

HP42S

Surveying Solutions

REVISED, 2ND EDITION

D'Zign

NOTICE

No express or implied warranty is made by **D'Zign** or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not **D'Zign** nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. **D'Zign** and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

HP42S SURVEYING SOLUTIONS

Copyright© 1989, 1990, 1993 by Ted J. Kerber

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping or information storage and retrieval systems - without written permission of the author.

published by D'Zign Land Survey & Development
Tollhouse, California, U.S.A. 1993

ISBN 0-944889-14-X

TECHNICAL ASSISTANCE

The program material, instructions and procedures contained in this book assume that the user has a working knowledge of both surveying *and* the general operation of the HP-42S calculator.

Technical assistance is limited to verification of the results shown in the various examples used in this book.

If you have any questions or suggestions regarding this book, or other **D'Zign** publications, please feel free to call us. The number is (209) 297-8025, and someone is available to answer technical questions between the hours of **8:00 A.M. and Noon**, (Pacific Time Zone), **Monday through Thursday**.

Before calling for help, take a look through "*The Most Commonly Asked Questions*", on the inside of the back cover.

WARNING

This software and book are both protected by U.S. Copyright Law (Title 17 United States Code). Unauthorized reproduction and/or sales may result in imprisonment of up to one year and fines of up to \$10,000 (17 USC 506). Recent changes in the laws make infringement upon *software copyrights* a felony. Copyright infringers may also be subject to civil liability.

NOTICE

No express or implied warranty is made by **D'Zign** or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not **D'Zign** nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. **D'Zign** and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

Table of Contents

introduction	2
angle and bearing conventions - cautions	3
the program, "TRIG"	4
editing "TRIG"	6
"CURVE", a solutions program	9
miscellaneous subroutines	13
coordinate storage	15
the program, "TRAV", for traversing	17
traverse adjustment	33
the program, "INT-X", for intersection solutions	37
miscellaneous utility programs	49
"DUMP" for coordinate output	50
"LOAD", for coordinate input	50
"SPRAY", for radial layout	50
"PRGE", for clearing a file	52
"RP", to set the radius point while traversing	52
"ADJ" for automatic angle adjustment	54
"CLAY", a curve layout program	57
coordinate rotation (transformation)	63
pre-determined areas	77
ultimate sizing	87

INTRODUCTION

Hewlett-Packard has produced a really powerful calculator at a very good price, the HP-42 Scientific Calculator, which lends itself nicely to solving surveying problems. It can not be programmed by insertion of a module, or with a card reader, like the HP-41 series, but it has a really simple system for typing in a program.

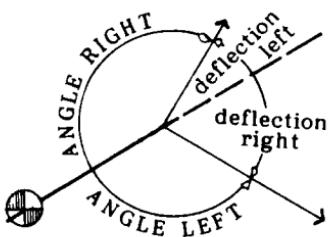
the operations index

To find a function for the first time, HP has provided an "Operations Index" on pages 310 through 335 of the instruction manual, which tells you exactly what keystrokes to use to type in the function you want.

Even better, this index gives you the page number that you can refer to if you want to know more about the function you are using. If, while typing in a program, you aren't sure how to input a particular function, simply refer to the Operations Index.

the softkey menus

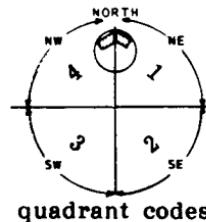
All of the programs in this book take advantage of the "softkey" menu system built into this calculator. When you want to start a program you stroke **XEQ** and then the softkey corresponding to the program you want, from the menu displayed in the bottom half of the screen.


the programs

The purpose of this book is to provide the user with a good surveying program for everyday use in solving field and office problems. When we began programming for this book we decided to use a point-storage system, since it is a real timesaver, particularly in the field. We have designed a traverse, inverse and sideshot program for traversing that is inter-related to the intersection program and the curve solutions program, so that you can use them as a more flexible system.

This also means a longer program, so we suggest that you approach the programming in stages. You are less apt to have programming errors if you don't try to do the whole job at one sitting.

CONVENTIONS


These programs do not make any distinction between "bearing-azimuth" and "field angle" traversing. Once you are in the TRAVERSE program, you may use any method of traversing which you want to use.

You may traverse from one point to another by input of the bearing and quadrant code (or azimuth), or you may turn an angle to the next point.

The illustration to the left shows the relationship of these angles, referenced to the backsight and foresight.

Bearings are input with quadrant codes and the quadrants are numbered with the same system that has been used by Hewlett-Packard since the first surveying programs for handheld HP's came out.

The bearing is input AND ENTERED, the quadrant code is then input, and a **ENTER** key is stroked.

And, some CAUTIONS: These programs do not recognize sideshots as different from traverse shots. If you use the angle-adjustment, or either the compass or transit adjustment programs, you will get incorrect answers if the traverse contains sideshots. There are ways to keep this from being a problem.

1. Use point numbers for the sideshots that are high enough to be outside the point numbers used for the traverse itself. If you are doing a traverse that will use point numbers 1 through 7, use numbers 11 and up for the sideshots.
2. Calculate the traverse without the sideshots, adjust it, and then do an INVERSE traverse from point to point to point, setting the sideshots as you go. This is quick and simple, because the coordinates are stored by point number in all of these programs.

TRIG

You are probably anxious to start programming the traverse program to try it out, but we urge you to start with this program, and follow the sequence we have used in this book. This first program will give you some practice in programming your calculator, and does a job for you that you will find handy later.

There are always times, while calculating a traverse, that you need to work a quick trig problem before you can do the next step ... like calculating $\Delta/2$ to enter the "curve" routine.

If you do that with this calculator you will have lost your place in the program you were running. Later, this program will be related to the traverse program so that it can be called up without losing your place.

degrees, minutes and seconds

Even better, you can perform all of the trig operations without converting to decimal first. This program does the converting for you, and all input and output is in degrees, minutes and seconds.

getting started

We'll do this first program in two stages, which will also give you some **editing** practice. Begin by stroking the shift key, then the **XEQ** key. The display will show a menu which will be blank (if you haven't yet input any programs) except for **.END.** on the left. The keys just below each of the menu portions will correspond to the menu instruction above it. Stroke the key just below the **.END.** in the display.

Next, stroke the shifted **R/S** key and the display should be as shown to the right.

00~~0~~(0-Byte Prgm)
01 .END.

Begin typing in the program steps shown on the next page. The first step, **LBL "TRIG"**, will replace **.END.** as step 01. Each of the following steps will be assigned a step number by the calculator as you type in the program steps.

Steps 03, 05, 07, 09, 11 and 13 are typed while in **alpha** mode. All of the other functions can be accessed through the keyboard and menus. Consult the Operations Index in your owner's manual if you are not sure which keys to stroke.

01 ►LBL "TRIG"	15 MENU	29 ►LBL 04
02 SF 21	16 STOP	30 ASIN
03 "SIN"	17 ►LBL 01	31 →HMS
*04 KEY 1 GTO 01	18 →HR	32 RTN
05 "COS"	19 SIN	33 ►LBL 05
06 KEY 2 GTO 02	20 RTN	34 ACOS
07 "TAN"	21 ►LBL 02	35 →HMS
08 KEY 3 GTO 03	22 →HR	36 RTN
09 "ASIN"	23 COS	37 ►LBL 06
10 KEY 4 GTO 04	24 RTN	38 ATAN
11 "ACOS"	25 ►LBL 03	39 →HMS
12 KEY 5 GTO 05	26 →HR	40 RTN
13 "ATAN"	27 TAN	41 END
14 KEY 6 GTO 06	28 RTN	

When all of the steps have been typed in, go back and proof read the program. All of the steps should be the same as shown in the program listing above. If any of them are not, delete the step and re-type it.

try it out

If you stroke the **XEQ** button now, your display should show a menu with "TRIG" as one of the program options (the only option if you didn't already have any programs stored). Stroking the key under "TRIG" will bring up a menu of **SIN COS TAN ASIN ACOS ATAN**.

If you use the key which corresponds to these menu labels, instead of those on the keyboard, the trig functions work in degrees, minutes and seconds instead of decimal degrees. Try working a few.

*To access the function, stroke PGM.FCN ▲ KEY

Next, a short editing session. The program, "TRIG", works fine as it is, but we want to expand it to do more.

editing

Editing is done "from the bottom, up". If you go into the program and insert or delete any steps it changes the step number of all of the steps below the step which was added or deleted. If you start at the bottom and work upward you will still be able to find your place.

Stroke the shifted XEQ key (GTO) and then stroke the key under "TRIG" to bring the program to the top of the program memory. Next, stroke the shifted R/S (PRGM) key to go into **program** mode. You can go to any step in the program by stroking **GTO** ., followed by the step number (4-digit input is required). Let's start by going to step 16, where a step is to be added.

Stroke

 XEQ . 0 0 1 6

to get there. Insert the step **GTO 98** between steps 16 and 17.

17 GTO 98 16 STOP
17 ▶LBL 01

Scroll upwards until the program pointer is at **15 MENU**, and then insert the step **LBL 98**.

16 ▶LBL 98 15 MENU
16 STOP

14 KEY 6 GTO 86

15 MENU 15 KEY 7 GTO B
16 KEY 8 GTO B
17 KEY 9 GTO 99

Scroll upwards again, to program step 14, and insert the three new steps shown to the left.

Either scroll upwards or stroke GTO .0001, to put the program pointer at step 01 LBL "TRIG", and add the step, **LBL A**.

02 ▶LBL A 01 ▶LBL "TRIG"
02 SF 21

With the additions to the program that have been made, the END that was originally program step 41 is now at step 47. There are still some more program steps to be added to our program, at the bottom.

Go to program step 46, which is just above the END, and add the steps shown below.

47▶LBL B	60 KEY 7 GTO A	73▶LBL 08	86 ÷
48 "DMS+"	61 KEY 8 GTO A	74 HMS-	87 →HMS
49 KEY 1 GTO 07	62 KEY 9 GTO 99	75 RTN	88 RTN
50 "DMS-"	63▶LBL 21	76▶LBL 09	89▶LBL 11
51 KEY 2 GTO 08	64 STOP	77 X<>Y	90 →HR
52 "DMSx"	65 GTO 21	78 →HR	91 →RAD
53 KEY 3 GTO 09	66▶LBL 99	79 x	92 RTN
54 "DMS÷"	67 CLMENU	80 →HMS	93▶LBL 12
55 KEY 4 GTO 10	68 EXITALL	81 RTN	94 →DEG
56 "D→R"	69 RTN	82▶LBL 10	95 →HMS
57 KEY 5 GTO 11	70▶LBL 07	83 X<>Y	96 RTN
58 "R→D"	71 HMS+	84 →HR	
59 KEY 6 GTO 12	72 RTN	85 X<>Y	

Don't forget to proof read the program when you've finished the programming. A minor error at this stage could go unnoticed now, and be giving wrong answers later.

examples

Try out the new routines with this one: Add $25^{\circ}15'30''$ to $13^{\circ}40'20''$, subtract $6^{\circ}15'14''$, multiply by 3 and then divide by two. The keystrokes are shown below.

first angle entered	2	5	.	1	5	3	ENTER
second angle added	1	3	.	4	0	2	000000
third angle subtracted	6	.	1	5	1	4	000000
multiply by 3						3	000000
divide by 2						2	000000

(answer: $49^{\circ}00'54''$)

To try out the other two functions, **D→R** and **R→D**, try the following:

1. Find the length of a curve which has a radius of 500.00' and a central angle of $12^{\circ}22'$ (length = the radius times the central angle, in radians).

(answer: 107.9195')

1 2 . 2 2
ENTER
5 0 0
X

2. Find the central angle of a curve with an arc length of 135.20' and a radius of 450.00'.

(answer: $17^{\circ}12'51''$)

1 3 5 . 2
ENTER
4 5 0 ÷ ENTER

The trig functions are much easier to use through the program than from the keyboard, and as an additional plus, you will be able to call this program up as a subroutine from other programs. It does happen that you are half-way through a calculation for something else and need to use one of these functions.

fancy output

After you have input the program, "DMS", on page 12 you may want to back up and edit "TRIG". You can have the output read in degrees, minutes and seconds (to the nearest tenth second) by using the subroutine, "DMS".

89°21'28.0"
SIN COS TAN ASIN ACOS ATAN

Add the three steps, **CLA**, **XEQ "DMS"** and **AVIEW** to each of the places in the program that produces an angle as output.

Working from the bottom, upward, this would be between steps 95 and 96, 87 and 88, 80 and 81, 74 and 75, 71 and 72, 39 and 40, 35 and 36, 31 and 32.

This change only costs about 56 bytes of memory, but the enhanced output is clearly an angle, and there is less chance of transposing the numbers when using this form.

CURVES

This program is a CURVE SOLUTION program. It may be used as a "stand alone" program for solving circular curves, and is also called up as a subroutine from the traverse program.

the program listing:

01▶LBL "CURVE"	27 +/-	53 →DEG
02 CLX	28 2	54 FS? 91
03 SF 05	29 ÷	55 GTO 03
04 SF 21	30 STO 12	56 2
05 SF 90	31 FS? 91	57 RCL× 12
06 SF 91	32 GTO 02	58 ÷
07 "DELTA"	33 STOP	59 STO 11
08 KEY 1 GTO 41	34▶LBL 46	60 GTO 02
09 "R"	35 →HR	61▶LBL 03
10 KEY 2 GTO 42	36 100	62 RCL÷ 11
11 "L"	37 X<>Y	63 2
12 KEY 3 GTO 43	38 ÷	64 ÷
13 "T"	39 →DEG	65 STO 12
14 KEY 4 GTO 44	40▶LBL 42	66 GTO 02
15 "C"	41 X<0?	67▶LBL 45
16 KEY 5 GTO 45	42 SF 03	68 2
17 "D"	43 ABS	69 ÷
18 KEY 6 GTO 46	44 STO 11	70 FS? 91
19 MENU	45 SF 91	71 GTO 03
20 STOP	46 FS? 90	72 RCL 12
21▶LBL 41	47 GTO 02	73 SIN
22 SF 90	48 STOP	74 ÷
23 →HR	49▶LBL 05	75 STO 11
24 X<0?	50 FC? 91	76 GTO 02
25 SF 05	51 GTO 07	77▶LBL 03
26 FS? 05	52▶LBL 43	78 RCL÷ 11

79 ASIN	110LBL 09	141 RCL x 11
80 STO 12	111 →HMS	142 2
81 GTO 02	112 F" D= "	143 x
82LBL 44	113 XEQ "DMS"	144 STO 18
83 FS? 91	114 AVIEW	145 F"4 C= "
84 GTO 03	115 ADV	146 ARCL ST X
85 RCL 12	116 2	147 AVIEW
86 TAN	117 RCL x 12	148 RCL 11
87 ÷	118 FS? 05	149 ENTER
88 STO 11	119 +/-	150 x
89 GTO 02	120 →HMS	151 RCL x 12
90LBL 03	121 "DELTA= "	152 →RAD
91 RCL ÷ 11	122 XEQ "DMS"	153 STO 19
92 ATAN	*123 F"4"	154 ENTER
93 STO 12	124LBL 47	155 ENTER
94LBL 02	125 2	156 RCL 12
95 RCL 11	126 RCL x 12	157 RCL 11
96 " R = "	127 RCL x 11	158 →REC
97 XEQ 04	128 →RAD	159 x
98 100	129 STO 24	160 -
99 X<>Y	130 F" L= "	161 STO 22
100 +	131 ARCL ST X	162 FS? 82
101 →DEG	132 AVIEW	163 GTO 02
102 GTO 09	133 RCL 12	164 CF 03
103LBL 08	134 TAN	165 1
104 50	135 RCL x 11	166 RCL 12
105 X<>Y	136 STO 20	167 COS
106 ÷	137 " T= "	168 -
107 ASIN	138 ARCL ST X	169 RCL x 11
108 2	139 RCL 12	170 " M= "
109 x	140 SIN	171 ARCL ST X

* ALPHA DATA 4

172 RCL 12	187 RCL 12	202 AVIEW
173 2	188 TAN	203 RTN
174 ÷	189 RCL 11	204LBL 02
175 TAN	190 X ²	205 FS?C 03
176 RCL ^x 20	191 X	206 +/-
177 F ⁴ E= "	192 RCL 19	207 STO+ 05
178 ARCL ST X	193 -	208 RCL 18
179 AVIEW	194 "Fillet"	209 CLMENU
180 STOP	195 CF 90	210 GTO "TRAV"
181 RCL 22	196 CF 91	211 RTN
182 "Segment"	197LBL 01	212LBL 04
183 XEQ 01	198 RDY	213 ARCL ST X
184 RCL 19	199 F ⁴ "	214 F ⁴ "
185 "Sector"	200 ARCL ST X	215 END
186 XEQ 01	201 F" sq ft"	

Once the program is typed in (and proof-read) it is automatically added to the catalogue. Stroking **XEQ** will bring up the program menu, stroking the key which corresponds to **CURVE** will start up the program, showing a menu of ~~DETAILED CURVE DATA~~.

One of the following, the **central angle** (delta), the **radius** or the **degree of curve**, must be known. Any one of these AND one other part of the curve data are all that are needed to solve any circular curve.

The output, regardless of which parts are known, will be as shown to the right.

Before you can try it out, there is a little more work to do. The program uses the subroutine, **"DMS"**, which is part of the next group to be input.

R = 500.0000
 D = 11°27'33.0"
 DELTA = 25°00'00.0"
 L = 218.1662
 T = 710.0495
 C = 216.4362
 M = 11.8520
 E = 12.1398

Segment = 1,714.2564 sq ft
 Sector = 34,541.5391 sq ft
 Fillet = 882.1265 sq ft

R/S

These subroutines go into a different part of program memory, and include the last one needed by "CURVE".

Stroking XEQ (GTO) brings up the program menu.

Next, stroke R/S,

(PRGM) and the display will be 00 (xxx-Byte Prgm) as shown to the right.

Scroll upwards with to position the program pointer at 00, and begin typing in the following programs:

01▶LBL "C†"	33 †"	"	65 ARCL ST X
02 FS? 81	34 RTN		66 †"†"
03 XEQ 08	35▶LBL 06	"	67 RCL 18
04 CF 29	36 †"	"	68 FP
05 FIX 00	37 RTN		69 100
06 CLA	38▶LBL 07	"	70 X
07 35	39 †"	"	71 FIX 02
08 XTOA	40 RTN		72 RND
09 CLX	41▶LBL 08	"	73 FIX 01
10 R+	42 CLA		74 XEQ 01
11 ARCL ST X	43 " SIDESHOT"	"	75 ARCL ST X
12 †" 13	44 FS? 55		76 †"†"
13 ALENG	45 PRA		77 CLX
*14 FIX 04	46 CLA		78 FIX 04
15 SF 29	47 RTN		79 SF 29
16 †"N= "	48▶LBL "DMS"	"	80 RCL 19
17 ARCL ST Z	49 FS?C 19		81 RTN
18 †", "	50 CLA		82▶LBL 01
19 XEQ IND ST X	51 ENTER		83 10
20 †"E= "	52 STO 19		84 X<>Y
21 ARCL ST Y	53 IP		85 X<Y?
22 AVIEW	54 CF 29		86 †"0"
23 R+	55 FIX 00		87 RTN
24 ADV	56 ARCL ST X		88▶LBL "CL"
25 RTN	57 †"†"		89 ZREG 00
26▶LBL 03	58 -		90 CLZ
27 †"	59 100		91 ZREG 11
28 RTN	60 X		92 CLZ
29▶LBL 04	61 ABS		93 0
30 †" "	62 STO 18		94 STO 24
31 RTN	63 IP		95 RTN
32▶LBL 05	64 XEQ 01		

keystroke tips

Step 57 appends a degree symbol. This is input from the alpha keyboard, through "MATH".

