
/

f , r

I /'

·r
'- \

v
, \

\ . -\. I.
"-

I

/
~. 1

'-
/

,/ I

rI<

t!
\'

I -
J ". 1/ t/ ~ ",

(VI

"')
It'

;:

I
1 \

\
l,,/-

fU
yl I ~

\
, !

.
\

(

11 - \/ " ,-/-1' 'Y):. ! -",-
/

--> "'- (, \" /
J ©'~ ~ \ /' I / \ '\ f . 'Il, /

CoP¥right C Jam(fs Donnell): 1995) I _ \ / \ r ,(~.. r \

I I . , ! 1"\' \ I '-.J!

All rights feserved, No part of ~s b06k mar be reproduc~d, transmit(ed, or stored in a re trieval sy~tem in-any~form
or by any prbces~. el~tronic, me clianical, pHotocopyi.ng, or means yet to be invented, witho1,!t spec!fic prior irritten
permission from the author. ~ ",J "-

," ~ - I I .I

(I ') • • '/ \ {.//' I / .r

/ (I
First Edition --

..A

./ ~\
~

I.

7 ./ .{ r

,,-,(\
,.-)
~

I

.J ,

-
J
. !'\
{

~

t(-
\.-. \,
(I

I 1.\",

{ -I, " /./
I }-

First Printing, June 1995
I l-

f-

'-

,,-
t-'

)

\ (

"-

lL
/

'"
-'-

~

l- I

"- >

/

\

!

'-

l

1/ r I

C. \

~

\
I

t
/ I !

!

1/

(

\......I

V

V ,
I
V

, / V

V
I

,.

V
I

"-
..\

/ V
I
U

(

Acknowledgments

This book would not exist were it not for the team that developed the original HP 28 . The tribute to their vision
exists in backpacks, briefcases, and on desktops around the world.

Inspiration for the book came from many places, notably the traffic on comp . sys . hp4 8. Doug Cannon and Brian
Maguire were the principals that helped get the project going and provided valuable examples and suggestions.

Seth Arnold, Lee Buck, Rick Grevelle, Wlodek A.c. Mier-Jedrzejowicz, Richard Nelson, Jeremy Smith, and others
repeatedly provided encouragement when the going got tough and I thought about abandoning the project. Perhaps
the most consistent motivation came from the not-infrequent posting on comp . sys . hp4 8 from new HP 48 owners
asking for examples and tips for getting started.

Seth Arnold, Ted Beers, Lee Buck, Doug Cannon, Yuan Feng, Joseph Hom, Wlodek A.c. Mier-Jedrzejowicz, Brian
Maguire, and Eric L. Vogel all contributed to the review process.

Hewlett-Packard provided permission to distribute copies of their HP 48 development tools on the disk that
accompanies this book.

Immense credit goes to my wife Janet, who supported and encouraged this project, and thus was left alone for the
many hours of writing, testing, debugging, and proofing.

Disclaimer
Despite the best of intentions and many hours of hard work, mistakes may remain in this book. We suggest you
archive important data in your calculator before beginning to experiment with the new techniques you willleam
here. It is not uncommon to see a typing mistake in source code lead to a "Memory Lost" event. This is a natural
part of the software development process. Neither the author nor the Hewlett-Packard Company can accept
responsibility for the loss of your data.

Contents

Introduction •......•...........................••.•...•............•..•...•.. 1
Getting Started .. 2

Tenninology 2
User-RPL vs. System RPL vs. Assembler 2
Stack Diagrams 3
Object Notation 3
Fonts 4

Installing the HP Tools 4
Example Programs 4
Introducing System-RPL 5

A First Example 5
Creating the Example With the HP Tools 6

Introducing Assembly Language 8
Example File Structures 9

User-RPL Examples 9
System-RPL Examples 9
Assembly Examples. 10

Basic Programming Tools .. 11
Binary Integers 11

Internal Binary Integers in the HP 48 Display 11
Internal Binary Integers in System-RPL Source Code 11
Type Conversions 13
Internal Binary Integer Operations 13

Flags 17
Flag Conversions 17
Flag Utilities 18

Tests 19
Object Equality 19
Binary Integer Tests 20
Real Number Tests 21
Extended Real Number Tests 22
Complex Number Tests 22
Advanced Topic: Missing Extended Real Test Objects 23
Unit Object Tests 24
Character String Tests 24
Hex String Tests 24

Program Flow Control 25
Early Exits From a Secondary 25
IF - THEN - ELSE Structures 26
CASE Objects 29

Loop Structures 36
Definite Loops 36
Indefinite Loops 38

Runstream Operators 40
Argument Validation 41

Attributing Errors. 41
Number of Arguments 42
Type Dispatching 43
Object Type Tests 47

Temporary Variables 48
Using Named Temporary Variables 50
Using Null-Named Temporary Variables 51
Programming Hint for Temporary Variables 53
Additional Temporary Variable Utilities 54

Error Trapping 55
Error Trapping Mechanics 55
Generating an Error 55
Handling an Error 56
Additional Error Objects 57

Stack Operations 58
Control Structure Examples 63

PLIST Example 64
SEMI Example. 64
ticR Example 65

Objects & Object Utilities. .. 66
Real & Extended Real Numbers 66

Compiling Real Numbers 66
Built-In Real Numbers 67
Real Number Conversions 68
Real Number Functions 68
Extended Real Number Functions 72

Complex Numbers 74
Compiling Complex Numbers 74
Complex Number Conversions 74
Built-In Complex Numbers 75
Complex Number Functions. 75

Arrays 77
Compiling Arrays 77
Array Utilities 77
The MatrixWriter 78

Tagged Objects 79
Characters and Character Strings 79

Built-In Character Objects 80
Built-In String Objects. 81
String Manipulation Objects. 81

Hex Strings 84
Hex String Conversions 84
Wordsize Control. 84
Basic Hex String Utilities : 85
Hex String Math Utilities. 85

Composite Objects 87
Building Composite Objects. 87
Finding the Number of Objects in a Composite Object... 87
Adding Objects to a Composite 88
Decomposing Composite Objects 88
Searching Composite Objects. 89
Detecting Embedded Objects 89

Unit Objects 90
Dimensional Consistency 90
Building and Decomposing Unit Objects 90
Unit Object Utilities 91

Memory Utilities ..••..•..••••••••••••••••......••.•••••••••.•..•.••.....•.....•...•.••.••.•.•................................•.•........•.••••••••••.•.. 93
Name Objects 93
User Variables 94
Directory Utilities 95
Temporary Memory 96

Use of Temporary Memory : 96
Garbage Collection 97

Memory Utilities 97
Graphics, Text, and the LCD•....................................•.••...•.. 98

LCD Display Regions 98
Status Area Control 98
Stack Area Control 98
Menu Area Control. 99
Combined Area Controls 99

Basic Display Memory Principles 100
The Current Display Grob 100
The Stack Grob 101
The Graphics Grob 101
Verifying Display Grob Height 102
Enlarging ABUFF or GBUFF 102
Scrolling ABUFF or GBUFF 102
The Menu Grob 103
Display Pointer Examples 104

Graphics Coordinates 105
Subgrob Coordinates 105
User Pixel Coordinate - Bint Conversion 105
User-Unit to Pixel Conversion 105
Accessing PPAR 106

Displaying Text. 107
Medium Font Display Objects 107
Displaying Temporary Messages 107
Large Font Display Objects 108

Basic Grob Tools 109
Creating Grobs 109
Finding Grob Dimensions 109
Extracting a Subgrob 109
Inverting a Grob 110
Combining Graphics Objects 110
Clearing a Grob Region 110

Drawing Tools 111
Line Drawing 111
Pixel ControL 111

Menu Grob Utilities 112
Built-in Grobs 113
Graphics Examples 114

Drawing a Grid 114
A Rocket Launch 115

Keyboard Utilities.•.......•...••..•.•••.•................................•.............•.......•..••.•.•......•.•.••..••..••.•.•..••••••••.••••••• 116
Key Buffer Utilities. : 116
Checking The Keyboard While Running : ... 116

Detecting the [ON] Key 116
Detecting Any Key 117

Waiting For a Key 119
Keycodes 120
Repeating Keys 121
InputLine 122

Input Parameters 122
InputLine Results 123
InputLine Examples 124

The Parameterized Outer Loop •.••......•...•....•.....•.•.•••••••.•••••.•.••••••••••.•.••.•••....•.....•.•••..•.....•........•..••.••••.•••• 127
Introducing ParOuterLoop Parameters 127
Temporary Environments and the POL 133
The Exit Object. 133
The Error Object 133
Display Objects 133
Hardkey Handlers 134

Key and Plane Codes 134
Hardkey Handler Structure 135

Softkey Definitions 140
Null Menu Keys 140
Softkey Label Objects 140
Softkey Action Object 142

The POL Error Trap Object 144
POL Utilities 146

Graphical User Interfaces ••...•....•.•...••.•.••••••.•..••••••••••................•.......•.............................•.•••..••.•.•............ 148
Message Boxes 149

Message Box Parameters 149
Message Box Example 150

Equation Library Browser 151
Browser Parameters 151
Active Browser Keys 152
Browser Support Objects 152
Browser Example. 153

Choose Boxes 154
Choose Box Styles 154
Choose Box Parameters 155
Choose Box Message Handler 156
Decompile Objects. 158
Customizing Choose Box Menus 160
Choose Event Procedures 163

Input Forms 165
Input Form Parameters 165
Label Specifiers 166
Field Specifiers 166
Input Form DEFINEs for RPLCOMP 168
Specifying Object Types 169
Specifying Decompile Formats 169
Input Form Message Handlers 170
Input Form Data Access 171
Customizing Input Form Menus 172
ORBIT Example 174

Introducing Saturn .•••...••.......••.. ~•.•••••..••••..•.••.•••••.•••••.••.•.......••.••...... 179
The Saturn CPU 179

The Working and Scratch Registers 180
The Status Bits 180
Input and Output Registers 181
The Return Stack 181
Arithmetic Mode 181
The Pointer Register. 181

Instruction Set Summary 182
Memory Access Instructions 182
Load Constant Instructions 183
P Register Instructions 183
Scratch Register Instructions 183
Shift Instructions 184
Logical Instructions 184
Arithmetic Instructions 184
Branching Instructions 185
Test Instructions. 186
Register & Status Bit Instructions 187
System Control Instructions 187
Keyscan Instructions 188
NOP Instructions 188
Assembler Pseudo-Op Instructions 188

Writing Your Own Code Objects .. 189
Code Object Execution 189
Stack Access 190

Example: SWAP Two Objects 191
Example: DROP Nine Objects 191

Reading Assembly Language Entry Descriptions 192
Saving and Restoring the RPL Pointers 192

Example: Reversing Objects on the Stack. 193
Example: Clearing A Grob 194

Stack Utilities 195
Pop Utilities 195
Push Utilities 196
Examples: Indicated ABS 199

Memory Utilities 200
Allocating Memory 200
Memory Move Utilities 201
Display Memory Addresses 203

Reporting Errors 204
Checking Batteries 204
Warmstart & Coldstart 205
Tone Generation. 205

Steady Tones 205
Rising and Falling Tones 206

Keyboard Scanning 207
Managing Interrupts. 208
Rapid Keyboard Scans 208
Low Power Keyboard Scans 210

The RVIEW Debugging Tool. 215
The RVIEW User Interface 215
Using RVIEW 216

The PONG Game 216
Appendix A: Messages .•...........•.•.••..........•••••••••••.•..••.•••................•......•.•.•......•....•....••.••••••••.••.••.••••••••••.•.. 217
Appendix B: Character Codes ..•.•.••••.••...••..•••.••..•.......•...•................•...........•.........•.....•..•.....•...•••.•...••••..• 222
Appendix C: Flags ••••••••.......••...•.•.••.....•..••.••••••••••••••••.•••••...•.•.....•.•.••.•....•...•..•.....•••••.•••••••..•............•.•....... 224
Appendix D: Object Structures. •••.•••.•.•.•.••••••••••••••••••..•••.•.••••••••••.••.••••.••••.••.•.••••....•..•......................•......• 226

Binary Integer 226
Real Number 226
Extended Real Number 226
Complex Number 226
Extended Complex Number. 226
Character 227
String 227
Hex String 227
Arrays 227

One-Dimension Array 227
Two-Dimension Array 227
Linked Array 227

Name Objects 228
Global Name 228
Local Name 228
XLffi Name 228

Graphic Object 228
Code Object 228
Secondary 228
Tagged 229
List 229
Symbolic 229
Unit 229
Library Data Objects 230

"

J

.J

J

J .

,-,-

Introduction
The HP 48 calculator family is characterized in part by the availability of a wide variety of software products that
address diverse interests, ranging from games to serious engineering applications. Some programs appear to run
much faster than you would suspect possible if all your HP 48 programming experience was confined to standard
programming from the keyboard. This book is designed to introduce some of the techniques used to create these
programs.

The discussion and examples in this book have been drawn from the collective experience of the author and other
contributors - each having a unique view of the HP 48. This book is an introduction to the HP 48 - we cannot and
do not attempt to provide either complete documentation for every facet of the HP 48's internal resources or a
complete theoretical description of the operating system. We do hope you willleam a few things, have some fun,
and write some new programs for others to enjoy.

As with any book, we make some assumptions about the background of the reader. In particular, we assume the
reader is familiar with all HP 48 object types and most basic HP 48 programming constructs. We recommend The
HP 48 Handbook, by the author, as a good place to begin the study of User-RPL programming. The Handbook has
lots of examples, and should get you started in good form. In particular, study pages 3-200.

Several tools exist that can be utilized to create programs using the HP 48's internal resources in ways not possible
from the keyboard. The disk that comes with this book includes free copies of the tools provided by (but not
supported by) Hewlett-Packard.

The chapters in this book are organized to provide a progression from fairly straightforward usage of some system
resources in standard programs to complex application projects. However, this is not a novel with a plot that is
linear through the book. For instance, some example programs use objects described later in the book. The book
has been designed to act both as tutorial and reference, so you'll find yourself going back-and-forth from time to
time.

Introduction 1

Getting Started
Any technical dialog is necessarily filled with tenns that may confuse the reader new to the subject. We begin by
defining some basic terms, introducing the tools, System-RPL, and assembler.

Terminology
The kernel of the HP 48 operating system/language known as RPL has been written in assembly language, and much
of the functionality of in the HP 48 is implemented in what is sometimes called "System-RPL". Programs entered
from the keyboard of the HP 48 are written in what is sometimes called "User-RPL".

Programs written in assembly language are often known as "code objects" (type 25) and can use all the resources in
the HP 48. Unfortunately, the HP 48 has not been provided with a complete debugging environment for assembly
language development. Consequently there have been fewer applications or games written in assembly language.
This book will describe some techniques that can be applied to assembly language development projects.

User-RPL vs. System RPL vs. Assembler
The illustration below shows the relationship between User-RPL, System-RPL, and the kernel of the HP 48.

Protection

.. System-RPL

Assembly Language Kernel

Programs written in User-RPL and System-RPL share the same resources, stack, return stack, etc. The commands
available in User-RPL represent a subset of the functionality available in System-RPL. The objects that can be used
by System-RPL represent a subset of the HP 48 system.

There are three main distinctions between User-RPL and System-RPL:

User-RPL commands have names that are recognized when you enter them into the command line, whereas
System-RPL objects must be accessed via either the SYSEV AL command or specialized tools.

• User-RPL commands have extra code responsible for validating input arguments (and thus require a bit of extra
execution time), whereas System-RPL objects usually have little or no error protection. This layer of protection
insures that invalid input arguments do not result in undesirable behavior by underlying code.

• There are more resources available to programs written in System-RPL. These resources include access to
portions of the HP 48 system objects, additional object types (notably internal binary integers), and additional
control structures which may provide improved execution flow control.

Applications written in assembler have the greatest speed potential, the greatest access to system resources, and the
most difficult development process. The penalties for errors in assembly are sometimes greater than for System­
RPL, meaning that Memory Lost events are more likely. This should discourage only the faint-hearted, however.

2 Getting Started

.J

Stack Diagrams
A stack diagram notation is used in this book which describes the type and order of objects supplied to a command
or program and the type and order of results. In the case of an object that can be used in a System-RPL application,
the description includes the name, address, and stack diagram as follows:

Input Output
Level3 Level2 Levell -7 Level3 Level2 Levell

Related Flags: Hags which may affect the result

Address

Unless mentioned otherwise, all entries will work on all versions of the HP 48. Entries specific only to the G/GX
series of calculators carry the "G/GX" mnemonic by the address. Some objects are accessed by rompointer (XLIB
name). These entries are indicated by a user binary integer value for LIBEV AL (not always safe - including the
case shown below) in the center of the top line and the XLIB notation at the top-right:

DoMsgBox #OOOBlh G/GX XLIB 177 0
Displays a message box with a graphics object

"message" #maxwidth #min width grob menuobject -7 TRUE

Object Notation
Hewlett-Packard has adopted a series of symbols to represent different object types. Some of these symbols are
listed below, along with their object type, an example of what the decompiled object type looks like in System-RPL,
and what the object looks like as displayed on the stack.

Symbol

%
C%
$

arry
arry
{}
id

lam

symb
h:xs
grob

tagged
symb
romptr

%%

C%%
lnkarry

chr
code

Type

o
I
2
3
4
5
6
7
8
9
10
11
12
13
14
20
21
22
23
24
25

Object

Real number
Complex number
String
Real array
Complex array
List
Global name
Local name
Secondary object (program)
Algebraic
Binary integer
Graphics object
Tagged object
Unit object
XLIB name
Internal binary integer
Extended real number
Extended complex number
Linked array
Character object
Code object

System-RPL Example
% 1.2345
C% 2.3 4.5
"ABC"
ARRY [% 1 % 2 % 3 1
ARRY [C% 1 2 C% 3 4 1
{ "ABC" % 1.5 }
id X
lam y
:: x« id A %2 x+ x» ,
DOSYMB ID X %2 x~ ;
247
GROB E 0000200008ABCD
TAG Dist % 34.45
DOEXT ... ;
ROMPTR domain
247
%% 1.23456789012345
C%% 1.234 5.678
LNKARRY [% 1 % 2 % 3 1
CHR A
CODE ... ENDCODE

Stack Example

1.2345
(2.3,4.5)
"ABC"
[123]
[(1,2) (3,4)]
{ "ABC" 1.5)
'X'
'y'
« A 2 + »
'X"2'
247d
Graphic 2 x 8
Dist: 34.45
32_ft/s"2
XLIB 766 1
<247d)
Lon9 Real
Lon9 COlYlplex
Li nk ed Array
Character
Code

Objects are composed of a prologue and a body. An object prologue indicates the type of object, and the body
contains the information of interest. Some objects, like strings, have a length field after the prologue that indicates
the size of the object. Objects are also classified as being atomic or composite. An atomic object is a single object,
like a real number. The body of a composite object, like a list, consists of one or more objects. For details about
individual objects, see the appendix Object Structures.

Getting Started 3

Fonts
A font convention has been adopted to help distinguish between text, source code, and comments. The fonts are
used as follows:

« 1.23 + » The dot matrix font is used for User-RPL and text displayed in the HP 48 LCD.

:: % 1. 23 %+ The Courier font is used for System-RPL or assembler source code.

Validate arguments An italic font is used for comments.

Installing the HP Tools
Hewlett-Packard has graciously permitted the distribution of their tools on the disk that comes with this book.

There are three basic steps to the installation of the HP tools :

1) Copy the .EXE files to a directory in your path, typically a \BIN directory. Then copy the file ENTRIES.O, and
the SASM.OPC file from the TOOLS directory to a convenient directory on your hard disk. On many systems,
this would be a \INCLUDE directory.

The next two steps involve checking the \AUTOEXEC.BAT file on your PC:

2) Make sure that the PATH variable includes the directory containing the tools from step 1.

3) Add the following line to your AUTOEXEC.BAT file: SET SASM_LIB=\INCLUDE. This tells the SASM
assembler where the SASM.OPC file is located. If you place SASM.OPC in a directory other than \INCLUDE,
make sure this line refers to the proper directory.

When these three steps have been completed, reboot your PC and you're ready to go. The examples in this book
will assume that the files mentioned in step 1 above are in the \INCLUDE directory of your PC.

It is beyond the scope of this book to describe the details of the HP tools - you may wish to refer to the HP
documentation on the disk for details about the tools.

Example Programs
There are three directories of example programs. Each example program comes with a DOS .BAT file that compiles
a working copy of the example program, ready to download to your HP 48. Checksums and sizes are also provided
to help confirm that an example program is properly installed.

4

Note: Many example programs contain error checking, but most examples of
code objects do not. You should always back up your calculator before
experimenting with example programs or changes to example programs.

Getting Started

.J

I
....."

Introducing System-RPL
As mentioned before, System-RPL programming is a superset of the process used to create programs in User-RPL.
The basic resources are the same, but System-RPL has its own notation and options not available in User-RPL.

A First Example
We begin by comparing two objects that compute the length of the hypotenuse of a right triangle - one written in
User-RPL and the other written in System-RPL. The User-RPL example is called a program, but it's common in the
world of System-RPL to use the term secondary for the example shown on the right.

User-RPL System-RPL

Side! Side2 ~ Side3 % %' ~ 0/0"

27.5 Bytes 20 Bytes HYPOT.S
« Start of program .. Start of secondary . .

DUP * SWAP DUP * Square both sides DUP %* SWAPDUP %* Square both sides
+ Add the squares %+ Add the squares
..r Take the square root %SQRT Take the square root

» End of program ; End of secondary

Note the differences between the two:

•

•

Delimiters for a User-RPL program and a secondary written in System-RPL are different. Secondaries begin
with: : (called DOCOL), and finish with; (called SEMI).

User-RPL programs are self quoting - they place themselves on the stack until explicitly executed - and
secondaries are executed. See Program Flow Control for more about this difference.

We could have used SQ to square each side in the User-RPL example, but the actual code for the user command
SQ (in the case of a real number) is :: DUP % * ; so we have used DUP * in place of SQ.

The DUP used in the secondary is not the same as the User-RPL DUP. The User-RPL DUP checks the stack to
make sure that at least one object is on the stack before duplicating it. The System-RPL DUP assumes that there
is at least one object on the stack, and duplicates the object with no checks at all.

• In User-RPL, * encapsulates every possible multiplication operation. The System-RPL example uses %*,
which multiplies two reals, and makes no argument checks. This is the object that is ultimately executed by the
User-RPL * when it is asked to multiply two real numbers. Thus the System-RPL example avoids the time
required to determine which multiply routine to use. The same logic applies to the use of %+ and %SQRT.

• The System-RPL example is smaller for two reasons. First, the example uses SWAPDUP, which combines the
operations of SWAP and DUP into one efficient piece of machine language. There are many such objects
available through System-RPL that combine common operations into one operation. The use of SWAPDUP also
saves space - this makes the System-RPL example 2.5 bytes shorter than it would have been if SWAP and DUP
were used individually. The System-RPL example is also smaller because it lacks the «» delimiters found in
the User-RPL program. The User-RPL program when decomposed actually contain: : and ; around the outer
program delimiters, so internally the program actually looks like:: « DUP * SWAP DUP * + ..r » ; .
When a User-RPL program is displayed the :: and; are suppressed.

One hazard of using the System-RPL example to find the length of a hypotenuse is that there is no argument
validation. If you're sure that only real numbers will be present on the stack when the secondary is executed, no
problems should result. Invalid arguments supplied to the User-RPL program will generate a
Bad Argu ent Type error; invalid arguments supplied to the System-RPL secondary will have unpredictable
consequences, ranging from meaningless results to the loss of memory.

Another consequence of the lack of argument validation is that the program does not clear the system RAM
location that attributes the source of an error. If an error were to occur, it would be attributed to the last
command that generated an error, which does no actual harm but is quite misleading.

The System-RPL example will run faster than the User-RPL program, because all the argument checking code
has been bypassed. In this example the speed difference is minor, but in future examples you'll begin to see
where major speed improvements can be found.

Getting Started 5

The System-RPL example shown above has been written for maximum efficiency at the expense of argument
validation. That may be appropriate for secondaries embedded in larger applications, but it is not recommended for
general use when an inexperienced user might supply invalid input data. Later in the book we will show a technique
for validating the arguments.

We now illustrate the process of compiling the System-RPL example using the HP tools on a PC.

Creating the Example With the HP Tools
To prepare the example, you will compile, assemble, and load the code using a source code file, a loader control file,
and a batch file to automate the process. The input files HYPOT.S, HYPOT.M, and the batch file HYPOT.BAT are
listed below:

HYPOT.S This is the source code file for the f}rOf!ram.
ASSEMBLE

NIBASC /HPHP48-A/
RPL

DUP %* SWAPDUP %*
%+
%SQRT

A pseudo-op that tells the compiler to pass the next output to SASM
This is a download header for binary transmission to the HP 48
A pseudo-op that tells the compiler to compile the source that follows
The beginning of the source code

HYPOT.M This is the loader control file that controls the execution of the loader SLOAD.
TITLE Hypotenuse
OUTPUT HYPOT
LLIST HYPOT.LR
SUPPRESS XREF
SEARCH \INCLUDE\ENTRIES.O
REL HYPOT.O
END

This is an optional title that will appear in the .LR output file
Instructs SLOAD to put the final output in the file HYPOT
Instructs SLOAD to put listing information and errors in HYPOT.LR
Suppresses a cross reference listing that would appear in HYPOT.LR
The reference to the addresses in ENTRIES. 0
Specifies which file to load

HYPOT. BAT This is a batchfile that encapsulates the entire process.
RPLCOMP HYPOT. S HYPOT. A Invokes RPLCOMP, generates the SASM source file HYPOT.A
SASM HYPOT. A Assembles HYPOT.A, generates HYPOT.L an4 HYPOT. 0
SLOAD - H HYPOT. M Invokes SLOAD using the control file HYPOT.M, generates HYPOT

6 Getting Started

J

.....I !

J

..,J .

The file HYPOT.BA T encapsulates the entire process into a single batch file, ,so you have only one command to
issue at the PC keyboard. Run HYPOT.BAT, which issues the commands to compile the .S source file, assemble
the resulting .A file, and resolve the entry points with the .M file. Check HYPOT.L to make sure there were no
compile or assembly errors.

Now examine the file HYPOT.LR. You should see something resembling the listing below:

HYPOT.LR
Saturn Loader, Ver. %1%, %G%

Output Module:
Module=HYPOT
Start=OOOOO End=00037 Length=00038 Symbols=2293 References= 8

Date=Sat Apr 22 14:20:28 1995 Title= Hypotenuse

Source modules:
Module=\INCLUDE\ENTRIES.O

Start=OOOOO Module Contains No Code
Date=Fri Apr 21 21:35:29 1995 Title=Supported ROM Entry Points

Fri Apr 21 21:35:29 1995

Module=HYPOT.O
Start=OOOOO End=00037 Length=00038
Date=Sat Apr 22 14:20:28 1995 Title=

Sat Apr 22 14:20:28 1995

/SLOAD: End of Saturn Loader Execution

If an unresolved reference appears at the end of a .LR file, you most likely have specified an entry that is not in the
file ENTRIES.O. Make sure that you have spelled the name correctly, which is the usual source of these errors.

To try out the System-RPL example, download the file HYPOT into your HP 48 and try it out with real numbers for
input. Remember, the error checking that protected you is now gone. The section Argument Validation in the
chapter Basic Programming Tools shows how you can design your own argument validation routines.

Getting Started 7

Introducing Assembly Language
To introduce assembly language, we begin with one of the smallest possible examples - the HP 48's equivalent of
"Hello World" in C programming. This program will return to the stack the address of the object in level!
expressed as an internal binary integer. The HP 48 stack is merely a stack of 20-bit address pointers to objects
residing in memory. The program copies the address into a CPU register, then branches to a routine that returns the
address expressed as an internal binary integer.

To prepare the example, you will assemble and load the code using a source code file, a loader control file, and a
batch file to automate the process. The input files ADDR.A, ADDR.M, and ADDR.BAT are listed below:

ADDR . A This is the source code file for the pro!!.ram.
NIBASC \HPHP48-A \ This is a download header for binary transmission to the HP 48
CON (5) =DOCODE This is the prologue for a code object
REL (5) end The length field - indicates the size of the code object
GOSBVL =SAVPTR Saves the RPLpointers
A=DAT1 A Reads the pointer from stack levell into the Afield of register A
GOVLNG =PUSH#ALOOP Pushes the Afield of register A as an internal binary integer,

restores the RPL pointers, and returns to RPL
end

ADDR.M This is the loader control file that controls the execution of the loader SLOAD.
OUTPUT ADDR
LLIST ADDR.LR
SUPPRESS XREF
SEARCH \INCLUDE \ ENTRIES.O
REL ADDR.O
END

Instructs SLOAD to put the final output in the file ADDR
Instructs SLOAD to put listing information and errors in ADDR.LR
Suppresses a cross reference listing that would appear in ADDR.LR
The reference to the addresses in ENTRIES. 0
Specifies which file to load

ADDR.BAT This is a batch zle that enca sulates the entire rocess.
SASM ADDR.A
SLOAD - H ADDR. M

Assembles ADDR.A, generates ADDR.L and ADDR. 0
Invokes SLOAD using the control file ADDR.M, generates ADDR

The file ADDR.BAT encapsulates the entire process into a single batch file, so you have only one command to issue
at the PC keyboard. Run ADDR.BAT, then examine the file ADDR.LR. You should see something resembling the
listing below:

ADDR.LR
Saturn Loader, Ver. %I%, %G%

Output Module:
Module=ADDR
Start=OOOOO End=0002A Length=0002B Symbo1s=2293 References= 3

Date=Sat Apr 22 14:21:13 1995 Title=

Source modules:
Module=\INCLUDE\ENTRIES.O

Start=OOOOO Module Contains No Code
Date=Fri Apr 21 21:35:29 1995 Title=Supported ROM Entry Points

Fri Apr 21 21:35:29 1995

Module=ADDR.O
Start=OOOOO End=0002A Length=0002B
Date=Sat Apr 22 14:21:13 1995 Title=

Sat Apr 22 14 : 21:13 1995

/ SLOAD: End of Saturn Loader Execution

8 Getting Started

J

J !
I

If an unresolved reference appears at the end of a .LR file, you most likely have specified an entry that is not in the
file ENTRIES.O. Make sure that you have spelled the name correctly, which is the usual source of these errors.
You may also want to check the .L file after assembly to check for compilation or assembly errors.

To try out the example, download the file ADDR into your HP 48 and try it out with the real number I on the stack.
If the HP 48 is in HEX mode, you should see the internal binary integer <2A2C9h> on the stack, which is the
address of the built-in constant 1. Notice also that if you recall ADDR to the stack, the program appears as Code .
A code object (type 25) cannot be decompiled directly on the HP 48, but the Jazz tools (available on various FfP
sites) can be used for assembly language development directly on the HP 48.

Example File Structures
The disk supplied with this book contains a directory named EXAMPLES. There are six subdirectories:

HPTOOLS
USERRPL
SYSRPL
ASSEMBLY
RVIEW
PONG

Contains the HP tools
Contains example programs written in User-RPL
Contains example programs written in System-RPL
Contains example programs written in assembly language
Contains the RVIEW register viewer
Contains the assembly language PONG game

User-RPL Examples
The User-RPL example programs are ready to download to the HP 48 in Ascn format. These files are named with
a . RPL extension.

System-RPL Examples
The System-RPL examples consist of a source file, a loader control file, and a DOS batch file which will build the
example program. A naming convention is used for these files. To illustrate the naming convention, consider the
example program CASEI described in Case Objects.

The input files are:

CASE1.S
CASE1.M
CASE1.BAT

The System-RPL source file
The loader control file
The DOS batch file

To compile and load the CASE I example, just type CASE I at the PC's command line, and the CASE I.BA T batch
file will issue the commands to compile and load the example.

The output files are (in order of their creation):

CASE1.A
CASE1.L
CASE1.O
CASE1.LR
CASEl

The assembler source generated by the RPL compiler RPLCOMP from CASEI.S
The assembler listing file generated by the assembler SASM
The object file generated by the SASM
The listing output from the loader SLOAD
The example ready to download to the HP 48

The diagram on the next page illustrates this process.

Getting Started 9

Source Files Commands Output Files

CASE1.S --~~~ RPLCOMP CASE1.A CASE1.S --~~~ CASE1.A

CASE1.L
SASM CASE1.A :> CASE1.O

~El'LR
SLOAD -H CASE1 . M ~ CASE1.M ~

CASE 1

Assembly Examples
Like the System-RPL examples, the assembly language examples consist of a source file, a loader control file, and a
DOS batch file which will build the example program. A similar naming convention is used for these files . To
illustrate the naming convention, consider the example program SWP described in Writing Your Own Code Objects.

The input files are:

SWP.A
SWP.M
SWP.BAT

The assembler source file
The loader control file
The DOS batch file

To compile and load the SWP example, just type SWP at the PC's command line, and the SWP.BAT batch file will
issue the commands to assemble and load the example.

The output files are (in order of their creation):

SWP.L
SWP.O
SWP.LR
SWP

10

The assembler listing file generated by the assembler SASM
The object file generated by the SASM
The listing output from the loader SLOAD
The example ready to download to the HP 48

Getting Started

.. ../

oJ

.J

Basic Programming Tools.
Programs written in System-RPL have a rich set of options for execution control, local variable use, and argument
validation. This chapter will introduce some of the basic tools and program structures that you will use many times.
There are a number of object types used by System-RPL objects which are not available in the User-RPL
programming environment. The most prevalent of these are internal binary integers and the system flags TRUE and
FALSE. These will be introduced first in the sections Binary Integers and Flags, because they're used everywhere
else. The section Tests describes objects that perform various kinds of tests. These sections are followed by an
introduction to some execution control constructs in the section Program Flow Control. When you are designing a
System-RPL program, you should evaluate the precautions neccessary to prevent the unwary user from getting
unexpected results from invalid or missing input data. The section Argument Validation will describe the tools
available for these tasks. The section Temporary Variables will describe the use of temporary environments, which
are more flexible than the local variables found in User-RPL programs.

Binary Integers
Internal binary integers (sometimes nicknamed bints) are unsigned 20-bit quantities that are useful for many
functions. These integers differ from user binary integers, which are actually stored internally as hex strings. To
avoid confusion, this book will use the terms user binary integer and internal binary integer (or bint).

Internal Binary Integers in the HP 48 Display
While user binary integers (object type 10) are displayed with a leading # character, internal binary integers are
displayed within < > symbols. A trailing character indicates the base display mode. For instance, if the base mode
of the HP 48 is binary, then the internal binary integer 5 would be displayed as < 101 b > .

Internal binary integers live in the range 0::;; n::;; FFFFF. If,you subtract <lh> from <Oh>, you get <FFFFFh>
(decimal 1048575). No overflow or underflow indications are available.

Internal Binary Integers in System-RPL Source Code
The bad news is that in the world of System-RPL programming, the symbol # is used to denote internal binary
integers, and the symbol hxs is used to denote User-RPL binary integers. Thus, when you see an object with a # in
the name, the object probably works with internal binary integers. For instance, the object #+ adds two internal
binary integers, returning an internal binary integer as the result.

The RPL compiler allows two notations for specifying internal binary integers. If the quantity is prefixed with the
symbol #, then hex digits are expected. If no prefix character is present, the digits are interpreted as decimal values.
Some commonly used bints (internal binary integers) are built into the HP 48, and can be accessed by name, saving
2.5 bytes from the 5 bytes taken by a compiled bint. The following secondary returns the same value three times:

32
20
THIRTYTWO

The decimal value 32 expressed as a bint
The hex number 20h expressed as a bint
A pointer to the internal bint 32.

When the code listed above is compiled with RPLCOMP.EXE, the first two instances generate 5 bytes of code
(values compiled as bint objects) and the third example generates 2.5 bytes (a pointer to a built-in bint):

CON(5) =DOCOL The start of the secondary (::)

CON(5) =DOBINT The prologue of an internal binary integer
CON(5) 32 The value of the bint

CON(5) =DOBINT The prologue of an internal binary integer
CON(5) #20 The hex digits for the value 32

CON(5) =THIRTYTWO The pointer to the built-in value of 32

CON(5) =SEMI The end of the secondary (;)

Basic Programming Tools 11

Built-in Internal Binary Integers. The following objects put built-in internal binary integers on the stack:

Object Stack Output Address Object Stack Output Address
M:INUSONE <FFFFFh> #6509Eh FORTYTHREE <43d> #0419Dh
ZERO <Od> #03FEFh FORTYFOUR <44d> #64B12h
ONE <ld> #03FF9h FORTYFrvE <45d> #64BICh
TWO <2d> #04003h FORTYS:IX <46d> #64B26h
THREE <3d> #0400Dh FORTYSEVEN <47d> #64B30h
FOUR <4d> #04017h FORTYE:IGHT <4Sd> #64B3Ah
FIVE <5d> #04021h FORTYN:INE <49d> #64B44h
S:IX <6d> #0402Bh F:IFTY <50d> #64B4Eh
SEVEN <7d> #04035h F:IFTYONE <51d> #64B5Sh
E:IGHT <Sd> #0403Fh F:IFTYTWO <52d> #64B62h
NINE <9d> #04049h F:IFTYTHREE <53d> #64B6Ch
TEN <IOd> #04053h F:IFTYFOUR <54d> #64B76h
ELEVEN <lId> #0405Dh F:IFTYFrvE <55d> #64BSOh
TWELVE <12d> #04067h F:IFTYS:IX <56d> #64BSAh
TH:IRTEEN <13d> #04071h F:IFTYSEVEN <57d> #64B94h
FOURTEEN <l4d> #0407Bh F:IFTYE:IGHT <5Sd> #64B9Eh
F:IFTEEN <15d> #040S5h F:IFTYN:INE <59d> #64BSAh
S:IXTEEN <16d> #040SFh S:IXTY <60d> #64BB2h
SEVENTEEN <l7d> #04099h S:IXTYONE <61d> #64BBCh
E:IGHTEEN <lSd> #040A3h S:IXTYTWO <62d> #64BC6h
NINETEEN <l9d> #040ADh S:IXTYTHREE <63d> #64BDOh
TWENTY <20d> #040B7h S:IXTYFOUR <64d> #64BDAh
TWENTYONE <21d> #04OClh S:IXTYE:IGHT <6Sd> #64C02h
TWENTY'l'WO <22d> #04OCBh SEVENTY <70d> #64CI6h
TWEN'l'Y'l'HREE <23d> #040D5h SEVEN'l'YFOUR <74d> #64C20h
TWEN'l'YFOUR <24d> #040DFh SEVENTYN:INE <79d> #64C2Ah
TWEN'l'YFrvE <25d> #04OE9h E:IGHTY <SOd> #64C34h
TWENTYS:IX <26d> #040F3h E:IGHTYONE <SId> #64C3Eh
TWENTYSEVEN <27d> #040FDh ONEHUNDRED <100d> #64CACh
TWEN'1'YE:IGHT <2Sd> #04107h B:INT_131d <131d> #64D24h
TWENTYN:INE <29d> #04lIlh B:INT2SSd <255d> #64E2Sh
TH:IRTY <30d> #041IBh ZERO ZERO <Od> <Od> #64IFCh
TH:IRTYONE <31d> #04125h ZERO ZERO ZERO <Od> <Od> <Od> #63AC4h
TH:IRTY'l'WO <32d> #0412Fh ZEROZEROONE <Od> <Od> <ld> #6431Dh
TH:IRTYTHREE <33d> #04139h ZEROZEROTWO <Od> <Od> <2d> #64331h
TH:IRTYFOUR <34d> #04143h ONEONE <ld> <ld> #63AC4h
TH:IRTYFrvE <35d> #0414Dh IFrvElFOUR <5d> <4d> #642E3h
TH:IRTYS:IX <36d> #04157h IONE#27 <ld> <27d> #642SAh
TH:IRTYSEVEN <37d> #04161h ITHREE#FOUR <3d> <4d> #642Dlh
TH:IRTYE:IGHT <3Sd> #0416Bh ITWO#FOUR <2d> <4d> #642BFh
TH:IRTYN:INE <39d> #04175h ITWO#ONE <2d> <ld> #6429Dh
FORTY <4Od> #0417Fh #TWO#TWO <2d> <2d> #642AFh
FORTYONE <41d> #041S9h IZERO#ONE <Od> <ld> #64209h
FORTY'l'WO <42d> #04193h #ZERO#SEVEN <Od> <7d> #6427Ah

Other objects that put binary integers on the stack are listed under Type Dispatching.

J "

12 Basic Programming Tools

Type Conversions
The objects COERCE and UNCOERCE convert between internal binary integers and real numbers. The objects
COERCE2 and UNCOERCE2 convert two numbers. The stack diagrams for these objects are:

COERCE #18CEAh
Converts a real number into an internal binary integer

% ~ #
COERCE2 #194F7h
Converts two real numbers into internal binary integers

%x %y ~ #x #y
UNCOERCE #18DBFh
Converts an internal binary integer into a real number

~ %
UNCOERCE2 #1950Bh
Converts two internal binary integers into real numbers

#X #y ~ %x %y

Notice in these stack diagrams that we're using the shorthand mentioned before - % refers to real numbers and #
refers to internal binary integers. Real numbers less than zero convert to <0>, values greater than 1048575 convert
to <FFFFFh>, fractional parts < .5 round to the next lowest integer, and fractional parts ~.5 round to the next highest
integer.

Internal Binary Integer Operations
The following System-RPL objects operate on a single internal binary integer (bint):

Object Description Address
#1+ Adds 1 to a bint #03DEFh
#1- Subtracts 1 from a bint #03EOEh
#2+ Adds 2 to a bint #03E2Dh
#2- Subtracts 2 from a bint #03E4Eh
#2* Multiplies a bint by 2 #03E6Fh
#2/ Returns FLOOR(bintl2) #03E8Eh
#3+ Adds 3 to a bint #6256Ah
#3- Subtracts 3 from a bint #625FAh
#4+ Adds 4 to a bint #6257Ah
#4- Subtracts 4 from a bint #6260Ah
#5+ Adds 5 to a bint #6258Ah
#5- Subtracts 5 from a bint #6261Ah
#8+ Adds 8 to a bint #625BAh
#8* Multiplies a bint by 8 #62674h
#10+ Adds 10 to a bint #625DAh
#10* Multiplies a bint by 10 #6264Eh
#12+ Adds 12 to a bint #625EAh

The following System-RPL objects operate on two internal binary integers:

#* #03EC2h
Multiplies two bints

#x#y ~ #x*y
#+ #03DBCh
Adds two bints

#x #y ~ #x+y
#- #03DEOh
Subtracts #y from #x

#x #y ~ #x-y
#/ #03EF7h
Divides #X by #y, returns remainder and quotient

#x #y ~ #remainder #quotient

Basic Programming Tools 13

#+-1 #63808h
Adds two bints, then subtracts 1 from the result

#x#y ~ #X+y-l
#-#2/ #624FBh
Subtracts #y from #x, divides the result by two, and returns the quotient

#x #y ~ (#x-#y)/2
#-+1 #637CCh
Subtracts #y from #X, then adds 1

#x #y ~ #x-#y+l

The following System-RPL objects combine stack operations (see Stack Operations) with binary integer numbers or
arithmetic functions. They are quite useful for reducing the size of a program.

2 DROP 0 0 #6254Eh
Drops ObI and o~, then returns 0 0

Ob2 ObI ~ #0#0
2DUP#+ #63704h
Duplicates #x and #y, then adds them

#x#y ~ #X #y #x+y
3PJ:CK#+ #63740h
Copies #X in level 3, then adds to #y

#X ob #y ~ #X ob #x+Y
4PJ:CK#+ #63754h
Copies #X in level 4, then adds to #y

#X Ob2 ObI #y ~ #X Ob2 ObI #X+Y
4PJ:CK#+SWAP #62DE5h
Copies #X in level 4, adds to #y, then does SWAP

#x Ob2 ObI #y ~ #X o~ #X+Y ObI
#+DUP #627D5h
Adds #X and #y, then duplicates the result

#x#y ~ #x+Y #X+Y
+ OVER #63051h
Adds #X and #y, then copies object in level 2

ob #x #y ~ ob #X+Y ob
#+ROLL #612DEh
Adds #X and #y, then does ROLL

obx+v ... ObI #X #y ~ obx+v-I ... ObI obx+v
+ SWAP #62DFEh
Adds #X to #y, then does SWAP

ob #x #y ~ #x+Y ob
i-SWAP #62E12h
Subtracts #y from #x, then does SWAP

ob #X #y ~ #x-Y ob

#-UNROLL #6132Ch
Subtracts #y from #X, then does UNROLL

obx-v ... ObI #x #y ~ ObI obx_v .• . o~

#l+DUP #62809h
Adds 1 to #X, then duplicates result

#x ~ #x+l #X+l
#l+NDROP #62F75h
Drops #n+ 1 objects from the stack

obn+I ... obI #n ~

#l+PJ:CK #61172h
Copies the object in stack level #n+ 1

obn+I ... ObI #n ~ Obn+1 .. . ObI Obn+l

14 Basic Programming Tools

,-/.

. .J

.J

.J

#l+ROLL #612F3h
Adds 1 to #X, then does ROLL

obx+1 ... obI #x ~ obx ... obI obx+1
#l+ROT #lDABBh
Adds 1 to #x, then does ROT

Ob2 obI #X ~ obI #X+I Ob2
#l+SWAP #62E26h
Adds 1 to #X, then does SWAP

ob #x ~ #x+l ob
#l+UNROLL #61353h
Adds 1 to #n, then does UNROLL

Obn+1 ... obI #n ~ obI obn+1 ... Ob2
#l-lSWAP #62E4Eh
Subtracts 1 from #x, then SWAPs #1 into level 2

#x ~ #1 #x-I
#l-DUP #6281Ah
Subtracts 1 from #X, then duplicates the result

#x ~ #x-I #x-l
#l-ROT #62F09h
Subtracts 1 from #X, then does ROT

o~ obI #x ~ obI #x-I Ob2
#l-SWAP #5E4A9h
Subtracts 1 from #X, then does SWAP

ob #x ~ #x-I ob
#l-UNROT #28558h
Subtracts 1 from #x, then does UNROT '

o~ obI #x ~ #x-l ob2 obI
#2+P:ICK #611BEh
Adds 2 to #n, then does PICK

Obn+2 ... obI #n ~ obn+2 ... obI Obn+2
#2+ROLL #61318h
Adds 2 to #n, then does ROLL

Obn+2 ... obI #n ~ Obn+I .. . obI Obn+2
#2+UNROLL #61365h
Adds 2 to #n, then does UNROLL

Obn+2 ... obI #n ~ obI Obn+2 ... Ob2
#3+P:ICK #611D2h
Adds 3 to #n, then does PICK

Obn+3 .. . obI #n ~ Obn+3 ... obI Obn+3
#4+P:ICK #611Elh
Adds 4 to #n, then does PICK

obn+4 ... obI #n ~ obn+4 ... obI obn+4

DROP#l- #637F4h
Drops one object from the stack, then subtracts 1 from #x

#X ob ~ #x-l
DROPONE #62946h
Replaces object with #1

ob ~ #1
DUP3P:ICK#+ #63704h
Duplicates #y, copies #x, then adds

#x #y ~ #x #y #x+Y
DUP#l+ #628EBh
Duplicates #X, then adds 1

#x ~ #x #x+l
DUP#l+P:ICK #6119Eh
Duplicates #n, adds I, then does PICK

Obn+1 ... obI #n ~ obn+1 .. . obI #n Obn+1

Basic Programming Tools 15

DUP#1- #6292Fh
Duplicates #X, then subtracts 1

#X ~ #x #x-I
DUP#2+ #626F7h .~

Duplicates #x, then adds 2
#x ~ #X #x+2

DUP'l'WO #63AD8h
Duplicates ob, then returns #2

ob ~ ob ob #2
DUPZERO #63A88h
Duplicates ob, then returns 0

ob ~ ob ob #0
OVER#+ #6372Ch
Copies #X, then adds to #y

#x#y ~ #X #X+y
OVER#- #6377Ch
Copies #x, then subtracts from #y

#x #y ~ #x #y-x
OVER#2+UNR.OL #63105h
Copies #n, adds 2, then does UNROLL

Obn+2 ... Ob3 #n obi ~ obi Obn+2 ... ob3 #n
ROT#+ #63718h
Moves #X to level I, then adds to #y

#X ob #y ~ ob #x+Y
ROT# + SWAP #62DCCh
Moves #X to level I , adds to #y, then swaps levels I and 2

#X ob #y ~ #x+y ob
ROT#- #63768h
Moves #X to levell , then subtracts from #y

#X ob #y ~ ob #y-x
ROT#1+ #637B8h
Moves #X to level I, then adds I

#X obi o~ ~ obi Ob2 #X+I
SWAP#- #62794h
Swaps #x and #y, then subtracts #x from #y

#x#y ~ #y-x
SWAP # 1+ #62904h
Moves #X to level I, then adds I

#X ob ~ ob #x+1
SWAP # 1 + SWAP #5 I 843h
Adds I to #X

#x ob ~ #x+1 ob
SWAP#1- #637EOh
Swaps #x to level I, then subtracts 1 from #X

#X ob ~ ob #x-I
SWAP#1-SWAP #51857h
Subtracts I from #X in level 2

#X ob ~ #X-I ob
SWAPOVER#- #637A4h
Returns #y and #X-y

#x #y ~ #y #x-y
ZEROOVER #63079h
Returns #0, then does OVER

ob ~ ob #0 ob
ZEROSWAP #62E3Ah
Returns #0, then does SWAP

ob ~ #0 ob

16 Basic Programming Tools

Flags
In User-RPL programs, the result of comparisons (like » are real numbers with the value 0 or 1. In System-RPL
programs test results are generally the built-in objects TRUE and FALSE. These flags are used for many purposes,
most frequently branching decisions. When executed, these flags just put themselves on the stack:

FALSE #03ACOh
The system object FALSE

~ FALSE
TRUE #03A81h
The system object TRUE

~ TRUE

The objects DROPTRUE and DROPFALSE drop an object and place a flag on the stack:

DROPFALSE #621OCh
Replaces an object with FALSE

ob ~ FALSE
DROPTRUE #62103h
Replaces an object with TRUE

ob ~ TRUE

Other objects are available that put two flags on the stack:

FALSETRUE #6350Bh
Puts FALSE and TRUE on the stack

~ FALSE TRUE
FalseFalse #2F934h
Puts two FALSE flags on the stack

~ FALSE FALSE
TrueFalse #634F7h
Puts TRUE and FALSE on the stack

~ TRUE FALSE
TrueTrue #OBBEDh
Puts two TRUE flags on the stack

~ TRUE TRUE

Flag Conversions
When either of these flags are displayed in the HP 48 stack display, you just see External (unless you're using
the SRPL library). User-RPL tests return the real numbers 1 or 0 for TRUE or FALSE. The object COERCEFLAG
is useful for converting flags to real numbers if your System-RPL program needs to return a true/false result when
ending. COERCEFLAG returns 1 for TRUE or 0 for FALSE, then exits the current secondary.

COERCEFLAG #5380Eh
Converts a system flag into a real number and exits the current secondary

TRUE ~ %1
FALSE ~ %0

To convert a real number into a flag, use the object %0<> :

%0<> #2A7CFh
Returns TRUE if a real number is non-zero

% ~ FLAG

The object % 0<> is one member of a large family of test objects which are discussed in greater detail in Tests.

Basic Programming Tools 17

Example: This program fragment shows the use of COERCEFLAG in a program that needs to return a true/false
result to the user at exit:

COERCEFLAG

Start of prog ram
Establish TRUE or FALSEflag on stack
Convert flag to 0 or 1
End of program

Example: This program fragment shows the use of ITE (if ... then .. . else, decribed later) to return a true/false result
to the user before going on to other tasks. AtUserStack marks the result as being "owned by the user" , so that the
result won't be discarded if an error occurs later on.

Establish TRUE or FALSEflag on stack
ITE %1 %0
AtUserStack

Use ITE to put the corresponding real number on the stack
Mark the result as being owned by the user
The program continues

Any time a System-RPL program returns a result to the user, the result should be marked so that it is preserved for
the user in case of low memory or other errors. The use of COERCEFLAG is often one of these cases. The object
AtUserStack is sometimes used for this purpose, and is discussed in Argument Validation.

Flag Utilities
The following objects are available for manipulating flags:

AND #03B46h
Logical AND

FLAG! FLAG2 ~ FLAG3
NOT #03AF2h
Logical NOT

FLAG! ~ FLAG2
ORNOT #635BOh
Logical OR followed by logical NOT

FLAG! FLAG2 ~ FLAG3
NOTAND #62C55h
Logical NOT, followed by logical AND

FLAG! FLAG2 ~ FLAG3
ROTAND #62C91h
Performs ROT, followed by logical AND

FLAG! ob FLAG2 ~ ob FLAG3
XOR #03ADAh
Logical XOR

FLAG! FLAG2 ~ FLAG3

18 Basic Programming Tools

"-.-/"

"J

.J

Tests
The internal flags TRUE and FALSE appear most frequently as the result of a test on one or more objects. The
following objects test object equality, bints, real numbers, extended real numbers, and complex numbers. There are
also tests for object types, listed under Object Type Tests.

Object Equality
There are two types of object equality tests:

• The EQ family tests to see if two objects are the same object - their physical addresses are identical.

• The EQUAL family test to see if two objects are equal- even if their physical addresses are not the same. This
is the internal counterpart to the User-RPL command SAME.

EQ #03B2Eh
Returns TRUE if objects have the same physical address

Ob2 obI ~ FLAG
EQUAL #03B97h
Returns TRUE if objects are equal (like User-RPL SAME)

Ob2 obI ~ FLAG
2DUPEQ #635D8h
Returns TRUE if objects have the same physical address

Ob2 obI ~ obI Ob2 FLAG
EQOR #63605h
Does EQ test, then ORs the result with FLAG

FLAGl Ob2 obI ~. FLAG2
EQOVER #6303Dh
Does EQ test, then OVER

Ob3 Ob2 obI ~ ob3 FLAG ob3
EQUALNOT #635C4h
Performs EQUAL, followed by logical NOT

Ob2 ob1 ~ FLAG
EQUALOR ##63619h
Does EQUAL test, then logical OR

FLAG 1 Ob2 Obl ~ FLAG2

Basic Programming Tools 19

Binary Integer Tests
The following ob ~ects test the value of intema I binary integers:

#=
Equal

#x #y ~ FLAG

#<>
Not equal

#X #y ~ FLAG
Ij>
Gre ater than

#x #y ~ FLAG

#<
Le ss than

#X #y ~ FLAG

2
DUP#< hen does less-than test

#x #y FLAG
D uplicates #X and #y, t #x #y ~

2DUP#= d #y then does equal test

#x#y FLAG
Duplicates #X an , #X #y ~

2DUP#> d #y then does greater-than test
#y FLAG

Duplicates #X an, #x #y ~ #x

'#0=
Returns TRUE ifbint <0>

~ FLAG

#0<> 0
TRUE if bint ;t < > Returns

~ FLAG
'#1-

<I> Re~rns TRUE ifbint
~ FLAG

#1<> TRUEifbint;t<1> Returns
~ FLAG

#2= 'fb ' t Returns TRUE I m <2>
~ FLAG

#2<> TRUEifbint;t<2> Returns
~ FLAG

#3=
Returns TRUE if bint <3>

~ FLAG

#5= ,
TRUE if bmt - <5> Returns

~ FLAG

DUP#O<> TRUEifbint;t<O>

FLAG
Duplicates #, then returns # ~

DUP#O- TRUE if bint = <0>

FLAG
Duplicates #, then returns # ~

20

#03DI9h

#03D4Eh

#03D83h

#03CE4h

#6289Bh

#628B5h

#628Dlh

#03CA6h

-#03CC7h

#622A7h

#622B6h

#6229Ah

#636C 8h

#6228 9h

#636 B4h

#622 D4h

#62 266h

J

Basic Programming Tools

DUP#l= #622C5h
Duplicates #, then returns TRUE if bint = <1>

~ # FLAG
DOP#7< #63687h
Duplicates #, then returns TRUE if bint < <7>

~ # FLAG
OVER#O= #622C5h
Returns TRUE ifbint = <0>

ob ~ # ob FLAG

Real Number Tests
The following objects compare the values of two real numbers:

%< #2A871h
Less than

%2 %\ ~ FLAG
%<= #2A8B6h
Less than or equal

%2 %\ ~ FLAG
%<> #2A8CCh
Not equal

%2 %\ ~ FLAG
%= #2A8Clh
Equal

%2 %\ 4 FLAG
%> #2A8AAh
Greater than

%2 %\ ~ FLAG
%>= #2A8AOh
Greater than or equal

%2 %\ ~ FLAG
%MAXorder #62D81h
Orders two real numbers

%2 %\ ~ %lar!'est %smallest

The following objects test the value of a single real number:

%0< #2A738h
Less than zero

% ~ FLAG
%0<> #2A7CFh
Not equal to zero

% ~ FLAG
%0= #2A76Bh
Equal to zero

% ~ FLAG
%0> #2A799h
Greater than zero

% ~ FLAG
%0>= #2A7F7h
Greater than or equal to zero

% ~ FLAG
DUP%O= #63BAAh
Duplicates %, then does greater than or equal to zero test

% ~ % FLAG

Basic Programming Tools 21

Extended Real Number Tests
The following objects test the value of two extended real numbers:

%%< #2A81Fh
Less than

%%2 %%1 ~ FLAG

%%<= #2A8ABh
Less than or equal

%%2 %%1 ~ FLAG

%%> #2A87Fh
Greater than

%%2 %% 1 ~ FLAG

%%>= #2A895h
Greater than or equal

%%2 %% 1 ~ FLAG

The following objects test the value of an extended real number:

%%0<= #2A80Bh
Less than or equal to zero

%% ~ FLAG
%%0< #2A727h
Less than zero

%% ~ FLAG
%%0<> #2A7BBh
Not equal to zero

%% ~ FLAG
%%0= #2A75Ah
Equal to zero

%% ~ FLAG
%%0> #2A788h
Greater than zero

%% ~ FLAG
%%0>= #2A7E3h
Greater than or equal to zero

%% ~ FLAG

Complex Number Tests
The following two objects test the values of a complex number or an extended complex number:

C%o= #51B43h
Equal to C%O

C% ~ FLAG
C%%o= #51B2Ah
Equal to C%%O

C%% ~ FLAG

22 Basic Programming Tools

I

Advanced Topic: Missing Extended Real Test Objects
Notice that objects to perfonn the tests %%= and %%<> aren' t included in the tests listed on the previous page. These
objects don't exist because they weren't used in the HP 48 operating system, and thus were left out to save ROM
space. These objects can be created with a tiny bit of assembly language. We include the assembly language
examples EREQ and ERNEQ, which generate code objects to perfonn these tests.

