|

&

HP 438

INSIGHTS

PART I: Principles and Programming

e e

William C. Wickes

HP 48G/GX Edition |






HP 48 Insights

I. Principles and Programming of the HP 48
HP 48G/GX Edition

William C. Wickes

Larken Publications
4517 NW Queens Avenue
Corvallis, Oregon 97330




Copyright © William C. Wickes 1991, 1993

All rights reserved. No part of this book may be reproduced, transmitted, or stored in
a retrieval system in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of the
author.

First Printing, September 1993

ISBN 0-9625258-5-5

Acknowledgements

I thank my wife, Susan, and my children, Kenneth and Lara, for their help in the
preparation of this manuscript.

Thanks also to the originators: Bill, Bob, Bob, Charlie, Diana, Gabe, Grant, Jim,
Laurence, Max, Nathan, Pat, Paul, Stan, and Ted, for converting brainstorms into bits.



Dedicated to Susan, Ken, and Lara




Author’s Note

Readers of this book who have previously read HP-28 Insights or HP41/HP48
Transitions may notice that there is some material here that is common to one or both of
those books. This is deliberate; HP 48 Insights was developed as a revision of HP-28
Insights just as the HP48 is a revision of the HP28. As the new book progressed, it
became apparent that there was too much material to be contained in a single volume.
Accordingly, the book has been split into three parts. The first of these is HP 41/HP 438
Transitions, which contains all of the HP 41-related material that was present in HP-28
Insights, plus additional content to make that book self-contained. Part 1 of HP438
Insights, as its subtitle suggests, focuses on the principles of HP48 design and various
programming methods and resources. Part 1L, originally published in 1992, covers more of
the integrated systems: HP Solve, unit management, plotting, statistics, etc.

The advent of the HP48G/GX in 1993 has inspired this revision of HP 48 Insights 1 and
1L which were written for the HP 48S/SX. The new editions contain all of the material of
the first editions, modified as needed for the keyboard, menus, and user interface of the
new calculators. New material has also been added to address the features of the
HP48G/GX that were not present in the HP 485 /SX.

Thanks to all of the readers of my books, starting with Synthctic Programming on the
HP-41C back in 1980, for their continued support and encouragement. Even in this day of
powerful desktop computing systems, there remains something special about a customizable
handheld calculator like the HP 48 that makes it fun to write about as well as to use.

William C. Wickes
August 9, 1993
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1. Introduction

The HP 48 is a unique calculator. No other handheld device can match its combination
of mathematical capability, customizability, and extensibility. Its uniqueness, however,
means that it uses methods and resources that arc new and special to it, making it in
many respects a challenge to learn to use effectively. If you are a beginning user of the
HP 48, you may well be a little overwhelmed or even intimidated by the sheer extent of
the HP 48’s capabilitics. You might also imagine that it will take you a long time to
master the calculator. Fortunately, this shouldn’t be true. Running throughout the
HP48’s feature sct and methodology are a few common themes and principles; under-
stand those and you will find it easy to assimilate and use each new calculator operation
that you study.

There are, of course, many differcnt approaches to teaching the usc of a device like the
HP48; no onc approach is best for everyone. One method is to teach everything by
example, and trust that the underlying principles will become apparent. This is the style
of the HP 48 owners’ manuals, which works quitc well for many people. In this book we
will take a different tack and start with the principles, then use examples to illustrate the
principles. We belicve that a clear understanding of thosc principles helps you to under-
stand the examples and to extrapolate them more casily to problems for which you don’t
have explicit examples.

For example, here’s how you add two numbers on the HP 48:
1. Key in the first number.
2. Key in the second number.

3. Press .

If youre familiar with traditional HP scientific calculators, you will recognize this as the
standard “RPN” keystroke sequence for addition. If you have only used so-called “alge-
braic” calculators, the sequence may seem a little awkward--but we’ll postpone explana-
tion and justification to Chapter 2. The principle involved is the application of a func-
tion, in this case +, to arguments that appear on a “stack” of such arguments; the
function’s result replaces its arguments on that stack. The specific example here shows
how two ordinary rcal numbers are added; however, once you've learned this sequence,
you immediately know also how to add, for example, two complex numbers or two vec-
tors. Just take the above instructions and substitute “complex number,” or “vector,”
everywhere you see “number.” You follow the same logical sequence, and press the
same key, for all of the kinds of addition that the HP 48 provides. This consistency
and uniformity runs through all HP 48 operations.




1.0 Introduction

When we use the term HP 48, we are including the HP 48S and HP 48SX and the newer
HP48G and HP 48GX--and any future calculators in this product line that share a com-
mon package and operation with the original HP 48SX. Successful Hewlett-Packard cal-
culators in the past have often developed into families of several calculators with the
same number, such as the HP 41C, HP41CV, and HP41CX. For the sake of simplicity.
and generality, we will generally not use the trailing letters of a calculator’s name unless
referring to a specific model.

1.1 The Evolution of the HP 48

In 1972, Hewlett-Packard introduced the HP 35, an “clectronic slide-rule” that revolu-
tionized the world of numerical calculations. It offered high-precision arithmetic, loga-
rithmic, and trigonometric functions at the press of a key, obsoleting slide-rules and
thick function tables. The HP 35 was followed by numerous similar products, from HP
and from other manufacturers, that expanded on the HP35 theme by offering more
functions and more data storage registers.

A second generation of calculators was started by the HP65, the first programmable
calculator. This calculator allowed you to customize it by creating programs, in effect
extending the built-in command set. Like the HP35, the HP65 was followed by
numerous variations on the programming theme, including handheld computers pro-
grammable in BASIC. Perhaps the most successful of these was the HP 41 family, start-
ing with the HP41C in 1979, which quickly became the standard among engineering cal-
culators. The HP 41’s ten-year lifetime, remarkably long in this era of rapid changes in
computing technology, resulted from its powerful combination of built-in functions, cus-
tomizability, and extensibility--the same virtues we extolled above for the HP 48.

The HP 41 and all of the other first- and second-generation calculators share two com-
mon limitations. First, they are optimized only for dealing with real floating-point
numbers. Some calculators allow you to work with character strings, complex numbers,
and/or matrices, but typically each additional data type has its own special commands or
working environment, requiring you to learn new calculation methods and making it
hard to combine different data types in the same calculation. Second, none of these cal-
culators allow you to deal with programs as unevaluated mathematical quantities. For
example, you can write programs to calculate @ +b, and ¢ +d, but there is no way for
you to manipulate the program results to produce a new result like @ +b +c¢ +d except
by running the programs to produce numerical results, then combining the numbers.

A third generation of calculators was born with the advent of the HP28C in 1987. The
first generation was characterized by the application of built-in functions to real
numbers. The second generation added extension of the built-in function set by user
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programs. The HP28C made a major leap in calculator technology by making the pro-
grams themselves subject to logical and mathematical operations. In short, the HP28C
is the first symbolic calculator--on which calculations can be represented as unevaluated
expressions and programs, to which you can apply the same operations that you can
apply only to numbers on other calculators. Moreover, the HP28C allows you to work
with a variety of data types, including the strings and matrices mentioned above, using
exactly the same logic and keystrokes that you use for ordinary numbers. The most
important of these new data types is the algebraic object. You can, for example, enter
algebraic objects that represent @ +b and ¢ +d symbolically, then press the key to
return the new symbolic result @ +b +c¢ +d. The variables do not have to have numeric
values before you can add them. Most HP 28C mathematical functions, in fact, can
accept symbolic inputs and return symbolic results. Not only does this mean that you
can perform symbolic algebra, and even calculus, right on the HP 28C, but at a stroke,
much of the work of programming disappears. These capabilities represent such a
dramatic advance over previous calculator technology that they merit the description
“third generation.”

The HP35 introduced a standard “user-interface” called RPN (short for Reverse Polish
Notation), that has been the hallmark of HP calculators ever since. RPN calculators are
organized around a stack of number registers, using a last-in-first-out logic that is
optimal for key-per-function operation. Throughout the evolution of HP calculators
from the HP 35 up through the HP 41, that standard RPN interface remained virtually
unchanged. If you were familiar with one HP calculator, you could pick up any other
and use it right away--that is, until the advent of the HP 28C. The HP 28C succeeded in
preserving the advantages of RPN while making important changes to generalize the
interface to handle the HP 28C’s wealth of new data types, most particularly including
variables and expressions for symbolic mathematics.

The HP 28C’s advances in calculation ability were so compelling that the calculator was
very popular despite a severe handicap--a small memory that made it impractical to use
the calculator for anything but modest-sized computations and programs. This defi-
ciency was corrected in a new HP28 model, the HP 28S, introduced in January, 1988.
The first public appearance of HP28S calculators were special models built to com-
memorate the one hundredth anniversary of the American Mathematical Society,
delivered at the joint annual meeting of the AMS and the Mathematical Association of
America. This was a highly appropriate forum for the introduction, because of the pro-
found impact the HP28C was having on the mathematics education community. Driven
by students and imaginative educators, with whom the HP 28 was an instant success, the
HP 28S became a standard teaching tool at many universities.

Although the HP 28 was quite successful in engineering and scientific disciplines, it is
fair to say that it did not have as dramatic an impact in those fields as in mathematics.
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This is partly due to the earlier success of the HP 41 with technical users, since they
were accustomed to the extensibility provided by the HP 41’s plug-in memory ports and
consequently were less ready to switch to a calculator that lacked that feature. The HP
41’s utility was greatly enhanced by the availability of a large amount of professional and
amateur software, which could be loaded into the calculator by several automated
methods. A similar software base never developed for the HP 28, since its only program
entry method is the keyboard.

The HP 488X, introduced in March, 1990, is a direct descendent of both the HP 41 and
the HP28. Normally, the numbers associated with HP calculators have little signifi-
cance, but it is hard not to notice that the number 48 itself is a cross between 47 and 28.
From the HP 41, the HP 48SX inherited:

¢ Plug-in memory ports.

e 1/0O capability (the HP41 used HP-IL; the HP48SX uses a serial communications
that is a standard on personal computers).

¢ A redefinable keyboard.

e The “vertical format” keyboard layout that is convenient for handhceld operation.

The HP 28 contributed:

e Extensive real and symbolic mathematical capabilitics.

¢ The operating system and user language.

e Plotting and a graphics display.

e The menu key system.
The HP48SX also benefited from users’ reaction to the HP28, adding the most-
requested features missing from the HP 28:

¢ A bigger display.

e More graphics and plotting features.

¢ Bi-directional infrared 1/0, especially for importing or saving software.

e Symbolic integration, beyond the Taylor’s polynomials method used on the HP 28.

* More “help” from the calculator in using some of its more complicated features.
Some of these features cvolved into major HP 48 systems that considerably exceeded the

scope of a straightforward evolution from the HP41 or the HP28. For example, the
HP 48 EquationWriter was an outgrowth of a need to improve the HP28s mechanism
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for setting up numerical integration problems. The EquationWriter obviously satisfies
that need, but has much broader application than just for integration problems. Simi-
larly, both the HP41 (through plug-in programs) and the HP 28 contain some physical
unit conversion capability, but the HP 48’s unit management system is enormously more
flexible, powerful, and usable than that of its predecessors.

In the matter of programming language, no simple convergence of the HP41 language
and the HP 28 language was possible. Although using the HP41 language in the HP 28
would have made the HP41 software base available for the new calculator, that
language was stretched to its limit already by the HP41 itself, and it is not capable of
supporting the symbolic calculations that are the heart of the HP 28. Consequently, the
HP 48 follows the HP 28 design--the HP 48 operating logic and programming language
are effectively a superset of those of the HP28. Computer languages are known for
their whimsical names; the HP 28/HP 48 language is no exception, with the name RPL,
which stands for Reverse Polish Lisp. This name suggests its derivation from HP calcu-
lators (and from FORTH, another computer language that uscs reverse Polish logic),
and from the computer language LISP, which is frequently used in computer symbolic
mathematics systems. Notc that the HP 41 language was ncver given a name, so many
people call HP 41 programming “RPN programming.” This is unfortunate since, prop-
crly speaking, RPN is a mathematical logic that is not specific to any calculator or com-
puter.

In 1992, Hewlett-Packard introduced the HP48S, which lacks the plug-in ports of the
HP48SX but is othcrwise the same in function and appearance. The HP48S was
directed primarily at students, for whom price is often a paramount issue (particularly if
calculators are a school purchase). The appearance of several heavily promoted
graphics-capable calculators from Texas Instruments, Sharp, and Casio at priccs sub-
stantially lower than the HP48SX made the HP48S an important competitive entry for
Hewlett-Packard. The capabilities of the HP 48 are in a different class from those of its
rivals, but price will always be an important factor.

Imitation being the sincerest form of flattery, Texas Instruments developed the TI-85
calculator, which provides many of the HP48S/SX’s numerical capabilities (and even
exceeds some). Many people find the TI-85’s fill-in-the-boxes interface to be easier to
Jearn than the more wide open and flexible HP 48 style. Partly as a counter to this, but
more as a result of its usual pack-even-more-in product development, Hewlett-Packard
introduced the HP48G and HP48GX in the summer of 1993. The HP48G is the
replacement for the HP48S, with more than just a new color scheme: it has twice as
much ROM (512K) as its predecessor and features a screen field/dialogue box interface
to most of its primary integrated problem solving resources such as plotting and cal-
culus. New functionality includes expanded array manipulations, differential equations,
three-dimensional plotting, and a library of pre-loaded equations from science and
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engineering fields adapted from the HP82211A Solve Equation Library Application
Card for the HP48S/SX. The HP48GX is the new counterpart of the HP 485X, con-
taining all of the HP48G functionality, but with 128K of RAM built-in as well as two
plug-in card ports for adding additional RAM or ROM. The port memory management
of the HP48GX is extended so that a card with up to 4 Mbytes of memory can be used
in port 2 (section 6.4). Finally, the overall execution speed of the HP48G/GX is about
40% faster than the HP 48S/SX.

The HP48G/GX also incorporates a redesigned EquationWriter that provides a rapid
backspace/correction capability that was an unfortunate weakness of the original
HP48S/SX EquationWriter. The new EquationWriter was actually quietly introduced
in the last revision (version H) of the HP48S/SX, but most existing HP 485/SX’s have
the old EquationWriter.

1.1.1 Versions

Since the introduction of the first HP 485X, Hewlett-Packard has revised the internal
programs (“firmware”) several times. Most of the revisions were to correct defects in
the programs, but some were for significant enhancements, including the major addi-
tions and improvements developed for the HP48G/GX.

Each different HP 48 firmware version is characterized by a unique version letter, that is
the last character in a six character version string of the form HP-48v, where “v” is a
single upper-case letter that varics from version to version. The first HP 488X was ver-
sion A; versions A-I differed only in defect fixes. Version J was the first version with
actual functionality improvements: the EquationWriter was improved, primarily to speed
up the backspace operation, some preprocessing was added to speed up plotting and
solving (especially with units), and plot cursor motion was sped up. Version K first
appeared in the HP 48G, representing, of course, major changes to version J.

The version string appears in the header used in Kermit transfers of objects between the
HP48 and other devices (this is why the HP48G/GX continues the version numbering
used by the HP48S/SX, rather than starting over with version A--otherwise, the
HP 48S/SX and the HP 48G/GX would not be able to exchange programs in binary for-
mat). You can also view the version string directly. On the HP48S/SX, press -
[D] together, then followed by (press - together to resume normal
operation). On the HP48G/GX, the command VERSION returns two strings with the
version and a copyright message:
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(There is also a SYSEVAL program that works on all HP 48 models--see section 3.10.1).

1.1.2 HP48S/SX and HP48G/GX Compatibility

By and large, the HP48G/GX is a superset of the HP48S/SX, meaning that the G
models reproduce all of the functionality of the S models while adding new features.
The compatibility is most complete for commands--all HP 48S/SX commands are avail-
able on the HP48G/GX. Thus any program written for the HP48S/SX will most likely
run unchanged on the HP48G/GX. Programs developed for the G models can also be
used on the S models as long as they only use commands common to both. Neverthe-
less, problems may still arise in transferring S programs to the newer calculators:

e When a global name matches that of a HP48G/GX command. If the program is
transferred on a memory card, or in binary mode via the infrared or wired serial
ports, it should run properly, without modification. However, if it is transferred in
ASCII mode or is edited and reentered on the HP 48G/GX, the names will be con-
verted to commands, which will certainly prevent proper program execution.

e When a program executes MENU or TMENU to activate a built-in menu (section
7.3). The menu numbers are changed from the HP48S/SX to the HP48G/GX to
accommodate new and rearranged menus.

e When a program depends on an error condition that is eliminated on the
HP48G/GX. For example, multiplication of two lists is not possible on the
HP48S/SX, but yields the products of the corresponding list elements on the
HP48G/GX. If a program assumes an error will occur in such a case, it will not
work on the HP 48G/GX.

e When a program is written in the internal system language (or uses SYSEVAL--see
section 3.10.1) and uses a system resource such as a memory location that is not
identical in the two models. Most programs should not have this problem, but there
is no guarantee in general. Note that Hewlett-Packard’s own HP48SX plug-in
module, the HP 822104 HP41CV Emulator Application Card, will not work on the
HP 48GX, because of the new port memory management scheme on that calculator.
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[It is possible for a program to determine in which model calculator it is running. See
section 3.10.1]

Although Hewlett-Packard went to considerable effort to preserve program compatibility
between the HP48S/SX and the HP48G/GX, it did not attempt to preserve keystroke
compatibility. The shifted key functions and menu organization on the HP 48G/GX are
changed substantially compared to the HP48S/SX, not only to support the new func-
tionality but also to take advantage of constructive criticism from HP48S/SX users and
programmers. Again, virtually all HP48S/SX operations are available on the
HP48G/GX--but the exact keystrokes may differ. The unshifted keys and all of the
shifted key mathematical functions are the same on both models, so at least simple cal-
culations use the same keystrokes.

1.2 About This Book

The HP48 naturally comes with an Owner’s Manual (HP48S/SX) or User’s Guide
(HP 48G/GX) that covers most of the calculator’s features in varying levels of detail. A
Programmer’s Reference Manual is also available, which presents detailed information on
individual commands. HP48 Insights is not intended to supplant those books, but to
supplement them. As stated earlier, Insights will concentrate on the principles and
thecmes of HP 48 operation, and provide a depth of analysis that is not possible mn a
comprchensive in-box manual.

We also hope to provide a little more motivation, and some more elaborate cxamples.
By motivation, we mecan the purpose and use of many of the operations, and the con-
ncctions between various features of the calculator. The scope of the HP 48 is so broad
that we cannot show you how to use it for every imaginable problem, but we can try to
help you understand it enough to solve your own problems. We delve quite deeply into
the HP 48’s principles of operation, with the expectation that if you know the principles,
you will learn and remember keystrokes and methods much more casily.

We assume that you have rcad enough of the HP manuals to know how to perform sim-
ple keystroke calculations, enter various object types, and find a command in a menu.
In some cases, where there are crucial ideas that we want to communicate, we will show
some actual keystroke sequences and certainly repeat some material that is in the HP
manuals. But for the most part we will assume that you know the rudiments of HP 48
operation so that we can concentrate on ideas and connections. Multi-step operations
are generally shown as command sequences (such as they might appear in a program)
rather than as keystrokes. This also has the advantage that the sequences are applicable
interchangeably to the HP48S/SX and the HP 48G/GX; since the keyboard and menus
differ on the S and G models, the actual keystrokes can differ.
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This HP48G/GX Edition of HP48 Insights is an extension of the original edition to
accommodate the new styles and functionality of the HP 48G/GX. Although it is writ-
ten for the HP48G/GX, most of the material applies just as well to the HP 485 /SX.
All of the programs from the first edition will run unchanged on the HP 48G/GX, but
some of the programs have been rewritten to take advantage of and illustrate the appli-
cation of HP 48G/GX commands.

HP48 Insights Part I breaks roughly into two main sections. In the first section,
Chapters 1 through 6, we discuss primarily the principles and methods of HP 48 opera-
tion. This begins with a review of the mathematical ideas that underlie the HP 48’s use
of Reverse Polish Notation and the nature of HP48 objects. Then, moving from the
abstract to the concrete, we look at the creation of objects, their manipulation on the
stack, and their storage in memory. The second section, Chapters 7 through 12, is an
extended discussion of HP 48 programming, starting with mode and keyboard customiza-
tion. Then we review general problem solving techniques, continue with a study of the
structures and objects central to programming, and conclude with topics in program
development.

The following summarizes the chapter topics:

Chapter Topics
1. Introduction Introductory material, notation conventions.
2 RPN Principles The theory of RPN, and its electronic
implementation.
3. Objects and Execution Operations, objects, execution and evalua-

tion, quotes.

4. Object Creation HP 48 keyboard design and methodology;
object entry and editing; the MatrixWriter;
the EquationWriter.

5. The HP 48 Stack Stack operations, recovering arguments, the
interactive stack.

6. Object Storage Creating, storing, recalling, evaluating and
purging variables; directories; port vari-
ables; libraries; name resolution; calculator
resets.
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7. Customization Modes and flags; user key assignments;
custom menus; vectored ENTER.

8. Problem Solving Introduction to HP 48 problem-solving
methods; user-defined functions.

9. Programming The principles of program objects; tests
and flags; conditional branches; loops;

error handling; local variables.

10. Display Operations and The text and graphics screens; graphics

Graphics objects; displaying text and graphics; pixel
drawing,
11. Arrays and Lists Arrays; coordinate systems; lists and their

applications; symbolic arrays.

12. Program Development The art of program construction; editing
and debugging; starting and stopping;
optimization; input and output; programs
as arguments; recursion.

The presentation of the book’s subject matter is not always linear. That is, we often
make use of or refer to concepts or techniques that are not explained until later sec-
tions. For example, in Chapter 6 there are listings of some elaborate programs that arc
relevant to the material under discussion, but the programming methods used in the
programs are not described until later chapters. Furthermore, wherever possible, exam-
ples that illustrate a concept are chosen to have practical uses as well. This often
requires combining more techniques into an example than just the one currently being
studied. To alleviate this kind of problem, we include many cross-references between
the sections, and a subject index. And, of course, you are encouraged to jump around
in your reading. When you read about error-trapping in section 9.6, you can go back
and look at the program XARCHIVE in section 6.5.4 to see how it deals with errors.

Part I of HP 48 Insights touches only lightly on or omits altogether major HP 48 features
such as HP Solve, symbolic mathematics, and automated plotting. These topics are left
for the second volume of this series: HP48 Insights II: Problem-Solving Resources. Its
subject matter is the integrated systems of commands and interactive operations
represented by the menus named above the s , 91, [a], (51, and [&] keys:
SOLVE, PLOT, SYMBOLIC, TIME, STAT, and UNITS. The intent is not to explore the
keyboard operations in great detail, since that is well covered in the owner’s manuals,
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but rather to explain the underlying principles and structures, particularly so that you
can extend the built-in capabilities with programs that are listed in the book or that you
develop yourself. The treatment of HP48 principles and programming in Part [ is the
foundation from which you can explore the rest of the HP 48’s capabilities.

1.3 Notation

In order to help you recognize various calculator commands, keystroke sequences, and
results, we use throughout this book certain notation conventions:

All calculator commands and displayed results that appear in the text are printed in
helvetica characters, e.g. DUP 1 2 SWAP. When you see characters like these, you
are to understand that they represent specific HP 48 operations rather than any ordi-
nary English-language meanings.

Ttalics used within calculator operations sequences indicate varying inputs or results.
For example, 123 'REG’ STO means that 123 is stored in the specific variable REG,
whereas 123 'name’ STO indicates that the 123 is stored in a variable for which you
may choose any name you want. Similarly, << program >> indicates an unspecificd
program object; { numbers } might represent a list object containing numbers as its
clements.

Italics arc also used for emphasis in ordinary text.

HP 48 keys are displayed in helvetica characters surrounded by rectangular boxes,
e.g. , , or EEX]. The back-arrow key looks like this: , and the cur-
sor keys like these: [<],[&=],[A], and[V].

A shifted key is shown with the key name in a box preceded by a left- or right-shift
key picture, or , €.2. TIME] , or [<7][PURGE] . A shifted key is identified by
the colored label above the key, rather than the label on the key itself-{<]
rather than .

Menu keys for operations available in the various menus are printed with the key
labels surrounded by boxes drawn to suggest the reverse characters you see in the
display, like these: ZSIGNZ or Z-LIST= .

Examples of HP 48 operations take several forms. When appropriate, we will give step-
by-step instructions that include specific keystrokes and show the relevant levels of the
stack, with comments, as in the following sample:

S11-
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Keystrokes: Results: Comments:
123 456 1: 579 Adding 123 and 456

returns 579 to level 1.

For better legibility, we don’t show individual letters and digits in key boxes--we just
show 123 rather than [1]{21(3], and ABC rather than [a ][« ][A] . Key boxes

are used for multi-letter keys on the keyboard and in menus.

In some cases, a printed listing of the stack contents isn’t adequate, so we use an actual
HP 48-generated picture of the calculator display, such as this picture from Chapter 4:

RAD 2
HOME TEST } 08/30/83 0B:15:09P

3. 14159265359
ITrI

=g ™

(1,2)
1yap | (=g
[EEEPm|CLE o] ZVHM [ZTE u| AR5 =] MO =]

The screen pictures in this book are taken from the HP 48GX. Usually, they will appear
the same on an HP48S/SX, but in some cases the menu labels are different. This
should not affect the meaning or usefulness of the pictures for an HP48S/SX user.

A large number of the examples are presented in a more compact format than the key-
stroke example shown above. These examples consist of a sequence of HP 48 commands
and data that you are to execute, together with the stack objects that result from the
execution. The “right hand” symbol t:# is used as a shorthand for “the HP 48 returns...”
In the compact format, the addition example is written as

123 456 + & 579

The 17 means “enter the objects and commands on the left, in left-to-right order, and
the HP 48 will give back--return--the objects on the right.” If there are multiple results,
they are listed to the right of the = in the order in which they are returned. For exam-
ple,

A B C ROT SWAP »# B A C
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indicates that B is returned to level 3, A to level 2, and C to level 1.

Because of the flexibility of the HP48, there are usually several ways you can accom-
plish any given sequence, so we often don’t specify precise keystrokes unless there are
non-programmable operations in the sequence. If there are no key boxes in the left-side
sequence, you can always obtain the right-side results by typing the left side as text into
the command line, then pressing when you get to the 17 symbol.

The 7 symbol is also used in the stack diagrams that are part of most program listings.
The stack diagrams show how to set up stack objects for execution of the program,
where the objects to the left of the 15 are the “input” objects, and the objects following
the 1= are the program outputs.

The most elaborate “examples” in this book are programs. Each program is listed in a
box that includes a suggested program name, a stack diagram, the actual steps that
make up the program, and comments to help you understand the steps. The following
sample listing illustrates the various features of the format:

SAMPLE Sample Program Listing checksum
level 3 level 2 level ] | level 1
“string"  |matrix| n [ &4 |matrix'|
< A B - ab Start of program.
<< Start of local variable procedure
IF C D Start of IF structure.
THEN 1 2 - n m
<< Start of local variable procedure.
START E F Start of definite loop.
DO G UNTIL H END DO toop.
NEXT End of definite loop.
>> End of local variable procedure.
ELSE | J
END End of IF structure.
> End of local variable procedure.
>> End of program.

1. The name of the program (SAMPLE) is listed first, followed by an expanded ver-
sion of the name that is descriptive of its purpose. When you have entered the
listed program, you should store it in a variable with the specified name. If no
name is given, the program is just intended to illustrate some point in the text, and
there’s no need to give it any particular name.
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The program’s checksum is listed at the end of the name line, as a four-digit hexa-
decimal number. If you enter the program into your HP 48, you can verify that
you have entered it correctly by comparing the listed checksum with the value
returned by BYTES (section 12.5.1) for your program.

Below the program name is a stack diagram, that specifies the program’s input and
output on the stack. The program arguments are shown to the left of the =, and
the results to the right. In the example, the stack diagram indicates that the pro-
gram requires a string in level 3, a matrix in level 2, and a real number # in level
1, and returns a new matrix in level 1. The object symbols in the stack diagram
are as descriptive as possible, showing not only the required object type but also
the conceptual purpose of the objects. A stack diagram

length width height 1= volume

shows that a program takes three real numbers (no object delimiters) representing
length, width, and height, and returns another real number that is the volume.

The program listing is broken into lines, where each line has onc or more pro-
gram objects listed at the left, and explanatory comments on the right. There may
be just one object on a line, or several whenever the collective cffect of the objects
is casy to follow. You do not have to usc the same line breaks (or any at all)
when you enter the program.

Lists, embedded programs, and program structurcs start on a new line unless they
are short enough to fit entircly on one line. More frequently, each program or list
delimiter or structurc word starts a new line. The sequences between the struc-
ture words are indented, so that the structure words stand out. In the case of
nested structures, each structure word of a particular structure is lined up verti-
cally at the same indentation from the left margin. (The structure word —~ does
not start a new line, but the local variable defining procedure that follows the —
does start a new line.) Note that when you edit a program on the HP 48, the pro-
gram display follows these same conventions, within the limitation of the 22-
character display or printer width.

The comments at the right of the listing describe the purpose or results of the
program lines at the left. If you are creating a program using a personal com-
puter text editor, you can include similar comments in your program, setting them
off from the program objects using the @ delimiter (section 4.3.3.1). An espe-
cially useful “comment” is a description of the contents of the stack that are
obtained after the execution of a program line. In our listings, the stack contents
are distinguished from ordinary comments by enclosing the stack objects between

| | symbols. The leftmost object in the series is in the highest stack level; the
rightmost is in level 1. Thus

-14-
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la b ¢ d]
indicates that the object a is in level 4, b in level 3, ¢ in level 2, and d in level 1.

We recommend that you use similar conventions when developing and recording your
own programs. Whether you write programs out by hand and type them into the HP 48,
or use a personal computer to write programs and transfer them to the HP 48 via the
serial port, program stack diagrams and comments are invaluable for later understand-
ing and modification of the programs. Of course, there will be many occasions when
you create a program directly in the HP48 command line without benefit of any pro-
gram listing. In these cases, we still reccommend that you afterwards make a listing, or
copy the program to a personal computer file, so that you can recover the program if
you lose it for any reason.

1.4 Terminology

Finding useful terminology to describe a computer system like the HP 48 with new or
unusual features can be a substantial problem. We have to use existing English words
that are closc to the meaning we wish to convey, but the dictionary definitions of the
words usually differ from their meanings as applied to the HP48. Consider the word
object: for the HP 48, object means any of the mathematical or logical elements that con-
stitute the data and procedural building blocks of the RPL language, but you won’t find
that meaning in a dictionary (although it is close to the definition used in mathematics).

Our solution to this difficulty is to provide precise definitions of any terms that we use
that are specific to the HP 48, and then use those definitions consistently throughout. In
some cases, the definitions we offer may differ from those used in the HP 48 manuals,
usually because we need more careful definitions to get across a particular point. For
example, the owners’ manuals do not make a distinction between execute and evaluate.
We find that such a distinction is useful (section 3.3) because it simplifies the descrip-
tions of related subjects, such as the nature of global name objects (section 3.6.1).

Two other important terms that arise frequently are mode and environment. A mode is
a calculator setting, often associated with one or more flags (section 7.1), that deter-
mines how a particular keystroke or command will behave. For example, in polar mode,
complex numbers and vectors are displayed in polar coordinates rather than the usual
rectangular coordinates. An environment is a glorified mode, which determines the
entire calculator interface, including the display, key actions, and available operations.

The “home base” for the HP 48 is the standard environment. In this environment, the

display shows the status area, stack, and menu key labels. All keys are active, with their
ordinary labeled definitions. If you press , the HP 48 switches to the plot
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environment. Here the display is devoted to a graph or other picture, the menu keys are
restricted to a menu of plotting operations, and the remaining keys are either assigned
additional plot actions or are inactive altogether. Pressing returns to the standard
environment. Other environments include the EquationWriter, the MatrixWriter, and
the equation and statistics matrix catalogs.

While introducing and using this kind of specialized terminology, at the same time we
will be using an informal style that takes some liberties with the language to avoid
unnecessarily stilted descriptions. “You are in the program branch menu” is almost a
non-sequitur when taken out of context, but it reads more easily than “the current
HP 48 menu is the program branch menu,” and its meaning is clear.

1.5 Easy to Use or Easy to Learn?

It would be nice if you could pick up the HP48 and use all of its facilities without ever
referring to a manual. A common criticism of the HP 48 is that it takes a long time to
master, particularly by comparison with some of the graphics calculators made by other
manufacturers that have become popular in mathematics education at the pre-calculus
level. But these calculators obtain their case of Icarning by having very limited compu-
tational capabilities and flexibility compared to the HP48. Their general styles can be
characterized as “fingers in, eyes out.” That is, you type in the arguments for an opera-
tion with your fingers, and read the results out with your cyes. If you want to rcuse
those results in a subsequent calculation, then you type them in again. This is the
antithesis of a stack-based calculator like the HP 48, which is designed so that the results
of any calculation are always available for further operations, so that you never have to
write anything down or retype previous entries.

It is also possible to make a calculator easy to learn by restricting its capabilities and by
constraining its operation so that there is onc and only one way to do anything. If a
particular problem happens to “fit,” then it is easy to solve. But if you want to do
something just a little different, you will find that “easy to learn” translates to “difficult
to use.” For example, it is very easy to solve a quadratic equation by typing the three
polynomial coefficients into fields on a screen labeled a:, b:, and ¢: and pressing a
“solve” key. But what if the coefficients must themselves be calculated, or are already
stored in variables, or are embedded either implicitly or explicitly in an expression? A
calculator is hardly easy to use if it requires you to do most of the work on a problem
before you can start to use it.

The HP 48 approach is to provide a broad, very flexible set of computational capabili-
ties, many of which have never before been available on a handheld calculator. Further-
more, it is expressly designed for “linking” calculations together--the results of one cal-
culation are always ready to be used as input for another, even if you didn’t know in
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advance that your work would proceed that way, and even if the calculator designers
didn’t expect you to make that particular combination of calculations. These idecas are
what the HP 48 means by “case-of-use.”
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2. RPN Principles

The HP 48, like most of its Hewlett-Packard calculator predecessors, presents a user
interface centered around a logic called “RPN,” short for Reverse Polish Notation. If
you are unfamiliar with this logic, particularly if you are accustomed to so-called “alge-
braic” calculators, RPN may seem awkward and unfamiliar. In this chapter, we will
explain how RPN works, and why its virtues make it the choice for the HP 48.

When you are evaluating formulas out of a book, a calculator that uses “algebraic” entry
can be quite suitable, because in at least simple cases the keystrokes follow more-or-less
the order of the corresponding symbols in expressions written in common mathematical
notation. The algebraic style, however, is not well suited for exploratory calculation,
where you don’t necessarily know what to do next until you see the results of previous
calculations--and you nced those results as part of the next calculation. When you press
an algebraic calculator’s [=] key to complete a calculation, you had better be sure that
you're finished, because the result you see in the display may vanish at the next keys-
troke.

The choice and design of an RPN system for a calculator arises from consideration of
one central principle:

o The result of any calculation, no matter how complicated, may be used as an input for
a subsequent calculation.

RPN calculators are designed to cmbody this principle, by providing a mechanism (the
“stack”) whereby you can apply mathematical operations to data already entered into
the calculator. The results of the operations are also held indefinitely, so that they, in
turn, can be the input data for subsequent operations.

In the calculator world, the term Reverse Polish Notation, or more specifically, the
abbreviation “RPN,” has come to mean “the way HP calculators work.” RPN actually
is a mathematical notation; HP calculators provide an electronic implementation of the
notation. In RPN, mathematical functions are written after their arguments, not before
or between the arguments as in ordinary written expressions. The notation appears
strange, because we are not used to visualizing or writing expressions this way. How-
ever, when you actually evaluate an expression to a numerical value using pencil and
paper, you must revert to an order of operations that exactly corresponds to RPN. We
will illustrate this point by examining how mathematical expressions are evaluated.
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2.1 The Evaluation of Mathematical Expressions

A mathematical expression is an abstract representation of the calculation of a single
value. An expression combines data (numbers or other explicit quantities), variable
names, and functions. When you evaluate an expression, you perform all of the calcula-
tions represented by the expression. Examples of expressions are:

1+2

x+ty+2z
sin[In(x +2)]
x*+4x? - 6x +2

We will confine our attention to expressions that can be formed from the mathematical
functions included in the HP48: arithmetic operations, powers, roots, transcendental
functions, etc. Expressions like these have the property that they are equivalent to a sin-
gle value. That is, if you perform the calculations represented by an expression, you end
up with a single value as the result.

In our discussions, we will be using the following terms:

e A function is a mathematical operation that takes zero, one, or more values as input,
and returns one valuc.

A value used by a function as “input” is called an argument.

A valuc returned by a function as “output” is called a result.

A mathematical variable is a symbol that stands for a value. Evaluating a variable
replaces the symbol with the value.

Syntax is the set of rules that governs how data, variables, and functions may be
combined in an expression.

As an example of these concepts, consider the following expression:
sin[123 + 451n(27-6) ]

The expression contains the functions sin, In, +, —, and X (implied multiply between
the 45 and the In), and the numbers 123, 45, 27, and 6. The expression is written in
common mathematical notation, but notice that the order in which you read or write the
expression, i.e., left to right, does not correspond very well to the order you would use if
you were actually going to evaluate the expression with pencil and paper and function
tables. For example, although the In function precedes the quantity (27-6), you can’t
actually compute (or look up) the logarithm until affer you have computed the difference
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27-6. Similarly, the sin, which is the first function that appears in the expression, is
actually the last that you will execute. You can not compute the sine until the entire
rest of the expression [123 + 451n (27-6)] is evaluated.

The common mathematical notation that we are using here has been developed over the
centuries to present a readable picture of a mathematical expression that takes advan-
tage of a human’s ability to view an entire expression at once and draw conclusions from
its structure. But the notation is not a very good prescription for actually evaluating an
expression--as you step through a calculation, you have to jump back and forth, match
parentheses, etc. to find the next step. As we will show now, converting an expression
into an orderly procedure for evaluation leads directly to RPN. First we’ll adopt a uni-
form structure that trcats all functions alike, then we’ll turn it around to match actual
calculation order.

Common notation is not uniform because the notation differs for one-argument and
two-argument functions. In our sample expression, the one-argument functions sin, In,
and cos, are written in front of their arguments (“prefix” notation), whereas the two-
argument functions + and — arc writlen befween their arguments (“infix”). Further-
more, there is an implied multiply between the 45 and the In that is not explicitly writ-
ten. Infix notation also leads to ambiguity. For example, does 1+2X3 evaluate to 9 or
7?7 You cither have to introduce exira parcentheses, e.g. (1+2)X3 or 1+(2X3), or use
so-called precedence conventions that specify which functions are exccuted first in ambi-
guous situations. One of the drawbacks of non-RPN calculators is that there is no
universal standard for precedence, so you have to memorize the precedence rules of
cach calculator you use.

A general-purpose form for functions is to write each function name followed by its
arguments conlained in parentheses, as in f(x), g(xy), cte. You can make expressions
more uniform by writing all of its functions in this prefix form:

sin( + (123, X (45,In( - (27,6)))))
In this notation, +(1,2) means “add 1 and 2”; X (1,2) means multiply 1 by 2; etc.

Writing expressions this way is called Polish notation, honoring the Polish logician, Jan
Vukasiweicz. Unfortunately, this notation appears practically unintelligible to people
accustomed to conventional notation. But it does show explicitly the hierarchical struc-
ture of the expression, which we will discuss later (section 3.5.2.1). Also, it is useful
because it is a step towards RPN. That is, you can obtain a form that corresponds more
closely to the actual order of evaluation of an expression by rewriting the Polish form so
that the function names follow their arguments’ parentheses. For example, rewrite
+(1,2) as (1,2)+. The example expression now becomes:
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((123, (45, ((27,6) - )In) X ) + )sin

In the expression now, Polish notation is replaced by Reverse Polish Notation. In this
form, the expression represents a step-by-step evaluation prescription for pencil-and-
paper or electronic calculation, that follows the left-to-right order of the expression. To
see this, consider an orderly pencil-and-paper method for evaluation:

e Start at the left of an RPN expression, and work to the right.
e When you come to a number, write it down below any previous numbers.
e When you come to a function, compute its value using the last number(s) you wrote
as its arguments. Erase the argument number(s), and then write the function value.
Thus, to calculate the example expression (keeping two decimal places):
Object  What to do What you see
123 Write 123 123

45 Write 45 123
45

27 Write 27 123
45
27

6 Write 6 123
45
27

- Subtract 6 from 27 123
45
21

In Find In(21) 123
45
3.04

X Multiply 45 and 3.04 123
137.00

-22-



RPN Principles . 2.1

+ Add 123 and 137.00 260.00

sin Take the sine of 260° -.98

There are two things you can notice from this exercise:

e Whenever you encounter a function, you can execute it immediately because you
have already calculated its arguments.

e You can ignore parentheses. When you write an expression in RPN form, you don’t
need parentheses, because there is no ambiguity of precedence--functions are always
executed left-to-right.

The latter point means that you can climinate parentheses from the notation. Doing so,
the example becomes:

123 45 27 6 - In X 4+ sin

2.2 Calculator RPN

An RPN calculator allows you to substitute an clectronic medium for paper. The
calculator’s key is the cquivalent of “write it down” in paper calculations. You
“write” a number by pressing the appropriate digit keys, then , which terminates
digit entry and enters the number into the calculator’s memory. The memory takes the
place of paper.

For cases where you need to have more than one number written down at a time, calcu-
lator memory is organized into a “stack.” You can visualize the stack as a vertical
column of numbers, where the most recently entered numbers are at the bottom of the
column, and the oldest numbers at the top. Each new entry “pushes” previous entries
to higher stack levels. A function always operates on the latest stack entry or entries,
and replaces those entries with its result, where it is ready for use by the next function
to come along. If one or more entries are removed from the stack, older entries drop
down to fill in the vacant levels. Again, this is quite analogous to the pencil-and-paper
technique you used in the example.

To illustrate calculator RPN, redo the previous example on the HP 48, with the numeri-
cal display mode set (2 FIX) for two decimal places:
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Keystrokes:

123
45

27 [ENTER]

6 [ENTER

[SIN]

Note how

- N

SR

w

Stack:

123.00

123.00
45.00

123.00
45.00
27.00

123.00
45.00
27.00

6.00

123.00
45.00
21.00

123.00
45.00

3.04

123.00
137.00

260.00

-0.98

RPN Principles

a. each number entered goes into level 1, raising the preceding numbers to higher

levels;

b. each function removes its argument or arguments from the stack, and returns a

new result to the stack.

Here you can see how a stack provides for the realization of the principle stated at the
start of Chapter 2, namely, that every result can be an argument. The stack acts as
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central exchange, where each function expects to find its arguments. Since each func-
tion also returns its results to the stack, those results are automatically ready to be used
as arguments for the next function.

2.3 RPL RPN

Prior to the introduction of the HP28C in 1987, RPN calculators provided only a limited
form of RPN in which the stack was limited to four levels. This implementation is ade-
quate for many calculations, but has certain shortcomings:

e You can’t routinely convert any expression into RPN, then execute it left to right.
Instead, you have to study the expression, looking for ways to avoid piling up more
than four stack entries at a time.

e Some calculations intrinsically requirc more than four entries, no matter how clever
you are. This means that you have to save one or more intermediate results in
storage registers, then rccover them later for further stack operations.

A four-level RPN stack is a restriction quite analogous to the limit in most “algebraic”
calculators on the number of parentheses that you can nest in a calculation. Such limits
are an even greater nuisance than the stack level limit, since algebraic entry does not
lend itself well to passing the results of one calculation on 1o another.

The RPL system employed by the HP28 and the HP 48 is a thorough implementation of
RPN, in which the number of stack levels is not fixed. The stack grows and shrinks as
needed. The unlimited stack allows you to concentrate on the results of a calculation
without requiring extra mental effort to rearrange it to fit the constraints of a four-level
stack. Furthermore, the stack is a stack of general objects, not just of ordinary
numbers, so that calculations with extended objects such as matrices can be performed
in the same style as simple numerical calculations.

An important example of the multi-object-type stack is RPL’s ability to intermix expres-
sions entered in algebraic syntax, with RPN operations. This ability is provided through
the use of algebraic objects, which are representations of expressions that you can enter
into the stack as single units. We discuss algebraic objects in more detail in later sec-
tions of this book; for now, you can consider them as the means by which you can calcu-
late using algebraic syntax.

In section 2.1 we showed how RPN is derived by considering the manner in which
expressions are actually evaluated. However, we do not mean to imply that a com-
pletely RPN approach is always the most convenient method of calculation. In fact, to
evaluate certain expressions like our example sin[123 +451n(27-6)], it is arguably
simpler to key in the expression in a manner that corresponds as nearly as possible to
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the written form, than to figure out the more efficient RPN keystrokes. RPN is most
useful for exploratory calculation, when you’re not merely evaluating a predetermined
expression. RPL allows you to have the best of both worlds, by combining algebraic and
RPN logic as follows:

e If you know in advance the complete mathematical form of a calculation, enter it as
an algebraic object.

e If you are working out the solution to a problem, and don’t know in advance all of
the steps, work through the problem with an RPN approach, applying functions to
the results as they appear.

e In both cases, the results are held on the stack ready for use in further calculations.

Our sample problem was originally expressed as an expression, so you can enter it as an
algebraic object:

'SIN(123+45*LN(27 - 6))’

puts the algebraic object representing the expression into stack level 1. (Note that it is
the expression itself that is present, not its evaluated value; the ability to handle expres-
sions without first cvaluating them is onc of the unique and most powerful RPL calcula-
tor capabilitics.) In this example, you are interested in the numerical valuc, so press
. This replaces the algebraic object with its value —.98. Actually, if this result
were all that is of interest, you could omit pressing , and use to takc the
expression directly from the command line and evaluate it.

Suppose, however, that at the beginning of the calculation you were only interested in
the expression 123 + 451n(27-6). In that case, you would compute the value by enter-

ing
'123+45+LN(27-6)' EVAL :# 260.00

Then, after obtaining this result, you realize that in addition to the value itself, you also
need to know the sine of the value. Because the result of the initial calculation is on the
stack, it is ready for further calculation. In this case, you can execute DUP to make a
copy of the number for later use, then SIN to compute the sine.

RPL calculators are unique in their ability to hold the results of algebraic expression
evaluation in a manner that allows you to apply additional operations to the results after
they are calculated. Algebraic entry calculators require that you know the entire course
of a calculation before you start; RPN calculators overcome that problem, but you must
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always mentally rearrange an expression into reverse Polish form as you proceed. The
HP 48 allows you to proceed with any mix of the two approaches that is appropriate for
the problem at hand.
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3. Objects and Execution

In Chapter 2, we demonstrated how you perform calculations on the HP 48 by applying
functions to numbers that are present on a stack, which acts as the electronic equivalent
of a sheet of paper. This RPN system is very uniform and flexible, and there is no par-
ticular reason to restrict its use to real numbers and ordinary mathematical functions.
The HP 48 generalizes the RPN approach to problem solving in two ways:

¢ Real numbers are just one of several types of objects that the HP 48 can manipulate
on the stack and store in memory. (Several other English words might be substi-
tuted for object; item, unit, element, etc. The use of object for this purpose is com-
mon in mathematical jargon, and so that word is adopted for HP 48 terminology.)

o Mathematical functions are just one of several classes of HP 48 operations that can
be applied to numbers and other types of objects.

The terms object and operation are key terms for any discussion of the HP48, and we
will study them in detail in this chapter. In addition, we will introduce the concept of
objcct execution, and the closely related term evaluation. In rough terms, operations arc
“what things the HP48 can do,” and objects arc “what the HP48 can do things 10.”
Execution and evaluation are the actual “doing.”

We will usc these four words extensively throughout this book to make gencral state-
ments about HP48 principles, so it is important that you understand the meanings of
cach. If you find occasionally that the statements are too abstract, you can relate them
to more familiar ideas by substituting concrete examples for the general terms. For
example, when we refer to an object, you can think of a number as an example; for an
operation, think of an ordinary math function like + or sine. Execution is the “activa-
tion” of an object--think of running a program. Evaluation differs from execution only
for algebraic and list objects: execution treats these types of objects as data and merely
returns them to the stack; evaluation actually performs sequences of calculations defined
by the objects.

3.1 Operations

“What things the HP48 can do” make up a very long list, and constitute the subject
matter of most of this book. Here we will concentrate on defining the different types of
operations, to facilitate later discussions.

We use the term operation to mean any of the built-in capabilities of the calculator.

Most calculator manuals use the term function for this purpose. In describing the
HP 48, the term operation is preferable, reserving functions to mean a specific group of
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HP 48 operations that correspond to the mathematical meaning of function.

There are two basic methods by which you can make the HP 48 "do" something; that is,
perform an operation.

¢ Find the key that is labeled with the name or symbol for an operation, and press it.
Many important operations, such as the arithmetic operators, or STO and EVAL, are
permanently available on the keyboard. The remaining operations are available as
menu keys.

¢ Spell out the operation’s name in the command line, then press . ENTER on
the HP 48 plays a role that combines its original RPN calculator purpose of ending
number entry with a more sophisticated meaning of "do these commands." ENTER
is explored in detail in section 4.3.3.

HP 48 operations are classified as follows:

1. An operation can be a command or a manual operation, according to whether it is
programmable or non-programmable, respectively. A command has a specific
name, so that you can

e cxccute the command by typing its name into the command linc.
¢ include the command in a program that you write.

Manual operations don’t have names that you can spell out or include in a pro-
gram; you can only cxecute a manual operation by pressing a key. Examples are
[ENTER] , [$9]{EDIT], and ZSOLVR= .

2. Programmable operations--commands--are sorted into two classes. If a command
can be included in the definition of an algebraic object, it is called a function.
Examples of functions are +, SIN, LOG, and NOT. Commands that are not
allowed in algebraics are called RPN commands. These commands, such as DUP,
STO, or RDZ (randomize), are typically stack or memory operations that make no
sense in the context of an algebraic object, which is the HP 48 calculator represen-
tation of a mathematical expression or equation. The logic of expressions
demands that every part of an expression (including the entire expression itself)
can be evaluated to a single value. So for an HP 48 command to be included in an
algebraic object, it must act like a mathematical function--use zero or more values
as input, and always return exactly one result.

3. The final classification of HP 48 operations is the division of functions into two
categories: analytic and non-analytic. Analytic functions are those for which the
HP48 knows the derivative and inverse. “Knowing” the inverse of a function f
means the HP48 can automatically solve the equation f(x) =y for x. (In
mathematics, an analytic function is continuous and differentiable, which
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corresponds more-or-less to the HP 48 meaning of analytic function. For various
reasons, the HP 48 does not provide derivatives and/or inverses for every function
that is analytic mathematically. % is an example of a well-behaved function for
which no built-in derivative is provided. On the other hand, the function ABS can
be differentiated on the HP48; even though it is not properly differentiable at
Zero.)

The main reasons for sorting HP 48 operations into these categories is to make possible
general statements about various classes of operations, and to provide information about
individual operations without unnecessary repetition. Thus when we refer to DUP as an
RPN command, we are reminding you that DUP is programmable, but not allowed in an
algebraic expression.

3.2 Objects

The HP48 provides 18 distinct types of objects that can be created and manipulated
with ordinary built-in operations. Thesc object types are listed by their type numbers
(as returned by the commands TYPE and VTYPE) in Table 3.1. In addition, there are
twelve system object types, including seven that arc actually used by the HP 48 in internal
calculations, and five provided for future extensions. You won’t normally sce any of
these while using only built-in operations, but add-in softwarc may bring them to light.

The word object is the collective term for all of the different items listed in the table.
This list does not contain all imaginable object types; these are just the types that you
can create and use on the HP48. In the abstract, an object is a collection of data or
procedures that can be treated as a single logical entity. In practical HP48 terms, this
means that an object is something that you can put on the stack.

Most objects are identified in the HP 48 by their characteristic delimiters, which are just
the symbols #, ", ’, etc., which you enter to tell the calculator what type of object you
are entering, and where it starts and stops. (If you enter a string of characters without
any delimiters, the HP 48 attempts to interpret it as a real number, or failing that, as a
name or command.) Similarly, the calculator uses the same delimiters when it displays
an already entered object so that you can recognize its type.

An individual object is characterized by its type and its value. The fype (number, array,
etc.) indicates the general nature and behavior of the object. The value distinguishes
one object from another of the same type. For a real number object, the value is its
simple numerical value. For a string, the value is the text characters in the string. For
a program, the “value” is the sequence of objects and commands that make up the pro-
gram. For lists, programs, and algebraic objects, which are made up of other objects,
we will use the term definition rather than value.
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32 Objects and Execution
Table 3.1. HP48 Objects
TYPE Number Object Type Identification
0 Real number digits
1 Complex number (real number, real number)
2 String (text) "characters"
C$ n characters (command line)
3 Real array (vector/matrix) [ real numbers }
4 Complex array (vector/matrix) [ complex numbers |
5 List { objects }
6 Global name characterst
7 Local name characterst
8 Program << objects >>
9 Algebraic object 'objects’
10 Binary integer number #digits
11 Graphics object Graphic n X m (stack)
GROB n m data (command line)
12 Tagged object characters: object (stack)
:characters: object (command line)
13 Unit object number_units
14 XLIB name characters (library present)
XLIB n, m (library missing)
15 Directory DIR name object ... END
16 Library object Library n: Title
17 Backup object Backup characters

T Names can be entered with or without ’ ' delimiters. See section 3.7.
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Objects and Execution 3.2

A central theme of the HP48 is its uniform treatment of different object types. This
means that the basic calculation process--applying operations to objects on the stack--is
the same for every object type:

e Each stack level holds one object, regardless of type.

e The stack commands to copy, rcorder, and discard objects are the same for all
object types.

e The processes of storing (naming), recalling, and executing are the same for all
object types.

e The same operation can be applicd to as many different object types as make sense
for the operation.

These points have the very practical consequence of simplifying the learning and use of
the HP 48, for once you learn how an operation works for one object type, you automat-
ically know how to use it for any other object types to which it might apply. For exam-
ple, if you learn RPN arithmetic for real numbers, you don’t have to lcarn anything new
to do arithmetic with complex numbers or arrays--the steps and logic arc the same.
There is no such thing as “complex mode” or “matrix mode” on the HP 48.

3.2.1 Operations as Objects

You might ordinarily think of operations as actions, and objects as the targets or results
of the actions. However, the existence of object types that are not simple data--namcs,
algebraic objects, and programs--blurs this distinction. As a matter of fact, all HP 48
commands arc just built-in program objccts. To demonstrate that a command is an
object, you can put it on the stack. Try this (you must start with the + in a list to
prevent its execution):

1 2 {+} HEAD 1=

{ HOME }
b H
3
Ef ¢

1 +

1

You now see the object + in level 1. If you next press [EVAL], the + is executed, adding
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the 1 and 2 you entered previously and leaving the result 3. This technique works for
any command.

This brings us to the subject of execution: when is an object “passive”--like the + just
waiting on the stack, for example--and when is it “active”--like the + actually perform-
ing the addition?

3.3 Execution and Evaluation

We have generalized the concept of an object to include not only data objects but also
user-defined programs and expressions, and built-in operations. We now similarly
define execution as the general term for the activation of an object: to execute an object
means to perform the “action” associated with that object. In the next sections, we will
look at the various actions associated with the different object types.

Most object types are considercd as data, for which execution simply means “put the
object on the stack.” Five object types have a more energetic definition of execution:

e Exccuting a local name means to recall an object stored in a local variable (section
9.7) to the stack.

o Executing a global name means to execute an object stored in a global variable (sec-
tion 5.1).

e Executing an XLIB name means to execute an object stored in a library--an exten-
sion to the calculator’s built-in operation set (section 6.4.3).

¢ Executing a program means to cxecute the objects that make up the program’s defin-
ition.

¢ Executing a system code object executes the assembly language program that defines
the object.

Lists and aigebraic objects are defined, like programs, by a sequence of other objects (in
fact, the internal structures of lists, programs, and algebraic objects are identical). Col-
lectively, the three types of objects are called composite objects. The HP 48 provides a
second form of execution, called evaluation, in which composite objects of any type are
executed like programs--the objects that make up a composite object are executed
sequentially. For non-composite objects, evaluation and execution are synonymous.

The primary means of evaluating an object is the EVAL command, which evaluates the
object in level 1, e.g.
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3 EVAL 1= 3
142! EVAL 1> 3
{1 2 +} EVAL 1= 3

<1 2 +> EVAL v 3

The use of the term evaluation arises from its meaning of performing the calculations
represented symbolically by an algebraic expression to obtain the value of expression.
In addition to EVAL, algebraic objects arc evaluated by “NUM, plus several other com-
mands that deal with expressions’ values, such as [, DRAW, and ROOT. EVAL is the
only means of evaluating a list.

3.3.1 When are Objects Executed?

Before studying the execution actions of the various object types, it is helpful to review
the circumstances under which objects are executed or evaluated. It is not unreasonable
to say that object execution takes placc all the time while the HP48 is on, since virtually
any HP48 activity--interpreting keystrokes, displaying objects, printing, ctc.--can be
vicwed as the automatic exccution of built-in program objects. However, of most
interest are the times when objects are cxccuted under your direction, particularly
objects that you have created. These times are as follows:

1. Execution

e When you exccute ENTER (section 4.3.3), each object specified in the com-
mand line is executed, in the order in which it appears in the command line.
You can prevent execution of names or programs in the command line by
enclosing them in their respective delimiters ' ' or << >>, as discussed in sec-
tion 3.8.

e When a program is executed, the objects that make up the program are exe-
cuted, following the same rules as command line execution.

e When a global name (section 3.6.1) is executed, the object stored in the
corresponding variable is executed. (Execution of a local name merely recalls
the stored object.)

e When an XLIB name is executed, the named object in a library is executed.
2. Evaluation

e EVAL removes the object in level 1 from the stack and evaluates it. This is the
most common means for evaluating an object affer it is placed on the stack.
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¢ ~NUM is similar to EVAL, except that it invokes numerical execution mode
(section 3.5.6.2), and does not evaluate lists.

¢ QUAD, ROOT, SHOW, TAYLR, 9, and [ also evaluate their stack arguments.

e HP Solve and DRAW cause evaluation of the current equation specified in the
variable EQ.

¢ Commands such as PUT or SUB that use a list containing real numbers as an
argument numerically evaluate (-NUM) the objects in the list to convert them
to real numbers.

e Program structure words such as THEN, that take a flag value from the stack,
evaluate algebraic object arguments to obtain a numeric flag value.

e The conditionals IFT and IFTE evaluate the stack object selected by the value
of the stack flag (section 7.1).

It is uscful to sort HP 48 objects into threc classes of objects: data, name, and procedure.
This classification is made according to an object’s behavior when it is cxccuted or
evaluated. Most types of objects are data class objects, which just put themselves on the
stack when executed. The execution of name class objects (global, local, and XLIB
names) causes the recall or exccution of stored objects. Procedures arc composite
objects; their evaluation causes the secquential execution of the objects contained in the
procedures.

Lists and algebraic objects classify differently depending on whether they are exccuted
or evaluated. Because lists are primarily used as data (the contents of lists are usually
not appropriate for secquential execution), we shall consider them as data class objects,
which occasionally arc made to act as procedures by EVAL. Algebraic objects are
always suitable for evaluation, so we will consider them as procedures while kecping in
mind that they act as data objects when exccuted.

3.4 Data Objects

The ideca of a data object should be quite familiar to you, since data objects are the only
quantities that can be manipulated as objects by other calculators (except for the HP 28)
and BASIC computers. The archetype data object is a floating-point real number. More
generally, an HP 48 data object is the calculator’s representation of a mathematical or
logical data entity such as a number, a vector, or a character string,

You would not expect a data object to be able to do anything; rather, it exists to have

things done to it. Nevertheless, data objects do have an execution action: they just enter
themselves onto the stack. When you type in a number, for example, and press ,
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the number object is executed and so ends up in level 1. When a data object is already
on the stack and you execute EVAL, nothing apparently happens. Actually, EVAL
removes the object and executes it, which puts it right back on the stack. Note that
classifying an object as “data” does not imply that the object is small or simple--a direc-
tory is a data class object, but it can occupy any amount of memory and have a very
complex structure.

The HP 48 data object class includes the following types: real number, complex number,
string, real array, complex array, list, binary integer, graphics object, tagged object, unit
object, directory, library, and backup object, plus all of the system object types except
the code object.

3.4.1 Real Numbers

A real number object is the HP48’s version of an ordinary real decimal number. The
number value of the object is stored in floating-point representation, as a combination of
a 12-digit mantissa (x/10"70°21¥ Dy between 1 and 9.99999999999, and a 3-digit exponent
(IP(log | x | )) between —499 and +499. That is, a number is represented as

mantissa X 109Poment

When the HP 48 is in scientific number display mode (SCI), you can see thc mantissa
and cxponent explicitly; for example, the number 1.234x10% is displayed as
1.23400000000E23. The E is a one-character symbol for “X 10 to the power...”

When the HP 48 performs internal calculations during the execution of mathematical
functions, real numbers arc expanded to fifteen-digit mantissas and five-digit cxponents,
and all of the calculations are carried out to that accuracy. Functions’ rcsults are
rounded back to twelve-digit mantissas and three-digit exponents when they are returncd
to the stack. Note that this docs not imply that calculations involving multiple functions
arc always accurate to twelve digits. The error derived from rounding intermediate
results to twelve digits accumulates as each new function executes on the result of the
previous one.

Real numbers are entered and displayed without any delimiters. In the command line, a
real number is a consecutive sequence of decimal digits, optionally including a leading +
or -, a fraction mark (decimal point), and/or an “E” followed by an optional + or - to
mark the start of the exponent field.

e If you enter more than 12 digits in the mantissa, the resulting exponent will take the
extra digits into account, but the mantissa is rounded to 12 digits:

9999999999999 = 1.00000000000E13

.37-




3.4 Objects and Execution

e Entering more than three digits in the exponent causes a syntax error.

¢ In FIX display mode, real numbers displayed on the stack are shown with digit-group
commas (periods when flag —51 is set). However, you can not include such commas
when you enter numbers in the command line, since the commas are interpreted as
object separators:

123,456,789 1= 123 456 789.

3.4.2 Complex Numbers
Complex number objects consist of two real numbers combined as an ordered pair (x,y).
They have two primary uses:

e To represent complex numbers, where the first number in each ordered pair is the
real part of a complex number, and the second number is the imaginary part. A
complex number object (x,y) corresponds to the complex number z = x + yi, where
x = Rez and y = Imz. The object (3,2) represents the complex number 3+2i.
Complex number objects obey the rules of complex number arithmetic; for example,

(1,2) (34) + v (46).

e To represent the coordinates of points in two dimensions, such as points used in
conjunction with HP 48 plotting (10.3). The real part (the first number of the pair)
of the complex number is the horizontal coordinate of the point, and the imaginary
part (the second number) is the vertical coordinate. In this context, complex
numbers act as two-dimensional vectors, and arc suitable for vector addition and
subtraction. However, other common vector operations, such as dot and cross pro-
ducts, are not defined for the complex number object type; for those purposes, you
must use vector objects.

The standard entry form for a complex number is (xy): matched parentheses surround-
ing two real numbers x and y, separated by a space, comma, or semicolon. After entry,
the numbers are displayed separated by a comma if flag —51 is clear, or a semicolon if
the flag is set.

The numbers can also be interpreted as the absolute value r and phase 6, by separating
them with an angle sign «, i.e. (r £6). Similarly, the default for stack display of com-
plex numbers is rectangular format, but you can obtain a polar form display by selecting
polar coordinate mode (section 11.3.1). However, regardless of how they are entered or
displayed, complex numbers are always stored in memory in rectangular coordinates, so

that in polar displays r is always positive, and 8 is normalized to the range —180° to
+180°.
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When you enter a complex number within an algebraic object, you must separate the
real and imaginary parts (or the absolute value and phase) with a comma or a semi-
colon. The real and imaginary parts can be symbolic expressions as well as real
numbers, although symbolic complex numbers entered in polar form are automatically
converted to rectangular form:

'R, £8)’ 1= '(R*COS(6),R*SIN(6)’

Furthermore, any subexpression of the form expr, +expry* is displayed as
(expry,expry):

‘A+B#' 1= '(AB).

Like the polar form display of complex numbers or vectors, this representation of sym-
bolic complex numbers is a display form only; the number is always stored in memory as
a sum of real and imaginary parts, as you can see by taking the symbolic number apart
(see section 3.5.2.1):

'(AB)’ OBJ- 1= 'A’ 'B¥' 2 +

This reveals that the expression is the sum of A and B*i. You can choose to display
symbolic complex numbers in the sum representation by setting flag —27 (this flag is not
defined on the HP 48S/SX).

There are two ways to combine two real numbers into a complex number or vice-versa.
First, the command ~V2 (with flag —19 set), creates a complex number from two real
numbers that represent the real and imaginary parts, or the magnitude and phase,
according to the current angle and coordinate modes (section 11.3.1). The reverse
operation is V—:

RECT 1 2 -V2 = (1,2)

CYLIN 1 45 -V2 vz (1,445)
RECT (20,30) V- L 20 30
CYLIN (1,445) V- 1 45

(1,1) DEG CYLIN V- 1= 141421356237 45

If flag —19 is clear, ~V2 will create a vector (section 11.3.1) rather than a complex
number.

-39-




3.4 Objects and Execution

The commands R-C (Real-to-Complex) and C-R (Complex-to-Real) assemble and
disassemble complex numbers without regard to the current angle or coordinate modes.
Their the real number arguments and results are always the real and imaginary parts of
the complex number:

(1,2) C-R F 1 2
DEG (1,445) C-R 1= .707106781187 .707106781187
3 4 R-C vy (3,4)

You can also decompose a complex number with OBJ-, which is equivalent to C-R for
complex numbers.

HP 48 mathematical functions treat real number and complex number objects in a very
uniform manner. That is, you can intermix the two object types in almost any calcula-
tion involving arithmetic, trigonometric, logarithmic, or exponential functions. Two-
argument functions return complex results if cither argument is complex:

3 23 * v (69).
The result of a single-argument function may be rcal or complex, according to the argu-
ment type and the appropriatc mathematics. The functions RE (real part), IM (ima-
ginary part), ARG, and ABS always return rcal number objects. A trigonometric, loga-

rithmic, cxponcntial, power or root function applied to a complex argumcnt always
returns a complex results, e.g.:

02 V = (1,1).

Such functions applied to real arguments may return cither a real or a complex result.
For example,

DEG .5 ASIN wx 30,
but
DEG 2 ASIN v#s (1.57079632679,—-1.31695789692).
On most other calculators, the last example would cause an error. The HP48’s
integrated treatment of real and complex numbers means that you can write programs

that work equally well for real and complex inputs and outputs. However, it also means
that you may have to include explicit range testing in a program that you want to stop
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when a calculation strays out of the real number domain.

You should note that the last example gives the same result regardless of whether the
HP48 is in degrees mode or radians mode. Trigonometric functions consider all com-
plex arguments and results to be expressed in radians.

3.4.3 Strings

String objects (object type 2) are character sequences that are interpreted as simple text.
Strings are identified by the double quote delimiters " ". The characters within the
quotes can be any HP 48 characters, including the other delimiter characters, which have
no special meaning in a string. You can use string objects to prompt for input or label
output, or as data to be processed logically, such as names to be alphabetized by a sort-
ing routine (section 11.4.3). The sequence "fext” DROP can act as a program “comment”
that has no computational significance but helps you to document a portion of a pro-
gram. If you writc or keep programs (or any object types) on a personal computer, the
comment delimiter “@” provides a better commenting method.

Strings are normally entered and edited by surrounding a scquence of characters with
double quotes, c.g. "ABCDEF". However, if you want to enter a string object in which
onc or more of the characters arc double quotes, you can use the alternatc command
line forms

C$ n characters
or
C$ $ characters
The first of these “counted string” forms makes a string object using the first n charac-
ters in the command line after the number # (not counting the first space or other non-
numeric character after the n):
C$ 10 ABCD"EFGHI 1z "ABCD"EFGHI"
C$ 2ABC123 = "BC" 123
When you edit a string object that contains double quote characters, it always appears in
the command line in this counted string form.
The second counted string form uses all of the remaining characters in the command

line following the C$ $:
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C$ $ ABCDEFG = "ABCDEFG"

In this case, there must be a space after the second $.

3.43.1 Concatenation

One of the most common string operations is concatenation, the appending of one string
to another. This is achieved on the HP48 by the + command, which appends a string
object in level 1 to the end of a string in level 2:

"ABC" "DEF" + uwx "ABCDEF"

String concatenation does not require both arguments of + to be strings; if either argu-
ment is a string, the non-string object (unless it is a list--see section 11.4.1) is automati-
cally converted to a string (as by ~STR) and then concatenated to the other argument:

STD "Result=" 10 + o7 "Result=10"

3.4.3.2 String Comparisons

String objects can be compared (ordered) by using any of the six comparison operators
==, ¥, <, >, =, and = (section 9.3.1). Comparisons arc made on a character-by-
character basis, where pairs of characters are compared according to their character
codes. The character code is a number from 0 through 255, that represents the number
of a character in the ISO 8859 Latin 1 character set used by the HP 48. Two strings are
cqual if they contain the same characters in the same order. string, is “less than”
string, if the first character from the left that is not the same in both strings has a
smaller character code in string; than in string,. The following sequence orders two
strings so that the “smaller” is returned to level 2:

DUP2 IF > THEN SWAP END

Since lower-case letters have different character codes (97-122) than upper-case letters
(65-90), alphabetization done with > or < is case-sensitive.

3.43.3 Other String Manipulation Commands

Several additional commands are provided in the menu for simple string
manipulations.

e OBJ- with a string argument (same as STR-) is a programmable form of ENTER,
that “executes” the string object as if the string characters were entered in the com-
mand line:
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"123 456 +" OBJ- = 579
OBJ- is useful in programs for creating objects (like other programs) by concatenat-
ing strings representing parts of the objects.

e ~STR converts any object to a string object, where the string characters represent
the display form of the object:

(1,2) -STR 1= "(1,2)"

(If the object is already a string, =STR has no effect.) Note that since —~STR
respects the current number display modes, the combination ~STR OBJ~ does not
necessarily leave an object unchanged unless the current number display mode is
STD, and the binary integer wordsize is 64 bits.

e SIZE returns the number of characters in a string:

"ABCDEFG" SIZE ux 7.
e POS (POSition) finds the position of one string (level 1) within another (level 2):

"ABCDEF" "CDE" POS 17 3.

The position is counted from the left, starting with the first character as position 1.
POS returns O if the second string is not contained within the first.

e REPL (replace) overwrites a portion of a string (level 3) with another string (level 1),
starting at a specified position (level 2). Call the target string string | (length /), the
replacement string string, (length {,), and the position 2. Then for

n>ly, string, is concatenated (o string ;:

"ABCDE" 10 "FG" REPL r= "ABCDEFG"

n+1,-1=l;, characters n through n +/,-1 are replaced; the remaining /; -/,
characters in string; are unchanged:

"ABCDE" 2 "FG" REPL 17 "AFGDE"

n+1,-1>1,, characters n through /, are replaced, and the leftover /5 - (y-n)
characters from the end of string, are concatenated, so that the
result string has n + {, — 1 characters:

"ABCDE" 5 "FG" REPL 1= "ABCDFG"
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n=0, the Bad Argument Value error is reported.
e SUB extracts a substring from a string (level 3), where the start and end character
positions are specified in level 2 and level 1:

"ABCDEFG" 3 7 SUB ux "CDEFG"

A character position argument less than 1 is treated the same as 1; a position greater
than the string length is treated as that length. A null string is returned if the speci-
fied end position is less than the start position.

¢ HEAD extracts the first character of a string:

"ABCDEFG" HEAD w7 "A"

e TAIL removes the first character from a string:

"ABCDEFG" TAIL o "BCDEFG"

e NUM returns the character code of the first character in a string:

"ABCDEF" NUM 1 65

e CHR produces a one-character string, where the character is specified by its charac-
ter code:

189 CHR 1z """

CHR provides one means of entering certain seldom-used characters, such as the %
shown in the example, that are not available on the keyboard. Any HP48 character
can be entered from the character browser activated by [->]ZCHARSE .

3.4.4 Arrays

Array objects (object types 3 and 4) are the HP48 representation of real or complex
vectors (one-dimensional arrays) and matrices (two-dimensional). Arrays are identified
in the command line and in the stack display by the square-bracket delimiters [ |. A
sequence of numbers surrounded by a single pair of brackets is a vector. A sequence of
vectors surrounded by an additional pair of brackets is a matrix, where each vector is
one row of the matrix.

Arrays can be either real (type 3) or complex (type 4). In a real array all of the ele-
ments are real numbers; in a complex array the elements are complex numbers. As in
the case of number (scalar) objects, you can intermix real and complex arrays in calcula-
tions. You can also combine numbers and arrays for many operations, where it makes
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mathematical sense. For example,
2 [1 2] = o= [2 4]

However, you can’t add a number to an array, since that is not a mathematically defined
operation.

Arrays are discussed at more length in Chapter 11.

3.4.5 Lists

A list object (type 5) consists of a series of any types of objects entered between {} del-
imiters. The primary purpose of lists is to allow two or more objects to be manipulated
together as a single data object. Automatic list processing, a new feature on the
HP48G/GX (see section 3.5.5.1), enables commands to be applied to a series of argu-
ments. Lists are described in detail in Chapter 11, and are used in numerous program
examples throughout this book.

3.4.6 Binary Integers

Binary integer objects represent unsigned integer numbers, stored as sequences of binary
bits (rather than decimal digits as for floating-point numbers). The maximum value of a
binary integer is the hexadecimal number FFFFFFFFFFFFFFFF, corresponding to 64
binary 1’s.

In addition to their immediate use for performing integer arithmetic, binary integers are
used in the HP 48 for

e a modest set of bit-shifting and logic commands common to computer science appli-
cations, provided in the base menu ([MTH]ZBASEE );

e encoding the user and system flags (section 7.1);
e representing graphic object pixel numbers (section 10.3);
e computing object checksums (section 12.5.1).

For the four arithmetic operations, you can intermix binary integer and real number
arguments--the results will be binary integers.

You can control the entry and display of binary integers by executing one of the base
mode commands BIN (binary, base 2), OCT (octal, base 8), DEC (decimal, base 10) or
HEX (hexadecimal, base 16). To enter a binary integer, type the # delimiter followed
by the number digits. The digits are interpreted according to the current base; in hexa-
decimal mode, for example, you can use digits 0-9 and A-F. You can override the
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current base by adding a lower-case letter b, o, d, or h immediately after the number
digits. The objects are always displayed in the current base, including the trailing letter
that identifies the base, regardless of how they were entered.

When a binary integer is entered, it is always created with 64-bit precision. However,
integer operations and display are limited by the current wordsize, a ‘number from 1
through 64 (the default is 64). STWS sets the wordsize from a real number argument;
RCWS returns the current wordsize as a real number. The stack display of binary
integers shows only the least significant wordsize bits, e.g.

HEX 10 STWS #FFFFh wvs #3FFh.

At this point, the number has not actually been truncated to 10 bits--if you execute 64
STWS you will sece #FFFF. However, all arithmetic and logical commands that work
with binary integers truncate their arguments to the current wordsize before performing
their operations, and return results truncated to the wordsize. If you multiply the
#FFFh above by 1, then set the wordsize to 64, you will see #3FF, since the multiplica-
tion truncated the arguments and results. The truncation actually shortens the binary
integer to the specified number of bits, rather than just setting the most significant bits
to zcro:

12 STWS #FFFh DUP 1 * u# #FFFh #FFFh

Herc we have two binary integers with the same numerical value. However, BYTES
(section 12.5.1) applied to those two arguments returns memory sizes differing by 6.5
bytes (and different checksums), showing that one is 52 bits (6.5X8) longer than the
other.

3.4.7 Graphics Objects

A graphics object (object type 11), or grob for short, encodes a display picture. It is
defined by its dimensions--width X height--and the picture data. The data consists of
one binary bit for each pixel, where 1 is “on” and 0 is “off”, plus some additional bits
that pad the data so that each pixel row is an integer number of bytes. Grobs are not
restricted to the 131X 64 pixels display size--they can range from 1X1 (actually, you can
make a 0X0 grob, but it has no particular use).

Graphics objects are most frequently created by an operation such as DRAW, but you
can create them in the command line. The command line format is

GROB width height - --data - - -
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GROB is the “delimiter” that identifies the start of a graphics object.

width is a real number indicating the horizontal width of the grob, in pixels.
height is a real number indicating the vertical height of the grob, in pixels.
- -data - -+ is a sequence of hexadecimal digits 0-F that represent the pixel data in

a “readable” form.

The readable data consists of the data for each pixel row concatenated together into one
long sequence, in top-to-bottom order. Each hexadecimal digit represents four pixels; if
you consider a digit as a four-bit binary number, you can translate its value to a left-to-
right pixel pattern by reversing the order of the bits. The digit A, for example,
represents the pixel pattern 0101, where 0 is an “off” pixel, and 1 is “on.” The last one
or two digits in each row may be “padded” with zeros, in order to make each row an
integer number of bytes. Thus the smallest grobs are GROB 1 1 00 and GROB 1 1 10,
which are 1X 1 grobs--the first has its one pixel off, and the second has its one pixel on.

There are a wealth of operations related to the creation and manipulation of graphics
objects. These are described in section 10.3.

3.4.8 Tagged Objects

Tagged objects (objcct type 12) are objects used for putting visible labels on stack
objects. That is, a tagged object contains a single object of any type together with a
character string that labels the object. In our discussions of tagged objects, we’ll usc the
following terms:

e A tag is any character string. To fag an object is to combine it with a tag into a
tagged object.

e An untagged object refers to the object inside a tagged object, when it is thought of
as a separate object.

e A tagged object is then an object that contains a tag and an untagged object.

Thus for :ABC:12345, the tag is ABC, the untagged object is the real number 12345,
and the combination :ABC:12345 is the tagged object. This terminology may be confus-
ing, but fortunately the design of tagged objects is such that you can generally use an
object in calculations with or without a tag, disregarding the distinctions.

When a tagged object appears on the stack, it is displayed as tag: object, where tag is the
label string, and object is the usual display of the object. You can create tagged objects
in the command line by typing the tag string, surrounded by : : delimiters, followed by
the tagged object in its ordinary syntax:
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:Result: 1.234

(there can be any number of spaces or other separators between the tag and the object).
The colons act as start and end delimiters for the tag string; between the colons you can
include any other characters including spaces. When a tagged object is displayed by
itself in a stack level, the leading : is not shown to make a more visually pleasing label,
but both colons are required in command line entry to mark the start and end of the
tag. Note that tags longer than 17 characters are not particularly useful, since 17 char-
acters is the longest tag that can be displayed including the final :.

You will find that direct command line creation of tagged objects is less common than
their automated construction in programs using ~TAG. The HP48 creates tags itself in
some cases; HP Solve tags its results, as does LR and certain plot environment opera-
tions. Similarly, programs you write can attach identifying tags to results (see also sec-
tion 12.7.1). For example, this simple program computes and labels the volume of a box
from three numbers on the stack:

<< x * "Volume" -TAG >

~TAG tags an object in level 2 with a tag formed from a string or global or local name
in level 1.

You can rcmove the tag(s) from an object cither with OBJ-, which splits a tagged
object into the untagged object (to level 2) and the tag string (level 1), or DTAG, which
strips any and all tags from an object. [Since a tagged object is an object, it can be
tagged itself, so that a tagged object can effectively have multiple tags. OBJ— splits off
one tag at a timc; DTAG strips all tags, returning only the innermost untagged object.]

The beauty of tagged objects is that normally you don’t have to worry about stripping
tags: a tagged object can be used as an argument for any operation that works with its
untagged object. Most operations apply directly to the untagged object, automatically
stripping its tags (including multiple tags). The only exceptions to this rule are:

¢ Stack operations that just move or duplicate objects on the stack treat tagged objects
like any other object, leaving the tags intact.

e STO of a tagged object into a local variable or a backup object does not strip tags
(STO into a global variable does strip tags).

* SAME (section 9.3.2) includes tags when comparing two objects.
¢ OBJ- and DTAG remove tags.
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o TYPE returns type 12 for tagged objects.

These properties mean that you can use a tagged object interchangeably with an
untagged object of the same type as the tagged object. For example,

:Length:10_m  :Area:100_m"™2 * "Volume" -TAG uv# :Volume:1000_m~3

Here the * automatically strips the tags from the the length and area values before mul-
tiplying them to obtain the volume.

Further illustrations of the uses of tagged objects are given in section 12.7.1.

3.4.9 Unit Objects

Unit objects (object typc 13) are the basic components of HP 48 unit management--its
ability to perform mathematical operations on quantities that include physical dimen-
sions. Unit management is discussed in Part I1.

A unit object consists of a magnitude and a unit expression joined by the delimiter _ in
the format magnitude_expression. The magnitude is a real number; the unit expression is
an algebraic expression consisting of products of unit names raised to various powers. If
any of the powers arc negative, the expression is defined as a single numerator that is
the product of names with positive powers, divided by a denominator that is the product
of the names with negative powers, expressed then with positive exponents. For exam-
ple, Ln?s 2K 1 is represented by the unit object 1_m"2/(s"2*K). Because there is no
closing delimiter on the unit expression, you must enter the expression immediately after
the _, and it may contain no spaces (there can be spaces between the magnitude and the

_)-

Unlike other object delimiters, the underscore _ is also a function. This allows the
straightforward use of the EquationWriter for unit object entry. _ takes two arguments,
which may be real numbers, names, or algebraic expressions.” For most argument com-
binations, _ is equivalent to multiplication (*). But when the second argument is a
name or an algebraic, it is converted to a unit object before multiplication by the first
argument. Thus

2 3 _ 7 6

6 1_cm _ ¥  6_cm

12 'X _ 12X

1" 'm-cm’  _ ¥  99_cm
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In the first example, the extra (other than that implied by the ©=) is necessary
because if _ is preceded by a real number in the command line, it is taken as a delimiter
and must be immediately followed by a unit expression. The last example illustrates the
conversion of an algebraic object into a unit expression: all names in the object are
converted to unit objects of magnitude 1, then the expression is evaluated. The result is
multiplied by the first argument.

3.4.10 Directories

A directory (object type 15) is an object that contains a sequence of global variables--
name/object pairs. A (full explanation of the nature and properties of directories is
given in section 6.1.2; here we just note that a directory is a data-class object, meaning
that it can be recalled to the stack, copied, and stored. As data-class objects, their exe-
cution action is just to return themselves to the stack. (These are enhancements over
the HP 28, where directories were also objects, but no provision was made for manipu-
lating them as objects.)

The command line and display form of a directory is
DIR name, object, --- name, object, END

where DIR and END act as start and end delimiters. Each name,; object; pair specifies
a variable. The order of the variables is the same as they appear in the VAR menu.

3.4.11 Libraries

A library object (object type 16) is similar to a directory object, in that it contains a
sequence of named objects (library commands). However, unlike a directory, a library
has a fixed internal structure, so that you can not edit it.

e In a library, the object names are separated from the objects into a table, providing
faster access by name to the objects than in a directory.

) Dependiﬁg on the origin of a library, it may contain nameless or other special system
objects. There is no provision on the HP 48 for displaying the contents of a library,
other than the LIBRARY menu (section 6.4.3), which displays a library’s commands.

e All objects in a library are uniformly accessible--there is no sub-library structure
analogous to subdirectories in a directory.

The named objects or library commands within a library are extensions to the built-in
command set, and can be used in the same manner. A library is an object so that it can
be transferred from calculator to calculator or between calculator and personal com-
puter, moved between the ports (section 6.4), or stored in an inactive form in a variable.
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When a library is displayed as an object, it appears as Library n: title, where n is a
decimal number that identifies the library, and title is a descriptive text string. You can’t
see more than a few characters of a library title when the library is on the stack, but you
can use or [V] to view all of the title in the command line (you should cancel
the edit with rather than using , since you can’t actually edit a library).

A library’s commands are executed by means of XLIB name objects, which are
described in section 3.6.3. The methods of attaching libraries to directories so that their
~XLIB names are usable is described in section 6.4.3.

[As a matter of fact, built-in commands are also contained in libraries. Moreover, com-
mands that are common to the HP48S/SX and the HP48G/GX are permanently
located at fixed memory addresses, and therefore can be represented on the stack and
in composite objects by address pointers rather than by XLIB names, which saves
memory and allows faster execution. Commands that are new to the HP48G/GX are
always represented by XLIB names.|

3.4.12 Backup Objects

A backup object is the object form of a variable (section 6.1), in that it contains a single
object of any type plus a name. As an object it is mobile and can be copied or stored,
unlike a variable, which is not an object but is a part of a directory. A backup object
also contains a checksum that is used by the HP 48 to verify its memory integrity when it
is transferred between main memory and plug-in memory.

If a backup object is stored in a port (section 6.4.2), the object it contains can bc
accessed in a manner similar to an object stored in a global variable. Such backup
objects are addressed by means of global names tagged with a port number. Normally,
a backup object is created directly in port memory, so that you will seldom see backup
objects on the stack--the primary focus is on the object stored within the backup object.
Backup objects on the stack appear as Backup name, where name is the backup object’s
name. You can not create or edit a backup object in the command line.

3.5 Procedure Objects

In the preceding review of data class objects, the concept of object execution is straight-
forward but not very interesting. Indeed, there is little point in executing a data object
(with EVAL, for instance) once it is on the stack; the main point of executing such
objects derives from their behavior when executed indirectly during the execution of a
name or a procedure.
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In most calculators, a program is a series of numbered steps that are executed in
numerical order, with occasional breaks in the sequence caused by GOTO instructions
or subroutine calls. Each step in such programs cither enters data, or performs a built-
in command. The step numbers indicate the order of execution, but they really have no
meaning other than for visual reference, or in some cases as labels for GOTO. The
HP 48 replacements for the conventional calculator programs are procedure class objects.
A procedure is an object defined to be a series of other objects intended for sequential
execution. The procedure class of objects includes program objects, algebraic objects
and code objects (lists can also act as procedures-- see section 3.5.3).