Step 66 and step 76 append the minute and second symbols, respectively, and are both input through the "PUNC" key.

*May be varied to suit user's needs.

Information on these keystrokes can be found in the HP42's User's Manual on pages 295 and 296.

There are some program steps which are just spaces, or spaces appended to what is already in the alpha register. For instance, step 12 **appends** one space, step 27 **appends** 3 spaces and step 30 **appends** 4 spaces.

The addition of the spaces and the "line feed" steps is part of what makes the output read correctly whether there is a printer in use or not.

Step 33 **appends** 5 spaces, step 36 **appends** 6 spaces, and step 39 **appends** 7 spaces. When you proof-read the program it is important to check these steps, even though "there isn't anything there".

So far the subroutines that have been input are two that handle display (**C₄** and **DMS**), and one (**CL**) which clears registers 00 through 24, which are not used for coordinate storage by the other programs. This next group manipulates angles, output and prompts. Go to the end of "CL" (step 95) and type in the following:

96 LBL "I>"	111 MENU	126 H = "
97 CF 29	112 STOP	127 FIX 04
98 FIX 00	113 LBL 01	128 SF 29
99 CLA	114 SF 10	129 FS? 10
100 "INV "	115 GTO 03	130 H ??"
101 ARCL 13	116 LBL 02	131 FS? 85
102 H --"	117 CF 10	132 XEQ "DMS"
103 ARCL ST X	118 LBL 03	133 FS?C 85
104 AVIEW	119 CLMENU	134 RTN
105 RTN	*120 EXITALL	135 FC? 10
106 LBL "YN"	121 RTN	136 ARCL ST X
107 "YES"	122 LBL "A0"	137 FC? 10
108 KEY 1 GTO 01	123 "AZ"	138 RTN
109 "NO"	124 SF 85	139 PROMPT
110 KEY 2 GTO 02	125 XEQ 06	140 RTN

*Stroke **XEQ** **ENTER**, type in EXITALL and stroke **ENTER**.

141LBL "A1"	173 360	204LBL 04
142 FS? 89	174 MOD	205 "N"
143 XEQ 17	175 ENTER	206 XEQ 05
144 X<Y	176 SIN	207 "F" "W"
145 →HR	177 ASIN	208 RTN
146 X<Y	178 X<0?	209LBL 05
147 ENTER	179 +/-	210 STO 21
148 ENTER	180 →HMS	211 R+
149 2	181 X<Y	212 STO 20
150 ÷	182 90	213 XEQ "DMS"
151 IP	183 +	214 RTN
152 180	184 1	215LBL 06
153 x	185 +	216 X>0?
154 X<Y	186 IP	217 RTN
155 LASTX	187 STO 21	218 360
156 x	188 GTO IND ST X	219 +
157 COS	189LBL 01	220 RTN
158 R+	190 "N"	221LBL 17
159 x	191 XEQ 05	222 2
160 -	192 "F" "E"	223 -
161 FS? 10	193 RTN	224 X>0?
162 RTN	194LBL 02	225 RTN
163 →HMS	195 "S"	226 4
164 GTO "A0"	196 XEQ 05	227 +
165 "BRG"	197 "F" "E"	228 RTN
166 XEQ "A0"	198 RTN	* 229LBL "F.."
167 →HR	199LBL 03	230 0.013
168LBL "B1"	200 "S"	231LBL "...F"
169 -180	201 XEQ 05	232 CF IND ST X
170 X<Y	202 "F" "W"	233 ISG ST X
171 FS? 89	203 RTN	234 GTO "...F"
172 +		235 END

* ALPHA PUNC ...

Before beginning this last short group of subroutines, stroke the shifted **XEQ** key (GTO), and then the decimal point twice. This will automatically put an end on the programs so far and give you a new starting point. When you enter the program mode you will again see the display

00►C 0-Byte Prgm
01 .END.

Scroll upward once, so that the program pointer is at 00, and type in the program steps to the right.

pout

This program is "Point OUT" and is used to recall stored coordinates. If you input the point number of a **stored** pair of coordinates and execute "**POUT**" the coordinates will be recalled to the display.

After recall the north coordinate is in the y-register and the east coordinate is in the x-register.

pin

This one stands for "Point IN". If you input a point number and execute "**PIN**" you will be prompted for the north coordinate with **N =?**. Input the north coordinate and stroke **R/S** and you will be prompted **E =?**. Input the east coordinate and stroke **R/S**. The coordinates are immediately stored under that point number.

```
01►LBL "OUT"  
02 RCL 13  
03 2  
04 ×  
05 24  
06 +  
07 ENTER  
08 ENTER  
09 1  
10 -  
11 RCL IND ST X  
12 RCL IND ST Z  
13 RTN  
14►LBL "IN"  
15 RCL 13  
16 2  
17 ×  
18 24  
19 +  
20 X<>Y  
21 STO IND ST Y  
22 R+  
23 1  
24 -  
25 X<>Y  
26 STO IND ST Y  
27 RTN  
28►LBL "PIN"  
29 STO 13  
30 XEQ "PN"  
31 GTO "IN"  
32►LBL "POUT"  
33 STO 13  
34 GTO "OUT"  
35 END
```

After the subroutines at the top of page 17 have been put in, you can try some coordinate storage. Each pair uses two storage registers, or 18 bytes.

sizing

The default size for the number of storage registers available is 25. This means that registers 00 through 24 may be used for storage. For right now, you need to resize to 50, so that you will have some registers available for storing coordinates. (see page 87)

The **SIZE** function is found in the second menu of "MODES". Stroke the shifted +/- key, scroll down once, and stroke the key under **SIZE**. This brings up a prompt for a four-digit input. Input 0050.

storing coordinates

1. Input the point number and stroke

XEQ **PIN**

prompt: N =?

2. Input the north coordinate and stroke

R/S

prompt: E =?

3. Input the east coordinate and stroke

R/S

The coordinate has been stored under its point number.

recalling coordinates

1. Input the point number and stroke

EDIT

The north coordinate is in the Y-register and the east coordinate is in the X-register. Later in this book we will be showing you a routine, "LOAD", which calls up "PIN" continuously for input of a group of coordinates.

TRAVERSE

A few more short subroutines to type in, and then we can start on the TRAVERSE program. Go to **C↑** and scroll upwards once (to 00) to begin input of these programs:

01►LBL "PN?"	14►LBL "CODE"	27 RCL- 23
02 CF 22	15 STO 22	28 →POL
03 " PT NO?"	16 XEQ "POUT"	29 R+
04 PROMPT	17 STO 24	30 →HMS
05 FS? 22	18 R+	31 RTN
06 XEQ 01	19 STO 23	32►LBL "PN"
07 RTN	20 RCL 22	33 CLA
08►LBL 01	21 FP	34 ←"4 N =?"
09 1	*22 1E3	35 PROMPT
10 -	23 x	36 CLA
11 STO 13	24 XEQ "POUT"	37 ←"4 E =?"
12 R+	25 RCL- 24	38 PROMPT
13 RTN	26 X<>Y	39 END

This next program isn't a short one, but the odds are, it's the one you've been anxious to get to. Stroke **GTO..** to start with a clean slate, and you can start typing it in.

a traverse program

00 { 859-Byte Prgm }	18 STO 13
01►LBL "TRAV"	19 "EXIST"
02 FS?C 82	20 KEY 1 GTO 01
03 GTO A	21 "NEW"
04 ADV	22 KEY 2 GTO 02
05 XEQ "CL"	23 "RE #"
06 XEQ "F.."	24 KEY 3 GTO 03
07 SF 00	25 MENU
08 SF 01	26 FS? 04
09 SF 02	27 RTN
10 SF 09	28 "PT NO?"
11 SF 21	29 PROMPT
12 FS? 55	30►LBL 01
13 SF 08	31 STO 13
14 CF 81	32 GTO 00
15 CLA	33►LBL 02
16 CLMENU	34 XEQ "PIN"
17►LBL 32	35 GTO 00

*To input, stroke **E 3**

```

36►LBL 93
37 XEQ "POUT"
38 FIX 00
39 CF 29
40 CLA
41 "NEW PT NO?"
42 PROMPT
43 STO 13
44 R↓
45 XEQ "IN"
46►LBL 90
47 CLMENU
48 XEQ "OUT"
49 XEQ "CT"
50 STO 08
51 R↓
52 STO 07
53►LBL 15
54 CLMENU
55 "BRNG"
56 KEY 1 GTO 18
57 "AZIM"
58 KEY 2 GTO 19
59 "CODE"
60 KEY 3 GTO 27
61 "INV"
62 KEY 4 GTO 17
63 "INT-X"
64 KEY 5 GTO 28
65 "CLOSE"
66 KEY 6 GTO 24
67 KEY 7 GTO 31
68 KEY 8 GTO 31
69 MENU
70 RTN
71►LBL 31
72 CLMENU
73 "H.DIS"
74 KEY 1 GTO 22
75 "S.DIS"
76 KEY 2 GTO 23
77 "SIDE"
78 KEY 3 GTO 26
79 "CURVE"
80 KEY 4 GTO 25
81 "RT."
82 KEY 5 GTO 20
83 "DEF4"
84 KEY 6 GTO 21
85 KEY 7 GTO 15
86 KEY 8 GTO 15
87 MENU
88 RTN
89►LBL 29
90 SF 01
91 CF 02
92 GTO 31
93►LBL 26
94 CF 01
95 SF 81
96 GTO 31
97►LBL 27
98 SF 82
99 XEQ "CODE"
100 GTO 19
101►LBL 28
102 SF 83
103 GTO "INT-X"
104 RTN
105►LBL 20
106 I80
107 HMS+
108 FS?C 05
109 GTO 19
110►LBL 21
111 RCL 00
112 →HMS
113 HMS+
114 GTO 19
115►LBL 18
116 FS? 09
117 SF 00
118 FS?C 09
119 RTN
120 SF 10
121 XEQ "A1"
122 →HMS
123►LBL 19
124 FS? 09
125 CF 00
126 FS?C 09
127 RTN
128 →HR
129 1
130 →REC
131►LBL 08
132 CF 10
133 →POL
134 STO 01
135 X<>Y
136 X>0?
137 GTO 07
138 360
139 +
140►LBL 07
141 FS?C 02
142 STO 00
143 FS? 01
144 STO 00
145 STO 10
146 FC? 00
147 GTO 09

```

148 XEQ 31	204 STO+ 04
149 XEQ "B1"	205 ►LBL 02
150 AVIEW	206 RCL 02
151 RTN	207 FC? 01
152 ►LBL 09	208 +
153 →HMS	209 RCL 07
154 XEQ "A0"	210 +
155 AVIEW	211 FC? 01
156 XEQ 31	212 X<>Y
157 RTN	213 RCL 03
158 ►LBL 23	214 FC? 01
159 "Z=?"	215 +
160 PROMPT	216 RCL 08
161 →HR	217 +
162 X<>Y	218 ISG 13
163 →REC	219 STO ST X
164 X≤Y?	220 XEQ "C"↑
165 X<>Y	221 CF 81
166 ►LBL 22	222 SF 01
167 XEQ "PN?"	223 XEQ "IN"
168 RCL 00	224 FS? 04
169 X<>Y	225 GTO 40
170 FS? 01	226 GTO 15
171 GTO 33	227 RTN
172 RCL 10	228 ►LBL 17
173 X<>Y	229 X<0?
174 ►LBL 33	230 SF 07
175 FS? 01	231 FC? C 07
176 STO+ 06	232 XEQ "I"↑
177 STO 01	233 X<0?
178 ADV	234 XEQ 34
179 "HD = "	235 XEQ "POUT"
180 ARCL ST X	236 1
181 FS? 08	237 STO- 13
182 PRON	238 R↑
183 AVIEW	239 RCL- 08
184 ADV	240 RCL- 03
185 →REC	241 X<>Y
186 FC? 01	242 RCL- 07
187 GTO 02	243 RCL- 02
188 STO+ 02	244 XEQ 08
189 ENTER	245 RCL 10
190 ABS	246 RCL 01
191 STO+ 15	247 XEQ 33
192 R+	248 RTN
193 X<>Y	249 ►LBL 34
194 STO+ 03	250 +/-
195 ENTER	251 "PT NO?"
196 ABS	252 PROMPT
197 STO+ 09	253 STO 13
198 R+	254 R↑
199 2	255 XEQ "IN"
200 +	256 RCL 13
201 RCL 03	257 RTN
202 -	258 ►LBL 24
203 X	259 SF 04
	260 ADV

```

261 "Σ HD= "
262 ARCL 06
263 AVIEW
264 CLA
265 CLMENU
266 OPEN
267 KEY 4 GTO 36
268 ←
269 KEY 5 GTO 37
270 "B"
271 KEY 6 GTO 38
272 MENU
273 PROFF
274 SF 21
275 "TYPE?""
276 AVIEW
277 STOP
278 ▶LBL 36
279 STOP
280 ▶LBL 37
281 F5? 08
282 PRON
283 RCL 04
284 ABS
285 RCL+ 05
286 XEQ 35
287 ▶LBL 38
288 XEQ 32
289 "L" CLOSING PT#?""
290 PROFF
291 SF 21
292 AVIEW
293 STOP
294 STO 18
295 SF 10
296 ▶LBL 01
297 XEQ "POUT"
298 GTO 04
299 ▶LBL 02
300 XEQ "PIN"
301 ▶LBL 04
302 XEQ "OUT"
303 F5? 08
304 PRON
305 ADV
306 CF 01
307 "Closure:""
308 AVIEW
309 ADV
310 RCL 13
311 SF 07
312 XEQ 17
313 AVIEW
314 SF 01
315 ADV
316 ▶LBL 40
317 RCL 06
318 RCL÷ 01
319 FIX 00
320 CF 29
321 "PRCN= 1:""
322 ARCL ST X
323 AVIEW
324 CLMENU
325 CLX
326 CLA
327 SF 29
328 FIX 04
329 STOP
330 ▶LBL 35
331 ADV
332 F5? 08
333 PRON
334 "AREA ="
335 ARCL ST X
336 "F" "sq ft"
337 AVIEW
338 "="
339 43560
340 +
341 ARCL ST X
342 " acres"
343 AVIEW
344 RTN
345 ▶LBL 25
346 SF 82
347 ADV
348 GTO "CURVE"
349 ▶LBL A
350 XEQ 31
351 RCL 18
352 GTO 22
353 END

```

south azimuth

For our users in Hawaii, Australia and parts of Canada, the program allows for the use of south azimuth. If you want to use this option, simply set flag 89.

The various routines that clear flags do not clear flag 89, so to leave south azimuth you must clear flag 89 manually.

exit

If you use the traverse program as a way of setting coordinates for various points, instead of just for actual traverses (we all do) the final flag clear routines are bypassed.

```
01LBL "EXIT"  
02 XEQ "F.."  
03 81.088  
04 XEQ "L.F"  
05 CLST  
06 CLA  
07 END
```

To other programs this will act as though you are still interfaced to the "TRAV" program.

We suggest adding the short program to the left, and then running it automatically by assigning it to key 09 in all of your 'TRAV' menus.

Add the step KEY 9 GTO "EXIT" to each of your menus, just above the "MENU" command (between 271 & 272, 86 & 87 and 68 & 69). This will clear the flags.

getting started

When you stroke XEQ the program first runs through its clearing routine and then prompts for "PT NO?", at the same time displaying the options menu .

Input the point number you want to use, and then stroke the key corresponding to the option:

1. If the point number is that of an already stored pair of coordinates stroke
2. If the coordinates have not yet been stored, stroke

N =?

- 2a. Input the north coordinate and stroke

E =?

- 2b. Input the east coordinate and stroke

3. If this is an existing pair of coordinates, but you want to duplicate them under a new point number for this traverse, stroke

NEW PT NO?

3a. Input the new point number you want to assign, and stroke

The output will be the point number and coordinates. #1 N= 1000.0000 E= 5000.0000

Stroking (or any key)* brings up the traversing menu **BRNG** **AZIM** **CODE** **INV** **INT-X** **CLOSE**.

Output for the direction of the courses may be either BEARING or AZIMUTH. The FIRST (and only the first) time the traversing menu is displayed stroke either **BRNG** or **AZIM**. Nothing will seem to have happened, but your output mode is now set.

bearing input

Bearings are input in two steps, the bearing angle is entered, then the quadrant code is input.

1. Input the bearing, stroke

2. Input the quadrant code, and stroke

azimuth input

Courses may be entered as azimuths instead of bearings (if the bearing is northeast, it saves keystrokes).

1. Input the azimuth and stroke

input by point code

The bearing between any two stored coordinate pairs may be called up automatically by using "CODE". This 'code' consists of the two point numbers, entered in the form **AAA.bbb**, where AAA is the first point number, and bbb

*If the calculator is set to "printer on".

is the second. The second point number **must** be three-digit input.

1. Input the code for the two points, in the form noted above, and stroke

With this method of input the 'whole' bearing is used, rather than a rounded off re-input number.

setting the direction

This initial direction may be the azimuth or bearing toward the point you want to set. That is, it may be the first direction of the traverse.

It may also be a BASIS OF BEARINGS from which an angle or deflection angle is then turned, to set the direction of the first course of the traverse. If the latter, the direction of the basis of bearings should be the direction **toward** the first point.

direction by inverse

You can also establish the direction of the first course by inverting to the next point.

1. Input the point number of the coordinates you wish to inverse to and stroke

You can begin a traverse from existing points (in storage) by inverting from the backsight to the instrument point, to begin the traverse.

The direction of the course and the menu will be displayed, and you can choose your next move.

distance input

Distances may be input as horizontal distance or slope distance, using the appropriate keystroke.

1. Input the horizontal distance, stroke

OR

2. Input the slope distance, stroke

CODE

$\angle = ?$

2a. Input the vertical or zenith angle, and then stroke

R/S

The horizontal distance will be output. Stroke **R/S** if you are not using a printer, and the next prompt is displayed:

PT NO?

Except for inverting, you will have this prompt just prior to the output of coordinates, each time. You may assign any point number you want, or just stroke **R/S** to get the next consecutive point number.

CAUTION!! If you have used "CODE" for a direction, you must input a point number at the **PT NO?** prompt, or the point number used will be one higher than the bbb portion of the code, by default.

angle input

Angles may be turned as field angles or as deflection angles. For an angle left, stroke the **L** key before stroking the **RT** or **DEF** key.

sideshots

The procedure for a sideshot is the same as for any other course, with the exception that you tell the calculator that you are wanting a sideshot.

