DO DD DS DD DO DD DD PRSP RS D D S D 9 Ra DD

An Introduction'to HP 48 System RPL
and Assembly Language Programming

James Donnelly

 Albany, OR 97321 USA

)

Copyright © James Donnelly 1995 ‘ ‘ ; I /

All rights reserved. No part of this book may be reproduced, transmxtted or stored in a retrieval system in any form

or by any process, electronic, mechanical, photocopying, or means yet to be invented, without specific prior wntten
permission from the author.

First Edition ; ; %

First Printing, June 1995

f

N

Armstrong Publishing Company A7
1050 Springhill Drive (

Cocaaccue

LOCOGCOOCOHGHTOTTHOD0UTUCCTCTHUTTTL

I

C C C C ¢

¢

e

s

Ccceccccccocccc

Acknowledgments

This book would not exist were it not for the team that developed the original HP 28. The tribute to their vision
exists in backpacks, briefcases, and on desktops around the world.

Inspiration for the book came from many places, notably the traffic on comp . sys . hp48. Doug Cannon and Brian
Maguire were the principals that helped get the project going and provided valuable examples and suggestions.

Seth Arnold, Lee Buck, Rick Grevelle, Wlodek A.C. Mier-Jedrzejowicz, Richard Nelson, Jeremy Smith, and others
repeatedly provided encouragement when the going got tough and I thought about abandoning the project. Perhaps
the most consistent motivation came from the not-infrequent posting on comp . sy's . hp4 8 from new HP 48 owners
asking for examples and tips for getting started.

Seth Arnold, Ted Beers, Lee Buck, Doug Cannon, Yuan Feng, Joseph Horn, Wlodek A.C. Mier-Jedrzejowicz, Brian
Maguire, and Eric L. Vogel all contributed to the review process.

Hewlett-Packard provided permission to distribute copies of their HP 48 development tools on the disk that
accompanies this book.

Immense credit goes to my wife Janet, who supported and encouraged this project, and thus was left alone for the
many hours of writing, testing, debugging, and proofing.

Disclaimer

Despite the best of intentions and many hours of hard work, mistakes may remain in this book. We suggest you
archive important data in your calculator before beginning to experiment with the new techniques you will learn
here. It is not uncommon to see a typing mistake in source code lead to a "Memory Lost" event. This is a natural
part of the software development process. Neither the author nor the Hewlett-Packard Company can accept
responsibility for the loss of your data.

Contents

Introduction 1
Getting Started 2
TEIMUNOIOZY......viuiiiiiiiciictieec ettt ettt ettt st ettt et e aes e eeeteteesessees e eaeeesasennnes 2
User-RPL vs. System RPL vs. ASSEMDIET..........c.ccooiuievieieeicieeeeeeeeeee e eeeeeesesns 2
Stack DIAGTAINS..........cccouiuiiicccecieirestree ettt sttt tes e eensesnen 3
ODBjJECE INOTALIONcneerereieiteuteieeteeteete et tese st tes et se s s ae e e e seseeeesesesseeeeeseeeneesaseesnes 3
FODES ..ttt ettt ettt sttt e e e aeee e 4
Installing the HP TOOIS.........c.cccouieinirieieieeneeteee ettt ettt e e e se s 4
EXample PrOGIAINScucoiiiiiiiiicic ettt ettt et ae st nene 4
Introducing SYSteM-RPLc.coeoiiiiiiierteeeteteeee ettt es et evet e e ese e e ee s s seees 5
A Frst EXAMPIE.........ooiiiiiiectestrteie ettt e et esee sttt st e es e anee 5
Creating the Example With the HP TOOIS...........cceeueueuierereeererereececeeeeeecceee e 6
Introducing Assembly LANGUAZEc.coueteiereeeeeereieeeecceeee et eeseeeseeeeeeeseesesseseesesesaans 8
EXample FIle SIUCKUIES...........cociuevemiicrcrintnnieteintetete ettt se st sesse s e eeeene 9
USer-RPL EXaMPIES.......ccoivuiiiriecinintiiniecieee ettt ettt s s e st 9
System-RPL EXAMPIES.........c.ccceiruiririerirentieteieieeiete ettt e ee e es 9
Assembly EXAMPIES........ccoouoeirmiiririiineeteiee ettt 10
Basic Programming Tools 11
BiInary INTEGETS......c.cveuiiiuiiiieeieieteaettecetr ettt e se bt se st eae s et e et e s e s sessseseseseeseseeseeeseseens 11
Internal Binary Integers in the HP 48 Display...........c.cccoveveeeieeimceiieeeeeeeeeeeeeeee e 11
Internal Binary Integers in System-RPL Source Code.............cccoeveevvemeeieiceeeeeeeennee 11
TYPE CONVETSIONS.......ceiuitiueentrerienieeieeateeeete e e etete s ese sttt sesses s st esssssssessessesassenes 13
Internal Binary Integer OPETations...........cecveurueeeeueieeeeerereeeteeeeeeaeseseseseesese e esnens 13
FIAGS ottt ettt ettt e bt ettt tnene 17
F1ag CONVETSIONS...........civiiiuinierenrucunteeeeeeese e sesststete e e st bese st sas s s s sses s assesssnas 17
F1ag UtIIHESoveeeecect ettt ettt e et ses et e s ns 18
TOSES ettt ettt ettt et st ettt er e ae e at e s e et entere st sse et et eneeeat et e e eeennene 19
ODbjJEct EQUALILY......c.coueeuieiteeienireeerinteteete ettt sttt ses st sne e s s s senes 19
Binary INtEEET TESLS......cocceuiireeieieirteieie ettt st st et seseseeseeaeseeeeaeene 20
Real NUMDET TESLScooomiiiireeinieeecete ettt et s s s nans 21
Extended Real NUIMDET TESLS........cceceeeireeerreeeererenirtete ettt s et st s s s 22
Complex NUMDBET TESES......cc.ccceiririeiieeitenteietecte ettt ctese et eres s e sssneesensnes 22
Advanced Topic: Missing Extended Real Test Objects.........c.coovereeereeerereeeeeeeererenennee. 23
URit ODJECt TESS......ecuviuiieneenetereteirieesesteetete et seseeee e esesen s esesss e sesesesessssasssessnsaens 24
Character StriNG TESLSc.cceceeeueuirurerireeieietrieeeeeaereseesese et sesesseessesesesessssnsssssesesenens 24
HeX StrNG TESES.......eoeiiiireeeecee ettt s s er et nsses 24
Program FIOW CONMIOLc..cciiiiiiiiiieicccceecetstrtetsse e sasessass e s s e ssens s ssnenen 25
Early Exits From a SecOndary............ccccceueieneniieeeeeieeee ettt sesese e sesenens 25
IF - THEN - ELSE SHTUCHUTEScoueueueetrucirteneienreetesesessesesesesesessesessesssesesssesesssens 26
CASE ODJECLES......ocuineiniieciiicettctciete et seeste e tste et et ess st esa st esesenseesesasasessssnns 29
LOOD SHTUCHULES........coveeiitcteccete ettt ettt ettt ess s aen s ee e s e nans 36
DEfINIte LOOPSooueimeucmcniinciieteteentete e teaessessse s tete s e s besesesessss s s s s sssssssssssenesane 36
INdefinite LOOPS......cc.couiiriemicieecetreieereet et ettt ees ettt s et s s s st essnsnens 38
RUNSIIEAIM OPETALOTSouiiuiuierreietruecenrereteieaeesestetetesessesessasese s sesesesesessesesssesessseasasssasssessnsanns 40
Argument ValIdAtONc.cuiiiuiiiiiiiiiicieiccceeee sttt s sas s e st se st e nen 41
AUTIDULING EITOTS. ...ttt sttt 41
Number Of ATGUIMENLS........c.coueiiieirireeeieieeteeee e ne et se e ee et sensenenns 42
Type DiSPAtChing.......cuciuiuiiiiiiiiiccice ettt ettt s et e e e es 43
ODBjJECE TYPE TESES...c.eeruiieecieninieteteterente st et sttt ettt se et ee s s s s s s esensesesesenssenes 47
Temporary Variables ..ottt 48
Using Named Temporary Variables...........cceeueeveeueereeeeeeeeeeeieeeeeccecseeeeceeeeseeseesseseens 50
Using Null-Named Temporary Variablesccceeemeeremeeeeeieeereeeeeneree e evenene 51
Programming Hint for Temporary Variables...............ccoeeueeieommeeoieieeeeeeeeeeee 53
Additional Temporary Variable UtIIties..........c.ccceoeereeeeeeeieeereeeeeeeeereeereeee s 54
EITOT TTAPPING w..vveiviecet ettt ettt a et st s sa s e s bbb ben st enssesesnne 55
Error Trapping MECRAMICS........ccccceirtiirtrieiieieieceet ettt e ns 55
Generating an EITOT ..ottt enen 55
Handling an EITOT........c..oiiiiierec ettt sttt ean 56

Additional EITOr ODBJECLSc.coiiiiietiiiteeeeeeeeeteete ettt ettt oo e e nean 57

C C C O

(

(

c ¢ ¢

cccccccccccccccccccccccccccccccc

(

StaCK OPETALIONS........ccvcuiiiieerieererteececeetree ettt ettt ettt sesen s st s bttt ne s sassesesssesssenesenenen 58
Control Structure EXAMPIES.......cc.coeeteurueeririiieeiereieieeeeieseeseesesesesesesesess s sesesesssesessssssensnsseesenes 63
PLIST EXAMIPIEuviiiiiiicecccttsie ettt ettt 64
SEMI EXAIPIE. ...ttt sttt sttt etss st s s st st se s s s 64

tCR EXAMPIE ...ttt e 65
Objects & Object Utilities. 66
Real & Extended Real NUMDETS.........c.ccceirueeurnirieeieeietetee ettt eae e 66
Compiling Real NUIMDETS........cccceetririeiiiinenerieeetee ettt tes e 66

Built-In Real NUMDETS.......cc.cccrieiiriririeenieieieteeseteiesee e es s ss s ssss e 67

Real Number CONVETSIONS.......c.oucteeieueieteieietetntrteesess s tetesse e ss s s tes e sese e esenes 68

Real Number FUNCHONS.......cccoiiiiuiiieieieeeeee ettt e 68
Extended Real Number FUnCtions............ccceeuevieinieeinininieieiiee et 72
COmPIeX NUIMDETScccoutiiriieieiiieteee ettt ettt s st sese st seseese st eseemeeeeaes 74
Compiling CompleX NUIMDETS........ccceeuerirririeeieririeieseeteee e esereseesessesseeessesaesneens 74
Complex NUmber CONVEISIONSc.coveiereuieirieieeeireeteesiseeeeseeeseee e ses e ses s eseaeas 74

Built-In Complex NUMDETS..........c.ceeueieietiieeieeieieeiee ettt e eeseeeee 75
Complex NUmMber FUNCHONS........c.ceotiiirrieirieieieete ettt 75

ATTAYS..c..oeeiteeeeee ettt ettt e ettt et et e st e e st e e seseens e st se s e s e beseesaeseesseeneetensesseneeneentenaeene 77
COMPILING ATITAYS...ccuciuieteeiieirierteeieeteiete e et e e st ste s ese s e st et esseseasesensessensessnennens 77

ATTAY UHELES. ...c.covemiiiienccieieceet ettt ettt ettt easenas 77

The MatTIXWIILET........v ettt ettt sttt sttt e st s et s ese s sensan 78

TABZEA ODBJECLScneeueeeeeteirieirte ettt ettt ettt n bt se s s se s esees et esese s s e st sss e seneene 79
Characters and Character StINES.......cccoecteteeuerierieeereieieteesteestsseseesesessesessesesesessesesessessesesssses 79
Built-In Character ODJECLS........coceueruerirurrerieeirieeeietreetesesessssesseeaesesesesesesessseseseseeseneas 80

Built-In String ObJECtS.......coveueuirererieerieeieieeeeteeeeeststet sttt ee st seesae s st ss s s ese e senens 81

String Manipulation ODBJECLS.......cc.ceeurieieueniririeteerteerte ettt see e ereenas 81

HEX SIINES....cevieieiieetect ettt e ettt e e se st s s s sasssssessesesesesetesesesensnsnsesensennneas 84
HeX String CONVEISIONS.......ccccveruerrieteeeetieeeresteseeeseeseeesesenseseessesessesessesessessessesnenss 84
WOIASIZE CONIOL.....c.oouieieeieieteteeceteteet ettt et se st ae st esaa st s e s e e s s ennenees 84

Basic Hex String ULIIHES.cc.eeeteriiiiiieceteceeeeteteeeee ettt et 85

Hex String Math UtIHES.......cc.ccoeeiriieiiecceecccecrieteeercceseeete e 85
COMPOSILE ODJECLSuonieieuieueictieeeieetetetett ettt et et st e te et st ae st e s s st e s an st sasseseneseeannan 87
Building Composite ObBJECLS........coveeerrireerintreeeieretereseeteteeeesteeesesessesesesseseseeseseesessenns 87

Finding the Number of Objects in a Composite Object...........ccocerueeinnirreerreecrrrenrnnnene. 87

Adding Objects t0 @ COMPOSILE........coreveueriereniererieeetresietetesetesestenssstesesesesessesesessenses 88
Decomposing CoOmPOSite ODJECLScceeeuererirrueererinieeentrtrreteesseseseseteseesesessessesesens 88
Searching CompoOSite ODJECLS.........ceuerueerrriereerreiretereeteeeistseeseeesessesesse e eenenesessessenes 89
Detecting Embedded ODbjJECtS.........ccccevirverrineirieieeteeneeieieeesteeeeeee e seene e e 89

UIIE ODJECLSvneieeeteteteeee ettt sttt et ettt sttt ettt e e sa et es s sa s seesennen 90
Dimensional CONSISIENCYcc.eoueeueeereeriereesieeeeesresteseestesesssssssessesessesessesessessenssssesssssesns 90
Building and Decomposing Unit ObJECtS........cccecevreereviinererienireneeieeninee e sesesaesnenns 90

Unit ObJECt UHIILIES.eoveueemeireeteeeteeteteeet ettt sttt ettt seses bt se et s e s e s snesans 91
Memory Utilities 93
INAINE ODBJECLS....cuereeeeretetrieeeeieteieeteeteteesteete st seeteseesestesessesasesssessesesessesesssseseassssassesasesesaensen 93
USET VaaTIaADIES.......ceieeeee ettt ettt ettt 94
DITECtOTY UHIILIEScueeeeeeeitecetece ettt ettt ettt st sttt et et ee et a s eananes 95
TEMPOTAry MEINOTYcoiiuieieeeiet et ettt st ettt e et e et et se e et e b et et ene s asaesesaenaesensesanenns 96
Use of Temporary MEIMOTYccceeeeueeeuereieeeeieeesieeeenseeessessessessessesssseesens eeereeeennens 96
Garbage COlECHION.ccueouieierteteeee ettt ettt et see st ae st n e e e e s e e s e asnaens 97
METNOTY ULILIIES. ...eeerueeiereeeteieteeeeetesteteesieeste e ee st steseesae e e e s e saessseseesaestesansesansessessessessensensens 97
Graphics, Text, and the LCD 98
LCD Display REZIONS.....ccceeuieiiteierieietete ettt ettt et e sttt et et ese s seseete s esseneesaansaas 98
Status Area CONMIOLcccoutieiiieietee ettt ettt et ettt et et et ae e anne s 98

Stack Area CONMIOL.......cccouieiiiiiiiieicecetetee ettt ettt sse st et e s s e s s et anenns 98

Menu AT CONIOL.......oiiiiiiieeceeetceeeete ettt ettt ettt e st st s et n 99
Combined Area CONMIOIS.coctivueiiitiriirierteetete ettt et te et e teseesaese e sae s e e ssannes 99

Basic Display MemoOry PriNCIPIESc.eeueeuruietrirrieieieieece ettt eenea 100

The Current DiSplay GIOD..........cccetrureeeirurrreereteieee e rete e tesese et eeeeee e seseeeeee s 100

The StaCK GIODb........coovieiieccecec ettt ettt 101

The Graphics GIOD..........c.oeeieiireceecetrintitee ettt e eeeen 101
Verifying Display Grob Height..........c.ccovuiueieuiiiiiieeeececeeeeeeeeeeeeeeee e 102
Enlarging ABUFF or GBUFFcccooimimiiieeeceete ettt s eee s 102
Scrolling ABUFF OF GBUFF...........cccoioiuiieeeeeeeeteeeeeeeeeeeeeet et ee et e e e e e ereeean 102

The Menu GIODb ...ttt ettt se st et e e seeee 103

Display Pointer EXAMPIEScevveevereririeieetcieietereteee e seeseteesteee v e seseeeesenenen 104
Graphics COOTINALES............covuiviieucmicacietrteeeeccteea e s st e e sese e ee s st se s e se st ssssassssss e senenes 105
Subgrob COOTAINALESc.covcuimeueerieteiereeiietsee et eee et s et se et sessasseseseseeeeas 105

User Pixel Coordinate - Bint CONVETSION........ccovovemuereerenreteteeteeeee e eeeeeeeee s 105
User-Unit to Pixel CONVETSION........cccoueuirerinieirreiiieieetetee et eve ettt ese s 105
ACCESSING PPAR ...ttt sttt 106
DiSPIAYING TEXL....c.ecuiuiiiieniiieeeeneirieieet ettt ettt e st ee et eseneeseasesses e eeseaseseaeseeeenes 107
Medium Font Display ODbJECES........c.evueueeiereriereeieetenie et seeeeseeeee s ee s 107
Displaying TempOrary MESSAZES........ceoueururererererereaeeeeeeteeeeeeeeeseeeeeeeeeeeeeeeeseseeneeeeeeeens 107

Large Font Display ObJECES........ccceueecruruiriririririeieieiecteseeeseesese et eeee s ssseenesesaenn 108

Basic GIOb TOOISocuiuiuiiiiiccceuceeieee et et et e ettt ese s s et s s e e e een 109
Creating GIODS.........c.cuiuiiiiiiiceeeccets ettt eee st se s s 109

Finding Grob DimMenSionsccceeurueueiinnieenintessieeteeseseeses e seeese s ssese s 109
EXtracting @ SUbGIODcccoiiiiiiciicieeee ettt ere s 109
INVErting @ GIODb........oc.cuimiiieiciect et 110
Combining Graphics ObJECLS...........ccceeurenirtnreriresrrrecsresestereseesesesesesesesesssssessssessnnas 110
Clearing a Grob REZION.........cccoveetrcetrmireninininieeeeeteie ettt es ettt eee et eeseneens 110
Drawing TOOLSc.oouiiiiiiiiiiiiciitree ettt sttt sttt st se s s seseeseeresassns 111
Line DIawing......c.couiiuiivininininiecce ettt ve st resae s st eseetese et e sensensennes 111

PixX€l CONMIOL.....oouiiiiicce ettt ettt ettt n 111

Menu Grob ULIHEScc.civuiimiieiiiiieiccitetece ettt ettt et se st s ettt s s s eseeaennesaesnas 112
BUIIt-in GTODS ...ttt ettt ettt et en e e st se st ente e ne e 113
Graphics EXaMPIES.........ccocoiimiiiiiiiniciiecctei ettt ettt ettt es sttt s e aeneenee 114
Drawing @ GIId.........ccviviiriiireiiieteieseeiectee sttt et ste st et eaess e se s e ese e s s e e sensensens 114

A ROCKEt LAUNCKH......omiiiii ettt ettt nnen 115
Keyboard Utilities. 116
Key BUFFEr UHIIES........cuoiueuemieerieiriueenestetcccseststss s e esesasseseses s s s s sessssssssssssssssasasasssnsssssasesns 116
Checking The Keyboard While RUNDING.........ccccccetrirrreieiiieeeeieiereceteeeeeeee e seneenesesneneens 116
Detecting the [ON] KeY......cocouiirieoirieeeeceeteeecreeee et teese st ese st ee s e 116
Detecting ANY KEY.......cooiiiiiiiriectcecctteeeieere et et e et e et st nen 117

Waiting FOT @ KEY......ouoiiiiiicc ettt ettt et ea et et n s 119
KEYCOUES. ...ttt ettt ettt a st st se st s asnerseseneeseneesenean 120
Repeating KEYS......c.couiieiiieeeeee ettt sttt ettt ettt ettt ae et st e s 121
INPULLINE.oviiiiiiie ettt sttt st st eae st a et sn e se s e e se s s e s enseneensenes 122
INPUt PATamELETS.......oouiueeeucecereeerceneteeeeetetet et steseae et se s er s ese e e s seenessesseseeseaes 122
InputLing RESUILS.....c.cuciiimimiiiiieie ettt e 123
InputLine EXamPpIEs.........c.cccoiuiuiiiiinmiiiitrcecisie ettt ettt ene s 124

The Parameterized Outer Loop 127
Introducing ParOuterLoop Parameters............cccecceeeenueiecenenuesenieisiseeenessessesssssessssssesseennens 127
Temporary Environments and the POL ..ottt 133
The EXit ODBJECL.......uciiiieiiiiiiccccctcttc ettt st et ee et e et ssa s ssseseanesennans 133
The EITOT ODBJECT ..ottt ettt ettt s e sttt e st e e esaa st e se st e e sassannanes 133
DiSPIAY ODBJECLS.......ecniiiiicii ettt ses ettt et e st s nansesensesannans 133
Hardkey HandIersco.coueeiririecieee ettt te et e s st as e st teese e e e eseeneenne 134
Key and Plane Codes..........coeeeueirtenieriienicteeieieeeieeesetestsseestessaessasessassessesnsesseeseenns 134
Hardkey Handler StIUCHUTE..........c.coceeteietriireerteteetee et e eteeteteseneee et e snseeseenenns 135

SOftkey DEfINItIONS........ccoieuimiiiiiiirieirte ettt ettt et st e s es s s e s s b e s s st se s an st esesneseenenee 140
NUIl MeENU KEYS....uviminiiiiiiiiiictitt ettt seee et et et st ses e e e s e s aesnans 140

Softkey Label ObJECLScccocucmiuiiiiiiieececeteeiee ettt ettt n et eenns 140

Softkey ACtion ODBJECLucuuieirircriniceeeeeteierteete et e e aseet e s s s ss e se e sseseesennens 142

The POL EITOT TTap ODbJECE........coiieirireecuieecricecieiette st et ts et et se e s s ss s s s e s s nns 144

POL UHIIHES.......ceieieiiiieiiticnitii ettt ettt e st ese sttt saese et st ssa s sassassansessssssssnsensensensans 146

(

c C C(

(

Graphical User Interfaces 148
MESSAZE BOXES......ouitieiiiiiiiictccc e s s st 149
Message BoX Parameters...........coeeeeruerienienirniencnnententeeesteteceese e seese et e seeesassnee s ennaan 149
Message Box EXAMPIE........c.ocivuiuiciriiiiiiceccniceec ittt et eeseeean 150
Equation Library BIOWSET.........c..cceciriiiieiiiiiiiicrcctectecticteet ettt 151
Browser Parameters..........coeiuiiuiieiiiiiiiiiiiceiiinicicnecacecesc s en e 151
ACHIVE BIOWSET KEYS ..ttt ettt ettt st s st e s e e s ae s 152
Browser SUPPOTt ODBJECLS.........coueetimermietretectreeecereeerenseneesaeseesestesesteneeseeseseseesneessessanns 152
Browser EXAMIPIE.........cveuieciiiuiiieieieicteieeeesteteecseeneeeses e sttt eee et et ennans 153
CROOSE BOXES.....cuiouiieiieirieiieintcieeice ettt ettt et et st st st e st e s e e st et e et e s e e ennann 154
ChO0SE BOX SLYIES....c.ccviuiiriiirintieicrneienentre et se et enc ettt s e ae s ennessnenaas 154
Cho0se BOX Parameters........cocveveruuerenuenenienteieeenereseeneees e sisstssesateseseesae st sesesneeseneens 155
Choose Box Message Handler..........c.ccceceiiireniinnieienininieienieceeicee et e 156
DeCOMPILE ODJECLS......uieemeeeruteeeientteeteeetece et et sece e sse st et et e se st e s esa e s ee st asae s e annas 158
Customizing Choose BoX MENUS.........ccccocieiiiiemininiiniiciirinteesicntese et eseseeeeeseeeens 160
Cho0S€ EVENt PrOCEAUIES........cuieviucuieeciecitereieiecrete et s escesesesestesesessesseseesessesuans 163
INDUL FOTINIS. ...ttt ettt ettt et s e et st s e s s st eseeens 165
Input FOrm Parameters...........ccevecrceuerieueniemeceenceeecees st sesessese s seneas 165
Label SPECIfIETScuvruveucerictrericirt ettt ettt s s s e sme e e meesnene 166
FIEIA SPECITIETS. ...ueuveeeeeueentrieceeecet ettt e escses e s st s e st e s e s e s e sanns 166
Input Form DEFINESs for RPLCOMP............cccccoiiiiiiicicsecsecaeee e enees 168
Specifying ObJect TYPEScvvveiimiiiriiuiiiiiicicterccc e 169
Specifying Decompile FOIMALScceeeurureieenieieiiiiiicieieccc et 169
Input Form Message Handlers.........c.cocceueuieveenneinieiecniece e 170
Input FOrm Data ACCESS.......ccccoviuiiiiiiiiiiiiiccint e 171
Customizing Input FOrm Menus...........ccocvcuiieiimnniiiiicieeecctctcctcsceccne e 172
ORBIT EXAMPIE......cooiiiiniiiiiiiiiitinicincniccncrcetcss e ae s 174
Introducing Saturn 179
The SAtUIM CPU ...ttt ettt ettt sttt s e cas s s stae s e se e emessessessenee 179
The Working and Scratch RegISters..........coovievnuininiiimiiiiiicicreesetceee et 180
The StAtUS BiLS......coteeeeeiceetrieeteeeete ettt et s sest e st sttt st s se s ae e st e smesnas 180
Input and Output REGISLETS.cccecuererieuieinintreercreneeesreestest et sse st seaeese s e eenee 181
The RetUrn StacKcecveeuiieeireetertrceteceeicteecetete et ae e e e e ee 181
ATINIMELIC MOME ...ttt et neenesae st et s eeesae s se e e seessmnensnnt 181
The POInter REGISLET......c.cocevieiierieeeieteteerceetetet ettt eee st ne e ss e s s sneeesaesanes 181
INSrUCHION SEt SUIMIMATY.coteveteeeeecereentententeteteteteetesestet et et et e eesessesseseesseteesessseseeeeeseeseesnns 182
Memory Access INSUCHONSc.couererireririrertrecetetecceetete ettt e s eas 182
Load Constant INSIUCHONS.........c.ccvrecruirmiceureieneciiiieie ettt eassacsae s aees 183
P Register INSIUCHIONS.cucoueirueieiiieiiiiieet ettt eas s ae s 183
Scratch Register INStrUCHONS.......c.couvvviiiiiiiiiiciciciii et 183
Shift INSTUCLIONScoveveuruereertruierrererenetereteeatesenrteesestesescessessesessenessesesaeeseseessesnsensens 184
Logical INSTUCHONS.......cccoviiiiiiiiiiiiiiniicecics sttt 184
ATIthmetic INSITUCHIONS.couceuiiirieieieteteeceeee ettt s sas e 184
Branching INStIUCHONS.cveeteuteeteiteieieeeeetet e e st e et et s s me et e s e eame e seeane 185
TESt INSITUCLIONS. c...cveeeuiteteteretereentecereeret ettt e as s ssssane s s enns 186
Register & Status Bit INStIUCHONScoceeeuirentiniiiniinciiricc e 187
System Control INSIIUCIONScceeeeutrcreeeeeiectertenceneeet ettt e s sese e s ssesne s 187
Keyscan INSTUCLIONSc.ccceieuernieuirrerterteteeereeneteeee et et sseaessns e ssae s saeenns 188
INOP INSITUCHONScccuvuireeeerteeenteertrateteeseetetestse s e seesessesesessse st ssne e st s assssesssesnsesanesns 188

Assembler Pseudo-Op INStIUCHONScoueuerereeriruemceiierereieiceeteeseeseee s sesesae s 188

Writing Your Own Code Objects 189
Code ObJECt EXECULION...........cuuiueerececetieeeaetes et eee e e s e s e s s e 189
SEACK ACCESSuevireteicce ettt e ee e e e 190

Example: SWAP TWO ODJECES........ccueuuriuenrrrecececeeeeceeee oo ee e 191
Example: DROP Nine ODJECtS........ccuvuruuruumueecmceceeeeeceeeeeeeeeeeeres e es e ees e 191

Reading Assembly Language Entry DESCIIPHONSc.e.eveeeeeveeeeeeeeeeeeseeeeoeoeooeeeoeoeoeoeoeeoeeo 192
Saving and Restoring the RPL POINLETS.............c..cuveiueeeeeeeeeeeeeeeee oo 192
Example: Reversing Objects 0n the Stack.............cceveeeeeeeeeeeeeeeeeeseeeeeeeoeoeooeeo. 193
Example: Clearing A Grob.........c.c.curueiuiueeeeueeceeeeeecee oo, 194

SHACK UHLHES. ...ttt s e e 195
POP UHLHES ...ttt ettt e e ees s 195

PUSH LIS ...t s s 196
Examples: Indicated ABS..............c.ccooueuiurimineninnieeseee et eeees e ees s 199

MEMOTY UHLIEIES.......ooeeeeeiiceeteetete et e s e e s s e 200
AllOCAtING MEIMOTYcucemiiintnirireeeereee et et e eeeeeses s e seseses e e e 200

MemOry MOVE UHIHESc.coeetrerereereeetececececeeeeee e eeeeese e 201

Display MemOTY AdAIESSES.....cevurvmruruererenieceeeieeeeeeeeeeeeeeeeee e s se e e 203
REPOIUNG EITOTS......cuiietite ettt e e 204
Checking BatteTies..........c.coteurueteietreeeeietete et eee e e eee e ese s e ese e 204
Warmstart & COIASAT..............cccceueueurieeeeeeeteete ettt e s s e e 205
TONE GENETALON.........eeteeeiiectete ettt e e s e ee s s e e eee e 205
StEAAY TOMESceeeeeeeiececececteie ettt ee e ees e 205

Rising and Falling TOMES........ccccveueuemmrerereeteeee e e oo es e 206
Keyboard SCANDING.............c.coiiieieieieinieecece ettt e ee s e e e 207
Managing INTEITUPLS..............cccuiumeieeierenieriete et eeeeseeseses s e 208

Rapid Keyboard SCAnS...........ccccetererrunieeeeteeete et seeee e seses s seseeres s e sens 208

Low Power Keyboard SCANSceuvieueueueieeeeeieceeeceeeeseeeeeeeeeeseseseses e 210

The RVIEW Debugging TOOL.......cccoiimemieeereteeeeeeeececeeeeeeeee e eeee e e es e 215
The RVIEW USEr INtEIfaCe.......c.cceveuurrieeeieieieeeeceeeee et ee e sees s ees e e 215

USING RVIEW ...ttt ettt e e s s e s e s s e 216

The PONG GaIIE........cuvveeeeeiiciietectensintseeese sttt e e e e e eee e s s e s eses e s s e soen 216
Appendix A: Messages 217
Appendix B: Character Codes 222
Appendix C: Flags 224
Appendix D: Object Structures. 226
BiINArY INTEZET ...ttt e e e eee e 226
REAI NUIMDET ...ttt e s s s e eon 226
Extended Real NUINDET........coouiuiieierieeetetee ettt es e v ee e eseen 226
COMPIEX NUIMDET..........etteieeeee ettt sttt e e s e sesees e eeneen 226
Extended CompleX NUINDET...........ccooeruturirintrieiiectete et eeeeesesseses s eee s e seses e ene e 226
CRALACIET. ..ottt ettt ettt e e e eeeeeees e seesesessaseseeras 227
SUANG. ..ottt ettt et s et st ee et e e e se e ee s ees e sesses e e e 227
HEX SIIING ettt et e e s e e s e s see e 227
ATTAYS.....cvvteecs ettt e se st sttt s s et sttt e s st et et e eeese e ees e s s s s e e s e s e e e s eees e e een 227
One-DimenSion AITAYccceueuiiuiiereteeeeeieeeeecececeeeeee et e e eseeseeeeeeeeeees s eeseese e resesseeesen 227
TWO-DIMENSION AITAY........civciieeerraeteeceeete ettt eeetetesses s eeseseessseseens 227

LANKEA ATTAYoovviieiiicececcceet ettt ettt et tee et e e s e eee s e s eean 227

NAME ODJECES......ooveeieiieiicciii ettt ettt et e e e ee s e et et st et eaeeeesesessesessesesesesesees e 228
GIObal NAIME..........ocuiiiireeecetee ettt et e e s se s s s 228

LOCAI INAINE ...ttt et e e e e e s s e e e s 228

XLIB NQINE ...ttt sttt ettt se s e e eeeseeeesaesese e sesesesesesananas 228

GraphiC ODBJECE.......ouemeeeeiiiicc ettt ettt ee e s ee et et eseeeeeeseeeneeens 228
C0AE ODJECE ...ttt ettt e et et e e e eeseseeeeeeeeseeeaseseeeeeseas 228
SECONAATY.....evviviieeitt ettt ettt tae e e et eee e eneseeteeeeeseseesanessaseneas 228
TAGGEA....eeeeee ettt ettt et ettt ee e e s esenan e 229
LISttt sttt et ettt et e e et e e e eae e e e e e esee e e nseeenen 229
SYMDOLIC .ottt ettt sttt et e e e seeenes 229
DL .ottt sttt s et ee et e et ee et e e e et e e s eeeseseesesananas 229

{]

C C C € ¢ (

(

Introduction

The HP 48 calculator family is characterized in part by the availability of a wide variety of software products that
address diverse interests, ranging from games to serious engineering applications. Some programs appear to run
much faster than you would suspect possible if all your HP 48 programming experience was confined to standard

programming from the keyboard. This book is designed to introduce some of the techniques used to create these
programs.

The discussion and examples in this book have been drawn from the collective experience of the author and other
contributors — each having a unique view of the HP 48. This book is an introduction to the HP 48 — we cannot and
do not attempt to provide either complete documentation for every facet of the HP 48’s internal resources or a
complete theoretical description of the operating system. We do hope you will learn a few things, have some fun,
and write some new programs for others to enjoy.

As with any book, we make some assumptions about the background of the reader. In particular, we assume the
reader is familiar with all HP 48 object types and most basic HP 48 programming constructs. We recommend The
HP 48 Handbook, by the author, as a good place to begin the study of User-RPL programming. The Handbook has
lots of examples, and should get you started in good form. In particular, study pages 3-200.

Several tools exist that can be utilized to create programs using the HP 48’s internal resources in ways not possible
from the keyboard. The disk that comes with this book includes free copies of the tools provided by (but not
supported by) Hewlett—Packard.

The chapters in this book are organized to provide a progression from fairly straightforward usage of some system
resources in standard programs to complex application projects. However, this is not a novel with a plot that is
linear through the book. For instance, some example programs use objects described later in the book. The book

has been designed to act both as tutorial and reference, so you'll find yourself going back-and-forth from time to
time.

Introduction 1

Getting Started

Any technical dialog is necessarily filled with terms that may confuse the reader new to the subject. We begin by
defining some basic terms, introducing the tools, System-RPL, and assembler.

Terminology

The kernel of the HP 48 operating system/language known as RPL has been written in assembly language, and much
of the functionality of in the HP 48 is implemented in what is sometimes called “System-RPL”. Programs entered
from the keyboard of the HP 48 are written in what is sometimes called “User-RPL”.

Programs written in assembly language are often known as “code objects” (type 25) and can use all the resources in
the HP 48. Unfortunately, the HP 48 has not been provided with a complete debugging environment for assembly
language development. Consequently there have been fewer applications or games written in assembly language.
This book will describe some techniques that can be applied to assembly language development projects.

User-RPL vs. System RPL vs. Assembler
The illustration below shows the relationship between User-RPL, System-RPL, and the kernel of the HP 48.

<< User-RPL >>

/ Protection \

/ :: System-RPL ; \
/ Assembly Language Kernel \

Programs written in User-RPL and System-RPL share the same resources, stack, return stack, etc. The commands
available in User-RPL represent a subset of the functionality available in System-RPL. The objects that can be used
by System-RPL represent a subset of the HP 48 system.

There are three main distinctions between User-RPL and System-RPL:

¢ User-RPL commands have names that are recognized when you enter them into the command line, whereas
System-RPL objects must be accessed via either the SYSEVAL command or specialized tools.

* User-RPL commands have extra code responsible for validating input arguments (and thus require a bit of extra
execution time), whereas System-RPL objects usually have little or no error protection. This layer of protection
insures that invalid input arguments do not result in undesirable behavior by underlying code.

* There are more resources available to programs written in System-RPL. These resources include access to
portions of the HP 48 system objects, additional object types (notably internal binary integers), and additional
control structures which may provide improved execution flow control.

Applications written in assembler have the greatest speed potential, the greatest access to system resources, and the

most difficult development process. The penalties for errors in assembly are sometimes greater than for System-
RPL, meaning that Memory Lost events are more likely. This should discourage only the faint-hearted, however.

2 Getting Started

q

Stack Diagrams

A stack diagram notation is used in this book which describes the type and order of objects supplied to 2 command
or program and the type and order of results. In the case of an object that can be used in a System-RPL application,
the description includes the name, address, and stack diagram as follows:

NAME Address

Input Output
Level; Level, Level; — Levels Level, Level;

Related Flags: Flags which may affect the result

Unless mentioned otherwise, all entries will work on all versions of the HP 48. Entries specific only to the G/GX
series of calculators carry the "G/GX" mnemonic by the address. Some objects are accessed by rompointer (XLIB
name). These entries are indicated by a user binary integer value for LIBEVAL (not always safe — including the
case shown below) in the center of the top line and the XLIB notation at the top-right:

DoMsgBox
Displays a message box with a graphics object
"message” #maxwidth #minwidth grob menuobject — TRUE

#000B1lh

G/GXXLIB 1770

Object Notation
Hewlett-Packard has adopted a series of symbols to represent different object types. Some of these symbols are

listed below, along with their object type, an example of what the decompiled object type looks like in System-RPL,
and what the object looks like as displayed on the stack.

Symbol Type Object System-RPL Example Stack Example

% 0 Real number % 1.2345 1.2345

C% 1 Complex number C% 2.3 4.5 (2.3,4.5>

$ 2 String “ABC” "ABC"

arry 3 Real array ARRY [$ 1 %2 % 3] L1231
arry 4 Complex array ARRY [C% 1 2 C% 3 4] [<1,2) (354> 1

{} 5 List { *aBC” % 1.5} { "ARBC" 1.5 3%

id 6 Global name id X 'R

lam 7 Local name lam y 'y'

& 8 Secondary object (program) | :: x<< id A %2 x+ x>> ;- |[€« A2 + *»
symb 9 Algebraic DOSYMB ID X %2 x" ; tEh2!

hxs 10 Binary integer 247 # 247d

grob 11 Graphics object GROB E 0000200008ABCD Graphic 2 x 8
tagged 12 Tagged object TAG Dist % 34.45 Dist: 34.45
symb 13 Unit object DOEXT ... ; 32_ftrs~2
romptr 14 XLIB name ROMPTR domain XLIB 766 1

20 Internal binary integer 247 {247d>

0% 21 Extended real number %% 1.23456789012345 Long Real
C%% 22 Extended complex number | C%% 1.234 5.678 Long Complex
Inkarry 23 Linked array LNKARRY [$ 1 % 2 % 3] |Linked Array
chr 24 Character object CHR A Character
code 25 Code object CODE ... ENDCODE Code

Objects are composed of a prologue and a body. An object prologue indicates the type of object, and the body
contains the information of interest. Some objects, like strings, have a length field after the prologue that indicates
the size of the object. Objects are also classified as being atomic or composite. An atomic object is a single object,
like a real number. The body of a composite object, like a list, consists of one or more objects. For details about
individual objects, see the appendix Object Structures.

Getting Started

Fonts
A font convention has been adopted to help distinguish between text, source code, and comments. The fonts are
used as follows:

€ 1.23 + » The dot matrix font is used for User-RPL and text displayed in the HP 48 LCD.
% 1.23 %+ ; The Courier font is used for System-RPL or assembler source code.
Validate arguments An italic font is used for comments.

Installing the HP Tools
Hewlett-Packard has graciously permitted the distribution of their tools on the disk that comes with this book.

There are three basic steps to the installation of the HP tools:

1) Copy the .EXE files to a directory in your path, typically a \BIN directory. Then copy the file ENTRIES.O, and
the SASM.OPC file from the TOOLS directory to a convenient directory on your hard disk. On many systems,
this would be a \INCLUDE directory.

The next two steps involve checking the \AUTOEXEC.BAT file on your PC:
2) Make sure that the PATH variable includes the directory containing the tools from step 1.

3) Add the following line to your AUTOEXEC.BAT file: SET SASM_LIB=\INCLUDE. This tells the SASM
assembler where the SASM.OPC file is located. If you place SASM.OPC in a directory other than \INCLUDE,
make sure this line refers to the proper directory.

When these three steps have been completed, reboot your PC and you’re ready to go. The examples in this book
will assume that the files mentioned in step 1 above are in the \INCLUDE directory of your PC.

It is beyond the scope of this book to describe the details of the HP tools — you may wish to refer to the HP
documentation on the disk for details about the tools.

Example Programs

There are three directories of example programs. Each example program comes with a DOS .BAT file that compiles
a working copy of the example program, ready to download to your HP 48. Checksums and sizes are also provided
to help confirm that an example program is properly installed.

Note: Many example programs contain error checking, but most examples of
code objects do not. You should always back up your calculator before
experimenting with example programs or changes to example programs.

4 Getting Started

Introducing System-RPL

As mentioned before, System-RPL programming is a superset of the process used to create programs in User-RPL.
The basic resources are the same, but System-RPL has its own notation and options not available in User-RPL.

A First Example

We begin by comparing two objects that compute the length of the hypotenuse of a right triangle — one written in
User-RPL and the other written in System-RPL. The User-RPL example is called a program, but it's common in the
world of System-RPL to use the term secondary for the example shown on the right.

User-RPL System-RPL
Side; Side, — Sides Do % — %’
27.5 Bytes 20 Bytes HYPOT.S
Start of program 3 & Start of secondary
DUP # SWAP DUP % Square both sides DUP %* SWAPDUP $%* Square both sides
+ Add the squares S+ Add the squares
I Take the square root %SORT Take the square root
End of program i End of secondary

Note the differences between the two:

Delimiters for a User-RPL program and a secondary written in System-RPL are different. Secondaries begin
with : : (called DOCOL), and finish with ; (called SEMI).

User-RPL programs are self quoting — they place themselves on the stack until explicitly executed — and
secondaries are executed. See Program Flow Control for more about this difference.

We could have used S& to square each side in the User-RPL example, but the actual code for the user command
SQ (in the case of a real number) is : : DUP %* ; so we have used DUP # in place of S@Q.

The DUP used in the secondary is not the same as the User-RPL DUP. The User-RPL DUP checks the stack to
make sure that at least one object is on the stack before duplicating it. The System-RPL DUP assumes that there
is at least one object on the stack, and duplicates the object with no checks at all.

In User-RPL, # encapsulates every possible multiplication operation. The System-RPL example uses % *,
which multiplies two reals, and makes no argument checks. This is the object that is ultimately executed by the
User-RPL # when it is asked to multiply two real numbers. Thus the System-RPL example avoids the time
required to determine which multiply routine to use. The same logic applies to the use of $+ and $SQRT.

The System-RPL example is smaller for two reasons. First, the example uses SWAPDUP, which combines the
operations of SWAP and DUP into one efficient piece of machine language. There are many such objects
available through System-RPL that combine common operations into one operation. The use of SWAPDUP also
saves space — this makes the System-RPL example 2.5 bytes shorter than it would have been if SWAP and DUP
were used individually. The System-RPL example is also smaller because it lacks the €% delimiters found in
the User-RPL program. The User-RPL program when decomposed actually contain : : and ; around the outer
program delimiters, so internally the program actually looks like : ¢ « DUP * SWAP DUP * + I » 3.
When a User-RPL program is displayed the :: and ; are suppressed.

One hazard of using the System-RPL example to find the length of a hypotenuse is that there is no argument
validation. If you’re sure that only real numbers will be present on the stack when the secondary is executed, no
problems should result. Invalid arguments supplied to the User-RPL program will generate a

Bad Argument Type error; invalid arguments supplied to the System-RPL secondary will have unpredictable
consequences, ranging from meaningless results to the loss of memory.

Another consequence of the lack of argument validation is that the program does not clear the system RAM
location that attributes the source of an error. If an error were to occur, it would be attributed to the last
command that generated an error, which does no actual harm but is quite misleading.

The System-RPL example will run faster than the User-RPL program, because all the argument checking code
has been bypassed. In this example the speed difference is minor, but in future examples you’ll begin to see
where major speed improvements can be found.

Getting Started 5

The System-RPL example shown above has been written for maximum efficiency at the expense of argument
validation. That may be appropriate for secondaries embedded in larger applications, but it is not recommended for
general use when an inexperienced user might supply invalid input data. Later in the book we will show a technique
for validating the arguments.

We now illustrate the process of compiling the System-RPL example using the HP tools on a PC.

Creating the Example With the HP Tools

To prepare the example, you will compile, assemble, and load the code using a source code file, a loader control file,
and a batch file to automate the process. The input files HYPOT.S, HYPOT.M, and the batch file HYPOT.BAT are
listed below:

HYPOT.S This is the source code file for the program.

ASSEMBLE A pseudo-op that tells the compiler to pass the next output to SASM
NIBASC /HPHP48-A/ This is a download header for binary transmission to the HP 48

RPL A pseudo-op that tells the compiler to compile the source that follows

s The beginning of the source code
DUP %* SWAPDUP %*

S+

$SQRT
HYPOT.M This is the loader control file that controls the execution of the loader SLOAD.
TITLE Hypotenuse This is an optional title that will appear in the .LR output file
OUTPUT HYPOT Instructs SLOAD to put the final output in the file HYPOT
LLIST HYPOT.LR Instructs SLOAD to put listing information and errors in HYPOT.LR
SUPPRESS XREF Suppresses a cross reference listing that would appear in HYPOT.LR
SEARCH \INCLUDE\ENTRIES.O The reference to the addresses in ENTRIES.O
REL HYPOT.O Specifies which file to load
END
HYPOT.BAT This is a batch file that encapsulates the entire process.
RPLCOMP HYPOT.S HYPOT.A Invokes RPLCOMP, generates the SASM source file HYPOT.A
SASM HYPOT.A Assembles HYPOT.A, generates HYPOT.L and HYPOT.O
SLOAD -H HYPOT.M Invokes SLOAD using the control file HYPOT.M, generates HYPOT

6 Getting Started

(

C € (

(

The file HYPOT.BAT encapsulates the entire process into a single batch file, so you have only one command to
issue at the PC keyboard. Run HYPOT.BAT, which issues the commands to compile the .S source file, assemble

the resulting .A file, and resolve the entry points with the .M file. Check HYPOT.L to make sure there were no
compile or assembly errors.

Now examine the file HYPOT.LR. You should see something resembling the listing below:

HYPOT.LR

Saturn Loader, Ver. %I%, %G%

Output Module:

Module=HYPOT

Start=00000 End=00037 Length=00038 Symbols=2293 References= 8
Date=Sat Apr 22 14:20:28 1995 Title= Hypotenuse

Source modules:
Module=\INCLUDE\ENTRIES.O
Start=00000 Module Contains No Code

Date=Fri Apr 21 21:35:29 1995 Title=Supported ROM Entry Points
Fri Apr 21 21:35:29 1995

Module=HYPOT.O
Start=00000 End=00037 Length=00038
Date=Sat Apr 22 14:20:28 1995 Title=
Sat Apr 22 14:20:28 1995

/SLOAD: End of Saturn Loader Execution

If an unresolved reference appears at the end of a .LR file, you most likely have specified an entry that is not in the
file ENTRIES.O. Make sure that you have spelled the name correctly, which is the usual source of these errors.

To try out the System-RPL example, download the file HYPOT into your HP 48 and try it out with real numbers for

input. Remember, the error checking that protected you is now gone. The section Argument Validation in the
chapter Basic Programming Tools shows how you can design your own argument validation routines.

Getting Started 7

Introducing Assembly Language

To introduce assembly language, we begin with one of the smallest possible examples — the HP 48’s equivalent of
“Hello World” in C programming. This program will return to the stack the address of the object in level 1
expressed as an internal binary integer. The HP 48 stack is merely a stack of 20-bit address pointers to objects
residing in memory. The program copies the address into a CPU register, then branches to a routine that returns the
address expressed as an internal binary integer.

To prepare the example, you will assemble and load the code using a source code file, a loader control file, and a
batch file to automate the process. The input files ADDR.A, ADDR.M, and ADDR.BAT are listed below:

ADDR.A This is the source code file for the program.
NIBASC \HPHP48-A\ This is a download header for binary transmission to the HP 48
CON(5) =DOCODE This is the prologue for a code object
REL(5) end The length field — indicates the size of the code object
GOSBVL =SAVPTR Saves the RPL pointers
A=DAT1 A Reads the pointer from stack level 1 into the A field of register A
GOVLNG =PUSH#ALOOP Pushes the A field of register A as an internal binary integer,
restores the RPL pointers, and returns to RPL
end
ADDR.M This is the loader control file that controls the execution of the loader SLOAD.
OUTPUT ADDR Instructs SLOAD to put the final output in the file ADDR
LLIST ADDR.LR Instructs SLOAD to put listing information and errors in ADDR.LR
SUPPRESS XREF Suppresses a cross reference listing that would appear in ADDR.LR
SEARCH \INCLUDE\ENTRIES.O The reference to the addresses in ENTRIES.O
REL ADDR.O Specifies which file to load
END
ADDR.BAT This is a batch file that encapsulates the entire process.
SASM ADDR.A Assembles ADDR.A, generates ADDR.L and ADDR.O
SLOAD -H ADDR.M Invokes SLOAD using the control file ADDR.M, generates ADDR

The file ADDR.BAT encapsulates the entire process into a single batch file, so you have only one command to issue
at the PC keyboard. Run ADDR.BAT, then examine the file ADDR.LR. You should see something resembling the
listing below:

ADDR.LR

Saturn Loader, Ver. %I%, %G%

Output Module:

Module=ADDR

Start=00000 End=0002A Length=0002B Symbols=2293 References= 3
Date=Sat Apr 22 14:21:13 1995 Title=

Source modules:
Module=\INCLUDE\ENTRIES.O

Start=00000 Module Contains No Code

Date=Fri Apr 21 21:35:29 1995 Title=Supported ROM Entry Points
Fri Apr 21 21:35:29 1995

Module=ADDR.O
Start=00000 End=0002A Length=0002B
Date=Sat Apr 22 14:21:13 1995 Title=
Sat Apr 22 14:21:13 1995

/SLOAD: End of Saturn Loader Execution

8 Getting Started

c CC

(

(

If an unresolved reference appears at the end of a .LR file, you most likely have specified an entry that is not in the
file ENTRIES.O. Make sure that you have spelled the name correctly, which is the usual source of these errors.
You may also want to check the .L file after assembly to check for compilation or assembly errors.

To try out the example, download the file ADDR into your HP 48 and try it out with the real number 1 on the stack.
If the HP 48 is in HEX mode, you should see the internal binary integer <2A2C9h> on the stack, which is the
address of the built-in constant 1. Notice also that if you recall ADDR to the stack, the program appears as Code.
A code object (type 25) cannot be decompiled directly on the HP 48, but the Jazz tools (available on various FTP
sites) can be used for assembly language development directly on the HP 48.

Example File Structures
The disk supplied with this book contains a directory named EXAMPLES. There are six subdirectories:

HPTOOLS Contains the HP tools

USERRPL Contains example programs written in User-RPL
SYSRPL Contains example programs written in System-RPL
ASSEMBLY Contains example programs written in assembly language
RVIEW Contains the RVIEW register viewer

PONG Contains the assembly language PONG game

User-RPL Examples

The User-RPL example programs are ready to download to the HP 48 in ASCII format. These files are named with
a .RPL extension.

System-RPL Examples

The System-RPL examples consist of a source file, a loader control file, and a DOS batch file which will build the
example program. A naming convention is used for these files. To illustrate the naming convention, consider the
example program CASE] described in Case Objects.

The input files are:

CASEl.S The System-RPL source file
CASE1l.M The loader control file
CASE1.BAT The DOS batch file

To compile and load the CASE1 example, just type CASE]1 at the PC's command line, and the CASE1.BAT batch
file will issue the commands to compile and load the example.

The output files are (in order of their creation):

CASEl.A The assembler source generated by the RPL compiler RPLCOMP from CASEL.S
CASE1l.L The assembler listing file generated by the assembler SASM

CASEl.0 The object file generated by the SASM

CASE1l.LR The listing output from the loader SLOAD

CASE1l The example ready to download to the HP 48

The diagram on the next page illustrates this process.

Getting Started 9

Source Files Commands Output Files

CASEl.S —> RPLCOMP CASEl.A CASE1l.S —> CASEl.A

CASEl.L
SASM CASEl.A — asEl.o
/CASELLR
CASEl.M —> SLOAD -H CASEl.M —_—
CASE1l

Assembly Examples

Like the System-RPL examples, the assembly language examples consist of a source file, a loader control file, and a
DOS batch file which will build the example program. A similar naming convention is used for these files. To
illustrate the naming convention, consider the example program SWP described in Writing Your Own Code Objects.

The input files are:

SWP.A The assembler source file
SWP.M The loader control file
SWP.BAT The DOS batch file

To compile and load the SWP example, just type SWP at the PC's command line, and the SWP.BAT batch file will
issue the commands to assemble and load the example.

The output files are (in order of their creation):

SWP.L The assembler listing file generated by the assembler SASM
SWP.O The object file generated by the SASM

SWP.LR The listing output from the loader SLOAD

SWP The example ready to download to the HP 48

10 Getting Started

c ¢ ¢ C € (

(

(

Basic Programming Tools

Programs written in System-RPL have a rich set of options for execution control, local variable use, and argument
validation. This chapter will introduce some of the basic tools and program structures that you will use many times.
There are a number of object types used by System-RPL objects which are not available in the User-RPL
programming environment. The most prevalent of these are internal binary integers and the system flags TRUE and
FALSE. These will be introduced first in the sections Binary Integers and Flags, because they’re used everywhere
else. The section Tests describes objects that perform various kinds of tests. These sections are followed by an
introduction to some execution control constructs in the section Program Flow Control. When you are designing a
System-RPL program, you should evaluate the precautions neccessary to prevent the unwary user from getting
unexpected results from invalid or missing input data. The section Argument Validation will describe the tools
available for these tasks. The section Temporary Variables will describe the use of temporary environments, which
are more flexible than the local variables found in User-RPL programs.

Binary Integers

Internal binary integers (sometimes nicknamed bints) are unsigned 20-bit quantities that are useful for many
functions. These integers differ from user binary integers, which are actually stored internally as hex strings. To
avoid confusion, this book will use the terms user binary integer and internal binary integer (or bint).

Internal Binary Integers in the HP 48 Display

While user binary integers (object type 10) are displayed with a leading # character, internal binary integers are
displayed within <> symbols. A trailing character indicates the base display mode. For instance, if the base mode
of the HP 48 is binary, then the internal binary integer 5 would be displayed as <181b>.

Internal binary integers live in the range 0 < n < FFFFF. If you subtract <1h> from <Oh>, you get <FFFFFh>
(decimal 1048575). No overflow or underflow indications are available.

Internal Binary Integers in System-RPL Source Code

The bad news is that in the world of System-RPL programming, the symbol # is used to denote internal binary
integers, and the symbol hxs is used to denote User-RPL binary integers. Thus, when you see an object with a # in
the name, the object probably works with internal binary integers. For instance, the object #+ adds two internal
binary integers, returning an internal binary integer as the result.

