the last three bytes of Register 'mno-l' automatically contain the permanent .END.
line. This .END. is always present in user memory, necessarily since it is the first link
in the global address chain connecting all global labels and END's in memory. When we start
keying in a program, the first four bytes overwrite the null bytes remaining in Register
'mno-l'. If more bytes are added, the .END. is automatically shifted to the last 3 bytes of
the next program register, providing 7 more bytes for program. This process is repeated
until the program is complete, or until all available program registers are full. If we key
in an 'END' at some point, we erect a 'barrier' in memory, serving to divide the previously
keyed program lines into a self-contained program file. The 'END' line itself is the barrier,
for when it is encountered using SST, or during a program search for a local label, it causes
the address pointer to jump back to the next 'END' up the label chain, or to byte 'Omno', if
the current program is the first in memory.

If we have keyed in a total of 'def' registers of program (including the .END.). the
address of the register containing the .END. will be [pqr = mno - def]. Remember that all
such register address arithmetic is done in hexadecimal. In the HP-41C, 'pqr' can never be
less than hex OCO (decimal 192). The choice of 'oco' for the bottom of programmable memory
makes addresses in the 'mainframe' range from OCO to OFF. If the first digit of a register
number is a '1', the register is in a memory module: module l--registers 100 through 13F;
module 2--140 through 17F; module 3--180 through IBF; module 4--lCO through IFF.

At any time, there are [pqr - OCO] registers available for program, less the current
number of registers used for key assignments. The user function key assignments are encoded
in a block of registers starting at OCO and going upwards in memory (the details of the coding
are given in Section 2E). If 'jkl' registers are used for key assignments, then there are
[ghi = mno - def - jkl - OCO] registers still available for new program lines or assignments.
Overall we have

(N+l)*40 = abc + def + ghi + jkl

registers in the system, where 'N' is the number of memory modules currently inserted.
Below Register ~ca, there is a gap in the chart, meant to represent a void in the

addressing scheme, stnce no registers exist that would correspond to addresses in the
region. Between addresses 000 and OaF, however, there is a highly interesting block of 16
registers. We will call these registers the 'status registers', since their contents are
recorded by the card reader on Track 1 of the cards generated with the 'WSTS' ('Write
Status') funct i on. Access to these regi sters is the bas is of synthet i c programmi ng; thei r
study merits an entire chapter, Chapter 4.

18

0:::
UJ
ell
~
;:)

Z

0:::
UJ
~
CI) -(!)
UJ
0:::

IFF

BYTE NUMBER

65432 I 0
I I I I I I

TOP OF MEMORY

DATA
ICO~ ________________ ~

.:::r
UJ
....J
;:)
Q
o
~

IV\

rono ROO ~ 1------------------- ;:)
FIRST USER PROGRAM §

I80,1--________ ~

140~--------~

~

N

UJ
....J
;:)

Q
o
~

.-t

pqr !-~SI _ U-.s~R_ P_R~G~A~ __ 'EtiD.!. _ ~

"AVAILABLE" IOO~ __________ ~

1------ ------- - --_

KEY ASSIGNMENTS

;:)

Q
o
~

OC0U::::=========::::::::J ~
«
0:::

(NON-EXISTENT ADDRESSES)

OOF ~================~

STATUS REGISTERS

00 0 lI=========::J

u..
Z -«
~

::

FIGURE 2-5, HP-4IC USER MEMORY PARTIONING

19

abc

def

ghi

+
jkl

1

2E. THE KEV ASSIGNMENT REGISTERS

The key assignment registers extend from Register OCO up to, but not including, the
register containing the .END. The registers contain codes that tell the processor which
functions are assigned to which keys (recall that user global label assignments are recorded
in the label itself). Consider the following key sequence:

ASN ALPHA "LN" ALPHA 8 (Assign 'LN' to the 8 key)

If we were able by some sleight-of-hand to place the address pointer into Register OCO in
PRGM mode and list the contents, we would see the following (with arbitrary line numbers, and
the byte codes listed to the right):

01 "" FO
02 LBL 03 04
03 LN 50
04 RCL 05 25

(Line 01, byte FO or 'TEXT 0', shows in the display as '01 T '.) Four bytes are not enough
to fill a register--there are three invisible null bytes between lines 01 and 02. The nulls
disappear when we make a second assignment:

ASN ALPHA "LOG" ALPHA SHIFT 8 (Assign 'LOG' to the shifted 8 key)

Now Register OCO contains:

01 1111 FO
02 LBL 03 04
03 LOG 56
04 RCL 13 2D
05 LBL 03 04
06 LN 50
07 RCL 05 25

As a program, the sequence of lines doesn't mean anything, although we recognize the 'LOG'
and 'LN' that were aSSigned. Rather, the bytes make up a special code. The first byte, 'FO',
identifies the register as a key assignment register and divides it off from adjacent assignment
registers. The next three bytes are a code for the 'LOG' assignment, the second assignment
made. The last three bytes encode the 'LN' aSSignment. In both sets of three bytes, the
first two bytes identify the assigned function and the third designates the key. For assign­
ments of HP-41C functions, only one byte is required to identify the function, so that the
'04' byte (LBL 03) is stuck in as a filler. If a peripheral function is assigned, both function
bytes are required to represent the function. For example, if we had assigned 'PRP' and 'WSTS'
instead of 'LN' and 'LOG', Register OCO would contain:

01 ""
02 WSTS
03 RCL 13
04 PRP
05 RCL 05

FO
A7 8A
2D
A7 4D
25

The code for a des i gnated key is as follows: Suppose we ass i gn key 'MN', i. e., the key
in row M and column N of the keyboard. Then the byte representing that key will be hexadecimal
'XV', where [X = N-IJ, and [V = MJ. The '8' key assigned above is key '53', so that [X = 2J
and [V = 5J, yielding the 'RCL 05' line in the assignment register. Other examples: the 'COS'
key, key 24, is represented by byte 32, or 'STO 02'; 'R/S', key 84, is coded with byte 38 =
'STO 08'.

The code for the shifted key '-MN' is obtained from [X = N-IJ, [V = M+8J. Thus the
aSSignment of the shifted '8' key, key -53, is coded with byte 2D = 'RCL 13'. For shifted
keys in row 8, where N=8, we carry the '1' resulting from [8+8=10J into X. For example, the
'VIEW' key, key -84, is coded with byte 40 = '+'.

The keys ordinarily numbered 42, 43, and 44, i.e., 'CHS', 'EEX' and '[±J', and their

20

shifted counterparts, are physically in columns 3, 4, and 5, respectively, and must be so
numbered for use in the key assignment byte formula. It is as if the 'ENTER' key covers an
imaginary key 42. Figure 2-6 shows the key assignment codes in a keyboard chart form for
easy reference. The number on each key is the key des i gnat i on byte for ass i gnment of that
key. The codes for the shifted keys are shown above the keys.

09 19 29 39 49

§]~@]@]~
OA 1A 2A 3A 4A

~§]§]§]~
OB 1B 2B 3B 4B

§]~@J@]@)
OC 2C 3C 4C

10 4 I ~ ~ B
OD 1D 2D 3D

@]@]@] ~
OE 1E 2E 3E

~~@] ~
OF 1F 2F

~ @] ~

~
20

~

FIGURE 2-6. KEY ASSIGNMENT BYTES

If the assigned function is a prefix, such as 'STO', 'ISG ' , 'GTO', etc., the listing of
the assignment register will show the function byte and the key designation byte merged into
a single program line. The key designation byte acts as a postfix for the assigned prefix.

When a non-programmable HP-41C function is assigned, the function byte is found in row
a of the Byte Table, so that the corresponding program line is one of the short-form labels,
or a null. Table 2-2 shows the correspondence.

Although most of the entries in Table 2-2 correspond to normal assignments, bytes 01,
as, DB, ~C, DO, and DE represent 'functions ' that are not normally assignable. Using the key
assignment programs in Chapter 5, however, we can place these bytes into assignment registers
with amusing results. The 'functions ' I@C I and 12 __ 1 are so named because pressing the key
to which one is assigned produces the display indicated by the name. Execution of I@C I some­
times does nothing; at other times a 'GTO •. I executes. 12 __ I, upon entry of a two-digit
number, causes the HP-41C to 'lock Upl for some time. The more practical use of bytes OS,
OB, and OE allows us to reassign the 'RIS', 1r.:JI, and 'SHIFT ' functions, respectively. Pres­
sing the reassigned correction key always deletes the current program line, regardless of
whether or not the HP-41C is in PRGM mode. Finally, the byte DC reassigns the 'rocker key I
functions 'ALPHA ' , 'PRGM' and 'USER'. The choice of function depends upon the designated key
(I): if the key is in row 1 or 5, 'ALPHA ' is assigned; keys in rows 2 and 6 will be assigned
to 'PRGM'; 'USER ' results from assignments to keys in the remaining rows 3, 4, 7, and 8.

21

TABLE 2-2

Assignment of Non-Programmable HP-41C Functions

Function

CAT
@c
DEL
COpy
CLP
R/S
SIZE
BST
SST
ON
PACK

mHA/PRGM/USER 2 __
SHIFT
ASN

Byte

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF

22

Program Line

null
LBL 00
LBL 01
LBL 02
LBL 03
LBL 04
LBL 05
LBL 06
LBL 07
LBL 08
LBL 09
LBL 10
LBL 11
LBL 12
LBL 13
LBL 14

CHAPTER 3

EXOTIC EDITING WITH THE BYTE JUMPER

3A. NORMAL EDITING

Every HP-41C programmer knows the simple rules governing normal editing: (1) In PRGM
mode, a program 1 i ne keyed in is inserted immedi ately foll owi ng the program 1 i ne i niti ally
shown in the display. All subsequent lines have their line numbers increased by one. (2)
When the correction key is pressed, the displayed program line is deleted, and subsequent
lines have their line numbers decreased by one. The display will show the line preceding
the deleted 1 i ne. (3) Execut i on of I DEL 1 mn I causes I 1 mn I program 1 i nes to be deleted,
including the line displayed. (4) IPACK I does some kind of housekeeping, deleting invisible
nulls to maximize the available program space.

These operations provide a simple, fast editing capability for the HP-41C. But for our
purposes, the information in steps (1) through (4) above is inadequate; we need to know exactly
what is going on in memory at the byte level, not at the program line level. So let us rewrite
the rules as follows:

(1) The program line displayed in PRGM mode is the program line starting with the
first non-null byte following the byte where the address pointer is currently situated. When
a new program line is keyed in, the bytes constituting the new line are placed immediately
following the last byte of the initially displayed line, by overwriting null bytes. If no
null bytes are available, i.e., if the byte at the insertion location is not 100 1, the proces­
sor automatically inserts 7 nulls (or multiples of 7 nulls if required) before entering the
new program bytes. The new 1 i ne then overwrites as many of the new null s as it requi res,
leaving the rest (invisibly) in the program. Insertion of exactly seven nulls makes the
process of moving subsequent lines down in memory simple--each register containing user
programs is just copied into the next register down, starting at the .END. and working back
up to the register where the insertion is occurring.

A manual IRTN' , IGTO.OOOI, or IGTO.0011, moves the address pointer to the last byte of
the preceding program. The first two operations, by setting the line number to 100 1, result
in a display of 100 REG lmnl instead of a program line. When the line number is 100 1, program
bytes are keyed in immediately after the current pointer byte rather than after the pending
program 1 i ne •

(2) When the correction key is pushed in PRGM mode, the bytes of the displayed line
are replaced by an equal number of null bytes. The program pointer moves back one line.

(3) The IDEL lmnl operation replaces all of the bytes in the next Ilmnl program lines
with nulls. You might observe that an ISST I following the deletion of a large number of
lines requires a noticeable pause, which is actually the time required for the processor to
scan through all the null bytes resulting from the deletion until it finds a non-null byte
for di spl ay.

(4) An
program file.
bytes upwards

editing session can introduce a substantial number of superfluous nulls into a
The PACK operation removes all unnecessary nulls by moving non-null program
in memory. Nulls found within multi-byte program lines are not removed.

When program bytes are shifted around in memory, either by editing (inserting or deleting
bytes) or by packing, various jump-distance codes may become invalid. Hence, following any of
these operations, the jump-distance bytes to all local GTOls and XEQls in the file being edited
are set to zero, so that they will have to be recomputed the next time the program is run. Fur­
thermore, the relative addresses in the global label chain must be updated. Finally, the END
line terminating the edited file is recoded to indicate that the file needs packing.

An example of program editing should clarify the rewritten rules. Starting from IMEMORY
LOST I, we key in this simple program:

01 LBL 00
.END.

If we write out all the bytes in the file, the program looks like this:

23

Address

60EE
50EE
40EE
30EE
20EE
lOEE
OOEE

Line Number Line Byte Code

01 LBL 00 01
00
00
00

• END. CO
00
29

The addresses follow from the consideration that the 41C 'wakes up' with 47 (hex 2F) registers
of program space, starting with Register OCO: [OCO+02F-l=OEE]. So Register OEE is the highest
program register. In the .END. line, the '000' nybbles indicate that this is the topmost
global label in memory; the '29' indicates a packed file, permanent .END. Now suppose we
insert three '+' lines following line 01:

60EE 01 LBL 00 01
50EE 02 + 40
40EE 03 + 40
30EE 04 + 40
20EE .END. CO
lOEE 00
OOEE 29

The nulls have been replaced by the '40' bytes. Now delete line 03:

60EE 01 LBL 00 01
50EE 02 + 40
40EE 00
30EE 03 + 40
20EE .END. CO
lOEE 00
OOEE 20

The '40' at address 40EE has been replaced by a null; the last byte of the .END. has changed
to a '20' to indicate an unpacked file. If we packed at this point, the '40' at 30EE would
move up to 40EE, but then another '00' would be inserted at 30EE to keep the .END. in the
last three bytes of the register. If we were to insert a one-byte line after line 02, it would
simply overwrite the null at 40EE. But if we insert a two-byte line, e.g. 'STO 65', we get:

60EE
50EE
40EE
30EE
20EE
lOEE
OOEE
60ED
50ED
40ED
30ED
20ED
lOED
OOED

01
02
03

04

LBL 00
+
STO 65

+
.END.

01
40
91
41
00
00
00
00
00
00
40
CO
00
20

Since there was only one null byte available between lines 02 and 03, 7 more nulls were inser­
ted. Two were then overwri tten by the 'STO 65' bytes. The '40' at 30EE was moved down to
30ED. Finally, the .END. was reinserted, at the end of Register OED. Following a 'PACK',
the program becomes:

24

60EE
50EE
40EE
30EE
20EE
lOEE
OOEE
60ED
50ED
40ED
30ED
20EO
10ED
OOED

01
02
03

04

LBL 00
+
STO 65

+

.ENO.

01
40
91
41
40
00
00
00
00
00
00
CO
00
29

The user program lines have been pushed together, but since there is not room for the
.END. in Register OEE, it remains in Register OED.

3B. THE BYTE JUMPER

Armed now with sufficient knowledge of normal HP-41C operation, we can boldly sally
forth into brand-new territory. It should be re-emphasized at this time that even if some of
the procedures we are about to use seem strange, there is no risk for the HP-41C. Follow me
through the following procedure: (HP-41CV owners please refer to page ii.)

1. Insert one memory module into the HP-41C.
2. Master clear. (HP-41C off; hold down correction key; HP-41C on.) A clean break with

the past!
3. Execute 'SIZE 000'. This places the '.ENO.' in the module.
4. ASN "X<>" +; ASN II E+" E+. This fills Register OCO with two assignments.
5. HP-41C off; remove memory module; wait 60 seconds or so; replace module; HP-41C on.

If you a have second module available, you can save the 60 seconds by plugging the 'dead'
module in in place of the one removed. Now the .ENO., which we placed within the module has
'evaporated'. If you had turned the calculator on before replacing the module, 'MEMORY LOST'
would have resulted. Evidently_ the processor checks to see if the register where the .ENO.
is supposed to be exists, but not whether the .ENO. bytes are actually present in that register.

6. Switch to PRGM mode; you shoul d see '00 REG 126' (190 if your modul e is doubl e
density). Now press SST once. After a few seconds' wait, you will see '01 T'. The address
pointer is now in Register OCO, the first assignment register! With the .ENO. absent, there
was nothing to stop the pointer from rolling merrily through empty memory until it encountered
the first non-null byte, which in this case is the 'FO' from the key assignments we made in
step 4. If you SST 5 more times, the following should appear in sequence:

02 LBL 03
03 E+
04 LBL 00
05 LBL 03
06 X<>06

(If you press SST again, the pointer will end up in the status registers.) You will recognize
this set of lines as the code for the key assignments made in Step 4.

7. Use BST to return to line 03. Don't be distressed if some of these SST's and BST's
take a few seconds. Now push the correction key twice to delete lines 03 and 02.

8. Now key in ALPHA "A" ALPHA, resulting in line '02TA'. (Actually, any single char­
acter will work as well as "A".)

9. Press 'GTO •• '; the display 'GTO •• ' will persist for a few seconds, followed by a
quick 'PACKING'. SST once, and delete the line '01 LBL 01'. For the second and last time in
this book, you have carried out a synthetic programming operation by the trick of 'module
pulling'. From now on, we will be able to achieve all our goals without having to resort to
such unpleasant tactics.

10. Press and hold the' E+' key in USER mode. You should see a display of 'XROM
05,01'. If this does not occur, you must have made a mistake, so repeat steps 1 through 9.
By direct editing of an assignment register, you have created a brand new key assignment,

25

called the Ibyte jumper l •
The best explanation of the operation of the byte-jumper is that it is, in effect, a

manually executed program text line. To understand this, recall from Section 2B what happens
when the automatic execution of a text line occurs: the processor looks at the second nybble
of the current program byte, i.e., the IFni byte that signals the text instruction, copies the
next In l bytes of program code into the alpha register, and advances the pointer by In l bytes.
The byte jumper is the manual equivalent of this operation, not to be confused with the single
stepping of a text line. The IFI nybble that starts the process is Iprovided l by pressing
the USER key to which we have assigned "A" (IF! 41 1). To see why this operation is of interest,
key in these lines:

01 STO 04 34 (3B-1)
02 "ABCOEFG" F7 41 42 43 44 45 46 47

With line 02 still showing in the display, switch PRGM off, USER on, and press the byte
jumper key (E+). Switch to PRGM mode again, and you will see by single stepping:

02 X<Y? 44
03 X>Y? 45
04 X <=Y? 46
05 E+ 47

Where did these program lines come from? As you can see by looking at the byte values of the
Inewl program lines, the lines are simply the stand-alone functions corresponding to the
characters "0", "E", "F", and "G" in the original text line "ABCOEFG". We started with the
display showing the line 102 "ABCOEFG III , i.e., the address pointer was positioned on the 1341
byte, line 01. Then we executed the byte jumper, which made the processor think it was execu­
ting a text line (donlt confuse this imaginary text line with the real line 02). So it looked
at the second nybble of the current byte, 134 1, copied the next 4 bytes into the alpha register,
and advanced the pointer by 4 bytes to the 143 1 byte. With the pointer there, the display
will show the next program line, which is the one-byte line 102 X<Y?1 corresponding to the
1441 byte. If you now press PRGM (off), ALPHA, you will see the four characters "IIABC", which
are the four bytes copied from the program. The starburst character is the IF71 byte. Since
the byte jumper is a manually executed function, it does not change the current program line
number, even though the pOinter moves, so that the line 102 X<Y?I has the same line number as
the 102 "ABCOEFG" I line from which the jump was executed.

While the pointer is linside l the text line, ISST I operates normally, but a IBST I from
any of the bytes sends the pointer back to the ISTO 04 1 line. Remember that IBST I sends the
processor back to the start of the program file, whence it counts forwards by lines, refusing
naturally to jump into the middle of a multi-byte line.

Letls see what use can be made of byte jumping. To condense future instructions, I
will introduce a new instruction, IJUMP • lmnl, which means I byte jump from line lmnl. That is:

IJUMP .1mn l means: 1. GTO. lmn (do even if the displayed
line number is already Ilmnl)

2. PRGM off
3. Press the byte jumper key
4. PRGM on

IJUMp l without a line number means I byte jumpl from the current line, i.e., step 1 is omitted.
Now, using Routine 3B-1, try IJUMP .0021. After step 4 of the jump you will see displayed

102 X<y?l. Press the correction key once, then ISSTI. You should now see 102 "ABC-EFG".
The I_I is the display character for a null, in this case the null with which the liD" byte
was replaced by the deletion. You have modified a program text line, without having to delete
the entire line! This is only the beginning--now change line 01 of the routine to ISTO 03 1•
(If you make any mistakes while editing that may introduce invisible nulls, eliminate them
with IPACK I• If, for example, a null preceded line 02, which we wou1dn l t know from the display,
IJUMP .0021 would do nothing, since the second nybb1e of the null is 10 1.) Next, IJUMP .0021
to see the line 102 /1, i.e., the "c" byte. Key in 103 LBL 00 1, then press IGTO .0021. The
display will show 102 "ABCi'~EFGIIi. You have replaced the null following the "c" with byte
1011, from the ILBL 00 1, which displays as the Ifull man l character "iii" when the full text
line is displayed. The following sequence will produce the program steps shown to its right:

26

JUMP .002
Key in:

03 LBL 11
04 DEC
05 RCL 09
06 ACOS

GTO .002

01 STO 03
02 "ABCIl)]"
03 LBL 00
04 X>Y?
05 X<=Y?
06 E+

.END.

This is your first serious example of Isynthetic programming l , where non-keyable byte combina­
tions are synthesized by extraordinary means. According to the byte-level editing rules of
Section 3A, when we tried to insert the ILBL 111, the processor had to insert 7 nulls to clear
space for the new line. This also provided room for the IDEC I, IRCL 09 1, and I ACOS I , but
at the same time pushed the "DEFG" bytes down in memory, clear out of the Irange l of the IF71
byte. Those four bytes thus I become I stand-alone program lines 03-06.

Any such synthetic text line created with the byte jumper will execute normally, as you
can verify by single-stepping the new line 02 (PRGM off), then checking the alpha register to
see the resulting characters. We may use this technique to place in a program text line any
of the 19 non-keyable HP-41C display characters, plus the append and text symbols (but not
the geese). Each of these characters is found in the upper half of the Byte Table, so that
each may be edited in as above using a directly keyable one-byte program 1 ine. Furthermore,
any of the 128 printer characters can be placed in a text line (those without display equiva­
lents will display as starbursts), for transfer to the print buffer using IACA I (see Section
6E).

Program lines that lappend nulls l to the existing character string in alpha are used
frequently in synthetic programs. Here is an example of the creation of such a line--in this
case, to append 5 nulls:

Key in:

01 ASTO 02
02 "~ABCDE"

JUMP
DEL 005
DEL 001

The line 102 "~ABCDE" is chosen to have the same number of characters as the number of nulls
to be appended. The IDEL 005 1 changes the characters to nulls. The IDEL 001 1 removes the
IASTO 02 1 used to control the byte jump.

The byte jumper editing described so far has the limitation that the first character in
a text line cannot be changed, except to delete it to a null. In "ABCDEFGlrf'Or example, the
"A" cannot be altered, since to key a new byte into the "A" position would require that the
preceding byte be displayed prior to insertion of the replacement byte, but since the byte
preceding the "A" is the IF7 1, the display insists upon showing the entire text line. Inserted
bytes will enter the program following the full text line.

However, arbitrary text lines, with non-keyable characters in any or all positions, can
be created through an elaboration of the byte jumping procedure. Suppose we wish to make the
text line "(#)", i.e. bytes IF3 28 23 29 1• In the previous example, the text bytes were
created normally along with Itemporaryl characters, which are then pushed out of the line by
the desired characters. This time it will be the text byte itself that is created within yet
another text 1 i nee The des i red text characters wi 11 be fi rst entered as normal one-byte
instructions. Start with this routine:

01 STO 01
02 "BJ"

31
F2 42 4A

(3B-2)

The line 101 STO 011 is used to provide the 111 nybble to produce a byte jump of one byte;
we shall refer to such a line as the Icontroller l , since it controls the length of a byte
jump. Similarly the line 102 "BJ III is a temporary text line we shall call the Igeneratorl.
The Icontroller l and the Igeneratorl are to be deleted once the byte jump editing is completed.
Now execute IJUMP .0021 and key in the line 103 "ABC"I. The full program is now:

27

01 STO 01 31
02 "BII" F2 42 F3
03 - 41
04 * 42
05 / 43
06 HMS- 00 00 00 4A

The entry of the line 103 "ABC'" places an IF3 1 right after the 142 1, where it becomes the
last byte of the generator line. The 141 42 43 1 ("ABC") do not Ifitl in the generator, so
these three bytes will show up as three independent program lines 03-05. Finally, we have
the 14AI byte, the original "J", which was pushed out of the generator by the insertion, so
it b€comes line 106 HMS-I. The three nulls left over from the insertion are, as usual, invis­
ible.

Next, press IGTO .0021 and key in:

02 RCL 08
03 RCL 03
04 RCL 09

to place the bytes 128 23 29 1 in position immediately following the IF3 1 byte. Then IJUMP
.002 1, key in 103 HMS-I. Now the program is:

01 STO 01
02 "BJ"
03 "(#) "
04 -
05 *
06 /
07 HMS-

31
F2 42 4A
00 00 00 00 00 00 F3 28 23 29
00 00 00 00 41
42
43
00 00 00 4A

The insertion of the IHMS-I pushes the IF3 1 out of the generator, whereupon it reassumes its
role as a ITEXT 31, grabbing the bytes 128 23 29 1 to complete the text line as the characters
ITI, "#", and ")", respectively. The various nulls are left over from the groups of 7 nulls
placed into program for each insertion. To clean up, we delete lines 01, 02, and 04-07, then
IPACK I• With some practice, you will find that the whole procedure goes quite rapidly.

Byte jumper editing is in no way restricted to text lines, particularly using the
Icontro11er-generator l method described last. As an amusing example, try the fo110win~:
start again with Routine 3B-2 (recall the instruction format described in Section IE):

JUMP .002 [02 *]
03 TONE 1

GTO .002 [02 "BII"]
03 LBL 09

JUMP .002 [02 *]
03 HMS-

SST [04 TONE 0]

The ITONE 01 looks normal, but try executing it by single-stepping with PRGM off. You should
hear a new, low frequency tone lasting over 2 seconds!

With the controller-generator method, we can create almost any combination of prefix
and postfix that we want, to make synthetic two-byte functions. The most important set of
such funct ions are the status regi ster access funct ions that we wi 11 invest i gate in Chapter
4.

