

HP42S

Triangle Solutions

REVISED, **2**ND EDITION

HP42S

Triangle

Solutions

REVISED, **2**ND EDITION

Copyright© 1989, 1994 by Ted J. Kerber

All rights reserved. No part of this work covered by the
copyright hereon may be reproduced or used in any form or by
any means - graphic, electronic, or mechanical, *including*
photocopying, recording, taping or information storage and
retrieval systems - without written permission of the author.

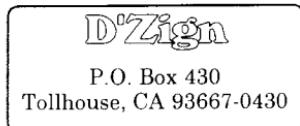
published by **Software by D'Zign**

Tollhouse, California, U.S.A, 1994

ISBN 0-944889-13-1

TECHNICAL ASSISTANCE

The program material, instructions and procedures contained in this book assume that the user has a working knowledge of both surveying *and* the general operation of the HP-42S calculator.


Technical assistance is limited to verification of the results shown in the various examples used in this book.

If you have any questions or suggestions regarding this book, or other **D'Zign** publications, please feel free to call us. The number is (209) 297-8025, and someone is available to answer technical questions between the hours of **8:00 A.M. and Noon**, (Pacific Time Zone), **Monday through Thursday**

Before calling for help, take a look through "*The Most Commonly Asked Questions*", on the inside of the back cover.

WARNING

This software and book are both protected by U.S. Copyright Law (Title 17 United States Code). Unauthorized reproduction and/or sales may result in imprisonment of up to one year and fines of up to \$10,000 (17 USC 506). Recent changes in the laws make infringement upon *software copyrights* a felony. Copyright infringers may also be subject to civil liability.

introduction

Hewlett-Packard has produced a really powerful calculator at a very good price, the HP-42 Scientific Calculator, which lends itself nicely to solving surveying problems. It can not be programmed by insertion of a surveying module, like the HP-41 or HP-48, but typing in a program has been made very simple.

the operations index

To find a function for the first time, HP has provided an "*Operations Index*", on pages 310 through 335 of the instruction manual, which tells you exactly what keystrokes to use to type in the function you want.

Even better, this index gives you the page number that you may refer to if you want to know more about the function you are using. If, while typing in a program, you aren't sure how to input a particular function, simply refer to the *Operations Index*.

the softkey menus

All of the programs in this booklet take advantage of the *softkey* menu system built into this calculator. When you want to start a program you stroke the **XEQ** key and then the softkey corresponding to the program you want, shown in the menu displayed at the bottom half of the screen.

learning while programming

We have tried to write this series of booklets in such a way that you quickly become acquainted with the calculator and its functions while you are programming it.

The *use* of the triangle program is simplicity itself. You need three known parts of the triangle being solved, and there are only three keys used for input. They are in the *menu* as SIDE, ANGLE and AREA, and to select them you stroke the key under the menu listing.

The only other keys used are one menu listing that returns you quickly to the program for another solution, and the **R/S** key.

The use of a printer is not required, but does make the job of proof reading easier. Hewlett-Packard has the InfraRed Printer available for the 42S, and one of the great features of this calculator is that it already has an InfraRed transmitter built in.

subroutines

Because of the way the calculator works, we will start with the input of some subroutines.

Once a subroutine has been input, its name appears in the menu when you stroke the **XEQ** key, and all you have to do to add it as a *program step* in another program is to stroke **GTO** or **XEQ**, followed by keystroking the key corresponding to the subroutine when the menu appears. You may scroll through the menus with the **▲** or **▼** key.

```
00 C 47-Byte Prgm 3
01▶LBL "CL"
02 ΣREG 00
03 CLΣ
04 ΣREG 11
05 CLΣ
06 0
07 STO 24
08 RTN
09▶LBL "FCL"
10 0.013
11▶LBL "FN"
12 CF IND ST X
13 ISG ST X
14 GTO "FN"
15 ENTER
16 SF 21
17 END
```

getting started

Begin by stroking the shift key, then the **XEQ** key. The display will show a menu which will be blank (if you haven't yet input any programs) except for **.END.**, on the left. The keys just below each of the menu portions will correspond to the menu *instruction* above it.

Stroke the key just below the **.END.** in the display menu, and then go into **program mode** by stroking the *shifted* **R/S** key. Scroll upward once with the **▲** key.

```
00▶C 0-Byte Prgm 3
01 .END.
```

Your display should be similar to the one shown to the left. Begin typing in the program steps shown in the illustration above, **LBL "CL"**.