1. Signal for a sideshot by stroking

SIDE

2. Input a deflection angle and stroke

DEF

OR

3. Input a field angle and stroke

RT

or

4a. Input a bearing, stroke **ENTER**

4b. Input the quadrant code, stroke **BRNG**

or

5. Input an azimuth, stroke **AZIM**

6. Input a horizontal distance, stroke **H.D.**

or

7a. Input a slope distance, stroke **SLOP**

$\Delta = ?$

7b. Input the vertical or zenith angle and then stroke **R/S**

PT NO?

curved sides

It is easy to include a curved side in the traverse. The Δ angle is input as positive if the curve is to the right, and negative if the curve is to the left.

The sign of the **radius** will determine whether or not the area of the curve segment is included in the traverse area. The radius is input as a **POSITIVE** number to **INCLUDE** the area, and as a **NEGATIVE** number to **EXCLUDE** the area.

Assume that you are at the beginning of the curve, about to do the curve portion. First, establish the direction of the chord

1. Input $\Delta/2$ and deflect (change sign if the curve is to the left) stroke **DEFL**

or

- 2a. Input the bearing of the chord, and stroke **ENTER**
- 2b. Input the quadrant code, stroke **BRNG**

OR

3. Input the azimuth for the curve's chord, and then stroke

THEN

4. Signal that you are traversing a curve by stroking

DELTA R L T C D

5. Input the two known parts of the curve, stroking the appropriate keys. If the curve is to the left, Δ must be one of the two known parts in order to signal the direction of the curve. The default is a curve to the right.

The radius must be one of the known parts if the area is to be excluded, so that it may be entered as a negative number. Default radius is positive, and the segment area is automatically included.

PT NO?

6. The next point set will be the E.C. (end of curve) coordinates*. Input the point number you wish assigned if you do not want the next consecutive number, and stroke

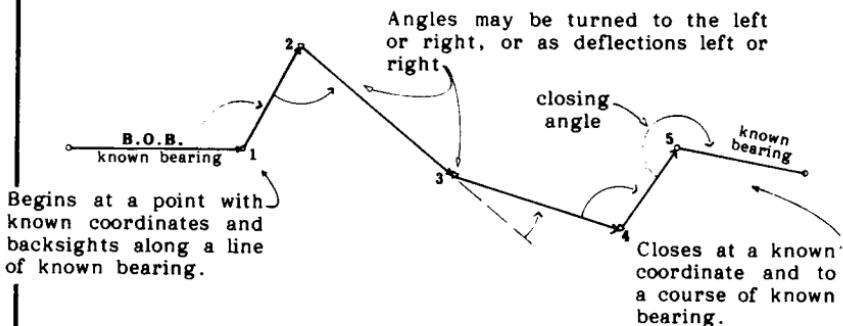
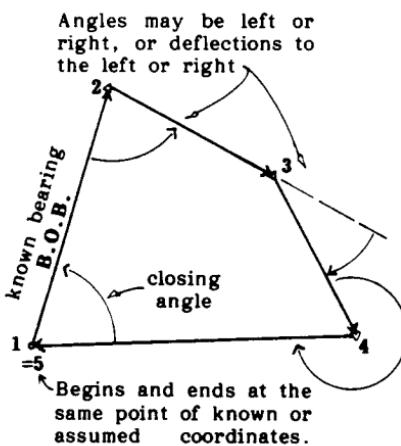
a note on inverting

If you do sideshots and then **inverse** to the next non-sideshot point, the little label, Inv x-y, will show the point number of the last sideshot in the 'x' position.

If you are printing out the results and want it to show the correct number, manually store the correct number into register 13 before beginning the inverse.

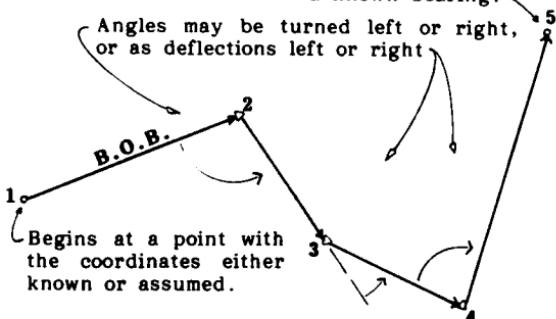
As an example, if you are at point 3, set sideshots 15, 16 and 17, and then want to inverse directly to point 4, stroke **3 STO 1 3** before **4** .

*A subroutine, "RP", is included in the "OPTIONS" section. If you add this routine to the program, the radius point will also be set.



Traverses may be thought of as either "closed" or "open" traverses. For use with this program, the **CLOSED TRAVERSE** may be either of two types. What we will call **Type A** is one similar to the one shown to the right.

In this type of traverse, the line from 1 to 2 is usually a known line which is included in the traverse.

The two points used would be part of a property or monument line, and the basis of bearings would be the bearing of the line.


This type of traverse also closes back to the original point of beginning, and allows the turning of a closing angle, which is turned at the first (and last) point, foresighting the second point.

What we will consider to be a **Type B** closed traverse is one which begins at one known point and ends at another known point. For this type (below) the basis of bearings is usually obtained by backsighting another known point.

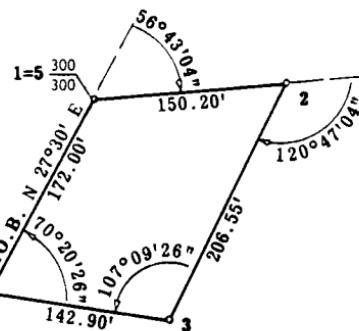
An **OPEN TRAVERSE** is one which, while it may begin at a known point, does not close to any point or line which allows adjustment of the traverse.

Does NOT close to a point of known coordinates or a line with a known bearing.

An OPEN traverse may also be considered as being an 'unfinished' traverse, in that it could later be used as a portion of a traverse which will be closed.

More often, a traverse of this type is run as part of a topographic survey, where the traverse is considered accurate enough without correction.

For the CLOSED type of traverse, the angular error is usually distributed equally among the angles, prior to adjustment of the traverse.


An optional program for automatic angular adjustment has been included in this book, and may be added to the traverse program later, if you will be wanting that capability in your traversing routine.

Adjustment routines for either COMPASS adjustment or TRANSIT adjustment have also been included in this book, and you can include either or both of them in your programming. You would usually want to adjust the angles of the traverse prior to using either of the adjustment routines.

We can try a keystroke example using the little traverse shown to the right.

The basis of bearings will be the course 4-1, and we assume that these are (found) existing points which can be occupied.

The first two angles will be turned as deflection angles to the right, the last two as angles left.

Note that this is an example using a 'basis of bearings'. The course with the known bearing could also have been used directly, that is, we could have started from #4 and gone to #1 as the **first** leg of the traverse.

Stroke **XEQ** and the key that corresponds to **TRAV**

prompt: **PT NO?**

keystrokes:

1 NEW

prompt: **N =?**

keystrokes:

3 0 0 R/S

prompt: **E =?**

keystrokes:

3 0 0 R/S

output:

#1 **N= 300.0000**
E= 300.0000

keystrokes:

BRNG 2 7 . 3 ENTER
1 BRNG

output:

N 27'30'00.0° E

keystrokes:

5 6 . 4 3 0 4
DEFA

output:

N 84'13'04.0° E

keystrokes:

1 5 0 . 2 H.DS

prompt: **PT NO?**

keystroke:

R/S

output:

HD = 150.2000

#2 N= 315.1323
E= 449.4358

keystrokes:

1 2 0 . 4 7 0 4
▲ DEFA

output:

S 25°00'08.0" W

keystrokes:

2 0 6 . 5 5

prompt: PT NO?

keystroke:

output:

HD = 206.5500

#3 N= 127.9378
E= 362.1367

keystrokes:

1 0 7 . 0 9 2 6

output:

N 82°09'18.0" W

keystrokes:

1 4 2 . 9

prompt: PT NO?

keystroke:

output:

HD = 142.9000

#4 N= 147.4427
E= 220.5741

keystrokes:

7 0 . 2 0 2 6

output:

N 27°30'16.0" E

keystrokes:

1 7 2

prompt: PT NO?

keystroke:

output:

HD = 172.0000

#5 N= 300.0024
E= 300.0067

keystroke:

output:

Σ HD= 671.6500

prompt: TYPE?

This is a closed, type A,
traverse so stroke the key
which corresponds to "A"

output:

AREA =
24898.6429 sq ft
= 0.5716 acres

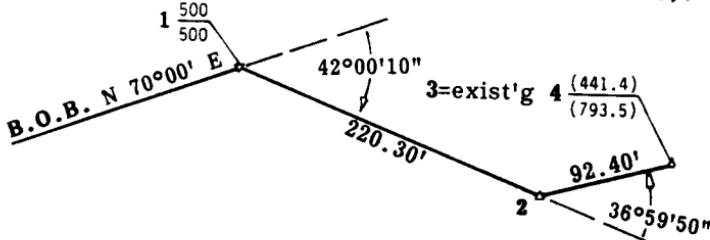
prompt: CLOSING PT#?

keystrokes:

1

output:

Closure:


S 70°00'06.6" W

HD = 0.0072

#1 N= 300.0000
E= 300.0000

Prcn= 1:93818

As another example of starting with a 'basis of bearings', this type "B" traverse starts by backsighting down a known course from a point with known coordinates (#1, N 500/E 500). In the example, traverse point #3 closes at a point with known coordinates (#4, N 441.4/E 793.5).

Begin by stroking **XEQ**, and then the key which corresponds to "**TRAV**".

prompt: PT NO?

keystrokes:

1 ENTER

prompt: N =?

keystrokes:

5 0 0 R/S

prompt: E =?

keystrokes:

5 0 0 R/S

output:

#1 N= 500.0000
E= 500.0000

keystrokes:

ENTER

7 0 ENTER

1 ERNG

output:

N 70°00'00.0" E

keystrokes:

4 2 . 0 0 1 DEF4

output:

S 67°59'50.0" E

keystrokes:

2 2 0 . 3 H.DS

prompt: PT NO?

keystroke:

R/S

output:

HD = 220.3000

#2 N= 417.4643
E= 704.2546

keystrokes:

3 6 . 5 9 5 +/-

▼ DEF4

output:

N 75°00'20.0" E

keystrokes:

9 2 . 4 H.DS

prompt: PT NO?
keystroke:

R/S

output:

HD = 92.4000

#3 N= 441.3705
E= 793.5085

keystrokes:

R/S

output:

Σ HD= 312.7000

prompt: TYPE?

This is a closed traverse,
type B, so stroke the key
which corresponds to "B"

prompt: CLOSING PT#?

keystrokes:

4

prompt: N =?

keystrokes:

4 4 1 . 4 R/S

prompt: E =?

keystrokes:

7 9 3 . 5 R/S

output:

Closure:

N 16°00'32.3" W

HD = 0.0307

#4 N= 441.4000
E= 793.5000

Prcn= 1:10186

Because this was a type "B" traverse, no area is output,
but a closure is calculated. If this had been an "open"
traverse, no closure would be given since it does not close
to a known point.

NOTE: If the function you want to use is not in the
displayed menu when you need it, you can use or to go to the other menu. If you are not using a printer
while running the program, stroke R/S for the next output
or prompt.

miscellaneous moves

You can also inverse to **unstored** coordinates by entering
the northing, then input the easting and stroke the key before you stroke . The program will prompt
for a point number to be assigned, and then store the
coordinates.

Once the traverse has been closed it may be adjusted. We have included two programs for traverse adjustment in this book, "COMPass adjustment" and "TRANSit adjustment".

You will probably only want to put in one of these, and which one you use will depend on the equipment you use for traversing. With a good theodolite and EDM (or a total station) Compass Adjustment is most often used.

subroutines

First, two subroutines which are used by either of the adjustment programs. Go to "C4", scroll up to 00 and type in the programs shown to the right.

"INV" performs an inverting routine, and is used by an intersection solutions program and a coordinate transformation program later in this book.

The program "BLK" is also used by the transformation program as well as several others. It identifies a block of consecutive points by point number for coordinates manipulation.

Because these are not routines that you will execute from the keyboard, we have placed them at a point in program memory which keeps them out of the way in the program menu.

As always, it is important that you proof-read what you have typed in, before exiting the program.

```
01▶LBL "INV"
02 RCL- 08
03 X<>Y
04 RCL- 07
05 →POL
06 STO 23
07 X<>Y
08 360
09 X<>Y
10 X<0?
11 +
12 FC? 00
13 XEQ 01
14 FS? 00
15 XEQ "B1"
16 ←HD =
17 ARCL 23
18 AVIEW
19 ADV
20 RTN
21▶LBL 01
22 →HMS
23 1
24 XEQ "A1"
25 RTN
26▶LBL "BLK"
27 "Begin @?"
28 ←
29 PROMPT
30 "Last Pt#?"
31 ←
32 PROMPT
33 1
34 +
35 STO 22
36 X<>Y
37 END
```

Stroke the shifted XEQ key and then the key which corresponds to "TRAV". Enter program mode by stroking the shifted R/S key, scroll upward to program step 00 and type in either "COMP" or "TRAN", from the program listings.

COMPass adjustment

01LBL "COMP"	27 STO 05	53 XEQ "IN"
02 ADV	28LBL 02	54 RCL 13
03 "COMPASS ADJUST"	29 RCL 13	55 1
04 FS? 08	30 RCL 22	56 -
05 AVIEW	31 X=Y?	57 XEQ "POUT"
06 ADV	32 GTO 01	58 STO 08
07 0	33 XEQ "OUT"	59 X>Y
08 STO 11	34 STO 01	60 STO 07
09 STO 14	35 STO 15	61 1
10 STO 15	36 X>Y	62 STO+ 13
11 XEQ "BLK"	37 STO 00	63 XEQ "OUT"
12 XEQ "POUT"	38 STO 14	64 XEQ "INV"
13 XEQ "C ⁺ "	39 X>Y	65 RCL 00
14 ADV	40 RCL- 08	66 STO 07
15 1	41 X>Y	67 RCL 01
16 STO+ 13	42 RCL- 07	68 STO 08
17 RCL 10	43 →POL	69 XEQ "OUT"
18 RCL 01	44 STO+ 11	70 XEQ "C ⁺ "
19 +/-	45 RCL 11	71 ISG 13
20 →REC	46 RCLX 16	72 STO ST X
21 RCL÷ 06	47 STO+ 14	73 ADV
22 +/-	48 RCL 11	74 GTO 02
23 STO 16	49 RCLX 05	75LBL 01
24 X>Y	50 STO+ 15	76 STOP
25 RCL÷ 06	51 RCL 14	77 END
26 +/-	52 RCL 15	

Typing in the last step, END, will automatically separate the program from "TRAV", but still leaves it just to the right of the "TRAV" key in the menu.

TRANsit adjustment

01LBL "TRAN"	28 GTO 01	55 XEQ "IN"
02 ADV	29 XEQ "OUT"	56 RCL 13
03 "TRANSIT ADJUST"	30 ENTER	57 1
04 FS? 08	31 RCL- 08	58 -
05 RVIEW	32 RCLx 03	59 STO 13
06 ADV	33 RCL+ 09	60 XEQ "OUT"
07 SF 05	34 ABS	61 STO 08
08 SF 06	35 FS? 06	62 X<>Y
09 RCL 02	36 +/-	63 STO 07
10 X<0?	37 STO+ 14	64 1
11 CF 05	38 CLX	65 STO+ 13
12 RCL 03	39 RCL 14	66 XEQ "OUT"
13 X<0?	40 +	67 STO 01
14 CF 06	41 STO 19	68 X<>Y
15 0	42 R+	69 STO 00
16 STO 11	43 ENTER	70 X<>Y
17 STO 14	44 RCL- 07	71 ADV
18 XEQ "BLK"	45 RCLx 02	72 XEQ "INV"
19 XEQ "POUT"	46 RCL+ 15	73 RCL 00
20 XEQ "C ⁺ "	47 ABS	74 STO 07
21 ADV	48 FS? 05	75 RCL 01
22LBL 03	49 +/-	76 STO 08
23 1	50 STO+ 11	77 XEQ "OUT"
24 STO+ 13	51 CLX	78 XEQ "C ⁺ "
25 RCL 13	52 RCL 11	79 GTO 03
26 RCL 22	53 +	80LBL 01
27 X=Y?	54 RCL 19	81 STOP

For program step #82, type in XEQ END.

If you have decided to input BOTH types of adjustment, you should put in "TRANS" above "COMP". You can eliminate program steps 80 and 81 from "TRANS" and substitute RTN for END as the last step. This lets the two routines share LBL 01 instead of duplicating the steps.

#1 N= 300.0000
 E= 300.0000
 N 27°30'00.0" E
 N 84°13'04.0" E
 HD = 150.2000
 #2 N= 315.1323
 E= 449.4358
 S 25°00'08.0" W
 HD = 206.5500
 #3 N= 127.9378
 E= 362.1367
 N 82°09'18.0" W
 HD = 142.9000
 #4 N= 147.4427
 E= 220.5741
 N 27°30'16.0" E
 HD = 172.0000
 #5 N= 300.0024
 E= 300.0067

As an example, we have re-run the traverse on page 29, and the output from both types of correction is shown below.

After you have closed the traverse, stroke XEQ and then the key corresponding to either "COMP" or "TRAN".

prompt: BEGIN #?

1. Input the beginning point number, then stroke R/S

prompt: LAST PT#?

2. Input the last point number in the traverse, stroke R/S

TRANSIT ADJUST

#1 N= 300.0000
 E= 300.0000
 N 84°13'03.8" E
 HD= 150.1978
 #2 N= 315.1322
 E= 449.4336
 S 25°00'08.6" W
 HD= 206.5517
 #3 N= 127.9365
 E= 362.1332
 N 82°09'18.6" W
 HD= 142.9020
 #4 N= 147.4413
 E= 220.5686
 N 27°30'15.3" E
 HD= 171.9986
 #5 N= 300.0000
 E= 300.0000

COMPASS ADJUST

#1 N= 300.0000
 E= 300.0000
 N 84°13'04.5" E
 HD= 150.1984
 #2 N= 315.1317
 E= 449.4343
 S 25°00'09.6" W
 HD= 206.5516
 #3 N= 127.9365
 E= 362.1331
 N 82°09'19.0" W
 HD= 142.9013
 #4 N= 147.4409
 E= 220.5691
 N 27°30'14.5" E
 HD= 171.9986
 #5 N= 300.0000
 E= 300.0000

INTERSECTIONS

The solutions to intersection problems are needed all of the time in surveying. We use an intersection formula to find out where two lines cross, then make that point the new PI or the new lot corner. Or, we need to know how far a point is offset from a given line.

Next to just plain traversing, this is the most used type of calculation in surveying. We've tried to make it easy, with all of the options displayed in the menu at one time.

Any distance input is done with the distance key, and any direction can be input as bearing, azimuth or code.

The "CODE" key may be used to recall a "stored" bearing between two points in storage. The point numbers are input in the form **AAA.bbb**, where **AAA** is the first point number and **bbb** is the second. Three digit input is required for the second point number.

to use the program

Begin by stroking **XEQ**, and then the key corresponding to **INT-X**

Begin @ PT#?