EREQ.A
**

**
** Object: EREQ
**
** Purpose: Compare two extended real numbers, return TRUE if equal
**
** Entry:
**
**
** Exit:
**

2: %% 2 (Extended Real Number)
1: %%1 (Extended Real Number)

1 : FLAG (TRUE if %%2=%%1)

**

end

NIBASC
CON(S)
REL(S)
P=
GOVLNG

/ HPHP48-A/
=DOCODE
end
2
(=%%<)+7

EREQ can be embedded in System-RPL source code as follows:

CODE
P=
GOVLNG

ENDCODE

2
(=%%<)+7

The object ERNEQ is similar to EREQ, except that the initial value for P is different:

ERNEQ.A
******** *************** ******************* ******************************** **

**
** Object : ERNEQ
**
** Purpose : Compare two extended real numbers, return TRUE if not equal
**
** Entry: 2 : %%2 (Extended Real Number)
** 1: %%1 (Extended Real Number)
**
** Exit: 1: FLAG (TRUE if %%2<>%%1)
**
**

end

NIBASC
CON(S)
REL(S)
P=
GOVLNG

/HPHP48-A/
=DOCODE
end
13
(=% %<) +7

Basic Programming Tools 23

Unit Object Tests
The following objects test the values of unit objects, returning % 1 for TRUE and %0 for FALSE.

OM#? #OF598h
Returns % 1 if unit objects are not equal

unit] unit2 -7 %

OM<=? #OF5D4h
Returns % 1 if unit] ~ unit2

unit] unit2 -7 %
OM<? #OF5ACh
Returns % 1 if unit] < unit2

unit] unit2 -7 %
OM=? #OF584h
Returns % 1 if unitl = unit2

unit] unit2 -7 %
OM>=? #OF5E8h
Returns %1 ifunitl ;::: unit2

unitl unit2 -7 %
OM>? #OF5COh
Returns % 1 if unit 1 > unit2

unitl unit2 -7 %

Note that the System-RPL object U>NCQ may be used to help detennine if two unit objects are dimensionally
consistent - see Dimensional Consistency.

Character String Tests
The following objects test character strings:

DUPNOLL$? #63209h
Duplicates $, then returns TRUE if $ is empty

$ -7 $ FLAG
NOLL$? #0556Fh
Returns TRUE if $ is empty

$ -7 FLAG

Hex String Tests
The following objects compare two hex strings, returning %1 for TRUE and %0 for FALSE. These tests respect the
user's wordsize setting.

BXS==BXS #544D9h
Returns % 1 if hex strings are equal

hXSl hXS2 -7 %

HXS#BXS #544ECh
Returns % 1 if hex strings are not equal

hxs1 hXS2 -7 %
HXS<BXS #54552h
Returns % 1 if hxSl < hXS2

hXSl hXS2 -7 %

BXS < =BXS #5453Fh
Returns % 1 if hxs 1 ~ hXS2

hXSl hXS2 -7 %
HXS>=HXS #5452Ch
Returns %1 ifhxsl ;::: hXS2

hXSl hXS2 -7 %

HXS>HXS #54500h
Returns % 1 if hxs I > hXS2

hXSl hXS2 -7 %

24 Basic Programming Tools

I
J ..

"

Program Flow Control
We have already stated that programming in System-RPL is much like User-RPL, but there are more options for
managing program execution in System-RPL. Before going further, it is important to highlight one major difference
between the two environments. In User-RPL, an embedded program is treated as an object (eg. , placed on the
stack), and in System-RPL an embedded secondary is executed. To illustrate the difference, consider the following
two programs:

User-RPL:

1
« 2 »
« 3 »
4

Stack after execution:

{ HDME }

System-RPL:

%1
" %2

%3
%4

Stack after execution:

{ HDME }

1 4: 1
« 2 »
« 3 »

3: 2
2: 3
1: 4
mm1mH1l1lIBllmmlDml!miJ

In combination with test objects that return TRUE or FALSE flags , we can take advantage of System-RPL's
threaded execution to a great extent. Three classes of conu:ol objects are available:

• Objects that exit a secondary based on the state of a flag

• Object that support IF - THEN or IF - THEN - ELSE functions

Objects that exit a secondary based on the state of a flag and perform additional actions prior to resuming
execution of the parent secondary

Each of these classes of objects will be described and illustrated below.

Early Exits From a Secondary
The objects ?SEMI and NOT?SEMI provide for early exits from a secondary based on the state of a flag on the
stack. The object #O=?SEMI combines the #0= test with ?SEMI, making one efficient object.

?SEMI #61A3Bh
Exits the current secondary if FLAG is TRUE

FLAG ~
NOT? SEMI #61A2Ch
Exits the current secondary if FLAG is FALSE

FLAG ~
#O=?SEMI #61A18h
Exits the current secondary if # is zero

~

Example. The following embedded secondary divides a number by two and adds one to the result if it isn't zero:

DUP%O= ?SEMI
%2 %/ %1 %+

Basic Programming Tools

Begin embedded secondary
Exit if real number is zero
Complete calculation
End of embedded secondary

25

IF - THEN - ELSE Structures
There are two classes of objects that may be used to control program execution based on a system flag:

• Postfix objects that take their arguments from the stack

• Prefix objects that execute or skip the next object in the secondary

POStf"1X Objects. The postfix objects RPIT and RPITE take their arguments from the stack:

RPI:T
Executes ob if FLAG is TRUE, otherwise drops ob

TRUE ob ~ Executes ob
FALSE ob ~

RPI:TE
Execute ob-rRUE if FLAG is TRUE, otherwise executes ObFALSE

TRUE ob-rRUE ObFALSE ~ Executes ObTRUE

FALSE ObTRUE ObFALSE ~ Executes ObFALSE

#070FDh

#07OC3h

Example: The following secondary expects a real number on the stack and puts" Zero" on the stack if it's zero, or
"Non-Zero" if the number is non-zero:

%0= "Zero" "Non-Zero" RPITE

PrerlX Objects. The prefix objects take a flag from the stack and execute or skip the next one or two objects in the
secondary. Note that NOT_IT and ?SKIP are two commonly used names for the same object.

NOT_I:T or ?SKI:P #0712Ah
If FLAG is TRUE, skips the next object in the secondary

FLAG ~
· ?SKIP object . .. ;

:IT #619BCh
If FLAG is TRUE, executes the next object in secondary otherwise skips the
next object

FLAG ~
· IT objectTRUE . .. ; · .

:ITE #61AD8h
If FLAG is TRUE, executes the next object in secondary and skips the
following object, otherwise skips the next object and executes the following
object

FLAG ~
.. .. . ITE objectTRuE objectFALSE . .. ; . .

26 Basic Programming Tools

"-...J

;

Examples: The following secondary expects a real number on the stack, divides it by two if it's non-zero, and
duplicates the result.

%0= ?SKIP %2 %/ DUP

The following secondary expects a real number on the stack and puts "Zero" on the stack if it's zero, or "Non­
Zero" if the number is non-zero, then duplicates the result:

%0=
ITE

"Zero"
"Non-Zero"

DUP

Combination Objects. The following objects combine test and branch operations:

#O=?SKI:P #6333Ah
If # is zero, skips the next object in the secondary

~
· #O=?SKIP object . .. ;

#l=?SKI:P #63353h
If # is one, skips the next object in the secondary, otherwise executes the next
object

~,

· #l=?SKIP object . .. ; · .
#>?SKI:P #63399h
If #X > #y, skips the next object

#x #y ~
. #>?SKIP object . .. ;

?SKI:PSWAP #62D9Fh
If FLAG is FALSE, swaps Obi and Ob2

obz Obi FALSE ~ Obi Ob2
Ob2 Obi TRUE ~ ob2 obi

. ?SKIPSWAP . .. ;

#O=I:TE #63E89h
If # is zero, executes the next object in the secondary and skips the following
object, otherwise skips the next object and executes the following object

~
· #O=ITE objectTRuE objectFALsE . .. ;

#<I:TE #63E9Dh
If #x < #y, executes the next object in the secondary and skips the following
object, otherwise skips the next object and executes the following object

#x #y ~
. #<ITE objectTRuE objectFALSE ... ;

#=I:TE #62C2Dh
If #X = #y, executes the next object in the secondary and skips the following
object, otherwise skips the next object and executes the following object

#X #y ~
. #=ITE objectTRuE objectFALSE . . . ;

ANDITE #63E61h
If (FLAG} AND FLAG2) is TRUE, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes the
following object

FLAG 1 FLAG2 ~
· ANDITE objectTRUE objectFALSE . .. ; · .

Basic Programming Tools 27

DUP#O=:IT #63E48h
Duplicates #, then if # is zero executes the next object in the secondary

~ #
. DUP#O=IT object . .. i

DUP#O=:ITE #63EC5h
Duplicates #, then if # is zero executes the next object in the secondary and
skips the following object, otherwise skips the next object and executes the
following object

~ #
. DUP#O=ITE obj ectTRuE objectFALSE . .. i . .

EQ:IT #63E2Fh
If ObI has the same address as Ob2, executes the next object in the secondary

Ob2 ObI ~
.. . . . EQIT object . . . i

EQ:ITE #63E75h
If ObI has the same address as Ob2, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes the
following object

Ob2 ObI ~
.. . . . EQITE objectTRuE obj ectFALSE . .. i . .

Sys:ITE #63EEDh
If the system flag specified by # is set, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes the
following object. System flags are numbered from #ld to #63d, corresponding
to flags -I to -63 in User-RPL.

#system.flag ~
. SysITE objectTRuE objectFALSE . .. i

User:ITE #63ED9h
If the user flag specified by # is set, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes the
following object. User flags are numbered from #Id to #63d, corresponding to
flags 1 to 63 in User-RPL.

#user.flag ~
. UserITE objectTRuE objectFALSE ... i

Example: The following program tests system flag 40 to see if the clock is being displayed. The string "Program
Complete" is appended with the time of day if the clock is being displayed, otherwise the string is appended with a
period.

TIMEDONE 78.5 Bytes Checksum #2E17h
(~ $)

28

OLASTOWDOB!
CKONOLASTWD
"Program complete"
FORTY SysITE

II at II

TOD TOD>t$ &$

&$

Clears saved command name (see Argument Validation)
Asserts no arguments

Test systemjlag 40
Start of TRUE object

" at "
Appends a string representing the current time of day to " at "

End of TRUE object
FALSE object
Appends time or period string

Basic Programming Tools

.I

CASE Objects
The object case provides one of the most useful program flow control options in System-RPL. case takes a flag
from the stack, usually the result of a test operation. If the flag is TRUE, the next object in the secondary is
executed and the rest of the secondary is discarded. If the flag is FALSE, the next object in the secondary is skipped
and the rest of the secondary is executed.

case #61993h
If FLAG is TRUE, executes objectTRuE and skips the remainder of the
secondary, otherwise skips objectTRuE and executes the remainder of the
secondary

FLAG ~
case objectTRuE

Example: The following secondary expects a real number on the stack, converts it to a bint, and returns "Zero" if
the bint is 0, "One" if the bint is one, "Two" if the bint is two, otherwise returns "Other" . This example
validates the input argument using objects described in Argument Validation.

CASEl 97 Bytes Checksum #636Eh
(% ~ $)

OLASTOWDOB! CKlNOLASTWD
CK&DISPATCHl real

COERCE
DUP# 0 = case :: DROP "Zero" ;
DUP#l= case :: DROP "One" ;
#2= case "Two"
"Other"

Expect one argument
Insist on a real number

Convert real number to a bint
Return "Zero" if bint is zero
Return "One" ifbint is one
Return "Two" if bint is two
Return "Other" for all other values

CASE Combination Objects. There are many objects that can help save code by combining test or other
operations with case. There are two classes of combination objects involving case:

Objects that execute the next object and discard the remainder of the secondary if the flag is TRUE or skip the
next object in the secondary and execute the remainder of the secondary if the flag is FALSE

• Objects that exit the secondary with an included action if the flag is TRUE or execute the remainder of the
secondary if the flag is FALSE.

A narning convention helps to differentiate between the different case objects. Generally, an object name ending
with DROP (capital letters) suggests an object whose last action is to DROP an object from the stack. Objects with
drop in the name (lowercase) suggest an object that drops an object in the true case before performing the next
task. Compare casedrop with caseDROP to see how this works.

Before listing the stack diagrams for these objects, we illustrate the use of four of them with examples.

Basic Programming Tools 29

The object casedrop combines case with the action of DROP before the true-object is executed:

casedrop #6l8F7h
If FLAG is TRUE, drops an object from the stack, executes objectTRuE, and
skips the remainder of the secondary; otherwise skips objectTRuE and executes
the remainder of the secondary

ob TRUE ~
FALSE ~ ob

casedrop objectTRuE

The object DUP#O=csedrp combines the actions ofDUP#O= and casedrop into one object:

DUP#O=csedrp #6l8A8h
Duplicates #, then if # is zero, drops # from the stack, executes objectTRuE, and
skips the remainder of the secondary; otherwise skips objectTRuE and executes
the remainder of the secondary

~
~ #

(#x = #y)
(#X ##y)

DUP#O=csedrp objectTRuE

These combination objects allow you to rewrite the example CASEI on the previous page saving 17.5 bytes:

CASE2 79.5 Bytes Checksum #BEF2h
(% ~ $)

OLASTOWDOB! CKINOLASTWD
CK&DISPATCHl real

COERCE
DUP#O=csedrp "Zero"
DUP#l= casedrop "One"
#2= case "Two"
"Other"

Expect one argument
Insist on a real number

Conven real number to a bint
Return "Zero" ifbint is zero
Return "One" if bint is one
Return "Two" if bint is two
Return "Other" for all other values

The object #=casedrop combines the actions OVER, #=, and casedrop into a single object that's useful for
executing different objects based on the value of a bint. This object is used frequently in key handlers, and probably
should have been named OVER#=casedrop.

30

#=casedrop #6l8D3h
If #X = #y, drops #X and #y from the stack, executes objectTRuE, and skips the
remainder of the secondary; otherwise drops #y, skips objectTRuE, and executes
the remainder of the secondary.

#x #y ~ (#X = #y)
#X #y ~ #x (#X ##y)

#=casedrop objectTRuE

Basic Programming Tools

I
J

/

The example CASE3 uses #=casedrop to produce another variant on our previous two examples:

CASE3 82 Bytes Checksum #89EOh
(% ~ $)

OLASTOWDOB!CKINOLASTWD
CK&DISPATCHl real

COERCE
ZERO #=casedrop "Zero"
ONE #=casedrop "One"
#2= case "Two"
"Other"

Expect one argument
Insist on a real number

Conven real number to a bint
Return "Zero" if bint is zero
Return "One" ifbint is one
Return "Two" if bint is two
Return "Other"for all other values

The second class of case combination objects mentioned is objects that exit with a combined operation or execute
the remainder of the secondary. An example of this is caseDROP.

caseDROP #6194Bh
If FLAG is TRUE, drops an object from the stack and exits the secondary;
otherwise executes the remainder of the secondary

ob TRUE ~
FALSE ~ ob

:: .. . caseDROP

Example: This secondary expects a real number on the stack representing a user flag. If the number is in the range
1 to 4, the corresponding user flag is set, otherwise no action is taken.

CASE4 49.5 Bytes Checksum #DCA7h
(% ~)

OLASTOWDOB! CKINOLASTWD
CK&DISPATCHl real

COERCE
DUP#O= caseDROP
DUP FOUR #> caseDROP
SetUserFlag

Basic Programming Tools

Expect one argument
Insist on a real number

Conven real number to a bint
Exit, dropping the bint, if the bint is zero
Exit, dropping the bint, if the bint is greater than four
Set the user flag

31

Here are the objects that combine case with other operations:

32

#=casedrop #618D3h
If #x = #y, drops #x and #y from the stack, executes objectTRuE, and skips the
remainder of the secondary, otherwise drops #y, skips objectTRuE, and executes
the remainder of the secondary

#x #y ~ (#x = #y)
#x #y ~ #x (#X ~#y)

:: ... #=casedrop objectTRuE ... ;

%O=case #5F127h
If % is equal to zero, executes objectTRuE and skips the remainder of the
secondary, otherwise skips objectTRuE and executes the remainder of the
secondary

% ~
%O=case objectTRuE ... ;

%l=case #5F181h
If % is equal to one, executes objectTRuE and skips the remainder of the
secondary, otherwise skips objectTRuE and executes the remainder of the
secondary

% ~
%l=case objectTRuE ... ;

ANDNOTcase #63DDFh
If FLAG, and FLAG2 are not both TRUE, executes objectTRuE and skips the
remainder of the secondary, otherwise skips objectTRuE and executes the
remainder of the secondary

FLAG2 FLAG, ~
. ANDNOTcase objectTRuE ... ;

ANDcase ' #63CEAh
If FLAG, and FLAG2 are both TRUE, executes objectTRuE and skips the
remainder of the secondary, otherwise skips objectTRuE and executes the
remainder of the secondary

FLAG2 FLAG, ~
.. ... ANDcase objectTRuE ... ;

DUP#O=case #61891h
Duplicates #, then if # is zero executes objectTRuE and skips the remainder of
the secondary, otherwise skips objectTRuE and executes the remainder of the
secondary

~ #
DUP#O=case objectTRUE . .. ;

DUP#O=csedrp #618A8h
Duplicates #, then if # is zero, drops # from the stack, executes objectTRuE, and
skips the remainder of the secondary, otherwise skips objectTRuE and executes
the remainder of the secondary

~ (#=0)
~ # (#~O)

DUP#O=csedrp objectTRuE . .. i

EQUALNOTcase #63DF3h
If Obi is not equal to Ob2, executes objectTRuE and skips the remainder of the
secondary, otherwise skips objectTRuE and executes the remainder of the
secondary

ob2 Obi ~
EQUALNOTcase objectTRuE ... ;

EQUALcase #63CFEh
If Obi is equal to Ob2, executes objectTRuE and skips the remainder of the
secondary, otherwise skips objectTRuE and executes the remainder of the
secondary

Ob2 Obi ~
EQUALcase objectTRuE ... ;

Basic Programming Tools

. .J

J '

EQUALeasedrp #63CA4h
If o~ is equal to Ob3, drops obi from the stack, executes objectTRuE, and skips
the remainder of the secondary, otherwise skips objectTRUE and executes the
remainder of the secondary

Ob3 Ob2 obi ~
Ob3 Ob2 obi ~ obi

(Ob2 = Ob3)
(Ob2 ;tob3)

:: ... EQUALeasedrp objectTRuE ... ;

EQease #61933h
If obi has the same address as Ob2, executes objectTRuE and skips the
remainder of the secondary, otherwise skips objectTRuE and executes the
remainder of the secondary

Ob2 obi ~
.. . .. EQease objectTRuE ... ;

NOTease #619ADh
If FLAG is FALSE, executes objectTRuE and skips the remainder of the
secondary, otherwise skips objectTRuE and executes the remainder of the
secondary

FLAG ~
NOTease objeetTRuE ... ;

NOTeasedrop #618E8h
If FLAG is FALSE, drops ob, executes objectTRuE, and skips the remainder of
the secondary, otherwise skips objectTRuE and executes the remainder of the
secondary

ob TRUE ~ ob
ob FALSE ~

NOTeasedrop objectTRuE ... ;

NOTease2drop #619ADh
If FLAG is FALSE, drops obi and o~, executes objectTRuE, and skips the
remainder of the secondary, otherwise skips objectTRuE and executes the
remainder of the secondary

Ob2 obi TRUE ~ Ob2 obi
o~ obi FALSE ~

: : ... NOTease2drop objectTRuE ... ;

ORease #629BCh
If either FLAGI or FLAG2 are TRUE, executes objectTRuE and skips the
remainder of the secondary, otherwise skips objectTRuE and executes the
remainder of the secondary

FLAG2 FLAG I ~
.. . . . ORease objectTRuE ... ;

OVER#=ease #6187Ch
Does OVER, then if #1 = #2, executes objectTRuE and skips the remainder of
the secondary, otherwise skips objectTRuE and executes the remainder of the
secondary

#2 #1 ~ #2
OVER#=ease objectTRUE . .. ;

easedrop #618F7h
If FLAG is TRUE, drops an object from the stack, executes objectTRuE, and
skips the remainder of the secondary, otherwise skips objectTRuE and executes
the remainder of the secondary

Basic Programming Tools

ob TRUE ~
FALSE ~ ob

easedrop objectTRuE ••• i

33

The following case combination objects execute an action before skipping the remainder of the current secondary
if the flag argument or test result is true.

DUP#O=cSDROP #618A8h
Duplicates #, then if # = 0, drops # and skips the remainder of the secondary

~ (#= 0)
~ # (#;e0)

· . · .. DUP#O=csDROP · .. i · .
NOTcase2DROP #61984h
If FLAG is FALSE, drops two objects from the stack and skips the remainder
of the secondary

ob2 ObI TRUE ~ Ob2 ObI
FALSE ~

· . · .. NOTcase2DROP · . . i · .
NOTcaseFALSE #5FB49h
If FLAG is TRUE, executes the remainder of the secondary, otherwise puts
FALSE on the stack and skips the remainder of the secondary

TRUE ~
FALSE ~ FALSE

· . · .. NOTcaseFALSE · .. i · .
NOTcaseTRUE #638CBh
If FLAG is TRUE, executes the remainder of the secondary, otherwise puts
TRUE on the stack and skips the remainder of the secondary

TRUE ~
FALSE ~ FALSE

.. . . . NOTcaseTRUE . .. i . .
NcaseSl:ZEERR #63B19h
If FLAG is TRUE, executes the remainder of the secondary, otherwise issues
the Bad Argument VaIue error

FLAG ~
· . · .. NcaseSIZEERR . .. i

NcaseTYPEERR #63B46h
If FLAG is TRUE, executes the remainder of the secondary, otherwise issues
the Bad Argument Type error

FLAG ~
· . · .. NcaseTYPEERR · .. ;

case2DROP #61984h
If FLAG is TRUE, drops two objects from the stack and skips the remainder of
the secondary

Ob2 ObI TRUE ~
FALSE ~ ob2 ObI

. case2DROP . .. i

caseDROP #6194Bh
If FLAG is TRUE, drops an object from the stack and skips the remainder of
the secondary

ob TRUE ~
FALSE ~ ob

. caseDROP . . . ;

caseDoBaClKey #63BEBh
If FLAG is TRUE, executes DoBadKey (issues invalid key beep) and skips the
remainder of the secondary

FLAG ~
· . · .. caseDoBadKey · .. ;

caseDrpBadKy #63BD2h
If FLAG is TRUE, drops an object from the stack, executes DoBadKey (issues
invalid key beep), and skips the remainder of the secondary

ob TRUE ~
FALSE ~ ob

· . · . . caseDrpBadKy . .. i · .

34 Basic Programming Tools

caseERRJMP #63169h
If FLAG is TRUE, skips the remainder of the secondary and does ERRJMP

FLAG ~
· caseERRJMP · .. ;

caseFALSE #6359Ch
If FLAG is TRUE, puts FALSE on the stack and skips the remainder of the
secondary

FALSE ~
TRUE ~ FALSE

.. . . . caseFALSE . .. ;

caseS:rZEERR #63B05h
If FLAG is FALSE, executes the remainder of the secondary, otherwise issues
the Bad Argument Value error

FLAG ~
.. .. . caseSIZEERR . .. ;

caseTROE #634E3h
If FLAG is TRUE, puts TRUE on the stack and skips the remainder ofthe
secondary

FALSE ~
TRUE ~ TRUE

. caseTRUE ... ;

casedrpfls #6356Ah
If FLAG is TRUE, drops ob, puts FALSE on the stack, and skips the remainder
of the secondary

ob FALSE ~ ob
ob TRUE ~ FALSE

· casedrpfls · .. ;

case2drpfls #63583h
If FLAG is TRUE, drops obi and o~, puts FALSE on the stack, and skips the
remainder of the secondary

Ob2 obi FALSE ~ ob2 obi
Ob2 obi TRUE ~ FALSE

. case2drpfls ... ;

casedrptru #628B2h
If FLAG is TRUE, drops ob, puts TRUE on the stack, and skips the remainder
of the secondary

ob FALSE ~ ob
TRUE ~ TRUE

· casedrptru · .. ;

Basic Programming Tools 35

Loop Structures
Program loops are useful for repetitive execution of a procedure. There are two general classes of loops:

Definite loops execute a loop-clause at least once, and execute a predefined number of iterations.

Indefinite loops execute a loop-clause repeatedly until a test-clause returns a true result. One form of an
indefinite loop may not execute at all if an initial test fails .

Definite Loops
Definite loops are implemented with the object DO and one of its counterparts: LOOP or + LOOP. When DO is
executed, a DoLoop environment is created which stores the index, stopping value, and interpreter pointer. The
index and stop values are internal binary integers. DoLoop environments can be nested indefinitely.

Basic DoLoop Objects. The objects DO, LOOP, and +LOOP are recognized by the compiler RPLCOMP, which
checks to see that DO and LOOP objects are properly matched.

DO #073F7h
Begins DO loop

#finish #start ~
.......... #finish #start DO loop-clause LOOP I

......... #finish #start DO loop-clause #increment +LOOP ,

LOOP #07334h
Increments index of topmost DoLoop environment, abandons DoLoop
environment if the new index is ~ the stopping value, otherwise executes loop
clause again

~

+LOOP #073A5h
Increments index of topmost DoLoop environment by #increment, abandons
DoLoop environment if the new index is ~ the stopping value, otherwise
executes loop clause again

#increment ~

DoLoop Utilities. The objects #1+ _ONE_DO, DUP#O_DO, and ZERO_DO combine several actions into one object.
When a program that uses these objects is being compiled with RPLCOMP, the compiler directive (DO) must be
included after the object to tell the compiler that a DoLoop is being started. This will prevent an error from being
generated when the compiler encounters the matching LOOP object.

#1+_0NE_DO #073DBh
Equivalent to ONE #+ ONE DO

#finish ~
. #finish #1+ ONE DO (DO) loop-clause LOOP ... ;

DUP#O_DO #6347Fh
Equivalent to DUP ZERO DO

#finish ~ #finish
. #finish DUP#O DO (DO) loop-clause LOOP . . . ;

ZERO_DO #073C3h
Equivalent to ZERO DO

#finish ~
. #finish ZERO_DO (DO) loop-clause LOOP . . . ;

36 Basic Programming Tools

.J .:.

Example: The following source fragment illustrates the use of these objects with the (DO) compiler directive:

LOOP

Accessing DoLoop Indices. The index value for the topmost DoLoop environment can be recalled with INDEX@
and can be modified by using INDEXSTO. The index value for the second DoLoop environment can be recalled
with JINDEX@ and can be modified by using JINDEXSTO.

INDEX@ #07221h
Recalls the index value from the topmost DoLoop environment

~ #index
INDEXSTO #07270h
Stores a new value for the index in the topmost DoLoop environment

#index ~
JINDEX@ #07258h
Recalls the index value from the second DoLoop environment

~ #index
JINDEXSTO #072ADh
Stores a new value for the index in the second DoLoop environment

#index ~

Examples: The first program places the internal binary integers 4, 5, 6, and 7 on the stack; the second program
places the internal binary integers 10, 20, and 30 on the stack:

:: EIGHT FOUR DO INDEX@ LOOP ;

.. THIRTYONE TEN DO INDEX@ TEN +LOOP

Accessing DO Loop Stop Values. The stop value for the topmost DoLoop environment can be recalled with
ISTOP@ and can be modified by using ISTOPSTO. The stop value for the second DoLoop environment can be
recalled with JSTOP@ and can be modified by using JSTOPSTO.

ISTOP@ #07249h
Recalls the stop value from the topmost DoLoop environment

~ #stop
ISTOPSTO #07295h
Stores a new stop value in the topmost DoLoop environment

#stop ~
ZEROISTOPSTO #6400Fh
Stores <Od> in the stop value in the topmost DoLoop environment

~

JSTOP@ #07264h
Recalls the stop value from the second DoLoop environment

~ #stop
JSTOPSTO #072C2h
Stores a new stop value in the second DoLoop environment

#stop ~

Basic Programming Tools 37

Indefinite Loops
There are three indefinite loop structures available:

• BEGIN ... WHILE ... REPEAT loops contain an explicit test-clause and loop-clause. The loop clause may never
be executed if the test-clause returns FALSE. The loop clause is assumed to be a secondary object - the
RPLCOMP compiler places: : and; around the loop clause. See Compiling WHILE Loops below.

• BEGIN ... UNTIL loops always execute at least once - the object UNTIL expects either a TRUE or FALSE
flag.

• BEGIN .. . AGAIN loops have no test - they execute until an error event occurs or an RDROP is executed to
remove the address placed on the return stack by BEGIN.

AGA:IN #071ABh
Unconditionally repeats loop-clause

~

· BEGIN loop-clause AGAIN . .. ;

BEG:IN #071A2h
Copies the interpreter pointer to the return stack, serving as a beginning object
for three loop structures

~

.. . . . BEGIN loop- clause AGAIN . . . ; . .
· BEGIN test-clause WHILE loop - clause REPEAT ... ; · .

· BEGIN loop-clause UNTIL . . . ;

REPEAT #07IE5h
Copies the first pointer on the return stack to the interpreter pointer, completing
a WHll...E loop

~

· BEGIN test-clause WHILE loop-clause REPEAT . .. ;

WH:ILE #071EEh
Itflag is true, allows execution of loop clause, otherwise drops one pointer
from the return stack and skips the interpreter pointer to the object after
REPEAT

FLAG ~
· BEGIN test-clause WHILE loop-clause REPEAT . . . ; · .

ONT:IL #071C8h
Itjlag is true, drops the top pointer on the return stack to terminate the loop,
otherwise copies the first pointer on the return stack to the interpreter pointer to
execute the loop-clause again

FLAG ~
· BEGIN loop- clause UNTIL .. . ;

Example: The following program returns the number of random numbers generated before one with a value greater
than or equal to .95 is generated. The object %RAN (address #2AFC2h) returns a random number n such that
O:S; n:S; 1.

NUMRAN 53.5 By tes Checksum #95D1h
(~%)

38

AtUserStack
ZERO
BEGIN

%RAN % . 95 %<
WHILE

#1+
REPEAT
UNCOERCE

Clears saved command name, no arguments
Initial value of the counter
Beginning of WHILE loop structure
Test-clause
Executes loop-clause ifjlag is TRUE
Loop-clause: increments counter
Continue loop at %RAN
Convert counter to real number

Basic Programming Tools

0 ·

Compiling WIDLE Loops. The RPLCOMP compiler places secondary delimiters around the loop clause in a
WHILE loop. For instance, the example NUMRAN.S from the previous page looks like this after being compiled:

AtUserStack
ZERO
BEGIN

%RAN % .95 %<
WHILE

#1+

REPEAT
UNCOERCE

Beginning of secondary

End of secondary

Since the secondary delimeters are added by the Gompiler, you can use objects like? SEMI or case to cause an
early exit from the loop clause (see Case Structures).

Basic Programming Tools 39

Runstream Operators
The return stack is a stack of pointers to objects embedded in composite objects, usually secondaries, called the
runstream. The objects described here are useful for placing objects on the data or return stack, or for building your
own control structures. The most often-used is ' . which places the next object in the current secondary on the data
stack.

, #06E97h
Pushes the next object (or object pointer) in the program on the data stack

~ object . object ;
COLA #06FDlh
Evaluates the next object in the current secondary, discarding the remainder of
the secondary

~

. COLA object discarded objects ; . .
:IDUP , #0716Bh
Copies the topmost item on the return stack

~

>R #06EEBh
Pops a composite object off the data stack and pushes it on the return stack

..
~ ,

'R #06EEBh
Pops an object (or object pointer) off the return stack and pushes it on the data
stack

~ object
tieR #61B89h
Pops the next object in the second composite object in the return stack and
pushes it and TRUE on the data stack. If the object is SEMI , pops the return
stack and pushes FALSE on the data stack.

~ object TRUE Not SEMI
~ FALSE SEMI

R@ #07012h
Creates a secondary in temporary memory (TEMPOB) from the composite
pointed to by the top return stack pointer, pops the return stack, and pushes a
pointer to the secondary on the return stack

~
.. ,

R> #0701Fh
Creates a secondary in temporary memory (TEMPOB) from the composite
pointed to by the top return stack pointer and pushes a pointer to the secondary
on the return stack

~
.. ,

RDROP #06FB7h
Pops the return stack

~

2RDROP #6114Eh
Pops two levels off the return stack

~

3RDROP #61160h
Pops three levels off the return stack

~

RDUP #14EA5h
Duplicates the top item on the return stack

~

RSWAP #60EBDh
Swap the top two items on the return stack

~

The example RSTR in Control Structure Examples shows how some of these objects may be used.

40 Basic Programming Tools

I

'---"

.J

.I

Argument Validation
Any program that is going accept input from the user should validate the number and type of arguments before
proceeding. One of the reasons that you are probably interested in writing code in System-RPL is that you wish to
avoid the argument checking that is inherent in every User-RPL command or function, yet it is still important to
provide some protection at the very beginning.

Attributing Errors
An integral part of the process of validating arguments is to make sure that errors are correctly attributed. This is
often done in combination with type dispactching. To illustrate the problems associated with error attribution,
consider the System-RPL program :: % / ;. With the real numbers 5 and 0 in stack levels 3 and 2, and the object
:: % / ; in stack levell, press IEVALI. The divide operation generates an I nf in i t e Resu 1 terror:

Stack before EV AL:

(HDME :.

4:
3: 5
2: 0
1: E~ternal
InmIlmlDDIlmIBmn:u

Stack after EV AL:
EVAL Error:
Infinite Result
4:
3: 5
2: 0
1: E~ternal
IllBDIImIDDIlmIBmItD

Notice that the error has been attributed to EV AL, which was the last object to claim responsibility for future errors.
Further, the stack contents are not what you would expect. This can be solved by clearing out the saved command
name (using o LAS TOWDOB !) and checking for the proper number of arguments (using CK2NOLASTWD, described
on the next page).

OLASTOWOOB! #1884Dh
Clear saved command name

The program now reads:: OLASTOWDOB! CK2NOLASTWD % / I' Now when you press IEVALI a much more
acceptable result appears:

Stack before EV AL:

(HDME :.

3: . 5
2: 0
1: E~ternal E~ternal

E~ternal
.. mIDIlImBml .. 1m1I

Stack after EV AL:
Error:
Inf ini te Result
4:
3:
2: 5
1: 0
.. mIDm1CIDBm .. 1lIlI:II

If a program plans to accept no arguments, the object AtUserStack is a handy combination of OLASTOWDOB!
and CKONOLASTWD (described on the next page).

AtUserStack
. Require no arguments, clear saved command name

~

Basic Programming Tools

#40BC9h

41

Number of Arguments
The process for checking the number of arguments is slightly different for program objects that are being designed
as stand alone applications vs. program objects that are included in a library application. The concept is the same in
each case, however. (Library applications are discussed in the HP document MAKEROM . DOC and illustrated in
GEOLIB example provided by HP. These are provided on the disk.) The structural outlines are:

System-RPL Programs Library Commands
.

OLASTOWDOB! CKnNOLASTWD CKn
.

; ;

where n refers to the number of arguments that are expected. The objects available for this task are:

System-RPL Program Library Command Number of Arguments
CKONOLASTWD CKO No arguments required
CK1NOLASTWD CKl One argument required
CK2NOLASTWD CK2 Two arguments required
CK3NOLASTWD CK3 Three arguments required
CK4NOLASTWD CK4 Four arguments required
CK5NOLASTWD CK5 Five arguments required
CKNNOLASTWD CKN N arguments required

For instance, a Sytem-RPL program that requires three objects on the stack should be structured as follows :

OLASTOWDOB! CK3NOLASTWD

The objects CKnNOLASTWD and CKN are available for programs that take the number of arguments off the stack.
Both objects convert the real number on the stack to an internal binary integer, then verify that the specified number
of arguments are on the stack.

An example of this type of object is the User-RPL command PICK , in which a user-supplied real number specifies
the stack level to copy. The code for the User-RPL PICK is :: CKN PICK ; , where the PICK is the internal
System-RPL PICK.

Remember that in the case of library commands the CKn objects will attribute errors to the command name.
System-RPL programs that are not parts of libraries or that need to ensure that their errors are not attributed to
another command need to clear the saved command name. The objects CKnNOLASTWD do not modify the saved
command name, so OLASTOWDOB! is needed to ensure that the saved command name will be cleared. This
prevents an error generated in a program from being attributed to the last command that generated an error.

42 Basic Programming Tools

J '

.J '

.J ,

.....I I

.J '

L

L

,I

Type Dispatching
The HP 48's multiple polymorphic personality is attributable in part to the ability of each built-in command or
function to interpret the types of arguments supplied and take meaningful action based on those types. The +

function is one of the most dramatic examples, operating on over 20 different combinations of types of arguments.

The objects CK&DISPATCHO and CK&DISPATCH1 perform a "check and dispatch" operation - choosing an object
to be executed based on the types of stack arguments. The basic structure of a word using CK&DISPATCHn is:

actionl
action2

actionN

where #typen is an internal binary integer encoding the desired object types, and actionn is the corresponding
action to be taken when the arguments match the specified types. (Internal binary integers were discussed in greater
detail in Internal Binary Integers.)

It is vital that the table of types and actions be terminated with;. For System-RPL programs the basic structure for
a program that has different actions based on argument types looks like this:

OLASTOWDOB! CKnNOLASTWD
CK&DISPATCHn
#typel actionl

Since the table of actions must be terminated by ;, type dispatching operations embedded in larger programs should
be set off in their own secondary. For example:

CK&DISPATCH1
00051 Process list and real number ;
00041 :: Process array and real number

The example program GRID in Graphics Examples illustrates the use of OLASTOWDOB!, CK3NOLASTWD, and
CK&DISPATCH1.

CK&DISPATCHO vs. CK&DISPATCHI. In general, the HP 48 treats tags as auxiliary to the main purpose of
any object, consequently CK&DISPATCH1 is used most frequently because it makes a second pass through the type­
action table after recursively stripping any tags from the required objects. If it is important to type dispatch off
tagged objects, then CK&DISPATCHO should be used, which does not contain the second pass.

Basic Programming Tools 43

Type Dispatching in Library Applications. In the case of library commands, replacing each action with a pointer
to an action will speed up the dispatch process because the time required to skip each action is reduced to the time
required to skip a single pointer. For instance, the two examples below will do the same thing, but the example on
the right will be slightly faster:

NULLNAME EXl

CK2
CK&DISPATCHl
real
crnp
list

NULLNAME EXl

CK2
CK&DISPATCHl
real EXSUBl
crnp EXSUB2
list EXSUB3

NULLNAME EXSUBl ..
NULLNAME EXSUB2
NULLNAME EXSUB3

For library commands requiring at least one argument, the CKn and CK&DISPATCHl objects can be replaced with
objects that combine their functionality :

Object Replaces
CK1&Dispatch CKl CK&DISPATCHl
CK2&Dispatch CK2 CK&DISPATCHl
CK3&Dispatch CK3 CK&DISPATCHl
CK4&Dispatch CK4 CK&DISPATCHl
CK5&Dispatch CK5 CK&DISPATCHl

Using these objects, the examples above would look now like this:

44

NULLNAME EXl

CK2&Dispatch
real
crnp
list

NULLNAME EXl

CK2&Dispatch
real EXSUBl
crnp EXSUB2
list EXSUB3

NULLNAME EXSUBl
NULLNAME EXSUB2
NULLNAME EXSUB3

Basic Programming Tools

--./ •
'-'"

'-"

"-"

-.-'

-../

'-"

-./

'-'

'-"

'-'

'-'

'-"

-./

'-"

'-'"

/

Encoding Argument Types. The internal binary integer corresponding to each action can encode up to five object
types. Viewed as five hex digits, the stack levels are specified as follows:

#nnnnn

Each hex digit represents an argument type, as listed in the table on the next page. Notice that leading zeros mean
that objects in their corresponding stack levels will be ignored. For instance, the internal binary integer # 00051
specifies a list in level two and a real number in level one.

Some built-in binary integers can be used to encode individual objects or combinations of objects. In cases where a
program is type-dispatching off of one argument, the built-in bints listed in the second column of the table may be
used. For example, a program that takes different actions when the argument is a list or string might have the
following structure:

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1
list
str .. .

••••• I

Half of the objects that may be encoded require two digits. A program that requires an extended real in level two
and an extended complex number in level one might have the following structure:

OLASTOWDOB! CK2NOLASTWD
CK&DISPATCH1
03F4F :: ... ;

Basic Programming Tools 45

Encoding Built-in User TYPE
Digits Bint Object Type Number

0 any Any Object
1 real Real Number 0
2 cmp Complex Number 1
3 str Character String 2
4 arry Array 3,4
5 list List 5
6 idnt Global Name 6
7 lam Local Name 7
8 seco Secondary 8
9 symb Symbolic 9
A sym Symbolic Class 6,7,9
B hxs Hex String 10
C grob Graphics Object 11
D TAGGED Tagged Object 12
E unitob Unit Object 13

OF ROM Pointer 14
IF Binary Integer 20
2F Directory 15
3F Extended Real 21
4F Extended Complex 22
5F Linked Array 23
6F char Character 24
7F Code Object 25
8F Library 16
9F Backup 17
AF Library Data 26
BF External object! 27
CF Externalobject2 28
DF Externalobject3 29
EF External object4 30

When possible, it is best to save code by using a built-in internal binary integer (2.5 bytes) instead of compiling a
new one (5 bytes). The following built-in internal binary integers are used for type dispatching:

Name Value Name Value

2EXT #OOOEEh EXTREAL #OOOElh
2GROB #OOOCCh EXTSYM #OOOEAh
2L:IST #OOO55h REALEXT #OOOlEh
2 REAL #OOOllh REALOB #OOOlOh
3 REAL #OOlllh REALOBOB #OOlOOh
:IDREAL #OOO61h REALREAL #OOOllh
L:ISTCMP #OOO52h REALSYM #OOOlAh
L:ISTLAM #OOO57h ROMPANY #OOOFOh
L:ISTREAL #OOO51h SYMBUN:IT #OOO9Eh
SYMREAL #OOOAlh SYMEXT #OOOAEh
SYMSYM #OOOAAh SYM:ID #OOOA6h
TAGGEDANY #OOODOh SYMLAM #OOOA7h
EXTOBOB #OOEOOh SYMOB #OOOAOh

46 Basic Programming Tools

.-../

/

Object Type Tests
There may be times when an initial test is not sufficient - a list must be in level one, but the contents of the list are
also important. Two sets of objects are provided for System-RPL which are useful for testing the type of an object.
These objects return the internal flags TRUE or FALSE (described in detail in Tests). The stack diagrams below
illustrate the operation of the object tests:

TYPEREAL?
Returns TRUE if object is a real number

Object -7 FLAG
DUPTYPEREAL?
Returns object and TRUE if object is a real number

Object -7 Object FLAG

The objects in the first column test the type, returning a flag . The objects in the fourth column duplicate the object
before testing the type.

Object type Test Object Address Dup-and-Test Object Address
Array TYPEARRY? #62198h DUPTYPEARRY? #62193h
Internal binary integer TYPEBl:NT? #6212Fh DUPTYPEBl:NT? #6212Ah
Complex array TYPECARRY? #62256h
Character TYPECHAR? #62025h DUPTYPECHAR? #62020h
Complex number TYPECMP? #62183h DUPTYPECMP? #6217Eh
Program TYPECOL? #62IECh DUPTYPECOL? #621E7h
String TYPECSTR? #62159h DUPTYPECSTR? #62154h
Unit TYPEEXT? #6204Fh DUPTYPEEXT? #6204Ah
Graphics object TYPEGROB? #62201h DUPTYPEGROB? #621FCh
Hex string TYPEHSTR? #62144h DUPTYPEHSTR? #6213Fh
Identifier (global name) TYPE l:DNT ? #6203Ah DUPTYPEl:DNT? #62035h
Temp. identifier (local TYPELAM? #6211Ah DUPTYPELAM? #62115h
name)
List TYPELl:ST? #62216h DUPTYPELl:ST? #62211h
Real array TYPERARRY? #6223Bh
Real number TYPEREAL? #03F8Bh DUPTYPEREAL? #62169h
ROM pointer (XLIB name) TYPEROMP? #621ADh DUPTYPEROMP? #621A8h
Directory TYPERRP? #621C2h DUPTYPERRP? #62IBDh
Symbolic TYPE SYMB ? #62ID7h DUPTYPESYMB? #62ID2h
Tagged TYPE TAGGED? #6222Bh DUPTYPETAG? #62226h

Note: The objects TYPECARRY? and TYPERARRY? assume an array object is on the stack,
and expect to find a prologue 10 nibbles into the object being tested.)

These tests can be helpful when the filtering provided by the check-and-dispatch mechanism does not provide a
sufficient level of detail. For example, suppose a System-RPL program wants to ensure that it is processing a real
number in level 2 and an array of real numbers in level one. The program shell might look like this:

CK2NOLASTWD OLASTOWDOB!
CK&DISPATCH1
00014

DUP TYPERARRY? NcaseSIZEERR

This program would issue a Bad Argulilent Val ue error if the array was not an array of real numbers. The error
is issued by the object NcaseSIZEERR ifthe flag on the stack is FALSE. Notice that the type checks for real and
complex arrays don't have corresponding objects which first duplicate the object in question, so in this example the
DUP had to be included.

Basic Programming Tools 47

Temporary Variables
Programs written in System-RPL have access to a much more flexible temporary (local) variable system than
programs written in User-RPL. Temporary variables are stored in memory structures called "temporary
environments". Like local variables in User-RPL, temporary variables can be very useful for cleaning up programs
that otherwise would manage everything on the stack with great difficulty. In User-RPL, nested local variable
environments are permitted, and the same goes for System-RPL. In System-RPL the creation of a temporary
variable environment can happen at any time - it is not restricted to the beginning of a secondary. Temporary
environments are stacked - they are abandoned in the reverse chronological order of their creation.

Remember:

Temporary variables reside in temporary memory. When system garbage collection occurs, temporary memory
is scanned and pointers to objects in temporary memory residing on the stack or in temporary variables are
updated.

• When a temporary variable name is executed, the contents of the variable are recalled to the stack, but not
executed.

• Storing to a temporary variable is typically quite fast, because temporary environments are typically small, and
the system avoids the overhead of moving all the data in global variables.

In System-RPL, the object BIND does the job of ~ in User-RPL, and the object ABND does the job of» (actually
named x»ABND - you'll see this if you decompile a User-RPL program using a tool like Jazz). BIND expects the
objects to be stored in temporary variables to be on the stack along with a list of temporary variable names in level
one.

The object DOBIND does the work for BIND - the temporary variable names and their count are expected on the
stack.

The RPL compiler creates a temporary variable name with the compiler directive LAM. For instance, to compile the
temporary variable name "Fred", the compiler source should read LAM Fred. To save space, System-RPL also
provides for null-named temporary variables (see Using Null-Named Temporary Variables) . Space is saved because
no name is stored and the temporary variables are referenced by number. The object NULLLAM may be used
instead of a temporary variable name.

BIND #074DOh
Creates a temporary environment

obn ... Ob2 ObI { LAM namen ... LAM name2 LAM namel } ~
obn ... Ob2 ObI {NULLLAMn ... NULLLAM2 NULLLAMI } ~

DOBIND #074E4h
Creates a temporary environment

obn .. . Ob2 ObI LAM namen ... LAM name2 LAM name} #n ~
obn ... ob2 ObI NULLLAMn .. . NULLLAM2 NULLLAMI #n ~

ABND #07497h
Discards the topmost temporary environment

~

When temporary variables are named, the process of storing to and recalling from temporary variables is the same as
for User-RPL:

LAM Fred ... ;
, LAM Fred STO

STO

Recalls the contents of temporary variable Fred
Stores an object into temporary variable Fred

#07D27h
Stores an object in a temporary variable

object name ~

There is no compiler requirement that there be a firm one-to-one matching between BINDs and ABNDs. A
secondary that has multiple exit points may need to have more than one ABND to ensure that temporary
environments are discarded properly. The program QRT3 below illustrates this.

48 Basic Programming Tools

To compare the use of temporary variables in User-RPL and System-RPL, we'll begin by comparing two programs
that do similar jobs - finding the roots of a quadratic equation x=ax2+bx+c. We'll use the quadratic formula:

The stack diagram for these program examples will be:

abc ~ root) root2

To keep things simple, the System-RPL examples will return the string" COIl'lP 1 ex Root s" if the quantity b2-4ac
is negative. (This is one of the attractive features of User-RPL: the polymorphic behavior of the operators lets you
avoid writing extra code.)

We illustrate the use of temporary variables with four example programs. The first is written in User-RPL, the rest
are written in System-RPL. The results are stored in temporary variables to illustrate the process, even though this is
somewhat inefficient (the results could simply be left on the stack). Notice that this example uses compiled
temporary variable ~a, which will work only on HP 48GIGX calculators.

QRT1.RPL
«

o 0 « ~a 2 * / »
~ ~a b c rooti root2 Subr
«

b SQ ~a c * 4 * - !
b NEG OVER + Subr EVAL
I rooti STO
b NEG ROT - Subr EVAL
I root2 STO
rooti root2

Place zeros and subroutine on the stack
Create temporary variables

Calculate SQRT(iJ2-4ac)
Calculate first root
Store first root in local variable root 1
Calculate second root
Store second root in temporary variable root2
Return roots to the stack
Discards local variables

This is what QRTl.RPL looks like when expressed in System-RPL:

x«
%0 %0 xSILENT I

:: x« LAM ~a %2 x* xl x» i

xRPL-> LAM ~a LAM bLAMe LAM rootl LAM root2 LAM Subr
x«

LAM b xSQ LAM ~a LAM c x* %4 x* x- xSQRT
LAM b xNEG xOVER x+ LAM Subr xEVAL
Xl LAM rootl xENDTIC xSTO
LAM b xNEG xROT x- LAM Subr xEVAL
Xl LAM root2 xENDTIC xSTO
LAM rootl LAM root2

x»ABND
x»

Basic Programming Tools 49

Using Named Temporary Variables
The fIrst System-RPL example uses named temporary variables:

QRTI 250.5 Bytes Checksum #33EEh
(%a %b %c ~ %rootl %root2)

50

OLASTOWDOB! CK3NOLASTWD
CK&DISPATCHl 3REAL

%0 %0
, :: LAM a %2 %* %/

LAM a
LAM b
LAM c
LAM rootl
LAM root2
LAM Subr

BIND

LAM b DUP %* LAM a LAM c %* %4 %* %­
DUP %0< casedrop "Complex Roots"

%SQRT
LAM b %CHS OVER %+ LAM Subr EVAL
, LAM rootl STO
LAM b %CHS SWAP %- LAM Subr EVAL
, LAM root2 STO
LAM rootl
LAM root2

ABND

Expect three arguments
Insist on three real numbers

Placeholder values for rootl and root2
Place subroutine on the stack

List of temporary variable names
Create temporary variable environment

Evaluate iJ2-4ac
If <0, drop quantity, put string on stack,

abandon temp env. and exit secondary
Evaluate SQRT(b2-4ac)
Calculate first root
Store in root!
Calculate second root
Store in root2
Retumfirst root to the user
Return second root to the user

Abandon temporary environment

Basic Programming Tools

-

L

L
L

..... i

Using Null-Named Temporary Variables
The second System-RPL example uses null-named temporary variables. When the object NULLLAM is used instead
of a name, space is saved in the temporary environment. Access to null-named temporary variables is specified by
the variable's number position in the temporary environment rather than by name. This kind of direct access is more
efficient than searching through a series of names.

The objects PUTLAM and GETLAM are the fundamental tools used to store objects to and recall objects from
temporary variables:

PUTLAM #075E9h
Stores an object into numbered temporary variable

object #Variable -7

GETLAM #075A5h
Recalls an object from a numbered temporary variable

#variable -7 object
NULLLAM #34D30h
Null temporary variable name

-7

The use of PUTLAM and GETLAM can be streamlined by using objects which combine the bint specifying the
temporary with the PUT or GET action. For instance, 2 PUT LAM combines TWO PUTLAM into a single action that
stores an object into the second temporary variable, and 4GETLAM combines FOUR GETLAM into a single object
that recalls the object stored in the fourth temporary variable. These combined actions save code and are quite
efficient.

PUTLAM GETLAM
Combinations Combinations

Object Address Object Address
lPUTLAM #615EOh lGETLAM #613B6h
2PUTLAM #615FOh 2GETLAM #613E7h
3PUTLAM #61600h 3GETLAM #6140Eh
4PUTLAM #61635h 4GETLAM #61438h
SPUTLAM #61625h SGETLAM #6145Ch
6PUTLAM #61635h 6GETLAM #6146Ch
7PUTLAM #61645h 7GETLAM #6147Ch
8PUTLAM #61655h 8GETLAM #6148Ch
9PUTLAM #61665h 9GETLAM #6149Ch
10PUTLAM #61675h 10GETLAM #614ACh
llPUTLAM #61685h llGETLAM #614BCh
12PUTLAM #61695h 12GETLAM #614CCh
13PUTLAM #616A5h 13GETLAM #614DCh
14PUTLAM #616B5h 14GETLAM #614ECh
lSPUTLAM #616C5h lSGETLAM #614FCh
16PUTLAM #616D5h 16GETLAM #615OCh
17PUTLAM #616E5h 17GETLAM #6151Ch
18PUTLAM #616F5h 18GETLAM #6152Ch
19PUTLAM #61705h 19GETLAM #6153Ch
20PUTLAM #61715h 20GETLAM #6154Ch
21PUTLAM #61725h 21GETLAM #6155Ch
22PUTLAM #61735h 22GETLAM #6156Ch

Basic Programming Tools 51

The example program QRTI uses these combination objects to yield a somewhat more efficient program. Here, we
use DOBIND instead of BIND.

QRT2 184 Bytes Checksum #12B1h
(%a %b %c ~ %rootl %root2)

OLASTOWDOB! CK3NOLASTWD
CK&DISPATCHl 3REAL

%0 %0
, :: 6GETLAM %2 %* %/

, NULLLAM
, NULLLAM
, NULLLAM
, NULLLAM
, NULLLAM
, NULLLAM
SIX OOBIND

Expect three arguments
Insist on three real numbers

Placeholder values for root! and root2
Place subroutine on the stack
Temporary variable null names:

a will be in temporary variable 6
b will be in temporary variable 5
c will be in temporary variable 4
rootl will be in temporary variable 3
root2 will be in temporary variable 2
Subr will be in temporary variable 1

Create temporary environment

5GETLAM DUP %* 6GETLAM 4GETLAM %* %4 %* %- Evaluate b2-4ac
DUP %0< casedrop "Complex Roots" If <0, drop quantity, put string on stack.,

%SQRT
5GETLAM %CHS OVER
3PUTLAM
5 GET LAM %CHS SWAP
2 PUT LAM
3GETLAM
2GETLAM

ABND

%+ lGETLAM EVAL

%- 1GETLAM EVAL

and exit secondary
Evaluate SQRT(iJ2-4ac)
Calculate first root
Store first root
Calculate second root
Store second root
Return first root to the user
Return second root to the user

Abandon temporary environment

As an exercise, try rewriting this example to use CACHE (described later) instead of DOBIND.

52 Basic Programming Tools

Programming Hint for Temporary Variables
Notice that for a non-trivial program the source code can quickly tum into a blizzard of nPUTLAMs and nGETLAMs
which become hard to read. The RPL compiler's DEFINE directive can be used to associate easier-to-remember
words with objects like 17GETLAM.

The code in QRT2.S is more efficient than the code in QRTl.S, but the code becomes less readable. When the
source code is being prepared with RPLCOMP.EXE on a PC, DEFINE statements can be used to make the source
code easier to manage. There are two techniques for using DEFINE with local variable names. The first is to use
DEFINE to rename long variable names to short variable names (saving RAM). The second is to use DEFINE to
map names directly to the GETLAM and PUTLAM combination objects. An example of the second use of DEFINE
is the program QRT3.

We make an additional change to illustrate the use of ABND. In User-RPL, the trailing» in a program using local
variables abandons the temporary environment. In System-RPL, an exit from a secondary can be coded with objects
like case, but you must keep track of temporary environments yourself. In this example, there are two uses of
ABND, one for the complex roots exit and one for the real roots exit. (Note that multiple exits from secondaries like
this are prone to coding errors - be careful!)