Proof read the program. If you scroll to 00 it should now say "47-Byte Prgm" . . . the byte count is one quick check on the program, but you still need to check every step. Look, in particular, for steps that are **alpha** (with " " marks) but *shouldn't* be. Or should be but aren't.

"DMS"

This program puts the output of angles into the form $^{\circ}'"$, and gives all answers to the nearest tenth of a second.

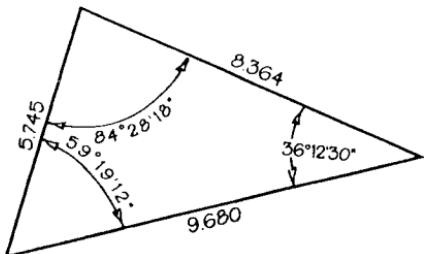
NOTE: Before beginning the input, review pages 130 and 131 of your manual, which tells you about the 'append' symbol (x) used in program steps 10, 19, 29 and 38. Keystrokes for the degree symbol are shown in the **MATH** section (menu maps, page 295), the " and ' on page 296 (the ' looks different in the keystroke than it does when displayed or printed . . . the one you want is the one just above the , symbol).

Repeat the procedure of going to the permanent **.END.**, scroll up to 00, and input the program below.

01▶LBL "DMS"	11 -	21 FP	31 FIX 04
02 FS?C 19	12 100	22 100	32 SF 29
03 CLA	13 x	23 x	33 RCL 19
04 ENTER	14 ABS	24 FIX 02	34▶LBL 01
05 STO 19	15 STO 18	25 RND	35 10
06 IP	16 IP	26 FIX 01	36 X<>Y
07 CF 29	17 XEQ 01	27 XEQ 01	37 X<>Y?
08 FIX 00	18 ARCL ST X	28 ARCL ST X	38 F"0"
09 ARCL ST X	19 F""	29 F""	39 END
10 F""	20 RCL 18	30 CLX	

The byte count should be 78 bytes. Read through the steps to check for typos, and as a final check, input a number (try 25.25252), set flag 19, and execute the *DMS* function. Stroke the *shifted ENTER* key, to enter alpha, and your display should show $25^{\circ}25'25.2"$ above the menu bar. If it doesn't, check it again.

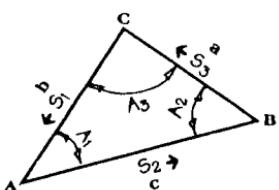
the main program


The next two pages contain the main program. Take your time typing it in, to avoid errors.

Don't type an **END** on this one, the permanent end will work just as well, and this removes it from your **XEQ/GTO** menu.