1. Input the beginning point number, stroke

R/S

OUTPUT will be the point number and coordinates of the beginning point.

End Pt#?

2. Input the point number of the ending point, then stroke

R/S

Save as #?

3. Input the point number you wish to assign to the intersection point, then stroke

R/S

The prompts and responses on the previous page are the same for all of the intersection routines. Select the type of intersection you need, and follow the keystroke instructions below.

bearing - bearing

- 1a. Input the first bearing and stroke **ENTER**
Input the quadrant code, stroke **BRNG**
or
1b. Input the point code for the bearing you want to extract as the first bearing, and then stroke **0000**
or
1c. Input the azimuth of the first course and stroke **DEGT**

- 2a. Input the bearing of the second line, then stroke **ENTER**
Input the quadrant code and stroke **BRNG**
or
2b. Input the point code for the bearing you want to extract as the second bearing, and stroke **0000**
or
2c. Input the azimuth of the second course and stroke **DEGT**

OUTPUT will be the bearing and distance from the beginning point to the intersection, the point number and coordinates of the intersection point, the bearing and distance from the intersection point to the end point, then the point number and coordinates of the last point.

bearing - distance

1a. Input the bearing of the first course, stroking

ENTER

Input the quadrant code, then stroke

or

1b. Input the point code for the bearing you want to extract, and stroke

or

1c. Input the azimuth of the first course, and then stroke

ENTER

2. Input the distance for the second line, and stroke

ENTER

OUTPUT will be the bearing and distance from the beginning point to the intersection, the point number and coordinates of the intersection point, the bearing and distance from the intersection point to the end point, then the point number and coordinates of the last point.

Because there are two possible answers with this solution type, a reminder prompt appears

2nd Solution

YES NO

3. Examine the answers and decide if they are the correct solution. If they are not, go on to the second solution by stroking

ENTER

Output will be the same as for the first solution with the exception that the first point is not printed out again. The intersection point coordinates in storage will be replaced by the new ones.

distance - distance

1. Input the first distance, stroke

2. Input the second distance, and then stroke

OUTPUT will be the bearing and distance from the beginning point to the intersection, the point number and coordinates of the intersection point, the bearing and distance from the intersection point to the end point, then the point number and coordinates of the last point.

2nd Solution

3. If you want the second solution, stroke

If you do not want the second solution, stroke

Output of the second solution is similar to that of the bearing - distance solution, replacing the original coordinates at the intersection point with the new ones.

offset to a line

- 1a. Input the bearing of the known line (from which the end point is offset) and stroke

Input the quadrant code then stroke

or

- 1b. Input the code for the bearing you want to extract and stroke

or

- 1c. Input the azimuth of the line and stroke

2. Stroke the key which corresponds to

OUTPUT of the answer will be in the same form as the other intersection routines, with the bearings and distances of both lines given.

the programming

The information on the last few pages describes the way the program works, and now we'll look at the programming itself.

As always, there are a couple of related subroutines.

2 **ENTER** **1**
 MATRIX **NEW** **EXIT**
STO **ENTER** **S** **W** **ENTER**

This time you will also add a few steps to the traverse program and set up a storage matrix. That is much easier than it sounds, just do the keystrokes shown to the left.

Go to "INV", enter program mode, and scroll up one notch to step 00 and type in the following:

01 LBL "B→A"	08 RCL 21
02 XEQ "A1"	09 L "4"
03 L "4"	10 LBL 01
04 GTO 01	11 FS? 88
05 LBL "A→B"	12 RTN
06 →HR	13 VIEW
07 XEQ "B1"	14 RTN

Next, stroke

XEQ

Enter program mode.

Scroll down until the program pointer is at 04, and insert the two steps shown to the right.

05 **FS?C** 83
06 **GTO** 15

And, it's time to type in another long one. Before starting stroke XEQ to pack what is already in the calculator. Now go to the permanent .END. by stroking shift, XEQ, .END., and enter program mode. The display should show

00 (0-Byte Prgm)
01►.END.

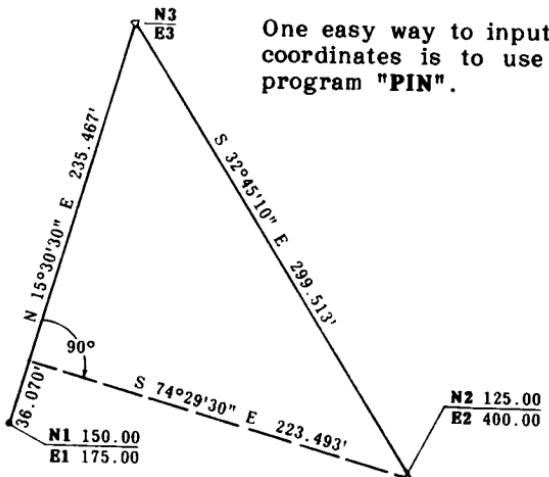
Stroke so that the pointer is at 00, and you may begin typing in the program steps listed below.

01►LBL "INT-X"	23 STOP	45 STO- 02
02 XEQ d	24►LBL d	46 +
03 FS? 83	25 86.099	47 RCLEL
04 XEQ 51	26►LBL H	48 STO 08
05 SF 21	27 CF IND ST X	49 STO- 03
06 CLA	28 ISG ST X	50 RCL 19
07 XEQ 10	29 GTO H	51 →HR
08 CLMENU	30 CLX	52 180
09►LBL 50	31 RTN	53 +
10 "BRNG"	32►LBL 51	54 STO 10
11 KEY 1 GTO F	33 INDEX "SW"	55 STO 00
12 "CODE"	34 RCL 07	56 CLX
13 KEY 2 GTO A	35 STOEL	57 GTO "TRAV"
14 "AZIM"	36 +	58►LBL A
15 KEY 3 GTO B	37 RCL 08	59 XEQ "CODE"
16 "DIST"	38 STOEL	60►LBL B
17 KEY 4 GTO G	39 CLX	61 1
18 "O/S"	40 RTN	62►LBL F
19 KEY 5 GTO D	41►LBL C	63 SF 10
20 "TRAV"	42 INDEX "SW"	64 XEQ "A1"
21 KEY 6 GTO C	43 RCLEL	65►LBL e
22 MENU	44 STO 07	66 FC? 95

67 STO 04	97 XEQ 00	127 FS?C 96
68 FS? 95	98 RCL 04	128 GTO 02
69 STO 00	99 RCL- 10	129 XEQ 02
70 CLX	100 SIN	130 RCL 05
71 FS? 95	101 RCLx 11	131 X<> 12
72 SF 97	102 STO 07	132 STO 05
73 SF 95	103►LBL b	133 XEQ 01
74 FC? 97	104 CF 95	134 GTO 02
75 RTN	105 XEQ 00	135►LBL 10
76 FS? 97	106 RCL 07	136 CLA
77 GTO a	107 X ²	137 "Begin @ Pt#?"
78 RTN	108 RCL 04	138 F"4"
79►LBL G	109 RCL- 10	139 FC? 83
80 FC? 98	110 RCL 11	140 PROMPT
81 STO 05	111 →REC	141 FC? 83
82 FS? 98	112 FS? 96	142 XEQ "POUT"
83 STO 07	113 GTO 05	143 FS? 83
84 FS? 95	114 R+	144 XEQ "OUT"
85 STO 07	115 X ²	145 STO 01
86 FS? 95	116 -	146 R+
87 GTO b	117 SQRT	147 STO 06
88 FS? 98	118 R ²	148 CF 10
89 SF 99	119 X<>Y	149 R ²
90 FS? 99	120 -	150 FC? 83
91 GTO c	121 STO 12	151 XEQ "C ² "
92 SF 98	122 LASTX	152 "End Pt#?"
93 CLX	123 R ²	153 F"4"
94 RTN	124 +	154 PROMPT
95►LBL D	125►LBL 05	155 STO 16
96 SF 96	126 STO 05	156 XEQ "POUT"

157 STO 03	187 RCL- 04	217 XEQ 01
158 R+	188 SIN	218►LBL 02
159 STO 02	189 +	219 CF 10
160 "Save as #?"	190 STO 05	220 RCL 04
161 F"4"	191 GTO 02	221 RCL 05
162 PROMPT	192►LBL c	222 →REC
163 STO 15	193 CF 95	223 XEQ 03
164 CF 95	194 XEQ 00	224 ADV
165 SF 10	195 RCL 05	225 RCL 04
166 FIX 04	196 →POL	226 RCL 05
167 CLX	197 X ²	227 →REC
168 RTN	198 RCL 07	228 RCL+ 06
169►LBL 00	199 X ²	229 STO 08
170 RCL 03	200 -	230 X<>Y
171 RCL- 01	201 RCL+ 11	231 RCL+ 01
172 RCL 02	202 RCL+ 05	232 STO 09
173 RCL- 06	203 2	233 RCL 15
174 XEQ 03	204 +	234 STO 13
175 STO 10	205 ACOS	235 R+
176 X<>Y	206 RCL 10	236 XEQ "IN"
177 STO 11	207 X<>Y	237 XEQ "OUT"
178 RTN	208 -	238 XEQ "C ⁴ "
179►LBL a	209 STO 12	239 RCL 02
180 CF 95	210 LASTX	240 RCL 03
181 XEQ 00	211 RCL+ 10	241 RCL- 09
182 RCL 00	212 STO 04	242 X<>Y
183 RCL- 10	213 XEQ 02	243 RCL- 08
184 SIN	214 RCL 12	244 XEQ 03
185 RCL ^x 11	215 X<> 04	245 RCL 16
186 RCL 00	216 STO 12	246 STO 13

247 RCL 02	261 →HMS	275 AVIEW
248 RCL 03	262 SF 88	276 XEQ "YN"
249 ADV	263 XEQ "A→B"	277 SF 21
250 XEQ "C+"	264 CF 88	278 FS?C 10
251 RTN	265 FIX 03	279 RTN
252 GTO 50	266 ↑"Dist = "	280 STOP
253LBL 03	267 ARCL 14	281LBL 04
254 →POL	268 AVIEW	282 X>0?
255 STO 14	269 FIX 04	283 RTN
256 X<>Y	270 RTN	284 360
257 XEQ 04	271LBL 01	285 +
258 FS? 10	272 CLMENU	286 RTN
259 RTN	273 "2nd Solution"	287 .END.
260 ADV	274 CF 21	


As always, it's important to proof-read the program before trying it out.

Then try the keystroke examples on the following pages, to get the feel of the different routines.

NOTE: Distance-Distance and Bearing-Distance solutions can "blow" if the angle of intersection is close to 90°! From 89°58'55" to 90°00'00" the sine is 1 to the nearest 7 places, and the cosine is 0 at 90°, not allowing division, since the calculator is programmed to not divide if the number in the x-register is 0.

Quite often, when this happens, the correct answer lies half-way between the answers output as the 1st and 2nd solutions. If both solutions lie in the same quadrant and the coordinates are very close in both results, try using the mean northing and easting by averaging the coordinates.

Before beginning with the keystroke examples, we need to store points 1 and 2 in the illustration below.

We'll start with an example using the bearing-bearing routine.

prompt: Begin @ Pt#?

keystrokes:

1 R/S

output: #1 $\begin{matrix} N= \\ E= \end{matrix}$ 150.0000
175.0000

prompt: End Pt#?

keystrokes:

2 R/S

prompt: Save as #?

keystrokes:

3 R/S

display: 0.0000

BRNG CODE AZIM DIST D/S TRAV

keystrokes:

1 5 . 3 0 3 ENTER

1 BRNG

display: 0.0000

BRNG CODE AZIM DIST D/S TRAV

keystrokes:

3 2 . 4 5 1 ENTER

2 BRNG

output: N 15°30'29.8" E

Dist = 235.467

**#3 $\begin{matrix} N= \\ E= \end{matrix}$ 376.8941
237.9586**

S 32°45'10.2" E

Dist = 299.513

**#2 $\begin{matrix} N= \\ E= \end{matrix}$ 125.0000
400.0000**

Next, try an example of the offset routine, using the same illustration for this example.

keystrokes:

XEO INT-X

prompt: Begin @ Pt#?

keystrokes:

1 R/S

output:

#1 N= 150.0000
E= 175.0000

prompt: End Pt#?

keystrokes:

2 R/S

prompt: Save as #?

keystrokes:

3 R/S

display: 0.0000

BRNG CODE AZIM DIST D/S TRAV

Since the bearing that we want (from 1 to 3) is still stored from the last example, let's just call it up from storage:

keystrokes:

1 . 0 0 3 CODE

When the display clears to 0.0000 and the prompt bar appears, indicate that this is an OFFSET:

keystroke:

INT

output:

N 15°30'30.0" E
Dist = 36.070

#3 N= 184.7571
E= 184.6444

S 74°29'30.0" E
Dist = 223.493

#2 N= 125.0000
E= 400.0000

For a last example, which also uses the 'second solution', do the distance-distance intersection, using the same coordinates as in the illustration, and the distances which were output in the first example.

Answer the beginning prompts with the same point numbers as in the other two examples, and then input the first distance

keystrokes:

2 3 5 . 4 6 7

DIST

When the display clears to 0.0000 and the prompt bar appears, input the second distance

keystrokes:

2 9 9 . 5 1 3

DIST

The output which follows is not the correct answer for the directions we are going:

output: S 2°49'40.4" E
 Dist = 235.467
 #3 N = -85.1803
 E = 186.6170
 N 45°25'59.6" E
 Dist = 299.513
 #2 N = 125.0000
 E = 400.0000

prompt: 2nd Solution

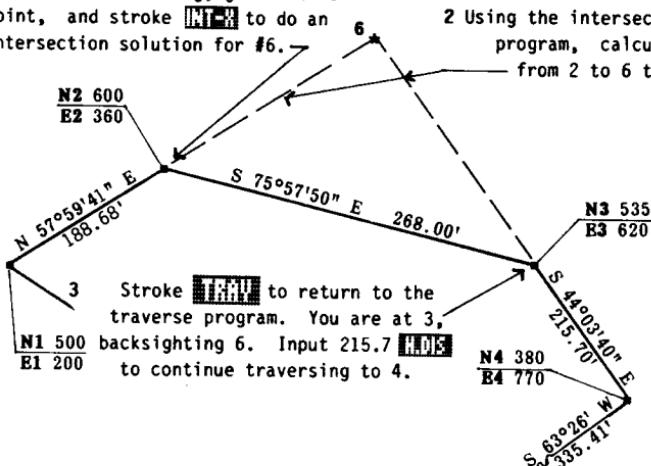
YES **NO** [REDACTED]

keystroke:

YES

output: N 15°30'29.8" E
 Dist = 235.467
 #3 N = 376.8941
 E = 237.9586
 S 32°45'10.2" E
 Dist = 299.513
 #2 N = 125.0000
 E = 400.0000

If you are not using a printer while working this routine, you must continue to stroke the **R/S** key after output, until a new prompt appears or the display clears.


interfacing with "TRAV"

You will have noticed that "TRAV" is also displayed in your prompt bar. You cannot go directly to the traverse program from this program unless you originally started out there.

What you CAN do is go to the intersection program from the traverse program, and then return to the traverse.

1 You can be traversing, get to this point, and stroke **INT** to do an intersection solution for #6.

2 Using the intersection program, calculate from 2 to 6 to 3.

OPTIONS

DECISIONS, DECISIONS, DECISIONS!!

We have arrived at a point where you have to decide how to configure your calculator.

point storage

If you have input all of the programs so far, you should be able to store about 210 points, and you have a good basic set of programs for most traverse problems.

From here on, each program you add is a trade for point storage. Decide which programs you really need and how many stored points you actually need for YOUR normal work. To help with this we will tell you how many points each of the following programs will replace.

a recommendation

Adding the routine to the right to the traverse program, and changing the two steps shown, will replace 19 registers, but allows you to use "TRIG", "A→B" and "B→A" without leaving the traverse program. Typing in the programs on the next page adds three valuable programs to your set.

The new routine should go directly above LBL 29 in the traverse program, the other two steps replace existing steps. If you did not do the modification for the intersection program, the step numbers will be 2 smaller.

Replace 70 KEY 7 GTO 31 with 70 KEY 7 GTO 60

Replace 89 KEY 8 GTO 15 with 89 KEY 8 GTO 60

92LBL 60
93 CLMENU
94 "SPRAY"
95 KEY 1 GTO "SPRAY"
96 "LOAD"
97 KEY 2 GTO "LOAD"
98 "DUMP"
99 KEY 3 GTO "DUMP"
100 "TRIG"
101 KEY 4 GTO 61
102 "B→A"
103 KEY 5 GTO 62
104 "A→B"
105 KEY 6 GTO 63
106 KEY 7 GTO 31
107 KEY 8 GTO 15
108 MENU
109 RTN
110LBL 61
111 SF 83
112 XEQ "TRIG"
113 GTO 15
114LBL 62
115 XEQ "B→A"
116 GTO 15
117LBL 63
118 XEQ "A→B"
119 GTO 15

We feel that you'll get a lot of use out of these three short programs, particularly "**SPRAY**", which is used for radial stakeout.

01►LBL "DUMP"	26 CF 00	51 X<>Y
02 XEQ "BLK"	27 "Inst @?"	52 X<0?
03 X<>Y	28 ←" "	53 XEQ 01
04 1	29 PROMPT	54 →HMS
05 -	30 XEQ "POUT"	55 ←" " AZ: "
06 1E3	31 STO 08	56 XEQ "DMS"
07 ÷	32 R↓	57 ←" " HD: "
08 +	33 STO 07	58 ARCL 23
09 STO 13	34 "Inst @ "	59 AVIEW
10►LBL B	35 XEQ 09	60 ADV
11 XEQ "OUT"	36 FS? 55	61 GTO A
12 XEQ "C↑"	37 AVIEW	62►LBL 01
13 ISG 13	38 RDY	63 360
14 GTO B	39►LBL A	64 +
15 RTN	40 CLA	65 RTN
16►LBL "LOAD"	41 "Pt #?←"	66►LBL 09
17 KEY 9 GTO 10	42 PROMPT	67 FIX 00
18 "Point #?←"	43 XEQ "POUT"	68 CF 29
19 PROMPT	44 CLA	69 ARCL 13
20 XEQ "PIN"	45 XEQ 09	70 FIX 04
21 GTO "LOAD"	46 RCL- 08	71 SF 29
22►LBL "SPRAY"	47 X<>Y	72 RTN
23 KEY 9 GTO 10	48 RCL- 07	73►LBL 10
24 SF 21	49 →POL	74 CLMENU
25 XEQ "CL"	50 STO 23	75 EXITALL
		76 END

All three may be accessed directly from your traverse program, using the new menu (page 49). A short description of each follows.

dump

```
#1 N= 1000.0000  
E= 5000.0000  
#2 N= 1254.0000  
E= 5100.0000  
#3 N= 902.0000  
E= 4825.0000  
#4 N= 865.0000  
E= 4825.0000
```

When you stroke **ENTER**, you are prompted for the first and last point numbers you wish to output.

The calculator will print out a complete list (left) of all of the coordinates within that block of stored coordinates.