The RPL compiler allows two notations for specifying internal binary integers. If the quantity is prefixed with the
symbol #, then hex digits are expected. If no prefix character is present, the digits are interpreted as decimal values.
Some commonly used bints (internal binary integers) are built into the HP 48, and can be accessed by name, saving
2.5 bytes from the 5 bytes taken by a compiled bint. The following secondary returns the same value three times:

. 32 The decimal value 32 expressed as a bint

20 The hex number 20h expressed as a bint
THIRTYTWO A pointer to the internal bint 32.

’

When the code listed above is compiled with RPLCOMP.EXE, the first two instances generate 5 bytes of code
(values compiled as bint objects) and the third example generates 2.5 bytes (a pointer to a built-in bint):

CON(5) =DOCOL The start of the secondary (::)

CON(5) =DOBINT The prologue of an internal binary integer
CON(5) 32 The value of the bint

CON(5) =DOBINT The prologue of an internal binary integer
CON(5) #20 The hex digits for the value 32

CON(5) =THIRTYTWO The pointer to the built-in value of 32
CON(5) =SEMI The end of the secondary (;)

Basic Programming Tools 11

Built-in Internal Binary Integers. The following objects put built-in internal binary integers on the stack:

Object Stack Output | Address || Object Stack Output | Address
MINUSONE <FFFFFh> #6509Eh FORTYTHREE <43d> #0419Dh
ZERO <0d> #03FEFh FORTYFOUR <44d> #64B12h
ONE <ld> #03FF9h FORTYFIVE <45d> #64B1Ch
TWO <L2d> #04003h FORTYSIX <46d> #64B26h
THREE <3d> #0400Dh FORTYSEVEN <47d> #64B30h
FOUR <4d> #04017h FORTYEIGHT <48d> #64B3Ah
FIVE <5d> #04021h FORTYNINE <49d> #64B44h
SIX <6d> #0402Bh FIFTY <50d> #64B4Eh
SEVEN <7d> #04035h FIFTYONE <51d> #64B58h
EIGHT <8d> #0403Fh FIFTYTWO <52d> #64B62h
NINE <9d> #04049h FIFTYTHREE <53d> #64B6Ch
TEN <10d> #04053h FIFTYFOUR <54d> #64B76h
ELEVEN <l1d> #0405Dh FIFTYFIVE <55d> #64B80h
TWELVE <12d> #04067h FIFTYSIX <56d> #64B8Ah
THIRTEEN <13d> #04071h FIFTYSEVEN <57d> #64B94h
FOURTEEN <14d> #0407Bh FIFTYEIGHT <58d> #64B9Eh
FIFTEEN <15d> #04085h FIFTYNINE <59d> #64B8Ah
SIXTEEN <16d> #0408Fh SIXTY <60d> #64BB2h
SEVENTEEN <17d> #0409%h SIXTYONE <61d> #64BBCh
EIGHTEEN <18d> #040A3h SIXTYTWO <62d> #64BC6h
NINETEEN <19d> #040ADh SIXTYTHREE <63d> #64BDO0Oh
TWENTY <20d> #040B7h SIXTYFOUR <64d> #64BDAh
TWENTYONE <L1d> #040C1h SIXTYEIGHT <68d> #64C02h
TWENTYTWO <2d4> #040CBh SEVENTY <70d> #64C16h
TWENTYTHREE | <23d> #040D5h SEVENTYFOUR | <74d> #64C20h
TWENTYFOUR <?4d> #040DFh SEVENTYNINE | <79d> #64C2Ah
TWENTYFIVE <L25d> #040ESh EIGHTY <80d> #64C34h
TWENTYSIX <26d> #040F3h EIGHTYONE <81d> #64C3Eh
TWENTYSEVEN | <27d> #040FDh ONEHUNDRED <100d> #64CACh
TWENTYEIGHT | <28d> #04107h BINT 1314 <131d> #64D24h
TWENTYNINE <29d> #04111h BINT2554 <255d> #64E28h
THIRTY <30d> #0411Bh ZEROZERO <0d> <0d> #641FCh
THIRTYONE <31d> #04125h ZEROZEROZERO | <0d> <0d> <0d> | #63AC4h
THIRTYTWO <32d> #0412Fh ZEROZEROONE | <0d> <0d> <1d> | #6431Dh
THIRTYTHREE | <33d> #0413%h ZEROZEROTWO | <0d> <0d> <2d> | #64331h
THIRTYFOUR <344> #04143h ONEONE <1d> <1d> #63AC4h
THIRTYFIVE <35d> #0414Dh #FIVE#FOUR <5d> <4d> #642E3h
THIRTYSIX <36d> #04157h #ONE#27 <1ld> <«27d> #6428 Ah
THIRTYSEVEN | <37d> #04161h #THREE#FOUR | <3d> <4d> #642D1h
THIRTYEIGHT | <38d> #0416Bh #TWO#FOUR <2d> <4d> #642BFh
THIRTYNINE <39d> #04175h #TWOH#ONE <2d> <1d> #6429Dh
FORTY <40d> #0417Fh #TWOH#TWO <2d> <2d> #642AFh
FORTYONE <41d> #04189h #ZERO#ONE <0d> <1d> #64209h
FORTYTWO <42d> #04193h #ZERO#SEVEN | <0d> <7d> #6427Ah

Other objects that put binary integers on the stack are listed under Type Dispatching.

12 Basic Programming Tools

(

(

€ € (

c C € C(

(

Type Conversions

The objects COERCE and UNCOERCE convert between internal binary integers and real numbers. The objects
COERCE2 and UNCOERCE2 convert two numbers. The stack diagrams for these objects are:

COERCE #18CEAhQ
Converts a real number into an internal binary integer

o — #
COERCE2 #194F7h
Converts two real numbers into internal binary integers

Dx Py — #x #y

UNCOERCE #18DBFh
Converts an internal binary integer into a real number

> %
UNCOERCE2 #1950Bh
Converts two internal binary integers into real numbers

#x #y o %x %y

Notice in these stack diagrams that we’re using the shorthand mentioned before — % refers to real numbers and #
refers to internal binary integers. Real numbers less than zero convert to <0>, values greater than 1048575 convert
to <FFFFFh>, fractional parts < .5 round to the next lowest integer, and fractional parts >.5 round to the next highest

integer.

Internal Binary Integer Operations

The following System-RPL objects operate on a single internal binary integer (bint):

Object Description Address
#1+ Adds 1 to a bint #03DEFh
#1- Subtracts 1 from a bint #03EOEh
#2+ Adds 2 to a bint #03E2Dh
#2- Subtracts 2 from a bint #03E4Eh
#2* Multiplies a bint by 2 #03E6Fh
#2/ Returns FLOOR(bint/2) #03E8Eh
#3+ Adds 3 to a bint #6256Ah
#3- Subtracts 3 from a bint #625FAh
#4+ Adds 4 to a bint #6257Ah
#4- Subtracts 4 from a bint #6260Ah
#5+ Adds 5 to a bint #6258 Ah
#5- Subtracts 5 from a bint #6261 Ah
#8+ Adds 8 to a bint #625BAh
#8* Multiplies a bint by 8 #62674h
#10+ Adds 10 to a bint #625DAh
#10* Multiplies a bint by 10 #6264Eh
#12+ Adds 12 to a bint #625EAh

The following System-RPL objects operate on two internal binary integers:

#* #03EC2h
Multiplies two bints

#x #y — #xty
#+ #03DBCh
Adds two bints

#x #y o #x+y
#- #03DEOh
Subtracts #y from #x

#x #y — #x-y
#/ #03EF7h
Divides #x by #y, returns remainder and quotient

#x #y — #remainder #quotient

Basic Programming Tools

13

#+-1 #63808h
Adds two bints, then subtracts 1 from the result

#X #y — #x+y-1
#-4#2/ #624FBh
Subtracts #y from #x, divides the result by two, and returns the quotient

#x #y — (#x#y)2
#-+1 #637CCh
Subtracts #y from #x, then adds 1

#x #y — #x—#y+l

The following System-RPL objects combine stack operations (see Stack Operations) with binary integer numbers or
arithmetic functions. They are quite useful for reducing the size of a program.

2DROPOO #6254Eh
Drops ob; and ob,, then returns 0 0
0b2 Obl — #0 #0
2DUP#+ #63704h
Duplicates #x and #y, then adds them
#x #y — #x #y #x+y

3PICK#+ #63740h
Copies #x in level 3, then adds to #y

#x ob #y — #x ob #x+y

4PICKi#+ #63754h
Copies #x in level 4, then adds to #y
#x oby ob; #y — #x obp ob; #x+y
4PICK#+SWAP #62DESh
Copies #x in level 4, adds to #y, then does SWAP
#x oby ob; #y — #x oby #x+y ob;
#+DUP #627D5h
Adds #x and #y, then duplicates the result
#x #y — #x+y #x+y
#+OVER #63051h
Adds #x and #y, then copies object in level 2
ob #x #y — ob #x+y ob

#+ROLL #612DEh
Adds #x and #y, then does ROLL
Oby,y...0b; #Xx #y — o0Oby,y.j..0b; Oby,y
#+SWAP #62DFEh
Adds #x to #y, then does SWAP
ob #x #y — #x+y ob

#-SWAP #62E12h
Subtracts #y from #x, then does SWAP
ob #x #y — #x-y ob
#-UNROLL #6132Ch
Subtracts #y from #x, then does UNROLL
Oby_y..0b; #x #y — ob; oby_, ...oby
#1+DUP #62809h
Adds 1 to #x, then duplicates result
#x — #x+1 #x+1

#1+NDROP #62F75h
Drops #n+1 objects from the stack

obp4i...0b; #n —
#1+PICK #61172h
Copies the object in stack level #n+1

obpi1...0b; #n — obp,; ... oby obyyg

14 Basic Programming Tools

€ (

c C C C C C(

C (

{

#1+ROLL #612F3h
Adds 1 to #x, then does ROLL
0bx+l 0b1 #x — Obx Obl Obx+1
#1+ROT #1DABBh
Adds 1 to #x, then does ROT
oby ob; #x — ob; #x+1 oby
#1+SWAP #62E26h
Adds 1 to #x, then does SWAP
ob #x — #x+1 ob
#1+UNROLL #61353h
Adds 1 to #n, then does UNROLL
Obn+1 Ob] #n — 0b1 Obn+] 0b2
#1-1SWAP #62E4Eh
Subtracts 1 from #x, then SWAPs #1 into level 2
#x — #1 #x-1
#1-DUP #6281Ah
Subtracts 1 from #x, then duplicates the result
#x — #x-1 #x-1
#1-ROT #62F0%h
Subtracts 1 from #x, then does ROT
0b2 0b1 #x — oby; #x-1 0b2
#1-SWAP #5E4A%h
Subtracts 1 from #x, then does SWAP
ob #x — #x-1 ob
#1-UNROT #28558h
Subtracts 1 from #x, then does UNROT
ob, ob; #x — #x-1 oby ob
#2+PICK #611BEh
Adds 2 to #n, then does PICK
oby,p...0b; #n — obpyp...0b; oObpio
#2+ROLL #61318h
Adds 2 to #n, then does ROLL
obpip...0b; #n — obpy41 ... Ob; Obyuo .
#2+UNROLL #61365h
Adds 2 to #n, then does UNROLL
ob,,p...0b; #n — ob; obpyr ... 0by
#3+PICK #611D2h
Adds 3 to #n, then does PICK
obp3...0b; #n — obyuz...ob; obpys
#4+PICK #611E1h
Adds 4 to #n, then does PICK
obp.4 ... 0b1 #n — 0bn+4 0b1 0bn+4
DROP#1- #637F4h
Drops one object from the stack, then subtracts 1 from #x
#x ob — #x-1
DROPONE #62946h
Replaces object with #1
ob — #l1
DUP3PICKi#+ #63704h
Duplicates #y, copies #x, then adds
#x #y — #x #y #x+y
DUP#1+ #628EBh
Duplicates #x, then adds 1
#x — #x #x+1
DUP#1+PICK #6119Eh

Duplicates #n, adds 1, then does PICK
obp41 --Ob; #n — obp.p...0b; #n

0Obpyg

Basic Programming Tools

15

16

DUP#1- #6292Fh
Duplicates #x, then subtracts 1
#x — #x #x—1
DUP#2+ #626F7h
Duplicates #x, then adds 2
#X — #x #x+2
DUPTWO #63AD8h
Duplicates ob, then returns #2
ob — ob ob #2
DUPZERO #63A88h
Duplicates ob, then returns 0
ob — ob ob #0
OVER#+ #6372Ch
Copies #x, then adds to #y
#X #y — #x #x+y
OVER#- #6377Ch
Copies #x, then subtracts from #y
#x #y — #x #y—x
OVER#2+UNROL #63105h
Copies #n, adds 2, then does UNROLL
Obn+2 0b3 #n 0b1 4 0b1 0bn+2 0b3 #n
ROT#+ #63718h
Moves #x to level 1, then adds to #y
#x ob #y — ob #x+y
ROT#+SWAP #62DCCh
Moves #x to level 1, adds to #y, then swaps levels 1 and 2
#x ob #y — #x+y ob
ROT#- #63768h
Moves #x to level 1, then subtracts from #y
#x ob #y — ob #y—x
ROT#1+ #637B8h
Moves #x to level 1, then adds 1
#x ob; oby — ob; oby #x+1
SWAP#- #62794h
Swaps #x and #y, then subtracts #x from #y
#x #y — #y—x
SWAP#1+ #62904h
Moves #x to level 1, then adds 1
#x ob — ob #x+1
SWAP#1+SWAP #51843h
Adds 1 to #x
#x ob — #x+1 ob
SWAP#1- #637EOh
Swaps #x to level 1, then subtracts 1 from #x
#x ob — ob #x-1
SWAP#1-SWAP #51857h
Subtracts 1 from #x in level 2
#x ob — #x-1 ob
SWAPOVER#- #637A4h
Returns #y and #x-y
#y — #y #x-y
ZEROOVER #63079h
Returns #0, then does OVER
ob — ob #0 ob
ZEROSWAP #62E3Ah

Returns #0, then does SWAP
ob — #0 ob

Basic Programming Tools

ccccccccccccccccoccoccccccccccccccccccceccccecco

Flags

In User-RPL programs, the result of comparisons (like >) are real numbers with the value 0 or 1. In System-RPL
programs test results are generally the built-in objects TRUE and FALSE. These flags are used for many purposes,
most frequently branching decisions. When executed, these flags just put themselves on the stack:

FALSE #03ACOh
The system object FALSE

— FALSE
TRUE #03A81h
The system object TRUE

— TRUE

The objects DROPTRUE and DROPFALSE drop an object and place a flag on the stack:

DROPFALSE #6210Ch
Replaces an object with FALSE

ob — FALSE
DROPTRUE #62103h
Replaces an object with TRUE

ob — TRUE

Other objects are available that put two flags on the stack:

FALSETRUE #6350Bh
Puts FALSE and TRUE on the stack

— FALSE TRUE
FalseFalse #2F934h
Puts two FALSE flags on the stack

— FALSE FALSE
TrueFalse #634F7h
Puts TRUE and FALSE on the stack

— TRUE FALSE
TrueTrue #0BBEDh
Puts two TRUE flags on the stack

— TRUE TRUE

Flag Conversions

When either of these flags are displayed in the HP 48 stack display, you just see Ext ernal (unless you’re using
the SRPL library). User-RPL tests return the real numbers 1 or 0 for TRUE or FALSE. The object COERCEFLAG
is useful for converting flags to real numbers if your System-RPL program needs to return a true/false result when
ending. COERCEFLAG returns 1 for TRUE or O for FALSE, then exits the current secondary.

COERCEFLAG #5380Eh
Converts a system flag into a real number and exits the current secondary
TRUE — %l
FALSE — %0

To convert a real number into a flag, use the object $0<>:

%0<> #2A7CFh
Returns TRUE if a real number is non-zero
% — FLAG

The object $0<> is one member of a large family of test objects which are discussed in greater detail in Tests.

Basic Programming Tools 17

Example: This program fragment shows the use of COERCEFLAG in a program that needs to return a true/false
result to the user at exit:

Start of program
.. Establish TRUE or FALSE flag on stack
COERCEFLAG Convert flag to 0 or 1
; End of program

Example: This program fragment shows the use of ITE (if...then...else, decribed later) to return a true/false result
to the user before going on to other tasks. AtUserStack marks the result as being "owned by the user”, so that the
result won't be discarded if an error occurs later on.

e Establish TRUE or FALSE flag on stack
ITE %1 %0 Use ITE to put the corresponding real number on the stack
AtUserStack Mark the result as being owned by the user

The program continues

’

Any time a System-RPL program returns a result to the user, the result should be marked so that it is preserved for
the user in case of low memory or other errors. The use of COERCEFLAG is often one of these cases. The object
AtUserStack is sometimes used for this purpose, and is discussed in Argument Validation.

Flag Utilities
The following objects are available for manipulating flags:

AND #03B46h
Logical AND

FLAG; FLAG, — FLAG;
NOT #03AF2h
Logical NOT

FLAG; - FLAG2

ORNOT #635B0h
Logical OR followed by logical NOT

FLAG; FLAG, — FLAG;
NOTAND #62C55h
Logical NOT, followed by logical AND

FLAG] FLAG2 - FLAG3
ROTAND #62C91h
Performs ROT, followed by logical AND

FLAG] ob FLAGZ — ob FLAG3

XOR #03ADA
Logical XOR

FLAG] FLAG;, — FLAG3

18 i Basic Programming Tools

C (

(

c C C C C(

(

{

Tests

The internal flags TRUE and FALSE appear most frequently as the result of a test on one or more objects. The

following objects test object equality, bints, real numbers, extended real numbers, and complex numbers. There are

also tests for object types, listed under Object Type Tests.

Object Equality
There are two types of object equality tests:

¢ The EQ family tests to see if two objects are the same object — their physical addresses are identical.

EQ

#03B2Eh

The EQUAL family test to see if two objects are equal — even if their physical addresses are not the same. This
is the internal counterpart to the User-RPL command SAME.

Returns TRUE if objects have the same physical address

ob, ob;y — FLAG
EQUAL #03B97h
Returns TRUE if objects are equal (like User-RPL SAME)

ob, ob; — FLAG
2DUPEQ #635D8h
Returns TRUE if objects have the same physical address

oby ob; — ob; ob, FLAG
EQOR #63605h
Does EQ test, then ORs the result with FLAG

FLAG; ob, ob; — FLAG;
EQOVER #6303Dh
Does EQ test, then OVER
obz oby ob; — obs FLAG obs

EQUALNOT #635C4h
Performs EQUAL, followed by logical NOT

ob, ob;j — FLAG
EQUALOR ##63619h
Does EQUAL test, then logical OR

FLAG; ob; ob; — FLAG2

Basic Programming Tools 19

Binary Integer Tests
The following objects test the value of internal binary integers:

20

#= #03D1%h
Equal
#x #y — FLAG
#<> #03D4Eh
Not equal
#x #y — FLAG
#> #03D83h
Greater than
#x #y — FLAG
#< #03CE4h
Less than
#x #y — FLAG
2DUP#< #6289Bh
Duplicates #x and #y, then does less-than test
#x #y — #x #y FLAG
2DUP#= #628B5h
Duplicates #x and #y, then does equal test
#x #y — #x #y FLAG
2DUP#> #628D1h
Duplicates #x and #y, then does greater-than test
#x #y — #x #y FLAG
#0= #03CA6h
Returns TRUE if bint = <0>
— FLAG
#0<> #03CC7h
Returns TRUE if bint # <0>
— FLAG
#1= #622A7h
Returns TRUE if bint = <1>
— FLAG
#1<> #622B6h
Returns TRUE if bint # <1>
— FLAG
#2= #6229Ah
Returns TRUE if bint = <2>
— FLAG
#2<> #636C8h
Returns TRUE if bint # <2>
— FLAG
#3= #6228%
Returns TRUE if bint = <3>
— FLAG
#5= #636B4h
Returns TRUE if bint = <5>
— FLAG
DUP#0<> #622D4h
Duplicates #, then returns TRUE if bint # <0>
— # FLAG
DUP#0= #62266h
Duplicates #, then returns TRUE if bint = <0>
— # FLAG

Basic Programming Tools

((

Cc C C C C (C(

(

(

Real Number Tests

Duplicates %, then does greater than or equal to zero test
% — % FLAG

DUP#1= #622C5h
Duplicates #, then returns TRUE if bint = <1>
— # FLAG
DUP#7< #63687h
Duplicates #, then returns TRUE if bint < <7>
— # FLAG
OVER#0= #622C5h
Returns TRUE if bint = <0>
ob — # ob FLAG
The following objects compare the values of two real numbers:
%< #2A871h
Less than
%, %; — FLAG
%<= #2A8B6h
Less than or equal
%, 991 — FLAG
%<> #2A8CCh
Not equal
%2 %1 — FLAG
%= #2A8Clh
Equal
%07 %1 — FLAG
%> #2A8AAN
Greater than
%, %; — FLAG
%>= #2A8A0h
Greater than or equal
Yoy 901 — FLAG
%MAXorder #62D81h
Orders two real numbers
Yoy _Po1_—> Polargest Posmallest
The following objects test the value of a single real number:
%0< #2A738h
Less than zero
% — FLAG
%0<> #2A7CFh
Not equal to zero
% — FLAG
%0= #2A76Bh
Equal to zero
% — FLAG
%0> #2A79%
Greater than zero
% — FLAG
%0>= #2ATF7h
Greater than or equal to zero
% — FLAG
DUP%0= #63BAAhO

Basic Programming Tools

21

Extended Real Number Tests
The following objects test the value of two extended real numbers:

%%< #2A81Fh
Less than
%%y %%; — FLAG
%%<= #2A8ABh
Less than or equal
%%y %%; — FLAG
%%> #2A87Fh
Greater than
%%2 %%; — FLAG
%%>= #2A895h
Greater than or equal
%0 %0y %%; — FLAG
The following objects test the value of an extended real number:
%%0<= #2A80Bh
Less than or equal to zero
%% — FLAG
%%0< #2A727h
Less than zero
%% — FLAG
%%0<> #2A7TBBh
Not equal to zero
%% — FLAG
%%0= #2A75Ah
Equal to zero
%% — FLAG
%%0> #2A788h
Greater than zero
%% — FLAG
%%0>= #2A7E3h
Greater than or equal to zero
%% — FLAG

Complex Number Tests

The following two objects test the values of a complex number or an extended complex number:

C%0= #51B43h
Equal to C%0

C% — FLAG
%% 0= #51B2Ah
Equal to C%%0

C%% — FLAG

22

Basic Programming Tools

®

(

C CCC

(

(

Advanced Topic: Missing Extended Real Test Objects

Notice that objects to perform the tests $%= and $%<> aren’t included in the tests listed on the previous page. These
objects don’t exist because they weren’t used in the HP 48 operating system, and thus were left out to save ROM
space. These objects can be created with a tiny bit of assembly language. We include the assembly language
examples EREQ and ERNEQ, which generate code objects to perform these tests.

EREQ.A
dekddkdkkkkkkkk ok k ko dkk ek kkkk kA kkkhkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkdkkk kK%

* %

** Object: EREQ

* %

** pPurpose: Compare two extended real numbers, return TRUE if equal
* %

** Entry: 2: %$%2 (Extended Real Number)
k3Gt 1: $%1 (Extended Real Number)
* %

** Exit: 1l: FLAG (TRUE if %%2=%%1)

* %

khkkkhkhkhkhkhkhkhhkdhhdhkdhkdhhhkhhkkdkhkhkdkhkhkhhkhdkdhkhhkhdhhkdhkdhkhhkkhkhkdhdkhdrdbhkdhkdhkhkhkhkdhrhhkhkdkdhkrk

NIBASC /HPHP48-A/
CON(5) =DOCODE
REL (5) end

P= 2

GOVLNG (=%%<)+7

end

EREQ can be embedded in System-RPL source code as follows:

CODE

P= 2
GOVLNG (=%%<) +7
ENDCODE

The object ERNEQ is similar to EREQ, except that the initial value for P is different:

ERNEQ.A

khkkkhkhkhkdhkhkhkhhkhkkhkdhhhhkkhkkkhkhkkkkdkkhhkhkhkhkhkdhhhkhkhkdhkhkhkhkhkhkkkhkkkhhdddddrhkhhdhkhkkhhkddhkhx
* %

** Object: ERNEQ

* %
* %

Purpose: Compare two extended real numbers, return TRUE if not equal
* %

** Entry: 2: %$%2 (Extended Real Number)
k3t 1: %$%1 (Extended Real Number)
* %

** Exit: 1: FLAG (TRUE if %%2<>%%1)

* %

dkkk kA hkkhkhkhkkkkdhhdhhhkhhkhkhhkhhhkhkhkhkhkhkhkkhkhkhkhkkkhkhhhkkdkdkdkkkkhkkhkdkhhkrkhkhhkhhkhkdkkkkkhdkdk

NIBASC /HPHP48-A/
CON(5) =DOCODE
REL (5) end

P= 13

GOVLNG (=%%<)+7

end

Basic Programming Tools 23

Unit Object Tests

The following objects test the values of unit objects, returning %1 for TRUE and %0 for FALSE.

UM#?
Returns %1 if unit objects are not equal
unit; unit; - %

#0F598h

UM<=?
Returns %1 if unit; < unit,
unit; unity, - %

#0F5D4h

UM<?
Returns %1 if unit; < unit,
unit; unit, - %

#0F5ACh

UM=?
Returns %1 if unit; == unit,
unit; unity - %

#0F584h

UM>=?
Returns %1 if unit; > unit,
unit; unity - %

#0F5E8h

uM>?
Returns %1 if unit; > unit,
unit; unity - %

#0F5COh

Note that the System-RPL object U>NCQ may be used to help determine if two unit objects are dimensionally

consistent — see Dimensional Consistency.

Character String Tests
The following objects test character strings:

DUPNULLS$? #63209h
Duplicates $, then returns TRUE if $ is empty

$ > $ FLAG
NULLS$? #0556Fh
Returns TRUE if $ is empty

$ > FLAG

Hex String Tests

The following objects compare two hex strings, returning %1 for TRUE and %0 for FALSE. These tests respect the

user's wordsize setting.

HXS==HXS
Returns %1 if hex strings are equal
hxs; hxsy; - %

#544D%h

HXS#HXS
Returns %1 if hex strings are not equal
hxs; hxs; = %

#544ECh

HXS<HXS
Returns %1 if hxs; < hxs,
hx51 hX52 - %

#54552h

HXS<=HXS
Returns %1 if hxs; < hxs;
hxs; hxs, —» %

#5453Fh

HXS>=HXS
Returns %1 if hxs; > hxs,
hxs; hxs, = %

#5452Ch

HXS>HXS
Returns %1 if hxs; > hxs,
hxs; hxs; —» %

#54500h

24

Basic Programming Tools

(

Cc C C C (¢

(

Program Flow Control

We have already stated that programming in System-RPL is much like User-RPL, but there are more options for
managing program execution in System-RPL. Before going further, it is important to highlight one major difference
between the two environments. In User-RPL, an embedded program is treated as an object (eg., placed on the

stack), and in System-RPL an embedded secondary is executed. To illustrate the difference, consider the following
two programs:

User-RPL: System-RPL:

& 89
i %1
€« 2% : %2 ;
€« 3 % :: %3 ;
4 %4

* i

Stack after execution: Stack after execution:
{ HOME } { HOME 3
3z 1 3z 1
3: €2 » 3: pa
2: €« 3 » et 3
I: 4 I: 4
| SGRT | GRT3 | REC | ADDF [DEYBLIHYPOT] [£0RT RT3 | AEC | ADDFR [DEYBLIHYPOT]

In combination with test objects that return TRUE or FALSE flags, we can take advantage of System-RPL’s
threaded execution to a great extent. Three classes of control objects are available:

e Objects that exit a secondary based on the state of a flag
e Object that support IF — THEN or IF — THEN - ELSE functions

¢ Objects that exit a secondary based on the state of a flag and perform additional actions prior to resuming
execution of the parent secondary

Each of these classes of objects will be described and illustrated below.

Early Exits From a Secondary

The objects 2 SEMI and NOT?SEMI provide for early exits from a secondary based on the state of a flag on the
stack. The object #0=?SEMI combines the #0= test with ? SEMI, making one efficient object.

?SEMI #61A3Bh
Exits the current secondary if FLAG is TRUE

FLAG —
NOT?SEMI #61A2Ch
Exits the current secondary if FLAG is FALSE

FLAG —
#0=?SEMI #61A18h
Exits the current secondary if # is zero

—

Example. The following embedded secondary divides a number by two and adds one to the result if it isn't zero:

BE Begin embedded secondary
DUP%0= ?SEMI Exit if real number is zero
%2 %/ %1 %+ Complete calculation

7 End of embedded secondary

Basic Programming Tools 25

IF - THEN - ELSE Structures
There are two classes of objects that may be used to control program execution based on a system flag:

¢ Postfix objects that take their arguments from the stack
e Prefix objects that execute or skip the next object in the secondary

Postfix Objects. The postfix objects RPIT and RPITE take their arguments from the stack:

RPIT #070FDh
Executes ob if FLAG is TRUE, otherwise drops ob
TRUE ob — Executes ob
FALSE ob —
RPITE #070C3h
Execute obtryE if FLAG is TRUE, otherwise executes obga1 sg
TRUE obtrug ObralLse — Executes obTryg
FALSE obtrug ObpaLsg — Executes obparse

Example: The following secondary expects a real number on the stack and puts "Zero" on the stack if it’s zero, or
"Non-Zero" if the number is non-zero:

%0= "Zero" "Non-Zero" RPITE

Prefix Objects. The prefix objects take a flag from the stack and execute or skip the next one or two objects in the
secondary. Note that NOT_IT and ?SKIP are two commonly used names for the same object.

NOT_IT or ?SKIP #0712Ah
If FLAG is TRUE, skips the next object in the secondary
FLAG —
: ?SKIP object ... ;
iT #619BCh
If FLAG is TRUE, executes the next object in secondary otherwise skips the
next object
FLAG -
IT ObjeCtTRUE c oo 7
ITE #61AD8h
If FLAG is TRUE, executes the next object in secondary and skips the
following object, otherwise skips the next object and executes the following
object
FLAG —
ITE ObjeCtTRUE ObjeCtFAL§E e e 7

26 Basic Programming Tools

Examples: The following secondary expects a real number on the stack, divides it by two if it’s non-zero, and
duplicates the result.

%$0= ?SKIP :: %2 %/ ; DUP

’

The following secondary expects a real number on the stack and puts "Zero" on the stack if it’s zero, or "MNon-
Zero" if the number is non-zero, then duplicates the result:

%0=
ITE
“Zero”
“Non-Zero”
DUP

’

Combination Objects. The following objects combine test and branch operations:

#0=?SKIP #6333Ah
If # is zero, skips the next object in the secondary
>
#0=?SKIP object ... ;
#1=?SKIP #63353h
If # is one, skips the next object in the secondary, otherwise executes the next
object
>
#1=?SKIP object ... ;
#>?SKIP #63399h
If #x > #y, skips the next object
#y -
: #>?SKIP object ... ;
?SKIPSWAP #62D9Fh

If FLAG is FALSE, swaps ob; and ob,
oby ob; FALSE — ob; ob;
ob, ob; TRUE — ob; ob;
38 ?SKIPSWAP ... ;
#0=ITE #63E8%h
If # is zero, executes the next object in the secondary and skips the following
object, otherwise skips the next object and executes the following object
-
#0=ITE objectTRUE ObjeCtFALSE ooo 7

#<ITE #63E9Dh
If #x < #y, executes the next object in the secondary and skips the following
object, otherwise skips the next object and executes the following object

#y o

3 #<ITE ObjeCtTRUE Obj,GCtFALSE Soo o

#=ITE #62C2Dh
If #x = #y, executes the next object in the secondary and skips the following
object, otherwise skips the next object and executes the following object

#x #y -

: . #=ITE objectTRUE objectFALSE c e 7

ANDITE #63E61h
If (FLAG; AND FLAG?) is TRUE, executes the next object in the secondary

and skips the following object, otherwise skips the next object and executes the
following object

FLAG, FLAG, —
. ANDITE ObjeCtTRUE objectFALSE 000

Basic Programming Tools 27

Example: The following program tests system flag 40 to see if the clock is being displayed. The string "Program
Complete" is appended with the time of day if the clock is being displayed, otherwise the string is appended with a

DUP#0=IT #63E48h
Duplicates #, then if # is zero executes the next object in the secondary
>
. DUP#0=IT object ... ;
DUP#0=ITE #63EC5h

Duplicates #, then if # is zero executes the next object in the secondary and
skips the following object, otherwise skips the next object and executes the
following object

>
DUP#0=ITE objectrryr objectrarsg --- :
EQIT #63E2Fh
If ob; has the same address as ob,, executes the next object in the secondary
ob, ob; —
EQIT object ... ;
EQITE #63E75h

If ob; has the same address as ob,, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes the
following object
0b2 ob; —
EQITE objectTRUE objec tFALSE c .. g

SysITE #63EEDh
If the system flag specified by # is set, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes the
following object. System flags are numbered from #1d to #63d, corresponding
to flags —1 to —63 in User-RPL.
#system-flag —
SysITE ObjeCtTRUE ObjeC tFALSE P

UserITE #63EDY%h
If the user flag specified by # is set, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes the
following object. User flags are numbered from #1d to #63d, corresponding to
flags 1 to 63 in User-RPL.
#user-flag —
. UserITE ObjeCtTRUE ObjeCtFALSE - e 7

period.

TIMEDONE 78.5 Bytes Checksum #2E17h

(= $8)
OLASTOWDOB'! Clears saved command name (see Argument Validation)
CKONOLASTWD Asserts no arguments

"Program complete"
FORTY SysITE

" at "
TOD TOD>t$ &S

&S

Test system flag 40
Start of TRUE object
"at"
Appends a string representing the current time of day to " at "
End of TRUE object
FALSE object
Appends time or period string

Basic Programming Tools

C C C C (

(

CASE Objects
The object case provides one of the most useful program flow control options in System-RPL. case takes a flag
from the stack, usually the result of a test operation. If the flag is TRUE, the next object in the secondary is

executed and the rest of the secondary is discarded. If the flag is FALSE, the next object in the secondary is skipped
and the rest of the secondary is executed.

case #61993h
If FLAG is TRUE, executes objectTgpyg and skips the remainder of the

secondary, otherwise skips objectTryr and executes the remainder of the
secondary
FLAG —
case objectrryg

~e

Example: The following secondary expects a real number on the stack, converts it to a bint, and returns " Zero" if
the bint is O, "One" if the bint is one, " Two" if the bint is two, otherwise returns "0t her". This example
validates the input argument using objects described in Argument Validation.

CASE1l 97 Bytes Checksum #636Eh

(% > 535)

OLASTOWDOB! CK1NOLASTWD Expect one argument

CK&DISPATCH1 real Insist on a real number
COERCE Convert real number to a bint
DUP#0= case :: DROP "Zero" ; Return "Zero" if bint is zero
DUP#1= case :: DROP "One" ; Return "One" if bint is one
#2= case "Two" Return "Two" if bint is two
"Other" Return "Other"” for all other values

CASE Combination Objects. There are many objects that can help save code by combining test or other
operations with case. There are two classes of combination objects involving case:

* Objects that execute the next object and discard the remainder of the secondary if the flag is TRUE or skip the
next object in the secondary and execute the remainder of the secondary if the flag is FALSE

* Objects that exit the secondary with an included action if the flag is TRUE or execute the remainder of the
secondary if the flag is FALSE.

A naming convention helps to differentiate between the different case objects. Generally, an object name ending
with DROP (capital letters) suggests an object whose last action is to DROP an object from the stack. Objects with
drop in the name (lowercase) suggest an object that drops an object in the true case before performing the next
task. Compare casedrop with caseDROP to see how this works.

Before listing the stack diagrams for these objects, we illustrate the use of four of them with examples.

Basic Programming Tools 29

The object casedrop combines case with the action of DROP before the true-object is executed:

casedrop #618F7h
If FLAG is TRUE, drops an object from the stack, executes objectrgyg, and
skips the remainder of the secondary; otherwise skips objectrryg and executes
the remainder of the secondary
ob TRUE —
FALSE — ob
casedrop objectrryg ... ;

The object DUP#0=csedrp combines the actions of DUP#0= and casedrop into one object:

DUP#0=csedrp #618A8h
Duplicates #, then if # is zero, drops # from the stack, executes objectrgryg, and
skips the remainder of the secondary; otherwise skips objectrryr and executes
the remainder of the secondary
- (#x = #y)
- # (#x ##y)
DUP#0=csedrp objectpryg .-. ;

These combination objects allow you to rewrite the example CASE1 on the previous page saving 17.5 bytes:

CASE2 79.5 Bytes Checksum #BEF2h

(% >3)

OLASTOWDOB! CK1NOLASTWD Expect one argument

CK&DISPATCH1 real Insist on a real number
COERCE Convert real number to a bint
DUP#0=csedrp "Zero" Return "Zero" if bint is zero
DUP#1= casedrop "One" Return "One" if bint is one
#2= case "Two" Return "Two" if bint is two
"Other" Return "Other" for all other values

The object #=casedrop combines the actions OVER, #=, and casedrop into a single object that's useful for
executing different objects based on the value of a bint. This object is used frequently in key handlers, and probably
should have been named OVER#=casedrop.

#=casedrop #618D3h
If #x = #y, drops #x and #y from the stack, executes objectrryg, and skips the
remainder of the secondary; otherwise drops #y, skips objectrryg, and executes
the remainder of the secondary.

#x #y — (#x = #y)
#x #y — #x (#x ##y)
#=casedrop objectrryg --- i
30 Basic Programming Tools

(

C C C (¢ (

(

The example CASE3 uses #=casedrop to produce another variant on our previous two examples:

CASE3 82 Bytes Checksum #89EOh

(%> %)

OLASTOWDOB ! CKINOLASTWD Expect one argument

CK&DISPATCH1 real Insist on a real number
COERCE Convert real number to a bint
ZERO #=casedrop "Zero" Return "Zero" if bint is zero
ONE #=casedrop "One" Return "One" if bint is one
#2= case "Two" Return "Two" if bint is two
"Other" Return "Other” for all other values

The second class of case combination objects mentioned is objects that exit with a combined operation or execute
the remainder of the secondary. An example of this is caseDROP.

caseDROP #6194Bh
If FLAG is TRUE, drops an object from the stack and exits the secondary;
otherwise executes the remainder of the secondary
ob TRUE —
FALSE — ob
caseDROP ... ;

Example: This secondary expects a real number on the stack representing a user flag. If the number is in the range
1 to 4, the corresponding user flag is set, otherwise no action is taken.

CASE4 49.5 Bytes Checksum #DCA7h

(% >)
OLASTOWDOB! CK1NOLASTWD Expect one argument
CK&DISPATCH1 real Insist on a real number
COERCE Convert real number to a bint
DUP#0= caseDROP Exit, dropping the bint, if the bint is zero
DUP FOUR #> caseDROP Exit, dropping the bint, if the bint is greater than four
SetUserFlag Set the user flag

Basic Programming Tools 31

Here are the objects that combine case with other operations:

32

#=casedrop #618D3h
If #x =#y, drops #x and #y from the stack, executes objectyryE, and skips the
remainder of the secondary, otherwise drops #y, skips objectrryE, and executes
the remainder of the secondary
#x #y > (#x = #y)
#x #y — #x (#x ##y)
#=casedrop objectpryg ... ;

%0=case #5F127h
If % is equal to zero, executes objectTryg and skips the remainder of the
secondary, otherwise skips objectrryr and executes the remainder of the
secondary
% —
%0=case objectrryg ... ;

%l=case #5F181h
If % is equal to one, executes objectyryg and skips the remainder of the
secondary, otherwise skips objectrryg and executes the remainder of the
secondary
% —
%¥l=case objecCtrryg ... ;

ANDNOTcase #63DDFh
If FLAG, and FLAG; are not both TRUE, executes objectrryg and skips the
remainder of the secondary, otherwise skips objectrryg and executes the
remainder of the secondary
FLAG, FLAG; -
. ANDNOTcase objectrryg --- ;

ANDcase #63CEAh
If FLAG, and FLAG; are both TRUE, executes objectyryg and skips the
remainder of the secondary, otherwise skips objectrpyg and executes the
remainder of the secondary
FLAG, FLAG; -
: . ANDcase objectpryg ---. ;

DUP#0=case #61891h
Duplicates #, then if # is zero executes objectrryg and skips the remainder of
the secondary, otherwise skips objectrryr and executes the remainder of the
secondary
o
. DUP#0=case objectrgyg ... i

DUP#0=csedrp #618A8h
Duplicates #, then if # is zero, drops # from the stack, executes objectrgpyg, and

skips the remainder of the secondary, otherwise skips objectrry and executes
the remainder of the secondary

- #=20)
> # (##0)
. DUP#0=csedrp objectoryg .-.- :
EQUALNOTcase #63DF3h

If ob; is not equal to ob,, executes objectrgryg and skips the remainder of the
secondary, otherwise skips objectrgryr and executes the remainder of the
secondary

oby, ob; —
EQUALNOTcase objectrryg --- ;

EQUALcase #63CFEh
If ob; is equal to ob,, executes objectyryg and skips the remainder of the
secondary, otherwise skips objectrryg and executes the remainder of the
secondary

ob, ob; —

EQUALcase objectrryg - .- ;

Basic Programming Tools

EQUALcasedrp #63CA4h
If ob; is equal to obs, drops ob; from the stack, executes objectrgryg, and skips
the remainder of the secondary, otherwise skips objectTryg and executes the
remainder of the secondary
obs oby ob; — (oby = ob3)
obz ob, ob; — ob; (oby #0b3)
EQUALcasedrp objectpryg -.- ;

EQcase #61933h
If ob; has the same address as oby, executes objectTryg and skips the
remainder of the secondary, otherwise skips objecttryg and executes the
remainder of the secondary

oby ob; —

EQcase objectrryr - -- i

NOTcase #619ADh
If FLAG is FALSE, executes objectrgyg and skips the remainder of the
secondary, otherwise skips objectrryr and executes the remainder of the
secondary
FLAG -
. NOTcase objectpgyg --.- :

NOTcasedrop #618E8h
If FLAG is FALSE, drops ob, executes objectrgyg, and skips the remainder of
the secondary, otherwise skips objectrryg and executes the remainder of the
secondary
ob TRUE — ob
ob FALSE —
. NOTcasedrop objectoryg ... ;

NOTcase2drop #619ADh
If FLAG is FALSE, drops ob; and oby, executes objectTryk, and skips the
remainder of the secondary, otherwise skips object7ryg and executes the
remainder of the secondary
oby 0b1 TRUE - 0b2 0b1
ob, ob; FALSE —
. NOTcase2drop objectrryg --. ;

ORcase #629BCh
If either FLAG; or FLAG; are TRUE, executes objectrgryg and skips the
remainder of the secondary, otherwise skips objectrryg and executes the
remainder of the secondary
FLAG, FLAG; -
. ORcase objectrryg --- i

OVER#=case #6187Ch
Does OVER, then if #; = #,, executes objectTgpyg and skips the remainder of
the secondary, otherwise skips objectTryg and executes the remainder of the
secondary
#2 #1 - #2
. OVER#=case objectogyg .-- ;

casedrop #618F7h
If FLAG is TRUE, drops an object from the stack, executes objectrryg, and
skips the remainder of the secondary, otherwise skips objectTpryg and executes
the remainder of the secondary
ob TRUE -
FALSE — ob
casedrop objectogyg - -. i

Basic Programming Tools

33

The following case combination objects execute an action before skipping the remainder of the current secondary
if the flag argument or test result is true.

DUP#0=csDROP #618A8h
Duplicates #, then if # = 0, drops # and skips the remainder of the secondary
> #=0)
> # (##0)
. DUP#0=csDROP ... ;
NOTcase2DROP #61984h
If FLAG is FALSE, drops two objects from the stack and skips the remainder
of the secondary
ob, ob; TRUE — oby, ob;
FALSE —
. NOTcase2DROP ... ;
NOTcaseFALSE #5FB49h

If FLAG is TRUE, executes the remainder of the secondary, otherwise puts
FALSE on the stack and skips the remainder of the secondary
TRUE -
FALSE — FALSE
. NOTcaseFALSE ... ;

NOTcaseTRUE #638CBh
If FLAG is TRUE, executes the remainder of the secondary, otherwise puts
TRUE on the stack and skips the remainder of the secondary
TRUE -
FALSE — FALSE
. NOTcaseTRUE ... ;

NcaseSIZEERR #63B19h
If FLAG is TRUE, executes the remainder of the secondary, otherwise issues
the Bad Argument Value error

FLAG -
H . NcaseSIZEERR ... ;
NcaseTYPEERR #63B46h
If FLAG is TRUE, executes the remainder of the secondary, otherwise issues
the Bad Argument Type error
FLAG -
e . NcaseTYPEERR ... ;
case2DROP #61984h
If FLAG is TRUE, drops two objects from the stack and skips the remainder of
the secondary
ob, ob; TRUE —
FALSE — ob, ob;
HE case2DROP ... ;
caseDROP #6194Bh
If FLAG is TRUE, drops an object from the stack and skips the remainder of
the secondary
ob TRUE —
FALSE — ob
HE . caseDROP ... ;
caseDoBadKey #63BEBh

If FLAG is TRUE, executes DoBadKey (issues invalid key beep) and skips the
remainder of the secondary
FLAG -
: . caseDoBadKey ... ;
caseDrpBadRy #63BD2h
If FLAG is TRUE, drops an object from the stack, executes DoBadKey (issues
invalid key beep), and skips the remainder of the secondary
ob TRUE —
FALSE — ob
caseDrpBadKy ... ;

34 Basic Programming Tools

(P

S

c ¢ € (

C

caseERRJMP #63169h
If FLAG is TRUE, skips the remainder of the secondary and does ERRIMP
FLAG -
s . caseERRJMP ... ;
caseFALSE #6359Ch

If FLAG is TRUE, puts FALSE on the stack and skips the remainder of the
secondary
FALSE -
TRUE — FALSE
. caseFALSE ... ;

caseSIZEERR #63B05h
If FLAG is FALSE, executes the remainder of the secondary, otherwise issues
the Bad Argument Value error

FLAG -
. caseSIZEERR ... ;

caseTRUE #634E3h
If FLAG is TRUE, puts TRUE on the stack and skips the remainder of the
secondary
FALSE -
TRUE — TRUE
. caseTRUE ... ;

casedrpfls #6356Ah
If FLAG is TRUE, drops ob, puts FALSE on the stack, and skips the remainder
of the secondary
ob FALSE — ob
ob TRUE — FALSE
: . casedrpfls ... ;

case2drpfls #63583h
If FLAG is TRUE, drops ob; and ob,, puts FALSE on the stack, and skips the

remainder of the secondary
Obz Obl FALSE — 0b2 Ob]
ob, ob; TRUE — FALSE
ek . case2drpfls ... ;

casedrptru #628B2h
If FLAG is TRUE, drops ob, puts TRUE on the stack, and skips the remainder
of the secondary
ob FALSE — ob

TRUE — TRUE

. casedrptru ... ;

Basic Programming Tools

35

Loop Structures
Program loops are useful for repetitive execution of a procedure. There are two general classes of loops:

* Definite loops execute a loop-clause at least once, and execute a predefined number of iterations.

* Indefinite loops execute a loop-clause repeatedly until a test-clause returns a true result. One form of an
indefinite loop may not execute at all if an initial test fails.

Definite Loops

Definite loops are implemented with the object DO and one of its counterparts: LOOP or +LOOP. When DO is
executed, a DoLoop environment is created which stores the index, stopping value, and interpreter pointer. The
index and stop values are internal binary integers. DoLoop environments can be nested indefinitely.

Basic DoLoop Objects. The objects DO, LOOP, and +LOOP are recognized by the compiler RPLCOMP, which
checks to see that DO and LOOP objects are properly matched.

DO #073F7h
Begins DO loop
#finish #start —
::... #finish #start DO loop-clause LOOP ...;
::... #finish #start DC loop-clause #increment +LOOP ...;
LOOP #07334h
Increments index of topmost DoLoop environment, abandons DoLoop

environment if the new index is > the stopping value, otherwise executes loop
clause again

ﬁ
+LOOP #073A5h
Increments index of topmost DoLoop environment by #increment, abandons
DoLoop environment if the new index is > the stopping value, otherwise
executes loop clause again
#increment —

DoLoop Utilities. The objects #1+_ONE_DO, DUP#0_DO, and ZERO_DO combine several actions into one object.
When a program that uses these objects is being compiled with RPLCOMP, the compiler directive (DO) must be
included after the object to tell the compiler that a DoLoop is being started. This will prevent an error from being
generated when the compiler encounters the matching LOOP object.

#1+_ONE_DO #073DBh
Equivalent to ONE #+ ONE DO
#finish —
#finish #1+_ONE_DO (DO) loop-clause LOOP ... ;
DUP#0_DO #6347Fh

Equivalent to DUP ZERO DO
#finish — #finish
#finish DUP#0_DO (DO) loop-clause LOOP ... ;

ZERO_DO #073C3h
Equivalent to ZERO DO

#finish —
#finish ZERO_DO (DO) loop-clause LOOP ... ;

36 Basic Programming Tools

Example: The following source fragment illustrates the use of these objects with the (DO) compiler directive:

ZERO_DO (DO)

LOOP

Accessing DoLoop Indices. The index value for the topmost DoLoop environment can be recalled with INDEX@
and can be modified by using INDEXSTO. The index value for the second DoLoop environment can be recalled
with JINDEX@ and can be modified by using JINDEXSTO.

INDEX@ #07221h
Recalls the index value from the topmost DoLoop environment
— _#index
INDEXSTO #07270h
Stores a new value for the index in the topmost DoLoop environment
#index —
JINDEX@ #07258h
Recalls the index value from the second DoLoop environment
— #index
JINDEXSTO #072ADh
Stores a new value for the index in the second DoLoop environment
#index —

Examples: The first program places the internal binary integers 4, 5, 6, and 7 on the stack; the second program
places the internal binary integers 10, 20, and 30 on the stack:

:: EIGHT FOUR DO INDEXE LOOP

’

THIRTYONE TEN DO INDEX@ TEN +LOOP

’

Accessing DO Loop Stop Values. The stop value for the topmost DoLoop environment can be recalled with
ISTOP@ and can be modified by using ISTOPSTO. The stop value for the second DoLoop environment can be
recalled with JSTOP@ and can be modified by using JSTOPSTO.

ISTOP@ #0724%h
Recalls the stop value from the topmost DoLoop environment
— #stop
ISTOPSTO #07295h
Stores a new stop value in the topmost DoLoop environment
#stop —
ZEROISTOPSTO #6400Fh
Stores <0d> in the stop value in the topmost DoLoop environment
__)
JSTOP@ #07264h
Recalls the stop value from the second DoLoop environment
— #stop
JSTOPSTO #072C2h
Stores a new stop value in the second DoLoop environment
fistop —

Basic Programming Tools 37

Indefinite Loops

There are three indefinite loop structures available:

* BEGIN.. WHILE ... REPEAT loops contain an explicit test-clause and loop-clause. The loop clause may never
be executed if the test-clause returns FALSE. The loop clause is assumed to be a secondary object — the
RPLCOMP compiler places : : and ; around the loop clause. See Compiling WHILE Loops below.

* BEGIN ... UNTIL loops always execute at least once — the object UNTIL expects either a TRUE or FALSE

flag.

* BEGIN ... AGAIN loops have no test — they execute until an error event occurs or an RDROP is executed to
remove the address placed on the return stack by BEGIN.

AGAIN #071ABh
Unconditionally repeats loop-clause
_
. BEGIN loop-clause AGAIN ... ;
BEGIN #071A2h

Copies the interpreter pointer to the return stack, serving as a beginning object
for three loop structures

_>
. BEGIN loop-clause AGAIN ... ;
. BEGIN test-clause WHILE loop-clause REPEAT ... ;
. BEGIN loop-clause UNTIL ... ;

REPEAT

Copies the first pointer on the return stack to the interpreter pointer, completing
a WHILE loop

#071E5h

_)
. BEGIN test-clause WHILE loop-clause REPEAT ... ;

WHILE

REPEAT

If flag is true, allows execution of loop clause, otherwise drops one pointer
from the return stack and skips the interpreter pointer to the object after

#071EEh

FLAG -
. BEGIN test-clause WHILE loop-clause REPEAT ... ;

UNTIL

If flag is true, drops the top pointer on the return stack to terminate the loop,
otherwise copies the first pointer on the return stack to the interpreter pointer to
execute the loop-clause again

#071C8h

FLAG —
. BEGIN loop-clause UNTIL ... ;

Example: The following program returns the number of random numbers generated before one with a value greater
than or equal to .95 is generated. The object $¥RAN (address #2AFC2h) returns a random number 7 such that

0<n<l.

NUMRAN 53.5 Bytes
(>%)

Checksum #95D1h

AtUserStack
ZERO
BEGIN

%RAN % .95 %<
WHILE

#1+
REPEAT
UNCOERCE

Clears saved command name, no arguments
Initial value of the counter

Beginning of WHILE loop structure
Test-clause

Executes loop-clause if flag is TRUE
Loop-clause: increments counter

Continue loop at %RAN

Convert counter to real number

38

Basic Programming Tools

((

c C C C ¢ C(

3

(

Compiling WHILE Loops. The RPLCOMP compiler places secondary delimiters around the loop clause in a
WHILE loop. For instance, the example NUMRAN.S from the previous page looks like this after being compiled:

AtUserStack
ZERO
BEGIN
FRAN % .95 %<
WHILE
38 Beginning of secondary
#1+
; End of secondary
REPEAT
UNCOERCE

’

Since the secondary delimeters are added by the compiler, you can use objects like ?SEMI or case to cause an
early exit from the loop clause (see Case Structures).

Basic Programming Tools 39

Runstream Operators

The return stack is a stack of pointers to objects embedded in composite objects, usually secondaries, called the
runstream. The objects described here are useful for placing objects on the data or return stack, or for building your
own control structures. The most often-used is ', which places the next object in the current secondary on the data
stack.

! #06E97h
Pushes the next object (or object pointer) in the program on the data stack
— object
1 ' object ... ;
COLA #06FD1h
Evaluates the next object in the current secondary, discarding the remainder of
the secondary
_)
. COLA object discarded objects ;
IDUP ’ #0716Bh
Copies the topmost item on the return stack
_)
>R #06EEBh
Pops a composite object off the data stack and pushes it on the return stack
Ny D
'R #06EEBh
Pops an object (or object pointer) off the return stack and pushes it on the data
stack
— object
ticR #61B8%h

Pops the next object in the second composite object in the return stack and
pushes it and TRUE on the data stack. If the object is SEMI, pops the return
stack and pushes FALSE on the data stack.

— object TRUE Not SEMI

— FALSE SEMI
R@ #07012h
Creates a secondary in temporary memory (TEMPOB) from the composite
pointed to by the top return stack pointer, pops the return stack, and pushes a
pointer to the secondary on the return stack

- ..
R> #0701Fh
Creates a secondary in temporary memory (TEMPOB) from the composite
pointed to by the top return stack pointer and pushes a pointer to the secondary
on the return stack

- .. ;
RDROP #06FB7h
Pops the return stack

e d
2RDROP #6114Eh
Pops two levels off the return stack

-
3RDROP #61160h
Pops three levels off the return stack

_)
RDUP #14EASh
Duplicates the top item on the return stack

_)
RSWAP #60EBDh
Swap the top two items on the return stack

-

The example RSTR in Control Structure Examples shows how some of these objects may be used.

40 Basic Programming Tools

«c C CC CC (<

(

Argument Validation

Any program that is going accept input from the user should validate the number and type of arguments before
proceeding. One of the reasons that you are probably interested in writing code in System-RPL is that you wish to

avoid the argument checking that is inherent in every User-RPL command or function, yet it is still important to
provide some protection at the very beginning.

Attributing Errors

An integral part of the process of validating arguments is to make sure that errors are correctly attributed. This is
often done in combination with type dispactching. To illustrate the problems associated with error attribution,
consider the System-RPL program : : %/ ;. With the real numbers 5 and O in stack levels 3 and 2, and the object
:: %/ ; instack level 1, press [EVAL). The divide operation generates an Infinite Result error:

Stack before EVAL: Stack after EVAL:
EVAL Error:
1 HOME } Infinite Result
4z 4:
3: 9 3: 9
2: 5] 21
1: External 1: External
[MECTR[MATR] LIST | HYP | REAL | EHZE | [MECTR[HiTE] LIET [HYP | KERL | EHSE |

Notice that the error has been attributed to EVAL, which was the last object to claim responsibility for future errors.
Further, the stack contents are not what you would expect. This can be solved by clearing out the saved command

name (using OLASTOWDOB !) and checking for the proper number of arguments (using CK2NOLASTWD, described
on the next page).