28

CHAPTER 4

THE STATUS REGISTERS

4A. STRANGE POSTFIXES

By the end of Section 2B, we had examined the Byte Table in great detail, accounting
for almost every entry in the Table. But there is still one important feature still to explore:
Notice that bytes 64-65 have their postfixes shown with a double underline, and that each of
bytes 66-6F has two postfix 'values ' , the second of which ;s underlined. The underlined
postfixes never arise in I normal I HP-41C programming. Consider postfixes 66 through 6F,
shown as the letters II A" through "J". These letter postfixes are only seen in program 1 ines
involving the 'local alpha labels ' , such as 'LBL CI or 'XEQ Fl. The keyboard logic prevents
us from attaching these postfixes to other prefixes. For example, when we press 'STO ' , the
ALPHA key is disabled so that only numerical postfixes can be entered. But the byte jumper
has freed us from keyboard constraints, so let's try making a 'STO AI.

01 STO 01
02 "BJ"

JUMP .002
03 STO 22 (arbitrary postfix)

GTO .002
03 X<O?

JUMP .002

[02 *

[02 "BII"

[02 *

]

]

]

At this point, welre ready to push the 'STO ' prefix out of the generator. But while welre
at it, 1 et I sal so make a I RCL A I :

The program is now:

03 RCL 22 (pushes out the 'STO ' , puts 'RCL ' in the
generator)

03 X<O?

03 HMS -

GTO .002

JUMP .002

01 STO 01
02 "BJ"
03 RCL A
04 6
05 STO A
06 6
07 HMS-

[02 "B."

[02 *

(4A-1)

]

]

The '6 1s in lines 04 and 06 are the stand-alone equivalents of the 1221 postfix bytes. Now try:

12345

SIZE 103
PRGM (off)

GTO .005
SST
CLX [0.0000]

At this point, the number 112345 1 has disappeared from the display. To retrieve it, press
'GTO .003 1, SST. The number reappears, showing that it was stored in Register 'A'. To see
where the number actually went, store 1102 1 in ROO, then press 'VIEW IND 00 1• As you might

29

have expected, 'STO A' is equivalent to 'STO 102'. If the numerical postfixes were continued
past decimal 99, the 'A' postfix would be '102'. Synthetic programming thus allows us to
extend direct data register access up to R111(postfix 'J'), leading to the underlined
postfixes for bytes 66-6F in the Byte Table.

But why stop at Ill? There is another row of postfixes available; could we not use
them to access up to Register 127? Notice first that postfixes 70, 71, 72, 73, and 74 are
already used to access the stack registers T, Z, Y, X, and L, respectively But the remaining
bytes beckon to us: they turn out to be the keys to 'Pandora's Box' of synthetic programming!
Let's try a dramatic example: Using Routine 4A-1:

JUMP .002 [02 *]
03 STO 22

GTO .002 [02 "BR"]
03 AVIEW

JUMP .002 [02 *]
03 HMS-

GTO .003 [03 STO d]

Now switch PRGM off; press 'SF 00, SF 01, SF 02, SF 03, SF 04, FIX 9, SF 28, GRAD, USER, CLX,
ALPHA', which turns on various display annunciators. Now press 'SST' once. As the resulting
display makes quite clear, the simple operation 'STO d', with zero in Register X, clears all
56 HP-41C flags in one fell swoop! The implication is obvious--the two-byte code '91 7E',
or 'STO d', that we made with the byte jumper, allows us to store directly into a special
register, which we shall call 'Register d', that contains the 56 flags.

The 'status registers' (Registers OOO-OOF) mentioned at the end of Section 20 are recorded
by the card reader 'WSTS' operation. The status of all user and system flags is part of the
information stored on the status card, so we infer that Register d is one of the 16 status
registers. The observation that the stack registers, also accessed by postfixes in row 7 of
the Byte Table, are status registers, leads us~ in a bold leap of inspiration, to guess that
all of the postfixes in row 7 refer to status regi sters--16 postfi xes, 16 regi sters. It only
remains to identify the roles of the 16 registers. From the 'WSTS' and 'WALL' operations, we
wou 1 d expect the status regi sters to conta in, in addition, the alpha regi ster, the address
pointer, the subroutine returns, the current 'size', and the location of the summation regis­
ters.

As shown in the Byte Table, postfixes 75 through 7F display as 'M', 'N', '0', 'P', 'Q',
'~', 'a', 'b', 'c', 'd', and 'e', respectively. The second postfix values shown for bytes 75
through 7A are the postfixes shown with printer listing of the status register functions.
Thus the line 'STO M' shown in the display would print as 'STO ['. The correspondence is
also shown in Table 1-1.

In order to study the properties and uses of each of the status regi sters, we wi 11
synthes i ze program 1 i nes that allow us to vi ew or change the contents of these regi sters.
The function 'X<>' serves this purpose admirably, since it can act both as 'STO' and 'RCL'.
Since storage into Registers a, b, and c can produce occasionally unpleasant results ('0,
STO c' causes 'MEMORY LOST', as the most unpleasant example), we will limit ourselves to
verbal descriptions of those registers for the time being. As an exercise, you should try to
use the byte jumper to create Routine 4A-2 without guidance. Refer to the instructions in
the next paragraph if you get lost. As we did in the creation of 'STO A' and 'RCL A', we
will save keystrokes by using each successive 'X<>' prefix to push the previous one out of
the generator. If you have cleared the assignment of 'X<>' that you made in Chapter 3, you
should restore it now.

Start with Routine 3B-2. As usual, the choice of a temporary postfix for the 'X<>'
prefixes is arbitrary (just don't use 'X<>29, 30, or 31', since the corresponding postfix
bytes are prefixes themselves). The best choice is 'X<>OO', since the '00' is hex '00', the
null. All the leftover postfixes are 'invisible' ,and will be eliminated by packing. Now
try:

JUMP .002 [02 *]
03 X<>OO

GTO .002 [02 "Ba"]
03 CLD (e)

JUMP .002 [02 *]
03 X<>OO

30

GTO .002 [02 "BE"]
03 AVIEW (d)

JUMP .002 [02 *]
03 X<>OO

GTO .002 [02 "BII"]
03 SIGN (r)

JUMP .002 [02 *]
03 X<>OO

GTO .002 [02 " Bill"]
03 XiV? (Q)

JUMP .002 [02 *]
03 X<>OO

GTO .002 [02 ,"BIB"]
03 X=Y? (P)

JUMP .002 [02 *]
03 X<>OO

GTO .002 [02 "BIB"]
03 CLX (0)

JUMP .002 [02 *]
03 X<>OO

GTO .002 [02 "Bill"]
03 LAST X (N)

JUMP .002 [02 *]
03 X<>OO

GTO .002 [02 "BS"]
03 RON (M)

JUMP .002 [02 *]
03 HMS-

Following this sequence, we are 1 eft with Routine 4A-2 (delete line '11 HMS-'):

01 STO 01 06 X<>P
02 "BJ" 07 X<>Q
03 X<>M 08 X<>!- (4A-2)
04 X<>N 09 X<>d
05 X<>O 10 X<>e

Now, if we want to execute an 'XOW, for example, then with PRGM off we press 'GTO .003',
'SST'. In the remainder of this chapter, we will use the program lines in the above routine
to explore the status registers. The practical programming applications of the properties we
discover will be discussed in Chapter 6. Figure 4-1 is a diagram summarizing the use of the
various parts of the status registers, in a format similar to that of Figure 2-5.

4B. THE ALPHA REGISTER

A HP-41C programmable memory register is 7 bytes long. The 'alpha re9ister' appears to
be an exception to this rule, since we can store up to 24 bytes (characters) in alpha. In
fact, the alpha register consists of four status registers, Registers M, N, 0, and P. Four
registers gives us a total of 28 bytes, but only 24 of these can be displayed, or accessed
with 'ASTO' and 'ARCL'.

To illustrate the structure of the alpha register, we can use Routine 4A-2. Start by
keying in 24 characters into alpha, such as "ABCOEFGHIJKLMNOPQRSTUVWX". If Flag 26 is set,
you will hear the warning tone upon entering the "X" to inform you that the alpha register is
full. Now press 'GTO .003', 'CLX', 'ALPHA(on)', 'SST', to see "ABCOEFGHIJKLMNOPQ-------".
The overline II-II is the character corresponding to a null byte '00'. The 'CLX' filled Register
X with nulls; the 'SST' executed an 'X<>M', moving the nulls to Register M, which is revealed
to be the rightmost 7 bytes of the al pha regi ster. If you switch the HP-41C out of ALPHA
mode, then set 'FIX 9', you will see '-2.5354555 E-42' in X. The hex code for the character
string "RSTUVWX" is '52 53 54 55 56 57 58'. These bytes are now in Register X, where the
processor is trying valiantly to display a decimal number. There is a '5' in the mantissa
sign digit, and a '7' for the exponent sign, resulting in the minus signs (see Section 5A).
The mantissa digits are all normal decimal digits, so the mantissa shows as '2.5354555565',

31

N

A

f~

E

e

d

C

b

Q

f-

Q

p

o

N

M

L

X

Y

Z

T

BYTE NUMBER
6 5 4 3 2 1 o

• , I , T

LINE SHIFTED KEY ASSIGNMENTS SCRATCH NUMBER
• I • I · • I J i '

-, ,
USER FLAGS • SYSTEM FLAGS I

I
I I I I I , ,

'COLD
I •

1:REG SCRATCH ROO .END. START
I I

3RD
I

ADDRESS 2ND RETURN 1ST RETURN RETURN POINTER

6TH RETURN 5TH 4TH RETURN 3RD
RETURN RETURN

I 1
• I T

UNSHIFTED KEY ASSIGNMENTS SCRATCH
I ~ j I • I 1 I • I ,

TEMPORARY ALPHA SCRATCH
~ I I I ~

I I I ALPHA SCRATCH
REGISTER 22-24 (ALPHA REGISTER 25-28)

I I

• I I • I

ALPHA REGISTER 15-21
J I I • , J I I I

ALPHA REGISTER 8-14
I l .l I I · I • I

ALPHA REGISTER 1-7
I • I
I I I I

STACK L
I I I I
• I I • I •

STACK X
I I .l I I
• T I I

STACK Y
I I --'- I 1
• I I • • •

STACK Z
--' • I •

I I I -. •
STACK T

I I --'- I I

SIGN ... MANTISSA .. ~ I GNIEXPONEN

FIGURE 4-1. THE STATUS REGISTERS

32

OOF

DOE

DOD

DOC

OOB

OOA
A

009 D
D

008
R

007 E
S

006
S

005

004

003

002

001

000
T

the last two digits of which are suppressed to make room for the exponent. The byte code
for a negative exponent '-xy' is the complement of the exponent, '100-xy'{decimal); in this
case we see an exponent [100-58=42].

To continue your exp 1 orat ions, try 'ALPHA (on) " 'SST', to see" ABCDEFGH IJRSTUVWX-------".
The 'SST' executed line '04 X<>N', so that now the original contents of Register M, "RSTUVWX",
have been moved to Register N, the next 7 bytes of the alpha register. To complete the exer­
cise, key 'ALPHA{off)', 'GTO .003', 'SST', 'ALPHA'; the display is "ABCDEFGHIJRSTUVWXKLMNOPQ"
--the original contents of M and N are interchanged. All told, the original 24-character
alpha string divided up like this:

xxxxABCIDEFGHIJIKLMNOPQIRSTUVWX
Regi ster: P 0 N M

When a fresh character stri ng is keyed into the alpha regi ster, the fi rst character keyed
enters the 1 ast byte (the exponent byte) of Regi ster M, address 0005. The next character
also goes to 0005, pushing the previous character leftwards in the alpha register, i.e., to
the next-to-1 ast byte of Regi ster M, byte 1005. ,Subsequent characters continue the process;
when Mis full, the next character entry wi 11 push the fi rst into the 1 ast byte of Regi ster
N, byte 0006, and so on up into Registers 0 and P. When a character enters the third-to-last
byte of Register P, 2008, the warning tone sounds. Appending further characters shoves the
leading characters into the first four bytes of P{shown above as "xxxx"), where they vanish
from the display.

Now press 'GTO .006', turn ALPHA on, and append four more characters "YZ=?" to the
original 24. "ABCD" disappears, but surprisingly, it is still present in Register P. Press
'SST' once, to execute 'X<>P', then 'ALPHA{off)'. You will see '-1.4243444 E-53'. To translate
this into characters, try 'GTO .003', 'ALPHA', 'CLA', 'SST'{'X<>M'). The characters "ABCDEFG"
reappear--these were the initial contents of Register P, which we moved into Register M via
Register X. However, if we repeat the whole process starting with the keying in of the 28
characters, but, this time, switching out of ALPHA mode before the 'SST' that executes the
X<>P, we end up with "IISCDEFG". The processor occasionally uses the first four bytes of
Register P for 'scratch' purposes, wiping out part or all of the original contents. Evidently,
pressing the 'ALPHA' key requires processor use of Register P. Studies by Charles Close have
revealed that, during a program execution, only 'VIEW', 'AVIEW', and number entry program
lines cause loss of the leading bytes of P. If these steps are avoided, we can use a full
28.,.byte ALPHA register for character string manipulations. As an example of the processor
use of Register P, bytes 1, 2, and 3 are used to record the current size and summation registers
location on a magnetic card with the 'WSTS' operation.

There are two important areas of application of direct access to Registers M, N, 0, and
P. First, as demonstrated in the above examples, we have obtained a new class of alpha string
manipulations, which when added to the conventional 'ASTO', 'ARCL', 'APPEND', and 'ASHF',
provides efficient, fast character sorting useful for displays, games, word sorting, etc. The
second application is the use of the alpha register as an additional three (or four, if Register
P is included) data registers, with the same capabilities as ordinary data registers, but
with the advantage of fixed memory locations and non-normalizing recall{Section 5B). These
applications will be explored in detail in Chapters 5 and 6.

4C. REGISTER Q

Regi ster Q is primarily a scratch regi ster for the processor. It is used so frequently
that it is virtually useless as an additional data register. Of primary interest for synthetic
programming is the use of Register Q for temporary storage of alpha strings that don't directly
enter the alpha register. Such strings are obtained during execution of functions or programs
that are 'spelled out' by the user, or during the entry of program text lines. For example,
using Routine 4A-2, try 'XEQ' 'ALPHA' "GTO" 'ALPHA' '.007', 'SST', 'GTO .003', 'ALPHA', 'ClA',
'SST'. The "OTG" now in the alpha register is the reverse of the letters "G", "T", "0" that
you used to spell out "GTO". This feature can be used to simplify the creation of non-keyable
program text lines (Section 51).

4D. THE FLAG REGISTER

We discovered at the beginning of this chapter that Register d 'contains' all 56 HP-41C
user and system flags. When we recall that a register consists of exactly 56 bits, it is

33

obvious that each of the flags is just one of the bits of Register d. The 'first' (or leftmost,
or highest, or most significant, depending on how you like to visualize a register) bit is
Flag 00, the second Flag 01, and so forth to the 56th bit, Flag 55.

As a sample of the behavior of Register d, configure your HP-41C as follows: SF 04,
SF 09, SF 17, SF 18, SF 26, USER (on), SF 28, FIX 9, RAD; all other user flags clear. Now, using
Routine 4A-2, call up the contents of Register d by pressing: 'GTO .009', 'SST', 'ENTER', 'BST',
'SST', 'RDN', 'ALPHA', 'ClA', 'ARCl X'. This sequence allows us to view the contents of d
without changing them. We use the 'ARCl X' so that we can view all 10 mantissa digits as
well as the exponent. Recalling that the positive exponent and mantissa correspond to zeros
in the sign digits, we conclude from the alpha display that the bytes of Register dare '08
40 60 38 09 90 10', which is, writing out all 56 bits (grouped by nybb1es):

Flags: 4 9 17 18 26 27 28 36 39 40 43 51
I I \/ \/ / \ \ I I I

Bits: 0000 1000 0100 0000 0110 0000 0011 1000 0000 1001 1001 0000 0001 0000

Each '1' in the string corresponds to one of the flags we set. The first 'I' from the left,
in the second nybb1e, is Flag 04, for example. The next 'I' is Flag 9, and so forth, over to
the last '1', in the second nybb1e from the right, which is Flag 51, the 'SST' Flag, which
was set momentarily because we used an 'SST' to execute the 'X<>d'.

To give yourself a taste of what can be done through use of the flag register, multiply
the existing number '8.406038099 EI0' in Register X by '1 E30'. Then execute 'GTO .009', 'SST'.
No--you don't have a low battery, you just set Flag 49, the low battery flag. (To clear it,
turn the HP-41C off, then on.) This is an example of the use of user-controlled bytes, i.e.,
the number you placed in Register X, to control system flags through exchanges with Register
d. Now conceive of the reverse process--using explicit control over the user flags to create
arbitrary bytes in Regi ster d, whence they can be transferred to Regi ster X and e1 sewhere
with status register access functions (see Chapter 5). It was, in fact, the implementation
of this concept that originally led to the development of serious synthetic prograll11ling.

4E. THE KEY ASSIGNMENT FLAGS

When a key is pressed USER mode, if that key is assigned to other than its default
function, the processor must check the user global labels and the key assignment registers to
discover what program or function the key is intended to execute. To save a lot of fruitless
searches, the HP-41C keeps a set of 72 'key assignment flags', one for each key and shifted
key (counting the imaginary key under the ENTER key). When a user key is pressed, the proces­
sor first checks the corresponding assignment flag. Only if the flag is set does the assign­
ment search begin.

As in Register d, a memory bit is used for each assignment flag. Since 72 bits are too
many for a single register, the assignment flags are divided between Register ~ and Register
e. The 36 unshifted key flags are the first 36 bits of Register ~; the shifted key flags are
Similarly situated in Register e. Figure 4-2 shows the correspondence between bit number and
key location.

To see one of these registers 'in action', we will use Register ~ as an illustration.
The only key ass ignments we have made so far were made in Chapter 3, i.e., the assignment of
the byte jumper to the' l:+ ' key, and the assignment of the 'X<>' function to the '+' key.
If you have made additional assignments in the meantime, your results in the following will
differ from what is shown here, so you might want to delete those extra assignments.

To view the contents of Register ~ using Routine 4A-2, press 'GTO .008', 'ClX', 'SST',
'FIX 7'. You should see '0.0000021'. The 6 zeros plus the positive sign show that the first
[7x4=28] bits of the number (which is the original content of Register ~) are zeros. The '2'
digit, which is 0010 binary, indicates that assignment bit 31 is set; the '1', binary 0001,
comes from setting assignment bit 36. Referring to Figure 4-2, we see that those bits corres­
pond to the '+' key and the' l:+' key respectively, which are just the keys we had assigned.

Inspection of the contents of Registers ~ and e thus provides a quick means of finding
which USER keys are assigned, without requiring use of the printer. We used 'FIX 7' because
we were only interested for this purpose in the first 9 nybb1es of the register. This trick
is not completely general in its app1ication--if too many keys are assigned, the numbers
derived from a 'RCl ~' or 'RCl e' may contain hex digits A-F, which can be hard to decipher
in the display (see Section 5A). You must be sure to restore the original values to the key
assignment registers; otherwise, you will lose the user key assignments, including the portion

34

of user memory used to encode the assignments. If you now press the '+' key in USER mode, the
HP-41C will execute '+' rather than 'X<>', because the zero we stored into Register ~ with
'X<>~' cleared the key assignment flags. To recover, press ('LASTX', if you executed the '+')
'GTO .008', 'SST'. If you accidentally lose the contents of Register I- or e while playing
such games, execution of a card reader 'WSTS' followed by reading back the resulting status
card will restore the original key assignments.

The last three nrbbles of Register e are the storage location for the program line number
(coded in hexadecimal). If the line number nybbles are '000', as when following a 'GTO .000',
a manual 'RTN', or program execution that terminates with an 'END', the next program display
shows '~O REG lmn'. When program execution halts at a position other than an 'END', the line
number is set to 'FFF'. When the processor 'sees' that mythical line number, it knows that
it must recompute the actual 1 i ne number before showi ng the current program 1 i ne upon the
next activation of PRGM mode or 'SST'.

§J@]§]§J[D

@]@]@]~0

GEJ@]~0

133 1@]00
§J ~ E1 0
~ @] @] [2]

~ @] @] CD
@] @] @] QJ

FIGURE 4-2. KEY ASSIGNMENT FLAG BITS

4F. THE ADDRESS POINTER AND THE RETURN STACK

In Chapter 2 we learned that the address pointer uses a 4-digit address consisting of
the byte number plus three register number digits. The address pointer itself is the last
four nybbles of Register b. That is, if the address pointer is positioned at byte 'n' of
Register 'abc', then Register b will contain the number 'OOOOOOOOOOnabc'. If a subroutine is
called, the return address is recorded in the next four nybbles to the left of the address
pointer, with the new current address, following the jump to the subroutine, entered into the
pointer nybbles. As further subroutine calls occur, previous return addresses are pushed to
the left. When Register b is full, the addresses continue on into Register a, so that there
is sufficient room in Registers a and b for the current address plus six pending return addres­
ses. At any time, the contents of Registers a and b look like this:

Iyzab uvwx qrst mnlop ijkl efgh abcdl

Register a Register b

35

where 'efgh' is the fi rst pendi ng return address, 'ij kl' the second, and so forth. When a
'RTN' or 'END' is executed, the 'stack' of return addresses shifts to the right, so that the
fi rst return address becomes the new pointer address, the second return address becomes the
fi rst, etc. The only compl i cat i on in thi s ni fty scheme is that the return addresses are
written in a slightly different format than the pointer addresses. For example, if the return
is to address '3160', the address would be stored in the return stack as '0760'. The '0760'
is actually a compressed form of '3160'. If we write out all the bits of '3160' we get:

3160 = 0011 0001 0110 0000

For user program addresses (i.e. locations in the HP-41C or memory modules) the first, fifth,
sixth, and seventh bits are always zero, since the first nybble only takes values up to 6
(0110) and the second is always 0000 or 0001. So in the return addresses the three 'used'
bi ts of the fi rst nybb 1 e are moved to the three 'unused' bi ts of the second. The' 3160'
becomes:

0760 = 0000 0111 0110 0000

This compression of the address code frees the first nybble to contain additional information.
Specifically, if the first nybble is zero, the return is to a user program address; whereas
if it is nonzero, the processor knows to return to an address contained in some peripheral
dev ice. For exampl e, all addresses in the pri nter memory start wi th the nybb 1 e '0110'.

The most obvi ous appl i cat i on of knowl edge of the str'ucture of the return stack and of
synthetic function access to the stack through functions such as 'STO b' or 'RCL a' is to allow
the user to move the address pointer to arbitrary positions in memory, including to the key
assignment registers or even into the status registers themselves. Also, using a 'STO b', we
can move the pointer directly to any byte of a multi-byte program line for editing just as we
did with the byte-jumper. For full control of such operations, we first need to develop a
facility that allows us to generate arbitrary 7-byte hex codes, and to decipher such codes.
This facility will be developed in Chapter 5.

4G. REGISTER c AND MEMORY PARTITIONING

The last unexplored section of user memory in the HP-41C is Register c, which is full
of interesting nybbles and bytes. The 14 hexadecimal digits of Register c are laid out as
follows:

stulvwl1691mnolpqr

where the letters representing the digits are grouped as the digits are used by the processor.
The 1 etters are chosen to correspond to the memory part i t i oni ng shown in Fi gure 2-5. The
first three digits, 'stu' are the absolute register address of the first of the six summation
registers as specified by the function' REG'. This address is changed each time either
'EREG' or 'SIZE' is executed. When' L+ " 'E-', 'ClL " 'SDEV', or 'MEAN' is executed, the
processor refers to digits 'stu' to find out which registers are currently designated as the
summation registers.

The next two di gi ts, 'vw' are used for scratch purposes by the pri nter. Di gi ts 6, 7,
and 8, shown with the explicit value '169', are interesting in a perverse sort of way, since
they are the so-called 'cold-start constant'. At various times during routine operation,
particularly when the HP-41C is turned on, the processor checks the value of the three digits
and compares it with the fixed value '169'. If the digits are other than '169', the processor
assumes that somethi ng drast i c has occurred to the memory, and so takes the i rrevers i b 1 e
step of clearing the user memory and displaying 'MEMORY lOST'. This explains why '0, STO c'
causes memory loss--that operation clears the '169'.

Digits 'mno' and 'pqr' are three-digit register numbers that correspond to the Registers
'mno' and 'pqr' shown in Figure 2-5. 'mno' is the absolute address of the lowest numbered
data regi ster, ROO. The processor refers to 'mno' for each use of a data regi ster. Data
register Rat> is the memory register with absolute address [mno+ab] (with lab' converted to
hexadecimal).

Digits 'pqr' indicate the current location of the permanent '.END.'. Since the global
label/END chain starts with the '.END.', a 'GTO (alpha)' or 'XEQ (alpha)' instruction starts
the label search in Register 'pqr'.

36

Despite the risk of memory loss when dealing with Register c. there are many important
appl ications of the mani pul ation of its contents. Foremost among these are control of the
program/data memory dividing line, and the capability of storing data into program registers,
as will be described in Chapter 5.

37

CHAPTER 5

PROGRAMS FOR PROGRAMMING

The central theme of this chapter is to develop a set of HP-41C programs that allows us
to create, decipher, store and recall arbitrary 7-byte hexadecimal codes, giving us great
power for synthetic programmming. The Iprogrammingl programs and techniques are intended to
perform specific synthetic programming tasks, while acting as examples of the uses of synthetic
functions. Even if you do not use every program from this chapter, you will find it instructive
to study the techniques and programming philosophy embodied in the routines. It is assumed
at this point that you have mastered the byte jumping techniques of Chapters 3 and 4 suffi­
ciently to be able to I key inl any two byte synthetic function, such as IRCL MI or IX<>d l , when­
ever it is required in a program. As we did when creating Routine 4A-2, you will find it con­
venient, when byte jumping a series of functions, to start at the bottom of the program and work
upwards, using each prefix entered into the byte jumper generator to leject l the previous
one. After all the synthetic functions are keyed in, you can insert normal functions with
ordinary keystrokes.

Three crucial synthetic programming techniques are featured in the programs:

1. Multiple use of flags. Direct access to Register d allows a set of user flags to
be used for several purposes simultaneously, simply by saving a current flag status with IRCL
dl or IX<>d l , using the flags for a second purpose, then restoring the original status of all
flags with a ISTO dl or I X<>d I. This permits, for example, a program to employ different
display or trigonometric statuses yet always return the HP-41C to the userls favorite flag
status at the end of the program.

2. Use of flags as bits. User control and testing of Flags 0-29 allow programmable
conversion of 3d-bit binary numbers to and from decimal or octal. This technique is the indis­
pensable key to creating and deciphering memory bytes and multiple-byte codes automatically.