The printout can be made on the infra-red printer or through your computer, if you are using one of Rush Systems' "hookups". With the hookup, save a little time by setting the "delay" to 0 on your calculator first.

load

This one runs a closed loop on "PIN" for input of coordinates. When you execute this program you will get a new prompt for point number immediately after input of each coordinate pair, eliminating the need for executing "PIN" each time when you want to input a group of coordinates.

spray

When this program is executed it first prompts for the point number of the instrument's location, then prompts for the next point number continuously, inverting to each of the points.

The output is as shown to the right ("Inst @ X" is only output if a printer is being used).

Inst @ 2
1 AZ: 201°29'22.6"
2 HD: 272.9762
3 AZ: 217°59'55.4"
4 HD: 446.6867
4 AZ: 214°09'47.9"
5 HD: 470.1245

Inverse to the backsight first, setting that azimuth in the gun when you backsight. Turn the azimuth of each of the other points to lay them out.

If you want to lay out a group of unstored points from a provided "dump sheet", simply input them with "LOAD" and then inverse them with "SPRAY".

purg-ing a file

This is another handy utility program, and it's practically free, using only 21 bytes of program space.

Use it to clear a block of stored coordinates when you need to make room for new calculations.

Input the 'code' form for the block of points you want to clear, and THEN execute "PRGE" (short for **PuRGE**).

The block of coordinates is cleared by storing 0 into each of the storage registers.

```
01LBL "PRGE"  
02 STO 13  
03LBL F  
04 CLST  
05 XEQ "IN"  
06 ISG 13  
07 GTO F  
08 END
```

Before clearing the coordinates, you might want to print them out, so that you have a permanent record of them. Use "**DUMP**" for this. Incidentally, if you want more places shown in the output, you can change the output with **FIX 06** or **FIX 08** before executing "**DUMP**" (See pg. 12).

setting the radius point

The footnote on page 26 mentioned this program; it adds the radius point to the output when you traverse a curve. It's a trade for about 5 stored points if you add it. Because it is NOT a routine you will be calling up directly, you can add it anywhere in the middle of program memory.

Also, because it doesn't have any local labels, it isn't necessary to have it as a separate program, and it can be tacked on to any of the other subroutines.

```
insert  
210 FS? 82  
211 XEQ "RP"  
    200 ..  
here 209 STO+ 05  
    210 RCL 18  
    211 CLMENU  
    212 RTN "
```

Before starting to type in "**RP**", modify the program, "**CURVE**" as shown to the left by adding in two additional program steps.

The subroutine is actually called from this program while you are traversing a curve.

```

00 { 79-Byte Prgm }
01 LBL "RP"           11 +
02 CLMENU             12 RCL 11      21 STO 13
03 RCL 00             13 →REC        22 R+
04 RCL 12             14 RCL+ 07      23 XEQ "IN"
05 FS? 05             15 RCL+ 02      24 XEQ "OUT"
06 +/-                16 X<Y         25 ADV
07 -                  17 RCL+ 08      26 "Radius Pt: "
08 90                18 RCL+ 03      27 FS? 55
09 FS?C 05            19 "Rad. Pt#? " 28 AVIEW
10 +/-                20 PROMPT      29 XEQ "C↑"
11 +
12 RCL 11
13 →REC
14 RCL+ 07
15 RCL+ 02
16 X<Y
17 RCL+ 08
18 RCL+ 03
19 "Rad. Pt#? "
20 PROMPT
21 STO 13
22 R+
23 XEQ "IN"
24 XEQ "OUT"
25 ADV
26 "Radius Pt: "
27 FS? 55
28 AVIEW
29 XEQ "C↑"
30 RTN

```

The routine is run automatically, but there are a couple of things that you must remember to do.

When the prompt "Rad. Pt#?" appears, you **MUST** input a point number before stroking the RUN button.

DELTA = 56.54800
 T = 174.5329
 T = 88.1635
 C = 173.6482

Radius Pt:
#2 R= 128.9899
E= 769.8463

HD = 173.6482
#3 N= 450.3837
E= 386.8241

When the program returns to the traverse routine and prompts for a point number after output of the chord, you **MUST** input a point number.

You can not just stroke the RUN button for the next consecutive point number. Output is as shown above.

additional programming

The pages which follow contain additional programs which you may add as options to what you already have in your calculator. The number of stored points traded by adding these programs is as follows:

Curve LAYout ±29 points

Coordinate ROTation ±39 points

PREdetermined Areas ±33 points

automatic angle adjustment

After a traverse is closed, but before adjustment by compass or transit method, the angles should be balanced.

If you will refer back to the traverse example on page 30, you'll note that the original basis of bearings was N $27^{\circ}30'00''$ E.

After turning the angles through the traverse we ended up with the same line, but it now shows the bearing as N $27^{\circ}30'16''$ E, indicating that we have $16''$ too much angle in the traverse.

When you divide the $16''$ by the 4 traverse points, you get an angular error of $4''$ per turn.

While this is an acceptable amount of angular error, it still needs to be adjusted out. That's what this program does.

The program actually recalls, then adjusts, each bearing in the traverse. More, having adjusted the bearing (or azimuth), it goes on to use the new bearing to recalculate (and store) the coordinates of each traverse point.

Go to
314 \blacktriangleright LBL 38 This subroutine is called up directly from the closure routine in the traverse program. One step (see left) has to be added to the traverse program.
315 XEQ "ADJ" ↗ add this step

Stroke shift, XEQ (GTO), TRAV then shift XEQ 38. Enter program mode, and the program pointer should be at "LBL 38". The step number may be different, depending on which options you've already installed, but the important thing is that the new step be the first step in LABEL 38.

Type in the new step, and we'll go on to type in the subroutine.

#1 N= 300.0000
E= 300.0000

N $27^{\circ}30'00.0''$ E
N $84^{\circ}13'04.0''$ E
HD = 150.2000

#2 N= 315.1323
E= 449.4358

S $25^{\circ}00'08.0''$ W
HD = 206.5500

#3 N= 127.9378
E= 362.1367

N $82^{\circ}09'18.0''$ W
HD = 142.9000

#4 N= 147.4427
E= 220.5741

N $27^{\circ}30'16.0''$ E
HD = 172.0000

#5 N= 300.0024
E= 300.0067

The program can go anywhere into the middle of the subroutine stack. Go to any of the subroutines that starts with program step 01, scroll up to 00, and begin the input.

01LBL "ΔRDJ"	24 STO 14	47 XEQ "OUT"
02 RCL 13	25 R↓	48 STO 08
03 STO 24	26 STO 07	49 R↓
04 1	27 STO 16	50 STO 07
05 +	28LBL A	51 RCL 16
06 STO 22	29 RCL 22	52 RCL 14
07 CF 22	30 RCL 13	53 XEQ "IN"
08 "Error/Turn?4"	31 X=Y?	54 1
09 PROMPT	32 GTO B	55 STO+ 12
10 FC? 22	33 XEQ "POUT"	56 STO+ 13
11 RTN	34 RCL- 08	57 GTO A
12 1E4	35 X<>Y	58LBL B
13 ÷	36 RCL- 07	59 RCL 23
14 →HR	37 →POL	60 XEQ "POUT"
15 +/-	38 X<>Y	61 STO 08
16 STO 11	39 RCL 11	62 R↓
17 CLX	40 RCL× 12	63 STO 07
18 STO 12	41 +	64 RCL 24
19 "Beginning Pt#?4"	42 X<>Y	65 XEQ "POUT"
20 PROMPT	43 →REC	66 RCL- 08
21 STO 23	44 STO+ 16	67 STO 03
22 XEQ "POUT"	45 X<>Y	68 R↓
23 STO 08	46 STO+ 14	69 RCL- 07
		70 STO 02

Now, type in XEQ END, for program step 71. This assures that you won't branch to the wrong "LABEL A" or "LABEL B" by separating this program from the others.

In order to angle adjust a type "B" traverse such as the one on pages 31 and 32, it would be necessary to occupy point #3 = #4(existing) and turn a closing angle to the known course to determine the angular error.

With this routine installed, part of the traverse closure program will prompt:

Error/Turn?

If you DO NOT want to adjust the angles, return to the closure by stroking

R/S

If you DO want to adjust the angles, input the number of **seconds** of error per turn, and then stroke

R/S

Beginning Pt#?

This prompt will appear if you ARE adjusting the angles. Input the point number used for the first traverse point, and stroke

R/S

Closure: The calculator will do the adjusting of
N 81°03'29.4" W the angles **and** coordinates, then
HD = 0.0007 continue with the closure. For the
#1 N= 300.0000 traverse example from pages 29 and 30,
E= 300.0000 the angle adjustment has reduced the
Prcn= 1:914501 closure error to 0.0007', with ten times
the precision of the original example.

additional HP-42S programming

Programming Examples and Techniques
Hewlett-Packard. Supplements the 42S owner's manual.

Synthetic Programming on the HP-42S
EduCALC Technical Notes (TN#24) by Richard Nelson.
Free (send a 25¢ stamp with your request) from

EduCALC Mail Store
27953 Cabot Road
Laguna Niguel, CA 92677

Individual solutions booklets (available summer 1989)
by D'Zign. Titles will include:

Vertical Alignment EDM Slope Staking Topography
Alignment and Offsets Spiral Curves Urban Surveys

CURVE LAYOUT

This program makes short work of calculating the layout of curves. Corrected chords are output if the curve is to be staked along an offset by the chord and deflection method, and adjusted tangent distances and offsets are output if you want to stake an offset by the tangent-offset method.

the subroutine, "STA"

```
01►LBL "STA"
02 CF 29
03 FIX 00
04 STO 21
05 1E2
06 +
07 ENTER
08 IP
09 "t"
10 ARCL ST X
11 -
12 F"+"
13 FIX 03
14 1E2
15 x
16 10
17 X?Y?
18 F"0"
19 ARCL ST Y
20 RCL 21
21 SF 29
22 FIX 04
23 RTN
```

There is one subroutine to be input for this program, shown to the left. Since it is not a routine you would normally call directly from the keyboard, it can go at the end portion of the program catalogue.

Go to "INV", enter the program mode, and then scroll upward to step 00 to begin typing in the program steps shown.

This subroutine changes a number, XXXX.xx, into the 'station' form, XX+XX.xx. This enhances the output and makes for one less chance to mistake a number for something else.

"Station 1,234.56" does not read as a station to most surveyors, while 12+34.56 is immediately recognized as a station even if it isn't labeled "station".

The step '1E2' (05 and 14) is input with the "E" key just to the left of the clear key. Stroke **E,2** and then the 'divide' (step 05) or 'times' (step 14) key to complete the entry.

editing "CURVE"

Since this program also uses "CURVE" as a subroutine, you have to do some quick editing.

Go to "CURVE", then go to step 147 and insert the two new steps shown to the right.

```
148 FS? 95
149 GTO "CLAY"
```

The new steps inserted into "CURVE" will send program execution back to the layout program after the curve data has been calculated.

The main program, "Curve LAYout", should be near the top of program memory, for easy access. Go to "COMP" or "TRAN", (whichever you input), and scroll upward to 00. Begin input of the program steps shown below.

01►LBL "CLAY"	25 CLMENU	49 GTO 02
02 FS?C 95	26 "B.C."	50►LBL 05
03 GTO 00	27 KEY 1 GTO 01	51 STO 08
04 CF 02	28 "P.I."	52 RCL- 24
05 CF 03	29 KEY 3 GTO 03	53 STO 06
06 CF 04	30 "E.C."	54 RCL+ 20
07 CF 06	31 KEY 5 GTO 05	55 STO 14
08 CF 07	32 MENU	56►LBL 02
09 SF 08	33 "Known Station?"	57 RCL 06
10 SF 09	34 PROMPT	58 STO 07
11 SF 95	35►LBL 01	59 XEQ "STA"
12 GTO "CURVE"	36 STO 06	60 F" B.C.4"
13►LBL 00	37 RCL+ 20	61 AVIEW
14 ADV	38 STO 14	62 RCL 14
15 1	39 RCL 06	63 XEQ "STA"
16 STO 16	40 RCL+ 24	64 F" P.I.4"
17 0	41 STO 08	65 AVIEW
18 STO 15	42 GTO 02	66 RCL 08
19 STO 09	43►LBL 03	67 XEQ "STA"
20 RCL 11	44 STO 14	68 F" E.C.4"
21 →RAD	45 RCL- 20	69 AVIEW
22 2	46 STO 06	70►LBL 04
23 x	47 RCL+ 24	71 CLMENU
24 STO 05	48 STO 08	72 "4&LC"

73 KEY 2 GTO A	103►LBL F	133 x
74 "4&SC"	104 CLA	134 RCL x 16
75 KEY 4 GTO B	105 XEQ "STA"	135 RTN
76 "T O/S"	106 AVIEW	136►LBL 03
77 KEY 6 GTO C	107 RCL- 07	137 FIX 03
78 MENU	108►LBL 08	138 →HMS
79 CLA	109 RCL 08	139 "Chd = "
80 PROMPT	110 RCL- 07	140 FC? 09
81►LBL A	111 X<>Y	141 ARCL ST Z
82 SF 03	112►LBL 10	142 FS? 09
83 GTO 10	113 SF 07	143 ARCL ST Y
84►LBL B	114►LBL 09	144 AVIEW
85 CF 09	115 STO+ 07	145 "Def. 4 = "
86 SF 03	116 XEQ 02	146 FS? 05
87 GTO 10	117 RCL 07	147 +/-
88►LBL C	118 FC? 07	148 0
89 CF 09	119 XEQ 20	149 X<>Y
90 CF 08	120 RCL- 06	150 X<Y?
91 SF 04	121 XEQ 02	151 360
92►LBL 10	122 RCL 10	152 HMS+
93 CLMENU	123 FS? 03	153 XEQ "DMS"
94 "O/S"	124 GTO 03	154 AVIEW
95 KEY 1 GTO D	125 FS? 04	155 CLA
96 "INTVL"	126 GTO 04	156 FS? 02
97 KEY 3 GTO E	127►LBL 02	157 GTO 15
98 "STA"	128 RCL÷ 05	158 GTO 10
99 KEY 5 GTO F	129 STO 10	159►LBL 04
100 MENU	130 SIN	160 FIX 03
101 CLA	131 RCL x 11	161 X<>Y
102 PROMPT	132 2	162 →REC

163 X<>Y	180 RTN	197 FS? 06
164 FS? 05	181►LBL D	198 F"! LT"
165 +/-	182 STO 15	199 AVIEW
166 RCL 15	183 FIX 02	200 ADV
167 +	184 X<0?	201 FIX 04
168 X<>Y	185 SF 06	202 GTO 10
169 "Dist = "	186 FC? 05	203►LBL 15
170 ARCL ST X	187 +/-	204 RCL 08
171 F"40/S = "	188 RCL+ 11	205 RCL 09
172 ARCL ST Y	189 RCL÷ 11	206 RCL+ 07
173 AVIEW	190 STO 16	207 X<Y?
174 FS? 02	191 RCL 15	208 GTO F
175 GTO 15	192 ABS	209 ADV
176 GTO 10	193 "Offset = "	210 O
177►LBL E	194 ARCL ST X	211 STO 09
178 STO 09	195 FC? 06	212 CF 02
179 SF 02	196 F"! RT"	213 GTO 10
		214 END

To use the curve layout program stroke **XEQ**, then the key which corresponds to "CLAY". This brings up the first prompt bar

1. Input the two known parts of the curve, the same as when you use the curve calculation program, "CURVE"

Output will be the curve data for the curve, through the output of the chord.

Known Station?

2. Input the station at the B.C., P.I. or E.C. and stroke the key which corresponds to the station input.

Output will be the stations of the B.C., P.I. and E.C., followed by the prompt bar for selection of the type of layout you want,

- 3a. For deflection and LONG chord,

- 3b. For deflection and SHORT chord,

- 3c. For tangent-offset solution, stroke

4. If the curve is to be staked along an offset to centerline, input the offset distance (stroke the +/- key if the offset is to the left of centerline) and stroke

5. If you want to calculate stations at constant intervals, input the interval distance and then stroke

6.

Input the first station for which you want a solution, stroke

Output will be the station and either the deflection/chord or tangent/offset solution to the station.

If you have selected an interval, the program will continue through the curve without further input. When the interval stations have been completed the program will again display the prompt bar, allowing you to input additional stations which were not on even interval stations (inlet locations, etc.).

The example shown to the right is the solution for a curve with a radius of 500.00' and a central angle of 30°00'00", solved for deflection and long chord, along an offset of 10.00' left.

An additional station at 11+61.27 was calculated for the location of the centerline of a driveway.

As always, if you are not using a printer continue to stroke the R/S key for additional output or the next prompt.