3.5.1 Program Objects

An HP 48 program object (object type 8) is similar to a conventional program in that it
contains a sequence of “steps”. The steps are either objects themselves, or combina-
tions of objects called program structures; together, the steps are called the program
definition or program contents. Execution of a program object causes execution in turn
of cach object in its definition. Program structures such as branches and loops (section
9.2) can alter the order of execution beyond simple linear sequences.

A program object is identified by its start- and end-delimiters << >>. Objects entered
between the delimiters make up the program’s definition. Note that a program, likc any
other object, has no intrinsic name. You name a program by storing it in a named vari-
able.

3.5.2 Algebraic Objects

An algebraic object (object type 9) is also a procedure-class object, but it rcscmbles a
conventional program even less than a program object does, since it is displayed as an
algebraic formula. The delimiters for algcbraic objects are the single quotes (usually
called “ticks”, for short) " ’; the objects that make up the algebraic object’s definition
are entered between the quotes.

Algebraic objects have internal structures identical to programs, but they differ in these
respects:

e Programs can contain any HP 48 objects; algebraics can contain only numbers, unit
objects, names, and the subset of HP 48 commands identified as functions.

e The objects in a program may appear in any combination, and may be grouped into
structures (section 9.2). In an algebraic object, the objects are always organized

according to specific rules, called algebraic syntax, that insure that the object looks
and behaves like a mathematical formula.
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e For programs, execution and evaluation are synonymous. The execution action of a
program is to execute the contents of the program sequentially. For algebraic
objects, execution treats the objects as data objects, returning the unchanged object
to the stack. Evaluation of an algebraic object treats the object as a program, and
executes the objects that define the algebraic object.

e Evaluation of a program may take any number of other objects from the stack, and
rcturn any number of arguments, depending on the program definition. Evaluation
of an algebraic object normally takes no arguments from the stack, and returns one
result. (This general rule can be broken if any of the names within the algebraic
object correspond to program variables; execution of those names causes execution
of the programs, which may have arbitrary stack effects.)

The ability of algebraic objects to act as data when executed, or as programs when
cvaluated, is one of the foundations of the HP48s ability to perform symbolic
mathcmatics. When you rearrange a formula using mathematical rules, you are treating
it as data; when you perform substitution of variables’ values for their names, you are
cvaluating the formula.

In scction 2.1, we showed how RPN logic is derived from the desire to convert a
mathematical expression into a scrics of steps by which you can evaluate the expression
by hand or using a machine. Looking at this from a different point of view, you can
note that sincc any cxpression can be translated to RPN, any expression can be
represented in a caleulator by an RPN program. In fact, this is what the HP 48 does--an
algebraic object is stored in calculator memory in an RPN program form just like that
of an actual program object. The HP48 saves you from having to do the conversion
yoursclf by providing the algebraic object type.

The only difference between algebraic objects and program objects is that the two arc
“marked” differcently, so that the HP 48 knows which to display in algebraic form and
which to display in RPN, Also, functions that accept symbolic arguments can only
accept algcbraic objects, not programs, since algebraics are by definition valid
mathematical expressions, whereas program objects are completely unrestricted in their
content and may not be suitable arguments for a mathematical function.

To illustrate the program nature of algebraic objects, create this program B:
<< DUP 20 > 'B’ STO
Next, enter the algebraic object '5+5+B’, and press . The algebraic object disap-

pears, and the numbers 10 and 30 appear on the stack. You can understand this result
by following the cxccution of the equivalent RPN sequence 5 5 + B +. When this
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sequence is executed, two 5’s are entered, then summed to 10 by the first +. B exe-
cutes next, which duplicates the 10 and enters 20. Then the final + executes, returning
30. You can break down any algebraic object execution into RPN steps this way.
Knowing how algebraic evaluation works is the key to understanding some of the
subtleties of symbolic operations on the HP 48 in general.

Picturing an algebraic object as a program will also help you understand why evaluation
of the object causes variable substitution “one level at a time.” Consider the object
'A+B’, where A has the value 10, B has the value ‘C+D’, C has the value 20, and D
has the value 30. Evaluating 'A+B’ once does one level of substitution, returning
10+ (C+D)’, not the numerical result 60. To see why, rcmember that 'A+B’ is
represented by the sequence A B +. Evaluating 'A+B’ therefore executes A, B, and +
in sequence: A returns 10, then B returns 'C+D’, so that + returns '10+(C+D)’. [Note
that the latter in RPN is 10 C D + +, which is obtained from the original A B + by
substituting the RPN sequence C D + for B.]

These considerations also explain why you might get unexpected objects on the stack
when an error occurs during evaluation of an algebraic object. For example, if you cxe-
cute EVAL on an algebraic object and an error occurs, you might expect that the original
objcct would be returned to the stack. But evaluating an algebraic object is the same as
executing a program, so that an error returns the arguments of whatever function
(within the algebraic) caused the error, along with anything ¢lse that was on the stack at
the time of the error. Again, you can predict the contents of the stack from the RPN
sequence that is equivalent to the algebraic object.

For example, suppose you execute 'A+(B+C)’ EVAL, where A and B arc undefined, but
C has a vector value [1 2]. The HP48 will halt and show the Bad Argument Type
error message, with the stack containing

3: A’
2: ‘B’
1: [12]

This configuration results because the RPN sequence A B C + + errored at the first +.
A, B, and C had already executed, leaving their values on the stack as shown; the +
errored because the combination of a name ('B") and a vector ([ 12 ] ) is not valid for
addition. These arguments of +, not the original argument of EVAL, are returned to
the stack. Note that if you execute EVAL by using the key, you can restore the
original algebraic object by pressing UNDO] ([<-][LAST STACK] ).
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3.5.2.1 Expression Structure

One advantage of writing a mathematical expression in Polish notation (section 2.1) is
that it makes explicit the organization of the expression into a hierarchy of subexpres-
sions (section 3.5.2.1). For example, consider the expression a + sin(b—c). Rewriting
this in Polish form, you obtain + (4, sin(-(b,c))). The “outermost” subexpression is
the entire expression, consisting of the function + and its arguments ¢ and sin (- (b,c)).
Each of the two arguments is a subexpression--the first is just the name a, the second is
the function sin and its argument — (b,c). The latter in turn is a subexpression consist-
ing of — and its arguments b and ¢, and so on as you peel off the layers of parentheses.
A subexpression or the function that defines it is sometimes referred to by its level,
which is a measure of how deep it is in the hierarchy. In the example, + is the top-level
function; sin( - (b,c)) are the next level down, and g, b and ¢ are at the bottoms of their
respective branches. You can use OBJ~ to dismantle an expression from the top
down--it returns the top-level function and its arguments if any, and a count of those
arguments:

Sflargy,argy, - -, arg,) OBJ~ arg, argy -+ arg,’ n f

Applying OBJ— to the current example shows that + is the top-level function:
'"A+SIN(B-C)’ OBJ- ux ‘A" 'SINB-C) 2 +,

There are three reasons for you to keep these i1deas of expression structure in mind as
you work with the HP 48:

1. The structure of an expression determines the order of evaluation of its subexpres-
sions. For example, in the evaluation of ‘A+B+C’, the A and B are added first,
then the sum is added to C. You can alter this order by changing the expression
to ‘A+(B+C)’, in which case the B and C are added first. This distinction is
important in a floating-point calculator, even though the two forms are formally
the same. To see this, assign the values 10°° to A, ~10° to B, and 1 to C. If you
evaluate 'A+B+C’, you obtain 1, whereas if you evaluate 'A+(B+C)’, you obtain
0.

2. Understanding the structure of an expression can help you follow the behavior of
HP 48 symbolic manipulation commands. For example, EXPAN is defined to work
at one level of a subexpression at a time. 'A*(B+C+D)’ EXPAN returns
'A*(B+C)+A*D’ rather than 'A*B+A*C+A=*D’ as you might expect. This is
more obvious if you think of the original expression as *(A, +(+(B,C),D)). When
one of the arguments of * is a sum, EXPAN multiplies the other argument by
each of the two arguments of +, then adds the products. The fact that in this case
the first argument of the (first) + is also a sum is not considered--EXPAN only
works one level at a time.
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3. The arrows in the command names 'MATCH and {MATCH indicate the direction
of the progression through an expression when these commands (described in Part
II) make substitutions. IMATCH works from the top down, and tMATCH from
the bottom up, and in many cases they give different results when applied to the
same arguments.

We can use these ideas to re-express the basic RPN calculator principle (“any result can
be an argument”) in “algebraic” terms by saying “any expression can be a subexpression.”
A subexpression is self-contained; it may or may not be embedded in a larger expres-
sion. The shortcoming of algebraic calculators is that they don’t recognize this principle.
They are designed for evaluating an expression as a whole--“from the outside in,” so to
speak. On the other hand, in a purely RPN calculator like the HP 41, you can only cal-
culate an expression “from the inside out,” sincc you can only enter one number or
function at a time. The HP48 merges both approaches, by allowing you to enter any
subexpression in its algebraic form. You can evaluate an entire expression at once, or
you can divide it into subexpressions of any size, or you can work only with onc object
at a time.

As with most of the principles of HP48 operation, the concept of algebraic object
cvaluation is derived from a mathematical model. In ordinary terms, to “cvaluate”
means “to find the valuc.” For a mathemafical expression, this translates to “perform
the operations represented by the expression, to find its value.” Evaluation means to
“activate” an expression, which in turn means to execute sequentially the objects that
make up the expression.

As an example, consider the simple cxpression 1+2. We showed in section 2.1 that an
expression can be translated into an RPN form that represents a prescription for actu-
ally performing the operations of the expression--cvaluating it. Thus the expression 1+2
is the sequence 1 2 + in RPN. This is a scquence of objects--remember (see section
3.2.1) that the +, as well as the 1 and the 2, can be considered as an object. When you
write the expression, the objects are passive; but if you execute each object in
succession--“enter the 1, enter the 2, do the +”--you obtain the value of the expression.

3.5.3 Lists as Procedures ,

As mentioned in section 3.3, lists are composite objects with internal structures like pro-
grams and algebraic objects. As such, they can be evaluated as programs. The only
commands on the HP48 that treat lists as procedures are EVAL (section 3.9), IFT and
IFTE (section 9.4.2). The principal reasons for providing list procedure evaluation in
this manner is to permit the construction of new procedures by programs, and to facili-
tate changing directories by executing path lists (section 5.5.3). This form of list evalua-
tion is not available on the HP 28, where lists are strictly treated as data-class objects.
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3.54 Commands and Functions

As illustrated in section 3.2.1, HP 48 commands are objects. Because there is a per-
manent binding between command objects and their command names, command objects
are always entered and displayed using their names only--you never see the actual built-
in SIN program, for instance, only the name SIN. Actually, all commands are program
objects, but to help a program distinguish between commands and user-created pro-
grams, the TYPE and VTYPE commands return type 18 or 19 for commands rather than
type 8 (program). Type 18 indicates that the command is a function; type 19 indicates
an RPN command.

In most calculators, there is a distinction between user-written programs and built-in
commands:

e Programs are written in the user programming language, and are executed by means
of a command like RUN, XEQ, GOSUB, ectc., combined with a program name or
label number. Programs can call other programs (subroutines), but there may be a
restriction on the number of pending returns of which the calculator can keep track
(six in the HP-41, for examplc).

o Commands, on the other hand, arc cxecuted or entered into a user program by
name, with no prefix command. In most calculators, cxecuting a command by name
consists of pressing the key that has the command name on it. This cither executes
the command, or enters a function code or the name itself into a program. Somc
calculators have an alphabctic keyboard that allows you also to specify a command
by spelling out its name.

The fact that HP48 commands themsclves arc actually program objects is not readily
apparent. The programs can’t be viewed or edited, and they make use of an extended
set of RPL objects that are not available for ordinary user programming. Many of the
latter are code objects written in the calculator’s assembly language, the documentation
of is beyond the scope of the owners’ manuals (and of this book).

The HP 48 philosophy is that the distinction between user programs and built-in com-
mands is artificial and unnecessary, at least as regards their use from the keyboard and
as subroutines. That is, when you write a program and name it, you should be able to
use it exactly as if it were a built-in command. When you enter a program name into
the command line and press , or include a program name in another program
definition and execute the latter program, or just press a menu key labeled with the pro-
gram name--the program should execute. The central idea underlying the execution of
HP 48 name objects follows from these ideas (section 3.6).
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3.5.5 Command Execution and Standard Errors

Although each HP48 command is different, most commands share a common general
structure for checking the number and types of their arguments. Command execution
proceeds as follows:

1.

The stack is checked for the number of arguments required by the command. If
there are fewer than the required number, the Too Few Arguments error is
reported.

The required arguments are saved for last argument recovery (section 5.3). This
allows the HP 48 to return those arguments to the stack if there is a subsequent
error or if LASTARG is executed after the command. This applies to commands
that use from one to five arguments. Commands that take a varying number of
arguments (like ~LIST) generally check for error conditions before removing the
the objects from the stack, so that they are not lost if there is an error. Last argu-
ment saving does not occur if flag —55 is set.

The objects on the stack are matched against a list of allowed object type combi-
nations for the command. If there is a match, then the command cxecution
dispatches to the appropriate action for that argument combination. For example,
when its arguments arc two real numbers, + docs ordinary floating-point addition;
when they are two strings, + concatenates them.

If no argument match is found, any tags (scction 3.4.8) attached to the arguments
are removed, and the argument match/dispatch is tried again.

On the HP48S/SX, if no match is found after tags are stripped, the command
gives up and issues thc Bad Argument Type crror. The HP48G/GX tries one
more variation: if the arguments are lists, the command is applied to the objects
within the lists. For cxample:

STD {5 3 12} -Q w= {'1/2" '3/10' '3/25'}.

This feature is called automatic list processing--see section 3.5.5.1 below.

Once it is verified that the required number of arguments are on the stack, and
that they are of a suitable type, command execution proceeds. If the command
succeeds, its results are returned to the stack, usually replacing the arguments.
There are many possible errors, of course--some general, like Insufficient
Memory, and some that are specific to particular commands. One of the most
common is Bad Argument Value, which indicates that even though an argument is
of the correct type, it is not within a valid range of values.

If the command fails, in most cases the original arguments are returned to the
stack, and an error message identifying the command and the reason for failure is
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displayed. The arguments are not restored if a) last argument recovery is disabled
(section 5.3); or b) the command caused the execution of other commands (sec-
tion 3.3.1). For example, when EVAL is applied to a program, an error within the
program will be attributed to one of the commands within the program--not to
EVAL. The stack will be left as it was just prior to the execution of the failed pro-
gram command.

3.5.5.1 Automatic List Processing
In the preceding section, we demonstrated the application of ~Q to a list of numbers.
The result is a list of expressions obtained by applying ~Q to each of the numbers in the
original list. This automatic list processing works similarly for most commands, including
those that use multiple arguments:

{10 (1,2) A} {3 4 5} = v {30 (48 'A%}

* is applied to the first objects in each list (10 and 3), then to the second objects, and
so forth through the final objects. The results of the multiplications arc returned all
together in a result list, in the same order as the original arguments in their lists. This
same logic applics to other commands of from one to five arguments:

e There must be as many lists as the ordinary argument count for the command
(cxcept for two-argument commands--see below).

e All of the lists must be the same length (the Invalid Dimension error is reported
otherwise).

e Each of the argument combinations from within the lists must suitable for the
command--the correct types of objects, in the right order. The arguments are
presented for the command in the same order as the lists from which they are taken:

{A B C} {D E F} ~ {'AD" 'BE'" 'C°F'}

The first object in the result list is obtained from executing A D ™; the order of the
A and the D is determined by the order of their corresponding lists.

e If any of the repeated executions of the command fails, usually no results are
returned and the original argument lists are restored to the stack. The exception is
for commands that execute other commands (section 3.3.1)--if one of the secondary
commands errors, its arguments are left on the stack. The original lists and the
(partial) list of results are discarded.

Not all commands return stack results: {1 3 5} SF sets flags 1, 3, and 5, but returns
nothing to the stack. If this type of command fails during list processing, any non-stack
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operations that succeeded prior to the error are not reversed. For example,
{1 2 3} {A B 5} STO

causes the Bad Argument Type error, since the last object in the second list is not a
name. However, the first two combinations are valid: 1 is stored in A, and 2 in B,
despite the subsequent error.

For commands of two arguments, only one argument must be a list. When one argu-
ment is not a list, it is used repeatedly in combination with each of the objects in the list
that is the other argument. In this example, a list of numbers is rounded to three
decimal places:

{.12345 54321 77782 .09123} 3 RND t» {.123 543 .778 .091}

The order of the list and non-list arguments still determines the argument order for the
repeated executions of the command, as the following examples show:

{12 3} 4 ~ = {1 16 81}

4 {1 2 3} ~ v {4 16 64}

In the first case, 1, 2, and 3 are raised to the fourth power; in the sccond, 4 is raised to
the first, second, and third powers.

Automatic list application is restricted to commands that take one to five arguments of
specific types. This excludes four classes of commands:
e Commands that take no arguments, such as MEM.

e Commands that work with any object types, usually stack commands likc DUP or
SWAP.

¢ Commands that work with a variable number of arguments, such as ~LIST or DUPN.

Commands that are specifically designed to work with lists, such as GET or SORT.

Also, program structure words (scction 9.2) that take arguments, such as START, STEP,
and REPEAT, will not process lists.

The set of excluded commands includes +, which adds an object to a list or concaten-
ates two lists (combines their objects into a single list--see section 11.4.1). For the sake
of doing simple arithmetic on lists of arguments, this is unfortunate since —, *, / and
other mathematical functions have no meaning for lists as objects and thus will do
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element-wise operations on the contents of lists. To reduce this problem, there is an
alternate addition function ADD (section 11.4.3), which performs element-wise addition
on two lists.

Automatic list processing is not recursive--if a command is applied to lists that them-
selves contain lists, the command is not applied to the contents of the inner lists:

DEG {0 30 90} SIN = {0 5 1},
but
{{0 30 90}} SIN o7 Bad Argument Type
-Q and ~Q1r are exceptions to this rule, due to a quirk in their internal designs:
{{3 5} {4 7}} -Q v {{'3/10° '1/2'} {'2/5" '7/10' }}.

Automatic list processing can actually be cxtended to any command, as well as to uscr-
dcfined functions and programs. This is achieved by the command DOLIST, which is
described in section 11.4.4.1.

3.5.6 Function Execution

HP 48 functions have two important execution properties that are not shared by RPN
commands. These are automatic simplification, and a choice of symbolic and numerical
execution modes.

3.5.6.1 Automatic Simplification

When certain functions execute, they check their arguments for special cases in which
ordinary calculation can be replaced by a mathematical simplification. For example, if
you execute the sequence 1 ‘X' * you obtain "X’ not '1#X'. You can observe the
same effect by executing '1#X' EVAL. This simplification is a property of the * func-
tion; when it is executed, * explicitly looks for cases where one of its arguments is 1. In
such cases, the subexpression consisting of the * and its two arguments is automatically
replaced by the non-1 argument. Other examples are the replacement of SIN(ASIN(X))
by X, and EXP(LN(X+1)} by X+1. Again, these simplifications are built into the func-
tions SIN and EXP. Table 3.2 is a complete list of automatic simplifications built into
the HP48. Note that not all cases of a function applied to its own inverse are simpli-
fied. For example, ASIN(SIN(X)) does not automatically simplify to X, since there are
infinitely many angles with the same sine as X. Similarly, since the HP 48 treats complex
numbers uniformly with real numbers, LN(EXP(X)) does not reduce to X.
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Table 3.2. Automatic Simplification

Addition and Subtraction Powers
X-X w 0 17X 1
0+X rr X (1,0°X = (1,0)
0,0)+X v X SQ(V (X)) cr X
0-X r -X SQY™X) rz YM2*X)
(0,0)-X 1w -X SQ(i) v -1
X+0 vy X X0 1
X+(0,0) wr X X~(0,0) wz (1,0)
X+-p vy X-p X™ o X
X-0 ey X X~(1,0) rr X
X-(0,0) vy X X~-1) vy INV(X)
X--p ww X+p X~ (-1,0) w7 INV(X)
(VX)~2 v X
(VX)~(2,0) vy X
i2 vy 1
Multiplication and Division i~(2,0) vy (—1,0)
Parns
INV(i) Ly i ABS(ABS(X)) v ABS(X)
Y *INV(X) vy Y/X ABS(-X) sy ABS(X)
Y/INV(X) Ly Y*X CONJ{CONJ(X)) vy X
0*X tr 0 CONJ(IM(X})) 1y IM(X)
(0,0)*X ey (0,0) CONJ(RE(X)) 1y RE(X)
i [EE] CONJ(i} [
1%X ryr X IM(CONJ(X}) 1y ~IM(X)
(1,0)*X ry X IM(IM(X)) r 0
(-1)*X iy -X IM(RE(X)) ©r 0
(—1,0)%X vy =X IM{) sy 0
X*0 7 0 IM(i) tr 1
X*(0,0) 7 (0,0) MAX(X,X) r X
X1 r X MIN(X,X) vy X
X*(1,0) wr X MOD(0,X) vy 0
X*(-1) ry —-X MOD(X,X) vy 0
X*(-1,0) r -X MOD(X,0) vy X
X/1 vy X XMODYMODY or XMODY
X/(1,0) ey X RE(CONJ(X)) 17 RE(X)
X/(-1) rr —-X RE(IM(X)) 1 IM(X)
X/(-1,0) r -X RE(RE(X)) vy RE(X)
0/X v 0 RE(mw) [
0,0)/X s (0,0) RE() wr 0
SIGN(SIGN(X)) vy SIGN(X)

X, Y are any subexpressions.
p is any positive real number.

Automatic simplification is not the same as the simplification that results when a numer-
ical expression is evaluated by COLCT. For example, although '2/2’ automatically sim-
plifies to 1 when you evaluate it, '2*X/2’ does not automatically simplify to X. In order
for the simplification to take place, the two 2’s must be the arguments of the /, as in
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"(2/2)*X’. To simplify '2%X/2’, you can either use RULES to rearrange it to '(2/2)*X’,
or use COLCT.

3.5.6.2 Symbolic and Numerical Execution; ~NUM

The key to the HP48s ability to perform symbolic calculations is the fact that HP 48
functions used with symbolic arguments (names or algebraics) return symbolic results.
Each time you evaluate an algebraic object, the names in the expression or equation are
executed, so that those corresponding to existing variables are replaced by the objects
stored in the variables. But the replacement objects are not evaluated, so that the final
result may still be symbolic. If you want to evaluate a symbolic object all the way to a
numerical value, you may have to use EVAL repeatedly until all of the names have been
replaced by numbers.

In some circumstances, it is desirable to cvaluatc a symbolic object to its final numerical
value in a single operation. For example, in the course of their execution, DRAW and
HP Solve both cvaluate the current equation to numerical values. To deal with such
cases, as well as the symbolic evaluation described alrcady, the HP 48 provides you with
the choice of symbolic execution mode or numerical execution mode. In symbolic exccu-
tion mode, a function evaluated with symbolic arguments returns a symbolic result. In
numerical cxecution mode, a function of symbolic arguments evaluates its arguments,
repeatedly if necessary, until they are data objects (usually numbers). Then the function
returns a numerical result. If any namc is encountercd during the cvaluations that has
no corresponding variable, the Undefined Name crror is returned.

You can sclect numerical execution mode temporarily, for a single evaluation of a sym-
bolic object, or for an indefinite period:

e To cvaluate numerically a single object containing functions, use “NUM instead of
EVAL. -NUM enables numerical execution mode, evaluates its argument in the
same manner as EVAL, then restores the original execution mode.

e To select numerical execution mode “permanently,” set flag —3. The menu key
ESYM= SMISCE ) is handy for this purpose; pressing that key toggles
between symbolic and numerical execution modes. If the key label shows a white
box ( ESYMEZ ), then flag —3 is clear and symbolic execution is active; the absence of
the white box indicates that numerical execution is in effect. You can also set and
clear the flag with SF and CF. While flag -3 is set, the execution of any function
returns a numerical result, or an error message if numerical execution fails. In this
mode, EVAL and ~NUM produce the same results. To restore symbolic execution
mode, press ESYMo= or clear flag —3. Symbolic execution mode is the default mode
following a memory reset (section 6.6).
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To illustrate these ideas, execute
30 ‘X’ STO X
to create a variable X with the value 30, and leave its name on the stack. Next sclect
degrees mode by executing DEG if necessary. Now,
1. In symbolic execution mode, compute the sine:
[SIN] o= 'SIN(X)'.
At this point, you still have a symbolic result. Find the numerical value:
EVAL] t# 5.

When 'SIN(X)" is evaluated, X is replaced by its value 30; then, since SIN has a
numecrical argument, a numerical result is returned.

2. Now try the calculation in numerical mode:

[<][MODES] EMISCE =Ssymo:s ‘X' [SIN] o+ 5

This time, you immediately obtain the numerical result .5. This is because in
numerical cxceution mode, SIN cvaluates the symbolic argument ‘X' to its value
30, then returns the numerical sin30°.

3.5.7 Symbolic Constants

A frequently asked question about HP calculators is “why does the sequence m SIN (in
radians mode) not return 0, when everybody knows that sin = 0?” On the HP-41, for
example, 7 SIN returns —4.1E—-10. The answer is that the 7 key does not return
mathematical T, but an approximation accurate to thc numerical precision of the calcu-
lator, which is the 10 digit number 3.141592654 on the HP-41. When SIN uses this
approximation as an argument, it treats it likc any other floating-point number and com-
putes its sine, again accurate to the calculator’s precision. To understand the approxi-
mate value, consider that for small x, sin(w +x)= -x. In this case, x is the difference
between 7 and the calculator approximation:  +x = 3.141592654. Thus

x = 3.141592654 - 3.14159265359% ~ 4.1x 107",
and
sin(m +x) = —4.1x1071,
which is just what the HP-41 returns. SIN is evidently returning an accurate result for

its argument, but the argument is not .

Could a calculator be designed to recognize the approximation as its best numerical
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representation of 7 and return zero for the sine of that number? Certainly it could, but
HP calculators generally don’t do this sort of thing, following the guideline that the limi-
tations of fixed-precision calculations make it unwise to try to guess when a numerical
value is supposed to be some special number. This sort of problem shows up in lots of
cases: for example, should 1/.142857142857 evaluate to 7.00000000001, which is the
most accurate 12-digit reciprocal of that argument, or 7.00000000000, on the chance
that .142857142857 was obtained originally by computing the reciprocal of 7? This
problem is a fundamental limitation of trying to represent arbitrary numbers with a fin-
ite number of digits.

The HP28 and HP48 provide a different approach than other calculators to the prob-
lem of representing 7. Assuming for the moment that flags -2 and -3 are clear, exe-
cuting 7 returns the expression "' (note that this is an algebraic object, not a name--
e.g. TYPE returns 9). If you cxecute ™ 2 *, you obtain '2*w’. As long as you don’t
force numecrical execution by exccuting ~NUM, 7 retains its symbolic form through any
number of operations. This has two immediate benefits:

e An expression containing the symbol 7 gives you more information about the nature
and derivation of thc expression. Once you convert it to a numerical form, no
matter how accurate, the presence of 7 in the expression becomes obscured. The
expression ' /4" is more informative than the number 0.785398163398.

e Using symbolic 7 prevents crrors arising from a finite precision numerical represen-
tation of 7 from accumulating in chained calculations. By dclaying the substitution
of a numerical value for 7 until a calculation is complete, you obtain maximum
accuracy.

A symbolic 7 also permits a new resolution of the sinw issuc. On the HP48, if you
execute  SIN (with flags -2 and -3 clear, and radians mode active), you obtain 0.
This is an automatic simplification (section 3.5.6.1), not a numerical computation--when
SIN is executed, it checks its argument to sec if it is symbolic 7. If so, the subexpres-
sion SIN(w) is replaced by 0. The following additional simplifications are also made, in
the same spirit:

o SIN(w/2) is replaced by 1 (note: SIN(1.5707963268) also returns 1);

e COS(mw) is replaced by —1 (COS(3.14159265359) also returns —1);

o COS(m/2) is replaced by 0.

e TAN(m) is replaced by O.

Only these four specific subexpressions are simplified. SIN(2#1r), for example, is not
simplified, and returns 4.13523074713E - 13 when cvaluated numerically.
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3.5.7.1 Other Symbolic Constants

In addition to v, the HP 48 provides four other symbolic constants: e (numerical value
2.71828182846), i (value (0,1)), MAXR (value 9.9999999999E499), and MINR (value
1E-499). There are no special simplifications associated with e, MINR or MAXR, but
the symbolic forms allow you to track the associated constants through calculations. i
has these simplifications:

Subexpression  Replacement

sQ() -1
i -1
i2 -1

i"(2,0) -1

RE()) 0

IM(i) 1

CONJ()) -

You can use i to enter complex numbers in the form a + bi rather than the standard
object format (a,b). For cxample, 1+2i can be entered as '1+2%’. You can perform
arithmetic with such expressions, using EXPAN and COLCT where appropriate to sim-
plify a multi-term expression into the form a +bi.

3.5.7.2 Evaluation of Symbolic Constants

Symbolic and numecrical cxecution modes affect the way all built-in HP48 functions
cvaluate symbolic arguments. The five symbolic constants w, e, i, MAXR and MINR
behave as functions of zero arguments--and as functions they are sensitive to the execu-
tion mode. When flag -3 is clcar, cxccution of any of these constants returns a sym-
bolic result, which is just the constant itself unchanged. When flag -3 1s sct, exccution
of a symbolic constant replaces it with its numerical value.

It is possible by means of flag -2 to select a restricted form of numerical execution
mode that affects only these constants. When symbolic execution mode is active (flag
-3 clear), setting flag ~2 causes symbolic constants to evaluate numerically, without
affecting the execution of other functions. This permits, for example, replacement of
symbolic constants with numerical values in expressions that contain formal variables
(undefined names). To see this, enter ‘X' PURGE, then enter the expression '2#*m %X’
into level 1. Then,

-2 CF -3 CF EVAL ux '2%w*X

and
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-NUM 1= Undefined Name error.
But if you set flag —2:
'2#w*X’ -2 SF EVAL 1= ’6.28318530718%X'.

 evaluates to its numerical value, while with flag -3 clear * still returns a symbolic
product.

3.6 Name Objects

The center of the action in the HP 48 is the stack, where objects can be manipulated
and executed. However, it is impractical to keep all objects on the stack; in particular
built-in objects and thosc in libraries are most convenient if they can be executed
without ever putting them on the stack. To this end, the HP 48 provides several types of
name objects, that let you access objects indirectly. Executing a name object cither
recalls or executes another object so that in many cascs you can perform operations on
objects entirely by means of their associated name objects.

Since objects are intrinsically nameless, to name an object requires storing it in memory
in such a way as to preserve the association between an object and a name. In the
HP 48, to name an objcct means (o store it; a named object is a stored object, and vice-
versa. Stored/named objects appear in several forms:

e Built-in objects--operations--are permanently stored in the HP48s read-only
memory. A subset of operations called commands have names, and thus may be
included in procedures or entered on the stack by means of their names. It is gen-
erally not necessary to distinguish between command objects and their command
names, since they are not separable, and only the names are ever “visible.”

e Library objects (section 3.4.11) contain extensions to the built-in command set in the
form of stored objects that are accessed using XLIB name objects.

e Global variables (section 6.1} are the most visible form of storage of user-created
objects, corresponding to numbered or lettered registers on other calculators. Global
name objects (object type 6) are used to access the contents of global variables.
These variables exist in the so-called user memory , also called VAR memory because
of its association with the key. The structure of user memory is explained in
section 6.1.2.

o Local variables are created by programs for their own use, and only exist while the
associated programs are running. Their contents are accessed by means of local
name objects. See section 9.7.
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e Port variables (section 6.4.2) are like global variables in port memory. Access to
their contents is provided by means of path-names, which are specially tagged global
names or lists.

The names associated with these five types of stored objects aren’t associated with any
special delimiter symbols. In the command line, any sequence of characters that doesn’t
start with a delimiter and is not a number is a candidate to be a name--the process of
distinguishing the various types of names is described in section 6.5. Global and local
names may be enclosed in '’ delimiters (and are displayed that way as stack objects),
but the delimiters are used to prevent immediate execution (section 3.7) rather than to
identify the object type.

You can view name objects as the HP48 version of the storage register numbers or
letters uscd on ordinary calculators, but this simple picture doesn’t really do justice to
their power. Register numbers are purely passive labels, of the most primitive sort--they
don’t tell you anything about what is stored in the register. Names, on the other hand,
label their variable contents with text that can help you remember what cach variable
does, and which make programs more legible. Furthermore, HP 48 namcs arc active
instead of passive: when you exccute them, they cause automatic recall or cxecution of
another object.

3.6.1 Global Names

Global variables are intended for storing data for general access, and for containing
named programs that act to extend the HP 48 command set. With this in mind, global
name objects are designed to work like commands:

Execution of a global name causes execution of the object stored in the
global variable with that name.

The net result of the cxccution of a global name follows directly from the execution
action of the object stored in the corresponding variable--data objects and algebraics
return to the stack, programs (or commands) run, and name objccts cxecute or recall
their stored objects in turn. There is one extension to this gencral rule: if the stored
object s a directory, execution of the associated name object does not lcave the directory
on the stack but instead makes the directory the current directory (section 6.1.2).

The properties of global name execution listed here explain why is relegated to a
shifted key position on the HP 48 keyboard. Used with the names of variablcs containing
all object types except programs and names, EVAL (which is on an unshifted key) and
RCL are equivalent. The primary purpose of RCL, therefore, is to recall a stored pro-
gram or name to the stack without evaluating it, a relatively infrequent need.
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Unquoted global names act just like built-in commands, so that you can define your own
command set by storing programs in global variables. You can execute a global name

by:
e Typing the name into the command line and pressing ; or
e Pressing the VAR or CST menu key labeled with that name; or

e Including the name in a procedure (a program or an algebraic), and evaluating the
procedure.

These three methods are identical for global name objects and HP 48 commands.

[As it happens, HP48 commands are also programs written in a language that is a
superset of the HP48 user RPL, so there really is no structural difference between user
programs and commands. A practical difference is that built-in commands are fixed in
rcad-only memory, and can be cncoded in programs by their memory addresses or as
XLIB names and thus executed more quickly than objects stored in global variables.
The latter arc referenced by name, and must be searched for in user memory whenever
their names arc cxccuted.]

The fact that executing the name of a stored algebraic object returns the object to the
stack without cvaluation makes possible “step-wise” algebraic substitution. For example,
consider evaluating 'A+B’, where A has the value 'C+D’, Bis 5, C is 10, and D is 20.
The HP 48 will return "C+D+5" at the first usec of EVAL, and 35 at the next. If an
algebraic stored in a variable was automatically evaluated when the variable’s name was
executed, you would lose the intcrmediate step and obtain only the final result 35 at the
first EVAL.

In the casc where a global name is executed for which no variable currently cxists, the
action is simple--the name itself is just returned to the stack as if it were a data object.
This behavior is necessary for symbolic operations; it means the HP48 can deal with
symbols (names) even when no value has yet been established. Thus "A+B’, wherc A is
undefined and B is 10, evaluates to "A+10’. Execution of the A returns 'A’, B returns
10, and + combines the symbolic ‘A’ and the number 10 into a new symbolic ‘A+10".
We call A a formal variable, meaning you can work formally with the name in calcula-
tions just as if there were an existing variable named A.

If a variable contains a global name, the stored name is executed when the variable’s
name is executed. Thus if the number 8 is stored in the variable A, and ‘A’ is stored in
B, evaluating B returns 8. This property of names leads to the possibility of “endless
loops”--if 'A’ is stored in B, and 'B’ is stored in A, evaluating either A or B will start an
unending cifcle of executions, so that the HP48 will be busy indefinitely without any
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apparent sign except that the hourglass annunciator stays on. You can just press to
stop execution.

3.6.2 Local Names

Local variables are intended primarily for temporarily storing and naming stack objects,
in order to simplify argument manipulations in programs. This use dictates that the
objects stored in local variables should be unchanged (i.e. not executed) when they are
recalled to the stack. Hence local name execution is intentionally simpler than that of
global names:

Execution of a local name recalls the object stored in the corresponding
local variable, without executing the object.

The creation and use of local variables is described in section 9.7.

On the HP48G/GX, any name that starts with the left-arrow character “<” is automati-
cally entered as a local name, regardless of whether there is currently a corresponding
local variable. This character was chosen because of its association with the right-arrow
“~7 that is used to start local variable structures (“~” itself could not be used, because it
is alrcady used in several HP 48 command names.

3.6.3 XLIB Names

XLIB names provide access to objects stored within library objects. The abbreviation
“XLIB” is short for “eXternal LIBrary”, the “cxternal” referring to a library that is not
built into the HP 48’s permanent memory. In most respects, you use XLIB names in the
samec manner as commands--executing an XLIB name exccutes the associated object in
the library. As long as its library is available (i.e. present in the current name resolution
path--see section 6.5), an XLIB name is entered and displayed as (unquoted) text, again
like a command. However, when its library is absent, a previously entered XLIB name
is displayed in the form

XLIB library-number, object-number,
where library-number is the library identification number of the library, and object-

number is the number of the specified object within the library. Executing an XLIB
name when its library is absent returns the Undefined XLIB Name error.

3.7 Quoted Names

We have shown that global and local names automatically replace themselves with their
associated variable values when executed. But there are many cases where you need the
name object itself on the stack, so that you can use it as an argument for a command
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like STO or GET. You can accomplish this by enclosing the name within single quote
delimiters, e.g. ‘name’. The quotes around a name instruct the HP48 to return the
literal name itself, and not to execute it.

To store the value 10 into a variable X, the correct sequence is 10 "X’ STO. If you omit
the quotes, as in 10 X STO, you may very well get an error, since the value of X is
returned before the STO executes, rather than the name X. You can use 10 X STO if
the variable X does not yet exist, since that case executing X just returns to the stack the
name ‘X', which is a suitable argument for STO. In general, to avoid uncertainty you
should keep the habit of entering the quotes around the name when you want to store.
However, if you're primarily performing symbolic calculations, you may want to take the
trouble to purge all of the variables you want to work with, just so you can put the
names on the stack without bothering with the quotes.

3.8 Quotes in General
There are three sets of quotation marks that arc used as HP 48 delimiters:

e Single quotes ' ', (called “ticks,” for short) which identify algebraic objects, and also
create name objects on the stack;

¢ Double quotes " ", which create strings; and

e Program quotes << >> (guillemets), which creatc programs.

All three types of quotation marks have a common themc in the HP48. They mcan
“put this object on the stack--don’t exccute it yet.” Preventing execution of a string
object is not particularly meaningful, since strings arc data objects, but we include the
double quotes " " in this discussion for completeness. The double quotes primarily dis-

tinguish text strings from names.

We stated in section 3.7 that placing single quotes around a global or local name enters
the name as an object on the stack. The quotes play the same role for algebraic
objects--the same symbol is used for the two different object types (name and algebraic)
because it makes sense in many contexts to treat a name object as an algebraic expres-
sion consisting of just one variable name. As we mentioned in section 3.3, an algebraic
object is a composite object and thus can be evaluated like a program--it happens to be
displayed in algebraic form rather than RPN. Again, the quotes mean “don’t execute
this program, just put it on the stack.” The HP48 doesn’t allow you to specify an
immediate-execute algebraic object (i.c., without quotes)--if you want the expression to
be executed immediately, you have to enter it in RPN form.

Although the same delimiters are used for algebraics and names, and for many cases
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you can treat them the same, they are still different object types. The distinction is
maintained for the sake of commands like PUT and RCL, which would make no sense
with an expression or an equation as an argument. The HP 48 insures a smooth interac-
tion between names and algebraics by treating them uniformly (as a general symbolic
object type) as arguments for functions, and by automatically converting algebraics con-
taining only a variable name into name objects. Thus TYPE returns type 9 for the
expression 'A+0’, but if you evaluate the expression (assuming A has no value) to clim-
inate the 0, TYPE then returns 6, indicating that the object is a global name.

Understanding the meaning of quoted and unquoted programs starts with the recogni-
tion that the contents of thec command line constitute a program--an arbitrary series of
objects intended for sequential execution. When you’re carrying out keyboard calcula-
tions, the execution is immediate as soon as you cxecute ENTER (section 4.3.3). The
command line program is created, then cxecuted right away. However, you can post-
pone execution of the command line by inserting a << delimiter at the start. ENTER
then creates a program object containing the command line objects.

Because the command line is a program, and programs arc deferred-execution com-
mand lincs, it follows that whatever you can do in the command line, you can also do in
a program (and vice-versa). Thus programs can contain quoted objects: names, algebra-
ics, and cven other programs. For cxample, here is a program named TEST that creates
a global variable containing yet another program:

<< ., << 10 = >> 'X10’ STO ... > 'TEST' STO

Executing TEST executes its stored program, which in turn creates a variable X10 con-
taining the program << 10 #* >>_ Becausc of the surrounding << >>_ the scquence
10 * is not cxccuted, but is put on the stack as a program, where it and the (quoted)
name X10 arc the arguments for STO.

Adding a tag (section 3.4.8) is another method of entering an object without cxccution.
This point is particularly relevant for port names (section 6.4.2), since you can not add
single quotes to a port name--but you don’t have to because the tag prevents its execu-
tion anyway.

3.9 EVAL

As discussed in the preceding section, the various types of quote delimiters cause objects
to be placed on the stack without being evaluated. The EVAL command is provided so
that you can later evaluate these “pending” objccts, particularly programs, names, and
algebraics. Applying EVAL to a data object does in fact evaluate the object, but that just
returns the same object.
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Perhaps the most common use of EVAL arises in symbolic calculation, where you have
entered an algebraic object and want to substitute values for the variable names that
appear in the object’s definition. The key also provides a handy way of making a
keyboard calculation in algebraic syntax. Just press [/ ] to start algebraic entry, enter an
expression, then press , which here acts like an algebraic calculator’s (=] . For
example,

7]1+2%3 vy 7.

3.10 System Objects

In addition to the object types described in the preceding sections, the RPL system uscs
several additional object types. Although these objects do not appear in normal use of
the HP 48, you may see them in these circumstances:

e A defect in a system program may leave one or more such objects on the stack.

e Future libraries may provide for intentional user-manipulation of the system object
types.

Table 3.3 on the next page summarizes the system object types.

Most built-in asscmbly language objects are also displayed as External when they are on
the stack, because their structure does not conform to any of the object types listed in
the table. You should not normally see such objects; if you do, it is due to a defect in
the HP48’s built-in programming. We recommend that you immediately perform a sys-
tem halt ( - ) to remove the object and reset the system to a safe condition.
Do not try to cvaluate the object.

3.10.1 SYSEVAL

Built-in HP48 program objects--commands--are permanently stored in the calculator.
These objects are always in the same place in memory; any such object could in princi-
ple be executed by specifying its memory address rather than its name. In fact, this
execution-by-address is the most common form of execution within HP 48 system pro-
grams. Furthermore, the HP 48 contains many hundreds of objects that are not named,
and which are consequently not directly executable from the keyboard. The majority of
these objects are not useful for common HP 48 operations--those that are most useful
have names to make them commands. However, some unnamed objects do have practi-
cal uses.

The SYSEVAL command provides for execution of any system object by means of its
address. That is, you enter the object address as a binary integer object, then execute
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Table 3.3. System Objects

Object Type TYPE Stack Display Class Definition
Number
System binary 20 <nannnn> Data 20-bit unsigned integer
Extended Real 21 Ext. Real Data Extended precision (15-digit

mantissa, 5-digit exponent)
real number

Extended Complex 22 Ext. Complex Data Extended precision complex
number

Linked Array 23 Linked Array  Data Like ordinary array, but all
clements do not have to be
present.

Character 24  Character Data One text character.

Code Object 25 Code Procedure A program written in assem-

bly language.

Library Data Object 26 Library Data  Data Data-class object used by
libraries to save data specific
to cach library.

Extcrnal Object 27-31 External Data Data-class objects not specifi-
cally defined in thc HP 48
(may be used by external
softwarc).

SYSEVAL, which in turn executes the specificd system object. From time to time, in
response to customers’ requests, Hewlett-Packard has published the addresses of a few
system objects that help solve certain common programming problems.

For example, if a program creates a temporary display by means of DISP or other com-
mands, that display will persist until the end of the program. You can cause the calcula-

tor to restore the normal stack display while a program is running by executing
#39BADh SYSEVAL.

Another example is given by the following program, which is intended for use in pro-
grams that are designed to work in either an HP48S/SX or a HP48G/GX. HP48G?
returns frue (1) if it is running in an HP48G/GX (code versions K or later), and false
(0) if it is running in an HP 48S/SX (version A-J).
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HP48G? Running on a HP48G/GX? 865
| level 1
o flag
<< #30794h SYSEVAL Get the version string.
8 8 SuB Version letter.
NUM 74 > Greater than J?
>>

You must use extreme care when using SYSEVAL, for execution with an incorrect
address may cause a system halt or a memory reset (section 6.6). When you execute
SYSEVAL from the command line, or enter it in a program, you should do the follow-
ing:

e Be surc that the address you are using is correct.

e Be surc you enter the address correctly. This means not only getting all digits right,
but also making sure that the number is correct for the current binary integer base.
All of the SYSEVAL addresses listed in this book are given in hexadecimal, so you
should cxecute HEX before entering the binary integer address. (Remember that
including HEX in the command line does not affect the interpretation of binary
intcgers entered in that same command line).

e Do not attempt to single-step (section 12.2.2) programs containing SYSEVAL. If you
need to do this, replace the sequences #address SYSEVAL with global names, where
cach name corresponds to a variable containing a program

<< #address SYSEVAL >>.

Most useful SYSEVAL addresses are the same on the HP48S/SX and the HP 48G/GX,
and can be used on any HP48. However, some do differ on the S and G modcls, and
even some that are unchanged may refer to system programs that do not work identi-
cally. In general, you should use care when using SYSEVAL, and it is best to make a
backup copy (section 6.5.4) of calculator memory when trying new SYSEVAL programs
for the first time.

3.10.2 LIBEVAL

The HP 48G/GX uses a sophisticated memory management scheme to enable the use of
more memory than its CPU can address directly. One consequence is that a large
number of system objects are not accessible by memory address and hence are not
available for SYSEVAL. These objects are stored in libraries but have null names so
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that they won’t conflict with ordinary command and name entry. Accordingly, the
HP48G/GX includes the command LIBEVAL, which allows you to execute any object
contained in a system library by its XLIB numbers. LIBEVAL takes a binary integer
#nnnmmm as its argument, and executes the mmmth object in library nnn, where nnn
and mmm are each three-digit (hexadecimal) numbers. LIBEVAL actually works with
any library, built-in or add-in. For example,

#AB06Bh LIBEVAL
executes DOLIST, which happens to be object 6B in library AB.
You can also use LIBEVAL for writing programs that use add-in library commands,

when the library is not installed in the HP48 (section 6.4.3). Of course, the library has
to be installed in order to execute such programs.
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4. Object Creation

Because of the wide variety of objects that the HP 48 can manipulate, the calculator
must provide a very sophisticated and flexible mechanism for you to create and modify
those objects. In this chapter we will discuss the general keyboard interface and the
object editors, and the nature of the all-important ENTER. Of course, you have learned
at least the rudiments of these topics from the owner’s manuals, but there is such a
wealth of detail that it is worthwhile to review and expand on that introduction.

4.1 The Basic Interface

The HP48 is fundamentally a key-per-function calculator, which means that its basic
interface provides a platform for calculations on mathematical and logical objects, where
each calculation in principle can be performed by means of a single keystroke. The use
of an RPN stack (Chapter 2) as the focus of the interface combines facilities for the
input of arguments and the output of results into a single mechanism, allowing for the
endless chaining of arbitrarily complicated computations. Objects are placed on the
stack, commands are applied to the objects, and new objects that represent the results
of the commands are returned to the stack.

Key-per-function means that any command can be cxecuted by means of a single key-
stroke. This facility is important not only because of the mechanics of typing, but
because there is a certain psychological satisfaction to making something happen with a
single well-chosen keystroke. You think of a function like sine as onc operation; the
key-per-function approach makes a nice one-to-one correspondence between the
abstract sine and the tangible keystroke. It is not an exaggeration to say that the pri-
mary goal of the HP48’s programming language, customization features, and plug-in
memory ports is to allow you to extend the key-per-function interface to calculations
that are not included in the built-in command set.

A central property of an RPN calculator is that the objects upon which you are operat-
ing are literally visible, as well as accessible computationally, in close proximity to the
operations (i.e. the keys) that you are to apply to them. This is a succinct description of
the HP 48 physical layout. In the basic HP 48 state, the display shows one or more
objects on the RPN stack, within the same field of view as the keys that represent the
current choice of operations. A typical display looks like this:
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The display rows numbered 1: through 4: show the first four objects on the RPN stack.
Immediately below are menu key labels that identify the operations associated with the
unlabeled keys below the labels. At the top of the display is the status area, that nor-
mally shows information about the status of the calculator, including the states of vari-
ous modes (section 7.1), the current directory path (section 6.1.2), and optionally, the
time and date. When you enter a new object, part or all of the stack display area is
given over to a command line (section 4.3); when entry is complete, the display reverts
to the stack.

The HP 48 has a number of other display/keyboard states that are used in the course of
computations, but the state described above is basic in that it is the “rest” state that is
restored when all active and pending operations are complete, or when a system halt
(section 6.6) resets the calculator. We shall refer to this state as the standard environ-
ment, which includes the standard display (status area, stack, menu labels) and standard
keyboard (which may be redefined by user key assignments--see section 7.2). Another
state of almost equal stature is the plot environment, in which the key-per-function inter-
face is applied to graphical data instead of discrete objects. The graphical data is con-
tinuously presented to you, and the menus and keys are devoted to operations on that
data, with the results immediately visible.

Because of the parallel importance of the standard environment and the plot environ-
ment, the display memory associated with each is maintained independently, so that you
can switch back and forth between the two without losing data. We shall call the two
display memories the ftext screen and the picture screen, from their respective activating
commands, TEXT and PICTURE. This terminology helps focus on the logical purposes
of the displays, and distinguishes them from the physical LCD and memory. We shall
discuss more about these “screens” in Chapter 10.

While the plot environment is largely self-contained, the standard environment is almost

indefinitely extensible. The menus and menu keys, for example, extend the basic key-
per-function interface to the hundreds of built-in operations for which there are not
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enough keys for unique keyboard assignments. When you create programs, you are
effectively adding to the built-in language (section 3.6) and providing more operations
that can be applied in the same simple manner. Some programs may become compli-
cated enough that they supplant the basic interface by redefining the keyboard and
presenting special displays, in order to provide improved ease-of-use and functionality
tailored to specific applications. The HP 48 itself contains several such programs, such
as the EquationWriter, the MatrixWriter, and the various input forms. The remainder
of this book is essentially a description of the principles of the basic interface, and how
you can develop your own extensions to that interface that span the entire spectrum
from simple key-per-function operations to systems that rival the built-in environments.

4.2 Keyboard Mastery

The HP48 keyboard may seem to be a complicated maze of nomenclature and colors,
but there is some method in the madness. Understanding the organization of the key-
board, including the extcnded keyboard available through the menus, will help you
remember what various keys mean, and where to find various operations.

Most personal computer keyboards are competely generic in the sensc that they arc not
optimized for any particular software-driven application, but offer a typewriter-like
“QWERTY” keyboard designed for text entry. Customization for a particular applica-
tion is provided by function keys that can be labeled by keyboard overlays, or by the use
of a mouse or other pointing device that makes the display into an extended keyboard.
But the HP48 is not designed to be quite so generic; rather, its keyboard is laid out with
certain definite purposes in mind. The assignment of operations to the various keys
reflects the priority order of these purposes:

1. RPN calculator. All of the sophisticated features of the HP 48 are subordinated to
the requirement that the calculator must provide for convenient execution of ordi-
nary arithmetic. Thus the number pad and the arithmetic operators are primary
(i.e. unshifted), extra-wide keys. ENTER, of course, is given extra prominence due
to its central role; the threc most common stack operations, DUP ( [ENTER] ),
SWAP ([=]), and DROP ([&=]) are available as primary keys.

2. Scientific calculator. The most commonly-used mathematical functions are gath-
ered on the primary and shifted keys of the fourth row.

3. Object entry. The delimiters and other symbols associated with object entry are
grouped on the shifted (=], ,[=1, and keys. The cursor keys are pri-
mary, and the EquationWriter and MatrixWriter, which are essentially specialized
object editors, are available on shifted .

4. Problem-solving resources. These are what the owner’s manuals call applications:
HP Solve, automated plotting, algebra, time management, statistics, and unit
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management (covered in HP 48 Insights Part IT). They are activated by the shifted
,[81,[91,[4],[5], and[6] keys. The right-shifted menu key in each case has
an input form that provides an environment for using the resources in an interac-
tive manner. The right-shifted 1/O, MODES, and MEMORY keys also have spe-
cial input forms, although these are more likely to be used for single operations
rather than extended interactive sessions. is effectively an extension of
. The left-shifted keys in all of these cases activates a menu of com-
mands that provide for program use of the resources.

5. Customization. The top two rows of keys are associated with customization: the
menu keys (top rows), which provide access to the hundreds of operations for
which there are not permanent key assignments, plus the key, for navigating
within the menus; and which provide instant access to the additional
operations that you define; and and . The latter two keys are effectively
shift keys, for which the second part of each two-key combination is selected from
the menu keys as labeled in the display.

6. Text entry. Of course, the entry of text is important for almost all of the purposes
outlined above, so it may not deserve to be last in the priority list. However, we
list it last to highlight the fact that the HP 48 is optimized for calculator-style key-
per-function operation rather than for computer-style operation via text typing. If
this were not the case, the HP48 would also have primary alpha keys in a
OWERTY layout.

4.2.1 Keystroke Strategies

Almost cvery operation that the HP48 can perform is available ultimately as a single
key press, if you don’t count shifts and menu changes. On the other hand, you can exc-
cute most (but not all) operations by typing one or morc command names with alpha
characters, then pressing . You will probably want to choose an execution stra-
tegy that is intermediate between these two extremes, according to your personal skills
and preferences.

e If you are good at remembering where (which menus) to find various commands,
you may prefer to use menu keys for cxecuting those commands or entering them
into programs. For manual operation, it is less visually disruptive to press a menu
key than to start up a command line for typing the name of a command. Also, you
don’t have to remember exactly how to spell each command. For programming,
using a menu key to enter a command has the additional advantage that the key
press also automatically enters spaces as necessary around the command name.

e If you don’t like using menus, or whenever you can’t find a command in a menu, you
can just type the name of any command that does not appear on the keyboard or in
the current menu. All of the characters used in command names are available (and
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labeled) on the alpha-shifted keyboard. This approach also has the advantage of
leaving the current menu unchanged.

Regardless of which command execution method you prefer, you should select an alpha
keyboard style. By default, [@] acts as a single-key shift, where only the next key (not
counting and is modified to produce an alpha character. To enter several con-
secutive alpha characters, you can hold down while typing, or press [e ][« ] initially
to activate alpha-lock, then [a] again after typing, to turn alpha-lock off. If you fre-
quently find yourself forgetting to press [@] twice for multi-character entries, you might
consider setting flag —60, which alters the behavior of [a]so that a single press activates
alpha-lock. With that choice, you must always press [a] or to turn off alpha-
lock.

A similar style choice applics to user mode (scction 7.2). Again, by default acts
as a single-key modifier unless you press it twice consecutively to lock on user mode.
This style is appropriate when you have a few user key definitions that you use occasion-
ally. But if you switch back and forth to user mode frequently, you can sct flag —61 so

that a single press of locks user mode.

4.2.2 Navigating the Menus

The HP 48 menu system provides convenient, labeled access to the hundreds of HP 48
commands that don’t appear dircctly on the keyboard. Most built-in menus are available
by pressing a two-key combination. For thosc that arc labeled on the keyboard, such as
MODES or MEMORY, the first key is the left-shift key (Ir>] usually activates an input
form--see section 4.5). and also act like shift keys, since they activate a menu
of menus, where you press one of the menu Keys to activate an actual command menu.
Each mecnu contains one or morc “pages” of up to six operations each. When you
activate a menu by means of the menu key combination, the first page of the menu is
visible in the menu labels. pages forward through a menu, cycling back to the first
page after the last page. pages backward, wrapping to the last page from the
first.

Some menus have even more of “tree” structure--any menu page may contain tabbed
submenu keys (e.g. [PRG]ZLIST= ZPROC= ). This design may require extra keystrokes in
some cases, compared to a less hierarchical layout, but the idea is to minimize the
search time by providing submenu labels that guide you to the key you need. Many sub-
menus also contain a final entry that reactivates the parent menu.

There are two methods to enter a menu on a page other than the first:

e The last menu operation [] [MENU] returns to the menu and page that was active
before the most recent use of a menu key combination. If, for example, you are
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viewing the second page of the matrix menu ( EMATRE ), and switch to the
second page of the program branch menu ( [PRG]EBRCHE [NXT] ), then after using any
of the branch menu keys you can return directly to the second page of the matrix
menu by pressing [MENU] . Pressing [>][MENU] again switches back to the second
page of the program branch menu. Note that when you leave a menu by using one
of the submenu keys within that menu, the menu is not “recorded.” The last menu
operation is designed to take you back to the previous menu page that you used, not
just to an intermediate step along the way.

¢ Executing MENU or TMENU with a numerical argument (section 7.3) activates the
menu and page specified by the argument.

4.2.2.1 Exiting

The HP 48 menu system is defined without a “home menu”--there is no master menu to
which you return when you are finished with the current menu. Moreover, there is
always a menu present, except in the plot environment’s and the EquationWriter’s
graphics scrolling modes. Thus, in general you don’t “exit” from any menu, you just
select another menu. There arc two kinds of exceptions to this general rule:

e “One-shot” menus. For most menus, you are as likely to select two consccutive
operations from a menu as you arc to select one then return to the previous menu.
There are several menus, however, that are designed for a single choice followed by
an automatic return to the previous menu. The plot type menu ( EPTYPEE ) and the
regression model menu ( EMODLE ) arc cxamples of this type of menu. The latter
two menus also include keys for returning to the previous menu when you don’t use
any of the current menu’s operations ( ENONEE for the repeat menu, and ZEXITE for
thc zoom menu). In the plot typc and regression model menus, you can make a
similar cxit by pressing the menu key corresponding to the current type, or by going
dircctly to another menu.

The various RULES operations menus also belong to this category, although execut-
ing a RULES operation does not return to the top-level menu containing SRULESE
but instead activates the transformations menu appropriate for the newly
transformed subexpression (which may be the same menu). To exit from one of
these menus you press a cursor key to select a new subexpression and return to the
main RULES menu.

e The main RULES menu in the EquationWriter and the function ( EFCNZ ) menu in
the plot environment menu permit multiple operations, but are sub-menus of other
menus that are not directly accessible via labeled keys. The sub-menus therefore
include an key that returns to the parent menu, such as EPICTZ for the FCN menu.
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4.2.3 CANCEL

The use of to terminate environments like the EquationWriter or the command
line is one example of the use of the CANCEL operation. The basic purpose of CAN-
CEL, executed by pressing , is to provide an exit path from ongoing operations
back ultimately to the standard environment. This sometimes can be a multi-step
process—-for example, when you are using the interactive stack from within the Matrix-
Writer (section 4.6), a first exits from the interactive stack and returns to the
MatrixWriter display, a second clears the command line, and a third terminates the
MatrixWriter and returns to the standard environment.

CANCEL also serves to halt program execution, including the programs you create and
built-in commands like J or COLCT that may take a significant amount of time. It is a
“gentle” form of interruption, in that the stack is not cleared and no stored objects are
affected (except for the local variables associated with currently executing programs). In
general, you can use CANCEL as the all-purposc “quit this and start fresh” operation.
If you are using any environment where the standard keyboard is unavailable, and there
is no menu key provided for exiting, pressing will get you back to the standard
environment.

One exception to the general behavior of [ON] occurs when you have used ZCALCE in a
input form (section 4.5). You can not use to return from the stack environment to
the input form; you must use the menu key ZCANCLE .

See also section 9.6.1 for more information about CANCEL’s behavior as an crror condi-
tion.

4.3 Command Line Object Entry

The central focus of the HP 48 is objects, the elements of data or procedure that you (or
the calculator) enter as representations of the calculations you are making. We dis-
cussed the theory and meanings of the various object types in Chapter 3; here we will
look more closely at how you create new objects.

The basic mechanism for the manual entry of objects is the command line. The com-
mand line derives its name from the fact that you can enter a “line” of commands--a
series of calculator instructions that are executed all together when you press .
A better term might be command editor, since it is not restricted to a single line, or
better yet, object editor, since commands are only one of the many kinds of objects you
can create there. In any case, you create objects by typing text representing the objects
into the command line. You terminate a particular editing session by pressing [ENTER] or
any of the other keys that perform an implicit ENTER. At that point the HP 48 converts
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the command line text into the objects you specified.

The double-width key has always been the trademark of HP RPN calculators
that sets them apart from so-called “algebraic” calculators with their prominent [=] key.
In all RPN calculators including the HP48, the fundamental purpose of ENTER is to
terminate object entry. In pre-HP28 calculators, the only objects that can be entered
are real numbers, so that terminating entry just means turning off digit entry mode and
leaving the completed number in the X-register. In the HP 48, ENTER retains the basic
action of terminating entry and entering new objects. However, because the HP 48
replaces ordinary calculator digit entry with a command line that can contain any
number of objects and commands, ENTER can invoke almost any of the calculator’s
capabilities as well as merely entering numbers onto the stack.

The fundamental definition of the HP 48 operation ENTER is:

Take the text in the command line, check it for correct object syntax, then
treat it as a program and execute the objects defined there.

This is a much-elaborated version of the old “terminate-digit-entry and enter a number
onto the stack,” but in simplc cascs, it amounts to the same thing. If you press a serics
of digit keys, then , you will cnd up with a number in level 1. The same key
sequence on an HP 41 or a similar calculator yields the same result. For the sake of
keystroke efficiency and to preserve additional consistency with other RPN calculators,
many HP 48 keys besides also executec ENTER as well as their own specific defin-
itions. This feature is called implicit ENTER, to distinguish it from explicit ENTER,
which is the direct use of the key.

An example of the use of implicit ENTER is the sequence (2] . This
adds the 1 and the 2, just as it always has in HP RPN calculators. At the time you
press , the 2 is still in the command ling; the implicit ENTER performed by [+ puts
the 2 on the stack before the addition is performed.

4.3.1 Key Definitions and Entry Modes

A key definition is the object assigned to the key, i.e. the object that is used when the
key is pressed. We say the object is “uscd” rather than “exccuted”, because the object
may or may not be executed, depending on the object type and the current entry modc.
Any key does one of two things when you press it:

e The key acts as a typing key, merely adding one or more characters to the command
line. In this case, for example, it might be the name of the key definition object that
is used rather than the object itself.

e The key acts as an immediate-execute key, causing any other kind of action.
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With this distinction, we can sort HP 48 keys (including menu keys) into three types:

4.3

1. Keys that are always typing keys. These include the alpha-keyboard character
keys, the digit keys, and the delimiter keys, plus the program structure word menu

keys in the program branch menu ( [PRG/EBRCHE ).

2. Keys that are always immediate-execute keys. These are keys that never add char-
acters to the command line. Examples are and menu selection keys such

as [PRG] or [MTH] .

3. Keys that may act either as immediate-execute keys or typing keys, according

to

the current entry mode. These mode-dependent keys are the most common key

type in the HP 48; nearly all are command keys.

(Here we are speaking only of the standard key definitions, i.e. the keyboard that is
available when user mode is off. The key definition object of any key can be changed--
see section 7.2--but the ideas presented here are common to the user and standard key-

boards.)

The mode-dependent keys are so-called because they are sensitive to the four entry

modes that detcrmine their behavior. The entry modes arc as follows:

e Immediate mode. All mode-dependent keys act as immediate-execute keys. This is
the default mode, to which the HP 48 normally returns after ENTER.

e Algebraic mode (ALG annunciator in the status area). Mode-dependent keys with
definitions that are functions permitted in algebraic expressions, such as SIN, +, or
LOG, act as typing keys. Parentheses are automatically added after the function
names if appropriate. Other mode-dependent keys act as immediate-execute keys.

e Program mode (PRG annunciator). All mode-dependent keys corresponding to pro-
grammable commands act as typing keys. Spaces are automatically added around
the command names to separate them from previous command line entries. There
are a few mode-dependent keys that have no command line text associated with
them, such as Z8STZ , or programs used as user key definitions; these keys just beep
when pressed in program mode.

e Algebraic/program mode (ALG PRG annunciator). Same as program mode, except
that the names of functions are not surrounded by spaces, and parentheses are
added where appropriate.

Most command keys are mode-dependent, but there are a few that always act as typing
keys. These are the program structure words (section 9.2) found in the program branch

menu, plus HALT and PROMPT (section 12.6.1).
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Whether or not a key performs ENTER depends on more than just the current entry
mode. It is true that only immediate-execute keys may do ENTER; there are no cases
where a key acting as a typing key adds characters to the command line, and then also
does ENTER. Furthermore, the great majority of immediate-execute command keys do
perform ENTER. For example, all keys for commands that use stack arguments do an
implicit ENTER to insure that the command is applied to the most recently entered
arguments, including those that are still pending in the command line. This saves you
the extra keystroke that you would otherwise need.

A few command keys do not perform ENTER regardless of the entry mode. The
corresponding commands control calculator numerical modes and require no arguments:
[>][POLAR| , =STD= , SDEGE , ZRADZ= , SDEC= , SHEXZ , EOCT= and ZBINZ . Because the
modes can affect the interpretation of command line numbers, these cxceptions to the
gencral implicit ENTER rule are provided to allow you to change thc modes after you
have started a command line.

4.3.2 Controlling the Entry Mode

The preceding key-behavior rules may appear claborate, but in actual usc they arc gen-
erally not difficult to master (in fact, you seldom nced to think about them at all). This
is due in large part to the fact that the HP 48 automatically changes its cntry mode to
match the objects that you enter. Also, you can manually change the entry mode for
those cases when the HP 48’s automatic choice is not what you want.

1. The default mode following an ENTER is immediate entry mode. This choice 1s
derived from the traditional behavior of RPN calculators, where pressing a func-
tion key causcs immediate exccution of the function. When you type digits or
letters to start a new command linc, thc HP 48 remains in immediate entry mode.

2. The HP48 automatically changes to algebraic entry mode when you press to
start cntry of a quoted name or an algebraic object. The ALG annunciator appears.

3. If you press «<>| or 7] to start entry of a program or list, the HP 48
automatically switches to program entry mode, indicated by the PRG annunciator.

4. While the HP48 is in program entry mode, pressing [/] activates
algebraic/program mode, turning on both the ALG and PRG annunciators. This is
intended to aid entering algebraic objects within programs and lists. Pressing a
key corresponding to an object or delimiter that is not allowed in algebraic expres-
sions restores ordinary program mode and turns off the ALG annunciator.

This progression works rcasonably well to spare you from having to control the entry

mode yourself, especially if you are entering one object at a time. However, there are
some circumstances in which you may need to override the automatic entry modc
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selection. To accumulate a series of commands into the command line without creating
a program object, you must turn program mode on to prevent the commands from exe-
cuting. Or, to enter a function into a program following a quoted name or an algebraic
object (e.g. ‘X’ SIN), you must turn off algebraic/program entry mode to prevent the
HP48 from adding parentheses to the function name. These mode changes are made

with :
¢ In immediate entry mode, pressing turns on program mode.
e In program entry mode, turns on algebraic/program mode.
e In algebraic/program mode, restores program mode (turns ALG off).

Note that once you have selected program mode, you can’t return to immediate mode
whilc the current command line is still active.

4.3.3 ENTER in Detail

Now that we’ve cstablished at some length which keys perform ENTER, and under what
circumstances, we can return to the precise definition of ENTER. The following arc the
actions that take place at every cxplicit or implicit ENTER. (The normal ENTER
scquence described here can be redefined; see section 7.4).

1. A copy of the current stack is saved. It is important to note that the stack save is
performed before the command line is processed. If the ENTER is caused by an
immediatc-execute operation key, the stack save also precedes execution of the
operation. This mecans that although breaking up a series of commands with
ENTER (either explicit or implicit) gives the same computed results as executing
all of the commands at once in a single command line, the results of pressing
at the ends of the series arc different. For example, cach of the following
keystroke sequences adds 1+2 and returns 3 to the stack. However,
gives a different result in each case (assume an empty stack to start with):

Keystrokes: Stack after UNDO:
(1] [ENTER] [2] [ENTER 2: 1
1: 2
(1] (2] 1: 1
KR (2] (empty)
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The command line text is parsed--converted from text into a series of objects.
(This step can be bypassed or postponed by using vectored ENTER--see section
7.4). First, the text is broken into object strings, individual portions of the com-
mand line text that will become objects. The object strings are defined by delim-
iters and separators:

e A delimiter is one of the symbols (, ), ', ", [, ], {, }, <<, >>, _, #, GROB, C$,
and DIR, that identify the different object types. The comment character @
can also be considered as a delimiter, even though it doesn’t identify an object.

e A separator is either a space, a newline, a semicolon, or whichever of “.” or
is not the current fraction mark. Separators are used to separate real
numbers, commands, and names, which have no special delimiters, from other
objects, and are generally used to make the command line more legible.
Unlike delimiters, separators can be repeated--extra ones are ignored.

@
>

For example, the command line
12345789 'FRED' "123" << DROP ’'SAM' STO >> PETE

is broken into the object strings
12345.789
'"FRED’
"123"
<< DROP ’'SAM’ STO >>
PETE

The process is repeated as necessary within algebraic objects, programs and lists,
which contain other objects. In the above example, the program objcct is further
broken into the object strings DROP, 'SAM’, and STO.

Each object string is checked against the syntax rules appropriate for its object
type. As ecach object string passes its tests, an object is created from the string
and pushed onto the stack. (This step is invisible--you won’t see a stack display
again until all of the new objects have been executed.) If any object string is
found to violate a syntax rule, all of the newly created objects are dropped from
the stack, and the command line is reactivated, with the cursor placed at the posi-
tion in the command line where the error was encountered.

When the command line has successfully been converted into stack objects, a copy
of the original text string is saved in the command stack (unless it has been dis-
abled). Normally, this only happens if there are no syntax errors. However, if the
HP 48 runs out of memory while it is creating the command line objects, the com-
mand line is saved, giving you a chance to try again after you have cleared some
additional memory. If the command stack is disabled, the command line text is
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never saved.
5. The new stack objects are combined into a program, which is then executed.

6. If the ENTER was implicit, the operation associated with the key that started the
ENTER is executed.

7. If vectored ENTER is in effect, the post-entry object (BENTER) is executed.

8. When the command line program plus the implicit ENTER key operation are fin-
ished, the HP48 checks to see if there have been any keys pressed since the
ENTER. If there have, the “busy” annunciator remains on, and those keys are
processed.

9. Finally, when all execution is complete, and no unprocessed keys remain, the stack
is displayed (unless some special display supersedes the normal stack display) and
the busy annunciator is turned off. Since the stack display can take an appreciable
amount of time, the display is postponed when keys are pending, to speed up the
overall process.

There are several advantages of using command lines instead of immediate-execute
command keys:

e You can repeat a scquence of commands without having to make the sequence into
a program. Each time you execute the sequence, you can recover the command line
with , then press to execute it again. You can also modify the
sequence each time you execute it.

e If you get an unexpected result, you can press to recover the stack, then
to reexamine what you did.

e A single command line is the fastest way to execute a command sequence from the
keyboard, since you don’t have to wait for the stack display after each object is exe-
cuted.

e Because the command line is a program, you can do anything within the command
line that you can in a program--create local variables, use program branch structures,
HALT, single-step, set error traps, etc.

You can also turn this picture around and imagine a program as a command line for
which execution is postponed. You can take any command line, surround it with <<
>> and obtain a program that enters level 1 unexecuted when you press [ENTER] .

433.1 Comments
The @ character is a special delimiter that allows you to embed comments within com-
mand lines. A comment is text that is not converted into any object; it is discarded
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when the command line is entered. This is obviously of little use when you are creating
objects directly on the HP 48; however, it is very useful when you are creating or editing
objects using a word processor on a personal computer. In that case, comments can be
very helpful in documenting a program for later review, or in keeping track of stack
objects as you are writing a program. When you transfer the program to the HP 48, the
comments are automatically removed by the calculator.

Any text between two (@ symbols in the same line is treated as a comment. This allows
you to insert a comment at any point between objects-—-in fact, at any point where a
space 1s allowed, such as between the elements of a vector (within string and name
objects, the (@ is treated as an ordinary character). If there is only one @ in a line,
then all of the line to the right of the @ becomes a comment. The latter form is most
common in programs, where you might include comments at the end of most program
lines.

4.4 Object Editing and Viewing

Editing an object is the process of recreating a text representation of the object, chang-
ing the text, then constructing a new version of the object from the altered text. For
most types of objects, this is achieved by recalling the object to the command line using
the EDIT operation, . This copies the object in level 1 to the command line in
text form, automatically activating program entry mode. There you can make any
desired changes, then press to replace the original object with the modificd ver-
sion (more precisely, drops the original object, and cxccutes the command line).
If you press instead, the command linc is abandoned and the level 1 object is left
intact.

If the level 1 object is a name, does not edit the name itself, but instead recalls
the object stored in the corresponding global variable or local variable to the command
linc. When you press the modified object replaces the original version in the
variable (that is, the stored object is replaced with whatever object ends up in level 1
after the command line is cxecuted). cancels the edit, discarding the command line
(and the level 1 name), and leaving the original stored object unchanged. If you do
want to edit a name object, you must use [V], as described in the next section. (VISIT,
which edits a stored object on the HP48S/SX, is not available as a separate operation
on the HP48G/GX.)

EDIT| automatically activates the edit menu, which contains additional editing opera-
tions.  You can also activate this menu when you create a command line to enter new
objects, or restore the menu after switching to another menu, by pressing EDIT

whenever the command line is already present. The menu contains the following opera-
tions:
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e SSKIP-= and E-SKIPE move the cursor forward and backward by several characters at
at time, so that you can you move the cursor quickly to a point where you wish to
make changes. Each skip moves to the next or previous non-space character that
follows a space or a newline.

e ZDEL-Z and E-DELE “move” in the same manner as ESKIP-= and £-SKIPZ | excepl
that they delete the characters between the original cursor position and the destina-
tion (so the cursor doesn’t move on the display). EDEL-Z deletes to the right, from
the current character up to (but not including) the destination character. =-DELE
deletes to the left, from the character to the left of the cursor through the destina-
tion character to the left.

e [B]ZDEL-E is an extension of EDEL-= , deleting all characters from the cursor posi-
tion through the end of the current display line. Similarly, S-DELE deletes all
characters preceding the cursor position on the current line. =-DELE is

equivalent to [>)[&], and [P]EDEL=Z is the same as

e ZINSE turns insert mode off (and back on, if you press it again), so that subsequent
typing overwrites the characters under the cursor instcad of inserting new characters.
This is uscful when you are replacing a scquence of command line text with another
of comparable size. The state of insert mode is preserved during the current edit
session until you deliberately change it, but insert mode is always restored after

ENTER| .

e SISTKE aclivates a restricted form of the interactive stack (section 5.5), where the
menu contains the single key ZECHOZ . This key echoes, i.e. copies, the object
selected by the stack pointer to the command line at the cursor location. After
echoing any number of stack objects, press or to return to normal com-
mand line entry.

ZECHOZ is particularly useful when you want to include in a program or a list an
object that you have previously entered or computed, without having to retype the
object. It also provides a means by which you can create an algebraic object using
the EquationWriter, or an array using the MatrixWriter, then enter the object into a
program without having to retype it in command line format.

4.4.1 Viewing Objects

The command line also is the standard mechanism for viewing all of an object even
when you don’t want to edit it. The standard display will show up to four 22-characters
lines of the level 1 object, but often this isn’t enough. Since viewing an object too large
for the display requires many of the same display scrolling operations as editing, the
HP48 just uses EDIT as its default object viewer. To streamline the operation, the v
key (when no cursor is present) provides single-key access to edit/view an object. This
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key choice is associated with the interactive stack. You can picture the standard display
as a window on the stack, which shows all of the level 1 object, and one-line displays of
the remaining stack objects. Then just as you press [A] to view the objects above the
initial display, you press [V]to view the rest of the first object, hidden “below” the initial
display.

For most types of objects, viewing an object with [V] is the same as editing the object
with . For names, [V]is the only method of editing the name itself, since EDIT
recalls a stored object instead of the name. For unit objects and algebraic objects, [V],
with its emphasis on viewing, activates the EquationWriter to display the objects. Simi-
larly, for arrays [VV] copies the object to the MatrixWriter instead of to the command
line. For these three object types, therefore, you must choose which style of
edit/viewing you want:

¢ For an algebraic object or an unit object, use [V] for the EquationWriter when you
want to view the object in a “textbook” form, or if you want to apply operations to
the object using RULES in the subexpression menu. Use when you want to
edit the object in a way that changes the structure or formal value of the object. For
example, consider the algebraic object 'A+B+C+D’. To commute the last two
terms to obtain 'A+B+D+C’, you can use RULES since the operation is an identity
operation that preserves the formal value of the expression. But a modification of
the expression to 'A+(B+D)/C’, for example, is essentially the entry of a totally new
expression where you are just using the original to save a few keystrokes. For this
type of change, RULES is of little use; is the appropriate choice.

e For arrays, [V] to the MatrixWriter is almost always the best choice because of the
superior viewing and editing resources it provides compared with the command line.
One case where the command line does provide an advantage is that of two- and
three-element vectors. For these objects, the command line allows you to enter or
edit the components in polar coordinates (section 11.3.1), whereas the MatrixWriter
can deal only with rectangular coordinates.

4.5 Input Forms

Many of the HP 48’s more elaborate computation resources require the specification of
several parameters, including calculator modes, input data, and choices among various
calculation options. For example, to compute an integral, you naturally must specify the
limits of integration, the integrand, and the variable of integration. But you must also
decide whether you want a symbolic or numerical result, choose an accuracy tolerance
(for numerical integrals), and, when trigonometric functions are involved, choose an
angle mode. Now, it is one of the profound strengths of the HP 48 that you can enter
or compute each of these parameters in a separate, independent and programmable
operation, providing great flexibility and extensibility. However, especially for an HP 48
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novice, it is often helpful to have a single, focused, interactive interface in which you can
enter and review all of the parameters together, then say “OK” and have the calculator
actually perform the calculation. This is the motivation for input forms. For example,
the screen for alarm entry looks like this (][TIME][V]Z OK = ):

3 SET ALARM
ME33AGE:

TIME: 8:15:88 PHM
DATE: 5738 /93

REPEAT: HMone

ENTER ALARM MESSAGE
ET] | | [ANiL] OK ]

Here each of the alarm parameters arc represented by a dedicated area on the screen,
consisting of a label and a parameter ficld. One parameter field is active at any time,
indicated by inverse-video characters. You can change the active field by using the
cursor-arrow keys. As you do so, the instructions displayed immediately above the
menu key labels change accordingly.

The two menu keys ECANCLE and £ OK = arc common to all input forms, represcnting
the two methods of exiting from a form back to the stack environment. You can also
use [ENTER] interchangeably with 2 OK 2 | or instead of the menu key SCANCL= .

£ OK = accepts all of the data or choices in the various fields, and completes any pending
actions associated with the form. In the case of the alarm input form, £ OK = sets an
alarm according to the parameters in the current input form display. In the modes
input form used as an example below, the action is to go ahead and set the flags (sec-
tion 7.1.3) that represent the indicated mode choices. ECANCLE also terminates the input
form, but does not complete any pending actions, and discards any entries that you have
made within the form. There are some exceptions; for example, in the memory browser
(section 6.1.3) you can create, copy, and purge global variables. These actions are effec-
tive immediately, and are not reversed even if you subsequently use ZCANCLE to leave
the main input form.

I

OK = and ECANCLE are also used to exit from a sub-environment activated from within
an input form, such as the command line used to enter an object for the alarm message
field. In these cases, the actions of = OK = and ECANCLE are analogous to those at the
top level, namely to keep or abandon any entries, then exit the sub-environment (but
not from the entire input form).
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Also common to all input forms (in the second menu page) is ZRESETZ , which you can
use to reset one or all of the input form parameters to default values. ERESETZ (you can
also use [DEL] ) activates a display like this:

SET ALARM
MES SRGE: ]
e Celet e value
DATE Reset all
KEPE= ETTRT

ENTER ALARM MESSAGE
[ [ [ 1  liAMcL] O |

Pressing £ OK = stores a default value for the originally highlighted parameter. Pressing
[V] then £0K = resets all of the parameters in the input form. In some cases, the
default is a specific value or choice, such as Std in the NUMBER FORMAT:. In other cases,
the default is just an empty field.

An input form is cssentially an “input organizer,” which presents all of a complex
operation’s parameters togcther on the screen. Each parameter has a corresponding
entry field, of which there are three general types, distinguished by their contents and
their respective cnter/modify/review mechanisms: check fields, list fields, and data
ficlds.

4.5.1 Check Fields
The simplest kind of parameter field is a check field, which enables a simple yes/no
choice. The modes input form ([>][MODES| ) contains three check fields:

% % CALCULATOR MODES 3
MUMEER FORMAT: 5t d
ANGLE MEAZURE: Radians

COOED S¥STEM: Rectangular
v EEEP Mciock _FM.

DISPLAY TICKING CLOCK?
[ [ [wCHK[FLAG [ARCL] Ok

When a check field is active, as in the display here, the instructions at the bottom ask a
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question (DISPLAY TICKING CLOCK?), and the menu includes S/CHKE . Pressing this key
turns a check mark on and off in the check field, with a check indicating a “yes” answer
to the question, and no check meaning “no.” In the current example, the standard beep
is turned on, the clock is turned off, and the fraction mark is a period, not a comma.
You can also use to toggle the check mark on and off.

4.5.2 Choose Fields

The NUMBER FORMAT:, ANGLE MEASURE:, and COORD SYSTEM: ficlds in the modes input
form are examples of the second type of input form parameter field. The choose field
offers a choice among a specific set of options, like a check field except that there are
generally more than two choices. When a choose field is active, the ZCHOOS= key
appears in the menu. Pressing this key activates a choose box, which is a list of avail-
able choices, superimposed on the previous display. Here is the choose box for the
modes form NUMBER FORMAT: field:

CALCULATOR MODES §
MU
ANGIIF§ vad
COORS-ientific ar
YEE|EFngineering
CHODSE MUMEER DISPLAY FORMAT
I N N T T T

Within a choose box, the current choice is indicated by the inverse-video field, which
you can move up or down the list with [A]or [V]. A choose box display can show up to
five choices at a time; if there arc more, the display shows arrows at the right corners,
as illustrated by the TYPE: field in the plot input form:

g
el I ynction MW
EC: Polar
wpe|FParametric 5

Al Diff E':I .2
;H[ll] Conic 4

You can also change the selection by pressing [o] followed by the first letter of the
desired selection (if there is more than one with the same first letter, each press of that
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letter key moves to the next one down the list, wrapping around to the start of the list
when necessary). Once you have moved the highlight to the desired choice, £ OKE
enters that choice into the choose field and closes the choose box; ECANCLE reverts to
the main display without changing the previous choice.

It is not necessary to activate a choose box to make a new selection in a choose field.
The trick of pressing a letter key to move to the next selection starting with that letter
works even when there is no superimposed choose box. Also, you can cycle through the
possible choices (downwards through the choose box list) by pressing . Using
is particularly convenient when there is only a small number of easily-remembered
choices, such as the degrees/radians/grads choice in the ANGLE MEASURE: field of the
modes input form.

Choose fields are also used as in initial step in the activation of an input form with mul-

tiple main displays. activates this display:

iy
b=l

XX

aw

Integrat e,
Differentiate.
Taylor poly.
Isnlate wvar..

— a0

Solve quad.. iR
[ 1 b 1 [tANiL] OK |

Here you must select one of six symbolic manipulation input forms, according to the
more specific operations you wish to perform. The last-command operation ({*>}[CMD] )
provides another example of a choose box, where the choices are the last four command
lines. You can also create custom-made choose boxes in programs, as described in sec-
tion 12.6.5.

4.5.3 Data Fields

The last type of input form parameter field is the data field, which allows you to enter
and display a complete object. The MESSAGE: field in the alarm set input form is an
cxample of a data field; there you can enter a string object for an appointment alarm, or
any other type of object for a control alarm. Since a data field is for object entry, the
full object entry resources of the calculator are available:

e Pressing any number or alpha-character key, or any command key (e.g. [SIN] ),
activates an empty command line, where you may type in an object for the active
field. If the ficld is one that preferentially accepts algebraic objects or names (like
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the EQ: field in the plot input form), the '’ delimiters automatically appear in the
command line.

e ZEDITZ (which appears in the menu when a data field is active) or copies
the object currently displayed in the edit field to the command line for modification.

. EQUATION] and activate the EquationWriter and the MatrixWriter,

respectively.

e SCHOOSE appears in the menu when the object in a data field might reasonably be
reused in other contexts, or in repeat usages of one input form, and therefore might
be stored in a global variable. SCHOOSE activates a choose box containing a list of
variables in the current directory containing objects of a type suitable for use in the
data field. In the EXPR: field of the integration input form ([][SYMBOLIC] = OK £ ),
SCHOOSE might show a display like this:

............... LY P o= P P P OO0

EYPR FUNCS IM { HOME }
WMIE:1: CINCCOSC,,
cean| EXZE RSN,

E¥3: 'SIHCH) X'

EN T E e
[ [cHons] [ WEW [eRMiL] DK |

Sclecting one of the displayed objects copies it to the data field. Notice that ENEW=
appears in the menu with the choose box. Pressing that key activates the new vari-
ablc input form from the memory browser (scction 6.1.3) to let you enter an object
for the data ficld, along with a name for storing the object as a global variable. You
can also press ZCHOOSE again, which displays the memory browser directory choosce
box for changing directories.