OLASTOWDOB! #1884Dh
Clear saved command name
%

The program now reads : : OLASTOWDOB! CK2NOLASTWD %/ ;. Now when you press [EVAL] a much more
acceptable result appears:

Stack before EVAL: Stack after EVAL.:
Error:
{ HOME I Infinite Result
3: . 5 .
g 3
1: External External Vi
External 1
[[_=_1INP1|PONG|ZPAFE | EC: | PPHF ||

If a program plans to accept no arguments, the object AtUserStack is a handy combination of OLASTOWDOB !
and CKONOLASTWD (described on the next page).

AtUserstack #40BCSh
Require no arguments, clear saved command name
%

Basic Programming Tools 41

Number of Arguments

The process for checking the number of arguments is slightly different for program objects that are being designed
as stand alone applications vs. program objects that are included in a library application. The concept is the same in
each case, however. (Library applications are discussed in the HP document MAKEROM . DOC and illustrated in
GEOLIB example provided by HP. These are provided on the disk.) The structural outlines are:

System-RPL Programs Library Commands

OLASTOWDOB! CKnNOLASTWD CKn

’ ’

where n refers to the number of arguments that are expected. The objects available for this task are:

System-RPL Program Library Command Number of Arguments
CKONOLASTWD CKO No arguments required
CK1NOLASTWD CK1 One argument required
CK2NOLASTWD CK2 Two arguments required
CK3NOLASTWD CK3 Three arguments required
CK4ANOLASTWD CK4 Four arguments required
CKS5NOLASTWD CK5 Five arguments required
CKNNOLASTWD CKN N arguments required

For instance, a Sytem-RPL program that requires three objects on the stack should be structured as follows:

OLASTOWDOB! CK3NOLASTWD

The objects CKnNNOLASTWD and CKN are available for programs that take the number of arguments off the stack.
Both objects convert the real number on the stack to an internal binary integer, then verify that the specified number
of arguments are on the stack.

An example of this type of object is the User-RPL command PICK, in which a user-supplied real number specifies
the stack level to copy. The code for the User-RPLPICK is : : CKN PICK ;, where the PICK is the internal
System-RPL PICK.

Remember that in the case of library commands the CKn objects will attribute errors to the command name.
System-RPL programs that are not parts of libraries or that need to ensure that their errors are not attributed to
another command need to clear the saved command name. The objects CKnNOLASTWD do not modify the saved
command name, so OLASTOWDOB!! is needed to ensure that the saved command name will be cleared. This
prevents an error generated in a program from being attributed to the last command that generated an error.

42 Basic Programming Tools

(D

c c ¢ ¢ C € (

(

Type Dispatching

The HP 48’s multiple polymorphic personality is attributable in part to the ability of each built-in command or
function to interpret the types of arguments supplied and take meaningful action based on those types. The +
function is one of the most dramatic examples, operating on over 20 different combinations of types of arguments.

The objects CK&DISPATCHO and CK&DISPATCHI perform a "check and dispatch” operation — choosing an object
to be executed based on the types of stack arguments. The basic structure of a word using CK&DISPATCHn is:

#type; action;
#type, action;

#typey actiony

where #type,, is an internal binary integer encoding the desired object types, and actiony, is the corresponding

action to be taken when the arguments match the specified types. (Internal binary integers were discussed in greater
detail in Internal Binary Integers.)

It is vital that the table of types and actions be terminated with ;. For System-RPL programs the basic structure for
a program that has different actions based on argument types looks like this:

OLASTOWDOB! CKnNOLASTWD
CK&DISPATCHN

#type; action;

#typey actiony

Since the table of actions must be terminated by ;, type dispatching operations embedded in larger programs should
be set off in their own secondary. For example:

CK&DISPATCH1

00051 :: Process list and real number ;
00041 :: Process array and real number ;

G

The example program GRID in Graphics Examples illustrates the use of 0OLASTOWDOB !, CK3NOLASTWD, and
CK&DISPATCHI.

CK&DISPATCHO vs. CK&DISPATCHI. In general, the HP 48 treats tags as auxiliary to the main purpose of
any object, consequently CK&DISPATCHLI is used most frequently because it makes a second pass through the type-
action table after recursively stripping any tags from the required objects. If it is important to type dispatch off
tagged objects, then CK&DISPATCHO should be used, which does not contain the second pass.

Basic Programming Tools 43

Type Dispatching in Library Applications. In the case of library commands, replacing each action with a pointer
to an action will speed up the dispatch process because the time required to skip each action is reduced to the time
required to skip a single pointer. For instance, the two examples below will do the same thing, but the example on

the right will be slightly faster:

CK2

real
cmp
list

NULLNAME EX1

CK&DISPATCH1

NULLNAME EX1

CK2
CK&DISPATCH1
real EXSUB1
cmp EXSUB2
list EXSUB3

’

NULLNAME EXSUB1
NULLNAME EXSUB2
NULLNAME EXSUB3

For library commands requiring at least one argument, the CKn and CK&DISPATCH1 objects can be replaced with
objects that combine their functionality:

Object Replaces
CKl&Dispatch CK1 CK&DISPATCH1
CK2&Dispatch CK2 CK&DISPATCH1
CK3&Dispatch CK3 CK&DISPATCH1
CK4&Dispatch CK4 CK&DISPATCH1
CK5&Dispatch CK5 CK&DISPATCH1

Using these objects, the examples above would look now like this:

NULLNAME EX1

CK2&Dispatch

cmp
list

real :: ... ;

’

’

NULLNAME EX1

CK2&Dispatch
real EXSUB1l
cmp EXSUB2
list EXSUB3

’

NULLNAME EXSUB1
NULLNAME EXSUB2
NULLNAME EXSUB3

Basic Programming Tools

C (

C C C¢(

(

Encoding Argument Types. The internal binary integer corresponding to each action can encode up to five object
types. Viewed as five hex digits, the stack levels are specified as follows:

RPN WU

F

#nnnnn

Each hex digit represents an argument type, as listed in the table on the next page. Notice that leading zeros mean

that objects in their corresponding stack levels will be ignored. For instance, the internal binary integer # 00051
specifies a list in level two and a real number in level one.

Some built-in binary integers can be used to encode individual objects or combinations of objects. In cases where a
program is type-dispatching off of one argument, the built-in bints listed in the second column of the table may be

used. For example, a program that takes different actions when the argument is a list or string might have the
following structure:

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1
list :: ... ;
str H

’

Half of the objects that may be encoded require two digits. A program that requires an extended real in level two
and an extended complex number in level one might have the following structure:

OLASTOWDOB! CK2NOLASTWD
CK&DISPATCH1
03F4F :: ... ;

Basic Programming Tools 45

Encoding Built-in User TYPE
Digits Bint Object Type Number
0 any Any Object
1 real Real Number 0
2 cmp Complex Number 1
3 str Character String 2
4 arry Array 3,4
5 list List 5
6 idnt Global Name 6
7 lam Local Name 7
8 seco Secondary 8
9 symb Symbolic 9
A sym Symbolic Class 6,7,9
B hxs Hex String 10
C grob Graphics Object 11
D TAGGED | Tagged Object 12
E unitob Unit Object 13
OF ROM Pointer 14
1F Binary Integer 20
2F Directory 15
3F Extended Real 21
4F Extended Complex 22
S5F Linked Array 23
6F char Character 24
7F Code Object 25
8F Library 16
9F Backup 17
AF Library Data 26
BF External objectl 27
CF External object2 28
DF External object3 29
EF External object4 30

When possible, it is best to save code by using a built-in internal binary integer (2.5 bytes) instead of compiling a
new one (5 bytes). The following built-in internal binary integers are used for type dispatching:

46

Name Value Name Value
2EXT #000EEh EXTREAL #000E1lh
2GROB #000CCh EXTSYM #000EANL
2LIST #00055h | REALEXT #0001Eh
2REAL #00011h | REALOB #00010h
3REAL #00111h REALOBOB #00100h
IDREAL #00061h | REALREAL #00011h
LISTCMP #00052h REALSYM #0001Ah
LISTLAM #00057h ROMPANY #000FOh
LISTREAL #00051h SYMBUNIT #0009ENh
SYMREAL #000A1lh SYMEXT #000AEh
SYMSYM #000AANh SYMID #000A6h
TAGGEDANY #000D0N SYMLAM #000A7h
EXTOBOB #00EOOAh SYMOB #000A0Nh

Basic Programming Tools

c ¢ ¢ ¢ C € (

(

Object Type Tests

There may be times when an initial test is not sufficient — a list must be in level one, but the contents of the list are
also important. Two sets of objects are provided for System-RPL which are useful for testing the type of an object.
These objects return the internal flags TRUE or FALSE (described in detail in Tests). The stack diagrams below
illustrate the operation of the object tests:

TYPEREAL?
Returns TRUE if object is a real number
Object — FLAG

DUPTYPEREAL?
Returns object and TRUE if object is a real number
Object — Object FLAG

The objects in the first column test the type, returning a flag. The objects in the fourth column duplicate the object
before testing the type.

Object type Test Object Address | Dup-and-Test Object| Address
Array TYPEARRY? #62198h DUPTYPEARRY? #62193h
Internal binary integer TYPEBINT? #6212Fh DUPTYPEBINT? #6212Ah
Complex array TYPECARRY? | #62256h
Character TYPECHAR? #62025h DUPTYPECHAR? #62020h
Complex number TYPECMP? #62183h DUPTYPECMP? #6217Eh
Program TYPECOL? #621ECh | DUPTYPECOL? #621E7h
String TYPECSTR? #62159h DUPTYPECSTR? #62154h
Unit TYPEEXT? #6204Fh DUPTYPEEXT? #6204Ah
Graphics object TYPEGROB? #62201h DUPTYPEGROB? #621FCh
Hex string TYPEHSTR? #62144h DUPTYPEHSTR? #6213Fh
Identifier (global name) TYPEIDNT? #6203Ah | DUPTYPEIDNT? #62035h
Temp. identifier (local TYPELAM? #6211Ah | DUPTYPELAM? #62115h
name)
List TYPELIST? #62216h DUPTYPELIST? #62211h
Real array TYPERARRY? | #6223Bh
Real number TYPEREAL? #03F8Bh | DUPTYPEREAL? #62169h
ROM pointer (XLIB name) | TYPEROMP? #621ADh | DUPTYPEROMP? #621A8h
Directory TYPERRP? #621C2h | DUPTYPERRP? #621BDh
Symbolic TYPESYMB? #621D7h DUPTYPESYMB? #621D2h
Tagged TYPETAGGED? | #6222Bh | DUPTYPETAG? #62226h

Note: The objects TYPECARRY? and TYPERARRY ? assume an array object is on the stack,
and expect to find a prologue 10 nibbles into the object being tested.)

These tests can be helpful when the filtering provided by the check-and-dispatch mechanism does not provide a
sufficient level of detail. For example, suppose a System-RPL program wants to ensure that it is processing a real
number in level 2 and an array of real numbers in level one. The program shell might look like this:

CK2NOLASTWD OLASTOWDOB'!
CK&DISPATCH1
00014

DUP TYPERARRY? NcaseSIZEERR

’

This program would issue aBad Argument Yalue error if the array was not an array of real numbers. The error
is issued by the object NcaseSIZEERR if the flag on the stack is FALSE. Notice that the type checks for real and
complex arrays don’t have corresponding objects which first duplicate the object in question, so in this example the
DUP had to be included.

Basic Programming Tools 47

Temporary Variables

Programs written in System-RPL have access to a much more flexible temporary (local) variable system than
programs written in User-RPL. Temporary variables are stored in memory structures called “temporary
environments”. Like local variables in User-RPL, temporary variables can be very useful for cleaning up programs
that otherwise would manage everything on the stack with great difficulty. In User-RPL, nested local variable
environments are permitted, and the same goes for System-RPL. In System-RPL the creation of a temporary
variable environment can happen at any time — it is not restricted to the beginning of a secondary. Temporary
environments are stacked — they are abandoned in the reverse chronological order of their creation.

Remember:

* Temporary variables reside in temporary memory. When system garbage collection occurs, temporary memory
is scanned and pointers to objects in temporary memory residing on the stack or in temporary variables are
updated.

* When a temporary variable name is executed, the contents of the variable are recalled to the stack, but not
executed.

* Storing to a temporary variable is typically quite fast, because temporary environments are typically small, and
the system avoids the overhead of moving all the data in global variables.

In System-RPL, the object BIND does the job of + in User-RPL, and the object ABND does the job of * (actually
named x>>ABND - you'll see this if you decompile a User-RPL program using a tool like Jazz). BIND expects the
objects to be stored in temporary variables to be on the stack along with a list of temporary variable names in level
one.

The object DOBIND does the work for BIND — the temporary variable names and their count are expected on the
stack.

The RPL compiler creates a temporary variable name with the compiler directive LAM. For instance, to compile the
temporary variable name “Fred”, the compiler source should read LAM Fred. To save space, System-RPL also
provides for null-named temporary variables (see Using Null-Named Temporary Variables). Space is saved because
no name is stored and the temporary variables are referenced by number. The object NULLLAM may be used
instead of a temporary variable name.

BIND #074D0h
Creates a temporary environment
oby ...oby ob; { LAM name, ... LAM name, LAM name; } —

Oby ...oby ob; { NULLLAM, ... NULLLAM, NULLLAM,; } —
DOBIND #074E4h
Creates a temporary environment

ob, ...oby ob; LAM name,, ... LAM namey LAM name; #n —
ob; ...oby ob; NULLLAM; .. NULLLAM, NULLLAM; #n —
ABND #07497h
Discards the topmost temporary environment
_)

When temporary variables are named, the process of storing to and recalling from temporary variables is the same as
for User-RPL.:

LAM Fred ... ; Recalls the contents of temporary variable Fred
' LAM Fred STO ... ; Stores an object into temporary variable Fred
STO #07D27h

Stores an object in a temporary variable
object name —

There is no compiler requirement that there be a firm one-to-one matching between BINDs and ABNDs. A
secondary that has multiple exit points may need to have more than one ABND to ensure that temporary
environments are discarded properly. The program QRT3 below illustrates this.

48 Basic Programming Tools

®

(

Cc CC ¢

(

To compare the use of temporary variables in User-RPL and System-RPL, we’ll begin by comparing two programs
that do similar jobs — finding the roots of a quadratic equation x=ax?+bx+c. We’ll use the quadratic formula:

——bi‘\/b2 —4ac

2a

The stack diagram for these program examples will be:

[a b ¢ — root; rootp |

To keep things simple, the System-RPL examples will return the string "Complex Roots" if the quantity b2—4ac
is negative. (This is one of the attractive features of User-RPL: the polymorphic behavior of the operators lets you
avoid writing extra code.)

We illustrate the use of temporary variables with four example programs. The first is written in User-RPL, the rest
are written in System-RPL. The results are stored in temporary variables to illustrate the process, even though this is
somewhat inefficient (the results could simply be left on the stack). Notice that this example uses compiled
temporary variable ¢a, which will work only on HP 48G/GX calculators.

ORT1.RPL
3
BB &K€a2*/ % Place zeros and subroutine on the stack
+ €a b c rootl root2 Subr Create temporary variables
«
bsSe¢ac*4*-17T Calculate SQRT(b*—4ac)
b NEG OVER + Subr EYAL Calculate first root
' rootl STO Store first root in local variable root1
b NEG ROT - Subr EVAL Calculate second root
' root2 STO Store second root in temporary variable root2
rootl root2 Return roots to the stack
» Discards local variables
»

This is what QRT1.RPL looks like when expressed in System-RPL:

x<<
%20 %0 XSILENT' :: x<< LAM ¢a %2 xX* x/ x>> ;
xXxRPL-> LAM ¢a LAM b LAM c¢ LAM rootl LAM root2 LAM Subr
x<<

LAM b xSQ LAM ¢a LAM c x* %4 x* x- XSQRT
LAM b xNEG xOVER x+ LAM Subr xXEVAL
x' LAM rootl xENDTIC xSTO
LAM b xNEG xROT x- LAM Subr xEVAL
x' LAM root2 XENDTIC xSTO
LAM rootl LAM root2
x>>ABND
x>>

Basic Programming Tools 49

Using Named Temporary Variables
The first System-RPL example uses named temporary variables:

QRT1 250.5 Bytes Checksum #33EEh
(%a %b %c — %root; %$root,)

OLASTOWDOB! CK3NOLASTWD
CK&DISPATCH1 3REAL

%0 %0

‘' :: LAM a %2 %* %/ ;

{
LAM a
LAM b
LAM c
LAM rootl
LAM root2
LAM Subr

}

BIND

LAM b DUP %* LAM a LAM c %* %4 %* %-
DUP %0< casedrop "Complex Roots"

$SQRT

LAM b %$CHS OVER %+ LAM Subr EVAL
' LAM rootl STO

LAM b %$CHS SWAP %- LAM Subr EVAL
' LAM root2 STO

LAM rootl

LAM root2

ABND

Expect three arguments
Insist on three real numbers

Placeholder values for rootl and root2
Place subroutine on the stack

List of temporary variable names
Create temporary variable environment

Evaluate b’>~4ac

If <0, drop quantity, put string on stack,
abandon temp env. and exit secondary

Evaluate SQRT(b°—4ac)

Calculate first root

Store in root1

Calculate second root

Store in root2

Return first root to the user

Return second root to the user

Abandon temporary environment

50

Basic Programming Tools

P

“~—

(

c C C CCC(CC(

5

Using Null-Named Temporary Variables

The second System-RPL example uses null-named temporary variables. When the object NULLLAM is used instead
of a name, space is saved in the temporary environment. Access to null-named temporary variables is specified by
the variable's number position in the temporary environment rather than by name. This kind of direct access is more
efficient than searching through a series of names.

The objects PUTLAM and GETLAM are the fundamental tools used to store objects to and recall objects from
temporary variables:

PUTLAM #075E%h
Stores an object into numbered temporary variable

object #variable —
GETLAM #075A5h
Recalls an object from a numbered temporary variable

#variable — object

NULLLAM #34D30h
Null temporary variable name

The use of PUTLAM and GETLAM can be streamlined by using objects which combine the bint specifying the
temporary with the PUT or GET action. For instance, 2 PUTLAM combines TWO PUTLAM into a single action that
stores an object into the second temporary variable, and 4GETLAM combines FOUR GETLAM into a single object
that recalls the object stored in the fourth temporary variable. These combined actions save code and are quite
efficient.

PUTLAM GETLAM
Combinations Combinations

Object Address Object Address
1PUTLAM #615E0h 1GETLAM #613B6h
2PUTLAM #615F0Oh 2GETLAM #613E7h
3PUTLAM #61600h 3GETLAM #6140Eh
4PUTLAM #61635h 4GETLAM #61438h
S5PUTLAM #61625h SGETLAM #6145Ch
6PUTLAM #61635h 6GETLAM #6146Ch
7PUTLAM #61645h 7GETLAM #6147Ch
SPUTLAM #61655h 8GETLAM #6148Ch
9PUTLAM #61665h 9GETLAM #6149Ch
10PUTLAM #61675h 10GETLAM #614ACh
11PUTLAM #61685h 11GETLAM #614BCh
12PUTLAM #61695h 12GETLAM #614CCh
13PUTLAM #616A5h 13GETLAM #614DCh
14PUTLAM #616B5h 14GETLAM | #614ECh
15PUTLAM #616C5h 15GETLAM #614FCh
16PUTLAM #616D5h 16GETLAM #6150Ch
17PUTLAM #616E5h 17GETLAM | #6151Ch
18PUTLAM #616F5h 18GETLAM | #6152Ch
19PUTLAM #61705h 19GETLAM | #6153Ch
20PUTLAM #61715h 20GETLAM | #6154Ch
21PUTLAM #61725h 21GETLAM | #6155Ch
22PUTLAM #61735h 22GETLAM | #6156Ch

Basic Programming Tools 51

The example program QRT2 uses these combination objects to yield a somewhat more efficient program. Here, we
use DOBIND instead of BIND.

QRT2 184 Bytes Checksum #12Blh
(%a %b %c — %root; %$root,)

OLASTOWDOB! CK3NOLASTWD Expect three arguments
CK&DISPATCH1 3REAL Insist on three real numbers
%0 %0 Placeholder values for rootl and root2
‘' :: 6GETLAM %2 %* %/ ; Place subroutine on the stack
Temporary variable null names:
' NULLLAM a will be in temporary variable 6
' NULLLAM b will be in temporary variable 5
' NULLLAM ¢ will be in temporary variable 4
' NULLLAM rootl will be in temporary variable 3
' NULLLAM root2 will be in temporary variable 2
' NULLLAM Subr will be in temporary variable 1

SIX DOBIND Create temporary environment

5GETLAM DUP %* 6GETLAM 4GETLAM %* %4 %* %- Evaluate b>—4ac

DUP %0< casedrop "Complex Roots" If <0, drop quantity, put string on stack,
and exit secondary
$SORT Evaluate SQRT(b’>—4ac)
5GETLAM $%CHS OVER %+ 1GETLAM EVAL Calculate first root
3PUTLAM Store first root
SGETLAM %CHS SWAP %- 1GETLAM EVAL Calculate second root
2PUTLAM Store second root
3GETLAM Return first root to the user
2GETLAM Return second root to the user
ABND Abandon temporary environment

As an exercise, try rewriting this example to use CACHE (described later) instead of DOBIND.

52 Basic Programming Tools

cco

(A

C

Programming Hint for Temporary Variables

Notice that for a non-trivial program the source code can quickly turn into a blizzard of nPUTLAM's and nGETLAM'
which become hard to read. The RPL compiler's DEFINE directive can be used to associate easier-to-remember
words with objects like 17GETLAM.

The code in QRT?2.S is more efficient than the code in QRT1.S, but the code becomes less readable. When the
source code is being prepared with RPLCOMP.EXE on a PC, DEFINE statements can be used to make the source
code easier to manage. There are two techniques for using DEFINE with local variable names. The first is to use
DEFINE to rename long variable names to short variable names (saving RAM). The second is to use DEFINE to
map names directly to the GETLAM and PUTLAM combination objects. An example of the second use of DEFINE
is the program QRTS3.

We make an additional change to illustrate the use of ABND. In User-RPL, the trailing * in a program using local
variables abandons the temporary environment. In System-RPL, an exit from a secondary can be coded with objects
like case, but you must keep track of temporary environments yourself. In this example, there are two uses of
ABND, one for the complex roots exit and one for the real roots exit. (Note that multiple exits from secondaries like
this are prone to coding errors — be careful!)

QRT3 181.5 Bytes Checksum #B158h
(%a %b %c — %root; %root,)

DEFINE a 6GETLAM
DEFINE b 5GETLAM

DEFINE c 4GETLAM

DEFINE rootl 3GETLAM
DEFINE rootlSTO 3PUTLAM
DEFINE root2 2GETLAM
DEFINE root2STO 2PUTLAM
DEFINE Subr 1GETLAM

OLASTOWDOB! CK3NOLASTWD Expect three arguments
CK&DISPATCH1 3REAL Insist on three real numbers

%0 %0 Placeholder values for rootl and root2

Yisoa %2 %% %/ ; Place subroutine on the stack

{ List of temporary variable null names:
NULLLAM a will be in temporary variable 6
NULLLAM b will be in temporary variable 5
NULLLAM ¢ will be in temporary variable 4
NULLLAM rootl will be in temporary variable 3
NULLLAM root2 will be in temporary variable 2
NULLLAM Subr will be in temporary variable 1

}

BIND Create temporary environment

b DUP %* a ¢ %* %4 %* %- Evaluate b’>~4ac

DUP %0< casedrop If <0, drop quantity, put string on stack,
:: "Complex Roots" ABND ; abandon temp env. and exit secondary

$SQORT Evaluate SORT(b*>—4ac)

b %CHS OVER %+ Subr EVAL Calculate first root

rootlSTO Store first root

b %CHS SWAP %- Subr EVAL Calculate second root

root2STO Store second root

rootl Return first root to the user

root2 Return second root to the user

ABND Abandon temporary environment

’

Notice that the use of DEFINEs makes the source code much easier to read.

Basic Programming Tools 53

Additional Temporary Variable Utilities
The following objects are available for working with temporary variables and environments. Some of these objects
combine commonly used sequences of operations.

1ABNDSWAP #62DB3h
Equivalentto : : 1GETLAM ABND SWAP ;
ob — objy, ob

1GETABND #634B6h
Equivalentto : : 1GETLAM ABND ;

- Oblam
1GETSWAP #62F07h

Equivalentto : : 1GETLAM SWAP ;
ob — obj,, ob

1LAMBIND #634CFh
Equivalentto : : { NULLLAM } BIND ;

ob —
INULLLAM({} #34D2Bh

Returns a list containing NULLLAM
— { NULLLAM }
2GETEVAL #632E5h
Equivalentto : : 2GETLAM EVAL ;
_)
4NULLLAM({} #52D26h
Returns a list containing four NULLLAMs
— { NULLLAM NULLLAM NULLLAM NULLLAM }
GLAM #07943h
Recalls temporary variable by name. If variable exists, the object and TRUE
will be returned, otherwise FALSE will be returned.
lam — obj,, TRUE
lam — FALSE
CACHE #61CESh
Saves n objects and n in a new temporary environment, with each temporary
variable named with the provided name.
ob,..ob; n name —
DUMP #61EA7h
The inverse of CACHE, but works only if NULLLAM was the name used.
Forces a garbage collection.

— obp..0b; n

DUP1LAMBIND #634CAh
Equivalentto : : DUP { NULLLAM } BIND ;

ob — ob
DUP4PUTLAM #61610h
Equivalentto : : DUP 4PUTLAM ;

ob — ob
DUPTEMPENV #61745h
Duplicates the topmost temporary environment

_)

GETLAMPAIR #617D8h

is assumed to be 10*k, where & is the index of the desired temporary variable.
If k<N, where N is the number of temporary variables in the environment, the
stored object, temporary variable name, and FALSE are returned. If k>N, then
TRUE is returned.

— TRUE

— ob name FALSE

54 Basic Programming Tools

Error Trapping

In User-RPL the IFERR ... THEN ... [ELSE ...] END structures may be used to trap errors. In System-
RPL, the objects ERRSET, ERRJMP, and ERRTRAP provide error trapping capabilities.

In practice, the structure of an error trap is:

ERRSET
suspect_object
ERRTRAP

iferr object

’

When suspect_object is being executed, any execution of the object ERRIMP will cause the rest of the
suspect_object to be discarded and execution will resume at iferr_object. If no error occurs, iferr_object will be
skipped and execution will continue with the following object.

Error Trapping Mechanics

When an error occurs, it is important that the system be returned to a known state for a graceful recovery. In
particular, temporary environments and DoLoop environments that may have been established within the
suspect_object must be discarded. The mechanism for this consists of a protection word associated with each
environment which is initialized to zero when the environment is created by either DO or BIND.

When ERRSET is executed, the protection words for the most recently created temporary and DoLoop environments
are incremented.

If ERRJIMP (or a related object like ABORT) is executed, the remainder of the suspect_object is discarded and the
protection words for the most recently created temporary and DoLoop environments are examined. If the protection
word is non-zero, it is decremented. If the protection word is zero, the environment is discarded. Note that the
protection word is a counter, and not a single state setting, so error traps can be nested.

ERRTRAP is executed only if no error occured. When ERRTRAP is executed, the protection words in the topmost
temporary and DoLoop environments are decremented and the iferr_object is skipped.

ERRSET #04ESEh
Increments topmost temporary and DoLoop protection words

._)
ERRTRAP #04EB8h

Decrements topmost temporary and DoLoop protection words and skips the
next object

_)

ERRJMP #04ED1h
Generates an error

Generating an Error

In User-RPL the command DOERR generates an error, taking as its argument either a string or a number specifying a

message that is built into the HP 48 or an attached library. In System-RPL the actions of DOERR are divided into
three actions:

* The object ERRORSTO stores a binary integer specifying a built-in message into a reserved memory location
that can be read later. If the error is to be reported to the user as a string, the object EXITMSGSTO stores a
pointer to the string into a reserved memory location and #70000h is stored to indicate a text error.

* The object AtUserStack declares user ownership of all stack objects.

e The object ERRJMP initiates the error jump itself.

For a list of error message numbers, see Appendix A.

Basic Programming Tools 55

The use of AtUserStack is unique to the User-RPL DOERR, and may not always be needed or appropriate for
your error traps. The objects ERRORCLR, ERRORSTO, and EXITMSGSTO store error code information:

ERRORCLR #04D33h
Clears the stored error number

_)
ERRORSTO #04DOEh
StOI'CS an error number

ﬁ
EXITMSGSTO #04E37h
Stores an error string

_)

Handling an Error

When the iferr_object is executed, the temporary environments and DoLoop environments have been restored to the
state prior to execution of the suspect_object. The iferr_object may need to consider side effects generated by the
suspect_object, such as extra objects left on the stack or a system mode that has been altered.

Part of the action of an iferr_object is to interpret the error being handled. The objects ERROR@ and GETEXITMSG

may be used to recall the contents of stored error codes:

GETEXITMSG #04EQ07h
Recalls the exit message string

- $
ERROR@ #04CE6h
Recalls the error number

— #

Example: A prototype error handler for a plotting application might wish to ignore math errors such as division by
zero. The code fragment below uses ERROR@ to recall the error number. If the error does not correspond to an
anticipated error, the object ERRIMP is used to pass the error up to the next error handler. Error numbers from 769
to 773 are floating point errors. In this example the error is merely ignored.

Begin_Plot_Loop
ERRSET
Calculate_ A Point
Plot_The_Point
ERRTRAP
ERROR@ DUP
769 #<

SWAP 773 #>
OR IT ERRJMP

’

End_Plot_Loop

56

Increment protection words
The suspect_object

The iferr_object

Recall the error number

Less than 769?

Greater than 773?

Pass the error along if not a floating point error

Basic Programming Tools

cccccccocococccccccccccccccccccccccccccccccccocccocccO

Additional Error Objects
The following objects are also provided for error management:

ABORT #04EA4h
Clears the stored error number and does ERRIMP
_)
DOSEXIT #15048h
Stores #70000h for the error number, stores the string message, does
AtUserStack, then does ERRIMP
$ -
DO#EXIT #1502Fh
Stores the error number, does AtUserStack, then does ERRJMP
>
ERRBEEP #141E5h
Generates a standard error beep
ﬁ
ERROROUT #6383Ah
Stores the error number, then does ERRIMP
-
JstGETTHEMSG #04D87h
Returns a message from a message table
- 3
SETMEMERR #04FB6h
Generates Insufficient Memory error
_)
SETSIZEERR #18CA2h
Generates Bad Argument Yalue error
_)
SETTYPEERR #18CB2h
Generates Bad Argument Type error
_)
SETSTACKERR #18CC2h
Generates Too Few Arguments error
_.)
SETIVLERR #29DFCh
Generates Undef ined Result error
_)
SETNONEXTERR #18C92h
Generates Undef ined Name error
__)

Basic Programming Tools

Stack Operations
The objects listed here perform one or more stack operations. You can save code by using combination objects like
4PICKSWAP instead of FOUR PICK SWAP. Some stack operations that are combined with binary integer math
operations are also listed under Binary Integers. Some objects have the same address, such as UNROT and
3UNROLL. You may use whichever name best matches your way of thinking about a procedure.

58

#+ROLL #612DEh
Obmip ...0b; #m #n — obpip_q..-0b; 0bman
#+UNROLL #6133Eh
Obmin ... Ob; #m #n — ob; obpyq ... Oby
#-ROLL #612CCh
Oobpp...0by #m #n — obp pp...0b; oOby g
#-UNROLL #6132Ch
obp_p...0b; #m #n — ob; obp p...0by
#1+NDROP #62F75h
Obm.] Obl #n -
#1+PICK #611A3h
obpiy...0ob; #n — obgyp...0b; obyyg
#1+ROLL #612F3h
obpyp...ob; #n — ob,...ob; obgyg
#1+UNROLL #61353h
obpiq .- 0b1 #n — 0b1 Obn.,.] 0b2
#2+PICK #611BEh
obpyp...0b; #n — obgys...0b; obyys
#2+ROLL #61318h
Obn_,_z 0b1 #n — 0bn+l 0b1 0bn+2
#2 +UNROLL #61365h
obpr ...ob; #n — ob; obp,;...0by
#3+PICK #611D2h
0bn+3 0b1 #n — 0bn+3 Ob] 0bn+3
#4+PICK #611E1h
obpyq...0b; #n — obgu4...0b; Obp4
#+PICK #61184h
Obp4p ..-0b; #m #n — obpu, ... 0by Obpain
10UNROLL #6312Dh
Ob]() 0b1 - 0b| 0b10 0b2
2DROP #03258h
ob, ob; —
2DROPO0 #6254Eh
ob; ob; — #0 #0
2DROPFALSE #62B0Bh
Ob2 ob; — FALSE
2DUP #031ACh
oby; ob; — ob ob; oby; ob;
2DUP5ROLL #63C40h
Ob3 ob, ob; — oby ob; Ob2 ob; 0b3
2DUPSWAP #611F%h
0b2 0b1 — oby Obl 0b1 0b2
20VER #63FBAh
' obs obs oby ob; — obs ob3 ob, ob; obs obs
2SWAP #62001h
oby 0b3 ob, ob; — ob, Obl oby 0b3

Basic Programming Tools

cccccccccccccccccccccccccocccccccccoccccccccccccccccccccoO

3DROP #60F4Bh
Ob3 Ob2 0b1
3PICK #611FEh
obz ob; ob; obs ob, ob; obj
3PICK3PICK #63C68h
obs oby ob; obs ob, ob; ob3 ob,
3PICRKOVER #630B5h
Ob3 Obz 0b1 0b3 Ob2 0b1 Ob3 Ob1
3PICKSWAP #62EDFh
obz ob; ob; obz ob, obz ob;
3UNROLL #60FACh
0b3 0b2 0b1 0b1 Ob3 Ob2
4DROP #60F7Eh
obs obz ob, ob;
4PICK #6121Ch
Ob4 0b3 0b2 0b1 0b4 0b3 0b2 Obl 0b4
4PICKOVER #630C9h
obs obz oby ob; obs obs obp ob; obs ob;
4PICKSWAP #62EF3h
obs obz obp ob; obgy obz ob, obs ob;
4ROLL #60FBBh
0b4 0b3 0b2 Ob] 0b3 0b2 Obl 0b4
4ROLLDROP #62864h
Ob4 0b3 Obz 0b1 0b3 Obz Obl
4ROLLOVER #630A1h
0b4 0b3 0b2 0b1 0b3 0b2 ob 1 0b4 0b1
4ROLLROT #63001h
obs obs obp ob; obz ob; obg oby
4ROLLSWAP #62ECBh
0b4 0b3 Ob2 0b1 0b3 Obz oby 0b1
4UNROLL #6109Eh
oby 0b3 oby ob; ob 1 0b4 0b3 0b2
4UNROLL3DROP #6113Ch
obs ob3z oby ob; ob
4UNROLLDUP #62D0%
obs obz obp ob; ob; obg obz ob, ob,
4UNROLLROT #63015h
obs obz oby ob; ob; obz oby oby
SDROP #60F72h
obs oby obz ob, ob;
5PICK #6123Ah
obs obg obs ob; obyg obs obs obs ob, ob; obs
S5ROLL #60FD8h
obs obyg obsz ob, ob; oby obsz ob, ob; obs
SROLLDROP #62880h
obs oby obsz ob, ob; obgy obsz ob, ob;
SUNROLL #610C4h
0b5 0b4 0b3 Ob?_ Ob] 0b1 0b5 0b4 0b3 0b2

Basic Programming Tools

59

60

6DROP #60F66h
obg obs obg obs ob, ob;
6PICK #6125Eh
obg obs obs obs ob, ob; obg obs obs ob3 ob, ob; obg
6ROLL #61002h
obg obs obs obs ob, ob; obs obs ob3 ob, ob; obg
6UNROLL #610FAh
obg obs obg ob3 ob, ob; ob; obg obs obs obz ob,
7DROP #60F54h
ob; ... ob;
7PICK #61282h
ob; ... ob; ob7...ob; oby
7ROLL #6106Bh
ob7 ... ob; obg ... ob; oby
7UNROLL #62BC4h
0b7 0b1 0b1 0b7 Obz
8PICK #612A9h
obg ... ob; obg ... ob; obg
S8ROLL #6103Ch
Obg 0b1 0b7 Obl Obg
8UNROLL #63119h
Obg 0b1 0b1 Obg Obz
DEPTH #0314Ch
oby, ... obg ob, ...ob; #n
DROP #03244h
ob
DROPDUP #627A7h
ob, ob; oby obp
DROPFALSE #6210Ch
ob FALSE
DROPNDROP #63FA6h
ob, ...ob; #n ob
DROPNULLS #04D3Eh
ob NULLS$
DROPONE #62946h
ob #1
DROPOVER #63029h
0b3 0b2 0b1 Ob3 0b2 0b3
DROPROT #62FC5h
obs obs ob, ob; obz ob, oby
DROPSWAP #6270Ch
obz oby ob; oby obj
DROPSWAPDROP #62726h
0b3 ob, 0b1 Ob2
DROPTRUE #62103h
ob TRUE
DROPZERO #62535h
ob #0

Basic Programming Tools

c C ¢ ¢

(

(

DUP #03188h
ob ob ob
DUP#1+PICK #6119Eh
ob, ... ob; #n ob, ...ob; #n ob,
DUP3PICK #611F%h
ob, obg ob, ob; ob; obp
DUP4UNROLL #6109%h
Ob3 Obz Ob1 0b1 Ob3 0b2 Ob1
DUPDUP #62CB9h
ob ob ob ob
DUPONE #63A9Ch
ob ob ob #1
DUPPICK #630DDh
ob, ...ob; #n ob, ...ob; #n ob,;
DUPROLL #630F1h
ob, ...ob; #n ob, ob, > ...0b; #n ob,g
DUPROT #62FB1h
ob, ob; ob; ob; obp
DUPTWO #63ADS8h
ob ob ob #2
DUPUNROT #61380h
oby ob; ob; ob, ob;
DUPZERO #63A88h
ob ob ob #0
N+1DROP #62F75h
0bn+1 Obl #n
NDROP #0326Eh
ob;, ... ob; #n
NDROPFALSE #169A5h
ob, ... ob; #n FALSE
NDUP #031D%h
ob, ...ob; #n ob;, ... ob; ob, ... ob;
NDUPN #5E370h
ob #n ob...ob #n
ONEFALSE #63533h
#1 FALSE
ONESWAP #62E67h
ob #1 ob
OVER #032C2h
oby obg ob, obj oby
OVERSPICK #63C90h
oby 0b3 Obz 0b1 0b4 0b3 0b2 Obl 0b2 oby
OVERDUP #62CCDh
Obz 0b1 0b2 0b1 0b2 0b2
OVERSWAP #62D31h
oby ob; oby oby ob;
OVERUNROT #62D31h
0b2 0b1 Obz 0b2 Obl

Basic Programming Tools

61

62

PICK #032E2h
ob, ...ob; #n ob, ...ob; ob,
ROLL #03325h
ob, ...ob; #n ob,_1 ...0b; ob,
ROLLDROP #62F89h
ob, ... ob; #n obp_ ... 0bg
ROLLSWAP #62D45h
ob, ... ob; #n ob,_1...0by ob, ob;
ROT #03295h
obz ob, ob; ob, ob; obj
ROT2DROP #62726h
0b3 Obz 0b1 Ob2
ROT2DUP #62C7Dh
0b3 Obz 0b1 0b2 0b| 0b3 0b1 0b3
ROTDROP #60F21h
obs oby ob; ob, ob;
ROTDROPSWAP #60F0OEh
obz ob; ob; ob; ob,
ROTDUP #62775h
obz ob, ob; oby ob; obz obj
ROTOVER #62CASh
0b3 0b2 Ob] 0b2 Obl 0b3 Obl
ROTROT2DROP #6112Ah
0b3 0b2 0b1 0b1
ROTSWAP #60EE7h
obz ob; ob; ob, obj ob;
SWAP #03223h
0b2 0b1 0b1 Ob2
SWAP2DUP #6386Ch
oby ob; ob; ob, ob; ob;
SWAP3PICK #63C54h
obz ob, ob; obz ob; ob, obs
SWAP4PICK #63C7Ch
obs ob3 oby ob; obs obz ob; oby oby
SWAP4ROLL #63C2Ch
obs obz oby ob; obs ob; oby oby
SWAPDROP #60F9Bh
0b2 0b1 0b1
SWAPDROPDUP #62830h
0b2 ob; 0b1 0b1
SWAPDROPSWAP #6284Bh
obs ob; ob; ob; obj
SWAPDROPTRUE #21660h
oby ob; ob; TRUE
SWAPDUP #62747h
ob; ob; ob; oby ob;
SWAPONE #63ABOh
0b2 0b1 0b1 0b2 #1
SWAPOVER #61380h
oby ob; ob; ob, ob;

Basic Programming Tools

ccccococcoccccocccoccoccoccoccccocccoccoccoccccocccccccccccccccccco

SWAPROT #60F33h
obs ob, ob; — ob; ob, obj

SWAPTRUE #4F1D8h

ob, ob; — ob; ob, TRUE

UNROLL #0339Eh
ob,..ob; #n — ob; ob,...ob,

UNROT #60FACh
obs obp ob; — ob; ob; ob,

UNROT2DROP #6112Ah
obz obp ob; — ob;

UNROTDROP #6284Bh
0b3 0b2 0b1 4 0b1 0b3

UNROTDUP #62CF5h
ob3 oby ob; — ob; ob3 oby ob,

UNROTOVER #6308Dh
obs ob, ob; — ob; obs oby obj

UNROTSWAP #60F33h
ob3 ob, ob; — ob; ob, obj

UNROTSWAPDRO #60FOEh
0b3 Ob2 0b1 e d Ob] 0b2

ZEROOVER #6307%h

ob — ob #0 ob
ZEROSWAP #62E3Ah
ob — #0 ob

reversym #5DE7Dh

ob,..ob; #n — ob;..ob, #n

NOTE: The object reversym is written in System-RPL and is slow — see the program RVRSO in Writing Your
Own Code Objects for an assembly language version that's much faster.

Control Structure Examples

There are an infinite number of ways to illustrate the objects and techniques that have just been described in this
chapter. The first two examples provided here check an argument, loop, use case, and display text using objects
described later in the book. The third example uses the return stack to filter a list and count the number of real
number objects in the list.

You can use SEMT to build your own control structures in a variety of creative ways. The first two examples
illustrate executing the first n of a series of procedures (there are many ways to approach this problem). The first
approach uses a list containing all the procedures and a loop that extracts and executes the desired procedures. The
second approach pushes a series of flags on the stack and uses SEMI to decide when to quit. The usefulness of each
approach will depend on the circumstances under which it's used.

We hope these examples will stimulate some creative thinking as you consider your programming projects. Spend
some time comparing these two examples. Which is faster? Why?

In the second example, why is there a ? SEMT before the first procedure, since at this point we know that at least one
procedure will be executed? Try removing it and changing the loop counter. (Hint: DO loops execute at least once.)

Basic Programming Tools 63

PLIST Example

The program PLIST executes the first n of a series of procedures encapsulated in a list.

PLIST 158.5 Bytes Checksum #F53h

(% >

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 real

ClrDAlIsStat RECLAIMDISP
TURNMENUOFF
SetDAsTemp
COERCE
DUP#0= caseDROP
DUP FIVE #> case SETSIZEERR
#1+_ONE_DO (DO)
{
"ONE" DISPROW1 ;
"TWO" DISPROW2 ;
"THREE" DISPROW3 ;
"FOUR" DISPROW4 ;
"FIVE" DISPROWS ;
}
INDEX@ NTHCOMPDROP

Clear saved command name, require one object
Require a real number

Suspend clock, assert and clear stack display
Turn off the menu display
Freeze the display when program ends
Convert real number to internal binary integer
Quit if no procedures are to be executed
Error out if more than five procedures specified
Loop from 1 to number of procedures specified
List of procedures

First procedure

Second procedure

Third procedure

Fourth procedure

Fifth procedure

Get loop index, extract nth procedure

EVAL Execute nth procedure
LOOP End of loop
- SEMI Example

The program SEMI executes the first n of a series of procedures separated by SEMT tests.

SEMI 145 Bytes Checksum #354h
(% >)

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 real

ClrDAlIsStat RECLAIMDISP
TURNMENUOFF

SetDAsTemp

COERCE

DUP#0= caseDROP

DUP FIVE #> case SETSIZEERR

TRUE SWAP

ZERO DO FALSE LOOP
?SEMI

"ONE" DISPROW1l
?SEMI

"TWO" DISPROW2
?SEMI

"THREE" DISPROW3
?SEMI

"FOUR" DISPROW4
?SEMI

"FIVE" DISPROWS5
DROP

Clear saved command name, require one object
Require a real number

Suspend clock, assert and clear stack display
Turn off the menu display

Freeze the display when program ends

Convert real number to internal binary integer
Quit if no procedures are to be executed

Error out if more than five procedures specified
Push TRUE on stack to signal end of process
Push n FALSE flags on the stack

Test first flag

First procedure

Test second flag

Second procedure

Test third flag

Third procedure

Test fourth flag

Fourth procedure

Test fifth flag

Fifth procedure

Drop TRUE that remains if all five prcedures used

64

Basic Programming Tools

ticR Example

The return stack can be a handy resource for filtering through a composite object. Instead of decomposing a list on
the stack and processing each object, you can put it on the return stack with >R and get one object at a time back for
examination with ticR. The program RSTR uses this technique to count the number of objects in a list that are real

(

c ¢ € € (

(

numbers.

RSTR 68.5 Bytes Checksum #6340h

({list} — %count)

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 1list

>R

Clear saved command name, require one argument

Require a list

Push the list on the return stack
%0 The initial value of the counter
BEGIN
RSWAP Swap the list to the second level
ticR Pop the next object from the list

Here, the stack is either: (%counter object TRUE —)
or: (%$counter FALSE —)

DUP NOT ?SKIP RSWAP If the object was not SEMI, swap the remainder of the list back

WHILE If an object was found, do the WHILE clause

TYPEREAL? IT %1+ If the object is a real number, increment the counter
REPEAT

Basic Programming Tools 65

Objects & Object Utilities

This chapter describes several types of object and tools that manipulate them. Objects may be described as atomic
(a single object), or composite (an object which is composed of one or more objects). Internal binary integers and
real numbers are examples of atomic objects, and a list is an example of a composite object. This chapter covers the
following object types:

Atomic Composite
Objects Objects
Bint List
Real Secondary
Extended Real Symbolic
Complex Unit
Extended Complex
Character
Character String
Hex String
Graphics Object
Array
| Tagged

Real & Extended Real Numbers

There are two floating point real number object types in the HP 48: real numbers (seen by the user), and extended
real numbers (used internally). A real number consists of a sign, 12-digit mantissa, and a 3-digit exponent. An
extended real number consists of a sign, 15-digit mantissa, and a 5-digit exponent. Exponents are stored in tens
complement form. Real exponents live in the domain —500 < EEE < 500, and extended real exponents live in the
domain —50000 < EEEEE < 50000.

The symbol % is used to denote a real number or an object that works with a real number. The symbol %% is used
to denote an extended real number or an object that works with an extended real number. Some object names use
both symbols. For instance, the object %>%% converts a real number to an extended real number.

Compiling Real Numbers
Real numbers can be embedded in System-RPL source code with the $ symbol followed by a space followed by a
the number. For example, the sequence : : ¥RAN % .5 %* ; returns a random number between 0 and .5.

Extended real numbers must be specified using the assembler, as RPLCOMP.EXE has trouble with them. The
System-RPL code fragment below converts a real number to an extended real number, then divides that number by
%% —15.3. Notice that the digits of the exponent are listed in reverse order. The last digit on the mantissa line is the
sign, and is O for a positive number and 9 for a negative number.

>%%

ASSEMBLE
CON(5) =DOEREL
NIBHEX 10000 Exponent
NIBHEX 0000000000003519 Mantissa
RPL
%%/
66 Objects & Object Utilities

cccccccccccccccccccccccccccccccccecccecccoccocccoco

Built-In Real Numbers

The following table lists real and extended real numbers that are built into the HP 48.

Real Numbers Extended Real Numbers

Object Address Object Address
%-MAXREAL #2A487h %%0 #2A4C6h
%-9 #2A42Eh %%.1 #2A562h
%-8 #2A419h %% . 4 #2B3DDh
%-"7 #2A404h %% .5 #2A57Ch
%-6 #2A3EFh %%1 #2A4EOh
%-5 #2A3DAh %%2 #2A4FAh
%-4 #2A3C5h %%3 #2A514h
%=-3 #2A3BOh %%4 #2AS52Eh
%—-2 #2A39Bh %%5 #2A548h
%-1 #2A386h %%2PI #0F688h
%-MINREAL #2A4B1h %% 7 #2B1FFh
%0 #2A2B4h %%10 #2A596h
%MINREAL #2A49Ch %%12 #2B2DCh
%.1 #494B4h %%60 #2B300h
%.5 #650BDh %%PI #2A458h
%1 #2A2C%h
%2 #2A2DEh
%e #650A8h
%3 #2A2F3h
%PI #2A443h
%4 #2A308h
%5 #2A31Dh
%6 #2A332h
%7 #2A347h
%8 #2A35Ch
%9 #2A371h
%10 #650E7h
%11 #1CCO03h
%12 #1CC1Dh
%13 #1CC37h
%14 #1CC51h
%15 #1CC85h
%16 #1CD3Ah
%17 #1CD54h
%18 #1CDF2h
%19 #1CEO7h
%20 #1CC6Bh
%21 #1CCA4h
%22 #1CCC3h
%23 #1CCE2h
%24 #1CDO1h
%25 #1CD20h
%26 #1CD73h
%27 #1CD8Dh
%100 #415F1h
%180 #650Fch
%360 #65126h
%MAXREAL #2A472h

Objects & Object Utilities

67

Real Number Conversions
The following objects convert between real and extended real objects:

Real Number Functions

%>%% #2A5C1h
Converts a real number to an extended real number
% — %%
%%>% #2A5B0Oh
Converts an extended real number to a real number
%% — %
2%>%% #2B45Ch
Converts two real numbers to extended real numbers
B % — %% %%
2%%>% #2B470h
Converts two extended real numbers to real numbers
%% %% — % %
The following functions operate on real numbers:
%1+ #50262h
Adds one to a real number
%P — %
%1- #50276h
Subtracts one from a real number
P — %
%1/ #2AAAFh
Inverse
% — %
%10* #62BF1h
Multiplies a real number by 10
P — %
%ABS #2A900h
Absolute value
P — % -
%ACOS #2ACF1h
Arc cosine
% — %
% — C%
%ACOSH #2AE13h
Inverse hyperbolic cosine
% — %
% — C%
%ALOG #2ABBAh
Antilogarithm
B — %
%ANGLE #2AD38h
Angle from %x and %y (uses current angle mode)
TDox By — %
%ASIN #2ACCl1h
Arc sine
% — %
%ASINH #2AEQOOh
Inverse hyperbolic sine
% — %

68

Objects & Object Utilities

b

N

C C C (C¢(

s

%ATAN #2AD21h
Arc tangent
o = %
%ATANH #2AE26h
Inverse hyperbolic tangent
% —> %
% — C%
%CEIL #2AF73h
Next greatest integer
% — %
%CH #2AA30h
Percent change from x to y as a percentage of x
YDox %y — %
%CHS #2A920h
Change sign
P — %
%COMB #2AE62h
Combinations of n objects taken m at a time
9on %m — P
%COS #2AC40h
Cosine
% — %
%COSH #2ADDAO
Hyperbolic cosine
B = %
%D>R #2A622h
Converts degrees to radians
% — %
%EXP #2AB2Fh
Natural exponential
D —> %
%EXPM1 #2AB42h
Natural exponential minus 1
% —> %
%EXPONENT #2AE3%h
Returns exponent
% — %
%FACT #2B0C4h
Factorial or gamma function
% — %
%FLOOR #2AF86h
Next smallest integer
% — %
%FP #2AF4Dh
Fractional part
% — %
%HMS + #2A6A0h
Adds in HH.MMSSs format
B % — %
%HMS - #2A6C8h
Subtracts in HH.MMSSs format
% % — %
%HMS > #2A68Ch
Converts a number from HH.MMSSs format to decimal hours
% — %
%>HMS #2A673h
Converts a number from decimal hours to HH.MMSSs format
% — P

Objects & Object Utilities

69

70

%IP #2AF60h
Integer part
Do — %
%LN #2AB6Eh
Natural logarithm
D% — %
%o — C%
%LNP1 #2ABA7h
Natural logarithm of (argument + 1)
Do —> %
%LOG #2AB81h
Common logarithm
% — %
% — C%
%MANTISSA #2A930h
Returns mantissa
o = %
%MAX #2A6F5h
Maximum of two numbers
Do % — %
%MIN #2A70Eh
Minimum of two numbers
Do T — %
%MOD #2ABDCh
Modulo
Do % — %
%NFACT #2AE4Ch
Factorial
o = %
%NROOT #2AA81h
%onth root of %x
Jox J%n — %
%OF #2A9C%h
Returns percentage of %x that is %y
Jox %y — %
%PERM #2AE75h
Permutations of %m items taken %n at a time
Jom_%on — %
%POL>%REC #2B4BBh
Polar to rectangular conversion
%x %%y — %radius %angle
%R>D #2A655h
Radians to degrees conversion
o — %
%RAN #2AFC2h
Generates random number in the range (0<n<1)
- %
%RANDOMIZE #2B044h
Sets the random number seed. If % is zero, the system clock is used.
%_—
%REC>%POL #2B48Eh
Rectangular to polar conversion
Yoradius %angle — %x %y
%SGN #2A8D7h
Sign of a real number (-1, 0, or 1)
% — %
Objects & Object Utilities

Truncates %x to %n places

%SIN #2ABEFh
Sine
o = %
%SINH #2ADAEh
Hyperbolic sine
% — %
%SPH>%REC #2B4F2h
Spherical to rectangular conversion
Jor %0 %O — %Dox Dy %z
%SQRT #2AB0Sh
Square root
% = %
% — C%
%T #2AA0Bh
Percent total of %x that is represented by %y
%Dx Py —> %
%TAN #2AC91h
Tangent
o = %
%TANH #2ADEDhI
Hyperbolic tangent
B — %
%4 #2AA70h
Exponential
Dox Dy — Jox %y
DDAYS #0CC3%h
Days between dates in MM.DDYYYY format (respects flag 42)
Do %o _— %
RNDXY #2B52%h
Rounds %x to %n places
Jox_ %n_ — %
TRCXY #2B53Dh

J%ox 9n — %

Objects & Object Utilities

71

Extended Real Number Functions
The following functions operate on extended real numbers:

%% * #2A99Ah
Multiply
%% %% — %%
%%*ROT #62FEDh
Multiply followed by ROT
Ob] oby %% %% — oby %% ob;
%% * SWAP #62EA3h
Multiply followed by SWAP
ob %% %% — %% ob
%%*UNROT #63C18h

Multiply followed by UNROT
ob; 0b2 %% %% — %% ob; ob;

%+ . #2A943h
Addition

%% %% — %%
%%~ #2A94Fh
Subtraction

%% %% — %%
%%/ #2A9E8h
Division

%% P% — %%
%% A #2AASFh
Exponential

%o%x %%y — D%ox" %%y

%%/>% #63B82h
Division, returns real result
%% %% — %

%%1/ #2AA92h
Reciprocal

%% — %%
%>%%1/ #2AA9Eh
Convert % to %%, then do reciprocal

To = %%

%%ABS #2A8F0h
Absolute value

%% — %%
%%ACOSRAD #2ADO08h
Arc cosine using radians

%% — %%
%%ANGLE #2AD4Fh

Angle from %%x and %%y using current angle mode

To%x %%y — YDo%angle
%%ANGLEDEG #2AD6Ch
Angle from %%x and %%y using degrees

%%x %%y — %Do%angle
%%ANGLERAD #2ACD8h
Angle from %%x and %%y using radians

T%o%x %%y — Jo%angle
%%ASINRAD #2ACD8h
Arc sine using radians

%% = %%
%%CHS #2A910h
Change sign

%% — %%

72 Objects & Object Utilities

(

(

c C CC

5

%%COS #2AC57h
Cosine
%% 0%
%%COSDEG #2AC68h
Cosine using degrees
0% %%
%%COSH #2ADC7h
Hyperbolic cosine
%% %%
%%COSRAD #2AC78h
Cosine using radians
%% %%
%%EXP #2AB1Ch
Natural exponential
%% %0 %
%%FLOOR #2AF9%h
Next smallest integer
%% %%
%%H>HMS #2AF27h
Decimal hours to HH.MMSSs
0% % %o
%%INT #2AF9%h
Integer part
0% %%
%%LN #2AB5Bh
Natural logarithm
%0 % 0%
%%LNP1 #2AB94h
Natural logarithm of argument plus 1
%% %%
%%MAX #2A6DCh
Maximum of two numbers
%% %% %%
%P>R #2B4C5h
Polar to rectangular conversion
90 %radius % %angle Yo%x Jo%0y
%%R>P #2B498h
Rectangular to polar conversion
Yo%ox TPy % %oradius % %angle
%%SIN #2ACO06h
Sine
%% T %
%%SINDEG #2AC17h
Sine using degrees
%% %%
%%SINH #2AD95h
Hyperbolic sine
%% 0%
%%SQRT #2AAEAD
Square root
0% %%
%%TANRAD #2ACAS8h
Tangent using radians
0% %%

Objects & Object Utilities

73

Complex Numbers

Complex number objects contain two real number object bodies, with the same mantissa and exponent structure as
real numbers. Likewise, extended complex number objects contain two extended real number object bodies.