You might want to try the same curve to see if you get these answers. If you don't, you should re-proof the program listing for incorrect steps.

```
R = 500.0000
D = 11°27'33.0"
DELT A = 30°00'00.0"
L = 281.7994
T = 133.9746
C = 258.8190

10+00.000 B.C.

11+33.975 P.I.

12+61.799 E.C.
Offset = 10.00' LT

10+50.000
Chd = 50°27.9
Def.Δ = 2°51'53.2"
11+00.000
Chd = 101.830
Def.Δ = 5°43'46.5"
11+50.000
Chd = 156.427
Def.Δ = 8°35'39.7"
12+00.000
Chd = 202.643
Def.Δ = 11°27'33.0"
12+50.000
Chd = 258.352
Def.Δ = 14°19'26.2"
13+00.000
Chd = 314.061
Def.Δ = 17°17'14.3"
13+50.000
Chd = 379.770
Def.Δ = 20°5'44.7"
14+00.000
Chd = 445.479
Def.Δ = 23°43'24.3"
14+50.000
Chd = 511.188
Def.Δ = 26°29'04.7"
15+00.000
Chd = 576.897
Def.Δ = 29°15'44.7"
15+50.000
Chd = 642.606
Def.Δ = 31°53'24.3"
16+00.000
Chd = 708.315
Def.Δ = 34°30'04.7"
16+50.000
Chd = 774.024
Def.Δ = 37°16'44.3"
17+00.000
Chd = 839.733
Def.Δ = 40°02'24.7"
17+50.000
Chd = 905.442
Def.Δ = 42°48'04.3"
18+00.000
Chd = 971.151
Def.Δ = 45°34'44.7"
18+50.000
Chd = 1036.860
Def.Δ = 48°21'24.3"
19+00.000
Chd = 1102.569
Def.Δ = 51°7'04.7"
19+50.000
Chd = 1168.278
Def.Δ = 53°53'44.3"
20+00.000
Chd = 1233.987
Def.Δ = 56°30'24.7"
20+50.000
Chd = 1309.696
Def.Δ = 59°16'04.3"
21+00.000
Chd = 1385.405
Def.Δ = 61°53'44.7"
21+50.000
Chd = 1451.114
Def.Δ = 64°30'24.3"
22+00.000
Chd = 1526.823
Def.Δ = 67°7'04.7"
22+50.000
Chd = 1602.532
Def.Δ = 70°53'44.3"
23+00.000
Chd = 1678.241
Def.Δ = 73°30'24.7"
23+50.000
Chd = 1753.950
Def.Δ = 76°16'04.3"
24+00.000
Chd = 1829.659
Def.Δ = 78°53'44.7"
24+50.000
Chd = 1905.368
Def.Δ = 81°30'24.3"
25+00.000
Chd = 1971.077
Def.Δ = 84°7'04.7"
25+50.000
Chd = 2046.786
Def.Δ = 86°53'44.3"
26+00.000
Chd = 2112.495
Def.Δ = 89°30'24.7"
26+50.000
Chd = 2188.204
Def.Δ = 92°16'04.3"
27+00.000
Chd = 2253.913
Def.Δ = 94°53'44.7"
27+50.000
Chd = 2329.622
Def.Δ = 97°30'24.3"
28+00.000
Chd = 2385.331
Def.Δ = 100°7'04.7"
28+50.000
Chd = 2461.040
Def.Δ = 102°53'44.3"
29+00.000
Chd = 2526.749
Def.Δ = 105°30'24.7"
29+50.000
Chd = 2602.458
Def.Δ = 108°16'04.3"
30+00.000
Chd = 2648.167
Def.Δ = 110°53'44.7"
30+50.000
Chd = 2723.876
Def.Δ = 113°30'24.3"
31+00.000
Chd = 2769.585
Def.Δ = 116°7'04.7"
31+50.000
Chd = 2845.294
Def.Δ = 118°53'44.3"
32+00.000
Chd = 2891.003
Def.Δ = 121°30'24.7"
32+50.000
Chd = 2966.712
Def.Δ = 124°16'04.3"
33+00.000
Chd = 3002.421
Def.Δ = 126°53'44.7"
33+50.000
Chd = 3078.130
Def.Δ = 129°30'24.3"
34+00.000
Chd = 3114.839
Def.Δ = 132°7'04.7"
34+50.000
Chd = 3190.548
Def.Δ = 134°53'44.3"
35+00.000
Chd = 3232.257
Def.Δ = 137°30'24.7"
35+50.000
Chd = 3307.966
Def.Δ = 140°16'04.3"
36+00.000
Chd = 3334.675
Def.Δ = 143°53'44.7"
36+50.000
Chd = 3410.384
Def.Δ = 146°30'24.3"
37+00.000
Chd = 3446.093
Def.Δ = 149°7'04.7"
37+50.000
Chd = 3521.802
Def.Δ = 151°53'44.3"
38+00.000
Chd = 3557.511
Def.Δ = 154°30'24.7"
38+50.000
Chd = 3633.220
Def.Δ = 157°16'04.3"
39+00.000
Chd = 3673.929
Def.Δ = 160°53'44.7"
39+50.000
Chd = 3749.638
Def.Δ = 163°30'24.3"
40+00.000
Chd = 3785.347
Def.Δ = 166°7'04.7"
40+50.000
Chd = 3861.056
Def.Δ = 168°53'44.3"
41+00.000
Chd = 3902.765
Def.Δ = 171°30'24.7"
41+50.000
Chd = 3978.474
Def.Δ = 174°16'04.3"
42+00.000
Chd = 4020.183
Def.Δ = 177°53'44.7"
42+50.000
Chd = 4095.892
Def.Δ = 180°30'24.3"
43+00.000
Chd = 4112.591
Def.Δ = 183°7'04.7"
43+50.000
Chd = 4188.200
Def.Δ = 185°53'44.3"
44+00.000
Chd = 4234.899
Def.Δ = 188°30'24.7"
44+50.000
Chd = 4310.608
Def.Δ = 191°16'04.3"
45+00.000
Chd = 4337.317
Def.Δ = 194°53'44.7"
45+50.000
Chd = 4413.026
Def.Δ = 197°30'24.3"
46+00.000
Chd = 4444.735
Def.Δ = 200°7'04.7"
46+50.000
Chd = 4520.444
Def.Δ = 202°53'44.3"
47+00.000
Chd = 4552.153
Def.Δ = 205°30'24.7"
47+50.000
Chd = 4627.862
Def.Δ = 208°16'04.3"
48+00.000
Chd = 4659.571
Def.Δ = 211°53'44.7"
48+50.000
Chd = 4735.280
Def.Δ = 214°30'24.3"
49+00.000
Chd = 4767.989
Def.Δ = 217°7'04.7"
49+50.000
Chd = 4843.698
Def.Δ = 219°53'44.3"
50+00.000
Chd = 4879.407
Def.Δ = 222°30'24.7"
50+50.000
Chd = 4955.116
Def.Δ = 225°16'04.3"
51+00.000
Chd = 5000.825
Def.Δ = 228°53'44.7"
51+50.000
Chd = 5076.534
Def.Δ = 231°30'24.3"
52+00.000
Chd = 5108.243
Def.Δ = 234°7'04.7"
52+50.000
Chd = 5183.952
Def.Δ = 236°53'44.3"
53+00.000
Chd = 5210.661
Def.Δ = 239°30'24.7"
53+50.000
Chd = 5286.370
Def.Δ = 242°16'04.3"
54+00.000
Chd = 5312.079
Def.Δ = 245°53'44.7"
54+50.000
Chd = 5387.788
Def.Δ = 248°30'24.3"
55+00.000
Chd = 5413.497
Def.Δ = 251°7'04.7"
55+50.000
Chd = 5499.206
Def.Δ = 253°53'44.3"
56+00.000
Chd = 5525.915
Def.Δ = 256°30'24.7"
56+50.000
Chd = 5601.624
Def.Δ = 259°16'04.3"
57+00.000
Chd = 5628.333
Def.Δ = 262°53'44.7"
57+50.000
Chd = 5694.042
Def.Δ = 265°30'24.3"
58+00.000
Chd = 5720.751
Def.Δ = 268°7'04.7"
58+50.000
Chd = 5796.460
Def.Δ = 270°53'44.3"
59+00.000
Chd = 5822.169
Def.Δ = 273°30'24.7"
59+50.000
Chd = 5897.878
Def.Δ = 276°16'04.3"
60+00.000
Chd = 5923.587
Def.Δ = 279°53'44.7"
60+50.000
Chd = 6000.000
Def.Δ = 282°30'24.3"
61+00.000
Chd = 6028.709
Def.Δ = 285°7'04.7"
61+50.000
Chd = 6094.421
Def.Δ = 287°53'44.3"
62+00.000
Chd = 6120.133
Def.Δ = 290°30'24.7"
62+50.000
Chd = 6195.845
Def.Δ = 293°16'04.3"
63+00.000
Chd = 6221.557
Def.Δ = 296°53'44.7"
63+50.000
Chd = 6307.266
Def.Δ = 299°30'24.3"
64+00.000
Chd = 6333.978
Def.Δ = 302°7'04.7"
64+50.000
Chd = 6409.687
Def.Δ = 304°53'44.3"
65+00.000
Chd = 6435.400
Def.Δ = 307°30'24.7"
65+50.000
Chd = 6511.112
Def.Δ = 310°16'04.3"
66+00.000
Chd = 6536.824
Def.Δ = 313°53'44.7"
66+50.000
Chd = 6612.536
Def.Δ = 316°30'24.3"
67+00.000
Chd = 6638.249
Def.Δ = 319°7'04.7"
67+50.000
Chd = 6713.961
Def.Δ = 321°53'44.3"
68+00.000
Chd = 6744.673
Def.Δ = 324°30'24.7"
68+50.000
Chd = 6819.385
Def.Δ = 327°16'04.3"
69+00.000
Chd = 6845.097
Def.Δ = 330°53'44.7"
69+50.000
Chd = 6920.809
Def.Δ = 333°30'24.3"
70+00.000
Chd = 6946.521
Def.Δ = 336°7'04.7"
70+50.000
Chd = 7021.233
Def.Δ = 338°53'44.3"
71+00.000
Chd = 7047.945
Def.Δ = 341°30'24.7"
71+50.000
Chd = 7123.657
Def.Δ = 344°16'04.3"
72+00.000
Chd = 7153.369
Def.Δ = 347°53'44.7"
72+50.000
Chd = 7229.081
Def.Δ = 350°30'24.3"
73+00.000
Chd = 7254.793
Def.Δ = 353°7'04.7"
73+50.000
Chd = 7330.505
Def.Δ = 355°53'44.3"
74+00.000
Chd = 7356.217
Def.Δ = 358°30'24.7"
74+50.000
Chd = 7431.929
Def.Δ = 361°16'04.3"
75+00.000
Chd = 7457.641
Def.Δ = 364°53'44.7"
75+50.000
Chd = 7533.353
Def.Δ = 367°30'24.3"
76+00.000
Chd = 7569.065
Def.Δ = 370°7'04.7"
76+50.000
Chd = 7644.777
Def.Δ = 372°53'44.3"
77+00.000
Chd = 7665.489
Def.Δ = 375°30'24.7"
77+50.000
Chd = 7741.201
Def.Δ = 378°16'04.3"
78+00.000
Chd = 7766.913
Def.Δ = 381°53'44.7"
78+50.000
Chd = 7842.625
Def.Δ = 384°30'24.3"
79+00.000
Chd = 7868.337
Def.Δ = 387°7'04.7"
79+50.000
Chd = 7944.049
Def.Δ = 389°53'44.3"
80+00.000
Chd = 7974.761
Def.Δ = 392°30'24.7"
80+50.000
Chd = 8050.473
Def.Δ = 395°16'04.3"
81+00.000
Chd = 8076.185
Def.Δ = 398°53'44.7"
81+50.000
Chd = 8151.897
Def.Δ = 401°30'24.3"
82+00.000
Chd = 8177.609
Def.Δ = 404°7'04.7"
82+50.000
Chd = 8253.321
Def.Δ = 406°53'44.3"
83+00.000
Chd = 8279.033
Def.Δ = 409°30'24.7"
83+50.000
Chd = 8354.745
Def.Δ = 412°16'04.3"
84+00.000
Chd = 8380.457
Def.Δ = 415°53'44.7"
84+50.000
Chd = 8456.169
Def.Δ = 418°30'24.3"
85+00.000
Chd = 8476.881
Def.Δ = 421°7'04.7"
85+50.000
Chd = 8552.593
Def.Δ = 423°53'44.3"
86+00.000
Chd = 8578.305
Def.Δ = 426°30'24.7"
86+50.000
Chd = 8654.017
Def.Δ = 429°16'04.3"
87+00.000
Chd = 8683.729
Def.Δ = 432°53'44.7"
87+50.000
Chd = 8759.441
Def.Δ = 435°30'24.3"
88+00.000
Chd = 8785.153
Def.Δ = 438°7'04.7"
88+50.000
Chd = 8860.865
Def.Δ = 440°53'44.3"
89+00.000
Chd = 8886.577
Def.Δ = 443°30'24.7"
89+50.000
Chd = 8962.289
Def.Δ = 446°16'04.3"
90+00.000
Chd = 9000.000
Def.Δ = 449°53'44.7"
90+50.000
Chd = 9075.712
Def.Δ = 452°30'24.3"
91+00.000
Chd = 9101.424
Def.Δ = 455°7'04.7"
91+50.000
Chd = 9177.136
Def.Δ = 457°53'44.3"
92+00.000
Chd = 9202.848
Def.Δ = 460°30'24.7"
92+50.000
Chd = 9278.560
Def.Δ = 463°16'04.3"
93+00.000
Chd = 9304.272
Def.Δ = 466°53'44.7"
93+50.000
Chd = 9380.984
Def.Δ = 469°30'24.3"
94+00.000
Chd = 9400.000
Def.Δ = 472°7'04.7"
94+50.000
Chd = 9475.712
Def.Δ = 474°53'44.3"
95+00.000
Chd = 9501.424
Def.Δ = 477°30'24.7"
95+50.000
Chd = 9577.136
Def.Δ = 480°16'04.3"
96+00.000
Chd = 9600.000
Def.Δ = 483°53'44.7"
96+50.000
Chd = 9675.712
Def.Δ = 486°30'24.3"
97+00.000
Chd = 9700.000
Def.Δ = 489°7'04.7"
97+50.000
Chd = 9775.712
Def.Δ = 491°53'44.3"
98+00.000
Chd = 9800.000
Def.Δ = 494°30'24.7"
98+50.000
Chd = 9875.712
Def.Δ = 497°16'04.3"
99+00.000
Chd = 9900.000
Def.Δ = 500°53'44.7"
99+50.000
Chd = 9975.712
Def.Δ = 503°30'24.3"
100+00.000
Chd = 10000.000
Def.Δ = 506°7'04.7"
100+50.000
Chd = 10075.712
Def.Δ = 508°53'44.3"
101+00.000
Chd = 10100.000
Def.Δ = 511°30'24.7"
101+50.000
Chd = 10175.712
Def.Δ = 514°16'04.3"
102+00.000
Chd = 10200.000
Def.Δ = 517°53'44.7"
102+50.000
Chd = 10275.712
Def.Δ = 519°30'24.3"
103+00.000
Chd = 10300.000
Def.Δ = 522°7'04.7"
103+50.000
Chd = 10375.712
Def.Δ = 524°53'44.3"
104+00.000
Chd = 10400.000
Def.Δ = 527°30'24.7"
104+50.000
Chd = 10475.712
Def.Δ = 529°16'04.3"
105+00.000
Chd = 10500.000
Def.Δ = 532°53'44.7"
105+50.000
Chd = 10575.712
Def.Δ = 535°30'24.3"
106+00.000
Chd = 10600.000
Def.Δ = 538°7'04.7"
106+50.000
Chd = 10675.712
Def.Δ = 540°53'44.3"
107+00.000
Chd = 10700.000
Def.Δ = 543°30'24.7"
107+50.000
Chd = 10775.712
Def.Δ = 545°16'04.3"
108+00.000
Chd = 10800.000
Def.Δ = 548°53'44.7"
108+50.000
Chd = 10875.712
Def.Δ = 550°30'24.3"
109+00.000
Chd = 10900.000
Def.Δ = 553°7'04.7"
109+50.000
Chd = 10975.712
Def.Δ = 555°53'44.3"
110+00.000
Chd = 11000.000
Def.Δ = 558°30'24.7"
110+50.000
Chd = 11075.712
Def.Δ = 560°16'04.3"
111+00.000
Chd = 11100.000
Def.Δ = 563°53'44.7"
111+50.000
Chd = 11175.712
Def.Δ = 565°30'24.3"
112+00.000
Chd = 11200.000
Def.Δ = 568°7'04.7"
112+50.000
Chd = 11275.712
Def.Δ = 570°53'44.3"
113+00.000
Chd = 11300.000
Def.Δ = 573°30'24.7"
113+50.000
Chd = 11375.712
Def.Δ = 575°16'04.3"
114+00.000
Chd = 11400.000
Def.Δ = 578°53'44.7"
114+50.000
Chd = 11475.712
Def.Δ = 580°30'24.3"
115+00.000
Chd = 11500.000
Def.Δ = 583°7'04.7"
115+50.000
Chd = 11575.712
Def.Δ = 585°53'44.3"
116+00.000
Chd = 11600.000
Def.Δ = 588°30'24.7"
116+50.000
Chd = 11675.712
Def.Δ = 590°16'04.3"
117+00.000
Chd = 11700.000
Def.Δ = 593°53'44.7"
117+50.000
Chd = 11775.712
Def.Δ = 595°30'24.3"
118+00.000
Chd = 11800.000
Def.Δ = 598°7'04.7"
118+50.000
Chd = 11875.712
Def.Δ = 600°53'44.3"
119+00.000
Chd = 11900.000
Def.Δ = 603°30'24.7"
119+50.000
Chd = 11975.712
Def.Δ = 605°16'04.3"
120+00.000
Chd = 12000.000
Def.Δ = 608°53'44.7"
120+50.000
Chd = 12075.712
Def.Δ = 610°30'24.3"
121+00.000
Chd = 12100.000
Def.Δ = 613°7'04.7"
121+50.000
Chd = 12175.712
Def.Δ = 615°53'44.3"
122+00.000
Chd = 12200.000
Def.Δ = 618°30'24.7"
122+50.000
Chd = 12275.712
Def.Δ = 620°16'04.3"
123+00.000
Chd = 12300.000
Def.Δ = 623°53'44.7"
123+50.000
Chd = 12375.712
Def.Δ = 625°30'24.3"
124+00.000
Chd = 12400.000
Def.Δ = 628°7'04.7"
124+50.000
Chd = 12475.712
Def.Δ = 630°53'44.3"
125+00.000
Chd = 12500.000
Def.Δ = 633°30'24.7"
125+50.000
Chd = 12575.712
Def.Δ = 635°16'04.3"
126+00.000
Chd = 12600.000
Def.Δ = 638°53'44.7"
126+50.000
Chd = 12675.712
Def.Δ = 640°30'24.3"
127+00.000
Chd = 12700.000
Def.Δ = 643°7'04.7"
127+50.000
Chd = 12775.712
Def.Δ = 645°53'44.3"
128+00.000
Chd = 12800.000
Def.Δ = 648°30'24.7"
128+50.000
Chd = 12875.712
Def.Δ = 650°16'04.3"
129+00.000
Chd = 12900.000
Def.Δ = 653°53'44.7"
129+50.000
Chd = 12975.712
Def.Δ = 655°30'24.3"
130+00.000
Chd = 13000.000
Def.Δ = 658°7'04.7"
130+50.000
Chd = 13075.712
Def.Δ = 660°53'44.3"
131+00.000
Chd = 13100.000
Def.Δ = 663°30'24.7"
131+50.000
Chd = 13175.712
Def.Δ = 665°16'04.3"
132+00.000
Chd = 13200.000
Def.Δ = 668°53'44.7"
132+50.000
Chd = 13275.712
Def.Δ = 670°30'24.3"
133+00.000
Chd = 13300.000
Def.Δ = 673°7'04.7"
133+50.000
Chd = 13375.712
Def.Δ = 675°53'44.3"
134+00.000
Chd = 13400.000
Def.Δ = 678°30'24.7"
134+50.000
Chd = 13475.712
Def.Δ = 680°16'04.3"
135+00.000
Chd = 13500.000
Def.Δ = 683°53'44.7"
135+50.000
Chd = 13575.712
Def.Δ = 685°30'24.3"
136+00.000
Chd = 13600.000
Def.Δ = 688°7'04.7"
136+50.000
Chd = 13675.712
Def.Δ = 690°53'44.3"
137+00.000
Chd = 13700.000
Def.Δ = 693°30'24.7"
137+50.000
Chd = 13775.712
Def.Δ = 695°16'04.3"
138+00.000
Chd = 13800.000
Def.Δ = 698°53'44.7"
138+50.000
Chd = 13875.712
Def.Δ = 700°30'24.3"
139+00.000
Chd = 13900.000
Def.Δ = 703°7'04.7"
139+50.000
Chd = 13975.712
Def.Δ = 705°53'44.3"
140+00.000
Chd = 14000.000
Def.Δ = 708°30'24.7"
140+50.000
Chd = 14075.712
Def.Δ = 710°16'04.3"
141+00.000
Chd = 14100.000
Def.Δ = 713°53'44.7"
141+50.000
Chd = 14175.712
Def.Δ = 715°30'24.3"
142+00.000
Chd = 14200.000
Def.Δ = 718°7'04.7"
142+50.000
Chd = 14275.712
Def.Δ = 720°53'44.3"
143+00.000
Chd = 14300.000
Def.Δ = 723°30'24.7"
143+50.000
Chd = 14375.712
Def.Δ = 725°16'04.3"
144+00.000
Chd = 14400.000
Def.Δ = 728°53'44.7"
144+50.000
Chd = 14475.712
Def.Δ = 730°30'24.3"
145+00.000
Chd = 14500.000
Def.Δ = 733°7'04.7"
145+50.000
Chd = 14575.712
Def.Δ = 735°53'44.3"
146+00.000
Chd = 14600.000
Def.Δ = 738°30'24.7"
146+50.000
Chd = 14675.712
Def.Δ = 740°16'04.3"
147+00.000
Chd = 14700.000
Def.Δ = 743°53'44.7"
147+50.000
Chd = 14775.712
Def.Δ = 745°30'24.3"
148+00.000
Chd = 14800.000
Def.Δ = 748°7'04.7"
148+50.000
Chd = 14875.712
Def.Δ = 750°53'44.3"
149+00.000
Chd = 14900.000
Def.Δ = 753°30'24.7"
149+50.000
Chd = 14975.712
Def.Δ = 755°16'04.3"
150+00.000
Chd = 15000.000
Def.Δ = 758°53'44.7"
150+50.000
Chd = 15075.712
Def.Δ = 760°30'24.3"
151+00.000
Chd = 15100.000
Def.Δ = 763°7'04.7"
151+50.000
Chd = 15175.712
Def.Δ = 765°53'44.3"
152+00.000
Chd = 15200.000
Def.Δ = 768°30'24.7"
152+50.000
Chd = 15275.712
Def.Δ = 770°16'04.3"
153+00.000
Chd = 15300.000
Def.Δ = 773°53'44.7"
153+50.000
Chd = 15375.712
Def.Δ = 775°30'24.3"
154+00.000
Chd = 15400.000
Def.Δ = 778°7'04.7"
154+50.000
Chd = 15475.712
Def.Δ = 780°53'44.3"
155+00.000
Chd
```

COORDINATE ROTATION

Coordinate transformation, or bearing rotation, is used to change a traverse from one "grid system" to another. A field traverse may be run without knowing the real basis of bearings, by beginning with an assumed bearing.