QRT3 181.5 Bytes Checksum #B158h
(%a %b %c -7 %rootl %root2)
DEFINE a 6GETLAM
DEFINE b 5GETLAM
DEFINE c 4GETLAM
DEFINE root1 3GETLAM
DEFINE root1STO 3PUTLAM
DEFINE root2 2GETLAM
DEFINE root2STO 2PUTLAM
DEFINE Subr 1GETLAM

OLASTOWDOB! CK3NOLASTWD
CK&DISPATCH1 3REAL

%0 %0
: : a %2 %* %/

NULL LAM
NULL LAM
NULL LAM
NULLLAM
NULLLAM
NULL LAM

BIND
b DUP %* a c %* %4 %* %­
DUP %0< casedrop

:: "Complex Roots" ABND
%SQRT
b %CHS OVER %+ Subr EVAL
root1STO
b %CHS SWAP %- Subr EVAL
root2STO
root1
root2
ABND

Expect three arguments
Insist on three real numbers

Placeholder values for root1 and root2
Place subroutine on the stack
List of temporary variable null names:

a will be in temporary variable 6
b will be in temporary variable 5
c will be in temporary variable 4
root} will be in temporary variable 3
root2 will be in temporary variable 2
Subr will be in temporary variable}

Create temporary environment
Evaluate b2-4ac
If <0, drop quantity, put string on stack,
abandon temp env. and exit secondary

Evaluate SQRT(~-4ac)
Calculate first root
Store first root
Calculate second root
Store second root
Retumfirst root to the user
Return second root to the user
Abandon temporary environment

Notice that the use of DEFINEs makes the source code much easier to read.

Basic Programming Tools 53

Additional Temporary Variable Utilities
The following objects are available for working with temporary variables and environments. Some of these objects
combine commonly used sequences of operations.

lABNDSWAP #62DB3h
Equivalent to : : lGETLAM ABND SWAP i

ob ~ Oblam ob
1GETABND #634B6h
Equivalent to : : lGETLAM ABND i

~ Oblam

1GETSWAP #62F07h
Equivalent to : : lGETLAM SWAP i

ob ~ obi am ob
1LAMB:IND #634CFh
Equivalent to : : { NULLLAM } BIND i

ob ~
1NOLLLAM{} #34D2Bh
Returns a list containing NULLLAM

~ {NULLLAM }
2GETEVAL #632E5h
Equivalent to : : 2GETLAM EVAL i

~

4NOLLLAM{} #52D26h
Returns a list containing four NULLLAMs

~ { NULLLAM NULLLAM NULLLAM NULLLAM }
@LAM #07943h
Recalls temporary variable by name. If variable exists, the object and TRUE
will be returned, otherwise FALSE will be returned.

lam ~ Oblam TRUE
lam ~ FALSE

CACHE #61CE9h
Saves n objects and n in a new temporary environment, with each temporary
variable named with the provided name.

obn ... ObI n name ~

DUMP #61EA7h
The inverse of CACHE, but works only if NULLLAM was the name used.
Forces a garbage collection.

~ obn ... ObI n
DUP1LAMB:IND #634CAh
Equivalent to : : DUP { NULLLAM } BIND i

ob ~ ob
DUP4PUTLAM #61610h
Equivalent to : : DUP 4PUTLAM i

ob ~ ob
DUPTEMPENV #61745h
Duplicates the topmost temporary environment

~

GETLAMPA:IR #617D8h
is assumed to be lO*k, where k is the index of the desired temporary variable.
If k9J, where N is the number of temporary variables in the environment, the
stored object, temporary variable name, and FALSE are returned. If k>N, then
TRUE is returned.

~ TRUE
~ ob name FALSE

54 Basic Programming Tools

"-" .

I

Error Trapping
In User-RPL the IFERR ... THEN . .. [ELSE ...] END structures may be used to trap errors. In System­
RPL, the objects ERRSET, ERRJMP, and ERRTRAP provide error trapping capabilities.

In practice, the structure of an error trap is:

ERRSET
suspect_object
ERRTRAP
i ferr_obj ect

When suspeccobject is being executed, any execution of the object ERRJMP will cause the rest of the
suspeccobject to be discarded and execution will resume at iferr _object. If no error occurs, iferr _object will be
skipped and execution will continue with the following object.

Error Trapping Mechanics
When an error occurs, it is important that the system be returned to a known state for a graceful recovery. In
particular, temporary environments and DoLoop environments that may have been established within the
suspeccobject must be discarded. The mechanism for this consists of a protection word associated with each
environment which is initialized to zero when the environment is created by either DO or BIND.

When ERRSET is executed, the protection words for the most recently created temporary and DoLoop environments
are incremented.

If ERRJMP (or a related object like ABORT) is executed, the remainder of the suspeccobject is discarded and the
protection words for the most recently created temporary and DoLoop environments are examined. If the protection
word is non-zero, it is decremented. If the protection word is zero, the environment is discarded. Note that the
protection word is a counter, and not a single state setting, so error traps can be nested.

ERRTRAP is executed only if no error occured. When ERRTRAP is executed, the protection words in the topmost
temporary and DoLoop environments are decremented and the iferr _object is skipped.

ERRSET #04E5Eh
Increments topmost temporary and DoLoop protection words

~

ERRTRAP #04EB8h
Decrements topmost temporary and DoLoop protection words and skips the
next object

~

ERRJMP #04EDlh
Generates an error

~

Generating an Error
In User-RPL the command DOERR generates an error, taking as its argument either a string or a number specifying a
message that is built into the HP 48 or an attached library. In System-RPL the actions of DOERR are divided into
three actions:

The object ERRORSTO stores a binary integer specifying a built-in message into a reserved memory location
that can be read later. If the error is to be reported to the user as a string, the object EXITMSGSTO stores a
pointer to the string into a reserved memory location and #70000h is stored to indicate a text error.
The object AtUserStack declares user ownership of all stack objects.
The object ERRJMP initiates the error jump itself.

For a list of error message numbers, see Appendix A.

Basic Programming Tools 55

The use of AtUserStack is unique to the User-RPL DOERR, and may not always be needed or appropriate for
your error traps. The objects ERRORCLR, ERRORS TO, and EXITMSGSTO store error code infonnation:

ERRORCLR #04D33h
Clears the stored error number

~

ERRORSTO #04DOEh
Stores an error number

~
EX:ITMSGSTO #04E37h
Stores an error string

$ ~

Handling an Error
When the iferr _object is executed, the temporary environments and DoLoop environments have been restored to the
state prior to execution of the suspeccobject. The iferr _object may need to consider side effects generated by the
suspeccobject, such as extra objects left on the stack or a system mode that has been altered.

Part of the action of an iferr _object is to interpret the error being handled. The objects ERROR@ and GETEXITMSG
may be used to recall the contents of stored error codes:

GETEX:ITMSG #04E07h
Recalls the exit message string

~ $
ERROR@ #04CE6h
Recalls the error number

~ #

Example: A prototype error handler for a plotting application might wish to ignore math errors such as division by
zero. The code fragment below uses ERROR@ to recall the error number. If the error does not correspond to an
anticipated error, the object ERRJMP is used to pass the error up to the next error handler. Error numbers from 769
to 773 are floating point errors. In this example the error is merely ignored.

56

ERRSET

Calculate_A_Point
Plot_The_Point

ERRTRAP

ERROR@ DUP
769 #<
SWAP 773 #>
OR IT ERRJMP

Increment protection words
The suspeccobject

The iferr _object
Recall the error number
Less than 769?
Greater than 773?
Pass the error along if not a floating point error

Basic Programming Tools

""'; 1

-..-I I

Additional Error Objects
The following objects are also provided for error management:

ABORT #04EA4h
Clears the stored error number and does ERRJMP

-+
DO $ EX:IT #15048h
Stores #70000h for the error number, stores the string message, does
AtUserStack, then does ERRJMP

$ -+
DO#EX:IT #1502Fh
Stores the error number, does AtUserStack, then does ERRJMP

-+
ERRBEEP #141E5h
Generates a standard error beep

-+
ERROROUT #6383Ah
Stores the error number, then does ERRJMP

-+
JstGETTHEMSG #04D87h
Returns a message from a message table

-+ $
SETMEMERR #04FB6h
Generates I nsuf' f' i c i ent Mertlory error

-+
SETS:IZEERR #18CA2h
Generates Bad Argurtlent Value error

-+
SETTYPEERR #18CB2h
Generates Bad Argurtlent Type error

-+
SETSTACKERR #18CC2h
Generates Too Few Argurtlent s error

-+
SET:IVLERR #29DFCh
Generates Undef' i ned Resu 1 terror

-+
SETNONEXTERR #18C92h
Generates Undef' i ned Hartle error

-+

Basic Programming Tools 57

Stack Operations
The objects listed here perform one or more stack operations. You can save code by using combination objects like
4PICKSWAP instead of FOUR PICK SWAP. Some stack operations that are combined with binary integer math
operations are also listed under Binary Integers. Some objects have the same address, such as UNROT and
3 UNROLL. You may use whichever name best matches your way of thinking about a procedure.

#+ROLL #612DEh
obm+n ... obI #rn #n ~ Obm+n-I ... obI obm+n

#+UNROLL #6133Eh
obm+n ... ObI #rn #n ~ obI obm+n ... Ob2

#-ROLL #612CCh
obm_n ... ObI #rn #n ~ Obm-n-I .. . ObI obm-n

#-UNROLL #6132Ch
obm-n ... obI #rn #n ~ obI obm-n ... Ob2

#l+NDROP #62F75h
Obn+I .. . ObI #n ~

#l+PICK #611A3h
obn+I ... ObI #n ~ obn+I ... ObI obn+I

#l+ROLL #612F3h
obn+I ... obI #n ~ obn .. . obI obn+I

#l+ONROLL #61353h
obn+I .. . ObI #n ~ obI obn+) .. . Ob2

#2+PICK #611BEh
Obn+2 .. . ObI #n ~ obn+2 ... ObI Obn+2

#2+ROLL #61318h
obn+2 ... ObI #n ~ obn+) ... ObI Obn+2

#2+ONROLL #61365h
Obn+2 ... ObI #n ~ obI obn+2 ... obz

#3+PICK #61ID2h
Obn+3 ... obI #n ~ Obn+3 ... obI Obn+3

#4+PICK #611Elh
obn+4 ... ObI #n ~ obn+4 ... ObI obn+4

#+PICK #61184h
obm+n ... ObI #rn #n ~ obm+n ... ObI obm+n

lOUNROLL #6312Dh
obIO ... ObI ~ obI ObIO ... Ob2

2 DROP #03258h
Ob2 ObI ~

2DROPOO #6254Eh
Ob2 obI ~ #0#0

2DROPFALSE #62BOBh
Ob2 ObI ~ FALSE

2DOP #031ACh
Ob2 obI ~ obz ObI ob2 ObI

2DOPSROLL #63C40h
ob3 ob2 ObI ~ Ob2 ObI Ob2 obI Ob3

2DOPSWAP #611F9h
Ob2 obI ~ Ob2 ObI ObI Ob2

2 OVER #63FBAh
Ob4 ob3 Ob2 obI ~ ob4 Ob3 Ob2 obI ob4 Ob3

2 SWAP #6200Ih
ob4 ob3 Ob2 obI ~ Ob2 ObI Ob4 ob3

58 Basic Programming Tools

I
\:J

-../

'-'

...."

--
'-'

-..-/

'-'

--
'-'

--
'-'

'-'

'-"

-../

-../

-..-/

-..-/

-../

'-"

-..-/

-..-/

-..-/

'-'

..J

.J

-./

'--'

'-'

..J

..J

-../

'-'

'-'

'--'

'-'

-..../

-..,./

..J

-..../

..J

~

'-'"

3 DROP #60F4Bh
Ob3 ob2 ObI ~

3PICK #611FEh
ob3 ob2 ObI ~ Ob3 ob2 ObI Ob3

3PICK3PICK #63C68h
ob3 Ob2 ObI ~ Ob3 Ob2 ObI Ob3 Ob2

3PICKOVER #630B5h
ob3 Ob2 ObI ~ Ob3 ob2 ObI Ob3 ObI

3PICKSWAP #62EDFh
Ob3 Ob2 ObI ~ Ob3 Ob2 Ob3 ObI

3UNROLL #60FACh
Ob3 Ob2 ObI ~ ObI Ob3 Ob2

4 DROP #60F7Eh
ob4 Ob3 Ob2 ObI ~

4PICK #6121Ch
ob4 Ob3 Ob2 ObI ~ Ob4 Ob3 ob2 ObI Ob4

4PICKOVER #63OC9h
ob4 Ob3 Ob2 ObI ~ Ob4 Ob3 Ob2 ObI ob4 ObI

4PICKSWAP #62EF3h
ob4 Ob3 Ob2 ObI ~ ob4 ob3 Ob2 Ob4 ObI

4ROLL #60FBBh
Ob4 Ob3 Ob2 ObI ~ Ob3 Ob2 ObI Ob4

4 ROLLDROP #62864h
Ob4 Ob3 Ob2 ObI ~ Ob3 ob2 ObI

4 ROLLOVER #630Alh
Ob4 Ob3 Ob2 ObI ~ Ob3 Ob2 ObI ob4 ObI

4 ROLLROT #63001h
Ob4 Ob3 Ob2 obI ~ ob3 ObI Ob4 o~

4 ROLL SWAP #62ECBh
ob4 Ob3 Ob2 ObI ~ Ob3 Ob2 ob4 ObI

4UNROLL #6109Eh
Ob4 Ob3 Ob2 ObI ~ ObI ob4 Ob3 Ob2

4UNROLL3DROP #6113Ch
Ob4 Ob3 Ob2 ObI ~ ObI

4UNROLLDUP #62D09h
ob4 Ob3 Ob2 ObI ~ ObI Ob4 Ob3 Ob2 o~

4UNROLLROT #63015h
Oh4 Ob3 o~ ObI ~ ObI Oh3 ob2 Ob4

SDROP #60F72h
Ob5 Oh4 Ob3 o~ ObI ~

SPICK #6123Ah
Ob5 Oh4 Ob3 Ob2 OhI ~ Oh5 Oh4 Ob3 Ob2 ObI ob5

5 ROLL #60FD8h
Ob5 Ob4 Oh3 Ob2 ObI ~ Oh4 Ob3 Oh2 ObI Ob5

SROLLDROP #62880h
Ob5 Oh4 Ob3 Ob2 obI ~ ob4 ob3 Ob2 obI

SUNROLL #610C4h
Oh5 Ob4 ob3 Ob2 obI ~ ObI Ob5 ob4 Oh3 o~

Basic Programming Tools 59

6 DROP #60F66h
ob6 obs ob4 Ob3 ob2 ObI ~

6PJ:CK #6125Eh
Ob6 obs Ob4 ob3 ob2 obI ~ Ob6 obS Ob4 ob3 o~ ObI Ob6

6ROLL #61002h
Ob6 obs ob4 Ob3 o~ ObI ~ obs Ob4 ob3 Ob2 ObI Ob6

6UNROLL #61OFAh
Ob6 obs ob4 Ob3 ob2 ObI -7 ObI Ob6 obs ob4 Ob3 O~

7 DROP #60F54h
Otry ... ObI ~

7PJ:CK #61282h
otry ... ObI ~ ob7 ... ObI Ob7

7 ROLL #6106Bh
otry ... ObI ~ ob6 ... ObI ob7

7UNROLL #62BC4h
otry .. . ObI ~ ObI ob7 ... Ob2

8PJ:CK #612A9h
obg ... ObI ~ obg ... ObI obg

8 ROLL #6103Ch
obg ... ObI ~ Ob7 ... ObI obg

8UNROLL #63119h
obg ... ObI ~ ObI Obg ... O~

DEPTH #0314Ch
obn ... ObI ~ obn .. . ObI #n

DROP #03244h '-" .

ob ~
DROPDUP #627A7h

ob2 ObI ~ Ob2 o~
DROPFALSE #621OCh

ob ~ FALSE
DROPNDROP #63FA6h

obn ... ObI #n ob ~
DROPNULL$ #04D3Eh

ob ~ NULL$
DROPONE #62946h

ob ~ #1
DROPOVER #63029h

ob3 ob2 ObI ~ Ob3 Ob2 Ob3
DROPROT #62FC5h

ob4 Ob3 Ob2 ObI ~ ob3 o~ Ob4
DROPSWAP #627OCh

Ob3 Ob2 ObI ~ Ob2 Ob3
DROPSWAPDROP #62726h

Ob3 Ob2 ObI ~ ob2
DROP TRUE #62103h

ob ~ TRUE
DROP ZERO #62535h

ob ~ #0

60 Basic Programming Tools

DUP #03188h
ob ~ ob ob

DUP#l+PJ:CK #6119Eh
obn ... obi #n ~ obn ... obi #n obn

DUP3PJ:CK #611F9h
Ob2 obi ~ Ob2 obi obI Ob2

DUP4UNROLL #61099h
ob3 Ob2 obi ~ obi Ob3 Ob2 obi

DUPDUP #62CB9h
ob ~ ob ob ob

DUPONE #63A9Ch
ob ~ ob ob #1

rnUPPJ:CK #630DDh
obn ... obi #n ~ obn ... obi #n obn_1

DUPROLL #630Flh
obn ... obi #n ~ obn Obn-2 ... obi #n Obn_1

DUPROT #62FBlh
ob2 obi ~ obi obI Ob2

DUPTWO #63AD8h
ob ~ ob ob #2

DUPUNROT #61380h
Ob2 obI ~ obI Ob2 obI

DUPZERO #63A88h
ob ~ ob ob #0

N+1DROP #62F75h
,I Obn+1 ... obI #n ~

NDROP #0326Eh
obn ... obI #n ~

t-NDROPFALSE #169A5h
obn ... obi #n ~ FALSE

NDUP #03ID9h
obn ... obI #n ~ obn ... obI obn ... obI -

NDUPN #5E37 Oh
ob #n ~ ob ... ob #n

ONEFALSE #6353 3h
~ #1 FALSE

ONESWAP #62E6 7h
ob ~ #1 ob

OVER #032 C2h
Ob2 obI ~ Ob2 obI Ob2

OVERSPJ:CK #63C 90h
Ob4 Ob3 Ob2 obI ~ Ob4 Ob3 Ob2 obI Ob2 Ob4

OVERDUP #62C CDh

roVERSWAP
Ob2 obI Ob2 obI Ob2 Ob2

D31h
~

#62
Ob2 obI ~ Ob2 Ob2 obi

OVERUNROT #62 D31h
Ob2 obI ~ Ob2 Ob2 obI -

Basic Programming Tools 61

0 '

'-..J

PICK #032E2h
obn ... obi #n -? obn ... obi obn

ROLL #03325h
obn ... obi #n -? obn_1 ... ObI obn

ROLLDROP #62F89h
obn ... obi #n -? Obn_1 .. . obi

ROLLSWAP #62D45h
obn ... ObI #n -? obn_I ... Ob2 obn obi

ROT #03295h
ob3 Ob2 obi -? ob2 obi ob3

ROT2DROP #62726h
Ob3 o~ ObI -? Ob2

ROT2DUP #62C7Dh
Ob3 Ob2 ObI -? Ob2 obi Ob3 ObI Ob3

ROTDROP #60F2lh
.-J

Ob3 Ob2 obi -? Ob2 obi
ROTDROPSWAP #60FOEh

Ob3 Ob2 ObI -? ObI o~
ROTDUP #62775h

Ob3 Ob2 ObI -? ob2 ObI Ob3 Ob3
ROTOVER #62CA5h

ob3 Ob2 obi -? Ob2 obi Ob3 ObI
ROTROT2DROP #6112Ah

Ob3 ob2 obi -? obi
ROTSWAP #60EE7h

Ob3 Ob2 ObI -? Ob2 Ob3 ObI
SWAP #03223h

Ob2 obi -? obi Ob2
SWAP 2 DUP #6386Ch

Ob2 obi -? obi o~ ObI Ob2
SWAP3PICK #63C54h

Ob3 Ob2 obI -? Ob3 ObI Ob2 Ob3
SWAP4PICK #63C7Ch

.J

Ob4 ob3 Ob2 ObI -? ob4 ob3 obi Ob2 Ob4
SWAP4ROLL #63C2Ch

Ob4 Ob3 Ob2 obi -? ob3 obi Ob2 Ob4
SWAPDROP #60F9Bh

Ob2 obi -? obi
SWAPDROPDUP #62830h

ob2 ObI -? obi obi
SWAPDROPSWAP #6284Bh

Ob3 Ob2 obi -? obi ob3
SWAPDROPTRTJE #21660h

Ob2 ObI -? obi TRUE
SWAPDUP #62747h

Ob2 ObI -? obi Ob2 Ob2
SWAPONE #63ABOh

Ob2 obi -? obi o~ #1
SWAPOVER #61380h

o~ ObI -? ObI o~ ObI

62 Basic Programming Tools

SWAPROT #60F33h
Ob3 ob2 obI ~ obI Ob2 Ob3

SWAPTRUE #4FID8h
Ob2 obI ~ obI Ob2 TRUE

UNROLL #0339Eh
obn ..• obI #n ~ obI obn .•. Ob2

UNROT #60FACh
Ob3 Ob2 obI ~ obI Ob3 Ob2

UNROT2DROP #6112Ah
Ob3 Ob2 obI ~ obI

UNROTDROP #6284Bh
ob3 Ob2 obI ~ obI Ob3

UNROTDUP #62CF5h
Ob3 Ob2 obI ~ obI ob3 ob2 ob2

UNROTOVER #6308Dh
Ob3 Ob2 obI ~ obI ob3 Ob2 Ob3

UNROTSWAP #60F33h
Ob3 Ob2 obI ~ obI ob2 ob3

UNROTSWAPDRO #60FOEh
Ob3 Ob2 obI ~ obI Ob2

ZEROOVER #63079h
ob ~ ob #0 ob

ZEROSWAP #62E3Ah
ob ~ #0 ob

reversym #5DE7Dh
obn .. . obI #n ~ Obl·· · obn #n

NOTE: The object reversym is written in System-RPL and is slow - see the program RVRSO in Writing Your
Own Code Objects for an assembly language version that's much faster.

Control Structure Examples
There are an infinite number of ways to illustrate the objects and techniques that have just been described in this
chapter. The first two examples provided here check an argument, loop, use case, and display text using objects
described later in the book. The third example uses the return stack to filter a list and count the number of real
number objects in the list.

You can use SEMI to build your own control structures in a variety of creative ways. The first two examples
illustrate executing the first n of a series of procedures (there are many ways to approach this problem). The first
approach uses a list containing all the procedures and a loop that extracts and executes the desired procedures. The
second approach pushes a series of flags on the stack and uses SEMI to decide when to quit. The usefulness of each
approach will depend on the circumstances under which it's used.

We hope these examples will stimulate some creative thinking as you consider your programming projects. Spend
some time comparing these two examples. Which is faster? Why?

In the second example, why is there a ? SEMI before the first procedure, since at this point we know that at least one
procedure will be executed? Try removing it and changing the loop counter. (Hint: DO loops execute at least once.)

Basic Programming Tools 63

I

PLIST Example
The program PLIST executes the first n of a series of procedures encapsulated in a list.

PLIST 158.5 Bytes Checksum #F53h
(% ~)

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 real

ClrDA1IsStat RECLAIMDISP
TURNMENUOFF
SetDAsTernp
COERCE
DUP#O= caseDROP
DUP FIVE #> case SETSIZEERR
#1+_0NE_DO (DO)

{

"ONE" DISPROW1
"TWO" DISPROW2

.. "THREE" DISPROW3

. . "FOUR" DISPROW4
"FIVE" DISPROW5

INDEX@ NTHCOMPDROP
EVAL

LOOP

SEMI Example

Clear saved command name, require one object
Require a real number

Suspend clock, assert and clear stack display
Tum off the menu display
Freeze the display when program ends
Convert real number to internal binary integer
Quit if no procedures are to be executed
Error out if more than five procedures specified
Loop from 1 to number of procedures specified
List of procedures

First procedure
Second procedure
Third procedure
Fourth procedure
Fifth procedure

Get loop index, extract nth procedure
Execute nth procedure
End of loop

The program SEMI executes the first n of a series of procedures separated by SEMI tests.

SEMI 145 Bytes Checksum #354h
(% ~)

64

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 real

ClrDA1IsStat RECLAIMDISP
TURNMENUOFF
SetDAsTernp
COERCE
DUP#O= caseDROP
DUP FIVE #> case SETSIZEERR
TRUE SWAP
ZERO DO FALSE LOOP
?SEMI
"ONE" DISPROW1
?SEMI
"TWO" DISPROW2
?SEMI
"THREE" DISPROW3
?SEMI
"FOUR" DISPROW4
?SEMI
"FIVE" DISPROW5
DROP

Clear saved command name, require one object
Require a real number

Suspend clock, assert and clear stack display
Tum off the menu display
Freeze the display when program ends
Convert real number to internal binary integer
Quit ifno procedures are to be executed
Error out if more than five procedures specified
Push TRUE on stack to signal end of process
Push n FALSEjlags on the stack
Test first jlag
First procedure
Test secondjlag
Second procedure
Test thirdflag
Third procedure
Testfourthjlag
Fourth procedure
Testfifthjlag
Fifth procedure
Drop TRUE that remains if all five prcedures used

Basic Programming Tools

I;,/

I

tieR Example
The return stack can be a handy resource for filtering through a composite object. Instead of decomposing a list on
the stack and processing each object, you can put it on the return stack with> R and get one object at a time back for
examination with ticR. The program RSTR uses this technique to count the number of objects in a list that are real
numbers.

RSTR 68.5 Bytes Checksum #6340h
({list} ~ %count)

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCHl list

>R
%0
BEGIN

RSWAP
ticR

Here, the stack is either:
or:

DUP NOT ?SKIP RSWAP

WHILE
TYPEREAL? IT %1+

REPEAT

Basic Programming Tools

Clear saved command name, require one argument
Require a list

Push the list on the return stack
The initial value of the counter

Swap the list to the second level
Pop the next object from the list

%counter object TRUE ~
%counter FALSE ~

If the object was not SEMI, swap the remainder of the list back

If an object was found, do the WHILE clause
If the object is a real number, increment the counter

65

Objects & Object Utilities
This chapter describes several types of object and tools that manipulate them. Objects may be described as atomic
(a single object), or composite (an object which is composed of one or more objects). Internal binary integers and
real numbers are examples of atomic objects, and a list is an example of a composite object. This chapter covers the
following object types:

Atomic Composite
Objects Objects

Bint List
Real Secondary
Extended Real Symbolic
Complex Unit
Extended Complex
Character
Character String
Hex String
Graphics Object
Array
Tagged

Real & Extended Real Numbers
There are two floating point real number object types in the HP 48: real numbers (seen by the user), and extended
real numbers (used internally). A real number consists of a sign, 12-digit mantissa, and a 3-digit exponent. An
extended real number consists of a sign, 15-digit mantissa, and a 5-digit exponent. Exponents are stored in tens
complement form. Real exponents live in the domain -500 < EEE < 500, and extended real exponents live in the
domain -50000 < EEEEE < 50000.

The symbol % is used to denote a real number or an object that works with a real number. The symbol %% is used
to denote an extended real number or an object that works with an extended real number. Some object names use
both symbols. For instance, the object %>%% converts a real number to an extended real number.

Compiling Real Numbers
Real numbers can be embedded in System-RPL source code with the % symbol followed by a space followed by a
the number. For example, the sequence:: %RAN % .5 %* ; returns a random number between 0 and .5.

Extended real numbers must be specified using the assembler, as RPLCOMP.EXE has trouble with them. The
System-RPL code fragment below converts a real number to an extended real number, then divides that number by
%% -15.3. Notice that the digits of the exponent are listed in reverse order. The last digit on the mantissa line is the
sign, and is 0 for a positive number and 9 for a negative number.

%>%%
ASSEMBLE

CON(5)
NIBHEX
NIBHEX

RPL
%%/

66

=DOEREL
10000
0000000000003519

Exponent
Mantissa

Objects & Object Utilities

Built-In Real Numbers
The following table lists real and extended real numbers that are built into the HP 48.

Real Numbers Extended Real Numbers
Object Address Object Address

%-MAXREAL #2A487h %%0 #2A4C6h
%-9 #2A42Eh %%.1 #2A562h
%-8 #2A419h %%.4 #2B3DDh
%-7 #2A404h %%.5 #2A57Ch
%-6 #2A3EFh %%1 #2A4EOh
%-5 #2A3DAh %%2 #2A4FAh
%-4 #2A3C5h %%3 #2A514h
%-3 #2A3BOh %%4 #2A52Eh
%-2 #2A39Bh %%5 #2A548h
%-1 #2A386h %%2PJ: #OF688h
%-MJ:NREAL #2A4Blh %%7 #2BIFFh
%0 #2A2B4h %%10 #2A596h
%MJ:NREAL #2A49Ch %%12 #2B2DCh
%.1 #494B4h %%60 #2B300h
%.5 #650BDh %%PJ: #2A458h
%1 #2A2C9h
%2 #2A2DEh
%e #650A8h
%3 #2A2F3h
%PJ: #2A443h
%4 #2A308h
%5 #2A3lDh
%6 #2A332h
%7 #2A347h
%8 #2A35Ch
%9 #2A371h
%10 #650E7h
%11 #lCC03h
%12 #lCClDh
%13 #lCC37h
%14 #lCC51h
%15 #lCC85h
%16 #lCD3Ah
%17 #lCD54h
%18 #lCDF2h
%19 #lCE07h
%20 #lCC6Bh
%21 #lCCA4h
%22 #lCCC3h
%23 #lCCE2h
%24 #lCDOlh
%25 #lCD20h
%26 #lCD73h
%27 #lCD8Dh
%100 #415Flh
%180 #650Fch
%360 #65126h
%MAXREAL #2A472h

Objects & Object Utilities 67

I
"--"

Real Number Conversions .J

The following objects convert between real and extended real objects:

%>%% #2A5Clh
Converts a real number to an extended real number

% ~ %%
%%>% #2A5BOh
Converts an extended real number to a real number

%% ~ %
2%>%% #2B45Ch
Converts two real numbers to extended real numbers

% % ~ %% %%
2%%>% #2B470h
Converts two extended real numbers to real numbers

%% %% ~ % %

Real Number Functions
The following functions operate on real numbers:

%1+ #50262h
Adds one to a real number

% ~ %
%1- #50276h
Subtracts one from a real number

% ~ %
%1/ #2AAAFh
Inverse

% ~ %
%10* #62BFlh
Multiplies a real number by 10

% ~ %
%ASS #2A900h
Absolute value

% ~ %
%ACOS #2ACFlh
Arc cosine

% ~ %
% ~ C%

%ACOSB #2AE13h
Inverse hyperbolic cosine

% ~ %
% ~ C%

%ALOG #2ABBAh
Antilogarithm

% ~ %
%ANGLE #2AD38h
Angle from %x and %y (uses current angle mode)

%x %y ~ %

%ASl:N #2ACClh
Arc sine

% ~ %
%ASl:NB #2AEOOh
Inverse hyperbolic sine

% ~ %

68 Objects & Object Utilities

'YoATAN #2AD21h
Arc tangent

% ~ %
'YoATANB #2AE26h
Inverse hyperbolic tangent

% ~ %
% ~ C%

%CEIL #2AF73h
Next greatest integer

% ~ %
%CH #2AA30h
Percent change from x to y as a percentage of x

%x %y ~ %

%CHS #2A920h
Change sign

% ~ %
%COMB #2AE62h
Combinations of n objects taken m at a time

%n %m ~ %
%COS #2AC40h
Cosine

% ~ %
%COSH #2ADDAh
Hyperbolic cosine

% ~ %
'YoD>R #2A622h
Converts degrees to radians

% ~ %
'YoEXP #2AB2Fh
Natural exponential

% ~ %
'YoEXPMl #2AB42h
Natural exponential minus 1

% ~ %
'YoEXPON'ENT #2AE39h
Returns exponent

% ~ %
%FACT #2BOC4h
Factorial or gamma function

% ~ %
%FLOOR #2AF86h
Next smallest integer

% ~ %
%FP #2AF4Dh
Fractional part

% ~ %
%HMS+ #2A6AOh
Adds in HH.MMSSs format

% % ~ %
%HMS- #2A6C8h
Subtracts in HH.MMSSs format

% % ~ %
'YoHMS> #2A68Ch
Converts a number from HH.MMSSs format to decimal hours

% ~ %
%>HMS #2A673h
Converts a number from decimal hours to HH.MMSSs format

% ~ %

Objects & Object Utilities 69

0--./

%:IP #2AF60h
Integer part

% ~ %
"oLN #2AB6Eh
Natural logarithm

% ~ %
% ~ C%

%LNPl #2ABA7h
Natural logarithm of (argument + 1)

% ~ %
%LOG #2AB81h
Common logarithm

% ~ %
% ~ C%

%MANT:ISSA #2A930h
Returns mantissa

% ~ %
%MAX #2A6F5h
Maximum of two numbers

% % ~ %
%M:IN #2A70Eh
Minimum of two numbers

% % ~ %
%MOD #2ABDCh
Modulo

% % ~ %
%NFACT o#2AE4Ch
Factorial ,

% ~ %
%NROOT #2AA81h
%nth root of %x

%x %n ~ %
%OF #2A9C9h
Returns percentage of %x that is %y

%x %y ~ %

%PERM #2AE75h
Permutations of %m items taken %n at a time

%m %n ~ %
%POL>"oREC #2B4BBh
Polar to rectangular conversion

%x %y ~ %radius %angle
%R>D #2A655h
Radians to degrees conversion

% ~ %
%RAN #2AFC2h
Generates random number in the range (O$n<l)

~ %
%RANDOM:IZE #2B044h
Sets the random number seed. If % is zero, the system clock is used.

% ~
%REC>%POL #2B48Eh
Rectangular to polar conversion

%radius %angle ~ %x %y

%SGN #2A8D7h
Sign of a real number (-1, 0, or 1)

% ~ %

70 Objects & Object Utilities

%S:IN #2ABEFh
Sine

% --? %
%S:INH #2ADAEh
Hyperbolic sine

% --? %
%SPH>"oREC #2B4F2h
Spherical to rectangular conversion

%r %9 %<1> --? %x %y %z
%SQRT #2AB09h
Square root

% --? %
% --? C%

%T #2AAOBh
Percent total of %x that is represented by %y

%x %y --? %

%TAN #2AC91h
Tangent

% --? %
%TANH #2ADEDh
Hyperbolic tangent

% --? %
%A #2AA70h
Exponential

%x %y --? %XA%y

DDAYS , #OCC39h
Days between dates in MM.DDYYYY format (respects flag 42)

% % --? %
RNDXY #2B529h
Rounds %x to %n places

%x %n --? %
TRCXY #2B53Dh
Truncates %x to %n places

%x %n --? %

Objects & Object Utilities 71

-JI

Extended Real Number Functions
The following functions operate on extended real numbers:

%%* #2A99Ah
Multiply

%% %% ~ %%
%%*ROT #62FEDh
Multiply followed by ROT

ObI Ob2 %% %% ~ Ob2 %% ObI
%%*SWAP #62EA3h
Multiply followed by SWAP

ob %% %% ~ %% ob
%%*UNROT #63C18h
Multiply followed by UNROT

ObI Ob2 %% %% ~ %% ObI Ob2
%%+ #2A943h
Addition

%% %% ~ %%
%%- #2A94Fh
Subtraction

%% %% ~ %%
%%/ #2A9E8h
Division

%% %% ~ %%
%%A #2AA5Fh
Exponential

%%x %%y ~ %%x"%%y
%%/>% #63B82h
Division, returns real result

%% %% ~ %
%%1/ #2AA92h
Reciprocal

%% ~ %%
%>%%1/ #2AA9Eh
Convert % to %%, then do reciprocal

% ~ %%
%%ABS #2A8FOh
Absolute value

%% ~ %%
%%ACOSRAD #2AD08h
Arc cosine using radians

%% ~ %%
%"oANGLE #2AD4Fh
Angle from %%x and %%y using current angle mode

%%x %%y ~ %%angle
%%ANGLEDEG #2AD6Ch
Angle from %%x and %%y using degrees

%%x %%y ~ %%angle

%"oANGLERAD #2ACD8h
Angle from %%x and %%y using radians

%%x %%y ~ %%angle
%%AS:tNRAD #2ACD8h
Arc sine using radians

%% ~ %%
%%CHS #2A91Oh
Change sign

%% ~ %%

72 Objects & Object Utilities

)

%%COS
Cosine

%%COSDEG
Cosine using degrees

%%COSH .
Hyperbolic cosme

%%COSRAD .
Cosine using radIans

'k'YoEXP
Natural exponential

%%FLOOR
Next smallest integer

%% ~ %%

%% ~ %%

%% ~ %%

%% ~ %%

%% ~ %%

%% ~ %%

%'YoH>HMS MMSSs
Decimal hours to HH. %% ~ %%

r%%:INT
Integer part

'k%LN
Natural logarithm

%% ~ %%

%% ~ %%

%%LNP1 'thm of argument plus 1
Naturallogarl %% ~ %%

~oMAX

MaxImu %% 7(7(__ . m of two numbers momo ---' %%

%%P>R lar conversion %%x %%y
Polar to rectang~%radius %%angle ~

%%R>P I conversion momoradius %%angle Rectangular to po ar %%x %%y ~ 7(7(

%%S:IN
Sine

%%S:INDEG
Sine using degrees

'%%S:INH
Hyperbolic sine

%%SQRT
Square root

%%TANRAD .
Tangent using radIans

Objects & Object Utilities

%% ~ %%

%% ~ %%

%% ~ %%

%% ~ %%

%% ~ %%

#2AC57h

#2AC68h

#2ADC7h

#2AC78h

#2ABICh

#2AF99h

#2AF27h

#2AF99h

#2AB5Bh

#2AB94h

-
#2A6DCh

#2B4C5h

#2B498h

#2AC06h

#2AC17h

#2AD95h

#2AAEAh

#2ACA8h

73

Complex Numbers
Complex number objects contain two real number object bodies, with the same mantissa and exponent structure as
real numbers . Likewise, extended complex number objects contain two extended real number object bodies.

The symbol C% is used to denote a complex number, and C%% is used to denote an extended complex number.

Compiling Complex Numbers
Complex numbers can be embedded in System-RPL source code with the C% symbol followed by a space followed
by the real component, a space, and the imaginary component. For example, :: . . . C% 3. 5 4. 2 ... ;
specifies the number (3.5,4.2).

Extended complex numbers must be specified using the assembler, as RPLCOMP.EXE has trouble with them. The
code fragment below shows how the extended complex number (1.25,-.83) is specified in a System-RPL source file.
The prologue is followed by two extended real bodies, the first being the real part.

ASSEMBLE
CON(5)
NIBHEX
NIBHEX
NIBHEX
NIBHEX

RPL

=OOECMP
00000
0000000000005210
99999
0000000000000389

Complex Number Conversions

Real Exponent
Real Mantissa
Imaginary Exponent
Imaginary Mantissa

The following objects convert between real, extended real, complex, and extended complex objects:

%%>C% #51A07h
Converts two extended real numbers into a complex number

%%real %%imag ~ C%
%>C% #05C27h
Converts two real numbers into a complex number

%%reaJ %%imag ~ C%
C%%>%% #05DBCh
Converts an extended complex number into two extended real numbers

C%% ~ %%real %%imal?:
C%%>C% #519F8h
Converts an extended complex number into a complex number

C%% ~ C%
C%>% #05D2Ch
Converts a complex number into two real numbers

C% ~ %real %imag
C%>%% #519CBh
Converts a complex number into two extended real numbers

C% ~ %%real %%ima~
C%>%%SWAP #519DFh
Converts a complex number into two extended real numbers, then does SWAP

C% ~ %%imag %%real

74 Objects & Object Utilities

I
0 '

. -/

',-,

C>Im% #519B7h
Extracts the imaginary portion of a complex number

C% ~ %ima!!:
C>Re% #519A3h
Extracts the real portion of a complex number

C% ~ % real
Re>C% #519A3h
Creates a complex from a real number with implied 0 imaginary part

%real ~ (%reaj,O)
SWAP%>C% #632A9h
Does SWAP, then converts two real numbers into a complex number

%imaa %real ~ C%

Built-In Complex Numbers
The following table lists complex and extended complex numbers that are built into the HP 48:

Object Address
C%-l #5196Ah
C%O #524AFh
C%l #524F7h
C%%l #5193Bh

Complex Number Functions
The following functions operate on complex or extended complex numbers:

C%ll #51EFAh
Inverse

C% ~ C%
C'3-oABS #52062h
Returns radius from (0,0) to (x,y)

(x,y) ~ %
C'3-oACOS #52863h
Arc cosine

C% ~ C%
C%ACOSH #52836h
Hyperbolic arc cosine

C% ~ C%
C'3-oALOG #52305h
Common antilog

C% ~ C%
C'3-oARG #52099h
Returns angle from (x,y)

(x,y) ~ %
C%ASJ:N #52804h
Arc sine

C% ~ C%
C'3-oASJ:NH #5281Dh
Hyperbolic arc sine

C% ~ C%
C'3-oATAN #52675h
Arc tangent

C% ~ C%
C'3-oATANH #527EBh
Hyperbolic arc tangent

C% ~ C%

Objects & Object Utilities 75

.-..../ .

--.
#52374h """"C%C

AC . plex number Com plex number raIsed t~~~; C%y ~ C%xI\C%y

#52360h C%C
AR ber raised to real number Com plex num C% % ~

C%
C% CBS #5IB70h
Ch ange sign

C% ~ C%
C% %CBS #5IB91h
Ch ange sign

C%% ~ C%%
C% CONJ #5IBB2h
C onjugate

C% ~ C%
r-c %%CONJ #5IBClh

Conjugate
C%% ~ C%%

C%COS #52571h
Cosine

C% ~ C%
C%%COS #52648h
Cosine

C%% ~ C%%
C%EXP #52193h
eZ

C% ~ C%
#521E3h C%LN

I:
Natural logarithm

C% ~ C%
C%LOG #522BFh
Common logarithm

C% ~ C%
#52342h

rc%RAC . d complex number

C%
Real number raIse to % C% ~

#52OC Bh
C%SGN. . the direction of z

C%
Returns umt vector In C% ~

C%Sl:N #5253 Oh
Sine

C% ~ C%
C%Sl:NH #526 2Fh
Hyperbolic sine

C% ~ C%
C%SQRT #521 07h
Square root

C% ~ C%
C%TAN #52 5B7h
Tangent

C% ~ C% -C%TANH #52 65Ch
Hyperbolic tangent

C% ~ C%J

76 Objects & Object Utilities

,/

Arrays
Arrays may be used to store atomic objects of a common type. Typically, arrays are used to store real and complex
numbers, and many of the objects in the HP 48 manipulate real and complex arrays. Some objects work only with
real or complex valued arrays, so be sure to use the correct manipulation objects. This applies especially to the
MatrixWriter, which can cause the HP 48 to lose memory with arrays that are not composed of real or complex
numbers.

A string array is a good place to store a large number of strings, such as prompts or error messages, in an
application. Notice that while an array can be compiled (see below), and that an element can be obtained from an
array (see GETATELN below), there is no object giving the equivalent of the User-RPL object PUT for an array of
any object type other than real or complex numbers.

Compiling Arrays
The RPLCOMP.EXE compiler may be used to generate arrays of other objects, like internal binary integers or
strings. For example, the code fragment below specifies an array of strings:

ARRY
"Joe"
"Fred"
"Janet"
"Jim"

Array Utilities
The objects described below may be used to work with array objects. The following notation convention applies to
these descriptions:

[array]
[%array]
[C%array]
[1-D array]
[2-D array]
{dims}

#pos

ARSJ:ZE

An array of arbitrary type with one or two dimensions
An array of real numbers with one or two dimensions
An array of complex numbers with one or two dimensions
A vector
A two dimensional array
A list containing a bint specifying a number of elements or two
bints specifying a number of rows and columns
A row-order position within an array

#03562h
Returns the number of elements in an array

[array] -7 #elements

GETATELN #0371Dh
Returns an element from an array and TRUE if the element exists, otherwise
returns FALSE

#pos [array] -7 ob TRUE
#pos [array] -7 FALSE

MAKEARRY #03442h
Creates an array with all elements equal to the specified object

{ #rows #cols } ob -7 [array]

MATCON #35CAEh
Sets all elements in an array to a real or complex number

[%array] % -7 [%array]
[C%array] C% -7 [C%array]

Objects & Object Utilities 77

MATRED:IM #37EOFh
Redimensions a real or complex array. New elements are filled with %0 or
C%O,O.

[%array] {dims} ~ [%array]
[C%array] {dims} ~ [C % array]

MATTRN #3811Fh
Transposes a real or complex array.

[%array] ~ [%array]
[C%array] ~ [C%array]

MD:IMS #357A8h
Returns the dimensions of an array

[1-D array] ~ #elements FALSE
[2-D array] ~ #rows #cols TRUE

MD:IMSDROP #62F9Dh
Does MDIMS, then DROP

[1-D array] ~ #elements
[2-D array] ~ #rows #cols

OVERARS:IZE #63141h
Does OVER, then ARSIZE

[array] ob ~ [array] ob #elements
POLLREALEL #355B8h
Returns the specified real number from a real array

[%array] #pos ~ [%array] %
POLLCMPEL #355C8h
Returns the specified complex number from a complex array

[C%array] ~ [C%array] C%
PUTEL #35628h
Places a real or complex number into a real or complex array at a specified
location

[%array] % #pas ~ [%array]
[C%array] C% #pas ~ [C%array]

PUTREALEL #3566Fh
Places a real number into a real array at a specified location

[%array] % #pas ~ [%array]
PUTCMPEL #356F3h
Places a complex number into a complex array at a specified location

[C%array] C% #pas ~ [C%array]

The MatrixWriter
The MatrixWriter can be started by executing either DoNewMatrix to create a new arrayor DoOldMatrix to edit
a array on the stack.

DoNewMatrix #44C31h
Starts the MatrixWriter and creates a new array

~ [array] If terminated with ~
~ If terminated with ICANCELI

DoOldMatrix #44FE7h
Starts the MatrixWriter on an existing array on the stack

[array] ~ [array] TRUE If terminated with ~
[array] ~ FALSE Jfterminated with ICANCELI

78 Objects & Object Utilities

;t

Tagged Objects
Tagging an object with a meaningful label is one useful option for labeling a result being returned to the user. When
accepting input from the user, it may be necessary to remove all tags from the base object before deciding if the
input is valid. The objects described below facilitate these tasks.

Note that CK&DISPATCHl removes tags recursively as it filters user input, while CK&DISPATCHO does not
remove tags (see Argument Validation) .

%>TAG #22618h
Tags an object with a real number

ob % ~ tagged

> TAG #05E81h
Tags an object with a string. Has no length check (see USER$>TAG)

ob $ ~ tagged

:ID>TAG #05F2Eh
Tags an object with an a name

ob ID ~ tagged

STR:IPTAGS #64775h
Removes all tags from an object

tagged ~ ob

STR:IPTAGS12 #647A2h
Removes all tags from an object in level 2

tagged2 obI ~ Ob2 obI
TAGOBS #647BBh
Tags one object or a series of objects

ob $ ~ tagged
obl· ··obn { $1 ... $n } ~ tagged 1 ... taggedn

USER$>TAG #225F5h
Tags an object with a string. Issues error if string length is > 255

ob $ ~ tagged

Characters and Character Strings
There are two object types representing character information. Character objects (type 24) represent a single
character, and character strings (type 2) contain one or more characters. The following objects are useful for
converting to and from character objects:

#>CHR #05A75h
Creates a character object with a specified character code

~ chr
CHR># #05A51h
Returns a binary integer representing a character's code

chr ~ #
CHR>$ #6475Ch
Converts a character object to a one character string object

chr ~ $

Objects & Object Utilities 79

I

Built-In Character Objects
The following table lists character objects that are built into the HP 480

NUm Name Address NUm Name Address
0 CHR_OO #6541Eh 85 CHR_U #65559h

10 CHR_Newline #6566Ah 86 CHR_V #65560h
31 CHR_o 0 0 #65425h 87 CHR_W #65567h
32 CHR_Space #65686h 88 CHR_X #6556Eh
34 CHR_DblQuote #6542Ch 89 CHR_Y #65575h
35 CHR_# #65433h 90 CHR_Z #6557Ch
40 CHR_LeftPar #65663h 91 CHR_[#65694h
41 CHR_RightPar #65678h 93 CHR_J #6569Bh
42 CHR_* #6543Ah 95 CHR_UndScore #6568Dh
43 CHR_+ #65441h 97 CHR_a #65583h
44 CHR_, #65448h 98 CHR_b #6558Ah
45 CHR_- #6544Fh 99 CHR_c #65591h
46 CHR_o #65456h 100 CHR_d #65598h
47 CHR_I #6545Dh 101 CHR_e #6559Fh
48 CHR_O #65464h 102 CHR_f #655A6h
49 CHR_l #6546Bh 103 CHR_g #655ADh
50 CHR_2 #65472h 104 CHR_h #655B4h
51 CHR_3 #65479h 105 CHR_i #655BBh
52 CHR_4 #65480h 106 CHR_j #655C2h
53 CHR_5 #65487h 107 CHR_k #655C9h
54 CHR_6 #6548Eh 108 CHR_l #655DOh
55 CHR_7 #65495h 109 CHR_rn #655D7h
56 CHR_8 #6549Ch 110 CHR_n #655DEh
57 CHR_9 #654A3h 111 CHR_o #655E5h
58 CHR_: #654AAh 112 CHR-p #655ECh
59 CHR_i #654Blh 113 CHR_q #655F3h
60 CHR_< #654B8h 114 CHR_r #655FAh
61 CHR_= #654BFh 115 CHR_s #65601h
62 CHR_> #654C6h 116 CHR_t #65608h
65 CHR_A #654CDh 117 CHR_u #6560Fh
66 CHR_B #654D4h 118 CHR_v #65616h
67 CHR_C #654DBh 119 CHR_w #656IDh
68 CHR_D #654E2h 120 CHR_x #65624h
69 CHR_E #654E9h 121 CHR""y #6562Bh
70 CHR_F #654FOh 122 CHR_z #65632h
71 CHR_G #654F7h 123 CHR_{ #656A2h
72 CHR_H #654FEh 125 CHR_} #656A9h
73 CHR_I #65505h 128 CHR_Angle #6564Eh
74 CHR_J #655OCh 132 CHR_Integral #6565Ch
75 CHR_K #65513h 133 CHR_Sigma #6567Fh
76 CHR_L #6551Ah 135 CHR_Pi #65671h
77 CHR_M #65521h 136 CHR_Deriv #65655h
78 CHR_N #65528h 137 CHR_<= #656BOh
79 CHR_O #6552Fh 138 CHR_> = #656B7h
80 CHR_P #65536h 139 CHR_<> #656BEh
81 CHR_Q #6553Dh 141 CHR_-> #65639h
82 CHR_R #65544h 171 CHR_« #65640h
83 CHR_S #6554Bh 187 CHR_> > #65647h
84 CHR T #65552h

80 Objects & Object Utilities

Built-In String Objects
The following table lists string objects that are built into the HP 48 (not induding text in message tables).

Object Contents Address
$_' , III III #6571Fh
$_2DQ 11111111 #65749h
$." -" "

.. : : II #6572Dh
$_«» "«»" #656F5h
$_ECHO "ECHO" #65757h
$_EXIT "EXIT" #65769h
$_GRAD "GRAD" #657A7h
$_LRParens "()" #6573Bh
$_R« "R.!.!" #656C5h
$_R<Z "R.(Z" #656D5h
$_RAD "RAD" #65797h
$_Undefined "Undefined" #6577Bh
$_XYZ "XYZ" #656E5h
$_[] "[]" #65711h
$_0 "{)" #65703h
NEWLINE$ " \GA" #65238h
SPACES " " #65254h

String Manipulation Objects

!append$ #62376h
String concatenation for use in low memory situations - appends directly to $1
instead of making a copy ,

$1 $2 ~ $3
!append$SWAP #62F2Fh
String concatenation for use in low memory situations followed by SWAP

ob $1 $2 ~ $3 ob
#l+LAST$ #63281h
Returns the tail of a string starting one character past the location specified by #

$ # ~ $
#l-SUB$ #63245h
Returns a substring after subtracting one from the bint specifying the end

$ #start #end ~ $
#:>$ #167D8h
Converts a bint into a string followed by a colon (suitable for stack level #'s)

~ $
#>$ #167E4h
Converts a bint into a string

~ $
$>J:D #05B15h
Converts a string object into a name object

$ ~ ID
&$ #05193h
Concatenates $2 to the end of $1

$1 $2 ~ $3
&$SWAP #63F6Ah
Concatenates $2 to the end of $], then does SWAP

ob $1 $2 ~ $3 ob
l'-':#l-SUB$ #63259h
Returns substring from 1 to #-1

$ # ~ $
>H$ #0525Bh
Prepends a character object to a string

$ chr ~ $

Objects & Object Utilities 81

>T$ #052EEh
Appends a character object to a string

$ chr ~ $
AND$ #18873h
Bitwise logical AND of two strings

$1 $2 ~ $3
Blank$ #45676h
Creates a string of # space characters

~ $
CAR $ #050EDh
Returns the first character of a string as a character object or NULLS if the
string is empty

$ ~ chr
$ ~ NULLS

CDR$ #0516Ch
Returns the string less its first character or NULL$ if the string is empty

$ ~ $
$ ~ NULLS

CHR>$ #6475Ch
Converts a character object to a one character string object

chr ~ $
COERCE $ 22 #12770h
If a string has more than 22 characters, truncates the string to 21 characters and
appends ellipses (...)

$ ~ $
Date>d$ #OCFD9h
Converts a real number representing a date into a string

% ~ $
DECOMP$ #15B13h
Decompiles an object for the stack display using current display modes

ob ~ $
DROPNULL$ #04DE3h
Drops an object from the stack and returns an empty string

ob ~ NULLS
DOP$>:ID #63295h
Duplicates a string, then converts string object to name object

$ ~ $ ID
DOPLEN$ #627BBh
Duplicates a string, then returns its length

$ ~ $ #lenl(th
DOPNULL$? #63209h
Returns TRUE if $ is empty

$ ~ $ FLAG
ED:ITDECOMP$ #15AOEh
Decompiles an object for editing using standard display formats

ob ~ $
JstGETTHEMESG #04D87h
Retrieves a message from the built-in message table

~ $
:ID>$ #05BE9h
Converts a name object to a string object

ID ~ $
LAST$ #6326Dh
Returns the last # characters in a string

$ # ~ $
LEN$ #05636h
Returns the number of characters in a string

$ ~ #

82 Objects & Object Utilities

NEWLl:NE$&:$ #63191h
Appends newline character to a string

$ ~ $
NOLL $ #055DFh
Empty string

~ NULL$
NOLL$? #0556Fh
Returns TRUE if string is empty

$ ~ FLAG
NOLL $ SWAP #62D59h
Swaps an empty string into level 2

ob ~ NULL$ ob
NOLL $ TEMP #1613Fh
Empty string in TEMPOB (temporary memory)

~ NULL$
OR$ #18887h
Bitwise logical OR of two strings

$1 $2 ~ $3
OVERLEN$ #05622h
Returns the length of a string in level 2

$ ob ~ $ ob #Ienlrth
POS$ #645Blh
Searches forwards for a substring within a string starting at a specified position,
returning zero if the substring is not found

$search $find #start ~ #position
POS$REV #645BDh
Searches backwards for a substring within a string starting at a specified
position, returning zero if the substring is not found

$search $find #start ~ #oosition
Promptl:dUtil #49709h
Returns a string in the form "lD: object"

lD ob ~ $
SEP$NL #127A7h

"
Separates a string at the first newline character

$ ~ $Iast $first
I SUB $ #05733h

Returns a substring
$ #start #end ~ $

SUB $ 1# #30805h
Returns a bint with the value of the character at the specified position

$ #oosition ~ #value
SUB $ SWAP #62D6Dh
Does SUB$, then SWAP

ob $ #start #end ~ $ ob
SWAP&:$ #622EFh
Concatenates $1 to $2

$1 $2 ~ $3
Tl:MESTR #OD304h
Returns a string time and date

%date %time ~ $
TOD>t$ #OD06Ah
Converts a real number time (24-hour format) into a 9-character string

% ~ $
XOR$ #1889Bh
Bitwise logical XOR of two strings

$1 $2 ~ $3

Objects & Object Utilities 83

a%>$ #162B8h
Creates a string representation of a real number using the current display
format, excluding commas

% ~ $
a%>$, #162ACh
Same as a % > $, but includes commas if commas are part of the display format

% ~ $
palparse #238A4h
Parses a string into an object. If an error occurs, returns position of error

$ ~ ob TRUE
$ ~ $ #pos $' FALSE

Hex Strings
User binary integers (type 10) are implemented with hex strings. Hex strings are similar in construction to character
strings, except that the length is arbitrary (character strings must have an even number of nibbles in the length of the
body).

Hex String Conversions
The following objects convert between hex strings and other object types (respecting the user's wordsize
specification).

%># #543F9h
Converts a real number to a hex string

% ~ hxs
HXS>% #5435Dh
Converts a hex string to a real number

hxs ~ %
#>HXS #059CCh
Converts a bint to a hex string with a length of five nibbles

~ hxs
HXS># #05A03h
Creates a bint from the lower 20 bits of a hex string

hxs ~ #
2HXSL:IST? #51532h
Confirms list of two hex strings, then converts to bints. Useful for validating
and converting user pixel coordinates for graphics operations. Generates Bad
Argument Error if list does not contain two hex strings.