In all of these cases, when you press = OK = to exit from an object editor, the newly
entered object is moved to the active data field, and the input form highlight moves to
the next field. While the command line is present in an input form, you can replace the
input form menu with any ordinary command menu for use in object entry or cditing.
Then you can use the permanent and keys to finish the editing rather than
having to first reactivate (with ) the menu with £ OK = and ZCANCLE . The nor-
mal edit menu (with ZSKIP=% etc.) is present as the second page of an input form edit
menu.
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Note that the use of or £ OK = to cxit from multiple levels of activity within an
input form can occasionally trip you up. For example, if you are entering data in the
alarm sct input form, you might start by typing the alarm message, then . This
automatically moves the highlight to the hour field. Then you type in the hour, press
, then cnter the minute. This leaves the highlight on the second field; in most
cases, the default 00 is fine. In that case, you have to remember not to press to
move on to the next ficld. Because there is no command line, [ENTER] (or £ OK = ) ter-
minates the entire input form, setting thc alarm as specified before you have even
cntered the date. You must remember to use one of the cursor keys to change fields
when you made no changes to the current field.

Most data fields are restricted in the types of objccts that you may enter. If you enter
an object of an inappropriate type by any of these methods, a display like this appears:

TMEL L Trwvalid

DATE . _
object type
F;EFE ] Igl 1 HF’

: 1".]
Types] 1 1 1 | OK |

£ OK = rcactivates the command line with the disallowed object. ETYPESE also appears in
the menu; it displays a choose box style list of allowed object types. Sclecting an entry
from the list and pressing ENEWE activates a new command line with the delimiters (if
any) for the selected object type alrcady entered. ETYPESS is also available beforc you
start object entry, in the second page of the input form menu when a data field is active.

A data ficld can also only accept one object. If you enter a multi-object sequence into
the command line and press £ OK = |, the entire command line is converted to a string
object. If a string is not a valid object type for the active data ficld, you will see the
Invalid Object Type crror display, and the string will remain in the command line. This
behavior also occurs when you attempt to cnter a command name into a ficld that
acccpts only certain object types, such as entering SIN into the VAR: field of the integra-
tion input form.

One of the HP 48 principal strengths is its ability to compute new objects as well as let-
ting you type them in, and that capability is available even within an input form environ-
ment. Next to STYPESE in a data field menu is SCALCE , which suspends the input form
and reactivates the standard environment. If there is an object in the active data field, it
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is copied to level 1 of the stack. The status arca shows the title of the suspended input
form, and the instructions for the active field, as in this example from the EXPR: field of
the intcgration input form:

INTEGRATE 3
EHTER ENPREZE1ON

ii—‘-l"--:ll'_l_'l—lﬁL
&

L[| [thNCL] OK

You can switch between this status arca display and the normal standard environment
status arca display by pressing ESTSE (status). The HP48 can preserve the suspended
input form indefinitely while you perform arbitrary calculations. This includes using
other input forms, which may in turn be suspended. There are two restrictions:

e Stack recovery ([2}[UNDO} ) is disabled.
e You can’t exceute HALT or PROMPT (sce section 12.0.1).

If you change menus during the caleulations, the input form title rcappears in the status
arca, along with the instructions PRESS [CONT] FOR MENU. This indicates that [CONT]
rcturns the menu containing ECANCLE and = OK = , which you nced to rcactivate the
suspended input form ( [ENTER] and do not return to the input form). The normal
status information display is also restored if you previously used ZSTSZ to suppress the
input form title (indicated by the white box in the Z8TSaZ label).

When you have completed calculations in the stack environment, £ OK £ rcturn to the
suspended input form, entering the object from stack level 1 into the active data field.
If the stack is empty, or you use ECANCLE instcad of 20K = | the previous contents of
the field are left unchanged.

There arc a few examples of data fields that have a choose box option. These are cases
where the valid data choices are relatively few. For example, when the modes input
form NUMBER FORMAT: field contains Fix, Sci, or Eng, a data field appears next to the
format choice ficld, for which the only valid entries are the real integers 0-12. When
this ficld is active, ZCHOOSE appears in the menu; it displays a choose box that contains
each of the 13 integers. This is not a major convenience, since it is certainly faster to
just type an integer directly into the the data field, but at lcast the choose box shows you
the valid range of entries.
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The operations described in this section are common to most input forms. There are
several more operations that are specific to individual input forms. These typically
appear in the third and fourth menu key labels in the main input forms. Examples are
ESTEPE in the differentiation input form, EPREDZ in the statistics fit data form, and
EFLAGE in the modes form. These special operations are described in later chapters.
You can also include custom input forms in your own programs, as described in section
12.6.5.

4.6 The Matrix Writer

Although command line entry of arrays is straightforward and efficient, the lack of any
automatic formatting as you enter numbers makes it easy for you to lose track of which
element is which. When you edit an existing matrix, its rows are displayed on separate
lines, but there is no attempt to align the columns. With the MatrixWriter, the HP 48
provides formatted entry, viewing, and editing of arrays, plus other opcrations that are
useful in array analysis.

There are two methods of activating the MatrixWriter:

e To start entry of a new array, press MATRIX] . This activates the MatrixWriter
display, with cmpty clement cells.

e To view or edit an cxisting array, press [V] with the array in level 1. This copies the
array to the MatrixWriter.

When you start by pressing , the initial MatrixWriter display looks like this:

EDIT £HID | KHID>

The MatrixWriter is modeled in many respects after computer spreadsheet programs.
The row-column format of a spreadsheet is a natural one for working with an array,
where cach cell contains one array element, real or complex. Since the HP48 does not
provide symbolic arrays, the MatrixWriter does not implement a spreadsheet’s cell for-
mulae, but many other operations are common to the MatrixWriter and spreadsheets.
A spreadsheet’s row and column labeling translates to the matrix row and column
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numbers that are shown in the small font along the top and left edges of the display. As
an additional reference, the current dimensions of the array are shown in the upper left
corner in the format rows-columns. In a new array, the dimensions start as 0-0, as in
the picture above.

Also like a spreadsheet, the MatrixWriter provides a cell cursor that consists of an
inverse-video highlight of the active cell, which you can move to select any cell by using
the cursor keys (prefixing a cursor key with moves the cursor to the end of the array
in the indicated direction). The row-column indices of the cursor are initially displayed
in the line above the menu keys. If the current cell contains a value, that value is also
displayed with the coordinates in the format row-column: value. When you begin to
enter or edit an element, the index/value line becomes a command line where you can
enter one or more objects.

When you activate the MatrixWriter, a two-page menu of MatrixWriter operations is
provided. You can change to other menus as you enter array elements; to return to the

MatrixWriter menu, press [>][MATRIX] .

The first page of the MatrixWriter menu contains the WID—~ and ~WID operations,
which you may use to increase or decrease the displayed column width to see more or
fewer characters in any ccll. WID- increases the column widih so that one fewer
column is displayed (minimum one), apportioning the extra display space to the remain-
ing columns. Similarly, ~WID increases the number of displayed columns by one (max-
imum five). The HP 48 remembers the width setting between MatrixWriter sessions.

4.6.1 Array Entry

Entering array elements in the MatrixWriter is quite similar to entering numbers onto
the stack. You can enter one number at a time, following each with , Or you can
use the command line (which is automatically set to program entry mode) to accumulate
several values to be entered sequentially with . The command line is executed in
the usual way (section 4.3.3), so you can include sequences that compute an array ele-
ment as well as entering the element directly. For example, to enter V'3 as an element,
you can type 3 V or "V3' ~NUM followed by . When you start a command
line for one or more elements, the HP 48 notes the current stack depth. After ,
if the stack depth has increased, each new stack object is moved in order to successive
array cells, starting with the highest stack level of the new objects. If the stack depth
has not increased, the array is not changed. Of course, all of the new objects must be
real or complex numbers; if any are other types, then the MatrixWriter exits with the
error message Invalid Array Element. When this happens, the existing array is returned
to level 1, and any objects from the command line are left in higher levels, with the
invalid object in level 2.
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While the command line is active, the cursor keys move the character cursor within the
commeand line, not the cell highlight cursor. To move the cell cursor, you must first usc
(or ) to complete command line entry. When you start a new command
line, the array display remains visible during entry, unless you enter a newline, at which
point the array display disappears in favor of the command linc. The array display is
restored when you complete command line entry (or if you back up to a single line).

Although our discussion here uses real arrays for cxamples, the MatrixWriter works
equally well with complex arrays. To create a new complex array, you must enter a
complex number into cell 1-1. After that, you can enter real or complex numbers; real
numbers are automatically converted to complex by . You can not, however,
enter a complex value into an array that has been established as a rcal array.

To enter a completed array onto the stack and cxit the MatrixWriter, press [ENTER] with
no command linc. clears the current command line; if there is no command ling,
terminates the MatrixWriter but docs not enter the current array, which is dis-
carded.

Initially, when you are creating a new array, the array dimensions are not determined;
successive clements that you enter are placed in cells starting at 1-1 and going across the
first row or down the first column. You can choose the direction of entry by using the
£GO-= and = GO = keys. The menu key labels for these keys indicate the current mode;
if a labcl has a white box in it, the cursor will move in the direction indicated by the
arrow in the label after cach cell value is entered. Pressing cither key toggles its box on
or off; if on, then the box in the other label is turned off.

¢ Choosing GO~ (as indicated by the white box in the key label) causes suceessive ele-
ments to be entered in the first row:

1
1

[5][MATRIX] GO- 1 2 3 [ENTER] i~

" —

[ EDIT | YEC m] £14ID
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e Selecting GO! causes the elements to be entered in the first column:

[]MATRIX] =GO = 1 2 3 CF

EDIT WD JWID>

e I you turn off both GO~ and GO! (by pressing the key that has the white box), then
the cursor docs not advance after a number is cntered, and successive cntries
overwrite the current cell unless you move the cell cursor to a new cell.

When you are entering an array by rows (GO—), you must specify the width of the array
by pressing [V] after entering the last clement in the first row:

[>]MATRIX] 1 2 3 [ENTER] [V] o~

EDIT | YEC s £WID [14ID*

The cursor has moved to the beginning of the second row. Now succeeding entries will
automatically “wrap” at the end of ecach row:

4 5 6 7 8 9 [ENTER] 17
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~J5
QoM
RV lnplR

EDIT £HID | KD

Similarly, if you are entering in columns (GO!), you must press [>] to mark the end of
the first column. Then succeeding entries will automatically wrap to the next column
after each column is full.

You can change directions at any time. If you do so while the cursor is positioned in a
partially-completed row or column, the remainder of the row or column is automatically
filled with zeros. However, the whitc-box active symbol does not change to reflect the
new direction choice until you actually enter a new cell value.

The HP 48 remembers the GO-/GO! mode between MatrixWriter settings so that you
don’t have to rescet it to your prefercnce each time you activate the MatrixWriter.

4.6.1.1 Vector Entry

By default, the MatrixWriter assumes that when you create an array consisting of only
onc row, it is to be entered as a vector. When you press , you can obscrve
that the SVECO= menu label contains a white square, which indicates that a one-row
array will be entered as a vector. If you press EVECOE (which removes the white square
from the label) any time before the final , a one-row array is entered as a 1Xn
matrix.

When you activate the MatrixWriter via [V] to edit an existing array, the VEC setting
automatically matches the array type, indicating vector type (white square) if the array is
a vector, or matrix type (no white square) otherwise. Thus it is a simple matter, for
example, to change a one-row matrix into a vector by pressing [V]EVECE [ENTER!. Note
that the VEC sctting is irrelevant if an array has two or more rows.

4.6.2 Editing Cells

You can change the contents of any MatrixWriter cell by moving the cursor there with
the arrow keys, then:
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e To replace the current number, type a new command line and press [ENTER] .

e To copy the current value to the command line for minor changes, press EDIT= .
Then make any desired changes in the command line text, and press [ENTER] to
replace the old value ([ON] cancels the change).

ZEDIT= does not change the current menu; if you want the command line EDIT menu
(section 4.4), press (] [EDIT) . [>][MATRIX] restores the MatrixWriter menu.

4.6.2.1 Changing Array Dimensions

You can add a row or column to the current MatrixWriter array by placing the cursor in
the first empty row or column, and entering a value. Unless this happens to be the next
normal entry position (determined by GO— and GO!), zeros are automatically entercd
into other cells as necessary to keep the array fully rectangular.

You can also add and dclete columns and rows within the existing matrix by using the
keys in the sccond page of the MatrixWriter menu.

. inserts a row of zeros in the current cursor row, moving the current row and
below down by one row. Thus with

33 w

an]
Nulugl

EDIT £WID jHIDF

yields

[ +Fikd [ -EOW ] +C0L | -COL | #3TH]+5TK]
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e Z_ROW:Z removes the row containing the cursor, moving the contents of rows below
the cursor up by one row. From the preceding picture, E~ROWE yields

+ROW | ROk [ +COL | -COL | #ETR[4-STE]

e =+COLZ inserts a new column of zeros at the cursor column, moving the contents of
columns at and to the right of the cursor to the right by one column.

® = -COLE deletes the.column containing the cursor, moving the contents of columns to
the right of the cursor one column to the left.

4.6.2.2 Stack Access
The final two entrics in the MatrixWriter menu provide for the exchange of numbers
between the MatrixWriter and the stack:

1

~STKE enters the contents of the cursor cell onto the stack.

® S1STKE replaces the MatrixWriter display with the interactive stack (section 5.5). If
there is no command linc active, the menu is the full intcractive stack menu; other-
wise the menu contains only ZECHO= . In cither casc, you can use SECHOZ |, to copy
a stack object to the MatrixWriter command line (sincc EECHOZ creates a command
linc if one does not already cxist, the interactive stack menu subsequently is res-
tricted only to ZECHOE ). Either or terminates the interactive stack and
returns to the MatrixWriter display.

4.7 The EquationWriter

The HP28C was the first calculator to combine the computational flexibility of RPN
with the ability to represent and manipulate algebraic expressions in a readable form.
The HP28s cxpression format reserables that common to most computer languages--
expressions are shown as a line of text, using various precedence conventions to minim-
ize the use of parenthescs. This linear format is much casier to read than the equivalent
RPN representation, but still falls short of common written notation (sce also section
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2.1), in which precedence and other information is conveyed by vertical and horizontal
positioning and various special symbols that are not available in the lincar format. The
HP48 is the first handheld calculator to provide two-dimensional graphical entry and
display of expressions, by means of the EquationWriter.

[ is fair (o say at the outset that the EquationWriter strains the HP 48 processing sys-
tem o the limit. That system is limited to a modest performance by modern computer
standards for rcasons of physical size and battery life. Nevertheless, despite its lack of
blazing speed, the EquationWriter is an invaluable tool:

e The cntry of constructs such as integrals is much casier in the EquationWriter than
using the linear format, simply because the graphical format provides a visual guide to
the entry of arguments; when you sce a picture like this:

[ iF_[CASE [START] FOR | 0O [WHILE

you know that you should now cnter the lower limit of an integral. In the lincar format,
you sce

T2+ (15 (9

without any help except your memory for choosing which among four arguments is to be
entered next.

e After you perform various symbolic calculations, the EquationWriter is very helpful for

viewing and understanding a result when the linear format is overwhelmed with
parentheses and precedence. The contrast between
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speaks for itself.

e For the interactive application of mathematical identity rules to rearrange and solve
expressions, the HP 48 RULES system using the EquationWriter is a distinct improve-
ment over HP 28 FORM, in which specification of a subexpression often is effectively
impossible because of the superabundance of parentheses. RULES is described in HP48
Insights Part I, as part of the discussion of symbolic algebra on the HP 48.

The EquationWriter is specifically not designed for editing expressions. It will not per-
mit operations that change the formal mathematical value of an expression, such as
inserting or deleting parentheses, substituting different functions, inserting or deleting
terms, etc., except by means of the operation in the subexpression menu, which
activates the command line editor for a selected subexpression.

The subexpression (section 3.5.2.1) is a key concept in EquationWriter operation. A
subexpression is any portion of a mathematical expression that can stand alone; that is,
it can be treated as a complete expression by itself. Specifically, a subexpression con-
sists of a number, a name, or a function and its arguments. A number--real or
complex--is the simplest case; if you like, you can think of a number as a function that
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takes no arguments and always returns the same value.

For example, consider the expression @ + sin(b~c). Rewriting this in Polish notation
(section 2.1), you obtain + (a, sin (- (b,c))). The “outermost” subexpression is the
entire expression, consisting of the function + and its arguments a and sin (- (b,c)).
Each of the two arguments is a subexpression--the first is just the name &, the second is
the function sin and its argument — (b,c). The latter in turn is a subexpression consist-
ing of — and its arguments b and ¢, and so on as you peel off the layers of parentheses.

4.7.1 The EquationWriter Display

While the EquationWriter is active, the text screen is dedicated to the expression pic-
ture. Menu keys retain their normal definitions and menus; however, keys that
correspond to RPN commands merely beep and do nothing. Similarly, the primary and
shifted keyboard keys are usable only if they make sense:

e Keys for HP 48 functions enter those functions into the expression in their graphical
form.

e Menu keys, LAST MENU] , , and and PREV] switch menus as usual.
e Alpha-shifted keys retain their usual actions.

e User mode is available, although the USER annunciator is not visible; however, only
keys defined with objects permitted in cxpressions are active.

e The cursor keys have special mcanings that combine cursor "movement” with
mathematical function entry.

. performs a limited destructive backspace.

e [>]enters a comma or semicolon, to separate the arguments of multi-argument func-
tions.

o [=]enters the = sign for an equation, or for the lower limit of a sum.

. is used to enter any ‘required” characters--separators (comma or semicolon)
between arguments, = signs in 2 start assignments, etc.

. EDIT] transfers the current EquationWriter expression to the command line.

o turns the HP48 off normally; pressing restores the active Equation-
Writer display intact.

. switches off the menu and the cursor so that you can use the cursor
keys to scroll the current expression picture through the display. This permits view-
ing portions of the expression that have moved out of view during expression entry.
A second press of restores the menu and puts the cursor back at the
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end of the cxpression for further cntry.

captures the current expression picture as a graphics object on the stack. (This
is analogous to the action in interactive plotting.)

EVAL] (or ) 1s equivalent to [ENTER][EVAL] ( [-NUM] ), for immediate cntry

and evaluation of the current expression.

()] toggles implied parentheses mode on and off (default on). See scction
47.25.

[ ] captures the current expression as a string object on the stack (section
4.75).

takes an object from the stack and appends it to the current expression.
The object must be usable in an expression, or it may be a string, such as that cap-

tured by [ ].
CLEAR] clcars the current expression without leaving the EquationWriter.

EquationWriter execution is terminatcd by [ENTER], which closcs all pending subexpres-
sions and enters the current cxpression onto the stack, where you will see it in lincar
form. and act as shorteuts; cither key performs and then exe-
cutes its normal operation before returning to the standard environment. You can also
exit from the EquationWriter with [ON, which returns to the standard environment but
abandons the current EquationWriter expression (if you activated the EquationWriter
with [V], the original level 1 object is preserved).

4.7.1.1 Invoking the EquationWriter
You may activate the EquationWriter in three ways:

EQUATION] starts the EquationWriter in entry mode with an initially blank screen,
for the entry of an entirely new expression.

Pressing [V] with an algebraic object or a unit object in level 1 activates the Equa-
tionWriter with that object as its current expression. The EquationWriter starts in
viewing mode, with no cursor, so that you can scroll the display around if necessary
to sce all of the object. Pressing switches to the subexpression environment
(scction 4.7.6); pressing ZEXITE activates entry mode.

~GROB (section 10.3.2) specified with the 0 font argument creates a graphics object
containing the EquationWriter picture of an algebraic object or a unit object.
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4.7.2 Basic Expression Entry

Entering an expression in the EquationWriter environment consists of “drawing” the
expression in a two-dimensional graphical form, in morc-or-less the same order as the
expression is written by hand, working left-to-right. Object cntry takes place at the cur-
sor, which is always at the end of the new expression. All three HP 48 character fonts
are used in building an expression picture, starting with the large font for the main linc
of an expression, dropping to thc medium font for exponents and for the limits of
integrals and sums, and finally to the small font for exponents of exponents, etc. The
cursor grows and shrinks also to match the current font size at the cursor.

To minimize memorization of arbitrary key sequences, the EquationWriter makes as
close a correspondence as possible between cursor movement and the hand motions you
make when writing an expression on paper. The crucial key is [>], which terminates, or
closes, entry of a subexpression. The choice of [>] arises from a general model of enter-
ing expressions from left to right. The cursor is always at the right end during expres-
sion entry, so pressing [=]is taken to mean “go even farther right”--i.¢. close the current
subcxpression and start a new one. In some cases, such as when cntering an cxponent
or a numerator, the natural terminating motion is “down”; hence [V] is also allowed,
and is equivalent to[==]. Closing a subexpression means:

e cntering a right parenthesis (this is the only way to do this);

e finishing an exponcent;

finishing a numcrator or denominator;

completing a square root or XROOT argument;

e completing any of the various arguments in a multi-argument function. In this case,
[>] enters an argument scparator ;7 or “” to separate parenthesized arguments, or
moves to the next argument location in structures such as integrals, sums, and |

(where).

When the cursor is in a position representing the end of several nested subexpressions,
you can use =] as a shortcut to complete all pending subexpressions. It is
equivalent to pressing (=] repeatedly until all subexpressions are closed and the cursor is
at the right end of the main entry line. Thus if you have entered

A

pressing [5][5] closes both exponents and the fraction to
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A
B’

The space key plays a role similar to, but not quite the same as [>] . (you can
also use [<][1]) is used to separate the required arguments of a multi-argument func-
tion (not counting infix functions, where the function itself separates the arguments).
Like [&>], enters an argument separator “,” or “;” or moves to the next argument
location. However, you can not use to terminate the fina/ argument of any func-
tion; it will beep and display Invalid Syntax to indicate that no further arguments are
permitted. Another distinction between and [>>] is in their application to functions
of an indefinite number of arguments (including user-defined functions): must be
used to separate the arguments, since [=] will close the subexpression. For example, if
you have entered

UDF(100
then pressing yields
UDF(1,0
ready for another argument, whereas [=>] gives
UDF(1)0 .

Although there is some overlap between the actions of and [}, we recommend
that you use for separating successive arguments within parentheses, and [=] for
moving between physically separated argument locations.

You naturally can not leave any required argument location empty; if you press [>] in
such a situation, it just does nothing and leaves the cursor in place. You can not prop-
erly close a subexpression unless all of the required arguments of the function that
defines the subexpression are present. in this case beeps and displays Incom-
plete Subexpression.

Upward motion when writing an expression can arise from a number of constructs, in
particular exponents and division numerators. The EquationWriter chooses the latter
for its [A] action, since exponentiation is easily represented by the key, and since
two keys are really needed for division--see section 4.7.2.4, below.

Finally, motion to the left implies a correction of already-entered symbols. The simplest
case is the erasure from the right represented by (section 4.7.4). [Q]is directed to
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more elaborate manipulations; it activates the subexpression environment (section 4.7.6).

4,7.2.1 Number Entry
Numbers arc entered into the EquationWriter in same manner as in the command line,
with certain exceptions that arise from the non-RPN context:

. merely echoes a minus sign at the cursor and does not affect any sign to the
left of a number. You can use either or [ =] to prefix a negative quantity or for
subtraction.

e [EEX]just types an E at the cursor.

e You must separate the real and imaginary parts of a complex number with a comma
or a secmicolon. After you enter the real part, will enter the separator appropri-
ate for the current fraction mark mode.

4,7.2.2 Names and Prefix Functions

You can cnter a global or a local name by typing the name with alpha keys, or by press-
ing a CST, VAR, or LIBRARY menu key corresponding to the name. The same method
applies to ordinary prefix functions (functions with their arguments following within
parentheses), including functions represented by XLIB names, except that the Equation-
Writer is also sensitive to their definitions. This mcans that when you complete cntering
a function name, by pressing [=], [][O], , or another function key, the Equa-
tionWriter immediately checks the syntax, and adds a following left parenthesis if
nceded. Furthermore, if the entry is an RPN command name, it is rcjected with the
Invalid Syntax message.

Since the EquationWriter does not allow entry of spaces ( enters argument separa-
tors), you must enter those infix functions with multi-character names, such as MOD,
AND, NOT, ctc., by pressing a menu key or a user key for the function.

4723 +, -, X

These infix operators (functions that appear between their arguments) appear in their
natural form, with the extension that the EquationWriter’s graphics allow substitution of
the centered dot - instead of the more obtrusive “*” of the linear format:

[(Alx][B] = AB.

Although the HP48 does not explicitly support implied multiplication (in order to pro-
vide for multi-character variable names), the EquationWriter will automatically insert a
multiply (“*) whenever the syntax is sufficiently unambiguous to permit it:
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o in front of an alpha character entered after a number: [1[A] = 1-A[
o between right and left parentheses: ...) [][(O] 1= ..)(O
e in front of prefix functions (unless typed in with alpha keys): [A][SINJi= A-SIN(0

e in front of the divide bar: [AJ[A] & A- 2

e in front of square root: [A][V] 1= A~\/E

You should need to use only to separate objects cntered with typed sequences
rather than with single-keystrokes, such as the products of numbers and names. If you
are uncertain of whether implied multiplication will happen, it is always acceptable to
press directly.

4.7.2.4 Division

Symbolic fractions are displaycd by the EquationWriter as a numerator above a divide
bar above a denominator, with the divide bar two pixels wider than the longer of the
numerator and the denominator (left-to-right length). There arc two ways to cnter a
fraction. The first is to enter the numerator, press [= ], then enter the denominator,
terminating the latter with [>]. For example,

O 2]+ 108][=] yields

L
2+3
With this mcthod, which is derived from the ordinary infix divide used in the linear for-
mat, it is not nceessary to enclose the denominator in parentheses. However, if the
numerator contains more than one object, it is nccessary to enclose the numerator in
parcentheses to indicate the extent of the numerator subexpression. Requiring numera-
tor parentheses violates the spirit of cntering expressions as you write them, so an alter-
nate method is provided.

The second method uses [A] to mark the start of the numerator, following the motion of
a pencil moving up the paper as you start writing a numcrator. Pressing [A] moves the
cursor up half a line and draws a divide bar under the cursor:

1+g+3+0

PARTS] PROE | WP [MATRYECTR] BRSE |
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As you enter subsequent objects, the bar stretches under the new objects (the stretching
occurs when each object is terminated, not when individual letters or digits are typed):

1+'?‘+3+ji§i§-[I

PROE | HYP | MATR|VECTR| EASE |

You signal the end of the numerator by pressing [V] or [&], whereupon the cursor
moves down to the empty denominator:

Lrezedtal

PARTS| PROE | HYP |MATK|VECTR] ERZE |

Now the divide bar stretches further when and if the denominator width exceeds that of
the numerator. (=] terminates the denominator, redraws the fraction with the numerator
and denominator centered, and moves the cursor to the right end of the fraction.

The division initiated by [A] actually corresponds to the prefix function RATIO instead of
to /. This function is equivalent to / when cxecuted, and is automatically converted to /
when you exit the EquationWriter with . Because it offers no non-
EquationWriter functionality not provided by /, RATIO does not appear in any menus.
Unless you deliberately enter it in the command line, the only time you are likely to see
RATIO by that namc is in strings created by the [][" "] key from within the Equation-
Writer (section 4.7.5).
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4.7.2.5 Exponents

You enter an exponent by pressing immediately following the object or subexpres-
sion (the base) to be exponentiated. This causes the cursor to move up half a line, and
to reduce to the next-smaller font (unless already using the small font). If the base
expression is defined by a multi-argument function, parentheses are automatically added
around the expression if they are not already present. [B>] or [V] terminates the
exponent entry, moves the cursor down to the base line, and returns to the previous
font.

You must parenthesize multi-term base expressions, as you would in written notation. It
is not necessary to parenthesize the exponent, regardless of its structure. However, this
means that you must always use [>] or [V] to terminate the exponent, which may appear
to be an inconvenience if you are entering, for example, a polynomial containing nothing
but single term exponents. For this reason, the EquationWriter allows you to disable
implicit parentheses.

In the normal opcration of [+, V, and , subsequent entry adds objects to the
denominator, square root argument, and exponent subexpressions, respectively, as if
invisible parcntheses surrounded the subexpression. If you press , the implicit
parenthesization is disabled (Implicit () off is displayed), and entry of the subexpression
following one of these operators is automatically terminated by any subsequent function
key. Moreover, that is the only way to (erminate (cxeept ); pressing [=] has no
cffect. This is convenient for entering polynomials: cach cxponent is completed by entry
of the function that starts the next term. A second use of [{1] (Implicit () on) re-
enables implicit parenthesization (which is always active upon entry to the Equation-
Writer).

4.7.3 Special Forms

In addition to basic expression entry described so far, using names, numbers, prefix
functions, and the infix functions +, —, X and +, the EquationWriter provides special
forms for square root, xth-root (XROOT), integral (f), derivative (d), sum (), and
where ().

4.7.3.1 Square Root

Pressing [V] displays a square root symbol with an overbar above the cursor: Vo, As
you enter the argument, the overbar stretches horizontally (in the manner of the divide
bar) and the leading V' stretches vertically, to match the growing argument. As usual,
[&] or [V] marks the end of argument entry, whereupon the overbar shrinks if necessary
to the length of the argument without the cursor, and the cursor moves two dot columns
to the right of the end of the overbar.
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4.7.3.2 xth-Root

Whether XROOT is considered as a prefix or an infix function in its written form is
ambiguous. In the EquationWriter, you press the XW key before entering cither argu-
ment. This moves the cursor up a half line, and reduces the font (but does not yet enter
the V symbol). You then enter the x argument; when you press [>] (or [V] or ) to
terminate the argument, the V symbol is drawn as well:

+*\Vo

Now you enter the y argument, during which the V symbol stretches as for ordinary
square roots. Another [] terminates the entire XROOT subexpression.

The fact that the x argument is written in the EquationWriter before the y argument
means that the linear format syntax for XROOT is XROOT(x,y). However, you should
note that the RPN syntax for XROOT is y x XROOT,; x is entered after y. This makes
XROOT consistent with *, and more convenient for manual calculations, but it means
that XROOT is an (the only) exception to the usual HP48 rule that the order of argu-
ments within parcntheses is the same as the order in which they are entered for RPN
execution.

4.7.3.3 Derivative
Pressing [6 ] enters this form:
d
0oQd
The cursor is positioned at the differentiation variable name field. Keying in a name
terminated by [=] then yiclds

d
dname

a

Now the cursor is positioned for entry of the expression to be differentiated; the
expression’s entry is also terminated by [>], which closes the parentheses.

4.73.4 Integral
[][1] draws a large (about three times a character’s height) integral sign, with the cur-
sor positioned at the lower integration limit:

~ [
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The integral sign changes in size as the integral’s arguments grow, so that the symbol is
as tall as the sum of the heights of the limits and the integrand. The integrand does not
overlap either limit horizontally or vertically. It starts at the horizontal position beyond
the right ends of the of the lower and upper limits.

An integral has four fields:

upper
f integrand d name

lower

You cnter these in the order lower, upper, integrand, name, ending each successive field
with []. Terminating the integrand automatically enters the d symbol a half space past
the end of the integrand. Terminating the name (the integration variable) completes
entry of the entire integral and moves the cursor a full space to the right of the end of
the name.

The integration variable name ficld can only contain a name; the other ficlds can con-
tain arbitrary expressions.

4.7.3.5 Summation
draws a large summation symbol X, with the cursor positioned at the lower
integration limit:

i
Unlike the integral sign, the summation symbol does not change in size as the various
arguments are entered. The start index expression grows downward and the stop limit

expression upward to avoid overlapping the X itsclf. Similarly, the summand expression
starts at the horizontal position beyond the right ends of the of the index expressions

A sum has four fields:

stop
> summand

name =stant

You enter these in the order name, start, stop, summand, terminating each successive
field with [&], which moves the cursor to the next field. When you end the name field
(which can only contain a single name) [=] automatically enters the "=" symbol after the
name (you can also use [=1). Terminating the summand completes entry of the
entire structure, and moves the cursor one space to the right of the end of the summand
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expression.

4.7.3.6 Where

The function | (pronounced “where”) is an infix function with one preceding argument
and an indefinite number of following arguments. Pressing £ | = draws a vertical bar
and places the cursor at the bottom right of the bar:

AXY) |

At this point, you enter a series of one or more assignments of the form name =value,
separated by commas or semicolons. You can use to enter either = or the comma,
or you can usc [€)[= ] or [59)[>] as appropriate. A typical entry looks like this:

AX.Y)|

|x=2y=30

Pressing [>] after completing an assignment expression completes the | subexpression.

4.73.7 Units

In the EquationWriter, the underscore delimiter _ is treated as an infix function (section
2.1); no other special provision is required for units. You enter a unit object in the
usual form magnitude_units, where the units part is a subexpression with exponents, mul-
tiplication signs, and divide bar displayed in the usual EquationWriter style. You can usc
various UNITS menu keys function as typing aids during unit entry.

In the cntry of the unit part, the EquationWriter does not attempt to prevent you from
entering otherwisc valid subexpressions that contain functions not permitted in units. In
this respect the EquationWriter behaves the same as the command line for the case
where a unit object is entered within an algebraic object. No error is reported until the
resulting expression is evaluated.

4.7.4 Correcting Mistakes

The EquationWriter provides a destructive backspace operation ([&]) for correction of
ordinary wrong-key-press crrors. The backspace works like that in the command line
for erasing digits and letters, but when you back up over a function or into any closed
subexpression, the display blanks while the picture is rebuilt (on HP48S/SX versions
A-H, this process was painfully slow, but the EquationWriter was redesigned for new
versions and the HP 48G /GX).

Note that the destructive backspace performed by is not a suitable method for
structural revisions, such as inserting new terms and parentheses. For these reasons, the
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command line editor is made available from within the EquationWriter. Pressing
copies the entire current EquationWriter expression into the command line (this is
also true in RULES operation, where copies the selected subexpression to the
command ling). ' ' delimiters are automatically inserted around the command line
object to identify it as an algebraic type. Note, however that you can only edit a com-
plete expression; you must make temporary entries for any missing arguments in order
to start the command line edit (once the command line is active, you can replace the
dummy entries).

Normal command line facilities are available, including the interactive stack ZECHOZ .
The entry mode is automatically set to ALG PRG. returns the edited expression to
the EquationWriter; cancels the edit and restores the original expression in the
EquationWriter.

4.7.5 Stack Access

In addition to the “back door” to the stack via £1STKE from the command line, the
EquationWriter provides more direct object exchange with the stack. For cxample, you
can capturc the current EquationWriter picturc by pressing ; a graphics object
representing the picture 1s invisibly entered into level 1. The current expression doces
not have to be complete, which is usceful when you are trying to capture a serics of
step-by-step pictures of EquationWriter operation.

You can also store the actual cntry scquence that led to the current expression at any
time by pressing [*"]. The choice of this key arises from its association with
strings, since the key sequence is stored on the stack as a string. You can later use the
string as a typing aid for reentering the same expression: pressing with such a
string in level 1 drops the string from the stack and appends it to the current expression
as if the string characters were typed in. When you obscrve an EquationWriter string
object on the stack, you will notice that the expression represented by the string follows
diffcrent precedence rules than used in ordinary algebraic objects; for example, the
expression

appears as

"( RATIO (1 ,2+ 3))7(4)"

in string form, but as
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"(1/(2+3))"4

in the linear form of an algebraic object. This difference makes it impractical for you to
create thesc strings other than from within the EquationWriter. Instead, you can use
proper algebraic objects, since the EquationWriter can take any algebraic
object from the stack as well as an EquationWriter-generated string.

You may also see EquationWriter strings on the stack when the HP48 runs out of
memory during EquationWriter entry, which causes the current expression to be saved
on the stack as a string. After you frec some memory, you can restart the Equation-
Writer, and use to recover the expression.

4.7.6 Subexpression Operations

During expression entry, the EquationWriter cursor is an open box that is always at the
end of the expression--the point at which object cntry is taking place. Pressing [<]
moves the cursor “back into” the cxpression, simultaneously activating the subexpression
menu. The box cursor disappears, to be replaced by the subexpression cursor, an
inverse-video highlight of an objcct, which you can move around the expression to select
different objects and subexpressions.

As discussed at the start of section 4.7, a subexpression is defined by a function and its
arguments, where we include the zero-argument cases of names, numbers, and symbolic
constants. All of the operations in the subexpression menu apply to the subexpression
sclected by the cursor. As you move the cursor, it jumps from objcct to object, but at
any point you can expand the cursor to highlight an entire subexpression by pressing
ZEXPR= . For cxample, with the cursor positioned like this:

((A-E)BCO))-(EF)

RULEZ] EDIT | EXPR | ZUE | REPL

pressing ZEXPRE shows the subexpression defined by the object +:
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GEEIOE] | -(E-F)

KULEZ| EDIT | EXPK KEPL

A

The exponentiation function * is “invisible” in the EquationWriter, since an exponent is
defined by its geometrical position. However, when you move the cursor between the

base and the exponent, the ~ pops into view so that you can select the corresponding

subexpression:
F
, ((RE)+(m) B
|
RULES] ECIT [EXPR] sUE | REPL [ EXIT
Then ZEXPRE :

[(REI+(C

RULEZ] EDIT REPL | EXIT
pitLE=] EUIT JEnPR | SUE | REPL | EXIT |

All subexpression menu operations are applied to the sclected subexpression. These
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operations are defined as follows:

ZRULES= provides a set of identity operations that you may apply to the subexpres-
sion. We will defer a detailed discussion of RULES to Part II, where we will
describe the broader topic of symbolic algebra on the HP 43.

ZEDITE copies the selected subexpression to the command line, where you can use
character editing to change it to any new subexpression (the only restriction is that
ccrtain arguments, such as a differentiation or summation variable names, must
remain as names). restores the EquationWriter picture, with the edited
subexpression replacing the original. You can also cancel the edit with [ON], leaving
the initial subexpression intact.

ZEXPRE switches the cursor between highlighting an object and highlighting a subex-
pression. Pressing a cursor key to move the cursor always reverts to the object
highlight.

=SUBZ cnters the selected subexpression onto the stack. When you leave the Equa-
tionWritcr, any objects entered by ZSUBE will appear starting in level 2, since the full
EquationWriter expression object is returned to level 1 (this is also true for objects

entered by or [ B[ ].

=REPLE replaces the selected subexpression with an object taken from the stack. The
object is taken (and dropped) from level 1. if you entered the EquationWritcr via [V]
on an algebraic object or a unit object, that object is removed from the stack for the
duration of EquationWriter exccution. Objects intended for REPL should thercfore
start in level 2 (before [¥]). For example, to replace the A+B in 'SIN(A+B)"2’
with V/(C+D), start with the 'SIN(A+B)"2" in level 1, and "V(C+D)' in level 2.
Then [V] displays the sine cxpression:

2
SINCAR+B) O

[ _IF_[ ChsE [STHET] FOR | 00 JWHILE

[<] four times highlights the +:
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SIN(REE)

RULES] EDIT | EXPE | ZUE | REPL | EXIT

Now ZREPL= makes the replacement:

2
SINCIC+O)

[OMEGJDINY | %1 | 1 | /1 [+1-1]

The highlight is now on the V| since it is the function that defines the replacement
subexpression.  You might also notice that the menu changes to the RULES menu
appropriate for V/; the REPL substitution is treated as an extension of RULES even
though it is not necessarily an identity operation. Any cursor movement restores the
subexpresston menu.

® ZEXIT= returns the EquationWriter to entry mode, with the box cursor at the end of
the expression.

-124-




5. The HP 48 Stack

The HP 48 stack is the center of all calculator operations. It is the place where the
greal majority of commands find their arguments and return their results. It's also the
primary and most efficient means for commands and programs to transfer data and
instructions so that a series of calculations can be linked together. In this chapter, we’ll
describe the fundamental stack operations by which you can manipulate the objects on
the stack. We will use real numbers and names as example objects, but all of the stack
operations described here apply uniformly to any of the various RPL object types.
There are numerous practical examples of stack manipulations in the program examples
in later chapters.

The stack consists of series of numbercd levels, cach of which contains onc object of any
type. The stack is always filled from the lowest level up, so that there are never any
cmpty levels between full ones. ENTER always moves new objects from the command
linc into level 1, pushing previous stack objects up to higher levels. Most commands
remove their argument objects from the lowest levels, whereupon the objects in higher
levels drop down. The only exceptions arc some of the stack manipulation commands,
which can move objects to or from arbitrary stack levels. There is no limit on the
number of objects or levels of the stack; you can enter as many objects as available
memory will permit.

The HP48 provides an extensive set of stack manipulation commands, some per-
mancntly assigned to keys, and the rest contained in the stack command menu ==
). All of the stack menu operations are programmable commands, which means
that you can exccutc them by pressing the appropriate keys or by spelling their names
into the command line. Most stack operations can also be executed by using the interac-
tive stack, described in section 5.5.

If you have no previous expericnce with RPN calculators, a good way to get used to the
RPN stack is to view it at first as a “history” stack, which keeps a record of your calcu-
lations. That is, you can calculate in “algebraic” style by entering expressions sur-
rounded by ' ' delimiters (see section 3.8) and pressing to perform the calcula-
tions. As the successive results pile up on the stack, you can experiment with the “feel”
of RPN by executing commands that combine the results into new values.

Table 5.1 lists the stack operations found on the keyboard and in the stack menu. The
individual operations are explained in subsequent sections. [Most HP48 stack com-
mands are adapted from the FORTH computer language. Indeed, many key HP 48
features are based on FORTH, with its unlimited data and return stacks, RPN logic,
and structured programming.]
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Table 5.1. HP 48 Stack Manipulations

Command Action
Stack Clearing DROP Discard the level 1 object
DROP2 Discard the objects in levels 1 and 2
DROPN Discard the first n objects
CLEAR Discard all stack objects
Reordering Arguments ~ SWAP Exchange the objects in levels 1 and 2
ROT Rotate the level 3 object to level 1
ROLL Rotate the level n object to level 1
ROLLD Rotate the level 1 object to level n
Copying Objects DUP Copy the level 1 object
OVER Copy the level 2 object
PICK Copy the level n object
DUPN Copy the first n objects
Counting Objects DEPTH Count the number of objects on the stack
Object Recovery LASTARG  Return the arguments used by the last
command
Restore the stack to its state prior to
ENTER

5.1 Clearing the Stack

Perhaps the most common stack operation is “clearing” one or more objects, cither to
discard unnecessary objects so that others are moved to lower levels, or just to clear the
decks for a new calculation. The latter is accomplished by CLEAR, which removes the
entire contents of the stack in a single operation. CLEAR is usually a manual operation;
a well-designed HP48 program does not execute CLEAR because that might destroy
stack objects needed by a second program that called it.

There are three commands for removing a specific number of objects from the lowest-
numbered stack levels: DROP, DROP2, and DROPN. The basic command is DROP,
which removes the object in level 1, and “drops” the remaining stack objects one level

to fill in the empty level. Each DROP discards another object, and the stack drops one
level.
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DROP2 and DROPN are equivalent to repeated execution of DROP. DROP2 does just
what its name implies: it removes two objects, from level 2 and level 1, then drops the
remaining objects down two levels to fill in. DROPN drops n objects in addition to the
number 7 in level 1 (so actually n+ 1 objects are dropped--see section 5.2.4 for a discus-
sion of stack depth parameters). Notice that although DROPN appears abbreviated as
EDRPNZ in menus, its correct name in a program is DROPN.

The need to drop objects arises when extraneous or no-longer-necessary objects occupy
the lowest stack levels. For example, if you take a vector apart with OBJ-, level 1 will
contain a list { n } specifying the number of elements in the vector. But if you are work-
ing with vectors of a particular size, the size list may be redundant information, in which
case you can drop the list and continue with operations on the elements.

5.2 Rearranging the Stack

Dropping objects from the stack is not always the appropriate action when you need
access Lo objects in higher-numbered stack levels--you may also nced to preserve the
low-numbered objects. In such cases, you must employ stack rearrangement commands
to change the order of the objects.

5.2.1 Exchanging Two Arguments

The simplest form of stack rcarrangement is the exchange of the positions of the objects
in levels 1 and 2, which is accomplished by SWAP. SWAP is used for switching the
arguments for a two-argument command, or more gencrally for changing the order in
which the level 1 and 2 objects may be used. SWAP is easy to illustrate:

A B SWAP 1= B A

5.2.2 Rolling the Stack

A stack “roll” is an exchange of stack positions involving objects in two or more stack
levels. One object is moved to or from level 1, and other objects move up or down
together to make room for it. The commands ROLL (roll up) and ROLLD (roll down)
provide for stack rolls in both directions, where “up” and “down” refer to the apparent
motion of the stack objects other than the level 1 object. You must specify the number
of stack levels you want to roll by placing a number n in level 1. Either command drops
the number from the stack, then rolls the first n of the remaining stack objects. For
example, if n=4:
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Level Stack Contents
Before After 4 ROLL After 4 ROLLD
4: t z X
3: z y t
2: y X z
1: X t y

Although ROLL and ROLLD move several objects at once, the primary purpose of these
commands is still focused on level 1:

¢ 1 ROLL means “bring the nth level object to level 1.” That is, ROLL retrieves a pre-
viously entered or computed object that has been pushed to higher stack stack levels
by subsequent entrics.

e n ROLLD mcans “move the level 1 object to level n.” ROLLD moves the level 1
object “behind” other objects that you want to use first.

SWAP and ROT (rotate) arc onc-step versions of ROLL. SWAP is cquivalent to 2
ROLL; ROT is the samc as 3 ROLL. 0 ROLL and 1 ROLL do nothing, but the latter is
still useful in program loops that usc objects from successive stack levels including level
1.

5.2.3 Copying Stack Objects

Onc of the strengths of RPN calculators is their ability to make copies of an object on
the stack, so that you can use it repeatedly without having to stop and store it in a vari-
able. The simplest example of this facility is the HP 48 command DUP, which makes a
copy of the object in level 1, pushing the original object to level 2, and all other stack
objects up one level. The HP 48 also lets you copy a block of stack objects with DUPN.
The sequence n DUPN, where 7 is a real integer, makes copics of the first # objects on
the stack. The order of the objects is preserved; for example

XY Z 3 DUPN == X Y Z2 X Y Z
DUP2 is a one-command version of 2 DUPN:
XY DUP2 = X Y X Y.
In some cases it is desirable to copy an object that is not in level 1, by bringing a copy
to level 1 while leaving the object in its original position relative to other objects. In the
HP 48, this combination of ROLL, DUP, and ROLLD is provided by PICK, the gencral

purpose stack copy command. PICK works like ROLL, returning the nth level object to
level 1, but it leaves the original copy behind. The original therefore ends up in level
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n+1:
W XY Z 4 PICK i W X Y Z W
DUP is the same as 1 PICK, and OVER is a one-step version of 2 PICK:
X Y OVER 1 X Y X

Generally, you usc PICK and ROLL when you are carrying out a complicated calculation
entirely with stack objects. When you need to use a certain object repeatedly, use PICK
to get cach new copy of the object. For the final use of the object, use ROLL instead of
PICK; then you won’t leave an unnecded copy around after the calculation is complete.

5.2.4 How Many Stack Objects?

Several HP 48 stack commands require you to supply an argument that specifies how
many stack levels the command will affect. Because this argument is always taken from
level 1, you might be uncertain about what the argument should be--should you count
level 1, which contains the argument? The answer is no--always count the stack levels
you need before the count is entered into level 1.

For cxample, suppose the stack looks like this:

4.

>0 OO0

3:
2:
1.

To roll D to level 1, execute 4 ROLL. But notice that at the point when ROLL actually
executes, the stack is:

[ S AN S|
A>T OO

Here D is actually in level 5. But don’t try to compensate for this by using 5 as the
argument to ROLL. ROLL removes its argument from the stack before it counts levels
for the roll. All other similar commands, such as DUPN, PICK, ROLLD, ~LIST, etc.,
work the same way.
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DEPTH, which returns the number of objects currently on the stack, works in conjunc-
tion with this class of commands. The count returned by DEPTH does not include
itself--it counts the objects before the new count object is pushed onto the stack. (Every
time you execute DEPTH, the depth increases by one.) Thus DEPTH ROLL rolls the
entire stack, DEPTH -LIST packs up all the stack objects into a list, ctc.

5.3 Recovering Arguments

HP 48 commands characteristically remove their arguments from the stack. Occasion-
ally, it is useful to recover a copy of onc or more of a command’s arguments:

e To allow you to re-use the same argument(s) for a new command.

e To help you reverse the effect of an incorrect command, by applying the inverse of
the command to some combination of the result and the original arguments.

Traditional HP four-lecvel RPN calculators have a LASTX command that combines these
two purposes. On the HP 48, there are two scparate operations:

1. The capability of recovering an argument for reuse is provided by the last argu-
ments recovery system, whereby cach command that uses stack arguments saves
copies of all of its arguments--up to five--in a reserved area of memory. No
built-in HP 48 command uscs more than five arguments, except those like DUPN
or ~ARRY, which appear to usc an unlimited number of arguments. Such com-
mands arc considered for this purpose to usc ondy one argument, the number or
list in Ievel 1 that specifies the number of stack levels that are involved.

The arguments saved by the most recent command can be retricved by the com-
mand LASTARG (also called LAST, for compatibility with the HP 28), which re-
enters all of the arguments onto the stack in their original order. Note that since
most HP48 commands use arguments, the last arguments objects change fre-
quently. Even simple stack rcarrangements such as DROP and SWAP save their
arguments. Only commands like STD or HEX| that use no arguments at all, leave
the last arguments unchanged.

2. Manual recovery from incorrect commands is provided by the stack recovery sys-
tem. At the start of each ENTER, a copy of the entire stack is saved (see section
433) in a local memory (section 6.2). When all of the objects processed by
ENTER have completed execution, you can cancel their stack effects by pressing
. This discards the new stack and replaces it with the stack contents
saved by ENTER.

The objects saved for stack recovery and last argument recovery can consume a substan-
tial amount of memory if the objects are numerous or large. When you are working
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with objects that are comparable in size to available memory, such as adding large
arrays, the memory needed to save copies of objects for recovery can actually prevent
you from carrying out various operations. For this reason, the HP 48 gives you the
option of disabling either or both of these features (and also the command stack), by
means of the appropriate keys in the MODES ( EFMTZ ) menu. You can also dis-
able argument recovery by setting flag —55.

Two notes:

e Disabling last arguments prevents commands that error from returning their argu-
ments to the stack. This makes it harder to recover from an crror, and also affects
the design of error traps (section 9.6).

o If there is insufficient memory available to save the current stack as the recovery
stack, the HP 48 shows the error message No Room to Save Stack, and automati-
cally disables stack recovery. This last step is necessary, since you would otherwise
be unable to do anything--including trying to free some memory. Any command
would fail, since the HP48 trics (o save the stack before executing the command.

LASTARG can also be uscd to recover accidentally purged or replaced variables. Sec
scetion 6.1.6.

5.4 Stack Manipulations and Local Variables

The following example illustrates the use of several of the HP 48 stack commands. If
you execute the commands one at a time, you can observe how to copy, move, and com-
binc stack objects.

» Example. Write a program that computes the three values

P+A+B
P+ BF + A/F
P + B/F + A'F,

leaving the results on the stack. Assume that P is in level 4, A in level 3, B in level 2,
and F in level 1.
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n Solution:

<< 4 ROLLD 3 DUPN 3 DUPN + +
8 ROLLD 7 PICK =* SWAP 7 PICK
/ + + 5 ROLLD 4 PICK
/ SWAP 4 ROLL * + +

>>

This example illustrates the use of stack manipulation commands, but it does not neces-
sarily represent the best way to solve the problem. Keeping track of numerous objects
on the stack takes considerable care when you are writing or editing a program. In gen-
cral, manipulating objects on the stack in a purely RPN manner yields the most efficient
programs (sce section 12.4). However, there are other programming techniques that are
casier and produce morc legible programs. For example, you can store the initial and
intermediate values in global variables, then recall each to the stack by name as it is
needed in the calculations. Better yet, you can avoid cluttering up user memory with a
lot of variables (which you may or may not need after the program is finished) by using
local variables.

With local variables, the solution to the example problem is

< - p a b f

<< ’'p+a+b’ EVAL
'p+bxf+a/f’ EVAL
'p+b/f+axf’ EVAL

>>

>>

- p a b f takes the four initial values off the stack and assigns them to local variables p,
a, b, and f (here we are using the convention of lower-case characters for local names).
The rest of the program computes the three results, then discards the local variables.
The obvious advantage of this mecthod is that you can write the program “instantly,”
since the program so closely resembles the written form of the expressions you are try-
ing to compute. The use of local variables is explored in detail in sections 8.5 and 9.7.

5.5 The Interactive Stack

HP 48 stack commands are availablc either on the keyboard (DROP, SWAP, DUP, and
CLEAR) or in the stack menu. But for manual operations, the HP 48 also provides the
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interactive stack environment, in which you can apply stack commands to objects in vari-
ous levels by selecting the objects with a pointer rather than a stack level argument.
The interactive stack also lets you view or edit any stack object, copy objects to the com-
mand line, combine objects into a list, and discard objects from the stack.

The interactive stack is activated by pressing [A] when there is no command line active.
The interactive stack menu appears, and the colon in the level 1 indicator 1: changes to
a triangle pointer, to show that the level 1 object is currently selected:

HOME I

i
q.
3
c
1

b (1231
[ECHO [ YIEW | PICK [ KOLL [ROLLDJ*LIST |

Note that the stack is redisplayed in single-line format, so that four stack levels can
appear in the display. Pressing [A] moves the selector to level 2; pressing the key
repeatedly moves the arrow to the top of the stack display and then begins scrolling
objects from higher levels into the window. [$][A] moves up four levels; [>][A] moves
the arrow to the highest stack level. You can also move the arrow down using [V,

[V], and [>]{V].

"Selecting” an object consists of moving the arrow to point at it; the stack level number
of the selected object is then an implicit argument for the stack operations that appear
in the menu. For example, to move the object in level 5 to level 1, you press [A] five
times (or [A][A][A]), then press EROLLE . This is equivalent to executing 5 ROLL, but
it is easier because the very act of moving the pointer up to level 5 to see where the
object is not only automatically activates a menu containing ROLL, but also saves you
from having to enter the 5. :

The interactive stack menu operations EPICK= , EROLLE , ZROLLD= , -LIST= , SDUPNE=
and ZDRPNE (DROPN) are self-explanatory, since they derive from the corresponding
stack commands (section 5.2), using a stack level argument provided implicitly by the
stack pointer. The remaining four operations in the interactive stack menu do not have
command equivalents:

e SECHOE= is for copying an object to the command line when you want a new copy of
the object, either to modify to make a new object, or to embed in some command
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line sequence. It differs from EDIT in that the new command line object does not
replace the original stack object.

e SVIEWE activates the appropriate viewer (section 4.4.1) for the selected object.

e =KEEPZ discards all stack objects in levels above the selected object. It is intended
for manual stack cleanup, and has no programmable equivalent since generally it is
not a good idea for a program to discard objects that might have been on the stack
beforc it began execution. It is, however, easy to write a program to replicate
EKEEPE= --see section 5.6.1.

e SLEVELE returns the selected level number to level 1 (pushing current stack objects
to the next higher stack level).

In addition to the interactive menu keys, two other keys are active:
) removes the sclected object from the stack. It is equivalent to n ROLL DROP.

. EDIT| (you can omit the edits the selected object in the command line (in
program cntry mode), and returns it to its original level when you press [ENTER] .

5.6 Managing the Unlimited Stack

If you have not previously used an RPN calculator, you should find that thc HP 48’s
unlimited stack of objects is a straightforward implementation of RPN principles. How-
ever, if you are used to a four-level HP41 style stack, there are several general aspects
of the usc of the HP 48 stack that will requirc some adjustment. The hardest part,
perhaps, may be changing keystroke and programming practices that you have
developed to usc the advantages and to overcome the disadvantages of a four-level
stack. In the following sections, we will outline some suggestions for optimum use of
the unlimited stack.

5.6.1 Stack Housekeeping

An important advantage of an unlimited stack is that objects are never lost by being
pushed off the end of the stack when a new object is entered. This is also a mild
disadvantage--if you don’t clear objects from the stack when you're through with them,
more and more objects will pile up. This not only wastes memory, but causes the HP 48
to pause more frequently for memory packing (section 12.9.1). It can also be distracting
to see old objects appear in the display when you’ve long since forgotten their purpose.

A general recommendation for HP 48 stack management is to clean up the stack after a
calculation is complete. By all means pile up as much as you want on the stack while
you are working through a problem--that is its purpose. But when you’re finished,
empty the stack. You can do this either at the beginning or the end of each calculation.
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We recommend the latter, since at that point you will best remember what each object
is, and whether it’s all right to throw it away.

“Clean up the stack” doesn’t always mean to empty the stack with CLEAR. You may
very well want to keep certain objects, either leaving them on the stack or storing them
in variables. Notice that STO removes the object being stored from the stack, reducing
the number of objects on the stack.

The interactive stack is particularly useful for selective stack cleanup:

e To discard a single object, select it and press[¢].

e To discard a block of objects at the low-numbered end of the stack, select the
highest-numbered object to discard and press EDRPNE .

e To discard a block of objects at the high-numbered end of the stack, select the
highest-numbered object that you want to keep, and press EKEEPE .

e To discard a block of objects in the middle of the stack, select the lowest-numbered
object to discard, and press repcatedly.

You can write programs that perform the different stack removal operations, although
their practical use in properly structured programs is limited. KEEP is a program form
of the interactive stack EKEEP= operation; it discards all objects after the first n, where n
is specified in level 1. For example,

A B C D E 2 KEEP = D E

(This is our first example of a named program; you may wish to refer to the description
of the program listing format in section 1.3.)

KEEP Keep N Objects A24D
level 1 1
objects n g n objects

<< =LIST Combine n objects in a list.

- keep Save the list in a local variable.

<< CLEAR Clear the stack.

keep OBJ- DROP Put the saved objects back on the stack.

>>

>>

MNDROP discards all objects from levels m through n, where m=n. For example,
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A B C DE 2 4 MNDROP 1= A E

MNDROP DROP m through n 13BF
level n+2 level 2 level 1 | level m—n level 1
object,, m n [ object,, object
< SWAP DUP -~ n Save n.
< - 1 + 1 SWAP Set up to repeat n—m+1 times.
START n ROLL DROP Drop one object.
NEXT Repeat.
>

Occasionally you may nced to interrupt onc ongoing manual calculation in order to per-
form another, and wish to resume the suspended work later. In this case it is not
appropriate to clear the stack with CLEAR to provide an empty stack for the new calcu-
lation. You could take the trouble to save each object in a variable, but this is tedious,
and makes it hard to reconstruct the stack order of the objects. A better approach is to
prescrve the entire stack in a single variable by combining the stack objects into a list.
From the keyboard, you can use the interactive stack; the keystrokes arc

[A] [®I[A] E=-LISTE [ENTER].

Then you can store the list into a variable named OLDST (for example) by typing
'OLDST’ . The stack is now cleared for another calculation. After completing any
number of subsequent operations, you can restore the old stack by executing

OLDST OBJ- DROP.
The DROP removes the object count returned by OBJ-.

In a program, a local variable (section 9.7) is idcal to save the stack contents:

DEPTH ~LIST - keep Save the stack in local variable keep.
< . Any program steps here...

keep OBJ- DROP Restore the old stack.
>>
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5.6.2 A Really Empty Stack

An important property of the HP 48 stack not shared by an HP 41-style stack is its abil-
ity to be empty. That is, when you clear the stack with DROP or CLEAR, there’s nothing
left. If you try to cxecute a command that requires arguments, yowll get an outright
error--Too Few Arguments. The HP 48 makes no attempt to supply default arguments.

You can turn this property to advantage. The following scquence adds a series of
numbers on the stack, no matter how many there are:

WHILE DEPTH 1 > REPEAT + END 'TOTAL" -TAG

The sequence is an indefinite loop (section 9.5.2) that keeps adding (REPEAT +) as
long as there is morc than one object on the stack (WHILE DEPTH 1 >), then quits,
leaving the labeled total in level 1. This routine is useful when you must add a column
of numbers--you can enter all of the numbers onto the stack, usc the interactive stack to
review the entries, then perform all of the additions at once. Notice that if an empty
stack were treated as if it were filled with zeros, there would be no way for the program
to know when to stop adding.

5.6.3 Disappearing Arguments

The HP 48 itself takes some steps to insure that unnceessary objects don’t pile up on the
stack. In particular, most commands that use stack arguments remove those arguments
from the stack. You shouldn’t find this surprising; for cxample, you wouldn’t expect the
sequence 1 2 + to leave the 1 and the 2 on the stack as well as the answer 3. But it
may be a little disconcerting the first time you use STO on the HP 48, to sce that the
objcct you just stored disappears from the stack.

If commands did not remove their arguments from the stack, then you would have to
take the trouble to drop them when you no longer need them. On the other hand, since
HP48 commands do remove their arguments, you must remember to duplicate them
before executing the commands on those occasions when you want to reusc the argu-
ments. The HP 48 chooses this approach for these reasons:

e Consistency with mathematical functions. You never want math functions to leave
their arguments on the stack--otherwise, the whole RPN calculation sequence would
be disrupted.

e Stack “discipline.” The fewer objects that are on the stack, the casier it is to keep
track of what they are.

e Efficiency. It’s easier to duplicate or retrieve a lost argument than it is to get rid of
an unwanted one.
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To illustrate the last point, consider obtaining a substring from a string:
"ABCDEFG" 3 4 SUB 1 "CD".

This sequence returns only the result string "CD"; the original string "ABCDEFG", and
the 3 and 4 that specify the substring are discarded. If you want to keep the original
string, add a DUP after the original string object:

"ABCDEFG" DUP 3 4 SUB = "ABCDEFG" "CD".

If SUB left its arguments on the stack, the original sequence would yield a final stack
like this:

"ABCDEFG"
3

A

"cD"

In that case, to Icave only the result on the stack, you would have to add 4 ROLLD 3
DROPN to the sequence. If you only want the two strings, you would have to add ROT
ROT DROP2. As we stated, cither of these is morc complicated than adding a DUP to
the start of the sequence.

When you use STO to preserve an intermediate result in the middle of a calculation,
you may prefer to keep the result on the stack so that you can continue the calculation.
In this case, just execute DUP (press if you're performing manual calculations)
beforc you enter the variable name for the STO. If you forget, the stored object is
always available by name in the VAR menu.

5.7 Design Insights

An alternative (and more accurate) picture of the HP 48 stack is that the stack consists
of the stack objects themselves, rather than a set of levels that may or may not contain
objects. The picture conveyed by the HP 48 display is slightly misleading in that it sug-
gests that the stack levels with their numbers actually exist in memory, including the
empty levels that are just waiting to have objects put in them. (This picture is literally
correct in four-level RPN calculators.) In fact, the stack consists of the stack objects
placed adjacent to each other in memory, a starting memory location, and a memory
pointer. The pointer points to the location where the next stack object will be placed.
If the pointer points to the start, the stack is empty. When an object is placed on an
empty stack, it is stored at the starting location, and the stack pointer is adjusted to
point just past the object. As additional objects are added, they are placed next to the
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last-entered object, and the pointer is adjusted. You can picture the stack as growing
like this:

Empty One Two Three
Object Objects Objects
D ONE ONE ONE
b TWO TWO
D THREE
b

The key idea here is that when objects are added to and deleted from the stack, the
remainder of the stack does not move (as you might think from the 48 display, since
entering an object shows the initial objects moving up the display, and dropping objects
shows objects moving down). Thus it takes no more time to add an object to a stack of
1000 objects than it does to an empty stack. Similarly, when you execute any stack rear-
rangement, the only movement takes place among the objects involved in the rearrange-
ment.

In the diagram we show the stack growing downwards, as in the HP 48 display. Decscrip-
tions of stack-oriented computer languages usually show the opposite picture, with the
“top” of a stack being the most-recently entered object. HP RPN calculator manuals
have always shown level 1 (the x-register) at the visual “bottom” of any stack picturcs.
The HP 28C was the first calculator in which more than one level was visible at a time;
it displays level 1 at the bottom of its display. The HP 48 continues this model, which is
sensible since when you perform a simple operation like addition, the numbers appear
on the stack the same way they would appear on paper, with the first-entered number
above the second. To avoid confusion, however, we will not refer to the “top” or the
“pottom” of the stack, referring instead to specific stack object/level numbers.

The stack-of-objects model needs further modification to correspond exactly to the
HP 48 internal design. The real HP 48 stack is a stack of the memory addresses of the
visible stack objects rather than the object themselves. The objects may be in any of a
number of places--in user memory, in the built-in ROM, in plug-in RAM or ROM, or,
if not in one of these places, in a temporary object memory. All HP 48 operations that
deal with the stack “know” that the objects are only present indirectly on the stack.
Because of this consistent system design, you can deal with stack objects as if they were
literally in a stack without any concern about the indirection.

An understanding of the internal stack design can, however, provide some insights into
using the system efficiently, such as why stack manipulations are very fast. The
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addresses on the stack are all the same size--2.5 bytes--so that copying them, counting
through them, etc. involves very simple operations that can be encoded in very efficient
assembly language. For example, DUP has only to duplicate the 2.5 byte address of the
level 1 object--it does not have to copy the object itself--and add 2.5 to the stack end
pointer. (This also means that copying an object with DUP only uses 2.5 bytes of
memory.) Also, finding an object on the stack is fast; to find the level one object, the
HP48 just reads the address indicated by the stack pointer. By contrast, to find an
object stored in a variable from the variable’s name, the calculator must search through
uscr memory until it finds a variable with the right name, which can require many
memory reads and comparisons.

The stack-of-addresses model implies that you can make any number of copies of an
object at a memory cost of only 2.5 bytes per copy. When you execute a program that
contains an explicit object that goes onto the stack, it still only costs 2.5 bytes for the
object, because the program literally contains the object. The resulting stack address
points inside the program, to the point in the program where the object is defined.
There is a catch here: if you purge the program while the object it entered is still on the
stack, the HP48 copies the entirc program to temporary object memory where it
remains until you finally drop the stack object. The memory occupied by the program is
only reclaimed when the object is dropped, not when the program is purged (sce also
section 11.6).

Other consequences of the RPL stack design are discussed in sections 11.6 and 12.9.1.
The complete logical description of the internal design of RPL would constitute a book
by itself. Fortunately, you can gencrally use the HP 48 and write quite elaboratc pro-
grams without concern about the details of its internal design.
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The HP48 stack can contain an indefinite number of objects of any type; if you so
desired, you could execute most HP48 operations using only the stack. However, this
becomes impractical once you are dealing with morc than a few objects. Accordingly
the HP 48 provides several areas in memory where you can save objects for later use.
All of these areas have the common property of associating a name with an object, and
all access to any stored object is performed by means of its name.

Traditional calculators store data in fixed memory locations called registers, which are
identified by a register number or letter. These calculators’ programs are stored
separately from the data registers, but the programs too are commonly specified by a
number or letter; some advanced calculators permit multi-character program names.
Computers, on the other hand, store both programs and data in files, which have multi-
character names and are not generally limited in size or number. The HP 48 combines
clements of the memory management of both traditional calculators and computers, but
is gencrally closer in spirit to the latter. The named object is the closest analog in the
HP 48 to a computer file or a calculator register. A named object is an object that has
been stored in memory elsewhere from the stack, along with a text name that provides
identification of and access to the object.

In many respects it is appropriate to call named objects files, especially global variables,
port variables, and library commands, but there are some differences between typical
computer files and HP 48 named objects:

e HP 48 objects can exist independently of their names, that is, objects can be created,
manipulated, changed, and exccuted without ever being named. Common computer
operating systems, without any user-accessible structure analogous to the HP 48
stack, require you to create and store everything as named files.

o All HP 48 objects are automatically executable, either directly or by name when they
are stored. Computer files must be designated as executable, such as executable
MS-DOS files named with the extensions .EXE, .COM, or .BAT. Those that are
not executable are intended only for use as data, such as text files.

e The name associated with an HP 48 object does not “type” the object in any way, as
does the extension on computer file names. Any type of object can have any name.
You may choose names for objects that suggest the objects’ uses, but this does not
affect the execution properties of the objects.

e Access to HP 48 stored objects is provided by name objects (section 3.6). This fact is
central to the HP 48s symbolic capabilities--you can operate on a name in an
expression or otherwise, whether or not there is a value associated with the name at

-141-




6.0 Storing Objects

the time of the operation.

e HP 48 named objects do not record their times of creation or modification.

The methods and organization of object storage on the HP 48 are quite straightforward
in practice, but can be a little convoluted to explain in the abstract. Thereforc we will
develop the theme by means of a continuous example that runs through this chapter.
We will start with a hypothetical “empty” calculator and start to fill it with stored
objects, explaining the principles as they are introduced in the example. If you want to
follow along with the cxample, it is not necessary to clear your HP48s memory--just
allow for the differences in some of the screen displays that arise from the extra vari-
ables present in your calculator.

6.1 Global Variables

Imagine now that you want to enter the real number 123 and store it away for future
usc. This is accomplished by using the command STO to create a global variable that
both stores the number and gives it a name. STO evidently requires two arguments: the
object to be stored (level 2), and a name (level 1). The name in this case i1s represented
by a global name object (scction 3.6.1):

123 'ABC’ STO
This sequence enters the number 123 and stores it with the name ABC. The quotes "’
surrounding the name cnsure that the name object itself is entered on the stack, rather
than cxccuting the name (section 3.7). You should notice that both 123 and 'ABC’ are
removed from the stack by STO; to leave a copy of the 123 on the stack, you should
copy it first:
123 DUP 'ABC’ STO

To see where the 123 has gone, press the VAR key:
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You are seeing the VAR menu, which is an automatic catalog of all global variables that
currently exist. In this example, there is only one variable, ABC, which appears as the
label of the leftmost menu key. If you press that menu key, the number 123 is returned
to the stack, which demonstrates the fundamental behavior of VAR menu keys:

e Pressing an unshifted VAR menu key executes the global name displayed on the key
label.

According to the principles of global name execution described in section 3.6.1, execut-
ing a global name executes the object stored with that name, which in this example is
the number 123. When the stored object is a program, a name or a directory, you may
want to recall the object without executing it, which leads to a second property of the
VAR mecnu:

e Pressing a right-shifted VAR menu key recalls the object stored in the corresponding
global variable.

Thus, pressing []ZABCE is equivalent to executing 'ABC’ RCL. For objects other than
programs, names, and dircctories, executing the object is the same as recalling it to the
stack, so the right-shifted and unshifted VAR menu keys have the samc effect. When
you are unsure of a stored object’s type, and want to recall it without cxecuting it, you
should use the right-shifted mcnu key. Note that in program entry mode (section 4.3.1),
[>]ZABCE enters 'ABC’ RCL into the command line.

For symmetry, the left-shifted VAR menu keys are also active:

e Pressing a lefi-shifted VAR menu key stores the object in level 1 in the correspond-
ing global variable.

456 [S5)ZABCE is equivalent to 456 'ABC’ STO. When STO is executed with the name
of an already existing variable, the existing contents of the variable are replaced with the
object in level 1. In program entry mode, [<9]EABCE enters 'ABC’ STO.

The action of a left-shifted menu key as a shortcut for STO has the obvious disadvan-
tage that it is easy to overwrite the contents of a variable accidentally, when you press
the left shift instead of the right or forget that the left shift was left active from some
previous incomplete operation. To help you remember which shift is which, observe
that shifted menu key operations roughly match those of the shifted key:
performs RCL, like the right-shifted menu key; and executes DEFINE (section
6.1.1), which is a special type of storing. Also, if you do perform an unwanted store by
pressing a left-shifted menu key, you can undo the operation by immediately pressing
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[*][ARG] [STO] [][ARG] [&].

(see section 6.1.6).

The properties of the VAR menu keys described above apply only to immediate-execute
entry mode; in algebraic (ALG annunciator) or program (PRG) entry modes, an unshifted
menu key merely echoes the key label name to the command line, and the shifted menu
keys are inactive.

Now create a second variable DEF:

456 'DEF’ STO

The VAR menu now looks like this:

=
[—]
=
m
o

—raca ™

(DEF | AEC ] | | | |

The newer variable DEF appears on the left-most menu key, with ABC moved one posi-
tion to the right. In general, as cach new variable is crcated, its menu entry takes the
first menu position. This cnsurcs that the most recently created entries are the most
accessible in the menu, but it also means that menu entries move around as variables
arc created or deleted (which can trip you up if you are pressing keys quickly, since the
display showing the menu positions is not updated until any type-ahead keystrokes arc
processed). The command ORDER gives you control of the order of menu keys in the
VAR menu. ORDER rearranges the menu to match the order of names in a list. For
example, to put ABC on the first key label in our example menu, execute

{ ABC DEF} ORDER.
Actually, the DEF entry in the list is superfluous in this case. ORDER moves the vari-
ables named in the list to the start of the VAR menu in the order specified, leaving any

other variables in their current order, following the final entry in the list.

The review operation, activated by VIEW] when there is no command line, is a handy
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way to make a quick check of the contents of the variables listed on one page of the
VAR menu. Each variable name is displayed on one line, followed by a colon plus as
much of the corresponding stored object as will fit on the line:

HELC
DEF

123
456

You can also catalog global variables using VARS and TVARS, described in section 6.1.4.

6.1.1 DEFINE

When the object to be stored in a global variable is an object that is permitted within an
algebraic expression, DEFINE ( ) provides a convenicnt alternative to STO.
DEFINE takes an cquation of the form 'name=expression’ as its single argument, and
stores the object expression in a global variable name. If expression consists of a single
real or complex number, name or unit object, the stored object will be of that type. For
more complicated cxpressions, the stored objeet depends on numeric execution mode
(section 3.5.6.2):

e With flag ~3 clear (symbolic execution), expression is stored as an unevaluated alge-
braic expression. 'A=1+2" DEFINE stores '1+2’ in the global variable A.

e With flag -3 set (numeric execution), expression is cvaluated numerically (as by
~NUM), and the result object is stored. ‘A=1+2" DEFINE stores 3 in the global
variable A.

Notice that numeric-mode DEFINE resembles a postfix form of the BASIC language
LET, providing a simple way of redefining a variable in terms of its current value. For
example, 'X=X+1" DEFINE adds 1 to the current value of X, which would be accom-
plished in BASIC with LET X=X+1 (or usually just X=X+1, with implied LET). (Don’t
do this with flag -3 clear, since that leads to a circular definition--see section 3.6.1).

DEFINE can also be used to create user-defined functions, which are described in section
8.5.
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6.1.2 Directories

The HP 48 allows you to create any number of variables like ABC and DEF. When you
have more than six variables, the VAR menu shows a page of six at time; (next page)
and (previous page) allow you to page forward and backward through the
menu. However, the menu becomes cumbersome once you have morc than a few pages
of six variables. For this reason the HP48 provides directories, which allow you to
organize logical groups of variables.

The variables ABC and DEF in our example so far together constitute the home direc-
tory, a permanent directory that serves as the “root” of the HP48’s global variable
organization. Like any directory, the home directory can be empty, as it is following a
memory reset, or it can contain any number of variables. You can picture the current
home directory like this:

ABC | DEF

123 456

Each box represents a variable, showing its name and contents. The variables are
shown in the same order that they are presented in the VAR menu.

The HP 48 allows you to create variables within the home directory that themselves con-
tain directories--groups of additional variables. This process, which can be repeated
indefinitely within the new directories and their variables, allows you to organize user
memory--the complete collection of global variables--into a hierarchical structure. To
see how this works, create a directory variable DIR1:

'DIR1" [$][MEMORY] ZDIRE =CRDIR=
Press to show the VAR menu again:

=
(=]
I
m
[

00 ] ™

N 0 T A I
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A menu label has appeared for DIR1, indicating that CRDIR (CReate DIRectory) has
added a variable DIR1 in the home directory. The little “tab” above the label, which
makes it resemble a file folder, indicates that the corresponding variable is a directory.
Initially, the directory contains no variables. Now press ZDIR1Z :

HOME DIR1 1

e TN NS

Executing a dircctory by name causes that directory to become the current directory,
which by definition is the directory whose variables arc displayed in the VAR menu.
Since the directory DIR1 is empty, the VAR menu shows only blank menu keys at this
point. Notice also that the list { HOME DIR1 } is now displayed in the second line of
the status display. This list, called the current path, is the sequence of directories that
lcads to the current dircctory. You can return this list as a stack object by cxecuting
PATH (in the same menu as CRDIR); if you later change current dircctories, you can
evaluate the list (EVAL) to return to the directory specified by the list. (In subscquent
discussions, we will simplify descriptions by using expressions like “switch (0”7 or “go to”
rather than “make current.” Thus “switch to the DIR1 directory” means “make DIR1
the current directory.”)

Any variables that you creatc while a particular directory is current become part of that
dircctory. For example, create two new variables:

-123 'ABCY’ -456 'DEF1’ [STOJ.

The new variables appear in the VAR menu:

OME DIR1 1

iH
4
3t
7
1:
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Meanwhile, what has become of the variables ABC and DEF created at the start of this
exercise? They are still available for execution or recall, but are not visible in the menu.
For example, if you execute ABC , the value 123 is returned. This illustrates the
essential property of HP 48 name resolution: when the HP 48 searches for (“resolves”) a
global name, it first searches the current directory. If it can not find a variable with that
name there, it proceeds to search the parent of the current directory--the directory that
contains the current directory as a variable. The search continues through the parent of
the parent, and so on to the home directory if necessary.

In the current example, user memory is now structured like this:

DIR1 | ABC | DEF

DIR... | 123 456

The figure shows the contents of the DIR1 directory below the home directory. This
matches the HP48 terminology in which DIR1 is considered as a subdirectory of the
home directory, and where the command UPDIR ((2][UP]) is named to suggest moving
upwards through the user memory structure. UPDIR goes to (makes current) the parent
of the current directory; HOME is equivalent to executing UPDIR repeatedly until the
home directory is reached.

A key principle of HP48 name resolution (see section 6.5) is that global variable
searches always proceed upwards through the directory tree, but never downwards. In
the current example, if you execute HOME or UPDIR to return to the home directory,
then executing 'ABC1’ RCL returns the Undefined Name error since the search for
ABC1 does not include the DIR1 subdirectory. (The error message is somewhat inaccu-
rate, since it is the variable that is not “defined”, rather than the name.)

The HP48 does permit you to have any number of variables with the same name, as
long as there is only one such variable in any directory. For example, execute:
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SDIR1IE 987 'ABC’
'DIR2" [][MEMORY] ZDIRE =CRDIR=
VAR| =SDIR2E 654 'ABC’

Now user memory looks like this:

DIR2 | DIR1 | ABC | DEF

DIR... | DIR... | 123 456

ABC ABC | DEF1 | ABCH
654 987 | -456 | —123

Executing ABC returns a different result when cach directory is current:

ABC Ly 654
ABC tx 123
ZDIR1Z ABC x> 987.

The variable searches performed by commands that change the contents of variables,
such as STO, PURGE, ctc., are limited to the current directory. This provides a meas-
ure of protection against the accidental destruction of variables you can’t see in the VAR
menu.

6.1.2.1 Organizing User Memory
The properties of directories outlined in the preceding sections suggest the following
guidelines for organizing user memory:

e The home directory should contain utility variables that are needed in a variety of
applications, plus directories that contain groups of variables associated with indivi-
dual applications.
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e Make a separate directory for each application program or set of programs, to avoid
variable name conflicts and to keep the individual directories short.

e Use ORDER to arrange each directory so that the variables you need most
frequently are at the start of the directory and appear at the beginning of the VAR
menu. Better yet, use a ¢ustom menu (section 7.3) to show a subsct of a directory’s
variables, in an order that won’t change as you create or dclete variables in the
dircctory.

e If a program uses variables that have no use in manual operations, put those
variables in a directory that is a parent of the directory containing the program.
This keeps the variables from cluttering up the VAR menu that includes the program,
and helps prevent the program’s users from altering or deleting the variables.

The last guideline indicates a structure like the following:

Home:| MATH | APPL1 | APPL2 | MDIR UTIL1 UTIL2

Math utilitics: | APPL | UMAT1 | UMAT2

Math programs: | POLY | ORD3 TRI

The example home directory “application” variable in the figure is MATH. Thc variable
MATH contains the program << MDIR APPL >>_ which first makes MDIR the currcnt
directory, then APPL. When you press EMATHE , therefore, you bypass the math utility
subdirectory MDIR containing the programs and activate the APPL subdirectory. This
subdirectory contains the dircctly usable application programs, POLY, ORDS3, TRI, etc.,
that are associated with the EMATHE key. These programs use subroutines named

UMAT1, UMAT2, etc., which are stored in the directory MDIR that is the parent direc-
tory for APPL.

The programs in the APPL directory are thosc you are likely to use from the keyboard.
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These programs can use any of the utility programs in MDIR or in the home directory.
But while the APPL directory is current, the VAR menu contains only keyboard-useful
programs--yow're not distracted by seeing utility programs in the menu. Also, while
APPL is current, you don’t have to worry about unwittingly overwriting one of the utility
programs.

6.1.2.2 Directory Objects

In the discussion so far we have described a directory only as a collection of variables.
However, it is important to note that a directory is itself an object, with all of the pro-
perties of a regular HP48 object--a dircctory can be recalled, edited, copied, cxecuted,
ete. In the current example, you can recall the directory DIR2 by pressing

{ HOME }

OIR
HBC 634

END
(o2 TomL | DEF [ hec [ [ |

—0

The directory object is now in level 1, displayed using the DIR...END syntax dcscribed in
section 3.4.10. You can now crcate a new directory variable by storing the stack object
in a new variable. This ability is convenient when you want to move the contents of a
dircctory--you can use the same moving strategy as for any other variable, as described
in section 6.1.7. You can also cdit a directory object: here, press or[V]:

PR3
i HOME }

+IE

ABEC 654
END
E5KIP[KIP3[ €DEL [DEL+ [ING u[+3TE]

Press ESKIP-= twice to put the cursor on the 654, then press to negate the 654, and
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then [ENTER] :

HOME T

DIR
HBL -624
END

[ oif@ [0k [ OEF | AEC] - | |

i
¢
1

Now you have a new dircctory object, different from the original still stored in the vari-
able DIR2. However, if you try to replace the contents of DIR2 with the new object by
pressing ZDIR2= , the HP48 returns the Directory Not Allowed error. Becausc
directories can contain major portions of user memory, variables that contain dircctories
are given a special protection. You can not apply STO, or any other operation that
changes the contents of an existing variable, to a dircctory variable. To replace the old
DIR2 with a ncw one, then, you must first delete the old version. But there is one more
level of protection that you must defeat: PURGE, the command that removes a global
variable (sce section 6.1.5), will not work on a dircctory variable unless the stored diree-
tory is empty--contains no variables itself (Non-Empty Directory crror). Try this:

EDIR2:  'ABC’ [<1][PURGE 'DIR2" [<1][PURGE] .

This successfully purges the old DIR2, so you can proceed to store the new copy by
entering 'DIR2’ . Now recall DIR2 (press []EDIR2E ), and you can sce that it con-
tains the new directory, with the value —654 in the variable ABC.

The rule against storing into a non-empty dircctory variable also extends to EDIT (scc-
tion 44). Exccuting EDIT on the name of a directory variable proceeds normally until
you press to store the modified directory object. Then the HP48 returns the
Directory Not Allowed error. However, in this case, the modified directory and the
variable name are left on the stack, so you can delete the original directory if you want
then store the new version from the stack.

In addition to the special variable protection, directories exhibit two other peculiarities
that are not shared by any other object type. To demonstrate the first, exceute the fol-

lowing, with the copy of DIR2 still on the stack (if you have changed the stack, execute
[S]EDIR2E first):
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I
=
X
Y]
i
i

ABC= [ENTER +/-] [&]ZABC=:

HOME DIEE }

— 00 |

OIF ABC B34 EEE
[aec | | | [ [ |

Here you can sec the surprising cffect that changing the stored directory (by changing
one of the variables within it) also changed the rccalled copy of the directory, now in
level 2. For other types of objects, changing an object in a variable has no effect on a
previously recalled copy--notice that the —654 in level 1 is unchanged. If you want to
modify a stored dircctory without changing a copy, you must first execute NEWOB (sce-
tion 11.6) on the copy. [The reason for this behavior derives from HP48 memory
management, which docs not permit recalling objects from within unstored directories. ]

The other idiosynerasy of dircctorics is that you can’t store a directory within itself
(which is not unrcasonable, if you think about it). Try this, with DIR2 as the current
directory:

'DIR2’ "XYZ' ¢+ Directory Recursion error.

This message means that you tried to definc a directory in terms of itself, which is
something too hard even for the HP48 to do.

6.1.3 The Memory Browser

activates the memory browser, an input form (scction 4.5) that provides a
screen interface for performing simple tasks related to global variables. The initial
screen looks like this, where the displayed variables come from the ongoing example

(press first):

OBJECTS IN { HOME 1} 2
DIE HEC &34 E..

DIR1: DIR ABC 987 D

DEF: 456

ABC: 123

[ E0IT [CHODZ]w CHE] WEW | COPY [HOVE]
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The display shows the current path at the top, a list of the first five variables in the
current directory, and a menu of operations. The operations are largely self-
explanatory; here we will compare the operations with command or program equivalents
that you can execute outside of the memory browser.

The most useful input forms are those that may be used to assist you in sctting a large
number of parameters associated with an operation. You can manually create a plot,
for example, by choosing the plot type, scale, function, etc. with independent commands
(as you might in a program). But it is usually easier to use the plot input form (=]
), where the display helps you to keep track of the parameters. For memory
browser operations, however, the advantages are less compelling. For example, to
create a new directory ABC from the standard environment, you just execute 'ABC’
CRDIR, which can be done with the keystrokes

'ABC’ [&1][MEMORY] =DIRE Z=CRDIR: .