01 PLBL "TRAK"	60 RTN	119 PLBL 03
02 XEQ "CL"	61 PLBL 11	120 RCL 01
03 XEQ "FCL"	62 STO 04	121 XEQ 00
04 0.002	63 R+	122 STO 03
05 STO 00	64 STO 02	123 RCL 05
06 CLX	65 R+	124 RCL 09
07 XEQ 20	66 STO 09	125 →REC
08 RTN	67 R+	126 X<>Y
09 PLBL 21	68 R+	127 STO 08
10 FS? 09	69 +	128 RCL 03
11 SF 03	70 +	129 1
12 FS? 04	71 2	130 →REC
13 SF 01	72 -	131 R+
14 SF 04	73 STO 07	132 ÷
15 ISG 00	74 X+2	133 STO 02
16 RTN	75 LASTX	134 R+
17 GTO 10	76 RCLX 02	135 X
18 RTN	77 -	136 +
19 PLBL 22	78 RCL 09	137 STO 04
20 FS? 01	79 RCLX 04	138 GTO 01
21 SF 08	80 -	139 PLBL 13
22 FS? 04	81 SQRT	140 →HR
23 SF 06	82 ACOS	141 STO 03
24 FS? 01	83 2	142 R+
25 CF 06	84 X	143 →HR
26 FS? 09	85 STO 05	144 STO 01
27 SF 05	86 SIN	145 R+
28 SF 09	87 RCLX 09	146 STO 09
29 ISG 00	88 STO 08	147 RCL 03
30 RTN	89 RCL 07	148 RCL 01
31 GTO 10	90 X+2	149 XEQ 00
32 PLBL 23	91 LASTX	150 RCL 09
33 SF 07	92 RCLX 09	151 RCL 01
34 ISG 00	93 -	152 XEQ 04
35 RTN	94 RCL ÷ 02	153 GTO 03
36 PLBL 10	95 RCL ÷ 04	154 PLBL 14
37 FS? 02	96 SQRT	155 STO 02
38 GTO 06	97 ACOS	156 R+
39 FS? 08	98 2	157 →HR
40 GTO 15	99 X	158 STO 01
41 FS? 06	100 STO 03	159 R+
42 GTO 07	101 RCL 05	160 STO 09
43 FS? 03	102 XEQ 00	161 RCL 01
44 GTO 12	103 STO 01	162 RCL 02
45 GTO 11	104 GTO 01	163 →REC
46 RTN	105 RTN	164 RCL - 09
47 PLBL 06	106 PLBL 12	165 →POL
48 FS? 05	107 "2nd Solution"	166 STO 04
49 GTO 18	108 FS? 20	167 RCL 09
50 FS? 01	109 AVIEW	168 RCL 02
51 GTO 17	110 FS?C 20	169 RCL 04
52 GTO 16	111 STOP	170 GTO 11
53 RTN	112 →HR	171 PLBL 15
54 PLBL 07	113 STO 01	172 →HR
55 FS? 01	114 R+	173 STO 03
56 GTO 14	115 STO 09	174 R+
57 FS? 03	116 R+	175 STO 02
58 GTO 12	117 →HR	176 R+
59 GTO 13	118 STO 05	177 STO 09

178 RCL 03	237 F"t"	296 STO 03
179 SIN	238 RCL 05	297 X<>Y
180 RCLX 02	239 →HMS	298 →HR
181 RCL÷ 09	240 F"Angle 3 = "	299 STO 01
182 ASIN	241 XEQ "DMS"	300 +
183 STO 05	242 AVIEW	301 180
184 RCL 03	243 ADV	302 X<>Y
185 XEQ 00	244 RCL 08	303 -
186 STO 01	245 RCLX 04	304 STO 05
187 RCL 05	246 2	305 SIN
188 RCL 09	247 2	306 2
189 RCL 01	248 "AREA = "	307 X
190 XEQ 04	249 ARCL ST X	308 X
191 XEQ 03	250 AVIEW	309 RCL 01
192 180	251 ADV	310 SIN
193 RCL- 05	252 FS? 10	311 RCL 03
194 RCL+ 03	253 XEQ 08	312 SIN
195 +/-	254 RTN	313 X
196 180	255 ►LBL 08	314 +
197 +	256 "2nd Solution"	315 SQRT
198 →HMS	257 FS?C 10	316 STO 02
199 RCL 02	258 AVIEW	317 RCL 01
200 RCL 03	259 STOP	318 →HMS
201 →HMS	260 180	319 X<>Y
202 SF 20	261 RCL- 01	320 RCL 03
203 GTO 12	262 RCL 09	321 →HMS
204 ►LBL 00	263 X<>Y	322 XEQ 12
205 +	264 →HMS	323 RTN
206 COS	265 RCL 02	324 ►LBL 02
207 +/-	266 GTO 14	325 X<>Y
208 ACOS	267 ►LBL 09	326 STO 09
209 RTN	268 R+	327 X
210 ►LBL 01	269 R+	328 +
211 FS? 10	270 RTN	329 2
212 CF 02	271 ►LBL 04	330 X
213 FS? 20	272 STO 01	331 RTN
214 CF 02	273 R+	332 ►LBL 05
215 FS? 02	274 STO 09	333 RCL 09
216 CLA	275 R+	334 RCL 01
217 "Side 1 = "	276 STO 05	335 →HMS
218 ARCL 09	277 RTN	336 RCL 02
219 F"t"	278 ►LBL 16	337 XEQ 14
220 RCL 01	279 →HR	338 RTN
221 →HMS	280 STO 01	339 ►LBL 20
222 F"Angle 1 = "	281 SIN	340 CLA
223 XEQ "DMS"	282 XEQ 02	341 CLMENU
224 AVIEW	283 STO 02	342 "SIDE"
225 ADV	284 XEQ 05	343 KEY 1 GTO 21
226 "Side 2 = "	285 RTN	344 "ANGL"
227 ARCL 02	286 ►LBL 17	345 KEY 2 GTO 22
228 F"t"	287 SF 10	346 "AREA"
229 RCL 03	288 STO 02	347 KEY 3 GTO 23
230 →HMS	289 XEQ 02	348 "MORE"
231 F"Angle 2 = "	290 ASIN	349 KEY 6 GTO 24
232 XEQ "DMS"	291 STO 01	350 MENU
233 AVIEW	292 XEQ 05	351 RTN
234 ADV	293 RTN	352 ►LBL 24
235 "Side 3 = "	294 ►LBL 18	353 GTO "TRI<"
236 ARCL 04	295 →HR	354 .END.