All of the normal adjustments can be made and the traverse worked with, new points calculated within the traverse, and so on.

When a basis of bearings becomes known (we finally got the description from the client), the bearings of the traverse may be rotated to match the "deed" bearings.

angle convention

The difference between the assumed (old) bearing along a known line and the deed (new) bearing of the same line is the ROTATION ANGLE. This program accepts the rotation angle as POSITIVE FOR CLOCKWISE and NEGATIVE FOR COUNTERCLOCKWISE.

Except when "blocks" of coordinates have been run, you have the option of reviewing or restoring the coordinates to the old system at any time. This program also allows two types of output, with or without the rotated courses also being shown, and the courses may be output as either azimuths or bearings.

input options

There are two types of setup input possible; **if the rotation angle is known or if two points in each system are known**. The instructions for input of the required information for each of the systems is shown on the following pages. Once the information has been input for either system, the solution steps for transformation of the points are the same for both systems (see solutions).

renumber option

A unique feature within this program allows you to transform points and renumber them at the same time, leaving the original coordinates as they were, in the old system. This can be handy for calculating the location of similar buildings on different lots.

rotation angle known

Call the program up by stroking

Rotation \angle = ?

1. Input the rotation angle, in degrees, minutes and seconds. If the angle is counterclockwise, change sign with the +/- key, then stroke

R/S

Scale Factor?

2. If the scale factor is 1:1, it is not necessary to input anything. If it is not 1, input the new factor before stroking

R/S

Rotation Pt#?

3. Input the point number of the rotation point, stroke

R/S

OUTPUT will be the point number and coordinates (if the printer is being used, "Rotating @ #x" will be output also).

New Coord's?

YES **NO**

- 4a. If the coordinates of the rotation point are the same in the new system as in the old, stroke

- 4b. If there are different coordinates for this point in the new system, stroke

If the answer to the last prompt was "yes" you will also receive the following prompts:

N =?

4b-1. Input the new north-coordinate, stroke

R/S

E =?

4b-2. Input the new east-coordinate, stroke

R/S

Next Point?

NEW OLD ELK INPUT INVS R#

Stroking any key (beginning input of the next point number) shows the prompt bar.

GO TO "OPTIONS"

two points in each system known

1. When the prompt, **Rotation 4 =?**, is displayed, no input is necessary. Just stroke

R/S

Rotation Pt#?

2. Input the point number of the pivot point, stroke

R/S

New Coord's?

YES NO [REDACTED]

3. If the rotation point will have new coordinates in the new system stroke **YES**. If the coordinates are the same in both systems, stroke **NO**.

If the answer was "yes" you will receive the following prompts:

N =?

4a. Input the new north-coordinate, stroke

R/S

E =?

4b. Input the new east-coordinate, stroke

R/S

Second Point?

5. Input the point number of the second known point and stroke

R/S

NEW X N + E

6a. Input the new north-coordinate of the second point and stroke

ENTER

6b. Input the new east-coordinate of the second point and stroke

R/S

Next Point?

~~NEW HOLD BLK INIT INV B RE #~~

Stroking any key will bring up the prompt bar.

OPTIONS

At this point in the program you decide on the output you want. This can be just the new coordinates for the transformed points, or you can also calculate the directions and distances between the new coordinates.

1. If you want the distances and BEARINGS output, stroke

~~WDG~~

2. If you want the distances and AZIMUTHS output, stroke

~~WDW~~

You can transform a BLOCK of coordinates automatically, and use either of the above options at the same time.

1. After selection of the output type (above) input the block 'code', **AAA.bbb**, where AAA is the first point number and bbb is the second (three-digit input for the second number). Stroke

Type?

2. With practice you can reverse some of the stored points by stroking **→OLD**, but for normal transformation to the new system stroke

OUTPUT will be automatic, transforming all of the points within the block before stopping.

You can change the point numbers as the points are rotated if you stroke **R/S#**. This option will NOT work if you are rotating a BLOCK of coordinates, and requires input of each point. You may not return to the "old" system while using this option either.

After input of the OLD point number in response to the "Next Point?" prompt, and stroking **NEW**, you will receive the prompt

NEW PT#?

1. Input the number you want the point to have in the NEW system and stroke

OUTPUT will be the transformed coordinates under the new point number.

SOLUTIONS

Next Point?

1. Input the point number of the point which you wish to transform. (NOTE: the point numbers input for setup have not yet been transformed.)
- 2a. To transform from the "old" system to the "new" system, input the point number and stroke
- 2b. To transform from "new" system to "old" stroke

The "old" system coordinates will be displayed (or printed out) but are not stored again under the point number.

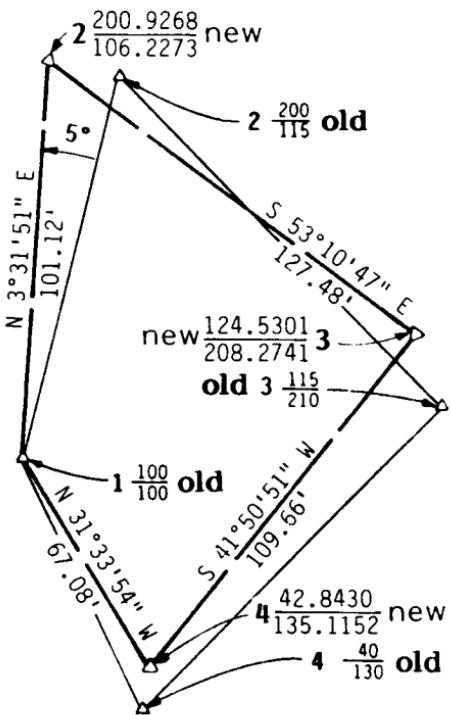
Store?

- 2b-1. Answer **NO** if you do not want to restore the point with the "old" coordinates, **YES** if you do.
If your answer is yes, the message "STORED" will be seen, briefly, in the display.

Next Point?

Continue repeating solution step 2a and/or 2b as needed.

the program listing


This program uses 700 bytes of programming. This is the equivalent of about 39 point numbers. The program should be input at a place where it is easy to find when you stroke the **XEQ** key, so why not just put it in at the **.END.?** Stroke **shift, XEQ .END.** and enter program mode.

```
00 ( 700-Byte Prgm ) 03 XEQ "CL" 06 1
01►LBL "C.ROT" 04 SF 21 07 STO 05
02 XEQ "F.." 05 SF 10 08 CF 22
```

09 "Rotation 4 = ?4" 39	STO 05	69 CLMENU
10 PROMPT	40 X<>Y	70 XEQ "YN"
11 CLA	41 XEQ 05	71 FC? 10
12 FC? 22	42 STO 04	72 RTN
13 GTO 02	43 "NEW "	73 R+
14 +/-	44 XEQ 07	74 GTO 08
15 →HR	45 ←"N → E4"	75LBL A
16 STO 04	46 FIX 04	76 SF 01
17 CF 22	47 PROMPT	77 CF 02
18 "Scale Factor?4"	48 RCL- 03	78 XEQ 00
19 PROMPT	49 X<>Y	79 FS? 03
20 CLA	50 RCL- 02	80 RCL 13
21 FS? 22	51 →POL	81 STO 16
22 STO 05	52 STO _x 05	82 XEQ "POUT"
23 XEQ 03	53 X<>Y	83 RCL- 01
24 XEQ 14	54 XEQ 05	84 X<>Y
25 GTO a	55 STO- 04	85 RCL- 00
26 RTN	56 GTO a	86 →POL
27LBL 02	57LBL 00	87 RCL _x 05
28 XEQ 03	58 FC? 03	88 X<>Y
29 XEQ 14	59 RTN	89 RCL- 04
30 "Second Point?4"	60 ISG 13	90 X<>Y
31 PROMPT	61 RTN	91 →REC
32 CLA	62 CF 03	92 RCL+ 02
33 XEQ "POUT"	63 GTO a	93 X<>Y
34 RCL- 01	64LBL 14	94 RCL+ 03
35 X<>Y	65 CF 21	95 CLA
36 RCL- 00	66 " New Coord's?"	96 FS? 04
37 →POL	67 AVIEW	97 XEQ 20
38 1/X	68 SF 21	98 XEQ "IN"

99 FS? 09	129 "OLD "	159 RCL 16
100 XEQ 09	130 FS? 55	160 STO 13
101 XEQ "OUT"	131 AVIEW	161 R+
102 STO 08	132 STO 16	162 XEQ "IN"
103 X<>Y	133 XEQ "POUT"	163 CF 21
104 STO 07	134 RCL- 03	164 " STORED Y"
105 X<>Y	135 X<>Y	165 AVIEW
106 CF 10	136 RCL- 02	166 SF 21
107 " New"	137 →POL	167 GTO a
108 FS? 55	138 RCL+ 05	168 STOP
109 AVIEW	139 X<>Y	169►LBL 03
110 XEQ "C+"	140 RCL+ 04	170 "Rotation Pt#?4"
111►LBL a	141 X<>Y	171 PROMPT
112 FS? 03	142 →REC	172 CLA
113 GTO 01	143 RCL+ 00	173 CF 29
114 XEQ 04	144 X<>Y	174 FIX 00
115 "Next Point?"	145 RCL+ 01	175 "Rotating @ #"
116 PROMPT	146 CF 10	176 ARCL ST X
117 CLA	147 XEQ "C+"	177 ←"4"
118 FS? 02	148 ADV	178 FS? 55
119 GTO B	149 CF 21	179 AVIEW
120 FS? 01	150 " STORE?"	180 XEQ "POUT"
121 GTO A	151 AVIEW	181 STO 01
122 STOP	152 SF 21	182 STO 07
123►LBL B	153 CLMENU	183 STO 03
124 CF 01	154 XEQ "YN"	184 R+
125 SF 02	155 FC? 10	185 STO 00
126 XEQ 00	156 CLX	186 STO 08
127 FS? 03	157 FC? 10	187 STO 02
128 RCL 13	158 GTO a	188 FS? 55

189 XEQ 11	218 "→OLD"	247 X>0?
190 RTN	219 KEY 2 GTO B	248 RTN
191►LBL 06	220 "BLK"	249 360
192 SF 03	221 KEY 3 GTO 06	250 +
193 1	222 "INV•A"	251 RTN
194 -	223 KEY 4 GTO 10	252►LBL 07
195 STO 13	224 "INV•B"	253 FIX 00
196 CF 21	225 KEY 5 GTO 12	254 ARCL 13
197 " Type?"	226 "RE #"	255 ← " "
198 AVIEW	227 KEY 6 GTO 16	256 RTN
199 SF 21	228 MENU	257►LBL 09
200 XEQ 04	229 FS? 03	258 XEQ "OUT"
201 RTN	230 GTO 15	259 XEQ "INV"
202►LBL 01	231 RTN	260 RTN
203 FS? 02	232►LBL 08	261►LBL 11
204 GTO B	233 XEQ "PN"	262 R+
205 FS? 01	234 STO 03	263 CF 10
206 GTO A	235 STO 07	264 XEQ "C↑"
207►LBL 10	236 R+	265 ADV
208 SF 09	237 STO 02	266 RTN
209 CF 00	238 STO 08	267►LBL 16
210 GTO 04	239 RTN	268 SF 04
211►LBL 12	240►LBL 15	269 RTN
212 SF 09	241 FS? 02	270►LBL 20
213 SF 00	242 GTO B	271 " NEW PT#?"
214►LBL 04	243 FS? 01	272 PROMPT
215 CLMENU	244 GTO A	273 STO 13
216 "NEW"	245 RTN	274 R+
217 KEY 1 GTO A	246►LBL 05	275 .END.

The small traverse shown above will be used for the keystroke examples. Before beginning use "LOAD" (or "PIN") to input the coordinates in the "old" system, so that they are in memory.

In this first example we will rotate the bearings 5° to the left. We will also use the **auto-inverse** option to output the new bearings and distances as the points are rotated.

Stroke

XEQ

prompt: **Rotation & = ?**

keystroke:

5 +/- R/S

prompt: **Scale Factor?**

keystroke:

R/S

prompt: **Rotation Pt#?**

keystrokes:

1 R/S

output: Rotating @ #1

#1 N = 100.0000
E = 100.0000

prompt: **New Coord's?**

YES NO R/S

keystroke:

prompt: Next Point?

keystrokes:

INVERSE 2 NEW

output:

N 3°31'50.8" E
HD = 101.1187
New
#2 N = 200.0000
E = 106.2273

prompt: Next Point?

keystrokes:

3 NEW

output:

S 53°10'47.4" E
HD = 127.4755
New
#3 N = 124.5301
E = 208.2741

prompt: Next Point?

keystrokes:

4 NEW

output:

S 41°50'51.4" W
HD = 109.6586
New
#4 N = 42.8430
E = 155.1152

prompt: Next Point?

keystrokes:

1 NEW

output:

N 31°33'54.2" W
HD = 67.0820
New
#1 N = 100.0000
E = 100.0000

prompt: Next Point?

As an example of how the points may be restored to the "old" system, stroke

2 EXIT

output:

OLD
#2 N = 200.0000
E = 106.2273

prompt: STORE?

YES NO

keystroke:

YES

... . . . STORED . . .

prompt: Next Point?

Go ahead and change points #3 and #4 back to the old system, and you'll be ready to try the second example without having to re-input the coordinates.

This is an example of the type where the coordinates of two points are known in each system, and uses "new" coordinates of 200/200 for #1 and 300/215 for #2. Run this one with AZIMUTH inverse.

keystrokes:

XEQ EXIT

prompt: Rotation $\angle = ?$

keystroke:

R/S

prompt: Rotation Pt#?

keystrokes:

1 R/S

output:

Rotating @ #1

#1 N= 100.0000
E= 100.0000

prompt: New Coord's?

YES NO

keystroke:

YES

prompt: N =?

keystrokes:

2 0 0 R/S

prompt: E =?

keystrokes:

2 0 0 R/S

prompt: Second Point?

keystrokes:

2 R/S

prompt: NEW 2 N + E

Note that for this prompt the northing is ENTERED, the easting is input, and then RUN is stroked.

keystrokes:

3 0 0 ENTER

2 1 5 R/S

prompt: Next Point?

keystrokes:

INPUT 2 NEW

output: HD = 101.1187

New
#2 N= 300.0000
E= 215.0000

When using this type (two points known) the distance is output as a check, but it is assumed that the azimuth was known, since you knew the new coordinates of both points.

prompt: Next Point?

keystrokes:

3 NEW

output:

AZ = 181°49'12.6"
HD = 127.4755

New
#3 N= 215.0000
E= 310.0000

prompt: Next Point?

keystrokes:

4 NEW

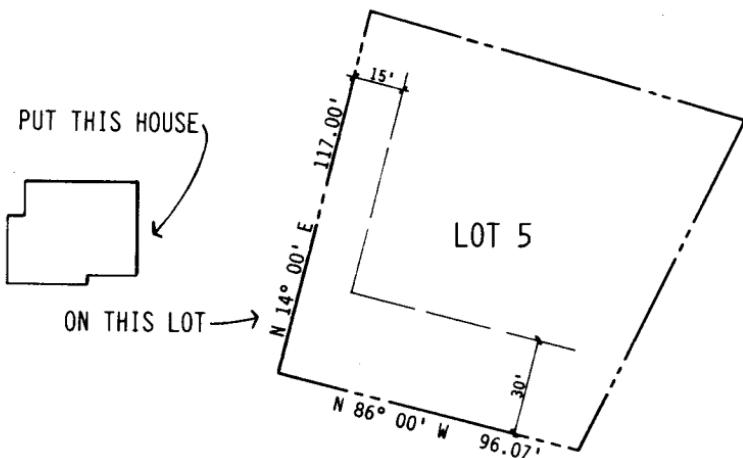
output:

AZ = 226°50'51.4"
HD = 109.6586

New
#4 N= 140.0000
E= 230.0000

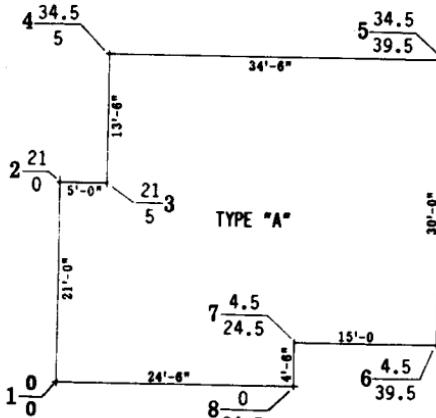
prompt: Next Point?

keystrokes:


1 NEW

output:

AZ = 333°26'05.8"
HD = 67.0820


New
#1 N= 200.0000
E= 200.0000

If this problem looks familiar, you'll be happy to know that this program has a quick solution to it.

Quite often the client wants to put type "A" houses on lots 3, 5, 8 and 11 . . . type "B" on lots

Use the building's dimensions to set "dummy" coordinates on each of the corners, as shown to the right, and then rotate them into position.

Pre-calculate the intersection of the setback lines, you already know the bearing of the lot line. With this program you can store dummy points for the different types of buildings being used, and when you rotate them, use the re-number feature to give each lot an individual set of coordinates for layout. And, you will still have the original dummy points to use for the next lot.