Using the memory browser for this task requires a larger number of keystrokes:

1
1}

[>][MEMORY] =NEW= [V] ABC OK: [VCHK] OK =

The browser method is also slower, because of the time it takes to display the partial
contents of five variables when you first activate the environment.

The memory browser is nevertheless useful at times because of its continuous variable
name /contents display. For example, you may wish to purge one or more variables, but
you want to make sure you are dcleting the right ones by looking at their contents as
you purge them. The operation in the stack environment is useful for this
purpose, but its display disappears at the next keystroke.

Looking at the individual memory browser operations and their command/program
equivalents:

® ZEDITS copics a variable’s contents into the command line, where you can modify it;
ENTER]| replaces the old version with the new onc. SEDITE is equivalent to EDIT] with

the variable’s name in level 1 (section 4.4).

® ZCHOOSE displays the current directory structure:
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DEJECTS IM { HOME }
=) [oiRECTORIES:
C 5]
DE
AE

.,

[ [ 1  [irMil] Ok |

You can select a particular subdirectory by highlighting it with [A] or [/] . ZOK= then
swilches to that subdirectory and reverts to the variable contents display. In the stack
environment, you switch to a subdirectory by exccuting its name or by pressing its
(tabbed) menu key in the VAR menu; HOME and UPDIR (€] let you move
upwards through the directory tree.

e Z/CHKE lets you sclect several variables for the three operations in the sccond page of
the browser menu: ZRCLE , EPURGE , and ZSIZEZ . When any variables in the display arc
checked, any of these operations is applied to all of the checked variables at once (if
nonc arc checked, the operation is applicd to the highlighted variable). Note that
changing dircctorics with ECHOOSE clears any checks from variables in the previous sub-
dircetory. The stack cquivalent is to enter the variables’ names into a list. This is casily
donc by pressing [$9][11] and then each of the variables” VAR menu keys.

e SNEW= is for creating a new variable in the current directory. The command form of
this operation is STO.

e ZCOPY:= and EMOVEE move a stored object from one variable to another, where
ZCOPY= preserves the original variable, and EMOVEE removes it. Entering a path list
into the MOVE TO: or COPY TO: field lets you move the object to a different subdirectory
from the current one. If the path list ends with a name that does not correspond to a
subdirectory, that name is used as the new variable name, within the subdirectory speci-
fied by the remainder of the path list. Programs for copying variables are listed in the
next section.

¢ SRCLE recalls to the stack the object stored in the highlighted variable. If one or more
variables are checked, all of those are recalled, in the order in which they appear in the
display. In the standard environment, you can recall several variables by creating a list
of the desired variable names, then executing << RCL >> DOLIST (section 11.4.4.1).

 SPURGE purges the highlighted variable or the checked variables. This is equivalent to
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executing PURGE on a list of variable names.

¢ ZSIZEZ makes a display like this:

DEJECTS IN L HOME T
DIRz:
DI 23 butes L.

DE[Mem Available:
AE| 125854 bytes

This shows the size in bytes (rounded up to the nearest integer) of the highlighted vari-
able, including its name (section 12.5.1). If two or more variables arc checked, then the
size given is the sum of the checked variables’ sizes. The display also shows the
currently available memory. The command equivalents of the operations are BYTES
and MEM.

6.1.4 Cataloging and Finding Global Variables

The VAR menu, , and the memory browser are convenient for manual review
of the current directory. For program applications there arc several commands that
provide information about directories and their variables. Two of these, VARS and
TVARS, arc used in the program FIND listed below.

VARS rcturns a list of all of the variables in the current directory. The list contains the
variables’ names in the same order in which they appear in the VAR menu. If you cxc-
cute VARS "name’ POS, for example, you will obtain the numerical position of the vari-
able name in the current directory, or zero if the variable is not present. You can also
create a list of variables containing objects of a certain type or types, using TVARS
(Typed VARiables). TVARS takes a real number or a list of real numbers, and rcturns a
list containing the names of all of the variables in the current directory that contain
objects of the types specified by the argument.

For a single variable, the command VTYPE applied to the variable’s name returns the
type of the object stored there, as a real number (see Table 3.1 in section 3.2 for a list
of object type numbers). It is equivalent to RCL TYPE, with the exception that VTYPE
returns —1 if the specified variable does not exist in the current directory.

The program FIND locates a global variable by name anywhere in the user memory
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labyrinth, by searching through the current directory and all of its subdirectorics for
variables with that name. Given a global name as its argument, FIND returns (to level
1) a list containing the path lists for any variables of that name. (To search all of user
memory, cxecute HOME FIND). If there is only one such variable, the result is a single
path list; il therc are more than one, the result is a list containing two or more path
lists. An empty list indicates that the variable is not present. FIND leaves the original
name argument in level 2, in case you want to recall or execute the contents of the vari-
able once you have found it.

FIND Find a Vanable FOAE
level 1 | level 2 level 1
'name’ [ ‘name’ {}
'name’ 17 'name’ { path }
‘name’ [ ‘name’ { {path} ... {path,} }
<< << Start of subroutine.
{} Start with an empty list.
IF VARS «name POS If the variable is in this dircctory,
THEN PATH 1 ~LIST + then add the name to the list.
END 15 TVARS Now get a list of all the subdirectorics.
IF DUP {} # If there arc any,
THEN SWAP 1 3 PICK SIZE then apply dodir to each.
FOR n OVER r GET Giet the nth subdirectory.
EVAL ~dodii LVAL I:xccute dodir
+ UPDIR Add any paths found to the list.
NEXT SWAP DROP Repeat, or discard the dircctory list.
ELSE DROP Discard the empty list.
END
>>
DUP2 - «name «dodir Store name and subroutine.
<< EVAL Execute the subroutine.
IF DUP SIZE 1 == If there's only onc path,
THEN OBJ- DROP then shed the outer list.
END
>>
>>

6.1.5 Deleting Global Variables

The command PURGE removes from memory the variable that is specified by a global
name argument. It does not error if the variable does not exist, so that you can delete a
variable without bothering to check to see if it is present. When a variable is removed,
its position in the VAR menu is filled in from the right by the remaining labels in the
menu.

In the previous section, we succeeded in removing a directory by purging its only
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variable, then purging the directory itself. The HP 48 provides three methods for delet-
ing several variables simultancously, or entire directories:

e PURGE works with a list of names as well as with a single name. Each variable
named in the list is purged, starting with the first and proceeding to the end of the
list. If a non-empty directory’s name is encountered in the list, the Non-Empty
Directory error is returned, and the variables named following the directory are not
purged. The list may also contain port names (section 6.4.2).

e CLVAR (CLear Variables) dclctes all of the variables in the current directory. It is
cquivalent to VARS PURGE, including stopping after partial completion if it
encounters a non-empty directory. [For sakc of compatibility with thc HP 28,
CLVAR can also be entered as CLUSR.|

® PGDIR (PurGe DIRectory) removes a dircctory specified by name. It docs this by
recursively executing CLVAR and PURGE rccursively on each subdirectory until the
original dircctory is empty. (This process can take a relatively long time if the direc-
tory is large.)

Under unusual circumstances (such as following a system halt exccuted during a
wircframe plot), you may find a variable stored in uscr memory with a name that
violates the normal naming rules. The nonstandard name makes it impossible to enter
the name from the command linc. However, VARS will return the name in its result
list; from there you can extract it with GET and then use PURGE to delete the variable.

6.1.6 Cancelling STO and PURGE

The HP-48 uses its argument recovery facility (section 5.3) in a non-standard way to
provide a method for recovering from an accidental overwrite of the contents of a global
variable. After the STO command itsclf is executed, LASTARG returns the stack argu-
ments: the variable name to level 1, and the stored object to level 2. However, if the
key is used in immediate-executc mode (section 4.3.1), the resulting store differs
from the normal STO command in two ways:

® The Circular Reference error is returned if the two stack arguments are both the
same (global name). This prevents simple endless execution loops (section 3.6.1).

¢ If the named variable already existed, LASTARG returns the object that was previ-
ously stored in the variable to level 2, rather than the newly stored object. Thus you
can use to cancel the effect of an incorrect store, restoring

the stack and the variable to their states prior to the incorrect store.
The variable protection of the key also applies to the other keyboard store

operations--pressing unshifted HP Solve variables menu keys, or left-shifted VAR or
CST menu keys. It does not apply to the programmable command STO, or to
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when the name argument is other than an untagged global namec, or to operations
within the memory browser (section 6.1.3).

A similar recovery facility works with the key, when the argument is an
untagged global name. In this case, LASTARG rcturns the purged object to level 2 as
well as the name argument to level 1, so that you can undo an accidental purge by
pressing . Again, PURGE exccuted from the command line or in a pro-
gram, or with a list argument, retains the normal last argument action.

You should realize that this non-standard but useful behavior of the and
keys means that replacing or deleting a stored object does not immediately recover the
memory associated with the object, since the object is kept in the last argument memory
until replaced by the arguments of a subsequent command. You can use the command
form of the operations when you want to be sure to discard the old object immediately;
c.g. use ENTRY|[STO|[ENTER] instead of [STO]. Or you can exccute another command
(or a system halt) to remove the old object from last argument memory after the store
or purgc.

6.1.7 Moving A Variable

There are three different ways to “move” a global variable:

e Change its position among the other variables in a directory, using ORDER (scction
6.1).

e Rename it, i.e. assign a different name to the same stored object.

e Remove the variable from its directory and re-create it in a different directory.
Strictly speaking, it is the stored object that is moved, but it is usually convenient to
speak in terms of moving the variable--name plus object together. There is no built-in
command for renaming a variable, but you can use the following sequence, with the ori-
ginal name in level 2, and the new name in level 1:

OVER RCL ROT PURGE SWAP STO

The program RENAME elaborates on this sequence, putting the new variable in the
same position as the old:
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’ RENAME Rename a Variable 2837
| level 2 level 1
‘ ‘old-name’ 'new-name’ =g
|
<< VARS DUP 4 PICK POS Find the variable’s position in the directory.

1 - 1 SWAP SUB List of preceding names.

ROT DUP RCL SWAP Recall the object.

IF OVER TYPE 15 SAME If it is a dircctory,

THEN PGDIR purge with PGDIR;

ELSE PURGE otherwise, use PURGE.

END ROT STO Store the object.

IF DUP SIZE If the name list is not empty,

THEN ORDER Then moved the renamed variable.

ELSE DROP

END

The program MOVE on the next page moves a variable from one directory to another,
or to and from a port. MOVE uscs two arguments, cither of which can be a name
(tagged for a port variable) or a path name. The path specificd by the latter should be
the path from the current directory to the dircetory containing the new or old variable.

| The name of the original variable should be in level 2, and the name of the new variable
in level 1.

COPY uses the same arguments as MOVE, and calls MOVE with an extra object (0) on
the stack that signals MOVE not the purge the variable. The order of opcrations in
MOVE is a little convoluted because if the original variable is to be purged, it is more
mcmory efficient to cxecute the purge before the new store.

copy Copy a Variable EAAF
level 2 level 1
path-name,  path-name , [Seg
<< 0 SWAP Signal MOVE to not purge.
MOVE Make the copy.
>>
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<<

IF DUP TYPE 5 SAME
THEN DUP SIZE DUP2 GET
3 ROLLD 1 SWAP 1 -

ELSE {}
END EVAL
-~ new p s
< |F DUP 0 SAME
THEN DROP s EVAL RCL

SuB

ELSE

s EVAL DUP RCL SWAP
IF DUP TYPE 12 ==
THEN SWAP NEWOB SWAP
END

IF DUP VIYPE 15 ==
THEN PGDIR

ELSE PURGE

END

END

p EVAL new s EVAL STO
p EVAL

>

>

MOVE Move a Variable 45C9 W
level 2 level 1
path-name,  path-name, =g
<< PATH Subroutine to find a variable:

Is this a path name?

Then get the variable name,
and the path list.

Otherwise, use a null path list.

Save the new name, old path and subroutinc.
Check for the signal from COPY.

For COPY, just recall.

For MOVE, purge the original:

Recall the object.

If object came from a port,

Then free the object.

Purge the variable:
Usce PGDIR tor a directory.
Use PURGE otherwise.

Store the object in the new variable.

Return to original dircctory.

6.2 Local Variables

Although we will defer a detailed discussion of local variables to section 9.7, they need

6.1

to be described briefly here in the context of storing objects. Local variables arc vari-

ables created for temporary use by a procedure. They are handy because they can have
any name without conflicting with command names, global variables, or any other

procedure’s local variables, and because they are automatically deleted when their defin-

ing procedure completes execution.

Local variables are created by the program structure words - (section 9.7) and FOR
(section 9.5.1). For example, enter the following program:
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<< '"JACK’" "JILL" - locall local2
<< HALT

>
>>

Store the program in the variable HILL, in the directory DIR1 created in section 6.1.2:
'HILL"  [sTO].

Now exccute the program--press ZHILLE . Notice that the HALT annunciator turns on,
but nothing else visible happens. But if you type local , the name "JACK’ is
returned to the stack. When the program executes, the - creates two local variables (as
many as there arc names following the arrow), storing in them two objects taken from
the stack (one for each name). The inner program that follows the final name local2
(the << marks the c¢nd of the series of names) defines the “duration” of the local vari-
ables: the variables are maintained during the program’s execution, then deleted by the
closing >>. In this case, cxecution is suspended by the HALT (section 12.3), and the two
local variables remain available until you press to finish the program.

The names local1 and local2 are local names, which arc a different object type than the
global names used so far in this chapter. As mentioned in section 3.6.2, executing a
local name recalls the object stored in the corresponding local variable without exccut-
ing it, but otherwise local names are similar in usc to global namecs.

For local variables, there 1s no automatic catalog like the VAR menu. A portion of RAM
containing local variables is called a local memory, and is essentially invisible other than
by recalling the stored objects. [Like the stack, a local variable does not contain a copy
of an object stored there, but only a pointer to the object. Copying an object from a
global variable to a local variable, for cxample, only requires enough memory for the
name text plus a few additional bytes of overhead.]

6.3 Additional Global and Local Variable Operations

The commands described in this section apply to global and local variables, but not to
the port variables described in section 6.4.2.

6.3.1 Recalling Values

There are two fundamental ways to “recall” the value of a variable:

® Execute a name object. Executing a global name executes the object stored in the
named variable. For data objects and algebraic objects, this just recalls the object to
the stack. For example, if you have stored the number 25 in a variable named X,
pressing [X][ENTER] returns the number 25 to level 1. Executing a local name always
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recalls the stored object without exccution, regardless of the object type.

e Use RCL. 'name’ RCL returns the object stored in the (local or global) variable
name to the stack, without executing the object. RCL is primarily used for global
variables that contain programs and names, in cases where you just want to put a
copy of the stored object on the stack. For data objects and algebraic objects,
‘name’ RCL has the same effect as just executing name, except that the latter does
not affect last arguments (section 5.3).

The commands GET and GETI allow you to recall individual elements from arrays and
lists stored in variables, without having to recall the entire object to the stack. For GET,
the stack use is

object index GET o3 element,

where index specifies the clement to retricve:

e For a list or a vector, the index is a real number, or a list containing onc real
number.

e For an array, the index is cither a real number (the clement number, counting in
“row order”-- Icft to right, top to bottom) or a list of two real numbers (the clement
row and column).

e When the index is entered as a list, the list clements can also be names or pro-
cedures that numerically evaluate to real numbers (scction 11.5.1.1).

The object in the above sequence can cither be the list or array itself, or the name of a
global or local variable in which the list or array is stored. Thus,

{A B C} 2 GET v+ 'B,

or

{A B C} 'D' STO 'D' 2 GET = 'B".
GET! is designed for sequential recall of the elements in a list or array, and returns the
object or its name, and the index incremented to the next element, as well as the
recalled element. The general form of GETI is

object index GET| 1= object index+ element,

where object and index are the same as for GET, and index + is the same as index except
that its value is incremented to represent the next clement. Thus,
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{A B C} 2 GETI == {A B C} 3 'B,

If index points to the last clement, GETI returns either 1, { 1}, or { 1 1 } for index+, as
appropriate to cycle back to the first element. GETI also scts flag —64 when this occurs,
or clears the flag otherwise, so that a program can easily determine when it has come to
the end of a list or array.

GET can also be executed implicitly within algebraic expressions by using a function
syntax--see section 11.2,

6.3.2 Altering the Contents of Variables

The most straightforward means of changing the contents of a variable is to store a new
objcct into the variable using STO. However, there are a number of commands that let
you modify a stored object short of replacing it entircly, without having to recall the
object to the stack. These are the “storage arithmetic” commands found in the
[MEM] ZARITHE menu: STO+, STO-, STO#* and STO/, and the specialized versions
INCR and DECR, plus the single argument commands SNEG, SINV, and SCONJ. In
addition to the arithmetic commands, the four array commands CON, IDN, RDM, and
TRN can be applied to arrays stored in variables. PUT and PUTI, the storing counter-
parts of GET and GETI, allow you to alter individual clements in a stored list or array.
Finally, there arc scveral commands associated with the reserved-namc variables such as
EQ, PPAR, 2DAT, ctc., used by various built-in systems. We will discuss these com-
mands in the chapters of Part II that deseribe the associated systems.

63.2.1 Store Menu Commands

Storagc arithmetic is the application of +, —, *, or / to two objects, where one object is
on the stack and the other stored in a variable, without having to recall the latter to the
stack. For cxample, 25 ‘X’ STO+ adds 25 to a number stored in X. More generally,
STO+, STO-, STO#*, and STO/ use a syntax similar to that of STO:

object 'name’ STO®,

where the ® stands for any of the symbols +, —, * or /. Name is a global or local
name, which must refer to an existing variable. Furthcrmore,

'name’'  object STO®
is also allowed. Either sequence combincs the object in level 2 with the object stored in
the variable name, leaving the result stored in the same variable. The object and the

name are dropped from the stack. Note that (unlike on the HP 28) the two objects do
not have to be numerical--they can be any types that are suitable arguments for the
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stack ® operation. For example, if the variable A contains the string "Hello there", then
the sequence

‘A" ", world” STO+
replaces the contents of A with the string "Hello there, world".

As for the corresponding stack operations, the order of the storage arithmetic com-
mands’ arguments is significant. In effect, the result is the same as if you replaced the
name object on the stack with the object from the named variable, then performed the
stack command:

e object 'name’ STO® computes

I+

(new value) = (stack object) (old value).

~

In this case, STO® is cquivalent to
DUP RCL ROT SWAP e SWAP STO.

If X has the value 1, then 3 ‘X’ STO- stores 2 in X.

e 'name' object STO® computes

(new value) = (old value) (stack object).

~ % | +

Here STO® is equivalent to
OVER RCL SWAP e SWAP STO.
With 1 stored in X, ‘X’ 3 STO- stores -2 in X.
There is an ambiguity in this design when both stack arguments are name objects. In
this case, the HP 48 interprets the level 1 name as the variable name; this arbitrary

choice to match the sense of the arguments for STO was made as an easy-to-remember
rule. Thus if you have the list { C D } stored in variable B, ‘A’ 'B’ STO+ returns the
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list { A C D} to B (rather than adding or concatenating the name B to the contents of
A). The rule does imply that you can not use STO+ to concatenate a name to the end
of a list stored in a variable.

6.3.2.2 Counter Variables

INCR and DECR are specialized forms of STO+ and STO- that make it casy to use a
global or local variable as a simple counter. INCR adds 1 to a real number stored in the
variable specified by a name argument; DECR subtracts 1. Both commands return the
result value to the stack, where you can compare it, for example, with some limit value.
Thus 'name’ INCR is equivalent to the sequence 'name’ DUP 1 STO+ RCL, but exe-
cutes about twice as fast.

6.3.2.3 PUT and PUTI
PUT and PUTI allow you to storc individual clements into an existing array or list, using
a syntax similar to that of GET and GETI (section 6.3.1).

For example,
{A B C} 2 'D PUT 1 {A D C}
Here the target list itself is on the stack. The target can also be identificd by name:
'MAT { 3 3 } 25 PUTI = 'MAT" { 3 4 }

stores the number 25 in the 3-3 clement of a matrix stored in the variable MAT, and
leaves the name and the incremented index (here assumed to indicate the 3-4 element)
on the stack.

6.3.2.4 Additional Array Commands

The four storage arithmetic commands described in section 6.3.2.1 treat arrays stored in
global variables differently from other object types in order to save memory. For
objects other than arrays, the arithmetic is performed the same way you might do it
using stack commands-- the stored object is recalled to the stack, combined with the ini-
tial stack object, then stored back in the variable. For arrays, the arithmetic is per-
formed in place, with the result array elements replacing the stored elements as they are
computed. This makes it possible to perform the array arithmetic without needing
enough free memory to copy the destination array. (If you interrupt such an operation
with , the array will likely be worthless, since it will contain a mixture of old and
new values.)
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The HP 48 provides seven additional commands that modify a stored array in place to
conserve memory. For each, the stored array is represented on the stack by the name
of the variable in which it is stored; the result replaces the original array.

SNEG  negates the stored object.
SINV computes the reciprocal of a stored number or square matrix.

SCONJ  computes the complex conjugate of the stored object.

CON converts an arbitrary array into a constant array (all elements are the same),
where the constant number is specified on the stack.

IDN converts a square matrix into the identity matrix.

TRN transposes and conjugates an array.

RDM redimensions an array according to the dimensions specified by a list of one

or two real numbers. Note that RDM can change the total size of an array if
the new dimensions correspond to more or fewer elements than are in the
original array.

PUT replaces an clement in an array (or list).
PUTI replaces an clement in an array (or list) and returns the index of the next ele-
ment.

SNEG, SINV, and SCONJ also work with stored real or complex numbers, unit objects,
global or local names, and algebraic objects, although there arc no memory savings for
these types. There are also no savings for any of the nine commands if the target object
1s stored in a local variable instead of a global.

6.4 Ports

A port is an independent portion of memory that is established to contain /ibraries and -
port variables. The storage of libraries in port memory rather than in user memory
enables the HP 48 to keep track of them more easily, resulting in faster execution of the
commands within the libraries. The HP 48 system defines 34 possible ports:

e Port 0 is permanently defined in main RAM. It is the only port available on an
HP 48S or HP 48G.

e Port 1 is the memory (up to 128K) on a card inserted into card slot 1. If the card
contains RAM, that memory can be merged with main memory, or configured as
independent memory Port 1 (see the next section). If the card is ROM, or a RAM
card with its write-protect switch on, its memory will always be independent.

-167-




6.4 Storing Objects

e Port 2 is independent memory in a 32K or 128K RAM card in slot 2. On the
HP 43GX, RAM in the second slot is always independent; it can not be merged into
main memory.

e Ports 3-33 are 128K blocks of independent memory within a memory card 256K or
larger in slot 2.

There arc two mcthods for determining the contents of a port: the LIBRARY menu,
which is explained in section 6.4.3, and the command PVARS. With an argument of 0,
1, or 2 to specify a particular port, PVARS (Port VARiableS) returns a list analogous to
that of VARS (section 6.1.4), containing the number of each library and the name of
cach variable in the corresponding port, with cach object in the list tagged with the port
number. PVARS also returns (to level 1) one of the following objects:

Object Meaning

real number  Amount of free memory left in the port (RAM).
"ROM" The port contains ROM or write-protected RAM.
"SYSRAM"  The port memory is merged (the contents list will be empty).

The [ree memory reported by PVARS for port 0 is the same amount rcturned by MEM.

PVARS provides a convenient means for deleting all of the objects in a port. For cxam-
ple,

0 PVARS DROP PURGE

removes all of the objects from port 0.

6.4.1 Plug-In Ports

When you plug a memory card into cither card slot and turn the calculator on, the cal-
culator checks the card to determine whether the card memory contains a valid
sequence of libraries and port variables. When the HP 48 cannot recognize the card con-
tents, the message Invalid Card Data is displayed. If the card is ROM, the card is not
usable in the HP 48, and should be removed. If the card contains RAM, you can ignorc
the message--the first attempt to merge the card memory or store a library or port vari-
able there will organize its memory properly, and prevent further Invalid Card Data
errors. If it is not convenient to do this, you can execute PINIT, which resets the
memory in any RAM port that exhibits invalid data (this is particularly useful for large
RAM cards in slot 2, which may contain many ports).

When a newly inserted card is recognized as valid by the HP48, the card memory is
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configured as an independent port, and an entry for the port will appear in the
LIBRARY menu. The libraries and variables in the card are then available using the
procedures outlined in the preceding parts of this chapter. If the card contains RAM,
you also have the option to leave it as an independent port, or to merge the card’s
memory with main RAM. As long as a card is configured as independent RAM, you
can remove and replace it at will (remember to turn the calculator off when inserting or
removing cards), or move it to another HP48. An independent RAM card is a very fast
and convenient means for transferring objects from one calculator to another.

The command MERGE1 merges the memory in a plug-in RAM card in slot 1 into main
memory. MERGE1 is equivalent to 1 MERGE--the latter command is provided for com-
patibility with thc HP48SX, where it can also accept 2 as a argument. If the card
memory contains port variables and libraries, these are moved automatically to port 0.
The amount of free memory returncd by MEM is increased by the amount of memory in
the card (32K or 128K bytes) less the memory used by the port variables and libraries.
Once you have merged card memory, however, you can not remove the card without
potentially corrupting memory contents. If a merged card is removed (including the
casc where the calculator is dropped hard enough to jar a card loosc), the HP 48 warns
you of impending disaster by beeping and displaying Replace RAM, Press ON. By fol-
lowing that instruction, you can prescrve memory contents; otherwise the contents of
main memory and the card memory are lost. If there is no card in port 1, or it is a
ROM card, or a RAM card with its rcad/writec switch set to write-only, the Port Not
Available crror is returned by MERGE1.

The reverse of merging a card’s memory is to free it using FREE1. (You can also use 1
FREE, which is provided for HP 48SX compatibility.) FREE1 uses one argument sclect
objects from port 0 to the moved into the newly freed port. The argument can be a
library number, or the name of a port 0 variable, or a list containing any mixture of
library numbers and names. If you just want to free a port without moving any objects
there, use an empty list.

6.4.2 Port Variables

Onc advantage of storing an object in the home directory is that it is always accessible
by name, no matter which directory is current. This makes the home directory the logi-
cal place to store general purpose variables, such as the program FIND described in sec-
tion 6.1.4. 'However, if you store too many variables in the home directory, the associ-
ated VAR menu becomes unwieldy.

Port 0 is another portion of memory that plays a role similar to that of the home direc-

tory. You can create one or more variables there; .the variables are universally accessi-
ble by name; and there is an automatic menu associated with the port. Port 0 is always
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available, but in an HP48GX you can also create additional ports by inserting RAM
cards into one or both card slots. A RAM card in slot 1 becomes port 1; a RAM card
in slot 2 can contain one or more ports, equal in number to its memory size divided by
128K. The maximum card size is 4 megabytes, which makes the maximum port number
33. We will use port 0 as an example here, but the properties of port 0 also apply to
any other port 1-33.

A named object stored in a memory port constitutes a port variable. Like a global vari-
able, it is a combination of a text name with any object, providing access to the stored
object by means of the name. The HP 48 does not define a unique name object type for
port variables as it does for global variables, local variables and commands. Instead, the
commands that access port variables recognize global or local names tagged with a port
number 0-33 as designating port variables. For example, :0:ABC RCL recalls the object
stored in a port variable ABC in port 0. We will refer to such tagged names as port
names.

[The HP48 manuals refer to port variables as backup objects. This is somewhat
misleading, since a backup object (section 3.4.12) is actually an object that in some cir-
cumstances can appear on the stack. We prefer the term port variable, by analogy with
global and local variables.]

There are six commands that accept port name arguments of the form :n:name:

STO creates a new port variable name in port n. The object to be stored is taken
from level 2, and the port name from level 1.

RCL recalls the object stored in the specified port variable.
EVAL executes the object stored in the specified port variable.

PURGE purges the specified port variable. PURGE will also accept a list of global
names and port names, and purge all of the variables named in the list.

PRVAR  prints the object stored in the specified port variable. Like PURGE, PRVAR
will operate on a list of global names and port names.

ARCHIVE makes an archival copy of user memory and stores it in the specified port
variable.

The port number n used with these commands can be can be the number 0-33 of any
existing port, or, except for STO and ARCHIVE, the character & When the latter is
used, the HP 48 searches for a variable with the specified name in the highest numbered
existing port, then, in necessary in each subsequent lower port until a match is found. If
there is no matching port variable, the tag is ignored and the name is treated as an ordi-
nary untagged global or local name. This feature allows programs to use objects that
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may move around among the ports and main memory. ARCHIVE also accepts a name
tagged with :10:, for which the archived user memory is transmitted to the serial port as
a Kermit file.

Only the six commands listed above recognize port names. Other commands ignore the
tag on a port name and operate on the untagged name. This can lead to some
surprises: for example, :0:ABC STO+ always attempts to add (see section 6.3.2.1 ) to
the contents of a global or local variable ABC, even when there is a port variable ABC
in port 0.

One consequence of the HP48GX memory management scheme that allows multiple
ports in slot 2 is that objects stored in any of those ports are copicd to temporary
memory in main RAM when they are recalled or executed. Since the time required to
perform the copy is usually negligible, the principal effect of this behavior is that there
must be enough free memory to copy an object before you can use it. If an object is
large enough, you may be able to storc it in a port, but then later not be able to access
it without removing something from main memory.

6.4.2.1 Port Menus
As an example of crealing port variables, enter the following:

234 :0:ABC 567 :0:DEF [STOJ.

Assuming that the home directory still contains the variable ABC created carlier in the
ongoing example, executing ABC still returns the value 123 stored in that global vari-
able. In order to return the value just stored in the port variable ABC, you must include
the port-number tag:

:0:ABC rx 234,

Port menus are automatic operational catalogs of port variables, analogous to the VAR
menu for global variables. Pressing LIBRARY| = PORTS= makes a display like this:

=
=
=
m
[

=20
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You will always see at least the a label for port 0. If you have memory cards plugged
into card slots, you will also see labels for each existing port. In the ongoing example,
press £:0:= :

This activates the port 0 menu, where you see menu keys for the port variables ABC and
DEF created earlicr. Pressing either of the labcled menu keys returns the number
stored in the corresponding variable:

ZABC= ¥ 234.

As for VAR menu keys, when you press a port variable menu key, the object stored in
the specified port variable is executed. The right-shifted menu keys also perform a RCL
like a VAR menu kcy; the left-shifted menu key attempts to exccute STO, but like STO
itself, this fails because you can’t store into an existing port variable (scction 6.4.2). In
program entry mode, the and [P}shifted menu keys echo the port name followed
by STO and RCL respectively.

Because a port name is a tagged object, it is effectively already quoted and thercfore
you do not quote a port name to enter it on the stack for use as an argument. If you do
attempt to enter a port name within single quotes ' ', you will obtain an Invalid Syntax
error message, because tagged names are not allowed in algebraic cxpressions. You can
nevertheless use port menu keys to enter port names: press first to activate
program entry mode, then press the appropriate menu key. This enters the port vari-
able name preceded by the appropriatc port number tag.

6.4.2.2 Altering Port Variables

Port variables are intended for object storage that is somewhat more pcrmanent than
that offered by global variables. For this reason, the contents of port variables can not
be changed once they are created, short of deleting them with PURGE. STO returns
the Object In Use error if you attempt to overwrite the contents of an existing port vari-
able. Furthermore, you can’t delete a port variable if the stored object is referenced, in
which case PURGE returns the same error message as STO. Referenced mcans that a
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stored object (or part of it) has been recalled by onc means or another, and the recalled
copy is still present--on the stack, in argument recovery or stack recovery memory, on
the program return stack, or in a local variable. Specifically, this means that there is a
pointer to the port variable object in any of these areas--see section 5.7. On a
HP48GX, this can only happen for port 0 or port 1, since objects in higher ports are
copied to temporary memory when they are recalled. To succeed in purging a port O or
port 1 variable, you must first remove all such references to the object, either individu-
ally, or collectively by executing a system halt - ). Some references may be
very subtle; for example, if a program enters an an object that is left on the stack or in a
local variable, the program will be referenced until the object is removed. Or, if a pro-
gram uses DOERR (section 9.6.2) with a string argument defined in the program, the
program will be referenced for the sake of the ERRM command until ERRO is exccuted
or some subscquent crror generates a new crror message.

If you want to delcte a port variable while kecping a copy of its stored objeet, you must
recall the object and cither store it in a global variable or another port variable, or exc-
cute NEWOB (section 11.6) with the object in level 1. This creates a new copy of the
object and unreferences the port variable. Then you can use PURGE to delete the vari-
able.

6.4.3 Libraries

Commands are named objects that arc stored for execution only, and which arc not
available for recall or modification. A collection of commands is called a lbrary.
Librarics are objects (section 3.4.11), which allows you to move them around within the
HP48, primarily to transfer them from a personal computer or from HP48 to HP48.
When you are dcaling with a library as an object, the commands that the library
includes are not visible or accessible. To activate the contents of a library, it must be
stored in a port and attached to a directory. On the stack, a library object is displayed
simply as Library n: title, where n is the unique /ibrary ID number assigned to the
library, and title is its text title.

All of the HP48s built-in commands and program structure words (section 9.2) are
contained in libraries permanently stored in built-in ROM. The details of their organi-
zation into libraries is not important; the only place where the division manifests itself is
in the various error numbers, the leading digits of which identify the library in which the
error occurred.

Unlike any of the built-in HP 48 command libraries, an added library must be stored in
a port in order for its commands to be available. In a plug-in ROM card, the libraries
are permanently stored. In a port containing RAM, including port 0, you can storc a
library using STO. The “name” required by STO in this case is just the (real) port
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number. You may also use any number tagged with the port number, such as :0:123;
this allows STO to use the same port-tagged library ID as used by RCL to recall a
library from a port to the stack, or by PURGE to delete the library.

Imagine that you have a library on the stack, ID number 999. (If you have the HP48
Insights Program Disk, you can transfer this sample library from your personal computer
to the HP 48, and follow along with the example.) To store the library in port 0, enter a
0:

HOME 1}

e ST N

Library 999: HF'-4E'-§
[ L_[i0Pak[ Cik2 [ 0IRL [ GEF | AEC |

Press , then [LIBRARY]ZPORTS==:0:= :

x
[ =]
=z
m
[

a0

[ OEF [ AEC ] | | |

The ZABC= and EDEFZ labels correspond to the port variables created in the ongoing
example, in section 6.4.2.1. The new entry £999% indicates that the library has been
stored in port 0. However, at this point you still don’t have access to the commands in
the library. First, you must turn the HP48 off, then on. You will observe that this
causes a system halt (section 6.6), so you should store any objects on the stack that you
want to keep before turning the HP48 off. The system halt occurs when the HP 48
detects that a library has been added to a port; during the system halt operation, the
HP 48 builds a table of all of its current libraries that it uses to find the libraries later.

The last step in making library commands accessible is to attach the library to a
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directory. When a library is attached to a directory, the libraries commands are accessi-
ble for exccution or entry into a composite object whenever that directory is in the
current path (section 6.1.2)--just like the global variables in that directory. Each direc-
tory may have one library attached to it, except for the home directory, which may have
any number of attached libraries (including the built-in libraries, which are permanently
attached there). To attach a library to a directory, you make that directory the current
directory, then execute id ATTACH, where id is the library’s ID (expressed as a real
number). The library does not need to be present when ATTACH is executed, but the
attachment will have no consequence unless the library is installed in a port.

In the current example, execute HOME DIR1 to make DIR1 the current directory, then
execute 999 ATTACH (the menu key for ATTACH is in the second page of the
menu). Now press :

HOME DIR1 1}

— O]

:
i
i
i
i
i

The entry SHP48IE is now present in thc menu, corresponding to the newly attached
library In addition to the library ID, a library contains a unique library title, a text string
that describes the library. The first four or five characters of the title arc used for the
library menu label. To see the full text of the title (up to 23 characters), use :

HF48Insights Test Lib

CTET:TN I I N I

The tab on a library’s menu key label indicates that the key activates yet another menu.
Press ZHPasIE :
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HOME DIRY1 }

=00

This menu is crcated from the objects defined in the library. Pressing ERPN?Z rcturns
the string "l love RPN!". If you press [$0][ 0 |ZRPN?2Z, the list { RPN? } is placed on the
stack. The object RPN? within the list (you can take it out of the list with OBJ-) is an
XLIB name object (section 3.6.3). It is similar to a global name, in that cxccuting it exe-
cutes the object stored with the name. However, you can not recall or view the stored
object itsclf.

An XLIB name object does not actually contain the text of its name, which is stored in
the library. You can sce this by purging the library (:0:999 PURGE); if you do so, the
list on the stack beccomes { XLIB 999 0 }. Since the library is unavailable, the HP 48
docs not know the XLIB name text, and reverts to displaying two number codes that arc
part of thc XLIB name object. The two numbers show that the name corresponds (o
command 0 in library 999. The fact that XLIB names contain number codes rather than
text makes them more compact and speeds up exccution of library commands.

Libraries intended to be attached to the home directory (which makes their commands
universally available) usually attach themsclves to the home directory automatically.
This is uscful because home dircctory attachments are cleared by a system halt, unlike
subdircctory attachments. During a system halt, each library is given a chance to exe-
cute its configuration program, which can preparc any special HP 48 resources needed by
the library, including attaching the library to a particular directory. Many plug-in appli-
cation cards contains several libraries, each of which automatically attaches itself to the
home directory. To access the card’s programs, therefore, you have only to insert the
card in a port and turn the calculator on.

[When you transfer a library from a personal computer to the HP48, you can not
transfer the library directly to a port, but must transfer it first to a global variable.
Then you can recall the library to the stack and store it in a port. It is generally a good
idea not to leave a copy of a library in a global variable after you have copied it to a
port, not only to conserve memory, but because the Recover RAM process associated
with an accidental or deliberate memory reset ([ON] - [A]- [F]) does not work well
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when there are libraries stored in global variables, because that makes it difficult to
distinguish between user memory and port 0.]

6.43.1 Other Library Commands
In addition to STO and ATTACH, the following commands are associated with libraries:

¢ PURGE. To remove a library from a port, execute n:/D PURGE. As in the case of
port variables, you will be unablc to purge a library if it is referenced in any way
(Object in Use). In addition to the other ways that an object can be referenced, a
library is referenced when it is attached to the home directory; you must detach it
(see below) before purging.

When you purge a library, you may sce the display jump briefly. This is caused by
the movement of display memory arising from the removal of an entry in the HP 48’5
internal table of librarics; it is quite harmless.

e DETACH. The inversc of ATTACH is DETACH, which detaches a library (specified
by number) from the current dircctory. A common reason to detach a library is to
disable the commands in that library. For cxample, a library might define a new
meaning for SIN; to use the built-in version you must cither detach the library or
change to a dircctory in which the library is not in the current path.

e LIBS. This command catalogs the librarics attached to the current directory, return-
ing for cach library the full library title, library number, and the number of the port
containing the library. In any directory except the home directory, there can only be
onc attached library, so LIBS returns a list of threc clements:

{ "Title" library-number port-number }

If no library is attached, LIBS returns an empty list. In the home directory, the list
can contain a multiple of threc clements, with one group of three for each attached
library. Note that LIBS provides a means for viewing a library’s full title when the
title is longer than 22 characters. You can also recall a library to level 1 and use
or [V]; this copies the library title to the command line where you can use —to
reveal the full title. (Note that you can’t actually edit the library-- pressing
just enters the title characters.)

6.5 Name Resolution

The figure below is a diagram of HP 48 memory showing schematically all of the named
objects we have created in this chapter’s ongoing cxample. The figure also has an entry
for the built-in command libraries, to show where they fit logically. Finally, the local
memory containing the local variables locall and local2 created in the preceding section
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is shown associated with the program HILL (here we are assuming that that program is
still suspended).

ROM
—— =
Built-in
User Memory ok Libraries |
R B
| DIR2 [ DIR1 | ABC | DEF o L
| DIR... | DIR... | 123 | 456 : Port 0
I I A NN NN N
=2 [ 1]
L . | | 999 | DEF | ABC |
S el
| - | |Library| 567 | 234 ||
l'| ABC HILL { ABC | DEF1 | ABC1 | | | I
i | \ N
|| 654 <<>> | 987 | -456 | 123 | " | RPN? !
S | |
Local Memory | Iove... . |
I L _ _ _ _
| localt | local2 |
| [ "JILL" |"JACK'] |
[ ——

Example Memory Organization

The figure is helpful in explaining the details of HP 48 name resolution, the process by
which the HP 48 creates name objects and finds named objects. Name creation and
name finding are similar but distinct processes. The first takes place when a command
line is entered and the HP 48 creates name objects from the command line text. The

second happens when a name is executed or recalled, and the HP 48 must find the
stored object associated with the name.
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6.5.1 Command Line Entry

A series of non-delimiter characters in the command line that does not start with a
number character (digit or fraction mark), and is not enclosed by string quotes "" or tag
colons ::, is presumed to be a name. The type of name object created by ENTER is
determined by a search through existing named objccts for a name that matches the
command line name. The precedence of the search is as follows:

If the name starts with a “<” character, it is entered as a local name.

If the name is entered within a local variable structure (section 9.7) in the com-
mand line, and matches onc of the names defined for that structure, the name is
entcred as a local name.

If there is a local memory present that contains a local variable with a matching
name, the name is entered as a local name.

If the name matches a global variable anywhere in the current dircctory, the name
is cntered as a global name.

If the name matches a command namec in a library attached to the current direc-
tory, the name is entered as an XLIB name.

The preceding two steps are applied to the parent dircctory, and its parent, and so
on back to the home directory. If the name is matched, it is entered as a global
name or an XLIB name, as appropriate. If the search proceeds to the home
directory, all of the librarics attached there are searched.

If the name matches a built-in command name, the name is replaced with the
built-in object.

If the name is not matched in any of the preceding steps, it is entered as a global
name.

= Examples with DIR1 as the current dircctory, and the program HILL currently
suspended):

-~ X << X Y > localt <local3 ABC. When this command line is entered, X and
local1 are entered as local names. The first X is local because it is one of the local
names defined by the arrow; the second X because it is included within the local
variable program. locall is entered as a local name, because locall is a local vari-
able in the local memory associated with the suspended program HILL. <local3 is
also entered as a local name because its first character is <; it doesn’t matter if there
is a corresponding local variable. ABC is entered as a global name, because it is
matched by a global variable in the parent of the current directory. Y becomes a
global name because it is not matched by any global or local variable, library
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command, or built-in command.

e —~ DEF1 << RPN? DEF1 >> DEF1. Here the first two DEF1’s become local names,
even though DEF1 is a global variable in the current directory, because DEF1 is
defined as a local name in the local variable structure. The third DEF1 is entered as
a global name, since it is not entered within the local variable program. RPN? is
entered as an XLIB name, since it is not one of the program’s local names, and is
first matched by the library command in the library attached to DIR1.

e SIN RPN? - SIN RPN? << RPN? SIN >> COS. The first occurrence of SIN is
entered as a command name; the first occurrence of RPN? is entered as an XLIB
name. However, the subsequent uses of these names are entered as local names,
because their assignment by - takes precedence over their presence as built-in or
library command names. COS is entered as a built-in program object. The restric-
tion that global names can not match built-in command names does not apply to
local names. [This restriction is a property of the command line parser; the RPL
language puts no such restriction on global names in general. The restriction is pri-
marily to enforce syntax rules for algebraic expressions.]

The rules described here for command line entry also apply to execution of OBJ- (or
STR-) on a string object, and to the processing of object files that arc transferred to the
HP 48 via an ASCII Kermit transfer.

6.5.2 Executing Name Objects

When a name object is used to find the object stored with that name, the process of
searching for the named object is similar to that used during command line entry. How-
ever, since the type of name object is already known, the search can be more restrictive:

e For global names, the search is through uscr memory, starting in the current direc-
tory. Whether the search extends to parent directorics depends on the nature of the
operation using the name. For simple execution of the name, and for use with RCL,
the search 1s made first in the current dircctory, and continues if necessary through
all parent directories until the name is matched. For all other commands, the search
is restricted to the current directory. The first variable checked is the leftmost vari-
able in the VAR menu, nominally the newest variable unless the order has been
changed by ORDER. You can achieve faster program execution by placing the glo-
bal variables a program uses at the start of the current directory.

¢ For port names, the search is made in the port identified in the name, unless the &
symbol is used. In that case, the search starts in the highest available port and con-
tinues through lower-numbered ports and then into the current directory until a
match is made.
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e For local names, the search extends through current local memories, starting with
the newest.

e For XLIB names, no name matching is necessary; the stored object is found by
means of the library and command numbers stored in the XLIB name, and the table
of object locations that is part of each library.

Notice that the use of one type of name will never find an object stored with another
type of name (except for the case of &-tagged port names).

The resolution of XLIB names is usually significantly faster than that of global and local
names. Resolving a local name is usually faster than resolving a global name, because
Jocal memories typically contain only a few variables. If a program stored in one direc-
tory frequently uses a variable in a parent directory or in another branch of user
memory altogether, the program will run faster if it recalls the remote object once and
stores it in a local variable, then retrieves it from the local variable for each subsequent
execution. Similar considerations apply (o objects retrieved from ports 2-33, which must
be copied before execution (section 6.4.2).

6.5.2.1 Resolution Failures

When you exceute a global name for which no corresponding global variable cxists any-
where in the current path, the HP 48 just returns the name to the stack (this property of
global names is central to the HP 48’s symbolic algebra capabilities). However, in all
other cascs of name object resolution, an error is reported if no stored object is found.
The error depends on the type of name, and the particular use:

Type Execution Recall Store

(EVAL, etc.) (RCL, GET, etc.) (STO, PUT, etc.)
Global name  no error Undefined Name no error*
Port name Undefined Name Undefined Name Object In Use**
Local name Undefined Local Name  Undefined Name Undefined Name

XLIB name Undefined XLIB Name  Bad Argument Type  Bad Argument Type
*Unless the variable is a non-empty directory.

**If the port variable already exists.

The recall and store errors for XLIB names occur because those operations are not
allowed, regardless of whether there is a corresponding library command.
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6.5.3 Path Names

When one directory is current, but you want to recall a variable in another directory
that is not in the current path, you can switch the HP 48 to the second directory so that
the variable becomes available. If you save the original path first (using PATH), you can
casily return to the original directory after using RCL. However, this procedure is a lit-
tle cumbersome for repeated use, so the HP 48 provides an alternate method called a
path name. A path name is an extended form of a variable name, where the variable’s
global name is entered in a list, preceded by the names of the directories that make up
the path to the variable’s directory. In general, a path list has this form:

{ directory, directory, - -- directory, variable }

The first object in the list can be HOME or a directory namc; of the remaining objects,
all but the last must be directory names. The path defined by the directory names can
be any path that will lead to the desired directory, but usually it is most convenicnt to
start the list with HOME so that the path namc will be usable no matter what dircctory
1s current.

Using a path namc as an argument for RCL, then, is equivalent to 1) saving the current
path, 2) switching to the dircctory defined by the path name, 3) recalling the named
variable, and 4) restoring the original path. For example, il in our cxample user
memory DIR1 is the current directory, recalling ABC returns 123, the value of ABC in
the home dircctory. However, { HOME DIR2 ABC } RCL rcturns 654, the value of
ABC in the DIR2 directory.

The HP 48 makes no special provision for the usc of path names as described so far by
EVAL, since the ordinary behavior of lists with EVAL makes path names suitable argu-
ments. But notice that { HOME DIR2 ABC } EVAL, for example, is not quite
equivalent to { HOME DIR2 ABC } RCL EVAL:

e« { HOME DIR2 ABC } EVAL switches to the DIR2 directory (before cxecuting
ABC); { HOME DIR2 ABC} RCL EVAL does not.

e { HOME DIR2 ABC } EVAL evaluates the name ABC, whereas { HOME DIR2
ABC } RCL EVAL evaluates the object stored in variable ABC. The difference is
significant if the stored object is a list, a directory, or an algebraic object (scc section
3.3).

Also, a list argument for EVAL can contain any arguments, whereas a path name for
RCL can contain only HOME and global names.

There is yet another extension to path names, which does apply to EVAL as well as to
RCL. When one of these commands is applied to a path name list that is tagged with
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port number 0 or 1, the command is directed to the specified variable in a directory
stored in a port variable. That is, the first name in the list is the name of a port variable
that itself contains a directory. The remaining names specify a path within that direc-
tory to the desired variable. (In this case, you do not want the path name list to start
with HOME.)

For example, try copying the directory DIR2 from our sample home directory to port 0:
[>]ZDIR2=  :0:DIR2P
Now you can recall the contents of the variable ABC in the port variable by executing
:0:{ DIR2P ABC} RCL 1+ 654.

This feature is especially useful when you have saved a copy of a large directory in a
port variable, and want to rctrieve the contents of a particular variable, but there isn’t
enough frec memory to copy the dircctory to user memory.

You can also usc the “wildcard” tag & for path names. With that tag, the HP 48
scarches for the specified port variable in all of the the ports, starting with the highest
numbered and continuing down through port 0 if necessary. If it is not found in any
port, the untagged path namc is used to find the variable. In the latter case, EVAL
switches to the directory specified by the path name--if the directory is found in a port
variable, then the current directory does not change.

6.5.4 Archiving Memory

In addition to storing individual objects in port variables, the HP 48 allows you to store a
copy of user memory, including current alarms and key assignments, in a port variable.
This archival copy of memory can then be used to restore the calculator to a previous
state, especially after an accidental or deliberate memory loss, or to copy the contents of
one HP48 into another. You can make an archival copy quite safe by saving it in an
independent RAM port, then setting the read/write switch on the card to read-only
(archiving to a personal computer via the serial port is also a good alternative).

The ARCHIVE command takes as its argument a port number, then creates a port vari-
able in the specified port, to store a replica of the home directory. A good choice for
the port name is one that represents the date on which the archive was made, such as
NOV2594 or APR2193, to help you choose among multiple archive copies.
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Once an archive is made, you can replace the current user memory with the archival
version by executing port-name RESTORE, where port-name specifies the port variable
created by ARCHIVE. RESTORE terminates by performing a system halt, so that the
display blanks momentarily then shows an empty stack, with the MTH menu and the
path { HOME }. Note: RESTORE begins by executing the equivalent of PGDIR on the
home directory. This can be very time consuming when user memory is large and con-
tains a lot of subdirectories. In such cases, you can save time by performing a memory
reset ( -[A]- , with the £ NO = option) before cxecuting RESTORE--unless, of
course, your archive is in Port 0, which is clcared by the memory reset.

If you recall the contents of a port variable crcated by ARCHIVE, you will sce what
appears to be an ordinary directory object. However, this directory is unusual in that it
may contain a “nameless” subdirectory (if you usc to copy the directory to the
command line, you can see a DIR entry with no name preceding it). The subdircctory
contains three variables: Alarms, UserKeys, and UserKeys.CRC. The first two, as you
might gucss, contain the alarm catalog and the user key assignments; UserKeys.CRC
contains a memory checksum that is used by the HP48 to verify the integrity of the key
assignments. The alarms and key assignments are kept in the nameless subdireetory in
order to prevent their being accidentally or deliberately cdited into a form that might
corrupt the HP 48 system.

ARCHIVE only saves the contents of user memory; in particular, it docs not save the
current flag values or the contents of port 0. The program XARCHIVE listed below
demonstrates a method of cxtending ARCHIVE to save these objects as well. XAR-
CHIVE takes a real number 0-33 as its argument and calls the program DATENAME to
create a port name. The name has the form n:mmmdd, where n is the argument, nunm
is a three letter abbreviation for the current month, and dd is the two-digit day of the
month. Then XARCHIVE creates a temporary directory archtemp, moves all of the port
0 objects to that directory, and also saves the current flag values there. Furthermore,
XARCHIVE creates a program fixup in the home dircctory, which is also saved as part of
the archive. After the archive is made, XARCHIVE moves the objects back to port 0,
and deletes the temporary variables. XARCHIVE requires enough frece memory to make
a copy of the largest port 0 object; if it runs out of memory, it restores the contents of
port 0 and deletes temporary variables. After XARCHIVE is finished, you should turn
the HP 48 off then on to reattach any port 0 libraries.

To later rebuild HP 48 memory from the archival memory made by XARCHIVE, executc
RESTORE as usual using the port name of the variable created by XARCHIVE. Then
press SFIXUPE . The latter step restores the saved port 0 objects and flags, and
purges the temporary variables, including fixup. (It is not possible to combine
RESTORE and fixup into a single program, because RESTORE performs a system halt,
preventing execution of any program objects following it.) If the archive includes any
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XARCHIVE Extended Archive 5645
level 1 |
"1Q" rr
n [ 2

<< DEPTH PATH RCLF 0 - md p f e
<< IFERR HOME STD
DATENAME m -TAG
<< WHILE 0 PVARS DROP DUP SIZE
REPEAT 1 GET
IF DUP OBJ- DROP TYPE NOT
THEN DUP DETACH
END PURGE
END DROP
archtemp flags STOF -PO
>> fixup’ STO
‘archtemp’ DUP CRDIR EVAL
<<.WHILE VARS DUP SIZE 2 >
REPEAT 1 GET DUP RCL
OVER PURGE SWAP
IF OVER TYPE 16 SAME
THEN DROP 0
END 0 -TAG STO
END DROP CLVAR HOME
{ archtemp fixup } PURGE
>> '-PQ’ STO f 'flags’ STO
THEN 1 ‘e’ STO
ELSE
IFERR
WHILE 0 PVARS DROP DUP SIZE
REPEAT 1 GET
DUP RCL OVER OBJ- DROP
IF DUP TYPE NOT
THEN DUP HOME DETACH
archtemp "™'L" SWAP + OBJ-
END STO PURGE
END DROP
IF m TYPE NOT
THEN DUP PURGE
END ARCHIVE
THEN 1 ’'e¢’ STO
END -PO
END p EVAL
IF e
THEN DEPTH d - 1 -
DROPN ERRN DOERR
END

>>

>>

Save the port, depth, path, flags, signal.
Trap errors.

Tag the name with the port number.
Program for use after RESTORE:

Get the next port 0 name/number.

If it's a library,

detach it.

Purge the object.

Restore archived flags and port 0 objects.

Create temporary directory.
Program to move objects back to port 0:

Recall and purge the variable.

If it's a library,

Substitute a number for the name.
Store in port 0.

Delete temporary variables.

Save program and flags in archtemp
Signal that an error occurred.

No error so far.

Trap error in moving objects or archiving.
If there are port 0 objects...

Get the next port name.

If the object is a library,

then detachit, and

make a name from its number.
Store in archtemp, purge from port.

Purge existing archive.

Make the new archive.

Signal that an error occurred.
Return objects to port 0.
Restore path.

If an error occurred,

clean up the stack and report.
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DATENAME Create a Name from the Current Date 3A18
level ] { level 1
v 'mmmdd’

<< RCLF -42 CF DATE TIME TSTR Get the time string.
"JANFEBMARAPRMAYJUNJULAUGSEPOCTNQOVDEC"
OVER 5 6 SUB OBJ- Get the month number.
1T - 3 * 1 + DUP 2 + SUB Get the month name.
SWAP 8 g9 SuB Get the day number.
STD + ™" SWAP + OBJ- Make the name.
SWAP STOF Restore flag —42.

>

port 0 libraries, you should turn the calculator off then on to reattach those libraries.

XARCHIVE also lets you substitute the string argument "lO" instead of a port number.
In that case, the archival user memory is transmitted as a backup object (section 3.4.12)
to cither the serial or infrared output port, for storage on a personal computer or
another HP48. To rcbuild memory from an external archive, you must transfer the
backup object into a global variable via the wired or infrared i/o port. Then recall the
backup object to the stack, and cxecute RESTORE followed by fixup, as before.

6.6 Calculator Resets

The HP48 provides a special operation, called a memory reset, that clears all global and
port 0 variables and restores all of the calculator’s default modes. Part of the memory
resct is a system halt, that by itself resets the HP 48’s execution without affecting stored
objects.

A system halt is obtained by pressing and the menu key together. This opera-
tion does all of the following:
e aborts all current execution;

o clears the stack, the return stack, all local memories, last arguments, the recovery
stack, the command stack, and the graphics display;

e turns off user mode;

* scts the last error number to zero and the last error message (section 9.6) to an
empty string; »

e detaches all libraries currently attached to the home directory, and executes the con-
figuration programs (section 6.4.3) of all libraries in the various ports;
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e rcestablishes the home directory as the current directory;
¢ activates the MTH menu;

e leaves global or port variables, alarms, and key assignments unchanged. All flags are
also left unchanged, except flag —62, which is cleared (see section 7.2).

A system halt is performed automatically when you turn the HP48 on, if you have
stored or removed any libraries from any ports since the previous time the HP 48 was
turned on, or if you have inscrted or removed memory cards, or changed a RAM card’s
write-protect switch position. This ensures that there are no references (section 6.4.2.2)
remaining to library objects that you may have removed.

A memory reset, for which you press the three keys , (A1, and [F] all together,
starts by executing a system halt. Then the HP 48 displays

Try To Recover Memorg?

[ VES | (MO

If you sce this display when you turn the calculator on, or at any other time when you
have not deliberately performed a memory reset, it indicates that the calculator has
detected a corruption of memory contents such that it can not continue normal opera-
tion without at least a partial memory reset. This corruption can be caused by a
hardware fault, including the effects of static electricity, by the execution of SYSEVAL
(section 3.10.1) with an incorrect system address, or just by defective built-in or add-in
software.

If you choose ENO= , the HP 48 performs a complete reset, deleting all global variables,
port 0 variables, key assignments, and alarms and resetting all flags to their default
values. The calculator displays Memory Clear when it is ready to resume manual
operation.

If you choose EYESZE at the Recover RAM prompt, the HP48 attempts to recover or

restore as many user memory and port O variables as it can by scanning through
memory for recognizable objects. If it detects a valid user memory, then it can usually
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restore it unchanged, except that key assignments and alarms are always lost. If it finds
invalid objects, it discards them and rebuilds as much of the user memory structure as it
can. In some cases when the home directory itself is corrupt, subdirectory objects therc
can be reconstructed, but they lose their names. The HP 48 makes up variable names for
these directories, naming them D.01, D.02, and so forth. When the automatic recon-
struction process is finished, the standard display is restored. Then you can inspect the
VAR menu to determine how much of user memory is intact.

During variable reconstruction, the HP 48 looks for library objects in memory to try to
determine where port 0 begins. Unfortunately, if it encounters a library that was stored
in a global variable, it takes that as the start of port 0, which means that some part of
user memory will be discarded. For this reason, you should not keep libraries in user
memory for long term storage--store them in a port instead.
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One of the strongest features of the HP 48 is its extensive customization ability. That is,
for the sake of a particular application, or just for general use, you can turn the HP 48
into a highly personalized tool, tailored to the computations and interactions that you
prefer. The customizing facilities of the HP 48 are as follows:

e System flags give you on/off control over the many HP 48 modes.

e Custom menus enable you to augment the built-in menus with your own specialized
menus.

e Key assignments change the actions of any of the shifted or unshifted keys.

e The vectored ENTER mechanism allows you to redefine the way the command line
interprets its entrics, and to change what the HP 48 does after cach keyboard action.

The basis of all of these mechanisms is thc HP48s programming capability, which
allows you to define complicated procedures (o associate with keys and menus.  In this
chapter, we will concentrate on the explicit customizing techniques, including some pro-
grams that illustrate the methods as well as serving as programming examples.

7.1 Modes and Flags.

A mode is a calculator sctting that acts as a form of global argument for certain opera-
tions, that saves you from having to supply that argument every time you cxecute the
operations. A classic cxample of a mode, common to most scientific calculators, is the
trigonometric angle mode, which determines how the trigonometric functions interpret
their arguments and results. The sine function is defined mathematically in terms of
dimensionless arguments expressed in radians; to compute the sine of an angle
expressed in degrees, you must multiply the argument by 7/180 before applying the sinc
algorithm. On the HP 48, you can skip the multiplication by setting the angle mode to
degrees, in which the SIN command assumes that its (real) arguments are entered in
degrees. Similarly, the ASIN command returns its (real) results in degrees, performing
the multiplication by 180/ automatically.

The current setting of a calculator mode is recorded by means of one or more flags,
where a flag is a memory location that contains one binary bit. For a simple “on/off”
mode like the ticking clock display, only one flag is nceded. A single flag is usually con-
sidered to be set or clear--if the flag bit is 1, the flag is ser; if it is 0, the flag is clear. For
a multi-state mode like the angle mode, which has three settings, two or more flags are
needed. In these cases the flag values taken together make up a binary number with
two or more digits, ranging from the two-bit number that encodes the angle mode up to
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the six-bit number that records the binary integer wordsize.

Some HP 48 modes are controlled by flags that are only accessible to the operating sys-
tem. You must switch these modes with manual operations; there is no programmable
control. Examples of these modes are the stack recovery or command stack
active/disabled modes, which are selected by means of modes menu keys ESTKZ and
ZCMD= ; command line insert/replace, selected by the SINSE menu key in the EDIT
menu, and the Matrix Writer entry-order mode, controlled by the EGO-= and £GO:
menu keys.

Hi

The majority of HP48 modes are represented by user flags, so called because you can
control their values manually and in programs. There are 128 user flags, numbered
from -64 to -1 and +1 to +64. Flags in the range —64 to ~1 are used for HP 48
modes and signals. Signal flags arc used to convey the nature of certain results, such as
floating-point overflow, when the use of an additional stack result would be incon-
venient. There are a few unused flags in this range, which is ordered to keep related
flags in groups numbered starting with a multiple of 5, plus 1. Flags 1-31 arc strictly
reserved for users’ programs. The remaining flags 32-64 arc nominally reserved for
libraries (the HP Solve Equation Library--which is built into the HP 48G/GX--uses flags
60-62), but you can use any of these flags as long as they don’t conflict with the libraries’
use.

The Icast commonly altered modes, such as the single-or-double key alpha lock, or the
vectored ENTER mode (scction 7.4), can only be sclected by means of their respective
numbered flags. Morc common modcs like the ticking clock display or symbolic cxecu-
tion (section 3.5.6.2) can be uscr flag controlled but also have keyboard or menu keys
with mnemonic labels (e.g. ZCLK= and ESYME ). Finally, the most important modes have
dedicated commands, like FIX and DEG, which are programmable as well as mnemonic.
(The rclative importance of the various modes was decided by the designers--if your
favorite mode was relegated to a mere flag, you can always write a little program to
alter the modc, and give it a mnemonic name).

In the HP 48, the default state of all of the system mode flags is clear, except for the
binary integer wordsize flags -5 to —10, which arc set. This means that in general, a
clear mode flag means "do the default behavior" and a set flag means "do the non-
default behavior” for the affected operations. Thus if you're trying to remember
whether to set or clear a particular flag in order to select a mode, you can use the
calculator’s defaults as a guide (assuming that you can remember those).
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7.1.1 Flag Commands

The commands you need to select a mode by means of its flags are SF (Set Flag) and
CF (Clear Flag), which set and clear the flag specified by a real number argument. For
example, —3 SF turns on numeric evaluation mode; -3 CF turns it off. You can also
determine the state of a flag; for example, 9 FS? returns a 1 to the stack if flag 9 is set,
or a 0 otherwise. The rcal numbers 0 and 1 used in this context are called stack flags,
because they can represent the binary values of a user flag so that you can manipulate
those values on the stack. The FS? command in effect copics a user flag value to the
stack. Stack flags are also useful in programming as logical faise (0) or true (1) values
(section 7.1). Note that set, true, and 1 are synonymous, as are clear, false, and 0.

In addition to FS?, the HP 48 also provides FC?, which returns true if a flag is clear;
and FS?C and FC?C which test a specified flag and then clear it. You can also recall
the values of all 128 flags by executing RCLF (ReCalL. Flags). This command returns a
list of the form { #m #n }. #m is a 64-bit binary integer representing flags —64 to —1;
its leftmost, or most-significant bit corresponds to flag —64, and its least-significant bit is
flag — 1. #n similarly represents flags 1 (least-significant) through 64 (most-significant).
The principal use of RCLF is to record the values of the flags so that those valucs can
be restored later by the complementary command STOF (STOre Flags). STOF takes a
list like that returncd by RCLF and scts all 128 flags according to the values of the two
binary integers in the list. STOF will also work with a single binary integer, which is
taken to represent the new system flag settings. Examples of using RCLF and STOF are
shown in the programs ASN41 (section 7.2.1.1) and XARCHIVE (section 6.5.4).

STOF and RCLF provide a convenient means for applying individual bit opcrations to
binary integers. The programs listed next allow you to sct, clear, and test a specified bit
in a binary intcger, where the bits arc numbered from 0 as the least significant (right-
most) bit.

SB Set Bit 8DB7
level 2 level 1 level 1
#n m rs #n'
<< RCLF ROT STOF Swap system flags and binary integer.
SWAP NEG SF Set the bit.
RCLF t GET Get the new integer value.
SWAP STOF Restore the original flags.
>>
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CB Clear Bit AC26
level 2 level 1 level 1
#n m wr #n'
<< RCLF ROT STOF Swap system flags and binary integer.
SWAP NEG CF . Set the bit.
RCLF 1 GET Get the new integer value.
SWAP STOF Restore the original flags.
BS? Bit Set? 822A
level 2 level 1 level 1
#n m (¥4 flag
RCLF ROT STOF Swap system flags and binary integer.
SWAP NEG FS? Test the bit.
SWAP STOF Restore the original flags.

7.1.2 The Modes Input Form
activates an input form (section 4.5) dedicated to calculator modes. The
most {requently changed modes are presented in the main input form display:

% fCALCULATOR MODES
NUMEEFR FORMAT: E1Aa]
AMGLE MERSURE: Degrees

COORD =Y:TEM: Rectanqul ar
¥ EEEP _CLOCK  _FM.

CHOOSE NUMEER DISPLAY FORMAT
| [cHoos]  [FLAG [ihNCL] Ok |

The three choose fields are for multi-state modes; for ANGLE MEASURE:, for example,
there are three choices: Degrees, Radians, and Grads. The three check fields activate
(when checked) the error beep, the status area date/time continuous display, and the
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choice of the comma as the real number fraction mark.

Other flag-controlled modes are accessible in the flag browser, started by ZFLAGE :

YZTEM FLAGS
Genetr-al solutions
02 Constant + sumb
1l Function * =sumb
14 Paument at end
19 »V2 =+ wector J

[ [ [#/CHE]  JiANGL] OK

This is a combination choosc/check box with an entry for each bi-state mode system
flag. “Checking” a selection with E/CHKE scts the flag that is numbered at the left edge
of the display. Also, the mode description changes to characterize the new state. When
checked, the General Solutions mode highlighted in the preceding display changes to
show its alternate mode:

Y3TEM FLAGS
2 Constant + sumb
03 Function + =symb
14 Paument at end
19 +42Z2 » vector J

[ [wcHE]  JiRNiL] OK

As in other choose boxes, you can move the highlight up and down with the cursor keys;
[<=2][A] and [V] move five lines at a time; and [>][A” and move to the begin-
ning and end of the list, respectively. Pressing one of the digit keys [0 through [6]

moves the selection highlight to the first flag whose two-digit number starts with that
digit.

7.1.3 System Flag Assignments

Table 7.1 summarizes the HP48 mode and signal flags, showing the modes associated
with setting each flag,
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Table 7.1. HP48 System Flags

Flag Name

Symbolic Mathematics

-1 Principal Values
-2 Symbolic Constants
-3 Numeric Execution

t

Binary Integer Math

-5to -10 Binary Integer Wordsize
~11, =12 Binary Integer Base
Floating Point Math

-15. -16 Coordinate System

-17, -18 Trigonometric Angle
-19 Complex ~V2

=20 Underflow Exception
=21 Overflow Exception

=22 Infinite Result Exception
=23 Negative Underflow
-24 Positive Underflow

=25 Overflow

-26 Infinite Result

=27 Symbolic Complex Display

1/0 and Plowing

—28% Simultancous Plots
-29% Axes Control

-30 Function Plot

=31 Curve Filling

-32 XOR Cursor

-33 1/0 Device

-3 Printer Device

-35 Binary I/O

-36 RECV Overwrite
-37 Double Space Printing
-38 Linefeed

-39 No Kermit Messages

Time Management

-40 Ticking Clock

-41 24-Hour Clock

-42 DMY Date Mode

~43 - Rescheduling Repeat Alarms
-44 Save Acknowledged Alarms

Meaning when Set

"Solving" returns only principal values
Symbolic constants evaluate to numbers
Functions return numerical results

Encode binary integer wordsize
Specify base

Specify coordinate system
Specify angle mode

-V2 create complex numbers
Underflow is an error
Overflow is an error

Infinite result is not an error
Negative underflow occurred
Positive underflow occurred
Overflow occurred

Infinite result occurred

(A,B) displays as A+Bx*i

Multiple expressions in EQ list are plotted simultanc-

ously

Do not draw axes in a plot made from the plot input

form

Equations y =f(x) plot y independently
No curve filling

Graphic cursor XOR’s with picture

1/0 is directed 1o the IR port

Printer output directed to the serial port
File transfer in binary mode

RECV overwrites variables of same name
Printed text is double-spaced

Suppress auto-insertion of linefeeds
Suppress display of Kermit messages

Date and time are displayed

Times in 24-hour format

Dates in DD/MM/YY format

Unacknowledged repeat alarms not rescheduled
Acknowledged alarms remain in appointment list
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-45 to —-48 Decimal Number Digits Specify number of digits for FIX, SCI, ENG

-49, -50 Decimal Number Format Select FIX, SCI, ENG or STD

=51 Fraction Mark Selection European fraction mark choice

=52 Single-Line Display Single-line display of level 1

-53 Precedence Display hidden parentheses in algebraics

54+ RANK Underflow RANK, DET, and other commands that computc a
matrix’s rank do not round anomalously small singular
values to zero.

Miscellaneous

=55 Last Arguments No last arguments

-56 Error Beeps No error or BEEP beeps

~-57 Alarm Beeps No alarm beeps

-58 Verbose Messages Suppress prompt messages

=59 Fast Catalog Show catalog equations by name only

=60 Alpha Key Action One key alpha-lock

-6l USR Key Action One key user keyboard-lock

-02 User mode User mode active

-03 Vectored ENTER User-defined ENTER active

-04 Index Wrap GETI or PUTI index has wrapped

tNot used on the HP 485/8X.

7.2 Key Assignments

In many of its built-in environments, such as the plot environment or the the Equation-
Writer, the HP 48 redefines the actions of various keys to perform operations specific to
the environments, and also disables other keys that have no relevance there. This same
capability is available for customizing purposes, through user key assignments. To assign
a key means to specify an object that is to be executed when you press that key, in place
of the normal built-in key action. You can assign any key, even , including any of
the six variations unshifted, left- and right-shifted, alpha-shifted, and alpha-left- and
alpha-right-shifted. Key assignments that you make are active whenever the HP 48 is in
user mode, and disabled otherwise; this makes it casy to switch between the normal key-
board and your custom keyboard.

In manual operation, you can switch the HP 48 into user mode by pressing the
key. By default, this key is a 3-state key similar to [ ] ; pressing it once turns on the
1USR annunciator, signaling that the action of the next key pressed will be the user key
assignment of that key. The next key after that reverts to its default definition. How-
ever, if you press twice consecutively, the 1USR annunciator changes to USER,
which indicates that user mode is locked on. All subsequent key presses will execute the
user key assignments for those keys (the EquationWriter and the MatrixWriter also
respect the user assignments; other built-in environments do not). User mode remains
in effect until you again press [<1][USR] .
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If you prefer, you can disable single-key user mode by setting flag —61. In that case, a
single press of activates user mode, much like the behavior of the key on
the HP 41, which was the original upon which HP48 user mode i1s modeled (single-key
user mode was copied from the HP71B). The state of user mode is reflected in flag
-62; sctting that flag turns on user mode, clearing it turns it off, and —62 FS? indicates
whether the mode is active.

7.2.1 Single Key Assignments
To make an individual key assignment, the command ASN takes thc object to be
assigned to a key from level 2, and a keycode number rc.p from level 1:

e The digit r is the key row counting from 1 at the top row (menu keys), and ¢ is the
key column, counting from 1 at the leftmost column. The digit p represents the key
plane (shift):

Shift Plane p

none Oorl
2
3
[a] 4
S
6

Thus, for example,
'ABC’ 34.3 ASN
assigns the name ABC to [>][<] (row 3, column 4, shift 3-{~>]).

The key assignment object can be any single object, either a built-in command, an
XLIB name for a library command, or any user-created object. For most of these
object types, the user mode behavior of the assigned key is similar to the action of
default keys: in immediate-mode, the key object is executed; in algebraic entry mode
the key object is copied to the command line if it is allowed within algebraic expres-
sions; in program entry mode, the object is copied to the command line. There are
two exceptions:

e Keys assigned to string objects echo those strings to the command line, without
their surrounding "" delimiters, regardless of the entry mode. This allows you to
provide single-key entry for inaccessible characters or multi-character strings.
For example, if you need to use the X character, you can assign it to the [a][x]
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key:

215 CHR 754 ASN
e Keys assigned to programs are not usable in program entry mode--they just beep.
This restriction is based on the assumption that keys defined by programs are

meant for immediate execution, and so to echo them into the command line
would more likely be a nuisance than a positive feature.

7.2.1.1 An Interactive Key Assignment Program

| AsN41

<< RCLF STD -55 CF

ASN HP41-style 9CF1

Save current modes, activate STD
and argument recovery.

"Assign: © DUP {V} Prompts for definition object.

IFERR INPUT Enter definition.

THEN 3 DROPN If ON, then quit.

ELSE Otherwise, proceed.
IF DUP "" SAME If no entry,

THEN “(Clear)" SWAP

ELSE "{" OVER + OBJ- 1 GET
END

3 ROLLD + 3 DISP

"To: ™ DUP 5 DISP

"(Press a key)” 10 CHR + 6 DISP

then show (Clear);
else convert entry to an object.

Show the object.

Prompt for a key.

IFERR 0 WAIT Wait for a key.

THEN DROP 9t If ON, then keycode 91.
END

SWAP OVER + 5 DISP Show the keycode.

"" 6 DISP

IF OVER "" SAME If definition is null,

THEN DELKEYS DROP
ELSE ASN
END 1 WAIT

END STOF

>>

clear the key definition;

else make the assignment.
Pause to make the display visible.
Restore old modes.

In the HP41, ASN is an interactive operation in which you assign a command or pro-
gram by spelling its name, and specify a key by pressing it. This friendly style can be
imitated on the HP 48 by means of the program ASN41, listed above. Execcuting ASN41
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prompts you to enter a key assignment object into the command line (you can press
to cancel the new assignment), either by typing it in or by pressing a keyboard or
menu key for the object. When you then press , ASN41 displays (Press a key),
and waits for a key press (which can be ). After the key press, the display shows
the key code for one second, and the assignment is complete. If you press ENTER at
the first prompt without entering any object, any current key assignment for the desig-
nated key is cleared.

7.2.2 Multiple Key Assignments

In application programs, it is often desirable to assign several keys, or even the entirc
keyboard. You can achieve this with the command STOKEYS, which takes as input a
list of object-key pairs like those used by ASN:

{ object, rcp, object, rcp, --- object, re.py }

The assignments made by STOKEYS (and ASN) arc cumulative; the new assignments
specified 1n the argument list are added to those already activated by previous uses of

STOKEYS and ASN.

You can recall the list of all current key-object pairs by exccuting RCLKEYS. Like
RCLF and RCLALARM, RCLKEYS is most uscful for saving the current state of the
HP 48 so that it may be restored later.

The list returned by RCLKEYS may include the name S (for System) at the start of the
list, without any corresponding key code (making an odd number of list clements). If it
is present, the S means that keys that arc not otherwise assigned retain their default
unassigned behavior in user mode. Similarly, if you include an S at the head of a key-
object list uscd by STOKEYS, the default behavior of unassigned keys is restored.

Disabling unassigned keys is one of the features of DELKEYS (DELete KEYs). In gen-
eral, DELKEYS removes the user key assignment of one key specificd by a keycode rc.p,
or of multiple keys specified by a list of keycodes. As a shortcut, 0 DELKEYS clears all
current user key assignments and restores all keys’ default actions. Furthermore, the
name S is also accepted as an argument by DELKEYS; 'S’ DELKEYS disables all keys
that do not have user key assignments, so that they merely beep when pressed in user
mode. This is useful for programs that want to halt for user input, and wish to restrict
the user’s choices to a few selected keys. A typical program sequence might look like
this:
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RCLF RCLKEYS - flags keys Save the current key assignments
and flags.

<< 0 DELKEYS Clear current key assignments.
'S’ DELKEYS Disable unassigned keys.
{PRG1 82 PRG2 83 PRG3 84} Assignments for 1, 2, and 3 keys.
STOKEYS Make the assignments.
-62 SF Turn on user mode.
"Press 1, 2, or 3" PROMPT Stop and prompt for a choice.
keys STOKEYS Restore the original assignments.
flags STOF Restore the flags.

>>

Executing this sequence shows the prompt Press 1, 2, or 3, inviting the user to press
one of thosc three keys. All other keys are disabled, so that you can not do anything
else that might disrupt what the program is trying to do. When you press one of the
indicated keys, it executes one of the names PRG1, PRG2, or PRG3, which presumably
arc the names of programs. Each of those programs should terminatc with CONT, to
return execution to the above sequence, which finishes by restoring previous key assign-
ments and flag scttings.

For cases where you want to suppress most, but not all, default key assignments,
STOKEYS accepts the name SKEY as a special object that you can assign to one or
more keys. When you do so, the sclected keys retain their default behavior even if you
later execute 'S’ DELKEYS to disable unassigned keys. For example,

{ SKEY 25 SKEY 34 SKEY 35 SKEY 36 } STOKEYS 'S’ DELKEYS
disables all user mode keys except the four arrow keys.

You can paint yourself into a corner with DELKEYS: in user mode, if you execute 0
DELKEYS 'S’ DELKEYS, you disable the entire keyboard--including the key
you need to turn off user mode. The only recourse in this situation is to execute a sys-
tem halt ( - together). A system halt turns user mode off (flag -62 is the
only flag affected by a system halt). Afterwards, you might want to execute { S } STO-
KEYS or 0 DELKEYS to prevent falling into the same trap again.

7.2.3 Key assignments and memory

If you use MEM to check the amount of free memory before and after you make your
first key assignment, you will find that the assignment has used more than 275 bytes of
memory (to be precise, 275 bytes plus the size of the assigned object). Fortunately,
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subsequent key assignments are not so expensive. The HP 48 stores its key assignments
in a list stored in a normally inaccessible part of the home directory. When there are no
assignments, the list is empty. However, upon the first execution of ASN, the HP 48
adds 49 objects to the list, each of which records the assignments for one key. With one
assignment, 48 of the objects are themselves empty lists (five bytes each). The remain-
ing object is a list that contains the assignment objects for each of the six planes of the
assigned key; five of these are empty lists, and the sixth is the assignment object (30
bytes plus the assignment object size). For subsequent assignments,

¢ Each previously unassigned key costs 25 bytes plus the new object size, as the empty
list for the key is replaced by a list containing five empty lists plus the object;

e Each assignment for a ncw plane of a previously assigned key replaces an empty list
with the new object, requiring the object’s size less five bytes.

You can assign any object to any key. However, if a large object is stored in a global
variable or a port variable, it is more cfficient to assign the object’s variable name to a
key rather than the object itself, since the assignment list then contains the name rather
than the object. Keeping assignment objects small also gencrally maximizes the speed
of key assignment cxccution by minimizing the size of the list that the HP 48 has to
scarch to find an assignment.

7.3 Custom Menus

The VAR menu (section 6.1) 1s a convenient facility for displaying the names of stored
objects, and providing single-key store, recall, and cxccution of the objects. However,
once you have more than few global variables, the VAR menu becomes harder to
manage, since the positions of entries in the menu changes as objects are stored and
purged, and also the vartables may be distributed among scveral directories and so
harder to find.

The HP48 custom menu system allows you to define one or more menus of your own
devising, in which you can mix commands and other objects as well as variable names,
in any order you choose. There is even a primary key that activates a custom
menu, making such menus extremely convenient. Custom menus can be temporary or
permanent, and you can associate one permanent custom menu with any directory.

A permanent custom menu is defined by a list of one or more objects, stored in the
reserved-name global variable CST. The first six objects define the first page of the
menu, in left-to-right order, the second six define the second page, etc., just like the
VAR menu. When you press , the HP48 searches the current directory for CST; if
it is not present, the search continues in the usual way up through the parent directories.
CST may contain a list of objects, or it may contain the name of a global variable (in
the current path) that contains a list. For example, if you execute
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{A B C} 'CST" STO

then press :

X
(=]
=
m
[

TR AT

[ a | & | € [ 1 1 |

The menu keys for A, B, and C in this custom menu have the same behavior as VAR
menu keys for those variables, including the left- and right-shifted actions. In gencral,
the actions of shifted and unshifted CST menu keys depend on the type of the matching
objects in the CST list (sce Table 7.2 below).

The command MENU provides an alternatc way to storc a custom menu list. MENU
takes a menu list (or the name of a list) and stores it in CST in the current directory,
then automatically activates the custom menu. Generally, the only time you might usc
'CST’ STO instead of MENU is when you want to define a custom menu for future use,
but do not want to activate that menu immediately.

Like any other menu, the custom menu remains active until another menu is activated.
If you change directories while the custom menu is active, the menu is updated if neces-
sary to reflect the contents of CST in the new directory. However, storing a new menu
list in CST (or purging it) does not affect the displayed menu until you press [CST] again
or change directories.

It is also possible to activate a temporary custom menu that does not use or change the
contents of CST, by using TMENU instead of MENU. The menu defined by TMENU’s
list or name argument persists until you change menus (~][MENU] restores it). Pressing
reverts to the menu defined in CST, not that activated by TMENU. TMENU is
most useful in programs, where you wish to prompt the user with a particular menu,
then have no further use for the menu. In many cases a menu used within a program
has no meaning once the program is finished, so TMENU is a better choice than MENU.
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7.3.1 Built-in Menus

You can also use MENU and TMENU to activate a built-in menu, by supplying a real
number argument for either command (there is no difference between the commands in
this case). The number must be of the form mmmm.pp, where mmmm is a one- to
four-digit number that specifies the menu, and pp is a two-digit number that specifies
the menu page. For example, menu 1.01 is the first page (.01) of the custom menu
(menu 1) and 2.02 is the second page of the VAR menu (menu 2). (For page 1 of any
menu, you can omit the pp digits and just specify an integer menu number). Note that
the contents of CST remain unchanged when you use TMENU or MENU with a number
argument. Exccuting MENU or TMENU with thc number of a non-existent menu
returns a blank menu.

There is a certain logic to the numbering of HP 48 menus, although there is little practi-
cal consequence to the scheme. Menu numbers 0, 1, and 2 are assigned to the alterable
mcnus--the temporary custom menu, the ordinary CST menu (1) and the VAR menu,
respectively. For add-in library menus, the menu number is just the library number
(section 3.4.11). The permanent built-in menus are numbered in the order that they
“appear” on the HP 48 keyboard, starting with the menu as menu 3, and number-
ing left-to-right through its sub-menus and so on across and down the keyboard. You
can determine a menu number from these rules, or you can look up the number in a
manual. But it is generally casiest just 1o activate the desired menu and page, then exe-
cute RCLMENU, which returns a number mm.pp for the current menu. Of course, you
have to cxecute RCLMENU by typing it into the command line, or by assigning it to a
uscr key--using ERCLM= always returns the number of the menu containing that key,
which happens to be 68.01. [In the HP48S/SX, the number of this menu is 21.02. The
difference in menu numbers between is one of the very few program incompatibilities
between the S and the G models. A program that activates one of the fixed built-in
menus must be altered to move from one HP 48 version to another.]

To illustrate the use of MENU for built-in menus, suppose that you find yourself using
PUT and GET more frequently than other PRG menu commands. Then you might
assign << 35.01 MENU > to (key 22); then in user mode, pressing takes
you immediately to the menu containing PUT and GET.

7.3.2 Custom Menu Object Types

The precise action of a custom menu key depends on the type of the object correspond-
ing to that key in the custom menu list. As we mentioned previously, if an object is a
name, the custom menu key action is the same as that of a VAR menu key. For most
other object types, the “execute this object” immediate-mode action of an unshifted
menu key is retained from the VAR menu, but only names and unit objects have
automatic shifted-key definitions. Furthermore, the effect of the menu keys in
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algebraic- and program-entry mode also depends on the type of object. Table 7.2 shows
the custom menu behavior exhibited by each HP 48 object type, for all four entry modes.

Key-Object
Type

Name

Port Name

Number

String

Unit

Algebraic

Program

RPN Command

Function

Table 7.2. Custom Menu Key Actions by Object Type

Entry
Mode

Immed.
ALG

PRG

ALG PRG

Immed.
ALG

PRG

ALG PRG

Immed.
ALG

PRG

ALG PRG

any

Immed.
ALG

PRG

ALG PRG

Immed.
ALG

PRG

ALG PRG

Immed.
ALG

PRG

ALG PRG

Immed.
ALG

PRG

ALG PRG

Immed.
ALG

PRG

ALG PRG

Unshifted
Action

Enter the name
Echo the name
Echo the name
Echo the name

:n:name RCL EVAL
:n:name RCL EVAL
Echo the name
Echo the name

Enter number

Echo with no spaccs
Echo with spaces
LEcho with no spaces

Echo string, no quotes

Enter unit, multiply
Echo unit part
Echo unit part
Echo unit part

Enter object

Echo object, no "’
Echo object with "’
Echo object, no "’

Enter program
Enter program
None
None

Enter command
Enter command
Echo, no spaces
Echo with spaces

Enter function

Echo, with alg. syntax
Echo with spaces
Echo, with alg. syntax
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Left-Shifted
Action

name STO
name STO
Echo 'name’ STO
Echo "name’ STO

:n:name STO
:n:name STO
Echo :n:name STO
Echo :n:name STO

None
None
None
None

None

Enter unit, CONVERT
Enter unit, CONVERT
Echo "unit’ CONVERT
Echo 'unit’ CONVERT

None
None
None
None

None
None
None
None

None
None
None
None

None
None
None
None

Right-Shifted
Action

name RCL
name RCL
Echo 'name’ RCL
Echo 'name’ RCL

:n:name RCL
n:name RCL
Echo :n:name RCL
Echo :n:name RCL

None
Nonc
None
None

None

Enter unit, divide
Enter unit, divide
Echo 'unit’ [
Echo ‘unit’ /

None
None
None
None

None
None
None
None

None
None
None
None

None
None
None
None
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List (See section 7.3.3)
Other Immed. Enter object None None
ALG Enter object None None
PRG Echo object with spaces  None None
ALG PRG  Echo object with spaces  None None

“Enter object” means perform ENTER, then execute the object.