3. Alpha string manipulations. The powerful synthetic alpha register access functions,
used in this chapter's programs to assemble individual bytes into 7-byte codes, and vice-versa,
are encountered aga in and aga in in pract i ca 1 synthet i c programmi ng, as we wi 11 see in Chapter
6.

The HP-41C is designed to process only program- or user-generated data that are normal
decimal numbers. We might, therefore, anticipate that asking the processor to deal with
numbers containing digits IAI through IFI will at least cause some unexpected behavior.
Before exploring the promised programming programs, we should first learn how various 7-byte
codes are I interpreted I by the display, and also study how the codes are affected by register
exchanges such as caused by ISTO I or IRCLI.

5A. UNSEEMLY DISPLAYS

When presented with a sequence of bytes to be di spl ayed (PRGM off) the processor must
first decide whether to display the bytes as a number or as a string of alpha characters. If
ALPHA mode is on, or if IAVIEW I is executed, there is no choice: all bytes in the alpha register
are displayed as characters. But if ALPHA is off, so that the display is showing a data
register, the choice is determined by the value of the mantissa sign digit. We already know
that if the sign digit is 10 1 (0000) or 19 1 (1001), the register contents are displayed as a
positive or a negative number, respectively. The only other I normal I sign digit is 111 (0001),
for which the register is assumed to contain a six character alpha data string, such as might
result from an IASTO I operation. Each of the last six bytes in the register is displayed as
a character; the first byte is not shown. Any sign digit other than the normal 10 1, 111, or
19 1 will cause the register contents to display as a negative number, but to be treated as
lalpha datal in many arithmetic operations.

When the displayed register contains alpha data, as indicated by the sign digit 111,
the display is simplified through suppression of null bytes. All null bytes, rather than
just leading nulls as in alpha register displays, are not only blanked but are also leliminated l
by moving the non-null characters into adjacent positions. For example, the alpha data coded
110 00 41 00 00 42 001, which would show as "A--B- II if viewed in the alpha register following
an IARCL I, would display simply as "AB" in Register X.

38

Number displays have the additional feature of user choice of the number of digits that
will be shown, including appropriate rounding, using the display format functions IFIX I ,
IENG I and ISCI I • We should remember that this choice is only a display feature--the number
is still stored as a full seven bytes.

In many situations numbers containing any of digits IAI through IFI will display using
only ordinary decimal characters 10 1 through 19 1• Since A through F are greater than 9, each
such digit found in the mantissa of a number Icarries l a 111 into the next digit to the left.
For example, the bytes 101 03 BO OF 00 00 00 1, which Ishould l be the number 11.03BOOF I , will
display in FIX 6 format as 11.041015 1• The F digit shows as 115 1, using two positions. The
Bbecomes an 111 1, but since there was already a 3 in the next digit, the combination 13BI
displays as 1411.

An exception to this general rule occurs when the displayed number has a non-negative
exponent, and is displayed in a format that shows all ten mantissa digits. These requirements
can only be satisfied by IFIX I format displays of numbers with exponents between 00 and 09.
If we switch to IFIX 9 1 format, the number 11.03BOOF I will be displayed as 11.03;00?0001.
The digits Band F are represented by single characters II; II and II?II respectively. These charac­
ters are found in row 3 of the Byte Table, just as are the decimal number characters 110 11

through 119 11 • Similarly, digits ICI, 10 1, and lEI display as characters 11<11,11=11, and 11>11,
respectively. An I'A I digit is represented by the starburst character shown in the lower left
corner of the table box for byte 3A. If a number is Icopied l into the alpha register using
IARCL I, the speci al characters are preserved, except that the starburst wi 11 I change I to
the alpha character ";".

Numbers with an exponent zero as 11.03BOOF I are displayed with ten mantissa digits only
in FIX 9 format. If the number were 110.3BOOF I (11.03BOOF E01 1), the special display would
result with FIX 8 as well as FIX 9. In general, we obtain the special display characters
with formats FIX In l through FIX 9, where In l is nine minus the exponent. However, when the
exponent itself contains any digits A-F, the exponent will display using the special characters
(but not the mantissa, since 10 mantissa digits cannot be displayed with an exponent).

5B. REGISTER EXCHANGES AND NORMALIZATION

As we prepare to deal with data registers containing arbitrary 7-byte codes, let us intro­
duce the following classification of codes: first, an lalpha data stringl is any 7-byte code
for which the first nybble is 100011. A Inumber l is any code for which the first and twelfth
nybbles are either 10000 1 or 11001 1, and the remaining twelve nybbles are any of the decimal
digits 10 1 through 19 1• Any other code will henceforth be called a INon-Normalized Number l ,
or simply an INNN I•

That this classification is useful follows from consideration of the treatment of 7-
byte codes by register exchange functions ISTO I , IRCLI, IX<>I, and IVIEW'. ISTO I is the
most straightforward--ISTO mnl, where Imn l refers to ~ register whether addressed directly
or indirectly, exactly copies the content of Register X into the designated register. Unfor­
tunately for synthetic programming, the other three exchange functions are not so benign.
IRCL pql, IX<>pql, or IVIEW pql, if Ipql refers to a numbered data register, causes the content
of Rpq to be Inormalizedl before it is copied. (Exchanges between status registers do not
cause normalization.) By Inormalizedl, we mean that NNN's are changed, either into ordinary
decimal numbers (containing no heretical digits greater than 9) if the original mantissa sign
digit was 0 or 9, or into alpha data with a sign digit of 1 if the original sign was other
than 0 or 9. For example, an NNN coded with bytes 101 OC 00 DO OE 00 FFI, which displays as
11.1201301 E??I, is normalized following ISTO 011, IRCL 011 to the number 11.120130140 E-35 1•
The bytes have actually changed to 10112 0130 14 09 65 1• The NNN 121 OC 42 34 7E 40 ~Ol,
which has an abnormal sign digit, displays as 1-1.1242348 E==I. If normalized, it will change
to the alpha data "j.lB4E@.", i.e., bytes 111 OC 42 34 7E 40 ~Ol.

IASTO I and IARCL I perform still different kinds of register exchanges. IASTO I takes
the first six bytes in the alpha register, starting with the first non-null byte, adds a 110 1

alpha-identifier byte to the I front I to make a total of seven bytes, then stores the resulting
bytes in the addressed register. IARCL I reverses the process if the addressed register contains
alpha data, dropping the 110 1 byte and appending the alpha characters to the right end of the
existing string in the alpha register. Leading nulls in the alpha data are dropped; trailing
or intermediate nulls are retained. For example, start with IIABC II in alpha. Then IARCL XI,
where Register X contains 110 44 45 46 47 48 49 1 (IIOEFGHIII) will result in IIABCOEFGHI Ii

• If
Register Y contains 110 00 4A 00 00 4B 00 1 (displayed as IIJKII), IARCL yl yields the string
"ABCOEFGHIJ--K- II in the alpha register. Finally, if the register addressed by IARCL I contains

39

a number or an NNN, the operation does not copy the bytes of the number into alpha, but rather
changes each digit, as shown in a number display, into the corresponding row 3 character for
storage in the alpha register. 'ARCL' also normalizes the contents of the addressed register.

SC. GETTING STARTED: "CODE"

The byte jumper is so far the only tool we have for creation of non-standard program
lines and NNN's (from 'RCL M', etc.) However, the byte jumper is strictly a manual operation,
and has some limitations in the byte codes it can generate (bytes from the lower half of the
Byte Table are difficult to handle). We are now going to write a program called "CODE" which
will automatically generate ~ 7-byte code specified by the user, placing the code into both
Registers X and M. This program will, through use of an accompanying routine "REG" (which
allows storage of the code into any register), enable generation of any program sequence,
NNN, or non-standard alpha character string. Furthermore, we will be able to make 'synthetic
key assignments' that assign any two-byte functions to user keys. This ability will finally
place the synthetic functions on an equal footing with any normal HP-41C or peripheral function:
namely, they will be able to be executed manually or inserted anywhere into a program with
single keystrokes.

"CODE" is designed to satisfy several requirements. Upon execution, the program should
halt and prompt the user for entry of an easy-to-key code that specifies a 14-digit hexadecimal
number. Following entry, the program should run with no further user intervention, yielding
the desired number coded with the proper bytes. Even though the flag register will be required
for the byte creation, the program should restore the original flag status at the finish.
Finally, for reasons which will become clear later (Section 6G), "CODE" should use no numbered
data registers. This set of requirements is rather difficult to implement--the version of
"CODE" described here is many times revised from the original (see 'HP-41C Black Box Programs',
PPC Calculator Journal, V6 N8 P27).

81*LBL "CODE" 24 CHS
82 "CODE:?" 25 FS? 86
83 AOH 26 CHS
84 STOP 27 SF 86
85 AOFF 28 Wl?
86*LBL "CO" 29 CF 86
87 "I-ABCDEFC" 38 X(8'
88 .886 31 SF 85
89 STO L 32*LBL 81
18*LBL "HB" 33 Sh X
111 34 FS?C 84
12 RCL] 35 SF 88
13 XO d 36 FS'C 85
14 XOY 37 SF 81
15 CF 88 38 FS?C 86
16 CF 81 39 SF 02
17 CF 82 48 FS?C 97
18 FS?C 93 41 SF 83
19 GTO 81 42 FS?C 11
28 SF 84 43 CTO 91
21 FC?C 87 44 SF 12
22 SF 07 45 FPC 15
23 FS' 07

Instructions for use of "CODE":
1. XEQ "CODE".

46 SF 15
47 FS"j 15
48 CHS
49 FS? 14
58 CHS
51 SF 14
52 X(8'
53 CF 14
54 X(8'
55 SF 13
56*LBL 81
57 FS? 12
58 SF 84
59 FS? 13
68 SF 85
61 FS? 14
62 SF 06
63 FS? 15
64 SF 07
65 RDN
66 XO d
67 RCL]

68 RCL \
69 RCL [
78 STO \
71 Rt
72 STO [
73 "1-*"
74 XO \
75 Rt
76 STO]
77 Rt
78 STO \
79 "1-**"
88 RCL Z
81 STO [
82 ISG L
83 GTO "HB"
84 RCL [
85 CLA
86 STO [
87 AYIEW
88 TOHE 9
89 EHII

"CODE"
191 BYTES

2. At the prompt "CODE=?", key in 14 alpha characters to represent the desired code,
using the characters "0" through "9" and II A" through "F" for the nybbles '0' through
'F',respectively.
3. RIS.
4. At the beep, the requested code will be in Registers X and M (shown with 'AVIEW').

40

To test that your version of "CODE" is correct, try these examples:

Input Output (AVIEW)

"41 42 43 44 45 46 47" ~ "ABCDEFG"
"ad 01 28 29 00 7F 7E" --+ "~()- ... t H

[The remainder of this section is a detailed discussion of the operation of "CODE", and
may be skipped at a first reading.]

The task for "CODE" is to convert 14 characters, entered by the user following the
halt at line 04, into the corresponding bytes. (The global labels "CO" and "HB" are for use by
other programs calling portions of "CODE" as subroutines.) To minimize program length, this
task is handled by a routine that converts one pair of input characters into one output byte.
The routine is run 7 times, using the alpha register to append the successive output bytes
together. The problem is complicated by the requirement that we use no data registers, leaving
only the alpha register(s) and the stack for juggling the input code, the output code, the
original contents of the flag register, and any arithmetic that might be required for the
conversions.

The basic conversion routine is found in lines 10-64. To understand how It works,
let's start by assuming that one pair of input characters has been moved into the first two
bytes of Regi ster d. For exampl e, take the characters "49", which are to be changed into the
single byte '49'. The initial characters are actually bytes '34 39'--what we must do is
ignore the '3's and move the '4' into the first nybble, and the '9' into the second:

34 39 -+ 49 39

after which we will concentrate only on the first of the two bytes. The shifting of digits
is done with ordinary flag operations--recall that in Register d, the first four bits are
Fl ags 0-3, the next four are Fl ags 4-7, etc. The program 1 ines to do the copyi ng are as
follows (to the right of each line is shown the effect of execution of the line on the first
16 bits of Register d):

Program.Line

(initial value '34 39')
15 CF 00
16 CF 01
17 CF 02
18 FS?C 03
19 GTO 01

32 LBL 01

34 FS?C 04
35 SF 00
36 FS?C 05
37 SF 01
38 FS?C 06
39 SF 02
40 FS?C 07
41 SF 03
42 FS? 11
43 GTO 01

56 LBL 01
57 FS? 12
58 SF 04
59 FS? 13
60 SF 05

61 FS? 14

41

Flags 00-15

0011 0100 0011 1001
"
"

0001 0100 0011 1001
0000 0100 0011 1001

"
"

0000 0000 0011 1001
0100 0000 0011 1001

"
"
"
"
"
"

"
"

0100 1000 0011 1001
"
"

"

62 SF 06
63 FS? 15
64 SF 07

"
"

0100 1001 0011 1001 = 49 39

The simplicity of the preceding set of program lines arises from the circumstance that
the second nybble of each character "a" through "9" is the same as the numerical equivalent
of the character. Unfortunately, thi sis not true for characters "A" through "F", requiri ng
a more complicated conversion process. The program must test each input character to determine
whether it is 'greater' than "9" and thus needs extra processing. The testing is done for
the first of the pair of input characterS in line 18. The additional conversion is performed
in lines 20-31 (and uses line 11). The second input character of the pair is tested in line
42; lines 33 and 44-55 provide the corresponding conversion.

The remainder of "CODE" is centered around the basic routine described so far: the
program must pl ace two input character bytes in the fi rst two bytes of Regi ster d, run the
routine, then extract one output byte from Register d. Registers N and a are used to store
the input characters; Register M contains the 'growing' output code. You may find it of
interest to single-step through lines 66-81 to see how the leading byte from Register d is
appended to the last character position in Register M, while simultaneously the user input
code is moved left by two positions in Registers Nand O. After seven iterations (Register L
is used as a counter) M contains the final output bytes.

When the input characters are stored into Register d (line 13), numerous system flags
are set or cleared (half the fun of "CODE" is watching the various annunciators blink on and
off), including possibly Flag 52, the PRGM mode flag. If this flag is set during a running
program, certain operations will cause the HP-41C to go berserk and start to program itself!
(See Section 7B.) Included among these operations are ordinary number entry 1 ines, so to
avoid such a catastrophe, the entry of a 'I' in line 11 precedes line '13 X<>d', necessitating
the otherwise wasteful inclusion of line '14 X<>Y'.

5D. DIRECT ACCESS TO PROGRAM REGISTERS

The program "CODE" developed in the last section is a powerful synthetic prograrraning
tool, but so far there's not much we can do with it, beyond creating strings of non-keyable
alpha characters, since the output codes can only be transferred into other data registers.
But consider this: the division of the HP-41C memory into program and data registers is entirely
controlled by one number--namely, the absolute address of ROO, stored in Register c. Changing
that address is normally done only with the 'SIZE' function, which also shifts the contents
of memory registers so that program stays program and data stays data. As ambitious program­
mers, we will not let this minor detail deter us--synthetic functions give us access to Register
c, and now "CODE" allows us to create any bytes we mi ght wi sh to store there. By p 1 ac i ng the
proper code into Register c, we can move the 'curtain' separating program and data registers
anywhere we want without using 'SIZE', and thereby transform the contents of data registers
into program lines, or vice-versa!

Furthermore, to maintain the proper spirit, we will write a program to perform the
whole process of storing into program registers automatically. The general approach is this:
we use "CODE" twice, once to create a temporary value to store into Register c that will
specify as ROO the program register into which we wish to store; and again, to create the
special code to be stored. Then we swap the new value for Register c with the original,
using 'X<>c', execute 'STO 00' with the special code in X, then restore the original contents
of Register c so that access to existing programs and data is preserved.

The specific value that we wish to store into Register c is '10 00 01 69 xy zl 00',
where 'xyz' is the 3-digit absolute address of the program register we wish to access. The
'169' is the 'coldstart' constant needed to prevent 'MEMORY LOST'. '100' is chosen for simpli­
city for both the 'EREG' address and the '.END.' address--since this value for Register c is
only temporary, it is not too important which values we use. Having the byte '10' starting
the code is convenient because it makes the string 'alpha data', which can be stored and
recalled without normalization. The only variable in the new Register c value are the digits
'xyz', so we can save execution time by only using "CODE" to create two bytes (in this case
'xy zll) rather than a full seven. The next program, 'REG', is an implementation of these
ideas.

42

91*LBL "RREG·
92 SF 18
93 GTO 81
94*LBL "REG"
85 CF 19
86*LBL 91
97 ·REG"i n

98 AOH
89 STOP
18 AOFF
11 ASTO 81
12 "f-!.
13 RGL [

Instructions for "REG":

14 STO \
15 ·1-+ +8+ z i·
16 .881
17 STO L
18 XEQ "HB"
19 "1-+"
29 RGL [
21 STO 00
22 CLD
23 FC? 10
24 XEQ "CODE"
25 RCL e0

26 XO c
27 RCL [
28 xo ge
29 FS")C Ie
39 STO 99
31 XOY
32 STO c
33 x,. >y
34 ·REG-"
35 ARCl. 01
36 iWIEW
37 END

"REG"
101 BYTES

SIZE 002

1. XEQ "REG". (If you only wish to recall the contents of a register, XEQ "RREG".)
2. At the prompt "REG?", enter three alpha characters to identify the absolute address
of a register, then RIS.
3. At the prompt "CODE=?', enter 14 alpha characters to specify the code to be stored,
then RIS.
4. The display "REli-abc" (abc is the register address) announces that program execution
is compl ete.

Line 15 of "REG" is a synthetic program line, code 'FB 7F 00 00 00 00 00 00 10 00 01 69'.
It can be created by byte jumping as follows:

15 STO 07
16 STO 02
17 "~ABCDEFGH IJ"

17 0
18 I
19 LBL 00
20 FRC

JUMP .016

JUMP .016
SST, SST
DEL 001
JUMP .017
DEL 005
GTO .018
DEL 005
GTO .015
DEL 002

[16 X>Y?]

[16 X>Y?]
[18 I]
[17 STO 02]
[17 -]
[16 STO 02]
[18 X<=Y?]
[17 "1-------II-~."]
[15 STO 07]
[14 STO N]

The label "RREG" is provided in case you want only to recall the contents of a register.
Remember, however, that the recalled register will be normalized by the recall.

As an example of the use of "REG", execute 'SIZE OlD' (if no memory modules are inserted
--use 'SIZE 074' for one module, 'SIZE 138' for two, 'SIZE 202' for three, or 'SIZE 266' for
four). Now use 'CAT l' to place the pointer in the first program in memory, then press 'RTN'
to put the pointer at the start of the program. The address of the first program register in
this configuration is 'OF5'. In PRGM mode, key in seven 'ENTER' lines, which just fill Register
OF5, pushing the already existing programs down in memory. To create the synthetic text line
"######' :

XEQ "REG" ["REG?"]
"OF5"

RIS ["CODE=?"]
"F6232323232323"

RIS ["REG-OF5"]

43

GTO first program (use CAT 1)
GTO .001
PRGM (on) [01 "######"]

If you repeat the above sequence, replacing the "F6232323232323" with "0191759FOA9676", the
following program lines will be placed at the top of program memory:

01 LBL 00
02 STO M
03 TONE 0
04 ISG N

(The 'TONE 0' in line 03 is actually 'TONE 10'--see Section 7A.)
Any synthetic program lines can be created in this manner. To make a line requlrlng

more than 7 bytes, we simply use "REG" twice (or even three times), storing 7 bytes of the
code at a time into adjacent registers.

5E. SYNTHETIC KEY ASSIGNMENTS

A powerful application of "REG" is for the generation of 'synthetic key assignments',
i.e., assigning synthetic two-byte functions to user keys so that they can be executed manually
or entered directly into programs. To achieve the assignments, we simply use "REG" to store
special codes into the key assignment registers. Each such use of "REG" can assign two user
keys. The procedure. is best illustrated by use of an example: we will assign the functions
'RCL M' and 'STO M' to the 'TAN' (25) key and the 'ATAN' (-25) key respectively.

1. Clear all existing key assignments except the byte-jumper. (This drastic step is
not usually necessary, but you should do it this time.) 'PACK', then assign any function to
any key.

2. Assign ~ HP-41C function to the two keys to be assigned (for the example, assign
the 'TAN' key ancItl1e 'ATAN' key). This puts a 'dummy' code into Register OCO, the lowest
assignment register, and also sets the proper key assignment flags in Registers }- and e.

3. Determine the required code to overwrite the dummy code in Register OCO. This code
follows the format described in Section 2E. The byte codes for the functions to be assigned
can be found in the Byte Table; the key assignment bytes are shown in Figure 2-6. In this
case the code is:

FO
90 75
42
91 75
4A

starts a key assignment register
'RCL M'
assignment of 'TAN' key
'STO M'
assignment of 'ATAN' key

4. Use "REG" to store the assignment register code into Register OCO. For this example,
we enter "oco" at the "REG?" prompt, and "F090754291754A" at the "CODE=?" prompt. After
"REG-OCO" displays, we will find that pressing the 'TAN' key executes 'RCL M'; the 'ATAN' key
executes 'STO M'.

This synthetic assignment technique is by no means limited to synthetic functions. The
whole point of key assignments is to allow the user to replace frequently-used multi-key
sequences with single keystrokes. Ordinarily, a single instruction like 'ST+IND X' takes
five keystrokes; the best we can do normally is reduce it to four by assigning 'ST+' to a
user key. But with synthetic assignment techniques, there is no reason not to assign the
entire function 'ST+IND X' to a key (the function code in this case would be '92 F3'.)

In addition, synthetic assignments are not limited to HP-41C functions; we can also
assign peripheral functions to keys. We simply obtain the 'XROM' code for the desired function
from the appropriate peripheral manual, convert the 'XROM' code to hexadecimal using the
conversion described in Section 2B, then store the resulting byte codes into an assignment
register. This method allows a user to enter programs containing peripheral functions into
memory even when the peripheral is unavailable. Also, we can enter 'nonprogrammable' functions,
such as 'LIST' or 'WALL', into programs. The codes for nonprogrammab 1 e card reader and
printer functions are shown in Table 5-1.

When a normal HP-41C function is assigned to a key, only one of the two function bytes
in one half of an assignment register is used to identify the function. The first of the two

44

TABLE 5-1

Non Programmable Peripheral Functions

Function XROM Number B~te Code Execution?

CARD READER 30,00 A7 80 Clears digits f1 ags
VER 30,05 A7 85 Normal
WALL 30,06 A7 86 Normal
WPRV 30,09 A7 89 Normal
-PRINTER- 29,00 A7 40 Crash
LIST 29,07 A7 47 Lists from next line
PRP 29,13 A7 40 NONEXISTENT

bytes is always '04' (LBL 03). If the first byte is other than '04', the processor knows that
the assignment corresponds to a two-byte peripheral function. If the peripheral is absent
pressing the assigned key produces the appropriate 'XROM' code. In the case of two-byte syn­
thetic assignments, the first function byte differs from '04', again with the result that
pressing and holding the key displays an 'XROM' code. In our example of assigning 'RCL M' to
the 'TAN' key, pressing the TAN key gives a display 'XROM 01,53'. Releasing the key prior to
the 'NULL' display causes 'RCL M' to execute.

Synthetic XROM codes can be deciphered in the same manner as normal XROM's, as described
in Section 2B. For example, to determine the XROM code corresponding to 'RCL M', we write
out the hex code '90 75' for 'RCL M' in binary, then group the last 12 bits into two 6-bit
numbers, which we convert to decimal:

hex:
binary:
decimal:

9 0 7 5
1001 10000 01111 01011

01 53

Hence 'RCL M' = 'XROM 01,53'. Similarly, 'STO M' = 'XROM 05,53'.
To facilitate the construction of a large set of key assignments, it is convenient to

automate the synthetic assignment procedure more than is possible through use of "REG". Use
of the 'fey ~ssignment' program, "KA", listed next, eliminates preliminary manual keyassign­
ments, use of Figure 2-6 to determine key codes, and any necessity for worrying about the
current contents of the key assignment registers. "KA" will refuse to overwrite an existing
assignment unless the user manually clears the assignment when prompted.

Three additional utility routines are listed with "KA". "KP" 'packs' the key assignment
registers. Although two key assignments use only one key assignment register, clearing two
key assignments will not recover one register for further use unless both assignments were
recorded in the same register. It is thus possible to have a number of half-filled assignment
registers. "KP" compresses the code in the assignment registers, leaving at most one half­
filled register when there are an odd number of active key assignments. The half-filled regis­
ter will be Register OCO, so that a new assignment will fill that register.

The "Clear Assignments" program "CA" automatically clears all function and user program
assignments-:- However, "CA" does not clear the key assignment bytes in global labels, so that
if a program is assigned to a key that was first assigned to another program lower in memory
then cleared by "CA", that first assignment will be reactivated.

"EF", or 'End Finder', is a routine used by "KA", "CA", and "KP" to locate the '.END.'.
If 'xyz' is the number of registers separating Register OCO and the '.END.' register, then "EF"
places the number 'O.xyz' into Register X, to control iterations involving recalling each of
the assignment registers in turn. Line 31 of "EF" places the code 'FO 00 00 00 DC DC ~C'
into Register M. This NNN is stored by the other programs into Register c so that Register
OCO temporarily becomes data register ROO. When this value is in Register c, a program
halt will cause 'MEMORY LOST'. To avoid this, do not halt the execution of "KA", "CA" or
"KP" while they are running. Furthermore, always be sure that none of the four routines is
the first program file in memory. There must be at least one 'END' preceding the routines so
that their backward-jumping 'GTO's will function properly. When a GTO causes a jump to a
label higher in memory, the label search proceeds downwards to the 'END' of the file, then
resumes at the top until the label is found. With the program/data 'curtain' moved to Register
OCO, the search will jump into data memory unless there is an 'END' in a program file higher

45

in memory.