{ hxs} hxS2 } ~ #} #2
HXS>$ #54061h
Creates a string representation of a hex string using the current display mode
and wordsize, then appends a letter specifying the current base mode

hxs ~ $
hxs>$ #540BBh
Creates a string representation of a hex string using the current display mode
and wordsize

hxs ~ $

Wordsize Control
The user's wordsize specification can be tested or altered with the following two objects:

WORDSI:ZE #54039h
Returns the current wordsize

dostws #53CAAh
Stores a new value for the wordsize

~

84 Objects & Object Utilities

'-../

.........

'-"/

Basic Hex String Utilities

&:HXS #0518Ah
Appends hxs2 to hxs l

hXS1 hXS2 ~ hXS3
LENHXS #05616h
Returns the length (in nibbles) of a hex string

hxs ~ #
NULLHXS #055D5h
Returns a null hex string

~ hxs
SUBHXS #05815h
Returns a substring

hxs #start #end ~ hxs

HXS==HXS #544D9h
Returns % 1 if hex strings are equal

hXS1 hXS2 ~ %
HXS#HXS #544ECh
Returns % 1 if hex strings are not equal

hXSI hXS2 ~ %
HXS<HXS #54552h
Returns % 1 if hxs 1 < hxS2

hXSI hXS2 ~ %
HXS<=HXS #5453Fh
Returns % 1 if hxs 1 ~ hxS2

hXSI hXS2 ~ %
HXS>=HXS #5452Ch
Returns % 1 if hxs 1 ~ hXS2

hXSI hXS2 ~ %
HXS>HXS #54500h
Returns % 1 if hxSI > hxs2

hxsI hXS2 ~ %

Hex String Math Utilities
The following objects are the dispatchees for math operations that involve user binary integers. These objects
assume that the hex strings are 64 bits or shorter. Results are returned according to the user's wordsize setting.

bit#%* #542EAh
Multiplies hxs by %

hxs % ~ hxs
bit%#* #542Dlh
Multiplies % by hxs

% hxs ~ hxs
bit#%+ #54349h
Adds % to hxs

hxs % ~ hxs
bit%#+ #54330h
Adds hxs to %

% hxs ~ hxs
bit#%- #5431Ch
Subtracts % from hxs

hxs % ~ hxs
bit%#- #542FEh
Subtracts hxs from %

% hxs ~ hxs

Objects & Object Utilities 85

-/ ,

bit#%/ #542BDh
Divides hxs by %

hxs % ~ hxs
bit %#/ #5429Fh
Divi des % by hxs

% hxs ~ hxs
'bit * #53ED3h
Mul tiply

hxSI hXS2 ~ hXS3
bit + #53EAOh
Add

hxSI hXS2 ~ hXS3
Ibi t- #53EBOh
Su btract

hXSI hXS2 ~ hXS3
bi t/ #53F05h
Di vide

-hXSI hXS2 ~ hXS3 -b itAND #53D04h
B itwise logical AND

hXSI hXS2 ~ hXS3
b'tASR
~thmetic shift right one bit

#53E65h

hxs ~ hxs
bitOR #53D15h
Bitwise logical OR

hxSI hXS2 ~ hXS3 -bitNOT #53D4Eh
Bitwise logical NOT

hxs ~ hxs -
#53EOCh IbitRL "

Circular left shift one bIt
hxs ~ hxs

#53E3Bh 'bitRLB " b te
Circular left shift one y

hxs ~ hxs
4h #53DA bitRR b"

Circular right shift one It
hxs ~ hxs

b"tRRB
C~cular right shift one byte

#53DE lh

hxs ~ hxs
bitSL #53D 5Eh
Shift left one bit

hxs ~ hxs
bitSLB #53D 6Eh
Shift left one byte

hxs ~ hxs
#53 D8lh I bitSR "

Shift right one bIt
hxs ~ hxs

bitSRB #53 D9lh
Shift right one byte

hxs ~ hxs
IbitXOR #5 3D26h

Bitwise logical XOR
hXSI hXS2 ~ hXS3 J

86 Objects & Object Utilities

L

I

Composite Objects
Composite objects are created from a collection of arbitrary objects. They may be created, searched, and
decomposed. Lists are the most commonly used composite object in User-RPL programs, but the System-RPL
objects described below also let you work with secondaries and unit objects.

Building Composite Objects
The following objects provide null composite objects or create composite objects.

NULL{}
A null list

{}N

~ {}

Creates a list composed of n objects
ObI· ·. ObN #n ~ {ObI .. · ObN }

ONE{}N
Creates a list containing one object

ob ~ {ob}
TWO{}N
Creates a list containing two objects

ObI Ob2 ~ {ObI Ob2}
THREE{}N
Creates a list containing three objects

ObI Ob2 Ob3 ~ {ObI Ob2 Ob3 }
NULL: :
A null secondary

---" ...
--r •.)

: :N
Creates a secondary composed of n objects

obI .. . obN #n ~ :: ObI'" ObN ;
: :NEVAL
Creates and then executes a secondary composed of n objects

ObI .. . obN #n ~
Ob>Seco
Creates a secondary containing one object

ob ~ :: ob ,
20b>Seco
Creates a secondary containing two objects

ObI Ob2 ~ :: ObI Ob2 ;
EXTN

#055E9h

#05459h

#23EEDh

#631B9h

#631CDh

#055FDh

#05445h

#632Dlh

#63FE7h

#63FFBh

#05481h
Creates a unit object consisting of numbers, string, unit operators, and umEND
(see Unit Objects for more details)

ObI ... Obn_I umEND #n ~ unit
SYMBN
Creates a symbolic object
Example: ID A ID B x+ #3 SYMBN ~ 'A+B'

ObI .. . obn #n ~ symb

Finding the Number of Objects in a Composite Object
The following objects return the number of objects in a composite object.

#0546Dh

DUPLENCOMP #63231h
Duplicates a composite and returns the number of constituent elements

comp ~ comp #n
LENCOMP
Returns the number of constituent elements in a composite object

comp ~ #n

Objects & Object Utilities

#0567Bh

87

Adding Objects to a Composite
These object are convenient to use but slow in execution for long lists, so caution should be exercised when using
these object repetitively. The delays occur as composites are taken apart with INNERCOMP, objects are shuffled,
and the composite is reassembled. For instance, the sequence of operations for performing >TCOMP is something
similar to the following program fragment:

o~EW ob1 ... o~ #N
ob1 .. . o~ #N o~EW

SWAP INNERCOMP
DUP #2+ ROLL
SWAP #1+ ob1 ... o~ o~EW #N+ 1
ON { ob1 . . . o~ o~ }

apndvarlst #35491h
Appends an object to a list if the object is not found within the list

{ list } ob ~ { list' }
>BCOMP #052C6h
Prepends an object to a composite object

compi ob ~ comp2
> TCOMP #052FAh
Appends an object to a composite object

compi ob ~ compz
&:COMP #0521Fh
Concatenates two composite objects

compi comp2 ~ comp3
PUTL:IST #1 DCOOh
Replaces an object in a list (assumes O~i~), where n is the number oflist obs

ob #i {list } ~ { list' }

Decomposing Composite Objects
The following objects decompose a composite object into its constituent objects or extract portions of a composite.
It is important to remember that when an object like DUPINCOMP is applied to a composite, the stack contains
pointers into the original composite, not pointers to separate objects in TEMPOB. This means that as long as there
is at least one pointer to an object within a composite, the entire composite is retained in TEMPOB. The object
Embedded? can determine whether an object is embedded in a composite (see Detecting Embedded Objects).

CARCOMP #05089h
Returns a composite's first object or a null composite if the composite is null

comp ~ ob
comp ~ comp (null composite)

CDRCOMP #05153h
Returns a composite less its first object or the composite if the composite is null

comp ~ comp'
comp ~ comp (null composite)

DUP:INCOMP #63IElh
Duplicates a composite and decomposes the copy

comp ~ comp obi ... ObN #n

:INCOMPDROP #62B88h
Decomposes a composite object and drops the object count

comp ~ obi ... ObN
:INNERCOMP #054AFh
Decomposes a composite object

comp ~ Obi ... obN #n

:INNERDUP #62C41h
Decomposes a composite object and duplicates the object count

comp ~ obi ... obN #n #n
NTBCOMDDUP #62DlDh
Returns two copies of the ith object in a composite (Obi is presumed to exist)

comp #i ~ Obi Obi

88 Objects & Object Utilities

"

1

NTHCOMPDROP #62B9Ch
Returns the ith object in a composite (Obi is presumed to exist)

comp #i ~ Obi
NTHELCOMP #056B6h
Returns the ith object in a composite and TRUE or FALSE if there are not at
least i elements in the composite

comp #i ~ Obi TRUE
comp #i ~ FALSE

SUBCOMP #05821h
Returns a subcomposite. Indices out of range are set to composite bounds

comp #Staft #end ~ comp'
SWAPI:NCOMP #631F5h
Does SWAP, then decomposes a composite

comp obj ~ obj ObI· ·· obN #n

Searching Composite Objects
The object POSCOMP is the generalized tool for searching through a composite object for an object that satisfies
some comparison with a supplied object. The following program fragment indicates the position in a composite of
the first binary integer greater than #5:

FIVE ' #> POSCOMP
{list}

#pos

The objects EQUALPOSCOMP and NTHOF supply the predicate EQUAL to POSCOMP, simplifying some search
procedures.

EQUALPOSCOMP #644A3h
Returns the position of the first object in a composite equal to an object. If the
object is not found, zero is returned.

comp ob ~ #pos
mat chob? #643EFh
Returns TRUE and ob if ob is equal to any object within a composite

ob comp ~ FALSE
ob comp ~ ob TRUE

NTaOF #644BCh
Returns the position of the first object in a composite equal to an object. If the
object is not found, zero is returned.

ob comp ~ #pos
POSCOMP #64426h
Returns the position of the first object in a composite that satisfies a test with
the supplied predicate and an object. If the object is not found, zero is returned.

comp ob pred ~ #pos

Detecting Embedded Objects
As mentioned above, an object on the stack may be contained within a composite. The object Embedded? may be
used to detect this case, and CKREF can be used to check all references to an object.

CKREF #37B44h
Creates a unique copy of an object if it is referenced or embedded in any
composite object

ob ~ ob
Embedded?
Returns TRUE if Ob2 is embedded in or is the same as ObI

ObI Ob2 ~ FLAG

Objects & Object Utilities

#64127h

89

Unit Objects
Unit objects evolved from representing integer powers in the HP 48S/SX to real powers in the HP 48G/GX. This
can be quickly demonstrated by comparing using the User-RPL function UBASE and the System-RPL object
U>NCQ on the Sand G series:

Object
UBASE
U>NCQ %%1

HP48S/SX
1_1Yl"2.3/s"3.7

1_1Yl"2/s"4
%%1 HXS 10 002000CFOOOOOOOO

HP48G/GX
1_1Yl"2.3/s"3.7
1_1Yl"2.3/s"3.7

%%1 %%1 [%0 %2.3 %0 %3.7 %0 %0 %0 %0 %0 1

The object U>NCQ is used to break apart a unit object into a number part, conversion factor, and unit quantity vector.
In the S series, the unit quantities were expressed as 10 signed 8-bit quantities in a hex string. Negative unit
quantities indicate units in the denominator. In the G series, the unit quantities are expressed as a 10 element real
vector.

Dimensional Consistency
If two unit objects are dimensionally consistent, their unit quantity vectors will be equal. The unit quantity vector is
formatted as follows:

Element Quantity Base Unit
1 mass kilogram
2 length meter
3 electric current ampere
4 time second
5 thermodynamic temperature kelvin
6 luminous intensity candela
7 amount of substance mole
8 plane angle radian
9 solid angle steradian
10 unused

The following code fragment checks two objects for dimensional consistency, returning the system flags TRUE or
FALSE:

U>NCQ ROTROT2DROP SWAP U>NCQ ROTROT2DROP EQUAL

Building and Decomposing Unit Objects
Unit objects are composite objects that can be broken apart with INNERCOMP and assembled with EXTN.
Extending the previous example to use km instead of m, apply INNERCOMP to 1_krn"2.3/s"3.7:

:: 1_kmA2.3 / s A3.7 INNERCOMP ; ~ %1 "k" "m" urnP %2.3 urnA "s" %3.7 urnA urn/ umEND ELEVEN

Notice that the object is constructed much the same way as an RPN expression, with the provisio that umEND be the
last object. If you're viewing these objects with tools like SSTK in Jazz, you'll notice that unit operators (like urn/)
are decompiled as { } in User-RPL. These unit operators found within a unit object are different from objects that
manipulate unit objects, such as UM+, UM-, etc.

Unit Operator Purpose Address
um* Multiply operator #1OB5Eh
urn! Divide operator #1OB68h
urn" Power operator #10B72h
urnP Prefix operator #1OB7Ch
urnEND End of unit object #1OB86h

The System-RPL objects UM>U and UMU> are useful for many tasks. UMU> breaks a unit object into a number and
normalized unit part, while UM>U replaces the number part of a unit object (useful when returning a unit result).

90 Objects & Object Utilities

-...I ,

.....,I ,

--....I I
1

--....I I

Unit Object Utilities
The following objects operate on unit objects. For unit object tests, see Unit Object Tests .

EXTN #05481h
Assembles a unit object consisting of numbers, string, unit operators, and
umEND

obn_) .. . obI umEND #n ~ unit
OM% #OFBABh
Returns a percentage of a unit quantity

unit %percentage ~ unit
OM%CH #OFC3Ch
Returns the percent difference between two unit quantities

unit) unit2 ~ %

UM"~T #OFCCDh
Returns the percentage fraction of unit) that is unit2

unit) unit2 ~ %

UM* #OF792h
Unit multiply

unit unit ~ unit
UM+ #OF6A2h
Unit addition

unit unit ~ unit
UM- #OF774h
Unit subtraction

unit unit ~ unit
UM/ #OF823h
Unit division

unit unit ~ unit
UM>U #OF33Ah
Replaces the number part of a unit object

% unit ~ unit

L UMABS #OF5FCh
Absolute value

unit ~ unit
UMCEIL #OFD36h
Next greatest integer

unit ~ unit
UMCHS #OF615h
Change sign

L unit ~ unit
UMCONV #OF371h
Unit conversion - converts unit) to unit2 units

unit) unit2 ~ unit)'

UMCOS #OF660h
Cosine

unit ~ %
UMFLOOR #OFD22h
Next smallest integer

unit ~ unit
UMFP #OFDOEh
Fractional part

unit ~ unit
UMIP #OFCFAh
Integer part

unit ~ unit
UMMAX #OFB6Fh
Maximum of two unit quantities

unit) unit2 ~ unit

Objects & Object Utilities 91

UMM:IN #OFB8Dh
Minimum of two unit quantities

unit} unit2 ~ unit
UMRND #OFD68h
Round to specified number of places

unit %places ~ unit
UMS:I #OF945h
Converts unit quantity to SI units

unit ~ unit
tlMS:IGN #OFCE6h
Returns sign (-1, 0, or 1) of unit quantity

unit ~ %
UMS:IN #OF62Eh
Sine

unit ~ %
tlMSQ #OF913h
Square

unit ~ unit
tlMSQRT #OF29Ch
Square root

unit ~ unit
UMTAN #OF674h
Tangent

unit ~ %
UMTRC #OFD8Bh
Truncate to specified number of places

unit %places ~ unit
UMU> #OF34Eh
Returns number and normalized unit parts of a unit object

unit ~ % unit'
UMXROOT #OF8FAh
Returns unitxth root of unity

unitx unity ~ unit
UN:IT> $ #OF218h
Decompiles a unit object

unit ~ $

92 Objects & Object Utilities

Memory Utilities
The HOME directory and its subdirectories are collectively known as USEROB, which is different from the
temporary memory (TEMPOB). In TEMPOB, objects live briefly, and are discarded when memory is low and no
pointers refer to them. In USEROB, an object exists until purged by a user command.

The objects described in this chapter provide some of the basic utilities for dealing with input from the user, results
returned to the user, and directories. An important convention in the HP 48 is the sanctity of variables stored in user
memory. Some operations, like GROB!, don't care where a subject object resides. It's therefore possible to alter a
user's input arguments instead of providing a unique result. Unless there is a specific design intent, an application
should not change the directory pointed to by the V AR menu when the application begins.

High Memory

Port 0

----------User Memory 01 AR menu)

----------Menu Definition Memory

Do Loop Environments

f-----------
Temporary Environments

f-----------
Edit Line

f-----------
Data Stack

~
Available Memory

t
Return Stack

1""""---------TEMPORARY MEMORY
(TEMPOB)

i-----------
PICT Grob

Stack Display Grob

SoftKey Grob

Dedicated System RAM

Low Memory

Name Objects
In this chapter, "ID" and "lam" refer to global and local variable name objects. The following objects convert
between strings and name objects:

$>:ID #05B15h
Converts a string object into a name object

$ ~ ID
DUP$>ID #63295h
Duplicates a string, then converts string object to name object

$ ~ $ ID
:ID>$ #05BE9h
Converts a name object to a string object

ID ~ $

Memory Utilities 93

User Variables
Evaluating a user variable is just as straightforward in System-RPL as in User-RPL just specify the name:

:: ... ID X . . . ;

Since any object can be in X, or X may not exist, you might want to exercise some caution. This is part of the
reason the HP 48 is criticized for being slow in some areas, especially with respect to the plotting system. When a
plot is drawn, the contents of PP AR, the equation, and related variables must be validated before the plot gets
underway. Since the user can provide a program for an equation definition, further checks are required to make sure
the program will not inflict untoward damage. If you're at all concerned about these issues, recall the contents of the
variable before evaluating.

CREATE #08696h
Creates a variable in the current directory (does not check for unique name)

ob ID ~
?PURGE_HERE #1854Fh
Purges specified variable only if it exists in the current directory and does not
contain a non-empty directory, otherwise generates Hon-elllPt y Direct ory
error

ID ~
PURGE #08C27h
Purges the specified variable. Do not purge a non-empty directory with this
object - use XEQPGDIR instead.

ID ~
@ #0797Bh
Recalls the contents of a global or temporary variable. For global variables,
begins at the current directory and searches up through HOME

ID ~ ob TRUE Global variable exists
ID ~ FALSE Global variable nonexistent

lam ~ ob TRUE Temporary variable exists
lam ~ FALSE Temporary variable nonexistent

Sys@ #2EA6Ah
Recalls the contents of a global variable from HOME directory

ID ~ ob TRUE Global variable exists
ID ~ FALSE Global variable nonexistent

SAFE@ #62A34h
Recalls the contents of a global or temporary variable. For global variables,
begins at the current directory and searches up through HOME. ROM bodies
are converted to XLm names.

ID ~ ob TRUE Global variable exists
ID ~ FALSE Global variable nonexistent

lam ~ ob TRUE Temporary variable exists
lam ~ FALSE Temporary variable nonexistent

SAFE@_HERE #1853Bh
Recalls the contents of a global or temporary variable. For global variables,
recalls only from the current directory.

ID ~ ob TRUE Global variable exists
ID ~ FALSE Global variable nonexistent

lam ~ ob TRUE Temporary variable exists
lam ~ FALSE Temporary variable nonexistent

SAFES TO #07D27h
Stores an object in the current directory. If the object is to be stored in a global
variable and is referenced, a copy is left in temporary memory and all
references are adjusted to point to the copy. Searches current and then parent
directories for the global variable, replacing the contents if found, otherwise
creates variable in the current directory.

ob lam ~
ob ID ~

94 Memory Utilities

'0 .

L

.I

STO #07D27h
Stores an object in the current directory. If the object is to be stored in a global
variable and is referenced, a copy is left in tempob and all references are
adjusted to point to the copy. Searches current and then parent directories for
the global variable, replacing the contents if found, otherwise creates variable
in the current directory.

ob lam -7

ob ID -7

SysSTO #2E9E6h
Stores an object in HOME

ob ID -7

XEQSTOl:D #18513h
Stores an object in the current directory. If the object is to be stored in a global
variable and is referenced, a copy is left in temporary memory and all
references are adjusted to point to the copy. Will not overwrite a directory.
This does the work for the user command STO.

ob lam -7

ob ID -7

Directory Utilities
A directory is an object, but you should note that directories are not composite objects. To be used, a directory must
be "rooted", meaning it must be a subdirectory of the permanent HOME directory. When the HP 48 is first turned
on, the HOME directory is established, and a pointer called CONTEXT refers to this HOME directory.
Subdirectories are said to be "rooted" in their parent directory. As the directory structure is traversed, the
CONTEXT pointer is updated to point to subdirectories within HOME. CONTEXT should never point to an
unrooted directory, and no pointer should ever point within an unrooted directory, because the garbage-collection
system isn't designed to traverse a directory in TEMPOB.

CONTEXT! #08D08h
Stores a pointer to a rooted directory in CONTEXT, defining the current
directory

directory -7

CONTEXT@. #08D5Ah
Recalls the CONTEXT pointer

-7 directory
CREATEDl:R #184Elh
Creates a directory in the current directory

ID -7

DOVARS #18779h
Returns a list of the variables in the current directory

-7 { ID J ••• IDN }
PATHDl:R #1848Ch
Returns a list describing the path from HOME to the current directory

-7 { HOME ID ID ... }
SYSCONTEXT #08D92h
Stores the HOME directory pointer into CONTEXT

-7

UPDl:R #IAI6Fh
Makes the parent directory the current directory

-7

XEQORDER #20FF2h
Asserts the order of IDs in the current directory

{ ID J ••• IDN } -7

XEQPGDl:R #18595h
Purges a directory

ID -7

Memory Utilities 95

The hidden directory is a null-named directory at the end of the HOME directory, and contains user key definitions
and alarm information. Applications that use this directory need to either clean up after themselves or provide a user
command to clear stored information.

PuHiddenVar #6408Ch
Purges the specified variable in the hidden directory

ID ~
RclHiddenVar #64023h
Recalls a hidden variable using @

ID ~ ob
StoHiddenVar #64078h
Stores an object in the hidden directory using STO

ob ID ~

Temporary Memory
The data stack in the HP 48 is actually a stack of pointers which refer to objects elsewhere in memory. Temporary
memory is the calculator's "scratchpad". All objects that are not stored in a port or in a user variable reside in
temporary memory. Many of the objects described in this book require temporary memory to construct intermediate
objects or new objects returned as results to the stack.

Use of Temporary Memory
To understand temporary memory a little more, consider what happens when two math operations are performed.
Enter the numbers 1.5 and 2.6 on the stack. These numbers now reside in temporary memory, referred to by
pointers on the data stack. When the numbers are added, the result, 4.1, is a number in temporary memory
referenced by a pointer in level 1 of the data stack. The objects 1.5 and 2.6 remain in temporary memory, referenced
by pointers that save the Last Arguments.

Now add 2.8 to the result in level 1. The level 1 pointer on the data stack refers to the object 6.9 in temporary
memory. The last arguments pointers now refer to the objects 2.8 and 4.1, and the objects 1.5 and 2.6 are no longer
referenced.

The object TOTEMPOB may be used to create a new copy of an object in temporary memory, whose only reference
is on the data stack. In general, the system will perform an automatic TOTEMPOB where it makes sense. For
instance, if you recall the contents of a variable to the stack and press IEO/TI, the object will be copied to temporary
memory before editing begins.

Sometimes you may want to "free" an object that was extracted from a list. Consider the following User-RPL
program:

« { "AB" "CD" "EF" } 2 GET»

Levell of the data stack contains a pointer into the list, which still resides in temporary memory. Executing
NEWOB now would create the unique object "CD" in temporary memory, and release the list for garbage collection.
(Note: set the Last Arguments flag (-55) to prevent the list from being referenced as a last argument.)

The following objects are useful for checking references to objects and their locations.

CKREF #37B44h
Creates a unique copy of an object if it's referenced, embedded, or in USEROB.

ob ~ ob
:t:NTEMNO'l'REF? #06B4Eh
Returns TRUE if ob is in TEMPOB, and not referenced or embedded

ob ~ ob FLAG
SWAPCKREF #63F7Eh
Swaps objects, then does CKREF

ObI Ob2 ~ Ob2 ObI
'l'O'l'EMPOB #06657h
Creates a unique copy of an object in TEMPOB

ob ~ ob

96 Memory Utilities

I ~

L

Garbage Collection
From time to time the HP 48 will "hesitate" during an operation. This hesitation is usually caused by the removal of
objects in temporary memory which are no longer being used. Objects which are no longer referenced continue to
accumulate in temporary memory until memory has been filled. When memory is full, the calculator scans the
objects in temporary memory, deleting those without references to them. This process, known as "garbage
collection", is similar in concept to garbage collection in LISP.

A large number of pointers on the stack that point to temporary memory can slow down the garbage collection
process to an uncomfortable degree. This occurs when there are a large number of objects on the stack, or an object
has been extracted from a large list. A worst case scenario occurs when a list that has been stored in a local variable
has been broken out onto the stack using the User-RPL command OBJ~ or INNERCOMP (see Composite Objects).
In this case, the time required for garbage collection increases roughly with the square of the number of objects that
were in the list. List operations can be optimized by storing the lists in global variables, effectively moving the
operations from temporary memory to user memory.

I GARBAGE Performs a garbage collectIon
#05F42h I

Memory Utilities

MEM #05F6lh
Returns the number of nibbles of free memory. Note that you may wish to
collect garbage first to get an accurate measure of available memory.

~ #
OCRC

,
#05944h

Returns the size of an object in nibbles as a bint and the object's checksum as a
hex string

~ #size hxs checksum
OCRC% #IAIFCh
Returns the size of an object in bytes as a real and the object's checksum as a
hex string

~ %size hxs checksum
getnibs #6595Ah
Replaces hex string body with data from memory at the specified address

hxs data hxs address ~ hxs data'
putnibs #6594Eh
Replaces memory data at the specified address with body of data hex string

hxs data hxs_address ~

Memory Utilities 97

Graphics, Text, and the LCD
Many people tum to System-RPL for additional control over the HP 48 display. While User-RPL graphics resources
generally work with the built-in graphics object PICT and do not work with the stack display, System-RPL routines
have fewer restrictions. This chapter will introduce the organization of the display and some basic tools for
manipulating graphics objects and display memory.

LCD Display Regions
When the HP 48 is displaying the stack during normal calculations, the LCD is divided into three regions, each
having display memory and objects associated with them to control display refresh.

05/16/!1:1 Oi!::lO:OOP
RAD

{ HDME)
Status (Area 1)

Stack/Command-line (Area 2)

Menu (Area 3)

The status area and the stack/command line area are displayed using the stack grob (ABUFF). The menu area is
displayed using the menu grob (HARDBUFF2). The object SysDisplay updates the entire display:

sysDisplay
Displays the status, stack, and menu areas

~

#386Alh

The User-RPL FREEZE command provides a basic way to prevent one or more of these regions from being updated
when a program halts for input or terminates. There are many System-RPL objects and flags associated with these
regions that perform similar tasks. Here we present a subset of these objects that should suit many applications.

Status Area Control
The status area is 16 pixel rows high. Two objects are of interest for the status area. ClrDA1IsStat suspends the
clock display (this is safe to use whether or not the clock is being displayed). SetDAl Temp "freezes" the status
area after your application halts for a prompt or terminates.

ClrDA1:IsStat #39531h
Suspends the ticking clock display

~

SetDAITemp #3902Ch
Signals that the status area should not be redrawn

~

SetDAIBad #3947Bh
Signals that the status area should be redrawn

~

DispStatus #395BAh
Draws the status area

~

?DispStatus #3959Ch
If no keys are in the keybuffer, draws the status area, otherwise does not draw
the display area and executes SetDAlBad

~

Stack Area Control
The stack/command-line area is 40 pixel rows, and is actually divided into two sub-regions named 2a and 2b. The
command line is the main portion of the HP 48 that recognizes the two sub-regions. Region 2a displays the stack,
and region 2b displays the command line. Either area can be null, but in principle they both exist at all times. The
object SetDA20KTemp signals that neither display area 2a or 2b should be redrawn.

98 Graphics, Text, and the LCD

I
-.../ ;'

--..../

..J

--..../.

-....,/

--..../

'-./

--..../

'--"

\....­

L

L

SetDA20KTemp #39207h
Signals that the stack/command line areas (2a and 2b) should not be redrawn

~

SetDA2aTemp #39045h
Signals that the stack area (2a) should not be redrawn

~

SetDA2bTemp #39059h
Signals that the command line area (2b) should not be redrawn

~

SetDA2aBad #394A5h
Signals that the stack area (2a) should be redrawn

~

SetDA2bBad #394CFh
Signals that the command line area (2b) should be redrawn

~

?DispStack #39B85h
If no keys are in the keybuffer, draws the stack area, otherwise does not draw
the stack area and executes SetDA2aBad

~

DispEditLine #3AOODh
Displays the edit line

~

Menu Area Control
The menu area occupies the bottom 8 pixel rows of the display. The menu area can be frozen with the object
SetDA3Ternp. The current menu definition can be displayed with either of the DispMenu objects.

DispMenu #3AIE8h
Displays the current menu and freezes the menu display line

~

DispMenu.l #3AIFCh
Displays the current menu

~

?DispMenu #3AICAh
If no keys are in the keybuffer, draws the menu area, otherwise does not draw
the menu area and executes SetDA3Bad

~

SetDA3Temp #39072h
Signals that the menu should not be redrawn

~

SetDA3Bad #394F9h
Signals that the menu should be redrawn

~

Combined Area Controls
The object ClrDAsOK signals that the entire display should be redrawn when the application terminates.
Conversely, the object SetDAsTernp signals that no part of the display should be redrawn (the same as 7 FREEZE
in User-RPL).

ClrDAsOK #39144h
Signals entire LCD should be redrawn

~

SetDA12Temp #3921Bh
Signals that only the menu area should be redrawn

~

SetDAsTemp #3922Fh
Signals that no part of the LCD should be redrawn

~

Graphics, Text, and the LCD 99

Basic Display Memory Principles
There are three reserved graphics objects (grobs) in the HP 48: the stack grob, the menu grob, and the graphics grob
(P/eT) . The HP 48's LCD always displays either the stack grob or p/eT; the menu grob is optional in either case.

Applications wishing to be compatible with both the Sand G series of the HP 48 should avoid using direct RAM
addresses to refer to these grobs, since RAM was relocated for the G series. Built-in objects described in the next
three subsections provide reliable pointers to these grobs.

The Current Display Grob
The object HARDBUFF returns a pointer to the currently displayed stack or p/eT grob to the data stack:

BARDBUFF
Returns the currently displayed stack or graphics grob

~ grob

The following objects clear all or part of the HARDBUFF grob:

BLANKJ:T
Clears #rows starting at the specified row

#row start #rows ~
BIankDA12
Clears rows 0 - 56

~

BIankDAl
Clears rows 0 - 16

~

BIankDA2
Clears rows 16 - 40

~

CLEARVDJ:SP
Clears all of HARDBUFF

~

CIr16
Clears the fIrst 16 rows

~

CIrS
Clears the first 8 rows

~

CIrS-1S
Clears rows 8 - 15

~

100

#12635h

#126DFh

#3A578h

#3A546h

#3A55Fh

134AEh

#OE06Fh

#OE083h

#OE097h

Graphics, Text, and the LCD

-...J
I

The Stack Grob
The stack display is nominally 131x56 pixels, but may be enlarged and scrolled. The object ABUFF puts a pointer to
the stack display grob on the data stack. The object TOADISP switches the LCD display to the stack grob.

ABUFF #12655h
Returns the stack grob

~ grob
DOCLLCD #5046Ah
Clears the stack grob

~

DOLCD> #503D4h
Returns a grob with the first 56 rows of ABUFF and a copy of the menu area at
the bottom Gust like the LCD)

~ grob
DO> LCD #50438h
Stores a grob into the upper-left corner of ABUFF

grob ~
TOAD:ISP #1314Dh
Displays the stack grob

~

The stack display is often used by applications or games which do not wish to disturb PIc[. The EquationWriter,
MatrixWriter, and Minehunt game all use the stack display. Two objects which are useful for claiming the stack
display for an application are RECLAIMDISP and ClrDA1IsStat:

RECLAl:MDl:SP #130ACh
Switches to stack display, clears, unscroUs, and resizes to default size (131x56)

ClrDAll:sStat #39531h
Disables the ticking clock display

The Graphics Grob
The graphics grob (PIC[) is nominally 131x64 pixels, but may be enlarged and scrolled. The object GBUFF puts a
pointer to the graphics grob on the data stack. The object TOGDISP switches the LCD display to the graphics grob.

GBUFF #12665h
Returns the graphics grob

~ grob
GBUFFGROBDl:M #5187Fh
Returns the dimensions of the graphics grob (PleT)

~ #height #Width
GROB>GDl:SP #12F94h
Stores a grob into GBUFF

grob ~
MAKEPl:CT# #4B323h
Replaces the graphics grob with a blank grob of specified dimensions.

#width #height ~
Note: MAKEPICT# will not create a graphics grob less than 64 rows high or
131 columns wide.
TOGDl:SP #13135h
Displays the graphics grob (PICT)

~

WiNDOW# #4F052h
Displays the graphics grob (PICT) at the specified window coordinates. This is
the object that does the work for PV I EW with pixel coordinate parameters.

#x #y ~

Graphics, Text, and the LCD 101

Verifying Display Grob Height
To make sure that that either ABUFF or GBUFF are at least 64 rows high, use the object CHECKHEIGHT.

CBECKRE:IGHT
Force either ABUFF or GBUFF to be at least 64 rows high

grob #current-D0b height ~

#5111E3h

Note: CHECKHEIGHTonly works for ABUFF and GBUFF!

Example: To ensure that the stack grob is at least 64 rows high, execute the following fragment:

ABUFF
DUPGROBDIM DROP
CHECKHEIGHT

Enlarging ABUFF or GBUFF

Pointer to the stack grob
Height of the stack grob
Ensures stack grob is at least 64 rows high

The following objects may be used to enlarge either the stack grob or the graphics grob. They will not work for any
other grob.

BE:IGHTENGROB
Adds blank rows to the specified display grob

grob #rows ~
WI:DENGROB
Adds blank columns to the specified display grob

grob #rows ~

Scrolling ABUFF or GBUFF

#12DDlh

#12BB7h

If either the stack or graphics grob are larger than the size of the LCD, they may be scrolled. You can track the
location of the LCD "window" into the grob by testing/setting the upper left "window" coordinates. The object
WINDOWXY sets these coordinates, and the object WINDOWCORNER returns these coordinates.

W:INDOWCORNER #137B6h
Returns the current window coordinates

~ #x #y

WI:NDOWXY #13679h
Sets the window coordinates

#y #x ~

The following objects may be used for scrolling the display. A nice example of their use is the program
SCROLL. S, included with the HP tools and documentation.

JUMPBOT #516AEh
Move the window to the bottom edge of the grob

~

JUMPLEFT #516E5h
Move the window to the left edge of the grob

~

JUMPR:IGHT #51703h
Move the window to the right edge of the grob

~

JUMPTOP #51690h
Move the window to the top edge of the grob

~

102 Graphics, Text, and the LCD

J 1

SCROLLDOWN #4D16Eh
Scroll the window down one pixel with repeat (tied to down-arrow key)

---7

SCROLLLEFT #4D150h
Scroll the window left one pixel with repeat (tied to left-arrow key)

---7

SCROLLR:IGBT #4D18Ch
Scroll the window right one pixel with repeat (tied to right-arrow key)

---7

SCROLLUP #4D132h
Scroll the window up one pixel with repeat (tied to up-arrow key)

---7

WJ:NDOWDOWN # 13220h
Scroll the window down one pixel

---7

W:INDOWLEFT #134E4h
Scroll the window left one pixel

---7

WJ:NDOWR:IGBT #1357Fh
Scroll the window right one pixel

---7

W:INDOWUP #131C8h
Scroll the window up one pixel

---7

The Menu Grob
The menu display is a fixed 131x8 pixelgrob. The object HARDBUFF2 puts a pointer to the menu display grob on
the data stack. The objects TURNMENUON, TURNMENUOFF, and MENUOFF? control and test the display of the
menu grob. Note that when TURNMENUOFF is used to tum off the menu display, the stack display (or graphics
display) grob will be enlarged from 56 to 64 rows. The object LINECHANGE does the work for TURNMENUON and
TURNMENUOFF.

CLEARMENO #51125h
Clears the menu grob

---7

DispMenu #3AIE8h
Displays the current menu and freezes the menu display line (SetDA3Valid)

---7

DispMenu.1 #3AIFCh
Displays the current menu

---7

BARDBUFF2 #12645h
Returns the menu grob

---7 grob
L:INECBANGE #4E37Eh
Sets the display pixel row upon which to begin displaying HARDBUFF2.
Valid values are from 55d (menu on) to 63d (menu off).

#row ---7 grob
MENUOFF? #4E360h
Returns TRUE if the menu is not displayed

---7 FLAG
TURNMENUOFF #4E2CFh
Turns off the menu display

---7

TURNMENUON #4E347h
Turns on the menu display

---7

Graphics, Text, and the LCD 103

In the example Rolling the Menu Display below, the object LINECHANGE will be used to show how the menu
display is turned on and off. If the menu display is off, the LCD drivers will still display data for a grob that is 64
rows high, regardless of the actual size of the grob. To see what this looks like, wamstart your HP 48 (hold lQNJ,
press and release (Q)), then execute the following secondary:

SIXTYFOUR LINECHANGE
SetDAsTernp

Display Pointer Examples
To get acquainted with the display grobs, try a quick User-RPL example program that uses SYSEVAL to return the
currently displayed grob to the stack and invert the grob. This example uses INVGROB (#122FFh) to invert a grob
in level 1 of the stack (the User-RPL command NEG creates a copy of the grob, so INVGROB is easier to use).

#12635h SYSEVAL
#122FFh SYSEVAL
DROP
7 FREEZE

HARDBUFF returns a pointer to the currently displayed grab
INVGROB inverts the grab
Drops the pointer (no longer needed)
Postpones display updates

Inverting the Stack Display. If the program above is executed while the stack display is shown, the stack display
will be inverted. A System-RPL equivalent of this program is:

HARDBUFF
INVGROB
DROP
SetDAsTernp

Returns a pointer to the stack grab
Inverts the grab
Drops the pointer (no longer needed)
Freeze the display

Inverting PICT. For fun, plot a function, then execute the following program:

TOGDISP
GBUFF
INVGROB
DROP
SetDAsTernp

Displays PICT
Returns a pointer to the stack grab
Inverts the grab
Drops the pointer (no longer needed)
Freeze the display

RoUing the Menu Display. For more fun, use LINECHANGE to scroll the menu out ofthe display and back in
again. This program uses SLOW to let you see the menu grob move.

SCRMEN 80.5 Bytes Checksum #lBOSh
(~)

OLASTOWDOB!
CKONOLASTWD
HARDBUFF DUPGROBDIM DROP CHECKHEIGHT
SIXTYFOUR FIFTYSIX DO

INDEX@ LINECHANGE SLOW SLOW
LOOP
WaitForKey 2DROP
NINE ONE DO

SIXTYTHREE INDEX@ #- LINECHANGE
SLOW SLOW

LOOP

104

Clears saved command name
No arguments
Verify that the display grab is 64 rows high
Loop from 56 to 63
Use LINECHANGE to set where menu is displayed

Wait for a key, discard keycode and plane
Prepare to loop from 63 to 56
Use LINECHANGE to set where menu is displayed

Graphics, Text, and the LCD

I

-../

./

Graphics Coordinates
System-RPL objects that work with graphics use internal binary integers to represent pixel coordinates. The upper­
left pixel of a grob is always #0,#0.

Subgrob Coordinates
Operations that need to describe the lower-right boundary of an area usually refer to the pixel one row down and one
column to the right of the intended area. For example, if SUBGROB will be used to create a grob from a larger grob,
the coordinates #30 #20 #36 #28 would describe a region beginning on the 31st column and the 21st row in the
source grob that is six rows high and eight pixels wide. Other objects that use this convention include GROB ! ZERO
and GROB ! ZERODRP.

Grob Coordinates 0, 0 nl-'---~:':'="-===="'-----T1.. 130, 0

SUBGROB coordinn
~

0,63L.Lh ____________ r 130,63

User Pixel Coordinate - Bint Conversion
If you're writing a graphics command that extends the User-RPL command set, you may wish to accept graphics
coordinates from the user as a list of two user binary integers like { #5d # 17d }. The object 2HXSLIST?
converts this type of list into two bints, ready for use in System-RPL. If the list contains other than two elements
that are user binary integers a Bad Argument Type error will be generated .

2HXSLJ:ST?
Converts user pixel coordinates to two bints

{#x #y} ~ #x #y

#51532h

To return a coordinate to the user as a user binary integer, use the object #>HXS (see Hex String Conversions). For
example, to return the size of a grob to the user as two user binary integers, use this code:

GROBDIM
#>HXS SWAP #>HXS

User-Unit to Pixel Conversion

(#height #width)
(hxSwidth hXSheight)

The following objects use the information in PP AR to convert between user units and pixel coordinates. If PP AR
doesn't exist when these are executed, a default PP AR will be created. If you're working on code for plotting, be
aware that these routines carry the burden of validating PP AR.

C%># #4F408h
Converts complex number user-unit coordinates to bint pixel coordinates

C%(x,y) ~ #x #y
DOC>PX #4F179h
Converts complex number user-unit coordinates to user binary integer pixel
coordinates

C%(x,y) ~ { #x #y }

DOPX>C #4FOACh
Converts user binary integer pixel coordinates to complex number user-units

{ #x #y } ~ C%(x,y)

Graphics, Text, and the LCD 105

I
J'

Accessing PPAR
The following objects provide access to the user variable PP AR and its contents.

CHECKPVARS #4A9AFh
Validate and return the current contents of PP AR. Issues I nva 1 i d PPAR
error if PP AR is invalid. Creates and returns default PP AR if PP AR is
nonexistent.

~ { ppar}

GETSCALE #4ADBOh
Returns user-unit distance across 10 pixels

~ %xscale %yscale
PUTSCALE #4AE3Ch
Sets user-unit distance across 10 pixels (does not change center of PICT)

%xscale %yscale ~

Note that each of the following objects carries the burden of validating PP AR.

GETPMI:N&:MAX #4BODAh
Returns the current PMIN and PMAX entries from PP AR

~ C%PMIN C%PMAX
GETXMI:N #4BIOCh
Returns the current Xmin coordinate

~ %Xmin
GETXMAX #4B139h
Returns the current Xmax coordinate

~ %Xmax
GETYMI:N #4B120h
Returns the current Y min coordinate

~ %Ymin
GETYMAX #4BI4Dh
Returns the current Y max coordinate

~ %Ymax
PUTXMI:N #4B166h
Stores a new Xmin coordinate

%Xmin ~
PUTXMAX #4BIACh
Stores a new Xmax coordinate

%Xmax ~
PUTYMI:N #4B189h
Stores a new Ymin coordinate

%Ymin ~
PUTYMAX #4BICFh
Stores a new Ymax coordinate

%Ymax ~

106 Graphics, Text, and the LCD

L

,I

/

Displaying Text
The HP 48 has three built-in fonts. Objects are provided that support text display using the medium and large size
fonts in fixed display regions. Use of the small font or arbitrary locations in a grob or display grob requires the use
of objects like $>grob, GROB!, and XYGROBDISP.

Medium Font Display Objects
The following objects display text in the stack grob using the medium font. Each row is truncated to 22 characters
or blank filled. The object Disp5x7 breaks lines at carnage-returns. Each object displays text beginning at the left
edge of ABUFF, except for DISPROWl * and DISPROW2 * , which display text relative to the window corner.

DISPROWl #1245Bh
Displays text on row 1 (pixel rows 0-7)

$ ~
DISPROW1* #12725h
Displays text on row 1 relative to the window corner

$ ~
DISPROW2 #1246Bh
Displays text on row 2 (pixel rows 8-15)

$ ~
DISPROW2* #12748h
Displays text on row 2 relative to the window corner

$ ~
DISPROW3 #1247Bh
Displays text on row 3 (pixel rows 16-23)

$ ~
DISPROW4 #1248Bh
Displays text on row 4 (pixel rows 24-31)

$ ~
DISPROWS #1249Bh
Displays text on row 5 (pixel rows 32-39)

$ ~
DISPROW6 #124ABh
Displays text on row 6 (pixel rows 40-47)

$ ~
DISPROW7 #124BBh
Displays text on row 7 (pixel rows 48-55)

$ ~
DISPN # 12429h
Displays text on the specified row

$ #row ~
Disp5x7 #3A4CEh
Displays up to #max rows of text starting on the specified row

$ #row #max ~
DISPSTATUS2 #127OCh
Displays a string in the first two text rows

$ ~

Displaying Temporary Messages
The following objects display a message in the top two lines. The display lines used are preserved and restored.

FlashMsg
Displays a message.

FlashWarning
Displays a message and beeps

Graphics, Text, and the LCD

#12B85h

$ ~
#38926h

$ ~

107

The program MDISPN illustrates the medium font display lines :

MDISPN 65.5 Bytes Checksum #56AFh

CKONOLASTWD OLASTOWDOB!
RECLAIMDISP ClrDAlIsStat
EIGHT ONE DO

INDEX@ "Line " OVER UNCOERCE DECOMP$ &$
SWAP DISPN

LOOP
SetDAsTemp

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6

Clear saved command name, no arguments
Claim the display, suspend the clock
Loop for seven lines
Build the display string
Display the string

Freeze the display

Line 7
mmmmlDilllDDmlrtD

Large Font Display Objects
The following objects display text in the stack grob using the large font. Each row is truncated to 22 characters and
blankfilled.

BI:GDI:SPROWl
Displays text on large font row 1 (pixel rows 16-25)

$ ~
Bl:GDl:SPROW2
Displays text on large font row 2 (pixel rows 26-35)

$ ~
Bl:GDl:SPROW3
Displays text on large font row 3 (pixel rows 36-45)

$ ~
Bl:GDl:SPROW4
Displays text on large font row 4 (pixel rows 46-55)

$ ~
BI:GDI:SPN
Displays text on the specified large font row

$ #row ~

The program BDISPN illustrates the large font display lines:

BDISPN 65.5 Bytes #Checksum #875Eh

CKONOLASTWD OLASTOWDOB!
RECLAIMDISP ClrDAlIsStat
FIVE ONE DO

#12415h

#12405h

#123F5h

#123E5h

#123C8h

Clear saved command name, no arguments
Claim the display, suspend the clock
Loop for four lines

INDEX@ "Line " OVER UNCOERCE DECOMP$
SWAP BIGDISPN

& $ Build the display string

LOOP
SetDAsTemp

108

Display the string

Freeze the display

Line 1
Line 2
Line 3
Line 4
mmmmlDilllDDmlrtD

Graphics, Text, and the LCD

Basic Grob Tools
The objects described below describe a series of tools for basic grob manipulation.

Creating Grobs
The object MAKEGROB is the System-RPL object that does the work for the User-RPL command BLANK. The
height and width are specified with bints.

MAKEGROB #1158Fh
Creates a blank grob

#height #width ~ grob

The following objects create a grob representation of an object.

$>grob #l1F80h
Creates a grob from a string using the small font

$ ~ grob
$>GROB #llDOOh
Creates a grob from a string using the medium font

$ ~ grob
$>B:IGGROB #l1CF3h
Creates a grob from a string using the large font

$ ~ grob
Symb>HBuff #659DEh
Creates an Equation Writer grob representation of an expression

'expression' ~ grob

Finding Grob Dimensions
The following objects return the dimensions of a grob.

DUPGROBD:IM #5179Eh
Returns a grob and its dimensions

grob ~ grob #height #Width
GBUFFGROBD:IM #5187Fh
Returns the dimensions of the graphics grob (PIC])

~ #height #width
GROBD:IM #50578h
Returns the dimensions of a grob

grob ~ #height #width
GROBD:IMw #63C04h
Returns the width of a grob

grob ~ #width

Extracting a Subgrob
The object SUBGROB returns a new grob copy of a specified region in a grob. Remember that the lower-right comer
is specified by the pixel one row down and one column to the right of the desired region (see Graphics Coordinates) .

SUBGROB
Returns a subgrob

grob #Xl #YI #X2 #Y2 ~ subgrob

Graphics, Text, and the LCD

#1192Fh

109

Inverting a Grob
The object INVGROB inverts the pixels in a grob.

I INVGROB
Inverts a grob

grob ~ grob'

#122FFh I

Combining Graphics Objects
The objects GROB! and GROB+# place one grob's data within another grob. Note that GROB! does no range
checking, but GROB+# does the work for the User-RPL commands GOR and GXOR, and so does the same range
checking. The object XYGROBDISP places a grob in the current display grob (HARDBUFF).

WARNING
Some of these objects do not perform any range checking. If you specify a
graphics operation that would extend beyond the confines of the grob
arguments, you will corrupt memory.

GROB! #11679h
Stores level 4 grob into level 3 grob at specified coordinates

grobsource grobtarl!et #x #y ~
GROB+# #4F78Ch
Ifjlag is TRUE, ORs grobsource into grobtarget, otherwise XORs grob data

flag grobtarl!et grobsource #x #y ~
XYGROBD:ISP #128BOh
Places a grob into HARDBUFF, resizing HARDBUFF if needed

#x #y grob ~

The object CKGROBFITS is useful for ensuring that a grob will fit into another grob when you're going to use
GROB! and have doubts about the size of the grob being added. CKGROBFITS will truncate the grob being added
so that a GROB! operation will not corrupt memory.

CKGROBF:ITS
Ensures that grobnew will fit on grobtarget at the specified coordinates

grobtarget grobnew #x #y ~ grobwget grobnew' #X #y

#4F7E6h

Clearing a Grob Region
The objects GROB ! ZERO and GROB ! ZERODRP clear a grob's pixels in a specified region.

110

GROB!ZERO #l1A6Dh
Clears the pixels in the specified region

grob #x) #y) #X2 #Y2 ~ grob
GROBIZERODRP #6389Eh
Clears the pixels in the specified region and drops the pointer to the grob

grob #x) #y) #X2 #Y2 ~

Graphics, Text, and the LCD

I
'-../ ,

......; .

v '

Drawing Tools
The following objects are available for drawing lines, setting pixels, etc. Notice that these objects refer either to the
stack grob (ABUFF), or the graphics grob (PlCT). Remember that the upper-left comer of a grob has the
coordinates #0 #0 (see Graphics Coordinates) .

Line Drawing
Note that line drawing commands require X2 ~ x I, so you may wish to use ORDERXY# to ensure the correct order of
parameters.

ORDERXY# #51893h
Asserts left-to-right order for line-drawing coordinates

#XI #YI #X2 #Y2 ~ #x) #Y) #X2 #Y2
L:INEOFF #50B08h
Turns off a line of pixels in the stack display (ABUFF)

~

L:INEOFF3 #50ACCh
Turns off a line of pixels in the graphics display (GBUFF)

#x) #Y) #X2 #Y2 ~
L:INEON #50B17h
Turns on a line of pixels in the stack display (ABUFF)

#x) #Y) #X2 #Y2 ~
L:INEON3 #50AEAh
Turns on a line of pixels in the graphics display (GBUFF)

#x) #Y) #X2 #Y2 ~
TOGL:INE #50AF9h
Toggles a line of pixels in the stack display (ABUFF)

#Xl #Y) #X2 #Y2 ~
TOGLI:NE3 #50ADBh
Toggles a line of pixels in the graphics display (GBUFF)

#x) #Y) #X2 #Y2 ~

Pixel Control
The following objects clear, set, and test pixels in either the stack or graphics grob.

PI:XOFF #1383Bh
Turns off a pixel in the stack display (ABUFF)

#x #Y ~
P:IXOFF3 #1380Fh
Turns off a pixel in the graphics display (GBUFF)

#x #Y ~
PI:XON #1384Ah
Turns on a pixel in the stack display (ABUFF)

#x #Y ~
P:IXON3 #13825h
Turns on a pixel in the graphics display (GBUFF)

#x#Y ~
PI:XON? #13992h
Tests a pixel in the stack display (ABUFF)

#x #y ~ FLAG
PI:XON?3 #13986h
Tests a pixel in the graphics display (GBUFF)

#x #y ~ FLAG

Graphics, Text, and the LCD 111

Menu Grob Utilities
The following objects create menu label grobs (8 pixels high by 21 pixels wide) given a string as input:

MakeStdLabel #3A328h
Creates a standard label

$ ~ grob
MakeDirLabel #3A3ECh
Creates a directory label

$ ~ grob
MakeBoxLabel #3A38Ah
Creates a label with a "mode box" at the right side

$ ~ grob
Make:InvLabel #3A44Eh
Creates an outline box label

$ ~ grob
Box/StdLabel #3EC99h
Creates a label with a "mode box" at the right side if FLAG is TRUE, otherwise
create a label without the mode box

$ FLAG ~ grob
Std/BoxLabel #3EDOCh
Creates a standard menu label if FLAG is TRUE, otherwise creates a label with
a "mode box" at the right side

$ FLAG ~ grob

The following objects are used by the menu system to create and display menu label grobs in the dedicated menu
grob (HARDBUFF2). The #col parameters for the menu labels are listed in the table below.

Menu Label Column Numbers
Softkey Column Column
Number (hex) (decimal)

1 0 0
2 16 22
3 2C 44
4 42 66
5 58 88
6 6E 110

Grob>Menu #3A297h
Displays an arbitrary 8x21 grob

#col grob ~
:Id>Menu #3A2DDh
Displays a standard or directory label based on the contents of ID

#col ID ~
Seco>Menu #3A2C9h
Evaluates a secondary that results in a 8x21 grob, then displays the grob

#Col ..
~ ,

Str>Menu #3A2B5h
Displays a standard menu label

#col $ ~

112 Graphics, Text, and the LCD

I

--./

. .../

--../

-../

'---'

.....,/

--../

.....,/

--../

--../

--../

.....,/

J

'-"

'-"

'-"

'-"

'-"

J
..

'-./

--J

--../

--../

J

'-"

--../

'-"

'-"

'-"

..../

--../

'-"

--../

'-"

..../

J

-..,./

--J

J

....,;

-.......I

--../

Built-in Grobs
The following objects are built-in:

smallCursor #66EFlh
3x5 cursor (outline box)

~ grob
MediumCUrsor #66ECDh
5x7 cursor (outline box)

~ grob
BigCUrsor #66EA5h
5x9 cursor (outline box)

~ grob
CURSORl #13D8Ch
5x9 insert cursor

~ grob
CURSOR2 #13DB4h
5x9 replace cursor

~ grob
MARKGROB #5055Ah
X symbol

~ grob
CROSSGROB #5053Ch
+ symbol

~ grob

/

Graphics, Text, and the LCD 113

Graphics Examples
The following examples are designed to showcase a few of the objects described in this chapter. We hope you'll be
inspired to experiment with the possibilities. Each of these examples uses ABUFF - the stack display. We
encourage you to use ABUFF instead of GBUFF, since PICT is considered a user resource like a variable or flag
setting.

Drawing a Grid
Some games, like tic-tac-toe and the Minehunt game (built into the HP 48G/GX) need a grid display. This program
produces a grid centered in the stack display with a specified number of rows and columns. The size parameter
specifies the size of each square (not counting the box boundary lines).

GRID 181 Bytes Checksum #30Ah
(%Size %Rows %Cols -?)

OLASTOWDOB! CK3NOLASTWD
CK&DISPATCH1 # 00111

114

COERCE2 ROT COERCE #1+
DUP ROT #* #1+
DUP BINT_131d #>
case SETSIZEERR
OVER 4ROLL #* #1+
DUP SIXTYFOUR #>
case SETSIZEERR

ClrDA1IsStat
RECLAIMDISP
TURNMENUOFF

SIXTYTHREE OVER #-#2 /
DUP ROT #+-1
BINT_131d 4PICK #-#2 /
DUP 5ROLL #+-1

DUP#1+ 3PICK DO
INDEX@ 5PICK
OVER 6PICK
LINEON
5PICK

+LOOP

3PICK #1+ 5PICK DO
OVER INDEX@
3PICK OVER
LINEON
5PICK

+LOOP
5 DROP
SetDAsTernp

Clear saved command name, require three arguments
Require three real numbers

(#rows #cols #size+1
(#rows #size+1 #width)
Verify that the grid is not wider than the display
(#rows #size+1 #width)
(#size+1 #width #height)
Verify that the grid is not taller than the display
(#size+1 #width #height)

Suspend the ticking clock display
Assert, clear, and resize ABUFF
Tum off the menu display

Calculate the addresses of the grid boundaries:
(#size+1 #width #height #toprow
(#size+1 #width #toprow #botrow
(#size+1 #width #toprow #botrow #lfcol
(#size+1 #toprow #botrow #lfcol #rtcol

Draw the vertical lines:
(#size+1 #toprow #botrow #lfcol #rtcol
(#col #toprow)
(#col #toprow #col #botrow)
()

(#size+1)

Draw the horizontal lines:
(#size+1 #toprow #botrow #lfcol #rtcol)
(#lfcol #row)
(#lfcol trow #rtcol trow)
()

(#size+1)
(#size+1 #toprow #botrow #lfcol #rtcol)
Drop the box parameters
Freeze the display

Graphics, Text, and the LCD

I
-J

'-.../

......"

-.../

'-"

'-../

0.../

-.../

-.../

'-"

......"

--'

-.../

-.../

'-"

'-"

......"