“Echo object” means copy the object to the command line.

*Alg. syntax” means appending parentheses where appropriate, and surrounding with spaces if the function
is a multi-character infix operator like MOD or XOR.

The actions associated with built-in RPN commands and functions also apply to XLIB names, according to
whether a name refers to a library command or to a function.

The actions described for port names also apply when the name has the extended form :zag:{ list } (section
6.5.3). Note, however, that the left-shifted store action fails if the corresponding port variable already
exists (section 6.4.2.2).

The ALG PRG actions of left- and right-shifted menu keys for names, port-names, and unit objects also
turn off ALG.

Some points worth noting from Table 7.2:

¢ The menu key for a string cchoes the string to the command line without quote del-
imiters, which enables you to define typing aids--keys that echo a character scquence
that you use frequently, or perhaps a special character that is unavailable or incon-
venient on the alpha keyboard.

e The menu keys for unit objects work just like the keys in the various UNITS menus.
This 1s very useful for creating units menus that combine units from different built-in
menus or pages plus units that you have defined yourself.

e A program is the only object type that is not echoed to the command line when an
assigned key is pressed in algebraic or program entry mode. Generally, program
assignments arc meant for immediate execution, so this is not a very important limi-
tation.

By default, a custom menu key label is derived from the associated menu list object,
showing the first few (up to five) characters from the display form of the object. Espe-
cially for extended objects like programs, where you can only see the leading << and
one or two characters from the first object in the program, such labels may not be too
helpful, since you can’t see enough of the object to recognize it. The HP 48 solves this
problem by allowing you to define labels that are independent of the objects that define
the menu key actions.
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7.3.3 Menu Key Labels and Shifted Menu Key Actions

If any of the objects in a custom menu key list is itself a list, its contents are used to
create an extended form of menu key definition that permits specification of the menu
key label, and assignment of one or both shifted key actions. A single-key list contains
two objects:

{ label-object action-object }

e The first object in the list, normally a string or name with up to 5 characters, is used
to form the menu key label. If the object is other than a string, a name, or a 21X8
graphics object, the label text will include the leading object delimiter, if any. If the
object is a 21X 8 graphics object, it is displayed as the key label.

e The second object in the list defines the key actions, following the rules listed in
Table 7.2. (If the second object is absent, there will be a menu key with a labcl
defined by the first object, but it just beeps when pressed.) One more level of exten-
sion is available: if the second object is itself a list, it may contain one, two or three
objects, so that the most general custom menu list object looks like this:

{ label { no-shift left-shift right-shift } }.

The three objects in the inner list define the unshifted, left-shifted, and right-shifted
key actions for the menu key (which is labeled by the label object), following the
rules for unshifted actions listed in Table 7.2. Note that this applies to algebraic and
program entry mode as well as immediate entry mode (section 4.3.1)--the key action
object determines what text is echoed to the command line (and whether
parcntheses are included), not the label object.

By way of cxample, consider a custom menu defined by the following list:

{ GET
"HELLO"
{"5SDROP" << 5 DROPN >> }
{SINH {SINH ASINH}}
{FOO {<<{HOME UTIL FOO} RCL EVAL >>
<< PATH HOME UTIL SWAP 'FOO' STO EVAL >
< {HOME UTIL FOO} RCL >
}

{ GROB 21 8 FFFFF1D100711E0E0110F10110F1011E0E01D10071FFFFF1  KILL }
}

Executing MENU with this list yields a menu that looks like this:
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[ SET_[HELLOJSROP] SINH | FOD [w=sal]

The individual menu keys are defined by the menu list as follows:

The first key SGET= illustrates the simple assignment of a command to a key, with no
shifted actions.

The second key SHELLOZ comes from the string "HELLO". This is a “typing aid”;
the unshifted key echoes HELLO to the command line without delimiters or sur-
rounding spaces. The shifted key has no action.

The next key E5DROPE illustrates labeling a menu key with a string while the key
action 1s defined by a program.

The £SINHE key has both an unshifted action (SINH) and a left-shifted action
(ASINH).

ZFOO= has actions defined for both the left- and right-shifted key as well as the
unshifted key. It is designed to act like a VAR menu key for the variable FOO in the
HOME UTIL directory, that will work regardlcss of the current directory.

The next key is labeled by the 21X 8 graphics object, and executes or echoes KILL
when pressed.

You can create the graphics object by executing the following sequence:

ERASE PICT {#0 #0} {#20d #7d} DUP2 DUP2
LINE BOX {#0 #7d} {#20d #0} LINE SUB

7.4 Vectored ENTER

The normal process associated with ENTER is described in section 4.3.3. As mentioned
there, however, you can modify that process by means of an HP 48 feature called vec-
tored ENTER (the name comes from computer science jargon, referring to the fact that
the system looks for a vector--a pointer to a replacement procedure--before executing a

-206-




Customization 7.4

standard procedure). This feature gives you a powerful customization capability, since it
allows you to redefine the way command line text is interpreted, and a chance to exe-
cute additional commands after command line entry and execution are completed.

Three conditions must be met to activate vectored ENTER:

1. At least one of the variables «ENTER and BENTER must exist, in the current
path.

2. Flag —63 must be set. The use of a flag prevents the HP 48 from searching for
the special variables when the flag is clear, thus speeding up the ordinary ENTER
process.

3. Flag -62 must be set. This is the user mode flag; including this flag as part of the
vectored ENTER sctup gives you a convenient keyboard means (<] [USR] ) with
which to turn vectored ENTER on and off.

When the two flags are set, the HP 48 searches for the variable «ENTER before parsing
the command line in the usual way (step 2 in section 4.3.3). If the variable cxists, the
command linc text is not parsed but is just entered into stack level 1 as a string object,
following which oENTER is cxecuted. Since this execution replaces normal command
line parsing and execution, you can storc in « ENTER a program that interprets and uses
the command line text in any manner you pleasc. Furthermore, since OBJ- “executes”
a string object as if its text were cntered in the command line, you can define oENTER
as merely a preprocessor that modifies the command line text and then uses OBJ- to
continue with normal processing. This technique is used in the binary calculator pro-
gram BINCALC described below, to save you from having to type a # when you enter a
binary integer.

After «ENTER is finished, the object assigned to the key that started the ENTER pro-
cess is executed. Then, after its execution is complete, the HP 48 searches the current
path for a variable BENTER. If that variable exists, a string representing the key object
is entered into level 1 and BENTER is executed. In general, BENTER is intended to
contain a program that performs some operation on the result of a command line entry;
the key object string is made available for record keeping purposes.

A straightforward example of the use of vectored ENTER is to create a simple
calculation-tracing mode using a printer. Store the following program in o ENTER:

<< PR1 OBJ- >

This routine copies the command line contents to the printer, then uses OBJ~ to do
normal command line processing. You also need this program for BENTER:
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<<'[" SWAP + ']" + PR1 DROP PR1>>

The BENTER program surrounds the key object string with brackets [], then prints it,
followed by the level 1 result of the entire execution. This example reveals one limita-
tion of the BENTER process: only keys that correspond to programmable, named
objects--commands, XLIB names, global names, and local names--return a meaningful
string for BENTER. For other object types, plus unnamed built-in objects such as
ENTER itself, only an empty string is returned. For these cases, the above BENTER
program prints empty brackets [].

7.4.1 Examples

The vectored ENTER system along with the other HP 48 customization facilities enable
you to tailor the HP48 into many different specialized calculators. In this section, we
will give two cxamples, onc that focuses the HP 48 on binary arithmetic calculations, and
another that turns the HP 48 into a “fraction calculator.”

I BINCALC Binary Integer Calculator DE9SF I
<< «ENTER program:
< IF DUP """ # If there is command line text,
THEN "#" SWAP + OBJ- prepend #. then execute.
ELSE DROP
END
" Binary Calculator” 10 CHR + Show a message.
1 DISP 1 FREEZE
> """ OVER EVAL 'aENTER’ STO [Show the message and store the program.
RCLKEYS RCLF RCLMENU
- keys flags smenu Save the key assignments, flags, menu.
<< 0 DELKEYS Remove current key assignments.

{"A" 41 "B" 42 "C" 43
"D" 44 "E" 45 "F" 46

} STOKEYS Assign hexadecimal letters to row 4.
-63 SF -62 Activate vectored ENTER.

SF 15.01 TMENU Turn on the binary menu.

HALT Halit for binary calculations.

flags STOF Restore flags.

0 DELKEYS keys STOKEYS Restore key assignments.

"o ENTER" PURGE Discard « ENTER.

smenu  MENU Restore the original menu.

>>
>>

Executing BINCALC displays the message Binary Calculator, and activates an cnviron-
ment in which it is assumed that all command line entries are to be binary integer
objects, one per command line. The keyboard is redefined so that the fourth-row keys
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echo the hexadecimal digits A - F, to supplement the ordinary number pad for hexade-
cimal entry. The program uses those keys rather than the menu keys, in order to leave
the latter available for other menus, especially for the base opcrations menu ( [MTH]
ZBASEZ ) menu. As long as the environment is active, you can perform RPN arithmetic
and other operations on binary integers, entering the intcgers without the # delimiter.
You can temporarily disable the special environment with the key, and re-
cnable it with the same key. Finally, when you want to resume normal operations, press
. This restores the key assignments, flags, and menu that were present when
you executed BINCALC, and reverts to the standard environment.

BINCALC’s demands on vectored ENTER are modest. In the next example, FRACALC,
the program takes over command linc interpretation entircly. FRACALC executes simi-
larly to BINCALC: an cnvironment is cstablished in which command line entrics arc
assumed to be fractional numbers. You enter numbers in the form i n.d, where i is the
integer part, n (separated from i by a space) is the numerator, and d is the denomina-
tor. n and d may be separated by a period or a comma. Examples:

123 s 142/3
456 - '-4-5/8
8.12 2/3"
-1,2 s 12

You can apply immediate-exceute commands to the stack fractions, and their results will
also be fractions:

112 3 23 i '5+1/6'

You can disable fraction cntry by turning off user mode. Press CONT] to terminatc
the fraction environment entirely.

FRACALC uses ~Q to convert decimal numbers to fractions, with 5 decimal places of
accuracy. You can change the 5 FIX in the program to another value to change this
accuracy when you want to deal with denominators larger than three or four digits.
However, too large a value may cause uncxpected fractions to be rcturned for some
small denominators.
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FRACALC

Fraction Calculator Co1B

<
<<
IF DUP SIZE DUP
THEN OVER "" POS
3 PICK DUP """ POS
SWAP """ POS MAX
DEPTH 4 - - cmd len int div stk
<< IFERR
IF div
THEN cmd int div 1 - SUB OBJ-
cmd div 1 + len SUB OBJ- /
IF int
THEN cmd 1 int SUB OBJ-
DUP SIGN ROT * +

END
ELSE cmd OBJ-
END
THEN
IF DEPTH stk - DUP 0 >
THEN DROPN
END cmd "Invalid Entry” DOERR
END
ELSE DROP2

END " Fraction Calculator” 10 CHR +
1 DISP 1 FREEZE
> "" OQVER EVAL '«ENTER’ STO
<< DROP
IF DEPTH
THEN
IF DUP TYPE 9 OVER SAME
SWAP NOT OR
THEN -NUM
DUP P SWAP FP
10 RND 5 FIX -Q STD +
END
END
> ‘BENTER’ STO
RCLF - flags
<< -62 SF -63 SF -51 CF STD HALT
flags STOF
>>
"aENTER’ PURGE
"BENTER’ PURGE

>>

Start of  ENTER procedure.

If there is command line text, parse it.
End of integer part, if any

Find a “.”, or

find a “,”.

Store parameters and stack depth.
Error trap for invalid entries.

If there is a fraction,

separate out the numerator,

and divide by the denominator.

If there is also an integer part,

get the number.

Add the fraction with the same sign.

No fraction, so assume integer entry.

Error handler:
Discard extra stack objects.

Report the error

Discard empty command string and size.

Show the message and store the program.
Do nothing if stack is empty.

If the last entry is an algebraic,

or a real number,

then convert to a fraction:

Get the integer and fractional parts.
Convert to a symbolic fraction.

Save the current flags.
Halt for binary calculations.
Restore original flags.
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The rich command set of the HP 48 allows you to solve many problems merely by press-
ing a few keys. However, where the HP 48 really excels is in the ease with which you
can link command sequences together into procedures. This allows you to solve com-
plex problems by breaking them down into simple pieces. Once a procedure
corresponding to a problem’s solution is devcloped and stored, you can execute it any
number of times while you vary the input data.

The term programming is conventionally used for the process of recording a sequence of
calculator instructions in such a manner that you can later replay the sequence any
number of times without having to rcenter the instructions. Here, we will use the more
gencral term problem solving to describe the various HP 43 solution strategies, of which
programming--creating program objects--is just one of several.

A problem solution gencrally consists of three parts:
1. Data input;
2. Data processing and calculations;

3. Results output.

Each of these stages can be simple or complicated. To enter data, for example, you can
usc a program that just takes one or more objects from the stack which arc presumed to
be there when the program is exceuted. Or, your program can prompt for cach
required value by halting with a text or graphical display that asks you for a specific
input. Similarly, a program can rcturn its results to the stack, or it can display cach
result with an identifying text label.

Regardless of the complexity of a calculation, in most calculators the only method of
automating calculations is to create a program, complete with labels and line numbers.
While this restriction has the virtue of simplicity in that there are no alternatives, the
process can be cumbersome for simple procedurcs, particularly for straightforward
mathematical expression evaluation. The HP48 provides a series of problem solving
alternatives, ranging from simple expression evaluation to programs with loops,
branches, recursion, etc. Problem solving can be both simpler and more complicated
than in other calculators. In general, it is easier to program any given calculation on the
HP48; additional complication only arises really when you are dealing with problems
that are not soluble at all on other calculators.

The HP 48 problem-solving alternatives sort roughly into four approaches:
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HP Solve;

User-defined functions;

Symbolic manipulations;

General programming,.

These are listed roughly in order of increasing complexity; not so much in the complex-
ity of the mathematics involved but rather in the amount of mental effort you need to
translate a real problem into HP48 terms. The classification is somewhat imprecise
because there’s a great deal of overlap, such as programs that contain user-defined func-
tions; HP Solve exercises that use programs; even algebraic objects that execute pro-
grams. With all of these options, your challenge is to determine which approach is most
appropriate for a particular problem.

In the remainder of this chapter, we will show which types of problems are suitable for
cach general problem solving method, then consider user-defined functions as an initial
exercise in HP 48 problem solving. HP Solve and symbolic algebra are left for detailed
study in Part II. The remaining chapters of Part I are devoted to various programming
tools and mcthods.

8.1 HP Solve

HP Solve, which is cssentially a combination cxpression-cvaluator and root-finder, pro-
vides an cxceptionally easy method of problem solving on the HP48. It is suitable for
any problem that can be reduced to a single equation relating all of the variables in the
problem, and for which a real-valued numerical answer is sufficicnt. The greatest bene-
fit of HP Solve is that you don’t have to solve the equation formally for the unknown--
all you have to do is enter any equation that relates the unknown to the known vari-
ables. Furthermore, you can interchange the roles of known and unknown variables as
you go along, without doing any additional work to restate the problem.

A prototype problem ideal for the solver is the simple “cost-of-travel” equation:
COST = DISTANCE X PPG / MPG,

where PPG stands for “price per gallon,” and MPG stands for “miles-per-gallon.” This
single equation relates all the relevant parameters, and has the virtue of containing only
simple arithmetic operations, so that there is only one possible solution for any choice of
values for any three of the variables. To address this problem with HP Solve, all you
have to do is enter the equation as written above (with '’ delimiters) press SOLVE
SROOTE S EQ = to select it as the current equation, then press ESOLVRE . The
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calculator presents you with the solve variables menu, which provides a menu key for
each of the four variables:

EG: 'COST=DISTRMCE*FFG

1
3
c
1

[CoETIEETA(FPE 1 Fa EREL ]

You can usc the menu to storc values in any three of the variables and solve for the
fourth.

Contrast this simplicity with the process you have to follow on other calculators without
HP Solve. For cach choice of unknown variable, you have to

a.  Solve the equation formally (on paper) for the unknown;

b. Translate the solved equation to program form;

¢.  Add input prompting steps to the start of the program, and output labeling to the
cnd. ‘

d. Enter the program using the calculator’s program editor;

¢. Run the program for cach new set of input parameters.

If you're very clever, you can figure out how to combine the four separate programs into
one, where the program figures out from the inputs which variable is to be calculated
and thus which branch of the program to use--in other words, to duplicate what the HP
Solve does for you automatically.

8.2 Symbolic Manipulations

The HP 48 and its predecessor the HP 28 are unique among calculators in their ability to
apply mathematical operations to “symbolic” quantities--objects for which no numerical
value has been assigned. If you're a student learning algebra or calculus, or using their
techniques in other mathematical or scientific studics, this capability may be very excit-
ing. However, if you're not directly interested in algebra for its own sake, you might
wonder why these symbolic capabilities are important to you.
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Actually, if you use a programmable calculator at all for more than simple keyboard
arithmetic, you are already performing a kind of symbolic operation. Any time you per-
form a calculation more than once, using varying data, you probably represent the calcu-
lation symbolically at some point. In particular, when you write a program to automate
the calculation, that program is a symbolic operation. You write it to accept certain
inputs, without specifying their values, and to compute an unknown result. This is no
different in principle from writing an algebraic expression on paper. An expression also
“works” with unspecified inputs (variables) and returns a previously unknown value
when you evaluate it.

So in the sense that any program is a symbolic calculation, any programmable calculator
is a “symbolic” machine. The important contribution of thc HP 48’s symbolic capabili-
ties is that they allow you to apply mathematical operations to the programs themselves,
and obtain new programs as results. For example, consider a program that recalls the
valuc of a variable and doubles it. In a conventional language like BASIC, the program
is

100 Y =2*X

200 END
But supposc that after entering the program you realize that you are really interested in
the sine of the result, sin(2v). You have no choice except (o rewrite the program, in
this case, editing line 100, being sure to enter the SIN in the right place and to include
the parentheses.

On the HP 48, the original “program” consists of the algebraic objeet "2#X’. To change
this into the new program 'SIN(2*X)’, all you have to do is cxecute SIN when the origi-
nal cxpression is in level 1. The parentheses arc automatically inserted. In cffeet, the
calculator writcs a new program for you--all you have to do is use the same keystrokes
on the symbolic “program” as you would usc with a numerical quantity.

Another way to sce the value of the HP48 capabilitics is to consider a general
problem-solving process that consists of these steps:

1. Identify the problem.

2. Determine the known and unknown quantitics.

3. Figurc out the mathematical relationships between the quantities.
4. Solve the relationships for the unknowns in terms of the knowns.
5

For each set of known quantitics, evaluate the solved relationships to obtain
numerical values for the unknowns.
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When you use a conventional calculator, the calculator can only enter the process at the
final stage. Once you have equations for the unknowns, you can program those equa-
tions into the calculator, enter numerical values for the known variables, and run the
programs to return the numerical values for the unknowns. The HP48, on the other
hand, can enter the process as early as step 2. You can use its symbolic capabilities to
work out the relationships and solve for the unknowns--steps for which you would need
pencil and paper using another calculator. The symbolic solution that you find with the
HP48 is also the “program” you can use for repeated evaluation of the unknowns with
different inputs. Even if the equations you derive can not be solved symbolically for the
unknowns, you can still use the Solver to obtain numerical results, without any further
programming.

As an example of this process, consider the classic introductory calculus problem:
A farmer has 100 yards of fencing to enclose a rectangular field, which is
bounded on one side by a river. What length (L) and width (W) of the
field gives the maximum area?

= Solution:

Steps Keystrokes Results

1. The length of the fence

is 100 yards. "100_yd=L+2*W’ "100_yd=L+2+W’
2. Solve for L. ‘L' [<][SYMBOLIC|SISOL= 'L=100_yd -2+W’
3. Assign this value to L. DEF
4. The area of the field 1s

L times W. 'AREA=L*W' "AREA=L*W'
S. Substitute for L. EVAL 'AREA=(100_yd - 2#W) *W'

6. To find the maximum area,

differentiate the expression. "W’ [ENTER][>][4 | 0="-(2*W)+(100_yd -2+W)’
7. Collect terms. ECOLCT= '0=100_yd —4*W’

8. Solve for W. "W’ EISOLE "W=25_yd'
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9. Assign this value to W
and evaluate L. L[EVAL] 50_yd

Answer: The field should be 50 yards long and 50 yards long.

You can use the HP48 to formulate and solve the entire problem, incorporating the
physical units directly into the expressions. With a conventional calculator, all you can
do is evaluate the final numerical answer, oncc you have worked it out on paper; the
unit conversions have to be done scparately.

As another example, in section 12.11.4 we list a program SIMEQ that solves a sct of
simultaneous linear equations. Many other calculators provide this capability either
through built-in commands or as program applications. However, without exception
(including the HP48’s own built-in method using matrices and vectors), these require
you to enter the coefficients and constants rather than the equations themselves. In
other words, you must to do the work yourself of inspecting the equations, collecting
terms and rearranging if nccessary, to determine the coefficients and constants. The
SIMEQ program lets you enter the equations in any order, and without having to struc-
ture the individual cquations in any particular way. It is the HP48’s ability to deal with
expressions and cquations as data to be manipulated--as symbolic objects--that makes it
possible for you to write a program like SIMEQ in a straightforward, compact manncr.
In other calculator languages, writing a program like SIMEQ would require considerable
ingenuity, and would likely end up being harder to use than the usual method of enter-
g cocfficients in order.

HP 48 algebraic objects (section 3.5.2) arc procedures that are internally the same as
programs. This means that creating any algebraic object is cquivalent to writing a pro-
gram. The program’s “inputs” are the values stored in the variables named within the
algebraic object; its “output” is the symbolic or numeric result that is returned to the
stack. The beauty of an algebraic object as a program is that you can treat it as a sym-
bolic quantity, to which you can apply additional mathematical operations, obtaining new
algebraic objects--programs--automatically.

The best time to usc algebraic objects as programs is when you have already defined a
set of user variables, and wish to make calculations using their values. You can, of
course, use the values directly by evaluating the variables as you go and using RPN com-
mands and functions to combine the values. But if a calculation is defined in algebraic
terms, yowll do better to enter the appropriate formula as an algebraic object, so that
you can verify its definition before substituting specific values.

For cxample, to add the valucs of variables A and B, you can press[A][B1[+]. Or you
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can type 'A+B’ . The advantage of the latter is that you can see the entire calcu-
lation symbolically beforc making numerical substitutions. This advantage becomes
morc important as the complexity of a calculation increases. You are also relieved of
the necessity for translating the calculation into RPN logic.

8.3 Programs

For problems for which the simplified problem solving methods that the HP 48 provides
arc not adequate, your final option is to write a program. Therc is a wide range of
problems that don’t fit the requirements for using other methods, including many that
are mathcmatically very simple. For example, the three “simple” methods have the
common limitation of being able to rcturn only one result at a time. 1f you want to
automatc a process as trivial as returning the squarc and the cube of an argument, you
must write a program. Here arc three HP 48 programs that make thosc calculations:

<< DUP SQ SWAP 3 ~>>
«w - x << x SQ x 3 © >

<« - x << 'x"2'" EVAL 'x"3" EVAL >>>>

The last two versions illustrate that you don’t have to give up the advantages of the
alternate problem solving methods when you create program objects; you just incor-
porate them into your programs. Even HP Solve’s root-finding capabilitics can be pro-
grammed, via the ROOT command.

The HP 48 is unusual among calculators in that it has no “program mode.” In other
calculators, you create a program by activating a mode where the keystrokes you press
arc recorded scquentially as program steps or lines. A consecutive scquence of such
steps constitutes a program. To exccute the program, you must leave program mode
and invoke the program by means of a command like RUN or XEQ (execute).

Programming the HP48 differs from manual calculating only in that you don’t exccute
sequences of objects individually, but instead combine them into procedure objects--
programs or algebraics—-for later execution. You treat the procedure objects the same
as any other objects: you enter and identify them by characteristic delimiters (<< >> or
' "), and you can edit, visit, store, recall, evaluate, and purge them, or just move the
objects around on the stack using standard commands.

Many BASIC language computers share with the HP 48 the property of lacking a special
program mode. By placing a line number at the beginning of a command line, you tell
the computer to include the program line in the current program. However, that style
of program entry is very context-dependent: you must be sure that the line number you
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assign is appropriate. It must be in the proper sequence relative to other lines, and you
must have somehow established that you are adding the line to the right program.
Some computers solve that problem by only holding one program in memory at a time;
others permit multiple programs but you must use various means to select a particular
program for editing.

Other calculator programming also uses more “program-only” concepts, like GTO (Go
To), labels, line numbers, RTN (return), and commands that behave differently when
uscd in a program than when they are executed from the keyboard. An example of the
latter is the HP 41 command FS? (flag set?). From the keyboard, this command returns
a temporary display of YES or NO; when executed in program, FS? acts as a “skip-if-
false” operation, where the next program line is executed if the flag is set, and skipped
if it is clear.

These concepts arc part of what can make programming a calculator a mystcrious art
for many people. When you are solving a problem mentally, or with pencil and paper,
you don’t consider line numbers, GTO’s, program modes, ctc. Instead, you think in
terms of a serics of operations that you apply to data or symbols, which produccs results
that may in turn be the input for additional operations. This translates nicely to key-
per-function manual use of an RPN calculator; the operations become keystrokes, and
the data is kept in front of you on the stack. “Keystroke programming” on calculators
originated as a process of preserving a serics of keystrokes as a program. Unfor-
tunatcly, as calculators became more powerful, their programming languages rcquired
you more and more to rcthink a problem in order to cast it as a program.

The HP48 is designed to minimize or eliminate the differences between interactive
keystroke operations and programming. It does this in several ways:

e The command linc is a program that is executed immediately; a program is a com-
mand line for which execution is deferred.

¢ Anything you can do in program you can do in the command line, including halting,
single stepping, using local variables, branches, loops, etc.

¢ Commands work the same way in programs as they do when executed manually.

e Programs contain no constructs that are artificial from the standpoint of the problem
being solved--no line numbers, no labels, no GTO’s. The only things that appear in
a program are objects and commands relevant to the calculation being performed,
plus certain program structures (conditionals, loops, etc.), that are local to a particu-
lar program.

The absence of GTO’s and the corresponding labels and line numbers is a manifestation
of the HP 48's insistence on structured programming (section 9.1.3). Every program is a
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self-contained module, with a single “entry” and a single “exit”. A program can, of
course, “call” (execute by name) other programs, but only as subroutines that always
return to the same point in the same program that called them. These rules promote a
programming style whereby you break down a large programming task into smaller pro-
grams which are easily written and understood. As you write each “building block” pro-

gram, you can test it independently before it is included in any larger program.

8.4 Summary

Table 8.1. HP 48 Problem Solving Methods

Method

Type of Problem

Advantages

User-defined Functions

» Automatic conversion of function
formulae to programs by DEFINE.
o Fivaluation of algebraic functions,
with arguments taken from the
stack.

o Creation of new symbolic func-
tions.

e Can be used in RPN or algebraic
calculations.

» Does not require “permanent”
user variables.

[P Solve

» Numerical evaluation of an alge-
braic expression for many values of
its variables.

o Symbolic substitution for variables.
o Numerical solution of an algebraic
expression, especially in combination
with DRAW.

¢ “What if” problems where the
independent/dependent rofes of
variables arc interchanged.

» Automatic input prompting and
labeling; automatic numecrical equa-
tion solving.

e Lets you interchange known and
unknown variables.

Symbolic Math

¢ Algebraic calculations using exist-
ing user variables.
s Symbolic manipulations.

o Symbolic results can be used as
new programs.

» Calculations can be verified before
they are performed.

Programs

All problems, especially those for
which the other methods are insuffi-
cient:

» Multiple results.

o Non-mathematical problems.

o Special prompting or labeling.

o Iteration.

o Complicated decisions and branch-
ing.

All calculator resources are avail-
able, including the algebraic evalua-
tion features of the other program-
ming methods.
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8.5 User-Defined Functions

The archetype of a small HP 48 program is one that takes a few arguments from the
stack, combines them according to some mathematical expression, and returns the com-
puted result to the stack. For example, the distance between two points (x,,y;) and
(x5,y,) is given by

(2 =x1)* + (2-y1) 1%

This program takes the coordinates of two points from the stack, and returns the dis-
tance between the two points:

< ROT - SQ 3 ROLLD - SQ + V >,

The program assumes that x;, y,;, x, and y, have been entered onto the stack, in that
order (x, in level 4). It removes the four values, and returns the computed distance to
level 1.

This program 1s short and cfficient, because you (the programmer) did the work of
translating the mathematics into the HP 48’s RPN logic. But writing a program this way
has two shortcomings:

1. When you develop the program, you have to keep track of the stack positions of
the various arguments as they are necded by the successive program commands.

2. After the program is written, it is difficult to decipher. Notice that the program
objects together bear little obvious resemblance to the original distance formula.

These problems become more severe as the number of arguments and the complexity of
the calculation increase. Imagine trying to alter the example program so that it works
with 3-dimensional points (x,y,z). Bccause the stack positions of all of the arguments
are changed, you have to rethink all of the stack manipulations, and almost rewrite the
program entircly.

The difficulty of managing stack objects is substantially reduced if your program stores
the objects in namecd global variables, then recalls the values by name as they are
needed. However, there are disadvantages to using global variables for temporary
storage in a program:

¢ You have to choose variablc names that don’t conflict with those of other programs.

e The program has to purge the variables at the end to avoid leaving unneeded vari-
ables in the USER menu.
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The problem of program legibility is reduced if you represent the calculations by alge-
braic objects. Despite the virtues of RPN for interactive calculations, by and large pco-
ple are more adept at reading calculations in a form approximating conventional
mathematical notation than in RPN form. With this in mind, the HP 48 provides a very
simple method for creating programs that can be represented as mathematical functions,
using DEFINE. For example, to create a program for the distance formula, all you need
to enter 1s:

'DIST(x1,y1,x2,y2) = V/(SQ(x2-x1) + SQ(y2 - y1))’

If you now look in the VAR menu, you will see a variable DIST, which you can use like
this:

If you recall the contents of DIST, you will see that DEFINE has actually stored the fol-
lowing program:

<< - X1 yl x2 y2 "V(8Q(x2-x1)+SQ(y2-y1))’ >

This program cxhibits the form of a user-defined function, which is a program with a
particular structure storcd in a global variable. User-defined functions are designed to
provide a simple means of programming without the problems discussed above. Specifi-
cally, they are commonly defined by algebraic expressions for easy development and
modification, and they employ local variables, which exist only as long as the functions
are executing. The local variables are used to provide names for stack arguments, and
to minimize the need to manipulate lots of objects on the stack. User-defined functions
are called functions because they act like built-in functions: you can use them like RPN
commands to compute from explicit stack arguments, or as prefix functions within alge-
braic objects, taking arguments from within parentheses.

Looking at the example DIST, the first part of the program ~ X1 y1 x2 y2 takes four
numbers from the stack and names them x1, y1, X2, and y2, by storing them in local
variables with those names. The algebraic object that makes up the rest of the program
computes a distance from the four stored values. You can easily modify this program
for three dimensions: edit the program to add two more local names, and add a term
for (z,-z,)? to the algebraic expression:

«<- x1 yl z1 x2 y2 z2 'V(SQ(x2-x1)+SQ(y2-y1)+SQ(z2-21))’ >
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8.5.1 User-Defined Function Structure
In general, to create a uscr-defined function you store in a global variable a program
object with the following structure:

«< - Xy Xy X, ,f(xth» e >xn)’ >,

The variable’s name subsequently acts as a user-defined function. Let’s look at the
separatc pieces of the general form, using the example DIST for illustration.

1. The first entry in the program is the symbol ~. This symbol can be translated as
“take arguments from the stack, and assign them the following names...” The — is
always followed by a sequence of local names. The end of the sequence of names
is indicated by the start of an algebraic object that must follow the names. — takes
one object from the stack for each name in the sequence. In DIST, there are four
names, X1, y1, x2, and y2, so DIST requires four input arguments. The objects
that — takes from the stack arc matched up with the names in the order in which
they are entered. The first object entered onto the stack, which was in the highest
numbered stack level (level 4 in DIST), is matched with the first name (x1) in the
sequence.

2. The names x; x, - x, in the scries arc local namcs. The combination of a
local name and an object taken from the stack is called a local variable. Local
namcs and variables are described in detail in section 9.7; for now, the important
thing to know is that the variables exist only as long as the procedurc that follows
the local name list is cxecuting. Local variables arc stored in special areas of
memory scparate from the global variable memory; they don’t appear in the VAR
menu.

3. The final part of the user-defined function structure is the algebraic expression
[ (x1,x3, -+ ,x,)". This expression is called the defining expression, and consti-
tutes the mathematical definition of the function. In the example, the defining
expression is '\/(SQ(XZ—X1)+SQ(y2—y1))'. Within the definition of this alge-
braic, you can usc the local names as many times as you want, just as you would
global names.

When you exccute the name of a global variable containing a user-defined function, the
stored program is executed as follows:

1. Objects are removed from the stack and stored in local variables, onc object for
each variable name.

2. The defining expression in the user-defined function is cvaluated.

3. The local variables are purged.
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To illustrate the function behavior of a user-defined function, consider a user-defined
function SEC that returns the secant of a number:

<« ~ x 'INV(COS(x)) > 'SEC' STO.

You can execute SEC

e as an RPN command, e.g.

DEG 60 SEC 17 2.

¢ as an algebraic function, e.g.
"SEC(60)" EVAL 7 2.
Some other results:
‘X" SEC o7 TINV(COS((X)Y Symbolic arguments allowed.
RAD 'SEC(X}’ 'X' 4 15 'SIN(X)/COS(X)"2’ Differentiation works.

'SEC(X)=Y' ‘X’ ISOL 1+ Unable to Isolate Error!

The last example shows that there is onc important respect in which user-defined func-
tions differ from built-in analytic functions. There is no inverse automatically defined
for a user-defined function, so ISOL can not solve for a name that is contained in the
argument of the function.

One minor note: If the HP 48 is in algebraic entry mode (section 4.3.1), pressing the
VAR menu key corresponding to a user-defined function appends the function name to
the command line, but does not add trailing (). Similarly, the EquationWriter does not
automatically add parentheses.

8.5.2 User-defined Functions as Mathematical Functions

It is intcresting to note the extent to which a HP 48 user-defined function is a realization
of a mathematical function. That is, when you dcfine a function such as
F(x) = 5x + 2x, you are stating that F is an operator that takes a single argument, and
returns a single result that is computed from the argument. The function’s definition
has three parts:

1. The name F of the function.
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2. A name x used to identify the function’s argument. For the purpose of the defini-
tion, x does not have a value.

3. The expression in x that indicates how the result is computed from x.

When the function is applicd to a specific argument, that argument is substituted for the
namc x in the defining cxpression, and the expression is evaluated. Thus

F(l) =517 +21=7
Fy?) = 50 +2(0%) = 5* + 22
Each part of a function’s definition has a corresponding representation in an HP 48
uscr-defined function:

1. The function’s name is the name of the variable in which the user-defined function
program is stored.

2. The argument namc is the local name that follows the -, A local name is
appropriate because the name is not intended to have a valuc except when the
function is actually being cvaluated.

3. The expression defining the function is represented by the defining expression.
The cxample function F(x) = 5x2 + 2x is created in the HP 48 as:
<< - x 'b#"2+2%x’ >> 'F STO.
Then
'F(1)" EVAL o+ 7,
and

'F(Y*2)' EVAL 17 '5%Y"2°2+42#Y"2’

In this example, we have considered a function of onc variable. User-defined functions
dcfined in terms of morc than one local name naturally correspond to mathematical
functions of morc than one argument.

The command DEFINE makes the correspondence between user-defined functions and
mathematical functions even more obvious, since DEFINE creates a user-defined func-
tion variable directly from a function definition expressed as an algebraic equation. In
section 6.1.1, we described the degenerate case where the left-hand side of the equation

is a name with no arguments. In symbolic execution mode (flag -3 clear--see scction
3.5.6.2),
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'name =expression’ DEFINE

stores 'expression’ unevaluated in a global variable name. In numeric evaluation mode
(flag -3 set), expression is evaluated to a number belore storing.

w Example:
'A=10+10" DEFINE

stores '10+10" in variable A in symbolic exccution mode; or stores 20 in variable A in
numcric execution mode.

DEFINE docs a more extensive conversion if the left-hand side of its argument cquation
is a name followed by a parenthetical list of arguments:

'function (name; - - - namey) = expression’  DEFINE
creates a user-defined function named function by storing
<< = opamey c ot namey 'c,\‘pre.y.s'i(m’ >

in a global variable function. function and name, - - naney must be all be global or
local names. (The conversion from the right-hand side of the expression involves a rein-
terpretation of the expression as if you had re-entered it via the command lin¢, so that
names other than the function arguments name; within the expression are converted to
global or local names according to the current local memories--see section 9.7.)

= Example:
"F(x,y)=x+y+COS(0)" DEFINE

stores
<< - x y 'x+y+COS(8) >

in the variable F. x and y are listed as arguments on the left-side of the argument cqua-
tion, so they are created as local names within the stored defining expression. 6 is not
listed as an argument, so it is cntered as a global name (unless there is a currently exist-
ing local memory containing a local variable 8. F is thus a user-defined function of two
variables, which references the global variable 6.

If DEFINE’s argument is not an equation with one of the forms described above, it will

return the error Improper Definition. Other crrors not dircetly associated with DEFINE
may arise from the cvaluation of expression in the 'name=expression’ case (numeric
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execution mode), for which the error message returned by the erring command is
rcported. Also, when the evaluation is successful but leaves fewer than two objects on
the stack for DEFINE, Too Few Arguments is reported but no command is identified.

8.5.3 Defining Programs

The preceding discussion has focused on user-defined functions defined by algebraic
cxpressions, since these are the easiest to create (with DEFINE) and correspond natur-
ally to built-in functions. However, you can also create user-defined functions that use a
defining program in place of the defining expression. An important use of this facility is
to creatc function versions of various RPN commands that you can use in algebraic cal-
culations. For example, you can define a function from HMS +:

<= X y <<x y HMS+ >> > 'HMSP' STO

Using HMSP, you can perform hours-minutes-seconds arithmetic within algebraic
objects, ¢.g. '5*HMSP(X,Y)’.

Note, however, that you can not evaluate user-defined functions defined this way with
symbolic arguments, unless all of the commands in the defining program can accept
symbolic arguments. For example, if you cvaluate the algebraic '5*HMSP(X,Y)’, both X
and Y must have rcal-number values, since HMS + is not a function. Also, you can not
differentiate a uscr-defined function defined with a program.

Uscr-defined functions defined cither with expressions or programs arc a special case of
the morc general usc of local variable structures (section 9.7). To qualify at all as a
uscr-defined function, a program must begin with —; otherwisc, cvaluating an cxpression

containing the program’s name with an argument list will rcturn the Invalid User Func-
tion error.

8.5.4 Additional Examples: Geometric Formulae

= VCYL(1,/1) returns the volume of a right-circular cylinder of radius r and height /2 from
the formula V' = wrh:

'VCYL(r,h) = *SQ(r) *h’ DEFINE.

u SCONE(r;,4) returns the curved surface arca of a right conc of altitude /1 and radius r
from the formula A = 7r(r2 + h?)":

"SCONE(r,h) =7 *r+\/(SQ(r) + SQ(h))’ DEFINE.
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= CSEG(,x) returns the arca of a segment of a circle, where 7 is the radius, and x is the
perpendicular distance of the chord from the center, from the formula

'CSEG(rx) = #"°2/2 - x#V/ ("2 -x"2) - 1"2*ASIN(x/r)’  DEFINE.

= PPER(1,7) computes the perimeter of an n-sided polygon inscribed in a circle of radius

. .o
r from the formula perimeter = 2nrsm—:
n

'PPER(n,r) =2+#n*r+SIN(w/n)’  DEFINE.

These user-defined functions return symbolic results containing 7, unless you clear
cither flag —2 or =3 (section 3.5.6.2) to causc automatic numerical evaluation of .
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Programming is the art of developing sequences of computer operations that can be
“replayed” automatically. Such sequences are called programs; on the HP 48, programs
are objects that you can use as arguments for various operations as well as executing
directly. “Programming” on the HP 48 then means the creation of program objects, and
the use of those objects to achieve various computational tasks.

Creating a program object consists of entering a sequence of objects that are to be exe-
cuted in order automatically, surrounding the sequence with << >> delimiters. The
delimiters identify the sequence as a program, and prevent its immediate execution by
ENTER. When you name a program object by storing it in a global variable, you effec-
tively extend the calculator’s command set: you can use the variable name just as you
would a built-in command. Imagine, for example, that you have created two program
objects named DOTHIS and DOTHAT. Then if you want to create a program that per-
forms both of the tasks done by DOTHIS and DOTHAT, you just enter << DOTHIS
DOTHAT >>, perhaps naming it DOBOTH. This process is unlimited--you can use
DOBOTH as an element of another program. DOTHIS and DOTHAT themselves may
be combinations of other program names. As a matter of fact, the HP 48 commands
that you use in your programs arc themselves programs written the same way, stored in
built-in libraries rather than in variables.

Wec have been using the term sequence to mean a series of objects (including com-
mands) that are cxccuted in order. However, a more general definition of sequence
includes certain entrics that are not objects but are used in building program structures.
The non-object “entries,” examples of which are FOR, DO, ~, and END, are called pro-
gram structure words. These are not objects, because you can’t put them on the stack or
exccute them individually, but must use them in certain specific combinations, like
FOR..NEXT, or IF..THEN..END. A complete combination, including the objects
between the program structure words, is called a program structure.

The more complete definition of sequence, then, is any series of objects and program
structures that can “stand alone,” i.e. could constitute a program if surrounded by <<
>> delimiters. A sequence can be all of a program, or part of a program. For example,
in

< 1 2 IF A THEN B C END D >

1 2 is a sequence, B C is a sequence, and 1 2 IF A THEN B C END D is a
sequence. IF, IF A, and IF A THEN are not sequences, because the program structure
is not complete--you can not enter these by themselves without obtaining an Invalid
Syntax message.
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9.1 Program Basics

The basic structure of an HP 48 program is very simple:
<< program body >>.

The << and >> are the program object delimiters that serve to identify this object as a
program. Program body is the sequence of objects and program structures that make up
the logical and computational definition of the program.

9.1.1 The << >> Delimiters

The << and >> that surround HP 48 programs serve a dual purpose. First, they are the
delimiters that identify an object as a program. When you enter a program into the
command line, the << tells the HP 48 to create a program object from all of the objects,
commands, names, etc., that follow, up to the next matching >>. Then, when the HP 48
displays a program object after it has been created, the << and >> identify the object to
you as a program.

The second role of these delimiters is to serve as logical “quotes” (see section 3.8) that
postpone execution of a program sequence. When << is encountered in program or
command line exccution, it is interpreted by the HP 48 to mean “put the following pro-
gram object on the stack.” This behavior of << allows you to include programs within
other programs:

<< objects >> EVAL
executes objects, but
<< << objects >> >> EVAL

lcaves the program << objects >> on the stack. Notice that these are paired delim-
iters; for every <<, there is always a >>. The trailing >> ends the definition of the pro-
gram started by the matching <<. When you enter a program into the command line,
the HP48 reminds you of this necessary pairing: pressing enters both delim-
iters (on separate lines) with the cursor in between. The key also activates program
entry mode, in which command keys echo their command names to the command line
rather than executing the commands. This makes the key the HP 48’s closest analog to
the more traditional program mode keys you find on other calculators (such as
on the HP 41).
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9.1.2 The Program Body
The “body” of an HP 48 program, that is, everything between the << and the >>, can
consist of any combination of objects and program structures:

¢ Data objects;
e Quoted names and procedures, which go on the stack like data;

¢ Commands--RPN commands and functions;

Unquoted names--which act like user-defined commands;

e Program structures--loops, conditionals, and local variable structures.

To “run” a program, you execute the program object, either directly with EVAL, or more
commonly, indirectly by executing the program’s name. In general, when a program is
exccuted, all of the items from the above list that constitute the program body are exc-
cuted sequentially. The nominal order of exccution is start-to-finish, or “left-to-right” in
the command line order in which the program was entered originally. Within a pro-
gram structure, there may be repetitive loops or conditional jumps. Of course, there’s
nothing remarkable about this program flow--any programming language exhibits similar
orderly cxecution.

Creating an HP 48 program is straightforward:
1. Press [$][=>];

2. Press the keys for, or spell out, the objects you want the program to execute, in
the same order used when you perform the calculation manually; then

3. End the program entry by pressing [ENTER] . Alternatively, you can use the cursor
keys to move the cursor past the final >>, to continue with additional command
line entries.

4. To name a program, enter a name (quoted) and press . You can consider
the resulting variable as a named program.

If you have a computer connected to the HP48 via the serial port, you can also write
programs (and other types of objects) on the computer. There you may use any text
editor that can generate text-only (ASCII) files. When you transfer the file to the
HP48, the calculator translates the text into a program object exactly as if you had
typed the text into the HP 48 command line. There are several advantages to using the
computer for program development:

e The computer’s keyboard provides for easier text entry.
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e The larger display allows you to format your programs in a more legible manner
(see section 1.3).

e Most text editors provide search-and-replace and other editing features to speed up
program entry.

e The computer text file is a backup copy of your program that you can retrieve if you
purge or lose the program in the HP48.

e You can include comments in your program text. A comment is text that serves to
annotate the program or any of its parts, but is not included in the execution action
of the program. Comments, delimited by “@” characters (section 4.3.3.1), are
stripped from a program by ENTER, so that they serve no real purpose when you
enter a program in the command line. The comment capability was included in the
HP 48 specifically for program editing on computers.

The simplest programs are those which contain no program structures. Such programs
only contain objects to be exccuted one after the other, starting with the first object
after the <<, and ending with the last object just before the >>. Examplcs:

. < 1 2 3 > 'P123' STO crcates a program named P123 that cnters
the numbers 1, 2, and 3 onto the stack.

2. << 2 / SIN > 'HSIN" STO creates a program named HSIN, that
returns the sinc of 1/2 of the number in level 1.

3. < 4+ + SQ > 'SUMSQ’ STO creates SUMSQ, which adds three
numbcrs from the stack and squares the result.

You can alter the basic start-to-finish exccution flow of programs by adding program
structures that define branches and loops. Branches are forward jumps in a program,
that causc program sequences to be skipped. Loops contain backward jumps, which
causc program sequences to be repeated one or more times. These structures are
described later in this chapter.

9.1.3 Structured Programming

A property of any HP 48 program that is common among many computer languages, but
may be unfamiliar to programmers of other types of calculators, is its well-determined
“entrance” and “cxit.” That is, in any program there is only one point--the start--where
execution can begin. Similarly, there is only one exit, or point at which a program com-
pletes execution. A diagram to represent the execution flow in and out of an HP 48
program is very simple:
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IN—%{ << Body | >> J——eOUT

This diagram is elegantly simple compared with one that represents the program flow in
an HP41 or BASIC program. In these languages, there is no limit on the number of
entrances and exits in a single program. The principal program constructs that make
this possible are labels and GOTO (go to) commands. A GOTO is an unconditional
jump, with no return, to a label (or linc number in some calculators and in BASIC).
Using labels and GOTO’s, program cxecution can jump around from program to pro-
gram, in and out of portions of programs, or round and round within a single program.
At first glance (and more, if you're uscd to programming this way), this capability seems
like an advantage. You may wonder why the HP 48 does not provide the same capabil-
ity.

The answer is that the HP 48 is designed for structured programming. Structured pro-
gramming consists of writing small programs as building blocks, or modules, from which
bigger programs are assembled as series of subroutine executions. A subroutine is a
program that is exccuted, or called, from within another program, and which returns to
the original calling program when it is finished. Bigger programs themselves may
become subroutines for even bigger programs, and so on. Each program, at cvery level,
has a single entrance and exit; there is no jumping in and out of programs at intermedi-
atc points. Structured programming has the following advantages:

e Programs are casy to write. Each program can be designed to fulfill a single task,
and can thus consist of relatively few steps. If a program gets too long, you just
divide it into smaller programs.

e Programs are casy lo decipher. By choosing meaningful names for subprograms,

you can read a program almost as text. For example, a program might look like
this:

<< GETINPUT DOMATH

IF BIG

THEN IGNORE
ELSE SAVE
END

>>

It is easy to understand what this program does. It gets input (GETINPUT), then
does some calculations (DOMATH) on that input. Next, it checks a result to see if
it’s too large (IF BIG); if so, it discards the result (THEN IGNORE), otherwise saves
it (ELSE SAVE). At this level, you can see the overall structure of the program. To
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see more detail, you can examine the individual subroutines. For example, BIG must
be a program that tests the results returned by DOMATH, and returns a true flag if
the results are too big according to some criterion. BIG might be something like
this:

<< DUP2 + LMIT > >,

This program makes copies of two numbers in levels 1 and 2, then adds them and
tests to see if the sum is greater than the value of LIMIT (which might be a number,
or another calculation to perform, etc.).

Programs are easy to alter. In the above example, you can completely change the
internal definition of BIG, without worrying about the main program. All you have
to do is ensure that BIG works the same from an external point of view--it must take
the right number of objects from the stack, and return the right number, etc. Simi-
larly, you can change the value of LIMIT from a specific number to a program that
computes a result, without any change in the design of BIG.

In a programming language that permits GOTO’s into the middle of a program, any
modification of a program must ensure that the correct entry conditions are met at
any point at which cxccution can start. This is especially difficult to manage in
languages like BASIC, where a GOTO can jump to any line in a program, with no
label or other indication to remind the programmer that execution may start at that
line.

Programs can be written without any regard to the internal behavior of programs
that call them, or programs that they may call. All that matters about a program is
its input and output, not the steps that it uses in its execution.

The last point is a key concept in HP 48 structured programming. A program is defined
externally only in terms of its input and output:

1.

2
3.
4

The number and type of objects it takes from the stack;
The number and type of objects it returns to the stack;
The variables that it uses;

Flags that are tested or changed.

From the point of view of one program calling another as a subroutine, the first pro-
gram doesn’t have to care at all about how many stack levels or additional subroutine
returns are needed by the subroutine. It just has to be sure to provide the correct
inputs for the subroutine, and know where to find the results returned by the subroutine
(usually on the stack). The calling program also can depend on having program
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execution return to it after the subroutine is finished, no matter how many other sub-
subroutines are called by the subroutine.

On the HP48, there is no structural difference between a program and a subroutine.
Calling a particular program a subroutine is only a matter of convention, often deriving
from the circumstance that the program uses very particular arguments or returns spe-
cial results, that make it unlikely to be used as a stand-alone program.

Note also that the HP48s ability to create program objects means that a program can
contain its own subroutines--programs that are created and stored in local variables or
even left on the stack for repeated execution, then discarded when the main program
terminates.

9.2 Program Structures
A simple program consisting of a sequence of objects can be broken into two or more
programs at any point in the sequence. For example, the program

< 5 * 6 + 10 - >

is equivalent to the two programs

«< § % > << 6 + 10 - >
cxecuted consecutively.

A program structure is a program segment that can not be broken into stand-alone sce-
tions. A user-defined function (section 8.5) is an example of a program structure; for
example, the program

<< - x '2#%x+3 >
can not be divided like this:

<< X >> << '2¥%x+4+3 >>.

The first part would return a Invalid Syntax message when entered. Similarly, you can’t
break

< 1 5 FOR n n SQ NEXT >
into
<< 1 5 FOR > << n n SQ NEXT >>,
The FOR and the NEXT must be in the same program.
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Program structures are defined by program structure words. These words are similar to
object delimiters, in that they do not themselves represent objects, but are instructions
to the HP48 to build command line text into specific structures. As in the case of
object delimiters, the structure words always appear in specific combinations and satisfy
certain syntax rules.

Table 9.1. HP 48 Program Structures

Structure Type Typical Use
IF.. THEN...ELSE...END Conditional Program decisions
CASE..THEN...END...END  Conditional Selecting among
multiple choices.
START..NEXT/STEP Definite Loop Execute a sequence a
specified number of
times.

FOR index ... NEXT/STEP  Indexed Definite Loop Exccute a scquence once
for cach value of an
index.

DO...UNTIL...END Indefinite Loop Repeat a sequence until
a condition is satisfied.

WHILE...REPEAT...END Indefinite Loop While a condition 1s
satisfied, repeat a
sequence.

— ...names... procedure Local Variable Structure  User-defined functions.
Creating local variables.

IFERR..THEN..ELSE...END Error trap Handle expected and
unexpected command
errors,

Table 9.1 lists all of the built-in HP48 program structures and their uses. Libraries can
add additional structures to the list.

Before studying the various program structures, we need to describe HP48 test com-
mands, which along with the flags introduced in section 7.1, are key concepts in
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understanding the execution of program structures.

9.3 Tests and Flags

A calculator program “asks a question” by exccuting a fest command. A test command
is any command that in effect returns true or false as a result, which then may be used
to choose a particular program branch to execute. In the HP48, frue and false are
represented as stack objects by real number flags, zero for false and any non-zero value
for true (when returned by a command as a result, 1 is used for frue).

With these ideas in mind, we can make the following definitions:

Test: A command that returns a flag to the stack. Examples: SAME,
==, F§?
Logical operator: A function that makes a logical combination of two flags (AND,

OR, XOR), or inverts a flag (NOT), and rcturns a new flag.

Conditional: A program structure that includes a structure word which uses a
flag as an argument, and causes a program branch according to
the flag’s valuc. HP48 conditionals are IF, CASE, DO, and
WHILE structures.

Notice that a test and the corresponding conditional branch are separate operations. To
permit this scparation, a test command returns its result in the form of a (real-number)
flag on the stack, which can then be manipulated like any other stack object. Consider a
typical test command, >. > compares real numbers in levels 1 and 2: if the number in
level 2 is greater than that in level 1, > returns 1 (frue); it returns 0 (false) if the level 2
number is equal or smaller. For example, to compare the values of X and Y in a pro-
gram, you use the sequence

Xy >
This returns 1 (true) if X is greater than Y, or 0 (false) otherwise.

In a conditional structure, one particular structure word actually makes the branch deci-
sion, taking a flag from the stack for this purpose:

e the THEN in IF..THEN...(ELSE...) END (section 9.4.1).

e cach THEN in CASE.. THEN...END...END (section 9.4.3)

e the END in DO...UNTIL...END (section 9.5.2.1).
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e the REPEAT in WHILE... REPEAT...END (section 9.5.2.2).

But note that you can include any number of intervening objects and commands
between the point at which the flag is put on the stack, and the structure word that uses
the flag for a branch decision. This separation of tests and decisions makes possible the
use of logical operators to combine flags. For example, the logical operator AND takes
two flags from the stack and returns a true flag if both of the original flags are true, and
a false flag otherwise. The sequence

XY > Y Z > AND

returns 1 only if X is greater than Y, and Y is greater than Z. Furthermore, since the
logical operators and most tests (except SAME) are functions, you can rewrite the above
sequence in a more legible manner:

'X>Y AND Y>Z' -NUM.

The ~NUM converts the algebraic expression into a real number suitable for use as a
flag. If the flag is intended for use in a conditional structure, you can omit the ~NUM.
All of the structure words listed above automatically perform a numerical cvaluation on
an algebraic argument. For example,

IF 'X>1 AND Y>1' THEN

and
IF X 1 > Y 1 > AND THEN

are equivalent, with the former getting better marks for legibility.
You can even store a flag value then retrieve it for later use by a conditional. Rather
than using an ordinary variable, you can use a user flag as the storage location: the flag
number replaces a variable name, and the number 1 or 0 is the value. FS? plays the
role of RCL for a user flag--it transfers the flag value to the stack. Similarly, SF and CF
store the values 1 and 0, respectively, into a user flag. There is no single command to
store a stack flag directly into a user flag, but the sequence

IF SWAP THEN SF ELSE CF END

will accomplish that, where the flag number is in level 1 and the new flag value is in
level 2.
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One by-product of using real numbers as flags for conditionals is to make it easy to test
a real number against zero. In the sequence

IF 'Xs#0’ THEN A ELSE B END,
the #0 is superfluous. Instead, use

IF X THEN A ELSE B END.

9.3.1 HP 48 Test Commands

The HP 48 test command set is as follows:

e <, >, =, and =, for comparing the numerical or lexicographical order of two
objects. These operators are applicable to real numbers, binary integers, and binary
integers, strings, and symbolic arguments. Strings are ordered by their character
values, left to right; cxtra characters count as “higher,” e.g. "AA" "A" > returns
true.

e SAME, == and #, for testing equality and inequality. These commands may be
uscd with any types of arguments.

e The flag test commands FS?, FC?, FS?C, FC?C, discussed in section 7.1.1.

For those commands that compare two arguments, the order of the arguments is con-
sistent with the order for other HP48 functions: the arguments are entered onto the
stack in the same order as they appear in algebraic expressions. For example, consider
the “greater-than” operator >. In an algebraic expression, “is A greater than B?” is
written as “A > B” A is the first argument, reading left-to-right; B is the second. The
comparison is true if the first argument is greater than the second. If you rewrite the
infix operator > in Polish notation, the expression becomes '>(A,B)’. Converting to
RPN, this becomes A B >, which indicates that A should be entered into the stack
before B. When > executes, A should be in level 2, and B in level 1.

9.3.2 Equality

The HP48 distinguishes two types of equality, physical equality and logical equality.
SAME tests the physical equality of two objects, i.e. whether the two have the same bit
pattern in memory. By contrast, for real and complex numbers, binary integers, units,
and symbolic objects, == and # test the logical equality of their arguments objects,
using the logical values represented by the objects. In most circumstances, the two tests
return the same result-if two real numbers have the same numerical value, they also
have the same bit patterns. However, there are cases where the two tests will differ:
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e == and # can compare real and complex numbers numerically; a real and complex
number can be equal if the imaginary part of the latter is zero and the real part is
the same as the real number: (5,0) 5 == 17 1. SAME always returns false when
comparing objects of different types.

e == is a function, and thus returns a symbolic result when applied to symbolic argu-
ments. SAME compares the original objects themselves, always returning a flag.
Thus, '1+2’ 3 == returns the expression '1+2==3" (which evaluates to a frue
flag), whereas ‘1+2' 3 SAME returns a false flag.

e When comparing binary integers, == ignores leading zeros and compares only the
numerical values, so that the relative wordsize of the two integers does not matter.
For SAME to return a true flag, the two integers must have the same wordsize as
well as the same value.

For other types of objects, == and # test physical cquality in thc samc manner as
SAME. The interpretation of physical equality is so strict that SAME can surprise you
by returning false in cases where two objects arc identical in all outward appearances.
For cxample, if you cxecute

1 'FOO’ STO FOO 1 -LIST { 1 }

you obtain two lists that certainly look the same. Howcever, SAME and = = rcturn 0 for
these lists. This is because the object 1 is one of a substantial number of objects that
arc built into the HP 48’s pcrmancnt ROM. For sake of memory efficiency, these built-
in objects are not copicd into RAM except when they are stored individually in a global
or port variable. Otherwise, they arc represented on the stack and in composite objects
(section 3.3) by 2.5-byte pointers. In the first list in the above sequence, the 1 is con-
verted to a RAM object (10.5 bytes) when it is stored, whereas the 1 in the second list is
a pointer. SAME therefore dutifully reports that the two objects arc different. BYTES
(scction 12.5.1) applied to the two lists also returns different sizes and checksums,

A similar analysis applies to units created by UBASE and UFACT: for example,

i_m DUP UBASE SAME 17 O
When UBASE rebuilds a unit object from base units, the characters (in this case, the
“m”) in the unit part are taken from a ROM table. A 1_m created by any other means
does not contain the ROM character. In this case, however, == docs return true for

these two objects, since this function tests logical equality for unit objects.

It is also important to distinguish == and =. = is not a test command, so it is funda-
mentally different from ==, which is a test. = is a function that creates an equation
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from two expressions. Its execution does not return a flag; in symbolic execution mode,
it does nothing other than evaluate its arguments. In numeric execution mode (includ-
ing using ~NUM) it acts the same as —, returning the numerical difference of the two
sides of the equation.

==, on the other hand, is a test, and always returns a flag when executed. == is pri-
marily intended for ordinary numerical equality comparisons. You can use == in alge-
braic expressions as an infix operator, just like <<, >, etc. == and = must have dif-

ferent names to distinguish their quite different meanings, and to prevent ambiguity
within algebraic expressions. Note that A=B is an “assertion,” whereas A==B is a
“question.”

9.4 Conditional Branches

The program decisions discussed in the preceding sections are most frequently used in
conjunction with program branches, where exccution can proceed along onc of two or
more paths. The HP 48 does not provide for unconditional branches, in which program
exceution jumps out of the middle of a program without any test. Such branches are
uscd in some programming languages (o minimize program size through reuse of steps
common to more than one part of a program. On the HP 48, this is achicved by writing
the common part as a subroutine that can be called by other programs.

A Conditional branch can be one of the following types:

e A simple branch consisting of a choice between once of two or more paths, where one
or more program sequcnces are skipped as exccution proceeds forward.

e An iteration loop, using backwards jumps to repeat exceution of a sequence one or
more times.

e An exit from an iteration loop.

9.4.1 Simple Branches: The IF structure.

The most straightforward type of branch involves a choice between executing two dif-
ferent program scquences. On the HP 48, this is implemented with the IF structure, a
program structure that has the general form:

IF test-sequence THEN then-sequence ELSE else-sequence END
You can read this structure as “if test-sequence is true (returns a true flag), then execute

then-sequence and jump past the END. If false, skip the then-sequence and execute else-
sequence.” '
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. Example. If the [40][SIN] key has a user key assignment, display the assignment; other-
wise show Unassigned.

RCLKEYS DUP Get the assignment list.

IF 412 POS DUP If keycode 41.2 is in the list...
THEN 1 - GET ..then get the assigned object.
ELSE DROP2 "Unassigned” |...otherwise, enter a string.
END

1 DISP 1 FREEZE Display the result.

This sequence uses the real number returned by POS both as a flag to indicatc whether
the search was successful, and also, if non-zero, to specify the keycode’s position in the
list.

The ELSE else-sequence portion of an IF structurc is optional. For cases where the
else-sequence is unnecessary, you can use this form:

IF test-sequence THEN then-sequence END,

which translates to “If test-sequence is true, cxccute then-sequence; otherwise, skip past
thec END.”

s Fxample. Order two numbers so that the smaller one is returned in level 1, the
greater in level 2.

DUP2 Copy the two numbers.

IF < Test if the first is less than the second.
THEN SWAP If so, switch the numbers.

END

= Because it is THEN that actually removes a flag from the stack and makes the branch
decision, the position of the IF in the sequence that precedes THEN is unimportant:

1 2 IF > THEN .., and
1 2 > IF THEN .., and
IF 1 2 > THEN

“eey

all produce the same result. You can choose to position the IF wherever you want to
make a program the most readable. (The most memory-efficient form has a single
object between the IF and the THEN. Thus of the three forms above, the first uses the
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least memory. See section 12.5.)

9.4.2 RPN Command Forms

An alternate means of achieving IF structure branching is provided by the IFTE and IFT
commands. For these commands, the various sequences included in an IF structure are
entered as stack arguments, either as single objects or programs (or lists--see section
11.5.4). That is,

test-sequence << then-sequence >> << else-sequence >> IFTE
is equivalent to

IF  test-sequence THEN then-sequence ELSE else-sequence END.

Similarly,
test-sequence << then-sequence >> |FT
is equivalent to

IF  test-sequence THEN then-sequence END.

To use IFTE, you put a flag in level 3, an object (usually a program) representing the
then-sequence in level 2, and an object representing the else-sequence in level 1. IFTE
tests the flag; if the flag is true (non-zero), the else-sequence is dropped, and the then-
sequence is executed. If the flag is false (zero), the then-sequence is dropped, and the
else-sequence is executed. IFT works much the same way: the flag must be in level 2,
and a then-sequence in level 1. If the flag is true, the then-sequence is exccuted, other-
wise it is dropped.

» Example. Split a real or complex number into its real and imaginary parts.

RC-R Real/Complex to Real 8A8F
level 1 | level 2 level 1
X [ X 0
(%) s x y
<< DUP TYPE Get the input type.
< C-R > Complex case (type # 0).
0 Real case (type 0)--just push zero on the stack.
IFTE Execute appropriate choice.
>>

-243-




9.4 Programming

There is no particular pdvantage within a single program to using IFT or IFTE rather
than the corresponding IF structure, so which form you use is mostly a matter of taste.
However, the RPN command forms have one advantage for more sophisticated pro-
gramming: their use allows you to place the test-sequence, the then-sequence, and the
else-sequence in separate programs or program structures. If you use an IF structure, all
must be contained in the same program.

IFTE is also a function, which means you can use it in algebraic objects as well as in
programs. It is a prefix function of three arguments:

IFTE (test-expression, then-expression, else-expression)

Notice that the arguments arc in the same order as the stack arguments when IFTE is
executed as an RPN command. All three arguments are ordinary expressions. Test-
expression is evaluated, and its value is interpreted as a flag. 1f the flag is true, then-
expression is evaluated; if the flag is false, else-expression is evaluated. Typically, the
test-expression contains a comparison operator, so that evaluation automatically returns a
flag.

» Example. '|FTE(X==0,1,SIN(X)/X)}’ computes SIN(X)/X, returning the value 1 when
X 1s zero.

IFT has no algebraic form. This is because algebraic objects must return a result when
evaluated--an algebraic conditional can’t “do nothing” if the test flag is false.

9.4.3 The CASE Structure

The IF structures described in the previous section are convenicnt for branching that is
based on a single test to select between two choices. While it is possible to handle any
more claborate combinations of tests and choices with “nested” IF structures, the
overall structure can get rather convoluted. For more straightforward handling of multi-
ple tests and choices, the HP 48 provides the CASE structure, which has the following
general form:

CASE
test -sequence | THEN then -sequence ; END
test -sequence, THEN then -sequence, END

test-sequence, THEN then -sequence, END
else-sequence
END
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You can read the CASE structure as “execute fest-sequence, then test-sequence,, ctc.,
until one test-sequence returns true. Then exccute the corresponding then-sequence, and
skip to past the final END. If no test-sequence returns true, then execute else-sequence.”

» Example. The program COUNT4 is a simple four “bin” counting routine.

COUNT4 Count in 4 Ranges 8F8C
level 1 | level 1
x =4
<< CASE
DUP 0 < THEN DROP 1 END Range 1 if x<0.
DUP 0 == THEN DROP 2 END Range 2 ifx = 0.
1 = THEN 3 END Range 3 if 0<x=<1.
4 Other tests failed, so x must be
greater than 1 (range 4).
END
'"COUNTS’ SWAP DuUP2 Make two copies of the vector name
and the index.
GET 1 + PUT Get the element, add 1, put it back.
>>

COUNT4 tests an argument x to see in which of four ranges its value lies. The total in
cach range is stored in the four-clement vector COUNTS. The elements of the vector
represent these ranges:

Element Range
1 x <0
2 x=0
3 0<x=1
4 x>1

Another way to make a multi-case choice is to create a list of programs, then select one
of the programs from the list according to an index. For example, this sequence takes a
real number from the stack, and executes a name corresponding to the number:

{ ONE TWO THREE FOUR FIVE } List of name choices.
SWAP Put the index in level 1.
GET Get the indexed choice.
EVAL Execute the selected name.
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9.5 Loops and Iteration

A loop is a program structure containing a sequence that is iferated--executed more than
once. In a definite loop, the number of iterations is known in advance. In an indefinite
loop, the iteration continues until some specified condition is met, after which exccution
exits from the loop and continues with the rest of the program.

9.5.1 Definite Loops
The most common form of definite loop structure is the FOR..NEXT loop. This kind
of loop is appropriate when you want a program sequence to repeat several times, mak-

ing use of an index that is incremented by 1 at each iteration of the sequence. The gen-
eral form of a FOR..NEXT loop is:

start stop FOR name sequence NEXT,

where
e start is the (rcal number) initial value of the index.
e stop is the (real number) final value of the index.

e FOR identifies the start of the structure; it removes the start and stop values from
the stack.

e name is the name of the (local) variable that contains the index.
e sequence is any program scquence, which can contain any number of uscs of name.

e NEXT is the structurc word that identifies the cnd of the sequence. It increments
the index by onc, then tests its value against the stop value to determine whether to
repeat the sequence.

You can read a FOR..NEXT loop as “For each value from start through stop of an
index named name, execute the sequence that ends with NEXT.”

» Example. Enter onto the stack the squarcs of the integers from 1 through 100.

1 100 Start and stop values.

FOR n Create a local variable n, with initial value 1.
n SQ Square the current index.

NEXT Increment n by 1. If n=100, loop again.
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A few observations:

e Start and stop as shown above are not part of the FOR.NEXT program structure.
FOR expects to take two real numbers from the stack, but those numbers can be
entered or computed at any time in advance of the FOR, as long as they are in levels
1 and 2 when the FOR executes.

e The start and stop values are removed from the stack by FOR. They are not accessi-
ble afterwards; if a program needs their values for other purposes, it should copy
them or store them in variables before executing the FOR.

e The index is kept in a local variable identified by the name that immediately follows
FOR. You can return the current value of the index by executing its name. You can
also change the value of the index after the loop has started, by storing a rcal
number into the local variable. The naming and use of the index variable are sub-
ject to the same restrictions as local variables created by - (section 9.7). After the
loop is finished, the index variable is automatically purged.

e The name following a FOR is not part of the sequence that is repeated. For exam-
ple,
1 10 FOR n n NEXT
puts integers 1 through 10 on the stack, but
1 10 FOR n NEXT
accomplishes nothing.

e The sequence between FOR name and NEXT always exccutes at least once, even if
the specified stop value is less than the start valuc.

e The start and stop values don’t have to be integers. NEXT always increments the
index by 1; the loop will repeat as long as the index is less than or equal to the stop
value.

5 6 FOR n sequence NEXT

executes sequence once, with n = 5.

e The combination FOR name acts likc a single operation when you single-step (sec-
tion 12.2.2) the FOR. '

o Start, stop, and step can be algebraic objects, as long as they evaluate to real
numbers.
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9.5.1.1 Summations

A common form of iteration is a summation, in which successive values are accumulated
to a total. To add the squared integers computed in the previous section, we can modify
the example as follows:

0 Initialize the total.

1 100 Start and stop values.

FOR n Create a local variable n, with initial value 1.
n SQ Square the current index, and add to the total.

NEXT Increment n by 1. If n=100, loop again.

Executing this sequence returns 338350.

For cases where the successive terms in the sum can be represented by algebraic expres-
sions, the HP 48 provides the summation function 2. 2 takes four argumecnts:

index start stop summand X ¥ sum.

Index must be a name, and the other three arguments can be algebraic objects or any
objccts permitted within an algebraic object. Swnmand, of course, is usually a function
of index.

As well as being more compact and legible compared to the FOR.NEXT form, X is
also a function; used itself in an algebraic object, it is a prefix function with this syntax:

Z(index = start, stop,summand).

(Notice the required = sign). In standard mathematical notation, and in the Equation-
Writer display, this translates to
stop

> summand.
index = start

Summand is usually an expression containing index. Using the summation function, the
sum of squares computed above can be obtained by evaluating

>(n=1,100,n"2).

When 2 is evaluated, it evaluates start and stop, then returns:

e The same sum except with the cvaluated limits, if either of the evaluated limits is
still symbolic;
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e A sum of symbolic terms, if both limits evaluate to numbers and the summand con-
tains symbolic arguments other than the index, thus
'T(1=1,2,1+A) EVAL 17 "1+A+(2+A);

e A numeric sum, if the limits and the summand all evaluate to numbers, thus
'2(=1,21+1)" EVAL ¥ 5.
A sum can be differentiated:
S(I=ABFX]) ‘X 3 wz 'Z(I=ABXFX])

A sum may also be integrated symbolically. When the integral is evaluated, if the sum-
mand is an integrable pattern, the result is the (unevaluated) sum with the summand
replaced by its definitc integral. If the summand is not integrable, the result retains the
sum as the integrand (i.e. the integral is not pushed inside the sum).

9.5.1.2 Varying the Step Size

The FOR..STEP program structure is a variation of FOR..NEXT, which allows you to
increment the loop index by amounts other than one, including negative values. A
FOR...STEP structure looks like this:

start stop FOR name sequence STEP.

Start, stop, name, and sequence play the same roles as in FOR..NEXT loops. The struc-
ture word STEP plays a similar role to NEXT, but allows you to control the amount by
which the index is incremented (or decremented). STEP takes a real number from level
1, and adds it to the current value of the index. Then:

o If the step value is positive, the loop repeats if the index is less than (more negative)
or equal to the stop value.

e If the step value is negative, the loop repeats if the index is greater than (more posi-
tive) or equal to the stop value.

Note that since STEP takes a number from the stack, sequence must end with the step
value on the stack (the step value doesn’t have to be the same each time).

s Example. The program DFACT computes the double factorial n!!=n(n-2)(n-4)..1,
where n is an integer.
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DFACT Double Factorial 605F
level 1 | level 1
n = nl!

<1 Initialize the product.

SWAP 2 Loop from n down to 2.

FOR m m is the index.

m ok Multiply the product by m.

-2 STEP Decrement m by 2. Repeat if m=2.

>>

9.5.1.3 Looping with No Index

In some circumstances, there is no need for an index when a program sequence is to be
repeated a fixed number of times. In such cases, you can use START in placc of FOR.
START..NEXT and START..STEP are the same as FOR..NEXT and FOR...STEP,
respectively, except that the loop index is not accessible. The index name that must fol-
low FOR is not used with START (if a name does follow START, it is just treated as part
of the loop sequence, and has nothing to do with the loop index).

w Fxample. The program VSUM sums the n elements of a vector.

VSUM Sum Vector Elements ACD8
level 1 | level ]
| vector | Ly sum
< QOBJ- 0OBJ- Put the elements on the stack, with the
number of elements in level 2, and a 1 in
level 1.
SWAP OVER - Loop start and stop values for n~1 addi-
tions.
START + NEXT Execute + n—1 times.

>>

9.5.1.4 Exiting from a Definite Loop

Definite loop structures are designed to repeat a predetermined number of times.
There is no “exit” command that can cause program execution to jump out of a loop
before it has completed the specified number of iterations. Ordinarily, you should use
an indefinite loop (section 9.5.2) for calculations where you don’t know in advance how
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many iterations are needed. However, indefinite loop structures don’t provide an
automatic index like that in FOR..NEXT/STEP loops, so for some problems you may
find it more convenient to use a definite loop with a contrived exit rather than an inde-
finite loop where you have to provide your own index.

All you have to do to cause a loop to exit before the prescribed number of iterations is
to store a number greater than or equal to the stop index value into the index variable.
In loops with a positive step size, an obvious choice for an exit value is MAXR, the larg-
est number that the HP 48 can represent, although you have to be sure to convert the
symbolic constant into a real number. For loops with a negative step, you can use
-MAXR.

Typically, the cxit from a definite loop is taken as the result of a test. The general form
of such a loop is as follows:

start  stop
FOR n sequence
IF test
THEN MAXR -NUM ’'n’ STO
END
NEXT

This structure executes sequence for cvery value of n starting with start, and ends when
either n is greater than stop, or test returns a true flag.

N
= Example. Determine the value of N for which n? = 1000.
n=1
0 1 10000 Initial value of sum; start and stop values.
FOR n Loop index is n.
n SQ + Increment the sum.
IF DUP 1000 > Is the sum =10007
THEN n The current value of the index is N.
MAXR -NUM 'n” STO Set the index past the stop value.
END
NEXT

Executing this sequence returns the sum 1015, and the value 14 for N.

9.5.1.5 Generating Sequences
The example in section 9.5.1.1 showed the use of a FOR loop to generate a sequence
consisting of the squares of the integers from 1 to 100. A natural next step after such
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an operation is to combine the results into a list, for easier storage or other manipula-
tions of the sequence as a whole. The generation and combination of such sequences is
combined in the command SEQ. This command requires five arguments:

procedure name start stop step SEQ 1= { sequence }.

Procedure can be either a program or an algebraic object, name can be a global or a
local name, and start, stop, and step can be any type of object that will evaluate to a real
number. SEQ evaluates procedure for each successive value of name over the range
start through stop, incrementing name by step at each iteration. The results of all of the
evaluations are combined into the final result list. For example:

'x™3" x 1 12 2 SEQ v {1 9 25 43 81 121}

When SEQ executes, it actually runs one of the following programs, as if you had
entered it from the command line:

start stop FOR name procedure EVAL step STEP,
or, if step is the object 1:
start stop FOR name procedure EVAL NEXT.

This has several implications:

e The procedure is rc-crcated with name as a local name. This means that any uses of
name within procedure must be explicit, not indirect through other variables in pro-
cedure.

e The arguments start, stop, and step follow the same rules and logic as their counter-
parts in ordinary FOR loops (sections 9.5.1).

¢ SEQ takes longer to execute than an equivalent sequence using a FOR loop, because
of the process of rewriting procedure to incorporate a local name. This delay
becomes relatively less important as the number of iterations increases.

SEQ records the depth of the stack when it starts. When the iterations are complete,
any objects that have been added to the stack are combined into the result list. If there
are none, or the stack has fewer objects than previously, no list is returned.

Despite a small speed penalty, SEQ does have some advantages over a FOR loop.

Because SEQ is a command rather than a program structure, it can be used more
readily with computed arguments, including the procedure. This also makes SEQ more
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suitable for manual calculations. Also, SEQ automatically takes care of combining the
individual results into a list, so that you don’t have to know in advance how many results
there will be. A FOR loop, on the other hand, is more flexible, and can be used for
iterations which produce results other than stack objects that are to be combined into a
list.

9.5.2 Indefinite Loops

An indefinite loop is a loop where the number of iterations is not determined in
advance. Instead, the loop repeats indefinitely until some exit condition is satisfied.
The HP 48 provides two program structures for indefinite looping, the DO loop and the
WHILE loop. The primary difference between the two structures is the relative order of
the test and the loop sequence. In a DO loop, the sequence is performed first, then the
test; in a WHILE loop, the test is performed first.

9.5.2.1 DO Loops
The basic form of a DO loop structure is:

DO loop-sequence UNTIL test-sequence END.

Loop-sequence is any program sequence. Test-sequence is a second program sequence,
which must end with a flag on the stack. END removes the flag; if the flag is false
(zero), execution jumps back to the start of loop-sequence. If the flag is true (non-zero),
exceution proceeds with the remainder of the program after the END. You can read a
DO loop as:

“Do loop-sequence repeatedly, until fest-sequence is true.”

» Fxample. Compute Lﬁ

1

S
I M8

» Solution: The sequence below sums terms of the form n~%, until two consecutive

sums are equal. Executing the sequence returns 1.03692775496, after 184 iterations.

1 N’ STO Initialize a variable N as a counter.
0 Initialize the sum.
DO Start of loop.
DUP Copy the old sum.
N -5 ~ + Addn~>.
1 'N" 8TO+ Increment the counter.
SWAP New sum in level 2, old in level 1.
UNTIL Start test-sequence.
OVER == True if old sum = new sum (leaves only new sum in level 1).
END Repeat if test was true, otherwise done.
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The position of the UNTIL between DO and END is unimportant. That is, the division
of the program steps into loop-sequence and test-sequence is only a matter of program
legibility. Both loop-sequence and test-sequence are executed at each iteration of the
loop, so it doesn’t matter where you put the UNTIL. We recommend that you use the
UNTIL to isolate that portion of the program that constitutes the logical test--the pro-
gram steps which produce the flag that determines whether or not to repeat. The por-
tion that precedes the UNTIL should be the part of the loop that computes the results
used by the remainder of the program after the END.

To reverse the sense of the test, that is, to make a loop that repeats until a test is false,
you can either substitute an opposite test command (> for <, FC? for FS?, etc.), or
insert a NOT immediately before the END:

DO loop-sequence UNTIL test-sequence NOT END.

In the example above, we used a global variable N to hold the summation index. It is
not uncommon to have an indefinite loop that uses an index or a counter similar to that
uscd in definite loops. For simple incrementing by one, you may find it convenicnt to
usc INCR, which takes a global or local namc as an argument and cxccutes the
equivalent of DUP 1 STO+ RCL, using fast “in-place” arithmetic. DECR scrves a simi-
lar purpose when you want to decrement by one. These commands perform a final RCL
expressly so that the index value is available for testing for a loop exit condition. For
example, the following sequence is equivalent to a FOR..NEXT loop:

-~ index stop Initialize the index and save the stop value.
< DO

loop-sequence

UNTIL

‘index’ INCR stop == |Iterate until the incremented index is equal
to the stop value.

END

>>

Here we have used local variables to hold the index and stop values. The point of the
example is not to suggest replacing FOR..NEXT loops, but to show how you might
write a loop that combines features of indefinite loops and definite loops. Such a loop
can use INCR or DECR to maintain an index, while using a more elaborate exit condi-
tion than is convenient with FOR..NEXT loops.
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9.5.2.2 WHILE Loops
In a WHILE loop, a test sequence is defined in the first part of the structure:

WHILE test-sequence REPEAT loop-sequence END.

Here again loop-sequence is any program sequence, and fesi-sequence is any sequence
that returns a flag. REPEAT removes the flag; if the flag is true, the program executes
loop-sequence, then loops back to test. 1f the flag is false, loop-sequence is skipped, and
execution proceeds with the remainder of the program after the END. You can read a
WHILE loop like this:

“As long as test-sequence is true, keep repeating loop-sequence.”

» Example. The program GCD finds the greatest common divisor (GCD) of two
integers m and n. GCD repeatedly computes r = m modn; if each successive 7 is non-
zero, it replaces n with r, m with n, and repcats. When r is finally zero, the value of n is
the GCD.

GCD Greatest Common Divisor E895
level 2 level 1 | level 1
m n vy GCD(m,n)
<< WHILE Beginning of test-sequence.
DUP2 Make 2 copies of m and n.
MOD Compute r = m modn
DUP 0 # Test r#0.
REPEAT If true, do the following:
ROT DROP Replace m and n by new values.
END Loop back and repeat the test-sequence.
ROT DROP2 Leave n in level 1.
>>

To reverse the sense of the test, that is, to make a loop that repeats while a test is false,
you can either substitute an opposite test (> for <, FG? for FS?, etc.), or insert a NOT
immediately before the REPEAT:

WHILE test-sequence NOT REPEAT loop-sequence END.
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9.5.23 DO vs. WHILE

DO loops and WHILE loops are very similar in purpose, and often you can use either
form for a programming problem. Here is a summary of the differences between the
two structures:

¢ In a DO loop, the test for looping is made after the loop-sequence is executed. In a
WHILE loop, the test is made before the loop-sequence.

¢ In a DO loop, the loop-sequence is executed at least once, and again at every itera-
tion. In a WHILE loop, the loop-sequence may not be executed at all. In general,
the WHILE loop loop-sequence is executed one time fewer than the test-sequence.

e The position of UNTIL between DO and END is arbitrary, and has no effect on
results. The position of REPEAT between WHILE and END is significant.

9.6 Error Handling

An HP48 error is a circumstance in which normal cxecution is stopped because the
HP 48 is unable to proceed without your intervention. Errors range from simple cascs,
such as DROP executed with an empty stack, to the extreme case where there is so little
free memory that the HP 48 is unable cven to display the stack contents. When an crror
occurs, the HP 48 normally stops all current exccution, beeps, and displays an error mes-
sage. Usually, if the error occurs during exccution of a command, the crror display also
identifics the erring command.

Whether a particular circumstance is an error or not is a matter of design and conven-
tion. On most calculators, taking the square root of —1 is an error; the HP48 is
designed instead to rcturn a complex number result. The calculator could similarly
return some sort of default result in almost any situation. The Invalid Syntax crror, for
example, could be eliminated by having ENTER return the command line as a string
when the object syntax in the command line is incorrect. That, however, would gen-
erally be more mislcading and inconvenient than the immediate error signal that
requires you to fix a bad entry. This is the general philosophy behind all of the HP 48
error conditions--the calculator would rather stop and have you take action than to
proceed with a possibly inappropriate action of its own.

Most HP 48 capabilities are programmable, and error handling is no exception. By
using the /FERR structure, a program can intercept any or all errors (except Out of
Memory) and supply its own corrective action. The structure is also called an error trap,
since it “traps” an error before it can interrupt the overall program execution. The
IFERR structure has the following general form:

IFERR error-sequence THEN then-sequence ELSE normal-sequence END,
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where the three sequences are arbitrary program sequences. You can read an IFERR
structure as:

“If any error occurs during the execution of error sequence, then execute then-
sequence and continue execution after the END. If no error occurs, skip then-
sequence and cxecute normal-sequence, and continue on after the END.”

There does not have to be a normal-sequence--the ELSE normal-sequence is optional.
IFERR error sequence THEN then-sequence END

exceutes then-sequence if an error occurs during error sequence, but does nothing special
otherwise.

» Example. Compute sinx/x, where x is a stack argument, using an IFERR structure to
handle the undefined result error condition at x =0.

DUP SIN SWAP IFERR / THEN DROP2 1 END
This sequence returns 1 for an argument of zero.