Input the dummy points from page 75, and using the "calculated" coordinates for the setback corner, shown to the right, we'll try it out.

Stroke

XEQ

prompt: **Rotation \angle =?**

keystrokes:

1 4 R/S

prompt: **Scale Factor?**

keystroke:

R/S

prompt: **Rotation Pt#?**

keystrokes:

1 R/S

output: Rotating @ #1

#1 \angle = 0.0000
E = 0.0000

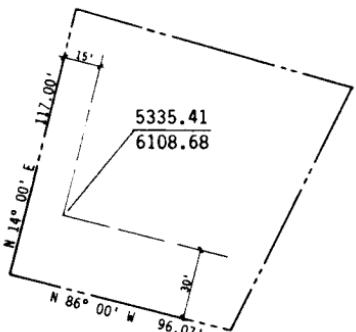
prompt: **New Coord's?**

**YES NO **

keystroke:

prompt: **N =?**

keystrokes:


5 3 3 5 . 4 1 R/S

prompt: **E =?**

keystrokes:

6 1 0 8 . 6 8 R/S

prompt: **Next Point?**

keystrokes:

**RE 1 **

prompt: **NEW PT#?**

keystrokes:

2 1 R/S

output: **New**
#21 N = 5335.4100
E = 6108.6800

prompt: **Next Point?**

keystrokes:

**2 **

prompt: **NEW PT#?**

keystrokes:

2 2 R/S

output:

New
#22 N = 5355.7862
E = 6113.7604

Continue through point number 8=28. You can use "DUMP" to check that the original points are still intact.

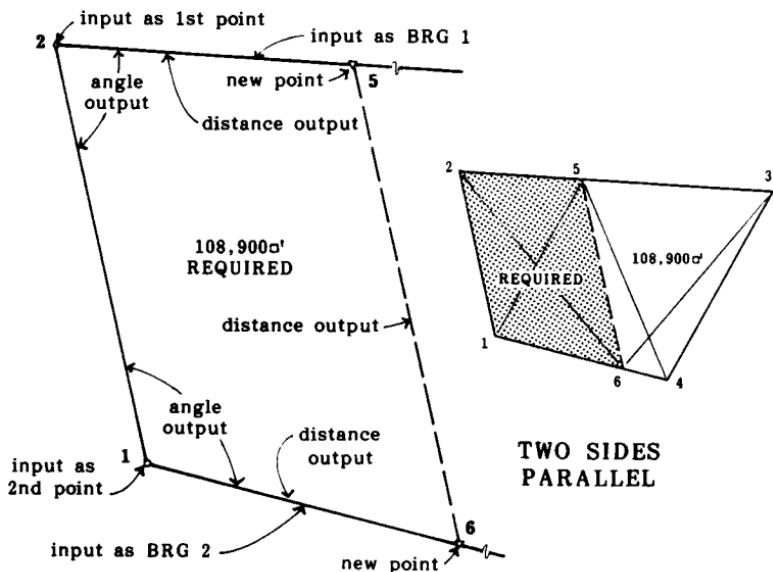
PREDETERMINED AREAS

There are two types of solution routines for solving for a predetermined amount of area. These are used to "part the land", or cut off a specific quantity of property from a larger parcel.


The illustration (below) shows a typical use of the type of solution called **Line Through A Point**. A parcel boundary has been run (points 1 through 4) and the area calculated.

To divide it into two equal parcels, first set two arbitrary points, 5 and 6 (6 is the half-way point along the base 1-4) and calculate the area of one parcel.

In this case, the area of the parcel 1, 2, 5, 6, 1 was run, and the shaded portion represents the remainder needed to have each parcel contain $\frac{1}{2}$ of the original area.


In this example, point number 6 is used as hinge point, and a line from 6 is intersected with the line from #5 to #3 to form a triangle that contains the required amount of area.

Input would be point #5, the bearing of the line from 5 to 3, point 6 and the area needed.

Two Sides Parallel is the second of the routines, and defines the boundary of a trapezoidal parcel whose area is predetermined.

If the requirement is that the area be one-half of the original parcel, but with the dividing line parallel to one of the lines of the original parcel, we would use this type of solution.

Input required for this method would be point #2, the bearing of line 2-3, point #1, the bearing of line 1-4, and the required area. The bearings are input in the direction away from the known points.

the trade

Adding this program to your set will replace about 30 points in storage usage. In addition to the main program there are a couple of short subroutines to be added. We'll start with those.

```
125 GTO 02
126LBL "BR"
127 "4Brg "
128 XEQ 01
129 GTO "A1"
130LBL "DS"
131 CF 29
132 FIX 00
133 ARCL 13
134 F" Dist"
135 GTO 02
136LBL 01
137 CF 29
138 FIX 00
139 ARCL 13
140LBL 02
```

If you are going to add "PRE-A" to your program file, the program steps shown to the left are the ones that will be doing the labeling of the output.

A lot of program steps can be saved by inserting them into the subroutine stack, because they use the same processing labels as some of the other subroutines.

Go to program "A0", enter program mode, and scroll down two steps so that the pointer is at 124 SF 85. Begin typing in the new steps (shown to the left).

After they have been entered, scroll down once. Step 141 should be XEQ 06.

It wouldn't hurt to proof-read the new steps. Make sure that step 134 is "append, space, Dist".

the program listing

This program can fit in nicely between "INT-X" and "CURVE" in the main menu.

00 (532-Byte Prgm)		
01LBL "PRE-A"	13LBL 03	25 XEQ "BR"
02 XEQ "F"	14 SF 10	26 STO 02
03 XEQ "CL"	15 SF 00	27LBL 05
04 CLMENU	16 "1st Pt#?4"	28 "2nd Pt#?4"
05 CF 21	17 PROMPT	29 PROMPT
06 "Triangle?"	18 STO 15	30 STO 16
07 AVIEW	19 XEQ "POUT"	31 1E3
08 SF 21	20 STO 01	32 +
09 XEQ "YN"	21 X<>Y	33 RCL+ 15
10 FS? 10	22 STO 00	34 XEQ "CODE"
11 GTO 03	23 FC? 01	35 +HR
12 SF 01	24 GTO 05	36 STO 23

37 RCL 16	67 RCL 06	97 ARCL 17
38 XEQ "POUT"	68 x	98 XEQ 04
39 STO 04	69 ÷	99 XEQ 22
40 X<>Y	70 2	100 RCL 05
41 STO 03	71 x	101 COS
42 XEQ "BR"	72 STO 09	102 ACOS
43 STO 05	73 RCL 15	103 RCL 23
44 "Next Pt#?4"	74 STO 13	104 +
45 PROMPT	75 RCL 05	105 →HMS
46 STO 17	76 RCL 06	106 RCL 09
47 1	77 →REC	107 XEQ 06
48 +	78 RCL 09	108 ARCL 17
49 STO 22	79 -	109 ←--"
50LBL 08	80 +/-	110 ARCL 16
51 "Req'd Area?4"	81 →POL	111 XEQ 04
52 PROMPT	82 X<>Y	112 XEQ 22
53 STO 08	83 RCL 05	113 FC? 00
54 FS? 01	84 +	114 STOP
55 GTO 01	85 COS	115 RCL 07
56 FC? 00	86 +/-	116 RCL 05
57 GTO 02	87 ACOS	117 -
58 XEQ 00	88 RCL 23	118 RCL 09
59 RCL 05	89 X<>Y	119 →REC
60 -	90 -	120 RCL 03
61 STO 05	91 →HMS	121 +
62LBL 02	92 X<>Y	122 X<>Y
63 RCL 08	93 CF 10	123 RCL 04
64 RCL 05	94 XEQ 06	124 +
65 SIN	95 ARCL 15	125 RCL 17
66 ABS	96 ←--"	126 STO 13

127 R+	157 PI	187 RCL 08
128 XEQ "IN"	158 →DEG	188 2
129 XEQ "OUT"	159 RCL 07	189 x
130 FIX 04	160 RCL- 02	190 X<>Y
131 ADV	161 COS	191 ÷
132 XEQ "C"	162 ACOS	192 STO 09
133 STOP	163 -	193 RCL 11
134▸LBL 00	164 STO 11	194 SIN
135 360	165▸LBL 02	195 ÷
136 RCL 01	166 RCL 06	196 STO 24
137 RCL 04	167 X+2	197 RCL 11
138 -	168 RCL 11	198 RCL 23
139 RCL 00	169 COS	199 X<>Y
140 RCL 03	170 LASTX	200 -
141 -	171 SIN	201 →HMS
142 →POL	172 ÷	202 X<>Y
143 STO 06	173 RCL 12	203 XEQ 06
144 R+	174 COS	204 ARCL 15
145 X<0?	175 LASTX	205 F"="
146 +	176 SIN	206 ARCL 17
147 STO 07	177 ÷	207 XEQ 04
148 RTN	178 +	208 XEQ 22
149▸LBL 01	179 STO 10	209 XEQ 07
150 FC? 00	180 RCL× 08	210 RCL 09
151 GTO 02	181 2	211 RCL 12
152 XEQ 00	182 x	212 SIN
153 RCL- 05	183 -	213 ÷
154 COS	184 SQRT	214 STO 10
155 ACOS	185 STO 14	215 RCL 12
156 STO 12	186 RCL+ 06	216 RCL 23

217 +	240 RCL 17	263 R+
218 →HMS	241 STO 13	264 XEQ "A+B"
219 X<>Y	242 RCL 00	265 RTN
220 XEQ 06	243 RCL 01	266 ▶LBL 07
221 ARCL 22	244 XEQ "IN"	267 RCL 23
222 ←"−"	245 XEQ "OUT"	268 →HMS
223 ARCL 16	246 ADV	269 RCL 14
224 XEQ 04	247 XEQ "C+"	270 XEQ 06
225 XEQ 22	248 ISG 13	271 ARCL 17
226 FC? 00	249 STO ST X	272 ←"−"
227 GTO 03	250 RCL 03	273 ARCL 22
228 RCL 02	251 RCL 04	274 XEQ 04
229 RCL 24	252 XEQ "IN"	275 XEQ 22
230 →REC	253 XEQ "OUT"	276 RTN
231 STO+ 00	254 ADV	277 ▶LBL 04
232 X<>Y	255 XEQ "C+"	278 ASTO 13
233 STO+ 01	256 ADV	279 CLA
234 RCL 05	257 RTN	280 RTN
235 RCL 10	258 ▶LBL 22	281 ▶LBL 06
236 →REC	259 CF 10	282 CLA
237 STO+ 03	260 XEQ "DS"	283 FIX 00
238 X<>Y	261 ←"+"	284 CF 29
239 STO+ 04	262 AVIEW	285 END

choosing the type

The type of solution to be used is selected by your response to the first prompt:

Triangle?

If you want to use the LINE THROUGH A POINT routine, answer **YES**. If you want the TWO SIDES PARALLEL routine, stroke **NO**.

line through a point

1st Pt#?

1. Input the point number for the first point (the "hinge" point) and stroke

R/S

2nd Pt#?

2. Input the point number which represents the fixed point and stroke

R/S

Brg 2 = ?

3. Input the known bearing of the fixed line from the second point, and stroke

ENTER

Input the quadrant code in the direction away from the known point, then stroke

R/S

Next Pt#?

4. Input the UNUSED point number you want to assign to the intersection point, stroke

R/S

Req'd Area?

5. Input the required area in square feet (or square meters, etc.) and stroke

R/S

OUTPUT will be the distance and bearing from the hinge point to the new calculated point, then the distance and bearing along the known course from the new point to the second point, followed by the coordinates of the new (intersection) point.

EXIT

two sides parallel

1st Pt#?

1. Input the point number of the first point

R/S

Brg 1 = ?

2. Input the bearing from the first point

ENTER

Input the quadrant code, in the direction away
from the point, and stroke

R/S

2nd Pt#?

3. Input the point number of the second fixed
point and stroke

R/S

Brg 2 = ?

4. Input the bearing of the line radiating from
the second fixed point and stroke

ENTER

Input the quadrant code, in the direction away
from the point, and stroke

R/S

Next Pt#?

5. Input the next UNUSED point number. This
point number will be assigned to the point
along the line defined by bearing 1. The next
highest point number will be assigned to the
point along bearing 2. Stroke

R/S

Req'd Area?

6. Input the required area and stroke

R/S

OUTPUT will be the distances and bearings of the three
lines, followed by the coordinates of the two new points.

We will begin the keystroke examples with the **triangular**, or **line through a point** routine. The illustration to the right will be used for the example.

Input the coordinates for points #1 and #2 (from the example) with "LOAD" or "PIN" before beginning this example. Begin the program by stroking

XEO

prompt: Triangle?

YES **NO**

keystrokes:

prompt: 1st Pt#?

keystrokes:

1 **R/S**

prompt: 2nd Pt#?

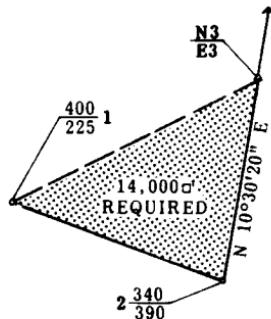
keystrokes:

2 **R/S**

prompt: Brg 2 = ?

keystrokes:

1 **0** **.** **3** **0** **2** **ENTER**


1 **R/S**

prompt: Next Pt#?

keystrokes:

3 **R/S**

prompt: Req'd Area?

keystrokes:

1 **4** **0** **0** **0** **R/S**

output:

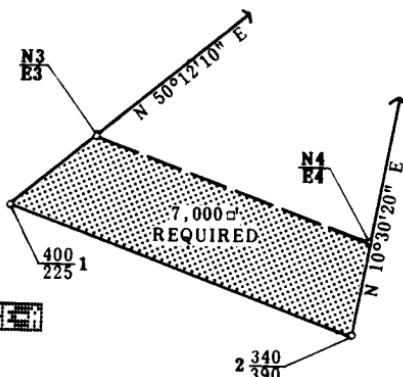
1-3 Dist = 218.2180

N 63° 01' 37.7" E

3-2 Dist = 161.6871

S 10° 30' 20.8" W

#3 N= 498.9768
E= 419.4805


keystroke:

It is always a good idea to run an inverse traverse to check the area.

The next example uses the same coordinates for points #1 and #2, so you won't have to input new coordinates.

For the example of the two sides parallel routine, we will use the illustration shown to the right.

Begin by stroking

XEQ []

prompt: Triangle?

keystrokes:

[]

prompt: 1st Pt#?

keystrokes:

[] 1 R/S

prompt: Brg 1 = ?

keystrokes:

5 0 . 1 2 1 [] ENTER

[] 1 R/S

prompt: 2nd Pt#?

keystrokes:

[] 2 R/S

prompt: Brg 2 = ?

keystrokes:

1 0 . 3 0 2 [] ENTER

[] 1 R/S

prompt: Next Pt#?

keystrokes:

[] 3 R/S

prompt: Req'd Area?

keystrokes:

[] 7 0 0 0 R/S

output:

1-3 Dist = 50.9226

N 50°12'10.0" E

3-4 Dist = 142.5946

S 70°01'00.8" E

4-2 Dist = 44.6113

S 10°30'20.0" W

#3 N= 432.5941
E= 264.1246

#4 N= 393.8634
E= 398.1340

[] EXIT

ultimate sizing

After you have input all of the programs you are planning to use, you can re-size the calculator to hold the maximum number of coordinate pairs. Each pair of coordinates occupies two registers, so you want to size with as many registers as you can.

1. Size to 0025.
2. Check the available memory (hold down the **key under MEM**, in CATALOG), and jot down the number.
This is the number of **bytes** available. Divide by 9 (each register uses 9 bytes) and add 23 to this new number.
3. Re-size to the number you just calculated.
4. To calculate the number of points you can store, divide the number you jotted down by 18 and subtract 1.

adding more programs

If, at a later date, you decide to add more programs to what you now have in the calculator, re-size to 0025 before beginning, and then repeat the process above after you are done.

MORE HP42S PROGRAMS

We have a number of new booklets, and another book, of programs for the **HP42S** in the works! Here are some of the titles:

Vertical Alignment (booklet, \$10.00)

Calculates **CONTINUOUS** vertical alignment without changing back and forth between Grade and Curve routines. Calculates vertical intersections, symmetrical or asymmetrical vertical curves. Solves for station when the elevation is known, or the station can be given, to calculate the elevation.

Spiral Curves (booklet. 00)

Calculate coordinates to any station, or offset to a point, within a spiral system. Options include date output, auto-inverse, or both.

OUT OF PRINT

Calculates intersections of the entrance or exit spiral with a circular curve or straight line.

Topography (booklet, \$10.00)

This one turns your 42S into a manual data collector, complete with a labeling system that you can customize to suit the type of topo work you do. All shots are stored as finished data, by shot number, for later output. Choice of 3-D coordinates or Station-Offset-Elevation for the output.

EDM Slope Staking (booklet, \$10.00)

Set up anywhere near an alignment and slope stake it. Sets slope stakes from the remote instrument location directly. Includes a three-point resection program for finding the instrument's location by either station-offset or coordinates. All data needed to mark the stake is output (or may be stored), and there is a subroutine for setting the reference stake.

Alignment/0 ~~NO~~ (booklet, \$10.00)

Follows any ~~LONGER~~ circular curves and tangents, letting you calculate coordinates or radial ties to any station or offset. ~~AVAILABLE~~ Coordinate output, auto-inverse, or both.

Triangle Solutions (booklet, \$10.00)

The 42S version of the most complete triangle solutions program ever available. Solves with any of the following knowns: ASA SAA SAS SSA SSS Area-SS Area-AA Area-SA.

keep in touch

As always, we're anxious to make programs available to surveyors who need them. Make sure that we have your name and address on file so that we can send you the 42S Newsletters as they are published. These newsletters contain useful hints and additional programming.

D'Zign

The Most Commonly Asked Questions

The following questions and answers were compiled from the calls and letters we've received in the past 4+ years that we've been publishing solution books for the HP42S calculator, and are included here in the event that your question is one of them.

Q: *How do you type in the END?*

A: There are a number of ways . . . one easy way is to stroke **XEQ** **ENTER** and type it in, using the alpha keys. Because you stroked **XEQ** first, the calculator will recognize that this is not an alpha input, and substitute the actual function when you stroke **ENTER** again. You may input *any* function by this method.

You may also take advantage of the built-in *function catalog*, stroke **0** **+** (catalog), and then the **F6** menu key. You may scroll up or down with the **▲** or **▼** keys, and *all* of the calculator's functions are in there. When you reach the one you want, just stroke the key under the menu item.

Q: *How do you type in the indirect calls, such as step 138 in the CURVE program on page 10?*

A: The indirect calls are made by stroking **•**. In the case of the call above, first stroke **0** **6** (flags), then **F**, to bring up the prompt **CF__**, then stroke **•**. Some of the indirect calls give a secondary prompt, requiring another **•**.

Q: *How do I type in a ARCL command?*

A: Enter **alpha mode** before stroking **RCL** or **STO**.

\$25.00 U.S.

ISBN 0-944889-14-X

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.