-.../

'-"'

--./

-'-'"

-.../

--./

The following display was generated with the parameters 3 (size), 9 (rows), and 25 (cols):

11111111111111111111111111

For the reader that's interested in assembly language, we suggest you write a code object that replaces the two line
drawing loops. For fun, post your code to comp.sys.hp48 on the Internet. Whose code is fastest?

A Rocket Launch
The WINDOWXY and window scrolling objects suggest many possibilities. This program enlarges and scrolls
ABUFF to launch a rocket.

ROCKET 245.5 Bytes Checksum #E910h
(~)

OLASTOWDOB! CKONOLASTWD
ClrDA1IsStat RECLAIMDISP

HARDBUFF2
ZEROZERO 131 EIGHT GROB!ZERO
INVGROB
ZERO ONE 131 EIGHT GROB!ZERODRP
ABUFF 55 HEIGHTENGROB

ASSEMBLE

end
RPL

CON(5)
REL(5)
CON(5)
CON(5)
NIBHEX
NIBHEX
NIBHEX
NIBHEX

=DOGROB
end
16
9
0100010083008300
8300830083008300
8300C700C700C700
EFOOEF007D103810

ABUFF 62 40 GROB!
ELEVEN ZERO DO

TEN INDEX@ #- UNCOERCE
EDITDECOMP$ $>grob
HARDBUFF2
INDEX@
DUP#O=ITE

ELEVEN
FIFTEEN VERY SLOW

SWAP TEN #* #+
TWO
GROB!

LOOP
56 ONE DO

WINDOWDOWN
%RAN % .5 %> ?SKIP

67 55 INDEX@ #+ PIXON
SLOW

LOOP
RECLAIMDISP

Graphics, Text, and the LCD

Clear saved command name, require no arguments
Suspend clock display, assert, clear, and resize ABUFF
Build the "launchpad":
Pointer to menu grob
Clear menu grob
Invert menu grob
Clear bottom seven rows of menu grob
Add 55 rows to the stack display
Rocket grob

Place rocket in display
Draw the countdown to launch:
Real number counts down from 10 to 0
Convert number to string, then string to grab
Pointer to menu grob
Get the loop index again
If it's zero .. .
... use 11 for the count x-coordinate base
... otherwise use 15 and delay between numbers
Calculate x-coordinate for number
Use 2fory-coordinate
Put number into menu grob

Now launch the rocket:
Move the window down one row
There's a 50% chance ...
... of generating exhaust smoke
Delay a bit between rows

Resize and clear ABUFF when done

115

--

Keyboard Utilities
Applications requiring key detection have a variety of options available. In this chapter we illustrate a series of
objects and techniques for key detection. These examples use objects described in previous chapters. We fIrst
discuss key detection while a program is running, then waiting for a key, and fInally some higher-level utilities.

Key Buffer Utilities
The following objects clear and test the keyboard buffer.

CBECKKEY #04708h
Returns (but does not pop) a pending keycode in the key buffer and TRUE, or
FALSE if no key is pending

~ FALSE
~ #keycode TRUE

FLOSHKEYS #OOD71h
Clears the key buffer

~

GET'l'OOCB #04714h
Pops a pending keycode from the key buffer and returns TRUE, or returns
FALSE if no key is pending

~ FALSE
~ #keycode TRUE

XEY:INBOFFER? #42402h
Returns TRUE if any key other than IQN] has been pressed (does not detect the
loNi key)

~ flag

Notes:

The key codes returned by CHECKKEY and GET TOUCH do not map directly to key numbers 1 through 49. See
Keycodes below for more information on keycodes.

• These objects don't detect the (QN) key.

Checking The Keyboard While Running
The HP 48 interrupt system provides a 16-key buffer and a flag that signals that the IQN] key has been pressed. The
objects described in this section build upon these basic resources to provide many keyboard detection options.

Detecting the IONI Key
If a calculation, animation, or simulation process is likely to be either long or infInite, you may wish to let the user
signal that the process should stop. The traditional signal is the IQN] key. On the HP 48S/SX models this was
referred to as IATTNI (attention). On the HP 48G/GX this was renamed ICANCELl but the basic use of the key
remained constant. This key is used to interrupt a process, such as an active edit line, a plot in progress, data
transfer, or an HP SOLVE calculation. Some processes that work with lists, strings, and matrices also check to see
if this key has been pressed.

The interrupt system sets a flag (sometimes called the attention flag) when IQN] is pressed. The following objects
clear and test this flag.

ATTNFLGCLR #05068h
Clears the attention flag (does not flush the key from the key buffer)

ATTN? #42262h
Returns TRUE iflQN] has been pressed

~ flag

116 Keyboard Utilities

-../ .

L

The following program clears the key buffer and attention flag, then begins counting until the object ATTN? reports
that (QNJ has been pressed. The object FLUSHKEYS is used to remove the (QN) keystroke from the key buffer.

ADDIT
(~

67 Bytes
%result)

Checksum #DE5h

OLASTOWDOB! CKONOLASTWD
ClrDA1IsStat RECLAIMDISP
TURNMENUOFF
%0
ATTNFLGCLR
BEGIN

ATTN? NOT
WHILE

DUP EDITDECOMP$ DISPROW4
%1+

REPEAT
FLUSHKEYS ATTNFLGCLR
ClrDAsOK

Detecting Any Key

Clear protection word, no arguments
Turn off clock, clear ABUFF
Turn off the menu
Initial value of counter
Clear the attention flag

Run until [QNJ been pressed

Decompile and display counter
Increment counter

Flush key buffer, clear attention flag
Signal display needs to be redrawn

The object KEYINBUFFER? may be used in conjunction with ATTN? to detect if any key has been pressed. In
practical terms, an application that does this will probably want to use FLUSHKEYS and ATTNFLGCLR at the end
(as shown in the previous example).

KEYINBUFFER? Example: This example is structured much like the ADDIT example, but just uses
KEYINBUFFER? to look at the whole keyboard.

KB 56.5 Bytes Checksum #35EFh
(~ %result)

OLASTOWDOB! CKONOLASTWD
ClrDA1IsStat RECLAIMDISP
TURNMENUOFF
%0
BEGIN

KEYINBUFFER? NOT
WHILE

DUP EDITDECOMP$ DISPROW4
%1+

REPEAT
ClrDAsOK

Clear protection word, no arguments
Turn off clock, clear ABUFF
Turn off the menu
Initial value of counter

Has a key been pressed?

Decompile and display counter
Increment counter

Signal display needs to be redrawn

When you run KB, notice that the (QNJ key is not detected, and that the keystroke detected is executed after KB ends.
It's also important to notice that the shift keys are treated like any other key in this instance.

Keyboard Utilities 117

SCRIBE Example: This example is more involved than ADDIT and KB, mostly for fun. The object ATTN? is
used in the same manner as illustrated in ADDIT, but the program also uses GETTOUCH to check the rest of the
keyboard.

SCRIBE 331.5 Bytes Checksum #D363h
(~)

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP
TURNMENUOFF
SIXTYFOUR
THIRTYTWO
ONE
ONE
TRUE
{

LAM Xpos LAM Ypos
LAM Xstep LAM Ystep
LAM Running
BIND

FLUSHKEYS ATTNFLGCLR
BEGIN

GETTOUCH
ITE

DROPFALSE
TRUE

ATTN? NOT
AND

WHILE
LAM Xpos LAM Xstep #+
DUP MINUS ONE #= IT

:: #2+ ONE I LAM Xstep STO ;
DUP BINT_131d #= IT

:: #2- MINUSONE I LAM Xstep STO
DUP I LAM Xpos STO
LAM Ypos LAM Ystep #+
DUP MINUSONE #= IT

:: #2+ ONE I LAM Ystep STO ;
DUP SIXTYFOUR #= IT

:: #2- MINUSONE I LAM Ystep STO
DUP I LAM Ypos STO
PIXON

REPEAT
ATTNFLGCLR
ClrDAsOK

118

Clear protection word, no arguments
Tum off clock, clear ABUFF
Tum off the menu
Initial X position
Initial Y position
Initial X step
Initial Y step
Running flag

Bind local variables
Clear key buffer and IA TTNljlag

Has a key been pressed?

Yes, drop keycode and signal FALSE
No, signal TRUE to keep running
Has IATTNI been pressed?
AND flags together
If neither even happened, move point:
Add step to x position
If at left edge,
then reverse direction

If at right edge,
then reverse direction

Save copy on stackfor PlXON, store new value
Add step to y position
!fat top,

then reverse direction
If at bottom,

then reverse direction
Save copy on stack for PlXON, store new value
Tum on pixel

When done, clear IA TTN I flag
Signal display needs to be redrawn

Keyboard Utilities

I
'V

--/ .

I

Waiting For a Key
While the previous objects are helpful for detecting a key while a program is running, they are not particularly useful
if your application is just waiting for the user to press a key. There no sense in running down the batteries!

The object wai tForKey does all the hard work for you - returning a fully-formed keystroke specifying the
keycode and shift plane. While Wai tForKey is running, the calculator is placed in a low-power state, conserving
batteries.

When Wai tForKey returns, the keycode and shift plane numbers are returned as bints. The keycode numbering is
in row order starting at the top left of the keyboard, running from 1 to 49. The planes are numbered 1 to 6:

Plane Description
1 Unshifted
2 Left-shifted
3 Right-shifted
4 Alpha
5 Alpha left-shifted
6 Alpha right-shifted

WaitForKey #41F65h
Waits in a low power state for a fully-formed keystroke

~ #keycode #plane

The program WKEY displays the keycode and shift plane detected by Wai tForKey until the lQN) key is pressed.
In this example, we use the REPEAT ... UNTIL loop, just to be different.

WKEY 99.5 Bytes Checksum #B4CAh
(~)

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP
TURNMENUOFF
BEGIN

WaitForKey UNCOERCE2
"Keycode: " 3PICK EDITDECOMP$ &$ DISPROW3
"Plane: "SWAP EDITDECOMP$ &$ DISPROW4

UNTIL
SetDAsTemp

Keyboard Utilities

Clear protection word, no arguments
Tum off clock, clear ABUFF
Tum off the menu

Get keycode and shift plane as real numbers
Display keycode
Display shift plane

Freeze the display

119

Keycodes
Unlike the keycodes returned by Wai tForKey, the keycodes returned by CHECKKEY and GETTOUCH do not map
directly to key numbers from 1 to 49. To see what keycodes are returned, try the program KCODE:

KCODE 64.5 Bytes Checksum #5CFFh
(~)

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP
TURNMENUOFF
BEGIN

ATTN? NOT
WHILE

GETTOUCH NOT?SEMI
UNCOERCE EDITDECOMP$ DISPROW4

REPEAT
FLUSHKEYS ATTNFLGCLR
ClrDAsOK

Clear protection word, no arguments
Tum off clock, clear ABUFF
Tum off the menu

Run until (QN) been pressed

Loop again if no key in buffer
Decompile and display keycode

Flush key buffer, clear attention flag
Signal display needs to be redrawn

As you study KCODE.S, remember that NOT? SEMI works here because the compiler places : : and ; around the
code between WHILE and REPEAT. To see this, look at the file KCODE.A after KCODE has been compiled.
Notice that the [QM key is not trapped except by detecting the attention flag.

The object CodePl>%rc . p converts a keycode and plane pair into a real number in RC.P format (as used by user
key assignments):

CodePl>%rc.p #4ID92h
Converts keycode and plane bints into real number rc.p key address

#keycode #plane ~ %rc.p

The inverse conversion is provided by the object Ck&DecKeyLoc:

Ck&:DecKeyLoc #41 CA2h
Converts real number rc.p key address into keycode and plane bints

%rc.p ~ #keycode #plane

120 Keyboard Utilities

I

-../

'-"

-../

'-"

'-../

--'

'-""'

'-"

"-'

'-./

-../

'-./

'-"

'-./

"-'

"-'

"-'

-../

'-"

"-'

'-"

'-"

"-'

>J

'--"

-.J

'-./

-../

"-"

"-'

"-'

'-"

"-'

-../

-../

'-./

--
...."I

-...J

--./

-...J

>J

I

Repeating Keys
Two objects are available for implementing repeating key procedures. Each takes a keycode and procedure from the
runstream and keeps these on the stack. This implies that the object being executed should not alter the stack. In the
example fragment below, object is executed as long as key seventeen is held down:

:: ... REPEATER SEVENTEEN object ... ;

The first object, REPEATER has an initial delay of 300 ms, and a 15 ms delay between events. The second,
REPEATERCH, lacks the long delays, making it well-suited for moving objects around on the screen.

REPEATER #40E88h
Repeats 2nd following object in runstream while the specified key is down

REPEATERCH #51735h
Repeats 2nd following object in runstream while the specified key is down

~

The next example uses REPEATER to increment or decrement a number in the display. Try compiling this program
with REPEATER as shown, then use REPEATERCH to see the difference in key response.

RPT 172.5 Bytes Checksum #9561h
(~)

OLASTOWDOB! CKONOLASTWD
ClrDA1IsStat RECLAIMDISP
TURNMENUOFF
, .. 1GETLAM %1+ DUP EDITDECOMP$ DISPROW4
, :: 1GETLAM %1- DUP EDITDECOMP$ DISPROW4
%0
, NULLLAM THREE NDUPN
DOBIND
3GETLAM EVAL
BEGIN

WaitForKey
DROP
FORTYFOUR #=casedrop

REPEATER FORTYFOUR 2GETEVAL
FALSE

FORTYFIVE #=casedrop TRUE
FORTYNINE #= case

REPEATER FORTYNINE .. 3GETLAM EVAL
FALSE

DoBadKey FALSE

UNTIL
ABND
ClrDAsOK

Clear protection word, no arguments
Turn off clock, clear ABUFF
Turn off the menu

1 PUT LAM ; Action for (±) key
1PUTLAM; ActionforB key

Initial counter value
Three null temporary variable names
Create the temporary environment
Increment and display the counter

Get keycode and shift plane as real numbers
Ignore the shift plane for this example
CheckforB

Subtract once, repeat as long as key is down
Continue the loop

If[QNJpressed, drop counter and end loop
Checkfor(±}

Add once, repeat as long as key is down
Continue the loop

Beep, continue the loop for all other keys

Abandon the temporary environment
Signal to redraw the display

When compiled with REPEATERCH, the size is 172.5 bytes and the checksum is #9604h.

Keyboard Utilities 121

InputLine
The object Inpu tLine does the work for the user word INPUT . While this interface is not as attractive as an input
form (G series only), it's handy for an occasional prompt and parses the input line if you wish.

When executed, InputLine does the following:

• Displays the status area, clears the stack area, and displays a prompt
Initializes the command line and edit modes

• Displays a menu
• Accepts input from the command line as a string
• Optionally parses, or parses and evaluates the input string
• Returns a flag indicating the way the command line was terminated

InputLine #42F44h
Accepts input from the user, optionally parsing and evaluating the input string
$Prompt $Input CursorPos #Mode #Entry #Alpha Menu #Row Abort #Action ~ FALSE

Input Parameters

~ $Input TRUE
~ $Input Ob TRUE
~ .. . TRUE

The nine input parameters are:

$Prompt A string prompt displayed in display area 2a. This string may contain a
newline character.

$Input The default input string.
CursorPos The initial cursor position. This can be specified either as a bint character

number or a list of two bints specifying the row and column position. Use
#0 to specify the end of a row or column.

#Mode The initial insert/replace mode. Use #0 for the current mode, #1 for insert
mode, or #2 for replace mode.

#Entry The initial entry mode. Use #0 for the current mode + program entry
mode, #1 for program/immediate entry, or #2 for program/algebraic entry
mode.

#Alpha The initial alpha-lock mode. Use #0 for the current alpha lock mode, #1
for alpha locked, #2 for alpha unlocked.

Menu The initial edit menu. This menu specification takes the same form as
ParOuterLoop menus, discussed in the next section.

#Row The first row of the menu to be displayed (usually specified as #1 for the
first menu row).

Abort A flag specifying the action of the [QN) key when characters are present in
the command line. If TRUE, [QN) aborts, returning FALSE. If FALSE,
IONI simply clears the command line.

#Action Specifies post-command-line processing if terminated by the IENTERI key.
Use #0 to return the input string with no processing, #1 to parse the input
string, return the input string and the resulting object, or #2 to parse the
input string and evaluate the resulting object If parsing is required, the
command line will not terminate until a valid object is entered.

For a really simple example, consider a prompt for the user's name:

:: ... "Name?" NULL$ ZERO ONE ONE ONE NULL { } ONE FALSE ZERO InputLine ... ;

This example has a null input string, sets the cursor at the end of the (empty) line, sets program entry mode, locks
the alpha mode on, has no menu, specifies that [QN) clears a non-null command line, and does not parse the result.

122 Keyboard Utilities

I

Input Menu Objects. The menu specification can be as simple or as complicated as you like. Several objects are
available that replicate the standard edit menu or components of this menu. The standard edit menu is Edi tMenu:

EditMenu #3BDFAh
The standard command line edit menu

~ r menu}

A disadvantage of using Edi tMenu is the presence of the menu key (the interactive stack key). If you are
writing a closed application, you may have objects on the stack that should not be seen by the user, tampered with,
removed, or reordered. To get past this problem, use the individual components that make up Edi tMenu as shown
below:

<SkipKey
The skip-left key

>SkipKey
The skip-right key

<DelKey
The delete-left key

>DelKey
The delete-right key

TogInsertKey
The insert/replace mode key

IStackKey
The interactive stack key

To specify a blank key, use NullMenuKey:

NullMenuKey
Null menu key

#3E2DDh

~ { key specification }
#3E35Fh

~ { key specification }
#3E3Elh

~ { key specification }
#3E4CAh

~ { key specification }
#3E586h

"""'*
{ key specification }

#3E5CDh

~ { key specification }

#3EC71h

~ {key specification }

For example, a menu that provides the basic edit capabilities but not the interactive stack might look like this:

{ <SkipKey >SkipKey <DelKey >DelKey NullMenuKey ToglnsertKey }

Note that in this example NullMenuKey is used as a placeholder. NullMenuKey is not needed if used after the
last defined key - the system will place a blank keys in the remaining positions for you. A menu with only two edit
keys defined in positions two and three and a string in the fifth position would be specified as follows:

If a string is provided as a menu key object, the menu key label is built from that string, and the string is echoed into
the command line at the current cursor position when the menu key is pressed.

{ NullMenuKey <DelKey >DelKey NullMenuKey "Jim" }

InputLine Results
Since Inpu tLine accepts a variety of input conditions, the results vary depending on input conditions and user
actions. The flag in level one indicates FALSE if the user aborted the command line by pressing IONI. If this flag is
TRUE, the results above level one depend on the #Action parameter. If#Action was #0 or #1, you know there will
be one or two objects on the stack. If #Action was #2, you have no way of knowing what's on the stack. Most
applications that use InputLine avoid this case, since there are simply too many ways for the user to enter a
procedure that challenges the programmer's assumptions about the state of the machine.

Keyboard Utilities 123

InputLine Examples
The first example, INPl , illustrates a simple prompt for a name. The menu is specified using individual Edi tMenu
components and a string to illustrate a simple string-echo key.

INP1 97 . 5 Bytes Checksum #9FC5h
(~ $ 1 or 0)

OLASTOWDOB! CKONOLASTWD
"Enter your name:"
NULL$
ZERO
ONE
ONE
ONE
{

}

<SkipKey
>SkipKey
<DelKey
>DelKey
ToglnsertKey
"Jim"

ONE
FALSE
ZERO
InputLine
ITE %1 %0
ClrDAsOK

124

Clear protection word, no arguments
Prompt
Initial input line
Initial cursor position
Insert mode
Program/immediate entry mode
Alpha locked
Menu specification

Menu row one
[QNJ clears the command line
No post-command-line processing
Run the command line
Convert the result flag to a real a or 1
Signal to redraw the display

Keyboard Utilities

I
J

-./

-./

'-./

'-"

-..../

'-"

'"-'

-..../

'-"

-..../

-..../

'--"

-..../

'--'

-..../

'--'

'-../

-..../

'--'

-..../

-..../

The second example, INP2, prompts for a real number, ending only if the user aborts by pressing lQNJ. Since
Inpu tLine doesn't accept a specification for what type of object should be returned, the type check must occur
after InputLine. To implement this, a loop is used to continue prompting until a real number is entered or the
user aborts the command line.

INP2 149.5 Bytes Checksum #5EF3h
(-7 % %1 or %0)

OLASTOWDOB! CKONOLASTWD
BEGIN

"Enter a number:"
NULL $
ZERO
ONE
ONE
TWO
{

<SkipKey
>SkipKey
<DelKey
>DelKey
TogInsertKey

}

ONE
FALSE
ONE
InputLine
NOTcase :: %0 TRUE
DUPTYPEREAL?
case

SWAPDROP
%1
TRUE

2DROP
"Real Number Only" FlashWarning
FALSE

UNTIL
ClrDAsOK

Keyboard Utilities

Clear protection word, no arguments
Beginning of type checking loop

Prompt
Initial input line
Initial cursor position
Insert mode
Program/immediate entry mode
Alpha off
Menu specification

Menu row one
[QN) clears the command line
Parse command line, require a valid object
Run the command line
End loop, return %0 if user aborted with IONI
Is the object a real number?

If so,
Discard the input string
Return %1 to signal a real number result
Signal the end of the loop

Ifnot, discard object and input string
Display a warning
and signal the loop needs to continue

End of type checking loop
Signal to redraw the display

125

The third example, INP3, expands the INP2 example with a BSl...iBM menu key. A different method for displaying a
message is used. The help and warning messages are the same, but you could expand the example to use different
messages. The techniques used for the HELP key are described in further detail in the next section.

INP3 405 Bytes Checksum #47C9h
(~ % %1 or %0)

OLASTOWDOB! CKONOLASTWD Clear protection word, no arguments
Subroutine to show message

ABUFF TEN THIRTY 121 FORTYONE SUBGROB
ABUFF TEN THIRTY 121 FORTYONE GROB!ZERODRP
TEN THIRTY 121 THIRTY LINEON

Save display area on stack
Clear message area
Draw box

121 THIRTY 121 FORTY LINEON
TEN FORTY 121 FORTY LINEON
TEN THIRTY TEN FORTY LINEON
"ENTER A REAL NUMBER" $>grob
ABUFF TWENTYFIVE THIRTYTHREE GROB!
VERYSLOW VERYSLOW

I :: ABUFF TEN THIRTY GROB!
I LAM ShowHelp
I LAM HelpOff

TWO DOBIND
BEGIN

"Enter a number:"
NULL $
ZERO
ONE
ONE
TWO
{

<SkipKey >SkipKey
<DelKey >DelKey
TogInsertKey
{

}

ONE

"HELP"

TakeOver
LAM ShowHelp EVAL
REPEATER SIX NOP
LAM HelpOff EVAL

FALSE
ONE
InputLine
NOTcase :: %0 TRUE ;
DUPTYPEREAL?
case :: SWAPDROP %1 TRUE
2DROP
LAM ShowHelp EVAL LAM HelpOff EVAL
FALSE

UNTIL
ABND
ClrDAsOK

126

Create message grob
Put message in display
Wait 600 ms

Subroutine to restore display

Create temporary environment

Prompt
Initial input line
Initial cursor position
Insert mode
Program/immediate entry mode
Alpha off
Menu specification

Sixth menu key specification:
Label

Signal takeover secondary
Display message, wait 600 ms
Do nothing while 6th softkey is down
Restore display

Menu row one
fQNI clears the command line
Parse command line, require valid obj
Run the command line
End loop, return %0 if cancelled
Is the object a real number?
Yes, discard input string, signal done
No, discard string and ob,
display message,
and signal the loop needs to continue

End of type checking loop
Abandon temporary environment
Signal to redraw the display

Keyboard Utilities

I

--"

-....../

-....../

---'

'-"

---'

'-"

---'

'-/

-.../

'-"

'.oJ

'-"

'-"

'-/

-.../

'-"

'-"

'-"

."

J

-.../

'-"

-...../

-.../

......"

--"

-....../

-....../

-./

',I

'-...../

......"

'-"

'-...../

'-...../

'-...../

-...../

'-...../

'-...../

.....,;

../

./

/

The Parameterized Outer Loop
Applications wishing to take complete control of the keyboard and display can use any of the techniques described
so far, but the parameterized outer loop (also known as the POL) provides a flexible, easy-to-use environment.
While somewhat daunting to learn at first, the POL should quickly become a trusty part of your toolkit. Since there
are many potentially complex relationships between the various components of an application that uses a POL, you
may end up reading through the descriptions and examples several times before it all makes sense.

At the simplest level, the parameterized outer loop refreshes the display, accepts and processes keys that you decide
are valid and continues until an exit condition is met. The POL is therefore an engine which you may call with
parameters specifying its behavior. POL's may be nested to the limits of available memory. In this chapter we'll
explore the POL with a series of examples, each doing a little more work than the last one. Since there's a wide
variety of ways to use the POL or its components, you'll find yourself mixing and matching techniques presented in
these examples.

Introducing ParOuterLoop Parameters
The POL requires nine parameters and does not return anything. Each key may, of course, place an object on the
stack, so the results are non-deterministic unless you count objects removed from or placed onto the stack. We
begin with a general description of the parameters and an example, then discuss some parameters in greater detail.

ParOUterLoop #38985h
The parameterized outer loop
Display ob Hardkey ob NonAppKey flag DoStdKeys flag Softkey menu #Menurow Suspend flag Exit ob Error ob ~

o Display Object The display object is evaluated before each key is evaluated. In the simplest case (where
each key performs all display updates), this object is responsible for making sure the current
menu is displayed. The first example does just this.

o Hardkey Handler The hardkey processing object. This object is first to have a chance at processing each
keystroke. This object is described in detail in Hardkey Handlers below.

fj NooAppKey Flag A flag which, if FALSE, prevents the standard behavior of keys not defined by the hardkey
handler. If this flag is TRUE, then a key not defined by the hardkey handler would execute
as specified by the DoStdKeys flag (described next). Note that softkeys are considered
"standard keys" , and their actions are usually bundled with the softkey definition, so this
flag must be TRUE to let the softkey code execute.

o DoStdKeys Flag A flag which, if FALSE, allows user key assignments to be processed for keys not defined
by the hardkey handler. If TRUE, this flag causes user key assignments to be ignored. It's
a good practice to leave this flag TRUE unless you're expecting arbitrary input.

o Softkey Menu A list of softkey definitions. These are described in detail in Softkey Definitions below. If
your application has softkey definitions, NonAppKeyFlag must be TRUE to enable your
softkeys.

o #Menu Row A binary integer indicating which page of a multiple-page softkey definition should be
displayed first. This value is typically ONE.

e Suspend Flag If an application will permit the evaluation of arbitrary objects and commands, the system
becomes quite vulnerable when the user commands HALT or PROMPT are executed. In
this state, the user has access to the entire system, notably the stack and variable memory.
To prevent this, the Suspend flag should always be FALSE, which makes commands like
HALT & PROMPT generate a Ha 1 t Not A 11 owed error.

8 Exit Object The POL evaluates this object after each keystroke, and exits when TRUE is returned.

o Error Object This object is evaluated when an error occurs during execution of a key definition. The
object can be specified as' ERRJMP in the simplest case. If you wish to trap specific
errors, this object can be as complex as you like.

The Parameterized Outer Loop 127

Example: The program POLl displays a number, then enables the [±) and B keys to increment and decrement this
number. The IOFFJ key is enabled, and the softkey [m~tl1g;;j is used to provide the exit signal. In the listing below, the
nine ParOuterLoop parameters are highlighted with the numbers 0 through 0 indicating each parameter's stack
level.

POLl 330.5 Bytes Checksum #CA87h
(--+

DEFINE kpNoShift ONE
DEFINE kpRightShift THREE
DEFINE keRightShift FORTY
DEFINE keMinus FORTYFOUR
DEFINE keOn FORTYFIVE
DEFINE kePlus FORTYNINE

OLASTOWDOB! CKONOLASTWD
ClrDA1IsStat RECLAIMDISP
FALSE
% 1
, LAM Running
, LAM Value

TWO DOBIND
0'

DA30K? ?SKIP :: DispMenu.1 SetDA3Valid
LAM Value EDITDECOMP$ DISPROW4

kpNoShift #=easedrop

DUP#<7 easedrpfls
keMinus ?CaseKeyDef

:: TakeOVer LAM Value %1- ' LAM Value STO
kePlus ?CaseKeyDef

:: TakeOVer LAM Value %1+ ' LAM Value STO
keRightShift #=casedrpfls
DROP 'DoBadKeyT

kpRightShift #=easedrop

keRightShift #=easedrpfls
keOn #=easedrpfls
DROP 'DoBadKeyT

2DROP 'DoBadKeyT

8 TRUE
o TRUE
0{

}

NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
{

"QUIT"
:: TakeOver TRUE' LAM Running STO

o ONE
8 FALSE
8' LAM Running
0' ERRJMP

ParOUterLoop
ABND
ClrDAsOK

128

Clear saved command name, no arguments
Suspend clock, clear display
Exitflag
Initial counter value

Create temporary environment
Display action

Display menu if not done already
Display the counter value

Hard key handler:
Process primary key plane:

Enable soft keys
Process EI key

Process [±] key

Enable right shift key
Reject all other keys

Process right shift plane:

Enable right shift key
Enable IOFFI
Reject all other keys

Reject all other planes

Enable softkeys
Reject user key definitions
Softkey menu:

Blank menu key 1
Blank menu key 2
Blank menu key 3
Blank menu key 4
Blank menu key 5
:lQUrm;; key (6):

Label text
Key action

Display 1st menu row
Don't allow HALT or PROMPT
Exit object
Error handier
Run the POL
Discard temporary environment
Signal to redraw the display

The Parameterized Outer Loop

J

Example: The program MAGIC implements a magic square puzzle. Use the arrow keys and digit keys to place the
digits in a 3x3 grid so that all the rows, columns, and diagonals add up to 15. In the listing below, the nine
ParOuterLoop parameters are highlighted with the numbers 0 through (1) indicating each parameter's stack level.

~
-o
-0

-0
/ I I I" o 0 0 0 0 _____ 1iIlD

MAGIC 1488.5 Bytes Checksum #8226h
(~)

DEFINE kpNoShift ONE
DEFINE kpLeftShift TWO
DEFINE kpRightShift THREE
DEFINE kcUpArrow ELEVEN
DEFINE kcLeftArrow SIXTEEN
DEFINE kcDownArrow SEVENTEEN
DEFINE kcRightArrow EIGHTEEN
DEFINE kc7 THIRTYONE
DEFINE kc8 THIRTYTWO
DEFINE kc9 THIRTYTHREE
DEFINE kc4 THIRTYSIX
DEFINE kc5 THIRTYSEVEN
DEFINE kc6 THIRTYEIGHT
DEFINE kcRightShift FORTY
DEFINE kc1 FORTYONE
DEFINE kc2 FORTYTWO
DEFINE kc3 FORTYTHREE
DEFINE kcO FORTYSIX
DEFINE kCOn FORTYFIVE

DEFINE Row 'L1
DEFINE Col 'L2
DEFINE Running 'L3
DEFINE Data 'L4
DEFINE Highlight 'L5
DEFINE PutDigit 'L6
DEFINE ShowDigit 'L7
DEFINE PutSum 'L8

OLASTOWDOB! CKONOLASTWD
ClrDA1IsStat RECLAIMDISP

Draw the grid

FOUR ZERO_DO (DO)
FIFTY INDEX@ TEN #* #+ SIX OVER FORTYTWO LINEON
FIFTY SIX INDEX@ TWELVE #* #+ EIGHTY OVER LINEON

LOOP

THREE ZERO_DO (DO)
82 TWELVE INDEX@ TWELVE #* #+ 85 OVER LINEON

Clear saved cmd name, no arguments
Suspend the clock, clear the display

FIFTYFIVE INDEX@ TEN #* #+ FORTYFOUR OVER FORTYEIGHT LINEON
LOOP

FORTY FOUR FORTYEIGHT FORTYEIGHT FORTYFOUR LINEON
82 FORTYFOUR 86 FORTYEIGHT LINEON

The Parameterized Outer Loop 129

Create temporary variables

ONEONE
FALSE
{ ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO }
TOTEMPOB

(Highlight (~)

FORTYONE LAM Col TEN #* #+
FIVE LAM Row TWELVE #* #+
OVER EIGHT #+ OVER
TOGLINE

I :: (PutDigit) #digit ~)
LAM Row #1- THREE #* LAM Col #+
LAM Data 3PICK
EQUALPOSCOMP
DUP#O= ITE

:: DROP LAM Data ;

ZEROSWAP LAM Data
LAM ShowDigit EVAL PUTLIST

LAM ShowDigit EVAL
PUTLIST
I LAM Data STO

I :: (ShowDigit) (#digit #pos {data} ~)
"\35\3F\49\35\3F\49\35\3F\49" 3PICK SUB$l#
"\09\09\09\15\15\15\21\21\21" 4PICK SUB$l#
5PICK DUP#O= ITE

:: DROP SPACES ;
:: FORTYEIGHT #+ #>CHR CHR>$

$>GROB XYGROBDISP

(PutSum) (#x #y Pos1 Pos2 Pos3 --> #sum)
LAM Data DUPDUP
4ROLL NTHCOMPDROP
SWAP 4ROLL NTHCOMPDROP
ROT 4ROLL NTHCOMPDROP
#+ #+ DUP 4UNROLL
DUP UNCOERCE EDITDECOMP$
$>grob SWAP
TEN #< IT

:: SIX EIGHT MAKEGROB DUPUNROT TWO ZERO GROB!
XYGROBDISP

LAM Row
LAM Col
LAM Running
LAM Data
LAM Highlight
LAM PutDigit
LAM ShowDigit
LAM PutSum

BIND

130

Default X and Y grid location
Exitflag
Cache of grid bints

Subroutine to draw underscore
Calculate X coordinate of line start
Calculate Y coordinate of line start
Line end coordinates
Draw a toggled pixel line

Subroutine to store digit in cache
Calculate digit position in cache

Is digit already stored?

No, prepare to store digit

Yes, store 0 in old position

Display digit in grid
Store new digit in cache
Re-store the cache

Subroutine to display digit
Get X position of digit
Get Y position of digit
Is this digit zero?

Yes, display a space
No, display the digit

Convert to grob and put in display

Subroutine to calc and display sum
Get three copies of the cache
Get first digit
Get second digit
Get third digit
Calculate sum and save copy
Decompile digit
Make digit into grob
If sum is less than IO

then enclose in two-dig it-wide grob
Display sum grob

The Parameterized Outer Loop

L

L

,I

Put the parameters for the ParOuterLoop on the stack

o ' :: Display Action
DA30K? ?SKIP :: DispMenu.1 SetDA3Valid ;
LAM Highlight EVAL
ZERO TWENTYONE 88 TEN ONE TWO THREE LAM PutSum
88 TWENTYTWO FOUR FIVE SIX LAM PutSum EVAL
88 THIRTYFOUR SEVEN EIGHT NINE LAM PutSum EVAL

Display the menu if needed
Tum on the underscore

EVAL Calculate and display sums

THIRTYSEVEN FIFTY THREE FIVE SEVEN LAM PutSum EVAL
FIFTYTWO FIFTY ONE FOUR SEVEN LAM Put Sum EVAL
SIXTYTWO FIFTY TWO FIVE EIGHT LAM PutSum EVAL
72 FIFTY THREE SIX NINE LAM PutSum EVAL
88 FIFTY ONE FIVE NINE LAM PutSum EVAL
TRUE EIGHT ZERO_DO (DO) Loop to see ifall sums were 15

SWAP FIFTEEN #= AND
LOOP
ITE "GOT IT!" "
$>GROB XYGROBDISP

Decide which string to display
Display string

Hardkey Handler
LAM Highlight EVAL
kpNoShift #=easedrop

Tum off the underscore
Primary key plane

DUP#<7 easedrpfls (Enable soft keys)
keUpArrow ?CaseKeyDef ~

:: TakeOver LAM Row DUP#1= easedrop DoBadKey #1- ' LAM Row STO ;
keDownArrow ?CaseKeyDef 00

:: TakeOver LAM Row DUP #3= easedrop DoBadKey #1+ ' LAM Row STO ;
keLeftArrow ?CaseKeyDef ~

:: TakeOver LAM Col DUP#1= easedrop DoBadKey #1- ' LAM Col STO ;
keRightArrow ?CaseKeyDef ~

TakeOver
LAM Col DUP #3= ITE Enable wrap to next row

:: DROPONE LAM Row DUP #3= ITE DROPONE #1+ ' LAM Row STO ;
#1+

, LAM Col STO

keD ?CaseKeyDef TakeOver ZERO LAM PutDigit EVAL ;
kel ?CaseKeyDef TakeOver ONE LAM PutDigit EVAL ;
ke2 ?CaseKeyDef .. TakeOver TWO LAM PutDigit EVAL ;
ke3 ?CaseKeyDef TakeOver THREE LAM PutDigit EVAL
ke4 ?CaseKeyDef TakeOver FOUR LAM PutDigit EVAL ;
ke5 ?CaseKeyDef TakeOver FIVE LAM PutDigit EVAL ;
ke6 ?CaseKeyDef TakeOver SIX LAM PutDigit EVAL ;
ke7 ?CaseKeyDef TakeOver SEVEN LAM PutDigit EVAL ;
ke8 ?CaseKeyDef TakeOver EIGHT LAM PutDigit EVAL ;
ke9 ?CaseKeyDef TakeOver NINE LAM PutDigit EVAL ;
keOn ?CaseKeyDef :: TakeOver TRUE' LAM Running STO ;
keRightShift #=easedrpfls

lID
I
lID
~
@)
~
(§)
rn
lID
lID
(QN) ends the program
~

DROP 'DoBadKeyT Reject other non-shifted keys

kpRightShift #=easedrop

keRightShift #=easedrpfls
keOn #=easedrpfls
DROP 'DoBadKeyT

2DROP 'DoBadKeyT

The Parameterized Outer Loop

Right-shift key plane

Enable~
Enable (OFF I
Reject other right-shifted keys

Reject other planes

131

80TrueTrue

e{
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
{

"QUIT"
.. TakeOver TRUE ' LAM Running STO

OtlONEFALSE
@' LAM Running
0' ERRJMP
ParOuterLoop
ABND
ClrDAsOK

132

Key control flags

Softkey menu

1 st row, no suspend
Exit condition
Error handler
Run the ParOuterLoop
Abandon temp environment
Signal to redraw the display

The Parameterized Outer Loop

~.

L
L

/ -

Temporary Environments and the POL
The object ParOu terLoop creates a temporary environment that saves the previous menu system, key handlers,
display objects, and so on. This is the mechanism that lets you nest POLs. Unless you're using the individual POL
utilities (described later), it's advisable to use named temporary variables as shown in the previous example.

The Exit Object
The exit object's activity can be as simple as recalling a variable's contents or as complex as you like. In the
previous example a temporary variable name was supplied as the exit object. If you're writing an application such as
an editor, the exit action might make sure the user has "saved information" before permitting an exit.

The Error Object
The error object gives you a chance to intercept errors that would otherwise terminate your application. In many
cases, applications use error traps within key operations to trap anticipated errors, and just provide ERRJMP as the
error object. Consider an plotting application - an error trap around the calculation for each point would trap math
errors, such as divide-by-zero, while a general system error like low memory might be passed out of the POL,
terminating the application.

The error object also gives you a chance to try to save information that's in temporary memory. For instance, if your
application is an editor, you might want to try to save information in a user variable before the application
terminates.

Display Objects .
Display updates can be performed either by a key definition or by the POL display object. The display object is
evaluated before each keystroke. The display object has two main responsibilities - display the softkey menu (if
needed), and perform display updates not handled by key definitions. The example on the previous page illustrates
these two activities. Unless your application doesn't use a menu, the first component is usually present:

DA30K? ?SKIP DispMenu.l SetDA3Valid Display the menu if needed
Perform general display updates

The DA3 display flag is used to track the status of the menu display. If one of your key definitions changes the
menu definition or conditions that would affect the menu display, then executing ClrDA30K would cause the menu
to be redisplayed the next time the display object is executed. This is useful for dynamic key labels, which will be
illustrated in Softkey Definitions below.

If no display action is needed other than for the menu, the display object can be coded as follows :

DA30K? ?SEMI
DispMenu.l SetDA3Valid

Exit if the menu display is valid
Otherwise display the menu

If your application has no menu and doesn't need a general display object at all, specify 'NOP.

The Parameterized Outer Loop 133

Hardkey Handlers
Every keystroke (including shift modifiers) is processed by the hard key handler. This key handler accepts a key
specification in the form of two binary integer codes - a keycode number and a shift plane number. The handler
returns either an object to evaluate and the flag TRUE or FALSE to pass the key on the the rest of the system.

#keycode #plane ~ object TRUE
#keycode #plane ~ FALSE

Application defines the key
Application does not define the key

Key and Plane Codes
The previous example, POLl , used DEFINEs for the RPL compiler to make the code easier to read. The file
KEYDEFS.H supplied with the HP tools contains definitions for all shift planes and keycodes. To use these
definitions in your source code, just add INCLUDE KEYDEFS. H to include the definitions.

HP 48 keys are numbered from 1 to 49 in row order starting at the upper left of the keyboard. The shift planes are
numbered 1 to 6. Their codes and definitions in KEYDEFS.H are listed below:

Shift Planes
#plane definition Primary Planes #plane definition Alpha Planes

1 kpNoShift Unshifted 4 kpANoShift Alpha
2 kpLeftShift Left-shifted 5 kpALeftShift Alpha left-shifted
3 kpRightShift Right-shifted 6 kpARightShft Alpha right-shifted

The keycode numbers and definitions in KEYDEFS.H are listed below:

1 2 3 4 5 6
keMenuKeyl keMenuKey2 keMenuKey3 keMenuKey4 keMenuKey5 keMenuKey6

7 8 9 10 11 12
keMathMenu keprgmMenu keCustomMenu keVarsMenu keUpArrow keNextRow

13 14 15 16 17 18
keTiek keSto keEval keLeftArrow keDownArrow keRightArrow

19 20 21 22 23 24
keSin keCos keTan keSqrt kePower kelnverse

25 26 27 28 29
keEnter keNegate keEnterExp keDelete keBaekspaee

30 31 32 33 34
keAlpha ke7 ke8 ke9 keDivide

35 36 37 38 39
keLeftShift ke4 ke5 ke6 keTimes

40 41 42 43 44
keRightShift kel ke2 ke3 keMinus

45 46 47 48 49
keOn keD kePeriod keSpaee kePlus

134 The Parameterized Outer Loop

Hardkey Handler Structure
Hardkey handlers are typically structured as follows:

Unshifted plane?
Yes, process #keycode for the unshifted plane

Left-shifted plane?
Yes, process #keycode for the left-shifted plane

Right-shifted plane?
Yes, process #keycode for the right-shifted plane

Alpha plane?
Yes, process #keycode for the alpha plane

Alpha left-shifted plane?
Yes, process #keycode for the alpha left-shifted plane

Process #keycode for the alpha right-shifted plane

Selecting the Key Plane. The object #=casedrop (which should have been named OVER#=casedrop) is quite
useful for key handlers:

#=casedrop #618D3h
If #X = #y, drops #x and #y from the stack, executes objectTRuE, and skips the
remainder of the secondary, otherwise drops #y, skips objectTRuE, and executes
the remainder of the secondary.

#x #y ~ (#X=#y)
#x #y ~ #x (#x ;e#y)

#=casedrop objectTRUE

Using this object, the key handler begins to take shape:

kpNoShift #=casedrop process unshifted keycodes ;
kpLeftShift #=casedrop process left-shifted keycodes
kpRightShift #=casedrop process right-shifted keycodes ;
kpANoShiftShift #=casedrop Process alpha unshifted keycodes
kpALeftShift #= case Process alpha left-shifted keycodes
Process alpha right-shifted keycodes

A key handler that only needs to process two planes, like the POLl example, would have the following structure:

or:

kpNoShift #=casedrop
kpRightShift #=casedrop
2DROP 'DoBadKeyT

:: process unshifted keycodes ;
:: process right-shifted keycodes
(Reject all other planes)

kpNoShift #=casedrop :: process unshifted keycodes
kpRightShift #<> casedrop 'DoBadKeyT (Reject all other planes)
process right-shifted keycodes

The object 'DoBadKeyT used above generates the invalid key beep, and is described below under Signaling
Invalid Keys. Once the plane has been identified, each secondary that processes keycodes now has the following
stack diagram:

#keycode ~ object TRUE
#keycode ~ FALSE

The Parameterized Outer Loop

Application defines the key
Application does not define the key

135

Enabling Specific Standard Keys. Every keystroke, including modifier keys, must be handled by the hardkey
handler. This means that every plane handler must enable the modifier keys for other allowed planes. Other
functions, like INXTI and IOFFI may be enabled using the same technique. The object #=casedropfls (which
should have been named OVER#=casedropfls) is quite useful here:

#=casedrpfls #63547h
If #X = #y, drops #X and #y from the stack, leaves FALSE on the stack and
skips the' remainder of the secondary, otherwise drops #y and executes the
remainder of the secondary.

#x #y ~ FALSE (#X = #y)
#X #y ~ #X (#X ##y)

... #=casedropfls . .. ;

All well-mannered applications should enable IOFFI, since the user might be interrupted at any time. Expanding the
example of a hardkey handler that processes only the primary and right-shifted planes from the previous page, the
handler now looks like this:

kpNoShift #=casedrop

kcRightShift #=casedrpfls
process remaining unshifted keycodes

kpRightShift #=casedrop

kcRightShift #=casedrpfls
kcOn #=casedrpfls
process remaining right-shifted keycodes

2DROP 'DoBadKeyT

Enablesla

Enablesla
Enables IOFFI

Reject all other planes

Note that the right-shift key is enabled in both the primary and right-shifted planes. This lets the user press Ia , then
go back to the primary plane by pressing Ia again.

Multi-Page Menus. If your menu has more than six softkeys, you can enable the standard INXTI key functions using
the same technique used for the shift keys . In the primary, left, and right plane handlers, include the line:

kcNextRow #=casedrpfls

This enables the following functions:

Keystroke Purpose
INXTI Display the next 6 softkeys

6INm Display the previous 6 softkeys

~ Display the first 6 softkeys

136 The Parameterized Outer Loop

L

./

Enabling Softkeys. In the usual case, softkey actions are included as part of each softkey definition. In this
situation, softkey actions are initiated by the system after the hardkey handler, so the NonAppKey flag must be
TRUE and the hardkey handler must return FALSE for each menu key. Expanding the example on the previous
page, the hard key handler now looks like this:

kpNoShift #=casedrop

DUP#<7 casedrpfls
kcRightShift #=casedrpfls
kcNextRow #=casedrpfls
process remaining unshifted keycodes

kpRightShift #=casedrop

kcRightShift #=casedrpfls
kcOn #=casedrpfls
process remaining right-shifted keycodes

2DROP 'DoBadKeyT

Enables primary softkeys
Enablesla
Enables INXTI

Enablesla
Enables IOFFI

Reject all other planes

Note that only the primary softkey plane is enabled here. Applications like the solver that use left- and right-shifted
menu keys must include the test for each enabled plane.

Key Dermitions. Once you've coded the plane handlers, enabled the modifiers, IOFFI, INXTI, and softkeys, you're
ready to include the code that is specific to your application. A useful object for coding key handlers is
?CaseKeyDef:

?CaseKeyDef #3FFlbh
If #X = #y, drops #x and #y from the stack, leaves the next object in the
secondary on the stack and TRUE and skips the remainder of the secondary,
otherwise drops #y and executes the remainder of the secondary.

#X #y ~ KeyOb TRUE (#X = #y)
#X #y ~ #X (#x ;r#y)

?CaseKeyDef KeyOb ... i

Custom key definitions must include the object TakeOver at the start of the definition to signal a custom
definition. This object serves only as a placeholder, and does nothing.

TakeOVer #40788h
Indicate a custom key definition

The Parameterized Outer Loop 137

Expanding the last example on the previous page, a hard key handler with custom code for two unshifted arrow keys
and two right-shifted arrow keys looks like this:

kpNoShift #=easedrop

DUP#<7 easedrpfls
keRightShift #=easedrpfls
keNextRow #=easedrpfls
kcLeftArrow ?CaseKeyDef

:: TakeOVer do left key;
kcRightArrow ?CaseKeyDef

:: TakeOVer do right key;
issue error beep for remaining invalid keys

kpRightShift #=easedrop

keRightShift #=easedrpfls
keOn #=easedrpfls
kcLeftArrow ?CaseKeyDef

:: TakeOVer do left key;
kcRightArrow ?CaSeKeyDef

:: TakeOVer do right key;
issue error beep for remaining invalid keys

2DROP 'DoBadKeyT

Now all that remains is to generate an invalid key beep for the remaining keys.

Enables primary softkeys
Enables right-shift modifier
Enables INXTI

Process~

ProcesslEl

EnablesB
Enables~

Process~

Process~

Reject all other planes

Signaling Invalid Keys. If your application does not define the key, you may wish to prevent the standard
definition from being executed and generate an invalid key beep. To do this, you actually define the key to generate
an invalid key beep. The object DoBadKey is suited for this purpose:

DoBadKey
Generate a bad key beep and execute SetDAsNoCh

~

As you build your key handlers, the following objects become useful:

'DoBadKey
Places a pointer to DoBadKey on the stack

~ DoBadKey
'DoBadKeyT
Places a pointer to DoBadKey and TRUE on the stack

~ DoBadKey TRUE

138

#3FDDlh

#3FDFEh

#3FE12h

The Parameterized Outer Loop

.--:J I

A Complete Hardkey Handler. Expanding the previous example, a complete hardkey handler with custom code
for two unshifted arrow keys, two left-shifted arrow keys, and two right-shifted arrow keys, a multi-row softkey
menu, and IOFFllooks like this:

kpNoShift #=casedrop

DUP#<7 casedrpfls
kcRightShift #=casedrpfls
kcLeftShift #=casedrpfls
kcNextRow #=casedrpfls
kcLeftArrow ?CaseKeyDef

:: TakeOver do left key
kcRightArrow ?CaseKeyDef

TakeOver do right key ;
DROP 'DoBadKeyT

kpRightShift #=casedrop

kcRightShift #=casedrpfls
kcLeftShift #=casedrpfls
kcNextRow #=casedrpfls
kcLeftArrow ?CaseKeyDef

:: TakeOver do left key
kcRightArrow ?CaseKeyDef

TakeOver do right key ;
kcOn #=casedrpfls
DROP 'DoBadKeyT

kpLeftShift #=casedrop

kcRightShift #=casedrpfls
kcLeftShift #=casedrpfls
kcNextRow #=casedrpfls
kcLeftArrow ?CaseKeyDef

:: TakeOver do left key
kcRightArrow ?CaseKeyDef

TakeOver do right key ;
DROP 'DoBadKeyT

2DROP 'DoBadKeyT

The Parameterized Outer Loop

Enables primary softkeys
Enables Ii!I
Enables6J
Enables INXTI

Process~

Process lE
Issue invalid key beep

Enables Ii!I
Enables6J
Enables t=~'Y:IN=X=TI

Process I1!EJ

Process Ii!IlE
Enables BQff)
Issue invalid key beep

Enables Ii!I
Enables6J
Enables ,r:-a"Yolp=R=E"'vl

Process~

Process 6JlE
Issue invalid key beep

Reject all other planes

139

Soft key Definitions
A softkey definition can be as simple (an object that is echoed into the command line) or complex (a dynamic label
with different actions for different shift planes) as you like. The menu keys for the solver, multiple equation solver,
and modes are illustrations of complex menu definitions in the HP 48.

The basic structure of a softkey definition consists of a list where the first object defines the label and the second
object defines the actions taken when the key is pressed:

{label_object action_object}

The softkey definition in the example POLl in previous pages is structured just this way:

{

"QUIT"
:: TakeOver TRUE' LAM Running STO

Label text
Key action

In the following sections we'll describe how the label object and the action object can be structured.

Null Menu Keys
Some menus have blank keys that generate an error beep as their defined action. These keys are used to help
distribute labels within the menu row. The object NullMenuKey defines a blank key, and can be used in your
menu definition as shown in the example POLl at the beginning of this chapter.

NullMenuKey #3EC71h
Defines a blank menu key

~ {menu definition }

Softkey Label Objects
A softkey label object may consist of any of the following:

String

8x21 Grob

Secondary

Any string object may be used as a label. Remember that the small font used for labels is not a
fixed-width font, so some words will fit in a label and others won't. In the HP 48G/GX, the left
parenthesis character "(" was used for the letter "C" in the input form and choose box "CANCL"
menu labels.

A grob that is 8 rows high and 21 characters wide may be used for the label. Grobs that are not
this size will be decompiled into a string and that string will be used for the label.

A secondary that begins with TakeOver is expected to return either of the above - a string or a
grob. Utilities first introduced in Menu Grob Utilities are useful for returning menu label grobs,
and will be illustrated below. These are sometimes called takeover secondaries.

Anything Else Any other object is decompiled to string form and that string is used for the label.

Dynamic Labels. The third case mentioned above - a secondary beginning with TakeOver - provides the most
flexibility for the label portion of a softkey definition. The secondary can do anything it likes as long as it follows
two basic rules:

• The stack must remain as it was found. If your secondary needs to know which position in the menu is being
displayed, the object INDEX@ may be used to return a bint index from 1 to 6.

The secondary must return a string or a 8x21 grob.

140 The Parameterized Outer Loop

I
-0'

.-..../

--./

/

The example program POL2 provides a concise demonstration of a dynamic label. When this program is running,
the first softkey enables a toggle of user flag 1. The object ?DispStatus is used to show the system status,
illustrating the action of the softkey.

This example has a short menu definition - just one key. The [QN) key terminates the program (instead of the
J';I:tTt '.L:' softkey in POLl).

POL2 218.5 Bytes
(~)

DEFINE kpNoShift
DEFINE keOn

OLASTOWDOB!
CKONOLASTWD
RECLAIMDISP
FALSE
, LAM Running

ONE DOBIND

DA30K? ?SKIP
?DispStatus

Checksum #7D32h

ONE
FORTYFIVE

DispMenu.1 SetDA3Valid

kpNoShift #=easedrop

TRUE
TRUE
{

{

}

DUP#<7 easedrpfls
keOn ?CaseKeyDef

.. TakeOver TRUE LAM Running STO
DROP 'DoBadKeyT

2DROP 'DoBadKeyT

TakeOver
"1" ONE TestUserFlag
Box/StdLabel

TakeOver
ONEONE TestUserFlag
ITE ClrUserFlag SetUserFlag
SetDA1Bad SetDA3Bad

}

ONEFALSE
, LAM Running
, ERRJMP
ParOuterLoop
ABND
ClrDAsOK

The Parameterized Outer Loop

Clear saved command name
No arguments
Clear display
Exitflag

Create temporary envitonment
Display action

Display menu if not done already
Display the status area

Hardkey handler:
Process primary key plane:

Enable softkeys
Process f.QOO key

Reject all other keys

Reject all other planes

Enable softkeys
Reject user key definitions
Softkey menu:

lAlbelseco~ry

Test user flag 1
Use test result to create label

Key action:

Test user flag
Toggle flag state
Signal to redraw status and menu

Display 1st menu row, no suspend
Exit object
Error handler
Run the POL
Discard temporary environment
Signal to redraw the display

141

Softkey Action Object
The action object may define actions for the primary, left-shift, and right-shift planes. Action objects consist of a
takeover secondary, or a list containing two or three takeover secondaries, as follows:

}

TakeOver ...

TakeOver
TakeOver

TakeOver
TakeOver
TakeOver

Action object for the primary plane

Action object for the primary plane
Action object for the left-shift plane

Action object for the primary plane
Action objectfor the left-shift plane
Action objectfor the right-shift plane

Remember: The hardkey handler must enable the shift planes for the shift-action objects to work.

The example POL3 on the next page defines a one-key menu. The key definition consists of a string for the label
object and an action object list defining primary, left-, and right-shift actions. Notice that each action begins with
the object TakeOver.

142 The Parameterized Outer Loop

'--"

-../

-.../
,.

-../

'-/

-../

POL3 343.5 Bytes Checksum #16A2h
(~

DEFINE kpNoShift ONE
DEFINE kpLeftShift TWO
DEFINE kpRightShift THREE
DEFINE keLeftShift THIRTYFIVE
DEFINE keRightShift FORTY
DEFINE keOn FORTYFIVE

OLASTOWDOB! CKONOLASTWD
RECLAIMDISP ClrDAlIsStat
FALSE ' LAM Running ONE DOBIND
, :: DA30K? ?SEMI DispMenu.l SetDA3Valid

kpNoShift #=easedrop

DUP#<7 easedrpfls
keLeftShift #=easedrpfls
keRightShift #=easedrpfls
kcOn ?CaseKeyDef

TakeOver TRUE ' LAM Running STO
DROP 'DoBadKeyT

kpLeftShift #=easedrop

DUP#<7 casedrpfls
keLeftShift #=easedrpfls
keRightShift #=easedrpfls
DROP 'DoBadKeyT

kpRightShift #=easedrop

DUP#<7 easedrpfls
keLeftShift #=easedrpfls
keRightShift #=easedrpfls
keOn #=easedrpfls
DROP 'DoBadKeyT

2DROP 'DoBadKeyT

TRUE TRUE
{

"KEY"

Clear protection word, no arguments
Clear display, suspend clock
Exitflag
Display action
Hardkey handler:

Primary plane

Left-shift plane

Right-shift plane

Keyflags
Softkey menu

TakeOver "Primary" DISPROW3 VERYSLOW DOCLLCD ;
TakeOver "Left-Shift" DISPROW4 VERYSLOW DOCLLCD
TakeOver "Right-Shift" DISPROW5 VERYSLOW DOCLLCD ;

ONEFALSE
, LAM Running
, ERRJMP
ParOuterLoop
ABND
ClrDAsOK

The Parameterized Outer Loop 143

The POL Error Trap Object
In the previous POL examples we have specified a standard error trap by leaving a pointer to ERRJMP on the stack.
Here we illustrate an error trap designed to detect and handle a specific class of errors that occur while a key
definition is being executed and pass remaining errors off to the system outer loop.