The position of the IF structure word in the sequence preceding THEN in an IF struc-
turc is unimportant because it is THEN that actually makes the branch decision. How-
ever, the position of IFERR in an IFERR structure is significant; the IFERR and the
succceding THEN define the extent of the sequence for which errors are trapped.
IFERR A B THEN intcrcepts errors in A and B, whercas A IFERR B THEN traps crrors
occurring only in B. The jump to the then-sequence happens immediately upon the
crror; any remaining steps preceding the THEN are skipped. Thus if an crror occurs in
A in the structure IFERR A B C THEN D END, B and C are not exccuted--exccution
jumps from the point in A where the error occurred directly to D.

Because the reaction to an error is usually specific to a particular error, it is gencrally a
good ideca to keep the error-sequence short, containing as few as one object if possible.
Then there is no ambiguity about which object caused the error, and no part of the
sequence that will be skipped. Of course, even a single object may cause different types
of errors. The best practice is to have the then-sequence of an IFERR structure deter-
mine which error actually triggered the error trap. For this purpose, you can use either
ERRN, which return the binary integer number of the most recent error, or ERRM,
which returns the error message string. If the error is an unexpected one, the then-
sequence can terminate the program by using DOERR (see also section 9.6.2) to repeat
the error. Then the error may either be intercepted by yet another error trap that sur-
rounds the current one, or it may terminate the program with an error message. For
example, suppose that a program adds two arguments. The addition can fail either
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because the stack is empty, or because the arguments are of the wrong type. The fol-
lowing error trap handles the first problem, but merely passes on the second:

IFERR +

THEN ERRN Get the error number.
IF #201h == Is it error 201 (Too Few Arguments)?
THEN 0 + Then add zero.

ELSE ERRN DOERR If the arguments are the wrong type,
reissue the error.

END
END

The number returned by ERRN, expressed in hexadecimal, is a (up to) five-digit
number. The first three digits are the library number of the library containing the com-
mand that reported the most recent error. The last two digits are just the number of
the error message in the library’s message table. Built-in libraries have single-digit
library numbers; for example, the Too Few Arguments crror illustrated in the preceding
cxample is the first crror in library 2, which contains all of the crror messages related to
generic stack operations.

It is sometimes useful for a program to determine whether a particular crror has
occurred, after any trapping of that crror has taken place. It is not always sufficicnt just
to check the last error number using ERRN, since that value might have been esta-
blished prior to the exccution of the error trap. To prevent this ambiguity, you can usc
ERRO to reset the error number to zero prior to an error trap. ERRO also resets the
crror message returncd by ERRM to an empty string.

9.6.1 CANCEL

Pressing to execute CANCEL normally aborts current procedure exccution and
returns the HP48 to manual operation (see also section 4.2.3). CANCEL thus behaves
similarly to an error, except that there is no becp or message display. In all other
respects, you can treat as an ordinary error that has error number zero and a null
error message. In particular, you can trap with an IFERR structure. You might
do this in order for a program that is interrupted by to have a chance to “clean
up” before terminating exccution, or to prevent termination entirely.

Examples of both of these uses of trapping CANCEL as an error are given in the pro-
gram ASN41 in section 7.2.1.1. In that program, the first error trap, around INPUT, lets
you abort the assignment, but it discards the three INPUT arguments before quitting.
The second error trap, around 0 WAIT, allows you to make an assignment to by

-258-




Programming 9.6

pressing it--without the trap, pressing would abort the program. Notice that in
both cases, is the only error possible, so the error trap does not need to check the
error number.

In order to intrude less on program error handling, does not change the error
number and message returned by ERRN and ERRM when it is pressed during the exccu-
tion of non-programmable operations such as the EquationWriter, the interactive stack
(section 5.5) or any of the catalogs.

9.6.2 Custom Errors

An crror trap lets you prevent an ordinary error from interrupting program cxecution.
However, the reverse situation may also arisc: you would like a program to abort execu-
tion and report an crror cven though nothing has occurred that the calculator recognizes
as an error. This also includes cascs where an crror trap has intercepted an error then
decides to go ahcad and report the crror anyway. These purposes are accomplished by
DOERR (DO ERRor).

You can create a custom error by exccuting DOERR with a string argument. “"Message”
DOERR generates an crror condition just like a command error:

¢ Procedure execution aborts, and the calculator beeps.

e The text of "message” is displayed in line 1 of the display. You can also create a
two-linc message by including a newline character (10) in the message. Each line
should be 22 characters or fewer to fit on the display. The program FRACALC in
scction 7.4.1 has an example of the usc of a custom ctror message.

e Subsequent cxecution of ERRN and ERRM return #70000h and "message”, respec-
tively. #70000h is a special error number reserved for DOERR.

e You can trap DOERR like any other crror.

DOERR will reproduce an ordinary error condition when it is used with a numerical
argument. The number, which may be cither a rcal number or a binary integer, should
be the error number of a built-in or library error (DOERR does not display any com-
mand name along with Error:). If there is no message corresponding to the number, the
display will show Error: with no additional text. 0 DOERR is a programmable
equivalent of CANCEL; exccution causes a program to abort with no beep or error mes-
sage.

You may observe that the errors listed in the HP48 owner’s manuals are not always

numbered consecutively. There are, for example, apparently no errors between 106h
and 123h. However, if you execute #107h DOERR, the HP48 will beep and display
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Error: Real Number. The explanation is that all of the text used in HP48 displays is
entered in the various libraries’ message tables, along with the error messages. Mes-
sages 106h-122h happen to be the object type text that the HP48 uses to display the
stack contents in low memory situations. DOERR does not attempt to distinguish which
messages correspond to normal errors. The program MSGSHOW in section 12.6.4.4
lets you review all HP 48 messages.

9.6.3 Error Handling and Argument Recovery

The design of an error trap must take into account whether last arguments recovery
(section 5.3) is active at the time an error occurs. If argument recovery is enabled, the
arguments of the command that errors are restored to the stack. If recovery is disabled,
the arguments are discarded. This difference obviously can have an effect on error
traps, which may need to take into account the contents of the stack after an crror. The
sinx/x example at the beginning of section 9.6 assumes that argument recovery is
enabled. The DROP2 in the then-sequence is intended to discard the two zeros that
causc the division error, and which are restored by the error system. If recovery is dis-
abled, the DROP2 is inappropriate because the two zeros are not rcturned after the
error.

A well-designed program, including its error traps, should work correctly regardless of
whether argument recovery is enabled or disabled. There arc two general approaches:
1. Sct or clear flag —55 in the program before an error trap, then write the IFERR
structure accordingly. Returning to the sinx /x cxample, either
-55 CF DUP SIN SWAP IFERR / THEN DROP2 1 END
or

-55 SF DUP SIN SWAP IFERR / THEN 1 END

will work. This method has the disadvantage that it may alter the state of flag
—55 and thus affect other programs that may depend on the flag. As a rule, any
program that does depend on flag —55 or any other flag should itself set the flag
the way it wants, so this should not be a major limitation.

2. Include a conditional in the then-sequence that can react to the current state of
flag ~55 without altering it. For example,
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DUP SIN SWAP
IFERR /

THEN

IF -55 FC?
THEN DROP2
END

1

END

9.6.4 Exceptions

A mathematical exception is an error condition encountered in the execution of certain
functions, for which the HP 48 has a built-in error trap that lets you control how the
condition is handled. You can treat an exception as an execution-halting error, or have
the calculator supply a default result and continue normally. You make your choice by
means of the three exception action flags (-20, —21, and -22).

A typical exception is division by zero. The behavior of / when the divisor is zero is
controlled by flag —22, the infinite result action flag. If flag —22 is clear (the default),
division by zero is treated as an error, causing the Infinite Result error. However, if flag
~22 is set, no error is reported, and one of the values +9.99999999999E499 (+ MAXR)
is returned, which are the HP48’s best representations of +%. The sign of the result is
determined by the sign of the dividend.

The choice to error or to supply a default generally depends on whether you expect the
exceptional condition to occur. For example, if you don’t anticipate that a program
might cause a division by zero, it is better to clear flag ~22 so that the program will halt
and report the error. On the other hand, if you know that the divide-by-zero situation
can happen, and that +tMAXR is a good approximate result that lets a calculation
proceed to meaningful results, then setting flag ~22 is a good choice.

When an action flag is used to prevent the execution halt that would otherwise follow an
error, a program can still detect when an exception has occurred. When an exception
oceurs that is not an error, one of the signal flags —23 through -26 is set automatically.
For example, if flag —22 is set, then flag —26 is set whenever an infinite result exception
occurs. Therefore, a program can clear flag —26, carry out a calculation with flag -22
set, and determine afterwards whether a division by zero occurred, by testing flag —26.

In addition to the infinite result exception, the HP48 also recognizes two other excep-
tions:
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e Overflow (action flag -21, signal flag —25). Overflow occurs when a function
returns a result that is finite, but larger than the HP 48 can represent, such as 2000!.
With flag -21 clear (the default setting), overflowing functions return
+9.99999999999E499. Setting flag —21 causes an overflow to return an error. An
overflow is not the same as an infinite result, for which the correct value is +
rather than a too-large finitc number.

e Underflow (action flag —20, signal flags —23 and —-24). Underflow occurs when a
function returns a result that is not zero but is smaller in absolute value than
1E-499 (MINR), the smallest non-zero number that the HP 48 can represent. If
flag —20 is clear (the default setting), any underflowing function returns zero as its
default result. Since zero has no sign, two signal flags are used: flag 23 is set to
indicate that the function underflowed from the negative side of zero; flag -24 is sct
to indicate underflow to a small positive number.

Notice that the scnsc of the underflow and overflow flags is reversed from that of the
infinite result flag. That is, you set flag —22 to prevent an crror, whereas you clear flag
—-20 or —21. HP48 modec flags are clear in the default state, and the defaults are that
an infinite result 1s an error but overflow and underflow are not.

0+0 is not an exception. That quantity is mathematically undefined--it is neither an
overflow nor an infinite result. There is no appropriate default result to supply, so the
HP 48 always reports the Undefined Result error and halts cxccution. You can, of
coursc, create your own cxception handing by using an IFERR structure to trap this
errTor.

9.7 Local Variables

The variables that you see cataloged in thc VAR menu arc called global variables
because they are accessible from any procedure, and remain in memory until you specif-
ically rcmove them. However, the HP 48 also provides local variables that arc associ-
ated only with individual procedures. The usc of these variables and the corresponding
local name objects 1s a very useful and powerful programming technique.

It is possible, with the “unlimited” stack provided by the HP 48, to carry out an arbi-
trarily complicated calculation on the stack without any use of variables to storc inputs,
intermediate results, or final outputs. The fastest and most efficient computation is usu-
ally achieved in this manner.

A language like BASIC, which has no stack at all, requires that all input, output, and
intermediate results must be stored in variables. This makes individual BASIC state-
ments easy to read, but not particularly efficient. Nevertheless, the popularity of BASIC
suggests that it is not always program execution efficiency that is paramount, but rather
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the overall “throughput” of the problem solving process. If a calculator is easy to pro-
gram, you can usually get a result in less total time even if the program itsell may exe-
cute more slowly than if you developed a solution in an efficient but arcane language.
Thus while you can write a HP 48 program that is a marvel of structure and efficiency
by using only stack objects, the time and skill required for you to keep track of cvery-
thing on the stack during program development may be too high a price for the result.
In short, there is often a compelling advantage to assigning names to objects to simplify
the programming process.

At first glance this seems to imply the use of global variables, which are always accessi-
ble and appear automatically in the VAR menu. However, while global variables are fine
for “permanent” data and procedures, they are not as attractive for storing temporary
values. They stay around indefinitely, so that you have to remember to purge them to
avoid cluttering up the VAR menu and to conserve memory. Furthermore, you have to
be careful when you creatc a variable in one program to avoid using the same name as
that used by another program, unless you deliberately intend the two programs to share
a common variable.

HP 48 local variables provide a means for saving program inputs, intcrmediate data and
results, and cven subroutines, that is intermediate between using the stack exclusively
and using global variables. Local variables exist in local memories, which are portions of
RAM temporarily allocated for the local variables. A local memory is accessible only
within a context defined by the program structure that creates it. This means that there
cannot be any name conflicts with global variables or other procedures’ local variables.
Also, when the defining structure has completed its exceution, its local memory with all
of its local variables is automaticaily deleted.

There are two methods by which you can create local variables. The primary method is
by means of local variable stnictures, which usc the program structure word ~ to create
local variables. In addition, the FOR..NEXT/STEP loops described in section 9.5.1 use
local variables to store the current values of their loop indices. Although the index vari-
able is used for this special purpose, it is otherwise the same as a local variable created
by -, with the same applicable commands and restrictions. In the remainder of this sec-
tion, we will concentrate on local variable structures.

A local variable structure starts with the structure word - (called “arrow,” “bind,” or just
“to”) followed by one or more local names, and then by a program or an algebraic
object referred to as the defining procedure. The closing delimiter (" or >>) that ends
the defining procedure also marks the end of the structure:

- name, hame, ‘- name, << program >>, Or
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- name name st name "expression ' .
1 2 n

The user-defined functions described in section 8.5 are a special case of local variable
structures. A user-defined function is a program containing one local variable structure,
with no additional objects before the — or after the defining procedure.

The primary purpose of local variables is to provide a means of manipulating by name
the stack arguments used by a procedure. You can think of the - as meaning “take
objects from the stack and give them the following names; then evaluate a procedure
defined using the names.” Note that the procedure is evaluated, even though it is
entered between quote delimiters ' ' or << >>,

- takes objects from the stack and matches them each with one of the names that fol-
lows the =. The number of objects taken is determined by the number of names that
are specified. The end of the series of names is marked by the delimiter " or << that
starts the defining procedure. The objects are matched in the order in which they
appear in the stack; the object in the highest stack level goes with the first name; the
object in level 1 is matched with the last name. A local variable is crecated for each of
the names, with the local name as its variable name, and the matching object as its
valuc. For example,

123 4 - abocd

creates the local variables a with the value 1, b with value 2, ¢ with value 3, and d with
value 4.

» Example. Compute the five intcger powers x through x* of a number x in level 1.
This first method does not use any variables cxcept a loop index:

< 2 5 Powers 2 through 5.
FOR n Loop with index n.
n 1 - PICK Get a copy of the number.
n * Raise to the nth power.
NEXT
>>

This is not a very complicated program. It is fast and efficient, because it uses only
stack operations to obtain copies of the input number. The sequence n 1~ PICK is
needed to return a new copy each time around because when the index is n, the original
number has been pushed to level n—1 by the growing stack of computed powers.

The program looks casy to write, but you do need a little thought to figure out where
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the input number will be on the stack at cach iteration, and what stack operations are
required to return a copy of the number. You can avoid the mental gymnastics by writ-
ing the program to remove the number from the stack at the outset, and name it with a
local name:

< = X Store the number as x.
< X 2 5 Powers 1 through 5.
FOR n Loop with index n.

Xx n ” Compute x".
NEXT Repeat.
>>
>>

The latter program is slightly longer than the previous version, but the time it takes you
to write it should be less because there is no effort required to keep track of the input
number on the stack. Any time the program neceds the number, it just exccutes the
local name. The lesson of this simple example becomes more important as the com-
plexity of the programmed calculation increases, to the point where using local variables
can make the difference between success and failure in the development of a program.

You can use local variable structures at any point in a program, not just at the begin-
ning as in the casc of uscr-defined functions. The program CINT illustrates the usc of a
local variable to name an intermediate result. CINT computes the radius of a circle
inscribed in a triangle, where the lengths of the sides of the triangle are specificd on the
stack. The formula is:

;o= [s s—a)(s-b)(s—c)]"

N

where @, b, and ¢ are the lengths of the sides, and s = ¥2(a +b +c).

CINT Circle in a Triangle 3EBE
level 3 level 2 level | | level 1
a b 4 (&4 r

< - a b ¢ Name the lengths of the sides.

<< ‘fa+b+c)/2" EVAL -~ s Compute and save s.

"V (s*(s -a) ¥(s—b) *{s —c)) /s’ Compute .

>> End of local variable structure.

>>
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There are numerous additional examples of the use of local variables in programs
throughout this book. In the remainder of this section, we will review some of the
idiosyncrasies of local names and variables, and local variable structures.

9.7.1 Comparison of Local and Global Variables and Names
Local names and variables are very similar to ordinary names and variables, but there
are some important differences:

e Global variables are “permanent,” remaining in user memory until you explicitly
purge them. Local variables are stored in dynamically created local memories, which
are segments of memory associated with individual procedures. When a procedure
has finished evaluation, its local memory (if it has one) is deleted, including all of its
local variables.

e Local names are a different object type (7) from global names (6). This is how the
HP 48 system knows whether to find the variable corresponding to the name in VAR
memory (global variables) or in a temporary local memory. When the HP 48
attempts to find a local variable, it searches the most recently created local memory
first, then previous ones in reverse chronological order, until it finds a local variable
matching the specified name.

¢ Exccuting a local name recalls to level 1 the object stored in the corresponding local
variable, without executing the object. This means that when you store a program in
a local variable, to execute that program you must execute the variable name and
then the recalled program separately, usually with EVAL (or “NUM). The EVAL is
not necessary for programs stored in global variables, since execution of a global
name automatically executes the stored object.

¢ ISOL, QUAD, and TAYLR, which are designed to work with formal global variables
(names with no associated variables) do not accept local names as arguments. Also,
the independent variable used for plotting (DRAW) and solving (ROOT) must be
specified with a global name.

e You can not delete a local variable with PURGE.

¢ Local names can be the same as HP 48 command names (except for single-character
algebraic operator names like +, —, * etc.). Notice that you can have local names i
and e, but you should be careful not to use these names when you also want to use
the symbolic constants i and e.

Occasionally you may encounter a local name for which there is no associated local vari-
able. This is not a problem for global names, because of their role as formal variables
(section 3.6.1). However, executing a local name with no local variable is an error. For
example, a defining procedure may leave the name of a local variable on the stack after
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it completes evaluation:
< 1 - X << X' > >>,

This leaves the local name ‘X’ on the stack after evaluation, but the corresponding local
variable x that was given the value 1 is gone. You can not successfully execute this “for-
mal local variable”--EVAL returns the Undefined Local Name error. The same error
arises when you enter an unquoted name starting with “<”, which is automatically
entered as a local name.

9.8 Local Name Resolution

The general topic of name resolution was discussed in section 6.5. However, there are a
few details that are worth adding now in light of the more extensive treatment of local
names in the preceding sections. When ENTER processes a name in the command line,
it normally interprets the name as a global name unless it starts with “-”. However, no
matter what the name, if it follows a FOR or an —, then ENTER treats it as a local name
while it is handling the rest of the structure that follows. After the subsequent >>, ', or
NEXT that terminates the structure, further instances of the same name arc again inter-
preted as global names. Thus in

< - X o< X > X >,
the X in the inner program (<< X >>) is a local name, but the final X is a global name.
To help you keep track of which names are which type, we recommend that you adopt a
naming convention, such as using lower-case letters for local names, and upper-case
letters for global names. The above program then looks like this:

<< - X <K x > X >,

making it clear that the global X is not to be confused with the two local xX’s. We will
follow this convention in this book, except in certain cxamples in this section where we
are illustrating possible confusions between global and local names.

The resolution of names as global or local can be complicated when you nest local vari-
able structures. “Inner” structures can access the local variables of the “outer” struc-
tures that contain them, but not vice-versa. For example,

1—»x<<2—»y<<xy+>>x+y+>>

returns '4+y’ (not 6), as follows:

-267-




9.8 Programming
1 - X Store 1 in local variable x.
<< Start of program in which X is recognized.
2 -y Store 2 in local variable vy.
<< Start of program in which y is recognized.
X y + Add x from “outer” program to Y from “inner”
program, returning 3.

>> End of inner program where y is recognized.
X + Add x to 3, returning 4
y + This y is not a local name, because it is outside of

the program where Y is local. It therefore names
a global variable, which we are here assuming to
have no current value. The sum is therefore
"4+y’.

>> End of outer program where X is a local variable.

If you rewrite the above sequence as
1 - X < 2 -y < Xy 4+ x + y + > >

>

moving the final y back inside the program where the local variable y is defined, the
sequence then returns the value 6.

When two nested local variable structures define local variables with the same name,
two separate local variables are created. Any use of the name refers to thec most
recently created local variable. The fact that therc is another local variable with the
same name in a previously created local memory docs not matter. Thus

1 - X << 2 - X << x > >
returns 2, whereas

1 - X < 2 - X << > x >>

returns 1.

It is important to note that a procedure represented by a name (rather than the pro-
cedure itself) within a local variable structure can not access the local variables defined
by that structure, unless you specifically arrange for it to do so. For example, if you
create the program A:

< x y + > ‘A" STO,
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and invoke it in another program like this:

<<12~xy<<A>> >>
then executing the latter program returns 'x+y’ (global x and y), not 3. When you
enter the program A, X and y are created as global names. The search for their values
when A is executed in the second program therefore is made in VAR memory, even
though there are identically named local variables at the time of the search.
This property of local variables, which makes it possible for each program to define its
own variables without name conflicts with those of other programs, has the disadvantage
that you can’t always casily break a program containing a local variable structure into
smaller programs. For example, you can’t rewrite
<< - X Yy << sequence, sequence, > 7
as two programs
<< sequence, >> 'SEQ1" STO
<< - x y << SEQ1 sequence, >> >,
if sequence, contains cither of the names x or y. The best way to solve this problem is

to use names like <X and <y that are always cntered as local names. But there arc
several other methods:

o Use global variables. Rewrite the second program as
< 'y STO 'x’ STO SEQ1 sequence, { x y } PURGE >>.

This method is not very desirable, because STO for local variables and PURGE are
relatively slow operations.

e Use the stack to pass the values from one program to the other. Rewrite the pro-
grams as:

<< - Xy << sequence; >> >> 'SEQ1’ STO
<< - X y << x y SEQt sequence, > >>

The latter program puts the values of X and y back on the stack, where SEQ1 can
store them in its own local variables X and y. This approach requires no change to
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sequence .

» Force x and y in SEQ1 to be created as local variables. You can achieve this by
entering the SEQ1 program while there is an existing local memory containing local
variables X and y.

1. Type
0 0 - x y << HALT >> [ENTER]

You will see the suspended program annunciator turn on. Because the local
variable structure is executing when the program halts, the local memory con-
taining local variables X and y is still present.

2. Enter the program SEQ1:
<< sequence, >> 'SEQ1’ STO.

All instances of X and y in sequence, are treatcd as local names.

3. Now, when you cxecute the main program

< - X y << SEQ1 sequence, >> >>,
exccution of the names X and y in SEQ1 returns the values stored at the start
of the main program.

This method, although it solves the problem with no rewriting, can be trouble-
some because if you later edit SEQ1, you must remember to create again the
halted program local memory. Otherwisc, the command line reentry converts
X and y back into global names. Also, you won’t be able to use SEQ1 as a
subroutine for other programs unless those programs also define local vari-
ables X and .

4. Use names that start with “~”, which are always interpreted as local names.
In the current example, replace x and y with <x and «y everywhere in
sequence ; and sequence .

9.8.1 Local Subroutines

When a program contains any sequence that is duplicated elsewhere in the program, it
is usually convenient and memory efficient to encapsulate the sequence as a subroutine
that can be executed by name in as many places as it is needed. If a subroutine can be
used by more than one program, then it is appropriate to store it as a global variable.
But if it is not of use outside of one program, then it is better to store it in a local vari-
able. This keeps the program as a single unit, reduces the clutter of the VAR menu,
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and makes execution faster (section 6.5.2).

In cases where a sequence contains only commands and global names, it is straightfor-
ward to make it into a local subroutine: enclose it in program quotes and use ~ to save
it in a local variable:

<< sequence >> — sub << rest of program ...

sub can then be called any time within the rest of the program. (Remember that
because sub is a local name, executing it only puts the subroutine on the stack. The
correct calling sequence is sub EVAL.)

The program MOVE in section 6.1.7 shows an example of ordinary local subroutine use.
Lines 2-6 of MOVE define a program object that is stored in the local variable s in line
7. The object is then executed (s EVAL) in lines 8 and 16.

FIND (section 6.1.4) provides an example of a subroutine (lines 1-14) that contains local
names, including its own as it calls itself recursively (section 12.10). In this case, the
first occurrences of the local names as the program is entered precedes the local vari-
able structure where the corrcsponding variables are created. Normally, this would
mean that the names within the subroutine would be entered as global names. This
problem is avoided in FIND by using the names —name and -dodir, which are always
entered as local names because of their leading — characters.

9.8.2 Resolution Speed

Because typical procedures use relatively few local variables compared to the number of
global variables that might be in the current path, local name resolution is often signifi-
cantly faster than that of global names. This speed difference can be important when
you have, for example, a program loop that exccutes at each iteration a global name
that resolves to a global variable in the home directory, which might be several levels
above the current directory. In such cases, you may find you can improve the program’s
performance by having it recall the object in the global variable at the outset, and stor-
ing it in a local variable. Then all uses of the global name within the program should be
replaced by the local name (with EVAL if needed).

Local variables are also preferable to global variables for temporary result storage for
performance reasons as well as because of their automatic deletion. When you store an
object in a global variable, room must be made for the variable in user memory by mov-
ing some or all of the current variables. The time it takes for this is roughly propor-
tional to the total memory size of existing global variables, which can be as much as a
second or more when user memory exceeds 100 Kbytes. By contrast, storing an object
in a local variable takes on the order of .01 seconds.
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In mechanical terms, the HP48 display is a liquid-crystal display (LCD), containing a
matrix of square picture elements, or pivels. The pixels are arranged in 131 horizontal
rows and 64 vertical columns. The individual pixels can be in two states, which we will
call light and dark, or off and on. A blank display has all pixels off; turning various pix-
els on forms characters and other patterns that make up the information content of the
display.

The logical capability of the HP48 display goes well beyond its simple mechanical
description. The HP 48 has the ability to deal with display information up to 2048 pixels
wide, and indefinitely high, so that the pictures you can create on the HP 48 are not lim-
ited to the ordinary LCD dimensions. You can observe this capability when you use the
EquationWriter; if a formula display becomes too large for the LCD, you can use the
cursor keys to scroll the picture around in the display. Since the picture moves to the
left when you press the right cursor arrow, the appropriatc model you can visualize 1s
that the physical display is a “window” through which you can view the picture. Press-
ing a cursor key moves the window in the indicated direction.

Since the logical size of the HP48 display is not fixed, the calculator does not have
memory specifically dedicated to the display. Rather, display memory is allocated from
ordinary RAM, sharing that memory with the stacks, user memory, and all of the other
memory-consuming HP 48 systems. The maximum size of the pictures you can display
thus depends on the amount of current free memory, at (roughly) 1 bit of memory per
display pixel. By picture we mean the visual image represented by a pattern of pixels, as
distinguished from the actual pixels or display.

Furthermore, the HP48 actually defines three separatc memory regions for display pur-
poses. We will call these regions screens, deriving from their roles as media upon which
you can show various pictures. The screens are:

e The menu screen, which is permanently allocated memory for the menu labels, 131
pixels wide by 7 pixels high.

e The text screen is an expandable memory region a minimum of 131X 57 pixels in size.
The text screen is not limited to the display of text, but it is most commonly used for
displaying the stack and status information, in its minimum size configuration. How-
ever, the text screen is also used by the EquationWriter, for which it expands as
needed to accommodate the EquationWriter pictures. When you exit from the
EquationWriter, the text screen automatically collapses back to its default size.

e The picture screen is used by the plotting system and for program graphics. It does
not exist until needed by any plotting operation, when it is created if necessary with
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a size of 131X 64 or larger. If you check free memory with MEM before and after
viewing the picture screen for the first time, you will find that free memory has
decreased by over 1000 bytes; that is the memory assigned for the picture screen.
Be aware that the picture screen is deleted by a system halt (section 6.6); you may
want to save its contents in a variable before doing anything that requires a system
halt, such as storing a library in a port or inserting or removing a memory card.

In addition to the three dedicated display screens, the HP 48 also provides for storing
and manipulating an indefinite number of pictures as graphics objects (section 3.4.7).
The three screens are actually specially stored graphics objects. The HP48 has a
number of operations for creating graphics objects and displaying them on its screens.
In the remainder of this chapter we will study the programmable commands that are
available for prompting and presenting graphical and textual information.

10.1 Controlling the Display

Ordinarily, after completing any current and pending operations, the HP 48 reverts to its
standard display, which consists of the simultancous display of the text screen and the
menu screen. Here the text scereen is divided into two regions: the status arca at the
top, and the stack area that is shared by the stack display and the command line. Fre-
quently, however, you can see the standard display superseded temporarily or indefin-
itcly by some form of special display. Such displays range from the usc of the status
area to show crror messages, which persist only until the next kcy press, to an
environment-specific display (such as showing the picture screen or an input form),
which takes over the full display until you deliberately exit from the environment.
Environments may also have their own menus. This ability to supplant thc standard
display is available to programs by means of the various display commands.

The most frequent manual display change is switching between the text screen and the
picture screen. To activate the picture screen from the standard display, you exccute
PICTURE, usually by pressing [<I] when no command line is present (<A will
enter PICTURE into the command line). This displays the picture screen with the menu
screen superimposed upon it (with the plot environment menu). You can switch the
menu screen on and off by pressing and [ —]; or by pressing , which
also allows you to scroll the display window around on the picture screen if it is larger
than 131X 64. To return to the standard display, press .

[The keyboard label GRAPH on the HP48S/SX was changed to PICTURE on the
HP48S/SX, to reflect the fact that the picture screen can show more than just
mathematical graphs. The command GRAPH was therefore renamed PICTURE; how-
ever, the HP48G/GX will accept GRAPH as an alternate command line name for
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PICTURE, and if a HP48G/GX program is transferred to an HP 485/SX, PICTURE will
appear as GRAPH ]

Exccuting PICTURE in a program activates the plot environment while suspending
further program exccution. When you next press , the text screen is redisplayed
(the plot menu remains in the menu screen) and the program resumes cxecution. If you
returned any data from the picture screen to the stack, such as coordinates, graphic
objects, or solved results from the SFCNE menu, that data is then available for the
program’s use as it resumes execution.

You may also wish to make the picture screen visible while a program is running, but
without activating the plot cnvironment. This is accomplished with PVIEW (Plot VIEW).
PVIEW rcquires an argument that specifics the position of the screen relative to the
display; in particular, you must enter the coordinates of the pixel in the picture screen
that you want displayed in the upper left corner of the display. The coordinates may be
expressed as a list of two binary integers { #m #n }, or as a complex number (ry) that
specifies a point in logical coordinates (section 10.3.5). PVIEW allows you to watch the
picture screen while you change it, to help you monitor the progress of an ongoing plot,
or to present any kind of varying graphics display (sec, for example, the program
GSAMP listed in section 10.3.1). The picture screen remains visible until the program
ends, or until you cxecutc TEXT. This command returns the text and menu screens to
the display. Note, however, that TEXT docs not try to display thc current stack
contents--it merely redisplays whatever was on the text screen at the point when PVIEW
was exccuted.

As one more alternative, you can execute PVIEW with an empty list as its argument. In
that case, PVIEW is equivalent to executing PICTURE followed by pressing
immediately. Program exccution is suspended, and the picture screen is displayed
without the plot menu or the cursor--the cursor keys scroll the entire window. {}
PVIEW is useful when you want to display a picture that is larger than the display, but
you don’t need any of the interactive plotting facilities. Again, when you press to
exit from the picture screen display, program execution resumes normally.

10.1.1 Postponing the Standard Display

While a program is running, it can use display commands to show special text or pic-
tures. However, once the program finishes, the standard display takes over unless the
program specifically prevents it. For example, if you execute

"Hi There!” 1 DISP
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you will see "Hi There!” flashed momentarily in the top line of the display and then
replaced by the standard status display. To keep a special display like this visible after a
program stops, you must use an additional command, appropriately named FREEZE:

"Hi There!" 1 DISP 1 FREEZE o=

Hi There!l

i HUME F

4:

e H

%:

PYE] TERT [CLLCD| DISP |FREEZ|MEGE ]

(The E-LCDE and ECLLCDE menu keys have an automatic display freeze built into their
definitions, but the programmable commands do not.)

For the purposes of FREEZE, the three nominal areas of the HP 48 standard display arc
numbered with powers of two: 1 for the status area, 2 for the stack area, and 4 for the
menu labels. To freeze one display area, execute FREEZE with a real number argument
equal to the desired display area number, e.g. 2 FREEZE preserves the stack area
display while the status and menu areas are updated. To freeze more than one area,
FREEZE’s argument is the sum of the display area numbers (hence the use of powers of
two): 3 FREEZE freezes the status and stack arcas; 5 FREEZE affects the status and
menu areas; and so forth, up to 7 FREEZE, which freezes the entire display.

10.2 Text Displays

One of the most common program display tasks is to show one or more lines of text.
This is accomplished by means of DISP, which displays text in the medium font in any
of the top seven display lines. Here’s a simple example:
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[ CHARDISP Display HP 48 Characters D423—|
<< CLLCD Clear the status and stack areas. -
0 11 Need a total of 12 lines.
FOR i Initialize each text line.
0 21 22 characters per line.
FOR j
'22%i+j"  ~NUM Next character number.
CHR + DUP Add the character to the line string.
i MOD 7)+1" -NUM DISP Display in the current line.
NEXT DROP
NEXT
>>

There are several things to notice in this program:

e CHARDISP starts with CLLCD. This command blanks the status and stack areas.

You might omit this command from the program if you want to see how DISP
overwrites the existing (standard) display.

DISP takes two arguments: a string from level 2 and a real number from level 1,
where the latter can be from 1 to 7 (hence the (i MOD 7) +1) to indicate the desired
display linc. In the medium font, the display has cight lines; DISP can display in any
of the top seven but will not overwrite the menu labels in line 8.

DISP displays an entirc line at once, starting at the edge; you can not use it to
display part of a line. If the string argument is shorter than 22 characters, the
remainder of the display line is blanked.

When CHARDISP starts, you sce 10 “ m ” characters displayed in line 1, then the
next characters appear in line 2. This is because character 10 is the newline charac-
ter. You can use DISP to display multi-line messages by including one or more new-
lines in the display string. The displayed text will start on the line specified by
DISP’s number argument, and jump to the next line below after each newline char-
acter in the string argument. Without newlines, only the first 21 characters of strings
longer than 22 characters can be displayed, with ellipses “...” in the rightmost charac-
ter position to indicate missing characters.

CHARDISP does not include FREEZE, so the character display disappears as soon as
the program is finished.

The string manipulation commands described in section 3.4.3 are the basic tools for
creating text displays. For example, a very common task is creating a display string
from an object and text that labels the object. The program OLABEL below illustrates
this process. OLABEL displays an object (taken from level 2) by converting the object
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into a string, and appending it (with an “="") to a string provided in level 1. If the label
plus object does not fit in a single line, then the label and object are displayed on
separate lines. A copy of the object is left in level 1.

OLABEL Outpur Labeling Utility E3CH
level 2 level 1 | level ]
object "label” [ object
«<"=" 4 Append ** = " to the label. )
OVER DUP2 + Append the object string to the label string.
IF DUP SIZE 22 > If the string is too long,
THEN DROP SWAP
10 CHR + SWAP + then insert a newline.
ELSE 3 ROLLD DROP2 Otherwise, discard the extra copies.
END
CLLCD 1 DISP Clear the L.CD and display the string.
>>

You may want to include FREEZE at the end of OLABEL to preserve the object display.

10.3 Graphics Displays

To go beyond simple, line/character-oriented text displays, or to use the small and large
character fonts, you must create graphics displays. Here the key element is the graphics
object, or grob, which is the building block of graphics displays, analogous to string
objects for character displays. The HP48s text and picture screens are the viewing
mechanisms for graphics objects. For simple prompt and information displays, you will
most likely use the text screen, so that normal calculator keyboard opcrations arc avail-
able. Also, using the text screen for temporary graphics displays does not disturb a plot
or other picture currently on the picture screen.

The primary tool for viewing graphics on the text screen is the command ~LCD. —~LCD
stores a grob into the top 56 pixel rows of the text screen, with the upper left corner of
the grob in the upper left corner of the screen. If the grob is smaller in either dimen-
sion than 131X 56, the remainder of the screen (other than the menu area, which is not
affected by ~LCD) is blank. If it is larger than 131X 56, only the upper left 131X56 por-
tion of the grob is used. Secveral examples of using ~LCD are given in the next section.

The counterpart of ~LCD is LCD~, which returns the current combined text and menu

screen picture as a 131X 64 graphics object. Notice that the LCD— grob includes the
menu labels, even though —-LCD does not overwrite the menu label display area.
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However, you can use SUB to extract the menu label picture from the LCD~ grob for
other purposes, and you can view the entire grob by displaying it on the picture screen.

10.3.1 Graphics Object Operations

Graphics objects are the object representations of display pictures. They are character-
ized by their dimensions width X height, measured in pixels, and by the pixel data that
they contain. An individual pixel or position within a grob is specified by coordinates
expressed as a list of two binary integers: { #n #m }, where n is the column number,
counting right from column 0 at the left edge; and m is the row number, counting down
from row 0 at the top edge. Thesc binary integers arc interpreted as 20-bit signed
integers, so that only the lcast-significant 20 bits arc uscd, and a number #n greater
than #80000h represents a negative number with absolute value #100000h- #n.
(Negative coordinates may be used with line, box, and arc drawing--see section 10.3.6.1).

HP 48 commands that apply to graphics objects are found in the £GROBZ menu
plus SIZE, + and NEG. To illustrate the use of these commands, it is helpful to make
two sample graphics objects, which is accomplished by the program GSAMP. The pro-
gram stores a grob containing a filled circle in the variable SPOT, and another with a
filled squarc in GBOX.

GSAMP Graphics Samples AB94

<< 'PPAR’" PURGE

ERASE { #0 #0} PVIEW Initialize and view the picture screen.
-3 1 Draw a filied circle as a series of lines:
FOR x

"X,V (4-8Q(x+1)}))’
-NUM DUP CONJ LINE
A

STEP

PICT {#0, #3} {#131d #56d} SUB |Store the picture in SPOT.
'SPOT" STO
ERASE

-1 3

FOR x Now draw a filled box:
"(x,2)’ -NUM DUP CONJ LINE
.1

STEP
PICT {#0, #3} {#131d #56d} SUB
‘GBOX’ STO Store this picture in GBOX.

>>

-279-




10.3 Display Operations And Graphics

After executing GSAMP, you can try out the various graphics commands, starting by
looking at the grobs made by GSAMP. SPOT =-LCDE yields this picture:

[#LEDJLCO | SIZE JRMIMY ] |

And GBOX Z-LCDEZ shows the other picture:

(L0 fLCO*] SIZEJRNIM] | |

Here if you execute ~LCD by means of its menu key, the grob display remains visible
until the next keystroke.

¢ SIZE returns the dimensions of a graphics object as two binary intcgers, with the width
in level 2 and the height in level 1:

SPOT SIZE o7 #131d #56d.
¢ BLANK creates new blank grobs, taking as arguments two binary integers that specify
in pixels the width (level 2) and height. #20d #30d BLANK makes a grob 20 pixels
wide by 30 pixels high.

o NEG inverts all of a grob’s pixels, turning dark into light and vice versa. For example,
SPOT NEG Z=LCD= shows:
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L0 (LoD | SI2E JAMIM]

e + “adds” two grobs together. Specifically, + combines two grobs of the same dimen-
sions into a new grob also of that size, where the result has all pixels turned on that

were turned on in either of the original grobs. In effect, one picture is superposed on
the other. Thus SPOT GBOX + Z-LCDZ yields:

3LCOJLCO® | SI2E [AMIM] | |

e GOR (Graphics OR) is a generalized form of + for graphics objects, for which the two
argument grobs do not have to be the same size. Its name derives from logical OR,
which returns true if either of two arguments are true, and false otherwise. GOR works
as follows:

grob, {#m #n} gob, GOR 17 grobs

where grob, is superposed onto grob ;, with the upper-left corner of grob, positioned at
the { #m #n } pixel in grob | (you can also use a complex number to represent the pixel
position--see section 10.3.5). The result grobs is the same size as grob; any portions of
grob, that do not fit within the dimensions of grob are clipped off. Example:

SPOT {#10d #10d} #8 #8 BLANK NEG GOR :-LCDZ 1¥
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(LD JLCD* | SIZE [AMIM] ] |

o GXOR (Graphics eXclusive OR) is modeled upon logical XOR, which returns rrue if
either of two arguments is true, and false if both are frue or both are false. For graphics
objects, the result picture is a superposition of the argument grobs, except that it will be
light where dark regions from both arguments overlap. GXOR’s argument order is the
same as GOR’s; for example,

SPOT {#0 #0} GBOX GXOR Z-LCD:= 1~

D

(#LED LD [ SIZE JRNIM] | |

An important use of GXOR is for placing temporary visible marks (such as a cursor) on
a picture that you can easily remove later. That is,

grob, {#m #n} gob, GXOR
puts a mark represented by grob, on grob |; then with the result still on the stack,
{#m #n} gob, GXOR

removes the mark and restores grob . You can observe the action of GXOR by execut-
ing the following program:
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AGXOR Animate with GXOR 0D7A
<< SPOT PICT STO Store the spot on the picture screen.
# Ah # Ah BLANK NEG - s Make a black square.
< {# Oh # Oh} PVIEW View the picture screen.
0 130
FOR «x For each x position:
PICT x R-B #14h 2 -LIST
s 3 DUPN GXOR GXOR Turn the square on and off.
NEXT
>>
>>

e REPL provides a third method of combining two graphics objects, using the same
arguments as GOR and GXOR. In this case a region in grob ; starting from { #m #n}is
replaced by grob,. Thus

SPOT { #55d #29d} GBOX REPL :-LCDE= 1+

[LDs | SIZE JAMIM] |

e SUB is a counterpart of REPL that allows you to extract a portion of a graphics object
as a separate, smaller grob. SUB is useful when you want to trim a grob to a smaller
size, or to use part of a grob for building other pictures. SUB takes a grob from level
three, and two coordinate lists that specify the pixel positions of the corners of the
region to be extracted:

SPOT {#35d #9d} {#75d #49d} SUB
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creates a 41X 41 grob that contains the black spot from the SPOT grob.
10.3.2 Graphical Text

A very useful command for the development of graphical displays is the object-to-grob
conversion command ~GROB. Not only does this command simplify converting objects
to graphical text, but it gives you access to all three display fonts, plus the Equation-
Writer display.

~GROB requires two arguments: from level 2, the object to be imaged, and from level
one a real integer from 0 to 3 to specify the display font. For fonts 1, 2, and 3, the
object picture is a one-line text string like that obtained in a single line stack display,
respecting the real number and binary integer display modes, and the coordinate mode
for complex numbers and vectors. Unlike a stack display, however, the ~GROB result is
not truncated at the display width--this is because the grob may be intended for display
on the picture screen, which can be up to 2048 pixels wide.

Font numbers 1, 2, and 3 represent the small (variable width X 6 pixels ), medium
(6Xx8), and large (6X10) character fonts, respectively. (The width of a character ccll
given here includes the blank column at the right edge of a character that separates suc-
cessive characters). Font 0 is intended for algebraic and unit objects, for which
~GROB’s results are the EquationWriter pictures of the objects (for other object types,
font 0 i1s the same as font 3). Since the EquationWriter uses the active display to build
its picture, you will sce the EquationWriter “in action” during 0 ~GROB execution, and
the display is blanked afterwards. Also, the grob returned is always at least 131X 64, so
you may wish to trim the grob to a smaller size by using SUB.

A nice example of the use of ~GROB is provided by the program MINISTK listed below.
This program is handy when you want to view more than four stack levels simultane-
ously. It uses the small font (1) to display up to nine stack objects in single line format.
If you store << DROP MINISTK >> in the global variable BENTER, and sct flags —62
and —63, then the HP48 will use MINISTK in lieu of the normal stack display after
every ENTER (see section 7.4).

10.3.3 Displays on the Picture Screen
The text screen is adequate for many graphical display purposes. However, you must
use the picture screen in the following circumstances:

¢ You don’t want the menu to be visible.
* You want to work with graphics objects larger in either dimension than 131X 36.

e You want “animation,” or to watch a display continuously as it is being created.
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MINISTK

Small-font Stack Display

F76F

<< #131d #56d BLANK

Create a blank display-sized grob.

10.3

DEPTH 1 - 9 MIN Make up to nine object grobs.

IF DUP If the stack is not empty...

THEN #50d - vy Start in row 50.

<«< 1 SWAP From 1 to depth...
FOR n #0d y 2 -LIST Coordinates of level number.
n -STR 1 DUP SUB Convert the level number to a string.
"' + 1 -GROB REPL Add ™", convert to a grob, add to pic-
ture.

n 1 + PICK 1 -GROB Make the nth object into a grob.

{#0d #0d} {#120d #5d}
#131d OVER SIZE DROP -
y 2 -LIST SWAP REPL
'y’ #6d STO-
NEXT -LCD 3 FREEZE

ELSE DROP2

END

>

SUB  |Clip to 121 columns, if necessary.
Right-justified position.

Add the object to the picture.
Decrement the vertical position.

Display the picture.

Do nothing if the stack is empty.

e You want to usc any of the automated plotting or drawing facilities.

The picture screen is also more convenient than the text screen, because you can use the
pseudo-name PICT to manipulate the picture screen like an ordinary graphics object.
PICT is actually a command (type 19), but you can usc it in two ways:

1.

As a graphics object. PICT can be used as an argument for commands that work
with graphics objects: SIZE, SUB, GOR, GXOR, and REPL. For the last three
commands, PICT may only be used as the first (level 3) argument. With that
argument, the three commands return no result to the stack--the result becomes
the new picture screen. Furthermore, there are operations on the PICT grob that
are not provided for other grobs: line, box, and arc drawing, and the ability to con-
trol and test individual pixels in the grob.

As a “variable.” Using PICT like a quoted name allows you to treat the picture
screen like a variable containing a grob representing the current picture. Specifi-
cally, grob PICT STO stores grob into the picture screen, replacing the current con-
tents; PICT RCL returns the current contents of the picture screen to the stack as
a graphics object, and PICT PURGE deletes the picture screen and recovers the
associated memory. Note: you should not use ' ' quotes around PICT.
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There are several ways to create and dimension the picture screen. Any time you use
any plotting or drawing commands, the picture screen is automatically created with a
size of 131X 64, if it does not already exist. This also occurs if you use GXOR, GOR, or
REPL with PICT. To create a new picture screen, you can:

® Store a grob with PICT STO. If you store a grob smaller than 131X 64 into the pic-
ture screen, it will occupy the upper left corner of the picture screen, with the
remainder of the screen blank, but the picture screen will be at least 131X 64.

® Execute #m #n PDIM. This creates an m Xn picture screen (again with a minimum
size of 131X 64).

To observe some of these PICT operations in action, try executing the following three
programs (which use SPOT and GBOX from section 10.3.1):

{ ASTO Animation with STO 92F5—‘
<< SPOT PICT STO Store the SPOT grob in PICT.
{#0 #0} PVIEW View the picture screen.
110 Repeat 10 times:
START GBOX PICT STO View the square.
SPOT PICT STO View the circle.
NEXT
bl
| AREPL Animation with REPL 5F31
< S8POT PICT STO Store the SPOT grob in PICT.
{#0 #0} PVIEW View the picture screen.
1 10 Repeat 10 times:
START PICT {#0 #0} GBOX REPL View the square.
PICT {#0 #0} SPOT REPL View the circle.
NEXT
>>
APVIEW Animation with PVIEW EA43 |
<< #131d #128d PDIM Create a 131X 128 picture screen.
PICT {#0d #0d} SPOT REPL Store the circle in the top half.
PICT {#0d #64d} GBOX REPL Store the square in the bottom half.
1 10 Repeat 10 times:
START { #0d #0d} PVIEW View the circle.
{ #0d #64d} PVIEW View the square.
NEXT
>>
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All three programs demonstrate a simple kind of animation on the picture screen, where
the picture alternates between a circle and a square. ASTO and AREPL achieve this by
changing the actual contents of the picture screen. You can observe that using REPL
produces a faster and smoother animation than using STO. This is because STO actu-
ally replaces the picture screen grob, whereas REPL merely rewrites the pixels in the
existing grob. The “noise” you see between frames in ASTO occurs when the HP 48 is
moving the new grob into place, causing the temporary display of random memory bits.

The fastest animation is exhibited by APVIEW, since both frames of the picture are
stored in the picture screen in advance. All that is necessary then is to alternate which
half of the screen is shown, which can be done quite rapidly. Another variation on this
theme is illustrated in the program BOUNCE, where the appearance that the spot is
bouncing around the screen is actually achieved by moving the window rather than
changing the picture.

rBOUNCE Bouncing Ball Demo 4CD8 1
<< #222d #88d PDIM Dimension the picture screen.
PICT {#56d #14d} SPOT REPL Put the spot in the center of the
screen.
#45d #11d #1d DUP
- X Y VX vy Initial vatues for window position
and increments.
<< DO Repeat the following:
x y 2 -LIST PVIEW View the picture screen.
vx ‘x’ STO+ Increment window x position.
IF x #91d == If at the left edge,
x #1d == OR or the right edge,
THEN ‘vx’ SNEG then negate the x increment.
END
vy 'y’ STO+ Increment window y position.
IF y #23d == If at the top edge,
y #0d == OR or the bottom edge,
THEN ‘vy’ SNEG then negate the y increment.
END
UNTIL KEY Quit when a key is pressed.
END DROP Discard the key code.
>>
>>

10.3.4 ANIMATE

The mechanism used for animating y-slice plots (described in Part IT) is available for
general use as the command ANIMATE. This command takes n graphics objects from
stack levels 2 through n+1 and displays them sequentially (starting with the object in the
highest stack level) on the picture screen. The level one argument is nominally a list of
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the form

{n {#x #y} At N}

where n is the number of grobs in the sequence, x and y are the pixel coordinates of the
screen position where the (upper-left corners of) the grobs are to be displayed, At is the
number of seconds each grob is displayed, and N is the number of repetitions of the
entire sequence. If N=0, the display will continue for one million repetitions (effec-
tively, until you interrupt it with ). The smallest display time is about 0.07 seconds,
which you can obtain by using A¢r=0.

You can substitute a single real number n for the argument list, which is cquivalent to
using a default list

{n {#0 #0} .17 0}

ANIMATE leaves its arguments on the stack (regardless of whether it completes N itera-
tions or is interrupted by ). There is no apparent reason for this violation of nor-
mal command convention, so you just have to remember to remove the left over argu-
ments afterwards.

To illustrate the use of ANIMATE, the program MFRAMES creates a list of graphics
objects from a series of wireframe plots of a three dimensional damped cosine curves,
such as this sample:

MFRAMES stores its output as a list in a variable FRAMES. You can then display a
“movie” from the graphics objects by executing the program SFRAMES. Press to
terminate the display.
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[MFRAMES

Make frames for ANIMATE

18]

<< PICT PURGE

STEQ

{(-51) (525 {X 0 11} 1 (00
WIREFRAME Y} ‘PPAR’ STO
{—11—11—11—11
-11 0 -3 3 12 12}

'VPAR' STO

-1 1

FOR ~t

ERASE DRAW PICT RCL

2 STEP

11 -LIST DUP

2 10 SuB

REVLIST

SWAP OBJ- 1 + ROLL OBJ~ DROP
20 -LIST ‘FRAMES’ STO

>

F (1 =V ((X2+Y72) /2)) KCOS (7% (X2 + Y ~2)) .7

Reset the picture screen.

Store the current equation.

Store the plot parameters.

Store the 3-d plot parameters.

For «t from -1 to 1:

Draw one frame.

Increment «t.

Duplicate the frames.

Discard the first and last duplicate.
Reverse the duplicates.

Put the frames on the stack.

Combine into one list and store.

SFRAMES

Show Animated Frames

e

< FRAMES OBJ- DROP
{20 {#0 #0} 0 O}
ANIMATE

21 DROPN

>>

Get the frames.
ANIMATE parameters.
Do the animation.

Discard the arguments.

10.3.5 Logical Coordinates

10.3

All of the positions within graphics objects that we have specified so far have been
expressed as pixel numbers. However, when you refer to positions in the picture screen,
you also have the option of using logical coordinates. These are floating point numbers
derived from a coordinate system imposed upon the picture screen according to the plot
parameters in the variable PPAR. The first two elements in the list stored in PPAR are
complex numbers (¢ pin, Y min) and (% max Ymax), Which respectively specify the logical
coordinates of the bottom left pixel and the upper right pixel of the picture screen.
(Here x represents the horizontal direction, positive to the right, and y the vertical direc-

tion, positive upward.)
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The conversion between pixel numbers and logical coordinates is as follows. A position
(x,y) falls on the m-n pixel ({ #m #n }), where

m = RND

max ~ ¥ min

X ~ Xmin
M-1)—————— 0
gt

n = RND

(N— 1) Ymax — Y ,0]

Ymax ~ Ymin

M is the width of the picture screen in pixels, and N is the height. RND is the HP 48
function RND. Conversely, the x-y coordinates center of the m -n pixel are:

N n
X = Xmin t (f\m:lx _xmin) M-1

n
Y = Ymax~ (Vmax -y min)m

These formulac arc implemented in the commands C-PX (Coordinates-to-PiXels) and
PX-C (PiXels-to-Coordinates). C-PX takes a complex number representing coordinates
(x,y) on the picture screen, and rcturns a list { #m #n } containing the corrcsponding
pixcl numbers. PX-C is the inverse, converting pixel coordinates to logical coordinates.
These commands are only relevant to the picture screen, or stack grobs that happen to
have the same dimensions as the current picture screen. The logical coordinate system
is always determined by the values in PPAR, which also arc intended for use with the
picture screen.

The commands that can accept logical coordinates are GOR, GXOR, REPL, and PVIEW,
plus the pixcl drawing commands described in the next section. Logical coordinates are
often more convenient for mathematical function graphics, whereas pixel coordinates arc
preferable for making prompting displays and drawing simple geometric figures. Arith-
mctic with binary integers is also faster than with floating-point complex numbers.

10.3.6 Pixel Drawing

The [PRG] ZPICTE menu contains several drawing tools for producing simple graphics on
the picture screen. These commands do not work with stack grobs; if you want, for
example, to draw a line in any grob you must first store it into the picture screen.

The most basic tools are commands that turn individual pixels on and off. PIXON turns
on the pixel specified by its coordinates, entered either as logical coordinates (complex
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number) or pixel coordinates. As an example of using PXON, the program DRAWPIX
imitates the command DRAW. As listed, DRAWPIX is only a slower substitute for
DRAW, but you can use it as a starting point for creating modified plotting programs to
obtain results you can’t get with DRAW,

DRAWPIX DRAW using PIXEL 2641J
< PICT SIZE #64d - 2 /
SWAP #131d 2 |/ SWAP
2 -LIST PVIEW View the center of the picture screen.
PPAR 1 GET RE Get X pip-
PPAR 2 GET RE Get ¥ g
PPAR 4 GET Get the resolution.
IF DUP 0 SAME
THEN DROP #1 Default real case
END
IF DUP TYPE If it's not a real sumber,
THEN
IF DUP #0 SAME
THEN DROP #1 Default binary czse.
END B-R OVER 4 PICK
PICT SIZE DROP B-R / * then compute the step size.
END
PPAR 3 GET Get the independent variable name x.
- step indep
< |F indep VITYPE 1 + If the independeat variable exists.
THEN indep RCL 3 ROLLD 1 then keep its valie and frue.
ELSE 0 Otherwisc false.
END 3 ROLLD Save the flag.
FOR x Loop from X yin 10 Xy
x indep STO Store the curren: value of x in the independent
variable.
EQ -NUM Evaluate the current equation (y).
x SWAP R-C Combine the coordinates into a complex
number.
PIXON Plot the point.
step STEP Increment x and repeat.
IF THEN indep STO END Restore the original value.
>>
>
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The counterpart of PIXON is PIXOFF, which turns off a pixel specified by its coordi-
nates. You can also test whether a pixel is currently turned on by executing PIX?, which
returns frue if the specified pixel is on, and failse if it is off. It is a simple matter also to
reverse the state of a pixel, using the program TPIX:

TPIX Toggle a Pixel 7259
level ] |
{ #m #n} vy
&) L
<< DUP Copy the coordinates.
IF PIX? If the pixel is on,
THEN PIXOFF then turn it off.
ELSE PIXON Otherwise turn it on.
END
>>

LINE and TLINE allow you to draw straight lines much more rapidly than you can using
PIXON and PIXOFF. Both recquire two arguments, which specify the start and end
points of a line. The arguments can be either complex numbers or lists of binary
intcgers, but both must be the same type. LINE draws by turning on all of the pixels on
a straight line (allowing for the finite size of the pixels) between and including the start
and end point. TLINE reverses the pixels along the line, which is useful when you arc
drawing lines across dark areas. The use of LINE is illustrated in the next two pro-
grams. STAR draw a five-pointed star, using the second program SKETCH. The latter
takes a list of coordinates and draws lines between cach successive pair of points.

STAR Draw a Star F19D
<« RCLF -16 SF DEG -19 SF Polar mode, degrees, V2 complex.
‘'PPAR’ PURGE Initialize.
(0,2.5) DUP Start at (0,2.5).
0 4
START V- 144 + -\2 Rotate by 144°.
DUP SWAP Add the point to the stack.
NEXT
DROP 6 -LIST Combine into a list.
{#0 #0} PVIEW Omit this if you don’t want to watch.
SKETCH Connect the dots.
STOF Restore previous modes.
>>
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SKETCH Sketch Lines C1A7
level 1
{ list of points } s
<< - points Store the list.
<«< 1 points SIZE 1 - One fewer lines than points.
FOR n
points n GETI 3 ROLLD GET Get the next pair of points.
LINE Use TLINE to toggle the lines.
NEXT
>>
>>

Executing STAR yields this picture:

The command BOX provides an easy method for drawing rectangular boxes, specified by
two sets of coordinates (pixel or logical). For example, to draw a simple frame around
the picture screen, execute FRAME:

FRAME Frame the Picture Screen 2CA4F
< {#0 #0} Upper-left corner.

PICT SIZE Screen dimensions.

#1 - SWAP #1 - SWAP 2 -LIST Lower-right corner.

BOX Draw the box.
>>

The final built-in drawing command is ARC, which draws circular arcs on the picture
screens. ARC uses four arguments, either
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&y) r 6, 6,

or

{ #x #y } #r Gl 62,

where x and y are the coordinates of the center of the arc, expressed cither as a com-
plex number or as a list of binary integers, and r is the radius in logical coordinates or
pixels. 8, and 0, expressed in the current angle mode, are the starting and ending
angles of the arc, which is always drawn counterclockwise (increasing angle). The follow-
ing sequence uses ARC and the other programs listed in this section to draw a circle
around a star, framing the whole picture screen for good measure:

STAR (00) 25 0 -1 ACOS 2 * ARC FRAME 7 FREEZE

ARC docs not attempt to compensate for differing plot scales in the vertical and hor-
izontal dircctions--it will not draw an ellipse. It always draws an arc of constant radius
in pixels. The pixel specified by the coordinates (xy) + (r,£0;) is taken as the starting
point of the arc; the distance in pixels from that point to the center pixel (xy) is then
used as the actual radius #/, where /' has the same sign as r. The arc drawing stops at
the pixel specified by (v, £8,). Note also that

e If ; = 8,, onc pixel is turned on, at (xy)+(r,£0,).

o If }6,-6;| > 360° then the drawing stops aftcr one full circle is drawn from 8.

10.3.6.1 Off-Screen Coordinates

The drawing commands PIXON, PIXOFF, PIX?, LINE, TLINE, BOX, and ARC, and the
coordinate conversions C-PX and PX-C, all accept coordinate arguments that
correspond to pixel positions that do not fall on the current picture screen. This
includes negative pixel numbers in the range #80000h to #FFFFFh, which represent
pixels that are above or to the left of the screen. While you can never view pixels that
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are off-screen, their coordinates may be useful:

e When you are doing any kind of iterative plotting, you don’t have to check each set
of coordinates for PIXON or PIXOFF to verify that it falls on the picture screen.
The checking is done automatically by the commands, which just do nothing for off-
screen pixels. PIX? always returns false for off-screen positions.

e You can use LINE, TLINE, BOX, and ARC when their position arguments are off-
screen. This allows you to draw parts of figures too large for the screen by drawing
the entire figure without regard to off-screen portions. In particular, the center of
an arc drawn by ARC does not have to lic within the picturc screen, nor do the start
and end points of the arc.

LINE, TLINE, and BOX are smart enough to “clip” any portions of lines that are off-
screen, so that they will not spend unnecessary time plotting invisible points. ARC is not
so enlightened; if you use ARC to draw a circle that only partially fits on the picture
screen, ARC takes just as long to execute as it would if the screen were large enough to
contain the entire circle.

For all four commands, keep in mind that the dynamic range of pixcl coordinates is lim-
ited to #80001h-#7FFFFh (%524287); if you usc logical coordinates that correspond to
pixel numbers out of this range, the coordinates are truncated to the allowed range.
You can sce this when you use LINE, for example, to draw a line between two points
along the —45° line. With the default plot paramcters, arguments of (-100,100) and
(100,-100) yicld a line through the origin (0,0), as you would cxpect. But if you
increase the coordinates to {—100000,100000) and (100000, - 100000), the line is drawn
at —45° through pixel {#0 #0}, passing below the logical origin. This is because the
larger arguments are truncated to {#80001h #80001h} and {#7FFFFh #7FFFFhj,
respectively.
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The HP 48 array and list object types allow you to deal with collections of numbers or
other objects as single units, as well as to access the individual objects in the collections.
You are probably familiar with one-dimensional arrays--vectors--and two-dimensional
arrays--matrices—-from mathematics. These are one-dimensional (vectors) or two-
dimensional (matrices) ordered sets of numbers that satisfy certain rules of arithmetic
and transformation propertics. However, you may find the idea of a /st as a uscful
computational tool to be a new concept, since other calculator languages and most com-
puter languages have no equivalents. (Lists will be very familiar to you if you have stu-
died LISP, or a similar computer language.) In mathcmatics the closest counterpart is
the set, usually a collection of objects with some common property.

11.1 Arrays

A unique feature of the HP 48 related to array computation is the calculator’s ability to
manipulate arrays as self-contained units--as objects. This means, for example, that you
can perform array arithmetic on the stack using the same steps and commands as you
would for real number arithmetic. Programs can use arrays as input and rcturn arrays
as output; the arrays themselves contain all of the dimensional information that the pro-
grams need to deal with the data in the arrays. The mathematical operations that the
HP 48 provides for matrices and vectors are useful and powerful, but it is the ease with
which you can apply the operations to arrays that is the strength of the HP43. We will
not dwell on the mathematical commands here, since they arc described adequately in
the owner’s manuals. Instead we will focus on the array manipulation commands and
methods. The cxamples in the following sections use real arrays, but all of the com-
mands apply uniformly to complex arrays as well.

11.1.1 Array Creation
e ~ARRY assembles a series of numbers on the stack into an array:

1 2 3 4 4 -ARRY 1= [1 2 3 4]

1 2 3 4 {4} -ARRY 17 [1 2 3 4]
- 12
1 2 3 4 {22} -ARRY ¥ [{34}].

The level 1 argument of ~ARRY determines how many numbers are taken from
higher stack levels to form the array, and the dimensions of the array. When the
argument is a real number n, or a list { n 1, then n additional numbers are taken
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from the stack to form an n-element vector. If the argument is a two-element list,
e.g. {nm}, n-m numbers are combined into an n Xm matrix. The order in which
the array elements are taken from the stack is called row-order. This order has ele-
ment 1 or 1-1 in the highest stack level, followed by the elements of the first row in
left-to-right order, then by the row 2 elements, if any, and so forth, ending in level 2
with the last element in row n.

The inverse of ~ARRY is OBJ~ (you can also use ARRY-). Reversing the previous
examples:
[t 2 3 4] OBJ»- wv 1 2 3 4 {4}
[([12] - 7
[34]]OBJ 1 2 3 4 {22}

OBJ- returns the elements of an array as individual numbers in row order, and
leaves the dimension list in level 1. Notice that OBJ- always returns the
dimension(s) in a list, even when its argument is a vector.

You can also disassemble an array into vectors representing the array’s columns:

12 —
[%34}] ~COL v= [1 3] [2 4] 2

The real number returned to level 1 indicates the number of columns in the array.
COL-~ reassembles the vector, using a real number argument to indicate the number
of columns:

[1 3] [2 4] 2 COL- 1> [%

W=
BN\

Similarly, you can work with rows:
(fr23 . >
[34]] ROW o= [1 2] [3 4] 2

- 1
[1 2] [34] 2 ROW- ox [[[3

—_—

I

2
4
N (IDeNtity) creates an

Two commands are available for creating constant arrays. ID
nXn identity matrix specified by a real number argument n:

[

~

100
3 IDN o= 010
001

————
o =0
——

]

IDN can also change an existing array (on the stack or specified by name) into an
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identity matrix of the same size. In that case, of course, you don’t need to specify
the dimension of the matrix. If the initial matrix is complex, the resulting matrix will
also be complex, with diagonal elements (1,0).

CON (CONstant array) creates an array dimensioned according to a list in level 2,
where all of the elements have the same value, specified by a real or complex
number in level 1. Like IDN, CON will also use an array (or its name) as its level 2
argument. If the initial array is real, then the new constant value in level 1 must also
be real. For an initial complex array, the constant value can be real or complex; for
a real number x, the result array will remain complex, with elements (x,0).

e To determine the dimensions of an array, use SIZE.

[[12]
[34] SIZE vv {32}
[56]]

11.1.2 Array Rearrangements
Several commands are provided for rearranging array elements without changing any of
their values.

e RDM (ReDiMension) rcorganizes the elements of an array into an array with dif-
ferent dimensions, while preserving the row order of the elements. The arguments
for this command are the original array in level 2 and the dimension list for the new
array in level 1:

{4 2} RDM 17

————
~N O -
DO AN

]

If the dimension list { m n } specifies a new array with fewer elements than the origi-
nal, RDM uses only the first m= elements of the original and discards the
remainder. If the new array requires more elements than the original, the missing
elements are filied by zeros.

You can also apply RDM to an array stored in a global or local variable by substitut-
ing the variable’s name for the argument array. The result array replaces the origi-
nal array in the variable.

o TRN (TRaNspose) replaces a matrix by its (conjugate) transpose, where the matrix
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can be on the stack itself, or represented by a variabl

— D

[
1234 -
[[[5678%] TRN = E

TRN does not work with vectors: if you want to transform a vector into a single-row
matrix, use this sequence:

OBJ-» 1 SWAP + -ARRY.

e RSWP and CSWP take a matrix and two row or column numbers, and exchange the
respective rows or columns.

[
2 3 RSWP s

————
W=
DN
—— et
—_———
WO =
0O

2 3 CSWP u¥

W -
O oo~ [(eRe LN
[=208 =30 \V]
W=
D AN
[{o e N HPON

]

11.1.3 Single-Element Operations
The GET and PUT commands described in section 6.3 are applicable to arrays:

e To extract individual numbers from an array, use GET or GETI
[[12] -
[34]] {21} GET w7 3.
¢ To substitute numbers into an array, use PUT or PUTI:

[f12] o [[12]
(34]] {21} 8 PUTI s (84]] {22}

[o IRV

the { 2 1 } element in the array is replaced with a new value 8, and the next index is
returned.

11.1.4 Row and Column Operations
There are four commands for inserting and deleting array rows and columns.

¢ ROW+ and COL+ take a matrix, a vector, and a row or column number, and insert
the elements of the vector as a new row or column, respectively.
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[78] 2 ROW+ ¥

W=
D HN
[S RN

[789] 2 COL+ o=

OCON oohON
DA N i

G —
DN
W=

]

e ROW- and COL- extract a row or column from a matrix, returning the smaller
matrix as well. The original matrix must have at least two rows or columns.

[ [[12
2 ROW- = [34] (78]
56

——

]

S —

[

1
2 COL- o= {3 [7 89]
[5

©®EN w~N-=
ORN Op®N

——
W=

D AN
— s

] ]

11.1.5 Subarray Operations
The SUB and REPL commands are extended on the HP 48G/GX to work with subar-

rays, both matrices and vectors. SUB’s stack arguments for arrays are analogous to
those used for strings (section 3.4.3.3) and lists (section 11.4.1):

array start end SUB 15 subarray.

In this case, start and end specify the corner clements of the subarray within the original
array. The elements may be specified cither by

e number, counting in row order (section 11.1.1) from the first clement:

[[172] [[72])
[384] 2 9 SUB u¥ [84] ;
[596]] - [98]]
or by
e row and column, using a two-element list { row number }:

[[172] [([17]

[384] {1 1} {3 2} SUB u~r [38] .

[596]] [59]]

Start and end may either be in either style--they don’t have to match. The order of the
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two arguments doesn’t matter, nor does which pair of opposite corners of the subarray
is specified--upper left and lower right, or lower left and upper right. The only restric-
tion is that both elements actually fall within the original array. You may use list argu-
ments even when the original array is a vector, except that the row number must be 1.

REPL allows you to replace a subarray within one matrix or vector with the contents of
another. The general syntax for REPL is

array position array’ REPL o= amay'’.

REPL replaces the subarray within array with its upper-left element specified by position,
with array’:

[

2
4 REPL &
6

© o~

1
3
5

———

172
{2 2} [{88 300
600

[S—ra—
—_—
———

] ! 1
Position can be specified either as { row column } or as a single element number. REPL
will error (Invalid Dimension) if the replacement array’ does not fit within the initial
array, to the right of and down from position.

Other common matrix manipulations can be programmed by combining the commands
described in the last few sections. For example, the program MINOR takes a matrix, a
row number r, and a column number ¢, and returns the r¢ minor of the matrix:

MINOR Minor of a Matrix 6F89
level 3 level 2 level ] | level 1
|| matrix §] r c ey [ matrix' ]
<< 3 ROLLD lc [[mamix]] r |
ROW- DROP Remove the rth row.
SWAP COL- DROP Remove the ¢ column.
>>

Programs in subsequent sections of this chapter contain several additional examples of
the uses of array manipulation commands.
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11.2 Symbolic Access to Array Elements

Although arrays can not be embedded directly in expressions, you can still use expres-
sions to represent array calculations symbolically. Any name appearing in an expression
can refer to a variable containing an array. You can apply any symbolic manipulation to
such an expression; but when you evaluate it, the result must be a numeric array and
not an expression. For example, if variable A contains the vector [ 12 ], and Bis[34
], then evaluation of 'A+B’ returns [ 4 6 . However, if B is undefined, then evaluation
of the expression returns the Bad Argument Type error when the + is applied to a vec-
tor and a name.

In addition to this ordinary use of names within expressions to refer to stored arrays,
you can use a function-like syntax to access individual array clements. Consider sub-
tracting the second column from the first in a ten-row matrix "MAT’, replacing the first
column with the difference. Using GET and PUT explicitly, this is accomplished by

1 10 FOR n MAT 1 n GET MAT 2 n GET - MAT 1 n PUT NEXT.
The following sequence accomplishes the same thing, but it is rather more readable:
1 10 FOR n 'MAT(n,1)-MAT(n,2)’ EVAL 'MAT(n,1)" STO NEXT.

The general syntax for recalling an nth element is name(n) for vectors, and name(m,n)
for matrices, where name is the name of a variable containing an array, and m and n
are element numbers. For example, with variable A and B defined as above,

'A(1)+B(2)’ EVAL 17 5.

(The vector syntax with a single element number also works when the named variable 1s
a list). Evaluating expressions like these actually invokes GET, e.g. "M(1,2)" EVAL is
equivalent to ‘"M’ { 1 2 } GET when variable M contains a matrix. (If the evaluation
fails because the element index is out of range, the error message will specify a GET
error.) To execute PUT in a similar manner, you can use an expression as an argument

for STO:

object 'X(n)' STO
stores object as the nth element of the array or list X. If X contains a list, object may be
of any type. If X contains a vector or a matrix, object must be a number. In the case of

a matrix, X can have one or two indices; either

25 'X@) STO
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or
25 'X(2,1)" STO
stores 25 into the 2-1 element of a 2X 2 matrix stored in X.

The command RCIJ replaces a row j of a matrix with the sum of that row and a second
row i multiplied by a factor f. The program CRCIJ operates similarly on two matrix
columns, demonstrating the application of symbolic indexing. (You could use RCIJ on a
transposed matrix then transposing the result, but RCIJ is easily altered for use with any
two-column operation).

CRCIJ Column-wise RCIJ DC39
level 4 level 3 level 2 level ] level 1
[Lx1 i J f Ly =1
< -~ mat i j f Store arguments.
<< 1 mat SIZE HEAD Number of rows.
FOR n
'f*mat(n,i) +mat(n,j)’ EVAL Compute the sum.
‘'mat(n,j)’ STO Replace the value.
NEXT
mat Return the matrix.
>>
w Example.
[[123] [[121]
[456] 2 3 -1 CRCWJ 1= [451]
[789]] [781]]

11.3 Vectors and Coordinate Systems

HP 48 vectors are one-dimensional arrays represented as a series of real or complex
numbers enclosed in single brackets [ ]. When a vector is entered or displayed, the ele-
ments are shown in a horizontal format suggesting a row (covariant) vector. However,
HP 48 vectors actually have the mathematical properties of column (contravariant) vec-
tors. This means, for example, that an n-element vector ¥ is conformable for pre-
multiplication (A¥) by an m Xn matrix A. The vectors are displayed horizontally in
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order to show as many elements as possible on the display. You can represent row
(covariant) vectors as 1 X n matrices.

The HP 48 provides two commands for computing vector products. DOT computes the
dot, or inner, product of two vectors of the same dimension: if x; and y; are the ith ele-
ments of two vectors of size N, then the dot product is defined as

N
Zx,-'y,-.

i=1

ABS applied to a vector returns

which is equivalent to the square root of the absolute value of the dot product of the
vector with itself. The following program uses ABS to compute the angle between two
vectors

VANGLE Angle Berween Two Vectors F518
level 2 level 1 | level 1
[x] [yi] wr 0

<< DUP2 DOT Xy

SWAP ABS / X9/ %

SWAP ABS / IR ZCEARTAD]

ACOS ]

>>

For two- and three-dimensional vectors, CROSS computes the cross-product Z = ¥ X y
of two vectors, where

2 = 2 X; Yk €ijk
ik

01ifi=j, j=k ori=k
€ = {+1ifj j, k are in cyclic order
-1 otherwise.

CROSS’s result is always a three-element vector. A two-clement vector used as an
argument is treated as a three-element vector. If both arguments are two-element
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vectors, then the result is a vector of the form [0 0z ].

11.3.1 Coordinate Systems

Because two- and three-element real vectors are common in engineering and physics,
the HP 48 provides special capabilities associated with this class of objects. In particu-
lar, the vectors can be entered, displayed, and analyzed in polar coordinates as well as in
rectangular coordinate systems.

In two dimensions, the position of a point is represented by a radial coordinate p and a
polar angle &:

PO

The conversions between polar coordinates (p,d) and rectangular coordinates (xy) arc
given by:

pcosd
psind

p= 4yt x
& =tan"l(y/x) y

]

In three dimensions, two types of polar coordinates are used, cylindrical and spherical.
The conversions between rectangular and cylindrical polar coordinates are the same as
for the two-dimensional case, with the z-coordinate the same in both systems. For
spherical polar coordinates (r,$,8), the conversions with rectangular coordinates (x,y,z)
are
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r=@xr+y?+zh)”% x = rsinBcosd
b = tan”!(y/x) y =rsinfsind
2 )
xSty
6 = tan”' z = rcosb
z
Z zZ
z AN
| e |
| r |
| |
i =Y : LY
~ . | , 4 ~ - | s 4
\E) i e ’ ( N ! ’ ‘
- ~ ! e ’ > ~ ! 7 ’
[ (/S NG XA mm e — — — - -~ = NG
X X
Cylindrical Polar Coordinates Spherical Polar Coordinates

HP 48 vectors are always stored in memory in rectangular coordinates. However, you
can choose to display vectors in polar form, and to create and take apart vectors using
polar values.

The display of vectors is controlled by the coordinate mode encoded in flags 15 and
-16. 1If flag —16 is clear, then rectangular mode is active. If flag —16 is set, then flag
—15 determines which of the polar modes is active: clear means cylindrical polar mode,
and set means spherical polar mode. You can change modes by setting or clearing
these flags, but it is easier to use one of the commands RECT, CYLIN, or SPHERE (in
the [<1][MODES| EANGLE menu), which sct the modes corresponding to their names. You
can also use , which switches back and forth between rectangular mode and
whichever of the two polar modes was last selected by one of the menu keys or by set-
ting or clearing flag —15. The current coordinate mode is indicated in the status area of
the display, where the symbol R<Z means cylindrical polar mode, and R«« means spheri-
cal polar mode. If neither symbol is visible, rectangular mode is active.
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In either polar mode, the HP 48 displays a two-dimensional vector in the form [p, £d],
where the angle symbol « indicates that the latter number is to be interpreted as the
polar angle. (This discussion also applies to complex numbers, using parentheses
(p,£) rather than vector delimiters [p, £¢].) The numerical value of the angle also
depends on the current angle mode, which can be degrees, radians, or grads:

(<=](MODES|SFMT=

£STD= [ [MODES]

E DEG=

ERECTE [1 1] w [1 1]

SCYLINE ¥ [ 1.41421356237 4«45 ]

ZRADZ= vy [ 1.41421356237 £.785398163397 ]
=GRAD= 17 [ 1.41421356237 450 |

You can also enter a two-element vector in polar form by including an angle symbol £
in front of the second number, which is interpreted as an angle according to the current
angle mode. Notice, however, that a vector entered in polar form may not keep exactly
the values that you enter:

DEG [25 «225] [ENTER| ¢+ [25.0000000001 «-135]

This is because the polar coordinates are converted to rectangular coordinates Lo store
the vector, then are converted back to polar form for display. The finite precision
conversions may introduce changes in the twelfth decimal place. Also, sincc ATAN is
used in the conversion, the displayed polar angle will always have a value between —180°
and +180°.

The fact that all vectors are stored in the same rectangular format regardless of display
mode means that they are suitable for various operations without needing any prelim-
inary conversions. You can perform vector arithmetic, for example, directly in polar
form:

[1 «45] [1 £-45] + u7 [1.41421356237 4O ]

All of the properties described for two-dimensional vectors apply as well to three-
dimensional vectors, in which the second and third elements may include angle symbols
to indicate polar coordinates. If the second element (only) of a three-element vector is
entered or displayed with a leading angle symbol, the vector is being represented in
cylindrical polar coordinates [ p £ z ]. A vector with the second and third elements
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starting with angle symbols is interpreted in spherical polar coordinates [ r «£$ 48 ].

EpEG==RECTZ [1 1 1] o= [1 1 1]
ZCVYLINS 17 [ 1.41421356237 «45 1]
=SPHERZS vz [ 1.73205080757 <45 «54.7356103172 ]

You can not use the MatrixWriter to enter or edit vectors in polar form; there is no
provision for including the angle symbol in any element ficld. However, you can enter
two- or three-clement vectors without using [] delimiters or angle symbols by using the
commands ~V2 and -V3, which respectively assemble two- and three-element vectors
from real numbers on the stack. Both of these commands respect the current coordi-
nate and angle modes in the interpretation of their stack arguments. For cxample, in
rectangular coordinate mode,

1 2 -v2 [1 2]
The stack order of the arguments is the same as the order of the elements in the result
vector. In either polar coordinate mode, the first argument is the vector magnitude, and
the second the polar angle:

DEG 1 45 ~-V2 15 [1 «45].

In this case, the current angle mode determines the angle measure of the second argu-
ment (degrees in this cxample).

-V3 uses 3 arguments to form a 3-element vector:

RECT 1 2 3 -V3

X

[1 2 3]
CYLIN 1 45 2 -V3 = [1 4«45 2]

SPHERE 1 45 50 -V3 17 [1 445 «50]

V- serves as the inverse for both =V2 and ~V3; the meaning and number of the results
it returns depends on the size of its argument vector:

RECT [1 2 3] V- ¥ 1 2 3

CYLIN [1 «25] V- ur 1 25
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Actually, V- will decompose a vector of any size:

[1 2 3 45} V- 1 2 3 45

For vectors with 4 or more elements, the clements are always treated as rectangular
components, and the coordinate and angle modes do not matter. The differences
between V- and OBJ- for vectors are the special handling of 2- and 3-clement vectors

by V-, and that V- does not return the element count to the stack.

On the HP48S/SX, -V2 and -V3 are available as primary keyboard operations via the
and keys. If level 1 already contains a vector, either of these opera-
tions executes V—~. The 2D and 3D operations are not included in the HP48G/GX, but
you can duplicate their effects with the following programs:

D2 2D Program 10C
level 2 level 1 | level 2 level 1
X v 19 [x y]
[xv] - v
< |F DUP TYPE NOT If level one contains a real number,
THEN -V2 Then exccute -V2;
ELSE V- Otherwise, execute V-,
END
>>
D3 3D Program 5B19
level 3 level 2 level 1 | level 3 level 2 level 1
X y z v [xy z]
[xy z] Ly X ¥ z
< |F DUP TYPE NOT If level one contains a real number,
THEN -V3 Then execute ~V3:
ELSE V- Otherwise, execute V-,
END
>>
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11.3.2 Example: Coordinate Transformations
Consider two coordinate systems, where the second is derived from the first by 1)
displacing the origin by an amount given by the vector 7, and 2) rotating the axcs
through an angle a about the direction specified by a (unit) vector N. A vector’s coor-
dinates P/ expressed in the new system are obtained from the coordinates P of the same
vector in the original system using the following formula:

P = [(}—%)-K/]u— cos )N + (P—-T)cos§ + [(?—%)xﬁ/] sin.
An casy way to render this formula into a program is to store the four arguments P T
N, and a as local variables, then evaluate an algebraic object matching the formula
This is not immediately possible, however, since DOT and CROSS are not functions in
the HP 48 sense. But we can fix that problem by creating user-defined functions (sce-
tion 8.5) as follows:

DOTF DOT Function 60EC
level 2 level 1 | level 1

¥ y vy iy

CROSSF CROSS Function 4732
level 2 level 1 | level 1

X v t7 Ixy

«< - A B
< A B CROSS >

>

With these two programs in hand, we can write the transformation program:

XFORM Coordinate Transformation 0D94
level 4 level 3 level 2 level 1 | level 1
P T N 0 wr P
<< SWAP DUP ABS / Unit vector.
4 ROLL 4 ROLL - PT =P-T.
- a N PT Save the parameters as local variables.
'DOTF(PT,N)*(1 -COS(a)) *N
+(PT)*COS(a) + CROSSF(PT,N)*SIN(at)’ |Evaluate transformation formula.
>>

w Example. A coordinate system is translated a distance 3 in the direction specified by
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the spherical polar angles $=30° and §=60°, then rotated through 45° about the z-axis.
What are the coordinates of the vector [1 1 1] in the new system?

= Solution. In this problem, P = [111], T = [3 £30 460 ], N = [0 0 1], and
a = 45°. Thus

DEG 3 FIX [1 1 1] [3 «30 «60] [0 O 1] 45

XFORM 1% [ -1.095 0.672 -.500 ]

11.4 Lists

A list is a composite object (section 3.3) that contains an ordered scquence of other
objects. Lists resemble vectors, in that they are both one-dimensional arrays of objects,
and you can create either a list or a vector from a series of numbers (using ~LIST or
—~ARRY). The numbers in a vector, however, may be considered as the coordinates of a
geometrical point, and hence are subject to various arithmetic operations and transfor-
mation rules. The elements of a list may be any types of objects, and do not necessarily
have any particular association.

The basic ideas of the use of the HP48 object stack carry over into the principles and
applications of list objects. A list is like an auxiliary stack, in which you can store and
retrieve an indefinite number of objects, with no restrictions on the order or type of
objects in the list. To illustrate this point, try the following:

1. Enter several objects of any types onto the stack.

2. Now use the interactive stack to combine all of the stack objects into a list:
(A] [®I[A] =-usT=

(In a program, you can obtain the same result with DEPTH -LIST.) Note that the
objects are present in the list in the same order in which they were originally
entercd into the stack. The object that was in the highest stack level is the first
clement in the list; the object that was in level 1 is the last element. The list thus
preserves an image of the original stack.

3. Save the list: 'OLD’' [STO]. The stack is now empty.
4. Carry out any number of new calculations, leaving various objects on the stack.

Discard these objects with CLEAR, then enter
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OLD LIST- DROP.
This restores the stack as it was after step 1.

The ability to "freeze” a copy of the stack, store it away, then retrieve it later, is a useful
list application in itself. But the main point of the example is to bring out the similari-
ties between the stack and a list object, which suggests how you might use lists. The
stack provides a medium for the ordered presentation of objects as input arguments for
procedures (built-in or user-created), and for receiving the result objects. Lists can be
used for the same purposes, especially for cases where juggling mixtures of input, inter-
mediate, and output objects during the course of a calculation can become complicated.

Lists arc a valuable programming tool for any situation in which the number of objects
with which a program has to deal is not specified at the time the program is written.
When a program works with a definite number of objects, it is appropriatc (o storc
those objects in variables, or to manipulate them on the stack as individual objects. But
when you don’t know in advance how many objects are to be handled, the best approach
by far is to managc the objects together in a list. We will give some examples of this
concept in the next sections.

The HP 48 provides a number of commands that enable you to manipulate lists and
their clements. Some are the same as to those used for array operations; others arc
unique to lists. The list commands are distributed among several menus, as described in
the next scctions.

11.4.1 Assembling Lists

The basic commands for collecting objects into a list and taking a list apart arc found in
the program list menu ( [PRG]ZLISTE ), along with the + function, which is on the key-
board:

s To assemble objects into a list, use =LIST.
1 (1,2) 'A+B’ 3 -LST ux {1 (1,2) 'A+B'}.

Note that the level 1 argument of ~LIST (the 3 in this example) determines how
many objects are taken from the stack to be combined into the list.

e To combine the objects from two lists into a single list (concatenation), use +:
{1 2 3 4}y {5 6 7 8} + 1 {1 23 456 7 8}.