The symbol C% is used to denote a complex number, and C%% is used to denote an extended complex number.

Compiling Complex Numbers

Complex numbers can be embedded in System-RPL source code with the C% symbol followed by a space followed
by the real component, a space, and the imaginary component. For example, :: ... C% 3.5 4.2
specifies the number (3.5,4.2).

7

Extended complex numbers must be specified using the assembler, as RPLCOMP.EXE has trouble with them. The
code fragment below shows how the extended complex number (1.25,-.83) is specified in a System-RPL source file.
The prologue is followed by two extended real bodies, the first being the real part.

ASSEMBLE

CON(5) =DOECMP

NIBHEX 00000 Real Exponent

NIBHEX 0000000000005210 Real Mantissa

NIBHEX 99999 Imaginary Exponent

NIBHEX 0000000000000389 Imaginary Mantissa
RPL

Complex Number Conversions
The following objects convert between real, extended real, complex, and extended complex objects:

%%>C% #51A07h
Converts two extended real numbers into a complex number

‘%%@ﬁ %%m@g - C%
%>C% #05C27h
Converts two real numbers into a complex number

%%mgi%ﬂ&my - C%
C%%>%% #05DBCh
Converts an extended complex number into two extended real numbers

C%% — Po%oreal %%oimag

C%%>C% #519F8h
Converts an extended complex number into a complex number

C%% — C%
C%>% #05D2Ch

Converts a complex number into two real numbers
C% — %wd %mgg
C%>%% #519CBh
Converts a complex number into two extended real numbers
C% — %o%oreal %o%imag
%>%%SWAP #519DFh
Converts a complex number into two extended real numbers, then does SWAP
C% — %%mmm %%%@

74 Objects & Object Utilities

(

C C CC(

(

%lmeu %re?-l b d C%

Does SWAP, then converts two real numbers into a complex number

C>Im% #519B7h
Extracts the imaginary portion of a complex number

C%h — Poimag
C>Re% #519A3h
Extracts the real portion of a complex number

C% — Poreal
Re>C% #519A3h
Creates a complex from a real number with implied 0 imaginary part

Joreal = (Yoreal,0)

SWAP%>C% #632A9h

Built-ln Complex Numbers

The following table lists complex and extended complex numbers that are built into the HP 48:

Object Address
C%-1 #5196Ah
C%0 #524AFh
C%1 #524F7h
C%%]1 #5193Bh

Complex Number Functions

The following functions operate on complex or extended complex numbers:

C%1/ #51EFAh
Inverse

C% — C%
C%ABS #52062h
Returns radius from (0,0) to (x,y)

xy) > %

C%ACOS #52863h
Arc cosine

C% — C%
C%ACOSH #52836h
Hyperbolic arc cosine

C% — C%
C%ALOG #52305h
Common antilog

C —> C%
C%ARG #5209%h
Returns angle from (x,y)

xy) = %

C%ASIN #52804h
Arc sine

C% — C%
C%ASINH #5281Dh
Hyperbolic arc sine

C% — C%
C%ATAN #52675h
Arc tangent

C% — C%
C%ATANH #527EBh
Hyperbolic arc tangent

C% — C%

Objects & Object Utilities

75

76

C%CAC #52374h
Complex number raised to complex number
C%x C%y — C%x"C%y
C%CAR #52360h
Complex number raised to real number
C% % — C%
C%CHS #51B70h
Change sign
C%h — C%
C%%CHS #51B91h
Change sign
C%% — C%%
%CONJ #51BB2h
Conjugate
C% — C%
%%CONJT #51BClh
Conjugate
C%% — C%%
%COS #52571h
Cosine
C% — C%
C%%COS #52648h
Cosine
C%% — C%%
C%EXP #52193h
eZ
C% — C%
C%LN #521E3h
Natural logarithm
C% — C%
C%LOG #522BFh
Common logarithm
C% — C%
C%RAC #52342h
Real number raised to complex number
Co — C%
C%SGN #520CBh
Returns unit vector in the direction of z
C% — C%
C%SIN #52530h
Sine
C% — C%
C%SINH #5262Fh
Hyperbolic sine
C% — C%
C%SQRT #52107h
Square root
C% — C%
C%TAN #525B7h
Tangent
C% — C%
C%TANH #5265Ch
Hyperbolic tangent
C% — C%

Objects & Object Utilities

(

Cc C CCCC(

G

(

Arrays

Arrays may be used to store atomic objects of a common type. Typically, arrays are used to store real and complex
numbers, and many of the objects in the HP 48 manipulate real and complex arrays. Some objects work only with
real or complex valued arrays, so be sure to use the correct manipulation objects. This applies especially to the

MatrixWriter, which can cause the HP 48 to lose memory with arrays that are not composed of real or complex
numbers.

A string array is a good place to store a large number of strings, such as prompts or error messages, in an
application. Notice that while an array can be compiled (see below), and that an element can be obtained from an

array (see GETATELN below), there is no object giving the equivalent of the User-RPL object PUT for an array of
any object type other than real or complex numbers.

Compiling Arrays
The RPLCOMP.EXE compiler may be used to generate arrays of other objects, like internal binary integers or
strings. For example, the code fragment below specifies an array of strings:

ARRY [
" JOe "
"Fred"
"Janet"
"Jim"

Array Utilities

The objects described below may be used to work with array objects. The following notation convention applies to
these descriptions:

[array] An array of arbitrary type with one or two dimensions

[%oarray] An array of real numbers with one or two dimensions

[C%array] An array of complex numbers with one or two dimensions

[1-D array] A vector

[2-D array] A two dimensional array

{dims} A list containing a bint specifying a number of elements or two
bints specifying a number of rows and columns

#pos A row-order position within an array

ARSIZE #03562h

Returns the number of elements in an array
[array] — #elements

GETATELN #0371Dh
Returns an element from an array and TRUE if the element exists, otherwise
returns FALSE

#pos [array] — ob TRUE

#pos [array] — FALSE
MAKEARRY #03442h
Creates an array with all elements equal to the specified object

{ #rows #cols } ob — [array]
MATCON #35CAEh
Sets all elements in an array to a real or complex number
[%oarray] % — [%array]
[C%harray] C% — [C%array]

Objects & Object Utilities 77

MATREDIM #37EQOFh
Redimensions a real or complex array. New elements are filled with %0 or

C%0,0.
[%oarray] {dims} — [%array]
[C%array] {dims} — [C%array]
MATTRN #3811Fh
Transposes a real or complex array.
[%oarray] — [%array]
[C%array] — [C%array]
MDIMS #357A8h
Returns the dimensions of an array
[1-D array] — #elements FALSE
[2-D array] — #rows #cols TRUE
MDIMSDROP #62F9Dh
Does MDIMS, then DROP
[1-D array] — #elements
[2-D array] — #rows #cols
OVERARSIZE #63141h

Does OVER, then ARSIZE

[array] ob — [array] ob #elements
PULLREALEL #355B8h
Returns the specified real number from a real array

[Joarray] #pos — [%array] %

PULLCMPEL #355C8h
Returns the specified complex number from a complex array

[C%array] — [C%array] C%

PUTEL #35628h
Places a real or complex number into a real or complex array at a specified
location

[Poarray] % #pos — [%array]
[C%array] C% #pos — [C%array]
PUTREALEL #3566Fh
Places a real number into a real array at a specified location
[Poarray] % #pos — [%array]
PUTCMPEL #356F3h
Places a complex number into a complex array at a specified location
[C%array] C% #pos — [C%array]

The MatrixWriter
The MatrixWriter can be started by executing either DoNewMatrix to create a new arrayor DoOldMatrix to edit
a array on the stack.

DoNewMatrix #44C31h
Starts the MatrixWriter and creates a new array
— [array] If terminated with
- If terminated with (CANCEL)
DoOldMatrix #44FE7h
Starts the MatrixWriter on an existing array on the stack
[array] — [array] TRUE If terminated with
[array] — FALSE If terminated with

78 Objects & Object Utilities

(

Tagged Objects

Tagging an object with a meaningful label is one useful option for labeling a result being returned to the user. When

accepting input from the user, it may be necessary to remove all tags from the base object before deciding if the
input is valid. The objects described below facilitate these tasks.

Note that CK&DISPATCHL1 removes tags recursively as it filters user input, while CK&DISPATCHO does not
remove tags (see Argument Validation).

%>TAG #22618h
Tags an object with a real number

ob % — tagged

>TAG #05E81h
Tags an object with a string. Has no length check (see USER$>TAG)

C CCCCC(

(¢

(

ob $ — tagged

ID>TAG #05F2Eh
Tags an object with an a name

ob ID — tagged

STRIPTAGS #64775h
Removes all tags from an object

tagged — ob
STRIPTAGS12 #647A2h
Removes all tags from an object in level 2
tagged, ob; — oby ob;
TAGOBS #647BBh
Tags one object or a series of objects
ob $§ — tagged
ob;...ob, {$;..%,} — tagged; ... tagged,
USERS$>TAG #225F5h
Tags an object with a string. Issues error if string length is > 255
ob $§ — tagged

Characters and Character Strings

There are two object types representing character information. Character objects (type 24) represent a single

character, and character strings (type 2) contain one or more characters. The following objects are useful for
converting to and from character objects:

#>CHR #05A75h
Creates a character object with a specified character code
— chr

CHR># #05A51h
Returns a binary integer representing a character's code

chr —» #
CHR>$ #6475Ch
Converts a character object to a one character string object

chr - §

Objects & Object Utilities 79

Built-In Character Objects
The following table lists character objects that are built into the HP 48.

80

Num Name Address Num Name Address

0 | CHR_00 #6541Eh 85 |CHR_U #65559h
10 | CHR_Newline | #6566Ah 86 | CHR_V #65560h
31 [CHR_... #65425h 87 | CHR_W #65567h
32 | CHR_Space #65686h 88 | CHR_X #6556Eh
34 | CHR_DblQuote | #6542Ch 89 |[CHR_Y #65575h
35 | CHR_# #65433h 90 | CHR_Z #6557Ch
40 | CHR_LeftPar | #65663h 91 | CHR_I #65694h
41 | CHR_RightPar | #65678h 93 | CHR_] #6569Bh
42 | CHR_* #6543Ah 95 | CHR_UndScore | #6568Dh
43 | CHR_+ #65441h 97 | CHR_a #65583h
44 | CHR_, #65448h 98 | CHR_b #6558Ah
45 | CHR_- #6544Fh 99 | CHR_c #65591h
46 | CHR_. #65456h 100 | CHR_A #65598h
47 | CHR_/ #6545Dh 101 | CHR_e #6559Fh
48 | CHR_O #65464h 102 | CHR_f #655A6h
49 | CHR_1 #6546Bh 103 | CHR_. #655ADh
50 | CHR_2 #65472h 104 | CHR_h #655B4h
51 | CHR_3 #65479h 105 [CHR_i #655BBh
52 | CHR_4 #65480h 106 | CHR_j #655C2h
53 | CHR_5 #65487h 107 | CHR_k #655C9h
54 | CHR_6 #6548Eh 108 | CHR_1 #655D0h
55 | CHR_7 #65495h 109 | CHR_m #655D7h
56 | CHR_S8 #6549Ch 110 | CHR_n #655DEh
57 | CHR_9 #654A3h 111 | CHR_o #655E5h
58 | CHR_: #654AAh 112 | CHR_p #655ECh
59 | CHR_; #654B1h 113 |CHR_¢g #655F3h
60 | CHR_< #654B8h 114 | CHR_x #655FAh
61 | CHR_= #654BFh 115 | CHR_s #65601h
62 | CHR_> #654C6h 116 | CHR_t #65608h
65 | CHR_A #654CDh 117 | CHR_u #6560Fh
66 | CHR_B #654D4h 118 | CHR_v #65616h
67 | CHR_C #654DBh 119 | CHR_w #6561Dh
68 | CHR_D #654E2h 120 | CHR_x #65624h
69 | CHR_E #654E%9h 121 | CHR_y #6562Bh
70 | CHR_F #654FOh 122 | CHR_z #65632h
71 | CHR_G #654F7h 123 | CHR_({ #656A2h
72 | CHR_H #654FEh 125 | CHR_} #656A%h
73 | CHR_I #65505h 128 | CHR_Angle #6564Eh
74 | CHR_J #6550Ch 132 | CHR_Integral | #6565Ch
75 | CHR_K #65513h 133 | CHR_Sigma #6567Fh
76 | CHR_L #6551Ah 135 | CHR_Pi #65671h
77 | CHR_M #65521h 136 | CHR_Deriv #65655h
78 | CHR_N #65528h 137 | CHR_<= #656B0h
79 | CHR_O #6552Fh 138 | CHR_>= #656B7h
80 | CHR_P #65536h 139 | CHR_<> #656BEh
81 | CHR_ #6553Dh 141 | CHR_-> #65639h
82 | CHR_R #65544h 171 | CHR_<< #65640h
83 | CHR_S #6554Bh 187 | CHR_>> #65647h
84 | CHR_T #65552h

Objects & Object Utilities

«c ¢ C C C C € (

(

Built-In String Objects
The following table lists string objects that are built into the HP 48 (not including text in message tables).
Object Contents Address

$_. ' nian #6571Fh
$_2DQ nunn #65749h
S_:: R #6572Dh
$_<<>> Mgt #656F5h
$_ECHO "ECHO" #65757h
$_EXIT "EXIT" #65769h
$_GRAD "GRAD" #657A7h
$_LRParens "o #6573Bh
$_R<< "Rgg" #656C5h
$_R<Z "R«£2Z" #656D5h
$_RAD "RAD" #65797h
$_Undefined | "Undef ined" |#6577Bh
$_XYZ "Ryz" #656ES5h
$_1[1] "Ll #65711h
$_{} " #65703h
NEWLINES "\oAa" #65238h
SPACES "o #65254h

String Manipulation Objects

lappend$ #62376h

String concatenation for use in low memory situations — appends directly to $;
instead of making a copy
$1 % - $3

lappend$SWAP #62F2Fh
String concatenation for use in low memory situations followed by SWAP
ob $ $ — $3 ob

#1+LASTS #63281h

Returns the tail of a string starting one character past the location specified by #
$ # > §

#1-SUBS #63245h

Returns a substring after subtracting one from the bint specifying the end

#:>8 #167D8h
Converts a bint into a string followed by a colon (suitable for stack level #'s)

> 3
#>$ #167E4h
Converts a bint into a string

> 8
$>ID #05B15h
Converts a string object into a name object

$ » ID
&$ #05193h
Concatenates $, to the end of $;

$1 $2 - $3

&$SWAP #63F6Ah

Concatenates $, to the end of $;, then does SWAP
ob $; $ — $3 ob

1_#1-SUB$ #6325%h
Returns substring from 1 to #-1
$ # 5 §
>H$ #0525Bh
Prepends a character object to a string
$ chr > §

Objects & Object Utilities

82

>T$ #052EEh
Appends a character object to a string

$ chr - $
AND$ #18873h
Bitwise logical AND of two strings

$1 $2 - $3
Blank$ #45676h
Creates a string of # space characters

> §

CARS #050EDh

Returns the first character of a string as a character object or NULLS if the
string is empty

$ — chr

$ — NULLS
CDRS$ #0516Ch
Returns the string less its first character or NULLS if the string is empty

$ - 8

$ > NULLS
CHR>$ #6475Ch
Converts a character object to a one character string object

chr - §

COERCE$22 #12770h

If a string has more than 22 characters, truncates the string to 21 characters and
appends ellipses (...)

$ - §
Date>ds$ #0CFD%h
Converts a real number representing a date into a string
% — $
DECOMPS$ #15B13h
Decompiles an object for the stack display using current display modes
ob > §
DROPNULLS$ #04DE3h
Drops an object from the stack and returns an empty string
ob — NULL$
DUP$>ID #63295h
Duplicates a string, then converts string object to name object
$ - § ID
DUPLENS$ #627BBh
Duplicates a string, then returns its length
$ - 3 #le_ngth
DUPNULLS$? #63209h
Returns TRUE if $ is empty
$ —» $ FLAG
EDITDECOMPS #15A0Eh
Decompiles an object for editing using standard display formats
ob - §
JstGETTHEMESG #04D87h
Retrieves a message from the built-in message table
> $
ID>$ #0SBESh
Converts a name object to a string object
ID > §
LASTS #6326Dh
Returns the last # characters in a string
$ # > $
LENS$ #05636h
Returns the number of characters in a string
$ - #

Objects & Object Utilities

(

cCCCC <

(

(

NEWLINES$&S #63191h
Appends newline character to a string

$ - §
NULLS$ #055DFh
Empty string

— NULLS

NULL$? #0556Fh
Returns TRUE if string is empty

$ > FLAG
NULL$SWAP #62D5%h

Swaps an empty string into level 2
ob — NULLS ob

NULLS$TEMP #1613Fh
Empty string in TEMPOB (temporary memory)
— NULL$
OR$ #18887h
Bitwise logical OR of two strings
$1 $2 bd $3
OVERLENS$ #05622h

Returns the length of a string in level 2
$ ob - $ ob #legzth

POSS$ #645B1h
Searches forwards for a substring within a string starting at a specified position,
returning zero if the substring is not found

Ssearch $find #start — #position

POS$REV #645BDh
Searches backwards for a substring within a string starting at a specified
position, returning zero if the substring is not found

$se_arch $ind #s@ - #Dos_ition

PromptIdUutil #49709h
Returns a string in the form "ID: object"

ID ob > §
SEPS$NL #127A7h

Separates a string at the first newline character
$ o S Sirst

SUBS$ #05733h
Returns a substring

$ #st_art #end bd $

SUBS1# #30805h
Returns a bint with the value of the character at the specified position

$ #position = Hvalue

SUBS$SWAP #62D6Dh
Does SUBS, then SWAP

ob $ #yan H#endg — $ ob

SWAP&S$ #622EFh
Concatenates $; to $;

$1 $2 i $3

TIMESTR #0D304h
Returns a string time and date

Podate Potime = $

TOD>tS$ #0D06Ah
Converts a real number time (24-hour format) into a 9-character string
% —> $
XORS #1889Bh
Bitwise logical XOR of two strings
$1 $ > $3

Objects & Object Utilities

83

a%>$ #162B8h
Creates a string representation of a real number using the current display
format, excluding commas

Do — $
a%>$, #162ACh
Same as a%>$, but includes commas if commas are part of the display format
% — $
palparse #238A4h

Parses a string into an object. If an error occurs, returns position of error
$ - ob TRUE
$ > $ #, $ FALSE

Hex Strings

User binary integers (type 10) are implemented with hex strings. Hex strings are similar in construction to character
strings, except that the length is arbitrary (character strings must have an even number of nibbles in the length of the
body).

Hex String Conversions

The following objects convert between hex strings and other object types (respecting the user's wordsize
specification).

%> # #543F%h
Converts a real number to a hex string
% — hxs
HXS>% #5435Dh
Converts a hex string to a real number
hxs = %
#>HXS #059CCh
Converts a bint to a hex string with a length of five nibbles
— hxs
HXS># #05A03h
Creates a bint from the lower 20 bits of a hex string
hxs — #
2HXSLIST? #51532h

Confirms list of two hex strings, then converts to bints. Useful for validating
and converting user pixel coordinates for graphics operations. Generates Bad
Argument Error if list does not contain two hex strings.

{hxs; hxsy} — #; #
HXS>$ #54061h
Creates a string representation of a hex string using the current display mode
and wordsize, then appends a letter specifying the current base mode

hxs = §

hxs>$ #540BBh
Creates a string representation of a hex string using the current display mode
and wordsize

hxs —» $

Wordsize Control
The user's wordsize specification can be tested or altered with the following two objects:

WORDSIZE #5403%h
Returns the current wordsize
- #
dostws #53CAAhQ
Stores a new value for the wordsize
-

84 Objects & Object Utilities

(

c C C C ¢

(

Basic Hex String Utilities

&HXS #0518Ah
Appends hxs; to hxs;
hxs; hxs; — hxss

LENHXS #05616h
Returns the length (in nibbles) of a hex string

hxs — #
NULLHXS #055D5h
Returns a null hex string

— hxs

SUBHXS #05815h

Returns a substring
hxs #gat #end — hxs

HXS==HXS #544D%
Returns %1 if hex strings are equal

hxs; hxs, —» %
HXS#HXS #544ECh
Returns %1 if hex strings are not equal

hxs; hxsy —» %
HXS<HXS #54552h
Returns %1 if hxs; < hxsp

hxs; hxs, — %
HXS<=HXS #5453Fh-
Returns %1 if hxs; < hxsy

hxs; hxs, —» %
HXS>=HXS #5452Ch
Returns %1 if hxs; = hxsy

hxs; hxs, —» %
HXS>HXS #54500h
Returns %1 if hxs; > hxsp

hxs; hxs; — %

Hex String Math Utilities
The following objects are the dispatchees for math operations that involve user binary integers. These objects
assume that the hex strings are 64 bits or shorter. Results are returned according to the user's wordsize setting.

bit#%* #542EAh
Multiplies hxs by %
hxs % — hxs

bit%#* #542D1h
Multiplies % by hxs

% hxs — hxs

bit#%+ #54349h
Adds % to hxs

hxs % — hxs
bit%#+ #54330h
Adds hxs to %

% hxs — hxs

bit#%- #5431Ch
Subtracts % from hxs

hxs % — hxs

bit%#- #542FEh
Subtracts hxs from %

% hxs — hxs

Objects & Object Utilities

86

bit#%/ #542BDh
Divides hxs by %
hxs % hxs
bit%#/ #5429Fh
Divides % by hxs
% hxs hxs
bit* #53ED3h
Multiply
hxs; hxs, hxsj
bit+ #53EAOh
Add
hxs; hxsj hxs3
bit- #53EBOh
Subtract
hxs; hxs; hxs3
bit/ #53F05h
Divide
hX81 hXS2 hX53
bitaAND #53D04h
Bitwise logical AND
hxs; hxsy hxs3
bitASR #53E65h
Arithmetic shift right one bit
hxs hxs
bitOR #53D15h
Bitwise logical OR
hxs; hxs, hxs3
bitNOT #53D4Eh
Bitwise logical NOT
hxs hxs
bitRL #53E0Ch
Circular left shift one bit
hxs hxs
bitRLB #53E3Bh
Circular left shift one byte
hxs hxs
bitRR #53DA4h
Circular right shift one bit
hxs hxs
bitRRB #53DE1lh
Circular right shift one byte
hxs hxs
bitsL #53D5Eh
Shift left one bit
hxs hxs
bitsLB #53D6Eh
Shift left one byte
hxs hxs
bitsr #53D81h
Shift right one bit
hxs hxs
bitSRB #53D91h
Shift right one byte
hxs hxs
bitXOR #53D26h
Bitwise logical XOR
hxs; hxs, hxs;
Objects & Object Utilities

(

C C C(C

(

Composite Objects

Composite objects are created from a collection of arbitrary objects. They may be created, searched, and
decomposed. Lists are the most commonly used composite object in User-RPL programs, but the System-RPL
objects described below also let you work with secondaries and unit objects.

Building Composite Objects
The following objects provide null composite objects or create composite objects.

NULL{} #055E9h
A null list

- {}
{IN #0545%h

Creates a list composed of » objects
ob;..oby #n — {ob;..obyn}

ONE{}N #23EEDh
Creates a list containing one object

ob - {ob}
TWO{}N #631B%h

Creates a list containing two objects
ob; ob, — { ob; Ob2 }
THREE{}N #631CDh
Creates a list containing three objects
ob; obp ob3 — {ob; oby obs}

NULL: : #055FDh
A null secondary

-
80 #05445h

Creates a secondary composed of n objects

ob..oby #n — :obj..oby;
: :NEVAL #632D1h
Creates and then executes a secondary composed of n objects

obj..oby #n —
Ob>Seco #63FE7h
Creates a secondary containing one object

ob — : ob;
20b>Seco #63FFBh
Creates a secondary containing two objects
ob; obp — : obj oby ;
EXTN #05481h
Creates a unit object consisting of numbers, string, unit operators, and umEND
(see Unit Objects for more details)
ob; ...ob,.; umEND #n — unit

SYMBN #0546Dh
Creates a symbolic object
Example: ID A ID B x+ #3 SYMBN — 'A+B'
obj...ob, #n — symb

Finding the Number of Objects in a Composite Object
The following objects return the number of objects in a composite object.

DUPLENCOMP #63231h
Duplicates a composite and returns the number of constituent elements

comp — comp #n
LENCOMP #0567Bh
Returns the number of constituent elements in a composite object

comp — #n

Objects & Object Utilities

Adding Objects to a Composite

These object are convenient to use but slow in execution for long lists, so caution should be exercised when using
these object repetitively. The delays occur as composites are taken apart with INNERCOMP, objects are shuffled,
and the composite is reassembled. For instance, the sequence of operations for performing >TCOMP is something
similar to the following program fragment:

SWAP INNERCOMP obygy ©Obi ... oby #N

DUP #2+ ROLL ob; ... oby #N obygy

SWAP #1+ ob; ... oby obygy #N+1

{IN { ob;y ... oby obygw }
apndvarlst #35491h

Appends an object to a list if the object is not found within the list
{list} ob — {list'}
>HCOMP #052C6h
Prepends an object to a composite object
comp; ob — comp,
>TCOMP #052FAh
Appends an object to a composite object
comp; ob — comp,
&COMP #0521Fh
Concatenates two composite objects
comp; comp; — comps
PUTLIST #1DCO00h
Replaces an object in a list (assumes 0<i<n), where n is the number of list obs
ob #i {list} — {list'}

Decomposing Composite Objects

The following objects decompose a composite object into its constituent objects or extract portions of a composite.
It is important to remember that when an object like DUPINCOMP is applied to a composite, the stack contains
pointers into the original composite, not pointers to separate objects in TEMPOB. This means that as long as there
is at least one pointer to an object within a composite, the entire composite is retained in TEMPOB. The object
Embedded? can determine whether an object is embedded in a composite (see Detecting Embedded Objects).

CARCOMP #0508%h
Returns a composite's first object or a null composite if the composite is null

comp — ob

comp — comp (null composite)
CDRCOMP #05153h
Returns a composite less its first object or the composite if the composite is null

comp — comp'

comp — comp (null composite)
DUPINCOMP #631E1h
Duplicates a composite and decomposes the copy

comp — comp ob;..oby #n
INCOMPDROP #62B88h
Decomposes a composite object and drops the object count

comp — obj...oby
INNERCOMP #054AFh
Decomposes a composite object

comp — obj..oby #n
INNERDUP #62C41h
Decomposes a composite object and duplicates the object count

comp — ob;..oby #n #n
NTHCOMDDUP #62D1Dh
Returns two copies of the ith object in a composite (ob; is presumed to exist)

comp #i — ob; ob;

88 Objects & Object Utilities

(

C CCC (¢

r

NTHCOMPDROP #62B9Ch
Returns the ith object in a composite (ob; is presumed to exist)

comp # — ob;
NTHELCOMP #056B6h

Returns the ith object in a composite and TRUE or FALSE if there are not at
least i elements in the composite

comp # — ob; TRUE

comp # — FALSE
SUBCOMP #05821h
Returns a subcomposite. Indices out of range are set to composite bounds

comp #gart #endg —> comp'
SWAPINCOMP #631F5h
Does SWAP, then decomposes a composite
comp obj — obj obj..oby #n

Searching Composite Objects
The object POSCOMP is the generalized tool for searching through a composite object for an object that satisfies

some comparison with a supplied object. The following program fragment indicates the position in a composite of
the first binary integer greater than #5:

({1ist})
FIVE ' #> POSCOMP (#pos)

The objects EQUALPOSCOMP and NTHOF supply the predicate EQUAL to POSCOMP, simplifying some search
procedures.

EQUALPOSCOMP #644A3h
Returns the position of the first object in a composite equal to an object. If the
object is not found, zero is returned.

comp ob — #pos :
matchob? #643EFh
Returns TRUE and ob if ob is equal to any object within a composite

ob comp — FALSE

ob comp — ob TRUE
NTHOF #644BCh
Returns the position of the first object in a composite equal to an object. If the
object is not found, zero is returned.

ob comp — #pos
POSCOMP #64426h
Returns the position of the first object in a composite that satisfies a test with
the supplied predicate and an object. If the object is not found, zero is returned.

comp ob pred — #pos

Detecting Embedded Objects

As mentioned above, an object on the stack may be contained within a composite. The object Embedded? may be
used to detect this case, and CKREF can be used to check all references to an object.

CKREF #37B44h
Creates a unique copy of an object if it is referenced or embedded in any
composite object

ob — ob
Embedded? #64127h
Returns TRUE if ob, is embedded in or is the same as ob;

ob; ob, — FLAG

Objects & Object Utilities 89

Unit Objects

Unit objects evolved from representing integer powers in the HP 48S/SX to real powers in the HP 48G/GX. This
can be quickly demonstrated by comparing using the User-RPL function UBASE and the System-RPL object
U>NCQ on the S and G series:

HP48S/SX HP48G/GX
Object 1_m*2.3/5"3.7 1_m*2.3,5"3.7
UBASE 1_m"2/5"4 1_m*2.3/5"3.7
U>NCQ $%1 %%1 HXS 10 002000CF00000000 $%1 %%1 [%0 %2.3 %0 %3.7 %0 %0 %0 %0 %0)

The object U>NCQ is used to break apart a unit object into a number part, conversion factor, and unit quantity vector.
In the S series, the unit quantities were expressed as 10 signed 8-bit quantities in a hex string. Negative unit
quantities indicate units in the denominator. In the G series, the unit quantities are expressed as a 10 element real
vector.

Dimensional Consistency
If two unit objects are dimensionally consistent, their unit quantity vectors will be equal. The unit quantity vector is
formatted as follows:

Element Quantity Base Unit
1 mass kilogram
2 length meter
3 electric current ampere
4 time second
5 thermodynamic temperature | kelvin
6 luminous intensity candela
7 amount of substance mole
8 plane angle radian
9 solid angle steradian

10 unused

The following code fragment checks two objects for dimensional consistency, returning the system flags TRUE or
FALSE:

:: U>NCQ ROTROT2DROP SWAP U>NCQ ROTROT2DROP EQUAL ;

Building and Decomposing Unit Objects
Unit objects are composite objects that can be broken apart with INNERCOMP and assembled with EXTN.
Extending the previous example to use km instead of m, apply INNERCOMP to 1_km?"2.3/s"3.7:

:: 1_km*2.3/s73.7 INNERCOMP ; — %1 "k" "m" umP %2.3 um™ "s" %3.7 um” um/ umEND ELEVEN

Notice that the object is constructed much the same way as an RPN expression, with the provisio that umEND be the
last object. If you're viewing these objects with tools like SSTK in Jazz, you'll notice that unit operators (like um/)
are decompiled as {} in User-RPL. These unit operators found within a unit object are different from objects that
manipulate unit objects, such as UM+, UM-, etc.

Unit Operator Purpose Address
um* Multiply operator #10BSEh
um/ Divide operator #10B68h
um” Power operator #10B72h
umP Prefix operator #10B7Ch
umEND End of unit object #10B86h

The System-RPL objects UM>U and UMU> are useful for many tasks. UMU> breaks a unit object into a number and
normalized unit part, while UM>U replaces the number part of a unit object (useful when returning a unit result).

90 Objects & Object Utilities

ccccccccc¢cococococcoccocococococcocdoc oo

4

(

Unit Object Utilities
The following objects operate on unit objects. For unit object tests, see Unit Object Tests.

EXTN #05481h
Assembles a unit object consisting of numbers, string, unit operators, and
umEND

ob,_j...ob; umEND #n — unit

UM% #0FBABh
Returns a percentage of a unit quantity
unit %percentage — unit

UM%CH #OFC3Ch
Returns the percent difference between two unit quantities
unit; unitpy —> %

UM%T #0FCCDh
Returns the percentage fraction of unit; that is unit,
unit; unit, — %

UM* #0F792h
Unit multiply

unit unit — unit
UM+ #0F6A2h
Unit addition

unit unit — unit

UM- #0F774h
Unit subtraction
unit unit — unit

uM/ #0F823h
Unit division
unit unit — unit

uM>U #0F33Ah
Replaces the number part of a unit object
% unit — unit

UMABS #0F5FCh
Absolute value
unit — unit

UMCEIL #0FD36h
Next greatest integer
unit — unit

UMCHS #0F615h
Change sign
unit — unit

UMCONV #0F371h
Unit conversion — converts unit; to unit; units
unit; unity — unity’

UMCOS #0F660h
Cosine

unit = %
UMFLOOR #0FD22h

Next smallest integer
unit — unit

UMFP #0FDOEh
Fractional part

unit — unit
UMIP #0FCFAh
Integer part

unit — unit

UMMAX #0FB6Fh
Maximum of two unit quantities
unit; unity — unit

Objects & Object Utilities

91

92

UMMIN #0FB8Dh
Minimum of two unit quantities
unit; unit; — unit
UMRND #0FD68h
Round to specified number of places
unit %places — unit
UMSI #0F945h
Converts unit quantity to SI units
unit — unit
UMSIGN #0FCE6h
Returns sign (-1, 0, or 1) of unit quantity
unit » %
UMSIN #0F62Eh
Sine
unit —» %
UMSQ #0F913h
Square
unit — unit
UMSQRT #0F29Ch
Square root
unit — unit
UMTAN #0F674h
Tangent
unit = %
UMTRC #0FD8Bh
Truncate to specified number of places
unit %places — unit
UMU> #0F34Eh
Returns number and normalized unit parts of a unit object
unit — % unit’
UMXROOT #0F8FAh
Returns unitth root of unity
unit, unit, — unit
UNIT>$ #0F218h
Decompiles a unit object
unit > $

Objects & Object Utilities

C C ¢«

‘

Memory Utilities

The HOME directory and its subdirectories are collectively known as USEROB, which is different from the
temporary memory (TEMPOB). In TEMPOB, objects live briefly, and are discarded when memory is low and no
pointers refer to them. In USEROB, an object exists until purged by a user command.

The objects described in this chapter provide some of the basic utilities for dealing with input from the user, results
returned to the user, and directories. An important convention in the HP 48 is the sanctity of variables stored in user
memory. Some operations, like GROB!, don't care where a subject object resides. It's therefore possible to alter a
user's input arguments instead of providing a unique result. Unless there is a specific design intent, an application
should not change the directory pointed to by the VAR menu when the application begins.

High Memory

e — — — — — — — — —
fr — — — — — — — — —
e — c— — — — — — — —

Data Stack

}

Available Memory

f

Return Stack

TEMPORARY MEMORY
(TEMPOB)

PICT Grob

Stack Display Grob

SoftKey Grob

Dedicated System RAM

Low Memory

Name Objects

In this chapter, "ID" and "lam" refer to global and local variable name objects. The following objects convert
between strings and name objects:

$>ID #05B15h
Converts a string object into a name object

$ - ID
DUP$>ID #63295h
Duplicates a string, then converts string object to name object

$ - $ ID
ID>$ #05SBESh
Converts a name object to a string object

ID - §

Memory Utilities 93

User Variables
Evaluating a user variable is just as straightforward in System-RPL as in User-RPL just specify the name:

ID X ... ;

Since any object can be in X, or X may not exist, you might want to exercise some caution. This is part of the
reason the HP 48 is criticized for being slow in some areas, especially with respect to the plotting system. When a
plot is drawn, the contents of PPAR, the equation, and related variables must be validated before the plot gets
underway. Since the user can provide a program for an equation definition, further checks are required to make sure
the program will not inflict untoward damage. If you're at all concerned about these issues, recall the contents of the
variable before evaluating.

94

CREATE #08696h

Creates a variable in the current directory (does not check for unique name)
obID —

?PURGE_HERE #1854Fh

Purges specified variable only if it exists in the current directory and does not
contain a non-empty directory, otherwise generates Non—empty Directory
error

ID -

PURGE #08C27h
Purges the specified variable. Do not purge a non-empty directory with this
object — use XEQPGDIR instead.

ID —

e #0797Bh
Recalls the contents of a global or temporary variable. For global variables,
begins at the current directory and searches up through HOME
ID — ob TRUE Global variable exists
ID — FALSE Global variable nonexistent
lam — ob TRUE Temporary variable exists
lam — FALSE Temporary variable nonexistent

Syse #2EA6Ah
Recalls the contents of a global variable from HOME directory

ID — ob TRUE Global variable exists

ID — FALSE Global variable nonexistent

SAFE@ #62A34h
Recalls the contents of a global or temporary variable. For global variables,
begins at the current directory and searches up through HOME. ROM bodies
are converted to XLIB names.
ID — ob TRUE Global variable exists
ID —» FALSE Global variable nonexistent
lam — ob TRUE Temporary variable exists
lam — FALSE Temporary variable nonexistent

SAFE@_HERE #1853Bh
Recalls the contents of a global or temporary variable. For global variables,
recalls only from the current directory.
ID — ob TRUE Global variable exists
ID —» FALSE Global variable nonexistent
lam — ob TRUE Temporary variable exists
lam — FALSE Temporary variable nonexistent

SAFESTO #07D27h
Stores an object in the current directory. If the object is to be stored in a global
variable and is referenced, a copy is left in temporary memory and all
references are adjusted to point to the copy. Searches current and then parent
directories for the global variable, replacing the contents if found, otherwise
creates variable in the current directory.

ob lam —

obID —

Memory Utilities

(

c ¢ ¢ (¢

4

STO #07D27h
Stores an object in the current directory. If the object is to be stored in a global

variable and is referenced, a copy is left in tempob and all references are
adjusted to point to the copy. Searches current and then parent directories for
the global variable, replacing the contents if found, otherwise creates variable
in the current directory.

ob lam —
ob ID —
SysSTO #2E9E6h
Stores an object in HOME
ob ID —
XEQSTOID #18513h

Stores an object in the current directory. If the object is to be stored in a global
variable and is referenced, a copy is left in temporary memory and all
references are adjusted to point to the copy. Will not overwrite a directory.
This does the work for the user command STO.
ob lam —
obID —

Directory Utilities

A directory is an object, but you should note that directories are not composite objects. To be used, a directory must
be "rooted", meaning it must be a subdirectory of the permanent HOME directory. When the HP 48 is first turned
on, the HOME directory is established, and a pointer called CONTEXT refers to this HOME directory.
Subdirectories are said to be "rooted" in their parent directory. As the directory structure is traversed, the
CONTEXT pointer is updated to point to subdirectories within HOME. CONTEXT should never point to an
unrooted directory, and no pointer should ever point within an unrooted directory, because the garbage-collection
system isn't designed to traverse a directory in TEMPOB.

CONTEXT! #08D08h
Stores a pointer to a rooted directory in CONTEXT, defining the current
directory
directory —
CONTEXT@ #08D5Ah
Recalls the CONTEXT pointer
— directory
CREATEDIR #184E1h
Creates a directory in the current directory
ID —
DOVARS #1877%h

Returns a list of the variables in the current directory

- { ID; ...IDy }
PATHDIR #1848Ch
Returns a list describing the path from HOME to the current directory

— {HOME ID ID ... }

SYSCONTEXT #08D92h
Stores the HOME directory pointer into CONTEXT

ﬁ
UPDIR #1A16Fh
Makes the parent directory the current directory

—_
XEQORDER #20FF2h

Asserts the order of IDs in the current directory
{ID;..IDN} —

XEQPGDIR #18595h
Purges a directory

ID >

Memory Utilities 95

The hidden directory is a null-named directory at the end of the HOME directory, and contains user key definitions
and alarm information. Applications that use this directory need to either clean up after themselves or provide a user
command to clear stored information.

PuHiddenVar #6408Ch
Purges the specified variable in the hidden directory

ID >
RclHiddenVar #64023h
Recalls a hidden variable using @

ID - ob
StoHiddenVar #64078h
Stores an object in the hidden directory using STO

ob ID —
Temporary Memory

The data stack in the HP 48 is actually a stack of pointers which refer to objects elsewhere in memory. Temporary
memory is the calculator’s “scratchpad”. All objects that are not stored in a port or in a user variable reside in
temporary memory. Many of the objects described in this book require temporary memory to construct intermediate
objects or new objects returned as results to the stack.

Use of Temporary Memory

To understand temporary memory a little more, consider what happens when two math operations are performed.
Enter the numbers 1.5 and 2.6 on the stack. These numbers now reside in temporary memory, referred to by
pointers on the data stack. When the numbers are added, the result, 4.1, is a number in temporary memory
referenced by a pointer in level 1 of the data stack. The objects 1.5 and 2.6 remain in temporary memory, referenced
by pointers that save the Last Arguments.

Now add 2.8 to the result in level 1. The level 1 pointer on the data stack refers to the object 6.9 in temporary
memory. The last arguments pointers now refer to the objects 2.8 and 4.1, and the objects 1.5 and 2.6 are no longer
referenced.

The object TOTEMPOB may be used to create a new copy of an object in temporary memory, whose only reference
is on the data stack. In general, the system will perform an automatic TOTEMPOB where it makes sense. For
instance, if you recall the contents of a variable to the stack and press [EDITJ, the object will be copied to temporary
memory before editing begins.

Sometimes you may want to “free” an object that was extracted from a list. Consider the following User-RPL
program:

« { "AB" "CD" "EF" 3 2 GET »

Level 1 of the data stack contains a pointer into the list, which still resides in temporary memory. Executing
NEWOB now would create the unique object “CD” in temporary memory, and release the list for garbage collection.
(Note: set the Last Arguments flag (—55) to prevent the list from being referenced as a last argument.)

The following objects are useful for checking references to objects and their locations.

CKREF #37B44h

Creates a unique copy of an object if it's referenced, embedded, or in USEROB.
ob — ob

INTEMNOTREF? #06B4Eh

Returns TRUE if ob is in TEMPOB, and not referenced or embedded

ob — ob FLAG
SWAPCKREF #63F7Eh
Swaps objects, then does CKREF

ob; ob, — ob, ob;

TOTEMPOB #06657h
Creates a unique copy of an object in TEMPOB

ob — ob

96 Memory Utilities

Garbage Collection

From time to time the HP 48 will “hesitate” during an operation. This hesitation is usually caused by the removal of
objects in temporary memory which are no longer being used. Objects which are no longer referenced continue to
accumulate in temporary memory until memory has been filled. When memory is full, the calculator scans the

objects in temporary memory, deleting those without references to them. This process, known as “garbage
collection”, is similar in concept to garbage collection in LISP.

A large number of pointers on the stack that point to temporary memory can slow down the garbage collection
process to an uncomfortable degree. This occurs when there are a large number of objects on the stack, or an object
has been extracted from a large list. A worst case scenario occurs when a list that has been stored in a local variable
has been broken out onto the stack using the User-RPL command OBJ— or INNERCOMP (see Composite Objects).
In this case, the time required for garbage collection increases roughly with the square of the number of objects that
were in the list. List operations can be optimized by storing the lists in global variables, effectively moving the
operations from temporary memory to user memory.

GARBAGE #05F42h
Performs a garbage collection
__)
Memory Utilities
MEM #05F61h

Returns the number of nibbles of free memory. Note that you may wish to
collect garbage first to get an accurate measure of available memory.

— #
OCRC #05944h
Returns the size of an object in nibbles as a bint and the object's checksum as a
hex string

— #size hxs_checksum
OCRC% #1A1FCh
Returns the size of an object in bytes as a real and the object's checksum as a
hex string

— %size hxs_checksum
getnibs ’ #6595Ah
Replaces hex string body with data from memory at the specified address
hxs_data hxs_address — hxs_data'

putnibs #6594Eh
Replaces memory data at the specified address with body of data hex string
hxs_data hxs_address —

Memory Utilities 97

Graphics, Text, and the LCD

Many people turn to System-RPL for additional control over the HP 48 display. While User-RPL graphics resources
generally work with the built-in graphics object PICT and do not work with the stack display, System-RPL routines
have fewer restrictions. This chapter will introduce the organization of the display and some basic tools for
manipulating graphics objects and display memory.

LCD Display Regions
When the HP 48 is displaying the stack during normal calculations, the LCD is divided into three regions, each
having display memory and objects associated with them to control display refresh.

RAD Status (Area 1)

{ HOME } 05716793 02:30:00P

4:

% Stack/Command-line (Area 2)
1

(ERCNANEIETARTNEEREI| Menu (Area 3)

The status area and the stack/command line area are displayed using the stack grob (ABUFF). The menu area is
displayed using the menu grob (HARDBUFF2). The object SysDisplay updates the entire display:

SysDisplay #386A1h
Displays the status, stack, and menu areas
_)

The User-RPL FREEZE command provides a basic way to prevent one or more of these regions from being updated
when a program halts for input or terminates. There are many System-RPL objects and flags associated with these
regions that perform similar tasks. Here we present a subset of these objects that should suit many applications.

Status Area Control

The status area is 16 pixel rows high. Two objects are of interest for the status area. ClrDA1IsStat suspends the
clock display (this is safe to use whether or not the clock is being displayed). SetDA1Temp "freezes" the status
area after your application halts for a prompt or terminates.

ClrDAlIsStat #39531h
Suspends the ticking clock display

_)
SetDAlTemp #3902Ch
Signals that the status area should not be redrawn

ﬁ
SetDAlBad #3947Bh
Signals that the status area should be redrawn

_)
DispStatus #395BAh
Draws the status area

ﬁ
?DispStatus #3959Ch
If no keys are in the keybuffer, draws the status area, otherwise does not draw
the display area and executes SetDA1Bad

%

Stack Area Control

The stack/command-line area is 40 pixel rows, and is actually divided into two sub-regions named 2a and 2b. The
command line is the main portion of the HP 48 that recognizes the two sub-regions. Region 2a displays the stack,

and region 2b displays the command line. Either area can be null, but in principle they both exist at all times. The
object Set DA20KTemp signals that neither display area 2a or 2b should be redrawn.

98 Graphics, Text, and the LCD

c C C C C ¢

5

SetDA20KTemp #39207h
Signals that the stack/command line areas (2a and 2b) should not be redrawn
_—)
SetDA2aTemp #39045h
Signals that the stack area (2a) should not be redrawn
_.)
SetDA2bTemp #39059h
Signals that the command line area (2b) should not be redrawn
.__)
SetDA2aBad #394A5h
Signals that the stack area (2a) should be redrawn
_)
SetDA2bBad #394CFh
Signals that the command line area (2b) should be redrawn
__>
?DispStack #39B85h
If no keys are in the keybuffer, draws the stack area, otherwise does not draw
the stack area and executes SetDA2aBad
_)
DispEditLine #3A00Dh
Displays the edit line
_)

Menu Area Control

The menu area occupies the bottom 8 pixel rows of the display. The menu area can be frozen with the object
SetDA3Temp. The current menu definition can be displayed with either of the DispMenu objects.

DispMenu #3A1E8h
Displays the current menu and freezes the menu display line

_)
DispMenu.l #3A1FCh
Displays the current menu

__)
?DispMenu #3A1CAh

If no keys are in the keybuffer, draws the menu area, otherwise does not draw
the menu area and executes SetDA3Bad

_)
SetDA3Temp #39072h
Signals that the menu should not be redrawn
N
SetDA3Bad #394F%h
Signals that the menu should be redrawn
_)

Combined Area Controls

The object C1rDAsSOK signals that the entire display should be redrawn when the application terminates.

Conversely, the object Set DAsTemp signals that no part of the display should be redrawn (the same as 7 FREEZE
in User-RPL).

ClrDAsOK #39144h
Signals entire LCD should be redrawn

.9
SetDAl2Temp #3921Bh
Signals that only the menu area should be redrawn

—_
SetDAsTemp #3922Fh
Signals that no part of the LCD should be redrawn

-

Graphics, Text, and the LCD 99

Basic Display Memory Principles

There are three reserved graphics objects (grobs) in the HP 48: the stack grob, the menu grob, and the graphics grob
(PICT). The HP 48's LCD always displays either the stack grob or PICT; the menu grob is optional in either case.

Applications wishing to be compatible with both the S and G series of the HP 48 should avoid using direct RAM
addresses to refer to these grobs, since RAM was relocated for the G series. Built-in objects described in the next

three subsections provide reliable pointers to these grobs.

The Current Display Grob
The object HARDBUFF returns a pointer to the currently displayed stack or PICT grob to the data stack:
HARDBUFF #12635h
Returns the currently displayed stack or graphics grob
— _grob
The following objects clear all or part of the HARDBUFF grob:
BLANKIT #126DFh
Clears #rows starting at the specified row
#row_s_t_anﬁ #rows —
BlankDAl2 #3A578h
Clears rows 0 — 56
_)
BlankDA1l #3A546h
Clears rows 0 — 16
_)
BlankDA2 #3A55Fh
Clears rows 16 — 40
_9
CLEARVDISP #134AEh
Clears all of HARDBUFF
.—)
Clrilé #0EO6Fh
Clears the first 16 rows
_)
Clrs #0E083h
Clears the first 8 rows
._)
Clrs-15 #0E097h
Clears rows 8 — 15
__)

100

Graphics, Text, and the LCD

®

«c C C CCCCCCCC(

(

The Stack Grob

The stack display is nominally 131x56 pixels, but may be enlarged and scrolled. The object ABUFF puts a pointer to
the stack display grob on the data stack. The object TOADISP switches the LCD display to the stack grob.

ABUFF #12655h
Returns the stack grob

— grob
DOCLLCD #5046Ah
Clears the stack grob

_9
DOLCD> #503D4h

Returns a grob with the first 56 rows of ABUFF and a copy of the menu area at
the bottom (just like the LCD)

— grob
DO>LCD #50438h
Stores a grob into the upper-left corner of ABUFF
grob —
TOADISP #1314Dh
Displays the stack grob
N

The stack display is often used by applications or games which do not wish to disturb PICT. The EquationWriter,
MatrixWriter, and Minehunt game all use the stack display. Two objects which are useful for claiming the stack
display for an application are RECLAIMDISP and C1rDAlIsStat:

RECLAIMDISP #130ACh
Switches to stack display, clears, unscrolls, and resizes to default size (131x56)
%
ClrDAlIsStat #39531h
Disables the ticking clock display
%

The Graphics Grob

The graphics grob (PICT) is nominally 131x64 pixels, but may be enlarged and scrolled. The object GBUFF puts a
pointer to the graphics grob on the data stack. The object TOGDISP switches the LCD display to the graphics grob.

GBUFF #12665h
Returns the graphics grob

— grob
GBUFFGROBDIM #5187Fh

Returns the dimensions of the graphics grob (PICT)
—> #height #width

GROB>GDISP #12F94h
Stores a grob into GBUFF

grob —
MAKEPICT# #4B323h

Replaces the graphics grob with a blank grob of specified dimensions.

#width #height —
Note: MAKEPICT# will not create a graphics grob less than 64 rows high or
131 columns wide.
TOGDISP #13135h
Displays the graphics grob (PICT)

%
WINDOW# #4F052h
Displays the graphics grob (PICT) at the specified window coordinates. This is
the object that does the work for P¥IEW with pixel coordinate parameters.
#x #y —

Graphics, Text, and the LCD 101

Verifying Display Grob Height
To make sure that that either ABUFF or GBUFF are at least 64 rows high, use the object CHECKHEIGHT.

CHECKHEIGHT #5111E3h
Force either ABUFF or GBUFF to be at least 64 rows high
grob #current_grob_height —

| Note: CHECKHEIGHT only works for ABUFF and GBUFF! |

Example: To ensure that the stack grob is at least 64 rows high, execute the following fragment:

ABUFF Pointer to the stack grob

DUPGROBDIM DROP Height of the stack grob
CHECKHEIGHT Ensures stack grob is at least 64 rows high

Enlarging ABUFF or GBUFF
The following objects may be used to enlarge either the stack grob or the graphics grob. They will not work for any
other grob.

HEIGHTENGROB #12DD1h
Adds blank rows to the specified display grob

grob #rows —
WIDENGROB #12BB7h
Adds blank columns to the specified display grob

grob #rows —

Scrolling ABUFF or GBUFF

If either the stack or graphics grob are larger than the size of the LCD, they may be scrolled. You can track the
location of the LCD "window" into the grob by testing/setting the upper left "window" coordinates. The object
WINDOWXY sets these coordinates, and the object WINDOWCORNER returns these coordinates.

WINDOWCORNER #137B6h
Returns the current window coordinates
- #x #y
WINDOWXY #13679h
Sets the window coordinates
#y #x —

The following objects may be used for scrolling the display. A nice example of their use is the program
SCROLL. S, included with the HP tools and documentation.

JUMPBOT #516AEh
Move the window to the bottom edge of the grob

_)
JUMPLEFT #516E5h
Move the window to the left edge of the grob

_.)
JUMPRIGHT #51703h
Move the window to the right edge of the grob

e d
JUMPTOP #51690h
Move the window to the top edge of the grob

_)

102 Graphics, Text, and the LCD

-

e

c ¢ ¢ C ¢ (

§

SCROLLDOWN #4D16Eh
Scroll the window down one pixel with repeat (tied to down-arrow key)

_>
SCROLLLEFT #4D150h
Scroll the window left one pixel with repeat (tied to left-arrow key)

_)
SCROLLRIGHT #4D18Ch
Scroll the window right one pixel with repeat (tied to right-arrow key)

_..)
SCROLLUP #4D132h
Scroll the window up one pixel with repeat (tied to up-arrow key)

_..)
WINDOWDOWN #13220h
Scroll the window down one pixel

_)
WINDOWLEFT #134E4h
Scroll the window left one pixel

__)
WINDOWRIGHT #1357Fh
Scroll the window right one pixel

_.-)
WINDOWUP #131C8h
Scroll the window up one pixel

%

The Menu Grob

The menu display is a fixed 131x8 pixel grob. The object HARDBUFF2 puts a pointer to the menu display grob on
the data stack. The objects TURNMENUON, TURNMENUOFF, and MENUOFF ? control and test the display of the
menu grob. Note that when TURNMENUOFTF is used to turn off the menu display, the stack display (or graphics

display) grob will be enlarged from 56 to 64 rows. The object LINECHANGE does the work for TURNMENUON and
TURNMENUOFF.

CLEARMENU #51125h
Clears the menu grob

9
DispMenu #3A1E8h
Displays the current menu and freezes the menu display line (SetDA3Valid)

_)
DispMenu.l #3A1FCh
Displays the current menu

%
HARDBUFF2 #12645h
Returns the menu grob

— grob
LINECHANGE #4E37Eh

Sets the display pixel row upon which to begin displaying HARDBUFF2.
Valid values are from 55d (menu on) to 63d (menu off).
#row — grob

MENUOFF? #4E360h
Returns TRUE if the menu is not displayed

— FLAG
TURNMENUOFF #4E2CFh
Turns off the menu display

_
TURNMENUON #4E347h
Turns on the menu display

_

Graphics, Text, and the LCD 103

In the example Rolling the Menu Display below, the object LINECHANGE will be used to show how the menu
display is turned on and off. If the menu display is off, the LCD drivers will still display data for a grob that is 64
rows high, regardless of the actual size of the grob. To see what this looks like, wamstart your HP 48 (hold (ONJ,
press and release [C]), then execute the following secondary:

SIXTYFOUR LINECHANGE
SetDAsTemp

7

Display Pointer Examples

To get acquainted with the display grobs, try a quick User-RPL example program that uses SYSEVAL to return the
currently displayed grob to the stack and invert the grob. This example uses INVGROB (#122FFh) to invert a grob
in level 1 of the stack (the User-RPL command NEG creates a copy of the grob, so INVGROB is easier to use).