81+lBl 'KA' 51 SF 88 199.lBl 91 149 SF 18
92 XEQ 'EF' 52 ABS 191 SF IHD Y 159 FS?C 15
93 CF 89 53 .1 192 XO d 151 SF 17
94 CF 91 54 * 183 STO [152 FS?C 14
85 SF 93 55 lASTX 194 .1-..... 153 SF 16
96 RCl [56 - 195 FC?C 81 154 CF 87
87 EHTERt 57 IHT 196 .1-.... 155 SF 83
88 XO c 58 ST- a 187 RCl \ 156 XO d
89 X<>Y 59 lASTX 198 FS? 88 157 ARCl X
19 XO 88 69 FRC 199 STO e 158 'I-ABC'
11.lBl 88 61 88 118 FC?C 88 159 8
12 •• 62 * 111 STO T 168 XO \ "KA"
13 XO [63 ST- a 112 ClA 161 STO [
14 '1-.' 64 2 113 ARCl l 162 RDH 334 BYTES
15 XO \ 65 * 114 RCl a 163 RDH
16 X=8? 66 + 115 XEQ 92 164 END
17 GTO 91 67 8 116 FS?C 93
18 .1-------. 68 FC? 88 117 GTO 95 81.lBl 'EF"
19 XO \ 69 ClX 118.lBL 86 82 RCL c
29 ISG Z 79 + 119 ASTO X 93 STO [
21 GTO 93 71 XO a 129 •• 84 ·I-.... x·
22 STO 88 72 24 121 FC?C 22 85 RCL [
23 RDH 73 X(=Y? 122 .,... ••• 86 XO d
24 STO c 74 SF 81 123 ARCL X 87 CF 89
25 GTO 15 75 FC? 91 124 RCL [88 CF 91
26.LBL 93 76 CLX 125 'ppp' 89 CF 82
27 XO IND Z 77- 126 RCL [19 CF 83
28 GTO 88 78 FS? 89 127 XO c 11 FS?C 97
29.LBL 81 79 RCL e 128 X<>Y 12 SF 95
38 RDH 88 FC? 98 129 STO 89 13 FS?C 98
31 STO c 81 RCL T 139 X<>Y 14 SF 86
32 CLA 82 AS TO L 131 XO c 15 FS?C 99
33.LBL 85 83 STO [132 'DONE' 16 SF 87 "EF"
34 CF 22 84 FS? 81 133 BEEP 17 FS?C 18
35 ASTO L 85 134 PROI'IPT 18 SF 89 79 BYTES
36 'PREtPOSTtKEY' 86 XO [135.LBL 82 19 FS?C 11
37 TO HE 8 87 XO d 136 X=8? 28 SF 18
38 PROI'IPT 88 FC? IND Y 137 .,... 21 FS?C 12
39 CLA 89 GTO 81 138 OCT 22 SF 11
48 ARCL L 99 XO d 139 E3 23 XO d
41 FC? 22 91 RCL \ 148 I 24 DEC
42 GTO 86 92 FIX 8 141 18 25 193
43 XO Z 93 'CLEAR • 142 + 26 -
44 XEQ 82 94 ARCL T 143 XO d 27 X<8?
45 XEQ 82 95 TOHE 4 144 FS?C 19 28 GTO 15
46 36 96 PROI'IPT 145 SF 28 29 1 E3
47 STO a 97 STO \ 146 FS?C 18 38 I
48 RDH 98 RDH 147 SF 19 31 ppp.

49 EHTERt 99 XO d 148 FS?C 17 32 END
58 X<8?

Instructions for "KA". (Should not be first program in memory.) To make one or two assignments:
1. XEQ "KA". The display will show 'NONEXISTENT ' if no registers are available for
assignments. DO NOT ATTEMPT TO HALT EXECUTION; IF STARTED, MAKE AT LEAST ONE ASSIGNMENT.
2. At the prompt "PRE POST KEY", key in three numbers:

'prefix', 'ENTERt ' , 'postfix', 'ENTERt ' , 'keycode ' , R/S

The I prefix' and I postfix I are the decimal values of the prefix and postfix bytes of
the function to be assigned, which can be determined from the Byte Table. For example,

46

the function ISTO N' ('9176') would be entered as prefix '145', postfix '118'. The
'keycode' is the same row-column code that is displayed during ordinary assignments.
Thus the '1/X' key has keycode '12', the 'FS?' key has code '-54', etc. The 'CHS',
'EEX', and l±1 keys (and their shifted counterparts) should be entered with keycodes
'43', '44', and '45' (negative for shifted keys), respectively, as if the 'ENTERt'
key covers an imaginary key '42'.
3. If the key designated in Step 2 is already assigned, TONE 4 will sound, and the
display will shown "CLEAR nm", where 'nm' is the keycode. The user should manually
clear the assignment, then press 'R/S' to continue.
4. Step 2 will repeat automatically for the second assignment. If only one assignment
is desired, press 'R/S' at the prompt. At the completion of "KA", the BEEP will sound,
and "DONE" will be displayed. For further assignments, return to Step 1.

Instructions for "CA":

81tLBL ·CH"
82 8
83 STO e
84 STO T

85 XEQ "EF'
86 XO [
87 XO c
88tLBL 88
89 8
18 EHTERt

11 ~o IND [

13 GTO 01
i4 RCL Z
15 ISG (
16 GTO 00
!"{ RUN
lStLBL 01
15 RCL Z
20 STO c
21 END

"CA"
42 BYTES

1. XEQ "CA". DO NOT HALT EXECUTION. "NONEXISTENT" will display if no program registers
are available for key assignments.

81tLBL 'KP' 25 CLX 49 CLA 73 XO \
82 Xt::Q 'EF' 26 '~t' 58 ARCL L 74 STO \
83 STO 'i 27 STO \ 51 ARCL X 75 X=8?
84 RCL [28 '~ .. ' 52 SF 83 76 GTO 14
85 XO c 29 XO \ 53 ISG Z 77 ASTO X
86 EHTERt 38 'H' 54 CF 83 78 ASHF
87 CLA 31 XO \ 55 GTO 85 79 ASTO L
88 CF 83 32 X=8? 56tLBL 97 89 "
89tLBL 14 33 GTO 91 57 XO [81 ARCL X
18 FS?C 83 34 XO \ 58 XEQ 99 82 CLX
11 GTO 87 35 ASTO (59 XO 99 83 XO (
12 CLX 36 '~t' 68 SIGH 84 STO IHD T
13 XO IHD Z 37 STO \ 61 X;t9? 85 ARCL L "KP"
14 SF 25 38 '~t' 62 GTO 93 86 ISG T
15 X=8? 39 XO \ 63 CLX 87 GTO 14 190 BYTES
16 FS?C 25 49tLBL 81 64 LASTX 88 RTH
17 GTO 97 41 STO \ 65 XEQ 99 89tLBL 99
18 ASTO L 42 FC?C 81 66 SID IND T 99 ,-
19 CF 91 43 -H"- 67tLBL 83 91 XO [
28 STO [44 XO \ 68 RDH 92 -H-
21 ASHF 45 CUl 69 STO c 93 XO \
22 XO (46 STO [78 TONE 9 94 -Httttt-
23 X=9? 47tLBL 89 71 RTN 95 XO \
24 SF 81 48 ASTO X ntLBL 85 96 EHD

Instructions for "KP":
1. XEQ "KP". "NONEXISTENT" will display if'the key assignment registers are empty.
DO NOT HALT EXECUTION.

Certain lines in the key assignment programs require careful byte-jumping. Step-by­
step procedures for keying the lines into program are listed next.

47

Lines 12 and 120 in "KA", and lines 80 and 90 in "KP" all have the byte code 'F! FO'.
To make one of these, e.g., "KA" line 12, use this procedure:

12 STO 01
13 "BJ"

14 GTO 07
15 STO IND T

14 "A"

14 X<>Y

JUMP

PACK
JUMP .013

GTO .014
DEL 002
PACK
JUMP

GTO .015
DEL 001
GTO .012
DEL 002

Line 125 in "KA" is code • F 3 OC OC OC':

125 STO 01
126 "BJ"

JUMP
127 "ABC"

GTO .127
DEL 004

127 LBL 11
128 LBL 11
129 LBL 11

JUMP .126
127 X<>Y

GTO .125
DEL 002

The code for "EF" line 04 is 'F6 7F 00 00 00 00 02':

04 STO 02
05 "f-ABCDE"

JUMP
SST 3 times

09 LBL 01
JUMP .005
DEL 004
DEL 001
GTO .005
DEL 001

Finally, line 31 of "EF", 'F7 Fa 00 00 00 OC OC OC':

31 STO 01
32 "BJ"

JUMP
33 GTO 10
34 STO IND T

PACK
JUMP .032

33 "ABCDEFG"
GTO .033

48

[13*

[14 STO IND T
[13 *

[14 -
[13 "BII"

[13 *

[15 HMS-
[14 "III"
[12 STO 01
[11 LBL 00

[126 *

[127 -
[126 "BII"

[126 *

[125 STO 01
[124 RCL M

[05 -
[08 X<Y?

[05 -
[04 STO 02
[03 STO M
[05 X>Y?
[04 "f-----II"

[32 *

[33 STO IND T
[32 *

[33 -

]

]
]

]
]

]

]
]
]
]

]

]
]

]

]
]

]
]

]
]
]
]
]

]

]
]

]

DEL 008 [32 "B.'"]
PACK
GTO .033 [33 1111]

34 +
35 +
36 +
37 LBL 11
38 LBL 11
39 LBL 11

GTO .034 [34 +]
DEL 003 [33 ""]
JUMP .032 [32 *]

33 X<>Y
GTO .031 [31 STO 01]
DEL 002 [30 /]
GTO .032 [32 HMS-]
DEL 001 [31 "1I---111111"]

As an example of the use of "KA", use it to assign the functions 'RCL b' (prefix
144/postfi x 124) and I STO b I (145/124) to keys. These funct ions enab 1 e us to move the
address pointer to usually inaccessible locations in memory. Try this (follow exactly;
keying in extra lines while the pointer is in the status registers will cause 'MEMORY LOST ' .)

XEQ "CODE" [CODE=?]
"00000000000006"

R/S [II/II]
ALPHA [IIi II]

"ABCDEFGHIJ"
ALPHA [0,000,000.000]
STO b (use the assigned key)
PRGM, SST [01 X<Y?]
DEL 003 [00 REG ---]

01 RCL 08
02 STO 15
03 RCL 09

PRGM (off)
ALPHA [ABC(?)GHIJ]

You actually edited the alpha register--the 'STO b' sent the address pOinter to address 0006,
the last byte of Register N. The 'DEL 003 1 wiped out the first three bytes of Register M,
which you then replaced with the characters "(?)" by inserting the corresponding program
lines. Similarly, if you change the characters in the alpha register, you will see new program
lines in PRGM mode.

5F. CREATION OF SYNTHETIC PROGRAM LINES

Synthetic program lines may be grouped into four general types: (1) two-byt~ synthetic
'functions ' , usually a combination of a status register postfix with a normal prefix; (2)
synthetic text lines, containing at least one non-keyable character; (3) other non-stc :lard
multi-byte lines, principally global labels, 'GTO's and 'XEQ's, where the label name contains
non-keyab 1 e characters; (4) I En I 1 i nes, where a normal 1 i ne lIEn I, enteri ng a power of ten
such as 11 E3 1, is shortened to 'En' by removing the superfluous 111 byte. Of these four,
types 1 and 2 are most common. Type 3 lines, given the abundance of normally available global
labels, are primarily just curiosities which will interest only advanced program tinkerers.
Generation of type 4 lines will appeal to the purist to whom a single wasted byte is offensive.
We will discuss in detail methods of making types 1 and 2, and learn in passing how to make
type 4 lines. Type 3 lines will be given little attention; in general they can be created
using the same methods as for type 2.

We have studied three approaches to the task of creating synthetic program lines. The
most powerful of these is use of a custom byte preparing routine, "CODE", to create arbitrary

49

byte sequences that can be stored into program memory using "REG". This 'programmed program­
ming' method is unlimited in its application--with it, we can create all four types of synthetic
program lines, with any combinations of bytes. The price of this power is the program 'over­
head' of the nearly 300 bytes required for "CODE" and "REG". Furthermore, we need a means of
determining the address of the register where the new lines are to be stored, requiring yet
another program (see Section 5J).

The second program line-generating technique is to use "KA" to assign synthetic functions
to keys so that they can be entered into programs at will. This method is limited to type 1
lines. Since "KA" is such a long program, it is best used to create several assignments in one
session, followed by its removal from memory.

The availability of certain special key assignments, which depend upon quirks in HP-41C
operation, provides a third approach to synthetic line generation. The prototype of such
assignments is the byte jumper, which we used to start the whole synthetic programming process.
As we shall see in the next section, the use of key-assigned 'RCL e' and 'STO e' results in an
important improvement of the byte jumper process. Sections 5H and 51 describe two new special
ass~gnments for exotic editing, the 'text-enabler' and the 'Q-loader'. The text-enabler allows
us to convert arbitrary existing program lines into text lines, and vice-versa. The Q-loader
is used with "CODE" to store arbitrary 7 -byte codes into program as text 1 i nes. The byte
jumper and the text enabler require very little program overhead, but are limited somewhat in
the byte combinations they can produce separately (used together, the byte-jumper and the
text-enabler can make any· byte combinations except those containing bytes E4 through EF).
Any combination of seven or fewer bytes can be made using the Q-loader with "CODE".

From the above considerations, a recommended approach to synthetic programming is to
use a 'standard synthetic programming keyboard', such as that shown in Figure 5-1, with key
assignments for the most frequently used synthetic functions. When the need arises for other
synthetic program lines, use the byte jumper and/or the text enabler. When these are insuffi­
cient, load in "CODE" and use the Q-loader. Finally, if necessary, use "REG" for any strange
byte combinations that defy the other methods.

ITO b IlCL c x< >d STO d o IIlCL bl I CODE I a IIlCt dl

·yo 0 [::::1 I:~ 1::1
DDGGD
~[----JI D D D
DODD
DODD
DODD
DODD

FIGURE 5-1. A SYNTHETIC PROGRAMMING KEYBOARD

50

A study of the various programs in this book will reveal that the following synthetic
functions are used frequently enough to justify permanent key assignments: STO M. RCL M.
X<>M, STO N. RCL N. and X<>N, for ready access to the alpha registers; STO band RCL b to
move the program pointer around; X<>c and RCL c for mani pul at i ng data regi ster addresses;
STO d, RCL d, and X<>d, for flag register access; STO e and RCL e for 'enhanced byte jumping'
(Section 5G); STO Q and the Q-loader (see Section 51); the byte jumper. If memory space
permits, it is convenient to have "CODE", "REG". "cs" and "CR" (Section 5K). and "AD" (and
even "DECODE"--see Section 5J) in memory and assigned to user keys. Figure 5-1 shows a con­
venient set of user keys assigned to make a 'synthetic programming keyboard'. Note that all
'STO' and most 'X<>' functions are assigned to shifted keys to reduce the risk of accidental
storage into a sensitive register.

"KA" can be used to make the function key assignments required for the user keyboard
shown in Figure 5-1. Table 5-2 lists the prefixes, postfixes and keycodes required, as well
as the 'XROM' code that will display when one of the assigned keys is pressed and held.

The

TABLE 5-2

"KA" Entries for the Keyboard of Figure 5-1

Function Prefix Postfix Ke~code XROM Code
STO b 145 124 -12 05,60
RCL b 144 124 12 01,60
RCL c 144 125 -13 01,61
X<>d 206 126 -14 57,62
STO d 145 126 -15 05,62
RCL d 144 126 15 01,62
X<>c 206 125 -22 57,61
X<>N 206 118 -23 57,54
X<>M 206 117 23 57,53
RCL N 144 118 24 01,54
STO N 145 118 -24 05.54
RCL M 144 117 25 01,53
STO M 145 117 -25 05,53
STO Q 145 121 -51 05,57
RCL e 144 127 -62 01,63
STO e 145 127 -63 05,63
Q-Loader 4 25 -82 "OD"
Byte Jumper 241 65 -21 05,01

following sequence will also assign the functions from Table 5-2:

1. Assign any HP-41C function to the foll owi ng keys:

1jX yX X=Y?
lOx x2 ASIN
LN eX ACOS
% TAN ATAN
SIN CU: P-R
COS BEEP 11'

2. Execute."REG" nine times, entering the codes as listed, at the corresponding prompts:

RUN
--r

2
3
4
5
6
7
8
9

"REG?" Entry
OcO
OC1
OC2
OC3
OC4
OC5
OC6
OC7
OC8

51

"CODE=?" Entr*
F091763A91754
F0F1410ACE762A
FOCE7E39CE7522
F0917C19907Cll
FOCE7D1A907D29
F0917E49907E41
F0907542907632
F091790D041920
F0907F1E917F2E

5G. ENHANCED BYTE JUMPING (eJUMP)

The principal defect of byte jumper editing is its inability to alter directly the
second byte of a multi-byte program line. As a result, we have to resort to use of the 'gener­
ator', a dummy text line used to 'hide' prefix bytes so that postfixes can be inserted into
program then attached to the prefix when it is 'pushed' out of the generator. Besides requiring
a double use of the byte jumper, this method leaves a lot of leftover bytes that must be
deleted, including the generator itself.

This inability to alter 'second bytes' arises from the fact that bytes are normally
inserted in program following the last byte of the currently displayed line. But as was
first pointed out by Roger Hill, this rule is not applied if the current program line number
is '00'. In that case, inserted bytes enter program immediately after the current address
pOinter byte. 'Enhanced byte jumping' takes advantange of this feature to eliminate the need
for the generator line.

The easiest method of setting the line number to zero is to press 'RTN', although this
returns the poi nter to the top of the current program fil e. But the s impl e sequence (PRGM
off) 'RTN', 'RCL e', 'GTO .lmn', 'STO e', changes the line number of~program line from
its normal value 'lmn' to '00'. Register e contains the line number--at any point, restoring
to Register e the value it contained following a 'RTN', resets an arbitrary line number to zero.
Switching to PRGM mode following this sequence always results in the display '~O REG lmn'.
You can also achieve the same result with 'GTO • lmn', 'RCL b', 'RTN', 'STO b'.

As we did for the original byte jumper, it is convenient for simplification of programming
instructions to introduce a new instruction 'eJUMP • lmn', which instructs the user to make the
following keystrokes:

'eJUMP .lmn' means 1- PRGM off 1- PRGM off
2. RTN 2. GTO .lmn
3. RCL e 3. Press byte jumper
4. GTO .lmn OR 4. RCL b
5. Press byte jumper 5. RTN
6. STO e 6. STO b
7. PRGM on 7. PRGM on

For an extended program editing session, the first method is preferred. If steps 2 and 3 are
performed at the beginning of the session, then as long as the Register e contents are left
undisturbed in Register X (and as long as no shifted key assignments are changed), these two
steps can be omitted from the sequence.

To illustrate the use of enhanced byte jumping, let's create a 'RCL M'.

01 STO 01 (controller)
02 RCL 99 (any data register number greater than 15)

eJUMP .002 [00 REG lmn]
DEL 001* [00 REG lmn]

01 RDN
GTO .001 [01 STO 01]
DEL 001
SST [01 RCL M]

*In this case, DEL 001 is not equivalent to ~. You can substitute 'SST' , 1!1.
Two-byte functions, other than 'STO', 'RCL', and 'LBL' (which have one-byte forms for

'STO ~O', 'RCL 00, and 'LBL ~O'), are easiest to edit if they are initially keyed with '~O'
as their postfixes, for then the 'DEL DOl' following the 'eJUMP' is not necessary:

01 STO 01
02 ISG 00

eJUMP .002 [00 REG lmn]
01 LASTX

GTO .001 [01 STO 01]
DEL 001
SST [01 ISG N]

52

This method is not limited to two-byte functions--in the following, we create the 9-
character text line found as line 90 of the 'Hangman' program in Section 6C. The code is
'F9 40 40 40 40 40 40 43 4C 5F'.

90 STO 01
91 "ABCDEFGHI"

eJUMP .091 [00 REG lmn]
DEL 009 [00 REG lmn]

01 +
02 +
03 +
04 +
05 +
06 +
07 j
08 %
09 DEC

GTO .090 [01 STO 01]
DEL 001
SST ["@@@@@@CL_"]

5H. THE TEXT ENABLER

Creat i on of program text 1 i nes is an interest i ng process. When the user presses the
initial character key, in PRGM-ALPHA mode, the processor writes an 'F1' text byte, followed by
the character byte, into memory. For each subsequent character added to the string, the
processor must update the text byte as well as adding the new character byte. The information
required for the processor to keep track of this operation is recorded in Register Q during
the text line entry. The first nybble of Q is the current number of characters in the string;
the last four nybbles record the address of the last byte entered. Flag 45, the 'Data Entry
Flag', is set during the line entry. Once Flag 45 is cleared by any keystrokes that terminate
the entry of characters, it is normally not possible to resume adding characters to the line.
Thus there should be no way to alter characters in an existing text line except by deleting
the entire line and starting over.

But aga in, synthetic programmi ng 1 eads us into dark and uncharted territory. We can
turn on any fl ag we want (see Sect i on 6F) by stori ng the appropri ate NNN into Regi ster d. In
particular, if we use 'STO d' to set simultaneously Flags 45 (Data Entry), 48 (ALPHA) and 52
(PRGM), we can actually add characters to an existing program text line. Furthermore, we
will find that we can change any sequence of program bytes into a text line, and vice versa!

But a word of caution. These are 'deep waters', so that the tnstructions below must be
carried out exactly, to avoid HP-41C 'crashes' that require battery pack removal for recovery.
Furthermore, not all HP-41C's will behave exactly alike. So be prepared to experiment.

The act of storing the magic NNN into Register d will be referred to as the 'Text Enabler',
and the NNN itself will be called the 'TEN' (Text Enabler Number). A suitable 'TEN' is any
NNN that has '0' as its first nybble and '488' as its last three nybbles. The '488' comes
from the three bits of Register d that correspond to Flags 45, 48, and 52. Since the storage
into Register d affects all 56 flags, we might as well choose the unspecified nybbles of the
'TEN' to produce some 'nice' display format. The NNN '00 00 02 3C 04 84 88' used in the
examples below acts as a 'TEN', while setting Flags 26 (audio), 27 (USER), 28 and 29. FIX 4
format, and DEG mode.

Use "CODE" to generate the 'TEN':

XEQ "CODE"
"0000023C048488"

RjS
AS TO 00

[CODE=?

[aa ••

]

]

The 'ASTO 00' saves the 'TEN' for future use. If you wi sh to recall the 'TEN', however. use

53

'CLA', 'ARCL 00', 'RCL M', rather than 'RCL 00', to e 1 imi nate the a 1 ph a- i dent i fi er byte that
the 'ASTO 00' adds to the NNN.

Now execute 'GTO •• " to start a new program fi 1 e. Swi tch to PRGM mode, and key in the
text line "ABC". If you switch 'ALPHA' off following entry of the "C", the line is 'terminated'.
But if you next turn 'PRGM' off, and press 'STO d' (with the 'TEN' in Register X), you will
see the line '01 "ABC" in PRGM mode, with 'ALPHA' on; pressing any character key adds that
character to the text line (plus the "_" to prompt for further characters). Pressing the
correction key deletes characters from the string, including the original "ABC" if desired.
However, this trick only works if the contents of Register Q are undisturbed since the original
string entry was terminated. In general, returning to a text line by means of the text enabler
after some intervening instructions have been executed will not enable further character addi­
tion but will most likely cause a crash. The processor needs the correct information in Regi­
ster Q to continue with text line building, otherwise it gets hopelessly lost.

So we resort to an even stranger process. Rather than try to add to an existing text
line from the end of the line, we deliberately set the first nybble of Register Q to zero by
storing the 'TEN' into Q immediately before we store it into Register d. Remarkably, with
the 'TEN' in Q, the processor will make text lines out of bytes that are already present in
memory. If the starting byte doesn't happen to be an 'Fn' the processor simply replaces it
with an 'Fn', changing In' whenever characters are added to or deleted from the text line.

All of this is best explained with examples. One more 'shorthand' notation is required:

'TE .lmn' means
1. PRGM off
2. Place the 'TEN' in Register X (e.g., CLA,

ARCL 00, RCL M)
3. GTO. lmn
4. STO Q
5. STO d

Now clear the existing program, and key in:

01 "ABC"
02 X<Y?
03 X>Y?
04 X<=Y?

Press "A"
Press II All
Press "A"
Press II A"
Press "A"
Press II A"

PACK
TE .001

key
key
key
key
key
key

SST

[01 "ABC"]

[01 "A_"]
[01 "AB_"]
[01 "ABC_"]
[01 "ABCD_"]
[01 "ABCDL"]
[01 "ABCDEF_"]
[.END.]

Each pressing of the "A" key took an existing byte from program and incorporated it
into the text line. Any 'character key' would have acted the same way as the "A" key, i.e.,
any key other than 'SST', 'BST', 'SHIFT', 'RIS', and· the correction key. If we had continued
beyond the six "A" keystrokes, the '.END.' itself would have been absorbed into the text.
However, some HP-41C's will not continue beyond a 7-character text line; pressing an eighth
key causes a crash. Unfortunately, the only way to determine which type of HP-41C you have
is to try to make an eight character text line with the text enabler.

The correction key works in a unique manner with the text enabler. If it is pressed
anytime after the text line has been started with at least one character, the rightmost char­
acter will be 'deleted' from the text line but remains in memory as a stand-alone line (or
prefix). At present, you have the line '01 "ABCDEF iii in memory. Try:

TE .001 [01 "ABCDEF"]
Press "A" six times [01 "ABCDEF_"]

~ [01 "ABCDE_"]
SST [02 X<=Y?]

54

As you see, the "F" byte was not deleted, only rejected' from the text 1 ine to resume its role
as line '02 X<=Y?'. If you had not pressed the 'SST' key, further use of the correction key
would have removed the "E", "0", "C", and "B" from the line, leaving their bytes in memory.
But one more deletion, with '01 "A_"' displayed, deletes the II A" and the 'Fl' text byte from
memory entirely.

If the correction key is the first key pressed following the 'STO d' of the text enabler,
the first byte of the displayed lin~replaced with an 'FF', and the next 15 bytes of program
are incorporated into a text 1 i nee Subsequent presses of the correct i on key 'back up' the
process, restoring each successive rightmost character to its original role and shrinking the
text 1 i nee

The text enabler makes it quite simple to generate text 1 ines containing non-keyable
characters. Each desired character is entered into program as a one-byte program line. The
stri ng shoul d be preceded by one 'dummy' one-byte 1 i ne, whi ch will be converted to the text
byte. Once we are happy with the sequence of characters, we s imply use the text enabl er to
transform the one-byte lines into a text line, like adding beads to a string:

01 X<>Y (dummy)
02 LBL 11
03 X<=Y?
04 RCL 08
05 EtX-1
06 RCL 09

TE .001
Press 5 character keys

ALPHA [01 "J.lF(X)"]

If you want a line of more than 7 characters but your HP-41C won't cooperate, you can
press the correction key following the text enabler, then use it to delete characters until
you are left with the desired line.

The text enab 1 er can be used to generate synthet i c funct ions, by us i ng it to move an
existing prefix into a text line, editing in a new postfix, then using the text enabler again
to eject the prefix. This procedure is usually more complicated for two-byte functions than
use of the enhanced byte jumper. But we shall see in the next section that a combination of
the text enabler and the Q-loader provides a neat way of making synthetic lines directly from
NNN's in Register X.