The triangle shown to the right will be used for the examples. It should be noted that the output will vary slightly, depending on the number of places input, particularly in the input of the angles.

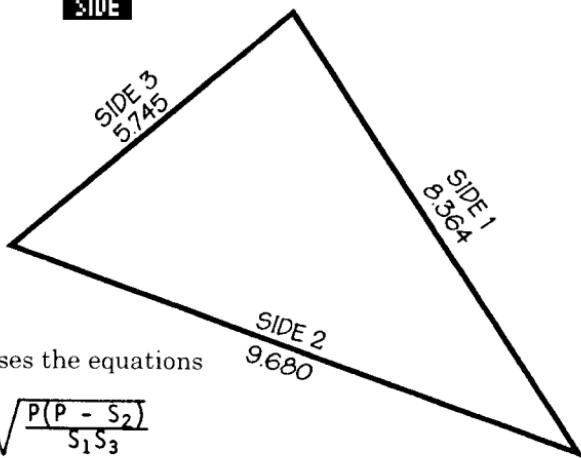
The notations for angles and sides is familiar to HP users, but is not the standard, or *textbook* notation which you have learned in trigonometry (side **a** opposite angle A, side **b** opposite angle B, and side **c** opposite angle C). The sides and angles are numbered, in order, going around the triangle.

The example triangle (top) shows this style of labeling, compared to the standard notation for sides and angles. **Side 1** may be assigned to any side that is convenient to use, depending upon the available information about the triangle. It should be located at a side where the known information then falls into position for solution by one of the routines.

In the example, the assigned designations go clockwise. If it will better fit the information available, the labeling may go anticlockwise instead, as shown to the left.

NOTE! There is no solution for a triangle where the three angles are the only known parts, since this condition can produce an infinite number of similar triangles.

side 1, side 2, side 3


THREE SIDES KNOWN is one of the most used solutions for triangles, particularly in recent years in surveying.

The lower cost and higher accuracy of electronic distance measurement equipment has resulted in more trilateration being used, instead of time-consuming repetitions of the angles.

keystroke example:

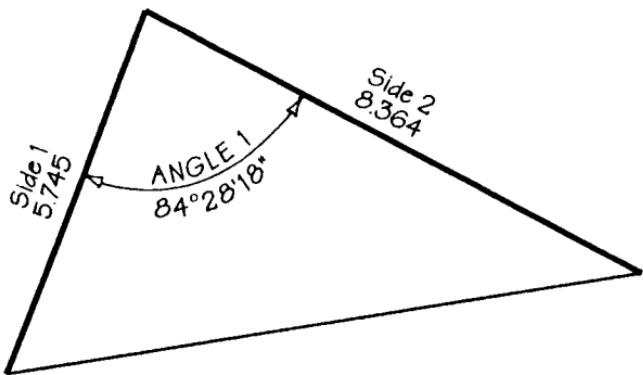
XEQ TRK
8 . 3 6 4
SIDE
9 . 6 8
SIDE
5 . 7 4 5
SIDE

output:
Side 1 = 8.3640
Angle 1 = 36°12'32.0"
Side 2 = 9.6800
Angle 2 = 59°19'11.8"
Side 3 = 5.7450
Angle 3 = 84°28'16.2"
AREA = 23.9138