«
#12635h SYSEVYAL HARDBUFF returns a pointer to the currently displayed grob
#122FFh SYSEVYAL INVGROB inverts the grob
DROP Drops the pointer (no longer needed)
T FREEZE Postpones display updates
»

Inverting the Stack Display. If the program above is executed while the stack display is shown, the stack display
will be inverted. A System-RPL equivalent of this program is:

HARDBUFF Returns a pointer to the stack grob

INVGROB Inverts the grob
DROP Drops the pointer (no longer needed)
SetDAsTemp Freeze the display

’

Inverting PICT. For fun, plot a function, then execute the following program:

TOGDISP Displays PICT

GBUFF Returns a pointer to the stack grob
INVGROB Inverts the grob

DROP Drops the pointer (no longer needed)
SetDAsTemp Freeze the display

’

Rolling the Menu Display. For more fun, use LINECHANGE to scroll the menu out of the display and back in
again. This program uses SLOW to let you see the menu grob move.

SCRMEN 80.5 Bytes Checksum #1B05h

(=)
OLASTOWDOB'! Clears saved command name
CKONOLASTWD No arguments
HARDBUFF DUPGROBDIM DROP CHECKHEIGHT Verify that the display grob is 64 rows high
SIXTYFOUR FIFTYSIX DO Loop from 56 to 63
INDEX@ LINECHANGE SLOW SLOW Use LINECHANGE to set where menu is displayed
LOOP
WaitForKey 2DROP Wait for a key, discard keycode and plane
NINE ONE DO Prepare to loop from 63 to 56
SIXTYTHREE INDEX@ #- LINECHANGE Use LINECHANGE to set where menu is displayed
SLOW SLOW
LOOP

104 Graphics, Text, and the LCD

~

(

¢ C € € € (

(

Graphics Coordinates

System-RPL objects that work with graphics use internal binary integers to represent pixel coordinates. The upper-
left pixel of a grob is always #0,#0.

Subgrob Coordinates

Operations that need to describe the lower-right boundary of an area usually refer to the pixel one row down and one
column to the right of the intended area. For example, if SUBGROB will be used to create a grob from a larger grob,
the coordinates #30 #20 #36 #28 would describe a region beginning on the 31st column and the 21st row in the

source grob that is six rows high and eight pixels wide. Other objects that use this convention include GROB ! ZERO
and GROB ! ZERODRP.

0,0 Grob Coordinates

o 130, 0

SUBGROB Coordintes

0,63 O 130, 63

User Pixel Coordinate - Bint Conversion

If you're writing a graphics command that extends the User-RPL command set, you may wish to accept graphics
coordinates from the user as a list of two user binary integers like { #5d #17d . The object 2HXSLIST?
converts this type of list into two bints, ready for use in System-RPL. If the list contains other than two elements
that are user binary integers aBad Argument Type error will be generated.

2HXSLIST? #51532h
Converts user pixel coordinates to two bints
C#x #y 2 > #x #y

To return a coordinate to the user as a user binary integer, use the object #>HXS (see Hex String Conversions). For
example, to return the size of a grob to the user as two user binary integers, use this code:

GROBDIM (#height #width)
#>HXS SWAP #>HXS (hxSwidth hxsheight)

User-Unit to Pixel Conversion

The following objects use the information in PPAR to convert between user units and pixel coordinates. If PPAR
doesn't exist when these are executed, a default PPAR will be created. If you're working on code for plotting, be
aware that these routines carry the burden of validating PPAR.

%> # #4F408h
Converts complex number user-unit coordinates to bint pixel coordinates
C%(x,y) — #x #y

DOC>PX #4F179h
Converts complex number user-unit coordinates to user binary integer pixel
coordinates

Ch(x,y) — € #x #y 2

DOPX>C #4FOACh
Converts user binary integer pixel coordinates to complex number user-units
{#x #4932 > Ch(xy)

Graphics, Text, and the LCD 105

Accessing PPAR
The following objects provide access to the user variable PPAR and its contents.

CHECKPVARS

Validate and return the current contents of PPAR. Issues Invalid PPAR
error if PPAR is invalid. Creates and returns default PPAR if PPAR is

#4A9AFh

%xscale %yscale —

nonexistent.
— {ppar}
GETSCALE #4ADBOh
Returns user-unit distance across 10 pixels
— %xscale %yscale
PUTSCALE #4AE3Ch

Sets user-unit distance across 10 pixels (does not change center of PICT)

Note that each of the following objects carries the burden of validating PPAR.

GETPMIN&MAX #4BODA
Returns the current PMIN and PMAX entries from PPAR
— C%PMIN C%PMAX
GETXMIN #4B10Ch
Returns the current Xmin coordinate
— %Xmin
GETXMAX #4B13%h
Returns the current Xmax coordinate
— %Xmax
GETYMIN #4B120h
Returns the current Ymin coordinate
— %Ymin
GETYMAX #4B14Dh
Returns the current Ymax coordinate
— %Ymax
PUTXMIN #4B166h
Stores a new Xmin coordinate
%Xmin —
PUTXMAX #4B1ACh
Stores a new Xmax coordinate
%Xmax —
PUTYMIN #4B18%h
Stores a new Ymin coordinate
%Ymin —
PUTYMAX #4B1CFh
Stores a new Ymax coordinate
%Ymax —
106 Graphics, Text, and the LCD

C ¢

C C C

(

Displaying Text
The HP 48 has three built-in fonts. Objects are provided that support text display using the medium and large size

fonts in fixed display regions. Use of the small font or arbitrary locations in a grob or display grob requires the use
of objects like $>grob, GROB!, and XYGROBDISP.

Medium Font Display Objects

The following objects display text in the stack grob using the medium font. Each row is truncated to 22 characters
or blank filled. The object Disp5x7 breaks lines at carriage-returns. Each object displays text beginning at the left
edge of ABUFF, except for DISPROW1 * and DISPROW2 *, which display text relative to the window corner.

DISPROW1 #1245Bh
Displays text on row 1 (pixel rows 0-7)
$ -
DISPROW1* #12725h
Displays text on row 1 relative to the window corner
$ -
DISPROW2 #1246Bh
Displays text on row 2 (pixel rows 8-15)
_)
DISPROW2* #12748h
Displays text on row 2 relative to the window corner
$ o
DISPROW3 #1247Bh
Displays text on row 3 (pixel rows 16-23)
$ -
DISPROW4 #1248Bh
Displays text on row 4 (pixel rows 24-31)
I
DISPROWS #1249Bh
Displays text on row 5 (pixel rows 32-39)
$ o
DISPROW6 #124ABh
Displays text on row 6 (pixel rows 40-47)
$ -
DISPROW7 #124BBh
Displays text on row 7 (pixel rows 48-55)
$ -
DISPN #1242%h
Displays text on the specified row
$ #row —
Disp5x7 #3A4CEh
Displays up to #max rows of text starting on the specified row
$ #row #max —
DISPSTATUS2 #1270Ch
Displays a string in the first two text rows
$ -

Displaying Temporary Messages
The following objects display a message in the top two lines. The display lines used are preserved and restored.

FlashMsg #12B85h
Displays a message.

$ -
FlashWarning #38926h
Displays a message and beeps

$ >

Graphics, Text, and the LCD 107

The program MDISPN illustrates the medium font display lines:

MDISPN 65.5 Bytes Checksum #56AFh

CKONOLASTWD OLASTOWDOB! Clear saved command name, no arguments

RECLAIMDISP ClrDAlIsStat Claim the display, suspend the clock
EIGHT ONE DO Loop for seven lines
INDEX@ "Line " OVER UNCOERCE DECOMPS$ &$ Build the display string
SWAP DISPN Display the string
LOOP
SetDAsTemp Freeze the display

r
-
J
L]
NOURWN -

MECTR[HATR] LIZT | WP | KEAL [EAZE]

Large Font Display Objects
The following objects display text in the stack grob using the large font. Each row is truncated to 22 characters and
blankfilled.

BIGDISPROW1 #12415h
Displays text on large font row 1 (pixel rows 16-25)

$ o
BIGDISPROW2 #12405h
Displays text on large font row 2 (pixel rows 26-35)

$ o
BIGDISPROW3 #123F5h
Displays text on large font row 3 (pixel rows 36-45)

$ -
BIGDISPROW4 #123E5h
Displays text on large font row 4 (pixel rows 46-55)

$ -
BIGDISPN #123C8h
Displays text on the specified large font row

$ #ow —

The program BDISPN illustrates the large font display lines:

BDISPN 65.5 Bytes #Checksum #875Eh

CKONOLASTWD OLASTOWDOB! Clear saved command name, no arguments

RECLAIMDISP ClrDAlIsStat Claim the display, suspend the clock
FIVE ONE DO Loop for four lines
INDEX@ "Line " OVER UNCOERCE DECOMPS &$ Build the display string
SWAP BIGDISPN Display the string
LOOP
SetDAsTemp Freeze the display

Line 1
Line 2
Line 3
Line 4
[eEcTrR]HATR] LIST | HeP TrERL [EnE |

108 Graphics, Text, and the LCD

Basic Grob Tools
The objects described below describe a series of tools for basic grob manipulation.

Creating Grobs
— The object MAKEGRORB is the System-RPL object that does the work for the User-RPL command BLANK. The
height and width are specified with bints.

(

(

Cc C ¢

“ MAKEGROB #1158Fh
Creates a blank grob
b #height #width — grob
The following objects create a grob representation of an object.
$>grob #11F80h
Creates a grob from a string using the small font
$ > grob
$>GROB #11D00h
Creates a grob from a string using the medium font
$ — grob
$>BIGGROB #11CF3h
Creates a grob from a string using the large font
S $ — grob
Symb>HBuff #659DEh
- Creates an EquationWriter grob representation of an expression
5 'expression' — grob

Finding Grob Dimensions
The following objects return the dimensions of a grob.

DUPGROBDIM #5179Eh
Returns a grob and its dimensions

grob — grob #height #width
GBUFFGROBDIM #5187Fh
Returns the dimensions of the graphics grob (PICT)

— #height #width

GROBDIM #50578h
Returns the dimensions of a grob

grob — #height #width
GROBDIMw #63C04h
Returns the width of a grob

grob — #width

Extracting a Subgrob
The object SUBGROB returns a new grob copy of a specified region in a grob. Remember that the lower-right corner
is specified by the pixel one row down and one column to the right of the desired region (see Graphics Coordinates).

SUBGROB #1192Fh
Returns a subgrob
grob_#x; #y; #x, #y, — subgrob

Graphics, Text, and the LCD 109

Inverting a Grob
The object INVGROB inverts the pixels in a grob.

INVGROB #122FFh
Inverts a grob

grob — grob’

Combining Graphics Objects

The objects GROB! and GROB+# place one grob's data within another grob. Note that GROB! does no range
checking, but GROB+# does the work for the User-RPL commands GOR and GXOR, and so does the same range
checking. The object XYGROBDISP places a grob in the current display grob (HARDBUFF).

WARNING
Some of these objects do not perform any range checking. If you specify a
graphics operation that would extend beyond the confines of the grob
arguments, you will corrupt memory.

GROB! #11679h
Stores level 4 grob into level 3 grob at specified coordinates
8robsource SrObtarger #Xx #y —
GROB+# #4F78Ch
If flag is TRUE, ORs grobsoyrce into grobyarge;, Otherwise XORs grob data
flag grobiaret robsource #x #y —
XYGROBDISP #128B0Oh
Places a grob into HARDBUFF, resizing HARDBUFF if needed
#x #y grob —

The object CKGROBFITS is useful for ensuring that a grob will fit into another grob when you're going to use
GROB! and have doubts about the size of the grob being added. CKGROBFITS will truncate the grob being added
so that a GROB! operation will not corrupt memory.

CRGROBFITS #4F7TE6h
Ensures that grobyey Will fit on grobyacge; at the specified coordinates

grobiarger SObnew #X #y — groburge: grobpey’ #x #y

Clearing a Grob Region
The objects GROB ! ZERO and GROB ! ZERODRP clear a grob's pixels in a specified region.

GROB! ZERO #11A6Dh
Clears the pixels in the specified region

grob #x; #y; #xo #y, — grob
GROB ! ZERODRP #6389Eh
Clears the pixels in the specified region and drops the pointer to the grob

grob #x; #y; #xp #y, —

110 Graphics, Text, and the LCD

Drawing Tools

The following objects are available for drawing lines, setting pixels, etc. Notice that these objects refer either to the

stack grob (ABUFF), or the graphics grob (PICT). Remember that the upper-left corner of a grob has the
coordinates #0 #0 (see Graphics Coordinates).

Line Drawing

Note that line drawing commands require x; = X1, S0 you may wish to use ORDERXY# to ensure the correct order of
parameters.

ORDERXY# #51893h
Asserts left-to-right order for line-drawing coordinates

#x #y; #xp #yy, — #xy #y; #xp #yo

LINEOFF #50B08h
Turns off a line of pixels in the stack display (ABUFF)

_)
LINEOFF3 #50ACCh

Turns off a line of pixels in the graphics display (GBUFF)

#X1 #y) #xp #y, —
LINEON #50B17h
Turns on a line of pixels in the stack display (ABUFF)

#X1 #y1 #Xp #y; —
LINEON3 #50AEADh
Turns on a line of pixels in the graphics display (GBUFF)

#x) #y) #xp #y, —
TOGLINE #50AF%h
Toggles a line of pixels in the stack display (ABUFF)

#X) #y) #x #y, —
TOGLINE3 #50ADBhO
Toggles a line of pixels in the graphics display (GBUFF)

#X1 #y1 #xp #ys —

Pixel Control
The following objects clear, set, and test pixels in either the stack or graphics grob.

PIXOFF #1383Bh
Turns off a pixel in the stack display (ABUFF)

#x #y —
PIXOFF3 #1380Fh
Turns off a pixel in the graphics display (GBUFF)

#x #y —
PIXON #1384Ah
Turns on a pixel in the stack display (ABUFF)

#x #y —
PIXON3 #13825h
Turns on a pixel in the graphics display (GBUFF)

#x #y —
PIXON? #13992h
Tests a pixel in the stack display (ABUFF)

#x #y — FLAG
PIXON?3 #13986h
Tests a pixel in the graphics display (GBUFF)

#x #y — FLAG

Graphics, Text, and the LCD 111

Menu Grob Utilities
The following objects create menu label grobs (8 pixels high by 21 pixels wide) given a string as input:

MakeStdLabel #3A328h
Creates a standard label

$ — grob
MakeDirLabel #3A3ECh
Creates a directory label

$ — grob
MakeBoxLabel #3A38Ah
Creates a label with a "mode box" at the right side

$ — grob
MakeInvLabel #3A44Eh
Creates an outline box label

$ — grob
Box/StdLabel #3EC9%h

Creates a label with a "mode box" at the right side if FLAG is TRUE, otherwise
create a label without the mode box

$ FLAG — grob
Std/BoxLabel #3EDOCh
Creates a standard menu label if FLAG is TRUE, otherwise creates a label with
a "mode box" at the right side

$ FLAG — grob

The following objects are used by the menu system to create and display menu label grobs in the dedicated menu
grob (HARDBUFF2). The #col parameters for the menu labels are listed in the table below.

Menu Label Column Numbers
Softkey Column | Column
Number (hex) (decimal)
1 0 0
2 16 22
3 2C 44
4 42 66
5 58 88
6 6E 110
Grob>Menu #3A297h
Displays an arbitrary 8x21 grob
#col grob —
Id>Menu #3A2DDh
Displays a standard or directory label based on the contents of ID
#col ID —
Seco>Menu #3A2C%h
Evaluates a secondary that results in a 8x21 grob, then displays the grob
#col ..; —
Str>Menu #3A2B5h
Displays a standard menu label
#col $ —

112 Graphics, Text, and the LCD

Built-in Grobs

The following objects are built-in:

(

Cc € C (¢

(

{

SmallCursor #66EF1h
3x5 cursor (outline box)

grob
MediumCursor #66ECDh
5x7 cursor (outline box)

grob
BigCursor #66EASh
5x9 cursor (outline box)

grob
CURSOR1 #13D8Ch
5x9 insert cursor

grob
CURSOR2 #13DB4h
5x9 replace cursor

grob
MARKGROB #5055Ah
X symbol

grob
CROSSGROB #5053Ch
+ symbol

grob

Graphics, Text, and the LCD

113

Graphics Examples

The following examples are designed to showcase a few of the objects described in this chapter. We hope you'll be
inspired to experiment with the possibilities. Each of these examples uses ABUFF - the stack display. We
encourage you to use ABUFF instead of GBUFF, since PICT is considered a user resource like a variable or flag
setting.

Drawing a Grid

Some games, like tic-tac-toe and the Minehunt game (built into the HP 48G/GX) need a grid display. This program
produces a grid centered in the stack display with a specified number of rows and columns. The size parameter
specifies the size of each square (not counting the box boundary lines).

GRID 181 Bytes Checksum #30Ah
(%¥Size %Rows %Cols —)

OLASTOWDOB! CK3NOLASTWD Clear saved command name, require three arguments

CK&DISPATCH1 # 00111 Require three real numbers
COERCE2 ROT COERCE #1+ (#rows #cols #size+l)
DUP ROT #* #1+ (#rows #size+l #width)
DUP BINT_131d #> Verify that the grid is not wider than the display
case SETSIZEERR (#rows #size+l #width)
OVER 4ROLL #* #1+ (#size+1 #width #height)
DUP SIXTYFOUR #> Verify that the grid is not taller than the display
case SETSIZEERR (#size+1l #width #height)
ClrDAlIsStat Suspend the ticking clock display
RECLAIMDISP Assert, clear, and resize ABUFF
TURNMENUOFF Turn off the menu display
Calculate the addresses of the grid boundaries:
SIXTYTHREE OVER #-#2/ (#size+l #width #height #toprow)
DUP ROT #+-1 (#size+1l #width #toprow #botrow)
BINT_131d 4PICK #-#2/ (#size+1l #width #toprow #botrow #1lfcol)
DUP 5ROLL #+-1 (#size+l #toprow #botrow #lfcol #rtcol)
Draw the vertical lines:
DUP#1+ 3PICK DO (#size+l #toprow #botrow #lfcol #rtcol)
INDEX@ 5PICK (... #col #toprow)
OVER 6PICK (#col #toprow #col #botrow)
LINEON (...)
S5PICK (#size+l)
+LOOP
Draw the horizontal lines:
3PICK #1+ 5PICK DO (#size+l #toprow #botrow #lfcol #rtcol)
OVER INDEXE (... #lfcol #row)
3PICK OVER (... #lfcol #row #rtcol #row)
LINEON (...
SPICK (... #size+l)
+LOOP (#size+l #toprow #botrow #lfcol #rtcol)
5DROP Drop the box parameters
SetDAsTemp Freeze the display

114 Graphics, Text, and the LCD

cccocccoccococcocccocococcoccocococccocococc0ccoccococcoccoccocco0cocdocc0co¢ooc0p

The following display was generated with the parameters 3 (size), 9 (rows), and 25 (cols):

For the reader that's interested in assembly language, we suggest you write a code object that replaces the two line
drawing loops. For fun, post your code to comp.sys.hp48 on the Internet. Whose code is fastest?

A Rocket Launch

The WINDOWXY and window scrolling objects suggest many possibilities. This program enlarges and scrolls

ABUFF to launch a rocket.

ROCKET 245.5 Bytes Checksum #E910h

(=)

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP

HARDBUFF2

ZEROZERO 131 EIGHT GROB!ZERO
INVGROB

ZERO ONE 131 EIGHT GROB!ZERODRP
ABUFF 55 HEIGHTENGROB

ASSEMBLE
CON(5) =DOGROB
REL(5) end
CON(5) 16
CON(5) 9

NIBHEX 0100010083008300
NIBHEX 8300830083008300
NIBHEX 8300C700C700C700
NIBHEX EFO00EF007D103810
end
RPL
ABUFF 62 40 GROB!
ELEVEN ZERO DO
TEN INDEX@ #- UNCOERCE
EDITDECOMPS $>grob
HARDBUFF2
INDEX@
DUP#0=ITE
ELEVEN
FIFTEEN VERYSLOW ;
SWAP TEN #* #+
TWO
GROB!
LOOP
56 ONE DO
WINDOWDOWN
$RAN % .5 %> ?SKIP
67 55 INDEX@ #+ PIXON ;
SLOW
LOOP
RECLAIMDISP

Clear saved command name, require no arguments
Suspend clock display, assert, clear, and resize ABUFF

Build the "launchpad":

Pointer to menu grob

Clear menu grob

Invert menu grob

Clear bottom seven rows of menu grob
Add 55 rows to the stack display
Rocket grob

Place rocket in display

Draw the countdown to launch:

Real number counts down from 10 to 0
Convert number to string, then string to grob
Pointer to menu grob

Get the loop index again

Ifit's zero ...

... use 11 for the count x-coordinate base

... otherwise use 15 and delay between numbers
Calculate x-coordinate for number

Use 2 for y-coordinate

Put number into menu grob

Now launch the rocket:

Move the window down one row
There's a 50% chance ...

... of generating exhaust smoke
Delay a bit between rows

Resize and clear ABUFF when done

Graphics, Text, and the LCD

115

Keyboard Utilities

Applications requiring key detection have a variety of options available. In this chapter we illustrate a series of
objects and techniques for key detection. These examples use objects described in previous chapters. We first
discuss key detection while a program is running, then waiting for a key, and finally some higher-level utilities.

Key Buffer Utilities
The following objects clear and test the keyboard buffer.
CHECKRKEY #04708h
Returns (but does not pop) a pending keycode in the key buffer and TRUE, or
FALSE if no key is pending
— FALSE
— #keycode TRUE
FLUSHKEYS #00D71h
Clears the key buffer
_
GETTOUCH #04714h
Pops a pending keycode from the key buffer and returns TRUE, or returns
FALSE if no key is pending
— FALSE
— #keycode TRUE
KEYINBUFFER? #42402h
Returns TRUE if any key other than has been pressed (does not detect the
key)
— flag

Notes:

» The keycodes returned by CHECKKEY and GETTOUCH do not map directly to key numbers 1 through 49. See
Keycodes below for more information on keycodes.
e These objects don't detect the key.

Checking The Keyboard While Running
The HP 48 interrupt system provides a 16-key buffer and a flag that signals that the [ON] key has been pressed. The
objects described in this section build upon these basic resources to provide many keyboard detection options.

Detecting the Key

If a calculation, animation, or simulation process is likely to be either long or infinite, you may wish to let the user
signal that the process should stop. The traditional signal is the key. On the HP 48S/SX models this was
referred to as (attention). On the HP 48G/GX this was renamed but the basic use of the key
remained constant. This key is used to interrupt a process, such as an active edit line, a plot in progress, data
transfer, or an HP SOLVE calculation. Some processes that work with lists, strings, and matrices also check to see
if this key has been pressed.

The interrupt system sets a flag (sometimes called the attention flag) when is pressed. The following objects
clear and test this flag.

ATTNFLGCLR #05068h
Clears the attention flag (does not flush the key from the key buffer)

_)
ATTN? #42262h
Returns TRUE if has been pressed

— flag

116 Keyboard Utilities

(

c C CCCCC(

[

{

The following program clears the key buffer and attention flag, then begins counting until the object ATTN? reports
that has been pressed. The object FLUSHKEYS is used to remove the keystroke from the key buffer.

ADDIT 67 Bytes Checksum #DESh

(= %result)

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP
TURNMENUOFF
%0
ATTNFLGCLR
BEGIN
ATTN? NOT
WHILE
DUP EDITDECOMPS DISPROW4
1+
REPEAT
FLUSHKEYS ATTNFLGCLR
ClrDAsOK

Clear protection word, no arguments
Turn off clock, clear ABUFF

Turn off the menu

Initial value of counter

Clear the attention flag

Run until been pressed

Decompile and display counter
Increment counter

Flush key buffer, clear attention flag
Signal display needs to be redrawn

Detecting Any Key

The object KEYINBUFFER? may be used in conjunction with ATTN? to detect if any key has been pressed. In
practical terms, an application that does this will probably want to use FLUSHKEYS and ATTNFLGCLR at the end

(as shown in the previous example).

KEYINBUFFER? Example: This example is structured much like the ADDIT example, but just uses

KEYINBUFFER? to look at the whole keyboard.

KB 56.5 Bytes Checksum #35EFh

(= %result)

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP
TURNMENUOFF
%0
BEGIN
KEYINBUFFER? NOT
WHILE
DUP EDITDECOMPS$ DISPROW4
%1+
REPEAT
ClrDAsOK

’

Clear protection word, no arguments
Turn off clock, clear ABUFF

Turn off the menu

Initial value of counter

Has a key been pressed?

Decompile and display counter
Increment counter

Signal display needs to be redrawn

When you run KB, notice that the key is not detected, and that the keystroke detected is executed after KB ends.
It's also important to notice that the shift keys are treated like any other key in this instance.

Keyboard Utilities

117

SCRIBE Example: This example is more involved than ADDIT and KB, mostly for fun. The object ATTN? is
used in the same manner as illustrated in ADDIT, but the program also uses GETTOUCH to check the rest of the

keyboard.

SCRIBE 331.5 Bytes Checksum #D363h
(=)

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP
TURNMENUOFF
SIXTYFOUR
THIRTYTWO
ONE
ONE
TRUE
{
LAM Xpos LAM Ypos
LAM Xstep LAM Ystep
LAM Running
} BIND
FLUSHKEYS ATTNFLGCLR
BEGIN
GETTOUCH
ITE
DROPFALSE
TRUE
ATTN? NOT
AND
WHILE
LAM Xpos LAM Xstep #+
DUP MINUSONE #= IT
#2+ ONE ' LAM Xstep STO ;
DUP BINT_ 1314 #= IT
:: #2- MINUSONE ' LAM Xstep STO ;
DUP ' LAM Xpos STO
LAM Ypos LAM Ystep #+
DUP MINUSONE #= IT
:: #2+ ONE ' LAM Ystep STO ;
DUP SIXTYFOUR #= IT
#2- MINUSONE ' LAM Ystep STO ;
DUP ' LAM Ypos STO
PIXON
REPEAT
ATTNFLGCLR
ClrDAsOK

Clear protection word, no arguments
Tumn off clock, clear ABUFF

Turn off the menu

Initial X position

Initial Y position

Initial X step

Initial Y step

Running flag

Bind local variables

Clear key buffer and flag

Has a key been pressed?

Yes, drop keycode and signal FALSE
No, signal TRUE to keep running
Has been pressed?
AND flags together
If neither even happened, move point:
Add step to x position
If at left edge,
then reverse direction
If at right edge,
then reverse direction
Save copy on stack for PIXON, store new value
Add step to y position
If at top,
then reverse direction
If at bottom,
then reverse direction
Save copy on stack for PIXON, store new value
Turn on pixel

When done, clear |ATIN] flag

Signal display needs to be redrawn

118

Keyboard Utilities

Cc CC ¢

r

(

Waiting For a Key

While the previous objects are helpful for detecting a key while a program is running, they are not particularly useful
if your application is just waiting for the user to press a key. There no sense in running down the batteries!

The object WaitForKey does all the hard work for you — returning a fully-formed keystroke specifying the
keycode and shift plane. While WaitForKey is running, the calculator is placed in a low-power state, conserving

batteries.

When WaitForKey returns, the keycode and shift plane numbers are returned as bints. The keycode numbering is
in row order starting at the top left of the keyboard, running from 1 to 49. The planes are numbered 1 to 6:

Plane Description
1 Unshifted
2 Left-shifted
3 Right-shifted
4 Alpha
5 Alpha left-shifted
6 Alpha right-shifted

WaitForKey

Waits in a low power state for a fully-formed keystroke

#41F65h

— #keycode #plane

The program WKEY displays the keycode and shift plane detected by WaitForKey until the key is pressed.
In this example, we use the REPEAT ... UNTIL loop, just to be different.

WKEY 99.5 Bytes Checksum #B4CAh

(=)

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP
TURNMENUOFF
BEGIN

WaitForKey UNCOERCE2

Clear protection word, no arguments
Turn off clock, clear ABUFF
Turn off the menu

Get keycode and shift plane as real numbers

"Keycode: " 3PICK EDITDECOMPS &$ DISPROW3 Display keycode
"Plane: " SWAP EDITDECOMPS$ &$ DISPROW4 Display shift plane
UNTIL
SetDAsTemp Freeze the display
Keyboard Utilities 119

Keycodes

Unlike the keycodes returned by Wai t ForKey, the keycodes returned by CHECKKEY and GETTOUCH do not map
directly to key numbers from 1 to 49. To see what keycodes are returned, try the program KCODE:

KCODE 64.5 Bytes Checksum #5CFFh

(=)
OLASTOWDOB! CKONOLASTWD Clear protection word, no arguments
ClrDAlIsStat RECLAIMDISP Turn off clock, clear ABUFF
TURNMENUOFF Turn off the menu
BEGIN
ATTN? NOT Run until been pressed
WHILE
GETTOUCH NOT?SEMI Loop again if no key in buffer
UNCOERCE EDITDECOMPS$ DISPROW4 Decompile and display keycode
REPEAT
FLUSHKEYS ATTNFLGCLR Flush key buffer, clear attention flag
ClrDAsOK Signal display needs to be redrawn

As you study KCODE.S, remember that NOT? SEMI works here because the compiler places : : and ; around the
code between WHILE and REPEAT. To see this, look at the file KCODE.A after KCODE has been compiled.
Notice that the key is not trapped except by detecting the attention flag.

The object CodeP1>%rc. p converts a keycode and plane pair into a real number in RC.P format (as used by user
key assignments):

CodePl>%rc.p #41D92h
Converts keycode and plane bints into real number rc.p key address
#keycode #plane — %rc.p

The inverse conversion is provided by the object Ck&DecKeyLoc:

Ck&DecKeyLoc #41CA2h
Converts real number rc.p key address into keycode and plane bints
%rc.p — #keycode #plane

120 Keyboard Utilities

¢ (

(

CCCCCC(

r

Repeating Keys
Two objects are available for implementing repeating key procedures. Each takes a keycode and procedure from the

runstream and keeps these on the stack. This implies that the object being executed should not alter the stack. In the
example fragment below, object is executed as long as key seventeen is held down:

. REPEATER SEVENTEEN object ...

7

The first object, REPEATER has an initial delay of 300 ms, and a 15 ms delay between events. The second,
REPEATERCH, lacks the long delays, making it well-suited for moving objects around on the screen.

REPEATER #40E88h
Repeats 2nd following object in runstream while the specified key is down

%
REPEATERCH #51735h
Repeats 2nd following object in runstream while the specified key is down

_)

The next example uses REPEATER to increment or decrement a number in the display. Try compiling this program
with REPEATER as shown, then use REPEATERCH to see the difference in key response.

RPT 172.5 Bytes Checksum #9561h

(=)
OLASTOWDOB! CKONOLASTWD Clear protection word, no arguments
ClrDAlIsStat RECLAIMDISP Turn off clock, clear ABUFF
TURNMENUOFF Turn off the menu
' :: 1GETLAM %1+ DUP EDITDECOMPS$ DISPROW4 1PUTLAM ; Actianfor key
' :: 1GETLAM %1- DUP EDITDECOMPS DISPROW4 1PUTLAM ; Action for = key
20 Initial counter value
' NULLLAM THREE NDUPN Three null temporary variable names
DOBIND Create the temporary environment
3GETLAM EVAL Increment and display the counter
BEGIN
WaitForKey Get keycode and shift plane as real numbers
DROP Ignore the shift plane for this example
FORTYFOUR #=casedrop Check for (=)
REPEATER FORTYFOUR 2GETEVAL Subtract once, repeat as long as key is down
FALSE Continue the loop
FORTYFIVE #=casedrop TRUE If[ON] pressed, drop counter and end loop
FORTYNINE #= case Check for
REPEATER FORTYNINE :: 3GETLAM EVAL ; Add once, repeat as long as key is down
FALSE Continue the loop
DoBadKey FALSE Beep, continue the loop for all other keys
UNTIL
ABND Abandon the temporary environment
ClrDAsOK Signal to redraw the display

When compiled with REPEATERCH, the size is 172.5 bytes and the checksum is #9604h.

Keyboard Utilities 121

InputLine
The object InputLine does the work for the user word INPUT. While this interface is not as attractive as an input
form (G series only), it's handy for an occasional prompt and parses the input line if you wish.

When executed, InputLine does the following:

Displays the status area, clears the stack area, and displays a prompt
Initializes the command line and edit modes

Displays a menu

Accepts input from the command line as a string

Optionally parses, or parses and evaluates the input string

Returns a flag indicating the way the command line was terminated

InputLine #42F44h
Accepts input from the user, optionally parsing and evaluating the input string
$Prompt $Input CursorPos #Mode #Entry #Alpha Menu #Row Abort #Action — FALSE

— S$Input TRUE

— $Input Ob TRUE

— ... TRUE
Input Parameters
The nine input parameters are:
$Prompt A string prompt displayed in display area 2a. This string may contain a
newline character.
$Input The default input string.
CursorPos The initial cursor position. This can be specified either as a bint character

number or a list of two bints specifying the row and column position. Use
#0 to specify the end of a row or column.

#Mode The initial insert/replace mode. Use #0 for the current mode, #1 for insert
mode, or #2 for replace mode.

#Entry The initial entry mode. Use #0 for the current mode + program entry
mode, #1 for program/immediate entry, or #2 for program/algebraic entry
mode.

#Alpha The initial alpha-lock mode. Use #0 for the current alpha lock mode, #1
for alpha locked, #2 for alpha unlocked.

Menu The initial edit menu. This menu specification takes the same form as
ParOuterLoop menus, discussed in the next section.

#Row The first row of the menu to be displayed (usually specified as #1 for the
first menu row).

Abort A flag specifying the action of the key when characters are present in

the command line. If TRUE, aborts, returning FALSE. If FALSE,
simply clears the command line.

#Action Specifies post-command-line processing if terminated by the key.
Use #0 to return the input string with no processing, #1 to parse the input
string, return the input string and the resulting object, or #2 to parse the
input string and evaluate the resulting object If parsing is required, the
command line will not terminate until a valid object is entered.

For a really simple example, consider a prompt for the user's name:
. "Name?" NULL$ ZERO ONE ONE ONE NULL{} ONE FALSE ZERO InputLine ... ;

This example has a null input string, sets the cursor at the end of the (empty) line, sets program entry mode, locks
the alpha mode on, has no menu, specifies that clears a non-null command line, and does not parse the result.

122 Keyboard Utilities

c C CC(CC(

(

[

Input Menu Objects. The menu specification can be as simple or as complicated as you like. Several objects are
available that replicate the standard edit menu or components of this menu. The standard edit menu is EditMenu:

EditMenu #3BDFAh
The standard command line edit menu

— { menu }

A disadvantage of using Edi tMenu is the presence of the + =Tk menu key (the interactive stack key). If you are
writing a closed application, you may have objects on the stack that should not be seen by the user, tampered with,

removed or reordered. To get past this problem, use the individual components that make up Edi tMenu as shown
below:

<SkipKey #3E2DDh
The skip-left key

— { key specification }

>SkipKey #3E35Fh
The skip-right key

— { key specification }

<DelKey #3E3Elh
The delete-left key

— { key specification }

>DelKey #3E4CAh
The delete-right key

— { key specification }
TogInsertKey #3E586h
The insert/replace mode key

— { key specification }

IStackKey #3E5CDh
The interactive stack key

— { key specification }

To specify a blank key, use NullMenuKey:

NullMenuKey #3EC71h
Null menu key

— { key specification }

For example, a menu that provides the basic edit capabilities but not the interactive stack might look like this:
{ <SkipKey >SkipKey <DelKey >DelKey NullMenuKey TogInsertKey }

Note that in this example NullMenuKey is used as a placeholder. NullMenuKey is not needed if used after the
last defined key — the system will place a blank keys in the remaining positions for you. A menu with only two edit
keys defined in positions two and three and a string in the fifth position would be specified as follows:

If a string is provided as a menu key object, the menu key label is built from that string, and the string is echoed into
the command line at the current cursor position when the menu key is pressed.

{ NullMenuKey <DelKey >DelKey NullMenuKey "Jim" }

InputLine Results

Since InputLine accepts a variety of input conditions, the results vary depending on input conditions and user
actions. The flag in level one indicates FALSE if the user aborted the command line by pressing [ON). If this flag is
TRUE, the results above level one depend on the #Action parameter. If #Action was #0 or #1, you know there will
be one or two objects on the stack. If #Action was #2, you have no way of knowing what's on the stack. Most
applications that use InputLine avoid this case, since there are simply too many ways for the user to enter a
procedure that challenges the programmer's assumptions about the state of the machine.

Keyboard Utilities 123

InputLine Examples
The first example, INP1, illustrates a simple prompt for a name. The menu is specified using individual Edi tMenu
components and a string to illustrate a simple string-echo key.

INP1 097.5 Bytes Checksum #9FC5h

(> $ 1 or 0)

OLASTOWDOB! CKONOLASTWD Clear protection word, no arguments
"Enter your name:" Prompt

NULLS$ Initial input line
ZERO Initial cursor position
ONE Insert mode
ONE Program/immediate entry mode
ONE Alpha locked
{ Menu specification
<SkipKey
>SkipKey
<DelKey
>DelKey
TogInsertKey
"Jim"
}
ONE Menu row one
FALSE clears the command line
ZERO No post-command-line processing
InputLine Run the command line
ITE %1 %0 Convert the result flag to a real 0 or 1
ClrDAsOK Signal to redraw the display
124 Keyboard Utilities

W

The second example, INP2, prompts for a real number, ending only if the user aborts by pressing [ON]. Since
InputLine doesn't accept a specification for what type of object should be returned, the type check must occur
after InputLine. To implement this, a loop is used to continue prompting until a real number is entered or the
user aborts the command line.

INP2 149.5 Bytes Checksum #5EF3h
(—> % %1 or %0)

OLASTOWDOB! CKONOLASTWD Clear protection word, no arguments
BEGIN Beginning of type checking loop
"Enter a number:" Prompt
NULLS Initial input line
ZERO Initial cursor position
ONE Insert mode
ONE Program/immediate entry mode
TWO Alpha off
{ Menu specification
<SkipKey
>SkipKey
<DelKey
>DelKey
TogInsertKey
}
ONE Menu row one
FALSE clears the command line
ONE Parse command line, require a valid object
InputLine Run the command line
NOTcase :: %0 TRUE ; End loop, return %0 if user aborted with
DUPTYPEREAL? Is the object a real number?
case
3 & If so,
SWAPDROP Discard the input string
%1 Return %1 to signal a real number result
TRUE Signal the end of the loop
2DROP If not, discard object and input string
"Real Number Only" FlashWarning Display a warning
FALSE and signal the loop needs to continue
UNTIL End of type checking loop
ClrDAsOK Signal to redraw the display

Keyboard Utilities 125

The third example, INP3, expands the INP2 example with a HEL F'- menu key. A different method for displaying a
message is used. The help and warning messages are the same, but you could expand the example to use different
messages. The techniques used for the HELP key are described in further detail in the next section.

INP3

405 Bytes Checksum #47CSh

(— % %1 or %0)

OLASTOWDOB! CKONOLASTWD

ABUFF TEN THIRTY 121 FORTYONE SUBGROB

Clear protection word, no arguments
Subroutine to show message
Save display area on stack

ABUFF TEN THIRTY 121 FORTYONE GROB!ZERODRP Clear message area

TEN THIRTY 121 THIRTY LINEON
121 THIRTY 121 FORTY LINEON
TEN FORTY 121 FORTY LINEON
TEN THIRTY TEN FORTY LINEON
"ENTER A REAL NUMBER" $>grob

ABUFF TWENTYFIVE THIRTYTHREE GROB!

VERYSLOW VERYSLOW

: ABUFF TEN THIRTY GROB! ;
LAM ShowHelp
LAM HelpOff

TWO DOBIND
BEGIN

"Enter a number:"

NULLS

ZERO

ONE

ONE

TWO

{
<SkipKey >SkipKey
<DelKey >DelKey

TogInsertKey
{
L} HELP "
TakeOver

LAM ShowHelp EVAL
REPEATER SIX NOP
LAM HelpOff EVAL

}
}
ONE
FALSE
ONE
InputLine
NOTcase :: %0 TRUE ;
DUPTYPEREAL?
case :: SWAPDROP %1 TRUE ;
2DROP

LAM ShowHelp EVAL LAM HelpOff EVAL

FALSE

UNTIL
ABND
ClrDAsOK

Draw box

Create message grob
Put message in display
Wait 600 ms

Subroutine to restore display

Create temporary environment

Prompt

Initial input line

Initial cursor position

Insert mode
Program/immediate entry mode
Alpha off

Menu specification

Sixth menu key specification:
Label

Signal takeover secondary

Display message, wait 600 ms

Do nothing while 6th softkey is down
Restore display

Menu row one

clears the command line

Parse command line, require valid obj
Run the command line

End loop, return %0 if cancelled

Is the object a real number?

Yes, discard input string, signal done
No, discard string and ob,

display message,

and signal the loop needs to continue

End of type checking loop
Abandon temporary environment
Signal to redraw the display

126

Keyboard Utilities

(¢

C C CC

'

The Parameterized Outer Loop

Applications wishing to take complete control of the keyboard and display can use any of the techniques described
so far, but the parameterized outer loop (also known as the POL) provides a flexible, easy-to-use environment.
While somewhat daunting to learn at first, the POL should quickly become a trusty part of your toolkit. Since there
are many potentially complex relationships between the various components of an application that uses a POL, you
may end up reading through the descriptions and examples several times before it all makes sense.

At the simplest level, the parameterized outer loop refreshes the display, accepts and processes keys that you decide
are valid and continues until an exit condition is met. The POL is therefore an engine which you may call with
parameters specifying its behavior. POL's may be nested to the limits of available memory. In this chapter we'll
explore the POL with a series of examples, each doing a little more work than the last one. Since there's a wide

variety of ways to use the POL or its components, you'll find yourself mixing and matching techniques presented in
these examples.

Introducing ParOuterLoop Parameters

The POL requires nine parameters and does not return anything. Each key may, of course, place an object on the
stack, so the results are non-deterministic unless you count objects removed from or placed onto the stack. We
begin with a general description of the parameters and an example, then discuss some parameters in greater detail.

ParOuterLoop #38985h
The parameterized outer loop

Display_ob Hardkey_ob NonAppKey_flag DoStdKeys_flag Softkey_menu #Menurow Suspend_flag Exit_ob Error_ob —

© Display Object The display object is evaluated before each key is evaluated. In the simplest case (where

each key performs all display updates), this object is responsible for making sure the current
menu is displayed. The first example does just this.

© Hardkey Handler The hardkey processing object. This object is first to have a chance at processing each
keystroke. This object is described in detail in Hardkey Handlers below.

@ NonAppKey Flag A flag which, if FALSE, prevents the standard behavior of keys not defined by the hardkey
handler. If this flag is TRUE, then a key not defined by the hardkey handler would execute
as specified by the DoStdKeys flag (described next). Note that softkeys are considered
"standard keys", and their actions are usually bundled with the softkey definition, so this
flag must be TRUE to let the softkey code execute.

@ DoStdKeys Flag A flag which, if FALSE, allows user key assignments to be processed for keys not defined
by the hardkey handler. If TRUE, this flag causes user key assignments to be ignored. It's
a good practice to leave this flag TRUE unless you're expecting arbitrary input.

O Softkey Menu A list of softkey definitions. These are described in detail in Softkey Definitions below. If

your application has softkey definitions, NonAppKeyFlag must be TRUE to enable your
softkeys.

© #Menu Row A binary integer indicating which page of a multiple-page softkey definition should be
displayed first. This value is typically ONE.

© Suspend Flag If an application will permit the evaluation of arbitrary objects and commands, the system
becomes quite vulnerable when the user commands HALT or PROMPT are executed. In
this state, the user has access to the entire system, notably the stack and variable memory.
To prevent this, the Suspend flag should always be FALSE, which makes commands like
HALT & PROMPT generate aHalt Mot Allowed error.

@ Exit Object The POL evaluates this object after each keystroke, and exits when TRUE is returned.
© Error Object This object is evaluated when an error occurs during execution of a key definition. The
object can be specified as ' ERRJIMP in the simplest case. If you wish to trap specific

errors, this object can be as complex as you like.

The Parameterized Outer Loop 127

Example: The program POLI1 displays a number, then enables the (] and (=] keys to increment and decrement this
is used to provide the exit signal. In the listing below, the

number. The [OFF] key is enabled, and the softkey
nine ParOuterLoop parameters are highlighted with the numbers @
level.

POL1 330.5 Bytes Checksum #CA87h

through @ indicating each parameter's stack

(=)

DEFINE kpNoShift ONE

DEFINE kpRightShift THREE

DEFINE kcRightShift FORTY

DEFINE kcMinus FORTYFOUR

DEFINE kcOn FORTYFIVE
FORTYNINE

DEFINE kcPlus

OLASTOWDOB! CKONOLASTWD

ClrDAlIsStat RECLAIMDISP

FALSE

$ 1

' LAM Running

' LAM Value

TWO DOBIND

0 ::

DA30OK? ?SKIP DispMenu.l SetDA3Valid ;
LAM Value EDITDECOMPS DISPROW4

Clear saved command name, no arguments
Suspend clock, clear display

Exit flag

Initial counter value

Create temporary environment
Display action
Display menu if not done already
Display the counter value

0 :: Hard key handler:
kpNoshift #=casedrop Process primary key plane:
DUP#<7 casedrpfls Enable soft keys
kcMinus ?CaseKeyDef Process (=) key
TakeOver LAM Value %1- ' LAM Value STO ;
kcPlus ?CaseKeyDef Process (+) key
: TakeOver LAM Value %1+ ' LAM Value STO ;
kcRightShift #=casedrpfls Enable right shift key
DROP 'DoBadKeyT Reject all other keys
kpRightShift #=casedrop Process right shift plane:
kcRightShift #=casedrpfls Enable right shift key
kcOn #=casedrpfls Enable
DROP 'DoBadKeyT Reject all other keys
2DROP 'DoBadKeyT Reject all other planes
@ TRUE Enable softkeys
O TRUE Reject user key definitions
0O { Softkey menu:
NullMenuKey Blank menu key 1
NullMenuKey Blank menu key 2
NullMenuKey Blank menu key 3
NullMenuKey Blank menu key 4
NullMenuKey Blank menu key 5
{ GUIT key (6):
"QUIT" Label text
: TakeOver TRUE ' LAM Running STO ; Key action
}
}
O ONE Display 1st menu row
© FALSE Don't allow HALT or PROMPT
® ' LAM Running Exit object
©® ' ERRJIMP Error handler
ParOuterLoop Run the POL
ABND Discard temporary environment
ClrDAsOK Signal to redraw the display
128 The Parameterized Outer Loop

—

Cc C C (¢

(

Example: The program MAGIC implements a magic square puzzle. Use the arrow keys and digit keys to place the
digits in a 3x3 grid so that all the rows, columns, and diagonals add up to 15. In the listing below, the nine
ParOuterLoop parameters are highlighted with the numbers @ through © indicating each parameter's stack level.

MAGIC 1488.5 Bytes Checksum #8226h
(=)

DEFINE kpNoShift ONE
DEFINE kpLeftShift TWO
DEFINE kpRightShift THREE
DEFINE kcUpArrow ELEVEN
DEFINE kcLeftArrow SIXTEEN
DEFINE kcDownArrow SEVENTEEN
DEFINE kcRightArrow EIGHTEEN

DEFINE kc7 THIRTYONE
DEFINE kc8 THIRTYTWO
DEFINE kc9 THIRTYTHREE
DEFINE kc4 THIRTYSIX
DEFINE kc5 THIRTYSEVEN
DEFINE kc6 THIRTYEIGHT
DEFINE kcRightShift FORTY
DEFINE kcl FORTYONE
DEFINE kc2 FORTYTWO
DEFINE kc3 FORTYTHREE
DEFINE kcO FORTYSIX
DEFINE kcOn FORTYFIVE
DEFINE Row 'Ll

DEFINE Col 'L2

DEFINE Running 'L3

DEFINE Data ‘L4

DEFINE Highlight 'L5

DEFINE PutDigit 'L6

DEFINE ShowDigit ‘L7

DEFINE PutSum 'L8

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP

Draw the grid

FOUR ZERO_DO (DO)

FIFTY INDEX@ TEN #*
FIFTY SIX INDEX@ TWELVE #*

LOOP

THREE ZERO_DO (DO)

82 TWELVE INDEX@ TWELVE
FIFTYFIVE INDEX@ TEN #*

LOOP

FORTYFOUR FORTYEIGHT FORTYEIGHT FORTYFOUR LINEON

#+ SIX OVER FORTYTWO LINEON
#+ EIGHTY OVER LINEON

82 FORTYFOUR 86 FORTYEIGHT LINEON

The Parameterized Outer Loop

#* #+ 85 OVER LINEON
#+ FORTYFOUR OVER FORTYEIGHT LINEON

Clear saved cmd name, no arguments
Suspend the clock, clear the display

129

Create temporary variables

ONEONE

FALSE

{ ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO }
TOTEMPOB

(Highlight) (=)
FORTYONE LAM Col TEN #* #+
FIVE LAM Row TWELVE #* #+
OVER EIGHT #+ OVER
TOGLINE

(PutDigit) (#digit —)
LAM Row #1- THREE #* LAM Col #+
LAM Data 3PICK
EQUALPOSCOMP
DUP#0= ITE

DROP LAM Data ;

ZEROSWAP LAM Data
LAM ShowDigit EVAL PUTLIST

LAM ShowDigit EVAL
PUTLIST
' LAM Data STO

(ShowDigit) (#digit #pos {data} —)
"\35\3F\49\35\3F\49\35\3F\49" 3PICK SUBS1l#
"\09\09\09\15\15\15\21\21\21" 4PICK SUBS1#
SPICK DUP#0= ITE

DROP SPACES ;
:: FORTYEIGHT #+ #>CHR CHR>S$;
$>GROB XYGROBDISP

(PutSum) (#x #y Posl Pos2 Pos3 --> #sum)
LAM Data DUPDUP
4ROLL NTHCOMPDROP
SWAP 4ROLL NTHCOMPDROP
ROT 4ROLL NTHCOMPDROP
#+ #+ DUP 4UNROLL
DUP UNCOERCE EDITDECOMPS
$>grob SWAP
TEN #< IT

SIX EIGHT MAKEGROB DUPUNROT TWO ZERO GROB!

XYGROBDISP

LAM Row

LAM Col

LAM Running
LAM Data

LAM Highlight
LAM PutDigit
LAM ShowDigit
LAM PutSum

’

Default X and Y grid location
Exit flag
Cache of grid bints

Subroutine to draw underscore
Calculate X coordinate of line start
Calculate Y coordinate of line start
Line end coordinates

Draw a toggled pixel line

Subroutine to store digit in cache
Calculate digit position in cache

Is digit already stored?
No, prepare to store digit

Yes, store 0 in old position

Display digit in grid
Store new digit in cache
Re-store the cache

Subroutine to display digit
Get X position of digit
Get Y position of digit
Is this digit zero?
Yes, display a space
No, display the digit
Convert to grob and put in display

Subroutine to calc and display sum
Get three copies of the cache
Get first digit
Get second digit
Get third digit
Calculate sum and save copy
Decompile digit
Make digit into grob
If sum is less than 10
then enclose in two-digit-wide grob
Display sum grob

The Parameterized Outer Loop

¢

c C C(C

(

Put the parameters for the ParOuterLoop on the stack

©' :: Display Action
DA30OK? ?SKIP :: DispMenu.l SetDA3Valid ; Display the menu if needed
LAM Highlight EVAL Turn on the underscore

’

@ '

ZERO TWENTYONE 88 TEN ONE TWO THREE LAM PutSum EVAL Calculate and display sums
88 TWENTYTWO FOUR FIVE SIX LAM PutSum EVAL
88 THIRTYFOUR SEVEN EIGHT NINE LAM PutSum EVAL
THIRTYSEVEN FIFTY THREE FIVE SEVEN LAM PutSum EVAL
FIFTYTWO FIFTY ONE FOUR SEVEN LAM PutSum EVAL
SIXTYTWO FIFTY TWO FIVE EIGHT LAM PutSum EVAL
72 FIFTY THREE SIX NINE LAM PutSum EVAL
88 FIFTY ONE FIVE NINE LAM PutSum EVAL
TRUE EIGHT ZERO_DO (DO)

SWAP FIFTEEN #= AND

Loop to see if all sums were 15

LOOP
ITE "GOT IT!" " " Decide which string to display
$>GROB XYGROBDISP Display string
3 & Hardkey Handler
LAM Highlight EVAL Turn off the underscore
kpNoShift #=casedrop Primary key plane
DUP#<7 casedrpfls (Enable soft keys)
kcUpArrow ?CaseKeyDef (a)
TakeOver LAM Row DUP#l= casedrop DoBadKey #1l- ' LAM Row STO ;
kcDownArrow ?CaseKeyDef ™
TakeOver LAM Row DUP #3= casedrop DoBadKey #1l+ ' LAM Row STO ;
kcLeftArrow ?CaseKeyDef «
TakeOver LAM Col DUP#l= casedrop DoBadKey #1- ' LAM Col STO ;
kcRightArrow ?CaseKeyDef >l
TakeOver
LAM Col DUP #3= ITE Enable wrap to next row
DROPONE LAM Row DUP #3= ITE DROPONE #1l+ ' LAM Row STO ;
#1+
' LAM Col STO
kc0 ?CaseKeyDef :: TakeOver ZERO LAM PutDigit EVAL ; [0
kcl ?CaseKeyDef :: TakeOver ONE LAM PutDigit EVAL ; I
kc2 ?CaseKeyDef :: TakeOver TWO LAM PutDigit EVAL ; A
kc3 ?CaseKeyDef :: TakeOver THREE LAM PutDigit EVAL ; [§)
kc4 ?CaseKeyDef :: TakeOver FOUR LAM PutDigit EVAL ; (4]
ke5 ?CaseKeyDef :: TakeOver FIVE LAM PutDigit EVAL ; (5§
kc6 ?CaseKeyDef :: TakeOver SIX LAM PutDigit EVAL ; G]
kc7 ?CaseKeyDef :: TakeOver SEVEN LAM PutDigit EVAL ;
kc8 ?CaseKeyDef :: TakeOver EIGHT LAM PutDigit EVAL ;
kc9 ?CaseKeyDef :: TakeOver NINE LAM PutDigit EVAL ; (@
kcOn ?CaseKeyDef :: TakeOver TRUE ' LAM Running STO ; [ON)ends the program
kcRightShift #=casedrpfls e
DROP 'DoBadKeyT ‘ Reject other non-shifted keys
kpRightShift #=casedrop Right-shift key plane
kcRightShift #=casedrpfls Enable [P)
kcOn #=casedrpfls Enable [OFF)
DROP 'DoBadKeyT Reject other right-shifted keys
2DROP 'DoBadKeyT Reject other planes

The Parameterized Outer Loop

131

@0TrueTrue

O

}

NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
{
"QUIT"
TakeOver TRUE

O®OONEFALSE

91
o'

LAM Running
ERRJMP

ParOuterLoop
ABND
ClrDAsOK

’

132

LAM Running STO ;

Key control flags

Softkey menu

1st row, no suspend

Exit condition

Error handler

Run the ParOuterLoop
Abandon temp environment
Signal to redraw the display

The Parameterized Outer Loop

[Y R G G

(

Temporary Environments and the POL

The object ParOuterLoop creates a temporary environment that saves the previous menu system, key handlers,
display objects, and so on. This is the mechanism that lets you nest POLs. Unless you're using the individual POL
utilities (described later), it's advisable to use named temporary variables as shown in the previous example.

The Exit Object

The exit object's activity can be as simple as recalling a variable's contents or as complex as you like. In the
previous example a temporary variable name was supplied as the exit object. If you're writing an application such as
an editor, the exit action might make sure the user has "saved information" before permitting an exit.