+ will also add a stack object (that is not a list) to a list. If the list is the first
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argument, the second argument is appended to the list:

{2 34} 1 + = {2 3 4 1}
If the non-list object is first, it is prepended to the list:

1 {2 3 4} + w {1 2 3 4}
This is similar to the concatenation of objects to a string (section 3.4.3.1), where a
non-string object is automatically converted to a string. If + is applied to a string
and a list together, precedence is given to the list operation:

"123" {456} + o= {"123" 456}

To concatenate the string form of a list to another string, you must use ~STR on the
list:

"123" {456} -STR + o7 "123{ 456 }"
There is also an ambiguity when both objects are lists, which is resolved by giving
precedence to concatenation. Thus if you want to add a list itself as an object to
another list, you must encapsulate the add-on list as the element in a single-objcct
list:

{1 2 3} {4 5 6} 1 -LST + ¥ {1 2 3 {4 5 6}}.

Since a list is an object, you can include lists within other lists. Notice the distinction
between

{1234} {5678} +17{123458678}
and

{1234} {5678}1-LST + v {1234{5678}}
e To take a list apart, use OBJ-, or the equivalent for lists, LIST-.

{1 (1,2 'A+B'} OBJ~ = 1 (1,2) 'A+B’ 3

OBJ- returns the elements of the list as separate stack objects, and leaves the
number of elements in level 1.
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e To extract sublists from a list, use SUB. SUB takes a list plus two real number
arguments that specify the positions in the list of the first and last element of the
desired sublist:

4

(A B CDTETFG}) 36 SUB = {CDE F}L

See also TAIL, described in the next section.

» To replace several consecutive objects in a list, use REPL. REPL takes three argu-
ments: the target list in level 3, the first substitution position in level 2, and the
replacement list in level 1. The rules for use of REPL with lists are similar to those
for use with strings (section 3.4.33). Assume that the target list contains /, ele-
ments, the replacement list has /, clements, and the substitution position is n. Then
for

n>\ly, the two lists are concatenated:

{A B C D E} 10 {F G} REPL

v# {A B C D E F G}

n+1,-1>[,,  elements n through /, are replaced, and the leftover /,-(/,-n)

objccts from the end of the replacement list are concatenated, so

that the result list has n +/, -1 clements:

{A B C D} 4 {E F} REPL v {A B C E F}
n+l,-1=[,, clements n through n +/,-1 are replaced in the target list; the

remaining /, —/, objects are unchanged:

{A B C D} 2 {E F} REPL 15 {A E F D}

n=0, the Bad Argument Value error is reported.

11.42 List Element Commands
The program list-element menu ( [PRG]ZLISTE ZELEME ) contain commands for finding,
extracting, and replacing individual elements in a list.

e To pull an individual object out of a list, use GET or GETI (section 6.3.1).

{1 (12 'A+B'} 2 GET u# (1,2).

e HEAD extracts the first element of a list (like the LISP function CAR):

{A B CDE F G} HEAD = A
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HEAD is equivalent to 1 GET. It returns the Invalid Dimension error if the list is
empty.

e The counterpart of HEAD is TAIL, which returns the second-through-last elements of
a list (like LISP CDR):

{A B CDETFG} TAL v {B C D E F G}.
TAIL is equivalent to
2 OVER SIZE SUB.

It returns an empty list for lists with fewer than two elements.

e To substitute an object into a list, use PUT or PUTI.
{1 (1,2 'A+B’} 2 "ABC" PUT us {1 "ABC" 'A+B’},

where the second element (1,2) in the initial list is replaced with the string "ABC™.
PUTI makes a substitution like PUT, but also leaves the index of the next clement in
level 1.

¢ You can find an object in a list by using POS:

{A B C} 'B" POS 1+ 2.

The number returned is the element number in the list of the scarch object, or O if
the object is not contained in the list.

¢ To determine the number of elements in a list, use SIZE.

{1 (1,20 'A+B'} SIZE v 3.

11.4.3 List Mathematics

The math list menu ([MTH]ELISTE ) contains commands that depend on the values of list
elements, rather than treating them as generic objects. REVLIST is also included,
because of its association with SORT.

e ZLIST computes the sum of the elements in a list:

{A B C D E} ZUST 1 'A+B+C+D+E".

The objects in the list may be of any types that are suitable for addition by +.
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e ADD sums the corresponding elements in a pair of lists. It has the same actions as
+ for all argument types except lists; applicd to lists, or to one list and one non-list
object, ADD executes + on the elements of the lists in the same manner as
automatic list processing:

{1 2 A} {3 4 B} ADD 1= {4 6 'A+B'}
X" {A B C} ADD :t¥ {'X+A’ 'X+B’" 'X+C'}
ADD is included because + is defined for list concatenation (for compatibility with

the HP 28 and the HP 48S/SX) rather than for element arithmetic.

o [1LIST computes the product of the elements in a list:
{A B C D E} I[UST t+ 'AsB+C+D=E".

The objects in the list may be of any types that are suitable for multiplication by *.
More general “stream processing” like that performed by ZLIST and ILIST is avail-
able with the command STREAM (section 11.4.4.2).

e ALIST computes the differences between successive pairs of elements in a hist:
{A B C D} HusST :+ ' {'B-A" 'C-B" 'D-C }

The objects in the argument list may be of any types that arc suitable for subtraction
by —. ALIST is a special case of the gencral sublist processing provided by
DOSUBS (section 11.4.4.1).

¢ SORT rearranges the clements of a list to be in ascending order, so that cach cle-
ment is greater than or equal to the preceding element:

{6 7 -1 2} SORT 1= {-1 2 6 7}

The objects in the list must all be the same type, but that may be any type that is
suitable for non-symbolic comparison by < --real numbers, binary integers, strings,
global or local names, or unit objects. Names are sorted by their text, in the same
manner as strings. SORT will also handle a list of lists, where the inner lists are
sorted according to their first elements, which all must be of the same type.

To sort a list’s elements into descending order, you can use SORT REVLIST. For
more flexible sorting, see the program GSORT listed in section 11.5.3.

e REVLIST reverses the order of the elements in a list:
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{A B C D} REVLIST 1= {D C B A}

11.4.4 Lists as Argument Sequences

In section 3.5.5.1, we showed how commands that are not intrinsically designed to deal
with list arguments are automatically applicd to onc or more lists represcnting
sequences of arguments. The commands in the program list-procedure menu (
ZLIST= =PROCE ) allow you to cxtend list processing to other commands and programs,
and to usc list arguments in a variety of other ways.

11.44.1 Applying Commands and Programs to Lists of Arguments

DOLIST is the command form of automatic list processing, which allows you to use lists
as argument scquences for any command or program. For example, you can duplicate
the action of ADD like this: '

{1 2 3} {4 5 6} <<+> DOUST t+ {5 7 9}

Here the command + is “quoted” (section 3.8) by surrounding it with << >>_ o that it
can be entered into level 1 as an argument for DOLIST. (DOLIST will also work with +
itsclf on the stack, but it is usually casicr to use << + >> rather than exccuting a
scquence like { + } HEAD to get the + by itsclf.) Since + requires two arguments,
DOLIST in this casc expects two lists of objects suitable for + to be in levels 2 and 3.

In general, DOLIST uscs as many list arguments (1-5) as the level 1 command requires
as its arguments. DOLIST executes the command repecatedly, once for each sct of
objects from the list, where each sct is one object from the same position in cach list
presented in the same stack order as the lists themselves. Symbolically, the action of
DOLIST with a command f of m arguments is as follows: '

{011"'01,,} {Oml".omn} <<f>>

DOLIST o= {f(olh s 701711) T f(olna s >0f7m) }’

where n is the number of objects o; in each list. The Invalid Dimension error is
reported if n is not the same for all of the argument lists.

The results (if there are any) from the repeated executions of a command by DOLIST
are left on the stack. After the final execution, the results are collected into a list and
returned to level 1. More precisely, any objects on the stack additional to those there
before DOLIST was executed (not counting the level 1 object and the argument lists) are
returned in the result list. If no new results are returned, or if the stack has fewer
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objects after DOLIST, no result list is returned:
{1 2 3} << CF> DOLIST v~

If an error occurs during DOLIST execution that is caused by the object that DOLIST is
applying to the list, any results from the execution up to that point are left on the stack.
This differs from automatic list processing, where such results are removed from the
stack as part of the error-handling process.

DOLIST can determine the number of argument lists needed from the level T command
itself, since all HP48 commands include this information as part of their internal defini-
tions. This can not be done in gencral for a user program, except when the program
has the structure of a user-defined function (section 8.5), where the number of argu-
ments is indicated by the number of local names immediately following the initial —.
DOLIST does therefore allow programs of this form; for example,

{1 2 3} {4 5 6} {7 8 9} <<~ a b c 'atb+c’ >
DOLIST v> {12 15 18}.

The program in this example adds three arguments, so three list arguments arc
required. The simple RPN program << + + >> also adds three arguments, but substi-
tuting it in the above example causes DOLIST to fail (Invalid User Function), because
DOLIST can not determine how many arguments the program requires. But DOLIST
provides for this case as well, by accepting a real number argument in level 2 that speci-
fies the number of arguments for the level 1 program:

{123} {456} {78 9} 3 << + + > DOLIST o= {12 15 18},
As another example, add 5 to the square of each number in a list:
{1 2 3} 1 <8Q 5 +> DOUST 1= {6 9 14}
Or, add two objects and subtract a third:

{A B} {C D} {E F} 3 <3 ROLLD + SWAP - >
DOLIST v> {'A+C-E' 'B+D-F'}.

You can also supply an argument-count number for DOLIST even when the level 1
object is a command or a user-defined function program. In that case the specified
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number takes precedence over the automatically determined argument count. In any
casc, if the number is smaller than the number of arguments actually required by the
level 1 object, DOLIST execution will consume additional objects from the stack beyond
the argument lists; if it is larger, unused objects from the extra argument lists will
appear in the rcsult list. You can take advantage of this to perform certain list
rearrangements--for example, to interleave the objects in two lists:

{A B C} {DEF} 2 <> DOUST v+ {A DB E C F}
Or, to replicate each element in a list:
{A B C} 1 < DUP>> DOUST 1+ {A A B B C C}

(<< DUP >> is not usable without the level 2 number because DUP accepts lists as
arguments in the ordinary way.)

As a final variation, DOLIST allows the level one object to be the name of a global or
local variable that contains a program. This is consistent with the notion (scction 4.6.1)
that named programs act like commands. For example, you can determine the greatest
common divisors of a scrics of pairs of numbers, using the program GCD (from scction
9.5.2.2) by name:

{616 583 672} {253 980 338} 2 ’'GCD’' DOLIST ¢~ {11 1 2}

When DOLIST is used with a name but fails because the stored object is inappropriate,
the argument recovery system will return the stored object to the stack rather than the
name.

11.4.4.2 Accumulations

When DOLIST is applied to two or more lists of arguments, they are used “in parallel,”
because at cach iteration, onc argument is taken from each list. Another way (o organ-
ize several arguments is as a serial stream in a single list. For example, ZLIST adds the
first two objects in a list, then adds each remaining object to the sum:

{A B C D E} ZUST v 'A+B+C+D+E’
The list may contain any types of objects that are suitable for addition with ordinary +.
STREAM allows you to extend ZLIST-style stream processing to any two-argument com-

mand or program. STREAM takes two arguments: a list of two or more objects in level
2 and any object in level 1. It begins execution by placing the first two objects from the
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list on the stack (the first in level 2), then executing the original level 1 object. The
result of that operation is left on the stack, the next element from the list is pushed into
level 1, and the object is cxccuted again. This process is repeated until no elements are
left in the list (STREAM reports the Invalid Dimension error if the argument list con-
tains fewer than two elements).

SLIST is cquivalent to the sequence << + >> STREAM. Substituting — for + allows
you Lo subtract values from a starting amount (like deducting withdrawal amounts from
an initial bank balance):

{200 25 10 25 16 35} << - >> STREAM i+ 89

Another straightforward usc of STREAM is to find the minimum or the maximum of a
list of numbers:

{1 5 2 7 -3} <<MIN> STREAM v+ -3
{1 5 2 7 -3} <<MAX>> STREAM :r 7.

Using the program GCD (scction 9.5.2.2), you can find the greatest common divisor of a
sct of numbers:

{324 948 672 1068 24 84} 'GCD' STREAM :+ 12

STREAM is nominally designed to work with commands and programs that use two
arguments, but it makes no attempt to check the level one argument for any particular
structure. If there is an crror during exccution, the error display identifics the guilty
command rather than STREAM.

11.4.4.3 Operations on Sublists

Another way to interpret a list of arguments is as a scries of overlapping sublists. This
is what ALIST does as it computes the differences between each consccutive pair of
numbers in a list. You can perform general computations of this nature using
DOSUBS. This command applies a second command or a program to all sublists of a
specified length within an argument list, combining the results of each operation into
result list. Here we use DOSUBS to apply - to cach pair of numbers so that second of
each pair of numbers is subtracted from the first:

{1 4 9 16 25 36} << - > DOSUBS 1+ {-3 -5 -7 -9 -11}

This is same as executing ALIST except that the signs of the results are reversed.

The size of each sublist is determined cither by the level 1 object or by an optional level
2 real number, following the same logic as that used by DOLIST (section 11.4.4.1). That
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is, if the level one object is a command that takes from one through five arguments of
specific types, a program containing cxactly one such command, or a program with
user-defined function structure, then the sublists are as long as the number of argu-
ments required by the object. This example shows the computation of a “moving aver-
age” taking three elements at a time (with a 2 FIX display):

{13591217 2527 313} <- a b c '(a+tb+c)/3’ >
DOSUBS 1¥ {3.00 5.67 867 12.67 18.00 23.00 27.67 31.33 }

The number of sublists of length m in a list of length n is n—-m +1, so there arc
10-3+1=8 objects in the example result list.

As for DOLIST, when the level 1 argument is not suitable for automatic argument count
determination, you must supply a real number in level 2 to specify the count. In this
example, we compute the differences in the squares of a series of integers:

{1 2 3 45 6} 2 <<SQ SWAP SQ - >
DOSUBS :+ {3 5 7 9 11}

Two additional commands are available for more complicated sublist operations: NSUB
and ENDSUB. These commands behave as special variable names, which, when
cvaluated during the execution of DOLIST, return sublist positions within the argument
list. NSUB returns the position of the active sublist, 1.e. the position of its first element
counted in the main list. ENDSUB rcturns the number of the last sublist, which is also

the total number of sublists. The simple program EVENELS illustrates the use of
NSUB:

EVENELS Even-numbered List Elements 536F
level 1 | level 1
{ list } S {Ust' )
<1 Sublists of length 1.
<< Program argument for DOSUBS.
IF 'NSUB MOD 2 If sublist number is odd,
THEN DROP then drop the element.
END
>>
DOSUBS Apply the program.
>>
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The program operates on onc-element sublists, returning only the cven-numbered
objects and discarding the odd-numbered ones:

{A B C D E F} EVENELS : {B D F}

As another example, consider the approximation of a definite integral by Simpson’s rule:

b3_na [f (o) + 4 (2) T2 (3)+4f (xa)

+2f(x5) o +2f(xn—l)+4f(xn) +f(xn-r-l)]v

b
J7 @yax =

where the x; are the endpoints of n regular subintervals of [a,b] (n cven). The program
SIMPSON listed on the next page automates the application of Simpson’s rule, where
the function, a, b and n arc supplied as stack arguments. SIMPSON uses SEQ (scction
9.5.1.5) to generate a list of n+1 sample points, DOLIST to compute the sample values
by applying the function to cach sample point, DOSUBS to multiply the sample valucs
by 1, 2, or 4, and finally, ZLIST (scction 11.4.3) to add up the result.

For cxample, to compute the integral
10

fA'_

0 1+x2>7
with 100 subintervals:
< - x "1/(1+x72) > 0 10 100 SIMPSON :. 1.47112767417.

This result differs in the eleventh place from the ideal result tan™'(10)= 1.4711276743.

11.4.4.4 List Processing Errors

Applying commands to lists of. arguments by automatic list processing (section 3.5.5.1)
or by the list processing commands described in the preceding sections can generate any
of the usual errors associated with the commands. In addition, however, there are cer-
tain errors associated with the list processing itself:

e Invalid Dimension indicates that an argument list has an incorrect number of cle-
ments, either because the list is too short or because it does not match the length of
other argument lists (DOLIST).

e Invalid User Function is reported by DOLIST or DOSUBS when a user program
supplied as the level 1 argument, where no argument count is specified in_level 2,
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SIMPSON Simpson’s Rule Integration 42F5
level4  level 3 level 2 level ] level 1
function a b n [ &4 integral
«<-f a b n Store function, endpoints, intervals.
< 'x’ DUP a b ’(b-a)/n’ EVAL SEQ Generate list of sample points.
't DOLIST Compute list of sample values.
<< - y
<< CASE
‘NSUB==1 OR NSUB==ENDSUB’ First and last samples.
THEN y END
'NSUB MOD 2==0’ Even —numbered samples.
THEN 4%y’ EVAL END
'2%y’  EVAL (dd -numbered samples.
END
DOSuUBS Compute the weighted f (x;)
SLIST Add up the terms.
‘(b-a)/(3*n)’ EVAL * Multiply by (b~a)/3n.
g

does not have a uscr-defined function structure.

e Wrong Argument Count is reported by DOLIST or DOSUBS when a command is

supplied as the level I argument that does not accept 1-5 arguments of specific types,

e.g. DUP, ROT, or —LIST.

11.5 Using Lists in Programs

The discussion of lists so far has focused on operations on lists and their elements. In
this section we will consider the uses of lists as program tools for collecting objects for

input and output, and for managing intermediate resuits.

11.5.1 Input Lists

Certain HP 48 commands provide examples of the use of lists to combine several input

objects into a single argument. There are two basic reasons for this approach:

1. To provide flexibility along with uniformity. For example, consider the command

CON, which creates an array in which all elements have the same value. CON
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requires two pieces of information: 1) the common value for the elements, and 2)
the dimensions of the array. The first is easy; the value is specified by a real or
complex number in level 1. The second is a little more difficult, since an array
can either be a one-dimensional vector, or a two-dimensional matrix. The use of
a list as the level 2 argument for CON allows CON to handle both matrices and
vectors. If the level 2 list contains one number, CON creates a vector; if the list
contains two numbers, CON creates a matrix. If the dimensions were not com-
bined into a list, therec would have to be two versions of CON: one that takes two
real numbers as arguments--the value and the vector dimension; and one that
takes three numbers--the value and two matrix dimensions.

2. To reduce the number of separate arguments. Many graphics commands such as
GXOR (section 10.3.1), use either complex numbers or binary integers to specify
pixel coordinates. 1f the binary integers were entercd as separate arguments, then
these commands would violate the usual HP48 convention that any particular
command uses the same number of arguments for cach of its allowed argument
type combinations. Instead, cach pair of binary integers is combined as a list, to
match one-for-one the uses of complex numbers.

Of these two reasons, the first is the only one of significance as a model for the usc of
lists as input arguments for user programs. That is, lists are ideal for situations where
you have an indefinite number of inputs. An example of this is provided by the program
MINL (section 12.3), which {inds thc minimum among a series of numbers in a list. The
program is written for scries of any length--it has only to execute SIZE on the input list
to determine how many numbers it needs to compare. Furthermore, during its cxccu-
tion, the numbers remain in the list, except for when they are extracted one-by-one from
the list for the comparisons. Keeping track of that single list, which could be stored in a
global or local variable if necessary, is much simpler than trying to maintain the series
of numbers as separate stack objects. If you are not yet convinced of the utility of lists,
try writing a version of MINL that uses no lists (or arrays). See also the recursive pro-
gram RMINL, in section 12.10.

11.5.1.1 Index List Arguments

Commands such as PUT and GET that use argument lists containing one or more real
numbers also allow you to substitute other types of objects for the numbers. The substi-
tute objects must evaluate (by means of “NUM) to real number values. In particular,
this means you can use symbolic values (names or expressions), Or even programs,
rather than specific numerical values. For example, the sequence

-~ m <1 m SIZE 2 GET FOR n m {3 n} GET NEXT>>
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returns in order all of the numbers from the third row of a matrix. This capability can
lead to some convoluted executions when argument lists contain (directly or indircctly)
programs that manipulate the stack. You can predict the execution in such cases as fol-
lows:

1. Empty lists cause the Bad Argument Value crror.

2. Lists containing only real numbers go directly on to the computation part of the
command.

3. When a list contains clements other than real numbers:
a. The stack depth (less the list) is recorded.

b. Each non-real number list clement is evaluated numerically (-NUM). After
cach evaluation, if the resulting stack is cmpty, the crror Too Few Argu-
ments is reported. If the resulting level 1 object is not a real number, the
Bad Argument Type crror is reported.

c. I the stack depth has decercased, the Too Few Arguments is returned. Oth-
crwise, the new objects, plus any excess, are combined back into a list.

d.  The command cxccution is started over again with the new list.

Command crrors that occur during cvaluation of procedures within the argument list
identify the guilty command and return its arguments as usual. Howcever, other crrors
that occur in step 2 do not identify any command.

If a non-numeric list 1s used as the index argument for GETI or PUTI, the incremented
index list is returned with real number indices.

11.5.2 Output Lists

Just as you can usc a list to combinc an indefinite number of input objects into a single
argument, you can usc a list to reccive the multiple-object ouwtput of a program. This
approach makes it easy to manipulate a program’s output--either to save it in a variable,
or to use it as the input for another program.

» Example. For any integer n, computc the first n+7 terms F, of the Fibonacci series.
This scries is defined as follows:

F():()
Fl =1
F,=F,_+F,»
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FIB Fibonacci Series Generator ED29
level 1 | level 1
n [ 24 {01 - f,}
< {0 1} Start the list with Fo and F .
SWAP DUP 1
IF > If nis = 2, quit.
THEN 0 1 Initial values F, > and F),;.
3 4 ROLL 1 + From 3 to n...
START DUP ROT + Fpa+Fya.
ROT OVER + Add F, to the output list.
3 ROLLD ‘ { F)x} Fn-Z Fn-] !
NEXT DROP2
ELSE DROP
END

11.5.3 Lists of Intermediate Results

When a program contains loop structurcs, or is written recursively, it is usually neces-
sary 1o ensure that the stack has the same configuration at cach iteration. A particularly
convenient means of achicving this is to usc a list as an auxiliary data stack, to hold an
indefinite number of intermediate results in a constant position on the stack.

The program GSORT illustrates the use of lists of intermediate results. The sorting
done by SORT (scction 11.4.3) is always numerical or alphabetical. GSORT orders a hist
of objects according to any comparison that you specify. To use GSORT, enter the
unsorted list of objects, followed by a program test-program that represents a logical test.
Test-program should work like this:

object, object, test-program t<  flag.
Flag should be true if object | is to precede object,, or faise otherwise. GSORT sorts the
list so that the sequence
object, object, . test-program

will return a true flag for any two consecutive objects object, and object, . in the list
(unless the order is ambiguous).

GSORT uses a recursive algorithm that can be summarized as:
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Remove an object from thc middle of the list and compare it to cach of the
remaining objects using test-program. Separate the remaining objects into two lists,
one containing objects for which the test returned true, and the other containing
the objects for which the test was false.

Sort the two lists using the same algorithm.

Combine the results back into a single list, with the sorted true objects first, fol-
lowed by the original middle object, then the sorted false objects.

GSORT General-purpose Sont EFFC
level 2 level ] | level 1
{list} << 1est > 17 { list }
<< -~ ftest Save test program as test.
<< |F DUP SIZE 1 > If the list has fewer than 2 clements. just
return.
THEN OBJ- Put the objects on the stack.
DupP 2 / 1 + ROLL Giet the middle object.
NEWOB -~ «x Save the object as x.
=< {} {} Initialize “truc™ and “false™ lists.
2 4 ROLL Iterate for n-1 elements:
START ROT Get the next element.
IF DUP x test EVAL If test is true,
THEN ROT + SWAP add clement to first list.
ELSE + Otherwise, add clement to second list.
END
NEXT
test GSORT Sort the first list.
SWAP test GSORT Sort the second list.
x + SWAP + Combine the lists.
>>
END
>>

+ NEWOB saves memory by separating ¥ from the original list. See section 11.6.
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For rcal numbers, the combination << < >> GSORT produces the same numerical ord-
ering as SORT. But with GSORT, you could also sort numbers according to their abso-
lute values:

{10 3 7 -5} <<ABS SWAP ABS > >> GSORT 1+ {3 -5 7 -10

Other examples:

e To sort strings or lists in order of increasing length:

<< SIZE SWAP SIZE > >> GSORT

e To sort complex numbers in order of increasing polar angle from 0° to 360%:

< << ARG DUP 0 IF < THEN -1 ACOS 2 * + END =>>
ROT OVER EVAL ROT ROT EVAL < >> GSORT

11.5.4 Lists As Procedures

The definition of a list as a composite object containing an ordered sequence of other
objeets applics cqually well to program objects. However, a program is a procedurc-
class object (section 3.5) that combines objects intended for scquential exeeution, wheres
a list is a data-class objeet that colleets objeets intended to be data. This difference is
reflected in the exccution actions of the two types of objects: cxecuting a program
automatically exceutes the objects that make up the program, but exceuting a list merely
returns the list to the stack. You would writc a program to compute the squares of
integers between 1 and 10:

<1 10 FOR n n SQ NEXT>>
But you would use a list to contain the ten results:
{1 4 9 16 25 36 49 64 81 100}

Lists are intentionally designed to allow access to their component objects. You can
combine objects into a list, or you can take it apart into its scparate objects. You can
also extract and replace individual objects within a list. By contrast, programs are nor-
mally only modified by manual editing in the command line. This makes it difficult for
a program to create new program objects with any elements that are not fixed at the
time the original program is created. To address this problem, evaluation of a list by
EVAL treats a list as a procedure, and successively executes the elements in the list.
Thus
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{1 2 3 + +} EVAL r= 6.

A good example of the benefit of this property of EVAL is the use of the directory list
returned by PATH. The directory sequence could be returned as a program, since a
common need is to execute the sequence in order to restore as current the directory at
the end of the path. But because the path is represented as a list, you are able to access
or modify its individual elements as well as execute the directory sequence.

For purposes of list evaluation, you can include in a list most of the elements of pro-
grams. There are a few exceptions:

e The local variable command - can not be used within a list. All other program
structures are allowed.

e Names and programs in a list can not be “quoted” (section 3.8). For example,

{<< 1 >} EVAL u# 1

)
compared with

<< << 1 >> > EVAL 17 o<< {1 >>,

Similarly, names entered in lists are not quoted--if you enter a name with ' ' quotes
in a list, the quotes are not retained. Therefore, to prevent the execution of a name
or a program in a list, youn must embed it within another set of program delimiters,
e.g. {<<<<1>>> }or{<< 'ABC' > }.

¢ You can not single-step through a list. If you evaluate a list containing a HALT or
PROMPT, execution will suspend at the appropriate place, but SST in this case is
equivalent to CONT.

A list can be used as an argument for IFT or IFTE (section 9.4.2). These are the only
built-in commands other than EVAL that evaluate lists as procedures.

11.6 Composite Objects and Memory

There is a subtlety in the management of composite objects--lists, algebraic objects, and
programs--that you should keep in mind when programming with these objects. When
an object originates in a composite object, such as when GET extracts an object from a
list, or when executing a program leaves an object from the program on the stack, the
composite object remains in memory as long as any of its component objects remains on
the stack or is otherwise in use. If the composite object itself is stored in a global or
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port variable (or is part of a program or another list in a variable), this point is unim-
portant, since the memory used by the object is accounted for in the variable. However,
if the composite object has not been stored, the memory it uses will not be recovered
until it and any objects that have been extracted from it are removed from the stack.
For the individual objects, “removed” means dropped, stored in a global or port variable
(not a local variable), or combined into a vector or another list.

To see this effect, disable the argument, stack, and command recovery systems so that
they will use no memory, and execute

1 50 FOR n n NEXT 50 -LIST

to create a list of 50 numbers. Now execute 50 GET, so that the number 50 (from the
list) is left on the stack. Next, execute MEM to determine how much memory is avail-
able. Use SWAP DROP to drop the 50, then execute MEM again. Notice that the
difference is 447.5 bytes--far more memory than you would expect to be recovered by
dropping the single real number 50. The large difference between the successive MEM’s
actually ariscs because the removal of the 50 allowed the HP 48 to delete the copy of
the list that it had been preserving.

As mentioned above, you can “uncouple” an object from the list from which it came by
cither storing the object in a global variable, or by including it in another list (or an
array, if the object is a number). An even simpler method is to execute NEWOB (NEW
OBject). NEWOB may not appear to do anything, since the object it returns matches
the original, but in fact NEWOB creates a new independent copy of an object that is
disassociated from any other objcct. Using NEWOB in the GSORT program listed in
section 11.5.3 enables that program to sort lists substantially larger than it could if
NEWOB were omitted.

One additional note: if you are dealing only with a collection of numbers (all real or all
complex), you can often use a vector (or a matrix, if you want a rows-and-columns type
of organization) to store the numbers, instead of a list. For storing more than a few
numbers, a vector is more memory-cfficient than a list, and you can perform many of
the same operations to assemble and disassemble vectors as you can with lists. The
main disadvantage of using a vector in place of a list is that there is no built-in com-
mand for adding (concatenating) numbers to vectors, or combining two vectors into a
longer one. The following program provides list-like concatenation for vectors:
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ADDV Concatenate Vectors 9645
level 2 level ] | level 1
x | vector | wr | vector' }
| vector | X [ & | vector’ ]
(xy) | vector] vy | vector’ |
[ vector]  (xy) e | vector’ |
[ vector | [vector' | ws [ vector’ |
<<
<< DUP TYPE Program to apply to both vectors.
IF 1 = Is the object a number?
THEN 1 Then treat as a one-element vector.
ELSE OBJ~ OBJ- DROP For a vector, put its elements on the stack.
END
DUP 2 + ROLL Get the object above the vector.
> = s Store the program as a subroutine s.
<< SWAP s EVAL s EVAL Apply s to both vectors.
+ Total number of elements.
1 -LIST -ARRY Combine the numbers into the result vector.
>

11.7 Symbolic Arrays

HP 48 array objccts are designed for the cfficient storage of real and complex numbers,
and can not contain symbolic elements. Nevertheless, it is possible to deal with sym-
bolic arrays on the HP 48 by using the more flexible list objects to represent the arrays.
In this section, we will present several programs for symbolic array calculations, which
also serve as examples of the use of lists and arrays, and other programming techniques.
These programs obviously do not exhaust the subject of symbolic array manipulations,
but you can use them as a basis for developing additional programs.

All of the programs follow the convention that a symbolic array is represented by a list
of lists. An nXm array is represented as a list containing n m-element lists. For exam-
ple, the list{{a b} {c d}{e f}} stands for the matrix
| a b
c d
e
There is no special provision for vectors, which may be represented as 1Xn or n X1
arrays in this system. Since all of the arrays are two-dimensional, we will always use two
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separate (i.e. not in a list) real numbers to specify elements or dimensions.

The programs do not check for the integrity of the lists you may enter--they presume
that all of the inner lists in a particular symbolic array list have the same number of ele-
ments, that all of the elements are either names, numbers, or algebraic cxpressions, and
that there are no extraneous elements in any of the lists. If the programs are applied to
lists that violate any of thesc assumptions, they may crror or return nonsensical results.
If this is not satisfactory, you can easily revise the programs to include more argument
testing.

11.7.1 Utilities
To start with, here are several utility programs for symbolic arrays that are analogous to
various HP 48 array commands:

DIM returns the dimensions 11 (rows) and m (columns) of a symbolic array.

SA- unpacks a symbolic array into separatc stack objects.

-SA combines stack objects into a symbolic array.

N-S -converts an ordinary numerical array into a symbolic array. Vectors are con-

verted into n X 1 symbolic arrays.

S—-N attempts to cvaluate all clements in a symbolic array into numbers. If suc-
cessful, it then converts the symbolic array into a numeric array.

APLY1  applies a program to cach clement of a symbolic array.
APLY2  combines two symbolic arrays by applying a program to pairs of elements.

STRN transposes a symbolic array.

DIM Symbolic Array Dimensions 9378
level 1 | level 2 level 1
{ array }} [ 4 n m

<< DUP SIZE SWAP HEAD SIZE

>>
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SA- Symbolic Array to Stack 28D2
level 1 | level 2 level ]
{ array }} [ ...elements... n m
<< OBJ- OVER SIZE - n m Store dimensions.
< 1 n
FOR i
"i-1)*m+n-i+1" EVAL ROLL Get the ith row.
OBJ~ DROP Put its elements on the stack.
NEXT
n m Return the dimensions.
~SA Stack to Symbolic Array 98FD
level 2 level ] | level 1
elements... " m (¥4 { aray }}
< - n m Save the dimensions.
<< 1 n )
FOR i
m ~LIST Make the ith row.
‘'m*(n-i)+i’ EVAL ROLLD Put it at the end.
NEXT
n ~LIST Combine the rows.
>>
>>
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N-8 Numeric to Symbolic B665
level ] | level 1
llamay | or  Hamay )
< 0BJ~ OBJ- Put elements on the stack.
IF 1 == Is this a vector?
THEN 1 Then add the other dimension.
END
-SA Combine into a symbolic array.
>>
SN Symbolic to Numeric 0ACH
level ] | level ]
Haray}) er  [laray )]
<< SA- Put elements on the stack.
DUP2 * - n m p Save dimensions and number of elements.
< 1 SF Flag 1 clear will indicate a non-number.
1p
START p ROLL (et the next element.
IFERR DUP -NUM Convert it to a number.
THEN DEPTH p - DROPN |If -NUM fails, discard any partial results.
1 CF Remember the failure.
ELSE SWAP DROP
IF DUP TYPE If the result is not a number...
THEN 1 CF ..clear flag 1.
END
END
NEXT
n m Dimensions for result array.
iF 1 FC?
THEN -SA If there are non - numbers, return a symbolic
array.
ELSE 2 -LIST -ARRY Otherwise, return a numeric array.
END
>>
>>

S~N sets flag 1 to indicate a successful conversion, and clears it otherwise.

-335-



Arrays and Lists

APLY1 Apply Program to 1 Symbolic Array DE29
level 2 level 1 | level ]
{laray }} << program > v {{aray’ 1}
<< SWAP OBJ- Decompose the array into rows.
DUP 2 + ROLL - n f Store the program and no. of rows.
<1 n
FOR i
1 f DOLIST Apply f to each row.
n ROLL
NEXT
n -LIST Pack up the array.
APLY2 Apply Program 10 2 Symbolic Arrays 83BB
level 3 level 2 level ] | level 1

{amayy}} Haray o}

<< program >> Ly

Harray »}}

<< OVER SIZE - a1 a2fn

<« 1 n
FOR i
al i GET
a2 i GET
2 f DOLIST
NEXT
n ~LIST
>>
>>

Save the arrays, the program, and

the dimensions.

Get ith row of al.
Get ith row of a2.

Execute the program.

Pack up the resuit array.
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STRN Transpose Symbolic Aray A128

level 1 | level 1

Ha; b er A B

< DUP DIM - a n m Save array and dimensions.
< 1 m
FOR j 1 n
FOR i a i GET j GET Ay
NEXT
NEXT Elements are now in transposed order.
m n
Discard the original array.
~SA Pack up the new array.

11.7.2 Symbolic Array Arithmetic
Using the APLY1 and APLY?2 utilitics listed in the preceding section, it is straightforward
to create programs for simple symbolic array arithmetic.

SADD
SSuB
SMS

SMUL

adds two symbolic arrays.
subtracts two symbolic arrays.
multiplies a symbolic array by a scalar (numbcr, name, or algebraic).

multiplies two symbolic arrays.

SADD Add Symbolic Arrays E3E4

level 2 level 1 | level 1

A Byl wr {A; +B; 1}

<< << + COLCT = APLY2

>>

SSuB Subtract Symbolic Arrays 8782

level 2 level 1 | level 1

{4; 8 UB; 1 (2 {{4;-8; 1}

<«< << -~ COLCT => APLY2

>>
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You may wish to omit COLCT from SADD or SSUB, to speed up execution or to
prevent an unwanted rearrangement. You can execute << COLCT >> APLY1 on an
array to collect terms once after a series of calculations.

SMS Scalar Multiply Symbolic Arrays Cs8A

level 2 level 1

| level ]

o Lz )
r {2y )

WAy =t
Ay

<< |F DUP TYPE 5 ==

THEN SWAP

END

- Z

<« <<z ok >

APLY1
>>

>>

Put the array in level 2.

Save the scalar.
Program for APLY1.

tz can be a number, a name. or an algebraic expression.

SMUL Muluply Symbolic Arrays 12A9

level 2 level 1

| level 1

{4, €B;h

o {B); 1}

<< DUP2 DM ROT DIM
- al a2 n2 m2 nl mi

< 1 i
FOR i 1 m2
FOR j 0 1 mi
FOR k

at i GET k GET
a2 k GET j GET
* o+
NEXT
NEXT
m2 -LIST
NEXT
nt -LIST
>>

>>

Save the arrays and dimensions.

Compute > A; By
k

Alk

Ay,

Pack up the ith row.

Pack up the result array.
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11.7.3 Determinants and Characteristic Equations
In this section, we develop a program DETM that computes the determinant of a sym-
bolic matrix from the formula

n . N
DETA = 3 (~1)"'A,1 AL,

i=1

where A,(J, is the ij cofactor (unsigned) of element Aj;, and 7 is the number of rows or
columns in the (square) matrix. This is a recursive form of the definition of DET, since
the cofactor of an element is the determinant of its minor:

A = DETA}.

(Note that some texthooks may give different definitions for the terms minor and cofuc-
tor.)

The programs to compute determinants of symbolic matrices, SDET (symbolic deter-
minant), SCOF (symbolic cofactor), and SMINOR (symbolic minor), arc straightforward
rcalizations of the above definitions, including the recursion. They are presented in an
order (SDET first, SMINOR last) that demonstrates a “top-down” programming
approach, where you write a program before writing the subroutines that it calls. This
kind of approach lets you concentrate on the essential main logic flow of a program,
before worrying about the details.  Also, when you come to write the subroutines (the
“details™), you know cxactly what the stack use of the subroutines should be. Note,
however, that the opposite, “bottom-up” order is usually more convenient for actually
entering the programs into the HP48. By cntering the subroutines first, you can then
enter their names into other programs by pressing the appropriate VAR menu keys.

SDET computes the determinant of a matrix as a sum along the first column, of cle-
ments times their respective signed cofactors. (The sign — 1'7! is computed explicitly in
this program, rather than as part of the cofactor program, so that the row and column
numbers that determine the sign don’t have to be passcd along down through all of the
levels of recursion.) The unsigned cofactor of a matrix element is the determinant of
the corresponding minor; for a 1X1 matrix, the cofactor is 1. The program SCOF
called by SDET cmbodies these points. At the point in SDET where SCOF is executed,
the stack contains a matrix and the row and column number of the desired cofactor.

The two programs SDET and SCOF call each other back and forth--each is a subroutine
of the other. The calculation proceeds the same way it would if you were computing the
determinant by hand, where you use cofactors to compute the determinants and deter-
minants to compute cofactors.
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SDET Symbolic Determinant of a Marrix D39C

level 1 [ level 1

{ marix }} vs  determinan

<< DUP DIM DROP -~ a n Save the matrix (a) and its dimen-
sion.
< 0 Initialize the sum.
1 n
FOR i For each element in column 1...
a i GET 1 GET Get the element.
a i 1 SCOF x Multiply by the (unsigned) cofactor.
-1 0 1 4+ & Multiply by (- 1) *!
+ Add to the current sum.
NEXT
>>
>
SCOF (Unsigned) Symbolic Cofactor 5785
level 3 level 2 level ] | level 1
{{ marrix }} r c [ ¥4 cofactor
<< 3 PICK DIM DRQP Get the dimension of the matrix.
IF 1 == If it's a I X | matrix...
THEN 3 DROPN 1 ...then just return 1.
ELSE SMINOR SDET ...€lse, return the determinant of the cofactor.
END
>>

SCOF uses a subprogram SMINOR to compute the nm minor of a symbolic matrix. It
would be straightforward to modify the program MINOR in section 11.1.5 to work with
symbolic matrices; however, because the structure we are using for symbolic arrays

makes it easy to break an array into rows, we use a different approach and write SMI-
NOR as a single program.
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SMINOR Minor of a Symbolic Marrix D352
level 3 level 2 level 1 | level 1
{ mawmix }} r c vy {{ minor}}
< - 1 ¢ Save the row and column number.
<< OBJ- Put the rows on the stack.
OVER SIZE OVER 1 - - m n [Save the (final) dimensions.
<< r - 1 + ROLL DROP Discard the rth row.
1n For each remaining row:
START n ROLL Get the next row.
IF ¢ 1 - r=1is a special case.
THEN DUP 1 ¢ 1 - SUB Elements in columns < r.
SWAP ¢ 1 + m SUB Columns > r.
+ New row.
ELSE 2 m SUB r=1 case.
END
NEXT
n -LIST Pack up the result.
>>
A B
w Example. Compute the determinant of the matrix c D"

= Solution.
{A BHC D}} SDET 1¥ 'A*D-C*B’

You might note that for purely numeric matrices, SDET can occasionally produce more
accurate results than you obtain by applying the HP48 command DET to the same
matrix. For example, applying SDET to the matrix

123

l4 56

|7 89

returns 0, which is exactly correct, whereas using the command DET returns
2.14259999999E - 10. This happens because SDET actually carries out all of the matrix
element multiplications explicitly, whereas, except for 2 X 2 matrices,” DET does not.
DET uses more advanced numerical methods to speed up calculation and minimize
memory use for large matrices, and to insure a reliable answer even for matrices with
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elements of widely varying values.

An excellent application of the symbolic array capabilities presented here is the compu-
tation of the characteristic equation of a matrix, which is used in the determination of
eigenvalues. The characteristic equation of a matrix A is defined as

DET (A —xI) = 0,

where x is an eigenvalue, and I is the identity matrix. The program CEQN returns the
characteristic equation of a symbolic or numeric matrix, where you specify the matrix in
level 2, and the name to be used for the eigenvalue variable in level 1. [Note: the
sequence X N TAYLR is used in CEQN to simplify the result. You can omit this
sequence for faster execution of CEQN, which will then return an equivalent but longer
form of the cquation.]

CEQN Charactenistic Equation 1831
level 1 level 2 | level ]
{matrix}y  name’ [ g ‘equation’
[[matix]]  "name’ [ ‘equation’
< |F OVER TYPE 5 # If it's a numeric matrix...
THEN SWAP N-S SWAP ...make it symbolic.
END
OVER SIZE - x n Save the name and dimension.
<< n IDN Make an identity matrix.
N-S Make it symbolic.
x SMS Multiply by X
SSuB Subtract from the original matrix.
SDET Determinant
x n TAYLR Simplify the expression.
0 = Make into an equation.
>>
>>
1 0 2
m Example. Find the characteristic cquation in X of 8 % 421

= Solution:

[[102][014][012]] 'X CEQN 17 '—2-X+4%X"2-6/31*X"3=0".
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12. Program Development

Program development is the process of transforming a computation problem into a cal-
culator program. No two problems are identical, of course, but in this chapter we will
consider certain elements that involve a common approach from program to program.
Such elements include program techniques for obtaining input from a program’s user
and presenting the program’s results in a manner that the user can interpret. There are
also mechanical aspects such as editing, debugging and program optimization--altering a
program to improve its speed or to minimize memory use. In all of these matters there
arc elements of art, and of personal preferences and style, that preclude any authorita-
tive prescription. It is not even easy to define what distinguishes a good program from a
bad one. For example, one program might requirc less memory, or run faster, or have
fewer steps than another. But perhaps you can develop the less efficient program and
usc it to obtain results in less time than it takes just to design the other; which, then, is
the “better” program?

In this chapter, we will study some general-purpose topics in HP 48 program develop-
ment, with examples to illustrate cach topic. From these and other examples throughout
this book, you will see how various HP48 programming tools and techniques can be
combined. You can remember those methods that appeal 1o you, and through practice,
develop your own methodology.

12.1 Program Editing

To make any alteration to an cxisting program in order to correct an crror, optimize
execution, or add fcatures, you must edit the program. Because HP48 programs arc
objects, you cdit a program the same way you edit any other object. That is, you usc
EDIT to create a text version of the program in the command line, use the facilities of
the command linc to make the altcrations you desire, then execute ENTER to replace
the old copy of the program with the new one. Re-entering the entire program this way
ensures that objects and program structures are entered correctly. Even if you develop
or edit a program as text on a computer, as you transfer it to the HP 48 it is subjected
to the same syntax checking as it would had it been entered into the command line.

When an object is copied into the command line by EDIT, any numbers in the object are
shown to their full precision, regardless of the current number display mode. That is,
floating-point numbers are shown in STD format, and binary integers with a wordsize of
64 bits. This prevents the accidental changing of numbers during editing. Also, binary
integers are shown with an identifying character (b, d, h, or 0), so that reentering a
binary integer will not change its base regardless of the current mode.
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The advantages of the HP 48 program editing approach are:

e The same editing methods apply to all HP48 object types, so that you don’t have to
learn special techniques for each object type.

e No changes you make during an edit are “final” until you press [ENTER] . If you
change your mind while you are editing a program, you can just press to cancel
the edit and leave the program intact.

On the other hand, therc arc two important disadvantages:

e For a large program, it can take a substantial amount of time for the HP48 to
translate the entire program object into its text form, and, when you’re donce cditing,
to build the new program from the command line text.

e During the execution of ENTER, there must be memory available for as many as
three versions of the program (the original, the command line text, and the new ver-
sion) simultancously. This restricts the size of the program that can be edited.

The latter disadvantage is the most serious, because it can happen that there isn’t
cnough memory to permit any changes to an existing program, cven if the changes don’t
increase the final size of the program. Both disadvantages dictate that you kcep pro-
grams small, typically less than 1000 bytes (the largest program in this book is
MSGSHOW in section 12.6.4.4, which is 1536.5 bytes). If a program starts to get too big
as you develop it, brecak it up into smaller subprograms that arc exceuted by a short
main program. Even though this costs a little more memory for the subprogram namcs
and variables, the smaller programs will be editable when a big single program is not.

12.1.1 Low Memory Editing Strategies
When the HP48 runs out of memory as you try to cnter an edited program (or any
other object), you can use the following steps to increase the available memory:

1. Remove any unwanted objects--clcar the stack, kill any suspended programs (scc-
tion 12.2), and purge unnceded variables from user memory.

2. Disable last arguments and stack recovery: MODES|=MISCE SSTKo= SARGOE .

3. Recall the object you want to edit to level 1. If the object is storcd in a variable,
purge the variable to save the memory used for the variable.

4. Press EDIT] .

5. Press SCMDo= SCMDZ . This empties the command stack, but lecaves command

recovery enabled.
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6. Make your changes, and press . If there still is insufficient memory, press
to return the object to the command line, ECMDEZ to disable and clear
the command stack, then . This step is risky, because if there is still not
enough room, you will have lost the cdited version of the object.

If the preceding steps fail, you can take the more drastic step of purging the object you
are trying to cdit. That is,

1. With the object in level 1, press ZCMDZ to reactivate the command stack.

2. Press to copy the object to the command ling; make your changes.
3. Press . This will presumably fail duc to insufficient memory.

4. Press [ to discard the object from level 1.

5

Press to recover the command line with the altered text version of the
object.

6. Try [ENTER] again. If there is no crror message, youre finished. But if ENTER
fails again, then...

7. Press to retricve the command line one more time. Now press SCMDOZE
to disable the command stack. Press . If this fails, you’rc out of options,
and out of luck--all copies of the object are gone. Generally, however, this pro-
cess will suceeed unless you are making major additions to the edited object.

12.2 Starting and Stopping

As we have discussed in previous scctions, HP 48 programs arc highly structured, and
cach has only a single entrance and cxit. This fact makes starting and stopping an
HP 48 program a different proposition from the simple run/stop capability of calculators
that use a keystrokc programming language.

In the HP 48, a program that has stopped exccution at some point but can be restarted
from there is said to be suspended. This is different from a program that is terminated
while running by , which abandons all pending execution in the currently exccuting
program and cancels pending returns to any other programs that may have called that
program. (In more precise terms, the return stack is cleared, and the normal stack
display and keyboard are rcactivated.) A program can suspend itself by including HALT
or PROMPT in its definition, or you can suspend it manually by using the debug and
single-step keys in the program control menu. For sake of illustration here we will con-
centrate on HALT, but the discussion generally applies to the other methods as well.

When onc or more programs arc suspended by any means, the HALT annunciator is
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displayed in the status area. The keyboard is activated, and all calculator operations
work normally. The HP48 can maintain this state indefinitely--it behaves as if you had
started up another calculator “inside” the halted program. This suspended program
environment has its own local memory with a new recovery stack that is independent of
the usual recovery stack present before the suspended program was started. The calcu-
lator operates in the suspended environment until you execute CONT, whereupon the
suspended program resumes execution at the point at which it was stopped.

You can “nest” suspended program environments one within another without limit
(other than available memory). While one program is halted, you can run another pro-
gram that is suspended in turn, with another local memory for a recovery stack, and so
on. Each time you exccute CONT, the latest suspended environment is deleted, includ-
ing its recovery stack. If you press immediately after a program completes
cxecution, the stack that was saved by the ENTER that started the program is restored.
To demonstrate this, clear the stack, enter the following program and name it A:

<< CLEAR 1 2 HALT 3 4> 'A’" STO
Then:
Keystrokes: Results:

Xy

2: X’
1: Y’
A [ENTER] 2. 1
1: 2 HALT annunciator is on. The
program has put 1 and 2 on
the stack, and halted.
[<0][CLEAR] 2:
1:
[*>][UNDO] 2 1
1 2 restores the stack
from prior to the previous
CLEAR.
[<5][CONT] 4: 1
3: 2
2: 3
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1: 4  The program A resumes,
pushes 3 and 4 onto the
stack, and is finished.

2: X!
1: 'Y’ Back to the original environ-
ment.

The last ENTER in the original environment was the one that started the program A.
The final restored the stack as it was before that ENTER.

Since the command line itself is a program, you can include a HALT or a PROMPT in
the command line even if it is not explicitly contained in a program object delimited by
<< >>, When you press , the command line is executed up to the HALT or
PROMPT. Then you can perform any normal operations; when you finally press
, the rest of the suspended command line is executed. Among other uses, this
provides an casy way to save a copy of the current stack while you carry out some unre-
lated calculations. With an empty command line, exccute HALT . You can now
clear the stack and perform any other operations; afterwards you can restore the origi-

nal stack by pressing .

Keep in mind when youw're working with a suspended program that local variables
created by the program may be present. For example, if a program halts while a local
variable A that it created still cxists, then exccuting the name A from the command line
returns the value of that local variable, not the value of a global variable A that might
also exist. (Pressing the A < key in the VAR menu always executes the global name A
regardless of any local variables that might exist.)

12.2.1 CANCEL, DOERR and KILL

The CANCEL operation ([ON]) is intended to let you “get the attention” of the calcu-
lator. Pressing it tells the calculator to stop what it is doing: stop all operations, pro-
cedures, etc., clear any special displays, reactivate the normal keyboard, and show the
standard stack display. You also use the key to turn the calculator on, although that’s
almost a secondary role compared to the key’'s CANCEL role (labeling the key face with
ON rather than CANCEL is primarily for the sake of people using the calculator for the
first few times).

CANCEL is a “gentle” interruption--global variables are unaffected, the stack is

preserved, and the recovery stack, arguments and command lines are left intact. How-
ever, you can’t resume execution of a program stopped by CANCEL because all of the
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subroutine returns associated with that program are cleared. This does not apply to
suspended programs, which can be resumed by CONT after any number of CANCEL’s
or other errors.

As discussed in section 9.6.1, CANCEL is treated as an error when is pressed dur-
ing command execution, although there is no associated beep or message display. The
error number is zero, and the error message (as returned by ERRM) is the empty string
"". Accordingly, 0 DOERR is the programmable form of CANCEL . Executing 0
DOERR in a program (or in the command linc) acts as though were pressed at the
point in the program where the DOERR appears. The program stops, and all pending
returns to procedures that called that program are cleared. Like CANCEL , DOERR
works in the current suspended program cnvironment--if there are any suspended pro-
grams, they are unaffccted. You can use 0 DOERR in a program to terminate program
exceution early, when some situation is encountered that makes further execution point-
less. Usually this is done with an IF structure, such as

IF  situation-is-hopeless  THEN 0 DOERR END.

Note that 0 DOERR, like CANCEL , clears special displays. If you want to abort a pro-
gram and return an explanatory message, you can use DOERR with a string argument
(section 12.2.1).

The only command that does affect suspended programs is KILL. KILL not only ter-
minatcs the current program like 0 DOERR docs, but also cancels @/l suspended pro-
grams and turns off the suspended program annunciator. All of the local memorics
associated with the suspended programs are removed. You can use KILL in a program,
but that is a rather drastic thing to do, since in general a program doesn’t “know” what
programs arc suspended when it is executed. It is better to use 0 DOERR in a program,
then execute KILL manually if needed. Your most frequent use of KILL is likely to be to
abort some half-finished program that you have been single-stepping, after you have
found the problem you have been seeking.

12.2.2 Single-Stepping

The SST (single-step) operation is a combination of CONT and HALT that lets you exc-
cute a program one object at a time. Single-stepping is an important debugging tool, as
it lets you follow the execution of a program step-by-step and discover where its calcula-
tions go awry.

To understand the mechanics of single-stepping, picture it as the equivalent of pressing

when a HALT is temporarily inserted immediately after the next object in the
program. From this model it follows that a program must be suspended before you can
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single-step it. The easiest way to do this is to enter the program, or its name if it is
stored in a global or local variable, into level 1 and then press EDBUGE (DeBUG), which
is found in the program run menu ( [PRG] [NXT] ERUNE ). DBUG begins to exccute the
programs, but suspends its execution before actually cxecuting its first object. Then you
can execute each successive object using ESSTZ . If instead you want to start single-
stepping farther along in a program, you must include a HALT or a PROMPT at the
point where you want to start stepping. Then when you exceute the program, the HALT
suspends execution so that you can proceed with single steps.

At each ZSSTE press, the HP 48 exccutes the next object in the suspended program, then
halts and suspends the program again. To help you keep track of where you are in the
program, cach object is displayed in display line 1 after it is executed. If you single-step
the >> that ends the suspended program, the program completes execution and the
suspended program cnvironment is cleared. You can also execute CONT, which
resumes and completes normal program exccution.

A conscquence of the behavior of SST as a one-step CONT is that each SST clears the
current suspended program environment, then creates & new onc after the step. This
means that you can’t cancel any stack effects of the object that was single-stepped by
pressing —the recovery stack present before the SST s deleted by the SST.

Some additional notes about SST:

e An IFERR structure is treated as a single object by SST. That is, when you press
ZSSTZ at an IFERR, the entire IFERR...THEN...ELSE...END structure is executed. If
an error occurs between IFERR and THEN, the then-sequence between THEN and
ELSE is exccuted; otherwise the else-sequence (if it is present) between ELSE and
END is exccuted. The next E8ST= will single-step whatever object follows the END.
If you want to step through individual parts of the IFERR structure, you must insert
HALT(s) within the structure.

e If a single-stepped object causes an error, the error is reported normally, but the
single-step cxecution docs not advance. If you press ESSTE again, the HP 48 will
attempt to execute the same object again. This gives you a chance to fix whatever it
is that causes the error, such as a missing stack argument, then proceed with single-

stepping.

12.3 Debugging

Debugging is the art of finding and removing programming errors--“bugs.” The process
ranges from simple visual inspection of a program to look for obvious errors, through
careful single-stepping of parts of a program to watch for incorrect results at each stage.
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Programming errors usually manifest themselves in two ways when you execute a pro-
gram: either the program halts due to an error, or the program completes execution but
returns incorrect results (which may be duc to an incorrect algorithm, rather than a pro-
gram defect). In either case, you know something is amiss--the trick is to find out
where things go wrong in the program.

A good debugging technique for any programming language is to write the program
correctly in the first place. This sounds facetious, but chances are, if you take extra time
in designing a program before entering it into the calculator, you will save time in the
long run by reducing the amount of debugging time. For HP48 programs, a good
approach is to write out a program of any complexity on paper, or better yet on a per-
sonal computer using a text editor, with the program formatting conventions discussed
in section 1.3. Most importantly, as you add steps to a program, include comments or
simple stack contents listings at lcast every few steps. This will help you get the pro-
gram right in the first placc; failing that, the comments stack listings will be your most
valuable tool for debugging.

When a program fails, the first step in finding errors is to verify that you have entered
the program correctly. If you know the correct checksum for the program, you can usc
BYTES (section 12.5.1) to check that the actual program’s checksum matches the correct
value. If you don’t know the checksum, or if there is a discrepancy, then you should
view the program using EDIT to sec if it matches your program listing (this should hap-
pen automatically if you download the program from a computer file). If you have a
printer, you can use PRVAR to print out a complete listing of thc program. If these
tests indicate that the program has been entered correctly, there must be a logical error
in the program design.

Before resorting to single-stepping, you may be able to apply the HP 48’s symbolic capa-
bilities to find an error. That is, even when a program is designed for purely numerical
calculation, you can execute the program with symbolic arguments, then compare the
symbolic results with the intended program algorithms (this is a good thing to do to ver-
ify any numerical program, not just when you’re explicitly looking for an error).

For example, in section 12.4 we devclop a program that finds the two roots of a qua-

dratic equation ax® + bx + ¢ = 0, where the three coefficients @, b and ¢ are specified.
The final version of the program is:
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Qu Quadratic Root Finder 18E8
level 3 level 2 level 1 | level 2 level 1
a b c [ X X3
<< la b ¢
3 PICK / |a b cla]
SWAP ROT 2 * / NEG | c/fa =b/2a |
DUP SQ | cla —b/2a b3/4a® |
ROT - V | -bi2a V{(b/r2ay-cla) |
DUP2 + | —br2a V|(brRa)-cla] x; |
3 ROLLD - lxp xo |
>>

Becausc this program involves a lot of stack manipulations, it’s easy to lose track of the
program flow as you develop it. Suppose that when writing the program, you
miscounted the number of stack objects, and entered SWAP in place of the 3 ROLLD at
the end. If you execute the program with numerical values for the coefficients, you will
obtain incorrect results--but no indication that they arc wrong. To guard against this,
you can verify the program by executing it with symbolic arguments ‘A", 'B’, and 'C’
(purging thosc variables first, if necessary, to ensure symbolic calculations). With these
arguments, the bad version of the program returns

: '—(BsCHx2)) !

2 '—(BoCR=2) )+ (SHE-C
B-iR*Z)))-C-A)-T (50
(-(B~s(Rx223)-C-H)'

jen |1 1 1 1

By inspecting the level 1 result, you can sce that the program correctly added the radical
"V(SQ(-(B/(A*2)))-C/A)’ to '-B/(A*2)’, but then subtracted the same radical from
the sum in level 1 rather than from the other '—B/(A*2)" in level 2. This suggests that
the error is a stack error near the end of the program, and it is then a simple matter to
figure out that the SWAP should have been 3 ROLLD.

The final resort in debugging is to single-step the program, from the beginning if
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necessary, until you discover an incorrect step. As described in section 12.2.2, in order
to use SST, you must either use SDBUGE , to start single-stepping at the start of the pro-
gram, or you must include a HALT (or a PROMPT) in the program at the point where
you want to start single-stepping. If you do the latter, remember to remove the HALT
after you have found the program error. If you are sure you have the solution,
remember to remove the HALT as you cdit the program. Otherwise, you can leave it in
until after you verify the new version. When the program halts, press to
resume.

In addition to £DBUGE and ESST= , the program control menu contains two other opera-
tions associated with single-stepping;

 SSSTi= is a variation of ZS8TZ that you may use when you want to step through a
named program that is being used as a subroutine. That is, when the next object in
a suspended program is the (global) namc of a program, pressing ZSSTi= s
cquivalent to executing DBUG on that program, so that you can then single-step
through that program. While single-stepping the subprogram, at any time,
or Z88T= on the final >>, completes its execution so that subsequent single-stepping
resumes in the original program.

If you apply SST! to the name of a global variable that does not contain a program,
the cffect is the same as for SST, except that the SST! display shows the stored
object instead of the name. For other object types, SST and SST! arc cquivalent.

e ZNEXTZ previcws the next single-step by displaying the next object in a suspended
program in the top display line (remember that the object displayed by SST or SST!
is the object that was exccuted last). Due to the intricacies of HP 48 program cxccu-
tion, usually two objects are displayed if there is room on one line, but in some cascs
you will see only onc object. (If the second object is a quoted name, you will sce
only the leading quote. The quote is actually a separate object from the name, but
the two are generally treated as a single object.)

= Example. Find the crror in the following program MINL. The program is designed to
return the minimum value from a list of numbers. Starting with an initial value of
MAXR, the program successively replaces the current value with the minimum (MIN) of
the current value and the next number from the list. If you execute this program with a
list of numbers, the program aborts with the Too Few Arguments error, identifying
ROLLD as the culprit. To see what the correction should be, single-step through the
program.
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MINL Minimum in a List (Bad version) E7EB
level 1 | level 1
{ numbers } [ minimum

<« MAXR -NUM SWAP DUP SIZE
|
DUP ROT
START
GETI
4 ROLL MIN 4 ROLLD
NEXT
DROP2

Keystrokes: Results:

1123} varj[“] 1: {1 2 3} The argument list.

- [PRG][NXT]

=SST= 2: {1 2 3}
1: 9.99999999999E499  Initial “minimum” valuc.

=SST= (SWAP) =8ST=
(DUP) Z8ST= (SIZE) 3: 9.99999999999E499

12.3

2: {1 2 3}
1: 3 Number of clements in
the list.
=SST= (1) £SST= (DUP)
=ssT= (ROT) 5: 9.99999999999E499
4: {1 2 3}
3: 1 Start value for GETI index.
2: 1 Start value for START.
1: 3  End value for START.
=SsT= (START) 3: 9.99999999999E499  Current minimum.
2: {1 2 3}
1: 1 Current GETI index.
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=SST= (GETI) 4:
3:
o-
1
ESST= (4) £SST= (ROLL) 4:
3:
2:
1:
=SST= (MIN) 3
2:
1:
SSST= (4) ZSST=
(ROLLD)

9.99999999999E499
{1 2 3}

2

1

{1 2 3}

2

1
9.99999999999E499
{1 2 3}

2

1

Too Few Arguments.

Program Development

Current minimum.

New GETI index.

First list element.

GETI index.
List element.
Current minimum.

GETI index.

New minimum.

Herc you can see exactly what is wrong. The program trics to cxecute 4 ROLLD with
only three objects on the stack (attempting to put the objects back in the correct posi-
tions for the next iteration of the loop). The solution is to change the 4 ROLLD to 3
ROLLD. Here’s the correct program listing:

MINL Minimum of a List (GGood Version) 5BF7
level 1 | level 1
{ numbers } (R X min

<< MAXR -NUM SWAP DUP SIZE | maxr{x; }n|

1 Initialize m (list index).
DUP ROT Loop from 1 to n.
START | Xmun £ X }m |

GETI X

4 ROLL MIN 3 ROLLD | Xmin L% |
NEXT
DROP2

>>

You can verify that this version works correctly by using a symbolic input. For cxample,

{A B C} MINL s 'MIN(CMIN(B,MIN(A9.99999999999E499)))’ .
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This program can be replaced by << MIN >> STREAM (scction 11.4.4.2), but it serves as
a starting point for the recursive version developed in section 12.10.

12.4 Program Optimization

The fastest, most compact, and most memory efficient HP 48 programs are usually those
that carry out all of their calculations on the stack, using no local or global variables,
and only fine-tuned RPN sequences for mathematics. These programs arc also the
hardest to write, since you have to keep track of the stack positions of everything, and
spend time thinking about efficient ways to writc the programs.

In this scction, we will illustrate the process of program optimization, the process of
revising working programs so that they execute faster or more cfficiently. In gencral,
program optimization involves

a. writing a first version of the program;

b. replacing parts of the program with more efficient sequences;

¢.  knowing when to stop optimizing and usce the current version.
There is no fixed prescription for HP 48 program optimization. There are two general
purposc approaches that apply in most situations:

e Reduce the use of variables by keeping more objects on the stack.

¢ Replace long algebraic objects with RPN sequences that allow you to reuse inter-

mecdiate results.

We will illustrate the application and effect of these two ideas in an extended program
development example.  Other methods are apparent in the program examples in this
chapter and elsewhere in the book.

» Example. Develop and optimize a program QU that computes both roots x of the
quadratic equation ax? + bx + ¢ = 0, where the (numerical) cocfficients 4, b, and ¢ are
supplied as stack arguments. The mathematical algorithm is

-b+Vb?-4dac
2a

X =

Using local variables and algebraic objects, it is easy to translate the algorithm into a
first version of the program. This version uses 151 bytes and takes .25 seconds to cxe-
cute with arguments 8, —3, and 2:
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Version I:

<< fa b ¢

- ab c Name the arguments.
< '(-b+V(b"2-4%axc))/(2%a)’ EVAL X,
"(-b-V/(b"2-4*a%*c))/(2*a) EVAL X,
>>

>>

To optimize this program, the first thing you might notice is that the solution algorithm
can be written more compactly as

x = -b+Vp2-¢,

where b’ = b/2a and ¢’ = c¢/a. You can incorporate this revised form into a new ver-
sion of the program:

Version 2:
<< la b ¢
- ab c
<< 'b/(2*a)’ EVAL ‘c/a’ EVAL - b c¢ |Storec’ andd’.
«< '-b+V(b*2-c)’ EVAL ¥
‘-b-V(b*2-¢) EVAL X,

>>

>>

>>

Version 2 takes .23 seconds to execute, so compacting the algorithm has yielded a mod-
est speed improvement. However, version 2 is 162.5 bytes, 11.5 bytes larger than ver-
sion 1--the extra local variable structure has cost more in program size than the algo-
rithm compaction saved. As the next step in optimization, you can eliminate that extra
structure by computing b" and ¢’ directly from the original stack arguments:

Version 3.
<< la b ¢
3 PICK / la b c/a]
SWAP ROT 2 * / | ¢/a b/2a |
- c b Store ¢’ and b’.
< '-b+V/(b*2-c)’ EVAL X,
"-b-V(b*2-¢)’ EVAL x>
>> :
>>

Version 3 occupies 118.5 bytes of RAM, which is 32.5 bytes smaller than version 1. It is
also slightly faster (.21 seconds) than version 2. To improve on this version, you can
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observe that the two algebraic objects in the program are very similar, which means that
the program performs some arithmetic twice. You should therefore be able to improve
matters by breaking up the algebraic objects into smaller parts that are common to both
expressions.

Version 4:
<< la b ¢
3 PICK / |a b c/a|
SWAP ROT 2 * / | ¢/a b/2a |
- ¢c b Store ¢’ and b’.
< '-b’" 'V(p*2-c)' DUP2 Make 2 copies of the partial results.
+ EVAL | =b V(b%-c) x; |
3 ROLLD - EVAL X,
>>
>>

Version 4 has shrunk the program size to 100 bytes, but execution has slowed to .28
scconds. The slowdown has resulted from a subtle cause: the final + and — that com-
binc the partial results are acting on symbolic arguments, returning symbolic results
(which are then evaluated into the final numeric results using EVAL). Symbolic addition
and subtraction are intrinsically slower than numeric arithmetic. You can fix this prob-
lem with a simple rearrangement so that the partial results '—b’ and "V(b"2-c)’ arc
cvaluated before they are added or subtracted:

Version 5:
<< la b ¢
3 PICK / |a b c/a]
SWAP ROT 2 * / | ¢/a b/2a |
- c b Store ¢’ and b’.
<«< '-b’ EVAL 'V(b*2-¢)
EVAL DUP2 Make 2 copies of the partial results.
+ | =b V(b%-¢) x; |
3 ROLLD - X5
>>
>>

Version 5 is the same size as version 4, but it executes in .14 seconds, which is the
fastest time yet.

The progress made so far in optimizing this program suggests completing the process of

converting the algebraic expressions into pure stack arithmetic, eliminating the use of
variables.
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Version 6 (final version):

Qu Quadratic Root Finder 18E8
level 3 level 2 level ] | level 2 level 1
a b c (¥4 Z4 23
<«< |a b c|
3 PICK / |a b cla|
SWAP ROT 2 * / NEG | ¢c/a —b/2a |
DUP SQ | c/a -bra b*4a® |
ROT - V | =b/i2a V|(bray-cla] |
DUP2 + | =bra V|bra}-cla) x, |
3 ROLLD - | xy x2 |
>>

Version 6 requires only 57.5 bytes, and executes in .10 scconds. This represents a 62%
reduction in program size, and a 2.5X speed improvement over version 1.

The lesson here is not that algebraic objects evaluate numerically more slowly than their
RPN sequence cquivalents. The cxecution time difference between, for cxample,
"1+2+3+4+5+6+7 EVAL and 1 2 + 3 + 4 + 5 + 6 + 7 +, is only a fcw
milliseconds--the time required to put the algebraic object on the stack. Instcad, the
point is that RPN lets you avoid repeating mathematical operations by breaking calcula-
tions into unique elements, and then duplicating and reusing the results. Furthermore,
it is always faster for a program to leave results on the stack rather than storing them in
variables, and similarly faster to retricve arguments from the stack than to recall them
from variables.

12.5 Memory Use

To help you in optimizing programs for minimum memory size, Tables 12.1 and 12.2 list
the memory size of various objects and structures included in a program. Table 12.1
shows the memory occupied by program structures, not counting the objects that are
entered between the structure words. Table 12.2 (next page) lists the memory size of
individual objects.

There are a few exceptions to the sizes listed in Table 12.2, since the HP 48 has built in
certain commonly used objects, to save memory. For example, the real number 1 uses
only 2.5 bytes, instead of the 10.5 bytes normally used by a real number. Similarly, each
of the following built-in objects uses 2.5 bytes:
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Real integers from -9 through +9.

The rcal constants 3.14159265359 (), 2.71828182846 (¢), 1E-499 (MINR), and
9.99999999999E499 (MAXR).

The complex constant (0,1) (i).

"

¢ The null string

The entry for HP48S/SX commands refers to the fact that commands common inher-
ited from the HP48S/SX are stored by memory address and so occupy 2.5 bytes. Com-
mands new to the HP48G/GX are represented by XLIB names, and use 5.5 bytes.
Unless you arc familiar with the HP48S/SX, there is no particular way to know which
type a particular command is.

Table 12.1. Program Structure Sizes

Structure Size (bytes)
IF ... THEN ...* END 125t
IF ... THEN ..* ELSE ...* END 204
IFERR ...* THEN ..* END 17.5¢%
IF/IFERR ...* THEN ...* ELSE ..* END 25%
CASE ... THEN ..* END ... END 204
(additional) THEN ...* END 10t
DO ... UNTIL ... END 7.5%
WHILE ... REPEAT ..* END 12.5%
START/FOR ... NEXT/STEP S
.= L > 7.5
- 7.5

tA program savings of 5 bytes in each instance is obtained whenever any of the structure sequences marked

with an asterisk ( ...* ) consists of one object.

12.5.1 Using BYTES

The easiest way to determine the memory size of an object is to execute BYTES with
the object as its argument. BYTES returns (level 1) the actual memory size occupied by
the object, plus a checksum (level 2). The checksum, a four-digit binary integer, is com-
puted essentially by adding up the object’s memory bit pattern to produce a 16-bit
number. The chance of two different objects having the same checksum is only 1 in
65535, so the checksum provides an excellent test of the identity of two objects. This is
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Table 12.2. Object Sizes

Object Type

Size (bytes)

Real number
Complex number
String

Vector
Complex vector

Matrix
Complex matrix

List

Quoted global or local name
Program
Algebraic
Binary Integer
Graphics Object
Tagged Object
Unit Object
real magnitude

each prefix
each unit name

cach *, ~, or /
each exponent

XLIB name
Directory
Backup Object
Command

HP48S/SX
New to HP48G/GX

Unquoted global or local name

10.5
185
S + number of characters

12.5 + 8 X number of elements
12.5 + 16 X number of elements

IS + 8 X number of clements
IS + 16 X number of elements

S + included objects

3.5 + number of characters
8.5 + number of characters

12.5 + included objects
S + included objects
13
10 + rows x CEIL(columns/8)
3.5 + number of tag characters + untagged object
7.5 +:
25 0r 105
6
S + number of characters
25
25 or 105
5.5

6.5 + included variables

12 + number of name characters + included
object

-360-

SR o i sk B




Program Development 125

most useful to verify that you have entered a program correctly according to a listing; it
is casy to make an error that does not affect a program’s size, but any error 1s very
likely to affect the checksum.

BYTES treats global names slightly diffcrently than other object types. Instead of
returning the size and checksum of the name, BYTES computes those parameters for
the object stored in the named global variable. Furthermore, the memory size returned
is the total size of the variable, which includes the memory for the object itself, plus an
additional amount for the variable structure. Specifically, the variable “overhead” is 4.5
bytes plus one byte for cach character in the variable name. The memory used by a
stored object is the same as the amount listed in Table 12.1, with one exception. Pro-
grams require 10 bytes (plus the included objects) rather than the 12.5 bytes listed in the
table for programs within programs.

12.6 Obtaining Input

In programs and in manual operations, the stack is the basic input/output mechanism.
You can enter all the data a program necds as stack objecets, execute the program, then
read its results from the stack. This works fine under two conditions: first, you know in
advance what objects to enter at the start, and second, there are not so many inputs or
outputs that you losc track of which is which among the stack objects. In the following
sections we will consider several methods for improving on this bare-bones approach.

12.6.1 Halting for Input

The most flexible method for obtaining input after a program has begun execution is to
include a HALT or PROMPT in the program to suspend its cxecution (scction 12.2).
While the program is suspended, you have complete access to the caleulator’s resourccs,
including the stack and variables. You can use those resources to calculate or otherwise
produce the input. For example, if you want to enter V/3/2, you can compute it by any
means you want, such as "\V3/2' , rather than having to type in the digits of the
number. You can store values in variables, set flags, or cven run other programs to
produce results that then become inputs for the suspended program. When you have
entered those inputs by whatever means, you then press to resume the
suspended program.

PROMPT suspends a program and displays a one- or two-line message in the status area
(in the medium font). It is similar to 1 DISP 1 FREEZE HALT, with the important
addition that the displayed message remains visible during command line entry instead
of disappearing at the next keystroke as a FREEZE display does. PROMPT’s display
persists until the next ENTER (and all of the execution caused by the ENTER is com-
pleted), or until some other display operation replaces it. In particular, the prompt is
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visible during command line entry, which is convenient when you are typing in the input
indicated by the prompt.

» Example. The following sequence prompts successively for length, width, and height,
as might be needed by a program that computes the volume of a box:

"Enter length:" PROMPT “Enter width:" PROMPT "Enter height:" PROMPT.

Upon execution, the sequence halts and displays "Enter length”. At this point, you
enter a value for the length, and press . Then the display shows "Enter
Width", and so on. Since PROMPT allows a two line message, the above sequence
could be more specific by including "and press CONT" in the prompts. This suggests
creating a general purpose input utility to save repeated entry of the same text:

PROMPTCONT Prompt with CONT Display E4BD
level 1 | level 1
"text” Ly
<< "Enter " SWAP + . Prepend "Enter " to the text.
10 CHR + Add a newline.
"and press CONT" + Append the second line.
PROMPT Stop for input.
>>

(You could embed a newline directly in one or the other of the two strings in the pro-
gram, but using 10 CHR + instead makes program editing easicr because you don’t
have to worry about invisible space characters at the end of a line).

Using PROMPTCONT, the sequence to prompt for volume parameters becomes:
“length” PROMPTCONT ‘"width" PROMPTCONT “height" PROMPTCONT.

PROMPTCONT fits the definition of a subroutine, which is a program that performs a
task common to many programs but which doesn’t have much value for manual execu-
tion. There are many ways to extend this subroutine to do even more standard input
tasks. For example, a good program, after obtaining manual input, checks that input to
verify that it is valid for the remainder of the program, and warns and reprompts you if
it is not. The next program, CHKINPUT, demonstrates this process.
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CHKINPUT Prompt and Check Input 2C9F
level 2 level 1 | level 1
"text” < test >> ¥ object
<< -~ prompt test Save the test program.
<< WHILE prompt PROMPTCONT Get the input.
test EVAL NOT Exit if the input is valid.
REPEAT
"Invalid Input” 10 CHR +
1 DISP Display error message.
200 .3 BEEP .7 WAIT Beep and wait .7 seconds, then repeat.
END

CHKINPUT requires two arguments: the first (level 2) is the prompt string as
PROMPTCONT, and the second is a program to test the input. CHKINPUT does not
finish until it can return a valid object as determined by the test program, which should
take onc object from the stack and return the object and true (1) if it is valid, and false
(0) otherwise. For example, when prompting for box dimensions, you might want to
accept only real numbers with values between 1 and 10. The test program then would

look like this:

<< IF DEPTH
THEN - object
<< IF object TYPE NOT
THEN
IF ’‘object=1
THEN object 1
ELSE 0
END
ELSE ©
END
>>
ELSE 0
END
>>

AND object=10’

If the stack is not empty...
Save the object.
If the object is a real number,

and it is in the valid range,
Then return the object and frue.

Return false (out of range).

Return fafse (not a real number).

Return faise (empty stack).

126

used by

CHKINPUT is an example of the use of a program as an argument, which is discussed in

more detail in section 12.8.
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12.6.1.1 Verbose Prompts

By definition, PROMPT is limited to.two lines of prompt text, so that text can fit within
the status area of the display. You can also use the stack area of the display for addi-
tional prompt text by preceding the execution of PROMPT with the use of DISP to
display text in lines 3 - 7. In that case the status area text will remain until ENTER, but
the stack area prompts will disappear at the next keystroke.

For even more flexible prompt displays, you can usc HALT instead of PROMPT, preced-
ing the HALT with any of the display commands described in Chapter 10, including
FREEZE to preserve the special display when execution halts. The entire prompt
display is replaced by the standard display at the next keystroke.

The follow program is an example of an elaborate prompt intended to begin a tic-tac-
toc game program. The prompt mixes text, graphics, and a menu:

<< ERASE Clear the picture screen.
Display text:

PICT {#10d #0} "Tic-Tac-Toe" 2 -GROB REPL
PICT {#21 #8} ‘Instructions” 1 -GROB REPL
PICT {#0 #17d} "1.Choose XXX or"O00" 1 -GROB REPL |Carets ™" here indicate
space characters.

PICT {#0 #25d} "2 Press”PLAY" 1 -GROB REPL

PICT {#0 #33d} "3. At XXXor 000 prompt,” 1 -GROB REPL
PICT { #0 #41d} "4. enter row-column,” 1 -GROB REPL
PICT { #60d #49d} "then press*"GO”" 1 —~GROB REPL
Invert key labels:
PICT {#73d #16d} DUP2 {#93d #22d} SUB NEG REPL
PICT {#37d #16d} DUP2 { #57d #22d} SUB NEG REPL
PICT {#35d #24d} DUP2 {#55d #30d} SUB NEG REPL
PICT {#107d #48d} DUP2 { #127d #54d} SUB NEG REPL

Draw grid:
{ #108d #27d} {#108d #2d} LINE
{ #119d #27d} {#119d #2d} LINE
{#126d #9d} {#101d #9d} LINE
{#101d #19d} {#126d #19d} LINE
{ XXX 000 "" " "" PLAY} TMENU Make temporary menu.
PICT RCL ERASE -LCD 3 FREEZE Display the prompt.

HALT

>>

Executing the program produces this display:
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Tic-Tac-Toe
INSTRUCTIONS
cHonsE JEEEN ok IECCH
PREZS
AT XX% OR 000 PROMPT.
ENTER ROM-COLUMM.
THEN PrEss IEDH

(e [oo0 | [ |  [PLAY

s

12.6.1.2 Prompting with Menus

The tic-tac-toe example above includes a temporary menu as as part of its prompt.
Using a menu is a important enhancement to ordinary display prompting, since the
menu labels themselves can act as instructions, and they remain visible indefinitely.
Furthermore, a menu key can include a CONT as part of its definition, so that pressing
a menu key not only indicates a choice, but also resumes execution of a suspended pro-
gram, all in one operation.

While you can usc any built-in menu or the VAR or CST menus for prompting, a tem-
porary menu activated by TMENU s particularly useful for this purpose. A temporary
menu has all of the flexibility of a custom menu, but docs not replace the normal cus-
tom menu defined by the variable CST. The construction of menus by TMENU and
MENU is described in scction 7.3; here we will focus on the use of CONT directly or
indirectly in a custom menu.

In the prompting examples so far, resuming a program suspended for input has required
an explicit press of to resume exccution after the input objects are entered.
However, because CONT is a programmable command, you can include it as part of a
menu key definition and eliminate the need to press an additional key. Incorporating
the continue operation into a menu is also a good practice because it allows you to
focus entirely on the menu for instructions without having to think about how to resume
a program.

The tic-tac-toe prompt sequence displays a temporary menu defined by { XXX 000 }.
Presumably XXX and OOO are the (global) names of subroutines that store the choice
of whether you want to play X’s or O’s. Any casy way to record such information is
with a flag; for example, XXX might name the program << 1 SF >> and 000 is << 1
CF >>. But in this case there is no reason not to continue the main program as soon as
XXX or 000 is executed, so XXX can be << 1 SF CONT >> and OOO can be << 1 CF
CONT >>. CONT should always be the last object in such programs, since any objects
following CONT will never be executed. [Last object also means last in-the sense that
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there are no pending returns to any other programs. When CONT is executed, all
currently executing programs arc terminated, and the most recently suspended program
is resumed.]

Actually, you don’t need global variables at all for the menu key subroutines, since the
custom menu system (section 7.3.3) allows you to associate unnamed programs with
menu keys. That is, the temporary menu list in the example might be:

{{"™XXX" <<1 SF CONT>>} {"000" << 1 CF CONT > }}

In many programs, you may wish to enter several quantities during the same program
halt. In such cases, you might use separate menu keys for each item, then have a single
menu key to resume the program. To return to the box dimensions example, the input
sequence could look like this:

"Enter length, width” 10 CHR +
"and height, press GO" + Two-line prompt string.
{{"LENG" << 'L’ STO >} LENG key.

{ "WIDTH" << 'W’ STO >> } WIDTH key.

{"HT" << 'H" STO =»»} HT key.

Blank key.

{"GO" CONT} GO key.
} End of temporary menu list.
TMENU PROMPT Activate the menu and halt.

This method has the advantage that you can cnter the input values in any order, and can
rc-enter a value if you change your mind. Only when you press £ GO = are your currcnt
entries locked in. However, you may not wish to use global variables to hold the box
dimensions; the following modification uses local variables during entry, then returns the
three values to the stack before exiting:

000 ~-1wh Initialize |, w, and hA.
<<
"Enter length, width" 10 CHR +
"and height, press GO" + Two-line prompt string.
{{"LENG" <<'I" STO>>} LENG key.
{ "WIDTH" << 'w’ 8TO > } WIDTH key.
{"HT" << 'h’ 8TO >} HT key.
" Blank key.
{"GO" CONT} GO key.
End of temporary menu list.
TMENU PROMPT Activate the menu and halt.
I w h Return the parameters to the stack.
>>
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12.6.2 Protected Entry

An important advantage of suspending a program for input is that you can perform arbi-
trary operations while the program is suspended. However, in many situations this
capability can actually be a disadvantage. Since you have access to the stack and
memory, you can accidentally or deliberately alter or remove objects used by the pro-
gram. There is nowhere a program can save information that is completely “safe” while
the program is suspended. The best recourse is to save objects in local variables with
offbeat names that are unlikely to be used inadvertently. For example, if all of a
program’s current parameters are on the stack, the following sequence protects them
while the program is suspended:

DEPTH -LIST - oTac® << procedure >>

Procedure must contain both the prompt/input sequence and the stack retrieval
sequence (e.g. oTac® LIST- DROP).

There are two alternative mcans of obtaining input, in which the stack and other calcu-
lator resources are not accessible during entry:
e Use INPUT to restrict entry to the command linc.

e Usc KEY to restrict entry to single keystrokes.

We will examine these methods in the next two sections.

12.6.3 Using INPUT

INPUT is a special data entry command that activates the command line for cntry.
Further program execution is postponed, although the program is not suspended in the
sense of HALT or PROMPT (in particular, pressing twice terminates the program).
INPUT finishes, and automatically resumes program cxecution, when you press ;
since program entry mode (PRG) is turned on, is the only option. The command
line is not executed; instead its text content is returned as a string object for use by the
remainder of the program.

INPUT also provides the following features:
e Optional multi-line text prompts.
e The ability to “pre-load” the command line with objects to assist with entry.

e Control over command line cursor type and position, and entry mode.

e The choice of whether or not to use normal command line interpretation.
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You can select one or more of these options by means of the two arguments for INPUT,
which may be cither two strings, or a string (level 2) and a list. The string in level two
specifies a prompt that appears in the medium font in the stack display area (starting in
display line 3); this prompt persists during keystroke entry, until terminates the
INPUT operation. You can create a prompt of up to three 22-character lines, by includ-
ing one or two newline characters in the level 2 string.

The level 1 argument can also be a string, which is used as the initial contents of the
command line. For example, the following sequence prompts for a new value for a vari-
able X:

"Enter X:" X STD -STR INPUT OBJ- 'X' STO

Here we have used the current value of X as the initial contents of the command line.
When the sequence is cxecuted with 100 stored in X, the following display appears:

RRD PRG
{ HOME }

Enter X:

166+
SUNIT

At this point, you can edit the current value, or press to clear the command line
and type a new value for X. (If you press again, or any time the command line is
empty, the program is aborted.) Pressing returns the contents of the command
line to level 1 as a string object, and the program resumes exccution with OBJ-.