This routine uses the equations

$$A_3 = 2 \cos^{-1} \sqrt{\frac{P(P - S_2)}{S_1 S_3}}$$

$$A_2 = 2 \cos^{-1} \sqrt{\frac{P(P - S_1)}{S_2 S_3}}$$

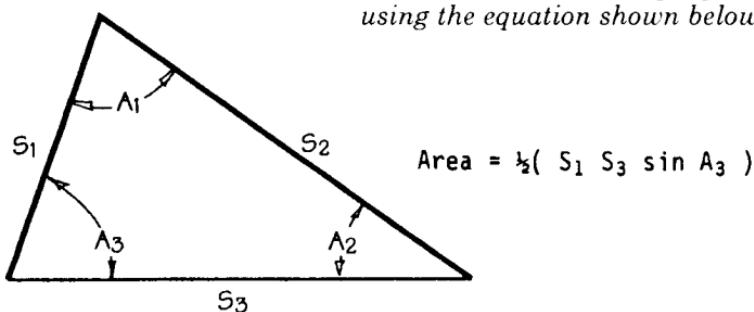

and

$$A_1 = \cos^{-1}(-\cos(A_3 + A_2))$$

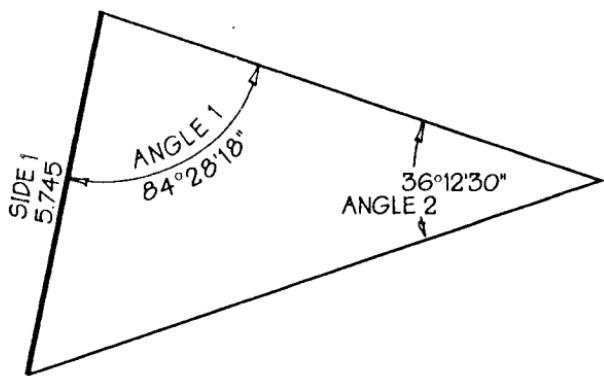
$$\text{where } P = \frac{1}{2}(S_1 + S_2 + S_3)$$

To solve another triangle, stroke **MORE** after the output.

side 1, angle 1, side 2


TWO SIDES AND THE INCLUDED ANGLE KNOWN is resolved by finding the third side, and then solving the triangle as shown on the previous page. The third side is found through the use of the equation

$$S_3 = \sqrt{S_1^2 + S_2^2 - 2 S_1 S_2 \cos A_1}$$


keystrokes:

5 • 7 4 5	output:
SIDE	Side 1 = 5.7450
8 4 • 2 8 1 8	Angle 1 = 84°28'18.0"
ANGL	Side 2 = 8.3640
8 • 3 6 4	Angle 2 = 36°12'31.4"
SIDE	Side 3 = 9.6600
	Angle 3 = 59°19'10.6"
	AREA = 23.9138

NOTE! Areas are calculated by this program using the equation shown below.

side 1, angle 1, angle 2

keystrokes:

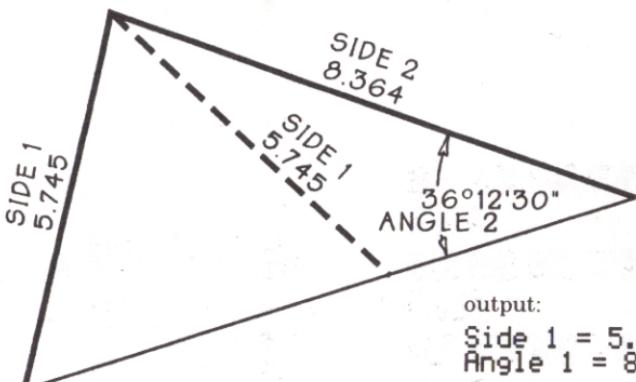
5	.	7	4	5		
SIDE						
8	4	.	2	8	1	8
ANGL						
3	6	.	1	2	3	
ANGL						

output:

Side 1 = 5.7450
Angle 1 = 84° 28' 22.7"
Side 2 = 6.3640
Angle 2 = 36° 12' 30.0"
Side 3 = 9.6802
Angle 3 = 59° 19' 07.3"
AREA = 23.9139

ONE SIDE AND THE TWO FOLLOWING ANGLES KNOWN.
This solution first solves for the third angle with the equation

$$A_3 = \cos^{-1} (-\cos (A_1 + A_2))$$


Once angle 3 has been found, the remainder of the triangle is solved as Angle, Side, Angle (see page 8 for the equations) to determine the other missing sides.

side 1, side 2, angle 2

TWO SIDES AND THE FOLLOWING ANGLE KNOWN has two possible solutions. When this configuration is used, both solutions may be output. The second solution will not necessarily show the parts in the same order as the input.