The Error Object

The error object gives you a chance to intercept errors that would otherwise terminate your application. In many
cases, applications use error traps within key operations to trap anticipated errors, and just provide ERRJMP as the
error object. Consider an plotting application — an error trap around the calculation for each point would trap math

errors, such as divide-by-zero, while a general system error like low memory might be passed out of the POL,
terminating the application.

The error object also gives you a chance to try to save information that's in temporary memory. For instance, if your

application is an editor, you might want to try to save information in a user variable before the application
terminates.

Display Objects

Display updates can be performed either by a key definition or by the POL display object. The display object is
evaluated before each keystroke. The display object has two main responsibilities — display the softkey menu (if
needed), and perform display updates not handled by key definitions. The example on the previous page illustrates
these two activities. Unless your application doesn't use a menu, the first component is usually present:

DA30K? ?SKIP :: DispMenu.l SetDA3Valid ; Display the menu if needed
. Perform general display updates

7

The DA3 display flag is used to track the status of the menu display. If one of your key definitions changes the
menu definition or conditions that would affect the menu display, then executing CL.rDA30K would cause the menu

to be redisplayed the next time the display object is executed. This is useful for dynamic key labels, which will be
illustrated in Softkey Definitions below.

If no display action is needed other than for the menu, the display object can be coded as follows:

DA30K? ?SEMI Exit if the menu display is valid
DispMenu.l SetDA3Valid Otherwise display the menu

’

If your application has no menu and doesn't need a general display object at all, specify ' NOP.

The Parameterized Outer Loop 133

Hardkey Handlers

Every keystroke (including shift modifiers) is processed by the hard key handler. This key handler accepts a key
specification in the form of two binary integer codes — a keycode number and a shift plane number. The handler
returns either an object to evaluate and the flag TRUE or FALSE to pass the key on the the rest of the system.

#keycode #plane — object TRUE Application defines the key
#keycode #plane — FALSE Application does not define the key

Key and Plane Codes

The previous example, POL1, used DEFINE:s for the RPL compiler to make the code easier to read. The file
KEYDEFS.H supplied with the HP tools contains definitions for all shift planes and keycodes. To use these
definitions in your source code, just add INCLUDE KEYDEFS.H to include the definitions.

HP 48 keys are numbered from 1 to 49 in row order starting at the upper left of the keyboard. The shift planes are
numbered 1 to 6. Their codes and definitions in KEYDEFS.H are listed below:

Shift Planes
#plane definition Primary Planes | #plane definition Alpha Planes
1 kpNoShift Unshifted 4 kpANoShift Alpha
2 kpLeftShift | Left-shifted 5 kpALeftShift | Alpha left-shifted
3 kpRightsShift | Right-shifted 6 kpARightShft | Alpha ri_ght—shjfted

The keycode numbers and definitions in KEYDEFS.H are listed below:

1 2 3 4 5 6
kcMenuKeyl kcMenuKey?2 kcMenuKey3 kcMenuKey4 kcMenuKeyS kcMenuKey6
7 8 9 10 11 12
kcMathMenu kcPrgmMenu | kcCustomMenu| kcVarsMenu kcUpArrow kcNextRow

13 14 15 16 17 18
kcTick kcSto kcEval kcLeftArrow| kcDownArrow| kcRightArrow
19 20 21 22 23 24
kcSin kcCos kcTan kcSqgrt kcPower kcInverse
25 26 27 28 29
kcEnter kcNegate kcEnterExp kcDelete kcBackspace
30 31 32 33 34
kcAlpha kc7 kc8 kc9 kcDivide
35 36 37 38 39
kcLeftsShift kc4 ke5 kc6 kcTimes
40 41 42 43 44
kcRightshift kcl kc2 ke3 kcMinus
45 46 47 48 49
kcOn kcO kcPeriod kcSpace kcPlus

134

The Parameterized Outer Loop

Cc C C(

%

Hardkey Handler Structure
Hardkey handlers are typically structured as follows:

’

Unshifted plane?

Yes, process #keycode for the unshifted plane
Left-shifted plane?

Yes, process #keycode for the left-shifted plane
Right-shifted plane?

Yes, process #keycode for the right-shifted plane
Alpha plane?

Yes, process #keycode for the alpha plane
Alpha left-shifted plane?

Yes, process #keycode for the alpha left-shifted plane
Process #keycode for the alpha right-shifted plane

Selecting the Key Plane. The object #=casedrop (which should have been named OVER#=casedrop) is quite '
useful for key handlers:

#=casedrop #618D3h
If #x = #y, drops #x and #y from the stack, executes objectTgryg, and skips the
remainder of the secondary, otherwise drops #y, skips objectTryg, and executes
the remainder of the secondary.
#x #y - (#x = #y)
#x #y — #x (#x ##y)
#=casedrop objectoryg --- i

Using this object, the key handler begins to take shape:

’

kpNoShift #=casedrop :: process unshifted keycodes ;

kpLeftShift #=casedrop :: process left-shifted keycodes ;
kpRightShift #=casedrop :: process right-shifted keycodes ;
kpANoShiftShift #=casedrop :: Process alpha unshifted keycodes ;
kpALeftShift #= case :: Process alpha left-shifted keycodes ;

Process alpha right-shifted keycodes

A key handler that only needs to process two planes, like the POL1 example, would have the following structure:

or.

’

kpNosShift #=casedrop :: process unshifted keycodes ;

kpRightShift #=casedrop :: process right-shifted keycodes ;
2DROP 'DoBadKeyT (Reject all other planes)
kpNoShift #=casedrop :: process unshifted keycodes ;

kpRightShift #<> casedrop 'DoBadKeyT (Reject all other planes)
process right-shifted keycodes

The object ' DoBadKeyT used above generates the invalid key beep, and is described below under Signaling
Invalid Keys. Once the plane has been identified, each secondary that processes keycodes now has the following
stack diagram:

#keycode — object TRUE Application defines the key
#tkeycode — FALSE Application does not define the key

The Parameterized Outer Loop 135

Enabling Specific Standard Keys. Every keystroke, including modifier keys, must be handled by the hardkey
handler. This means that every plane handler must enable the modifier keys for other allowed planes. Other
functions, like and may be enabled using the same technique. The object #=casedropfls (which
should have been named OVER#=casedropfls) is quite useful here:

#=casedrpfls #63547h
If #x = #y, drops #x and #y from the stack, leaves FALSE on the stack and
skips the remainder of the secondary, otherwise drops #y and executes the
remainder of the secondary.
#x #y — FALSE (#x=4#y)
#x #y — #x (F#x ##y)
#=casedropfls ... ;

All well-mannered applications should enable [OFF), since the user might be interrupted at any time. Expanding the
example of a hardkey handler that processes only the primary and right-shifted planes from the previous page, the
handler now looks like this:

kpNoShift #=casedrop

kcRightShift #=casedrpfls Enables [P)
process remaining unshifted keycodes

kpRightShift #=casedrop

kcRightShift #=casedrpfls Enables)
kcOn #=casedrpfls Enables

process remaining right-shifted keycodes

2DROP 'DoBadKeyT Reject all other planes

Note that the right-shift key is enabled in both the primary and right-shifted planes. This lets the user press [P] , then
20 back to the primary plane by pressing [?] again.

Multi-Page Menus. If your menu has more than six softkeys, you can enable the standard key functions using
the same technique used for the shift keys. In the primary, left, and right plane handlers, include the line:

kcNextRow #=casedrpfls

This enables the following functions:

Keystroke Purpose
Display the next 6 softkeys
Display the previous 6 softkeys
PINXT Display the first 6 softkeys

136 The Parameterized Outer Loop

¢ (

c CCCCC¢(

(

(

Enabling Softkeys. In the usual case, softkey actions are included as part of each softkey definition. In this
situation, softkey actions are initiated by the system after the hardkey handler, so the NonAppKey flag must be
TRUE and the hardkey handler must return FALSE for each menu key. Expanding the example on the previous
page, the hardkey handler now looks like this:

kpNoShift #=casedrop

DUP#<7 casedrpfls

Enables primary softkeys
kcRightShift #=casedrpfls Enables ()
kcNextRow #=casedrpfls Enables
process remaining unshifted keycodes

kpRightShift #=casedrop
kcRightShift #=casedrpfls Enables ()
kcOn #=casedrpfls Enables

process remaining right-shifted keycodes

2DROP 'DoBadKeyT Reject all other planes

7

Note that only the primary softkey plane is enabled here. Applications like the solver that use left- and right-shifted
menu keys must include the test for each enabled plane.

Key Definitions. Once you've coded the plane handlers, enabled the modifiers, [OFF), [NXT), and softkeys, you're
ready to include the code that is specific to your application. A useful object for coding key handlers is
?CaseKeyDef:

?CaseKeyDef #3FF1bh
If #x = #y, drops #x and #y from the stack, leaves the next object in the
secondary on the stack and TRUE and skips the remainder of the secondary,
otherwise drops #y and executes the remainder of the secondary.
#x #y — KeyOb TRUE (#x = #y)
#x #y — #x (#x ##y)
?CaseKeyDef KeyOb ... ;

’

Custom key definitions must include the object TakeOver at the start of the definition to signal a custom
definition. This object serves only as a placeholder, and does nothing.

TakeOver #40788h
Indicate a custom key definition

The Parameterized Outer Loop 137

Expanding the last example on the previous page, a hardkey handler with custom code for two unshifted arrow keys

and two right-shifted arrow keys looks like this:

kpNoShift #=casedrop

DUP#<7 casedrpfls
kcRightShift #=casedrpfls
kcNextRow #=casedrpfls
kcLeftArrow ?CaseKeyDef
:: TakeOver do left key ;
kcRightArrow ?CaseKeyDef
:: TakeOver do right key ;
issue error beep for remaining invalid keys

kpRightShift #=casedrop

kcRightShift #=casedrpfls
kcOn #=casedrpfls
kcLeftArrow ?CaseKeyDef
:: TakeOver do left key ;
kcRightArrow ?CaseKeyDef
:: TakeOver do right key ;
issue error beep for remaining invalid keys

2DROP 'DoBadKeyT

’

Now all that remains is to generate an invalid key beep for the remaining keys.

Enables primary softkeys
Enables right-shift modifier
Enables

Process (€

Process)

Enables P)
Enables

Process)<
Process [P]»)

Reject all other planes

Signaling Invalid Keys. If your application does not define the key, you may wish to prevent the standard
definition from being executed and generate an invalid key beep. To do this, you actually define the key to generate

an invalid key beep. The object DoBadKey is suited for this purpose:

DoBadKey
Generate a bad key beep and execute SetDAsNoCh
ﬁ

#3FDD1h

As you build your key handlers, the following objects become useful:

'DoBadKey
Places a pointer to DoBadKey on the stack
— DoBadKey

#3FDFEh

'DoBadKeyT
Places a pointer to DoBadKey and TRUE on the stack

— DoBadKey TRUE

#3FE12h

138

The Parameterized Outer Loop

A Complete Hardkey Handler. Expanding the previous example, a complete hardkey handler with custom code
for two unshifted arrow keys, two left-shifted arrow keys, and two right-shifted arrow keys, a multi-row softkey

menu, and looks like this:

kpNoShift #=casedrop

DUP#<7 casedrpfls
kcRightShift #=casedrpfls
kcLeftShift #=casedrpfls
kcNextRow #=casedrpfls
kcLeftArrow ?CaseKeyDef

TakeOver do left key ;

kcRightArrow ?CaseKeyDef

TakeOver do right key ;

DROP 'DoBadKeyT

kpRightShift #=casedrop

kcRightShift #=casedrpfls

kcLeftShift #=casedrpfls
kcNextRow #=casedrpfls
kcLeftArrow ?CaseKeyDef

TakeOver do left key ;

kcRightArrow ?CaseKeyDef

TakeOver do right key ;

kcOn #=casedrpfls
DROP 'DoBadKeyT

kpLeftShift #=casedrop

kcRightShift #=casedrpfls

kcLeftShift #=casedrpfls
kcNextRow #=casedrpfls
kcLeftArrow ?CaseKeyDef

TakeOver do left key ;

kcRightArrow ?CaseKeyDef

TakeOver do right key ;

DROP 'DoBadKeyT

2DROP 'DoBadKeyT

The Parameterized Outer Loop

Enables primary softkeys
Enables [P)

Enables (9)

Enables

Process (€

Process ()
Issue invalid key beep

Enables (P)
Enables (q)
Enables

Process [P]<€)
Process [B]»)

Enables
Issue invalid key beep

Enables [2)
Enables (q)
Enables
Process (9]«

Process ([9]»)

Issue invalid key beep

Reject all other planes

139

Softkey Definitions

A softkey definition can be as simple (an object that is echoed into the command line) or complex (a dynamic label
with different actions for different shift planes) as you like. The menu keys for the solver, multiple equation solver,
and modes are illustrations of complex menu definitions in the HP 48.

The basic structure of a softkey definition consists of a list where the first object defines the label and the second
object defines the actions taken when the key is pressed:

{ label_object action_object }
The softkey definition in the example POL1 in previous pages is structured just this way:

{
"QUIT" Label text
: TakeOver TRUE ' LAM Running STO ; Key action

}

In the following sections we'll describe how the label object and the action object can be structured.

Null Menu Keys

Some menus have blank keys that generate an error beep as their defined action. These keys are used to help
distribute labels within the menu row. The object NullMenuKey defines a blank key, and can be used in your
menu definition as shown in the example POL1 at the beginning of this chapter.

NullMenuKey #3EC71h
Defines a blank menu key

— { menu definition }

Softkey Label Objects
A softkey label object may consist of any of the following:

String Any string object may be used as a label. Remember that the small font used for labels is not a
fixed-width font, so some words will fit in a label and others won't. In the HP 48G/GX, the left
parenthesis character "(" was used for the letter "C" in the input form and choose box "CANCL"
menu labels.

8x21 Grob A grob that is 8 rows high and 21 characters wide may be used for the label. Grobs that are not
this size will be decompiled into a string and that string will be used for the label.

Secondary A secondary that begins with TakeOver is expected to return either of the above — a string or a
grob. Utilities first introduced in Menu Grob Utilities are useful for returning menu label grobs,
and will be illustrated below. These are sometimes called takeover secondaries.

Anything Else Any other object is decompiled to string form and that string is used for the label.

Dynamic Labels. The third case mentioned above — a secondary beginning with TakeOver — provides the most

flexibility for the label portion of a softkey definition. The secondary can do anything it likes as long as it follows

two basic rules:

¢ The stack must remain as it was found. If your secondary needs to know which position in the menu is being
displayed, the object INDEX@ may be used to return a bint index from 1 to 6.

* The secondary must return a string or a 8x21 grob.

140 The Parameterized Outer Loop

(P

The example program POL2 provides a concise demonstration of a dynamic label. When this program is running,
the first softkey enables a toggle of user flag 1. The object ?DispStatus is used to show the system status,
illustrating the action of the softkey.

This example has a short menu definition — just one key. The key terminates the program (instead of the
EHITT softkey in POL1).

POL2 218.5 Bytes Checksum #7D32h

(=)
DEFINE kpNoShift ONE
DEFINE kcOn FORTYFIVE
OLASTOWDOB! Clear saved command name
CKONOLASTWD No arguments
RECLAIMDISP Clear display
FALSE Exit flag
' LAM Running
ONE DOBIND Create temporary envitonment
g Display action
DA3OK? ?SKIP :: DispMenu.l SetDA3Valid ; Display menu if not done already
?DispStatus Display the status area
Y Hardkey handler:
kpNoshift #=casedrop Process primary key plane:
DUP#<7 casedrpfls Enable softkeys
kcOn ?CaseKeyDef Process key
TakeOver TRUE LAM Running STO ;
DROP 'DoBadKeyT Reject all other keys
2DROP 'DoBadKeyT Reject all other planes
TRUE Enable softkeys
TRUE Reject user key definitions
{ Softkey menu.:
{
: Label secondary
TakeOver
"l" ONE TestUserFlag Test user flag 1
Box/StdLabel Use test result to create label
3 5 Key action:
TakeOver
ONEONE TestUserFlag Test user flag
ITE ClrUserFlag SetUserFlag Toggle flag state
SetDAlBad SetDA3Bad Signal to redraw status and menu
}
}
ONEFALSE Display 1st menu row, no suspend
' LAM Running Exit object
' ERRJMP Error handler
ParOuterLoop Run the POL
ABND Discard temporary environment
ClrDAsOK Signal to redraw the display

The Parameterized Outer Loop 141

Softkey Action Object
The action object may define actions for the primary, left-shift, and right-shift planes. Action objects consist of a
takeover secondary, or a list containing two or three takeover secondaries, as follows:

:: TakeOver ... ; Action object for the primary plane

{
TakeOver ... ; Action object for the primary plane
TakeOver ... ; Action object for the left-shift plane

}

{
TakeOver ... ; Action object for the primary plane
TakeOver ... ; Action object for the left-shift plane
TakeOver ... ; Action object for the right-shift plane

}

Remember: The hardkey handler must enable the shift planes for the shift-action objects to work.
The example POL3 on the next page defines a one-key menu. The key definition consists of a string for the label

object and an action object list defining primary, left-, and right-shift actions. Notice that each action begins with
the object TakeOver.

142 The Parameterized Outer Loop

ccccococccocccccccccccccccccccccccccccccocccccccccccoco

POL3 343.5 Bytes Checksum #16A2h
(=)

DEFINE kpNoShift ONE
DEFINE kpLeftShift TWO
DEFINE kpRightShift THREE
DEFINE kcLeftShift THIRTYFIVE
DEFINE kcRightShift FORTY
DEFINE kcOn FORTYFIVE

OLASTOWDOB! CKONOLASTWD Clear protection word, no arguments
RECLAIMDISP ClrDAlIsStat Clear display, suspend clock
FALSE ' LAM Running ONE DOBIND Ekﬂﬂag
' :: DA3OK? ?SEMI DispMenu.l SetDA3Valid ; Display action
'os Hardkey handler:
kpNoShift #=casedrop Primary plane
DUP#<7 casedrpfls
kcLeftShift #=casedrpfls
kcRightShift #=casedrpfls
kcOn ?CaseKeyDef
:: TakeOver TRUE ' LAM Running STO ;
DROP 'DoBadKeyT

kpLeftShift #=casedrop Left-shift plane

DUP#<7 casedrpfls
kcLeftShift #=casedrpfls
kcRightShift #=casedrpfls
DROP 'DoBadKeyT

kpRightShift #=casedrop Right-shift plane

DUP#<7 casedrpfls
kcLeftShift #=casedrpfls
kcRightShift #=casedrpfls
kcOn #=casedrpfls

DROP 'DoBadKeyT

2DROP 'DoBadKeyT

TRUE TRUE Key flags
{ Softkey menu
{
"KEY"
{
:: TakeOver "Primary" DISPROW3 VERYSLOW DOCLLCD ;
TakeOver "Left-Shift" DISPROW4 VERYSLOW DOCLLCD ;
:: TakeOver "Right-Shift" DISPROWS5 VERYSLOW DOCLLCD ;

}

}

ONEFALSE

' LAM Running
' ERRJMP
ParOuterLoop
ABND
ClrDAsOK

The Parameterized Outer Loop

143

The POL Error Trap Object

In the previous POL examples we have specified a standard error trap by leaving a pointer to ERRIMP on the stack.
Here we illustrate an error trap designed to detect and handle a specific class of errors that occur while a key
definition is being executed and pass remaining errors off to the system outer loop.

Note that this error trap does not handle errors generated during the execution of the display object.

The example POL4 on the next page displays a value and its inverse. The key (3] is defined to increment the value
and (=) is defined to decrement the value. When the value is zero, the operation 1/value generates an error, which is
handled by the error object. The softkey *EFF generates an error that the error object does not recognize and
passes on. The program ends when is pressed.

The error handler illustrated in POL4 takes advantage of the numbering of the error messages in the HP 48. Any
error that is floating-point related is in the #300h range (see the appendix Messages). The error handler divides the
error number by #100h and discards the remainder, so the result will be 3 if a floating point error has occurred. If
the error is not a floating point error, the error is passed to the system outer loop with ERRIMP, otherwise the error
handler displays the appropriate text.

This technique is similar to the scheme used by the HP 48 DRAW command, which is the core of the plotting system.
Notice that when you plot a function like SIN(1/X) no error is generated when X=0.

144 The Parameterized Outer Loop

(

c C CCCC(C(

r

POL4 555 Bytes
(=)

Checksum #A4C4h

DEFINE kpNoShift ONE

DEFINE kcOn FORTYFIVE
DEFINE kcMinus FORTYFOUR
FORTYNINE

DEFINE kcPlus

OLASTOWDOB! CKONOLASTWD
RECLAIMDISP ClrDAlIsStat

"Value: " LAM Value EDITDECOMPS$ &$ DISPROW3

"Result: " LAM Result EDITDECOMPS &$ DISPROW4
%1 %1
FALSE

' LAM DoDisplay

' LAM Result

' LAM Value

' LAM Running
FOUR DOBIND
LAM DoDisplay EVAL

! DA30K? ?SEMI DispMenu.l SetDA3Valid ;

kpNoShift #=casedrop

DUP#<7 casedrpfls
kcMinus ?CaseKeyDef
TakeOver

' LAM Result STO LAM DoDisplay EVAL

kcPlus ?CaseKeyDef
TakeOver
LAM Value %1+ DUP ' LAM Value STO %1/
' LAM Result STO LAM DoDisplay EVAL

kcOn ?CaseKeyDef
TakeOver
TRUE ' LAM Running STO

DROP 'DoBadKeyT
2DROP 'DoBadKeyT

TRUE TRUE
{
{ "\8DERR" TakeOver "Unhandled Error" DOSEXIT

}

ONEFALSE

' LAM Running
ERRORE@
100 #/ SWAPDROP THREE #<> case ERRJMP
ERRORCLR
"Value: " LAM Value EDITDECOMPS &$ DISPROW3
"Result: Undefined" DISPROW4

ParOuterLoop

ABND

ClrDAsOK

LAM Value %1- DUP ' LAM Value STO %1/

Clear protection word, no arguments
Clear display, suspend clock
Display object for key handlers

Initial result and initial value
Exit flag

Create temporary environment
Initial display of value and result
Display handler

Hardkey handler:

Enable softkeys

Reject other keys
Reject other planes

Key control flags
Softkey menu
il

Display 1st menu row, no suspend
Exit object
Error handler:
Recall the error number
ERRJMP if not floating-point
Clear the error number
Display the value
Display "Undefined" for result

Run the POL
Discard temporary environment
Signal to redraw the display

The Parameterized Outer Loop

145

POL Utilities

There are times when using constituent components of the object ParOuterLoop is either appropriate or required.
ParOuterLoop is written as follows:

POLSaveUI

Save the current user interface
ERRSET Increment the protection word
POLSetUI Set the application user interface
POLKeyUI Process keys

ERRTRAP POLResUI&Err

POLRestoreUI Restore the user interface

’

There are two basic reasons for using these utilities individually:

If an error occurs, restore the old user interface and ERRJMP

An application can use null-named temporary variables, saving memory and execution time.

An application that uses or interchanges between several POLs can save the execution overhead associated with

saving and restoring the original user interface.

POLSaveUI #389Bch
Save the current user interface

q
POLSetUI #38A64h
Establish the parameters for the POL

Parameters for ParOuterLoop —

POLKeyUI #38AEBh
Run the POL

_9
POLResSUI&Err #38B77h
Standard POL error handler

%
POLRestoreUI #38B90h
Restore the user interface saved by POLSaveUI

%

There are many possible ways to use these utilities. The browser engine from the equation library (described in
Graphic User Interfaces) presumes that the calling application has saved the user interface and only calls
POLSetUI and POLKeyUI.

146

The Parameterized Outer Loop

C C C C

r

One possible structure for an application using these utilities looks like this:

OLASTOWDOB! CKONOLASTWD
RECLAIMDISP ClrDAlIsStat
POLSaveUI

ERRSET

ONE
TRUE
' LAM InterfacelIndex
' LAM AppRunning
TWO DOBIND
BEGIN
LAM AppRunning
WHILE
{
{ POL parameters for interface 1 }
{ POL parameters for interface 2 }
{ POL parameters for interface 3 }
}
LAM InterfaceIndex
NTHCOMPDROP
INCOMPDROP
POLSetUI
POLKeyUI
REPEAT

ERRTRAP POLResUI&Err
POLRestoreUI

’

Clear protection word, no arguments
Claim the display

Save the user interface

Increment the protection word

Variable to store the interface index
Master "running" variable

List of interface parameters

Recall index

Extract interface

Put parameters on the stack
Set the user interface

Run the user interface

Master error trap
Restore the user interface

This application uses an index stored in the local variable InterfaceIndex to decide which interface to run as
long as the flag stored in AppRunning is TRUE. In the structure, the key handlers are responsible for storing a

new index value into Inter faceIndex when signaling a switch to another interface, and storing FALSE into

AppRunning when the entire application should terminate.

The Parameterized Outer Loop

147

Graphical User Interfaces

The HP 48G/GX calculators are characterized in part by the introduction of three new basic user interface tools -
message boxes, choose boxes, and input forms. The Equation Library, originally distributed on a plug-in card for
the HP 48S/SX, is now built into the HP 48G series and has its own browser.

BROWSER EXAMPLE

{ HOME }
4 Calculation
3z Complete!
%:
[[T T [[ok]
Message Box
RAD
i Ho 1:2uP
g DN TEST STRIMG
2 FOUR . _ CHECK FIELD
: ENTER ANY OBJECT
1 1T [[Tiswit] ok | LECT] [| [iANiL] Ok
Choose Box Input Form

In this chapter we introduce the basic interface to each of these components. Going beyond the parameterized outer
loop, the choose boxes and input forms require a blizzard of stack arguments. We suggest you read this chapter in
chronological order, since each part builds upon the previous part. Also, you might want to back up your HP 48
memory prior to starting your explorations.

Note: The objects described in this chapter are only
available in the HP 48G/GX.

EXTERNAL Declarations in Examples. Some examples have EXTERNAL declarations at the beginning for each
object that is referenced by a rompointer (XLIB name) instead of a hard address. This EXTERNAL declaration is
used by the HP RPLCOMP.EXE compiler. Other tools may have different methods of indicating a rompointer.

Objects Used in Examples. In this chapter we presume you've read and understood the previous chapters fairly
well. We'll be using objects and techniques described earlier, and the comments in the examples will pertain more
to the technique being described and less to the actions of individual objects. You may wish to refer to previous
descriptions of some of the objects used to fully understand the details of some of the examples.

148 Graphical User Interfaces

(

c C C C (¢

r

Message Boxes

A message box is useful for presenting a message, waiting for the user to read it, and moving on. This object, called
DoMsgBox, is the HP 48G/GX's tool for providing the dreaded "Press Any Key To Continue" style prompt that
computers are famous for. In this case, the message box engine is terminated by pressing : i, (ENTER), or [ON).
DoMsgBox will save and restore the display, so the calling application need not worry about the display.

The message box engine attempts to provide some basic text formatting within the box, so you don't have to worry
about where word breaks will occur. Two bints specify the minimum and maximum character widths of the box,
and adjusting these gives you a little more control over the appearance of the message box.

Message Box Parameters
The parameters for DoMsgBox are defined as follows:

DoMsgBox #000B1h G/GX XLIB 1770
Displays a message box with a graphics object

"message” #maxwidth #minwidth grob menuobject — TRUE

""message' A string containing the message you wish to display. Carriage-returns may be embedded to
force line breaks.

#maxwidth A bint specifying the maximum character width of each text line in the message box.
Message boxes use only the medium (5x7) font.

#minwidth A bint specifying the minimum number of characters to be displayed before an automatic
word break is allowed.

grob A graphics object to be displayed in the upper-left corner of the message box. If you don't
want to include a grob, specify the bint MINUSONE as the grob. The grob GrobAlertIcon
is handy for use in message boxes:

GrobAlertIcon #850B0h G/GX XLIB 176 133
The message box alert icon

— grob

menuobject An object which, when evaluated, produces a message box menu. This is usually specified
as MsgBoxMenu, which is function 2 in library 177:

MsgBoxMenu #020B1lh G/GX XLIB 1772
The message box menu

— {menu}

DoMsgBox returns the flag TRUE. You may wish to try different values for the character widths to adjust where
automatic word breaks occur. Neither value should exceed 15. Remember to leave room for the grob.

Graphical User Interfaces 149

Message Box Example

The following example uses an 11x11 grob for an icon in a message box.

MBOX 100 Bytes
(=)

Checksum #D7D8h

pe

EXTERNAL DoMsgBox
EXTERNAL MsgBoxMenu

OLASTOWDOB! CKONOLASTWD
"Calculation Complete!"
TWELVE

Declares DoMsgBox is referenced by a rompointer
Declares MsgBoxMenu is referenced by a rompointer

Clear the protection word, no arguments

Message text

Maximum character width

TEN Minimum character width
ASSEMBLE Grob
CON(5) =DOGROB
REL(5) end
CON(5) 11
CON(5) 11
NIBHEX 8F00401020201040
NIBHEX 9840104010409840
NIBHEX 272040108F00
end
RPL
' MsgBoxMenu Message box menu
DoMsgBox Execute the message box
DROP Drop the returned flag
ClrDAsOK Signal to redraw the display
{ HOME }
4: i
L Pamme
et
1 [[1 [ok]
150 Graphical User Interfaces

4

C C C ¢

(

Equation Library Browser

The browser used by the equation library dates back to the HP Solve Equation Library card originally sold for the

HP 48SX. When the Equation Library was built into the HP 48G/GX, the browser was not replaced by the new
choose box engine (described later in this chapter).

To use the browser, create a shell using Parameterized Outer Loop utilities that has the following structure:

POLSaveUI Save the user interface
ERRSET Increment the protection word
BRbrowse Call the browser
ERRTRAP POLResUI&Err If an error occurs, restore the old user interface and ERRJMP
POLRestoreUI Restore the user interface

Browser Parameters

The browser requires eight parameters and returns nothing to the stack. The browser can only be terminated by
executing the object BRdone.

BRbrowse #100EO G/GX XLIB 224 16
Browse a list

{menu} $title {key defs} #first_row #focus_pos {data} :: data_secondary; {speed} —

BRdone #130E0 G/GX XLIB 224 19
Terminate the browser

N

The parameters for BRbrowse are specified as follows:

{menu} A softkey menu, specified the same way as a for any Parameterized Outer Loop.

$title A string for the title bar. If this string is null, seven rows of data will be displayed, otherwise

the title bar will be displayed with six rows of data.

{[ENTER] [ON] } A list containing a procedure to execute when [ENTER] is pressed and a procedure to execute
when is pressed. These procedures take no input parameters and may return anything.

#first_row A bint specifying the index of the first data item to be displayed.
#focus_pos A bint specifying which data item is highlighted first.
{data} - A list containing the items to display. If the data_secondary is going to return the data from

another location, this list may be empty.

:: data_secondary ; A secondary that accepts the data list and a bint and returns either the number of data items (if
the bint is zero) or a string (if the bint is non-zero):

{data} ZERO — #number_of_data_items
{data} #index — Sitem

{speed} A speed table for alpha searches. The table consists of a list of 26 index bints corresponding
to the letters A — Z. If the user presses (@] (D), the fourth bint is tested. If non-zero, this bint is

assumed to be the index of the first item in the data list that starts with 'D'. If the speed table
is an empty list, it is not used.

Graphical User Interfaces 151

Active Browser Keys
While the browser is active, the following keys are active:

@M

The arrow keys move the highlight up or down one row.

(Q@)or(@)(¥) Pressing [9) and an arrow key moves the highlight to the bottom of the screen or to the

bottom of the next screen if the highlight is already at the bottom of the screen.

(P)@or (@)W Pressing [?] and an arrow key moves the highlight to the beginning or end of the data list.

23] Press (] and a letter to move to the next item starting with that letter.
Executes the supplied procedure.
Executes the supplied [ON) procedure.
MEHE Executes a softkey definition.
Browser Support Objects
While the browser is active, the following objects are available for use by key definitions:
BRDispItems #450E0 G/GX XLIB 224 69
Displays the items for each row and the more-data arrows
BRGetItem #5 3—()JEO G/GX XLIB 224 83

152

Gets the item for the specified index
#index — $

BRinverse #490E0 G/GX XLIB 224 73
Inverts the highlight

e d
BRoutput #120E0 G/GX XLIB 224 18

Recall the index of the highlighted data item and the index of the first row
— #first_row #focus_pos

BRRclC1l #180E0 G/GX XLIB 224 24
Recall the data list

— {data}
BRRclCurRow #170E0 G/GX XLIB 224 23

Recall the index of the highlighted data item
— #focus_pos

BRStoC1 #030EO G/GX XLIB 224 24
Store the data list (must be the same length as previous list)

{data} —
BRViewItem #520E0 G/GX XLIB 224 82

Display the highlighted item using the full display, wait for a keystroke.
Respects linefeed breaks if present. Redraws browser display after keystroke.
N

Graphical User Interfaces

(

c ¢ ¢ ¢ ¢(

d

4

Browser Example
The program BRW1 displays a short list using the browser and returns a string indicating which key terminated the
browser. If the browser was terminated by pressing [ENTER] the highlighted data item is returned.

BRW1 265 Bytes Checksum #69DFh

(> "ON" Terminated by pressing [ON])

(—» "QuiT" Terminated by pressing HIJIT)
(— $item "ENTER" Terminated by pressing [ENTER])

EXTERNAL BRbrowse
EXTERNAL BRdone
EXTERNAL BRRclC1l
EXTERNAL BRRclCurRow

OLASTOWDOB! CKONOLASTWD
ClrDAlIsStat RECLAIMDISP
POLSaveUI
ERRSET
{
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
{
"QUIT"
TakeOver "QUIT" BRdone ;
}
}
"BROWSER EXAMPLE"
{

BRRclCl BRRclCurRow NTHCOMPDROP
"ENTER"
BRdone

" ON n
BRdone
}
ONE ONE

ZERO #=casedrop LENCOMP
NTHCOMPDROP

NULL({}
BRbrowse

ERRTRAP POLResUI&Err
POLRestoreUI
ClrDAsOK

{ "AB W owOp" YERF" "GH" " IJ woOWRL" "MN" " OP "

Clear saved command name, no arguments
Claim the display

Save the current user interface

Increment the protection word

Menu for the browser

Softkey label
Return "QUIT", signal to terminate the browser

Browser title

Hardkey list:

ENTER

Returns the highlighted data item
Returns the string "ENTER"
Signal to terminate the browser

Return the string "ON"
Signal to terminate the browser

First displayed row and highlighted row
} Data list

Data secondary

Return length of data list if index is 0

Otherwise return the item

No speed list
Display the browser

If error occurs, restore old interface and error
Restore the old interface
Signal to redraw the display

BEROWSER EXRAMPLE

Graphical User Interfaces

153

Choose Boxes

A choose box lets the user select one or more items from a series of choices or view a series of choices. This section

describes the basic types of choose boxes and how to customize them.

Choose Box Styles

There are three basic types of choose boxes — single-pick, multi-pick, and view-only. A single-pick choose box lets

the user choose a single item from a list of choices. The multi-pick choose box lets the user specify one or more

choices with check marks. A choose box can occupy either a shadow-box within the display or the whole display:

Choose Box Style Options

Single—Pick Multi-Pick
Default Style
RAD
{ HO|TITLE 5:34R
Partial 4: “'
Screen g B E
1: FOUR 4
I I 7T . T T
25
Full v
Screen THREE

FOLE

FIVE 4
[__[wieHe] JikNil] ok |

When a choose box is active, the following keys are defined:

(a)
Ld)
@)
D)
&
&)
@
@

o~
3
Q
<

EE]E]E][EJ

Moves the highlight up one row.

Moves the highlight down one row.

Moves the highlight to the next row beginning with letter.

Jumps the highlight up to the first choice.

Displays the previous page of choices.

Displays the next page of choices.

Jumps the highlight down to the last choice.

Turns off the HP 48.

Shortcut key for checking an item.

Checks the highlighted item in a multi-pick choose box.

Cancels the choose box.

Terminates the choose box, selecting the highlighted or checked item(s). In a multi-
pick choose box, selects the highlighted item if no items are checked.

Any of the above choose box styles may also be used as a display-only viewing device, where no highlight bar is

shown:

When a view-only choose box is active, the arrow keys scroll the list, () turns the HP 48 off, and (ON), (ENTER),

RAD
HO[TITLE 2:02p
ONE

THO

THREE

FOUR 4

L1 [1 [[0OK]

=IO~

and 0OF terminate the choose box.

154

Graphical User Interfaces

(

(

C C C

Choose Box Parameters

Choose boxes are specified both by stack arguments supplied to the object Choose and by responses to various

messages generated by the choose box engine. The object Choose produces the choose box, using five stack
arguments as input:

Choose #000B3 G/GX XLIB 179 00
Display a choose box

Msg-handler TitleOb DecompOb { choices } #FocusPos — ob TRUE Single-pick input accepted
Msg-handler TitleOb DecompOb { choices } #FocusPos — { oby ... oby } TRUE Multi-pick input accepted
Msg-handler TitleOb DecompOb { choices } #FocusPos — FALSE Cancelled or view-only

Message Handler The message handler provides opportunities to customize the choose box and react to
specific events by responding to messages.

Title Object An object which, when evaluated, produces a string for the choose box title. If a null-
length string is provided, no title will be displayed, title related messages will not be
generated, and an extra row will be available for displaying choices.

Decompile Object Specifies the manner in which each choice will be displayed.
{ choices } A list of the choices. The choices must all have the same structure. Typical examples
include:

* A bint specifying a built-in message number
* Anobject

* Alist containing two objects, one of which will be used to display the choice, the
other of which is associated with the first for post-choosebox evaluation

#FocusPos The focus position is the position of the highlight within the data list. A bint specifies the
initial focus position. If the bint is zero, the choose box displays a view-only list.

The message handler, decompile object, and data list will be described further below.

Example: We begin by looking at a simple choose box. CHS1 displays a default choose box showing a list of six
string objects:

CHS1 101 Bytes Checksum #B027h

(=)

EXTERNAL Choose Declare Choose a rompointer
AtUserStack Clear saved command name, no arguments
' DROPFALSE Message handler
"Title" Choose box title string
ONE Decompile format
{ List of choices

" ONE " " TWO woou THREE "
"FOUR" "FIVE" " SIX "

}

ONE Initial focus position

Choose Display the choose box

COERCEFLAG Exit, converting the result flag to %1 or %0

RAD
{HOfTITLE __ — lyayp
3: |TWO
3: |THREE
7: [FOUR 4
| s s s v |

Graphical User Interfaces 155

Choose Box Message Handler

At various times during the execution of the choose box, the choose box engine sends a message to the message
handler. If the message handler chooses not to handle the message, the default behavior related to that message will
occur. If the message handler does handle the message, the default behavior does not happen. If you don't plan to
handle any messages, then the object DROPFALSE is all that's needed, as shown above.

A message arrives at the message handler in the form of a binary integer indicating the message type with optional
stack parameters. The message handler is expected to return TRUE if the message was handled, along with any
required results on the stack, or FALSE if the message was not handled.

A message handler has the following stack diagram:

<passed objects> #message — <returned objects> TRUE
<passed objects> #message — <passed objects> FALSE

The following message handler specifies a full-screen multi-pick choose box by handling messages 60 and 61:

SIXTY #=casedrop :: TRUE TRUE ; Handle message 60 |

SIXTYONE #=casedrop :: TRUE TRUE ; Handle message 61
DROPFALSE Ignore other messages

’

There are many messages, but the messages most likely to be of interest are listed below:

Message Purpose Decimal message number
Input arguments — Objects returned by the handler

Choose Box Size 60
TRUE Full screen choose box
FALSE Partial screen choose box

Pick Type 61

Il

— TRUE Multi-pick
— FALSE Single-pick

Item Count 62
— #number_of_items_in_list

Title Grob 69
— grob

Title String 70
— $title

Item String 80

#item_index — S$item_string
Item Grob 81

#item_index — grob
Note: Item grob may need to have standard choose item width (91 or 131)

Choose Box Menu 83
— { menu }

Pick Event 86
.%

CAHECL Key Event 91
— FALSE Cancel not allowed
— TRUE Cancel allowed

@k Key Event 926
— FALSE OK not allowed
— TRUE OK allowed

Note that you might want to get control when an event happens, but still want the default action to take place. To do
this, preserve the passed objects and return FALSE, indicating that you "didn't handle the message".

156 Graphical User Interfaces

(P

While the choose box is active, null-named temporary variables contain information of interest:

6GETLAM — #highlight_row_number
7GETLAM — #row_height (pixels)
8GETLAM — #row_width (pixels)
12GETLAM — #item_count

15GETLAM — { list of picked indices }
18GETLAM — #index_of_highlighted_item
19GETLAM — { choice_list }

Example. To introduce some uses of message handling, the message handler in CHS2 specifies the choose box type
and choices via the message handler.

CHS2 121 Bytes Checksum #28EDh
(—> %0)
(= { choices } %1)

EXTERNAL Choose

AtUserStack Clear saved command name, no arguments
L Message handler
SIXTYONE #=casedrop TrueTrue Specify multi-pick choose box
SIXTYTWO #=casedrop :: NINE TRUE ; Specify nine choices
80 #=casedrop Create the string for each choice:
UNCOERCE EDITDECOMPS Convert index bint into real and decompile it
"Frog " SWAP&S Prepend frog string
TRUE Signal event handled
DROP FALSE Do not handle other messages
"CHOOSE SOME FROGS" Title string
ONE Decompile object (not used in this example)
NULL({} Null data list
ONE Initial focus position
Choose COERCEFLAG Run the choose box, then exit, converting flag

|1 lwchk] [eNiL] oK

This example will be expanded at the end of this chapter with a customized menu and a dynamic title — see CHS6.

Graphical User Interfaces 157

Decompile Objects
The decompile object controls the manner in which each item is displayed, has the stack diagram (ob — $), and
may be specified three ways:

* A pointer to an object that creates a string representation of a choice, like EDITDECOMPS
* A secondary that creates a string representation of a choice, like : : CARCOMP EDITDECOMPS
* A bint specifying the decompile procedure

’

The binary integer specification uses specific bits to encode the decompile procedure. These bits control the
decompile format, which part of a composite choice to decompile, and whether only the first character should be
returned.

Bit Interpretation

0 No decompilation — expects a string and displays the contents without quote marks

1 Decompile objects as they would appear on the stack (uses the user's numeric display format settings)
2 Decompile objects as they would appear in the editline (uses STD format for numbers)

3 Return only the first character of the string

4 Extract and display the first object of a composite

5 Extract and display the second object of a composite

Example. A bint with the decimal value 36 is supplied as the decompile object for CHS3. Each choice object is
actually a list. Bit 2 is set, specifying that objects should be decompiled using STD format. Bit 5 is set, specifying
that the second object in the choice list should be decompiled and displayed.

CHS3 146 Bytes Checksum #D930h
(> %0)
(— choice %1)

EXTERNAL Choose

AtUserStack Clear saved command name, no arguments
' DROPFALSE Message handler
"Title" Title string
THIRTYSIX Decompile object
{ Data list
{ "ONE" %1 }
{ "TwWO" %2 }
{ "THREE" %3 }
{ "FOUR" %4 }
{ "FIVE" %5 }
{ "SIX" %6 }
}
ONE Initial focus position
Choose Run the choose box
COERCEFLAG Exit, converting flag to %0 or %1
£ Ho[TITLE
q:
3
2: (3
. |4 4

[

L1 [[[Ni] oK |

Note: You may also include the file GUI . H to enable the use of predefined decompile objects. For more about this
file, see input form DEFINEs for RPLCOMP later in this chapter.

158 Graphical User Interfaces

P

(

c C C (¢

(

The real power of the ability to handle lists for choices is to be able to bundle procedures with choice strings. The
example CHS4 illustrates this concept.

CHS4 245.5 Bytes Checksum #E1FDh
(% > %')

EXTERNAL Choose
OLASTOWDOB! CK1NOLASTWD Clear saved command name, require one ob
CK&DISPATCH1 real Require real number
' DROPFALSE Message handler
"CHOOSE AN OPERATION:" Title string
SEVENTEEN Decompile object: show first part as text
{ Data list
{ "ADD 1" %1+ }
{ "ADD 2" :: %2 %+ ; }
{ "ADD 3" :: %3 %+ ; }
{ "DIVIDE BY 4" :: %4 %/ ; }
{ "SUBTRACT 5" :: %5 %- ; }
{ "MULTIPLY BY 6" :: %6 %* ; }
}
ONE Initial focus position
Choose Run the choose box
NOT?SEMI Exit if cancelled
TWO NTHCOMPDROP Extract the procedure object
EVAL Evaluate the procedure object

o

Graphical User Interfaces 159

Customizing Choose Box Menus
By responding to message 83 you can customize the choose box menu. Rather than duplicate the definitions of the
check, cancel, and OK keys, we'll illustrate how you can copy, decompose, alter, and rebuild a built-in menu

definition.

There are three standard menu objects used for choose boxes:

Choose menu for display-only choose boxes:
. 3 3 3 J i
— menu_object

ChooseMenu0 #050B3 G/GX XLIB 179 5

Choose menu for single-pick choose boxes:
= 1 3§) s
— menu_object

ChooseMenul #060B3 G/GX XLIB 179 6

Choose menu for multi-pick choose boxes:
I SR GG SR SNEeen S
— menu_object

ChooseMenu2 #070B3 G/GX XLIB 1797

These menu objects are actually secondaries consisting of the object NoExitAction and the menu definition
itself. For example, ChooseMenu?2 looks like this:

NoExitAction

{

}

’

NullMenuKey
NullMenuKey

{
TakeOver grobCheckKey ; The grob for the label

DoCKeyCheck Primary key checks or unchecks an item

DoCKeyChAll Left-shift key checks all items
DoCKeyUnChAll Right-shift key unchecks all items
}
}
NullMenuKey
{ "(AN(L" DoCKeyCancel }
{ "OK" DoCKeyOK }

(Actually, the definition for the third key is a little more involved — the check grob is not displayed if the list is
empty, but if your application doesn't present an empty data list you won't have to take this step.)

The object NoExitAction insures that the menu won't be saved as the last menu, so pressing () (MENU) won't
display a menu whose context is meaningless after your application terminates.

NoExitAction
Ensures a menu won't be saved as the last menu
ﬁ

#3EC58h

Note: The new key definition must follow all the same principles as any key definition for the parameterized outer
loop (the choose box engine rests atop a POL).

160

Graphical User Interfaces

~

P

~

Choose box menu items are built using the following support objects:

grobCheckKey #860B0O G/GX XLIB 176 134
Check label grob

— grob
DoCKeyCheck #2A0B3 G/GX XLIB 179 42
Check or uncheck the current item in a multi-pick choose box

-
DoCKeyChAll #2BOB3 G/GX XLIB 179 43
Check all items in a multi-pick choose box (typically left-shifted)

-
DoCKeyUnChall #2COB3 G/GX XLIB 179 44
Uncheck all items in a multi-pick choose box (typically right-shifted)

ﬁ
DoCKReyCancel #2D0OB3 G/GX XLIB 179 45
Cancel the choose box

— FALSE
DoCKeyOK #2E0B3 G/GX XLIB 179 46
Accept the choices

FALSE No items chosen
— Item TRUE Single-pick
— Items TRUE Multi-pick

Example. The technique described above is used to create a simple editor for a list of strings using a custom choose
box menu. This example begins by requiring a list, validating that the list contains at least one object, and that all
objects in the list are strings. The message handler for the choose box intercepts the following messages:

60 Specifies a full-screen choose box
83 Creates the custom choose box menu
96 Places the list on the stack when the choose box ends

Note that in this example we use ONE for the decompile object. This means we're guaranteeing to the choose box

engine that only string objects are being displayed. If this example were to work with arbitrary objects, then FOUR
would be better choice, but strings would be displayed with quote marks.

EDIT STRINGS 3

4
EoiT] | [JikWil] DK |

Graphical User Interfaces 161

CHS5 320 Bytes Checksum #427h

({$1 ... %81 > (%1 SN } $Highlighted %1) Userpressed ENTER)or ©OF
({$1 ... Sy } = %0) User pressed THRMEL or [ON)

EXTERNAL Choose
EXTERNAL DoCKeyCancel
EXTERNAL DoCKeyOK

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 list

DUPLENCOMP DUP#0= case SETSIZEERR
#1+ ONE DO
DUP INDEX@ NTHCOMPDROP
TYPECSTR? ?SKIP SETTYPEERR
LOOP
SIXTY #=casedrop
83 #=casedrop

TRUE TRUE ;

NoExitAction

{
{
"EDIT"
TakeOver

"Edit String:"
19GETLAM 18GETLAM
NTHCOMPDROP

ZERO ONE ONE ONE

Clear saved command name, require one object
Require list object

Make sure list contains at least one object
Loop to validate objects in list

Get each item

Error out if not a string

Message handler
60: Full screen choose box
83: Choose box menu

Place secondary on stack

Edit key definition
Label
Action must begin with TakeOver
Set up InputLine parameters: this is the prompt
Get the choose box data list and current item #
Extract the highlighted item
InputLine params: alpha lock, entry, cursor pos

{ <SkipKey >SkipKey <DelKey >DelKey TogInsertKey } Editline menu

ONE FALSE ZERO
InputLine
IT

18GETLAM 19GETLAM
PUTLIST
19PUTLAM

ClrDAsOK
}
NullMenuKey
NullMenuKey
NullMenuKey
{ "(AN(L" DoCKeyCancel }
{ "OK" DoCKeyOK }
}

TRUE
BINT_96d #=casedrop
:: 19GETLAM TRUE TRUE ;
DROP FALSE

"EDIT STRINGS" ONE
4ROLL ONE

Choose

COERCEFLAG

Menu row, abort action, no post-processing
Run the input line
If edit was accepted

Get the data list and focus position
Replace the item
Store the new list back

Signal the display has been altered
End of new menu key action
End of edit key definition
2nd menu key
3rd menu key
4th menu key
Cancel key
OK key

End of menu secondary
Signal that message 83 has been handled
End of handler for message 80
96: Choose box ends
Recall data list, signal end OK, signal msg handled
Ignore other messages
End of message handler
Choose box title, decompile specification
Move data list into place, specify ONE for initial focus
Display the choose box
Exit, converting choose box flag to %0 or %1

162

Graphical User Interfaces

(

C CCC ¢

4

(

Choose Event Procedures

The following objects are available for use by a choose box menu key definition.

LEDispItem #360B3
Display an item
#index #highlight_ row —

G/GX XLIB 179 54

LEDispList #350B3
Display the choose box contents

G/GX XLIB 179 53

_)
LEDispPrompt #300B3 G/GX XLIB 179 48
Display the choose box title
__)

For LEDispItem, the index of the currently highlighted item can be found by 1 8GETLAM and the current

highlight row number can be found by 6GETLAM.

Example. The message handler and custom menu combine in CHS6 to present a dynamic choose box in which the

title reflects the number of items chosen.

L1 [wcHk] JekNiL] OF

Graphical User Interfaces

163

CHS6 348.5 Bytes Checksum #AESCh
(> %0)
(= { choices } %1)

User pressed CHHEL or
User pressed [ENTER) or = ©iF

EXTERNAL Choose
EXTERNAL grobCheckKey
EXTERNAL LEDispPrompt
EXTERNAL DoCKeyCheck
EXTERNAL DoCKeyChAll
EXTERNAL DoCKeyUnChAll
EXTERNAL DoCKeyCancel
EXTERNAL DoCKeyOK

AtUserStack Clear saved command name, no arguments
' Message handler

SIXTYONE #=casedrop TrueTrue Specify multi-pick choose box

SIXTYTWO #=casedrop :: NINE TRUE ; Specify nine choices

SEVENTY #=casedrop

15GETLAM LENCOMP

Create the prompt string:

Get the length of the list of picked indices

ZERO #=casedrop "NO FROGS" No choices picked
ONE #=casedrop "1 FROG" One choice picked
UNCOERCE EDITDECOMPS$ " FROGS" &$ More than one choice picked

" PICKED" &$
TRUE

80 #=casedrop
UNCOERCE EDITDECOMPS
"Frog " SWAP&S
TRUE

83 #=casedrop

NoExitAction

Append remainder of prompt string
Signal event handled

Create the string for each choice:
Convert index bint into real and decompile it
Prepend frog string
Signal event handled

Specify the choose box menu

{
NullMenuKey
NullMenuKey
{
:: TakeOver grobCheckKey ; Check key label
{
TakeOver DoCKeyCheck LEDispPrompt ; Primary check key action
TakeOver DoCKeyChAll LEDispPrompt ; Left-shift key action
TakeOver DoCKeyUnChAll LEDispPrompt Right-shift key action
}
}
NullMenuKey
{ "(AN(L" DoCKeyCancel } Cancel key
{ "oK" DoCKeyOK } OK key
}
TRUE Signal menu event handled
DROP FALSE Signal other messages not handled
v Default title string (will be replaced by msg 70)
ONE Decompile object (not used in this example)
NULL{ } Null data list
ONE Initial focus position
Choose Display the choose box
COERCEFLAG Exit, converting flag

164

Graphical User Interfaces

(

(

c ¢ ¢ € C (

Input Forms

The input form engine in the HP 48G/GX has been designed to meet a very diverse set of requirements, so it takes a
little more effort to use than other interfaces. It is not possible (or reasonable) to try to document all of the minutiae
associated with input forms, but we will provide a general introduction that should satisfy the needs of many
applications. We begin by introducing a few terms, then go on to describe the parameters and illustrate their use.
As you read these terms, use the PLOT input form shown below for reference:

Title Bar

Choose Field —=>
Label —>

Check Field —>

TYPE: Function <& De
EQ:

INDEP: X H-VIEW:=5.5 6.5
—AUTOSCALE Y-VIEW:-3,1 3.2

ENTER FUNCTIONC(S) TO PLOT

Edit Field

Help Line

[ECiT Jonons] ToPT: [ERAzE[okik]|
Term Description
Title Bar Shows the title for the input form.
Field An input form field contains data that can be changed by the user.
Label A label is just text, and is not associated with a field except by juxtaposition.
Help Line A prompt assiciated with a field.

Highlight / Focus The currently active field is shown in inverse video, and is said to have the focus of the
input form engine.

Edit Field A field that permits character editing, like the EQ field in the PLOT input form.

Choose Field A field that permits selection from a fixed set of choices, like the TYPE field in the PLOT
input form.

Check Field A field that has two states: checked and unchecked, like the AUTOSCALE field in the
PLOT input form.

Input Form Parameters
Like the choose box, input forms are specified by stack parameters and responses generated from a message handler:

DoInputForm G/GX #199EBh
Display an input form
input form parameters — obj ... obyy TRUE Input accepted with OK
input form parameters — FALSE Cancelled

Label_Specifier; Label_Specifieryy Specifiers for N labels. Label specifiers consist of three arguments,
described in detail below.

Field_Specifier; Field_Specifiery; Specifiers for M fields. Field specifiers consist of thirteen arguments,
described in detail below.

#LabelCount A binary integer N specifying the number of label specifiers.
#FieldCount A binary integer M specifying the number of field specifiers.
input form Message Handler A secondary that handles form-specific events.

Title A string to be displayed in the title bar.

Caution: Remember that the CHL L softkey on the second page of the input form menu gives
the user access to the stack. You may wish to consider what your application leaves
on the stack when an input form is active.

Graphical User Interfaces 165

Label Specifiers

Input form labels are displayed using the small font. Each label is specified with three parameters:

Label _String
#X_Position

#Y_Position

Field Specifiers

A string object for the text.
A bint specifying the pixel column for the upper-left corner of the text.

A bint specifying the pixel row for the upper-left corner of the text.

Input form fields are specified with thirteen parameters:

Field_Message_Handler
#X_Position
#Y_Position
#Field_Width
#Field_Height

#Field_Type

Object_Types

Decompile_Object

Help_String

Choose_Field_Data

Choose_Decompile_Fmt

Reset_Value

Initial_Value

A message handler, usually specified as ' DROPFALSE.

A bint specifying the pixel column for the upper-left corner of the field.
A bint specifying the pixel row for the upper-left corner of the field.

A bint specifying the pixel width of the field.

A bint specifying the pixel height of the field.

A bint specifying the field type. Common types are:

Value Field Type

1 Text field
3 Auto-algebraic field for equation entry
12 Choose field

32 Check field

A list of one or more bints specifying the valid object types for the field. To allow any
object type, specify MINUSONE. For a check field, specify MINUSONE.