Making Type 4 program lines is a pleasant exercise with the text enabler:

01 1 E25
TE .001

Press one character key
Press correction key, SST

[01 1 E25

[01 "." [01 E25

]
]
]

This works so cleanly because the null automatically inserted in front of the 'I' byte
acts as the 'dummy' byte to be turned into an 'F1', then deleted along with the 'I'. If you
want to delete the 'I' from an already existing line, in a packed program file, you must edit
in a dummy byte first, then PACK prior to using the text enabler.

51. THE Q-LOAOER

In Section 4C it was shown how Register Q is used for the temporary storage of alpha
stri ngs that are not stored either in program or in the alpha regi ster. Through another
quirk in HP-41C operation, we can exploit this behavior to assist in the creation of text
lines up to seven characters in length. We need key assignments for 'STO Q' and the 'Q-loader'
(prefix 4, postfix 25) that we made in Section SF.

The 'Q-loader' is at first glance just the assignment to a user key of the number '9',
i.e., byte '19'. Actually, the assignment of any byte from '10' to 'lC' will work as a Q­
loader, but the '19' assignment is easy to use, and gives an easily recognizable display ''~O''
when pressed and held. If pressed with PRGM off, the Q-loader enters a '9' into Register X.
But in PRGM mode, the Q-loader enters two program lines: the first is just a '9' entry line,
but the second is a text line, containing whatever characters were present in Register Q. To
illustrate, execute 'PACK' (PRGM on) by spelling out 'XEQ "PACK"', then press the Q-loader.
You will see the '9' line, followed by a text line "PACK". The letters "P-A-C-K" were placed

55

in Register Q by the 'XEQ "PACK''', then transferred to the text line by the Q-loader.
By using 'STO Q', we are not limited to sequences that we can 'spell out'--any NNN can

be placed in Q. For complete versatil ity, we can use "CODE" to make the NNN. Hence, to make
a text line of up to seven arbitrary bytes:

1. Use "CODE" to create a stri ng of seven bytes correspondi ng to the characters you want
in the text line, entered in reverse order. If you want only 'n' characters, where 'n' is less
than seven, then the first [7 - nJ bytes entered for "CODE" should be nulls (00). Note that
text lines ending with one or more nulls cannot be created directly with this method.

2. 'GTO' the program line preceding the point where you want to insert the new text
1 i ne.

3. With PRGM off, press 'STO Q'.
4. Switch PRGM on, and press the Q-loader key. Delete the resulting '9' line, then

SST to see the new text line.
As an example, 1 et us use the Q-1oader to make 1 i ne 81 from the 'Hangman' program in

Section 6C. The code for this line is 'F5 60 06 04 05 01':

"00000105040660"
XEQ "CODE"

R/S
GTO .000*
STO Q
PRGM (on)
Q-loader
DEL 001
SST

[CODE=?

[01 9

[01 "T.nJ;~"

J

J

J

J

*In the actual construction of the 'Hangman' program, this would be 'GTO .080'.

The Q-loader inserts its text line anywhere in a program, without any consideration of
the register boundaries or addresses required for the use of "REG". By using the text enabler
to transform Q-loader generated text lines into separate program lines, we can make arbitrary
synthetic program lines of up to seven bytes in length, or several shorter lines simultaneously.
Let us make the sequence '01 "(#)''', '02 ASTO M':

"0000759A292328"

Press three character keys.

XEQ "CODE"

R/S
GTO
STO Q
PRGM on
Q-loader
DEL 001
PACK
PRGM off
TE • 001

SST

[CODE=?

["IIB)# ("

[01 9

[01 "(#)"
[02 ASTO M

J

J

J

J
J

If we want none of the seven characters in the text line to remain as text characters,
we could use the text enabler to remove the text byte from the string, just as we eliminated
the 'I' from 'I En' lines in Section 5-H.

There are other types of Q-loader assignments available, corresponding to the other
uses of program text strings. The following assignments have been developed by Tom Cadwallader:

Byte Code
04 10
04 IE
CD 00

"KA" Prefix/Postfix
4729
4/30

205/00

56

Loads Q Contents Into:
GTO (alpha)
XEQ (alpha)
LBL (alpha)

One minor annoyance in the use of the Q-loader is the requirement for encoding the byte
sequences in reverse order, which is easy to forget. However, if the desired byte sequence
is 6 bytes or fewer, the following routine will reverse the sequence automatically:

01 LBL "REV"
02 ASTO M
03 SF 25
04 GTO IND M
05 RCL Q
06 STO M
07 END

"REV"
20 BYTES

"REV" is designed to reverse a string of up to 6 characters in the alpha register. To reverse
a string in Register X, execute a 'STO M' prior to 'XEQ REV'. Notice that "REV" will not
work properly if there is a global label anywhere with the same name as the alpha string, but
that is a rare occurrence. Also, "REV" will fail if the printer is attached.

5J. BACKTALK FROM THE HP-41C

At this point, we can 'tell' the HP-41C anything we want, by using "CODE" to translate
user-readable characters into HP-41C internal byte codes. But for a complete dialogue with
the mach i ne, we also need a program to take ex i st i ng codes and dec i pher them into readable
characters. The program "DECODE", listed next, exactly reverses the operation of "CODE",
taking an arbitrary 7-byte code in Register X and translating it into 14 characters in the
alpha register. As an added touch, the output characters are grouped into pairs (bytes) by
using colons as separators., The basic operation of "DECODE" is quite similar to that of
"CODE". "DECODE" serves as an illustration of the use of Register P as a full 7-byte extension
of the alpha register, as described in Section 4B.

81+LBL "DECODE" 27 CF 89 53 RCL t 79 FC? 14
82 CLA 28 SF 18 54 STO] 88 RTH
83 .886 29 SF 11 55 Rt 81 CF 13
84 STO L 38 FS?C 84 56 ISG L 82 RTH
85 XOY 31 XEQ 81 57 GTO 13 83+LBL 82
86 GTO 14 32 FS? 83 58 8 84 FS? 85
87+LBL 13 33 SF 87 59 STO t 85 CF 82
88 !>TO t 34 FS? 82 68 TO HE 9 86 FS? 86
89 "1-:" 35 SF 86 61 AYIEW 87 CF 82
18 RCL t 36 FS?C 81 62 RTN 88 FS? 82
l1+LBL 14 37 SF 85 63+LBL 81 89 RTH
12 EHTERt 38 FS?C 88 64 FS? 13 98 CF 84
13 XO d 39 SF 84 65 CF 18 91 CF 83
14 CF 12 48 SF 82 66 FS? 14 92 SF 81
15 CF 13 41 SF 83 67 CF 18 93 FC?C 87
16 CF 14 42 FS? 84 68 FS? 18 94 SF 87
17 CF 15 43 XEQ 82 69 RTH 95 FC? 87
18 FS?C 87 44 FIX 5 78 CF 12 96 RTH
19 SF 15 45 ARCL L 71 CF .11 97 FC?C 86
28 FS?C 86 46 XO d 72 SF 89 98 SF 86
21 SF 14 47 STO [73 FC?C 15 99 FC? 86
22 FS?C 85 48 "1-12" 74 SF 15 188 RTN
23 SF 13 49 XO \ 75 FC? 15 181 CF 85
24 FS? 84 58 STO [76 RTH 182 EHD
25 SF 12 51 RCL J 77 FC?C 14
26 CF 88 52 STO \ 78 SF 14

Instructions for "DECODE":
1. Place the code to be deciphered in Register X.
2. XEQ "DECODE".
3. 'Output characters' are placed in alpha, shown with AVIEW.

57

"DECODE"
203 BYTES

Examples:
ALPHA "ABCDEFG" ALPHA, RCL M, XEQ "DECODE"~ "41:42:43:44:45:46:47"
-1.234567891 E-56, XEQ "DECODE" ---+ "91:23:45:67:89:19:44"

"DECODE" is designed to handle full 7-byte codes, which is a bit of I overkill I for one
particul ar appl ication, namely, for determini ng the current program pointer address. If we
have IRCL b l assigned to a key, then IRCL b l , IXEQ "DECODE III will certainly decipher Register b
for us. Usually, however, we are not interested in the first 5 bytes of Register b (subroutine
return addresses). "AD" (for IAddress l) is a quick and dirty routine that will decode a two­
byte address, sacrificing the power and elegance of "DECODE" for execution speed.

"AD" is Iquick because it is so short, but Idirtyl because it uses the display properties
of IFIX 91 for rapid conversion of hex codes into characters. Notice that since the output
is viewed in the alpha register, a digit IAI will be represented by the colon ":" rather than
the Istarburst l• Refer to Section 5A.

"AD" leaves the original address in Register X, so that a ISTO bl executed following
"AD" will return the pointer to that address. This feature requires the otherwise superfluous
line 115 STOP I , to ensure that a switch to PRGM mode after the ISTO bl will give the correct
line number (if the IENDI terminated execution of "AD" we would end up with line number 100 1).

81.LBL ·RD· 89 • .
82 STO [18 XO [
83 .1-.... 11 STO \
84 RCL d 12 IlSTO L
85 FIX 9 13 RDH "AD"
86 IlRCL [14 VIEW L
87 STO d 15 STOP 39 BYTES
88 :<0 [16 EHD

Instructions for "AD":
1. Press RCL b (PRGM off).
2. XEQ "AD"
3. Output is four alpha characters (shown with AVIEW) corresponding to the four digit
pointer address obtained with the IRCL bl• The hexadecimal digits greater than 19 1 are
represented as follows: IAI = ":", IBI = ";", ICI = "<", 10 1 = "=", lEI = ")", and
IF I = 11111.
4. To return to the original byte (where the IRCL b l was executed), press ISTO bl •

5K. CODE STORAGE

A pair of short routines will round out our Ilibraryl of special Iprogramming programs l •
There are many occasions when it is desirable to store an NNN into a data register for future
recall, but the normalization of NNNls during any recall from a numbered data register is a
major obstacle.

One means of recalling an NNN without normalization is to use the byte jumper to transfer
the NNN to the alpha register. For example, suppose the NNN of interest is in ROO, which
we determine to be Register 123 by decoding Register c. Then we store 11 E71 into Register 124,
i.e., ROI. Next we use "CODE" to make the I address I 100 00 00 00 00 01 24 1, followed by
ISTO bl • Pressing the byte jumper key will then copy the NNN in ROO into Register M. The
11 E71 in ROI placed the byte 107 1 at address 10124 1, providing for a byte jump of se~en bytes.

This method is rather clumsy, and can only be used manually. For automatic storage
and recall, we can use the routines "cs" and "CR". "cs" takes an NNN and breaks it into two
pieces, each of which is converted to alpha data for ordinary storage. This requires two
data registers to store the entire NNN code. "CR" reverses the process, recalling the two
alpha data strings and reassembling them into a single 7-byte NNN. For- convenience, the
routines are designed to execute manually just like ordinary ISTO I and IRCL I: Assign "cs"
and "CR" to user keys, then execute either by pressing the appropriate key followed (during
the subsequent pause, which starts almost immediately) by the desired data register number.
Each routine uses the designated data register plus the next higher-numbered register.

58

91.LBL 'CS' 91.LBL 'CR'
92 CUI 92 PSE
93 STO [93 STO L
94 STO L 94 CLA
95 RDH 95 ARCL IHD L
96 PSE 96 '1-'"
97 XO l 97 ISG L

"CS" 98 98 ClD "CR"
99 .9 99 CLX

40 BYTES 19 S1+ l 19 RCl IHD L 37 BYTES
11 xo \ 11 STO \

SIZE 002 12 ASHF 12 .1-...... SIZE 002 13 AS TO IHD l 13 XO \
14 ISG l 14 CLA
15 CUI 15 EHD
16 STO [
17 ASTO IHD L
18 CLA
19 RDH
29 EHD

Instructions for "eS":
1. Manual use: XEQ "eS"; during the subsequent pause, enter a data register number
Imn l .The NNN will be stored in Rmn and Rmn+l' The contents of Registers X, V, and Z
are preserved.
2. Subroutine use: the calling program should have the NNN in X, and Imnl in V.
Following execution, the contents of Registers T and Z will 'drop' to Z and V, respec­
tively.

Instructions for "eR":
1. Manual use: XEQ "eR"; during the subsequent pause, enter a data register number
Imn'. The NNN in Rmn and Rmn+l will be placed in Register X, replacing Imnl and, in
effect, 'raising ' the stack contents present prior to execution of HeR"
2. Subroutine use: the calling program should place Imnl in X prior to calling "eR".
Following execution, the recalled NNN will replace Imn l in X.

59

CHAPTER 6

APPLICATIONS

This chapter is intended to serve as a 'standard applications handbook' for synthetic
prograrrvning. Included are numerous HP-41C routines, which, like the programs of Chapter 5,
illustrate the creative use of synthetic functions as well as having powerful practical appli­
cations. The purpose and justification of synthetic programming is embodied in these routines.
First, the use of synthetic functions enables the HP-41C to perform various important operations
faster and with less program memory usage than is possible with the standard functions alone.
Examples are the 'SIZE-Finder' (Section 6B) and the alpha string manipulations (Section 6C).
Second, synthetic programming provides a new class of operations that cannot be carried out
at all using only standard functions. Such operations include alpha character identification
and comparison (Section 60) and direct access to 'Application Pac' programs (Section 6H).

The set of routines described in this chapter by no means constitutes a complete list
of the uses of synthetic functions--no list of programs can ever exhaust the capability of the
HP-41C, especially as enhanced with synthetic functions. The development of the techniques
and applications of synthetic programming is an ongoing process. (As an example, the discovery
of the 'text enabler' described in Section 5H came from a typographical error in a preliminary
draft of this book!) When you have completed studying the material in this book, you will be
ready to use synthetic functions routinely in your own programs, as readily and with little
more effort than you would use standard HP-41C functions. You might even discover a few new
'tricks of the trade' yourself. In this regard, an appropriate slogan is 'take nothing for
granted'. If you get an idea, try it to see if it works, no matter how outlandish it might
seem. It took months of widespread synthetic programming before anybody noticed, for example,
that Register P acts as a full 7-byte continuation of the alpha register. Since the display
shows a maximum of 24 characters, it was assumed that characters lost from the left side of
the alpha register were gone forever. Yet, there they were, hiding in Register P.

6A. GETTING TO THE .END.

More often than not, a program under development is the 1 ast program fil e in memory,
i.e., the file containing the '.END. '. If the address pointer is moved to some other file,
there are only two ways to return it to that last file: use 'GTO' and spell out a global
label within the program, or use 'CAT 1', running to the end of the catalog. If the new
program does not have a global label, the first method is eliminated. If there are several
memory modules and many programs in the HP-41C, the second method can be annoyingly slow.
The program "EN" adds a third method, which you will find to be a great convenience during
many editing sessions, particularly when you are programming using the routines of Chapter 5.

Instructions for "EN":
1. XEQ "EN".

81.LBL "EN"
e2 RCL c.
83 STO [
e4 • f-..... "
8S XC- [
e6 XC> d
e7 CF 8e
88 CF 81
89 SF 82

18 SF 83
i 1 XC- d
12 CLR
13 STO [
14 .f-.. -
IS X<:;' \.
16 STO b
17 END

liEN II

45 BYTES

2. At completion, the program pointer will be at the top of the program file containing
the' .END.'

The '.END.' is situated in bytes 2, 1, and 0 of the register identified by the address
recorded in the last three nybb1es of Register c. "EN" takes that address 'lmn' (line 02),
shifts it into the first two bytes of Register d (lines 03-06), and makes the code '31mn' by
clearing Flags 0 & 1, and setting Flags 2 & 3 (lines 07-10). That code is next shifted to
the last two bytes of Register N (lines 11-15). When the code is finally transferred to

60

Register b in line 16, the address pointer immediately jumps to the byte immediately preceding
the .END. The program continues to run, so that the .END. itself is executed, which stops
execution with the pointer at the top of the file.

6B. SIZE-FINDING AND OTHER TRICKS

An e1 egant demonstration of how synthetic functions allow improved HP-41C performance
is found in the following 'SIZE-Finder' routine, written by Keith Jarett (PPC Calculator Jour­
nal, V7 N5 P57):

91tLBL "S"
92 "RB"
93 RCL (',
94 XO [
95 STO \
96 IlSHF
97 .~
98 XO [
99 XO d
19 FS?C 11
11 SF 99
12 FS?C 12
13 SF 19

Instructions for "S":
1. XEQ "S".

14 FS?C 13
15 SF 11
16 FS?C 14
17 SF 13
18 FS?C 15
19 SF 14
29 FS?C 16
21 SF 15
22 XO d
23 1 E3
24 *
25 INT
26 DEC

27 CHS
28 64
29 lion
38 SF 25
31tLBL 14
32 VIEW IND X
33 FC? 25
34 RTM
35 64
36 +
37 ·~TO 14
38 HW

2. At completion, the current 'size' will be displayed in R~gister X.

"S"
75 BYTES

There is, unfortunately, no direct way to determine the current program/data 'size' in
the HP-41C. No 'top of memory' address is maintained in memory, since it changes with each
insertion or removal of a memory module. The only way of determining the size is to try to
access successively higher numbered data regi sters until a 'NONEXISTENT' message i ndi cates
that the last existing data register has been passed. This method can be automated in a
program, taking advantage of the Error Ignore Flag 25, but if the number of data registers is
J arge, the process can be very slow. Even the c1 everest of such programs takes at 1 east
four seconds to run. The routine "s" takes a maximum of 1. 5 seconds. The improvement arises
from a partial decoding of Register c, which provides a starting value for the size that
needs only to be increased by 64 times the number of memory modules present. Only a maximum
of four registers must be tested to determine the number of modules.

The 'heart' of the size finder routine is found in lines 09-26, which constitute a 3-
digit hexadecima1-to-decima1 conversion routine developed by Roger Hill. The three hex digits
of interest are digits 9, 10 and 11 of Register c--the absolute address of ROO. Lines 01-09
of "s" place those digits in Register d as the third, fourth, and fifth digits, i.e., as
Flags 8-19.

Consider a typical ROO address, say '12A', which in decimal is [256+32+10 = 298]; use
the 'OCT' function to find that 29810 equals 4528. Let's write out both of the numbers
'12A' and '452' as they are coded in the HP-41C:

Hexadecimal
Octal

12A 0001 0010 1010 binary
452 0100 0101 0010 binary

Notice that the two numbers have the same number of bits with the value 'I'. The difference
between the two representations is that the first bit of each octal digit is always '0',
since octal digits have a maximum value of 7 (0111). To convert the hexadecimal bit pattern
to octal, we only have to shift the values of certain bits 'leftward' to 'make room' for the
extra 'a' bits. Here's a second example, with arrows showing the shifting of the bits from
the hexadecimal pattern to octal:

Hexadecimal 1BC =

Octal 674

61

0001 1011 1100
/#'11/ Ul

0110 0111 0100

This shifting of bits is easily accomplished though explicit user flag operations, as seen in
lines 10-21 of "S". Lines 22-26 complete the hex-to-decimal conversion, taking the three digits
from Register d and converting them to a decimal integer in Register X.

The result 's' in X is still the absolute address of ROO, now expressed in decimal. If
there are no memory modules in the calculator,·the 'size ' is [256- ' 5 '], where the '256 ' is the
decimal address of the top of memory. However, since [256- ' 5 '] is always less than 256 (for
no modules), and since 256 is an integral multiple of 64, [-s mod 64] (which, since '-5 ' is
negative, is the smallest positive number obtained by adding multiples of 64 to 's') is the
same as [256 + N*64 -s]mod 64, where 'N ' is the number of modules. Thus, lines 27-29 yield
the distance, in registers, from ROO to the next higher module boundary. The size is this num­
ber plus an unknown multiple of 64. Lines 30-37 are a trial-and-error method of determining
'N ' , by incrementing 's' in steps of 64 until 'VIEW IND X' causes an error that clears Flag
25.

The hexadecimal-to-octal-to-decimal conversion scheme in "S" can be used in a variety
of programs. Only a slight modification of "S" would be required, for example, to yield the
current location of the statistics registers block from the first three digits of Register c.
A di fferent example is prov i ded by the next rout i ne, "BYTE", wh i ch is des i gned to give the
current address pointer location as a decimal number of bytes, counting from the bottom of
user program memory. In this context, byte '1' is byte 'OOCO ' •

81tLBL 'BYTE" 12 SF IS 23 UISTX
82 CLA 13 FS?C 18 24 FRC
83 STO (14 SF 17 2S 1 E3
84 .1-..... IS FS?C 19 26 * "BYTE" 8S xo [16 SF 18 27 DEC
86 XO d 17 FS?C 29 28 7 69 BYTES 97 FS?C IS 18 SF 19 29 *
88 SF 13 19 XO d 38 +
99 FS?C 16 28 18 31 1343
18 SF 14 21 * 32 -
11 FS?C 17 22 INT 33 END

Instructions for "BYTE":
1. Press 'RCL b' •
2. XEQ "BYTE".
3. Output is byte number in decimal.

Following the user-executed 'RCL b' , which places the current pointer address into the
1 ast two bytes of Regi ster X, 1 i nes 01-06 of "BYTE" move the two bytes into the second and
third bytes of Register d (Flags 08-23). The first digit of the address is a byte number,
which never exceeds six. The remaining three digits number registers of 7 bytes, taking a
maximum value of hex IFF or octal 777. Thus Flag 12 will always be zero. Lines 07-21 perform
the hex-to-octal conversion, placing in X the number 'n.abc ' , where 'n' is the byte number,
and 'abe' is the number of the register in three octal digits. Line 22 isolates 'n', where­
upon lines 23-27 convert 'abc ' into a decimal integer. Lines 28-30 compute the total bytes
[n + 7*abc], measured from '0000 ' • Lines 31-32 subtract 1343, so that the output byte number
1s measured from the bottom of normal program memory, byte 'OOCO ' •

There are two obvious appl ications for "BYTE", both of which require two executions.
More useful than the byte number of any single address is the distance in bytes between two
memory locations. "BYTE" saves the original value in Register X present prior to the manual
'RCL b' , placing it in Register Y above the output value at the end of program execution.
Thus the sequence

GTO 'point A'
RCL b
GTO 'point B'
RCL b

62

XEQ "BYTE"
X<>Y
XEQ "BYTE"

which can be executed manually or by a program, will give the distance in bytes between 'point
A' and 'point B' in memory. The first application of this procedure is to have 'point B' be
the first line of a program, and 'point A' the first line of the next program down in memory.
Then the byte difference is the length of the program, as is also given by a 'CAT I' using
the printer. The second type of use is to have 'point B' be a two-byte 'GTO' program line
and' point A' the corresponding label, to determine whether the jump between the 'GTO' and
the label is fewer than 112 bytes. The only other means of determining this result is by labor­
ious counting of program bytes, line-by-line.

6C. FUN AND GAMES IN THE ALPHA REGISTER

Perhaps the ,single most useful group of synthetic functions is those which access the alpha
register, such as 'STO M, 'RCl N' or 'X<>IND 0'. The fact that the 'M', 'N', '0', and 'P'
postfixes can be attached to any normal data register function prefix means that the alpha
register can be used as four (with some limitation on the use of P) extra data registers. This
is obviously advantageous when memory space is 1 imited--the use of the alpha register frees
four ordinary registers for additional program or data storage. The best use of these 'extra'
data registers is for 'scratch' purposes (almost like an extension of the RPN stack) that can
be sandwi ched in between normal uses of the alpha reg; ster for messages, etc. Examples are
indirect function indexing (e.g., 'ISG M', 'DSE 0', 'STO+ IND N'), accumulations ('STO+M',
'STO-N', etc.), and temporary storage of intermediate numerical results. Note that all four
alpha registers are cleared simultaneously by the one-byte function 'ClA'. The alpha registers
(and the stack registers) can only be addressed indirectly through the extraordinary step of
adjusting the contents of Register c so that one of the status registers (any will work except
Register T) becomes ROO, but that is seldom practical.

The alpha register access functions combine with the standard alpha functions 'APPEND',
'ASTO', 'ARCl', 'ASHF', and 'ClA' to provide alpha character string manipulations of a speed
and flexibility greatly exceeding that possible with the standard functions alone. Consider,
as a first example, the problem of isolating a particular character from an alpha string,
such as might be required by a variety of word-guessing games. Here is a routine that will
isolate (i.e., leave by itself in the alpha register) the 'nth' character (counting from the
left) in a string of up to six characters, using only standard functions:

81*LBL A 18*LBL 81
82 7

11 "." 83 - 12 ARCL Y (6C-I) 84 CHS 13 ASTO Y
85 1 E3 14 ASHF
86 I 15 ISG X
87 1 16 CTO 81
88 + 17 AVIEII
89 ASTO Y 18 .END.

To use the routine, either the user or program places 'n' into Register X. Then 'XEQ
"A'" isolates the 'nth' character in the alpha register. There are two problems with this
routine that make it less than satisfactory: first, it is relatively slow, requiring from
0.9 to 2.1 seconds to execute, depending upon the value of 'n'; second, it is not directly
extendable to strings of more than six characters. If the strings to be processed can be
more than six characters, the program has no way of knowing where the 'first' character is
situated in the alpha register. This latter problem can be overcome to some extent by numbering
the characters from right-to-left so that 'n = I' corresponds to the last (rightmost) character
in the alpha string. Then the string can be broken into up to four 6-character strings, with
the appropriate string, depending on 'n', being searched by Routine 6C-I for the desired
character. But, as advert i sed, the use of synthet i c funct ions provi des a better method.

The invisible boundaries between Registers M, N, 0, and P simplify the task of chopping
up alpha strings. All we have to do is find an automated procedure for shifting the strings

63

around so that the desired character is at one of the boundaries. Consider the sequence ICLXI,
IFIX 41, IARCL XI. Following execution of these steps, the alpha register wil·l contain its
original contents, now shifted left by the appending of the six characters "0.0000". If we
had used IFIX 61 instead of IFIX 41, the original string would have been shifted by eight posi­
tions. This demonstrates a non-iterative (and hence, fast) method of shifting alpha strings
by a variable amount, which is used in the following version of "ISO". If you Isingle-stepl
through the program, with the HP-41C in ALPHA mode, you can see the characters shifted around
and selectively cleared to leave only one character.

Instructions for "ISO"

91*LSL "ISO·
92 19
83 -
94 CHS
95 SCI HID X
96 ARCL X
97 CLX

98 XO]
99 "I-t·
lIi XO]
11 CLA
12 STO [
13 AVIEII
14 END

1. Start with a string of up to 10 characters in the alpha register.
2. Place a number Inl between 1 and 10 into Register X.
3. XEQ II ISO".