The other two angles are calculated with the equations shown below, and the remaining side is calculated as an Angle, Side Angle configuration.

$$A_3 = \sin^{-1} \left[\frac{S_2}{S_1} \sin A_2 \right] \quad A_1 = \cos^{-1} [-\cos (A_2 + A_3)]$$

output:

Side 1 = 5.7450
Angle 1 = 84°28'22.7"

Side 2 = 8.3640
Angle 2 = 36°12'30.0"

Side 3 = 9.6802
Angle 3 = 59°19'07.3"

AREA = 23.9139

display prompt: 2nd Solution
keystroke:

R/S

2nd Solution
Side 1 = 8.3640
Angle 1 = 36°12'30.0"

Side 2 = 3.8172
Angle 2 = 120°40'52.7"

Side 3 = 5.7450
Angle 3 = 23°06'37.3"

AREA = 9.4301

keystrokes:

5 • 7 4 5

SIDE

8 • 3 6 4

SIDE

3 6 • 1 2 3

ANGLE

A new prompt, **2nd Solution** will appear in the display after output of the first solution. If you want output of the second solution, stroke **R/S**. If not, stroke **EXIT** to leave the program, or **MORE**.

angle 3, side 1, angle 1

TWO ANGLES AND THE INCLUDED SIDE ARE KNOWN.

$$S_2 = S_1 \frac{\sin A_3}{\sin A_2}$$

$$S_3 = S_1 \cos A_3 + S_2 \cos A_2$$

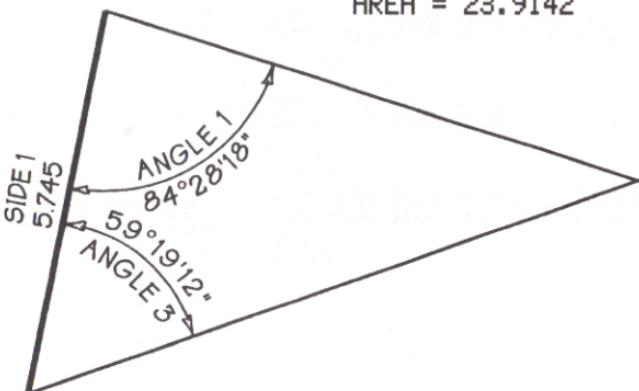
$$A_2 = \cos^{-1}(-\cos(A_3 + A_1))$$

keystrokes:

5 9 • 1 9 1 2
ANGLE
5 • 7 4 5
SIDE
8 4 • 2 8 1 8
ANGLE

This configuration is solved by using the equations shown to the left.

The Angle, Side, Angle routine has also been used as a secondary solution to some of the other routines, after the problem has first been reduced to these three known parts.

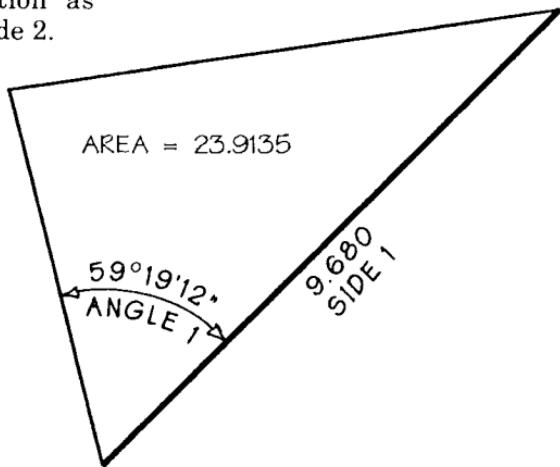

output:

Side 1 = 5.7450
Angle 1 = 84°28'18.0"

Side 2 = 8.3641
Angle 2 = 36°12'30.0"

Side 3 = 9.6801
Angle 3 = 59°19'12.0"

AREA = 23.9142


area, side 1, angle 1

THE AREA, ONE SIDE AND ONE ANGLE KNOWN is the first of the three routines in this program which allow the area to be used as one of the known parts. *Whenever the area is one of the parts, it is input first.*

The equation

$$S_2 = \frac{2 \text{ AREA}}{S_1 \sin A_1}$$

is used first to reduce the problem for solution as Side 1, Angle 1, Side 2.