An object specifying the manner in which the field's contents are displayed. See
Decompile Objects under Choose Boxes for a complete description. For a check field,
specify MINUSONE.

A string object containing the help text for the field.

A list of choices for a choose field, or MINUSONE for non-choose fields.

An object specifying the manner in which a choose field's choices are displayed. See
Decompile Objects under Choose Boxes for a complete description. For non-choose

fields, specify MINUSONE.

The value to be displayed if FESET is pressed. For check fields, specify TRUE
(checked) or FALSE (unchecked). For other fields, specify MINUSONE if the reset

value for the field is blank (analogous to NOYAL in User-RPL) or specify a valid value.

The first value to be displayed. For check fields, specify TRUE (checked) or FALSE
(unchecked). For other fields, specify MINUSONE if the reset value for the field is
blank (analogous to MOYAL in User-RPL) or specify a valid value.

Looks easy, right? Let's put the first example right on the next page:

166

Graphical User Interfaces

(

€ (

s

C ¢

INF1 287 Bytes Checksum #D6D6h

(> %0) Cancelled

(> ob % % %1) Accepted

AtUserStack

"EDIT FIELD:" ONE NINETEEN
"CHOOSE FIELD:" ONE TWENTYEIGHT
"CHECK FIELD" EIGHT THIRTYSEVEN

'DROPFALSE
FORTY SEVENTEEN
79

NINE

ONE

MINUSONE

TWO

"ENTER ANY OBJECT"
MINUSONE
MINUSONE

NULL$ NULLS

'DROPFALSE
FORTYNINE TWENTYSIX
FORTYNINE

NINE

TWELVE

FOUR

TWO

"CHOOSE A NUMBER"
{ %1 %2 %3 }

TWO

%1l %1

'DROPFALSE

ONE THIRTYFIVE
SIX

NINE

THIRTYTWO
MINUSONE
MINUSONE
"CHECK OR UNCHECK"
MINUSONE
MINUSONE

FALSE FALSE

THREE

THREE

'DROPFALSE

"TEST"

Doinput form

case :: ITE %1 %0 %1 ;
%0

Clear saved command name, no arguments

Label 1 text and coordinates
Label 2 text and coordinates
Label 3 text and coordinates

Field 1 message handler
Field 1 coordinates

Field 1 width

Field 1 height

Field 1 type — edit field

Field 1 object types allowed
Field 1 decompile format user's settings
Field 1 help text

Optional data not used
Optional data not used

Field 1 initial and reset values

Field 2 message handler
Field 2 coordinates

Field 2 width

Field 2 height

Field 2 type — choose list
Field 2 object types allowed
Field 2 decompile format user's settings
Field 2 help text

Field 2 choice list

Choose box decompile format
Field 2 initial and reset values

Field 3 message handler
Field 3 coordinates

Field 3 width

Field 3 height

Field 3 type — check box
Object types not applicable
Decompile format not applicable
Field 3 help text

Optional data not used
Optional data not used

Field 3 initial and reset values

Number of labels

Number of fields

input form message handler

input form title

Display the input form

If OK, convert check result and return %1
If cancelled, return %0

SO TEST STRIMG"
CHOOSE FIELD: 1

—CHECK FIELD

ENTER ANY OBJECT
[E0iT] [[[ihNiL] DK |

Graphical User Interfaces

167

Input Form DEFINEs for RPLCOMP

The example INP1 on the previous page is virtually unreadable unless you're willing to remember many small
details of input form parameters. To solve this, you can use the INCLUDE feature of HP's RPL compiler
RPLCOMP.EXE to define locations for fields and labels, field types, decompile procedures, etc. We've provided a
file on the disk named GUI . H that contains some standard input form definitions. If you're using another tool set,
there may be a similar way to use DEFINEs to help make your code readable.

[Note: The remaining examples in this chapter will use the DEFINEs listed in GULH. |

Example. INF2 is slightly different from INF1. The first two fields are lined up to begin in the same pixel column,
the decompile specifications uses STD instead of the user settings, and NOVAL is the default for field 1. We trust
that the mnemonic value of the DEFINEs from GULH makes the code a little more readable.

INF2 287 Bytes Checksum #3373h

(> %0) Cancelled

(> ob % % %1) Accepted

INCLUDE GUI.H Include the DEFINE:s from file GULH
AtUserStack Clear saved command name, no arguments
"EDIT FIELD:" COoL1 LROW2 Label 1 text and coordinates
"CHOOSE FIELD:" COL1 LROW3 Label 2 text and coordinates
"CHECK FIELD" COL1+C LROW4 Label 3 text and coordinates
' DROPFALSE Field 1 message handler
COLS FROW2 FWIDTH12 FHEIGHT Field 1 coordinates and dimensions
FTYPE_TEXT Field I type: edit field
OBTYPE_ANY Field 1 object types allowed
FMT_STD Field 1 decompile format STD
"ENTER ANY OBJECT" Field 1 help text
OPTDATA_NULL Optional data not used
OPTDATA_NULL Optional data not used
NOVAL NOVAL Field 1 initial and reset values
'DROPFALSE Field 2 message handler
COLS FROW3 FWIDTH8 FHEIGHT Field 2 coordinates and dimensions
FTYPE_CHOOSE Field 2 type: choose list
OBTYPE_NA Field 2 object types allowed
FMT_STD Field 2 decompile format STD
"CHOOSE A NUMBER" Field 2 help text
{ %1 %2 %3 } Field 2 choice list
FMT_STD Choose box decompile format
%1 %1 Field 2 initial and reset values
' DROPFALSE Field 3 message handler
COL1 FROW4 FWIDTH_C FHEIGHT Field 3 coordinates and dimensions
FTYPE_CHECK Field 3 type: check box
OBTYPE_NA Object types not applicable
FMT_NA Decompile format not applicable
"CHECK OR UNCHECK" Field 3 help text
OPTDATA_NULL Optional data not used
OPTDATA_NULL Optional data not used
FALSE FALSE Field 3 initial and reset values
THREE THREE Number of labels and fields
'DROPFALSE Input form message handler
"TEST" Input form title
Doinput form Display the input form
case :: ITE %1 %0 %1 ; If OK, convert check result and return %1
%0 If cancelled, return %0

168 Graphical User Interfaces

 (

(

c ¢ ¢ ¢

Specifying Object Types
To allow any tobject to be entered into a text field, specify MINUSONE for the object type. To specify one or more
object types, use a list of bints. The table below shows the available types, bint values, and DEFINE names from

GUILH.

Object Type DEFINE Bint
Real OBTYPE_REAL ZERO
Complex OBTYPE_CMP ONE
String OBTYPE_STR TWO
Rmﬂanay OBTYPE_RARRAY THREE
Complex array OBTYPE_CARRAY FOUR
List OBTYPE_LIST FIVE
Name (ID) OBTYPE_ID SIX
User program OBTYPE_USERPRGM | EIGHT
Al gebraic OBTYPE_SYMB NINE
User binary integer | OBTYPE_HXS TEN
Unit OBTYPE_UNIT THIRTEEN

Example: To allow programs and algebraic objects use the list { OBTYPE_USERPRGM OBTYPE_SYMB }.

Specifying Decompile Formats
Text and choose fields require a decompile object. The decompile object controls the manner in which each item is
displayed, has the stack diagram (ob — $), and may be specified three ways:

e A pointer to an object that creates a string representation of a choice, like EDITDECOMPS
e A secondary that creates a string representation of a choice, like : : CARCOMP EDITDECOMPS ;
e A bint specifying the decompile procedure

Note that for text fields, the first two choices must be sensitive to the possibility of undefined field contents. For

instance, if a text field's default value is MINUSONE (NOVAL), then EDITDECOMPS$ would display <FFFFFh?>.
It's more likely that a secondary would be used that would include a test for this condition.

Example: This secondary returns a null string for an undefined value, otherwise decompiles the object using STD
formatting if the object is not a string.

(ob = s)

DUP MINUSONE EQUAL casedrop NULLS$
DUPTYPECSTR? ?SEMI
EDITDECOMPS$

Return null string for NOVAL
Do nothing if the object is a string

The binary integer specification uses specific bits to encode the decompile procedure. These bits control the
decompile format, which part of a composite choice to decompile, and whether only the first character should be
returned. The file GUI . H contains a series of DEFINEs for commonly used decompile specifications.

Bit Interpretation

0 No decompilation — expects a string and displays the contents without quote marks

1 Decompile objects as they would appear on the stack (uses the user's numeric display format settings)
2 Decompile objects as they would appear in the editline (uses STD format for numbers)

3 Return only the first character of the string

4 Extract and display the first object of a composite (useful for choose fields only)

5 Extract and display the second object of a composite (useful for choose fields only)

Example: The bint THIRTYSIX (FMT_P2&STD in GUI . H) specifies STD formatting for the second element in a
list (useful for choose fields).

Graphical User Interfaces 169

Input Form Message Handlers

At various times during the execution of an input form, the input form engine sends a message to the form's message

handler or an individual field's message handler. If the message handler chooses not to handle the message, the
default behavior related to that message will occur. If the message handler does handle the message, the default
behavior does not happen. If you don't plan to handle any messages, then the object DROPFALSE is all that's

needed, as shown above.

A message arrives at the message handler in the form of a binary integer indicating the message type with optional
stack parameters. The message handler is expected to return TRUE if the message was handled, along with any
required results on the stack, or FALSE if the message was not handled.

A message handler has the following stack diagram:

<passed objects> #message — <returned objects> TRUE
<passed objects> #message — <passed objects> FALSE

There are many messages, but the messages most likely to be of interest are documented as follows:

Message Purpose

Decimal message number
Input arguments — Objects returned by the handler

Input Form Messages

These messages are processed by the main input form message handler.

Title Grob 2
— 131x7_grob

input form Menu 15
— { menu }

Three Menu Keys 16
— { Keys Keys Keys }

CHHECL Key Event 28
— FALSE Cancel not allowed
— TRUE Cancel allowed

' 3K Key Event 29
— FALSE OK not allowed
— TRUE OK allowed

Field Messages

These messages are processed by the individual field message handlers and are specific to the related field.
Check Object Type 45
— FALSE Invalid Object Type
— TRUE Valid Object Type
Check Object Value 46
— FALSE Invalid Object Value
— TRUE Valid Object Value

170

Graphical User Interfaces

ccccc ccccccococococccoccococococococococococ0c0p

{

¢ (

(

Input Form Data Access

While an input form is active the objects gF1dval and GetFieldVals may be used to recall the values for all

the fields. Fields are numbered in the order of their specification.

gFldval #C50B0 G/GX XLIB 176 197
Recall the values for an individual field

#field_number — Field_Value
GetFieldvals #C80BO G/GX XLIB 176 200
Recall the values for all the fields

— Field_Values

Example: : : ONE gFldval ; returns the value of the first field.

While an input form is active, state information is saved in null-named temporary variables. A few contain basic
information that might be useful:

4GETLAM — #current_field_number
S5GETLAM — #focus_position
12GETLAM — $title

14GETLAM — #number_of_fields
15GETLAM — #number_of_labels

Graphical User Interfaces

171

Customizing Input Form Menus
There are twelve standard input form softkeys:

Key 1 Key 2 Key 4 Key 5
Row 1 ECIT CHoos e CHHCL
Row 2 FEEZET CcHLC CHHCL

In row 1, the first three keys are reserved for field support. The last three are available for customization by
responding to message 16. If an application doesn't need the second row (the CHL T key represents a potential
landmine for a robust application), the entire menu can be customized by responding to message 15.

Two built-in key objects are available to help build custom input form menus: DoKeyCancel and DoKeyOK:

DoKeyCancel

Process a "CANCEL" keystroke, terminating an input form
— FALSE

G/GX XLIB 176 89

DoKeyOK

Process an "OK" keystroke, terminating an input form
— Field_Values TRUE

G/GX XLIB 176 90

Customizing Three Menu Keys. By responding to message 16, you can supply your own keys for row 1 positions
four, five, and six. You must supply a list of exactly three key definitions and TRUE (in addition to the TRUE

indicating that the message has been handled).

The following input form message handler creates a new key ‘AL ERT in position four and supplies the standard

CANCEL and OK keys in positions five and six:

(#msg — FALSE Not handled)

(#16 — { Key; Key, Keyz } TRUE TRUE }

SIXTEEN #<> case FALSE

{
{
"ALERT"
TakeOver
"Alert!"
NINE FIFTEEN
MINUSONE
' MsgBoxMenu
DoMsgBox
DROP
}
{ "(AN(L" :: TakeOver DoKeyCancel
{ "OK" :: TakeOver DoKeyOK ;
}
TRUE
TRUE

’

Respond only to message 16

List of 3 key definitions:

Key 1:

Label

Procedure:
MUST be a TakeOver secondary
Text for message box
Min and max character widths
No grob
Message box menu
Display the message box
Discard the returned flag

Standard CHHCL key
Standard . 0OF. key

Flag needed by menu builder
Indicates message handled

The program INF3 (supplied on the disk but not listed here) uses this message handler to extend the INF2 example.

172

Graphical User Interfaces

(

C C C(

(

Customizing the Entire Input Form Menu. There are two principal motivations for customizing the entire input
form menu:

* You can rename a standard key, like © ik to a verb, like L'F:FLI in the PLOT input form.

* You can eliminate keys that are either distracting or dangerous. Keys like FESET and T¥FES: are
distracting in a well-confined application, but CTHE L is quite dangerous, since this key gives the user access to
the entire calculator.

By responding to message 15, you can supply a unique menu definition. The menu definition must be supplied as a
secondary consisting of two parts— NoExitAction and the menu list:

:: NoExitAction { menu keys }

’

To help build the menu, you can use the standard first three keys that are available in the list IFMenuRow1, and the
standard second menu row which is available in the list IFMenuRow?2.

IFMenuRowl #050B0 G/GX XLIB 176 5
A list containing the standard first three input form softkeys
— { EDIT CHOOSE CHK }
IFMenuRow2 #060B0 G/GX XLIB 176 6
A list containing the standard second row of input form softkeys
— { RESET CALC TYPES NuliMenuKey CANCEL OK }

The following input form message handler creates a new key :ALEF T in position four and supplies the standard
CANCEL and OK keys in positions five and six:

(#msg — FALSE Not handled)
(#16 — { Key; Key, Key; } TRUE TRUE }

FIFTEEN #<> case FALSE Respond only to message 15
' NoExitAction Place NoExitAction on the stack
IFMenuRowl Get the first three standard keys
{ List of 3 key definitions:
{ Key 1:
"ALERT" Label
B & Procedure:
TakeOver MUST be a TakeOver secondary
"Alert!" Text for message box
NINE FIFTEEN Min and max character widths
MINUSONE No grob
' MsgBoxMenu Message box menu
DoMsgBox Display the message box
DROP Discard the returned flag
}
{ "(AN(L" :: TakeOver DoKeyCancel ; } Standard CHHLL key
{ "OK" :: TakeOver DoKeyOK ; } Standard key
}
&COMP Concatenate the two lists
TWO ::N Build the secondary
TRUE Indicates message handled

’

The program INF4 (supplied on the disk but not listed here) uses this message handler to extend the INF3 example.
Note that INF3 and INF4 are identical except that INF4 does not have the second row of standard input form keys.

Graphical User Interfaces 173

ORBIT Example

This program is a System-RPL implementation of an example by the same name in The HP48 Handbook (also
provided on the disk in the USERRPL directory). ORBIT models a particle in a chaotic orbit. This program was
inspired by the program MIRA in the book Fractals — Endlessly Repeated Geometrical Figures (Princeton, New
Jersey: Princeton University Press, 1991) by Hans Lauwerier.

The successive iterates are calculated by:

Xp41 =Yn — F(xy)
Yn+1 = _bxn + F(xn+1)

where:

2(1-ax 2

F(x)=ax+ -

1+x

The value for a controls the chaotic behavior (orbits are stable when a is 1). The value of b controls the spiral nature
of the orbit. If b is just slightly less than 1, the orbit spirals inward.

An input form is used to enter and verify the input parameters n (the number of iterates), initial values for a and b,
the starting position x and y, and the scaling coordinates. There are two message handlers:

* The field message handler for n verifies a positive number of iterates.
e The form message handler provides a custom menu that adds a SHiill key, renames @Gk
verifies that all fields have data when iR fill is pressed, and omits the standard second menu row.

To get acquainted with ORBIT, begin with a somewhat stable orbit. Reduce a to see its effect on the orbit and
adjust the scale to keep the picture large, then reduce b to make the orbit spiral inward:

n a b X y PMIN PMAX
700 95 1 0 7.5 (-25,~-10) (27,10)
700 9 1 0 7.5 (-20,-8) (22,8)

2200 9 998 0 7.5 (-20,-8) (22,8)
R sl T -
I aadiai B
3 ¢
{'E g'.'J

Here's some more to try. Remember that very small variations in initial conditions can result in dramatic changes to
the orbit. For instance, try the third example below with values for a of —.24, —.25, and -.26.

174

n a b X y PMIN PMAX
600 | -4 | 99 4 0 | (-12-10) | (13,10)
900 | -48 | 935 | 4.1 0 | C11-10) | 4,7
500 | -05 | 985 | 9.8 0 | 13-11) | (7,11
1000 | —24 | 998 0 | (-12-10) | (14,10)
1000 | 2 1 11 0 | (20-16) | (22,17
400 3 1 8 0 | (-35-19) | (35,19)
500 4 1 0 5 (-13-8) (16,8)

Graphical User Interfaces

(

c C CCCCCCCC(

{

(

ORBIT 1278.5 Bytes Checksum #E440h

(=)

INCLUDE GUI.H

EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL

DoKeyCancel
DoKeyOK
IFMenuRowl
gFldval
GetFieldvals
grobAlertIcon
DoMsgBox
MsgBoxMenu

AtUserStack

Specify the input form labels:

"ITERATES:" COL1l LROW1

n A: L
L B . "
" X . L
L Y H "
"PMIN: "
"PMAX: "

COL1 LROW2
COL12 LROW2
COL1 LROW3
COL12 LROW3
COL1 LROW4
COL12 LROW4

Specify the input form fields:

FORTYSIX #<> case FALSE

%0 %>

TRUE

COL7 FROW1l FWIDTH8 FHEIGHT
FTYPE_TEXT
{ OBTYPE_REAL }

DUP MINUSONE EQUAL casedrop NULLS$
EDITDECOMPS

"ENTER THE NUMBER OF ITERATES"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

'DROPFALSE

COL2 FROW2 FWIDTH8 FHEIGHT
FTYPE_TEXT

{ OBTYPE_REAL }

FMT_STD

"'A' CONTROLS THE CAOTIC BEHAVIOR"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

'DROPFALSE

COL13 FROW2 FWIDTH8 FHEIGHT
FTYPE_TEXT

{ OBTYPE_REAL }

FMT_STD

"'B' CONTROLS THE SPIRAL"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

Graphical User Interfaces

Include input form DEFINEs

External declarations for objects that are
referenced by rompointer

No arguments, clear saved command name

input form labels

Message handler for ITERATES field
Respond only to message 46

Test to see if number is greater than zero
Signal that the message has been handled

Field dimensions

Field type

Allow only real numbers

Decompile object

Show null string if no data has been entered

Else display in STD format (similar to FMT_STD)

Help text
No choose box data for a text field
No value for reset and initial values

Default message handler for A field
Field dimensions

Field type

Allow only real numbers

Use STD display formatting

Help text

No choose box data for a text field
No value for reset and initial values

Default message handler for B field
Field dimensions

Field type

Allow only real numbers

Use STD display formatting

Help text

No choose box data for a text field
No value for reset and initial values

175

'DROPFALSE

COL2 FROW3 FWIDTH8 FHEIGHT
FTYPE_TEXT

{ OBTYPE_REAL }

FMT_STD

"'X' IS THE STARTING POSITION X"
OPTDATA_NULL OPTDATA_NULL

NOVAL NOVAL

'DROPFALSE

COL13 FROW3 FWIDTH8 FHEIGHT
FTYPE_TEXT

{ OBTYPE_REAL }

FMT_STD

"'Y' IS THE STARTING POSITION Y"
OPTDATA_NULL OPTDATA_NULL

NOVAL NOVAL

' DROPFALSE
COL4.5 FROW4 FWIDTH7 FHEIGHT
FTYPE_TEXT

{ OBTYPE_CMP }

FMT_STD

"LOWER LEFT DISPLAY COORDINATE"
OPTDATA_NULL OPTDATA_NULL
NOVAL NOVAL

'DROPFALSE

COL15.5 FROW4 FWIDTH7 FHEIGHT
FTYPE_TEXT

{ OBTYPE_CMP }

FMT_STD

"UPPER RIGHT DISPLAY COORDINATE"
OPTDATA_NULL OPTDATA_NULL

NOVAL NOVAL

176

Default message handler for X field
Field dimensions

Field type

Allow only real numbers

Use STD display formatting

Help text

No choose box data for a text field
No value for reset and initial values

Default message handler for Y field
Field dimensions

Field type

Allow only real numbers

Use STD display formatting

Help text

No choose box data for a text field
No value for reset and initial values

Default message handler for PMIN
Field dimensions

Field type

Allow only complex numbers

Use STD display formatting

Help text

No choose box data for a text field
No value for reset and initial values

Default message handler for PMAX
Field dimensions

Field type

Allow only complex numbers

Use STD display formatting

Help text

No choose box data for a text field
No value for reset and initial values

Graphical User Interfaces

CCCCCCCCCCCCCCOO

(..

I G

(

C CCCCCC°¢

c CCCCCCCCCCCCcc¢c

Now specify the remaining input form parameters

SEVEN
SEVEN

FIFTEEN #=casedrop

' NoExitAction
IFMenuRowl
{

{
n SHOW "

TakeOver

DOCLLCD
TURNMENUOFF
S5GETLAM gFldval
DUP MINUSONE EQUAL

ITE
DROP "Undefined"
EDITDECOMPS
DISPROW4

"Press any key to continue\lF"

$>grob

HARDBUFF ZERO FIFTYSIX GROB!

WaitForKey 2DROP

TURNMENUON
}
{
" (AN (L"
TakeOver DoKeyCancel
}
{
"DRAW"
TakeOver DoKeyOK ;
}
}
&COMP
TWO ::N
TRUE

TWENTYNINE #<> case FALSE
GetFieldvals
15GETLAM

TRUE 1LAMBIND
ZERO_DO (DO)
MINUSONE EQUAL IT
LOOP

1GETABND

DUP ?SKIP

"Undefined\OAvValue"
NINE FIFTEEN
grobAlertIcon
MsgBoxMenu
DoMsgBox

DROP

TRUE

"ORBIT"

Graphical User Interfaces

’

’

FALSE 1PUTLAM

’

Seven labels

Seven fields

Message handler:

Message 15: input form menu

Put NoExitAction on the stack
List of first three standard keys
List of last three custom keys:

Label for SHOW key

Must be a TakeOver secondary
Clear the display
Turn off the menu
Get the value for the current field
Test to see if the field is undefined
If undefined,

display "Undefined"

else decompile the value
Display the string

Build the prompt grob

Display the prompt grob

Wait for a key, discard the location
Turn the menu back on

Standard CANCEL key

Standard OK key with different label

Concatenate the two lists of key definitions
Build the secondary with NoExitAction
Signal the message was handled

Reject all messages other than 29

Get the field values

Get the number of field values

Bind TRUE in a temporary variable

Loop to test each value

If a value is undefined, store FALSE in temp var

Recall flag, abandon temporary environment
If there was an undefined value

Display a message box

Signal that message 29 was handled

Title for the input form

177

Now display the input form

Doinput form Display the input form
NOT?SEMI Quit if cancelled

The user pressed DRAW, the parameters were verified, and now we're ready to 8o. The stack at this point contains:

(#Iterates %a %b %x %y C%PMIN C$PMAX —)

C%>% PUTYMAX PUTXMAX Store PMIN

C%>% PUTYMIN PUTXMIN Store PMAX

BINT_131d SIXTYFOUR MAKEPICT# Create blank PICT
TOGDISP ZEROZERO WINDOWXY TURNMENUOFF Display PICT with no menu
%2 5PICK %2 %* %- Calculate intermediate value
3PICK DUP %* DUP Calculate initial value for w
3PICK %*

7PICK 6PICK %* %+
SWAP %1 %+ %/

%0 Initial value for z
{ LAM a LAM b LAM x LAM y LAM ¢ LAM w LAM z }
BIND Create local variables
COERCE ZERO DO Loop for n iterations
ATTN? IT ZEROISTOPSTO Quit if (ATIN]) pressed
LAM x INDEX@ TEN #> IT Plot only after 1st 10 points
DUP LAM y %>C% C%># PIXON3 ;
' LAM z STO Save old x in 7
LAM b ILAM vy %* LAM w %+ Calculate new x
DUP ' LAM x STO
LAM a OVER %* SWAP DUP %* Calculate new w

DUP LAM c %* SWAP %1 %+ %/ %+
DUP ' LAM w STO

LAM z %- ' LAM y STO Complete new value for y
LOOP '
ABND Abandon temporary environment when done
ATTNFLGCLR FLUSHKEYS Clear the attention flag and flush the key buffer

178 Graphical User Interfaces

c c c ¢ ¢ ¢ ¢c ¢ ¢ o060 Cp

Introducing Saturn

There are times in application development when System-RPL simply won't do the job or is too inefficient, so you
want to write some code in assembly language. We summarize the CPU and instruction set here, but we also
encourage you to review the document SASM.DOC supplied by Hewlett-Packard (on the disk). In particular,
SASM.DOC provides some detailed information about each instruction (opcode, cycles to execute, etc.) that we
omit here.

Hewlett-Packard has used the Saturn CPU since the early 1980s for the core of all calculators and the HP-71B
handheld BASIC computer. Several variations of ICs using this CPU have evolved over the years, but the chip used
in the HP 48 family represents the most mature implementation. The CPU is optimized for BCD math and low
power consumption, traits which have helped characterize HP calculators for many years.

We begin by introducing the CPU, the instruction set. The basic mechanics of the RPL/assembler interface from the
programmer's perspective are then introduced in the next chapter.

The Saturn architecture is based on a 4-bit bus, thus data is accessed a half byte at a time (these quantities are called
“nibbles"). The physical address space is 512K bytes — addresses are represented as 20-bit quantities. Programs
written in assembly language should be written so as to be completely relocatable in the address space.

The Saturn CPU

The CPU has four working registers (A-D) and five scratch registers (R0-R4), each 64 bits wide. The data pointer
registers, program counter, and return stack are all 20 bits wide. A four-bit pointer register P is used to point into the
working registers. The input register is 16 bits wide, and the output register is 12 bits wide. The low-order 12 status
bits are called register ST.

f HP 48 CPU)
[D0 | [20mts | [eBed [tesis | [12Bus] [16mis |
Program Counter p In Out Status Bits
Register SToBas 0-11
Data Pointers D Carry Bit Hardware Status Bits: D MP D SR D SB D XM
20 Bits
1 I A |
2
3 L B |
4 I C I
] | 5 |
‘,:F,{eserve,d for the Working Registers
interrupt system.| | RO |
Return Stack I A I
I R2 |
I R3 |
I R4 |
Scratch Registers
_ 9 _J

Introducing Saturn 179

The Working and Scratch Registers
The working registers A-D, the pointer register P, and the scratch registers are the workbench of the CPU. The 64-
bit (16-nibble) working registers A-D are used for data manipulation, and are divided into 9 fields as follows:

15 14 | 13 12 11 10 9 8 7 6 5 4 3 2 1 0

¢ w P
s & M >l—x —Pp]
XS |4—3—>

I< wP >
(P=9)

(P=0)

Field Description

Word (all 16 nibbles)

Address field (nibbles 0—4)

Byte (nibbles 0 & 1)

Exponent (nibbles 0-2)

Exponent sign (nibble 2)

Mantissa (nibbles 3—-14)

Mantissa sign

Nibble referenced by the P register

Nibbles 0 — the nibble referenced by the P register

s*umgaxw;bg

As mentioned earlier, the CPU has been optimized for BCD math, and the fields S, M, XS, and X are commonly
used in BCD math routines. The A field is most frequently used for address and object size calculations.

The A and C registers are used for memory access via the data pointers and can also exchange data with the five 64-
bit scratch registers. Instructions like A=R0O move the entire contents of RO into A, but instructions like RO=A.F X
permit field specific data exchange between working and scratch registers. In the latter example, the X field of
register RO gets the contents of the X field of register A.

A note about notation: sometimes we refer to a specific field in a specific register by enclosing the field in brackets.
For instance, C[A] refers to the A field of the C register.

The Status Bits
Carry. The carry bit is affected by calculation or logical test operations.

Carry is set if:

* A register or data pointer is incremented and overflows

* Aregister or data pointer is decremented and underflows
* An add operation overflows

* A subtract operation borrows

e Atestistrue

Carry is cleared if:

* Aregister or data pointer is incremented and does not overflow
A register or data pointer is decremented and does not underflow
An add operation does not overflow

A subtract operation does not borrow

A test is false

180 Introducing Saturn

C C C ¢

r

Status Bits. There are 16 status bits referred to collectively as "status bits" (not to be confused with hardware status
bits). The lower 12 bits compose register ST. Information in register ST can be swapped with the X field of the C
register. The upper four bits are reserved for use by the operating system, but for most applications the lower the
lower 12 are available.

Bit Name

12 | Deep Sleep override

13 | Indicates interrupt service occurred
14 | Indicates interrupt system active

15 | Disable interrupts

Hardware Status Bits. The hardware status bits are:

Bit | Symbol Name
0 XM External Module Missing
1 SB Sticky Bit
2 SR Service Request
3 MP Module Pulled

The Sticky Bit (SB) is the only one of these of interest to programmers writing applications for the HP 48. This bit
is set when when a non-zero bit is shifted off the right end (least significant) of a register. SB is only cleared by a
SB=0 instruction. There is a ?SB=0 instruction to test if the Sticky Bit is zero, but there is not a corresponding
7SB=1 test to see if the SB is set.

Input and Output Registers

The 16-bit input (IN) register and the 12-bit output (OUT) register are used to exchange data with the system bus.
They will be used for key scanning in an example shown later. Key scanning and sound effects are the only uses
you'll likely have for these registers when writing code objects for the HP 48.

The Return Stack
Note that two levels of the hardware return stack are reserved for the interrupt system — applications should never
use more than 6 levels of the return stack.

Arithmetic Mode

The Saturn CPU can perform register arithmetic in either hexadecimal (HEX) or decimal (DEC) modes. The default
mode for most operations in the HP 48 is HEX mode, however the math routines frequently use DEC mode. The
instructions SETHEX and SETDEC set these modes. If you write a code object that uses DEC mode, be certain to
execute SETHEX before returning to RPL, otherwise the HP 48 will crash. There are no test instructions or status
bits for the arithmetic mode, but the two instructions

LCHEX 9

C=C+1 P
or

LAHEX 9

A=A+1 P

will set the carry bit if the CPU is in decimal mode.

Instructions which increment or decrement P, DO, or D1 are always performed in HEX mode. Also, instructions
which add or subtract a constant from a specific field will be performed in HEX mode.

The Pointer Register
The pointer register P is a four-bit register used in field selections with the working registers. The pointer register is
also useful as a tiny counter register. P may be set, incremented, decremented, or exchanged with the C register.

Introducing Saturn 181

Instruction Set Summary
The following instruction section summarizes the Saturn instruction set. For detailed information about each
instruction, see the HP document SASM.DOC.

The SASM assembler defines four fields for each instruction which contain an optional label, an opcode, the
optional modifier, and optional comments: Standard practice for SASM usage is for the opcode field to begin in
column 9, the modifier field to begin in column 17, and comments to begin in column 33:

Columns: 1 9 17 33
Fields: l label opcode modifier Comments
Example: NextLevel D1=Dl+ 5 Point D1 to next stack level

Any source code line beginning with * will be treated as a comment.

Memory Access Instructions

Data Pointer Instructions. In the following instructions,

» r=AorC

e ss=D0orDl

* nis an expression whose hex value is from O through F

* nnnnnis an expression whose hex value is from 0 through FFFFF

During those operations that involve a calculation, the carry flag is set if the calculation overflows or borrows,
otherwise the carry flag is cleared.

Instruction Description Examples
rssEX Exchange A field in r with ss ADOEX
rssXs Exchange nibbles 0 through 3 with ss ADOXS
ss=r Copy A field in rinto ss D1=C
ss=rS Copy nibbles O through 3 in rinto ss D1=AS
Ss=ss+ n Increment ss by n D1=D1+ 5
Ss=ss- n Decrement ss by n DO=DO- 16
ss=(2) nnnnn Load ss with two nibbles from nnnnn DO0=(2) A3
ss=(4) nnnnn Load ss with four nibbles from nnnnn D0=(4) FFC7
ss=(5) nnnnn Load ss with nnnnn DO=(5) =DSKTOP

Data Transfer Instructions. In the following instructions,

e r=AorC
e fs=A,P,WP, XS, X, S, M, B, W, or a number » from 1 through 16
Instruction Description Examples
r=DATO fs Copy data at address contained in DO into £s field in r (or nibble O through C=DATO A
nibble n-1in r) A=DATO 5
r=DAT1 fs Copy data at address contained in D1 into £'s field in r (or nibble O through C=DAT1 B
nibble n-1 in r) A=DAT1 1
DATO=r fs Copy data of £s field in r (or in nibble 0 through nibble n-1 in r) to address DATO=C A
contained in DO DATO=A 3
DATl=r fs Copy data of £s field in r (or in nibble 0 through nibble n-1 in r) to address DAT1=C A
contained in D1 DAT1=A 3

182 Introducing Saturn

~’

Load Constant Instructions
In the following instructions,

e hisahex digit

e 1iisan integer from 1 through 5

e nnnnnis an expression with hex value from 0 through FFFFF
e cisan ASCII character

During a load constant operation, the nibbles are loaded beginning at r(P), least significant nibble first. Load

operations can wrap from r(15) to r(0). A common coding mistake is to forget the setting of P during a load constant
operation.

Instruction Description Examples
LAHEX h ... h Load up to 16 hex digits into A. LAHEX F247
LA (i) nnnnn Load i hex digits from the value of nnnnninto A. LAHEX 4142
LAASC 'c ... c' Load up to eight ASCII characters into A. LAASC 'AB'
LCHEX h ... h Load up to 16 hex digits into C. LCHEX F247
LC(i) nnnnn Load i hex digits from the value of nnnnn into C. LCHEX 4142
LCASC 'c ... C' Load up to eight ASCII characters into C. LCASC 'AB'

P Register Instructions
In the following instructions,

e n is an expression whose hex value is from O through F
The C register is the only working register used with the P register. All arithmetic calculations on the pointer are

performed in HEX mode. During calculation operations, the carry flag will be set if the calculation overflows or
borrows, otherwise the carry flag will be cleared.

Instruction Description Examples

P= n Set P register to n P= 6

P=P+1 Increment P register P=P+1

p=P-1 Decrement P register P=P-1

C+P+1 Add P register plus one to A field in C C+P+1

CPEX n Exchange P register with nibble nin C CPEX 15

P=C n Copy nibble n in C to P register =C 2

C=P n Copy P register to nibble nin C C=P 0

Scratch Register Instructions
In the following instructions,

e r=AorC
¢ ss=R0,R1,R2,R3,0orR4
» fs=A,P,WP, XS, X, S,M, B, W, or anumber n from 1 through 16

Instruction Description Examples
r=ss Copy ssinto r C=R4
ss=r Copy rinto ss RO=A
rssEX Exchange r and ss AR1EX
r=ss.F fs Copy ss(fs) to r(£fs) A=RO.F A
ss=r.F fs Copy r(fs) to ss(fs) R3=C.F M
rssEX.F fs Exchange r (fs) with ss(fs) CR2EX.F B

Introducing Saturn 183

Shift Instructions

In the following instructions,

e r=AB,C,orD

e fs=A,P,WP, XS, X,S,M,B,or W

Non-circular shift operations shift in zeros. If any shift-right operation, circular or non-circular, moves a non-zero
nibble or bit from the right end of a register or field, the Sticky Bit SB is set. The Sticky Bit is cleared only by a
SB=0 or CLRHST instruction.

Instruction Description Examples
rSRB Shifr r right by one bit ASRB
rSRB.F fs Shift fs field in r right by one bit CSRB.F A
rSLC Shift r left by one nibble (circular) BSLC
rSRC Shift r right by one nibble (circular) CSRC
rSL fs Shift £s field in r left by one nibble DSL M
rSR fs Shift £s field in r right by one nibble ASR A
Logical Instructions
In the following instructions,
e (r, s) =(A,B),(A,0),(B,A),B,0),(CA),(C,B),(CD),or(D,C)
e fs=A,P,WP, XS, X,S,M,B,orW
Instruction Description Examples
r=r&s fs fsfield in r AND f£s field in sinto £s field in r A=A&C A
r=r!'s fs fsfieldin r OR f£s field in s into £s field in r D=D!C XS

Note that XOR is missing.

B=A

B=B&C
A=AlC
A=A-B

P

The following four instructions implement A XOR C in the A field:

Save a copy of A

A AND C

A OR C

X XOR C = (AOR C) - (A AND C)

Arithmetic Instructions
Arithmetic results depend on the current arithmetic mode. In HEX mode (set by SETHEX), nibble values range
from O through F. In decimal mode (set by SETDEC), nibble values range from O through 9, and arithmetic is BCD

arithmetic.

There are two groups of arithmetic instructions. In the first group (general), almost all combinations of the four
working registers are possible; in the second group (restricted), only a few combinations are possible. During those
operations that involve a calculation, the carry flag is set if the calculation overflows or borrows; otherwise the carry

flag is cleared.

General Arithmetic Instructions. In the following instructions,

* (r, s)=(A,B),(AC), (B, A),®B,C),(CA),(CB)(CD)or(D,C)
e fs=AP, WP, XS, X,S,M,B,or W

Instruction Description Examples
r=0 fs Set £s field in r to zero Cc=0 W
r=s fs Copy fs field in sinto £s field in r A=C A
s=r fs Copy fs field in rinto fsfieldin s C=A A
rsgX fs Exchange fs fieldin rand fsfieldin s ACEX A
r=r+r fs Double £s field in r (shift left by one bit) A=A+A A
r=r+l fs Increment £s field in r by 1 C=C+1 B
r=r-1 fs Decrement f£s field in rby 1 C=C-1 B
r=r+CON fs,d Add constant dto field fsin r A=A+CON A,5
r=r-CON fs,d Subtract constant d from field £fsin r C=C-CON 3,10
r=-r fs Tens complement or twos complement, depending on arithmetic mode, of fs C=-C S
field in r. Clears carry if r (£s) was zero, otherwise sets carry.
r=-r-1 fs Nines complement or ones complement, depending on arithmetic mode, of fs | C=-C-1 S
field in r. Clears carry unconditionally.
r=r+s fs Sum f£s field in r and £s field in s into £s field in C=C+A A
S=r+s fs Sum fsfield in r and fs field in sinto fs fieldin s A=C+A A

184

Introducing Saturn

—

@

Restricted Arithmetic Instructions. In the following instructions,

* (r, s)=(A,B),B,C),(C A)or(D,C)
* fs=AP, WP, XS, X,S,M,B,or W

Instruction Description Examples
r=r-s fs Difference of fs field in r and £s field in s into fs field in r A=A-B A
r=s-r fs Difference of £s field in s and £s field in rinto fs field in r B=C-B A
s=s-r fs Difference of £s field in s and £s field in rinto fs field in s A=A-C A
Branching Instructions
GOTO and GOSUB Instructions. In the following instructions,
e label is a symbol defined in the label field of an instruction within the current code object
e =]label is an entry in the lower 256K of the HP 48 operating system
e offset is the distance in nibbles to the specified 1abel
e r=AorC
Instruction Description Examples
GOTO label Short relative jump (-2047 < offset < 2048) GOTO LBLO1
GOYES label Short relative jump if test is true (125 < offset 130) ?A=C A
GOYES DoEqual
Goc label Short relative jump if carry set (-127< offset < 128) GoC Done
GONC label Short relative jump if carry clear (-127 < offset < 128) GONC NotDone
GOLONG label Long relative jump (-32762 < offset < 32768) GOLONG End
GOVLNG =label Absolute jump GOVLNG =PUSH#ALOOP
GOSUB label Short relative subroutine jump (-2044 < offset < 2051) GOSUB parse
GOSUBL label Long relative subroutine jump (-32762 < offset < 32773) GOSUBL output
GOSBVL =label Absolute subroutine jump GOSBVL =POP#A
PC=r Direct jump to address in r[A] PC=A
r=PC Copies the PC to r[A] C=PC
rPCEX Direct jump to r[A], saving PC in r[A] APCEX
PC=(r) Indirect jump: r[A] points to the address to jump to PC=(C)

| Note: All calls to HP 48 entries from code objects should use GOVLNG or GOSBVL.J

Return Instructions
instruction Description Examples
RTN Return RTN
RTNSC Return and set carry RTNSC
RTNCC Return and clear carry RTNCC
RTNSXM Return and set XM status bit RTNSXM
RTI Return from interrupt (enable interrupts) RTI
RTNC Return if carry set RTNC
RTNNC Return if no carry set RTNNC
RTNYES Return if test is true (used only with test instructions) ?ST=0 1
RTNYES
Return Stack Instructions
Instruction Description Examples
RSTK=C Push A field in C onto return stack RSTK=C
C=RSTK Pop return stack into A field in C C=RSTK

Introducing Saturn

185

Test Instructions

Each test instruction must be followed by a GOYES or a RTNYES instruction. The test instruction and the GOYES or
RTNYES instruction combine to generate a single opcode. Each test will set the carry flag if true, or clear the carry
flag if false. All tests are unsigned and performed only on the selected field.

Register Tests. In the following instructions,

* (r, s) =(AB), (A C), (B, A),B,C),(C, A),(C,B),(C,D),or({D,C)
e fs=A,P,WP, XS, X,S,M,B,orW

Instruction Description Examples
?r=s fs Is £s field in requal to £s field of s? ?2B=C A
GOYES ItIs
?r#s fs Is £s field in r not equal to £s field of s? ?2C#D S
GOYES CDSNotEqual
?2r=0 fs Is £s field in r equal to zero? ?B=0 P
RTNYES
2r#0 fs Is £s field in r not equal to zero? ?B#0 P
RTNYES
?2r>s fs Is £s field in r greater than £s field of s? ?2A>C A
GOYES Bigger
?2r<s fs Is £s field in r less than fs field of s? ?A<C A
GOYES Smaller
?r>=s fs Is £s field in r greater than or equal to £s field of s? ?B>=C WP
GOYES GThank
?r<=s fs Is £s field in r less than or equal to £s field of s? ?B<=C WP
GOYES LThanE

Register Bit Tests. In the following instructions,

* nis an expression whose hex value is from 0 through F

e r=AorC
Instruction Description Examples
?rBIT=0 n Is bit nin r equal to 0? ?ABIT=0 2
RTNYES
?rBIT=1 n Is bit nin requal to 1? ?CBIT=1 15
RTNYES

Pointer Tests. In the following instructions,

* nis an expression whose hex value is from O through F

Instruction Description Examples
?P= n Is P register equal to n? ?P= 0
GOYES Done
?P# n Is P register not equal to n? ?P# 0
GOYES NotDone

Program Status Bit Tests. In the following instructions,

* nis an expression whose hex value is from 0 through F

Instruction Description Examples

?ST=0 n Is bit nin ST equal to 0? ?ST=0 0

RTNYES
?8T=1 n Is bit nin ST equal to 1? ?8T=1 1

GOYES TryAgain
?ST#0 n Is bit nin ST not equal to 0? ?ST#0 6

GOYES TryOver
?ST#1 n Is bit nin ST not equal to 1? ?ST#1 3

RTNYES

186

Introducing Saturn

Hardware Status Bit Tests.
Instruction Description Examples
?XM=0 Is the External Module Missing bit clear? ?XM=0
RTNYES
?SB=0 Is the Sticky Bit clear? ?SB=0
GOYES Notshifted
?SR=0 Is the Service Request bit clear? ?2SR=0
RTNYES
?MP=0 Is the Module Pulled bit clear? ?MP=0

GOYES MPClear

Register & Status Bit Instructions

Register Bit Instructions. In the following instructions,

e nis an expression whose hex value is from O through F

e r=AorC
Instruction Description Examples
rBIT=0 n Clear bit nin r ABIT=0 0
rBIT=1 n Set bit nin r CBIT=1 9
Program Status Bit Instructions. In the following instructions,
e nis an expression whose hex value is from O through F
Instruction Description Examples
ST=0 n Clear bit nin ST ST=0 0
ST=1 n Set bit nin ST ST=1 4
CSTEX Exchange X field in C and bits O through 11 in ST CSTEX
C=ST Copy bits 0 through 11 in ST into X field in C C=ST
ST=C Copy X field in C into bits O through 11 in ST ST=C
CLRST Clear bits 0 through 11 in ST CLRST
Hardware Status Bit Instructions.
Instruction Description Examples
SB=0 Clear Sticky Bit (SB) SB=0
SR=0 Clear Service Request (SR) bit SR=0
MP=0 Clear Module Pulled (MP) bit MP=0
XM=0 Clear External Module (XM) bit XM=0
CLRHST Clear SB, SR, MP, and XM bits CLRHST
System Control Instructions
Instruction Description Examples
SETHEX Set arithmetic mode to hexadecimal SETHEX
SETDEC Set arithmetic mode to decimal SETDEC
CONFIG Configure a device to the address in C(A) CONFIG
UNCNFG Unconfigure a device at address in C(A) UNCNFG
RESET Send Reset command to the system bus RESET
BUSCB Issue bus command B BUSCB
BUSCC Issue bus command C BUSCC
BUSCD Issue bus command D BUSCD
SHUTDN Stop CPU, stay in low-power mode until wake-up SHUTDN
C=ID Copy chip ID from system bus to C(A) C=ID
SREQ? Set C(0) to service request response from bus, set SR if service requested SREQ?
INTOFF Disable maskable interrupts INTOFF
INTON Enable maskable interrupts INTON
Introducing Saturn 187

Keyscan Instructions

Instruction Description Examples
ouT=C Copy X field in C into OUT ouT=C
OUT=CS Copy nibble 0 of C into OUT OUT=CS
A=IN Copy IN into nibbles 0 through 3 in A A=IN
C=IN Copy IN into nibbles 0 through 3 in C C=IN

Note that A=IN and C=IN must be executed on an even address. An reliable way to do this is to call the entries
AINRTN and CINRTN, illustrated in Keyboard Scanning.

NOP Instructions

Instruction Description Examples
NOP3 Three-nibble no-op NOP3
NOP4 Four-nibble no-op NOP4
NOPS Five-nibble no-op NOP5
Assembler Pseudo-Op Instructions
The following pseudo-ops are a few of the pseudo-ops available in the SASM assembler.
Data Storage and Allocation. In the following instructions,
* nnnnnis an expression whose hex value is from O through FFFFF
* expr is an expression that evaluates to a constant from 0 through FFFFF
* mis a one digit decimal integer constant
e label is a symbol defined in the label field of an instruction within the current code object
* hisahex digit
Instruction Description Examples
BSS nnnnn Allocate nnnnn zero nibbles here. Note: Do not write self-modifying code BSS 4
objects that will be used in a library in the HP 48! (The library checksums will
become invalid.)
CON(m) expr Generate an m nibble constant CON(5) =DOCOL
REL(m) label Generate an m nibble relative offset REL(5) =EndGrob
NIBASC \ascii\ Generate up to 40 ASCII characters. Each character has the nibbles reversed. NIBASC \Fred\
NIBHEX h ... h Generate up to 80 hex digits NIBHEX 1424FC

Symbol Definition. In the following instructions,

* symbol is a name for an address, defined in the label field of an instruction (global if preceded with =)
* expr is an expression that evaluates to a constant from 0 through FFFFF

Instruction

Description

Examples

symbol EQU expr

symbol = expr

Assigns the value exprto symbol. If symbol is already defined, an error is
generated.
Assigns the value expr to symbol. Replaces any existing value.

size EQU 232
=SEMI EQU #0312B
size = 233

188

Introducing Saturn

Writing Your Own Code Objects

Assembly language code is encapsulated in a code object (type 25), which is one of the object types that the HP 48
recognizes. In this chapter we'll introduce a few ways to write your own code objects.

Code Object Execution

‘When a code object begins to execute, it must account for information vital to System-RPL execution that resides in
the CPU. Four registers in the CPU contain this information, usually known as the "RPL pointers":

DO The instruction pointer

D1 The data stack pointer
B[A] The return stack pointer
D[A] (Available memory) DIV 5

4 HP 48 CPU)
oo:instuctionPointer | | zomts | [eed [temas | [t2Bis] | tews |
R Program Counter P In Out Status Bits
D7: Data Stack Pointer, Register ST=Bi:s 0-11
Data Poimters M camyBit Harewaro siawses: [JMP [SR [Js8 [Jxm
20 Bits
1 [A |
2
3 I =
4 [c |
Z | D | Ol AaimenDVs
; — Working Registers
interrupt sys [RO |
Return Stack I =T]
[R2 ']
| R3 |
| R4 |
\ - Scratch Registers)

In addition to the information in the registers described above, P is guaranteed to be 0 and the CPU is in HEX mode.
Both of these conditions must also be true when the code object terminates and the system returns to RPL execution.
There are two common ways to terminate code object execution and resume execution of the RPL inner loop:

¢ Resume execution at the pointee of the top of the return stack:

A=DATO A Read the pointer to the next RPL object to be executed
DO=DO0+ 5 Advance the instruction pointer
PC=(A) Branch to the next instruction

The example programs SWP and DRP9 illustrate this technique.

* Resume execution via another object. This example returns to RPL via TRUE:

LC(5) =TRUE Load the address of the object to execute
A=C A Copyto A
PC=(A) Branch to TRUE

The example program ABSF illustrates this technique.

Writing Your Own Code Objects 189

Many code objects will take their arguments from the stack (via D1), save the RPL pointers, perform their task, then
restore the RPL pointers before returning to RPL execution. The entries SAVPTR and GETPTR may be used to save
the contents of DO, D1, B[A], and D[A] in reserved RAM locations and restore them later, thus freeing the entire
CPU for use by an application.

Stack Access

Stack manipulation tasks provide one way to introduce some simple tasks that do not require SAVPTR and GETPTR,
so we begin by illustrating some simple stack operations. We begin by illustrating the pointer path from CPU
register D1 to the actual object in memory:

 @——— TEMPOB ———p»] |< Stack -

Low Memory High Memory
Object Object | Object l ‘
v1 23

4 HP 48 CPU)
[omes | [esd [wemis | [12Bus| | 1emis |
— Program Counter P In Out Status Bits

D: Dsta Stack Poer Register ST=Bits 0-11
Data Pointers []caryBit Haroware sias s JMP [sR [JsB []xm

20 Bits
1 L A |
3 | B | BiA): Retum Stack Pointer
4 I c |
2 [D | oarAmimenovs
'—""—53 Reserved for the Working Registers

| interrupt system.| | RO]
Return Stack I T |
I R2 |
I R3 |
I R4 |

_ Scratch Registers)

The contents of D1 point to a series of 5-nibble stack pointers, each of which in turn point to the actual objects.
Note that TEMPOB is not the only place a stack pointer can point to — user variable memory is another possible
destination, and the differences are important. Stack pointers can also point to objects like the display grobs and
temporary environments.

190 Writing Your Own Code Objects

Example: SWAP Two Objects

The progam SWP is the first example — it swaps the top two objects on the stack in exactly the same manner as the
built-in SWAP command. Notice that A and C are used (so B and D are not disturbed), and that D1 is restored to its
original value. Notice that only the pointers are shifted — the objects themselves do not move.

SWP 26.5 Bytes Checksum #D1COh
(ob; ob; — oby; ob;)

NIBASC /HPHP48-A/ This is a download header for binary transfer to the HP 48
CON(5) =DOCODE This is the prologue for a code object
REL (5) end The length field — indicates the size of the code object
A=DAT1 A Copy the stack level 1 pointer to A[A]
D1=D1+ 5 Advance DI to stack level 2
C=DAT1 A Copy the stack level 2 pointer to C[A]
DAT1=A A Replace stack level 2 with the original stack level I pointer
D1=D1- 5 Move DI back to stack level 1
DAT1=C A Replace stack level 1 with the original stack level 2 pointer
The next three instructions embody the RPL inner loop:

A=DATO A Read the pointer to the next RPL object to be executed
DO=D0+ 5 Advance the instruction pointer
PC=(A) Branch to the next instruction

end

Example: DROP Nine Objects

The program DRP9 drops nine objects from the stack very quickly. Dropping an object is very simple — simply
increment the top-of-stack pointer D1 by five nibbles and update the available memory stored in D[A]. Assuming
there are no other stack pointers to the discarded object and the discarded object is in temporary memory

(TEMPOB), the object is effectively "orphaned" and its memory will be recovered during the next garbage
collection.

DRP?9 also illustrates the use of a counter and the GONC instruction. We use the P register for the counter in this
example for several reasons:

» Pis optimal for counting applications where no more than 16 repetitions are required. (Be sure that a non-zero
value of P during the loop won't adversely affect data loading instructions like LCHEX.)

e Incrementing P is fast - taking only 3 cycles.
* When P is used for the counter, it is not neccessary to consume part of a working register for the counter.

This example could also be coded using P as a countdown counter, but the value of P would be 15 at the end, then a
P=0 instruction would have to be added for a safe exit back to RPL.

DRPS 24.5 Bytes Checksum #8093h

(Obl ... Ob9 -)
NIBASC /HPHPA48-A/ This is a download header for binary transfer to the HP 48
CON (5) =DOCODE This is the prologue for a code object
REL(5) end The length field — indicates the size of the code object
P= 16-9 P will be used as a counter — we'll count "up to 0"
LoopTop This label marks the top of the drop loop
D1=D1+ 5 Advance DI to the next stack level
D=D+1 A Increment available memory
P=P+1 Increment the counter
GONC LoopTop If no carry, there's more stack levels to do so branch to LoopTop
If carry is set, we're done and P=0 (wrapped from F)
The next three instructions embody the RPL inner loop:
A=DATO A Read the pointer to the next RPL object to be executed
D0=DO0+ 5 Advance the instruction pointer
PC=(A) Branch to the next instruction
end

Writing Your Own Code Objects 191

Reading Assembly Language Entry Descriptions
The entries described here require specific conditions to be met in order to be used successfully. The entry and exit
conditions refer to the following criteria:

The location of the RPL pointers — either in the CPU or saved in RAM.

The arithmetic mode - HEX or DEC.

Contents of various registers

The state of the carry flag — CS = carry set, CC = carry clear

The number of stack levels used by the routine (you should never use more than 6)

Unless stated otherwise, it is always assumed that the CPU is in HEX mode and register P is 0.

Most entries are called with GOSBVL, but some entries (like GETPTRLOOP) never return, since they restart the RPL
inner loop. The "Call with" entry in these descriptions suggests which type of call to use.

Saving and Restoring the RPL Pointers
The RPL pointers can be saved in reserved RAM locations by calling SAVPTR and restored by calling GETPTR.

SAVPTR #0679Bh

Saves DO, D1, B[A], and D[A] in reserved memory

Entry: RPL pointers in the CPU

Call with: GOSBVL

Exit: RPL pointers saved. D1, A[A], B[A], and D[A] are unchanged
Uses: DO, D1, B[A], CI[A], D[A]

Stack Levels: 0

GETPTR #067D2h

Restores DO, D1, B[A], and D[A] from reserved memory
Entry: RPL pointers saved

Call with: GOSBVL

Exit: RPL pointers in CPU.
Uses: DO, D1, B[A], C[A], DI[A]

Stack Levels: 0

There are several entry points which combine the process of restoring the RPL pointers and returning to RPL
execution, sometimes returning objects to the stack in the process. The most basic of these entries is
GETPTRLOOP, which has the following entry and exit conditions:

GETPTRLOOP #05143h

Restores DO, D1, B[A], and D[A] from reserved memory, then restarts the RPL inner loop
Entry: RPL pointers saved

Call with: GOVLNG

Exit: To RPL

Uses: DO, D1, B[A], C[A], D[A]

Stack Levels: 0

192 Writing Your Own Code Objects

C C C

c

Example: Reversing Objects on the Stack

The program RVRSO reverses N objects on the stack, where N is a real number indicating the number of objects to
reverse. The source code illustrates a typical mix of System-RPL and assembler code to accomplish a task. The
System-RPL shell validates the input arguments, while the assembly language code does the actual work of
reversing a series of stack pointers.