Note that this error trap does not handle errors generated during the execution of the display object.

The example POrA on the next page displays a value and its inverse. The key I±J is defined to increment the value
and EI is defined to decrement the value. When the value is zero, the operation I/value generates an error, which is
handled by the error object. The softkey ;;i¥:g~~gj generates an error that the error object does not recognize and
passes on. The program ends when ~ is pressed.

The error handler illustrated in POrA takes advantage of the numbering of the error messages in the HP 48. Any
error that is floating-point related is in the #300h range (see the appendix Messages). The error handler divides the
error number by #lOOh and discards the remainder, so the result will be 3 if a floating point error has occurred. If
the error is not a floating point error, the error is passed to the system outer loop with ERRJMP, otherwise the error
handler displays the appropriate text.

This technique is similar to the scheme used by the HP 48 DRAW command, which is the core of the plotting system.
Notice that when you plot a function like SIN(l/X) no error is generated when X=O.

144 The Parameterized Outer Loop

I

-.J

POL4 555 Bytes Checksum #A4C4h
(~)

DEFINE kpNoShift ONE
DEFINE kcOn FORTYFIVE
DEFINE keMinus FORTYFOUR
DEFINE kcPlus FORTYNINE

OLASTOWDOB! CKONOLASTWD
RECLAIMDISP ClrDA1IsStat

Clear protection word, no arguments
Clear display, suspend clock

"Value: " LAM Value EDITDECOMP$ &$ DISPROW3
"Result: " LAM Result EDITDECOMP$ &$ DISPROW4

%1 %1
FALSE
I LAM DoDisplay
I LAM Result
. LAM Value
I LAM Running
FOUR DOBIND
LAM DoDisplay EVAL
• :: DA30K? ?SEMI DispMenu.l SetDA3Valid

kpNoShift #=casedrop

DUP#<7 casedrpfls
keMinus ?CaseKeyDef

TakeOver
LAM Value %1- DUP I LAM Value STO %1/

I LAM Result STO LAM DoDisplay EVAL

Display object for key handlers

Initial result and initial value
Exitflag

Create temporary environment
Initial display of value and result
Display handler
Hardkey handler:

Enable softkeys
EJ

kePlus ?CaseKeyDef I±l
TakeOver
LAM Value %1+ DUP I LAM Value STO %1/
I LAM Result STO LAM DoDisplay EVAL

keOn ?CaseKeyDef [QN)
TakeOver
TRUE • LAM Running STO

DROP I DoBadKeyT Reject other keys

2DROP • DoBadKeyT Reject other planes

TRUE TRUE
{

{ "\8DERR"

Key control flags
Softkey menu

TakeOver "Unhandled Error" DO$EXIT ; }

ONEFALSE
I LAM Running

ERROR@
100 #/ SWAPDROP THREE #<> case ERRJMP
ERRORCLR
"Value: " LAM Value EDITDECOMP$ &$ DISPROW3
"Result: Undefined" DISPROW4

ParOuterLoop
ABND
ClrDAsOK

The Parameterized Outer Loop

Display 1st menu row, no suspend
Exit object
Error handler:

Recall the error number
ERRJMP if not floating-point
Clear the error number
Display the value
Display "Undefined" for result

Run the POL
Discard temporary environment
Signal to redraw the display

145

POL Utilities
There are times when using constituent components of the object ParOu terLoop is either appropriate or required.
ParOuterLoop is written as follows:

POLSaveUI
ERRSET

POLSetUI
POLKeyUI

Save the current user interface
Increment the protection word

Set the application user interface
Process keys

ERRTRAP POLResUI&Err
POLRestoreUI

If an error occurs, restore the old user interface and ERRJMP
Restore the user interface

There are two basic reasons for using these utilities individually:

An application can use null-named temporary variables, saving memory and execution time.

• An application that uses or interchanges between several POLs can save the execution overhead associated with
saving and restoring the original user interface.

POLSaveU:I #389Bch
Save the current user interface

~

POLSetU:I #38A64h
Establish the parameters for the POL

Parameters for ParOuterLoop ~
POLKeyU:I #38AEBh
Run the POL

~

POLResU:I&:Err #38B77h
Standard POL error handler

~

POLRestoreU:I #38B90h
Restore the user interface saved by POLSaveUI

~

There are many possible ways to use these utilities. The browser engine from the equation library (described in
Graphic User Interfaces) presumes that the calling application has saved the user interface and only calls
POLSetUI and POLKeyUI.

146 The Parameterized Outer Loop

One possible structure for an application using these utilities looks like this:

OLASTOWDOB! CKONOLASTWD
RECLAIMDISP ClrDA1IsStat
POLSaveUI
ERRSET

ONE
TRUE

I LAM InterfaceIndex
I LAM AppRunning

TWO DOBIND
BEGIN

LAM AppRunning
WHILE

{
{ POL parameters
{ POL parameters
{ POL parameters

LAM InterfaceIndex
NTHCOMPDROP
INCOMPDROP
POLSetUI
POLKeyUI

REPEAT

ERRTRAP POLResUI&Err
POLRestoreUI

for interface 1
for interface 2
for interface 3

Clear protection word, no arguments
Claim the display
Save the user interface
Increment the protection word

Variable to store the interface index
Master "running" variable

List of interface parameters

Recall index
~xtractinterface

Put parameters on the stack
Set the user interface
Run the user interface

Master error trap
Restore the user interface

This application uses an index stored in the local variable InterfaceIndex to decide which interface to run as
long as the flag stored in AppRunning is TRUE. In the structure, the key handlers are responsible for storing a
new index value into InterfaceIndex when signaling a switch to another interface, and storing FALSE into
AppRunning when the entire application should terminate.

The Parameterized Outer Loop 147

Graphical User Interfaces
The HP 48G/GX calculators are characterized in part by the introduction of three new basic user interface tools -
message boxes, choose boxes, and input forms. The Equation Library, originally distributed on a plug-in card for
the HP 48S/SX, is now built into the HP 48G series and has its own browser.

(HDME)

4: 10 Calculat ion I
~; 1 COIIIPlete!

1: -------Message Box

RRD
(HD TITLE

m·IE 4: TWO
3: THREE I; FOUR + ____ II:I:ID __

Choose Box

Equation Library Browser

liiiiiiiiiiilliiiiiilliiiiii TEST liiiiiiiiiillilliiiiiiiiiiIE

EDIT FIELD:
CHDDSE FIELD: 1
_ CHECK FIELD

ENTER RNY DtJECT mDI ___ IImII!~

Input Form

In this chapter we introduce the basic interface to each of these components. Going beyond the parameterized outer
loop, the choose boxes and input forms require a blizzard of stack arguments. We suggest you read this chapter in
chronological order, since each part builds upon the previous part. Also, you might want to back up your HP 48
memory prior to starting your explorations.

Note: The objects described in this chapter are only
available in the HP 48G/GX.

EXTERNAL Declarations in Examples. Some examples have EXTERNAL declarations at the beginning for each
object that is referenced by a rompointer (XLIB name) instead of a hard address. This EXTERNAL declaration is
used by the HP RPLCOMP.EXE compiler. Other tools may have different methods of indicating a rompointer.

Objects Used in Examples. In this chapter we presume you've read and understood the previous chapters fairly
well. We'll be using objects and techniques described earlier, and the comments in the examples will pertain more
to the technique being described and less to the actions of individual objects. You may wish to refer to previous
descriptions of some of the objects used to fully understand the details of some of the examples.

148 Graphical User Interfaces

I

'-'"

'-'"

'-'"

~

'-"

.....-

~

.....;

.....-

'-"

.-../

'-"

'-'"

'-"

'-"

'-"

.....,.

-../

'-"

oJ

'-"

~

'-"

,../

'-"

'-'"

--.;

'-"

'--"

'-'

'-'

'--"

......"

'--"

"-'"

'-'"

'-"

'-"

'-"

.....,.

'-"

L

)

Message Boxes
A message box is useful for presenting a message, waiting for the user to read it, and moving on. This object, called
DoMsgBox, is the HP 48G/GX's tool for providing the dreaded "Press Any Key To Continue" style prompt that
computers are famous for. In this case, the message box engine is terminated by pressing @t¥i4ML (ENTER I, or (QiS!I.
DoMsgBox will save and restore the display, so the calling application need not worry about the display.

The message box engine attempts to provide some basic text formatting within the box, so you don't have to worry
about where word breaks will occur. Two bints specify the minimum and maximum character widths of the box,
and adjusting these gives you a little more control over the appearance of the message box.

Message Box Parameters
The parameters for DoMsgBox are defined as follows:

"message"

DoMsgBox #OOOBlh G/GX XLm 177 0
Displays a message box with a graphics object

"message" #max width #min width grob menuobject ~ TRUE

A string containing the message you wish to display. Carriage-returns may be embedded to
force line breaks.

#maxwidth A bint specifying the maximum character width of each text line in the message box.

#minwidth

grob

Message boxes use only the medium (5x7) font.

A bint specifying the minimum number of characters to be displayed before an automatic
word break is allowed.

A graphics object to be displayed in the upper-left corner of the message box. If you don't
want to include a grob, specify the bint MINUSONE as the grob. The grob GrobAlertIcon
is handy for use in message boxes:

GrobAlertJ:con #850BOh G/GX XLm 176 133
The message box alert icon

-7 grob

menuobject An object which, when evaluated, produces a message box menu. This is usually specified
as MsgBoxMenu, which is function 2 in library 177:

MsgBoxMenu #020Blh G/GX XLm 177 2
The message box menu

-7 {menu}

DoMsgBox returns the flag TRUE. You may wish to try different values for the character widths to adjust where
automatic word breaks occur. Neither value should exceed 15. Remember to leave room for the grob.

Graphical User Interfaces 149

Message Box Example
The following example uses an llxll grob for an icon in a message box.
MBOX 100 Bytes Checksum #D7D8h
(~)

EXTERNAL DoMsgBox
EXTERNAL MsgBoxMenu

OLASTOWDOB! CKONOLASTWD
"Calculation Complete!"
TWELVE
TEN

ASSEMBLE
CON(5)
REL(5)
CON(5)
CON(5)
NIBHEX
NIBHEX
NIBHEX

end
RPL

=OOGROB
end
11
11
8F00401020201040
9840104010409840
272040108FOO

I MsgBoxMenu
DoMsgBox
DROP
ClrDAsOK

150

0[HaME :.

Declares DoMsgBox is referenced by a rompointer
Declares MsgBoxMenu is referenced by a rompointer

Clear the protection word, no arguments
Message text
Maximum character width
Minimum character width
Grob

Message box menu
Execute the message box
Drop the retumedflag
Signal to redraw the display

4: IQ Calculat ion I
~; 1 COll'lplete!

1: -------

Graphical User Interfaces

-....,/ -

-....,/ .

.I

Equation Library Browser
The browser used by the equation library dates back to the HP Solve Equation Library card originally sold for the
HP 48SX. When the Equation Library was built into the HP 48G/GX, the browser was not replaced by the new
choose box engine (described later in this chapter).

To use the browser, create a shell using Parameterized Outer Loop utilities that has the following structure:

POLSaveUI
ERRSET

BRbrowse

Save the user interface
Increment the protection word

Call the browser

ERRTRAP POLResUI&Err
POLRestoreUI

If an error occurs, restore the old user interface and ERRJMP
Restore the user interface

Browser Parameters
The browser requires eight parameters and returns nothing to the stack. The browser can only be tenninated by
executing the object BRdone.

BRbrowse #100EO G/GX XLffi 224 16
Browse a list

{menu} $title {key defs} #firscrow #focus_pos {data} :: data_secondary; { speed } ~
BRdone #130EO G/GX XLffi 224 19
Terminate the browser

The parameters for BRbrowse are specified as follows:

{menu} A softkey menu, specified the same way as a for any Parameterized Outer Loop.

$title A string for the title bar. If this string is null, seven rows of data will be displayed, otherwise
the title bar will be displayed with six rows of data.

{ [ENTER] [ON]} A list containing a procedure to execute when (gjSifgBJ is pressed and a procedure to execute
when IQN) is pressed. These procedures take no input parameters and may return anything.

#firsCrow A bint specifying the index of the first data item to be displayed.

#focus_pos A bint specifying which data item is highlighted first.

{data} A list containing the items to display. If the data_secondary is going to return the data from
another location, this list may be empty.

:: data_secondary; A secondary that accepts the data list and a bint and returns either the number of data items (if
the bint is zero) or a string (if the bint is non-zero):

{speed}

{data} ZERO ~ #number of data items
{ data} #index ~ $item

A speed table for alpha searches. The table consists of a list of 26 index bints corresponding
to the letters A - Z. If the user presses !ill [Q), the fourth bint is tested. If non-zero, this bint is
assumed to be the index of the first item in the data list that starts with 'D'. If the speed table
is an empty list, it is not used.

Graphical User Interfaces 151

Active Browser Keys
While the browser is active, the following keys are active:

The arrow keys move the highlight up or down one row.

6J ~ or 6J [!) Pressing 6J and an arrow key moves the highlight to the bottom of the screen or to the
bottom of the next screen if the highlight is already at the bottom of the screen.

!a ~ or !a [!) Pressing !a and an arrow key moves the highlight to the beginning or end of the data list.

Press (g) and a letter to move to the next item starting with that letter.

IENTERI Executes the supplied IENTERI procedure.

Executes the supplied (QNJ procedure.

Executes a softkey definition.

Browser Support Objects
While the browser is active, the following objects are available for use by key definitions:

BRDispJ:tems #450EO G/GX XLIB 224 69
Displays the items for each row and the more-data arrows

~

BRGetJ:tem #530EO G/GX XLIB 224 83
Gets the item for the specified index

#index ~ $
BRinverse #490EO G/GX XLIB 224 73
Inverts the highlight

~

BRoutput #120EO G/GX XLIB 22418
Recall the index of the highlighted data item and the index of the first row

~ #firscrow #focus_pos
BRRclCl #180EO G/GX XLIB 224 24
Recall the data list

~ { data }
BRRclCUrRow #17DEO G/GX XLIB 22423
Recall the index of the highlighted data item

~ #focus pos
BRStoCl #030EO G/GX XLIB 224 24
Store the data list (must be the same length as previous list)

{data} ~
BRViewJ:tem #520EO G/GX XLIB 224 82
Display the highlighted item using the full display, wait for a keystroke.
Respects linefeed breaks if present. Redraws browser display after keystroke.

~

152 Graphical User Interfaces

•

Browser Example
The program BRWI displays a short list using the browser and returns a string indicating which key terminated the
browser. If the browser was terminated by pressing IENTERI the highlighted data item is returned.

BRWl 265 Bytes
(~ "ON"

Checksum #69DFh

(~ "QUIT"
(~ $item "ENTER"

Terminated by pressing ~
Terminated by pressing t!7:ffll~,:C '
Terminated by pressing IENTERI

EXTERNAL BRbrowse
EXTERNAL BRdone
EXTERNAL BRRclCl
EXTERNAL BRRclCurRow

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP
POLSaveUI
ERRSET

NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
{

"QUIT"
;; TakeOver "QUIT" BRdone

"BROWSER EXAMPLE"
{

BRRclCl BRRclCurRow NTHCOMPDROP
"ENTER"
BRdone

"ON"
BRdone

ONE ONE
{ "AB" "CD" liEF" uGHIl IIIJ" "KL" "M:N'''

ZERO #=casedrop LENCOMP
NTHCOMPDROP

NULL { }
BRbrowse

ERRTRAP POLResUI&Err
POLRestoreUI
ClrDAsOK

Graphical User Interfaces

Clear saved command name, no arguments
Claim the display
Save the cu"ent user interface
Increment the protection word

Menu for the browser

Softkey label
Return "QUIT", signal to terminate the browser

Browser title
Hardkey list:
IENfERl
Returns the highlighted data item
Returns the string "ENTER"
Signal to terminate the browser

~
Return the string "ON"
Signal to terminate the browser

First displayed row and highlighted row
"OP" } Data list

Data secondary
Return length of data list if index is 0
Otherwise return the item

No speed list
Display the browser

If error occurs, restore old interface and error
Restore the old interface
Signal to redraw the display

153

Choose Boxes
A choose box lets the user select one or more items from a series of choices or view a series of choices. This section
describes the basic types of choose boxes and how to customize them.

Choose Box Styles
There are three basic types of choose boxes - single-pick, multi-pick, and view-only. A single-pick choose box lets
the user choose a single item from a list of choices. The multi-pick choose box lets the user specify one or more
choices with check marks. A choose box can occupy either a shadow-box within the display or the whole display:

Partial
Screen

Full
Screen

Choose Box Style Options
Single-Pick

Default Style
BAD

(HO TITLE ~:i!IfP

4: TWO 3: THREE I; FOUR .I-

OtlE

____ ImIIJ.:;a

lllllllllllllllllllllllllll! TITLE lIllllIIllIlIIllIIlilllllm
Ot·lE
TWO
THREE
FOUR
FIVE .I­____ ImIIJ.:;a

Multi-Pick

RAD
(HO TITLE i::lIfP

4: "'ONE
HJO 3:

2 THREE
1~ FOUR .I-
__ t!'ZII_rm:D~

lIllIllIIllIimmllllllll! TITLE 1Iillillillillilillilllllli!
"'ONE
"'TWO

THREE
FOUP
FIVE .I-
__ t!'ZII_rm:D~

When a choose box is active, the following keys are defined:

Moves the highlight up one row.
Moves the highlight down one row.
Moves the highlight to the next row beginning with letter.
Jumps the highlight up to the first choice.
Displays the previous page of choices.
Displays the next page of choices.
Jumps the highlight down to the last choice.
Turns off the HP 48.
Shortcut key for checking an item.
Checks the highlighted item in a multi-pick choose box.
Cancels the choose box.
Terminates the choose box, selecting the highlighted or checked item(s). In a multi­
pick choose box, selects the highlighted item if no items are checked.

Any of the above choose box styles may also be used as a display-only viewing device, where no highlight bar is
shown:

BAD
(HO TITLE !:Oi!1'

4: ONE
3: TWO
2: THREE
1 : FOUR .I-_____ .:;a

When a view-only choose box is active, the arrow keys scroll the list, Ia IOFFI turns the HP 48 off, and IQN), IENTER!,
and terminate the choose box.

154 Graphical User Interfaces

L

Choose Box Parameters
Choose boxes are specified both by stack arguments supplied to the object Choose and by responses to various
messages generated by the choose box engine. The object Choose produces the choose box, using five stack
arguments as input:

Choose #OOOB3 G/GX XLffi 179 00
Display a choose box
Msg-handler TitleOb DecompOb
Msg-handler TitleOb DecompOb
Msg-handler TitleOb DecompOb

{ choices} #FocusPos ~ ob TRUE Single-pick input accepted
{ choices} #FocusPos ~ {obi ... ObN} TRUE Multi-pick input accepted

Message Handler

Title Object

Decompile Object

{choices}

{ choices} #FocusPos ~ FALSE Cancelled or view-only

The message handler provides opportunities to customize the choose box and react to
specific events by responding to messages.

An object which, when evaluated, produces a string for the choose box title. If a null­
length string is provided, no title will be displayed, title related messages will not be
generated, and an extra row will be available for displaying choices.

Specifies the manner in which each choice will be displayed.

A list of the choices. The choices must all have the same structure. Typical examples
include:

• A bint specifying a built-in message number
• An object
• A list containing two objects, one of which will be used to display the choice, the

other of which is associated with the first for post-choosebox evaluation

#FocusPos The focus position is the position of the highlight within the data list. A bint specifies the
initial focus position. If the bint is zero, the choose box displays a view-only list.

The message handler, decompile object, and data list will be described further below.

Example: We begin by looking at a simple choose box. CRSI displays a default choose box showing a list of six
string objects:

CHS1 101 Bytes Checksum #B027h
(~

EXTERNAL Choose

AtUserStack
. DROPFALSE
"Title"
ONE
{

"ONE" "TWO" "THREE"
"FOUR" "FIVE" "SIX "

ONE
Choose
COERCEFLAG

Graphical User Interfaces

!lAD

Declare Choose a rompointer

Clear saved command name, no arguments
Message handler
Choose box title string
Decompile format
List of choices

Initial focus position
Display the choose box
Exit, converting the result flag to %1 or %0

{ HO TITLE i:i!'1P

Ot·lE i: TWO 3: THREE I; FOUR .j. ____ mI:If!I ..

155

Choose Box Message Handler
At various times during the execution of the choose box, the choose box engine sends a message to the message
handler. If the message handler chooses not to handle the message, the default behavior related to that message will
occur. If the message handler does handle the message, the default behavior does not happen. If you don't plan to
handle any messages, then the object DROPFALSE is all that's needed, as shown above.

A message arrives at the message handler in the form of a binary integer indicating the message type with optional
stack parameters. The message handler is expected to return TRUE if the message was handled, along with any
required results on the stack, or FALSE if the message was not handled.

A message handler has the following stack diagram:

<passed objects> #message ~ <returned objects> TRUE
<passed objects> #message ~ <passed objects> FALSE

The following message handler specifies a full-screen multi-pick choose box by handling messages 60 and 61:

SIXTY #=casedrop :: TRUE TRUE;
SIXTYONE #=casedrop :: TRUE TRUE
DROPFALSE

Handle message 60 .
Handle message 61
Ignore other messages

There are many messages, but the messages most likely to be of interest are listed below:

Message Purpose Decimal message number
Input arguments ~ Objects returned by the handler

Choose Box Size 60
~ TRUE Full screen choose box
~ FALSE Partial screen choose box

Pick Type 61
~ TRUE Multi-pick
~ FALSE Single-pick

Item Count 62
~ #number of items in list

Title Grob 69
~ grob

Title String 70
~ $title

Item String 80
#item_index ~ $item_string

Item Grob 81
#item_index ~ grob

Note: Item grob may need to have standard choose item width (91 or 131)
Choose Box Menu 83

~ { menu}
pick Event 86

~

\t::BH!$;tmIt Key Event 91
~ FALSE Cancel not allowed
~ TRUE Cancel allowed

@t}=(J'$II Key Event 96
~ FALSE OK not allowed
~ TRUE OK allowed

Note that you might want to get control when an event happens, but still want the default action to take place. To do
this, preserve the passed objects and return FALSE, indicating that you "didn't handle the message".

156 Graphical User Interfaces

'-J

.-/

/

While the choose box is active, null-named temporary variables contain information of interest:

6GETLAM ~ #highlighcrow _number
7GETLAM ~ #row_height (pixels)
8GETLAM ~ #row_width (pixels)
12GETLAM ~ #item30unt
15GETLAM ~ { list of picked indices }
18GETLAM ~ #index_oChighlighted_item
19GETLAM ~ { choice list}

Example. To introduce some uses of message handling, the message handler in CHS2 specifies the choose box type
and choices via the message handler.

CHS2 121 Bytes Checksum #28EDh
(~ %0)
(~ { choices } %1)
EXTERNAL Choose

AtUserStack

SIXTYONE #=casedrop TrueTrue
SIXTYTWO #=casedrop :: NINE TRUE
80 #=casedrop

UNCOERCE EDITDECOMP$
"Frog " SWAP&$
TRUE

DROP FALSE

"CHOOSE SOME FROGS"
ONE
NULL { }
ONE
Choose COERCEFLAG

Clear saved command name, no arguments
Message handler
Specify mUlti-pick choose box
Specify nine choices
Create the string for each choice:

Convert index bint into real and decompile it
Prepend frog string
Signal event handled

Do not handle other messages

Title string
Decompile object (not used in this example)
Null data list
Initialfocus position
Run the choose box, then exit, converting flag

This example will be expanded at the end of this chapter with a customized menu and a dynamic title - see CHS6.

Graphical User Interfaces 157

Decompile Objects
The decompile object controls the manner in which each item is displayed, has the stack diagram (ob ~ $), and
may be specified three ways:

• A pointer to an object that creates a string representation of a choice, like EDITDECOMP$
• A secondary that creates a string representation of a choice, like:: CARCOMP EDITDECOMP$
• A bint specifying the decompile procedure

The binary integer specification uses specific bits to encode the decompile procedure. These bits control the
decompile format, which part of a composite choice to decompile, and whether only the first character should be
returned.

Bit Interpretation
0 No decompilation - expects a string and displays the contents without quote marks
1 Decompile objects as they would appear on the stack (uses the user's numeric display format settings)
2 Decompile objects as they would appear in the editline (uses SID format for numbers)
3 Return only the first character of the string
4 Extract and display the first object of a composite
5 Extract and display the second object of a composite

Example. A bint with the decimal value 36 is supplied as the decompile object for CHS3. Each choice object is
actually a list. Bit 2 is set, specifying that objects should be decompiled using SID format. Bit 5 is set, specifying
that the second object in the choice list should be decompiled and displayed.

CHS3 146 Bytes Checksum #D930h
(~ %0)
(~ choice %1)
EXTERNAL Choose

AtUserStack
. DROPFALSE
"Title"
THIRTYSIX
{

{ "ONE" %1
{ "TWO" %2

}
}

{ "THREE" %3
{ "FOUR"
{ "FIVE"
{ "SIX"

ONE
Choose
COERCEFLAG

%4
%5

%6 }

}
}
}

Clear saved command name, no arguments
Message handler
Title string
Decompile object
Data list

Initial focus position
Run the choose box
Exit, converting flag to %0 or %1

Note: You may also include the file GUI . H to enable the use of predefined decompile objects. For more about this
file, see inputform DEFINEs for RPLCOMP later in this chapter.

158 Graphical User Interfaces

-" !

L

L
L

The real power of the ability to handle lists for choices is to be able to bundle procedures with choice strings. The
example CHS4 illustrates this concept.

CHS4 245.5 Bytes Checksum #E1FDh
(% ~ %')

EXTERNAL Choose

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 real

, DROPFALSE
"CHOOSE AN OPERATION:"
SEVENTEEN
{

{ "ADD 1" %1+ }
{ "ADD 2" %2
{ "ADD 3" .. %3
{ "DIVIDE BY 4"
{ "SUBTRACT 5"
{ "MULTIPLY BY

ONE
Choose
NOT? SEMI
TWO NTHCOMPDROP
EVAL

Graphical User Interfaces

%+ i
%+ i

%4
%5

6" ..

}
}

%/ i }

%- i }

%6 %* i

{ HO CHOOSE AN OPERATION:

ADD 1 4:
3: ADD 2

Clear saved command name, require one ob
Require real number

Message handler
Title string
Decompile object: show first part as text
Data list

Initial focus position
Run the choose box
Exit if cancelled
Extract the procedure object
Evaluate the procedure object

2" ADD 3
1; DIVIDE BY 4 + 247 ____ 1mD1I!JaI

159

Customizing Choose Box Menus
By responding to message 83 you can customize the choose box menu. Rather than duplicate the definitions of the
check, cancel, and OK keys, we'll illustrate how you can copy, decompose, alter, and rebuild a built-in menu
definition.

There are three standard menu objects used for choose boxes:

ChooseMenuO #050B3 G/GX XLffi 179 5
Choose menu for 111~.nI~lv-<rml

ChooseMenul #060B3 G/GX XLffi 179 6
Choose menu for "Ul""',-"'J'''''''

ChooseMenu2 #070B3 G/GX XLIB 179 7
Choose menu for multi-pick choose boxes:

These menu objects are actually secondaries consisting of the object NoExi tAction and the menu definition
itself. For example, ChooseMenu2 looks like this:

NoExitAction
{

NullMenuKey
NullMenuKey
{

TakeOver grobCheckKey

DoCKeyCheck
DoCKeyChAll
DoCKeyUnChAll

NullMenuKey
{ "(AN(L" DoCKeyCancel
{ "OK" DoCKeyOK }

The grob for the label

Primary key checks or unchecks an item
Left-shift key checks all items
Right-shift key unchecks all items

(Actually, the definition for the third key is a little more involved - the check grob is not displayed if the list is
empty, but if your application doesn't present an empty data list you won't have to take this step.)

The object NoExi tAction insures that the menu won't be saved as the last menu, so pressing ~ IMENUI won't
display a menu whose context is meaningless after your application terminates.

NoExitAction
Ensures a menu won't be saved as the last menu

~

#3EC58h

Note: The new key definition must follow all the same principles as any key definition for the parameterized outer
loop (the choose box engine rests atop a POL).

160 Graphical User Interfaces

....,I ,

v .

L

Choose box menu items are built using the following support objects:

grobCheckKey #860BO G/GX XLIB 176 134
Check label grob

--7 grob
DoCKeyCheck #2AOB3 G/GX XLIB 179 42
Check or uncheck the current item in a multi-pick choose box

--7

DoCKeyChAll #2BOB3 G/GX XLIB 179 43
Check all items in a multi-pick choose box (typically left-shifted)

--7

DoCKeyUnChAll #2COB3 G/GX XLIB 179 44
Uncheck all items in a multi-pick choose box (typically right-shifted)

--7

DoCKeyCancel #2DOB3 G/GX XLIB 179 45
Cancel the choose box

--7 FALSE
DoCKeyOK #2EOB3 G/GX XLIB 179 46
Accept the choices

FALSE No items chosen
--7 Item TRUE Single-pick
--7 Items TRUE Multi-pick

Example. The technique described above is used to create a simple editor for a iist of strings using a custom choose
box menu. This example begins by requiring a list, validating that the list contains at least one object, and that all
objects in the list are strings. The message handler for the choose box intercepts the following messages:

60
83
96

Specifies a full-screen choose box
Creates the custom choose box menu
Places the list on the stack when the choose box ends

Note that in this example we use ONE for the decompile object. This means we're guaranteeing to the choose box
engine that only string objects are being displayed. If this example were to work with arbitrary objects, then FOUR
would be better choice, but strings would be displayed with quote marks.

Graphical User Interfaces

miiiiiiiiiiiiiiiiii EDIT STRINGS liiiiliiiiliiliiiliii
F i r:=-t.
Second
Third
Fourth
Fifth ~ 1mJII ___ mcmIlia

161

CHS5 320 Bytes Checksum #427h
({ $1 ... $N } -7 { $1 . .. $N } $Highlighted %1) User pressed IENfER) or :;¥t:n;!Et

User pressed t:JIHlsif.@ or (QOO ({ h ... $N } -7 %0)

EXTERNAL Choose
EXTERNAL DoCKeyCancel
EXTERNAL DoCKeyOK

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 list

Clear saved command name, require one object
Require list object

162

DUPLENCOMP DUP#O= case SETSIZEERR
#1+ ONE DO

DUP INDEX@ NTHCOMPDROP
TYPECSTR? ?SKIP SETTYPEERR

LOOP

SIXTY #=casedrop
83 #=casedrop

NoExitAction
{

TRUE TRUE

Make sure list contains at least one object
Loop to validate objects in list
Get each item
Error out if not a string

Message handler
60: Full screen choose box
83: Choose box menu

Place secondary on stack

{ Edit key definition
"EDIT" Label
:: TakeOver Action must begin with TakeOver

"Edi t String:" Set up InputLine parameters: this is the prompt
19GETLAM 18GETLAM Get the choose box data list and current item #
NTHCOMPDROP Extract the highlighted item
ZERO ONE ONE ONE InputLine params: alpha lock, entry, cursor pos
{ <SkipKey >SkipKey <DelKey >DelKey TogInsertKey } Editline menu
ONE FALSE ZERO Menu row, abort action, no post-processing
InputLine Run the input line
IT If edit was accepted

18GETLAM 19GETLAM
PUTLIST
19PUTLAM

ClrDAsOK

Get the data list and focus position
Replace the item
Store the new list back

Signal the display has been altered
End of new menu key action

}

NullMenuKey
NullMenuKey
NullMenuKey

End of edit key definition
2nd menu key
3rdmenu key
4th menu key

{ "(AN(L" DoCKeyCancel
{ H OK " DoCKeyOK

TRUE

Cancel key
OK key

End of menu secondary
Signal that message 83 has been handled

End of handler for message 80
BINT 96d #=casedrop 96: Choose box ends

.. 19GETLAM TRUE TRUE
DROP FALSE

"EDIT STRINGS" ONE
4ROLL ONE
Choose
COERCEFLAG

Recall data list, signal end OK, signal msg handled
Ignore other messages
End of message handler
Choose box title, decompile specification
Move data list into place, specify ONE for initial focus
Display the choose box
Exit, converting choose box flag to %0 or %1

Graphical User Interfaces

/

Choose Event Procedures
The following objects are available for use by a choose box menu key definition.

LEDispJ:tem #360B3 G/GX XLffi 179 54
Display an item

#index #highlight row ~
LEDispList #350B3 G/GX XLffi 179 53
Display the choose box contents

~

LEDispPrompt #300B3 G/GX XLffi 179 48
Display the choose box title

~

For LEDispItern, the index of the currently highlighted item can be found by 18GETLAM and the current
highlight row number can be found by 6GETLAM.

Example. The message handler and custom menu combine in CHS6 to present a dynamic choose box in which the
title reflects the number of items chosen.

Graphical User Interfaces 163

CHS6 348.5 Bytes Checksum #AE5Ch
(~ %0)
(~ { choices } %1

EXTERNAL Choose
EXTERNAL grobCheckKey
EXTERNAL LEDispPrompt
EXTERNAL DoCKeyCheck
EXTERNAL DoCKeyChAll
EXTERNAL DoCKeyUnChAll
EXTERNAL DoCKeyCancel
EXTERNAL DoCKeyOK

AtUserStack

SIXTYONE #=casedrop TrueTrue
SIXTYTWO #=casedrop :: NINE TRUE
SEVENTY #=casedrop

15GETLAM LENCOMP

ZERO #=casedrop 'NO FROGS'
ONE #=casedrop '1 FROG'

User pressed GJ3€l!$1J$!: or [QNJ
User pressedlENTERI or m;IQHig

Clear saved command name, no arguments
Message fumdler
Specify multi-pick choose box
Specify nine choices
Create the prompt string:

Get the length of the list of picked indices

No choices picked
One choice picked

UNCOERCE EDITDECOMP$ " FROGS" &$ More tfum one choice picked

" PICKED' &$
TRUE

80 #=casedrop

UNCOERCE EDITDECOMP$
"Frog • SWAP&$
TRUE

83 #=casedrop

NoExitAction
{

NullMenuKey
Nu11MenuKey
{

:: TakeOver grobCheckKey ;
{

Append remainder of prompt string
Signal event fumdled

Create the string for each choice:

Convert index bint into real and decompile it
Prependfrog string
Signal event fumdled

Specify the choose box menu

Check key label

.. TakeOver DoCKeyCheck LEDispPrompt

.. TakeOVer DoCKeyChAll LEDispPrompt

.. TakeOVer DoCKeyUnChAll LEDispPrompt

Primary check key action
Left-shift key action
Right-shift key action

NullMenuKey
{ " (AN(L" DoCKeyCancel
{'OK" DoCKeyOK

TRUE

DROP FALSE

ONE
NULL { }
ONE
Choose
COERCEFLAG

164

Cancel key
OK key

Signal menu event handled

Signal other messages not handled

Default title string (will be replaced by msg 70)
Decompile object (not used in this example)
Null data list
Initialfocus position
Display the choose box
Exit, converting flag

Graphical User Interfaces

.-..J

«
v i

/

Input Forms
The input form engine in the HP 48G/GX has been designed to meet a very diverse set of requirements, so it takes a
little more effort to use than other interfaces. It is not possible (or reasonable) to try to document all of the minutiae
associated with input forms, but we will provide a general introduction that should satisfy the needs of many
applications. We begin by introducing a few terms, then go on to describe the parameters and illustrate their use.
As you read these terms, use the PLOT input form shown below for reference:

Term
Title Bar

Field

Label

HelpLine

Highlight I Focus

Edit Field

Choose Field

Check Field

IilliimilmimijmiilmimiimimlPPULDii'T iimiiiililmiimiijmiimiillllimi1n ~- Title Bar
Choose Field --::> TYPE: Funct ion ,,: Des

Label --::> EQ: 11111l1li" •
Check Field --::>

Description

INDEP: X H-YIEW: -6. 5 6. 5
_AUTDSCALE Y-YIEW: -3.1 3.2
ENTER FUNCTIDNCS) TD PLDT
ImImIlIlIi_fImIlmmlmD

Shows the title for the input form.

Edit Field

Help Line

An input form field contains data that can be changed by the user.

A label is just text, and is not associated with a field except by juxtaposition.

A prompt assiciated with a field .

The currently active field is shown in inverse video, and is said to have thefocus ofthe
input form engine.

A field that permits character editing, like the EQ field in the PLOT input form.

A field that permits selection from a fixed set of choices, like the TYPE field in the PLOT
input form.

A field that has two states: checked and unchecked, like the AUTOSCALE field in the
PLOT input form.

Input Form Parameters
Like the choose box, input forms are specified by stack parameters and responses generated from a message handler:

Do:InputForm G/GX #199EBh
Display an input form

input form parameters ~ ObI ... ObM TRUE Input accepted with OK
input form parameters ~ FALSE Cancelled

Label_Specifier! Label_Specifiel"N Specifiers for N labels. Label specifiers consist of three arguments,
described in detail below.

Field_Specifier! •.•. Field_SpecifierM Specifiers for M fields. Field specifiers consist of thirteen arguments,
described in detail below.

#LabelCount A binary integer N specifying the number of label specifiers.

#FieldCount A binary integer M specifying the number of field specifiers.

input form Message Handler A secondary that handles form-specific events.

Title A string to be displayed in the title bar.

Caution: Remember that the)::BJ4 P; softkey on the second page of the input form menu gives
the user access to the stack. You may wish to consider what your application leaves
on the stack when an input form is active.

Graphical User Interfaces 165

Label Specifiers
Input form labels are displayed using the small font. Each label is specified with three parameters:

Label _String A string object for the text.

A bint specifying the pixel column for the upper-left corner of the text.

A bint specifying the pixel row for the upper-left corner of the text.

Field Specifiers
Input form fields are specified with thirteen parameters:

Field_Message_Handler A message handler, usually specified as 'DROPFALSE.

#X_Position A bint specifying the pixel column for the upper-left corner of the field .

#Field_Height

ObjecCTypes

DecompiJe_ Object

A bint specifying the pixel row for the upper-left corner of the field.

A bint specifying the pixel width of the field.

A bint specifying the pixel height of the field .

A bint specifying the field type. Common types are:

Value Field Type
1 Text field
3 Auto-algebraic field for equation entry

12 Choose field
32 Check field

A list of one or more bints specifying the valid object types for the field. To allow any
object type, specify MINUSONE. For a check field, specify MINUSONE.

An object specifying the manner in which the field's contents are displayed. See
Decompile Objects under Choose Boxes for a complete description. For a check field,
specify MINUSONE.

A string object containing the help text for the field.

Choose_Field_Data A list of choices for a choose field, or MINUSONE for non-choose fields.

Choose_DecompiJe_Fmt An object specifying the manner in which a choose field's choices are displayed. See
Decompile Objects under Choose Boxes for a complete description. For non-choose
fields, specify MINUSONE.

ReseCVaIue The value to be displayed if 'Eg.~; g.JT is pressed. For check fields , specify TRUE
(checked) or FALSE (unchecked). For other fields, specify MINUS ONE if the reset
value for the field is blank (analogous to NO VAL in User-RPL) or specify a valid value.

The first value to be displayed. For check fields, specify TRUE (checked) or FALSE
(unchecked). For other fields, specify MINUSONE if the reset value for the field is
blank (analogous to NO VAL in User-RPL) or specify a valid value.

Looks easy, right? Let's put the first example right on the next page:

166 Graphical User Interfaces

I

-

!NFl 287 Bytes Checksum #D6D6h
(~ % 0) Cancelled
(~ ob % % %1) Accepted

AtUserStack Clear saved command name, no arguments

"EDIT FIELD:" ONE NINETEEN
"CHOOSE FIELD:" ONE TWENTYEIGHT
"CHECK FIELD" EIGHT THIRTYSEVEN

Label 1 text and coordinates
Label 2 text and coordinates
Label 3 text and coordinates

'DROPFALSE
FORTY SEVENTEEN
79
NINE
ONE
MINUS ONE
TWO
"ENTER ANY OBJECT"
MINUSONE
MINUS ONE
NULL$ NULL$

'DROPFALSE
FORTYNINE TWENTYSIX
FORTYNINE
NINE
TWELVE
FOUR
TWO
"CHOOSE A NUMBER"
{ %1 %2 %3 }
TWO
%1 %1

'DROPFALSE
ONE THIRTYFIVE
SIX
NINE
THIRTYTWO
MINUS ONE
MINUSONE
"CHECK OR UNCHECK"
MINUSONE
MINUSONE
FALSE FALSE

THREE
THREE
'DROPFALSE
"TEST"
Doinput form
case ITE %1 %0 %1
%0

Graphical User Interfaces

Field 1 message handler
Field 1 coordinates
Field 1 width
Field 1 height
Field 1 type - edit field
Field 1 object types allowed
Field 1 decompile format user's settings
Field 1 help text
Optional data not used
Optional data not used
Field 1 initial and reset values

Field 2 message handler
Field 2 coordinates
Field 2 width
Field 2 height
Field 2 type - choose list
Field 2 object types allowed
Field 2 decompile format user's settings
Field 2 help text
Field 2 choice list
Choose box decompile format
Field 2 initial and reset values

Field 3 message handler
Field 3 coordinates
Field 3 width
Field 3 height
Field 3 type - check box
Object types not applicable
Decompile format not applicable
Field 3 help text
Optional data not used
Optional data not used
Field 3 initial and reset values

Number of labels
Number offields
inputform message handler
input form title
Display the input form
If OK, convert check result and return %1
If cancelled, return %0

lillii iii illiiiliilimiii TEST liiiiliiiiiiiiiiiiUiiill1

EDIT FIELD:
CHOOSE FIELD: 1
_ CHECK FIELD

ENTER ANY OIJECT 1mII ___ 1ImD1Ilu.

167

Input Form DEFINEs for RPLCOMP
The example INPI on the previous page is virtually unreadable unless you're willing to remember many small
details of input form parameters. To solve this, you can use the INCLUDE feature of HP's RPL compiler
RPLCOMP.EXE to define locations for fields and labels, field types, decompile procedures, etc. We've provided a
file on the disk named GUI . H that contains some standard input form definitions. If you're using another tool set,
there may be a similar way to use DEFINEs to help make your code readable.

Note: The remaining examples in this chapter will use the DEFINEs listed in GUI.H.

Example. INF2 is slightly different from INFL The first two fields are lined up to begin in the same pixel column,
the decompile specifications uses SID instead of the user settings, and NOVAL is the default for field I. We trust
that the mnemonic value of the DEFINEs from GUI.H makes the code a little more readable.

INF2 287 Bytes
(~ %0)

Checksum #3373h
Cancelled

(~ ob % % %1 Accepted

INCLUDE GUI.H

AtUserStack
"EDIT FIELD:" COL1
"CHOOSE FIELD:" COL1

LROW2
LROW3

"CHECK FIELD" COL1+C LROW4

'DROPFALSE
COL9 FROW2 FWIDTH12 FHEIGHT
FTYPE_TEXT
OBTYPE_ANY
FMT_STD
"ENTER ANY OBJECT"
OPTDATA_NULL
OPTDATA_NULL
NOVAL NOVAL

'DROPFALSE
COL9 FROW3 FWIDTH8 FHEIGHT
FTYPE_CHOOSE
OBTYPE_NA
FMT_STD
"CHOOSE A NUMBER"
{ %1 %2 %3 }
FMT_STD
%1 %1

'DROPFALSE
COL1 FROW4 FWIDTH_C FHEIGHT
FTYPE_CHECK
OBTYPE_NA
FMT_NA
"CHECK OR UNCHECK"
OPTDATA_NULL
OPTDATA_NULL
FALSE FALSE

THREE THREE
'DROPFALSE
"TEST"
Doinput form
case ITE %1 %0 %1
%0

168

Include the DEFINEs from file GUI.H

Clear saved command name, no arguments
Label 1 text and coordinates
Label 2 text and coordinates
Label 3 text and coordinates

Field 1 message handler
Field 1 coordinates and dimensions
Field 1 type: edit field
Field 1 object types allowed
Field 1 decompile format srD

. Field 1 help text
Optional data not used
Optional data not used
Field 1 initial and reset values

Field 2 message handler
Field 2 coordinates and dimensions
Field 2 type: choose list
Field 2 object types allowed
Field 2 decompile format srD
Field 2 help text
Field 2 choice list
Choose box decompile format
Field 2 initial and reset values

Field 3 message handler
Field 3 coordinates and dimensions
Field 3 type: check box
Object types not applicable
Decompile format not applicable
Field 3 help text
Optional data not used
Optional data not used
Field 3 initial and reset values

Number of labels and fields
Inputform message handler
Inputform title
Display the input form
If OK, convert check result and return %1
If cancelled, return %0

Graphical User Interfaces

,/

I

Specifying Object Types
To allow any tobject to be entered into a text field, specify MINUSONE for the object type. To specify one or more
object types, use a list of bints. The table below shows the available types, bint values, and DEFINE names from
GUI.H.

Object Type DEFINE Bint
Real OBTYPE_REAL ZERO
Complex OBTYPE_CMP ONE
String OBTYPE_STR TWO
Real array OBTYPE_RARRAY THREE
Complex array OBTYPE_CARRAY FOUR
List OBTYPE_LIST FIVE
Name (ID) OBTYPE_ID SIX
User program OBTYPE_USERPRGM EIGHT
Algebraic OBTYPE_SYMB NINE
User binary integer OBTYPE_HXS TEN
Unit OBTYPE_UNIT THIRTEEN

Example: To allow programs and algebraic objects use the list { OBTYPE_USERPRGM OBTYPE_SYMB }.

Specifying Decompile Formats
Text and choose fields require a decompile object. The decompile object controls the manner in which each item is
displayed, has the stack diagram (ob ~ $), and may be specified three ways:

• A pointer to an object that creates a string representation of a choice, like EDITDECOMP$
• A secondary that creates a string representation of a choice, like :: CARCOMP EDITDECOMP$
• A bint specifying the decompile procedure

Note that for text fields, the first two choices must be sensitive to the possibility of undefined field contents. For
instance, if a text field's default value is MINUSONE (NOV AL), then EDITDECOMP$ would display (FFFFFh> .
It's more likely that a secondary would be used that would include a test for this condition.

Example: This secondary returns a null string for an undefined value, otherwise decompiles the object using SID
fonnatting if the object is not a string.

(ob ~ $)

DUP MINUSONE EQUAL casedrop NULL$
DUPTYPECSTR? ?SEMI

Return null string for NOVAL
Do nothing if the object is a string

EDITDECOMP$

The binary integer specification uses specific bits to encode the decompile procedure. These bits control the
decompile fonnat, which part of a composite choice to decompile, and whether only the first character should be
returned. The file GUI . H contains a series of DEFINEs for commonly used decompile specifications.

Bit Interpretation
0 No decompilation - expects a string and displays the contents without quote marks
1 Decompile objects as they would appear on the stack (uses the user's numeric display fonnat settings)
2 Decompile objects as they would appear in the editline (uses SID fonnat for numbers)
3 Return only the first character of the string
4 Extract and display the first object of a composite (useful for choose fields only)
5 Extract and display the second object of a composite (useful for choose fields only)

Example: The bint THIRTYSIX (FMT_P2&STD in GUI. H) specifies SID formatting for the second element in a
list (useful for choose fields) .

Graphical User Interfaces 169

Input Form Message Handlers
At various times during the execution of an input form, the input form engine sends a message to the form's message
handler or an individual field's message handler. If the message handler chooses not to handle the message, the
default behavior related to that message will occur. If the message handler does handle the message, the default
behavior does not happen. If you don't plan to handle any messages, then the object DROPFALSE is all that's
needed, as shown above.

A message arrives at the message handler in the form of a binary integer indicating the message type with optional
stack parameters. The message handler is expected to return TRUE if the message was handled, along with any
required results on the stack, or FALSE if the message was not handled.

A message handler has the following stack diagram:

<passed objects> #message ~ <returned objects> TRUE
<passed objects> #message ~ <passed objects> FALSE

There are many messages, but the messages most likely to be of interest are documented as follows:

Message Purpose Decimal message number
Input arguments ~ Objects returned by the handler

Input Form Messages
These messages are processed by the main input form message handler.

Title Grob 2
~ 131x7~rob

input form Menu 15
~ { menu}

Three Menu Keys 16
~ { KeY4 Keys KeY6 }

$BHq~% Key Event 28
~ FALSE Cancel not allowed
~ TRUE Cancel allowed

D,Pt§En. Key Event 29
~ FALSE OK not allowed
~ TRUE OK allowed

Field Messages
These messages are processed by the individual field message handlers and are specific to the related field.

Check Object Type 45
~ FALSE Invalid Object Type
~ TRUE Valid Object Type

Check Object Value 46
~ FALSE Invalid Object Value
~ TRUE Valid Object Value

170 Graphical User Interfaces

-

-I

Input Form Data Access
While an input fonn is active the objects gFldVal and GetFieldVals may be used to recall the values for all
the fields. Fields are numbered in the order of their specification.

gFldVal #C50BO G/GX XLIB 176 197
Recall the values for an individual field

#field number ~ Field Value
GetFieldVals #C80BO G/GX XLIB 176200
Recall the values for all the fields

~ Field Values

Example: :: ONE gFldVal ; returns the value of the first field .

While an input fonn is active, state infonnation is saved in null-named temporary variables. A few contain basic
infonnation that might be useful:

4GETLAM ~ #CurrenCfield_number
5GETLAM ~ #focus_position
12GETLAM ~ $title
14GETLAM ~ #numbecoCfields
15GETLAM ~ #number of labels

Graphical User Interfaces 171

I

Customizing Input Form Menus
There are twelve standard input form softkeys:

Row 1
Row 2

In row 1, the first three keys are reserved for field support. The last three are available for customization by
responding to message 16. If an application doesn't need the second row (thel~ai.i.:CI key represents a potential
landmine for a robust application), the entire menu can be customized by responding to message 15.

Two built-in key objects are available to help build custom input form menus: DoKeyCancel and DoKeyOK:

DoKeyCancel #590BO G/GX XLm 17689
Process a "CANCEL" keystroke, terminating an input form

~ FALSE
DoKeyOK #5AOBO G/GX XLm 17690
Process an "OK" keystroke, terminating an input form

~ Field_Values TRUE

Customizing Three Menu Keys. By responding to message 16, you can supply your own keys for row 1 positions
four, five, and six. You must supply a list of exactly three key definitions and TRUE (in addition to the TRUE
indicating that the message has been handled).

The following input form message handler creates a new key Bi.i.ggjm? in position four and supplies the standard
CANCEL and OK keys in positions five and six:

(#rnsg ~ FALSE Not handled)
(#16 ~ {KeYl KeY2 KeY3} TRUE TRUE }

SIXTEEN #<> case FALSE
{

}

"ALERT"

TakeOver
"Alert!"
NINE FIFTEEN
MINUSONE
, MsgBoxMenu
DoMsgBox
DROP

{ "(AN(L"

{ "OK"
TakeOver DoKeyCancel
TakeOver DoKeyOK ; }

TRUE
TRUE

Respond only to message I6
List 0/3 key definitions:
Key I :
Label
Procedure:

MUST be a TakeOver secondary
Text/or message box
Min and max character widths
No grob
Message box menu
Display the message box
Discard the returned flag

Standard :p: ftHQ~" key
Standard key .. ,., .. '

Flag needed by menu builder
Indicates message handled

The program INF3 (supplied on the disk but not listed here) uses this message handler to extend the INF2 example.

172 Graphical User Interfaces

Customizing the Entire Input Form Menu. There are two principal motivations for customizing the entire input
form menu:

• You can rename a standard key, like to a verb, like ,'@FkffNi in the PLOT input form.

• You can eliminate keys that are either distracting or dangerous. Keys like a~:F;;;;;'J;I/ and are
distracting in a well-confined application, but is quite dangerous, since this key gives the user access to
the entire calculator.

By responding to message 15, you can supply a unique menu definition. The menu definition must be supplied as a
secondary consisting of two parts- NoExi tAction and the menu list:

:: NoExitAction { menu keys} ;

To help build the menu, you can use the standard first three keys that are available in the list IFMenuRow1, and the
standard second menu row which is available in the list IFMenuRow2.

l:FMenuRowl # 0 5 OB 0 G/GX XLIB 176 5
A list containing the standard first three input form softkeys

~ {EDIT CHOOSE CHK}
l:FMenuRow2 #060BO G/GX XLIB 1766
A list containing the standard second row of input form softkeys

~ {RESET CALC TYPES NuliMenuKey CANCEL OK }

The following input form message handler creates a new key ;tt;II!.;J;,EtDS1 in position four and supplies the standard
CANCEL and OK keys in positions five and six:

(#rnsg ~ FALSE Not handled)
(#16 ~ {Key! KeY2 KeY3} TRUE TRUE }

FIFTEEN #<> case FALSE
o NoExitAction
IFMenuRow1
{

}

}

"ALERT"

TakeOver
"Alert!"
NINE FIFTEEN
MINUSONE
o MsgBoxMenu
DoMsgBox
DROP

{ "(AN(L"
{ "OK"

TakeOver DoKeyCancel
TakeOver DoKeyOK ; }

&COMP
TWO: :N
TRUE

}

Respond only to message 15
Place NoExi tAction on the stack
Get the first three standard keys
List of 3 key definitions:
Key 1:
Label
Procedure:

MUST be a TakeOver secondary
Textfor message box
Min and max character widths
No grob
Message box menu
Display the message box
Discard the returned flag

Standard K'1iljl~)i=i' key
Standard mm key

Concatenate the two lists
Build the secondary
Indicates message handled

The program INF4 (supplied on the disk but not listed here) uses this message handler to extend the INF3 example.
Note that INF3 and INF4 are identical except that INF4 does not have the second row of standard input form keys.

Graphical User Interfaces 173

ORBIT Example
This program is a System-RPL implementation of an example by the same name in The HP48 Handbook (also
provided on the disk in the USERRPL directory). ORBIT models a particle in a chaotic orbit. This program was
inspired by the program MIRA in the book Fractals - Endlessly Repeated Geometrical Figures (Princeton, New
Jersey: Princeton University Press, 1991) by Hans Lauwerier.

The successive iterates are calculated by:

where:

xn+l = Yn - F(xn)

Yn+l = -bxn + F(xn+l)

2(1-a)x 2
F (x)=ax + 2

l+x

The value for a controls the chaotic behavior (orbits are stable when a is 1). The value of b controls the spiral nature
of the orbit. If b is just slightly less than 1, the orbit spirals inward.

An input form is used to enter and verify the input parameters n (the number of iterates), initial values for a and b,
the starting position x and Y, and the scaling coordinates. There are two message handlers:

• The field message handler for n verifies a positive number of iterates.
• The form message handler provides a custom menu that adds a ;:SHI~(HT key, renames to :;l!:~f}fflHL

verifies that all fields have data when arWf}fH!H is pressed, and omits the standard second menu row.

To get acquainted with ORBIT, begin with a somewhat stable orbit. Reduce a to see its effect on the orbit and
adjust the scale to keep the picture large, then reduce b to make the orbit spiral inward:

n a b x
700 .95 1 0
700 .9 1 0
2200 .9 .998 0

c ___ ~

y PMIN
7.5 (-25,-10)
7.5 (-20,-8)
7.5 (-20,-8)

PMAX
(27,10)
(22,8)
(22,8)

.. _r' : . ..f':--;-.....
L-·

.. :~.
~)

Here's some more to try. Remember that very small variations in initial conditions can result in dramatic changes to
the orbit. For instance, try the third example below with values for a of - .24, - .25, and - .26.

n a b x y PMIN PMAX
600 - .4 .99 4 0 (-12,-10) (13,10)
900 -.48 .935 4.1 0 (-11,-10) (14,7)
500 -.05 .985 9.8 0 (-13,-11) (17,11)
1000 -.24 .998 3 0 (-12,-10) (14,10)
1000 .2 1 11 0 (-20,- 16) (22,17)
400 .3 1 8 0 (-35,-19) (35,19)
500 .4 1 0 5 (-13,-8) (16,8)

174 Graphical User Interfaces

I
'-;.Y .