"ISO"
30 BYTES

4. At completion, only the Inth l character from the original string will remain. In l
is counted from the right.

This routine is both shorter and faster than Routine 6C-l, requlrlng only 0.8 seconds
for execution, independent of Inl. ISCI IND XI is used (line 05) rather than IFIX IND XI, to
provide shifts of between 4 (for n=lO) and 13 (n=l) characters. "ISO" has the disadvantage
of changing the HP-41C display mode, but this can be corrected at an expense of 4 additional
program bytes by replacing steps 05 and 06 with:

05 X<>d
06 SCI IND d
07 ARCL d
08 X<>d

Similar operations are found in the next routine, "SUB", which is used to replace a
character in an alpha string, leaving the string otherwise intact:

91*LSL 'SUS' 12 "H" 23 XO] 34 ARCL X
92 19 13 XO T 24 LASTX 35 Rt
93 - 14 XO] , 25 XO t 36 STO d
94 CHS 15 "1-======" 26 XO T 37 CLX
95 RCL d 16 CLX 27 9 38 XO] "SUB"
96 SCI IND Y 17 XO \ 28 - 39 STO [
97 ARCL Y 18 STO [29 CHS 49 CLX 86 BYTES
98 RCL t 19 CLX 39 FIX 9 41 XO t,
99 STO L 29 XO] 31 RND 42 STO \
19 CLX 21 STO \ 32 CF 29 43 AYIEW
11 XO] 22 XO T 33 19tX 44 END

Instructions for "SUB"
1. Start with a string of up to ten characters in alpha.
2. Place one alpha character in Register Y.
3. Place a number Inl between 1 and 10 in X.
4. XEQ "SUB"
5. Fo 11 owi ng execut i on, the character from Y wi 11 replace the I nth I character in the
alpha string. Inl is counted from the right.

64

In lines 30-34 of "SUB" we see another type of variable character shift. using the func­
tion 'lOx' to produce a number 'x+l' characters long in Register X.

The 'Hangman' game ("HM") listed next demonstrates a practical application of the string
manipulations made possible with routines "ISO" and "SUB". Versions of these routines are
found in lines 169-183 and 114-168 respectively.

8ltlBl "H"' 47 RCl d
82 8 48 IIYIEW
83 STO d 49 STO d
84 .909 58*lBl 82
85 STO 87 51 FS? IND 96
86 FIX 8 52 GTO 84
87 SF 26 53 RCl 85
88 'WORD?' 54 CllI
89 liON 55 IIRCl 98
18 STOP 56 IIRCl 91

!IE 11 '1- 57 RCl 96
12 IISTO 98 58 INT
13 IISHF 59 XEQ 98
14 IISTO X 69 115TO X
15 CUI 61 X=V?
16 IIRCl X 62 XEQ 93
17 ·I-tttt· 63*lBl 94
18 RCl \ 64 ISG 96
19 CUl 65 GTO 92
29 STO [66 FS?C 19
21 IISTO 91 67 GTO 91
22 '---' 68 ISG 97
23 IISTO 03 69 GTO 96
24 IIRCl 93 79 ·ARRRRGGH ••• •
25 IISTO 92 71 IIYIEW
26 ClA 72 TONE 9
27 IISTO 94 73 TONE 9
28 1.989 74 PSE
29 STO 88 75 'WORD IS: •
39 STO 96 76 IIRCl 99
31 SF 19 77 IIRCl 91
32 •• 78 1I0FF
33 IISTO 95 79 PRO"PT
34 GTO 92 89*lBl 86
35*lBl 91 81 • 'ratl-·
36 1.989 82 t8
37 STO 96 83 RCL 87
38 ClA 84 INT
39 IIRCl 82 85 -
48 IIRCl 83 86 XEQ 8B
4t '1- • 87 IISTO X
42 IIRCl 84 88 RCL 87
43 TONE 9 89 INT
44 ClD 99 ·tltltltltltlCL·
45 STOP 91 XEQ 88
46 IISTO 85 92 IIRCl V

* APPEND tt SPliCES

93 IISTO M
94 GTO 81
95*lBl 03
96 ISG 83
97 GTO 85
98 • **DONE**"
99 IIYIEW

188 TONE 3
181 TONE 4
182 TONE 5
183 TONE 8
184 TONE 7
185 TONE 8
186 CUl
187 PSE
188 RCl 97
189 INT
119 IIRCl X
111 '1- WRONG.'
112 1I0FF
113 PRO"PT
114*lBl 95
115 SF IND 96
116 SF 19
117 RCl 86
118 INT
119 CUI
129 IIRCl 92
121 IIRCl 93
122 19
123 -
124 CHS
125 RCl d
126 sci IND V
127 ARCl V
128 RCl t
129 STO l
138 ClX
131 XO']
132 'H"
133 XO T
134 XO]
135 ClX
136 FIX 4
137 IIRCl X
138 ClX

65

139 XO \
148 STO [
141 CUi
142 XO]
143 STO \
144 XO T
145 XO]
146 U1STX
147 XO t
148 XO T
149 9
158 -
151 CHS
152 FIX 8
153 RND
154 CF 29
155 19tX
156 IIRCl X
157 Rt
158 STO d
159 ClX
169 XO]
161 STO [
162 ClX
163 xo t
164 STO \
165 IISTO 92
166 IISHF
167 IISTO 93
168 RTN
169*lBl 88
179 19
171 -
172 CHS
173 XO d
174 SCI IND d
175 IIRCl d
176 XO d
177 ClX
178 XO]
179 'H'
188 XO]
181 ClA
182 STO [
183 END

"HM"
386 BYTES

SIZE 009

Instructions for "HM":
1. XEQ "HM".
2. First player keys in a word of up to nine letters; RIS.
3. At the tone, the display will show as many dashes "-" as there are letters in the
unknown word. The second player guesses a letter by pressing the corresponding letter
key, then RIS.
4. At the next tone, all occurrences of the guessed letter will be shown in the display.
If the guessed letter is not present, one 'piece' will be added to the 'gallows' "~"
or to the 'man' "~" at the right of the display. Play resumes with step 3.
5. If the full word is guessed with fewer than 10 wrong guesses, "**DONE**" is displayed,
followed by the total number of wrong guesses.
6. On the tenth wrong guess, the 'man' is 'hung', and the unknown word is displayed.

'Hangman' works with words of up to nine letters. If the first player enters fewer
than ni ne 1 etters, the program fi 11 s out the word with spaces (l i nes 11-21), then 'guesses'
the 'space' character, the same way a player would, in order to display the correct number of
unknown letters to the second player.

Some synthetic programming notes for "HM": Lines 72 and 73 are "TONE 10", hex '9F OA',
which can be created with the byte jumper. The construction of line 81, 'FS 60 06 04 05 01',
was described in Section 51; Line 90, 'F9 40 40 40 40 40 40 43 4C SF', was made as an example
of enhanced byte jumping in Section SG. The trick used to make the guessed letters 'goose-step'
around the display (lines 47-49) is described in Section 7B.

Data storage is allocated by "HM" as follows:

60. CHARACTER RECOGNITION

ROO & ROl
R02 & R03
R04
ROS
R06
R07
R08

mystery word
current guessed word
'hangman'
current guessed letter
loop counter
wrong guess counter
right guess counter

Although a user can simply look at an alphanumeric display to read its contents, the
HP-41C itself has no means of determining what characters, if any, are present in the alpha
register, except by laborious one-by-one comparisons with known characters. Thus, for example,
alphabetizing a group of alpha data strings is a prohibitively slow, memory-expensive process.
However, synthetic functions can extend the capability of the HP-41C into the domain of 'word­
processing', by allowing conversions of characters into numbers and vice-versa.

Suppose we wish to identify or give a numerical value to a single alpha character.
Since there are 256 characters (not all display differently, of course), the identification
should consist of a decimal number in the range 0 to 2SS--i.e., the decimal equivalent of the
byte code for the character. The same hexadecimal-to-octal-to-decimal conversion used in Sec­
tion 6B can be used for this purpose, as shown in this 'fharacter-to-Qecimal ("CD") program:

81tLBL 'CD'
82 ·I-.... x·
83 XO [
84 XO d
85 FS?C 88
86 SF 86
87 FS?C 89
88 SF 87
89 FS?C 18

18 SF 8.9
11 FS?C U
12 SF 18
13 FS?C 12
14 SF 11
15 XO d
16 DEC
17 END

43 BYTES

(Line 02 is 'F6 7F 0000 00 00 02', the same as in the program "EF" in Section SEe)
Examples: "A", XEQ "CD" gives '65'; "$", XEQ "CD" gives '36'.

66

The reverse process, 'Decimal-to-Character' ("DC"), is only slightly more complicated.
Lines 03-06 of "DC" ensure tnat the three octal digits of the input number always go into the
same set of flags in Register d, even if the number is only a one- or two-digit decimal integer.

81tLBL 'DC' 11 SF ·19 28 'f-...
82 OCT 12 FS?C 17 21 CLX
83 E3 13 SF 18 22 STO \
84 / 14 FS?C 15 23 'Hl' "DC"
85 18 15 SF 17 24 XO \
86 + 16 FS?C 14 25 CLJ:! 58 BYTES
87 XO d 17 SF 16 26 XO [
88 FS?C 19 18 XO d 27 AYIEW
89 SF 28 19 STO [28 END
18 FS?C 18

Examples: '37 ' , XEQ "DC" gives "%"; I 64 I, XEQ "DC" gives II@".

The problem of alphabetizing a set of alpha data strings requires a more complicated
character recognition scheme than provided by "CD". Since the only alpha comparison the HP-
41C can make is 'X=Y?", we need numerical equivalents for entire alpha data strings in order
to make the 'X<Y?' comparison necessary for alphabetizing. Once such a comparison is made,
standard number sorting techniques can be used to alphabetize a list of alpha strings. A
straightforward way of generating such an equivalent would be to use "CD" on each character
of an alpha data string and combine the results into a single number. Notice that since the
decimal equivalent of the character "l" is 90, the maximum value of a six-letter string is
906 = 5.3 Ell, which is greater than the largest integer the HP-41C can handle. Therefore,
this conversion process should subtract 64 from the decimal value of each character (making
"A" = 1, "B" = 2, etc.) before making the combination of the six values into a single number.

Synthetic programming offers a method of generating numerical equivalents for alpha
stri ngs that is much shorter and faster than a character-by-character convers i on. The next
routine, "AL" , alphabetizes a single pair of alpha data strings. It should be combined with
the user's choice of ordinary number-sorting routines to alphabetize a set of alpha data.

81.LBL 'AL' 12 RrN 22 RCL [
92 XEQ 81 13 XO IND T 23 RIN
83 XH! 81 14 XO IND l 24.LBl 81
84 X~Y? 15 XO IND T 25 (F2 81 81} "AL" 8S GTO 83 16 RTN 26 ARCL IND V
86 RDN 17.LBL 82 27 .f-.... 70 BYTES 87 RDN 18 'x II' (F3 81 81 91) 28 ASTO [
88 XEQ 82 19 IlRCL IND Y 29 "f-•• ' SIZE 002 89 XEQ 02 28 ASHF 38 RCl [
18.LSL 83 21 "1-•• " 31 END
11 X}Y?

Instructions for "AL":
1. Two alpha data strings to be ordered should be in numbered data registers. The
strings can be 1 to 6 characters.
2. Place the number of one data register in X, the number of the other in Y.
3. XEQ "AL ".
4. "AL" places the string that comes first alphabetically in the register originally
designated in Y; the other string goes to the register originally designated in X.

"AL" fi rst uses subrout i ne 01 (1 i nes 24-31) to change the fi rst four characters of the
two strings into numbers for comparison. A 'number ' is characterized by a first nybble of
'0 ' or '9 ' ; furthermore, numerical comparisons of alpha strings are only meaningful if the
assigned numbers have common exponents. These two considerations restrict the alpha comparisons
to four characters at a time, since we need to put a number identifier ("AL" uses byte '01')
at the left of the string, and two bytes '00 00 ' on the right to standardize the exponents.
This leaves only four 'free' bytes in a seven-byte register. Four characters are usually

67

sufficient to distinguish two strings; if the remalnlng two bytes of the original strings are
required, subroutine 02 (lines 17-23) provides for that additional comparison.

The trick of changing an alpha data string into a number can be 'reversed'. The next
routine, "MANT", shows how a number can be changed into alpha characters to use alpha instruc­
tions like 'APPEND ' or 'ASTO ' to change the number. In this case, we want to replace a number
with its mantissa by chopping off its exponent. We could do this using the 'LOG ' and 'lOx'
functions, but that occasionally introduces error into the last digit of the mantissa. "MANT"
always gives an exact result. Upon execution of "MANT", the number in Register X is replaced
by its mantissa (including the sign); Y and Z are undisturbed; T, L, and the alpha register
are lost.

81+LBL "~lQNT" 89 1 ES8
82 STO [18 *
83 CLX 11 UISTX

"MANT" 94 FIX 4 12 X),(?

9S ARCL X 13 lIX
86 XO [14 ! 36 BYTES
87 "H" 1S FIX 9
88 XO \ 16 END

6E. SYNTHETIC TEXT LINES AND THE PRINTER

Synthetic text lines, created by any of the methods described in Chapters 3 and 5, are
particularly useful for printer applications. Any of the 128 standard printer characters can
be included in a program text line by placing the corresponding byte (as found in the Byte
Table) in the line. This eliminates the necessity for repeated use of the printer function
'ACCHR ' • For example, try writing a routine that would print the characters "Big Deal #7".
Using Flag 13 and 'ACCHR ' , you will require a total of 40 bytes. But the desired result can
be obtained in only 14 bytes by writing a synthetic text line that contains the lower case
letters and the "#" symbol explicitly:

I 01 TB_ Dealt # 7
02 PRA

Line 01 is coded 'FB 42 69 67 20 44 65 61 6C 20 23 37 1
• It can be created easily with byte

jumping, or with the text enabler:

01 +
02 *
03 FRC
04 X=O?
05 RCL 00
06 X<Y?
07 LN1+X
08 ABS
09 HMS
10 RCL 00
11 RCL 03
12 STO 07
13 PRA

("B")
(" i")
("g")
(II II)
("0")
("e")
("a")
("1")
(" ")
("#")
("7")

TE .001
Press correction
key 5 times.

[Ol"BIlIIi Dealt #7 II]

In a similar manner, we can replace the printer function 'BLOSPEC ' • Consider the special
graphics character shown in Figure 6-1, where we show the dot pattern and the corresponding
'values' and 'column print numbers ' as called for by the 'BLOSPEC ' instructions (82143A Printer

68

Owner's Handbook, pp. 64-66).

V
A
L
U
E

COLUMN NUMBERS

1 2 3 4 5 6 7

10000eoo
20000eeo
40000e __
aeooeooo

16 e 0 e 0 0 00
32 __ e 000 00
64 e _ e eo 0 0

120 96 80 72 7 6 4

COLUMN PRINT NUMBERS

FIGURE 6-1. A SPECIAL GRAPHICS CHARACTER

The column print numbers are just the decimal equivalents of numbers made by treating
each column as a 7-bit binary number, with dark dots as l's and blank dots as O's. The first
time 'BLDSPEC' is executed, with zero in Register Y and the first column print number (l20)
in X, an alpha data string is created in X which uses the seven bits of the first column
print number (1111000) as the last seven bits of the string:

X = 000100011111000

When 'BLDSPEC' operates on the next column print number (96), its seven bits are copied into
the last seven bits of X, with the previous entry 'pushed' to the left:

X = 0001000000000000000000000000000000000000001111100011100000

After the last column print number is entered, Register X contains:

120 96 ao 72 7 6 4

X = 0001 00011 1110 00111 0000 01101 0000 11001 00010 0001 11100 0011 01000 0100

(hex) 1 1 E 3 o 5 o 9 o 1 C 3 o 4

The successive column print numbers are shown above the binary representation of X. Below
X, we show the byte codes corresponding to the bit pattern. This byte code is entered into
program as a 7-character text line 'F7 11 E3 05 09 01 C3 04' that will place the byte code
into the alpha register, whence it can be transferred to Register X using 'RCL M'. Then the
printer function 'ACSPEC' can be executed normally.

In practice, the step of computing the column print numbers is unnecessary. All you
have to do is write out a 49-bit binary number to represent the 7 x 7 dot grid, using l's for

69

dark dots and O's for blanks. Start with the lower left corner of the grid as the leftmost
bit, then work up to the top of the first column, then bottom-to-top on the second column,
etc. When all the dots are encoded, add the 7 bits '0001000' to the left of the number for a
total of 56 bits. Group the 56 bits into 4-bit digits, then make a 7-character text line from
the hexadecimal equivalents. Since these bytes may come from anywhere in the Byte Table, use
of "CODE" plus the Q-loader is an ideal way of creating the desired text line.

Th is procedure may seem 1 ike a lot of t roub 1 e, but wi th pract i ce, it's scarcely more
difficult than the normal 'BLDSPEC' method. The savings in program memory are obvious from
the following comparison:

'Normal' Program:

01 0 10 BLDSPEC
02 ENTER 11 7
03 120 12 BLDSPEC
04 BLDSPEC 13 6
05 96 14 BLDSPEC
06 BLDSPEC 15 4
07 80 16 BLDSPEC
08 BLDSPEC 17 ACSPEC
09 72

--30 bytes

Synthetic Program:

01 "II. ~.;u!lit II
02 RCL M
03 ACSPEC

--12 bytes

Of course, you could execute the normal 'BLDSPEC' sequence manually and store the result­
ing special character alpha data string in a data register for use by a program, ending up
with a tota'l memory use (counting the data register) of only 10 bytes. But if the program is
read from magnetic cards, a data card must also be read; furthermore, the data register used
must be guarded against use by any other program as long as you desire to use the special
character program.

If you are bothering to read this section, you are probably using a printer to list
the programs. On printer output, line 01 of the synthetic program last described will print
as:

01 "Qf5cr x o:"

There are only five characters shown, because the program 1 i sti ng of a text 1 i ne wi 11 only
show characters from the top half of the Byte Table. Characters correspondi ng to bytes in
the lower half of the table are invisible. Furthermore, the print buffer uses bytes from
rows A, B, 0, and E for internal purposes related to special character printouts, single and
double width instructions, etc. Hence, text lines containing characters from those four rows
may print out in very strange ways. For example, if a text line contains the character corres­
ponding to byte '05', a program listing containing that line will ha~ all printout following
that character printed double-wide and lower case.

6F. NON-NORMALIZED NUMBERS AND MASS FLAG CONTROL

The use of synthet i c text 1 i nes is by no means restri cted to the programmed generat ion
of non-standard character strings in the alpha register. A synthetic text line of up to seven
characters, followed by a 'RCL M', wi.ll place an NNN into Register X. An important use of
NNN's so created is for 'mass flag control' through storage of the NNN into Register d. We
have already seen one application of mass flag control in the use of the text enabler.

The programs described in previous sections have contained numerous examples of the use
of instructions such as 'X<>d' to restore an initial flag status after the flag register has
been used as a 'binary encoder'. The ability to create any NNN allows us to set or clear all
56 flags in one operation. The basic sequence is:

01 "xxxxxxx"
02 RCL M
03 STO d

70

(6F -1)

where "xxxxxxx" represents the synthet i c text 1 i ne used to generate the NNN. Routine 6F-1
uses 12 program bytes, the same as would be required for six ISF mnl or ICF mn l program lines.
In general, therefore, it is more efficient to use Routine 6F-1 rather than individual ISF I
or ICF I lines whenever more than six flags are to be set or cleared. Such occasions arise
frequently in program initialization routines, where various user flags are set or cleared,
and desired display and trigonometric formats are established.

As an illustration, let us write a routine to set the HP-41C flags as follows: Flags 1,
2, 3, 26 (audio enable), 28 (radix), and 29 (separator) are set; IFIX/ENG 31 display format
(Flags 38, 39, 40, and 41 set); IRADI mode (Flag 43 set); continuous ON (Flag 44); all other
flags clear. The IFIX/ENG I display is chosen particularly because it is a number display
format that is not available without synthetic programming. In ordinary IFIX I format (Flag
40 set, Flag 41 clear), numbers which are too large or too small to display properly cause
the display to default to the ISCI I format. In the IFIX/ENG I format, however, the default is
to IENG I mode.

To determine the synthetic text line required to generate the desired flag status, we
write out the states of all of the flags as a 56-bit binary number, with lis for set flags
and OIS for clear flags, then group the bits into eight-bit hexadecimal bytes:

audio radix digits RAD
1 2 3 enab 1 e I separator ~ FI X/ENG //ON
\ I / \ / \\ to. / /

0111 000010000 000010000 000010010 110010000 001111101 100010000 0000

7 010 010 012 C 1 0 310 810 o

We see that the required text line is IF7 70 00 00 2C 03 08 00 1• This particular byte code
is a challenge to each of the synthetic text 1 ine generating methods we have studied. For
example, because the line is eight bytes long, it canlt be created with a single operation of
"REG". However, we can key into program a I dummy I 7 -character text 1 i ne and jockey it around
in memory by adding or deleting bytes higher in memory until the seven character bytes are
positioned all in the same register (i.e., with the program display showing the dummy line,
IRCL bl , XEQ "AD" should give an address starting with a byte number 111). Then we can use
"REG" to store the code 170 00 00 2C 030800 1 into the register containing the dumlllY characters,
leaving the IF71 byte intact.

It is tricky to use the byte jumper or the text enabler to edit in the text line because
of the 108 1 byte, which cannot be keyed in as a stand-alone line. Also, the Q-loader wonlt
work because of the 100 1 byte on the end. If we used the Q-loader on the code, we would
obtain a six-character text line, since the Q-loader lignores l any leading nulls in the input
code. But a combination of the byte jumper and the Q-loader will do the trick. We first use
the Q-loader with the code 101 08 03 2C 00 00 70 1, where we have replaced the 100 1 byte with
an 1011. Then we byte-jump to the 1011 and delete it.

"01 08 03 2C 00 00 70"

01 'STO 07

XEQ "CODE"
R/S
GTO new program
PRGM off
STO Q
PRGM on
press Q-loader
DEL 001
PACK, SST
JUMP .002
DEL 001
DEL 001

[CODE=?]
["~ .. , --...]

[02 9]
[01 STO 07]
[02 ... -- I ",~~I]
[02 LBL 00]
[01 STO 07]
[00 REG abc]

We finish by adding the lines 102 RCL MI, 103 STO dl to match Routine 6F-1.
Storing NNNls into Register d is the only way we can set many of the Isysteml flags,

i.e., Flags 30-35, 45-47, and 49-55. Although control of these flags usually leads to some
amusing but not particularly useful effects (see Section 7B), an example of a practical appli­
cation involves setting the system Data Entry Flag 45 (already encountered through use of the
text enabler).

71

Often, especially during calculations using statistical accumulations, we are required
to enter a string of numbers that differ only in the last digit or two, like 1123456 1, 1123457 1,
1123460 1, etc. To save entering the 11234 1 each time, we could add a few program steps that
add 1123400 1 to our entries so that we only have to enter the final two digits of each number.
But we can make the process even more Ifriendlyl by asking the HP-41C to enter and display
the 11234 1 in such a way that when we key in the final two digits, we see the 11234 1 at the
same time. Setting Flag 45 allows this kind of operation:

01 "111-" (F2 84 00)
02 RCL M
03 X<> d
04 1234 (6F-2)
05 STOP
06 X<>Y
07 STO d

The first character of line 01, byte 184 1, sets Flags 40 and 45 when stored into Register
d. When the program halts at line 05, with Flag 45 set, the processor thinks it is still in
the process of data entry. At the halt, the display will show 11234 1 (Register X). If we
press a number key, 15 1 for example, the display will become 112345_ 1, with the underline
indicating that further digit entry is possible. Lines 06 and 07 are optional--they serve to
restore the initial flag status, leaving the newly entered number in Register Y.

The same trick used in Routine 6F-2 works with alpha character entry, so that we can
add alpha characters to a current alpha string while displaying the entire string. Or, to
go one better, we can append alpha characters to a display message, yet have only the newly
entered characters remain in alpha for processing. To illustrate, replace the first five
lines of "CODE" with this sequence:

01 LBL "CODE"
02 "A II" (F2 04 80)
03 RCL M
04 X<>d
05 "CODE="
06 AVIEW
07 CLA
08 STOP
09 X<>d

(6F-3)

Lines 02-04 set Flags 45 and 48 (ALPHA on). Lines 05-07 arrange that when the program halts
at line 08, the display will show "CODE=", even though the alpha register has been cleared.
When we key in the alpha characters for the code, they enter the alpha register normally, but
also appear in the display appended to the "CODE=". If, during the halt, we clear the display
by turning ALPHA off, then on, the phantom "CODE=" will disappear, leaving only the keyed-in
characters in the display. This is not a profound achievement, but it does make the HP-41C
even Ifriendlier l • Unfortunately, there doesnlt (yet) seem to be a way to add numerical
entries to alpha prompts.

A cautionary note is in order regarding the use of NNNls in the HP-41C. The arithmetic
routines in the calculator were designed to handle only normal decimal numbers. Their use
with NNNls can have surprising and occasionally unpleasant results. For example, use "CODE"
to generate the NNN 100 00 01 00 00 00 00 1, which will be displayed in ISCI 51 format as
10.00010 EOOI. Now execute II/XI, and watch what happens. The display will blank for about
5 seconds, during which time the keyboard is Ilocked out l , i.e., the HP-41C will not respond
to any key presses, inc 1 udi ng the ION' switch. The NNN denomi nator causes the del ay: the
Idivide l process (or l/X) assumes that both numerator and denominator are stored in proper
scientific format. Dividing is carried out as a series of subtractions--the two exponents
are subtracted, then the denominator is repeatedly subtracted from the numerator--in effect,
a reverse of multiplication by repeated adding. The process doesnlt take long if both numerator
and denominator mantissas are of order unity, as they should be, but in our example, the denom­
inator mantissa is only 0.0001, so that 104 times as many subtractions are necessary to
complete the division. Five seconds is not long, but other NNN's could easily require 5000

72

seconds or more for divisions. Other functions may take even longer: 'LOG (0.0001 EO)' takes
45 seconds, compared to the 5 seconds for 'I/X'. The' normal i zat i on' of regi ster contents
that occurs when register recall functions are executed is specifically designed to eliminate
the danger of calculator 'lockups' caused by NNN's that might be introduced into data registers
when a memory module·is inserted. So, be careful. As with most other crashes, battery removal
and replacement will unlock the machine.

6G. RAISING THE CURTAIN

Because of the savings in program bytes associated with the use of theone-byte 'STO'
and 'RCL' functions, it is desirable for programs to use data registers ROO-RI5 whenever
possible. Thus, it is quite common to have several programs in the HP-41C memory which each use
the same block of data registers, so that execution of one program would destroy the data
used by another. One solution is to write a data transfer program that moves the contents of
a block of data registers to another block, clearing the first set of registers for use by
another program. If the number of registers involved is large, this will be a slow process.
The program "CU" (for 'Curtain') offers an alternate, faster solution.