In the example, the command line initially contains the level 1 string argument, with the
insert cursor < at the end of the string; upon , the command line string is pushed
as is onto the stack. For additional control over the INPUT command line, you can use
a list as the level 1 argument. The list can contain one or more elements (the order
does not matter):

e To specify the initial command line text, include a string object (if this is the only
element, then you can use the string object by itself as in the preceding example).
The string may contain newlines, to produce a multi-line entry. If no string is speci-
fied, the command line will initially be empty.
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e To place the cursor at a particular position in the command line, include a real
integer to specify the character position, counting from the start of the command
line (and including newlines in the count). Character number 0 specifies that the
cursor is to be placed at the end of the command linc (to the right of the last char-
acter). Alternatively, you can use a list { row column } that specifies the row (count-
ing from the top down) and column (counting from the left) position for the cursor.
Column number 0 indicates that the cursor is to be placed at the end of the specified
row; row 0 specifies the last row of the command line. If no cursor position is speci-
fied, the cursor will be placed at the end of the command line.

You can also use the cursor position object to select replace entry mode, in which
typed characters overwrite the characters at the cursor. This is done by cntering a
negative character or row number. Positive numbers specify the default insert mode.

e To activate the command line in algchraic-program entry mode (ALG PRG), include
the name ALG.

e To activate alpha-lock, include the name a.

e Since the command line contents arc returned to the stack as a string, INPUT nor-
mally does no syntax checking on the string following . However, if you
include the name V (for verify), the string is checked for valid object syntax. If there
is a syntax crror, thc HP48 beeps and reactivates the command line with the
highlighted crror position, just as with ordinary command line entry. This is uscful
when you are using INPUT to enter objects in their standard form, i.c. you follow
INPUT with OBJ~ to convert the result string to objects. If you don’t usc the V
option and an entry has invalid object syntax, OBJ- will error and abort the pro-
gram. The V option allows the HP48 to catch such crrors before the program
resumes.

Note that the symbols o, ALG, and V are cntered into the INPUT strings as name
objects--without any delimiters. However, these names arc not exccuted, so it doesn’t
matter if you have variables with those namecs.

(23]

» Example. (In the following sequence, spaces within strings are marked by charac-

ters for clarity.)
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"Enter temperature
“and pressure” Two-line prompt string,
{"Temp:"
:Press:™ Initial command line text.
{10} Cursor at end of first line.
\'
}
INPUT Stop for input.
OBJ- Convert entered text into objects.

Executing this sequence yields the following display:

PRG
i HOME }

Enter temperature

and pressure

: Temp: 4

: Presst
VECTE[MATE] LIST | HYP | KEWL | ERZE

The cursor is at the end of the first row, following the tag :-Temp: that indicates that a
temperature should be entered. After entering the temperature, pressing {V] moves the
cursor to the second row, following the :Press: tag. For cxample, the keystrokes

300_ STEMPE K= [V]
100000_ ZPRESSE =S PA

return the tagged object :Temp:300_K to level 2, and :Press:100000_Pa to level 1.
Here the primary purpose of the tags is to indicate thc command line order of the
cntries; the fact that the resulting stack objects are tagged will not interfere with any
subsequent program calculations.

il

Unless you select the verify (V) option, INPUT does not require any structure or syntax
for the text returned from the command line. This means, for example, that you can
use INPUT to enter strings or names without quotes, binary integers without #’s ctc.
(see also section 7.4.1). The ENEWEZ keys in the PLOT, SOLVE, and STAT menus actu-
ally use INPUT to prompt for and enter names without requiring quotes.
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12.6.4 Keystroke Input

All of the input methods outlined so far are designed for object entry, and permit
multiple-keystroke entry while waiting for a particular key press (c.g. or
[CONT] ) to resume program exccution. The HP 48 also provides two commands for the
entry of individual keystrokes--cither where a single key or key combination automati-
cally resumes program execution, or without stopping program execution at all.

12.6.4.1 KEY

When you press an HP48 key, a code representing that key is entered into a special
memory location called the key buffer. Each time thc HP 48 completes any operations in
process, it checks the key buffer to see if any key codes were recorded while it was busy.
If so, it removes the codes onc at a time (in the same order in which they were
pressed), then performs whatever operations are associated with the keys. This two-
stage key processing is responsible for the HP 48’s “type-ahcad” capability, whereby up
to 15 keystrokes can be stored in the buffer while the busy annunciator is on.

Programs can check and act on the contents of the key buffer by executing KEY. KEY
attempts to remove the oldest key code from the key buffer. If therc are codes in the
buffer, KEY returns a two-digit real number key code rc to level 2 and a true flag (1) to
level 1. The first digit 7 of the key code is the keyboard row of the key; ¢ is the column.
If there are no codes available in the key buffer, KEY returns only a false flag (0) to
level 1, and no key code. Note that the key code does not include a key planc (shift)
digit like that used by ASN (section 7.2.1) and WAIT (section 12.6.4.2); the shift kcys act
like any other keys in this casc and return a two-digit code.

By using KEY, programs can accept keyboard input, on a key-by-key basis, without actu-
ally halting execution. If a program is to pause indefinitely to wait for a keystroke, then
0 WAIT is a better choice than KEY, since during the execution of 0 WAIT the HP 48 is
in a low power consumption state (and can even turn off after 10 minutes of inactivity).
KEY is better suited for requirements such as these:

e To provide for interrupting a long-running program in a manner that will let the
program save enough information to restart at a later time.

e To have a program wait for a key only for a fixed time, then continue whether or not
a key is pressed.

The first of these cases is illustrated by the program KEYHALT. If you interrupt a pro-
gram with CANCEL ( ), the program stops immediately, with no chance to exit
gracefully. You could embed the entire program in an IFERR structure that traps CAN-
CEL, but that still does not provide any information about the state of the program
when it is interrupted. Instead, you might include (the name) KEYHALT inside any

-371-



12.6

Program Development

time-consuming iterative loops in the program. Then, if you press any key other than
while the program is running, KEYHALT saves the current stack in a local variable
and halts. To resume the program, you need only press .

1 KEYHALT

Halt if a Key is Pressed 5055
< {F KEY
THEN DEPTH -LIST - oracd Save the stack.
<< "Program interrupted.” First line of prompt.
10 CHR + Add a newline.
"Press CONT to resume.” + Second line of prompt.
PROMPT Suspend the program.
oracd OBJ~ DROP Restore the stack
>>
END
>>

The next program example, KEYTIME, waits a specified amount of time (specified in
HH.MMSSSS format) for a keystroke. If one is detected, then the program returns the
keycode and true. If no key is pressed in the indicated time interval, KEYTIME returns

false.

THEN SWAP DROP 1 0

ELSE 0 SWAP
END
REPEAT DROP
END
>>

>>

KEYTIME Wait a Specific Time for A Key 62BE
level 1 | level 2 level ]
hh.mmssss s rc 1
hh.mmssss  o& 0
< TIME - &t t Save the time interval, start time.
< WHILE TIME t HMS- &t < True if elapsed time < 3t.
IF KEY If a key was pressed,

then replace time flag with faise,
return true key flag.
Else, return false key flag.

Drop the key flag and try again.
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12.6.42 WAIT

The WAIT command nominally is designed to produce a simple pause in program execu-
tion. x WAIT produces a pause of x seconds, during which program execution does not
proceed, but the display is not changed and no key entry is processed (the key buffer
will still accumulate key codes). A common application of WAIT is to display messages
or other pictures while a program is running. If your program shows a series of mes-
sages, you can put a WAIT after one or more of the display commands to ensure that
the message remains visible long enough to be read conveniently.

It is also possible to make WAIT pause program exccution indefinitely, by using 0 or —1
as its argument. For 0, the current display is not affected by WAIT; for -1, the menu
labels are updated to reflect the current menu. In either case, execution resumes only
when a key is pressed, when WAIT returns the corresponding key code to level 1. The
key code returncd by WAIT is a threc-digit code rc.p like that used by ASN (section
7.2.1), where r is the key row, ¢ the column, and p the key plane. Note that 0 or —1
WAIT only terminates when a “complete” key is entered, cither a non-shift key by itself
or such a key prcceded by one or more shift keys.

12.6.43 The CANCEL Key

For the sake of KEY and WAIT (0 or —1 arguments), is not an ordinary key that
returns a key code. Pressing [ON] always interrupls program execution, even if you have
redefined this key and activated user mode. The only way for a program (o treat
as an ordinary key is to usc an error trap that checks for crror 0, and returns the key
code 91 when that crror occurs. An example of such processing is given in the program
ASN41, in section 7.2.1.1.

12.6.4.4 An INPUT Programming Example

The program MSGSHOW listed below allows you to display all of the HP 48’s built-in
messages (except those associated with the equation library), both error messages and
prompting text. The program itself is of limited practical value, but it does illustrate a
number of programming techniques:

e The use of WAIT to obtain single-keystroke input.

e The use of INPUT to enter a hexadecimal number using a command line preloaded
with the # and h delimiters.

An error trap to handle .
A CASE structure.

e A temporary menu (section 7.3).
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o Extensive use of local variables.

MSGSHOW starts with the following display:

# 1h

Insufficient Memory

(MEHT | PREV ]  [SOTO] | &UIT |

This shows the message number and text of the first HP 48 message, with a menu of
choices:

e ENEXTZ displays the next message. The program contains a list containing sublists
defining the message number ranges for which there are valid messages; if ENEXTE
advances past the end of one of the ranges, it skips to the start of the next range. At
the last message (#D04h), ENEXTE skips back to message 001.

e SPREVE moves backwards through the messages, in the same manner as ENEXTE .

e =GOTOZ allows you to skip dircctly to any message. It produces the following

PRG
1 HOME ?

Enter Message Humber

e
MERTPREV]  |GOTOJ | GUNT

Here you may enter any message number, followed by . If the number is in an
allowed range, the corresponding message is displayed; otherwise No Such Message
is displayed briefly, and you are prompted for a new number. You can cancel the
change by pressing to clear the command line, then .

® SQUITE exits from the program, and restores the original menu.
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rMSGSHOW Show Messages 1087
<< RCLMENU HEX CLLCD Get current menu.
{"NEXT" "PREV" " "GOTO" ™ "QUIT"} TMENU Set temporary menu.

{{#1h #10h} {#101h #122h} { #124h #13Dh}
{ #201h #208h} { #301h #305h}
{ #501h #506h} { #601h #62Eh}
{ #A01h #A0Sh} { #B01h #B02h}
{ #C01h #C17h} { #D01h #DO04h}
} DUP SIZE 1 0 - L nmax N exit
<L 1 GET OBJ- DROP OVER - imin imax |
< DO |
IFERR DOERR
THEN ERRN 1 DISP ERRM 10 CHR +
3 DISP 1 FREEZE

END
-1 WAIT - keycode
<< CASE
‘keycode = =12.1"
THEN ‘1" 1 STO-
IF “I<imin’
THEN
IF 'N==1'
THEN nmax ‘N’ STO
ELSE 'N’ 1 STO-
END L N GET OBJ-
DROP DUP ‘I’ STO ‘imax’ STO
'imin”  STO
END
END
'keycode==14.1"
THEN

WHILE "Enter Message Number”
1 FREEZE {"#h" 2 V o} INPUT
IF " OVER SAME
THEN DROP | N O
ELSE OBJ- - m
<1 1 L SIZE
FOR j L j GET OBJ- DROP
IF m = SWAP m = AND
THEN DROP m j 0 99
'j' STO
END
NEXT

>>

END

(continued on next page)

List of valid message numbers ranges.

Save list, exit flag.

Initialize message number, limits.
Start indefinite loop.

Do the Ith error.

Show the message.

Get a key.

Actions for various keys:
PREV key.

Decrement |

Out of range?

Then go to the next range.
First range?

Then go to the last.
Otherwise decrement N.

Reset the limits.

GOTO key.

Entry loop.

Get a message number.

If the command line is null,

go back to the main loop.
Otherwise, see if it's a valid number:
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REPEAT "No Such Message”
10 CHR + 1 DISP 300 .3 BEEP

END 'N° STO ' STO L N GET
OBJ- DROP

‘imax’ STO 'imin' STO CLLCD

END

‘keycode==16.1" THEN 1 ‘exit’ STO END
'keycode#11.1" THEN 300 .2 BEEP END
" 1 STO+
IF ’I>imax’
THEN
IF ’N==nmax’
THEN 1 ‘N’ STO
ELSE 'N’ 1 STO+
END L N GET OBJ- DROP
OVER ‘I’ STO ‘'imax’ STO
‘imin’  8TO
END
END
UNTIL exit
END
== MENU

e

Invalid message; try again.

Update counters and ranges.

EXIT key.

Beep unless NEXT key.
Increment I

Out of range?

then goto the next range.
Last range?

Goto the first range.

Update counters.

Quit if exit is truc.

Restore original menu.

12.6.5 Custom Input Forms

The mechanism that the HP 48 uscs for mput forms (section 4.5) is available for pro-
gram usc as the command INFORM. With this command, you can create custom input
forms with data fields, and all of the features of the built-in forms related to those
fields, including editing, defaults, resct values, and access to the stack environment from
within the input forms. INFORM does not create choose fields or check fields, but you
can make custom choose ficlds for use outside of input forms by using CHOOSE.

To illustrate the use of CHOOSE, the program CALCS offers a choice of one of the
special calculation environments for fractions and binary integers described in section
7.4.1. The point of a program like this is to allow you to have a single menu key or key
assignment that invokes a selection of individual programs. When you execute CALCS,

it creates this display:
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™~
=

x

Ao

ME I

Fractions

SELECT CALLC TYPE
Binargy Integet=s

I

1 1 1 [teMil] Ok

You can then usc the [V] or [A] key to make a selection. 20K = or [ENTER] then activates
the selected special calculator. I you press ZCANCLE or , the display shows

RAD

{ HOME }

gf Cancelled

2.

‘i—:

I D D N N

which for good measure also demonstrates the use of a message box (section 12.7.2).

CALCS Special Calculators

F412’

<< "SELECT CALC TYPE"
{ { "Binary Integers” BINCALC }
{ "Fractions” FRACALC }
P
IF CHOOSE
THEN EVAL
ELSE "Cancelled” MSGBOX
END

>>

Choose box label.

First choice.

Second choice.

Initial highlight.

If a selection was made,

then execute the selected object.

Otherwise, show a message.

CHOOSE requires three arguments:
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¢ The choose box title, entered as a string object (level 3).

e A list of “choices” (level 2). Each of the objects is displayed on one line of the
choose box (using multiple pages if necessary). When TOKE is pressed, the
currently highlighted object is returned to the stack. In many cases (such as in
CALCS), it is preferable to show one object in the choose box but return another.
For that purpose, any choice can be a list of two objects { label return }, where label
is the object (usually a string) that is displayed, and return is the object.that is
returned if that choice is selected.

¢ A real integer (level 1) that specifies which choice is initially highlighted.

CHOOSE returns the selected object (level 2) and a true flag (1) if 0K = or was
pressed; or just false (0) if ECANCLE or . The flag allows a program to branch
according to whether any choice was made; if it is true, then the returned object can be
executed or otherwise processed. As shown in CALCS, it is appropriate to usc
CHOOSE as the if-clause in an IF structure (section 9.4.1): the then-clause is for usc of
the returned object, and the else-clause is for handling the cancellation of the choose
box.

An input form is a a sort of extended choose box, where you can make several choices
and supply input objects that arc not prearranged. Like CHOOSE, INFORM requirces
arguments that describe the subsequent screen display, and it returns a flag to level 1 to
indicate whether the input form was exited via £ OK £ (true) or SCANCLE (faise). If true,
then a list is also returned to level 2, containing result objects from the input form.

In section 7.2.1.1, we list an interactive program ASN41 for making kcy assignments in
the style of the old HP41. The program ASN48G performs a similar task, this time
using INFORM. ASN48G makes the following simple input form display:

KEY RSFIGMMENTS

oer: [

KEY:

ENTER DEFINITION
ECT | | 1 JOANCL] OK

Here you enter a key assignment object into the DEF: field, and a keycode into the KEY:
field. £ OK = terminates the input form, and the program then completes by making the
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specified assignment. If you cnter a keycode, but leave the definition ficld blank (you
can clear it with ZRESETZ ), the current assignment of the designated key is removed. A
blank definition field and a keycode of O causes all current key assignments to be
cleared.

ASN48G ASN HP48G Style FD5C
<< "KEY ASSIGNMENTS" Title.
{
{ "DEF:" "ENTER DEFINITION" 0} Definition field.
{} Skip a line.
{ "KEY:" "ENTER KEYCODE RC.P" 0} |Key code ficld.
} End of field definitions
{1} One column.
{ NOVAL NOVAL } Reset to blanks
{} Initial fields are blank.
IF  INFORM Show the input form.
THEN OBJ- DROP - ob keyc Store the parameters.
<< CASE
keyc TYPE THEN END Do nothing if keycode not a number.
ob { NOVAL} HEAD SAME Is key object NOVAL?
THEN keyc DELKEYS END Then clear that key.
ob keyc ASN Otherwise, make the assignment.
END
>
END
>>

The next example shows the use of a choose box as a preliminary for an input form.
GENRANDS creates sets of random numbers using the programs listed in section
12.11.1. It starts with this choose box:

RAD

1 HOFHOOZE DISTRIEUTION -
4:

3¢ [HORMAL

%: POISSON

[ 1 T 1 JitAMWiL] DK |
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GENRANDS

[

Generate Random Numbers AF8C
| level 1
Ly [{ numbers 1}

<< {"UNIFORM" "NORMAL" "POISSON"}
"CHOOSE DISTRIBUTION"
OVER 1
IF CHOOSE
THEN DUP " DISTRIBUTION" +
3 ROLLD POS - t
<<
CASE
't==1" THEN
{{ "LOWER:" "ENTER LOWERLIMIT" 0} {}
{ "UPPER:" "ENTER UPPERLIMIT" 0} {}
} {0 1} END
‘t==2" THEN
{{ "MEAN:" "ENTER MEAN VALUE" 0} {}
{ "STD DEV:" "ENTER STANDARD DEVIATION" 0}
} {0 1} END
{ { "MEAN:" "ENTER MEAN RATE" 0}
{yr {1}
END
DUP {10 SDAT NOVAL} +
SWAP {10 NOVAL NOVAL} + ROT
{{ "COUNT:" "ENTER NUMBER OF VALUES" 0} {}
{ "NAME:" "ENTER VARIABLE NAME" 6}
{ "SEED:" "ENTER RANDOMIZE SEED" 0}
} + 3 ROLLD
{2 1} 3 ROLLD
IF INFORM
THEN OBJ- DROP
IF DUP TYPE NOT
THEN RDZ
ELSE DROP
END

{1

Type strings.
Choose box title.
Highlight Uniform.

Title for input form.

Store the type.

Uniform field parameters:

Normal field parameters:

Poisson field parameters.

Resets for count, name, and seed.
Defaults.

Count field.

Name field.

Seed field.

Two columns.

If a seed was specified,
then randomize.

(continued on next page)
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GENRANDS continued from previous page:

12.6

- c v
<< CASE
't==1" THEN OVER -
{RAND * +} + + END
't==2" THEN ’'MNORM’' 3 -~LIST END
{POIS} +
END ‘t" STO
1 ¢ START t EVAL NEXT
c 1 2 -LST -ARRY
IF v TYPE 6 SAME
THEN v STO
END
>>
END
>
ELSE DROP2
END

Save count and name.

Uniform generator.

Normal generator.

Poisson generator.

Replace type with generator.
Generate the numbers.
Pack up into an array.

If a name was supplied,
store the array.

Cancelled choose box.

The choose box choice specifics whether you want the random numbers to follow a uni-
form, normal, or Poisson distribution. When you press Z OK = , you sce an input form
that allow you to specify parameters for the random number set. The input form for

the uniform distribution looks like this:

LOKER:

uUPPER: ]

COUNT: 18

NAME: SEED:

EMTER LOWEER LIMIT

UNIFORM DIZTRIELTION

EpT] ] | [eAMiL] OK ]

Three fields are common to all three distribution types:

e COUNT: specifies the number of elements n in the random number sct to be gen-

erated.
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® NAME: specifies a name for storing the set in a global variable. The set is returned as
an nX 1 matrix. If no name is supplied, the matrix is returned to the stack. Using
ZRESET: on this ficld enters the name ZDAT.

® SEED: specifies a random number seed. You should use this field when you may
want to repeat the creation of the same set later. If you leave the field blank, cach
ncw set will be different.

For the uniform distribution, the fields LOWER: and UPPER specify the range over which
you want the random numbers to be distributed. For the normal distribution, these
ficlds are replaced by MEAN: and STD DEV;, so that you can specify a normal distribution
by its mean and standard deviation. For Poisson distributions, only one ficld MEAN: is
required.

12.7 Displaying Output

A nice intelligible display of a program’s results is desirable for the same reasons that
molivate input prompting. Furthermore, the methods of producing the text and graphics
that show a result arc essentially the same as those for producing mnput displays. The
program OLABEL (scction 10.2) is a good general purpose utility for output labeling,
but you can casily create morc elaborate displays using the methods presented in
Chapter 10 and the preceding sections of this chapter.

There are a few differences between input and output display methods that are worth
noting:

¢ Output display usually does not require program suspension, so PROMPT is not a
good way to display a result. Use DISP and FREEZE to display text that will remain
in view after a program finishes.

*® You don’t need FREEZE to show results while a program is exccuting. However,
you should ensure that any display created while a program is running will persist
long enough to be read. Use WAIT in cases where a display might be replaced too
quickly.

® When you want a program-ending display to be available after the next keystroke as
provided by FREEZE, create the display on the picture screen instead of the text
screen.  You can still show the display at the end of a program using PVIEW and
FREEZE, but after the picture disappears, you can view it again by pressing [<J] .
Using the picture screen also lets you use all of the display (or more, if you create a
large picture screen), whereas the menu area of the text screen is not available.
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12.7.1 Tagged Objects

The tagged object type (section 3.4.8) provides a very useful method of output labeling
that is especially useful for programs that are intended both as stand-alone programs
and as subroutines. For the latter purpose, programs should return their results to the
stack where they may be used for subsequent calculations. However, the bare presenta-
tion of objects on the stack is not a very helpful style for programs used manually, espe-
cially when a program returns two or more objects of the same type. One solution is to
tag the output objects: the tags label the objects for visual identification, but do not
interferc with the objects’ use for further operations.

The command LR is good illustration of using tagged objects for output. Both of LR’s
results are rcal numbers; unless you use LR frequently you will be hard pressed to
remember which result is which without reference to a manual. Fortunately, you don’t
have to: the results are returned with the tags Intercept and Slope, clearly distinguishing
the two.

The program LCM&GCD listed below demonstrates the creation and use of tagged
objects for output. The least-common-multiple (LCM) of two numbers is equal to their
product divided by their greatest-common-divisor (GCD). LCM&GCD calls the program
GCD (scction 9.5.2.2), then uses the result to compute the LCM, rcturning it and the
GCD as tagged objects.

LCM&GCD LCM and GCD BDOO
level 2 level 1 | level 2 level 1
X y [ GCD(xy) LCM(xy)

«<DUP2 * - p

Save the product as p.

<< GCD Compute the GCD (section 9.5.2.2).
"GCD" -TAG Tag the result.
p OVER / Compute the LCM.
"LCM"  ~TAG Tag the result.

>>

>>

12.7.2 Message Boxes

You can create custom message boxes similar to those that appear in input forms by
using the MSGBOX command. MSGBOX’s single argument is a text string object that
represents the message. For example,

"Now is the time for all good men to come to the aid of their party” MSGBOX

makes this display:
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[l
P

x= X

ac

How iz the time
for all good
mern to come to
the aid of
their party £

—o0

To resume exccution, you must press = OK = or . Note that the message box is
15 characters wide, and that the argument string is automatically broken at spaces. You
can also add newline characters if you want to change the automatic line break posi-
tions. The maximum length of the string is 75 characters, or 5 lines; longer strings are
truncated to fit these limits.

12.8 Programs as Arguments

An unusual and powerful feature of the HP48 is its ability to usc procedures as argu-
ments for commands and other procedures. This capability is clearly illustrated in HP 48
symbolic algebra, where algebraic objects can be the arguments for functions. In this
scction, we will demonstrate the usc of programs as arguments. The fact that HP 48
programs arc objccts, and that therefore you can put an unexecuted program on the
stack, means that one program can transfer procedural information to another program
as casily as it can transfer data.

The program CHKINPUT presented in section 12.6.1 is a simple example of the use of a
program as an argument. Any program that is used to specify a test for CHKINPUT
could be included dirccetly in the definition of CHKINPUT, but then the latter program
would only be usable for the specific case determined by the test program. By lcaving
the test as an argument, CHKINPUT can be used as a gencral utility.

As a more ambitious illustration of the use of programs as arguments, we will develop a
program INFSUM to compute the sum

S 7o),

n=ngp

where f(n) is an argument for INFSUM, not part of the program. That is, to use
INFSUM, you enter ny and a program representing f (n), as stack arguments.
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The following is an example of program development, where you start with a single-
purpose program, and expand it in stages to a more general case. The program SUM4
shown below serves as an example of a single-purpose program. It computes the
specific sum

M 8

1
n 1114

SUM4 accumulates terms until successive sums are equal, i.c. additional terms arc less
than 10712 of the current total. It returns the result 1.08232323295.

SUM4 Sum 1/n* CEO9
| level 1
17 sum
< 0 Initialize sum.
1 Starting valuc of n.
DO | sumn) n |
pup -4 * | sum(n) n n? |
SWAP 1 + Increment n.
ROT ROT OVER + | n+1 sum(n) sum(n+1) |
DUP 4 ROLLD | sum(u+1) n sum(n) sum(n+1) |
UNTIL == Keep going until sum (n + 1) = sum (n).
END DROP Drop n.
>>

In reviewing SUM4, you can observe that the sequence —4 " is the only part of SUM4
that is specific to the particular sum Zn ~4. The rest of the program just handles the
mechanics of adding successive terms and deciding when to stop. You can make the
program work for any sum 2f (n) by replacing -4 " in the fourth line of the program
with the name TERM. The variable TERM should contain a program that computes

f(n), where n is provided in level 1. The summation program becomes:
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SUMTERM Compute an Infinite Sum from TERM E3BC
| level 1
Ly sum
<0 Initialize sum.
1 Starting value of n.
DO | sum(n) n
DUP TERM | sum(n) n f(n) |
SWAP 1 + Increment n.
ROT ROT OVER + fn+1 sum(n) sum(n+1) |
DUP 4 ROLLD {sum(n+1) n sum(n) sum(@n+1) |
UNTIL == Keep going until sum (n + 1)= =sum (n).
END DROP Drop n.
-

To compute n ~* with SUMTERM:

< -4 "> 'TERM’ STO SUMTERM :7 1.08232323295.

Actually, the usc of the variable TERM is an unnecessary contrivance. The need is to
supply SUMTERM with the information of how to compute f(n)--but that information,
which is represented by the program << -4  * >> can just as well be supplicd as a
stack argument. To sec how, omit the 'TERM’ STO from the preceding sequence.
Then, at the point where TERM is about to be executed in SUMTERM, the stack looks
like this:
<< -4 ">

sum(n)

n
n

SN R

Thus, the effect of cxecuting TERM (evaluating f (1)) can be achieved by the sequence 4
PICK EVAL. The program INFSUM (listed on the next page) makes that replacement,
and to generalize further, makes the initial index 71 an input argument as well.

© 2

» Example. Use INFSUM to compute the sum ¥ 227
n=1

In this case, the program argument is << = n  'n"2/(2™n)' >> and ny = 1. So the
sum can be obtained with
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<< - n 'n"2/2”™n" > 1 INFSUM oz 5.99999999899.
Or equivalently, but with faster execution,
< DUP SQ 2 ROT ~ /> 1 INFSUM 17 5.99999999999.
INFSUM Compute an Infinite Sum 6840
level 2 level 1 level 1
<< tenm > ny (g sum
<« 0 Initialize sum.
SWAP
DO | proc. sumqn) n |
DUP 4 PICK EVAL | proc. sum(n) n f(n)|
SWAP 1 + Increment n.
ROT ROT OVER + | proc. n+1 sum(n) sum(n+1) |
DUP 4 ROLLD | proc. sum(n+1) n sum(n) sum(n+1) |
UNTIL == Keep going until sum (n + 1)==sum (n).
END ROT DROP2 Discard n and procedure.

The argument << germ >> must have

the logical form << —~n 'term (n)" >>.

MINFSUM Compute an Infinite Sum (Monitor) BD3B
level 2 level 1 | level 1
<< tenm > ny 3 sum
«< 0 Initialize sum.
SWAP
DO | proc. sum(n) n
DUP 4 PICK EVAL | proc. sum(n) n f(n)|
SWAP 1 + Increment n.
ROT ROT OVER + [ proc. n+1 sum(n) sum(n+1) |
DUP 1 DISP Display the running sum.
DUP 4 ROLLD | proc. sum(n+1) n sum(n) sum(n+1) |
UNTIL == Keep going until sum (n +1)==sum (n).
END ROT DROP2 Discard n and procedure.
>>

The argument << term >> must have the logical form << - n "term (n)' >>.
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INFSUM may run for a considerable amount of time if the sum converges slowly. For
[ (n) = n™% it takes 670 terms to compute the result 1.08232323295, which is accurate
to the tenth decimal place (the correct value is 1.08232323371). The program will take
correspondingly longer for sums that converge more slowly than this. We therefore list
a second version, MINFSUM, that you can use instead of INFSUM when you want to
monitor the sum as it accumulates.

Additional variations of INFSUM are discussed in section 12.11.5.

12.9 Timing Execution

Minimizing execution time is an important aspect of program development and optimi-
zation. It is straightforward to use the HP 48 system clock to time program execution;
the best way is to create a general purpose timer program that takes an object (such as
a program) as an argumcnt, executes the object, then returns the execution time. The
program TIMED listed below illustrates this method; it returns the execution time of any
object, in seconds. The object may either be in level 1 or stored in a variable specified
by a name in level 1 (that is, if the level 1 object is a name, it is replaced by the con-
tents of the corresponding variable). TIMED was used to determine the various cxccu-
tion times listed in this book.

TIMED Timed Execution 24D3
level 1 | level 1
object [ time
name ey time
<< |[F DUP TYPE 6 == If the object is a name,
THEN RCL then replace the name with the stored object.
END MEM Pack memory.
RCWS 64 STWS - t w Set maximum wordsize.
< TICKS ‘t* STO Save the start time.
EVAL Evaluate the object.
TICKS t - Compute the elapsed time in ticks.
B-R 8192 / Convert to decimal seconds.
0085 - w STWS Correct for local store, restore wordsize.
>>
>>

TIMED uses TICKS, which returns the current system time as a binary integer in HP 48
clock “ticks,” which are equivalent to 1/8192 second. The correction factor of .0085
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seconds at the end of the program compensates for the time used to store the first time
value in the local variable t, between the two executions of TICKS. This number may
vary slightly from calculator to calculator; you can adjust the value used in your calcula-
tor by timing the execution of the object 1. Within the resolution of the system clock,
exccuting 1 takes essentially zero time, so adjust the correction factor if necessary to
make 1 TIMED return 0.000.

= Example. How long does it take an HP48GX to invert a 7 X 7 identity matrix?
7 IDN << INV>> TIMED :» 1.28.
The answer is 1.28 seconds.

TIMED executes MEM not to determine available memory, but to force memory packing
(sce the next section) so that subsequent packing that might interfere with execution
timing is postponed as long as possible. The value returned by MEM is only uscd as a
dummy object for the creation of the local variable t.

12.9.1 Erratic Execution

You have probably noticed that HP 48 exccution, in cverything from keystroke entry to
user program cxecution, does not always procced smoothly but is frequently interrupted
by momentary pauses. This is quitc noticeable in plotting, for example, where the
orderly plotting of points is broken by periodic pauses as if the calculator were “catching
its breath.” This erratic cxecution is normal bechavior for the HP 48, and should not
concern you except to keep it in mind when you are timing program cxecution. Two
consecutive identical operations may take quite different times to execute.

During the course of operations, the HP 48 creates dozens or even hundreds of “tem-
porary objects.” These are the objects that you put on the stack and which remain
unnamed (i.e., not stored). Between the times when the stack display is updated, various
operations may also create many temporary objects that you never sce. When a tem-
porary object is dropped from the stack, either for use as an argument, or when it is
stored in a global or a port variable, or just by DROP, the memory used for the tem-
porary object is not recovered right away. Eventually, memory fills up with temporary
objects, and the HP48 must perform some “memory packing” (also less politely called
“garbage collecting”) in order to continue. This packing consists of reviewing all of the
temporary objects, discarding those that are no longer needed, then packing together the
remaining objects into the minimum amount of memory. It is this memory packing that
is taking place during the execution pauses that you observe.

Ordinarily, the execution pauses caused by packing are so short that they have little
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effcct on your use of the calculator. However, there are some circumstances in which
the packing can be very time consuming, effectively paralyzing the HP48 for many
seconds or even minutes. For example, if you enter 1000 numbers onto the stack, exe-
cuting MEM takes about 1.7 seconds (MEM always performs a memory pack). The
worst situation, which you should be careful to avoid, involves the creation of large tem-
porary lists, and the extraction of the objects within the lists. After this sequence,

1 1000 FOR x x NEXT 1000 -LIST OBJ-

MEM takes several minutes to execute, during which the keyboard does not respond
(type-ahead still works, however). You can only interrupt the packing with a system halt
(section 6.6), which also clears the stack.

If you find it necessary to work with large lists, you can avoid the delays due to memory
packing by storing the lists in global variables before you take them apart. A similar
warning applics to stack programs that enter a large number of objects onto the stack
during their execution.

12.10 Recursive Programming

The unlimited depth of the HP 48 subroutine return stack provides that programs can
not only call other programs without limit, but they can even call themselves any
number of times. This feature permits so-called recursive programming, in which a
repetitive calculation can be achieved by a compact program that iterates by calling
itsclf.

A classic example of rccursion is the calculation of a factorial n! = n(n-1)---2-1.
This definition can be restated in a recursive form: ®

If n=1 then n! = 1; otherwisc n! = n (n- 1)\
The following user-defined function embodies the recursive definition:
"FCT(n) =IFTE(n=1,1,n*FCT(n-1))’ DEFINE

The function is defined in terms of itsclf, so that the name of the variable in which it is
stored must match the name used within the defining procedure.

Recursion is not always the fastest or most memory efficient method of computing a

result.  For the factorial (ignoring the built-in FACT function), a FOR...STEP loop is
better than the recursive version:
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<1 SWAP OVER FOR n n =* -1 STEP>>.

The looping done by FOR...STEP is faster than a program calling itself, and the pro-
gram structure also takes care of incrementing n. However, in cases involving nested
data structures, recursion may provide the only solutions.

The program MINL (section 12.3) finds the minimum in a list of real numbers. Using
recursion, it is a simple matter to extend that program so that any element of the input
list can itself be a list containing numbers or additional lists, and so on. Here’s the
revised version:

RMINL Recursive Minimum of a List AF1E
level 1 | level 1
{x; 0 x, ) g X min
<« MAXR ~NUM SWAP DUP SIZE | MAXR {x; } n |
1 Initialize m (list index).
DUP ROT Loop from | to n.
START | Xmin { % } 1 |
GETI X
DUP TYPE Determine the type of object x,,.
IF 5 == Lists are type 5.
THEN RMINL If it’s a list, find its minimum.
END
4 ROLL MIN 3 ROLLD | Xmin { % } |
NEXT
DROP2
>>

This program provides another illustration of the power of the unlimited stack. At the
point in the program where RMINL calls itself, there is a list in level 1, which is the
required argument. It doesn’t matter that previous parts of the program have put other
objects on the stack--they will still be in the right place when RMINL returns (to the rest
of itself). RMINL returns one number to level 1, which is appropriate for the remainder
of the program. The initial list can be a list of lists of lists ..., nested indefinitely. For
example:

{1{23}{4{5{678}90}{11}}12} RMINL v= O.

An additional example of recursive programming is provided by the program GSORT, in
section 11.5.3. Lists also figure prominently in the recursive system of programs used for

-391-




12.10 Program Development

computing the detcrminants of symbolic matrices, described in section 11.7, and in the
program GFIND, listed in section 6.1.4. The latter program features a self-recursive
program created within a program and stored in a local variable.

A final note on recursive programs. Remember that if you change the name (variable)
of a-program that calls itself, you have to edit the program to replace all incidences of
the old name with the new.

12.11 Additional Program Examples

12.11.1 Random Number Generators

The HP 48 command RAND generates uniformly distributed pseudo-random numbers x;,
where an x; is cqually likely to have any value in the range 0 < x < 1. Using a uniform
distribution generator, it is possible to generate random numbers with various other dis-
tributions.

12.11.1.1 Poisson Distribution
Assume x is a random variable with a uniform distribution 0 << x < 1. If k is the smal-
lest integer for which

k+1

1o =e™

n=1

is satisfied, then k is a random variable from a population conforming to the Poisson
distribution with mean N. This distribution is defined as

_ Ny
P(k)_k!e ’

where P(k) is the probability of obtaining k events in an interval where the mean
number of events is N.

The program POIS uses this algorithm to return one random value k, where the mean
N is entered as a stack argument.

» Example. Generate 500 random numbers from a Poisson distribution with mean 10,
and compute the mean and standard deviation of the 500 numbers.

= Solution. Use £+ to accumulate the random numbers into 2DAT, then use MEAN
and SDEV.
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12345 RDZ 1 500 START 10 POIS NEXT {500 1} -ARRY STOX
generates the numbers (include the sequence .54321 RDZ if you want to check your
results against those shown below). After cxecuting the sequence (which takes several
minutes), you can compute the sample statistics:

MEAN 17 9.994
SDEV 1+ 3.354

The nominal standard deviation of a Poisson distribution is VN, which is V10 =
3.1623 for N = 10.

We can use the automatic histogram plotter for a visual inspection of the distribution of
the data. First, to set the plot type and ranges:

HISTPLOT -15 255 XRNG -20 125 YRNG ‘N’ INDEP ’'Freq’ DEPND

Then, to make and view the plot:

ERASE DRAX LABEL DRAW -]

Notice the longer tail on the right, which is characteristic of the Poisson distribution.
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POIS Poisson Generator 70B5
level 1 | level 1
N [ k
< NEG EXP exp(-N)
-1 1 Start k at -1; the product at 1.
DO SWAP 1 + Increment k.
SWAP RAND * Multiply by the next x.
UNTIL DUP 4 PICK = Keep going until the product is <exp(-N).
END DROP SWAP DROP Return 4.
>>

12.11.1.2 Normal Distribution
Assume x is a random variable with a uniform distribution 0 < x < 1. With a defini-
tion of y as

y =V -2lnx; cos (2wx;),

where x; and x; arc randomly drawn from the population of x, y is a random variable
from a population conforming to thc normal (Gaussian) distribution with mean 0 and
standard deviation 1. The normal distribution for a variable with mean y and standard
deviation o is

PO = \/2111'0' P [_ (y2;)72) ]

where P(y) dy is the probability of obtaining a value in the range between y and y +dy.
The program NORM computes normally distributed random numbers with zero mean
and standard deviation 1.

You can obtain random numbers y/ from a normal distribution with mean y and stan-
dard deviation o by multiplying the values y; obtained with NORM by o and adding y.
The program MNORM returns such random numbers y;/, where the mean and standard
deviation are specified on the stack.
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NORM Normal Dismibution Generator 88E7
| level 1
= Yi
<< RAND X;
LN -2 * V \V -2nx;
RAND xj
2 x 7 -NUM * RAD COS cos (2mx;)
* y
>>

NORM leaves radians mode active.

MNORM Modified Normal Distribution Generator 7038
level 2 level 1 | level 1
5 o by

< NORM * + !

>>

MNORM leaves radians mode active.

s Example. Generate 500 data points from a normal distribution with mean 10 and stan-
dard deviation of 3.16, for comparison with the Poisson data in the previous example.

12345 RDZ 1 500 START 10 3.16 MNORM NEXT
{500 1} -ARRY STOX

A histogram of this data, using the same plot parameters as in the previous example,
looks like this:

-395-



12.11

Program Development

Notice that this distribution is more symmetric than the Poisson data.

s Example. Create a ZDAT matrix that contains points [x; y;] representing a “noisy”

straight line:

yi = ().5xi + b,‘,

where b; is a normally distributed random variable with mean 1 and standard deviation
3, and the x; are the integers —50 through +50.

m Solution:
.54321 RDZ Random number seed.
CLE Initialize SDAT.
-50 50 x from -50 to +50.
FOR x x X
1 3 MNORM x 2 / + ;-
NEXT
{101 2} -ARRY STOZ Store the data.

You can create a scatter plot of this data by executing SCATRPLOT:

LY

[Z00M [0k ] |STATL] EDIT

Then ESTATLE draws the best-fit straight line:

~

[Z00t1] cit- 73 [TRACE] FEN | EDIT JCANIL
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12.11.2 Prime Numbers

The program PRIMES1 returns a list of prime numbers (not counting 1) less than or
equal to a specificed number y. The program demonstrates the use of a stack flag (sec-
tion 9.3) to “remember” the results of tests, so that those results can be used for later
decisions.

PRIMESH starts with a list containing the first three prime integers 2, 3, and 5, then suc-
cessively tests integers x greater than these to see if they are prime by dividing each by
all prime numbers p; for which p;= V. If any quotient is an integer, x is not prime,
and is discarded. If x is prime, it is appended to the current list of primes. The process
continues until the number to be tested is larger than y.

A significant economy in the execution of this process is possible because every succes-
sive integer does not need to be tested, but only those in the series 7, 11, 13, 17, 19, ...,
obtained by alternately adding 2 and 4. All integers not in this serics are divisible by 2
or 3, and so are not prime.

The basic structure of PRIMES1 is as follows:

DO take a candidate number x, and
DO compute x/p; for successive p; in the current list
UNTIL (1) either x/p; is an integer,
or
(2) pi = x/p:.
END
Then increment x
UNTIL x > y.
END

Note that the test (2) is cquivalent to testing p;> V. x/p; is computed anyway, so it is
not necessary to compute Vix as well.

If test (1) is true, then test (2) is superfluous. In the program, the result of test (1) is
used in an IF structure; if it is true, the current x is added to the list of primes and a
second true flag is pushed on the stack so that the DO loop will terminate. If test (1) is
false, test (2) is executed to determine whether to continue the loop.
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PRIMES1 Find Prime Numbers (Version 1) 4186
level 1 | level 1
v %2 { primes }
<< RCLF 1 CF Clear user flag 1.
{2 3 5} 7 - y flags list x Start with x=7.
<< 'list’ Identify the list.
DO Main loop to test x.
3 Start list index at 3.
DO Inner loop--divide x by all p; < x.
GETI x OVER / pi X/p
UNTIL
IF SWAP OVER > If x>p,,
THEN DROP2 list x +
OVER STO add x to the list,
1 DUP and signal true to exit.
ELSE FP NOT Exit if p, divides x.
END
END DROP Drop the list index.
IF 1 FS?C Alternate increments of 2 and 4.
THEN 2
ELSE 4 1 SF
END
'x’ STO+ Increment x.
UNTIL ‘x>y’ Repeat until x >y.
END flags STOF EVAL Restore flags and return the list.
>>
>>

PRIMES1 is written with a liberal use of local variables. This helps make the program
easy to develop against the algorithm described above, and to read afterwards. As dis-
cussed in section 124, it is often possible to obtain speed and memory size improve-
ments in a program by keeping all quantities on the stack rather than using local vari-
ables. For example, in PRIMES1 the local name list that represents the current list of
primes is kept on the stack throughout most of the program. It is easy to modify the
program so that the list itself is kept on the stack, eliminating the need for the local
variable. PRIMES2 is an alternate version of PRIMES1 that uses no local variables at
all--it is less legible than PRIMES1, but is more compact and faster.

In PRIMES1, user flag 1 is used to keep track of the alternate increments of 2 and 4. In
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PRIMES2, a stack flag is used for this purpose, which proves to be no slower than the
user flag and eliminates the need for saving and restoring the user flag states.

PRIMES?2 uses one additional trick to save a little space. If you compare the IF struc-
ture (lines 7-10) with its counterpart in PRIMES1, you will see that the ELSE is missing
so that FP NOT is applied incorrectly to the flag returned by the THEN sequence. Nor-
mally, this would be a program defect, but in this case the true flag (the 1) from the
THEN sequence ends up unchanged and the program executes properly. There 1S no
speed penalty, and the program is 7.5 bytes shorter than it would be with the ELSE.
This savings is small, but the example shows that sometimes it takes more program
space or time to prevent an unnecessary calculation than to go ahead and perform the
calculation. This point is discussed further in the next section.

PRIMES2 Find Prime Numbers (Version 2) 849C
level 1 | level 1
y 1y { primes }
<1 7 {2 3 5} Stack is:y flag x {pi’s}
DO Main loop to test x.
3 Start list index at 3.
DO Inner loop—-divide x by all p; = x.
GETI 4 PICK OVER / \p:  x/p;
UNTIL :
IF SWAP OVER > If x>p;,
THEN DROP2 OVER + add x to the list
1 DUP and signal rrue to exit.
END FP NOT Exit if p; divides x.
END DROP Drop the list index.
SWAP ROT NOT Flip the increment flag.
IF DUP THEN 2 ELSE 4 END Increment of 2 or 4.
ROT + ROT Increment x.
UNTIL
OVER 5 PICK > Repeat until x >y.
END 4 ROLLD 3 DROPN Leave the list on the stack.
>>
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12.11.3 Prime Factors

The problem of determining the prime factors of a number is similar to that of detcr-
mining prime numbers, since both problems require the determination of a series of
prime numbers. One way to compute the prime factors of a number x is to create a list
of prime numbers smaller than Vx, then divide x by the successive primes to see which
are factors. But once any factor f is found the problem reduces to finding the factors of
x/f, so that the original list of primes may be unnccessarily long. It is faster, thercfore,
to compute the successive prime numbers only as needed.

This brings us back to the point mentioned in the discussion of PRIMES?2 in the preced-
ing scction, which is that carrying out an unnecessary calculation may be faster than
deciding whether it is necessary. In the problem of determining prime factors of x, only
division by prime numbers is strictly necessary. But it takes a good deal of calculation
to determine if a number is prime, so it may be faster to try all integers less than the
square root of x than to weed out non-prime integers. At the same time, it will certainly
save time to use the trick of alternating increments of 2 and 4 used by PRIMES2 to
avoid integers that are divisible by 2 or 3.

The program FACTORS returns the prime factors of an argument x, including repeated
factors. This particular version makes several compromises between compactness,
speed, and program legibility:

¢ The basic test “if this is a factor, add it to the list of factors” is cncoded as a subrou-
tinc program object (lines 2-8) rather than repealing the sequence for cach succes-
sive potential factor. Exccuting the subprogram from the stack with PICK EVAL is
faster than using it from a local variable, at the cost of making the program less legi-
ble and harder to modify.

e Potential factors 2, 3, and 5 are always tested. This causcs a slight speed penalty for
factoring numbers that are multiples of 2 and 3 only, but is faster for other numbers.

e The DO loop (lines 13-16) does both increments of 2 and 4, without testing to see if
the increment of 4 is unnecessary (i.e. the factoring is complete after the 2 incre-
ment). The test DUP2 MOD NOT in the subprogram is faster than thc DUP2
SWAP V' > that would be necessary to prevent calling the subprogram. Morcover
the subprogram is never called unnecessarily more than once, whereas an extra test
would have to be executed during each iteration of the loop.
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FACTORS Find Prime Factors 580D
level ] | level 1
y vy { primes}

<<

<<
WHILE DUP2 MOD NOT
REPEAT
ROT OVER + 3 ROLLD
SWAP OVER / SWAP
END

>

{} 3 ROLL

2 4 PICK EVAL DROP

3 4 PICK EVAL DROP

5 4 PICK EVAL

DO 2 + 4 PICK EVAL
4 + 4 PICK EVAL

UNTIL DUP2 SWAP V >

END DROP

IF DUP 1 #

THEN +

ELSE DROP

END

SWAP DROP

>

Subroutine to test one potential factor f:
If £ divides x,

add f to list,
and replace x with x/f.

Start with empty list.

Try f=2.

Try f=3.

Try f=5.

I'ry incrementing f by 2 and 4

Until f>Vx.
Unless x is 1.
add it to the list.

Otherwise discard it.

Discard subroutine.

12.11.4 Simultaneous Equations
Consider the set of simultaneous linear equations

apxytapx;t
Ay X) tanx; +

A1 Xy T dypXy + 00

Tt apx, =0
Tt A X, C2

tap X, = Cp,

12.11

where there are n equations in # unknowns x; - -
unknowns, and the ¢; are the constant terms.

“x,. The a; are the coefficients of the
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These equations are straightforward to solve on the HP48. Defining the coefficient
matrix

ay 4" a4y
dp 4 """ dpy
A = s
Apy Qp2 """ Opp

and the unknown and constant vectors

X1 C1

X2 C2
= ¢ = ,

]xnl |Cn

then the sct of simultaneous equations can be represented as the matrix cquation
AX = C

The solution can be found by premultiplying both sides of the equation by the inverse of
A:

¥ =A'lg

On the HP 48, you can obtain this solution by c¢ntering the constant vector € into level 2
and the coefficient matrix A into level 1, then exccuting / (divide). This returns the
unknown vector ¥ to level 1.

This method is very simple, but has the drawback that it requires you to determine the
cocfficients and constants from the equations, and enter them in a very specific order,
which is contrary to the spirit of the HP48. A better approach is demonstrated by the
program SIMEQ below, which does all of this work for you. SIMEQ expects to find a
list of names in level 1, preceded in higher levels by as many equations as there are
names in the list. The specified names indicate which of the variable names in the
equations are the unknown variables--all other variables that appear in the equations
must have numerical values (via “NUM). The equations may appear in any order, and
there are no restrictions on the form of the equations, except that they must be linear in
the unknown variables.
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FOR x 0 v x GET STO
NEXT

e OBJ-

1 SWAP
START n ROLL
NEXT

n -LIST - ¢

<< 1 n
FOR x 1
e OBJ-
1 SWAP
FOR i n ROLL
c i GET +

v x GET STO

~NUM

NEXT

0 v x GET STO
NEXT

n DUP 2
-ARRY TRN

~LIST

c OBJ- 1
SWAP /
OBJ- DROP
n 1

FOR m v m GET STO
-1 STEP

~-LIST —ARRY

~NUM NEG

SIMEQ Sinudtaneous Equations 4AD3
level n ... level 2 level 1 |
‘equation,’ ... 'equation,’ { name, .. name, } vy
< DUP SIZE - v n Save the list of names in v, and the number
of names in n.
<«<n -LIST - e Combine the equations into a list, and save
ine.
<1 n

Store zero in each unknown variable.
Put the equations on the stack.
Compute each constant term.

Combine the constants into a list, and save
inc.
For cach variable...
Assign the value 1 to the variable.
Put the equations on the stack.
For each equation...
Eivaluate the equation, and
subtract the constant term,
leaving the coefficicnt.

Reset the variable to 0.

Combine all the coeffictents into a square
matrix.

Convert the constant list in a vector.
Compute the unknown vector.

Put the values on the stack.

Store each value in its variable.

12.11

SIMEQ dctermines the constant terms in the equations by setting all of the unknowns to
zero, then evaluating the equations. It next subtracts the constants from the equations,
" and determines the coefficients by assigning the value 1 to one unknown variable at a
time, and cvaluating the equations. The coefficients are combined into a matrix, and
the constants into a vector so that the vector of unknowns can be obtained by dividing.
Finally, the values of the unknowns arc stored in the corresponding variables.
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» Example. Five packages are weighed in pairs, yielding the weights 90, 110, 120, 140,
120, 130, 150, 150, 170, and 180 pounds. What are the weights of the individual pack-
ages?

= Solution. Call the unknown weights 4, B, C, D, and E, where A is the lightest weight
package and E is the heaviest. Then the lightest combination is 4 and B, so
A +B =90 lbs.
The next lightest combination must be 4 and C:
A +C = 110 Ibs.
Similarly, the heaviest two combinations arc

D+E

I

180 Ibs,

and
C+E =170 Ibs.

Finally, you can observe that the total weight of all the combinations must be four times
the total weight of the packages:

4(A+B+C+D +E) = 1360 lbs.

These are the five equations you need to solve the problem. On the HP 48:

'"A+B=90’
'A+C=110’
'D+E=180’
'"C+E=170’
'4%(A+B+C+D+E)=1360’

puts the equations on the stack. Then, to solve the equations:

{ ABCODE]} SMEQ A B C D E ws 40 50 70 80 100

12.11.5 Infinite Sums

In section 12.8 we presented a program INFSUM that computes an infinite sum of terms
defined by a separate program. For some sums, it is more accurate to compute each
term T, from the previous one T,_, rather than computing each term independently.
The programs PTINFSUM and XPTINFSUM (listed in section 12.11.5.3) use this
approach. The first program PTINFSUM is a variation of INFSUM, for which you sup-
ply a stack program that computes T, as a function of n and T,_,. PTINFSUM also
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T,

|
requires you to specify the initial value ny of the index, and the value of the first term ‘
no- |

|

3

= Example. Compute 4

n=1

n

n

(n—-1)

3
m Solution: In this case, T, = % [ ] ,no = 1,and Ty = 0.5. Thus,

<DUP 1 - / 3 ~ 2 / %> 5 1 PTINFSUM 1 25.9999999997.

Many mathematical functions can be computed from an infinite sum for which the terms
arc functions of a variable as well as of the summation index. The program
XPTINFSUM is a further variation of PTINFSUM, in which the valuc of a variable is also
an input argument, in addition to the arguments required by PTINFSUM. The program
that computes 7T, from T,_; and 1 can also be a function of the variable.

The programs Sl and Cl in the next sections illustrate the use of XPTINFSUM to com-
pute sinc and cosine integrals, respectively. The series expansions for these integrals are
taken from M. Abramowitz and LA. Stegun, Handbook of Mathematical Functions
(National Burcau of Standards, 1964).

12.11.5.1 Sine Integral
The sine integral Si(x) is defined as follows:
X ¢
Sitx) = [ L;’ dt
0

The integral can be computed from the infinite series:

) B o (_1)nx2n<rl
Si) = 2 G iy 1)

for x>0, and Si (x) = -Si(—x) for x<<0.

The program Sl uses XPTINFSUM to compute this sum, with the assignments ny = 0,
Ty = x, and
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!n~‘/:}x2
T, =T,_1 |- P
dn(n +.5)

Since 7, is a function of x?, S| saves repeated computation of the square of x by using
x? rather than x as the variable argument for XPTINFSUM.

Examples:
5 Sl = .493107418043
3 Sl 17 1.848652528

You could obtain these same results using the HP 48’s numerical integration capability,
such as with the following alternate form of Sl:

<<~ x fOxSIN®/LY  ~NUM >>.

This program 1s obviously casier to write than the previous version. However, the pro-
gram using the infinite sum is considerably faster than that using f.

12.11.5.2 Cosine Integral
The cosine integral Ci(x) is defined by

Ci(x) = y+Inx + f%ﬁldt,
0

where vy = 5772156449 (Euler’s constant). Ci(x) can be calculated from the mnfinite
series

o 1”x2”

Ci(x) = y+Inx + Em

n=1

for x >0, and
Ci(x) = Ci(-x)—im forx <0.

The parameters for XPTINFSUM are ng = 1, T, = —x%/4, and
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2{n -1
Tn = Tn-l - 2 .
2n*(2n-1)

2

T, is a function of —x?, so Cl uses —x? rather than x as the variable argument for

XPTINFSUM.
Examples:
05 Cl 1= -.177784078808

3 Cl 1+ .11962978602
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12.11.53 Sum Programs

PTINFSUM Infinite Sum from Previous Term 2DFB
level 3 level 2 level 1 | level 1
< term >> Ty, ng (=4 sum
< ROT - term Save << term >>,
<< OVER SWAP | Thy Tug n|
DO | sum(n) T, n|
1+ Increment n.
SWAP OVER term -NUM | sum(n-1) n T, |
SWAP ROT 3 PICK OVER +||n T, sum(n-1) sum(n) | i
DUP 5 ROLLD | sum(n)y T, n sum(n-1) sum(n) | :
UNTIL == Repeat until the sum is unchanged. 2
END DROP2 |
- ]
A
>> b
5

The argument << term >> must have the logical form<< -~ ¢ n  'term (t,n) =,

i

-

[
i
?
XPTINFSUM Infinite Sum in x from Previous Term 11CD H
level 4 level 3 level 2 level 1 | level 1 ‘
<<term >> T, ng X 354 sum ‘
<4 ROLL - x term Save << term >> and x. N
< OVER SWAP | Toy Ty 70 | ‘
DO | sum(@n)y T n | 1
1 + SWAP Increment n. :
OVER x | sum(n-1) n T,y n x| ‘
term -NUM {sum(n-1) n T, | ‘
SWAP ROT 3 PICK OVER + ||T, n sum(n-1) sum(n) |
DUP 5 ROLLD | sum(n) T, n sum(n-1) sum(n) | ‘
UNTIL == Repeat until the sum is unchanged. i
END DROP2 !

>>

>>

The argument << term >> must have the logical form << ~ ¢ n x 'term (t,n,x)" >>.
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Sl Sine Integral A102
level 1 | level 1
X 4 Si(x)
<<
IF DuP If x =0, just return 0.
THEN DUP ABS 0 OVER SQ |x To no x°|
<< Start of << term >>.
SWAP - n

«<n &5 - * NEG 4 /
n 5 + 8Q n * / *

>z

> End of << term >>.
4 ROLLD | x << tem > x Ty ny x*
XPTINFSUM | x sum |
SWAP SIGN * | Sifx) |
END
Ci Cosine Integral F17C
level 1 | level 1
X (g Ci{x)
<< DUP ABS DUP LN
SWAP SQ NEG Ix Inlx| -x|
DUP 4 / SWAP 1 SWAP | x In|x| -x*4 1 -x?
< SWAP - n Start of << term >>.
«<2 / n 8Q / n 1t - *
n 2 % 1 - / *
>>
>> End of << term >>.
4 ROLLD {x Inlx| <<tem > x Ty ny x*
XPTINFSUM |x Imlx| > |
+ 5772156649 +
SWAP
IF 0 <
THEN i = * - Subtract { 7 if x <<0.
END Ci(x).
>>
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ADDV
AGXOR
APLY1
APLY2
APVIEW
AREPL
ASN41
ASN48G
ASTO
BINCALC
BOUNCE
BS?
CALCS

CB

CEQN
CHARDISP
CHKINPUT
Cl

CINT
COPY
COUNT4
CRCIJ
CROSSF
D2

D3
DATENAME
DFACT
DIM

DOTF
DRAWPIX
EVENELS
FACTORS
FIB

FIND
FRACALC
FRAME
GCD
GENRANDS
GSAMP
GSORT
HP48G?
INFSUM
KEEP
KEYHALT
KEYTIME
LCM&GCD

Program Index

Concatenate Vectors

Animate with GXOR

Apply Program to 1 Symbolic Array
Apply Program to 2 Symbolic Arrays
Animation with PVIEW
Animation with REPL

ASN HP 41-style

ASN HP 48G Style

Animation with STO

Binary Integer Calculator
Bouncing Ball Demo

Bit Set?

Special Calculators

Clear Bit

Characteristic Equation
Display HP 48 Characters
Prompt and Check Input
Cosine Integral

Circle in a Triangle

Copy a Variable

Count in 4 Ranges
Column-wisec RCIJ

CROSS Function

2D Program

3D Program

Crecate a Name from the Current Date
Double Factorial

Symbolic Array Dimensions
DOT Function

DRAW using PIXON
Even-numbered List Elements
Find Prime Factors

Fibonacci Series Generator
Find a Variable

Fraction Calculator

Frame the Picture Screen
Greatest Common Divisor
Generate Random Numbers
Graphics Samples
General-purpose Sort
Running on a HP 48G/GX?
Compute an Infinite Sum
Keep N Objects

Halt if a Key is Pressed

Wait a Specific Time for A Key
LCM and GCD
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332
283
336
336
286
286
197
379
286
208
287
192
377
192
342
277
363
409
265
160
245
304
311
310
310
186
250
333
311
291
322
401
327
157
210
293
255
380
279
328

75
387
135
372
372
383




MFRAMES
MINFSUM
MINISTK
MINL
MINOR
MNDROP
MNORM
MOVE
MSGSHOW
NORM
N-§
OLABEL
POIS
PRIMES1
PRIMES2
PROMPTCONT
PTINFSUM
Qu

RC-R
RENAME
RMINL
-~SA

SA~

SADD

SB

SCOF
SDET
SFRAMES
Sl

SIMEQ
SIMPSON
SKETCH
SMINOR
SMS
SMUL

S-N

SSuUB
STAR
STRN
SUM4
SUMTERM
TIMED
TPIX
VANGLE
VSUM
XARCHIVE
XFORM
XPTINFSUM

Make frames for ANIMATE
Compute an Infinite Sum (Monitor)
Small-font Stack Display

Minimum of a List (Good Version)
Minor of a Matrix

DROP m through n

Modified Normal Distribution Generator

Move a Variable

Show Messages

Normal Distribution Generator
Numeric to Symbotic

Object Labeling Utility

Poisson Generator

Find Prime Numbers (Version 1)
Find Prime Numbers (Version 2)
Prompt with CONT Display
Infinite Sum from Previous Term
Quadratic Root Finder
Real/Complex to Real

Rename a Variable

Recursive Minimum of a List
Stack to Symbolic Array
Symbolic Array to Stack

Add Symbolic Arrays

Set Bit

(Unsigned) Symbolic Cofactor
Symbolic Determinant of a Matrix
Show Animated Frames

Sine Integral

Simultancous Equations
Simpson’s Rule Integration
Sketch Lines

Minor of a Symbolic Matrix
Scalar Multiply Symbolic Arrays
Multiply Symbolic Arrays
Symbolic to Numeric

Subtract Symbolic Arrays

Draw a Star

Transpose Symbolic Array

Sum 1/x*

Compute an Infinite Sum from TERM

Timed Execution

Toggle a Pixel

Angle Between Two Vectors
Sum Vector Elements
Extended Archive
Coordinate Transformation

Infinite Sum in x from Previous Term
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351,

289
387
285
354
302
136
395
161
375
395
335
278
394
398
399
362
408
358
243
160
391
334
334
337
191
340
340
289
409
403
324
293

338

386

292
305
250
185
311
408
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Subject Index

—~ 222,226, 263, 271, 330
~ 270

o4l
{} 45

111, 119

>> 229,230

239

239

239

239

240
= 240

240

279, 281, 313, 316, 317, 320
24-hour format 194
2D 310
3D 310
aborting programs 348
ABS 305
accuracy, internal 37

@ 89
|

A

AN AV

+ %o

acknowledged alarms 194
action 34, 36
action flag
exception 261
infinite result 261
activation 34
ADD 61, 317, 318
aENTER 207
alarm, acknowledged 194
alarm beep 195
algebraic 53
calculator 25
entry mode 86, 223
cvaluation 54
mode 85
object 3, 25, 29, 33, 34, 36, 52, 71, 216
syntax 52
algebraic/program mode 85
alpha key action 195
analytic function 30
angle mode 189, 194, 308, 309
ANIMATE 287

annunciator

busy 89

user 195
ARC 293, 294
ARCHIVE 183
argument 20

saving 158

disappearing 137
array 44, 297, 332

entry 101

symbolic 332
~ARRY 130, 297
ARRY- 298
ASCII file 231
ASN 196, 198, 200
assignment, key 189
ATTACH 174, 175, 177
attaching library 173
automatic

linefeed 194

list application 60

list processing 58, 59

mode change 86

simplification 61, 65
automating calculations 211
backspace 119
backup object 51
Bad Argument Type 54, 58
Bad Argument Value 58
base 116
BASIC language 2, 36, 217, 262
beep, error 195
BENTER 207, 284
BIN 194
binary integer 45
binary transfer 194
BLANK 280
body, program 230, 231
BOX 293,294
branch 241

conditional 241

unconditional 241
browser

flag 193

memory 153, 156, 159
buffer, key 371
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built-in object 67
built-in program object 35
busy annunciator 89

column vector 304
combining RPN and algebraic 26
command 30, 57, 67, 173

BYTES 14, 46, 156, 240, 350, 359 library 141

CALC 98 test 237,239 !

calculation, automating 211 command line 72, 83, 84, 88, 89, 218, 367 ;;

calculator command stack 88 b
algebraic 25 comment 41, 89, 232 |

binary integer 208
calculator, symbolic 3

common notation 21 .
compact format 12 !

fraction 209 compatibility 7
CANCEL 83, 258, 348, 371 complex array, MatrixWriter 102
CANCL 93 complex number 38 i
CASE structure 244 in an algebraic 39 :
catalog, fast 195 result 40 ‘,
cell 100 composite object 56, 71, 312, 330 !
cell cursor 101 CON 164, 167, 299, 324 |
CF 63, 191, 238 concatenation 42 J
changing variable contents 164 list 313 '
character code 42, 44 conditional 36, 237 ’
characteristic equation 342 branch 241

I
check ficld 94 configuration program, library 176 ;
checksum 359 constant, symbolic 66, 121, 194
CHOOSE 378 CONT 199, 330, 346, 348, 349, 361, 365
choose box 95 contents, program 52
choose field 95 contravariant vector 304

CHR 44 coordinate mode 307, 309 !
Circular Reference 158 polar 309 !
class, rectangular 309 ,
data 36 coordinate system 194
name 36 coordinates i
object 36 cylindricat polar 306 ‘i
procedure 329 logical 289
CLEAR 126 pixel 275, 279
clear flag 189 polar 38, 306 !
clearing 126 rectangular 306 !
clipping 295 spherical polar 3006 i
CLLCD 276, 277 copying stack objects 128 T
clock 194 cosine integral 406 |
timed execution 388 counted string 41 |
closing subexpression 111 counter 166 J
CLUSR 158 covariant vector 305 |
CLVAR 158 C-PX 290, 294 j
CMD 190 C-R 40 |
code, key 196, 371, 373 CRDIR 147 |
code object 34 CROSS 305, 311 !
cofactor 339 CST 200 !
COL+ 300 CSWP 300 |
COL- 301 current directory 147, 179 i
COL~ 298 current path 147, 175 {
-COL 298 cursor i
column number 163 cell 101 t
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graphic 194
subexpression 121
curve filling 194
custom error 259
custom menu 189, 200
permanent 200
temporary 201
customization 189
CYLIN 307
cylindrical polar coordinates 306, 308
IMATCH 55
data field 96
data object 36
data-class 329
date format 194

DBUG 349, 352
debugging 349
DEC 194

decimal digits 195
decimal number format 195
DECR 164, 166
DEFINE 143, 145, 221, 224, 226
defining expression 222
defining procedure 14, 263
definite loop 246, 250
definition,
object 31
program 52
-DEL 91
deleting suspended program 348
delimiter 31, 79, 88, 230
quotation mark 71
DELKEYS 198
DEL- 91
denominator 114
DEPTH 312
DETACH 177
determinant 339
diagram, stack 14
digit-group commas 38
directory 50, 68, 146
current 147, 179
home 146
PURGE 152
Directory Not Allowed 152
Directory Recursion 153
disappearing argument 137
DISP 276, 364, 382
display 273
freeze 276
graphics 186, 278
output 382
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standard 78, 274
distribution,
Gaussian 394
normal 394
Poisson 392
divide bar 114
ALIST 317, 321
DO 256
DO loop 253
DOERR 173, 257, 259
DOLIST 61, 318, 320, 321, 323
DOSUBS 317, 321
dot 305
DOT 311
double quote 41, 71
double space 194
DRAW 63, 260, 291
DROP 126
DROP2 127
DROPN 127
DUP 128, 140
DUPN 130
ECHO 91
EDIT 90, 105, 134, 152, 343, 350
EDIT menu 90, 105
editing program 343
edit/view 91
ELSE 241
else-sequence 241
empty 137
END 241
endless execution 69, 158
ENDSUB 322
ENTER 23, 30, 83, 84, 130
explicit 84
implicit 84, 89
vectored 88, 89, 195, 206
ENTRY 87
entry,
array 101
object 79
text 80
entry mode 85, 86, 203, 205
algebraic 86, 223
program 85, 86, 134, 143, 217, 230
environment 15, 78
plot 15,78
standard 1S
EQ 164
equality 239
logical 239
physical 239




equation, characteristic 342
EquationWriter 91, 92, 97, 107, 284
ERRO 173, 258
erratic execution 389
ERRM 173, 257, 259, 348
ERRN 257, 258, 259
error 256
beep 195
trap 256, 260
sequence 257
custom 259
error message, last 186
error number, last 186
EVAL 35, 51, 56, 59, 63, 68, 69, 72, 170, 182, 329, 330
evaluation 20, 29, 35, 329
algebraic 54
exception 261
action flag 261
exchange of arguments 127, 29
execution 34, 35, 68, 162
by address 73
endless 69, 158
erratic 389
global name 162
tocal name 70, 162
numerical 61, 63, 65, 66
numeric/symbolic 194
postponed 89
preventing 35
symbolic 61, 66
timing 388
exit 241, 250
EXPAN 55
explicit ENTER 84
exponent 37
exponentiated 116
EXPR 121
expression 20, 53
defining 222
fast catalog 195
FC? 239
FC?C 191, 239
field,
check 94
choose 95
data 96
parameter 93
firmware 6
flag 63, 189, 236, 365
-2 65
-3 65
-55 58
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Subject Index

browser 193
clear 189
stack 191
system 189
user 190, 238
floating-point 37
font 284
FOR 246, 252
formal variable 69, 266
format,
24-hour 194
compact 12
date 194
key 11
linear 106
FOR..NEXT 246, 263
FOR...STEP 249, 263
FORTH 5, 125
fraction entry, symbolic 114
fraction mark 195
FREE 169
FREE1 169
FREEZE 276, 361, 364, 382
freeze display 276
FS? 238, 239
FS?C 191, 239
function 20, 29, 30, 52, 57, 221
analytic 30
mathematical 223
menu 82
top-level 55
user-defined 112, 145, 212, 220, 221, 226, 311
garbage collecting 389
Gaussian distribution 394
GCD 255, 383
generations, calculator 2
GET 158, 163, 164, 202, 300, 303, 315, 325, 330
implicit 164
GETI - 163, 164, 300, 315
global name 34, 67, 68, 69, 142, 148, 180, 181,
262, 361
execution 162
global variable 50, 67, 68, 141, 142, 179, 262,
266, 270, 361
GO+ 102
GOR 281, 285, 290
GO~ 102
GOTO 233
graphic cursor 194
graphical display of expressions 107
graphics 274
display 186, 278



Subject Index

object 46, 278, 279
greatest common divisor 383
GROB 46
-GROB 110, 284
guillemet 71
GXOR 282, 285, 290

HALT 99, 162, 330, 345, 347, 348, 349, 352, 361,

364, 367

HEAD 44, 315, 316
helvetica 11
HEX 194
hidden parentheses 195
HOME 148, 155, 157, 182
home directory 146
HP Solve 63, 212, 217
HP35 2
HP41 2
HP6S 2
iDN 164, 167, 298
IF 241
IF structure 241
IFERR structure 349, 371
IFT 36, 56, 243, 244, 330
IFTE 36, 56, 243, 244, 330
M 40
immediate entry mode 85, 86
immediate-execute key 84
implicit ENTER 84, 89
implicit GET 164
implicit parentheses 116
implied multiplication 113
Improper Definition 225
Incomplete Subexpression 112
INCR 164, 166, 254
indefinite loop 246, 250, 253
independent RAM 172
index for GET 163
index, loop 247, 263
index wrap 195
infinite result 194

action flag 261
infinite sum 404
infix notation 21
infix operator 113
INFORM 376, 378
inner product 305
INPUT 367, 373
input and output 361
input form 81, 92, 93, 192, 376, 378
input list 324
insert mode 91
Insufficient Memory 58
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interactive stack 91, 92, 132, 312
intermediate result list 327
intermix binary and real 45
intermix real and complex 40
internal accuracy 37
invalid Array Element 101
Invalid Card Data 168
Invalid Dimension 59, 302, 316, 318, 321, 323
Invalid Object Type 98
Invalid Syntax 112
Invalid User Function 226, 319, 323
IR port 194
ISOL 223, 266
italics 11
iteration 241, 246
KEEP 134
Kermit message 194
Kermit overwrite 194
key
action, user 195
assignment 189, 195
buffer 371
code 196, 371, 373
format 11
menu 11
plane 196
shifted 11
type 85
KEY 367, 371, 373
keyboard 79
standard 78
key-per-function 77
KILL 348
label 233
LAST 130
last argument recovery 58, 59, 130, 158, 195,
260, 344
last error message 186
jast error number 186
last menu 81
LASTARG 58, 130, 158, 260
LCD-~ 278
LCM 383
least-common-multiple 383
LET 145
LEVEL 134
level,
stack 33, 125
subexpression 55
LIBEVAL 76
library 34, 50, 167, 173, 186
command 141



ID 173
title 175
LIBRARY menu 50, 168, 169
LIBS 177
LINE 292, 294
linear format 106
LISP 5
list 29, 34, 36, 45, 56, 297, 312
concatenation 313
input 324
output 326
sort 317
LIST- 314
-LCD 276,278
~LIST 312, 313, 314
local memory 162, 177, 186, 263, 266
local name 34, 70, 162, 179, 181, 222, 224, 262
execution 70, 162
resolution 267
variable 67, 70, 132, 136, 161, 179, 221,
222, 247, 262, 263, 266, 270, 347
variable structure 179, 263
logical
coordinates 289
equality 239
operator 237

loop 246
definite 246, 250
indefinite 253

index 247, 263
sequence 253, 254, 255
LR 383
Kukasiweicz, Jan 21
magnitude, unit 49
manipulation, symbolic 212
mantissa 37
manual operation 30
mathematical function 223
matrix 44, 297
MatrixWriter 91, 97, 100, 190
MEM 156, 168, 169, 199, 389
memory
browser 153, 156, 159
local 162, 177, 186, 263, 266
packing 389
reset 187
user 67, 146
VAR 67
Memory Clear 187
menu
custom 189, 200
function 82
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Subject Index

exit 82

key 11

key label 78
last 81

port 171, 172
screen 273

solve variables 213
subexpression 121
VAR 143, 180, 200, 262
MENU 7, 81, 82, 201, 365
MERGE 169
MERGE1 169
message
box 383
prompt 195
table 260
minor 339
mode 1S, 189
mode,
algebraic 85
angle 189, 194, 308, 309
change 86
coordinate 307, 309
entry 85, 86, 203, 205
insert 91
numeric 241
symbolic 241
user 81, 109, 186, 195
mode-dependent key 85
moving a variable 159
moving average 322
MSGBOX 383
multiplication, implied 113
name 33, 67, 141, 249
global 34, 67, 68, 69, 142, 148, 180, 181,
262, 361
local 34, 162, 179, 181, 222, 224, 262
port 170, 180, 181
path 182
port 170, 180, 181
quoted 70
resolution
NEG 279, 280
negative pixel coordinates 294
newline 102, 384
NEWOB 173, 328, 331
non-analytic function 30
Non-Empty Directory 152, 158
normal distribution 394
normal-sequence 257
NOT 255
notation 11

148, 178, 267
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Subject Index

common 21
infix 21
Polish 21
prefix 21
NSUB 322
NUM 44
~NUM 36, 63, 65
number,
complex 38
prime 397
random 392
real 37
row 163
type 31
numbered register 67
numerator 114
numeric mode 241
numerical exccution 61, 63, 65. 66
numeric/symbolic execution 194
OoBJ- 314
29, 83
class 30
entry 79
string 88
type 31
value 31

object

object,
algebraic 3, 25, 29, 33, 34, 306, 52, 71, 216
backup Sl
binary integer 45
built-in 67
code 34
composite 56, 71, 312, 330
complex number 38
data 36
global name 34, 67, 68, 69, 142, 148, 180, 181,
262, 361
graphics 46, 278, 279
library 34, 50, 167, 173, 186
local name 34, 70, 162, 179, 181, 222, 224, 262
program 34
real number 37
string 41
symbolic 72
system 31
tagged 47, 383
unit 49
untagged 47
Object in Use 172, 177
object-to-grob conversion 284
OBJ~ 39, 40, 42, 43, 48, 55, 127, 180,
207, 298
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OCT 194
OK 93
operation 29, 67

manual 30
operator,

infix 113

logical 237
optimization, program 355
ORDER 144, 159, 180

order, row 298, 301
output display 382
output list 326
OVER 129
overflow 194
Overflow 262
Owner’s Manual 8
packing, memory 389
page 81 j
parent 148
parsing 88
PATH 147, 182, 330
path, current 147, 175 *
path name 182
PDIM 286
pencil-and-paper 22
permanent custom menu 200
PGDIR 158, 184 i
physical equality 239
PICK 128
PICT 285, 286
PICTURE 78, 274, 275
picture screen 78, 273, 278, 284
PINIT 168
PIX? 292,294
pixel coordinates

negative 294
PIXOFF 292, 294
PIXON 290, 294
[LIST 317
plot environment 15, 78
Poisson distribution 392
POLAR 307
polar coordinate mode 309
polar coordinates 38, 306

cylindrical 306, 308

spherical 306, 309
Polish notation 21
port 167, 168, 169, 172, 173

0 167

1 167

2 168

3-33 168




menu 171, 172
name 170, 180, 181
printer 194
variable 141, 167, 170, 172
POS 43,316
postponed execution 89
PPAR 164, 289, 290
precedence 21, 195
prefix notation 21
preventing execution 35
prime number 397
principal value 194
printer port 194
problem solving 211, 214
procedure 52, 216, 217
as argument 384
class 329
defining 14, 263
program 33, 52, 57, 212, 217, 229, 235. 329
aborting 348
as argument 363, 384
body 230, 231
contents 52
definition 52
cditing 343
entry mode 85, 86, 134, 143, 217, 230
legibility 221
object 34, 35
optimization 355
quote 71
structure 52, 218, 229, 231, 235, 330, 358
structure word 36, 60, 85, 229, 236
program entry mode
algebraic 85
quoted 72
suspended 345, 361
unquoted 72
programming 211, 218
recursive 390
structured 218, 232, 233, 345
PROMPT 99, 330, 345, 347, 349, 352, 361, 362, 364,
367, 382
prompt message 195
PRVAR 170, 350
PURGE 149, 156, 157, 158, 170, 172, 173, 174, 269, 285
directory 152
recovery 158
PUT 164, 166, 167, 202, 300, 303, 316, 325
PUTI 164, 166, 167, 300, 316
PVARS 168
PVIEW 275, 290, 382
PX- 290, 294
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Subject Index

-Q 59,61, 209
-Qn 61
QUAD 266
quotation mark delimiter 71
quote,
double 41, 71
program 71
single 71
quoted name 70
quoted program 72
quoting tagged object 172
RAND 392
random number 392
RATIO 115
RCN 304
RCL 68, 163, 170, 174, 182, 238, 285
RCLALARM 198
RCLF 191
RCLKEYS 198
RCLMENU 202
RCWS 194
RDM 164, 167, 299
RE 40
real number 37
Recover RAM 187
reccovery 346
PURGE 158
stack 99, 130, 344
STO 158
RECT 307
rectangular coordinate mode 309
rectangular coordinates 306
recursive programming 390
referenced 172
register 141
numbered 67
storage 68
REPEAT 60, 255
REPL 43, 123, 283, 285, 287, 290, 301, 302, 315
Replace RAM, Press ON 169
reschedule 194
RESET 94
reset, memory 187
resolution,
local name 267
name 148, 178, 267
RESTORE 184, 186
result 20
complex number 40
Reverse Polish Notation 19
review 144
REVLIST 316, 317
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Subject Index

right hand 12
ROLL 127, 127
ROOT 217, 266
ROT 128
row
number 163
order 298, 301
vector 304, 305
ROW+ 300
ROW- 301
RPL 5
RPN 3,19
RPN calculator principle 19, 56
RPN command 30
R-C 40
RSWP 300
RULES 82,92, 108, 123
S 198
SAME 48, 239
SCi 37
SCONJ 164, 167
screen 78, 273
picture 78, 273, 278, 284
text 78,273,278
SDAT 164
separator 88
SEQ 252,323
sequence 12, 229, 246, 249
error 257
loop 253, 254, 255
of arguments 318
test 241, 253, 254, 255
set flag 189
SF 63, 191, 238
signal flag 190, 261
simplification, automatic 61, 65
simultancous equations 401
SIN 189
sine integral 405
single quote 71
single-step 348, 351
SINV 164, 167
SIZE 43, 279, 280, 285, 299, 316
SKEY 199
~SKIP 91
SKIP~ 91
ZLIST 316, 320, 321, 323
SNEG 164, 167
solve variables menu 213
SORT 316, 317, 327
sort list 317
space, in EquationWriter 112
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SPHERE 307
spherical polar coordinates  306. 309
square root 116
Vo116
SST  348. 352
stack 13, 23, 77, 125, 141, 312
diagram 14
flag 191
interactive 91, 92, 132, 312
level 33,125
recovery 99, 130, 344
roll 127
unlimited 134
standard
display 78, 274
environment 15
keyboard 78
START 60
start 246, 247, 249
starting and stopping 345
START..NEXT 250
START...STEP 250
status area 78, 99
STEP 60
step 249
step-wise substitution 69
STO 48, 142, 149, 155, 158, 170, 173, 269, 285,
287, 303
recovery 158
STO- 164
STO+ 164
STO/ 164
STO* 164
STOF 191, 198
STOKEYS 198
stop 246, 247, 249
storage arithmetic 164
storage register 68
-STR 43,314
STREAM 317, 320, 355
string 41
counted 41
object 88
stripping tags 48
STR- 180
structure 55
CASE 244
FOR 246
DO loop 253
IF 241
IFERR 349, 371
local variable 263



START 250
program 52, 218, 229, 231, 235, 330, 358
WHILE loop 255
structure word, program 36, 60, 85, 229, 236
structured programming 218, 232, 233, 345
STWS 46, 194
SUB 44, 283, 284, 285, 301, 315
subdirectory 148
subexpression 54, 108, 121
cursor 121
level 55
menu 121
subroutine 233, 235, 270, 362
substitution 73
summation 248
suspended program 345, 361
SWAP 127, 128
symbolic
array 332
calculator 3
constant 66, 121, 194
execution 61, 66
fraction entry 114
manipulation 212
math 213
mode 241
object 72
syntax 20, 84
algebraic 52
SYSEVAL 7,73, 75
system flag 189
system halt 159, 173, 186
system object 31
tag 47
stripping 48
-TAG 48
tagged object 47, 383
quoting 172
TAIL 44, 315, 316
temporary custom menu 201
test 237
command 237, 239
sequence 241, 253, 254, 255
TEXT 78,275
text entry 80
text screen 78, 273, 278
THEN 241
then-sequence 241
ticking clock 194
TICKS 388
timing execution 388
TLINE 292, 294
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TMENU 7, 82, 201, 365
Too Few Arguments 58, 226
top-level function 55
transfer, binary 194
trap, error 256, 260
TRN 164, 167, 299
TVARS 156
TYPE 31,49,57,72
type number 31
type, object 31
type-ahead 371
TYPES 98
typing 204
aid key 206
key 84,86
tMATCH 55
UBASE 240
UFACT 240
unconditional branch 241
Undefined Name 63
underflow 194, 262
UNDO 87, 99, 130, 190
unit
magnitude 49
management 49
object 49
unlimited stack 134
unquoted program 72
untagged object 47
UNTIL 254
UPDIR 148, 155
user
annunciator 195
flag 190, 238
key action 195
key assignment 195
memory 67, 146
mode 81, 109, 186, 195
USER annunciator 195

Subject Index

user-defined function 112, 145, 212, 220, 221,

226, 311

User’s Guide 8
1USR annunciator 195
V309
-V2 39,309
-V3 309
value, object 31
value, principal 194
VAR memory 67
VAR menu 143, 180, 200, 262
variable 20

changing contents 164



Subject Index

formal 69, 266

global 50, 67, 68, 141, 142, 179, 262, 266,

270, 361

local 67, 70, 132, 136, 161, 179, 221, 222,

247, 262, 263, 2606, 270, 347
moving 159
port 141, 167, 170, 172
VARS 156, 158
VEC 104
vector 44, 297, 304
column 304
contravariant 304
covariant 305
row 304, 305
vectored ENTER 88, 89, 195, 2006
VERSION 6
VIEW 134
V- 39
VTYPE 31, 57, 156
WAIT 373
where 119
WHILE 253, 255. 256
~WID 101
WID- 101
wordsize 46
Wrong Argument Count 324
XLIB name 34, 51, 70, 181. 176, 196
XROOT 111, 117
y-slice plot 287
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HP 48 Insights
I. Principles and Programming

The HP 48G/GX is the most powerful calculator
ever developed. Along with its extensive sym-
bolic and numeric mathematical functionality
including automated graphics, the HP48 pro-
vides exceptional programming and customiza-
tion facilities that make it applicable to a broad
range of practical problems. The sheer extent
of the HP 48’s capabilities do, however, make
the calculator a challenge to learn and master.

HP 48 Insights | is the first volume of a two-part series by Dr. William
Wickes on the operation and application of the HP48. This book con-
centrates on the underlying unified principles of HP 48 operation, and
the tools and techniques for programming the calculator. Special atten-
tion is given to object storage, display management, and customization
with key assignments, menus, and modes. All concepts are illustrated
with specific examples, including over 100 practical example programs
featuring programming techniques such as local variables, program
structures, recursion, and the uses of lists and arrays.

This HP48G/GX Edition is revised and extended to cover the new
features and user interface of the HP48G and HP48GX calculators.
Most of the material applies equally well to the HP 48S/SX family. Part /I
of HP 48 Insights will focus on the integrated systems of the HP 48,
such as plotting, symbolic mathematics, and unit management.

Chapter Headings:

1. Introduction 1
2. RPN Principles 19
3. Objects and Execution 29
4. Object Creation 77
5. The HP 48 Stack 125
6. Storing Objects 141
7. Customization 189
8. Problem Solving 211
9. Programming 229
10. Display Operations and Graphics 273
11.  Arrays and Lists 297
12. Program Development 343
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