keystrokes:

2 3 • 9 1 3 5
AREA
9 • 6 8
SIDE
5 9 • 1 9 1 2
AMGL

output:

Side 1 = 9.6800
Angle 1 = 59°19'12.0"
Side 2 = 5.7449
Angle 2 = 84°28'18.0"
Side 3 = 8.3640
Angle 3 = 36°12'30.0"
AREA = 23.9135

area, angle 3, angle 1

AREA AND TWO ANGLES KNOWN is first solved for the included side, and then solved as Angle, Side, Angle. The first angle input is treated as Angle 3, the second as Angle 1. The equation used for finding Side 1 is

$$S_1 = \sqrt{\frac{2 \sin A_2 (\text{AREA})}{\sin A_1 \sin A_3}} \text{ where } A_2 = \cos^{-1}(-\cos(A_1 + A_3))$$

keystrokes:

2 3 • 9 1 3 5

MREM

5 9 • 1 9 1 2

ANGL

8 4 • 2 8 1 8

ANGL

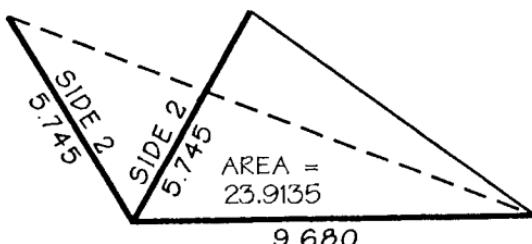
output:

Side 1 = 5.7449
Angle 1 = 84°28'18.0"

Side 2 = 8.3640
Angle 2 = 36°12'30.0"

Side 3 = 9.6800
Angle 3 = 59°19'12.0"

AREA = 23.9135


area, side 1, side 2

AREA AND TWO SIDES KNOWN is another problem which has two possible solutions.

We first find Angle 1 with the equation

$$A_1 = \sin^{-1} \left[\frac{2 \text{AREA}}{S_1 S_2} \right]$$

and then solve as Side, Angle, Side. The second solution is possible where Angle 1 may also be equal to $180^\circ - \text{Angle } 1$. This value is substituted and the second solution is output.

keystroke:

2	3	•	9	1	3	5
AREA						
9	•	6	8	SIDE		
5	•	7	4	5	SIDE	

output:

Side 1 = 9.6800
Angle 1 = 59°19'07.1"
Side 2 = 5.7450
Angle 2 = 84°28'20.6"
Side 3 = 8.3639
Angle 3 = 36°12'32.3"
AREA = 23.9135

display prompt: 2nd Solution
keystroke:

R/S

A new prompt, 2nd Solution appears in the display after output of the first solution. If you want output of the second solution, stroke R/S

If not, stroke EXIT to leave the program, or MORE to solve another triangle.

2nd Solution
Side 1 = 9.6800
Angle 1 = 120°40'52.9"
Side 2 = 5.7450
Angle 2 = 37°55'29.4"
Side 3 = 13.5448
Angle 3 = 21°23'37.7"
AREA = 23.9135

The Most Commonly Asked Questions

The following questions and answers were compiled from the calls and letters we've received in the past 4+ years that we've been publishing solution books for the HP42S calculator, and are included here in the event that your question is one of them.

Q: *How do you type in the END?*

A: There are a number of ways . . . one easy way is to stroke **XEQ** **ENTER** and type it in, using the alpha keys. Because you stroked **XEQ** first, the calculator will recognize that this is not an alpha input, and substitute the actual function when you stroke **ENTER** again. You may input *any* function by this method.

You may also take advantage of the built-in *function catalog*, stroke **catalog** **+** (catalog), and then the **FCN** menu key. You may scroll up or down with the **▲** or **▼** keys, and *all* of the calculator's functions are in there. When you reach the one you want, just stroke the key under the menu item.

Q: *How do you type in the indirect calls, such as step 12 in the first program on page 2?*

A: The indirect calls are made by stroking **.**. In the case of the call above, first stroke **flags** **6** (flags), then **CF** to bring up the prompt **CF _**, then stroke **.**. Some of the indirect calls give a secondary prompt, requiring another **.**.

Q: *How do I type in a ARCL command?*

A: Enter **alpha mode** before stroking **RCL** or **STO**.

\$10.00 U.S.

ISBN 0-944889-13-1

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.