-
-

ORBIT 1278.5 Bytes Checksum #E440h
(~)

INCLUDE GUI . H

EXTERNAL DoKeyCance1
EXTERNAL DoKeyOK
EXTERNAL IFMenuRow1
EXTERNAL gFldVal
EXTERNAL GetFieldVa1s
EXTERNAL grobAlertIcon
EXTERNAL DoMsgBox
EXTERNAL MsgBoxMenu

AtUserStack

Specify the input form labels:

"ITERATES:" COL1 LROW1
I1A: " COL1 LROW2
"B: .. COL12 LROW2
IIX: .. COL1 LROW3
IIY: " COL12 LROW3
"PMIN : " COL1 LROW4
"PMAX: " COL12 LROW4

Specify the inputformfields:

FORTYSIX #<> case FALSE
%0 %>
TRUE

COL7 FROW1 FWIDTH8 FHEIGHT
FTYPE_TEXT
{ OBTYPE_REAL }

DUP MINUSONE EQUAL casedrop NULL$
EDITDECOMP$

"ENTER THE NUMBER OF ITERATES"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

'DROPFALSE
COL2 FROW2 FWIDTH8 FHEIGHT
FTYPE_TEXT
{ OBTYPE_REAL
FMT_STD
"'A' CONTROLS THE CAOTIC BEHAVIOR"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

'DROPFALSE
COL13 FROW2 FWIDTH8 FHEIGHT
FTYPE_TEXT
{ OBTYPE_REAL
FMT_STD
"'B' CONTROLS THE SPIRAL"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

Graphical User Interfaces

Include input form DEFINEs

External declarations for objects that are
referenced by rompointer

No arguments, clear saved command name

input form labels

Message handler for ITERATESfield
Respond only to message 46
Test to see if number is greater than zero
Signal that the message has been handled

Field dimensions
Field type
Allow only real numbers
Decompile object
Show null string if no data has been entered
Else display in STD format (similar to FMT _STD)

Help text
No choose box data for a text field
No value for reset and initial values

Default message handler for Afield
Field dimensions
Field type
Allow only real numbers
Use STD display formatting
Help text
No choose box data for a text field
No value for reset and initial values

Default message handler for B field
Field dimensions
Field type
Allow only real numbers
Use STD display formatting
Help text
No choose box data for a text field
No value for reset and initial values

175

'DROPFALSE
COL2 FROW3 FWIDTH8 FHEIGHT
FTYPE_TEXT
{ OBTYPE_REAL }
FMT_STD
"'X' IS THE STARTING POSITION X"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

'DROPFALSE
COL13 FROW3 FWIDTH8 FHEIGHT
FTYPE_TEXT
{ OBTYPE_REAL }
FMT_STD
"'Y' IS THE STARTING POSITION Y"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

'DROPFALSE
COL4.5 FROW4 FWIDTH7 FHEIGHT
FTYPE_TEXT
{ OBTYPE_CMP }
FMT_STD
"LOWER LEFT DISPLAY COORDINATE"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

'DROPFALSE
COL15.5 FROW4 FWIDTH7 FHEIGHT
FTYPE_TEXT
{ OBTYPE_CMP
FMT_STD
"UPPER RIGHT DISPLAY COORDINATE"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

176

Default message handler for Xfield
Field dimensions
Field type
Allow only real numbers
Use STD display formatting
Help text
No choose box data for a text field
No value for reset and initial values

Default message handler for Y field
Field dimensions
Field type
Allow only real numbers
Use STD display formatting
Help text
No choose box data for a text field
No value for reset and initial values

Default message handler for PMIN
Field dimensions
Field type
Allow only complex numbers
Use STD display formatting
Help text
No choose box data for a text field
No value for reset and initial values

Default message handler for PMAX
Field dimensions
Field type
Allow only complex numbers
Use STD display formatting
Help text
No choose box data for a text field
No value for reset and initial values

Graphical User Interfaces

Now specify the remaining input form parameters

SEVEN
SEVEN

FIFTEEN #=casedrop

I NoExitAction
IFMenuRowl
{

"SHOW"

TakeOver
DOCLLCD
TURNMENUOFF
5GETLAM gFldVal
DUP MINUSONE EQUAL
ITE

Seven labels
Seven fields
Message handler:
Message 15: input form menu

Put NoExitAction on the stack
List of first three standard keys
List of last three custom keys:

Labelfor SHOW key

Must be a TakeOver secondary
Clear the display
Tum off the menu
Get the value for the current field
Test to see if the field is undefined
If undefined,

:: DROP "Undefined"
EDITDECOMP$

DISPROW4

display "Undefined"
else decompile the value

Display the string
continue\lF" "Press any key to

$>grob

}
{

}
{

HARDBUFF ZERO FIFTYSIX
WaitForKey 2DROP
TURNMENUON

" (AN(L"
:: TakeOver DoKeyCancel

"DRAW"
:: TakeOver DoKeyOK

&COMP
TWO ::N
TRUE

TWENTYNINE #<> case FALSE
GetFieldVals
15GETLAM
TRUE lLAMBIND
ZERO_DO (DO)

Build the prompt grob
GROB ! Display the prompt grob

Wait for a key, discard the location
Tum the menu back on

Standard CANCEL key

Standard OK key with different label

Concatenate the two lists of key definitions
Build the secondary with NoExitAction
Signal the message was handled

Reject all messages other than 29
Get the field values
Get the number of field values
Bind TRUE in a temporary variable
Loop to test each value

MINUSONE EQUAL IT FALSE IPUTLAM If a value is undefined, store FALSE in temp var
LOOP
IGETABND
DUP ?SKIP

TRUE

"Undefined\OAValue"
NINE FIFTEEN
grobAlertIcon
MsgBoxMenu
DoMsgBox
DROP

"ORBIT"

Graphical User Interfaces

Recall flag, abandon temporary environment
If there was an undefined value

Display a message box

Signal that message 29 was handled

Title for the input form

177

Now display the inputform

Doinput form
NOT?SEMI

Display the input form
Quit if cancelled

The user pressed DRA W, the parameters were verified, and now we're ready to go. The stack at this point contains:

(#Iterates %a %b %x %y C%PMIN C%PMAX ~)

C%>% PUTYMAX PUTXMAX
C%>% PUTYMIN PUTXMIN
BINT_131d SIXTYFOUR MAKEPICT#
TOGDISP ZEROZERO WINDOWXY TURNMENUOFF
%2 5PICK %2 %* %-
3PICK DUP %* DUP
3PICK %*
7PICK 6PICK %* %+
SWAP %1 %+ %/
%0
{LAMaLAMbLAMxLAMyLAMcLAMw
BIND
COERCE ZERO DO

ATTN? IT ZEROISTOPSTO
LAM x INDEX@ TEN #> IT

:: DUP LAM y %>C% C%># PIXON3
, LAM z STO
LAM b LAM Y %* LAM w %+
DUP , LAM x STO
LAM a OVER %* SWAP DUP %*
DUP LAM c %* SWAP %1 %+ %/ %+
DUP , LAM w STO
LAM z %- ' LAM Y STO

LOOP
ABND
ATTNFLGCLR FLUSHKEYS

178

StorePMIN
StorePMAX
Create blank PICT
Display PICT with no menu
Calculate intermediate value
Calculate initial value for w

Initial value for Z
LAM z }

Create local variables
Loop for n iterations
Quit iflA TTNI pressed
Plot only after 1st 10 points

Save old x in z
Calculate new x

Calculate new w

Complete new value for y

Abandon temporary environment when done
Clear the attention flag and flush the key buffer

Graphical User Interfaces

'-../ 1

L

Introducing Saturn
There are times in application development when System-RPL simply won't do the job or is too inefficient, so you
want to write some code in assembly language. We summarize the CPU and instruction set here, but we also
encourage you to review the document SASM.DOC supplied by Hewlett-Packard (on the disk). In particular,
SASM.DOC provides some detailed information about each instruction (opcode, cycles to execute, etc.) that we
omit here.

Hewlett-Packard has used the Saturn CPU since the early 1980s for the core of all calculators and the HP-71B
handheld BASIC computer. Several variations of ICs using this CPU have evolved over the years, but the chip used
in the HP 48 family represents the most mature implementation. The CPU is optimized for BCD math and low
power consumption, traits which have helped characterize HP calculators for many years.

We begin by introducing the CPU, the instruction set. The basic mechanics of the RPUassembler interface from the
programmer's perspective are then introduced in the next chapter.

The Saturn architecture is based on a 4-bit bus, thus data is accessed a half byte at a time (these quantities are called
"nibbles"). The physical address space is 512K bytes - addresses are represented as 20-bit quantities. Programs
written in assembly language should be written so as to be completely relocatable in the address space.

The Saturn CPU
The CPU has four working registers (A-D) and five scratch registers (RO-R4), each 64 bits wide. The data pointer
registers, program counter, and return stack are all 20 bits wide. A four-bit pointer register P is used to point into the
working registers. The input register is 16 bits wide, and the output register is 12 bits wide. The low-order 12 status
bits are called register ST.

DO

01

Data Pointers

20 B~s

2

3
4

5

6
ReseryEl(t:ifor,ttie

;;:intetffiJPt\~y$tEirri:
Return Stack

Introducing Saturn

HP 48 CPU

20B~ 16 B~s

Program Counter

14B~3
P In

12 B~s I
Out Status Bits

o Carry Bit

Register ST =B~s 0-11

Hardware Status B~s: 0 MP D SR 0 SB D XM

A

B

C

D

Working Registers

RD

R1

R2

R3

R4

Scratch Registers

179

I

The Working and Scratch Registers
The working registers A-D, the pointer register P, and the scratch registers are the workbench of the CPU. The 64-
bit (16-nibble) working registers A-D are used for data manipulation, and are divided into 9 fields as follows :

15 o

~-------------------------w ------------------------~~

s ~r_~------------------------ M ·1:. ~,
~r_~-------A------~~

1/"I~.p=9-)---------- WP ------------I-p~
(P=O)

Field Description
W Word (all 16 nibbles)
A Address field (nibbles 0-4)
B Byte (nibbles 0 & I)
X Exponent (nibbles 0-2)
XS Exponent sign (nibble 2)
M Mantissa (nibbles 3-14)
S Mantissa sign
P Nibble referenced by the P register
WP Nibbles 0 - the nibble referenced by the P register

As mentioned earlier, the CPU has been optimized for BCD math, and the fields S, M, XS, and X are commonly
used in BCD math routines. The A field is most frequently used for address and object size calculations.

The A and C registers are used for memory access via the data pointers and can also exchange data with the five 64-
bit scratch registers. Instructions like A=RO move the entire contents of RO into A, but instructions like RO=A. F X
permit field specific data exchange between working and scratch registers. In the latter example, the X field of
register RO gets the contents of the X field of register A.

A note about notation: sometimes we refer to a specific field in a specific register by enclosing the field in brackets.
For instance, C[A] refers to the A field of the C register.

The Status Bits
Carry. The carry bit is affected by calculation or logical test operations.

Carry is set if:
• A register or data pointer is incremented and overflows
• A register or data pointer is decremented and underflows
• An add operation overflows
• A subtract operation borrows
• A test is true

Carry is cleared if:

180

A register or data pointer is incremented and does not overflow
A register or data pointer is decremented and does not underflow
An add operation does not overflow
A subtract operation does not borrow
A test is false

Introducing Saturn

I
...J '

Status Bits. There are 16 status bits referred to collectively as "status bits" (not to be confused with hardware status
bits). The lower 12 bits compose register ST. Information in register ST can be swapped with the X field of the C
register. The upper four bits are reserved for use by the operating system, but for most applications the lower the
lower 12 are available.

Bit Name
12 Deep Sleep override
13 Indicates interrupt service occurred
14 Indicates interrupt system active
15 Disable interrupts

Hardware Status Bits. The hardware status bits are:

Bit Symbol Name

° XM External Module Missing
1 SB Sticky Bit
2 SR Service Request
3 MP Module Pulled

The Sticky Bit (SB) is the only one of these of interest to programmers writing applications for the HP 48. This bit
is set when when a non-zero bit is shifted off the right end (least significant) of a register. SB is only cleared by a
SB=O instruction. There is a ?SB=O instruction to test if the Sticky Bit is zero, but there is not a corresponding
?SB=1 test to see if the SB is set.

Input and Output Registers
The 16-bit input (IN) register and the 12-bit output (OUT) register are used to exchange data with the system bus.
They will be used for key scanning in an example shown later. Key scanning and sound effects are the only uses
you'll likely have for these registers when writing code objects for the HP 48.

The Return Stack
Note that two levels of the hardware return stack are reserved for the interrupt system - applications should never
use more than 6 levels of the return stack.

Arithmetic Mode
The Saturn CPU can perform register arithmetic in either hexadecimal (HEX) or decimal (DEC) modes. The default
mode for most operations in the HP 48 is HEX mode, however the math routines frequently use DEC mode. The
instructions SETHEX and SETDECset these modes. If you write a code object that uses DEC mode, be certain to
execute SETHEX before returning to RPL, otherwise the HP 48 will crash. There are no test instructions or status
bits for the arithmetic mode, but the two instructions

or

LCHEX 9
C=C+l P

LAHEX 9
A=A+l P

will set the carry bit if the CPU is in decimal mode.

Instructions which increment or decrement P, DO, or Dl are always performed in HEX mode. Also, instructions
which add or subtract a constant from a specific field will be performed in HEX mode.

The Pointer Register
The pointer register P is a four-bit register used in field selections with the working registers. The pointer register is
also useful as a tiny counter register. P may be set, incremented, decremented, or exchanged with the C register.

Introducing Saturn 181

Instruction Set Summary
The following instruction section summarizes the Saturn instruction set. For detailed infonnation about each
instruction, see the HP document SASM.DOC.

The SASM assembler defines four fields for each instruction which contain an optional label, an opcode, the
optional modifier, and optional comments: Standard practice for SASM usage is for the opcode field to begin in
column 9, the modifier field to begin in column 17, and comments to begin in column 33:

Columns: 1 9 17 33
Fields: label opcode modifier Comments
Example: NextLevel Dl=Dl+ 5 Point Dl to next stack level

Any source code line beginning with * will be treated as a comment.

Memory Access Instructions

Data Pointer Instructions. In the following instructions,

•

r=AorC
ss=DOorDI
n is an expression whose hex value is from 0 through F
nnnnn is an expression whose hex value is from 0 through FFFFF

During those operations that involve a calculation, the carry flag is set if the calculation overflows or borrows,
otherwise the carry flag is cleared.

Instruction Description Examples

rssEX Exchange A field in r with ss .- ADO EX
rssXS Exchange nibbles 0 through 3 with ss ADOXS
ss=r Copy A field in r into ss D1=C
ss=rS Copy nibbles 0 through 3 in r into ss Dl=AS
ss=ss+ n Increment ss by n D1=D1+ 5
ss=ss- n Decrement ss by n DO=DO- 16
ss=(2) nnnnn Load ss with two nibbles from nnnnn DO=(2) A3
ss=(4) nnnnn Load ss with four nibbles from nnnnn DO=(4) FFC7
ss=(5) nnnnn Load ss with nnnnn DO=(5) =DSKTOP

Data Transfer Instructions. In the following instructions,

• r=AorC
• fs = A, P, WP, XS, X, S, M, B, W, or a number n from 1 through 16

Instruction Description Examples

r=DATO fs Copy data at address contained in DO into fs field in r (or nibble 0 through C=DATO A
nibble n-1 in r) A=DATO 5

r=DAT1 fs Copy data at address contained in 01 into fs field in r (or nibble 0 through C=DAT1 B
nibble n-1 in r) A=DAT1 1

DATO=r fs Copy data of fs field in r (or in nibble 0 through nibble n-1 in r) to address DATO=C A
contained in DO DATO=A 3

DAT1=r fs Copy data of f s field in r (or in nibble 0 through nibble n -1 in r) to address DAT1=C A
contained in 01 DAT1=A 3

182 Introducing Saturn

./

Load Constant Instructions
In the following instructions,

• h is a hex digit
• i is an integer from 1 through 5

nnnnn is an expression with hex value from 0 through FFFFF
• c is an ASCn character

During a load constant operation, the nibbles are loaded beginning at r(p), least significant nibble first. Load
operations can wrap from r(15) to reO). A common coding mistake is to forget the setting ofP during a load constant
operation.

Instruction Description

LAHEX h ... h Load up to 16 hex digits into A.
LA(i) nnnnn Load i hex digits from the value of nnnnn into A.
LAASC 'c ... c ' Load up to eight ASCII characters into A.
LCHEX h ... h Load up to 16 hex digits into C.
LC(i) nnnnn Load i hex digits from the value of nnnnn into C.
LCASC ' c ... c ' Load up to eight ASCII characters into C.

P Register Instructions
In the following instructions,

• n is an expression whose hex value is from 0 through F

Examples

LAHEX F247
LAHEX 4142
LAASC 'AB'
LCHEX F247
LCHEX 4142
LCASC 'AB'

The C register is the only working register used with the P register. All arithmetic calculations on the pointer are
performed in HEX mode. During calculation operations, the carry flag will be set if the calculation overflows or
borrows, otherwise the carry flag will be cleared .

Instruction Description

P= n Set P register to n
P=P+1 Increment P register
p=P-1 Decrement P register
C+P+1 Add P register plus one to A field in C
CPEX n Exchange P register with nibble n in C
P=C n Copy nibble n in C to P register
C=P n Copy P register to nibble n in C

Scratch Register Instructions
In the following instructions,

r=AorC
• 55 = RO, Rl , R2, R3, or R4
• fs = A , P, WP, XS, X, S, M, B, W , or a number n from 1 through 16

Instruction Description

r=ss Copy 55 into r
ss=r Copy r into 55

rssEX Exchange rand 55

r=ss . F fs Copy sst fs) to r(fs)
ss=r . F fs Copyr(fs) toss(fs)
rssEX.F fs . Exchanl!:e r(fs) with 55 (fs)

Introducing Saturn

Examples

P= 6
P=P+ 1
P=P-1
C+P+1
CPEX 15
P=C 2
C=P 0

Examples

C=R4
RO=A
AR1EX
A=RO.F A
R3=C.F M
CR2EX.F B

183

Shift Instructions
In the following instructions,

• r=A, B, C, orD
• fs = A, P, WP, XS, X, S, M, B, or W

Non-circular shift operations shift in zeros. If any shift-right operation, circular or non-circular, moves a non-zero
nibble or bit from the right end of a register or field, the Sticky Bit SB is set. The Sticky Bit is cleared only by a
SB= 0 or CLRHST instruction.

Instruction Description

rSRB Shifr r right by one bit
rSRB.F fs Shift fs field in r right by one bit
rSLC Shift r left by one nibble (circular)
rSRC Shift r right by one nibble (circular)
rSL fs Shift f s field in r left by one nibble
rSR fs Shift f s field in r right by one nibble

Logical Instructions
In the following instructions,

• (r, s) = (A, B), (A, C), (B, A), (B, C), (C, A), (e, B), (C, D), or (D, C)
• fs=A, P, WP, XS,X, S,M, B, orW

Instruction Description
r-r&s fs fs field in rAND fs field in s into fs field in r
r=r!s fs fs field in r OR fs field in s into fs field in r

Note that XOR is missing. The following four instructions implement A XOR C in the A field:

B=A A
B=B&C A
A=A!C A
A=A-B A

Save a copy of A
A AND C
A OR C
X XOR C (A OR C) - (A AND C)

Arithmetic Instructions

Examples
ASRB
CSRB . F A
BSLC
CSRC
DSL M
ASR A

Examples
A=A&C A
D=D!C XS

Arithmetic results depend on the current arithmetic mode. In HEX mode (set by SETHEX), nibble values range
from 0 through F . In decimal mode (set by SETDEC), nibble values range from 0 through 9, and arithmetic is BCD
arithmetic.

There are two groups of arithmetic instructions. In the first group (general), almost all combinations of the four
working registers are possible; in the second group (restricted), only a few combinations are possible. During those
operations that involve a calculation, the carry flag is set if the calculation overflows or borrows; otherwise the carry
flag is cleared.

General Arithmetic Instructions. In the following instructions,

•
•

(r, s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C)
fs=A,P, WP, XS,X, S,M,B,orW

Instruction Description
r=0 fs Set f s field in r to zero
r=s fs Copy fs field in s into is field in r
s=r is Copy is field in r into is field in s
rsEX fs Exchange f s field in rand is field in s
r=r+r is Double is field in r (shift left by one bit)
r=r+l fs Increment f s field in r by I
r=r-l fs Decrement f s field in r by 1
r=r+CON fs,d Add constant d to field f s in r
r=r-CON fS,d Subtract constant d from field is in r
r=-r is Tens complement or twos complement, depending on arithmetic mode, of f s

field in r. Clears carry if r (f s) was zero, otherwise sets carry.
r=-r-l is Nines complement or ones complement, depending on arithmetic mode, of is

field in r . Clears carry unconditionally.
r=r+s fs Sum is field in r and is field in s into is field in r
s=r+s fs Sum is field in rand is field in s into is field in s

184

Examples

C=O W
A=C A
C=A A
ACEX A
A=A+A A
C=C+l B
C=C-l B
A=A+CON A, S
C=C-CON A, lO
C=-C S

C=-C- l S

C=C+A A
A=C+A A

Introducing Saturn

I 'V .

Restricted Arithmetic Instructions. In the following instructions,

•
(r ,S) = (A, B), (B, C), (C, A), or (D, C)
fs = A, P, WP, XS, X, S, M. B. or W

Instruction Description
r=r- s fs Difference of fs field in rand fs field in s into fs field in r
r=s-r fs Difference of fs field in sand fs field in r into fs field in r
s=s-r fs Difference of f s field in s and f s field in r into f s field in s

Branching Instructions

GOTO and GOSUB Instructions. In the following instructions,

A=A-B
B=C-B
A=A-C

• label is a symbol defined in the label field of an instruction within the current code object
• =label is an entry in the lower 256K of the HP 48 operating system
• offset is the distance in nibbles to the specified label
• r=AorC

Instruction Description
GOTO label Short relative jump (-2047 $ offset $ 2048) GOTO
GOYES label Short relative jump if test is true (-125 $ offset 130) ?A=C

GOYES
GOC label Short relative jump if carry set (-127$ offset $ 128) GOC
GONC label Short relative jump if carry clear (-127 $ offset $ 128) GONC
GOLONG label Long relative jump (-32762 $ offset $ 32768) GOLONG
GOVLNG =label Absolute jump GOVLNG
GOSUB label Short relative subroutine jurnp (-2044 $ offset $ 2051) GO SUB
GOSUBL label Long relative subroutine jump (-32762 :s; offset $ 32773) GOSUBL
GOSBVL =label Absolute subroutine jump GOSBVL
PC=r Direct jump to address in rIA] PC=A
=PC Copies the PC to rIA] C=PC
rPCEX Direct jump to rIA]. saving PC in rIA] APCEX
PC=(r) Indirect jump: rIA] points to the address to jump to PC=(C)

Examples
A
A
A

Examples
LBLOl
A
DoEqual
Done
NotDone
End
=PUSH#ALOOP
parse
output
=POP#A

Note: All calls to HP 48 entries from code objects should use GOVLNG or GOSBVL.

Return Instructions

Instruction Description Examples
RTN Return RTN
RTNSC Return and set carry RTNSC
RTNCC Return and clear carry RTNCC
RTNSXM Return and set XM status bit RTNSXM
RTI Return from interrupt (enable interrupts) RTI
RTNC Return if carry set RTNC
RTNNC Return if no carry set RTNNC
RTNYES Return iftest is true (used only with test instructions) ?ST=O 1

RTNYES

Return Stack Instructions

Instruction Description Examples
RSTK=C Push A field in C onto return stack RSTK=C
C=RSTK Pop return stack into A field in C C=RSTK

Introducing Saturn 185

Test Instructions
Each test instruction must be followed by a GOYES or a RTNYES instruction. The test instruction and the GOYES or
RTNYES instruction combine to generate a single opcode. Each test will set the carry flag if true, or clear the carry
flag if false . All tests are unsigned and performed only on the selected field.

Register Tests. In the following instructions,

• (r IS) :;: (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C)
• fs=A, P, WP, XS,X, S, M, B, orW

Instruction Description Examples

?r=s fs Is fs field in requal to fs field of s? ?B=C A
GOYES ItIs

?zils fs Is fs field in r not equal to fs field of s? ?C#D S
GOYES CDSNotEqual

?r=O fs Is f s field in r equal to zero? ?B=O P
RTNYES

?zilO fs Is fs field in r not equal to zero? ?B#O P
RTNYES

?r>s fs Is f s field in r greater than f s field of s? ?A>C A
GOYES Bigger

?r<s fs Is f s field in r less than f s field of s? ?A<C A
GOYES Smaller

?r>=s fs Is f s field in r greater than or equal to f s field of s? ?B>=C WP
GOYES GThanE

?r<=s fs Is f s field in r less than or equal to f s field of s? ?B<=C WP
GOYES LThanE

Register Bit Tests. In the following instructions,

• n is an expression whose hex value is from 0 through F
• r=AorC

Instruction Description Examples

?rBIT=O n Is bit n in r equal to O? ?ABIT=O 2
RTNYES

?rBIT=l n Is bit n in requal to I? ?CBIT=l 15
RTNYES

Pointer Tests. In the following instructions,

• n is an expression whose hex value is from 0 through F

Instruction Description Examples

?p= n Is P register equal to n? ?p= 0
GOYES Done

?P# n Is P register not equal to n? ?p# 0
GOYES NotDone

Program Status Bit Tests. In the following instructions,

• n is an expression whose hex value is from 0 through F

Instruction Description Examples

?ST=O n Is bit n in ST equal to O? ?ST=O 0
RTNYES

?ST=l n Is bit n in ST equal to I? ?ST=l 1
GOYES TryAgain

?ST#O n Is bit n in ST not equal to O? ?ST#O 6
GOYES TryOVer

?ST#1 n Is bit n in ST not equal to I? ?ST#1 3
RTNYES

186 Introducing Saturn

'-'

........-

'-"

-../

~

--
--

--
-'

'-"
.. --

......" -
-'

-'

--
--.../

'-"

Hardware Status Bit Tests.

Instruction Description Examples
?XM=O Is the External Module Missing bit clear? ?XM=O

RTNYES
?SB=O Is the Sticky Bit clear? ?SB=O

GOYES NotShifted
?SR=O Is the Service Request bit clear? ?SR=O

RTNYES
?MP=O Is the Module Pulled bit clear? ?MP=O

GOYES MPClear

Register & Status Bit Instructions

Register Bit Instructions. In the following instructions,

• n is an expression whose hex value is from 0 through F
• r=AorC

Instruction Description Examples

rBIT=O n Clear bit n in r ABIT=O 0
rBIT=l n Set bit n in r CBIT=l 9

Program Status Bit Instructions. In the following instructions,

• n is an expression whose hex value is from 0 through F

Instruction Description Examples

ST=O n Clear bit n in ST ST=O 0
ST=l n Set bit n in ST ST=l 4
CSTEX Exchange X field in C and bits 0 through 11 in ST CSTEX
C=ST Copy bits 0 through 11 in ST into X field in C C=ST
ST=C Copy X field in C into bits 0 through II in ST ST=C
CLRST Clear bits 0 through II in ST CLRST

/

Hardware Status Bit Instructions.

Instruction Description Examples

SB=O Clear Sticky Bit (SB) SB=O
SR=O Clear Service Request (SR) bit SR=O
MP=O Clear Module Pulled (MP) bit MP=O
XM=O Clear External Module (XM) bit XM=O
CLRHST Clear SB, SR, MP, and XM bits CLRHST

System Control Instructions

Instruction Description Examples

SETHEX Set arithmetic mode to hexadecimal SETHEX
SETDEC Set arithmetic mode to decimal SET DEC
CONFIG Configure a device to the address in C(A) CONFIG
UNCNFG Unconfigure a device at address in C(A) UNCNFG
RESET Send Reset command to the system bus RESET
BUSCB Issue bus command B BUSCB
BUSCC Issue bus command C BUSCC
BUSCD Issue bus command D BUSCD
SHUTDN Stop CPU, stay in low-power mode until wake-up SHUTDN
C=ID Copy chip ID from system bus to C(A) C=ID
SREQ? Set C(O) to service request response from bus, set SR if service requested SREQ?
INTOFF Disable maskable interrupts INTOFF
INTON Enable maskable interrupts INTON

Introducing Saturn 187

Keyscan Instructions

Instruction Description Examples
OUT=C Copy X field in C into OUT OUT=C
OUT=CS Copy nibble 0 of C into OUT OUT=CS
A=IN Copy IN into nibbles 0 through 3 in A A=IN
C=IN Copy IN into nibbles 0 through 3 in C C=IN

Note that A=IN and C=IN must be executed on an even address. An reliable way to do this is to call the entries
AINRTN and CINRTN, illustrated in Keyboard Scanning.

NOP Instructions

Instruction Description Examples
NOP3 Three-nibble no-op NOP3
NOP4 Four-nibble no-op NOP4
NOPS Five-nibble no-op NOPS

Assembler Pseudo-Op Instructions
The following pseudo-ops are a few of the pseudo-ops available in the SASM assembler.

Data Storage and Allocation. In the following instructions,

• nnnnn is an expression whose hex value is from 0 through FFFFF
• expr is an expression that evaluates to a constant from 0 through FFFFF
• m is a one digit decimal integer constant
• label is a symbol defined in the label field of an instruction within the current code object
• h is a hex digit

Instruction Description Examples
BSS nnnnn Allocate nnnnn zero nibbles here. Nou: Do not write self-modifying code BSS 4

objects that will be used in a library in the HP 48! (The library checksums will
become invalid.)

CON(m} expr Generate an m nibble constant CON(S} =DOCOL
REL(m} label Generate an m nibble relative offset REL(S} =EndGrob
NIBASC \ ascii \ Generate up to 40 ASCII characters. Each character has the nibbles reversed. NIBASC \ Fred\
NIBHEX h . . . h Generate up to 80 hex digits NIBHEX 1424FC

Symbol Dermition. In the following instructions,

•
•

symbol is a name for an address, defined in the label field of an instruction (global if preceded with =)
expr is an expression that evaluates to a constant from 0 through FFFFF

Instruction Description Examples
symbol EQU expr Assigns the value expr to symbol. If symbol is already defined. an error is size EQU 232

generated. =SEMI EQU #0312B
symbol = expr Assigns the value expr to symbol. Replaces any existing value. size = 233

188 Introducing Saturn

--
--
--

-- "

L

L

Writing Your Own Code Objects
Assembly language code is encapsulated in a code object (type 25), which is one of the object types that the HP 48
recognizes. In this chapter we'll introduce a few ways to write your own code objects.

Code Object Execution
When a code object begins to execute, it must account for information vital to System-RPL execution that resides in
the CPU. Four registers in the CPU contain this information, usually known as the "RPL pointers":

DO
• Dl
• B[A]
• D[A]

The instruction pointer
The data stack pointer
The return stack pointer
(Available memory) DIY 5

HP 48 CPU

1;~ib$i~B8iiitir;11

1!l;tilPata;l§.!!I!¥tijp~efl
Data Pointers

2OB~s

2

3
4

5

6

LI1~~1¥ed(\f~rJ,th~
mptei:6!p.€~~j

Retum Stack

l ~ti¥ti~'~iiilk%~; 1
Program Counter

D Carry Bit

16B~s 12 Bits I 16 B~s
In Out Status Bits

Register 5T =B~ 0-11

Hardware Status B~s: D MP 0 SR D SB 0 XM

A

B

C

Working Registers

RO

R1

R2

R3

R4

Scratch Registers

In addition to the information in the registers described above, P is guaranteed to be 0 and the CPU is in HEX mode.
Both of these conditions must also be true when the code object terminates and the system returns to RPL execution.
There are two common ways to terminate code object execution and resume execution of the RPL inner loop:

• Resume execution at the pointee of the top of the return stack:

A=DATO'
DO=DO+
PC=(A)

A
5

Read the pointer to the next RPL object to be executed
Advance the instruction pointer
Branch to the next instruction

The example programs SWP and DRP9 illustrate this technique.

• Resume execution via another object. This example returns to RPL via TRUE:

LC(5)
A=C
PC=(A)

=TRUE
A

Load the address of the object to execute
Copy toA
Branch to TRUE

The example program ABSF illustrates this technique.

Writing Your Own Code Objects 189

Many code objects will take their arguments from the stack (via Dl), save the RPL pointers, perform their task, then
restore the RPL pointers before returning to RPL execution. The entries SAVPTR and GETPTR may be used to save
the contents of DO, Dl , B[A] , and D[A] in reserved RAM locations and restore them later, thus freeing the entire
CPU for use by an application.

Stack Access
Stack manipulation tasks provide one way to introduce some simple tasks that do not require SAVPTR and GETPTR,
so we begin by illustrating some simple stack operations. We begin by illustrating the pointer path from CPU
register Dl to the actual object in memory:

rM.mo~

"

r- TEMPOB ~ r-Stack 4
f I

II -I-I-I ~ IIIIIIIIIIIIIIIII
123 ···

t
HP 48 CPU

F~_~Fi~~1 l ;ifi;i(llli\AA'8~(k'i;i;;l l

rR1jP#i!::~£lSJt~t-
Data Pointers

20B~s

2

3
4

5

6
tf~~~@!MeqJ(rriilM~;
f,6~er:rup<~;~Y-steiit

Return Stack

Program Counter

o Carry Bit

@3 16 B~s 12 B~s I 16 B~s
P In Out Status Bits

Register ST..aM ()'11

Hardware Sta1us B~s: 0 MP 0 SR 0 SB 0 XM

A I

C

D

Working Registers

RO

R1

R2

R3

R4

Scratch Registers

The contents of D 1 point to a series of 5-nibble stack pointers, each of which in turn point to the actual objects.
Note that TEMPOB is not the only place a stack pointer can point to - user variable memory is another possible
destination, and the differences are important. Stack pointers can also point to objects like the display grobs and
temporary environments.

190 Writing Your Own Code Objects

-./

.-./

--
-./

-..;

/

Example: SWAP Two Objects
The progam SWP is the first example - it swaps the top two objects on the stack in exactly the same manner as the
built-in SWAP command. Notice that A and C are used (so Band D are not disturbed), and that Dl is restored to its
original value. Notice that only the pointers are shifted - the objects themselves do not move.

SWP 26 . 5 Bytes Checksum #D1COh
(Obl Ob2 ~ ob2 ob1)

end

NIBASC
CON(5)
REL(5)
A=DAT1
D1=D1+
C=DAT1

/HPHP48-A/
=DOCODE
end
A
5
A

DAT1=A A
D1=D1- 5
DAT1=C A

A=DATO A
DO=DO+ 5
PC=(A)

Example: DROP Nine Objects

This is a download header for binary transfer to the HP 48
This is the prologue for a code object
The length field - indicates the size of the code object
Copy the stack level I pointer to AlA]
Advance DI to stack level 2
Copy the stack level 2 pointer to C[A]
Replace stack level 2 with the original stack level I pointer
Move DI back to stack level I
Replace stack level I with the original stack level 2 pointer
The next three instructions embody the RPL inner loop:

Read the pointer to the next RPL object to be executed
Advance the instruction pointer
Branch to the next instruction

The program DRP9 drops nine objects from the stack very quickly. Dropping an object is very simple - simply
increment the top-of-stack pointer Dl by five nibbles and update the available memory stored in D[A). Assuming
there are no other stack pointers to the discarded object and the discarded object is in temporary memory
(TEMPOB), the object is effectively "orphaned" and its memory will be recovered during the next garbage
collection.

DRP9 also illustrates the use of a counter and the GONC instruction. We use the P register for the counter in this
example for several reasons:

P is optimal for counting applications where no more than 16 repetitions are required. (Be sure that a non-zero
value of P during the loop won't adversely affect data loading instructions like LCHEX.)

Incrementing P is fast - taking only 3 cycles.

• When P is used for the counter, it is not neccessary to consume part of a working register for the counter.

This example could also be coded using P as a countdown counter, but the value of P would be 15 at the end, then a
p=o instruction would have to be added for a safe exit back to RPL.

DRP9 24.5 Bytes Checksum #8093h
(ob1 ob9 ~)

LoopTop

end

NIBASC
CON(5)
REL(5)
P=

D1=D1+
D=D+1
P=P+l
GONC

A=DATO
DO=DO+
PC=(A)

/HPHP48-A/
=DOCODE
end
16-9

5
A

LoopTop

A
5

Writing Your Own Code Objects

This is a download header for binary transfer to the HP 48
This is the prologue for a code object
The length field - indicates the size of the code object
P will be used as a counter - we'll count "up to 0"
This label marks the top of the drop loop
Advance DI to the next stack level
Increment available memory
Increment the counter
Ifno carry, there's more stack levels to do so branch to Loop Top
If carry is set, we're done and P=O (wrappedfrom F)
The next three instructions embody the RPL inner loop:

Read the pointer to the next RPL object to be executed
Advance the instruction pointer
Branch to the next instruction

191

Reading Assembly Language Entry Descriptions
The entries described here require specific conditions to be met in order to be used successfully. The entry and exit
conditions refer to the following criteria:

• The location of the RPL pointers - either in the CPU or saved in RAM.
• The arithmetic mode - HEX or DEC.
• Contents of various registers

The state of the carry flag - CS = carry set, CC = carry clear
• The number of stack levels used by the routine (you should never use more than 6)

Unless stated otherwise, it is always assumed that the CPU is in HEX mode and register P is 0.

Most entries are called with GOSBVL, but some entries (like GETPTRLOOP) never return, since they restart the RPL
inner loop. The "Call with" entry in these descriptions suggests which type of call to use.

Saving and Restoring the RPL Pointers
The RPL pointers can be saved in reserved RAM locations by calling SA VPTR and restored by calling GETPTR.

SAVPTR #0679Bh
Saves DO, 01, B[A], and OrA] in reserved memory
Entry: RPL pointers in the CPU
Call with: GOSBVL
Exit: RPL pointers saved. Dl, A[A], B[A], and D[A] are unchanged
Uses: DO, Dl, B[A], C[A], D[A]
Stack Levels: 0

GETPTR #067D2h
Restores D0, 01, B[A], and OrA] from reserved memory
Entry: RPL pointers saved
Call with: GOSBVL
Exit:
Uses:
Stack Levels:

RPL pointers in CPU.
DO, Dl, B[A], C[A], D[A]
o

There are several entry points which combine the process of restoring the RPL pointers and returning to RPL
execution, sometimes returning objects to the stack in the process. The most basic of these entries is
GETPTRLOOP, which has the following entry and exit conditions:

GETPTRLOOP #05143h
Restores D0, 01, B[A], and OrA] from reserved memory, then restarts the RPL inner loop
Entry: RPL pointers saved
Call with: GOVLNG
Exit: To RPL
Uses: DO, Dl, B[A], C[A], D[A]
Stack Levels: 0

192 Writing Your Own Code Objects

I

-

Example: Reversing Objects on the Stack
The program RVRSO reverses N objects on the stack, where N is a real number indicating the number of objects to
reverse. The source code illustrates a typical mix of System-RPL and assembler code to accomplish a task. The
System-RPL shell validates the input arguments, while the assembly language code does the actual work of
reversing a series of stack pointers.

RVRSO 75.5 Bytes Checksum #8501h
o~ N ~ o~ .. . ob1 N)

ASSEMBLE
NIBASC IHPHP4 8 -AI This is a download header for binary transfer to the HP 48

RPL

Validate the number of arguments on the stack OLASTOWDOB! CKNNOLASTWD
ONE OVER #< IT If there's at least two objects on the stack, execute the code object

CODE
GOSBVL =SAVPTR Save the RPL pointers in RAM
GOSBVL =POP# A[A] = number of objects on the stack
C=A A #items in C[A]
C=C+C A #items *-2
C=C+C A #items *4
C=C+A A C[A] = #items*5
B=O W Zero out entire B register
B=A A B[A] = count
BSRB A Divide #items by 2
AD1EX A ~ first item on stack
Dl=A Dl ~ first item on stack
A=A+C A A[A] ~ past last item
DO=A DO ~ past last item
DO=DO- 5 DO ~ last item

RvrTop
B=B-l A Decrement counter
GOC RvrBot If carries, no more pairs to reverse
A=DATO A Read first item
C=DATl A Read last item
DATO=C A Write last item infirst item's original location
DAT1=A A Write first item in last item's original location
Dl=Dl+ 5 Move Dl to next pointer location
DO=DO- 5 Move DO to previous pointer location
GONC RvrTop (BET) Branch every time to RvrTop

*
RvrBot

GOVLNG =GETPTRLOOP Restore pointers, return to RPL
ENDCODE

UNCOERCE Convert #objects back into real number

There are two notation habits used in this listing to help understand the code. The first is the use of "(BET)" in the
branch to RvrTop. (BET) stands for "Branch Every Time" an unconditional branch. This tells a reader that you
intend this to be an unconditional branch, and is usually used where a branch is dependent on the state of the carry
flag. There is no need to use (BET) for a GOTO instruction. The other notation is the placement of an asterisk (*)
above the label RvrBot. This is used to indicate that control flow to the following label must be from ajump
instruction, and cannot flow from previous instructions.

Writing Your Own Code Objects 193

Example: Clearing A Grob
This example might also live in a graphics discussion, but it's a good way to get some practice with counters and a
simple way to save just one of the RPL pointers. The following code object uses 01, A[W], C[A), and one level of
the return stack to clear a grob.

To understand this code object, note the structure of a grob object:

Prologue Length Height Width Body

The prologue, length, height, and width fields are 5 nibbles each. The length field contains a self-relative length to
the end of the body. This means the length field is always at least 15, to account for the size of the length, height,
and width fields.

Notice that this object drops the grob pointer from the stack. If you don't want the pointer dropped, just leave out the
two instructions that increment 01 and update O[A).

CLGRB 56.5 Bytes Checksum #E4DOh
(grab ~)
NIBASC /HPHP48-A/
CON(5) =DOCODE
REL(5) end

A=DATI A A --7 grab

*
* Optional: The next two instructions pop the grab pointer
*

*

nxtblk

*
rest

quit

end

194

Dl=Dl+
D=D+l

CDIEX
Dl=A
RSTK=C
Dl=Dl+
A=DATI
LC(5)
C=A-C
Dl=Dl+
C=C-l
GOC
A=O
P=C
CSR

C=C-l
GOC
DATl=A
Dl=Dl+
GONC

DATl=A
P=

C=RSTK
Dl=C
A=DATO
DO=DO+
PC=(A)

5
A

5
A
15
A
15
A
quit
w
o
A

A
rest
W
16
nxtblk

WP
o

A
5

Pop grab: first advance stack pointer
then increment available mem DN 5

C[A]~updated stack pointer
Dl --7 grab prologue
Save DIan return stack
Dl --7 grab length
A[A]=grob length
Length of length field, height, width
C[A] = number of nibbles to clear
Point Dl to first nibble of grab body
Decrement length to option base 0
If zero length, quit
Clear A to write zeros
P = (length MOD 16)-1
Divide length by 16 to create block counter

Decrement block counter
If carries here, no more blocks to write
Write a block of 16 zeros
Advance write pointer
(BET) Go see if there's more blocks to do

Write partial block
Reset P

Recover stack pointer
and put it back into Dl
Read pointer to next object in runstream
Advance instruction pointer
Branch to next instruction

Writing Your Own Code Objects

-

--

--

Stack Utilities
The entries described here are useful for popping objects from the stack or pushing objects on the stack.

Pop Utilities
While you can follow the stack pointer to the object directly in memory, remember that small bint values and some
real numbers can be represented by pointers to objects in ROM. It's safer to pop the values into the CPU.

pop# #06641h
Pops a bint from the stack
Entry: (# ~) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[A]=#, updated RPL pointers in the CPU
Uses: C[A]
Stack Levels: 0

POP2# #03F5Dh
Pops two bints from the stack
Entry: (#2 #1 ~) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[A]=#2, C[A)=#l, updated RPL pointers in the CPU
Uses: C[A)
Stack Levels: 1

POP1% #29FDAh
Pops a real number from the stack
Entry: (% ~) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[W)=%, RPL pointers saved, DEC mode
Uses: C[A), D[A), DO, Dl
Stack Levels: 0

POP2% #2A002h
Pops two real numbers from the stack
Entry: (%2 %1 ~) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[W)=#2, C[W)=#l, RPL pointers saved, DEC mode
Uses: D [A), DO, Dl
Stack Levels: 0

popflag #61A02h
Pops a flag from the stack, sets carry if flag was TRUE
Entry: (FLAG ~) RPL pointers in the CPU
Call with: GOSBVL
Exit: CS if flag=TRUE, RPL pointers in the CPU
Uses: A[A), C[A)
Stack Levels: 0

PopASavptr #3251Ch
Pops an object from the stack, saves pointers
Entry: (ob ~) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[A)~ob, RPL pointers saved
Uses: A[A), C [A]
Stack Levels: 0

Writing Your Own Code Objects 195

Push Utilities
The push utilities execute fairly quickly and use few registers unless a garbage collection is needed. The register
usage and stack level usage below reflects the worst-case scenario - a trip through garbage collection. There are a
wide variety of flag utilities - there should be one to suit every need.

Bints

PUSHA #03A86h
Pushes a pointer to an object on the stack and restarts the RPL inner loop.
Note: The pointer must not reference an object in TEMPOB.
Entry: A [A] ~object, RPL pointers in the CPU
Call with: GOVLNG
Exit: (~ ob) To RPL

PUSH# #06537h
Pushes a bint on the stack
Entry: RO[A]=#, RPL pointers saved
Call with: GOSBVL
Exit:
Uses:

(~ #), updated RPL pointers in the CPU
A[W], B[W], C[W], D[W], ST[O], ST[lO]

Stack Levels: 3

PUSH#LOOP #0357Fh
Pushes a bint on the stack, restarts the RPL inner loop
Entry: RO[A]=#, RPL pointers saved
Call with: GOVLNG
Exit: (~ #) To RPL

PUSH#ALOOP #0357Ch
Pushes a bint on the stack, restarts the RPL inner loop
Entry: A[A]=#, RPL pointers saved
Call with: GOVLNG
Exi t : (~ #) To RPL

PUSH2# #06529h
Pushes two bints on the stack
Entry: RO[A]=#l, Ri[A]=#2 RPL pointers saved
Call with: GOSBVL
Exit:
Uses:

(~ #1 #2), updated RPL pointers in the CPU
A[W] I B[W] I C[W] I D[W], ST[O] I ST[lO]

Stack Levels: 4

196 Writing Your Own Code Objects

-

-

Real Numbers

PUSH% #2A188h
Sets HEX mode, pushes a real number on the stack
Entry: A[W]=%, RPL pointers saved
Call with: GOSBVL
Exit:
Uses:
Stack Levels:

(~ %), updated RPL pointers in the CPU
A[W], B[W], C[W], D[W], ST[O], ST[lO]
3

PUSH%LOOP #2A23Dh
Sets HEX mode, pushes a real number on the stack, restarts the RPL inner loop
Entry: A[W]=%, RPL pointers saved
Call with: GOSBVL
Exi t : (~ %), To RPL
Uses: A[W], B[W], C[W], D[W], ST[O], ST[lO]
Stack Levels: 3

Flags

GPOVerWrTLp #62076h
Restores the RPL pointers, overwrites stack level 1 with TRUE, restarts the RPL inner loop
Entry: (ob ~) RPL pointers saved
Call with: GOVLNG
Exit: (~ TRUE), To RPL

GPOVerWrFLp #62096h
Restores the RPL pointers, overwrites stack level 1 with FALSE, restarts the RPL inner loop
Entry: (ob ~) RPL pointers saved
Call with: GOVLNG
Exit: (~ FALSE), To RPL

GPOVerWrT/FL #62073h
Restores the RPL pointers, overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop
Entry: (ob ~) RPL pointers saved, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG
Exit: (~ FLAG), To RPL

GPPushTLoop #620B9h
Restores the RPL pointers, pushes TRUE on the stack, restarts the RPL inner loop
Entry: RPL pointers saved
Call with: GOVLNG
Exit: (~ TRUE), To RPL

GPPushFLOOp #620D2h
Restores the RPL pointers, pushes FALSE on the stack, restarts the RPL inner loop
Entry: RPL pointers saved
Call with: GOVLNG
Exit: (~ FALSE), To RPL

GPPushT/FLp #620B6h
Restores the RPL pointers, pushes carry-specified flag on the stack, restarts the RPL inner loop
Entry: RPL pointers saved, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG
Exit: (~ FLAG), To RPL

Writing Your Own Code Objects 197

I
......"

--
OverWrTLp #62080h '-'

Overwrites stack level 1 with TRUE, restarts the RPL inner loop
Entry: (ob ~) RPL pointers in CPU ~

Call with: GOVLNG
Exit: (~ TRUE), To RPL

~

"-"

OverWrFLp #620AOh
Overwrites stack level 1 with FALSE, restarts the RPL inner loop

'-'

Entry: (ob ~) RPL pointers in CPU --Call with: GOVLNG
Exit: (~ FALSE), To RPL "-../

--OverWrT/FL #6209Dh
Overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop '-'

Entry: (ob ~) RPL pointers in CPU, Carry: set=TRUE, clear=FALSE --Call with: GOVLNG
Exi t : (~ FLAG), To RPL --

~

OverWrF/TL #6207Dh
Overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop ~

Entry: (ob ~) RPL pointers in CPU, Carry: set=FALSE, clear=TRUE
Call with: GOVLNG -'

Exit: (~ FLAG), To RPL '-'

PushTLoop #620C3h '-"

Pushes TRUE, restarts the RPL inner loop '-"
Entry: RPL pointers in CPU
Call with: GOVLNG --Exit: (~ TRUE), To RPL

'-"

PushFLoOp #620DCh --Pushes FALSE, restarts the RPL inner loop
Entry: RPL pointers in CPU

.-
Call with: GOVLNG -../

Exit: (~ FALSE), To RPL
~

PushT/FLoOp #620D9h ---'

Pushes carry-specified flag, restarts the RPL inner loop
Entry: RPL pointers in CPU, Carry: set=TRUE, clear=FALSE"."

Call with: GOVLNG
Exi t : (~ FLAG), To RPL

PushF/TLoOp #620COh
Overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop
Entry: RPL pointers in CPU, Carry: set=FALSE, clear=TRUE
Call with: GOVLNG
Exi t : (~ FLAG), To RPL

-
198 Writing Your Own Code Objects -

L
L

Arbitrary Objects

GPOverWrROLp #0366Fh
Restores the RPL pointers, overwrites stack level 1 with RO[A], restarts the RPL inner loop
Entry: (obANY ~) RPL pointers saved
Call with: GOVLNG
Exit: (~ o~o LM) I To RPL

GPOverWrALp #03672h
Restores the RPL pointers, overwrites stack level 1 with A[A], restarts the RPL inner loop
Entry: (obANY ~) RPL pointers saved
Call with: GOVLNG
Exit: (~ ObArAl) I To RPL

Examples: Indicated ASS
The code object ABSF pops a real number from the stack and tests the sign nibble. If the number is negative, the
sign nibble is changed to indicate a positive number. The number is pushed back on the stack, along with a real
number 0 or 1 to indicate whether the sign changed.

ABSF 40 Bytes Checksum #A901h
(% ~ 1%1 %flag)

Positive

PushIt

end

CON(S)
REL(S)
GOSBVL
ST=O
?A=O
GOYES
A=O
ST=l
GOSBVL
LC(S)
?ST=O
GOYES
LC(S)
A=C
PC=(A)

=DOCODE
end
=POP1%
1
S
positive
S
1
=PUSH%
=%0
1
PushIt
=%1
A

Code object prologue
The length field - indicates the size of the code object
Pop a real number to A[W]
Clear status bit 1
Test the sign nibble
If zero, the number is positive
Otherwise set the sign nibble to zero (positive)
Set status bit 1 to indicate sign change
Push the number back on the stack
Prepare to push %0
Did the sign get changed?
No, just push %0
Yes, load address of %1
Copy the address to A
Branch to the real number object

The code object ABSFI does the same job, but returns TRUE or FALSE, using PushT / FLoop:

ABSF1
(% ~

34. S Bytes
1%1 FLAG)

Positive

CON(S)
REL(S)
GOSBVL
ST=O
?A=O
GOYES
A=O
ST=l
GOSBVL
?ST=O
GOY:8S
GOVLNG PushIt

end

Checksum #9448h

=DOCODE
end
=POP1%
1
S
positive
S
1
=PUSH%
1
PushIt
=PushT/FLoop

Writing Your Own Code Objects

Code object prologue
The length field - indicates the size of the code object
Pop a real number to A[W]
Clear status bit 1
Test the sign nibble
1f zero, the number is positive
Otherwise set the sign nibble to zero (positive)
Set status bit 1 to indicate sign change
Push the number back on the stack
Did the sign get changed?
This test asserts the carry flag
Push the flag

199

Memory Utilities
When the RPL pointers are in the CPU, available memory can be calculated by subtracting B[A] (the end of the
return stack) from the address in D 1 (the first level of the data stack). If you're just pushing a pointer on the stack,
just check that D[A] is non-zero.

Allocating Memory
Three entries are handy for allocating memory when a code object will be creating and returning a new object.

MAKE $ #OSB79h
Creates a string object in TEMPOB with the specified number of characters. Generates an error exit if there isn't
enough memory available to create the string and push it on the stack. Object not pushed on stack if error exit.
Entry: C[A]=desired number of characters, RPL pointers saved
Call with : GOSBVL
Exit:
Uses:
Stack Levels:

RO[A]~String, DO~String body
A[W], B[W], C[W], D[W], DO, DI, ST[O], ST[IO]
3

MAKE$N #OSB7Dh
Creates a string object in TEMPOB with a length specified in nibbles. Generates an error exit if there isn't enough
memory available to create the string and push it on the stack. Object not pushed on stack if error exit.
Entry: C[A]=string body length in nibbles, RPL pointers saved
Call with: GOSBVL
Exit:
Uses:
Stack Levels:

RO[A]~String, DO~String body
A[W], B[W], C[W], D[W], DO, DI, ST[O], ST[IO]
3

GETTEMP #039BEh
Allocates space in TEMPOB for an object
Entry: C[A]=number of nibbles to allocate, RPL pointers saved
Call with: GOSBVL
Exit:
Uses:
Stack Levels:

Notes:

DO~hole in TEMPOB
A[W], B[W], C[W], D[W], DO, DI, ST[O], ST[IO]
3

• GETTEMP does not account for the room needed to push the object on the stack.

• If your code object is part of a library and if merged memory is in port 1 and the library is being executed out of
a bank in port 2, the code object (or the secondary in which the code object is embedded) will be copied to
TEMPOB and executed from there. In unusual circumstances, the object being executed can be deleted and
overwritten by a garbage collection. It has been observed that when a garbage collection happens, no problems
occur if the "ghost copy" of the object is not overwritten by a new object after garbage collection. You may
wish to call MAKE$N with the assurance that a garbage collection will not happen. To do this, do a garbage
collect first, or set status bit 10 and GOSBVL «=MAKE$N}+3). This technique is illustrated in MKSTR on the
next page.

200 Writing Your Own Code Objects

-

-

'--"

\......,

"--"

L

v

'--"

-"

..-I

../

./

/

Example: Create a String
MKSTR is a secondary containing a code object that creates a string of spaces given a bint. Note that this example
has no type or range check code - a positive non-zero real number ~ 1 is expected on the stack.

MKSTR 66 Bytes Checksum #E8F4h
(%characters ~ $)

COERCE Convert real number character count into a bint
CODE

GOSBVL =POP# Pop the bint into A[A]
GOSBVL =SAVPTR Save the RPL pointers
C=A A Copy character count into C[A}
Rl=C.F A Save character count in Rl [A]
C=C+C A Double C[A] to make string body size in nibbles
ST=l 10 Flag garbage collected
GOSBVL ((=MAKE$N) +3) Create the string object, error ifnot enough memory
A=Rl . F A Recover character count
LCHEX 20 Character value for a space

WrtChr
DATO=C B Write space character
DO=DO+ 2 Advance the pointer
A=A-l A Decrement the character count
?A#O A If there are more characters,
GOYES WrtChr go write them
GOSBVL =GETPTR Restore the RPL pointers to the CPU
D1=D1- 5 Retard the stack pointer
D=D-1 A Decrement the available memory count
A=RO.F A A[Al-~string prologue
DAT1=A A Write pointer to stack
A=DATO A Read pointer to next object in runstream
DO=DO+ 5 Advance return stack pointer
PC=(A) Branch to next object in runstream

ENDCODE

Memory Move Utilities
The following memory utilities are available for moving memory.

MOVEDOWN #0670Ch
Moves a block of memory from higher address to lower address
Entry: DO~start of source , D1~start

C[A)=number of nibbles to move
RPL pointers saved

Call with: GOSBVL

of destination

Exit:
Uses :

DO~end of source + 1, D1~end of destination + 1, P=O
A[W), C[A), DO , D1, P

Stack Levels: o

MOVEUP #066B9h
Moves a block of memory from lower address to higher address
Entry: DO~end of source + 1, D1~end of destination + 1

C[A]=number of nibbles to move
RPL pointers saved

Call with: GOSBVL
Exit:
Uses :
Stack Levels:

DO~start of source, D1~start of destination, P=O
A[W), C[A] , DO, D1, P
o

Writing Your Own Code Objects 201

ECUSER #039EFh
Expand/contract an object in user memory
Entry: A[A)~insertion/deletion point

C[A)=nurnber of nibbles to expand/contract
ST[5)=1 (expand) or ST[5)=O (contract)
DO~Object prologue
RPL pointers saved

Call with: GOSBVL
Exit: B[A)~start of new block or just above deleted block

RO[A) = number of nibbles expanded/contracted
Interrupts disabled (call SysRPL object Ini tEnab to re-enable)
Garbage may be collected

Uses:
Stack Levels:

A, B, C, D, DO, Dl, RO, Rl,R2, P, ST[O), ST[2), ST[lO)
4

Note that ECUSER cannot be called from a code object that's in TEMPOB or in USEROB, since TEMPOB may be
adjusted during garbage collection, and USEROB will be altered. The safest places from which to use ECUSER are
from port 0 or port 1.

Since ECUSER disables interrupts, you need to call Ini tEnab to restore interrupts.

:InitEnab #0970Ah
Enable interrupts after using ECUSER

Example: Expanding a String in UserOb
EXSTR (listed on the next page) illustrates the use of ECUSER by inserting the characters "AB" at the beginning of
a string stored in a user variable. To try out EXSTR, do the following:

1) Download EXSTR to the HP 48.