81*LBL "CU" 13 CLX 25*LBL 12 37 DSE [
82 STO L 14 UlSTX 26 FC?C IND Y 38 GTO 11
93 CLX 15 IHT 27 SF IND Y 39*LBL 14
94 RCL c 16 X=9? 28 FC? IND Y 48 XO]
85 STO [17 GTO 14 29 CHS 41 XO d "CU" 96 .1-..... 18 2 38 X)9? 42 STO [
87 11 19 I 31 GTO 13 43 'HlBC' 87 BYTES 88 XO [29 RCL [32 FC? IND Y 44 XO \
89 XO d 21 X< >Y 33 CHS 45 STO c
18 STO] 22 FRC 34 DSE Y 46 RDN
l1*LBL 11 23 X=9? 35 GTO 12 47 END
12 RDH 24 GTO 13 36*LBL 13

Instructions for "CU":
1. Enter an integer number 'n' into Register X.
2. XEQ "CU".
3. If n)O, Rn will become the new ROO. If n(O, R_ n will become the new ROO. All other
data registers will shift accordingly.

"CU" takes an integer number 'n' from Regi ster X (entered manually or by another program)
and adds it to the address of ROO stored in Register c. If 'n' is positive, data registers
ROO through Rn-l will be 'transformed' into program registers, by raising the imaginary
'curtain' that separates data and program memory from its initial position below ROO to a
new position below Rn; Rn becomes the new ROO. If 'n' is negative, the curtain is lowered,
so that 'n'registers of program memory are transformed into data registers. All of this occurs
without alteration or moving of the contents of the registers involved.

Suppose 'Program I' is executed, 1 eavi ng data i n ROO-R~O that is required for future
use. But in the meantime we wish to execute 'Program 2', WhlCh uses registers ROO-R25 for
its own purposes. In thi s case, we enter '51' into X and execute "CU" (the's i ze' shou 1 d be
77 or greater). Following execution of Program 2, we can prepare for a second run of Program
1 by pressing '-51', 'XEQ "CU'''.

**Warni ng: Ra i si ng the curta i n above the top of memory, i. e., executing "CU" for 'n'
greater than the current's i ze', or 1 oweri ng it to (hex) addresses from '010' through 'OCO',
or to '000', will cause 'MEMORY LOST'.

"CU" works by performing a binary addition of the number 'n' to the hexadecimal digits
9-11 of Register c that constitute the 'curtain' address. The corresponding Flags 32-43 in
Register d cannot be controlled individually, so the contents of Register c are transferred
to Regi ster M and shi fted '1 eft' by appendi ng nu 11 bytes (l i ne 06). Then 1 i nes 08-09 place
the curtain address into Register d as Flags 00-11.

Binary addition is a very simple process. To add 1 to a binary number, we merely switch
the value of the last bit, from 1 to 0 or vice versa. If the last bit becomes a 1, we stop.

73

If it becomes a 0, we switch the next bit to the left. If the next bit becomes a I, we stop;
if it becomes a 0, we go on to the next bit to the left, and so forth until we stop at a bit
that changes from 0 to 1. Subtracting 1 is almost the same--we follow the same procedure,
starting on the rightmost bit and working left until we encounter a bit that changes from 1
to O. Adding 2 (binary 10) works the same way, only we start with the next-to-last bit. In
general, to add 2m, we start with the 'm+ll bit, counting from the right.

Binary addition is performed in lines 11-35 of "CU". The entered number Inl is broken
up into binary bits through repeated division by 2 (1 ines 18-19). The successive bits are
added or subtracted to the address bits according to the test in line 30. Once the addition
; s comp1 ete, the three bytes of the Reg; ster c code that are in Regi ster dare rejoi ned to
the first four bytes waiting in Register N (lines 41-42). Then the full code is bumped into
N (line 43), and finally restored to Register c in line 45. When "CU" is finished, the contents
of stack Registers X and Y prior to entry of In l are restored.

The HP-41C will operate quite normally while the curtain is raised or lowered from the
position last established by a 'SIZE ' operation. However, if the curtain is raised, changing
data into program, the memory should not be 'PACKed ' , since that will most likely change the
data stored below the curtain irreversibly by removing all the null bytes in the data. This
difficulty can be avoided if an 'END' is placed at the top of program memory, followed by
execution of 'PACK ' • If the curtain is subsequently raised, the data registers transformed
to program memory wi 11 be unaffected by any I PACK I. They are protected by the I END I, wh i ch
was coded to indicate a packed file.

A second important application of "CU" is to change data into program permanently,
providing us with yet another means of generating synthetic program lines. This method is
most useful when several consecutive registers of program, or perhaps an entire program,
contains sufficient synthetic program 1 ines to justify being written entirely with "CODE".
In that case, we use "CODE" to generate the byte code for each seven bytes of program, storing
the successive codes into adjacent data registers. The last seven bytes go into ROO, the
next-to-1ast into ROl, etc. (This, incidentally, is a major justification for writing "CODE"
so that it uses no numbered data registers.) When the coding is complete, we use "CU" to
raise the curtain above the highest data register containing program. The synthetic codes
will then appear as program lines, starting at the top of program memory. To access the new
lines, we use 'CAT 11, stopping at the first global label or 'END', followed with a manual
'RTN'. Here's a sample:

"COOOF400600401"

IF32801297E8685"

2

XEQ "CODE" [CODE=?

R/S [".-11- TAiIi II

STO 01
XEQ "CODE" [CODE=?

R/S ["IB (iii) EIIII"
STO 00

XEQ "CU"
CAT I--stop at first label or END
RTN
SST to see new program:

01 LBL II TA;!; II

02 II (iii) II
03 AVIEW
04 BEEP
05 RTN

]

]

]

]

At this point, the LBL II TAiIi II will not show up in the user catalog since it is not part
of the global chain. This can be fixed by inserting then deleting a temporary program line
anywhere among the new lines, followed by 'PACK ' •

74

6H. APPLICATION PACS: SNEAKING IN THE BACK DOOR

The_Aqn,.1.ir-.i!jjrut. p.".C_ 'RE'.ad:n.nl)!, Mt:'mor.vol (P.OM),' ITJruWJp.s~ f(1.J'. t-.h'i'~ J.\1?-4}L ;u".'\.. ~. il'lr.)ru'.+a.r.t ..
meansofextendifl9thememo~y -£apacityof the -calcuiatortoincludean _extensive 1 ibraryof
~preprogrammed rout iRes. Un-fortunately. many of the routines suffer from the limitation that
-they cannot be call-edasatltomatic subrout inesfrom user prO-gr-ams becaus_e of-thevartous halts
for manual input and output -included in the ~outhles. -Inmauycases, _thislimttatton can be
overcome b-yusing the followiRgroutine.which permits directbranthingto any po tnt in any
ROM routine:

I 8t+LBL -WROI'I" ux<y[21-XO ~] I
I 82 SF 91 12XO \ ~22 X(>-a I
I 83 XOa _13XO [23XO \ I

-84XO \ HARCL-eO 245lOb
I

If ROW'
I

I

85 elX -lS -.i-----~. .-25+[BL99 I
I 86RCLb _16XOt 26-X{> \ I 73 .BVTES I
I 87F"C?C-61 17-XO J 27Cl-1l I

88 G10-80 lS"!-++" 28 END I $IZ£OOl
I

I
e9STO [19S10 [I 18 -"i-ttttt" 28-"i-**" I I I

Instructions 'for "ROMI!:
Prior to execution of"ROW • store in ROO -the _aosoiuteadctl"'ess of -the _point in the

ROt-1 routine Where yo-uwiSh -execution to begin. Then, your program shaul-d eail "ROM" .as-a
subroutine rather than_caHingthe ROMrautinedire-c.tly. TheRPN stack.and _d.ata register'S

-shouldbeconfigul"ed-.as expe.cted ,bytheROMprQgr..am at the 'Point -of entry."ROM"tl"ansfers
-executtontothespeCifted addressintheROM,foil owing wni chthe routine executesnonnally.
returning to the origin-almain .-program upon -encoonteringthefinal LRTN' _or 'END' -in the -ROM

-routtne. Although orciin-arHyaROM pr.ogr-amcall-ed _by tts-global Tabel -can_be a -sixth-level
~subroutine(i.e •• J:!uring Ttsexecution, there can b-eup-tosi-x peRdtng -addres.sesinthereturn
s.tack~,"ROM" -can only -be ccnledasa fifth level subroutiAe.

-The 1 oss ofoflesub~outi-ne1-eve l.arisesITomthe way that "ROf.1" works. Followingexecu­
tionof line.09, _the -alJ3ha re.gi-sterwHlcontaina r-eplic-a -of ther.eturn statkinRegistersa
andb:

R6R5R4R-3~R2RIA6

where • A6 1 is -the _absolute -addr..es-s ~(jfthe second byte of ~line-06 (that I-swher..e theRCLb was
made) ;'Rl 'icsthe return aCidr-ess of the .pr-oJ}r.am -Unefrom which'~OWwas -called =asa subrou­
tine; 'R2 I is the second pend i ngsubrout i He r-eturn ,etc. Li-ne-s 10-20shuffl ethe th-~acters
in the -alpha regist-er -around until Registers 0 _aFld -N contatn a newl"eturn stack ~ofthe form:

R5R4R3R2 -R1 cERM

where !ERi~sthe -add r-e s-s of-the _entry point -i,nth.eexternal-ROM, recalledfr0'!1RoO' tiotice
that the 'Ro ' addressnaslYeenlost, -ac..countHl.9fortheios-sofonesubroutlp.e level -when
executiFlg"ROW'.The -new 1".eturn stack -isstore-dinto -R.egistersa -and b.by liRes 21-24. At
the ·e-xecutionofl-ine '24 -STOb', 'A6 ' -becomes -the-pointer -address, so -that.e-x-ecution wHi
resl.lmewithlrne OZ. Thi stimethl"ough, -PiagOlis c1ear-.sotheprogramjumpstoltne
~Z5 LBL 00 I • Lines 26,;.27compi ete some I ho.usekeepi-ng I. restori-ngthe RPN -staGkto its -state

..at the point when "-ROM"was -cal1_ed.The IEND ' dropsthe)"et.urn =stack, so that IER'.the
address intheROM,hecomesthe .pointer -atldl"ess, whereupon execution transfers, to the ROM
program. At the -fi na l' END I or ~RTN'enCOUriteredthere, execut ionr.eturnstothe user program
at :the -can ingaddress 'RI'. Remember that the -ROM routine itself may ..add ~subrolitine -levels..
causin:g 'R5 '-, IR4' ,.etc. to -be lost.

Thepr-oc-edur-efor determining -the-correct~ROMentry point address isquit-€ simple. First,
-execute a I GTO I -to any _9 lob-a 1 ~labelwithintheROM -program-of interest. Then press I_GTO .lmn I,
wher-e ! lmn 'ts -the line Rumber -of the Hne where you want program exeCtlt ion to _tr-ansfer. -Then
presst-ReL bl,'eLA i

, 'STO M' ,I-ASmOO'-,whiehpl-acesthe -addressin:Roo.inthe -prop.erform

75

for use by "ROM". The choice of ROO is arbitrary; if that register is required for some other
purpose, any data register may be used if line 14 is altered accordingly.

An an example of the use of "ROM", suppose we want to use the "SSS" routine in the Math
Pac. This routine prompts for manual entry of the lengths of three sides of a triangle, then
outputs the angles, sides, and area of the triangle. If the printer is not attached to the
HP-41C, the output requ ires manua 1 I RjS I S to produce each of the seven outputs, prec 1 udi ng
use of "SSS" as an automatic subroutine.

Use of "ROM" can eliminate this difficulty by allowing "SSS" to be Icalled l at a point
in the program after the input halts, and also after the ISF 211 instruction (line 65) that
causes the output halts in the absence of the pri nter. A good entry poi nt is 1 i ne 106 LBL
05 1• At this point, the program assumes that the lengths IS11, IS21, and IS3 1 are already
in ROO, R02, and R04, respectively, so we must arrange the calling program to accomplish that
storage:

1I1tLBL ""'!lIN'
112 25
113 STO lie
114 35
115 STO 112
86 45
117 STO 114
118 XEQ "RO""
119 'DONE"
HI !lYlE'"
11 END

In this sample program "MAIN", we include explicit side lengths of 25, 35, and 45. Notice
that since "SSS" uses ROO, we can not use that register for the ROM address. To run the
program:

1. Change line 14 of "ROM" to 114 ARCL 10 1•
2. GTO ."SSS"
3. CLA
4. GTO 05 (or GTO .006)
5. RCL b
6. STO M
7. ASTO 10
8. XEQ "MAIN"

When "DONE" appears in the di spl ay, we wi 11 fi nd the results

Al
A2
A3
AREA

95.74
33.56
50.70

435.31

in R01
in R03
in R05
in X.

For subsequent executions of "MAIN", steps 1 through 7 above may be omitted, providing the
ROM address stored in RIO are undisturbed.

76

CHAPTER 7

AMUSING ANOMALIES

The primary purpose of synthetic programming is to extend the programming capability of
the HP-41C. The application programs in Chapter 6 are the results of straightforward use of
synthetic functions, plus a lot of experimentation, wild ideas, diligent searching, etc. It
should not be surprising that this exploration of the inner workings of the HP-41C has also
turned up a number of oddities, which have no important practical uses, but are nevertheless
amusing to play with. This chapter contains descriptions of several of these oddities.

7A. 128 TONES?

In normal operation, the HP-41C can execute the ten tones 'TONE 01 through 'TONE 91,
corresponding to the byte codes '9F 00 1 through '9F 09 1• We saw at the the end of Chapter 3,
however, that the code '9F OA ' executes a new tone, longer in duration and lower in frequency
than any of the standard tones. '9F OA ' displays in program mode as 'TONE 01, as we saw in
the 'Hangman ' program of Section 6C. We can use synthetic programming techniques to attach
to the '9F' prefix any of the 128 postfixes from rows 0 through 7 of the Byte Table. It turns
out that almost every combination gives a different tone. There are 16 frequencies, correspond­
ing to the 16 possible values of the second nybble of the tone line postfix. Two tone codes
differing only in the first nybble of the postfix produce tones of the same frequency, but
usually of varying duration.

In program mode, any 'TONE ' line with postfix less than hex 165 1 (decimal 101) will dis­
play as 'TONE n' , where In l is the second digit of the decimal equivalent of the postfix byte
For higher postfixes, the lines will display as 'TONE ai, where la l is a single alpha character
postfix, such as 'TONE 01 for code '9F 69 1 or 'TONE pi for code '9F 78 1• Table 7-1 shows the
tone durations and frequencies for each of the 128 possible postfixes. The data in the table
was assembled by Richard Nelson (PPC Calculator Journal, V7 Nl P21, 1980). There are a few
cases of duplication, so that there are actually only 114 'different ' tones.

In order to experiment with these tones, you can execute the program "TONE", which wi 11
automatically create 127 'TONE ' program lines (all but 'TONE 01, '9F 00 1, which can be made
normally). After execution of "TONE", the first 127 lines of the first program in memory will
be 'TONE ' lines, with the line number of each line being the same as the tone number, from 1
to 127. "TONE" calls "DC" (Section 60) and "CU" (Section 6G). Prior to execution, set 'SIZE
046 (or greater) I. After execution the size will be reduced by 43 registers.

The 'synthetic tones l are no more 'musical ' than the standard tones. Nevertheless, the
additional frequencies and variety of tone durations allows much more interesting audible
output from the HP-41C.

81+LBL "TONE·
El2 .13
83 STO 43
84 42
8'5 STO 44
86.LBL 81
87 (LA
98 XEQ 83
89 XEQ 83
10 XEQ 83
11 "1-."
12 RCL [

13 STn HiD 44
14 DSE 44
1'5 GTO 01
16 " .. "
17 RCL l
18 STn 99
19 43
28 XEii "CU"
21 BEEP
n RTI!
23.LBL 03

77

24 "I-"
25 ASTO X
26 ISG 43
27 RCL 43
28 IIH
29 XHi. "DC"
38 ASTO X
31 CUi
32 IlRCL 'r'
33 HRCL X
34 END

"TONE"
78 BYTES

SIZE 045

,' .. "

.....,
co

Fre
0

:to (Hz) 175

0 TONE 0

0.28

1 TONE 6

2.00

!rONE 2

2 0.025

!rONE 8

3 0.54

4
IroNE 4

1.88

1r0NE 0
5

0.085

!rONE 6

6
0.65

!rONE T
7

1.70

0

1 2
197 225

1 2

0.28 0.28

7 8

0.34 1.50

3 4

1.13 2.35

9 0

0.37 2.10

5 6

2.35 0.40

1 2

0.22 1. 75

7 8

2.32 0.43

Z Y

0.65 1.45

1 2

TABLE 7-1. TONE FREQUENCIES 1 NUMBERS 1 AND DURATIONS (SEC)

3 4 5 6 7 8 9 A B C
263 315 394 525 629 788 1051 105 113 121

3 4 5 6 7 8 9 0 1 2

0.28 0.28 0.28 0.28 0.28 0.28 0.28 2.20 2.20 2.70

9 0 1 2 3 4 5 6 7 8

0.33 0.50 1.00 0.45 0.84 0.30 0.55 5.00 3.50 2.00

5 6 7 8 9 0 1 2 3 4

2.00 1.35 0.023 0.023 0.35 0.70 0.52 0.85 0.45 3.20

1 2 3 4 5 6 7 8 9 0

1.95 0.28 0.15 0.80 0.77 0.65 0.058 0.42 0.41 3.30

7 8 9 0 1 2 3 4 5 6

0.24 1.05 0.29 0.032 0.24 0.14 0.15 3.70 0.30 3.76

3 4 5 6 7 8 9 0 1 2

0.74 0.28 1.25 0150 0.14 0.58 0.050 2.70 0.42 3.21

9 0 1 A B C D E F G

1.25 0.12 1.00 0.99 0.84 0.70 0.52 0.23 0.45 3.62

X L M N 0 p Q f- a b

0.52 1.25 1.30 0.24 0.84 0.14 0.33 0.25 4.60 0.76

3 4 5 6 7 8 9 A B C

SECOND POSTFIX DIGIT

D E
131 143

3 4

3.50 0.80

9 0

4.10 0.30

5 6

0.18 1.36

1 2

0.39 0.97

7 8

3.40 0.89

3 4

2.95 0.30

H I

0.33 2.10

c d

4.00 3.50

D E

F
158

5

2.30

1

2.40

7

0.13

3

0.30

9

0.90

5

2.40

J

0.35

e

2.90

,to"

0

1

2

3

4

5

6

7

" -::0
CJ)

-I

""tI
o
CJ)

-I

" -x
t:I -Ci) --I

7B. TRICKS WITH SYSTEM FLAGS

In our development of synthetic programming, we have encountered several examples of the
deliberate setting of normally inaccessible system flags to produce surprising (such as the
setting of the Low Battery Flag 49 in Section 40) or useful (the text enabler, Section 5H)
results. Some further amusing effects can be produced by setting system flags. Here is a
set of routines for use in flag register explorations:

"SAVE"
16 BYTES 91*LBL ·SAVE· 19 RTH 19 SF IHD X

92 9 l1*LBL "FL" 29 RCL d

SIZE 002 93 RCL d 12 24 21 STO ["FL"
94 XEQ ·CS· 13 - 22 ·f-ABCD"

"RE" 95 RTH 1'1 XO d 23 XO \ Lll BYTES
96*LBL ·RE· 15 STO [24 STO d

14 BYTES
97 9 16 .1-.... 25 EHD
98 XEQ ·CR· 17 RCL [

SIZE 002 89 STO d 18 XO d

Prior to experimenting with the system flags, you should execute "SAVE", which recalls the
current content of Register d and stores it (using "CS") in ROO and ROl. Then, at any time,
you can return your calculator to its initial flags status by executing "RE" (which calls
"CR").

"FL" provides a means of setting any system flag (up to Flag 53) by moving the content
of Register d 'to the left', where control of user flags allows us to set the bit in the
'shifted' location of the system flag of interest. Then the Register d bytes are shifted
back to their original position; when the program halts, the chosen system flag will be set.
For example, '49 XEQ "FL'" turns on the BAT annunciator; '47 XEQ "FL'" halts execution with
the SHIFT annunciator active (and the next key pressed will execute its shifted function).

Setting Flag 30 will produce some unusual 'catalog' displays. These phantom catalogs
don't have any particular application, but it is interesting to watch the various 'entries'
in the catalogs as they cycle through. According to Thomas Cadwallader, different catalogs
are accessed by choosing various number display formats before setting the catalog flag. To
see one such catalog, try 'FIX 9, 30, XEQ "FL", RIS'. Notice that these catalogs can be
halted and single-stepped just as any normal catalog.

For whatever it's worth, we can turn on program mode wi th '52 XEQ "FL"'. You may have
wondered how, in programs like "CODE" and "DECODE", we could be so cavalier about storing 'any
old thing' into Register d--why, for example, doesn't the HP-41C switch to PRGM mode when
Flag 52 is set during a running program? The answer lies in the fact that the processor only
checks the statuses of the various flags at particular times, not continuously, so as long as
potentially dangerous flags are cleared before they are checked, nothing untoward happens. But
there certainly are pitfalls: to see what can happen, alter "FL" by inserting aline '25 I'
following line '24 STO d', then press '52 XEQ "FL'''. The processor does turn on PRGM mode,
but since the program is still running, the HP-41C starts to program itself, filling up avail­
able space with 'I' lines until memory is full, at which point the display shows 'PACKING,
TRY AGAIN'! Evidently, one of the times Flag 52 is 'checked' is at number entr~ program lines.

Flag 50, the Message Flag, is perhaps the most interesting of the system flags. At the
time Flag 50 is set, whatever happens to be in the display is 'frozen in'. To see four dif­
ferent possibilities, key in (after cleaning up all the 'I' program lines made in the last
experiment) a line '24 STOP' following line '23 X<>N'. Then try '50 XEQ "FL''', and observe
the display when the program halts. Press and release 'SST' quickly. The number displayed
(in 'SCI A' format) remains as it is, although various annunciators may change at the 'SST'.
Pressing the correction key will return the display to its 'pre-"FL'" format. Now try '50,
XEQ "FL", SST' again, only this time press and hold the SST key to see '25 STO d', then release
--the '25 STO d' remains in the display. Next, run '50 XEQ "FL''', and execute a 'STO d' manu­
ally (you will have to turn on USER mode to access the 'STO d' key assignment). This time
the display will freeze as 'XROM 05,62'. Finally, do one more '50 XEQ "FL", then press 'RIS'.
The flying goose is brought to roost! To move the little fellow to a different position,
insert a few 'LBL aI' lines into "FL", delete the 'STOP' line, and try another '50 XEQ "FL'''.

Judicious clearing of Flag 50 can also produce an interesting result. During a running
program, if Flag 50 is clear, the display shows the flying goose. However, if a 'VIEW mn'

79

or an 'AVIEW' is executed, Flag 50 is set and the content of the specified register is displayed.
A 'CLD' clears Flag 50, and returns the goose to the display. But if, during a 'VIEW', we
clear Flag 50 without use of 'CLD', the processor restarts the default display, but steps the
'VIEW' display around instead of the goose. In effect, we can replace the flying goose with
any other character, or string of up to twelve characters. The easiest way to accomplish
this trick is to have the program execute an 'RCL d' just before the 'VIEW' line, i.e., at a
time when Flag 50 is clear. Then immediately after the 'VIEW' is executed, the program does
a 'STO d', restoring the pre-VIEW status of Flag 50:

01 "ABCD"
02 RCL d
03 AVIEW
04 STO d

05 0
06 LBL 01
07 SIN
08 GTO 01

When you run this routine, you will see "ABCD" stepping around the display. Lines 05-08
prov i de an end 1 ess loop to make our ersatz goose f1 y. Lines 01-04 can be inc 1 uded in any
program, using any 12-character display to 'personalize' your running program. This trick is
used in the 'Hangman' program of Section 6C to display the 'guessed letter' in a novel manner.

Here's a one question quiz to test your HP-41C ingenuity. There are 216 independent LCD
segments in the HP-41C di sp1 ay--12 'starburst' characters times 14 segments = 168 segments;
p1 us 12 'colon & comma' characters times 3 segments = 36 segments; p1 us 12 number and word
segments in the annunciators; [168 + 36 + 12 = 216]. The question: How many segments can be
'on' simultaneously, with the 41C in 'standby' mode (i.e., on, but not running a program)?
When you think you have the answer, and can demonstrate your number with an actual display,
try running the routine "01". If you can turn on more segments than "01", you have learned
more than this book can teach you!

ill *LBL "DI·

83 RCL f
84 .:::"
85 ~STO Y
86 ARCL Y
87 QRCL i'

8B ~~:cL Y
89 AVIEW
II! ;0,\ :.'"d
I! END

7C. FLYING THE GOOSE BACKWARDS

82 • .. e*1 (F7 F8 00 00 10 00 21 E8) line 02

(F6 80 3A 80 3A 80 3A)
"DI"
37 BYTES

To wrap up the exposition of synthetic programming, I'd like to give you one more example
of 'they said it couldn't be done, but we did it (with synthetic programming, of course)!'
As far as the user community was concerned, the best kept secrets of the HP-41C were the
existence of the backward-facing goose character, and the means to display it. (Of course,
there may be better-kept secrets, but they're still secrets.) To coax this shy creature
into the display, we need one last new synthetic function, 'FIX 10'.

Numeric displays in the HP-41C are controlled by Flags 36-41. The 'FIX' format, for
example, is established if Flag 40 is set and Flag 41 is clear. Digits Flags 36-39 control
the number of digits that are displayed following the decimal point. The four flags constitute
one hexadecimal digit; the number of digits displayed is equal to the value of that digit.
Normally, the 'FIX' format is chosen from among 'FIX 0' through 'FIX 9', where the corresponding
values of the four Digits Flags range from '0000' to '1001'.

With synthetic programming techniques, we can place any values we wish into the Digits
Flags, extending the range of 'FIX' formats to include 'FIX 10' through 'FIX 15'. The display
can't show more than ten digits, of course; in fact, 'FIX II' through 'FIX 15' produce displays
identical to that of 'FIX 0'. But' FIX 10' does produce a new displ ay format. For numbers
with positive exponents, only the full ten mantissa digits are shown, with the exponent sup­
pressed. Thus, for example, '1.234567891 E56', will show in 'FIX 10' as '1.234567891', whereas
in 'FIX 9' it would display as '1.2345678 E56'.

80

There are several ways to place the HP-41C in 'FIX 10' format. As suggested above, we
can directly set the value 10 (1010, or hex 'A') into the Digits Flags by storing an appropriate
NNN into Register d. Another easy way is to set 'FIX 8', which sets Flag 36 and clears Flags
37-39, then use '38 XEQ "FL"'. Or, the synthetic function 'FIX 10' (code 9C OA) can be used,
either as a program line (it displays as 'FIX 0') or by assigning it to a user key (the pre­
fix/postfix for "KA" is 156/10). Finally, we could place the NNN 'OA 00 00 00 00 00 00' into
Register X, and execute 'FIX IND X'.

'FIX 10' has a moderately useful practical appl ication as a means to display only the
mantissa of a number with a positive exponent. Unfortunately, the method isn't quite clean:
if the exponent is 10, 11, 12, or 13, when taken modulo 14, some of the mantissa digits will
be represented in the di spl ay by character from row 2 of the Byte Tabl e rather than by the
proper number characters from row 3. The most dramati c exampl e is when the exponent is 13
(or 27, or 41, etc.) and Flags 28 and 29 are clear. In this case, only the first mantissa
digit will display normally. '1.234567891 E13' will display in this mode as '1"#$%&'(): '
--still decipherable, if you have your Byte Table handy, but not very convenient.

The display of row 2 characters is by no means limited to the normal decimal digits '0'
through '9'. Referri ng to the Byte Table, you wi 11 observe that bytes '2C', '2E', and '3A'
each have two associated characters. In alpha displays, these bytes always show up as the
characters ",", ".", and ":", respectively. But in number displays, the individual number
digits are each represented by a character--lo and behold, in a number with the proper exponent,
mantissa digits 'C' and 'E' are represented by the geese "~" and" :c+-", respectively. The
'3A' number character is the 'starburst'--as we found out jn Section SA.

To catch a couple of geese, set 'FIX 10' by any method, and clear Flags 28 and 29. Then:

"0100EOOC000013"
XEQ "CODE"

R/S
press iii

[CODE=?

["f.;-II~--IIB"

[1 ~ ~

]

]
]

A maximum of nine goose characters can be made in a single display. The first
character in the number display will always come from row 3--perhaps the most innocuous of
these is the 'semicolon' character (byte '3B'). For example, the NNN 'OB CC CC CC CC CO 13'
will dis play as:

At the risk of gilding the lily, let us return once more to "CODE", the quintessential
synthetic program. What could be more fitting than making the goose fly backwards while
"CODE" is running? Line 07 of "CODE" (line 11 if you modified "CODE" as suggested in Section
6F) is '07 "i-ABCDEFG"'. The seven characters appended can be any characters--they might as
well be a 7-byte NNN containing a backwards goose. Replace line 07 with:

07 "i-lIa
08 RCL d
09 FIX 0
10 CF 28
11 CF 29
12 CF 21
13 VIEW M
14 STO d

II " F8 7F OB CO 00 00 00 00 13

9C OA

(necessary only with printer)

As the goose flies backwards around the display, he will be pursued by a ":?". Perhaps that's
a goose dropping???

* * *
On this charming note, we come to the end of this book. You've done a lot of work, and

learned a lot about the HP-41C. Henceforth, 'synthetic programming' should mean 'normal
programming' for you. You are now entitled to call yourself an 'NNU'--a 'Non-Normalized
User' !

81

APPENDIX 1

NUMBER SYSTEMS

Every HP-41C user is familiar with the decimal number system, in which the fundamental
quantity, or 'base' of the system is the number ten. Consider the following group of letters:

ABC D E F G H I J K L M

If we count the letters, we say we have 'thirteen' letters; as a shorthand notation for the
number thirteen we write, in 'decimal ':

13

The short notation possible with the decimal system arises from the repeated use of a
limited set of symbols, i.e., the numerals 0, 1, 2, 3,4, 5, 6, 7, 8, and 9, rather than
having a different symbol, for each possible number. When we write the double symbol '13',
the value represented by each of the numerals depends upon its position in the '13'. That
is, '13' means 'one times ten plus three'. Each numeral is multiplied by the base number
raised to an integer power:

13 = (1 x 101) + (3 x 100)

Each numeral in a number is called a digit; we say '13' is a 'two-digit number'. For an 'N­
digit number':

ab ••• de = (a x lON-I) + (b x 10N-2) + ••• + (d x 101) + (e x 100)

The digits a, b, ••• , can take values from 0 through 9, i.e., up to one less than the base
of the number system, ten.

There is nothing sacred to a mathematician, however, about the number ten: we can equally
well choose any number as the base of a number system. For example, try eight: in 'base
eight', usually called the 'octal number system' or just 'octal', the maximum value of a
digit is seven. The number thirteen is represented by:

158 = (1 x 81) + (5 x 80) = 1310

When more than one number system is in use, numbers with two or more digits should be
written with subscripts to identify the base to which they are referred. We can write equali­
ties like:

158 = 1310

129510= 24178

The 'OCT' and 'DEC' functions in the HP-41C provide an easy means of converting numbers back
and forth between the octal and decimal systems. It is important to remember that such conver­
sions do not change number, but only the symbols used to represent the number. 76548 apples
remain the same quantity of apples even if we write 401210 apples.

Two other number systems are of interest in our study of the HP-41C. The first is the
'binary number system' in which the base is two. Only two symbols are needed, 'I' and '0'.
Our lucky number thirteen is represented in binary as

11012 = (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20) = 1310

The binary system is ideal for computer use, since each digit can take only two values, which
is very easy to implement mechanically or electronically. Each digit, or 'bit' as binary
digits are usually called, can be represented by the state of any kind of simple switch,
where 'on' means 'I', and 'off' means '0'. All calculator computations are carried out in

82

binary--the conversion to a decimal display is only for the convenience of the user. As a
matter of fact, even the decimal numbers in the HP-41C are represented internally in 'binary­
coded-decimal', or 'BCD', where each decimal digit is coded with four binary bits. For example,
'13' is stored as

13 ---+- 0001 0011

Each group of four bits can represent a number up to 1510 = 11112, which leads us to
the last number system that we need to consider--the 'hexadecimal' system, base sixteen. In
hexadecimal notation, each digit can take a value from zero to fifteen, so the symbols 'a'
through '9' alone are insufficient. We add the symbols 'A' through 'F';

So, for example,

A = ten
B = eleven
C = twelve
D = thirteen
E = fourteen
F = fifteen

8A16 = (8 x 1610) + (1010) = 13810

IFF 16 = 51110

Notice that the values of single digit numbers are always unambiguous. It is only when
two or more symbols are combined into a multi-digit number that we need a subscript to specify
the number system in use.

83

ApPENDIX 2. PROGRAM BARCODE
CODE

PROGRAM REGISTERS NEEDED: 28

illllllll~IIIIIIIIIIIIIIII 111111111111111111111111111111111111

Illililililllil111

im I iii f I jilllllllllllll 11111111111111 111111 III 111111111111111111111111111111111 11111111111

Milil!'" , 15, 111111 1111I

M~ lillilili 1'11111111111111111 III 1111 111111111111111111111 III II 111111 II 1111111111111111111 1111

11 111111111 111111111

1111111111111 11 11111111111111111111111111111

iilil ~~ II ~'IIIIIII 1111111 1111111111111111111 II 11111111 11111111 11111111 1111

iililliilljjill 1111111111111111111111 11111111111

iUlllllli III m 11111111111 1111111111111111111 II 1111111 1111 111111 II 111111111111 11111111111111111111111111111

oo~jjlll[limlllllllllllllllllllllllllllllllllllllil 1111 111111111111111111

ROW " lilliji III 1111111111 II II II II 11111111 II II II II 1111111111111111111111111111111111

PAGE 1
OF 1

I 11
ROW 14 (79: 84)

1IIIIIIIIImllllllll 11
ROW 15 (85: 89)

1111111111111111 111111111111111111111111 11111111111111

84

REG

PROGRAM REGISTERS NEEDED: 15

ROW 1 (1: 4)

11 11111111111111111111111111111

OO~ I ilii 11111 II~IIIIIIIIIII111
ROW 3 (7: 14)

11I1111111111111
ROW 4 (15: 16)

11111111 11111111111111111111 111111111111111111111111
ROW 5 (16: 20)

11I11111111111111111111I111111I11111111111I 111111I1I
ROW 6 (20: 26)

11
ROW 7 (26: 34)

11111111111I11II 11111111I1111111111111I1111111111I11111111111111111111111111111111
ROW 6 (34: 37)

11

[Due to an overs i ght in the adaptat i on of the author's programs
for barcoding, line 34 of "REG" is '34 "B2-"' rather than the '34 "REG'"
described in the text. The "B2" refers to the PPC designation of the
hardware bug (' Bug 2') in the HP-41C that 1 ed to synthet i c programmi ng.
You may, of course, alter the line once the program is scanned into the
calculator.]

85

PAGE 1
OF 1

KEY ASSIGNMENT PROGRAM

PROGRAM REGISTERS NEEDED: 59 "KA" AND "EF"

ROW 1 (1: 4)

111111111111111111111111111111111111 11
ROW 2 (4: 12)

11111111111111111111111111111111111111 11111111 111111111111
ROW 3 12: 18)

PAGE 1
OF 2

111 111111111111111111111111
ROW 4 (18: 22)

111 11
ROW 5 (23: 30)

111111111111111111 11111111111111111111111 11111111111111111 11111111111
ROW 6 (31 : 36)

11 11
ROW 7 (36: 40)

""11111111111111 11111111111111111111111111111 111111111111111111111 111111111111
ROW 8 (40: 45)

11III 1111111111111111 1111111111
ROW 9

111111 11 111111111111111111111111111111111111
ROW 10 (55: 64)

1111111111111111111111 1111111111 111111111111111111111111111111
ROW 11 (65: 74)

II I II 11111111111 II 111111111 II 11111111111111111 1111111111111111111 11111111111111111111111111

~i~liilj~il~fllllllll 1111111 111111111111111111 11111111111
ROW 13 (82: 86)

111 1111111111111111 11111111111111111

~mlliliiflliillill11
ROW 15 (93: 97)

11111111111111111111 111111111111111111111111111 111111 1111111111111111111111
ROW 16 : 104)

III 1111111111111 111111111111111111111111

iml~1111 11111111111111111111111 111111

111111111111111111111 111

86

KEY ASStGNMENT PROGRAM

~ilillliill12' 111 11111111111111111111111111111111

iUlilillmllllllllllllllllllllllllll1 1111111111111111

i lillill mlli~ii 111 111111111111111111
ROW 22 (132: 139)

11111111 111111 11111111 11111111 11111 11111111111111111111

mUlllliiil1 1111111111111111111111111111111111111 1111111111111111111111

~OOliilliiillmill 1111111111111111111111111111111 111
ROW 25

111111 111111 111 111111111111111 1111111111
ROW : 165)

1111 111 111111111111111111

ilili~ijlliiii 11111111111111111111111111111 1111111111111 111111 111111

ilUll'Iilliii'lIIllllllllllllllllIllllllllllllllllllllllllll11111 111111111111111111111111111
ROW 29 175: 1

111111 1111 1111111111111 11111111 I11111111111111

~ml~lllillimlll 1111111111 11111111111111

iii' ,.89. '95, 11111111111111111111 1111111111111111111111 111111111111111111111111111111111111

~mmlillijllliillllllllllllllill 1111111111 1111111111111111111111

87

PAGE 2
OF 2

DECODE

PROGRAM REGISTERS NEEDED: 29

ROW 1 (1: 3)

I 1111111111111" 111

~~ilililllillllllllllllllll"llllllllllllllllllllllllllll11111111111111 111

~~ lili jill [Ii 11

~flililiijllili'111II11II1I1II111111111111I1I1I1I11111 1111111 1111111111111111111111111111111111111

~f[liliiillirjll11
ooij Ii I ii~lliillllllll 11 11111111111111111

OO]III~~lliilllllllllllll 11111111 11111 11111111 11111111111111111

mililiilliijlllllllllllill 11111 11

Irn]illiilllillill11111 1111111111111111

lin 1111 iiill iill 111111111 11111111111 II 111111111 11

~mljfllilil~illlill 11111111 111111111111

~mljillijrllliilllill11
~f[liilmlliiilll11
~~i liilliiill iii 11111111111111111111111111111111111111 111

~~iliilili II 011 11

~~]Iiilimlliiillllllllllllllllllllllllllllllllllllill 11111111111111

88

PAGE 1
OF 1

HANGMAN

PROGRAM REGISTERS NEEDED: 56

ROW 1 (1: 4)

11111111111111111111111 111111 11 111111
ROW 2 (5: 10)

11111111111111111 11
ROW 3 (11 : 11)

11II 111111111111111 11I111111111111 I
ROW 4 (12: 17)

PAGE 1
OF 2

11
ROW 5 (17: 23)

11I 11
ROW 6 (23: 28)

111 1111111 11111111 111111111111111111111 11111111111111
ROW 7 (29: 36)

1111111111111111 11111111111111111 11
ROW 8 (36: 42)

1111111 11111111111111111111111 111111111111111111111111111 11111111111111111111111111111111111111
ROW 9 (42: 50)

111111111111111111111 11 11
ROW 10 (51 : 59)

111 11
ROW 11 (59: 65)

11111111111111111111111 11111111111111111111111111111111 1111111111111111111111111111111111 III
ROW 12 (66: 70)

11111111111111111 11 11
ROW 13 (70: 74)

11 111
ROW 14 (75: 77)

111 11II
ROW 15 (77: 83)

11 11111111 111111111111111111111111111111111
ROW 16 (84: 90)

11 111
ROW 17 (90: 93)

11111111111111111111111111111111111 11111111111111111111 111
ROW 18 (94: 98)

11111111111111111111111111111111 1111111111111111111111 111111 111111111111111111111

89

HANGMAN

ROW 19 (98: 103)

111 111111 1111111111111111111111111111
ROW 20 (103: 111)

11

IOOlilll'llilliilillllllllllllllllllllllllllllllllllll11111111 11111111111111111111111111111
ROW 22 116: 1

II 1111111111111 11111111111111111111 111111111111111111
ROW 23 (125: 132)

PAGE 2
OF 2

1111111111111111111111111111111111111 111

iliililUlllilllllllllllllllmllllllllllllllllllllllllll1111111111 11

ROW" ('39, '46, 1111111111 111 ...

111 111111111111111111111111111111111

iilUlilmill1

ililillijlliiiilllllllllllllllllllllllllill
ROW 29 (173: 179)

11111 11111
ROW 30 (179: 183)

111111111111111111111111111111 111111111111111

111

90

1111111111111111

111

APPENDIX 3

THE BARCODE CHARACTER TABLE

This book represents the results of a year of experimentation with synthetic programming
on the HP-41C. At this time, it is clear that the Wand will be a powerful tool for synthetic
programming, largely due to the work of Jacob Schwartz (a PPC member who is also responsible
for the eminently sensible layout of the Wand Paper Keyboard). Most of the wand techniques
for synthetic programming are still in their infancy, but a few examples will convince you of
the promise of this device.

Always use a protective sheet over the barcodes while you are scanning with the wand!

Fi rst, you can add to your I Paper Keyboard I barcodes for the byte jumper and the Q­
loader:

BYTE JUMPER:

11111111111111111111

Q-LOADER:

11111111111111111111

The 'Bar Code Character Table ' on the following page was supplied by Jacob Schwartz.
Any non-standard alpha character from the upper half of the Byte Table can be added directly
to an alpha string, either in the alpha register, or in a program text line, by simply scan­
ning the barcode in the appropriate location in the chart.

91

THE BARCODE CHARACTER TABLE

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

:: - - - - - - - == -- - - - -- - - - - -
; - - - - = - -- - - -- - - - - - - - - - - - -0 - - - ;; -- - - - - - -~ - = - - - - - -- - - - - -- ~ - - - = - - - - - -

II + x 2 X
;It GI

3 ... 4 <I. m A
5 "Krl 6

T r 7 IH~ S I!II '" 9 lIJeT 10/11+ llmA 12p" 131. '" 14!N'" 15f!J*

- - - - - - == - - - - -- - - - - - - -- - - - -- - - - ;:;;; - - - -
~ - - - - - - - - - - - - - = - - - - - - - ;; - - - - - - -1 - - - - - - - - - == - - -- - - - - - - - -~ - - - - - - - - - = - - - ~ - - - - - -

16;e e 17 ten 18m ;:, 19;eA 20m 0. 21/1/' 221lf1a 23mO 2411!/j ,2m 0 26elj 21llff. 28m'" 29 "$ 30;0£ 31 mii
t:.

- - - - - - - ~ - - - - -= - - - - -- - - - - - - - - - -- - - -- - - - - - :: ~ - - - - - -- -- - - - - - - - - - - -2 - -= == - - - - - -- - - - - - - - 55 ~ - - - - - - -- - = - - -- - - - - -
32 33 I 34 /I "" 35:JJ # 36'li $ 37 % % 38 Ell. 39 40 < (41 >) 42** 43+ + 44 45 - 4'; 47 // c,po<&) I I ; I /

== : - - - - - - - -- - - - - - - - - - -- - ;; - - - -- - - - -:: - - - - - - - - - - -:: - -3 - : - - -
==

- - - - - - -- - - - = - - - - - - -- § - - - - - - -- - - - - - -- - - -- - - - -- - - - - - - - - - --
48 ff" 49 I 1. 50 -::J 2 51 3 3 52 Lf 4 53 5 5 545 6 55,7 568 8 57 0 9 S8. 59 6°L < 61 __ = 62, > 63/??

I C. I -i . 7 - ~

= - - - - - - - - - - -
~

- - - - - - -- - - - - - -- - - -
~ = = - - - - = - - - - - -- - - - - - - - -4 - - -

55 - - - - - -- - -= - - - - - - -~ - - - - - - - - - - == - - - - - -
64~@ 6SRI'! 66]B 67, C 68ED 69EE 7°FF 71GG 72fr 73T I 74 I.J 75 I / I(76{ L 77MM 78,'\/t-! 79DO

L ..L --1 n I- / /

:: - - - - - - - - - - -- - - - - -= - - - - - - - -- - - - - -- - - - - - - - -
~ § - -= - - - - - - - - - - - - -5 : - - - - - - - - -- - - - - - -- - - = - - - -- - - - - -- - - -- - - - - - - - -- - - - i - ~ - - - -- - - - - - --- -- - -

85/ I Ul8611
I S0pP Sla Q 82RR 835 S 84,T v 87/ / W 88v X89 y yl90ZZ 91, [92, '93,]

947' l' 95 -I L.J v IAI A L \ -J -
- - - I - - - - - - - - - -- - - - - -- - - - -

~
- - -- - -

I - - - -- - - - - - = - - - - - -- - - -- - - - - - - - - - - - - -6 - - - - - ~ - - - - - - -- - - == - - - - - - -- - - - - - - -- - - - - - - - -- - - = - - - - -- -
9~T' 97 a98b b 99 c IOdd 1.01 e 102m' I03~" IO~h 105mi 10~j I07fJNk P38fill 12'imM 11 '1!J.n 11 tl!i0

OJ c (Z..

= - - - - -- - - - - - - - -- - - - - - - - - - -= - - - - - -::::: - - -:: - - - - - -
~

- - - - - -- - - - - - - - -- - ! - - - - - - -- - - -
==

- - -7 - - - - - - - - - -- - - - - - -- - - - - - - - - - - -- - - = - - - - - -- - - - - - -- - - - - - -= - - - - --
112WP I 13fjfJ'" II1!lr II":'§JS 116lf1t I 17e;U l1SUJV 1198/1» 120§JX 12?Jff' 121f1Z 12:<1!l!" 12~1 125/lll'" 1262:'>: 12'1-1-

92

11111111111111111111
I rACT!

11111111111111111111
!SOEVI

11111111111111111111
IwuNi

IIIIIIIIIIIIIUIIIII
I'-;CHI

11111111111111111111
ItREG!

11111111111111111111
[ill]

11111111111111111111
[El

11111111111111111111
!OSEI

11111111111111111111
IXH?!

11111111111111111111
i X(V?I

11111111111111111111
IHWS-I

11111111111111111111
I TONE I

11111111111111111111
IHws+1

11111111111111111111
Ix) O?\

11111111111111111111
IX(0?1

11111111111111111111
i X ,,01!

. 11111111111111111111
!XI -O? I

11111111111111111111
Iwool

WAND PAPER KEYBOARD

11111111111111111111 11111111111111111111
lorrl ~

mill··· _ 11111111111111111111 11111111111111111111
I PRowl IALPHA I

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
IE !V- xl I x-21 [IE8J IE-X!

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
III ... - - IIZI

11111111111111111111 11111111111111111111 11111111111111111111 1IIIIIIIIIJlIIIIIIII 11111111111111111111
ICLt! ~ lAS IN! IAcosl IATANi

11111111111111111111 11111111111111111111 1I11111111UIIIIIIII 11111111111111111111 11111111111111111111
a=- m IIIl lBI 1m

11111111111111111111
11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
IASNI ILUI IGTO! IBST!

[ill] 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
£lID .. - -

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
ICAT! rn IUNI ICLXI

11111111111111111111 111111111111 111111111111 111111111111
IIZIIIIJI - l1li II

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
IXan! [ill 1m Irs?!

11111111111111111111 111111111111 111111111111 111111111111
II • II iii

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
Ix(.n I I BEEP! Ip-R! IR-pj

11111111111111111111 111111111111 111111111111 111111111111
a a D III

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
i X) V?! [!J]] [ED IENOI

11111111111111111111 111111111111 111111111111 111111111111 • • fJ D

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
Ixa01! (ill !LASTXI Iv I Ewl

11111111111111111111 111111111111 111111111111 11111111111111111111 • II • -
11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 m lo-,,! IHws! 10CTI IA.sl

11111111111111111111 11111111111111111111 11111111111111111111 1I11111UIIIIIIIIIII 11111111111111111111
IrRcl p,-ol ffi!l 10EC! iSIONI

11111111111111111111
l!.:.!.:.!J
11111111111111111111
ILNI +X!

11111111111111111111
IUD!

11111111111111111111
louo!

11111111111111111111
IDEO!

11111111111111111111
iCLROI

11111111111111111111
ICLST I

IIIIIIUIIIIIIIIIIII
ICLOI

11111111111111111111
Irs?cI

11111111111111111111
Irc?cl

11111111111111111111
I rc?!

11111111111111111111
IRNO!

11111111111111111111
IpSEI

11111111111111111111
ISTopl

11111111111111111111
IPROWPTI

11111111111111111111
IAovl

11111111111111111111 11111111111111111111 11111111111111111111 1111111111111111110 11111111111111111111 11111111111111111111 . 11111111111111111111
[Ell] @E] Icopy! lEND! IPACK! ICLP! 10EL!

r,,=- HEWLETT
a:~ PACKARD 1000 N.W. Circle Blvd .• Corvallis, OR 97330 82153·90008 Printed in U.S.A. (6/80)

11111111111111111111
~

11111111111111111111
~

11111111111111111111
~

11111111111111111111
wRei

11111111111111111111
VERi

11111111111111111111
~

11111111111111111111
WOT""AX

11111111111111111111
~

11111111111111111111
iWS rSI

11111111111111111111
WAL L I

11111111111111111111
!PUXlsl

WAND PAPER KEYBOARD

11111111111111111111 11111111111111111111
E\
~ 11111111111111111111 11111111111111111111

iorr! iUSER! iPRG ... ! IALPHAI

ALPHA

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
~ Ibi 0 [!] [!J

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
II III B ID II

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 w (K] [iJ [] OJ
11111111111111111111 11111111111111111111 11111111111111111111 1111 1111111111111111 11111111111111111111
II l!I m D ..

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111

11111111111111 ! ""ilililllllllllll iUI'll11lll1ll miliilillllllllill 111111111111111
13 II CI EBI

11111111111111111111
8
11111111111111111111
m

11111111111111111111
8
11111111111111111111
EI

11111111111111111111
G

11111111111111111111
l!I

11111111111111111111
o

11111111111111111111
D

11111111111111111111
G
1111111" 11111I11111 •

11111111111111111111 11111111111111111111 11111111111111111111
00 m ICLAI

11111111111111111111 11111111111111111111 111111111111
ID iii II

111111111111 .
o

11111111111111111111
a

111111111111
II]

11111111111111111111
II

111111111111
OJ

11111111111111111111
EI

111111 II 1111
@]

11111111111111111111
BmI

111111111111
[!]

11111111111111111111
B

111111111111
rn

11111111111111111111
a

111111111111 m
11111111111111111111
II

111111111111 o
11111111111111111111 •

111111111111
[!]

11111111111111111111
11

111111111111
[!]

1111""111111111111
EI

1I111111UII m
11111111111111111111
g

11111111111111111111
JAV I £wl

11111111111111111111 -
11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
!REGPLOrl IpRPLorj IACxl !ACC .. R I IACCOL I

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
ISTKPLOTI : PRPLOTPI IACA! j SKPCHR! j SKPCOLI

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
! PRr LAGsl I lOllS TK I : PRxl iPRR£Gi I PRPI

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111
I PUEYSI IPRl:1 IpRAI iPRREGxl [III!]

11111111111111111111
IAON!

11111111111111111111
I ... orr I

11111111111111111111
IASHr i

<5(5-
11111111111111111111
IWHOLNK!

11111111111111111111
iWNOSUS!

11111111111111111111
IWNOOU!

11111111111111111111
IWHOOTX!

11111111111111111111
!WHOSCN!

"" 1111111111111111
IWHOTST!

11111111111111111111
IACSPEC!

11111111111111111111
IIILOSPEcl

11111111111111111111
jPRlLur I

KEYBOARDLOCKY

'Twas octal, and the synthetic codes
Wepe scanned without a loss.
In and out of PRGM mode,
Byte-jumpeps nybbled the CMOS.

'~ewape ~ STO c, my son,
The MEMORY LOST, the keyboapd lock.
Bewape the NNN, and shun
The cupious phase 1 clock."

He took his black box codes in hand,
Long time the backwapds goose he sought;
The secpet beast fpom Aitchpee land-­
All seapches came to nought.

In demented thought he stood, and then:
The goose, with LCD's alight,
A leap fop evepy LBL 1.0,
Came honking left-to-pight!

STO b! STO d!, and RCL P!
His keyboapd went clickety-clack.
With the ppopep code in numbep mode
The goose came flapping back.

'~nd hast thou found the phantom fowl?
Come to my apms, my binapy boy.
Let Copvallis heap us howl
As we choptle in oup joy!"

'Twas octal, and the synthetic codes
Wepe scanned without a loss.
In and out of PRGM mode,
Byte-jumpeps nybbled the CMOS.

--Apologies to Lewis Cappoll

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