2) Store it into a variable in port 0:« 'EXSTR' RCL 121: EXSTR STO »

3) Store a string into variable TEST, put its name on the stack, and execute EXSTR from port 0, then view the
string:

« 'TEST' "12345" OVER STO I2I:EXSTR EVAL TEST»
~ IAB12345"

Note that you now have all the tools to write a small database application that stores data in Library Objects.
Library objects are structured the same way as strings, except the prologue is different.

202 Writing Your Own Code Objects

.I

I

EXSTR 93.5 Bytes Checksum #F5CEh (When stored in USEROB variable EXSTR)
(ID ~)

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 idnt

@ NOTcase SETNONEXTERR
DUPTYPECSTR? NOTcase SETTYPEERR

CODE
A=DAT1 A
D1=D1+ 5
D=D+1 A
GOSBVL =SAVPTR
DO=A
LC(5) 10
A=A+C A
LC(5) 4
ST=l 5
GOSBVL =ECUSER
A=B A
D1=A
LCASC \BA\
DAT1=A 4
D1=D1- 5
A=DAT1 A
C=RO . F A
A=A+C A
DAT1=A A
GOVLNG =GETPTRLOOP

ENDCODE
InitEnab

Display Memory Addresses

Clear saved command name, one argument
Require a global name object

Try to recall the variable, error if nonexistent
Generate error if variable does not contain a string

A[A}~string prologue
Pop the string

Save RPL pointers
DO~string prologue
C[A} = size of prologue and length field
A[A}~start of string body
C[A}=numberofnibbles to expand
Signal to expand
Expand string object

Dl ~xpanded block start
Load characters to write in C
Write new characters
D 1 ~string length field
A[A}=old string length
C[A}=expansion size
Add expansion size
Write new string length

Re-enable interrupts

The following techniques are useful for acquiring the addresses of display grobs in a version independent manner.

ADISP
Point 01 at the prologue of ABUFF

D1=(5) (=addrADISP)+2
C=DAT1 A
D1=C

VDISP
Point 01 at the prologue of the currently displayed grob

D1=(5) (=addrVDISP)+2
C=DAT1 A
D1=C

VIDSP2
Point 01 at the prologue of the menu grob

Dl=(5) (=addrVDISP2)+2
C=DAT1 A
Dl=C

Writing Your Own Code Objects 203

Reporting Errors
The assembly language analogue to the SystemRPL object ERRJMP is the entry Errjrnp. If you wish to generate
an error using one ofthe built-in messages, load the message number in C[A] and go to Errjrnp. There are two
entries available for this:

Errjmp #05023h
Stores the error number, restarts RPL at ERRJMP
Entry: A[A] = error#, RPL pointers , in CPU
Call with: GOVLNG
Exit: To RPL

GPErrjmpC #10F40h
Sets P=O, HEXMODE, restores RPL pointers, stores the error number, restarts RPL at ERRJMP
Entry: C[A] = error#, RPL pointers saved
Call with: GOVLNG
Exit: To RPL

The following code object pops a real number off the stack and generates a Bad Argument Val ue error if the
number is negative.

ERR 30 Bytes Checksum #A91Sh
(% ~)

CON(S) =DOCODE
REL(5) end
GOSBVL =POP1% Pop a real number (sets DEC mode)
SETHEX Reset HEX mode
?A=O S Test the sign nibble
GOYES positive If zero, just return to RPL
LCHEX 00203 Otherwise load error message number
GOVLNG =GPErrjrnpC and generate the error

Positive
GOVLNG =GETPTRLOOP

Checking Batteries
If you're writing a code object that will be executing for a long time (like a game), you may wish to check the battery
condition from time to time. The entry ChkLowBa t does this:

ChkLowBat #325AAh
Checks for low battery
Entry: ST15=0 (interrupts disabled), RPL pointers saved
Call with: GOSBVL
Exit:
Uses:

CS: Low Battery and C[A]=LowBatErr#; CC: Battery OK
A[A], B[A], C[A], D[A], DO, ST[7-0]

Stack Levels: 3

The following code object disables interrupts, checks the batteries using ChkLowBat, re-enables interrupts, and
returns with a flag indicating the condition of the batteries.

CKBAT 28 Bytes Checksum #4297h
(~ FLAG)

end

204

CON(S)
REL(5)
GOSBVL
ST=O
GOSBVL
ST=l
GOVLNG

=DOCODE
end
=SAVPTR
15
=ChkLowBat
15
=GPPushT/FLp

Save the RPL pointers
Disable interrupts
Check the batteries, assert the carry flag
Re-enable interrupts
Push the flag based on carry

Writing Your Own Code Objects

'-.J

'-'" '

/

I

Warmstart & Coldstart
There may be times when you get into real trouble and a safe return to normal calculator execution is required.
Perhaps you detect that memory isn't in good shape, something is missing, or a pointer is unreasonable. Three "last
resort" options are available, listed in order of increasing severity:

GOVLNG
• GOVLNG
• GOVLNG

=norecPWLseq
=Coldstart
=norecCSseq

#OlFBDh
#01FD3h
#OlFDAh

Warmstarts without recording an entry in the warmstart log.
Branches to "Try To Recover Memory?" prompt.
Unconditional memory clear (total coldstart).

The first option, a warmstart, may be used when you think TEMPOB is corrupt or other easily repairable system
problems can be handled without risking the loss of USEROB. The second option may be required if you think
USEROB is corrupt. It is impossible to imagine any use for the third "nuclear" option in a well-designed
application. We discourage people who would use either the second or third option as a joke or prank - please
confine your coding practices to those of responsible people.

Tone Generation
The entry makebeep can be used to generate steady tones at a specific frequency and duration, or you can generate
your own sound effects by oscillating the beeper yourself.

Steady Tones
The entry makebeep respects the system beeper flag (-56) and checks the CPU speed to make as accurate a tone as
possible.

makebeep
Generates a beep
Entry:
Call with:
Exit:
Uses:

#017A6h

C[A]=delay(msec) D[A]=frequency(Hz), RPL pointers saved
GOSBVL
Interrupts ON (INTON)

Stack Levels:
A, B, C, D, RO, Rl, R2, R3, DO, Dl, P, Carry
1

TOOT 32 Bytes Checksum #21Flh
(~)

CON(5) =DOCODE
REL(5) end
GOSBVL =SAVPTR
LC(5) 400
D=C A
LC(5) 1000
GOSBVL =makebeep
GOVLNG =GETPTRLOOP

end

Writing Your Own Code Objects 205

Rising and Falling Tones
The beeper is a piezoelectric element wired to bit 11 of the OUT register. You can click the beeper" on" by setting
bit 11 and click it back "off' by clearing bit 11. Remember to leave it off! The example TONE shows how to
generate sweeping tones by oscillating the beeper bit. As a courtesy to people who might use your code, please
respect the status of the system beeper flag as shown below.

TONE 95.5 Bytes Checksum #534Ah
(~)

56 TestSysFlag ?SEMI
CODE

GOSBVL =SAVPTR
GOSUB SweepUp
LC(5) 8048

Wait C=C-1 A
GONC Wait
GOSUB SweepDn
GOVLNG =GETPTRLOOP

Exit ifflag -56 is set

Save RPL pointers
Generate rising sound
Wait

Generate falling sound
Restore RPL pointers and exit

**

* Subroutine SweepUp *
********************** ** **

SweepUp LA(2) 130 Starting tone (must be> ending tone)
UpLoop LC(2) 3 Intennediate delay

GOSUB Tone Generate the tone
A=A-1 B Decrement tone value
LC(2) 40 Ending tone (must be < starting tone)
?A>C B More tones to do?
GOYES UpLoop
RTN

**

* Subroutine SweepDn *
**

SweepDn LA(2) 40 Starting tone (must be < ending tone)
DnLoop LC(2) 1 Intennediate delay

GOSUB Tone Generate the tone
A=A+1 B Increment the tone value
LC(2) 130 Ending tone (must be > starting tone)
?A<C B More tones to do?
GOYES DnLoop
RTN

**

* Subroutine Tone: A[B] = Frequency C[B] = Intermediate delay *
**

Tone
ToneLp

Dec1

Dec2

end
ENDCODE

206

D=C
LCHEX
OUT=C
C=A
C=C-1
GONC
C=O
OUT=C
C=A
C=C-1
GONC
D=D-1
GONC
RTN

B Copy intennediate delay to D[B]
800 Set bit 1 I
B Click speaker ON
B Copy tone value
B Delay
Dec1
A Clear bit 11

Click speaker OFF
B Copy tone value
B Delay
Dec2
B Decrement tone length counter
ToneLp Loop

Writing Your Own Code Objects

I

Keyboard Scanning
The HP 48 keyboard is wired to the IN and OUT registers. During normal operation, the CPU scans the keyboard
every millisecond and generates an interrupt when a key is pressed. Once the interrupt has been generated, the
keyboard handler scans the keyboard to see which keys have been pressed. While a key is down, timer interrupts are
scheduled to wake up the CPU every 1116 of a second. This permits scans to see which key or keys are down, and
lets the handler update the key buffer when a key is released. An application can scan the keyboard directly at full
CPU speed, or shut down to save power between keystrokes. The former technique might be appropriate for a game
where objects are moving; the latter might be better if the application is just waiting for user input.

To look for a particular key, set the appropriate bits of the OUT register, then AND the value from the IN register
with an input mask. The table below shows the mask values for each key. For instance, the OUT mask for ICSTI is
080 and the IN mask is 0008. The [QN) is mapped to bit 15 of IN only and generates a nonmaskable interrupt. To
prevent the interrupt system from intercepting keys, you'll need to disable interrupts.

IAJ lID @ (Q) lID lEI
002/0010 100/0010 100/0008 100/0004 100/0002 100/0001

IMTHI IPRGI ICSTI IVARI ~ INXTI
004/0010 080/0010 080/0008 080/0004 080/0002 080/0001

CJ (STOI (EVALI Bl (!) ~
001/0010 040/0010 040/0008 040/0004 040/0002 040/0001

ISINI (COSI ITANI 1m 0 ~
008/0010 020/0010 020/0008 020/0004 020/0002 020/0001

IENTERI lEJ (EEXI (DELI [B
010/0010 010/0008 010/0004 010/0002 010/0001

/Q] rn lID lID IZJ
008/0020 008/0008 008/0004 008/0002 008/0001

6J @ lID [§) 00
004/0020 004/0008 004/0004 004/0002 004/0001

!a m ~ ~ EI
002/0020t 002/0008 002/0004 002/0002 002/0001

[QN) (Q) 0 ISPCI (±)
/8000 001/0008 001/0004 001/0002 001/0001

The following subroutine tests the keyboard and returns with carry set if(!) is down. Note that the C=IN instruction
must be executed from an even address. To do this reliably, call CINRTN, which just does C=IN and returns.

LCHEX 00040
OUT=C
GOSBVL =CINRTN
LAHEX 00002
C=A&C A
?A#O A
RTNYES
RTN

Writing Your Own Code Objects 207

Managing Interrupts
If you're going to look for keys yourself, it's best to disable keyboard scanning. This frees up CPU time for your
application and avoids unwanted keystrokes wandering into the key buffer. There are three methods of disabling
interrupts, listed in order of decreasing severity:

• Call the entry Disablelntr to disable all interrupts, and Allowlntr to enable interrupts. This shuts off all
110, and carries the risk that if your code goes astray only a "paperclip reset" is possible (pushing a paperclip in
the hole under the upper-right rubber foot).

DisableXntr #01115h
Disable interrupts
Entry: Interrupts enabled
Call with: GOSBVL
Exi t : Interrupts disabled
Uses: C[A], Carry
Stack Levels: 1

AllowXntr #010E5h
Re-enable interrupts
Entry: Interrupts disabled
Call with: GOSBVL
Exi t : Interrupts enabled
Uses: C [A], Carry
Stack Levels: 1

• Clear bit 15 of the status register. This shuts off all 110, and carries the risk that if your code goes astray only a
"paperclip reset" is possible.

Execute the INTOFF instruction. This prevents only keyboard interrupts except for [QN), which always
generates an interrupt. This has the advantage that you can use [QN) - @ to recover from code bugs. The
disadvantage is that the [QN) key can't be detected reliably and will be processed by the interrupt system. Note
that makebeep, the ticking clock display, or alarms can lead to an INTON instruction being executed.

Rapid Keyboard Scans
The example KEYl scans the keyboard at full speed, exiting only when either [QN) or lEl have been pressed and
released.

KEY1 50.5 Bytes Checksum #CDC8h
(-7)

CON(5) =DOCODE
REL(5) end
ST=O 15
LAHEX 08001

Top LCHEX 00100
OUT=C
GOSBVL =CINRTN
C=A&C A
?C=O A
GOYES Top

StillDn LCHEX 001FF
OUT=C
GOSBVL =CINRTN
?C#O A
GOYES StillDn
ST=l 15
A=DATO A
DO=DO+ 5
PC=(A)

end

208

Tum off interrupts
Input mask for lEl and [QN)
Output maskforlEl
Set keyboard lines to look for lEl
Read back the keyboard lines
Mask off lines for lEl and [QN)
Were either of our keys pressed?
No, go scan again
Output mask for all rows

Read back keyboard state
Are there still keys down?
Yes, go scan again
No, re-enable interrupts
Back to RPL

Writing Your Own Code Objects

......,

The example KEY2 scans the keyboard until ~ is pressed. During the scan IAl turns on a small line in the display,
and lID turns the line off.

KEY2 125.5 Bytes Checksum #57E1h
(~

CON(5) =DOCODE
REL(5) end
GOSBVL =SAVPTR
D1=(5) (=addrADISP)+2
A=DAT1 A
D1=A
A=DAT1 A
D1 =A
D1=D1+ 15
D1=D1+ 5
ST=O 15
GOSUB StillDn?

Top LCHEX 001FF
OUT=C
GOSBVL =CINRTN
?C=O A
GOYES Top

LCHEX 002
OUT=C
GOSBVL =CINRTN
LAHEX 010
C=A&C X
?c=o X
GOYES TryB
GOSUB StillDn?
LAHEX FFFFF
DAT1=A A
GOTO Top

TryB LCHEX 100
OUT=C
GOSBVL =CINRTN
LAHEX 010
C=A&C X
?C=O X
GOYES TryON
GOSUB stillDn?
A=O A
DAT1=A A
GOTO Top

TryON LAHEX 08000
C=A&C A
?C#O A
GOYES GotON
GOTO Top

GotON GOSUB StillDn?
GOTO Done

StillDn? LCHEX 001FF
OUT=C
GOSBVL =CINRTN
?C#O A
GOYES stillDn?
RTN

Done ST=l 15
GOVLNG =GETPTRLOOP

end

Writing Your Own Code Objects

Save RPL pointers
Point Dl at the address of ABUFF's address
Load the ABUFF address 's address into A{A]
Copy to Dl
Read the address of ABUFF

Dl -?ABUFF prologue
Skip past prologue, length, dimensions

Dl-?First nibble of ABUFF data
Turn off interrupts
Wait for no keys pressed

Load mask for all rows
Set keyboard lines
Read keyboard state
Any keys pressed?
No, go wait for a key

Lookfor@ - first load row mask

Load column mask for@

Didweget@?
No, go test for rID
Yes, wait for key up
Load pattern to write to display
Write pattern
Go back for another key

Load row maskforrID

Load column maskforrID

Did we get rID?
No, go test for [QNI
Yes, waitfor key up
Load pattern to write to display
Write pattern
Go back for another key

Load maskfor[QNI

Did we get [QNI?
Yes, go quit
No, go look for another key

Waitfor key up
Go finish

Load row maskfor all keys

Was a key down?
Yes, loop until no keys are down
No, return

Re-enable interrupts
Back to RPL

209

I

Low Power Keyboard Scans
You can save power by putting the calculator into a low power state between keystrokes. We'll describe some of the
basic pieces, then put them all together in the example KEY3.

The Basic Timer Loop. In the basic low power loop a timer is set to wake the calculator up after a small interval,
then the SHUTDN instruction is executed, putting the calculator in a low power state. The calculator can wake up
for several reasons, including a timer expiring or a key being pressed. The technique we show here ignores other
reasons for wakeup. When the calculator wakes up the keyboard is scanned and if no keys are down the timer is
reset and the calculator goes to sleep again.

LiteSlp DI=(5) =TIMERCTRL.I Set timer 1 to wake up CPU
LC(I) 4
DATI=C P
DI=(2) =TIMERI Set a 5/16 second deLay
LC(I) 5
DATI=C P
LCHEX IFF PreLoad the keyboard row lines
OUT=C

Wait SHUTDN WAlT FOR INTERRUPTS
LC(3) IFF Load the row lines
OUT=C
GOSBVL =CINRTN Read the coLumn Lines
LAHEX 0803F Mask/or aLL coLumn lines
A=A&C A
?A#O A Was a key pressed?
GOYES GetKey Yes, go see which one(s) are down
DI=(2) =TIMERCTRL.I No, so Look at timer controL
C=DATI X Read timer status
?CBIT=O 3 Was timer expired?
GOYES Wait No, go back to sLeep
GOSUB Blink Yes, blink the cursor
GOTO LiteSlp Then go back to sLeep

Keyboard Debounce. The entry Debounce scans the keyboard until it has been stable for at least one timer tick:

Debounce #009A5h
Scan the keyboard until stable, return bitmap of pressed keys
Entry: Interrupts disabLed
Call with: GOSBVL
Exit: A[12-0]=Key bitmap
Uses: A, B, C, D[A], DO, DI, P, SB, Carry
Stack Levels: 0

The bits returned in A[12-O] encode keys as shown in the table below. Note that more than one key may be down.

Nibble Bit3 Bit 2 Bit 1 BitO
12 ~
11 @ [Q) [EJ (f)
10 IPRG! ICST! IVAR! ~
9 INXT! ISTO! IEVAL! ~
8 I!J ~ ICOS! ITAN!

7 lm fa (g) IENTER!

6 ~ IEEX! IOELI IE
5 1m ISIN! (1] lID
4 1m El 61 IMTH!

3 @) ~ lID 00
2 Ia @ 111 ~
1 @) B c:J (Q]
0 0 Ispcl I±l IQW

210 Writing Your Own Code Objects

I

"---'
'-...--

The Key Bitmap. After obtaining the bitmap, you can either load a 13 nibble mask to look for one or more specific
keys, or you can generate a number corresponding to the key that was down. In the latter case, you may wish to
ensure that just one key is down. The following code fragment (not used in the KEY3 example) returns the number
ofkeys pressed in C[B] given a key bitmap in B[W]:

Entry:
Call with:
Exit:

CountKeys
AnySet?

TstNib

*
TstBit

B[W] = key bitmap
GOSUB CountKeys
C[B] = # of keys down, Carry set

C=O B Clear the key counter
?B=O W Are all bits clear?
RTNYES Return ifso
?B#O P Is the least significant nibble clear?
GOYES TstBit No, go check the bits in that nibble
BSR W Yes, shift in next nibble
GONC AnySet? Go see if there's more to test

B=B+B P Shift nibble left, set carry if high bit was set
GONC TstBit If the high bit was clear, shift again
C=C+l B Increment key counter
GONC TstNib Go see if more bits are set in this nibble

The following code fragment returns in B[A] the option-base-l number of the least significant set bit in a keymap in
A[W]. The key number ranges froml ((QNl) to 49 ({ID).

Entry:
Call with:
Exit:

KeyNurn
NextNib

TestBits

A[W] = key bitmap with at least one bit set
GOSUB KeyNurn
B[A] = key number

B=O A Clear the key number
?A#O p Is the least significant nibble clear?
GOYES TestBits No, go find which bit is set
B=B+CON B,4 Yes, addfour to the key number,
ASR W shift the next nibble in,
GONC NextNib (BET) and go test the next nibble

B=B+l B Increment the key number
SB=O Clear the sticky bit
ASRB.F P Shift off a bit
?SB=O Was it set?
GOYES TestBits No, go test the next bit
RTN Yes, return with key number in BfA]

Writing Your Own Code Objects 211

Putting it All Together. The example KEY3 blinks a cursor line in the display while waiting for a key in light
sleep. When a key is pressed, the keycode is returned to the stack as a real number.

KEY3 201.5 Bytes Checksum #28B2h
(~ %keycode)

CLEARVDISP
CODE

GOSBVL =SAVPTR
Dl=(5) (=addrADISP)+2
A=DATI A
Dl=A
A=DATI A
LC(5) 20
A=A+C A
Rl=A
GOSUB WaitKeyUp
GOSBVL =Disablelntr
GOSUB BusyOff
ST=O 1

LiteSlp Dl=(5) =TIMERCTRL . l
LC(l) 4
DATl=C P
Dl=(2) =TIMERI
LC(l) 5
DATl=C P
LCHEX IFF
OUT=C

Wait SHUTDN
LC(3) IFF
OUT=C
GOSBVL =CINRTN
LAHEX 0803F
A=A&C A
?A#O A
GOYES GetKey
Dl=(2) =TIMERCTRL.l
C=DATI X
?CBIT=O 3
GOYES Wait
GOSUB Blink
GOTO LiteSlp

GetKey GOSBVL =Debounce
?A#O W
GOYES GotKey
GOTO LiteSlp

GotKey GOSUB KeyNum
A=O A
A=B B
RO=A . F A
GOSUB WaitKeyUp
GOSBVL =Allowlntr
GOSUB BusyOn
GOSBVL =PUSH#
LC(5) =UNCOERCE
A=C A
PC=(A)

Continued on next page .. .

212

Set timer I to wake up CPU

Set a 5/16 second delay

Preload the keyboard row lines

WAIT FOR INTERUPTS
Load the row Lines

Read the coLumn Lines
Maskfor all column lines

Was a key pressed?
Yes, go see which one(s) are down
No, so look at timer control
Read timer status
Was timer expired?
No, go back to sleep
Yes, blink the cursor
Then go back to sleep

Debounce the keyboard, create bitmap in A
Was a key pressed?
Yes, go create a keycode
No, go wait again

Get the key number
Clear AlA]
Copy to A,
Save in RO for PUSH#
Waitfor the key to be released
Re-enable interrupts
Tum on the busy annunciator
Push the key number, restore RPL pointers
Return to RPL, executing UNCOERCE

Writing Your Own Code Objects

Subroutine to wait for keys to be released:

WaitKeyUp LCHEX lFF
OUT=C
GOSBVL =CINRTN
LAHEX 0803F
A=A&C A
?A#O A
GOYES WaitKeyUp
RTN

Subroutine to blink cursor:

Blink C=O A
?ST=O 1
GOYES TurnOn
ST=O 1
GONC Write

TurnOn
ST=l 1
C=C-l A

Write A=Rl.F A
Dl=A
DAT1=C A
RTN

Subroutine to tum off busy annunciator:

BusyOff

WrtRtn

DO=(5)
C=DATO
CBIT=O
DATO=C
RTN

(=ANNCTRL)+1
p

o
p

Subroutine to tum on the busy annunciator:

BusyOn DO=(5)
C=DATO
CBIT=l
DATO=C
RTN

(=ANNCTRL)+1
p

o
p

Subroutine to calculate the key number:

KeyNum
NextNib

*
TestBits

ENDCODE

B=O
?A#O
GOYES
B=B+CON
ASR
GONC

B=B+l
SB=O
ASRB.F
?SB=O
GOYES
RTN

A
p

TestBits
B,4
W
NextNib

B

P

TestBits

Writing Your Own Code Objects

Set row lines

Read column lines
Maskfor column lines

Were any keys down ?
Yes, go scan again
No, return

Clear CrA] to clear cursor
Was cursor off?
Yes, go tum it on
Tum off cursor status bit
Go write the cursor

Tum on cursor status bit
Set CfA] to FFFFF
Recover pointer to display
Copy toD]
Write cursor

Point at the annunciator nibble
Read nibble
Clear annunciator bit
Write nibble back

Point at the annunciator nibble
Read nibble
Set annunciator bit
Write nibble back

Clear the key number
Is the least significant nibble clear?
No, go find which bit is set
Yes, addfour to the key number,
shift the next nibble in,
(BET) and go test the next nibble

Increment the key number
Clear the sticky bit
Shift off a bit
Was it set?
No, go test the next bit
Yes, return with key number in BrA]

213

Processing Keycodes. Once you have a keycode from the KeyNum subroutine, there are several ways to branch to
the corresponding code. The first is best if your application defines only a few keys - just compare individual key
codes. The second is best if your application defines many keys. Both examples assume a key number in B[A], and
that the return to get another key is at the label Li teSlp.

The first example looks for IENTERI, ~, and ~:

LC(2) 29 Key number for IENTERI
?B#C B
GOYES TryLeft
GOTO DoEnter

*
TryLeft LC(2) 37 Key number for ~

?B#C B
GOYES TryRight
GOTO DoLeft

*
TryRight LC(2) 35 Key number for ~

?B=C B
GOYES GoDoRight
GOTO LiteSlp Go for another key if not ~

GoDoRight GO TO DoRight
*
DoEnter Process IENTERI

GOTO LiteSlp
*
DoLeft Process ~

GOTO LiteSlp
*
DoRight Process ~

GOTO LiteSlp

The second example uses a table of 3-nibble offsets to the key subroutines. (Note that if your application is very
large, you may need to use 4-nibble offsets.) The trick is to GOSUB around the table, which puts the table's starting
address on the return stack.

Note that the references to the subroutines must be forward references, meaning that the key subroutines must come
after the table. If the subroutine was before the table, each table entry would have to be 5 nibbles to make the
address calculation correct.

GOSUB SendKey
REL(3) DoON Pointer for (QNJ
REL(3) DoPlus Pointer for I±l (1)

REL(3) LiteSlp Pointer for undefined key

REL(3) DoB Pointer for lID (49)
SendKey B=B-l A Make option base 0 key number

C=RSTK Get address of key table
C=C+B A Add keynumber*3 to start of table
C=C+B A
C=C+B A
DO=C DO""",*ey entry
A=O A
A=DATO X Read offset to key routine
C=A+C A Add offset to table entry location
PC=C Branch to key routine

The example KEY4 (on the disk, but not listed here) uses this technique.

214 Writing Your Own Code Objects

'0../
1

The RVIEW Debugging Tool
The subroutine RVIEW (Register VIEWer) has been provided to provide an additional example of various
techniques for writing code in assembly language and as a simple debugging aid that you can use as you develop
your programs. RVIEW is small, just a few thousand bytes in size, so you don't have to allocate a lot of memory to
use it. RVIEW is in the RVIEW directory on the disk.

RVIEW will run on either S or G series calculators, but has three restrictions:

• The stack grob ABUFF must be full height - 64 rows. Note that by default ABUFF is 56 rows high, so you may
need to enlarge ABUFF (see Graphics).

RVIEW is self-modifying, so you cannot run RVIEW from a write-protected card.

RVIEW consumes three stack levels, so be sure they're available.

The RVIEW User Interface
When RVIEW is executed, it saves the state of the CPU, displays the CPU register contents and windows into
memory, then restores the CPU and ABUFF to their original state upon exit. RVIEW has two screens, selected with
the l't;t;l'HiJ;T softkey:

A:010101010100fRCE PC:tEOCt
t:111122223333~~~~ C:1
C:11112222333ffrrr P:1
D:0123~5&1B9RtCDEr HEXMDDE

~DO:B01ED:09CBOOOOOOOOOOOE
D1:Rrgrt:0000000000000000
M:BOOOO:f3C5ROOOOCOooocc

RO:t2&&3B5D59BOOO~0 RSTK:
R1:00000000000000B3 PC:tEOE1
R2:00000000000&1D3R RtCDE
R3:000000000000&~70 00001
R~:0000t02t1EOB5&C& ~E32E

111111 ~E310
5~32109B7&5~3210 8~~~~

ST:1011001010001000 00000 mm ____ _

In the fIrst screen, the pointer arrow. refers to the active memory window - DO, D 1, or M.

While RVIEW is active, the following keys are active:

IONJ(B Quits RVIEW

~ [!J Moves the pointer arrow between the three memory windows

~ IE Increments or decrements the address of the active memory window

t'PJ!H!F!I Switches the display between the two screens

:8'tttfRf Lets you type a new address for the active memory window

Decrements the address of the active memory window

Increments the address of the active memory window

Subtracts 5 from the address of the active memory window

Adds 5 to the address of the active memory window

From the fIrst screen, you can press INXTJ to display additional menu labels for address modifIcation:

Subtracts #100h from the address of the active memory window

Adds #100h to the address of the active memory window

Subtracts #1000h from the address of the active memory window

Adds #1 OOOh to the address of the active memory window

Writing Your Own Code Objects 215

Using RVIEW
To use RVIEW in your code, just add the RVIEW source to your code and call RVIEW with a GOSUB. For
instance, if you were going to include RVIEW in the SWP example to see the stack before and after the swap
operation, the code would look like this:

NIBASC /HPHP48-A/ This is a download header for binary transfer to the HP 48
CON(S) =DOCODE This is the prologue for a code object
REL(5) end The length field - indicates the size of the code object
GOSUB RVIEW
A=DATl A Copy the stack level 1 pointer to AlA]
Dl=Dl+ S Advance Dl to stack level 2
C=DATl A Copy the stack level 2 pointer to C[A]
DAT1=A A Replace stack level 2 with the original stack level 1 pointer
Dl=Dl- S Move Dl back to stack level 1
DAT1=C A Replace stack level 1 with the original stack level 2 pointer
GOSUB RVIEW
A=DATO A Read the pointer to the next RPL object to be executed
DO=DO+ S Advance the instruction pointer
PC=(A) Branch to the next instruction

*
RVIEW

RVIEW source code here
end

The PONG Game
The directory PONG on the disk contains an HP 48 implementation of the classic PONG game, implemented as a
compiled secondary including the game as a code object. To run the game transfer the file PONG to your HP 48 and
execute PONG.

•

When PONG is running, the following keys are active:

@in lB Quits PONG

@ Moves the left player's paddle up

[§) Moves the left player's paddle down

[f] Moves the right player's paddle up

~ Moves the right player's paddle down

The file MAKEPONG.BAT is a DOS batch file that will make the game based on the files PONG.S and PONG.M.

We hope this will inspire some more games!

216 Writing Your Own Code Objects

Appendix A: Messages
Hex Dec General Messages

001 1 Insufficient Memory
002 2 Directory Recursion
003 3 Undefined Local Name
004 4 Undefined XLm Name
005 5 Memory Clear
006 6 Power Lost
007 7 Warning:
008 8 Invalid Card Data
009 9 Object In Use
OOA 10 Port Not Available
OOB 11 No Room in Port
OOC 12 Object Not in Port
OOD 13 Recovering Memory
OOE 14 Try To Recover Memory?
OOF 15 Replace RAM, Press ON
010 16 No Mem To Config All
101 257 No Room to Save Stack
102 258 Can't Edit Null Char.
103 259 Invalid User Function
104 260 No Current Equation
106 262 Invalid Syntax

Hex Dec Object Types
107 263 Real Number
108 264 Complex Number
109 265 String
lOA 266 Real Array
lOB 267 Complex Array
lOC 268 List
lOD 269 Global Name

) 10E 270 Local Name
10F 271 Program
110 272 Algebraic
111 273 Binary Integer
112 274 Graphic
113 275 Tagged
114 276 Unit
115 277 XLmName
116 278 Directory
117 279 Library
118 280 Backup
119 281 Function
l1A 282 Command
lIB 283 System Binary
lIC 284 Long Real
l1D 285 Long Complex
lIE 286 Linked Array
lIF 287 Character
120 288 Code
121 289 Library Data
122 290 External

Appendix A: Messages 217

Hex Dec General Messages
123 291 Null message
124 292 LAST STACK Disabled
125 293 LAST CMD Disabled
126 294 HALT Not Allowed
127 295 Array
128 296 Wrong Argument Count
129 297 Circular Reference
12A 298 Directory Not Allowed
12B 299 Non-Empty Directory
12C 300 Invalid Definition
12D 301 Missing Library
12E 302 Invalid PP AR
12F 303 Non-Real Result
130 304 Unable to Isolate

Hex Dec Low Memory
131 305 No Room to Show Stack
132 306 Warning
133 307 Error:
134 308 Purge?
135 309 Out of Memory
136 310 Stack
137 311 Last Stack
138 312 Last Commands
139 313 Key Assignments
13A 314 Alarms
13B 315 Last Arguments
13C 316 Name Conflict
13D 317 Command Line

Hex Dec Stack Operations
201 513 Too Few Arguments
202 514 Bad Argument Type
203 515 Bad Argument Value
204 516 Undefined Name
205 517 LAST ARG Disabled

Hex Dec Equation Writer
206 518 Incomplete Subexpression
207 519 Implicit () off
208 520 Implicit () on

Hex Dec Floating Point Errors
301 769 Positive Underflow
302 770 Negative Underflow
303 771 Overflow
304 772 Undefined Result
305 773 Infinite Result

Hex Dec Array
501 1281 Invalid Dimension
502 1282 Invalid Array Element
503 1283 Deleting Row
504 1284 Deleting Column
505 1285 Inserting Row
506 1286 Inserting Column

218 Appendix A: Messages

Hex Dec Statistics
601 1537 Invalid L Data
602 1538 Nonexistent LDAT
603 1539 Insufficient L Data
604 1540 Invalid I.P AR
605 1541 Invalid L Data LN(Neg)
606 1542 Invalid L Data LN(O)

Hex Dec Plot, Solve, Stat
607 1543 Invalid EQ
608 1544 Current equation:
609 1545 No current equation.
60A 1546 Enter eqn, press NEW
60B 1547 Name the equation, press ENTER
60C 1548 Select plot type
60D 1549 Empty catalog
60E 1550 undefined
60F 1551 No stat data to plot
610 1552 Autoscaling
611 1553 Solving for
612 1554 No current data. Enter
613 1555 data point, press L+
614 1556 Select a model

Hex Dec Alarms
615 1557 No alarms pending.
616 1558 Press ALRM to create
617 1559 Next alarm:
618 1560 Past due alarm:
619 1561 Acknowledged
61A 1562 Enter alarm, press SET
61B 1563 Select repeat interval

Hex Dec 110, Plot, Solve, Stat
61C 1564 I/O setup menu
61D 1565 Plot type:
61E 1566 It It

61F 1567 (OFF SCREEN)
620 1568 Invalid PTYPE
621 1569 Name the stat data, press ENTER
622 1570 Enter value (zoom out

if>I), press ENTER

L-'

Appendix A: Messages 219

Hex Dec 110, Plot, Solve, Stat

623 1571 Copied to stack
624 1572 x axis zoom w/AUTO.
625 1573 x axis zoom.
626 1574 Y axis zoom.
627 1575 x and y-axis zoom.
628 1576 IRIwire:
629 1577 ASCllIbinary :
62A 1578 baud:
62B 1579 parity:
62C 1580 checksum type:
62D 1581 translate code:
62E 1582 Enter matrix, then NEW
AOI 2561 Bad Guess(es)
A02 2562 Constant?
A03 2563 Interrupted
A04 2564 Root
A05 2565 Sign Reversal
A06 2566 Extremum
A07 2567 Left
A08 2568 Right
A09 2569 Expr

Hex Dec Unit Management
BOI 2817 Invalid Unit
B02 2818 Inconsistent Units

Hex Dec 110 and Printing

COl 3073 Bad Packet Block Check
CO2 3074 Timeout
C03 3075 Receive Error
C04 3076 Receive Buffer Overrun
C05 3077 Parity Error
C06 3078 Transfer Failed
C07 3079 Protocol Error
C08 3080 Invalid Server Cmd.
C09 3081 Port Closed
COA 3082 Connecting
COB 3083 Retry #
COC 3084 Awaiting Server Cmd.
COD 3085 Sending
COE 3086 Receiving
COF 3087 Object Discarded
CI0 3088 Packet #
Cll 3089 Processing Command
C12 3090 Invalid lOP AR
C13 3091 Invalid PRTP AR
C14 3092 Low Battery
C15 3093 Empty Stack
C16 3094 Row
C17 3095 Invalid Name

Hex Dec Time
DOl 3329 Invalid Date
D02 3330 Invalid Time
D03 3331 Invalid Repeat
D04 3332 Nonexistent Alarm

220 Appendix A: Messages

Polynomial Root Finder
Unable to find root

Hex Dec Multiple Equation Solver
E401 58369 Invalid Mpar
E402 58370 Single Equation
E403 58371 EQ Invalid for MINIT
E404 58372 Too Many Unknowns
E405 58373 All Variables Known
E406 58374 megal During MROOT
E407 58375 Solving for
E408 58376 Searching

Start End Unlisted Message Numbers
B901 B99B Miscellaneous
BAOI BA43 I/O operations
BB01 BB3F Statistics
BC01 BC3B Time system
BD01 BD27 Symbolic operations
BEOI BE77 Plotting

L BF01 BF56 Solver
E101 E129 Constants Library
E301 E304 Equation Library
E601 E60D TVMLibrary
E701 E706 Minehunt game

/

/

Appendix A: Messages 221

I

Appendix B: Character Codes
DEC HEX CHR DEC HEX CHR DEC HEX CHR DEC HEX CHR

0 00 • 32 20 64 40 @ 96 60 \

1 01 • 33 21 ! 65 41 A 97 61 a
2 02 • 34 22 II 66 42 B 98 62 b
3 03 • 35 23 # 67 43 C 99 63 c
4 04 • 36 24 $ 68 44 D 100 64 d
5 05 • 37 25 % 69 45 E 101 65 e
6 06 • 38 26 8c 70 46 F 102 66 f
7 07 • 39 27 I 71 47 G 103 67 9

8 08 • 40 28 (72 48 H 104 68 h
9 09 • 41 29) 73 49 I 105 69 i
10 OA • 42 2A '* 74 4A J 106 6A j

11 OB • 43 2B + 75 4B K 107 6B k
12 oc • 44 2C , 76 4C L 108 6C 1
13 00 • 45 20 - 77 40 M 109 60 11\

14 OE • 46 2E · 78 4E N 110 6E n
15 OF • 47 2F / 79 4F 0 III 6F 0

16 10 • 48 30 {3 80 50 P 112 70 p

17 11 • 49 31 1 81 51 Q 113 71 q

18 12 • 50 32 2 82 52 R 114 72 r
19 13 • 51 33 3 83 53 S 115 73 s
20 14 • 52 34 4 84 54 T 116 74 t
21 15 • 53 35 5 85 55 U 117 75 u
22 16 • 54 36 6 86 56 V 118 76 v
23 17 • 55 37 7 87 57 \AI 119 77 w
24 18 • 56 38 8 88 58 X 120 78 x
25 19 • 57 39 9 89 59 Y 121 79 y

26 IA • 58 3A · 90 5A Z 122 7A z ·
27 1B • 59 3B ; 91 5B [123 7B (

28 lC • 60 3C < 92 5C '\. 124 7C I
29 10 • 61 30 = 93 5D] 125 7D)

30 IE • 62 3E > 94 5E A 126 7E ...
31 IF ... 63 3F ? 95 5F 127 7F II

222 Appendix B: Character Codes

DEC HEX CHR DEC HEX CHR DEC HEX CHR DEC HEX CHR
128 80 .! 160 AO 192 CO A 224 EO a
129 81 x 161 Al i 193 Cl A 225 El a
130 82 'Ij' 162 A2 ¢ 194 C2 A 226 E2 ~

131 83 ,f 163 A3 £ 195 C3 /!!i 227 E3 ~

132 84 J' 164 A4 i:! 196 C4 A 228 E4 a
133 85 I 165 A5 ¥ 197 C5 A 229 E5 3
134 86 • 166 A6 I 198 C6 IE 230 E6 iI! I

135 87 11 167 A7 9 199 C7 C 231 E7 ~

136 88 0 168 A8
.,

200 C8 E 232 E8 e
137 89 ~ 169 A9 €I 201 C9 E 233 E9 e
138 8A ~ 170 AA ~ 202 CA ~ 234 EA ~

139 8B ~ 171 AB « 203 CB E 235 EB eo
140 8C <X 172 AC ~ 204 CC t 236 EC 2.

141 8D -+- 173 AD - 205 CD f 237 ED i.

142 8E ~ 174 AE ~ 206 CE t 238 EE i
143 8F + 175 AF - 207 CF I 239 EF 1

144 90 t 176 BO a 208 DO ~ 240 FO t!
145 91 #Of 177 Bl ± 209 Dl ~ 241 Fl n
146 92 ~ 178 B2 i! 210 D2 " 242 F2 0
147 93 e 179 B3 :I 211 D3 6 243 F3 6
148 94 'I'J 180 B4

, 212 D4 0 244 F4 0
149 95 9 181 B5 IJ. 213 D5 ~ 245 F5 0
150 96 ~ 182 B6 11 214 D6 (; 246 F6 0

151 97 P 183 B7 . 215 D7 X 247 F7
152 98 a 184 B8 .> 216 D8 !is 248 F8 ~

153 99 't 185 B9 1 217 D9 U 249 F9 U
154 9A I,) 186 BA S! 218 DA U 250 FA U

155 9B .:. 187 BB » 219 DB Co 251 FB U

156 9C 1f 188 BC !(, 220 DC U 252 FC u

157 9D Q 189 BD ~ 221 DD Y 253 FD .;,
158 9E • 190 BE ~ 222 DE 10 254 FE IJo

159 9F ~ 191 BF (, 223 DF ~ 255 FF ~

Appendix B: Character Codes 223

Appendix C: Flags
User flags are numbered 1 through 64. System flags are numbered from -1 through -64. By convention,
application developers are encouraged to restrict their use of user flags to the range 31-64. All flags are clear by
default, except for the wordsize (flags -5 to -10).

Flag Description Clear Set Default
Symbolic Math

-1 Principal Solution General solutions Principal solutions Clear
-2 Symbolic Constants Symbolic fonn Numeric fonn Clear
-3 Numeric Results Symbolic results Numeric results Clear
-4 Not used

Binary Integer Math
-5 Binary integer wordsize n + 1: 0 ::;; n ::;; 63 64

-10 Flag -lOis the most significant bit
Base -11 -12 DEC

-11 DEC Clear Clear
and BIN Clear Set
-12 OCT Set Clear

HEX Set Set
-13 Not used

Finance
-14 TVM Payment Mode End of Period Begining of Period End

Coordinate System -15 -16 Rect.

-15 Rectangular Clear Clear
and Cylindrical Polar Clear Set
-16 Spherical Polar Set Set

Trigonometric Mode -17 -18 Degrees

-17 Degrees Clear Clear
and Radians Set Clear
-18 Grads Clear Set

Math Exception
-19 Vector/complex Vector Complex Vector
-20 Underflow Exception Return 0, set Error Clear

flag -23 or -24
-21 Overflow Exception Return ±MAXR, Error Clear

set flag -25
-22 Infinite Result Error Return ±MAXR, Error

set flag -26
-23 Pos. Underflow Indicator No Exception Exception Clear
-24 Neg. Underflow Indicator No Exception Exception Clear
-25 Overflow Indicator No Exception Exception Clear
-26 Infinite Result Indicator No Exception Exception Clear
-27 Symbolic Decompilation 'X+Y*i'~'(X,Y)' 'X+Y*i'~'X+Y*i' Clear

Plotting and Graphics
-28 Plotting Multiple Functions Plotted serially Plotted Clear

simultaneously
-29 Trace mode Trace off Trace on Off
-30 Not used
-31 Curve Filling Filling enabled Filling disabled Enabled
-32 Graphics Cursor Visible light bkgnd Visible dark bkgnd Light

224 Appendix C: Flags

"--./

Flag Description Clear Set Default
110 and Printing

-33 I/O Device Wire IR Wire
-34 Printing Device IR Wire IR
-35 I/O Data Fonnat ASCII Binary ASCII
-36 RECV Overwrite New variable Overwrite New
-37 Double-spaced Print Single Double Single
-38 Linefeed Inserts LF Suppresses LF Inserts
-39 Kennit Messages Msg displayed Msg suppressed Clear

Time Management
-40 Clock Display TIME menu only All times Clear
-41 Clock Fonnat 12 hour 24 hour 12 hour
-42 Date Fonnat MMlDDIYY DD.MM.YY Clear
-43 Rpt. Alarm Resched. Rescheduled Not rescheduled Clear
-44 Acknowledged Alarms Deleted Saved Deleted

Notes: If flag -43 is set, unacknowledged repeat alarms are not rescheduled.
If flag -44 is set, acknowledged alarms are saved in the alarm catalog.

Display Format

-45--7 Set the number of digits in Fix, Scientific, and Engineering modes 0
-48 ,

; Number Display Format -49 -50 STD
-49 STD Clear Clear
and FIX Clear Set
-50 SCI Set Clear

ENG Set Set
-51 Fraction Mark Decimal Comma Decimal
-52 Single Line Display Multi-line Single-line Multi
-53 Precedence () suppressed () displayed Clear

Miscellaneous
-54 Tiny Array Elements Replaces "tiny" No replacement Replaces

pivots with 0
-55 Last Arguments Saved Not saved Saved
-56 Beep On Off On
-57 Alarm Beep On Off On
-58 Verbose Messages On Off On
-59 Fast Catalog Display Off On Off
-60 Alpha Key Action Twice to lock Once to lock Twice
-61 USR Key Action Twice to lock Once to lock Twice
-62 User Mode Not Active Active Clear
-63 Vectored Enter Off On Off
-64 Set by GET! or PUTI when their element indices wrap around

Equation Library
60 Units Type SI units English units SI
61 Units Usage Units used Units not used Used

Multiple Equation Solver
63 Variable State Change ra recalls variable ra toggles variable Recalls

state

Appendix C: Flags 225

Appendix D: Object Structures
This appendix describes the structure of some lIP 48 objects. It is beyond the scope of this book to address the
detailed structure of directories and libraries, so they are omitted here.

Sizes are expressed in nibbles. Prologues are always 5 nibbles, and unless otherwise noted field sizes (like a length
or dimension count) are 5 nibbles. Length fields are self-relative lengths in nibbles. A length field for a 3 character
string is 5 (length of length field) + 6 (number of nibbles in the string body) = 11.

Binary Integer

Atomic Size = 10

Prologue Body

DOBINT 5 nibbles

Real Number

Atomic Size = 21

Prologue Exponent I Matissa I Sign

OOREAL 3 nibbles I 12 nibbles I 1 nibble

The exponent is encoded in tens complement fonn. A decimal point is implied between the first and second digits of
the mantissa. The sign nibble is 0 for positive numbers or 9 for negative numbers.

Extended Real Number

Atomic Size = 26

Prologue Exponent I Matissa I Sign

DOREAL 5 nibbles I 15 nibbles I 1 nibble

The exponent is encoded in tens complement fonn. A decimal point is implied between the first and second digits of
the mantissa. The sign nibble is 0 for positive numbers or 9 for negative numbers.

Complex Number

Atomic Size = 37

Prologue Real Part I Imaginary Part
DOCMP 16 nibble real number body I 16 nibble real number body

The real and imaginary parts are encoded using the fonnat of the body of a real number object.

Extended Complex Number

Atomic Size = 47

Prologue Real Part j Imaginary Part

DOCMP 21 nibble real number body I 21 nibble real number body

The real and imaginary parts are encoded using the fonnat of the body of a real number object.

226 Appendix D: Object Structures

I
'---"

'-../<

'-../

'-'

"-"

"-"

Character

Atomic Size = 7

Prologue Body

DOCHAR 2 nibbles

String

Atomic Size = lO+2*number_of_characters

Prologue Length I Body
DOCSTR 5 nibbles I Characters

Hex String
User binary integers (type 10) are implemented as hex strings.

Atomic Size = lO+body_size

Prologue Length I Body
DOHSTR 5 nibbles I Nibbles

Arrays
While array objects are structured to support an arbitrary number of dimensions, the kernel support is only
meaningful for one or two dimension arrays. Arrays can be composed of most atomic object types.

One-Dimension Array

Atomic Size = 25+L(object body sizes)

Prologue Length Type Dimension Dimension Object
Prologue Count Size Bodies

DOARRY 5 nibbles 5 nibbles 5 nibbles 5 nibbles ...

Two-Dimension Array

Atomic Size = 30+L(object body sizes)

Prologue Length Type Dimension 1st 2nd Object
Prologue Count Dimension Dimension Bodies

Size Size (row order)
DOARRY 5 nibbles 5 nibbles 5 nibbles 5 nibbles 5 nibbles ...

Linked Array
A linked array is structured like the arrays above, but includes a table of pointers to object bodies. A one
dimensional linked array looks like this:

Atomic Size = 25+5*(number of objects)+L(object body sizes)

Prologue Length Type Dimension Dimension Pointer Object
ProloQue Count Size Table Bodies

DOARRY 5 nibbles 5 nibbles 5 nibbles 5 nibbles 5*(#obs) ...

Appendix D: Object Structures 227

Name Objects

Global Name

Atomic Size = 7+2*number_of_characters

Prologue Character Body
Count

DOIDNT 2 nibbles Characters

Local Name

Atomic Size = 7+2*number_of_characters

Prologue Character Body
Count

DOLAM 2 nibbles Characters

xLie Name

Atomic Size = 11

Prologue Library Number I Object Number

DOROMP 3 nibbles I 3 nibbles

Graphic Object

Atomic Size = 20+Height*CEIL(Width/8)

Prologue Length Pixel Pixel Grob data in row order
Height Width

DOGROB 5 nibbles 5 nibbles 5 nibbles ...

Graphic objects store data in row order, and the rows must have even byte widths. The bits in each nibble are
reversed - the most significant bit represents the rightmost pixel.

Code Object

Atomic Size = lO+body_size

Prologue Length I Body

DOC ODE 5 nibbles j Nibbles

Secondary

Composite Size = lO+L(object sizes)

Prologue Body I SEMI

DOCOL ... objects ... I 5 nibbles

228 Appendix D: Object Structures

~I

Tagged

Atomic Size = 12+2*nurnber_of_haracters+object_size

Prologue Tag Length I Tag I Object I SEMI
DOTAG 2 nibbles I Characters I ... I 5 nibbles

NOTE: A tagged object is considered atomic, and cannot be decomposed with INNERCOMP.

List

Composite Size = lO+L(object sizes)

Prologue Body I SEMI

DOLIST ... objects ... I 5 nibbles

Symbolic

Composite Size = lO+L(object sizes)

Prologue Body I SEMI
DOSYMB ... objects ... I 5 nibbles

Unit

Composite Size = 31+L(object sizes)

Prologue Real Number I Body I umEND

DOEXT 21 nibbles I ... objects ... I 5 nibbles

Appendix D: Object Structures 229

Library Data Objects
A Library Data object is a "generic bucket" into which an arbitrary set of data may be stored. This object type is
used by Equation Library applications, like the Multiple Equation Solver, the MineHunt game, and the Periodic
Table application.

Atomic Size = lO+body_size

Prologue Length I Body

DOEXTO 5 nibbles I Nibbles

To avoid conflicts between applications, HP uses a convention for storing a list of information into a library data
object. The information stored is actually a list consisting of a bint and another object, typically a list. The first five
nibbles of the body encode the ROMID of the parent application. To illustrate this, consider Mpar, a library data
object used by the Multiple Equation Solver. Mpar looks like this:

Prologue Length Romld Rest of Bcxly

DOEXTO 5 nibbles 5 nibbles DOLIST I Mpar I SEMI

I
SEMI

Objects

When Mpar is recalled by the Multiple Equation solver, it is copied to TEMPOB. If the ROMID matches the
ROMID of the Multiple Equation Solver the first part of the object is overwritten with the prologue for a list and bint
as follows:

DOLIST DOLIST

The object MESRclEqn does this job for the Multiple Equation Solver:

MESRclEqn #E4012h G/GX XLm 22818
Recalls the contents of the reserved variable Mpar

~ {equation list }

230 Appendix D: Object Structures

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	crooked_Page_001
	crooked_Page_002
	crooked_Page_003
	crooked_Page_004
	crooked_Page_005
	crooked_Page_006
	crooked_Page_007
	crooked_Page_008
	crooked_Page_009
	crooked_Page_010
	crooked_Page_011
	crooked_Page_012
	crooked_Page_013
	crooked_Page_014
	crooked_Page_015
	crooked_Page_016
	crooked_Page_017
	crooked_Page_018
	crooked_Page_019
	crooked_Page_020
	crooked_Page_021
	crooked_Page_022
	crooked_Page_023
	crooked_Page_024
	crooked_Page_025
	crooked_Page_026
	crooked_Page_027
	crooked_Page_028
	crooked_Page_029
	crooked_Page_030
	crooked_Page_031
	crooked_Page_032
	crooked_Page_033
	crooked_Page_034
	crooked_Page_035
	crooked_Page_036
	crooked_Page_037
	crooked_Page_038
	crooked_Page_039
	crooked_Page_040
	crooked_Page_041
	crooked_Page_042
	crooked_Page_043
	crooked_Page_044
	crooked_Page_045
	crooked_Page_046
	crooked_Page_047
	crooked_Page_048
	crooked_Page_049
	crooked_Page_050
	crooked_Page_051
	crooked_Page_052
	crooked_Page_053
	crooked_Page_054
	crooked_Page_055
	crooked_Page_056
	crooked_Page_057
	crooked_Page_058
	crooked_Page_059
	crooked_Page_060
	crooked_Page_061
	crooked_Page_062
	crooked_Page_063
	crooked_Page_064
	crooked_Page_065
	crooked_Page_066
	crooked_Page_067
	crooked_Page_068
	crooked_Page_069
	crooked_Page_070
	crooked_Page_071
	crooked_Page_072
	crooked_Page_073
	crooked_Page_074
	crooked_Page_075
	crooked_Page_076
	crooked_Page_077
	crooked_Page_078
	crooked_Page_079
	crooked_Page_080
	crooked_Page_081
	crooked_Page_082
	crooked_Page_083
	crooked_Page_084
	crooked_Page_085
	crooked_Page_086
	crooked_Page_087
	crooked_Page_088
	crooked_Page_089
	crooked_Page_090
	crooked_Page_091
	crooked_Page_092
	crooked_Page_093
	crooked_Page_094
	crooked_Page_095
	crooked_Page_096
	crooked_Page_097
	crooked_Page_098
	crooked_Page_099
	crooked_Page_100
	crooked_Page_101
	crooked_Page_102
	crooked_Page_103
	crooked_Page_104
	crooked_Page_105
	crooked_Page_106
	crooked_Page_107
	crooked_Page_108
	crooked_Page_109
	crooked_Page_110
	crooked_Page_111
	crooked_Page_112
	crooked_Page_113
	crooked_Page_114
	crooked_Page_115
	crooked_Page_116
	crooked_Page_117
	crooked_Page_118
	crooked_Page_119
	crooked_Page_120
	crooked_Page_121
	crooked_Page_122
	crooked_Page_123
	crooked_Page_124
	crooked_Page_125
	crooked_Page_126
	crooked_Page_127
	crooked_Page_128
	crooked_Page_129
	crooked_Page_130
	crooked_Page_131
	crooked_Page_132
	crooked_Page_133
	crooked_Page_134
	crooked_Page_135
	crooked_Page_136
	crooked_Page_137
	crooked_Page_138
	crooked_Page_139
	crooked_Page_140
	crooked_Page_141
	crooked_Page_142
	crooked_Page_143
	crooked_Page_144
	crooked_Page_145
	crooked_Page_146
	crooked_Page_147
	crooked_Page_148
	crooked_Page_149
	crooked_Page_150
	crooked_Page_151
	crooked_Page_152
	crooked_Page_153
	crooked_Page_154
	crooked_Page_155
	crooked_Page_156
	crooked_Page_157
	crooked_Page_158
	crooked_Page_159
	crooked_Page_160
	crooked_Page_161
	crooked_Page_162
	crooked_Page_163
	crooked_Page_164
	crooked_Page_165
	crooked_Page_166
	crooked_Page_167
	crooked_Page_168
	crooked_Page_169
	crooked_Page_170
	crooked_Page_171
	crooked_Page_172
	crooked_Page_173
	crooked_Page_174
	crooked_Page_175
	crooked_Page_176
	crooked_Page_177
	crooked_Page_178
	crooked_Page_179
	crooked_Page_180
	crooked_Page_181
	crooked_Page_182
	crooked_Page_183
	crooked_Page_184
	crooked_Page_185
	crooked_Page_186
	crooked_Page_187
	crooked_Page_188
	crooked_Page_189
	crooked_Page_190
	crooked_Page_191
	crooked_Page_192
	crooked_Page_193
	crooked_Page_194
	crooked_Page_195
	crooked_Page_196
	crooked_Page_197
	crooked_Page_198
	crooked_Page_199
	crooked_Page_200
	crooked_Page_201
	crooked_Page_202
	crooked_Page_203
	crooked_Page_204
	crooked_Page_205
	crooked_Page_206
	crooked_Page_207
	crooked_Page_208
	crooked_Page_209
	crooked_Page_210
	crooked_Page_211
	crooked_Page_212
	crooked_Page_213
	crooked_Page_214
	crooked_Page_215
	crooked_Page_216
	crooked_Page_217
	crooked_Page_218
	crooked_Page_219
	crooked_Page_220
	crooked_Page_221
	crooked_Page_222
	crooked_Page_223
	crooked_Page_224
	crooked_Page_225
	crooked_Page_226
	crooked_Page_227
	crooked_Page_228
	crooked_Page_229
	crooked_Page_230
	crooked_Page_231
	crooked_Page_232
	crooked_Page_233
	crooked_Page_234
	crooked_Page_235
	crooked_Page_236
	crooked_Page_237
	crooked_Page_238