RVRSO 75.5 Bytes Checksum #8501h

(ob; ... oby N = oby ... ob; N)
ASSEMBLE
NIBASC /HPHP48-A/ This is a download header for binary transfer to the HP 48
RPL
OLASTOWDOB! CKNNOLASTWD Validate the number of arguments on the stack
ONE OVER #< IT If there's at least two objects on the stack, execute the code object
CODE
GOSBVL =SAVPTR Save the RPL pointers in RAM
GOSBVL =POP# A[A] = number of objects on the stack
C=A A #items in C[A]
C=C+C A #items * 2
C=C+C A #items * 4
C=C+A A C[A] = #items*5
B=0 W Zero out entire B register
B=A A B[A] = count
BSRB A Divide #items by 2
AD1EX A — first item on stack
D1=A DI — first item on stack
A=A+C A A[A] — past last item
DO=A DO — past last item
DO0=D0- 5 DO — last item
RvrTop
B=B-1 A Decrement counter
GOC RvrBot If carries, no more pairs to reverse
A=DATO A Read first item
C=DAT1 A Read last item
DATO0=C A Write last item in first item's original location
DAT1=A A Write first item in last item's original location
D1=D1+ 5 Move D1 to next pointer location
DO0=D0- 5 Move DO to previous pointer location
GONC RvrTop (BET) Branch every time to RvrTop
*
RvrBot
GOVLNG =GETPTRLOOP Restore pointers, return to RPL
ENDCODE
UNCOERCE Convert #objects back into real number

’

There are two notation habits used in this listing to help understand the code. The first is the use of "(BET)" in the
branch to RvrTop. (BET) stands for "Branch Every Time" an unconditional branch. This tells a reader that you
intend this to be an unconditional branch, and is usually used where a branch is dependent on the state of the carry
flag. There is no need to use (BET) for a GOTO instruction. The other notation is the placement of an asterisk (*)
above the label RvrBot. This is used to indicate that control flow to the following label must be from a jump
instruction, and cannot flow from previous instructions.

Writing Your Own Code Objects 193

Example: Clearing A Grob

This example might also live in a graphics discussion, but it's a good way to get some practice with counters and a
simple way to save just one of the RPL pointers. The following code object uses D1, A[W], C[A], and one level of
the return stack to clear a grob.

To understand this code object, note the structure of a grob object:

| Prologue | Length | Height | Width | Body |

The prologue, length, height, and width fields are 5 nibbles each. The length field contains a self-relative length to
the end of the body. This means the length field is always at least 15, to account for the size of the length, height,
and width fields.

Notice that this object drops the grob pointer from the stack. If you don't want the pointer dropped, just leave out the
two instructions that increment D1 and update D[A].

CLGRB 56.5 Bytes Checksum #E4DOh

(grob —)
NIBASC /HPHP48-A/
CON(5) =DOCODE
REL(5) end

A=DAT1 A A — grob

*

* Optional: The next two instructions pop the grob pointer
*

D1=D1+ 5 Pop grob: first advance stack pointer
D=D+1 A then increment available mem DIV 5
*
CD1EX C[A]=updated stack pointer
D1=A D1 — grob prologue
RSTK=C Save D1 on return stack
D1=D1+ 5 D1 — grob length
A=DAT1 A A[A]=grob length
LC(5) 15 Length of length field, height, width
C=A-C A C[A] = number of nibbles to clear
D1=D1+ 15 Point D1 to first nibble of grob body
Cc=C-1 A Decrement length to option base 0
GoC quit If zero length, quit
A=0 W Clear A to write zeros
P=C 0 P = (length MOD 16)-1
CSR A Divide length by 16 to create block counter
nxtblk
C=C-1 A Decrement block counter
GOoC rest If carries here, no more blocks to write
DAT1=A W Write a block of 16 zeros
D1=D1+ 16 Advance write pointer
GONC nxtblk (BET) Go see if there's more blocks to do
*
rest
DAT1=A WP Write partial block
= 0 Reset P
quit
C=RSTK Recover stack pointer
D1=C and put it back into D1
A=DATO A Read pointer to next object in runstream
DO=DO0+ 5 Advance instruction pointer
PC=(A) Branch to next instruction
end

194 Writing Your Own Code Objects

Stack Utilities
The entries described here are useful for popping objects from the stack or pushing objects on the stack.

Pop Utilities
While you can follow the stack pointer to the object directly in memory, remember that small bint values and some
real numbers can be represented by pointers to objects in ROM. It's safer to pop the values into the CPU.

POP# #06641h

Pops a bint from the stack

Entry: (# >) RPL pointers in the CPU

Call with: GOSBVL

Exit: A[A]=#, updated RPL pointers in the CPU
Uses: C[A]

Stack Levels: 0

POP2i# #03F5Dh

Pops two bints from the stack

Entry: (#, #1 >) RPL pointers in the CPU
Call with: GOSBVL

Exit: A[A]=#,, C[A]=#,, updated RPL pointers in the CPU
Uses: C[A]

Stack Levels: 1

POP1% #29FDAh

Pops a real number from the stack

Entry: ($ >) RPL pointers in the CPU
Call with: GOSBVL

Exit: A[W]=%, RPL pointers saved, DEC mode
Uses: c[a], D[Aa], DO, D1

Stack Levels: O

POP2% #2A002h

Pops two real numbers from the stack

Entry: (%, %1 —) RPL pointers in the CPU
Call with: GOSBVL

Exit: A[W]=#,, C[W]=#;, RPL pointers saved, DEC mode
Uses: D[(A], DO, D1

Stack Levels: O

popflag #61A02h

Pops a flag from the stack, sets carry if flag was TRUE

Entry: (FLAG —) RPL pointers in the CPU

Call with: GOSBVL

Exit: CS if flag=TRUE, RPL pointers in the CPU
Uses: A[A], C[A]

Stack Levels: 0

PopASavptr #3251Ch

Pops an object from the stack, saves pointers

Entry: (ob >) RPL pointers in the CPU
Call with: GOSBVL

Exit: A[A]—>ob, RPL pointers saved
Uses: A[A], C[Aa]

Stack Levels: O

Writing Your Own Code Objects 195

Push Utilities

The push utilities execute fairly quickly and use few registers unless a garbage collection is needed. The register
usage and stack level usage below reflects the worst-case scenario - a trip through garbage collection. There are a
wide variety of flag utilities — there should be one to suit every need.

Bints

PUSHA #03A86h
Pushes a pointer to an object on the stack and restarts the RPL inner loop.
Note: The pointer must not reference an object in TEMPOB.

Entry: A[A]—object, RPL pointers in the CPU

Call with: GOVLNG

Exit: (- ob) To RPL

PUSH# #06537h

Pushes a bint on the stack

Entry: RO[A]=#, RPL pointers saved

Call with: GOSBVL

Exit: (> #), updated RPL pointers in the CPU
Uses: A[w], B[W], C[w], D[W], ST[0], ST[10]

Stack Levels: 3

PUSH#LOOP #0357Fh

Pushes a bint on the stack, restarts the RPL inner loop

Entry: RO[A]=#, RPL pointers saved

Call with: GOVLNG

Exit: (= #) To RPL

PUSH#ALOOP #0357Ch

Pushes a bint on the stack, restarts the RPL inner loop

Entry: A[A]=#, RPL pointers saved

Call with: GOVLNG

Exit: (= #) To RPL

PUSH2# #06529h

Pushes two bints on the stack

Entry: RO[A]=#,, R1[A]=#, RPL pointers saved
Call with: GOSBVL

Exit: (— #1 #,), updated RPL pointers in the CPU
Uses: A[wW], B[W], C[w], D[W], ST[O0], ST[10]

Stack Levels: 4

196 Writing Your Own Code Objects

C C C (¢

(

Real Numbers

PUSH% #2A188h

Sets HEX mode, pushes a real number on the stack

Entry: A[W]=%, RPL pointers saved

Call with: GOSBVL

Exit: (- %), updated RPL pointers in the CPU
Uses: A[w], B[W], C[wW], D[W], ST[0], ST[10]
Stack Levels: 3

PUSH%LOOP #2A23Dh

Sets HEX mode, pushes a real number on the stack, restarts the RPL inner loop
Entry: A[W]=%, RPL pointers saved

Call with: GOSBVL

Exit: (> %), To RPL

Uses: A[wW], B[W], C[w], D[w], ST[0], ST[10]

Stack Levels: 3

Flags

GPOverWrTLp #62076h

Restores the RPL pointers, overwrites stack level 1 with TRUE, restarts the RPL inner loop
Entry: (ob —») RPL pointers saved

Call with: GOVLNG

Exit: (= TRUE), To RPL

GPOVerWrFLp #62096h

Restores the RPL pointers, overwrites stack level 1 with FALSE, restarts the RPL inner loop
Entry: (ob ») RPL pointers saved

Call with: GOVLNG

Exit: (= FALSE), To RPL

GPOverWrT/FL #62073h
Restores the RPL pointers, overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop

Entry: (ob —») RPL pointers saved, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG
Exit: (= FLAG), To RPL

GPPushTLoop #620B9h
Restores the RPL pointers, pushes TRUE on the stack, restarts the RPL inner loop

Entry: RPL pointers saved

Call with: GOVLNG

Exit: (= TRUE), To RPL

GPPushFLoop #620D2h

Restores the RPL pointers, pushes FALSE on the stack, restarts the RPL inner loop

Entry: RPL pointers saved

Call with: GOVLNG

Exit: (= FALSE), To RPL

GPPushT/FLp #620B6h

Restores the RPL pointers, pushes carry-specified flag on the stack, restarts the RPL inner loop
Entry: RPL pointers saved, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG

Exit: (- FLAG), To RPL

Writing Your Own Code Objects 197

OoverWrTLp #62080h

Overwrites stack level 1 with TRUE, restarts the RPL inner loop

Entry: (ob >) RPL pointers in CPU

Call with: GOVLNG

Exit: (- TRUE), To RPL

OverWrFLp #620A0h

Overwrites stack level 1 with FALSE, restarts the RPL inner loop

Entry: (ob =) RPL pointers in CPU

Call with: GOVLNG

Exit: (—» FALSE), To RPL

OverWrT/FL #6209Dh

Overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop
Entry: (ob >) RPL pointers in CPU, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG

Exit: (- FLAG), To RPL

OverWrF/TL #6207Dh

Overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop
Entry: (ob =) RPL pointers in CPU, Carry: set=FALSE, clear=TRUE
Call with: GOVLNG

Exit: (= FLAG), To RPL

PushTLoop #620C3h

Pushes TRUE, restarts the RPL inner loop

Entry: RPL pointers in CPU

Call with: GOVLNG

Exit: (- TRUE), To RPL

PushFLoop #620DCh

Pushes FALSE, restarts the RPL inner loop

Entry: RPL pointers in CPU

Call with: GOVLNG

Exit: (= FALSE), To RPL

PushT/FLoop #620D%hn

Pushes carry-specified flag, restarts the RPL inner loop

Entry: RPL pointers in CPU, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG

Exit: (- FLAG), To RPL

PushF/TLoop #620C0h
Overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop

Entry: RPL pointers in CPU, Carry: set=FALSE, clear=TRUE

Call with: GOVLNG

Exit: (- FLAG), To RPL

198 Writing Your Own Code Objects

c C C ¢ (

(

Arbitrary Objects

GPOverWrROLp

#0366Fh
Restores the RPL pointers, overwrites stack level 1 with RO[A], restarts the RPL inner loop

Entry: (obayy =) RPL pointers saved
Call with: GOVLNG

Exit: (b d ObRO[A]), To RPL
GPOVverWrALp #03672h

Restores the RPL pointers, overwrites stack level 1 with A[A], restarts the RPL inner loop

Entry: (obayy —) RPL pointers saved
Call with: GOVLNG
Exit: (s ObA[A]), To RPL

Examples: Indicated ABS

The code object ABSF pops a real number from the stack and tests the sign nibble. If the number is negative, the

sign nibble is changed to indicate a positive number. The number is pushed back on the stack, along with a real
number O or 1 to indicate whether the sign changed.

ABSF 40 Bytes Checksum #A901lh

(% > |%| %flag)

CON(5)
REL(5)
GOSBVL
ST=0
?A=0
GOYES
A=0
ST=1
GOSBVL
LC(5)
?ST=0
GOYES
LC(5)
PushIt A=C
PC=(A)

Positive

end

=DOCODE
end
=POP1%
1

S
Positive
S

1

=PUSH$%
=%0

1

PushIt
=%1

A

Code object prologue

The length field — indicates the size of the code object

Pop a real number to A[W]

Clear status bit 1

Test the sign nibble

If zero, the number is positive
Otherwise set the sign nibble to zero (positive)
Set status bit 1 to indicate sign change
Push the number back on the stack
Prepare to push %0

Did the sign get changed?

No, just push %0

Yes, load address of %1

Copy the address to A

Branch to the real number object

The code object ABSF1 does the same job, but returns TRUE or FALSE, using PushT/FLoop:

ABSF1 34.5 Bytes Checksum #9448h

(% > |%| FLAG)

CON(5)
REL(5)
GOSBVL
ST=0
?A=0
GOYES
A=0
ST=1
GOSBVL
?ST=0
GOYES
GOVLNG

Positive

PushIt
end

=DOCODE
end
=POP1%

1

S
Positive
S

1

=PUSH$%

1

PushIt
=PushT/FLoop

Code object prologue

The length field — indicates the size of the code object

Pop a real number to A[W]

Clear status bit 1

Test the sign nibble

If zero, the number is positive

Otherwise set the sign nibble to zero (positive)
Set status bit 1 to indicate sign change

Push the number back on the stack

Did the sign get changed?

This test asserts the carry flag

Push the flag

Writing Your Own Code Objects

199

Memory Utilities

When the RPL pointers are in the CPU, available memory can be calculated by subtracting B[A] (the end of the
return stack) from the address in D1 (the first level of the data stack). If you're just pushing a pointer on the stack,
just check that D[A] is non-zero.

Allocating Memory
Three entries are handy for allocating memory when a code object will be creating and returning a new object.

MAKES$ #05B79h
Creates a string object in TEMPOB with the specified number of characters. Generates an error exit if there isn't
enough memory available to create the string and push it on the stack. Object not pushed on stack if error exit.

Entry: C[A]l=desired number of characters, RPL pointers saved
Call with: GOSBVL

Exit: RO[A]—>String, DO—String body

Uses: A[wW], B[W], C[w], D[w], DO, D1, ST[0], ST[10]

Stack Levels: 3

MAKES$N #05B7Dh
Creates a string object in TEMPOB with a length specified in nibbles. Generates an error exit if there isn't enough
memory available to create the string and push it on the stack. Object not pushed on stack if error exit.

Entry: C[A]=string body length in nibbles, RPL pointers saved
Call with: GOSBVL

Exit: RO[A]—>String, D0—-String body

Uses: A[w], B[wW], C[w], D[w], DO, D1, ST[O], ST[10]

Stack Levels: 3

GETTEMP #039BEh

Allocates space in TEMPOB for an object

Entry: C[A]l=number of nibbles to allocate, RPL pointers saved
Call with: GOSBVL

Exit: DO—hole in TEMPOB

Uses: A[w], B[w], C[w], D[w], DO, D1, ST[0], ST[10]

Stack Levels: 3

Notes:
* GETTEMP does not account for the room needed to push the object on the stack.

» If your code object is part of a library and if merged memory is in port 1 and the library is being executed out of
a bank in port 2, the code object (or the secondary in which the code object is embedded) will be copied to
TEMPOB and executed from there. In unusual circumstances, the object being executed can be deleted and
overwritten by a garbage collection. It has been observed that when a garbage collection happens, no problems
occur if the "ghost copy" of the object is not overwritten by a new object after garbage collection. You may
wish to call MAKESN with the assurance that a garbage collection will not happen. To do this, do a garbage
collect first, or set status bit 10 and GOSBVL ((=MAKE$N)+3). This technique is illustrated in MKSTR on the
next page.

200 Writing Your Own Code Objects

Example: Create a String
MKSTR is a secondary containing a code object that creates a string of spaces given a bint. Note that this example
has no type or range check code — a positive non-zero real number > 1 is expected on the stack.

MKSTR 66 Bytes

Checksum #E8F4h

($characters — $)

COERCE

ENDCODE

’

Convert real number character count into a bint

CODE

GOSBVL =POP# Pop the bint into A[A]

GOSBVL =SAVPTR Save the RPL pointers

C=A A Copy character count into C[A}

R1=C.F A Save character count in RI[A]

C=C+C A Double C[A] to make string body size in nibbles

ST=1 10 Flag garbage collected

GOSBVL ((=MAKESN) +3) Create the string object, error if not enough memory

A=R1.F A Recover character count

LCHEX 20 Character value for a space
WrtChr

DAT0=C B Write space character

DO=D0+ 2 Advance the pointer

A=A-1 A Decrement the character count

?2A#0 A If there are more characters,

GOYES WrtChr 8o write them

GOSBVL =GETPTR Restore the RPL pointers to the CPU

D1=D1- 5 Retard the stack pointer

D=D-1 A Decrement the available memory count

A=RO.F A A[A]—string prologue

DAT1=A A Write pointer to stack

A=DATO A Read pointer to next object in runstream

DO=D0+ 5 Advance return stack pointer

PC=(a) Branch to next object in runstream

Memory Move Utilities
The following memory utilities are available for moving memory.

MOVEDOWN #0670Ch

Moves a block of memory from higher address to lower address

Entry: DO0—start of source, Dl—start of destination
C[A]=number of nibbles to move
RPL pointers saved

Call with: GOSBVL

Exit: DO—end of source + 1, Dl—end of destination + 1, P=0

Uses: A[w], Cc[a], DO, D1, P

Stack Levels: 0

MOVEUP #066B9h

Moves a block of memory from lower address to higher address

Entry: DO—end of source + 1, Dl—end of destination + 1
C[A]=number of nibbles to move
RPL pointers saved

Call with: GOSBVL

Exit: DO0—start of source, Dl—start of destination, P=0

Uses: A[w], C[A], DO, D1, P

Stack Levels:

0

Writing Your Own Code Objects 201

ECUSER #039EFh

Expand/contract an object in user memory

Entry: A[A]—insertion/deletion point
C[A]=number of nibbles to expand/contract
ST[5]=1 (expand) or ST[5]=0 (contract)
D0—Object prologue
RPL pointers saved

Call with: GOSBVL
Exit: B[A]—start of new block or just above deleted block
RO[A] = number of nibbles expanded/contracted

Interrupts disabled (call SysRPL object InitEnab to re-enable)
Garbage may be collected
Uses: A, B, ¢, D, DO, D1, RO, R1,R2, P, ST[O0], ST[2], ST[10]
Stack Levels: 4

Note that ECUSER cannot be called from a code object that's in TEMPOB or in USEROB, since TEMPOB may be
adjusted during garbage collection, and USEROB will be altered. The safest places from which to use ECUSER are
from port O or port 1.

Since ECUSER disables interrupts, you need to call InitEnab to restore interrupts.

InitEnab #0970Ah
Enable interrupts after using ECUSER
_)

Example: Expanding a String in UserOb

EXSTR (listed on the next page) illustrates the use of ECUSER by inserting the characters "AB" at the beginning of
a string stored in a user variable. To try out EXSTR, do the following:

1) Download EXSTR to the HP 48.

2) Store it into a variable in port 0: « 'EXSTR' RCL B:EXSTR STO »

3) Store a string into variable TEST, put its name on the stack, and execute EXSTR from port O, then view the
string:

« 'TEST' "12345" OVER STO B:EXSTR EVAL TEST »
— "AB12345"

Note that you now have all the tools to write a small database application that stores data in Library Objects.
Library objects are structured the same way as strings, except the prologue is different.

202 Writing Your Own Code Objects

C C C (¢

(

EXSTR 93.5 Bytes

Checksum #FS5CEh (When stored in USEROB variable EXSTR)

(ID —)

OLASTOWDOB! CK1NOLASTWD
CK&DISPATCH1 idnt

@ NOTcase SETNONEXTERR
DUPTYPECSTR? NOTcase SETTYPEERR
CODE

Clear saved command name, one argument
Require a global name object

Try to recall the variable, error if nonexistent
Generate error if variable does not contain a string

A=DAT1 A A[A]—string prologue
D1=D1+ 5 Pop the string
D=D+1 A
GOSBVL =SAVPTR Save RPL pointers
DO=A DO—»string prologue
LC(5) 10 C[A] = size of prologue and length field
A=A+C A A[A]—start of string body
LC(5) 4 C[A]=number of nibbles to expand
ST=1 5 Signal to expand
GOSBVL =ECUSER Expand string object
A=B A
D1=A D1 —expanded block start
LCASC \BA\ Load characters to write in C
DAT1=A 4 Write new characters
D1=D1- 5 D1 —string length field
A=DAT1 A A[A]=o0ld string length
C=RO.F A C[A]=expansion size
A=A+C A Add expansion size
DAT1=A A Write new string length
GOVLNG =GETPTRLOOP
ENDCODE
InitEnab Re-enable interrupts
Display Memory Addresses
The following techniques are useful for acquiring the addresses of display grobs in a version independent manner.
ADISP
Point D1 at the prologue of ABUFF
D1=(5) (=addrADISP) +2
C=DAT1 A
D1=C
VDISP

Point D1 at the prologue of the currently displayed grob

D1=(5) (=addrVDISP) +2
C=DAT1 A
D1=C

VIDSP2

Point D1 at the prologue of the menu grob

D1=(5) (=addxrVDISP2) +2
C=DAT1 A
D1=C

Writing Your Own Code Objects

203

Reporting Errors

The assembly language analogue to the SystemRPL object ERRJMP is the entry Errjmp. If you wish to generate
an error using one of the built-in messages, load the message number in C[A] and go to Errjmp. There are two
entries available for this:

Errjmp #05023h

Stores the error number, restarts RPL at ERRJMP

Entry: A[A] = error#, RPL pointers in CPU

Call with: GOVLNG

Exit: To RPL

GPErrjmpC #10F40h

Sets P=0, HEXMODE, restores RPL pointers, stores the error number, restarts RPL at ERRTMP
Entry: C[A] = error#, RPL pointers saved

Call with: GOVLNG

Exit: To RPL

The following code object pops a real number off the stack and generates aBad Argument Yalue error if the
number is negative.

ERR 30 Bytes Checksum #A915h

(% =)
CON(5) =DOCODE
REL(5) end
GOSBVL =POP1% Pop a real number (sets DEC mode)
SETHEX Reset HEX mode
?A=0 S Test the sign nibble
GOYES Positive If zero, just return to RPL
LCHEX 00203 Otherwise load error message number
GOVLNG =GPErrjmpC and generate the error
Positive

GOVLNG =GETPTRLOOP

Checking Batteries
If you're writing a code object that will be executing for a long time (like a game), you may wish to check the battery
condition from time to time. The entry ChkLowBat does this:

ChkLowBat #325AAh

Checks for low battery

Entry: ST15=0 (interrupts disabled), RPL pointers saved
Call with: GOSBVL

Exit: CS: Low Battery and C[A]l=LowBatErr#; CC: Battery OK
Uses: A[A], B[A], C[A], D[A], DO, ST[7-0]

Stack Levels: 3

The following code object disables interrupts, checks the batteries using ChkLowBat, re-enables interrupts, and
returns with a flag indicating the condition of the batteries.

CKBAT 28 Bytes Checksum #4297h

(— FLAG)
CON(5) =DOCODE
REL(5) end
GOSBVL =SAVPTR Save the RPL pointers
ST=0 15 Disable interrupts
GOSBVL =ChkLowBat Check the batteries, assert the carry flag
ST=1 15 Re-enable interrupts
GOVLNG =GPPushT/FLp Push the flag based on carry
end

204 Writing Your Own Code Objects

c ¢ ((

(

Warmstart & Coldstart

There may be times when you get into real trouble and a safe return to normal calculator execution is required.
Perhaps you detect that memory isn't in good shape, something is missing, or a pointer is unreasonable. Three "last
resort" options are available, listed in order of increasing severity:

* GOVLNG =norecPWLseq (#01FBDh) Warmstarts without recording an entry in the warmstart log.
* GOVLNG =Coldstart (#01FD3h) Branches to "Try To Recover Memory?" prompt.
e GOVLNG =norecCSseq (#01FDAh) Unconditional memory clear (fotal coldstart).

The first option, a warmstart, may be used when you think TEMPOB is corrupt or other easily repairable system
problems can be handled without risking the loss of USEROB. The second option may be required if you think
USERORB is corrupt. It is impossible to imagine any use for the third "nuclear” option in a well-designed
application. We discourage people who would use either the second or third option as a joke or prank — please
confine your coding practices to those of responsible people.

Tone Generation

The entry makebeep can be used to generate steady tones at a specific frequency and duration, or you can generate
your own sound effects by oscillating the beeper yourself.

Steady Tones

The entry makebeep respects the system beeper flag (—56) and checks the CPU speed to make as accurate a tone as
possible.

makebeep #017A6h

Generates a beep

Entry: C[A]=delay(msec) D[A]l=frequency(Hz), RPL pointers saved
Call with: GOSBVL

Exit: Interrupts ON (INTON)

Uses: A, B, ¢, D, RO, R1, R2, R3, DO, D1, P, Carry

Stack Levels: 1

TOOT 32 Bytes Checksum #21Flh

(=)
CON(5) =DOCODE
REL(5) end
GOSBVL =SAVPTR
LC(5) 400
D=C A
LC(5) 1000
GOSBVL =makebeep
GOVLNG =GETPTRLOOP
end

Writing Your Own Code Objects 205

Rising and Falling Tones

The beeper is a piezoelectric element wired to bit 11 of the OUT register. You can click the beeper "on" by setting
bit 11 and click it back "off" by clearing bit 11. Remember to leave it off! The example TONE shows how to
generate sweeping tones by oscillating the beeper bit. As a courtesy to people who might use your code, please
respect the status of the system beeper flag as shown below.

TONE 95.5 Bytes Checksum #534Ah

(=)
56 TestSysFlag ?SEMI Exit if flag 56 is set

CODE
GOSBVL =SAVPTR Save RPL pointers
GOSUB SweepUp Generate rising sound
LC(5) 80438 Wait

Wait C=C-1 A
GONC Wait
GOSUB SweepDn Generate falling sound

GOVLNG =GETPTRLOOP Restore RPL pointers and exit

khkdkkhkhkhkhkdkkhkhkdhkhhhhhkhhkhhkdkhkhkhkhkhkkkkkhkkkkkhhdkdkhkdhkhkhdhkdhdddkhkhhodhhkohkkdkkkdkokdkkkd

* Subroutine SweepUp *
khkhkhkhkhkhkkhkhhkhkhkhkhkdhkhkkhkdhkhhhhhkhkhkdkdhhkhkhkhkhbdhkhkdhkhhhhhkdhkhkhkhkhkhhkhkhkhkhkhkhkdhkrhkhhkhkhdhhkkkrx
SweepUp LA(2) 130 Starting tone (must be > ending tone)
UpLoop LC(2) 3 Intermediate delay

GOSUB Tone Generate the tone

A=A-1 B Decrement tone value

LC(2) 40 Ending tone (must be < starting tone)

?A>C B More tones to do?

GOYES UpLoop

RTN
khkkkhkhkhkhkkhkhkhkhkhkhkhhkhdhkhdhhkhkdhhkhkhkhkdhdhkkdhkhhkdhdhdhrhrhhkdkrdhhkhkhhkhkhkdkdhhkdkhkhkhkhkhdkdkkdkdkdkdkddd
* Subroutine SweepDn *
RS R R R RS SR RS E S REE RS SR SRR R R RS E R SRR E R E R R R R R TR X
SweepDn LA(2) 40 Starting tone (must be < ending tone)
DnLoop LC(2) 1 Intermediate delay

GOSUB Tone Generate the tone

A=A+1 B Increment the tone value

LC(2) 130 Ending tone (must be > starting tone)

?A<C B More tones to do?

GOYES DnLoop

RTN
khkkkhkkhkhkhkhkhhkhkhkhkhkdhkhkhkhdhkhkhkhkhhkhhdhkkhkhhrbrhhkhkdhhdkhkkhkhkhdkhhkhkhkdrhkhkhkhkhkhkhkhkhkhhkhkkkhdxkx
* Subroutine Tone: A[B] = Frequency C[B] = Intermediate delay *
khkhkdhkhkhkhkhkhhkhkdhkhkkhdhkhkhkhhdhkdhkhkkhkdhhhkhkdhkhdhdhhkhbhkhkhhkhhkhkhbhhhkhkhkhkhkhhkhkhkhkhkhkhkhkkhkhkkkdkxk
Tone D=C B Copy intermediate delay to D[B]
ToneLp LCHEX 800 Set bit 11

ouT=C B Click speaker ON

C=A B Copy tone value
Decl Cc=C-1 B Delay

GONC Decl

C=0 A Clear bit 11

ouT=C Click speaker OFF

C=A B Copy tone value
Dec2 c=C-1 B Delay

GONC Dec?2

D=D-1 B Decrement tone length counter

GONC ToneLp Loop

RTN
end

ENDCODE

206 Writing Your Own Code Objects

¢

C C C(

r

Keyboard Scanning

The HP 48 keyboard is wired to the IN and OUT registers. During normal operation, the CPU scans the keyboard

every millisecond and generates an interrupt when a key is pressed. Once the interrupt has been generated, the

keyboard handler scans the keyboard to see which keys have been pressed. While a key is down, timer interrupts are
scheduled to wake up the CPU every 1/16 of a second. This permits scans to see which key or keys are down, and
lets the handler update the key buffer when a key is released. An application can scan the keyboard directly at full
CPU speed, or shut down to save power between keystrokes. The former technique might be appropriate for a game
where objects are moving; the latter might be better if the application is just waiting for user input.

To look for a particular key, set the appropriate bits of the OUT register, then AND the value from the IN register
with an input mask. The table below shows the mask values for each key. For instance, the OUT mask for is
080 and the IN mask is 0008. The is mapped to bit 15 of IN only and generates a nonmaskable interrupt. To
prevent the interrupt system from intercepting keys, you'll need to disable interrupts.

()]
002/0010 100/0010 100/0008 100/0004 100/0002 100/0001
VAR @
004/0010 080/0010 | 080/0008 080/0004 080/0002 080/0001
(] EVAL « ™ >
001/0010 040/0010 040/0008 040/0004 040/0002 | 040/0001
(SIN) CoS) %
008/0010 020/0010 020/0008 020/0004 020/0002 020/0001

ENTER e EEX DEL
010/0010 010/0008 010/0004 010/0002 010/0001
El]
008/0020 008/0008 008/0004 008/0002 008/0001
G @ 3] X
004/0020 004/0008 004/0004 004/0002 004/0001
2] @ B =
002/0020t 002/0008 002/0004 002/0002 002/0001
@
/8000 001/0008 001/0004 001/0002 001/0001

The following subroutine tests the keyboard and returns with carry set if (Y] is down. Note that the C=IN instruction
must be executed from an even address. To do this reliably, call CINRTN, which just does C=IN and returns.

LCHEX 00040
ouT=C

GOSBVL =CINRTN
LAHEX 00002
C=A&C A

?A#0 A
RTNYES

RTN

Writing Your Own Code Objects

207

Managing Interrupts

If you're going to look for keys yourself, it's best to disable keyboard scanning. This frees up CPU time for your
application and avoids unwanted keystrokes wandering into the key buffer. There are three methods of disabling
interrupts, listed in order of decreasing severity:

* Call the entry DisableIntr to disable all interrupts, and A1lowIntr to enable interrupts. This shuts off all
/O, and carries the risk that if your code goes astray only a "paperclip reset" is possible (pushing a paperclip in
the hole under the upper-right rubber foot).

DisableIntr #01115h
Disable interrupts

Entry: Interrupts enabled
Call with: GOSBVL

Exit: Interrupts disabled
Uses: C[A], Carry

Stack Levels: 1

AllowIntr #01l0ES5Sh
Re-enable interrupts

Entry: Interrupts disabled
Call with: GOSBVL

Exit: Interrupts enabled
Uses: C[A], Carry

Stack Levels: 1

* Clear bit 15 of the status register. This shuts off all I/O, and carries the risk that if your code goes astray only a
"paperclip reset" is possible.

* Execute the INTOFF instruction. This prevents only keyboard interrupts except for (ONJ, which always
generates an interrupt. This has the advantage that you can use - [C) to recover from code bugs. The
disadvantage is that the key can't be detected reliably and will be processed by the interrupt system. Note
that makebeep, the ticking clock display, or alarms can lead to an INTON instruction being executed.

Rapid Keyboard Scans
The example KEY1 scans the keyboard at full speed, exiting only when either or [E) have been pressed and
released.

KEY1l 50.5 Bytes Checksum #CDC8h

(=)
CON(5) =DOCODE
REL(5) end
ST=0 15 Turn off interrupts
LAHEX 08001 Input mask for [F) and
Top LCHEX 00100 Output mask for [F)
ouUT=C Set keyboard lines to look for [F)
GOSBVL =CINRTN Read back the keyboard lines
C=A&C A Mask off lines for [F) and
?2C=0 A Were either of our keys pressed?
GOYES Top No, go scan again
StillDn LCHEX 001FF Output mask for all rows
ouT=C
GOSBVL =CINRTN Read back keyboard state
?2C#0 A Are there still keys down?
GOYES StillDn Yes, go scan again
ST=1 15 No, re-enable interrupts
A=DATO A Back to RPL
DO=D0+ 5
PC=(A)
end

208 Writing Your Own Code Objects

The example KEY?2 scans the keyboard until is pressed. During the scan (A] turns on a small line in the display,
and [B) turns the line off.

KEY2 125.5 Bytes Checksum #57Elh

ccccccccccccccccccccccccccccoccccccccccccccc 0

(=)
CON(5) =DOCODE
REL(5) end
GOSBVL =SAVPTR Save RPL pointers
D1=(5) (=addrADISP) +2 Point D1 at the address of ABUFF's address
A=DAT1 A Load the ABUFF address's address into A{A]
D1=A Copy to D1
A=DAT1 A Read the address of ABUFF
D1=A D1—ABUFF prologue
D1=D1+ 15 Skip past prologue, length, dimensions
D1=D1+ 5 D1 —First nibble of ABUFF data
ST=0 15 Turn off interrupts
GOSUB StillDn? Wait for no keys pressed
Top LCHEX 001FF Load mask for all rows
ouT=C Set keyboard lines
GOSBVL =CINRTN Read keyboard state
?2C=0 A Any keys pressed?
GOYES Top No, go wait for a key
LCHEX 002 Look for (A - first load row mask
ouT=C
GOSBVL =CINRTN
LAHEX 010 Load column mask for (A)
C=A&C X
2C=0 X Did we get (A)?
GOYES TryB No, go test for
GOSUB Stillbn? Yes, wait for key up
LAHEX FFFFF Load pattern to write to display
DAT1=A A Write pattern
GOTO Top Go back for another key
TryB LCHEX 100 Load row mask for
ouT=C
GOSBVL =CINRTN
LAHEX 010 Load column mask for
C=A&C X
2C=0 X Did we get (B)?
GOYES TryON No, go test for (ON]
GOSUB StillDn? Yes, wait for key up
A=0 A Load pattern to write to display
DAT1=A A Write pattern
GOTO Top Go back for another key
TryON LAHEX 08000 Load mask for
C=A&C A
2C#0 A Did we get (ON)?
GOYES GotON Yes, go quit
GOTO Top No, go look for another key
GotON GOSUB StillDn? Wait for key up
GOTO Done Go finish
Stillbn? LCHEX 001FF Load row mask for all keys
ouT=C
GOSBVL =CINRTN
2C#0 A Was a key down?
GOYES Stillbn? Yes, loop until no keys are down
RTN No, return
Done ST=1 15 Re-enable interrupts
GOVLNG =GETPTRLOOP Back to RPL
end
Writing Your Own Code Objects 209

Low Power Keyboard Scans
You can save power by putting the calculator into a low power state between keystrokes. We'll describe some of the
basic pieces, then put them all together in the example KEY3.

The Basic Timer Loop. In the basic low power loop a timer is set to wake the calculator up after a small interval,
then the SHUTDN instruction is executed, putting the calculator in a low power state. The calculator can wake up
for several reasons, including a timer expiring or a key being pressed. The technique we show here ignores other
reasons for wakeup. When the calculator wakes up the keyboard is scanned and if no keys are down the timer is
reset and the calculator goes to sleep again.

LiteSlp D1=(5) =TIMERCTRL.1 Set timer 1 to wake up CPU
LC(1) 4
DAT1=C P
D1=(2) =TIMER1 Set a 5/16 second delay
LC(1) 5
DAT1=C P
LCHEX 1FF Preload the keyboard row lines
ouT=C

Wait SHUTDN WAIT FOR INTERRUPTS
LC(3) 1FF Load the row lines
ouT=C
GOSBVL =CINRTN Read the column lines
LAHEX 0803F Mask for all column lines
A=A&C A
?A#0 A Was a key pressed?
GOYES GetKey Yes, go see which one(s) are down
D1=(2) =TIMERCTRL.1 No, so look at timer control
C=DAT1 X Read timer status
?CBIT=0 3 Was timer expired?
GOYES Wait No, go back to sleep
GOSUB Blink Yes, blink the cursor
GOTO LiteSlp Then go back to sleep

Keyboard Debounce. The entry Debounce scans the keyboard until it has been stable for at least one timer tick:

Debounce #009A5h

Scan the keyboard until stable, return bitmap of pressed keys

Entry: Interrupts disabled

Call with: GOSBVL

Exit: A[l2-0]=Key bitmap

Uses: A, B, C, D[A], DO, D1, P, SB, Carry

Stack Levels: 0

The bits returned in A[12-0] encode keys as shown in the table below. Note that more than one key may be down.

Nibble | Bit3 Bit 2 Bit 1 Bit 0
12
11 D) E
10 (PRG) [CsT (VAR) (a]

9 EVAL «

8 ™ >
7
6 EEX) «

5 @ EN)

4 E)]) G}
3 @ B &) X

2 12 (A] @

1 @ =) O @]

0 8]

210 Writing Your Own Code Objects

The Key Bitmap. After obtaining the bitmap, you can either load a 13 nibble mask to look for one or more specific
keys, or you can generate a number corresponding to the key that was down. In the latter case, you may wish to

ensure that just one key is down. The following code fragment (not used in the KEY?3 example) returns the number
of keys pressed in C[B] given a key bitmap in B[W]:

Entry: B[W] = key bitmap

Call with: GOSUB CountKeys

Exit: C[B] = # of keys down, Carry set

CountKeys c=0 B Clear the key counter

AnySet? ?B=0 W Are all bits clear?
RTNYES Return if so

TstNib ?B#0 P Is the least significant nibble clear?
GOYES TstBit No, go check the bits in that nibble
BSR W Yes, shift in next nibble
GONC AnySet? Go see if there's more to test

*

TstBit B=B+B P Shift nibble left, set carry if high bit was set
GONC TstBit If the high bit was clear, shift again
C=C+1 B Increment key counter
GONC TstNib Go see if more bits are set in this nibble

The following code fragment returns in B[A] the option-base-1 number of the least significant set bit in a keymap in
A[W]. The key number ranges from1 ((ONJ) to 49 (B)).

Entry: A[W] = key bitmap with at least one bit set

Call with: GOSUB KeyNum
Exit: B[A] = key number
KeyNum B=0 A
NextNib 2A#0 P

GOYES TestBits
B=B+CON B,4

ASR W

GONC NextNib
TestBits B=B+1 B

SB=0

ASRB.F P

?SB=0

GOYES TestBits

RTN

Clear the key number

Is the least significant nibble clear?
No, go find which bit is set

Yes, add four to the key number,
shift the next nibble in,

(BET) and go test the next nibble

Increment the key number

Clear the sticky bit

Shift off a bit

Was it set?

No, go test the next bit

Yes, return with key number in B[A]

Writing Your Own Code Objects

211

Putting it All Together. The example KEY3 blinks a cursor line in the display while waiting for a key in light
sleep. When a key is pressed, the keycode is returned to the stack as a real number.

KEY3 201.5 Bytes Checksum #28B2h

(= %keycode)

CLEARVDISP

CODE
GOSBVL =SAVPTR
D1=(5) (=addrADISP) +2
A=DAT1 A
Dl1=A
A=DAT1 A
LC(5) 20
A=A+C A
R1=A
GOSUB WaitKeyUp
GOSBVL =Disablelntr
GOSUB BusyOff
ST=0 1

LiteSlp D1=(5) =TIMERCTRL.1
LC(1) 4
DAT1=C P
D1=(2) =TIMER1
LC(1) 5
DAT1=C P
LCHEX 1FF
ouT=C

Wait SHUTDN
LC(3) 1FF
ouT=C
GOSBVL =CINRTN
LAHEX 0803F
A=A&C A
?2A#0 A
GOYES GetKey
D1=(2) =TIMERCTRL.1
C=DAT1 X
?CBIT=0 3

GOYES Wait
GOSUB Blink

GOTO LiteSlp
GetKey GOSBVL =Debounce

2A#0 W

GOYES GotKey

GOTO LiteSlp
GotKey GOSUB KeyNum

A=0 A

A=B B

RO=A.F A
GOSUB WaitKeyUp

GOSBVL =AllowIntr
GOSUB BusyOn
GOSBVL =PUSH#
LC(5) =UNCOERCE
A=C A

PC=(A)

Continued on next page ...

212

Set timer 1 to wake up CPU

Set a 5/16 second delay

Preload the keyboard row lines

WAIT FOR INTERUPTS
Load the row lines

Read the column lines
Mask for all column lines

Was a key pressed?

Yes, go see which one(s) are down
No, so look at timer control

Read timer status

Was timer expired?

No, go back to sleep

Yes, blink the cursor

Then go back to sleep

Debounce the keyboard, create bitmap in A
Was a key pressed?

Yes, go create a keycode

No, go wait again

Get the key number

Clear A[A]

Copy to A,

Save in RO for PUSH#

Wait for the key to be released

Re-enable interrupts

Turn on the busy annunciator

Push the key number, restore RPL pointers
Return to RPL, executing UNCOERCE

Writing Your Own Code Objects

Subroutine to wait for keys to be released:

WaitKeyUp LCHEX 1FF
ouT=C
GOSBVL =CINRTN
LAHEX 0803F

A=A&C A

?A#0 A

GOYES WaitKeyUp
RTN

Subroutine to blink cursor:

Blink c=0 A
?25T=0 1
GOYES TurnOn
ST=0 1
GONC Write
TurnOn
ST=1 1
Cc=C-1 A
Write A=R1.F A
D1=A
DAT1=C A
RTN

Subroutine to turn off busy annunciator:

BusyOff DO0=(5) (=ANNCTRL) +1
C=DATO P
CBIT=0 0

WrtRtn DATO=C P
RTN

Subroutine to turn on the busy annunciator:

BusyOn DO=(5) (=ANNCTRL) +1
C=DATO P
CBIT=1 0
DATO=C P
RTN

Subroutine to calculate the key number:

KeyNum B=0 A
NextNib 2A#0 P
GOYES TestBits
B=B+CON B,4
ASR w
GONC NextNib
*
TestBits B=B+1 B
SB=0
ASRB.F P
?2SB=0
GOYES TestBits
RTN

ENDCODE

’

Set row lines

Read column lines
Mask for column lines

Were any keys down?
Yes, go scan again
No, return

Clear C[A] to clear cursor
Was cursor off?

Yes, go turn it on

Turn off cursor status bit
Go write the cursor

Turn on cursor status bit
Set C[A] to FFFFF
Recover pointer to display
Copy to D1

Write cursor

Point at the annunciator nibble
Read nibble

Clear annunciator bit

Write nibble back

Point at the annunciator nibble
Read nibble

Set annunciator bit

Write nibble back

Clear the key number

Is the least significant nibble clear?
No, go find which bit is set

Yes, add four to the key number,
shift the next nibble in,

(BET) and go test the next nibble

Increment the key number

Clear the sticky bit

Shift off a bit

Was it set?

No, go test the next bit

Yes, return with key number in B[A]

Writing Your Own Code Objects

213

Processing Keycodes. Once you have a keycode from the KeyNum subroutine, there are several ways to branch to
the corresponding code. The first is best if your application defines only a few keys — just compare individual key
codes. The second is best if your application defines many keys. Both examples assume a key number in B[A], and

that the return to get another key is at the label LiteS1p.

The first example looks for (ENTER], (@), and >):

TryLeft

*

TryRight

GoDoRight
*

DoEnter

*

DoLeft

*

DoRight

LC(2)
?B#C
GOYES
GOTO

LC(2)
?B#C
GOYES
GOTO

LC(2)
?B=C
GOYES
GOTO
GOTO

Process
GOTO

Process
GOTO

Process
GOTO

29

B
TryLeft
DoEnter

37

B
TryRight
DoLeft

35

B
GoDoRight
LiteSlp
DoRight

ENTER
LiteSlp

«

LiteSlp

>

LiteSlp

Key number for ENTER

Key number for (€]

Key number for ()

Go for another key if not)

The second example uses a table of 3-nibble offsets to the key subroutines. (Note that if your application is very
large, you may need to use 4-nibble offsets.) The trick is to GOSUB around the table, which puts the table's starting
address on the return stack.

Note that the references to the subroutines must be forward references, meaning that the key subroutines must come
after the table. If the subroutine was before the table, each table entry would have to be 5 nibbles to make the
address calculation correct.

SendKey

GOSUB
REL(3)
REL (3)
REL(3)
REL(3)
B=B-1
C=RSTK
C=C+B
C=C+B
C=C+B
DO=C
aA=0
A=DATO
C=A+C
PC=C

SendKey
DoON
DoPlus
LiteSlp
DoB

A

A
A
A

A
X
A

Pointer for
Pointer for (#) (1)

Pointer for undefined key

Pointer for [B) (49)

Make option base 0 key number
Get address of key table

Add keynumber*3 to start of table

DO—key entry
Read offset to key routine

Add offset to table entry location
Branch to key routine

The example KEY4 (on the disk, but not listed here) uses this technique.

214

Writing Your Own Code Objects

(P

(

C C C C € ¢(

r

The RVIEW Debugging Tool

The subroutine RVIEW (Register VIEWer) has been provided to provide an additional example of various
techniques for writing code in assembly language and as a simple debugging aid that you can use as you develop
your programs. RVIEW is small, just a few thousand bytes in size, so you don't have to allocate a lot of memory to
use it. RVIEW is in the RVIEW directory on the disk.

RVIEW will run on either S or G series calculators, but has three restrictions:

e The stack grob ABUFF must be full height - 64 rows. Note that by default ABUFF is 56 rows high, so you may
need to enlarge ABUFF (see Graphics).

e RVIEW is self-modifying, so you cannot run RVIEW from a write-protected card.
« RVIEW consumes three stack levels, so be sure they're available.
The RVIEW User Interface

When RVIEW is executed, it saves the state of the CPU, displays the CPU register contents and windows into
memory, then restores the CPU and ABUFF to their original state upon exit. RVIEW has two screens, selected with

A: 01010100FACE PC:BEOCE :B2EE3B5D59800040 RETK:
B:111122233333444Y C- : B3 FPC:BEOET
C:11113358333FFFFF P: EL] REC|
D:0123456TBSABCDEF HEHMDDE 70
2B1E0BSECE

D0 : HOTED : 0SCBO0000000000E
D1 :RAFSFE: 0000000000000000
M:B80000:F3C5A0000C0000CC

[HOREJHODE] -1 [+1 | -5 | +5]

9876543210

S$T: 1011001010001000

) I N N .

In the first screen, the pointer arrow P refers to the active memory window — DO, D1, or M.

While RVIEW is active, the following keys are active:

Quits RVIEW
Aam™ Moves the pointer arrow between the three memory windows
w0 Increments or decrements the address of the active memory window

n

Switches the display between the two screens

Lets you type a new address for the active memory window
Decrements the address of the active memory window
Increments the address of the active memory window
Subtracts 5 from the address of the active memory window

Adds 5 to the address of the active memory window

From the first screen, you can press to display additional menu labels for address modification:

ey

+lona

Subtracts #100h from the address of the active memory window
Adds #100h to the address of the active memory window
Subtracts #1000h from the address of the active memory window

Adds #1000h to the address of the active memory window

Writing Your Own Code Objects 215

Using RVIEW

To use RVIEW in your code, just add the RVIEW source to your code and call RVIEW with a GOSUB. For
instance, if you were going to include RVIEW in the SWP example to see the stack before and after the swap

operation, the code would look like this:

RVIEW

end

NIBASC
CON(5)
REL(5)
GOSUB
A=DAT1
D1=D1l+
C=DAT1
DAT1=A
D1=D1-
DAT1=C
GOSUB
A=DATO
DO0=DO0+
PC=(A)

/HPHP48-A/
=DOCODE
end

RVIEW

AT O]

RVIEW

This is a download header for binary transfer to the HP 48
This is the prologue for a code object
The length field — indicates the size of the code object

Copy the stack level 1 pointer to A[A]

Advance Dl to stack level 2

Copy the stack level 2 pointer to C[A]

Replace stack level 2 with the original stack level 1 pointer
Move D1 back to stack level 1

Replace stack level 1 with the original stack level 2 pointer

Read the pointer to the next RPL object to be executed
Advance the instruction pointer
Branch to the next instruction

RVIEW source code here

The PONG Game

The directory PONG on the disk contains an HP 48 implementation of the classic PONG game, implemented as a
compiled secondary including the game as a code object. To run the game transfer the file PONG to your HP 48 and
execute PONG.

When PONG is running, the following keys are active:

@
(3]

The file MAKEPONG.BAT is a DOS batch file that will make the game based on the files PONG.S and PONG.M.

Quits PONG

Moves the left player's paddle up

Moves the left player's paddle down

Moves the right player's paddle up

Moves the right player's paddle down

‘We hope this will inspire some more games!

216

Writing Your Own Code Objects

Appendix A: Messages

Appendix A: Messages

Hex Dec | General Messages
001 1 | Insufficient Memory
002 2 | Directory Recursion
003 3 | Undefined Local Name
004 4 | Undefined XLIB Name
005 5 | Memory Clear

006 6 | Power Lost

007 7 | Warning:

008 8 | Invalid Card Data

009 9 | Object In Use

00A 10 | Port Not Available

00B 11 | No Room in Port

00C 12 | Object Not in Port

00D 13 | Recovering Memory
00E 14 | Try To Recover Memory?
OOF 15 | Replace RAM, Press ON
010 16 | No Mem To Config All
101 257 | No Room to Save Stack
102 258 | Can't Edit Null Char.
103 259 | Invalid User Function
104 260 | No Current Equation
106 262 | Invalid Syntax

Hex Dec | Object Types

107 263 | Real Number

108 264 | Complex Number

109 265 | String

10A 266 | Real Array

10B 267 | Complex Array

10C 268 | List

10D 269 | Global Name

10E 270 | Local Name

10F 271 | Program

110 272 | Algebraic

111 273 | Binary Integer

112 274 | Graphic

113 275 | Tagged

114 276 | Unit

115 277 | XLIB Name

116 278 | Directory

117 279 | Library

118 280 | Backup

119 281 | Function

11A 282 | Command

11B 283 | System Binary

11C 284 | Long Real

11D 285 | Long Complex

11E 286 | Linked Array

11F 287 | Character

120 288 | Code

121 289 | Library Data

122 290 | External

217

218

Hex Dec | General Messages
123 291 | Null message

124 292 | LAST STACK Disabled
125 293 | LAST CMD Disabled
126 294 | HALT Not Allowed
127 295 | Array

128 296 | Wrong Argument Count
129 297 | Circular Reference
12A 298 | Directory Not Allowed
12B 299 | Non-Empty Directory
12C 300 | Invalid Definition

12D 301 | Missing Library

12E 302 | Invalid PPAR

12F 303 | Non-Real Result

130 304 | Unable to Isolate

Hex Dec | Low Memory

131 305 | No Room to Show Stack
132 306 | Warning

133 307 | Error:

134 308 | Purge?

135 309 | Out of Memory

136 310 | Stack

137 311 | Last Stack

138 312 | Last Commands

139 313 | Key Assignments

13A 314 | Alarms

13B 315 | Last Arguments

13C 316 | Name Conflict

13D 317 | Command Line
Hex Dec | Stack Operations

201 513 | Too Few Arguments
202 514 | Bad Argument Type
203 515 | Bad Argument Value
204 516 | Undefined Name

205 517 | LASTARG Disabled
Hex Dec | EquationWriter

206 518 | Incomplete Subexpression
207 519 | Implicit () off

208 520 | Implicit () on
Hex Dec Floating Point Errors
301 769 | Positive Underflow
302 770 | Negative Underflow
303 771 | Overflow

304 772 | Undefined Result

305 773 | Infinite Result
Hex Dec | Array

501 1281 | Invalid Dimension

502 1282 | Invalid Array Element
503 1283 | Deleting Row

504 1284 | Deleting Column

505 1285 | Inserting Row

506 1286 | Inserting Column

Appendix A: Messages

Appendix A: Messages

Hex Dec | Statistics

601 1537 | Invalid ¥ Data

602 1538 | Nonexistent YDAT
603 1539 | Insufficient Y, Data
604 1540 | Invalid YPAR

605 1541 | Invalid ¥, Data LN(Neg)
606 1542 | Invalid 3 Data LN(0)
Hex Dec | Plot, Solve, Stat

607 1543 | Invalid EQ

608 1544 | Current equation:

609 1545 | No current equation.
60A 1546 | Enter eqn, press NEW
60B 1547 | Name the equation, press ENTER
60C 1548 | Select plot type

60D 1549 | Empty catalog

60E 1550 | undefined

60F 1551 | No stat data to plot
610 1552 | Autoscaling

611 1553 | Solving for

612 1554 | No current data. Enter
613 1555 | data point, press >+
614 1556 | Select a model

Hex Dec | Alarms

615 1557 | No alarms pending.
616 1558 | Press ALRM to create
617 1559 | Next alarm:

618 1560 | Past due alarm:

619 1561 | Acknowledged

61A 1562 | Enter alarm, press SET
61B 1563 | Select repeat interval
Hex Dec | I/O, Plot, Solve, Stat
61C 1564 | /O setup menu

61D 1565 | Plot type:

61E 1566 | " "

61F 1567 | (OFF SCREEN)

620 1568 | Invalid PTYPE

621 1569 | Name the stat data, press ENTER
622 1570 | Enter value (zoom out

if >1), press ENTER

219

220

Hex Dec | I/O, Plot, Solve, Stat
623 1571 | Copied to stack
624 1572 | x axis zoom w/AUTO.
625 1573 | x axis zoom.
626 1574 | y axis zoom.
627 1575 | x and y-axis zoom.
628 1576 | IR/wire:
629 1577 | ASCIl/binary:
62A 1578 | baud:
62B 1579 | parity:
62C 1580 | checksum type:
62D 1581 | translate code:
62E 1582 | Enter matrix, then NEW
A01 2561 | Bad Guess(es)
A02 2562 | Constant?
A03 2563 | Interrupted
A04 2564 | Root
A05 2565 | Sign Reversal
A06 2566 | Extremum
A07 2567 | Left
AO08 2568 | Right
A09 2569 | Expr
Hex Dec | Unit Management
BO1 2817 | Invalid Unit
B02 2818 | Inconsistent Units
Hex Dec | I/O and Printing
Co01 3073 | Bad Packet Block Check
C02 3074 | Timeout
C03 3075 | Receive Error
C04 3076 | Receive Buffer Overrun
CO05 3077 | Parity Error
C06 3078 | Transfer Failed
Cco7 3079 | Protocol Error
CO08 3080 | Invalid Server Cmd.
C09 3081 | Port Closed
COA 3082 | Connecting
COB 3083 | Retry #
cocC 3084 | Awaiting Server Cmd.
COD 3085 | Sending
COE 3086 | Receiving
COF 3087 | Object Discarded
C10 3088 | Packet #
Ci11 3089 | Processing Command
C12 3090 | Invalid IOPAR
C13 3091 | Invalid PRTPAR
Cl4 3092 | Low Battery
Ci15 3093 | Empty Stack
Cl6 3094 | Row
C17 3095 | Invalid Name
Hex Dec | Time
D01 3329 | Invalid Date
D02 3330 | Invalid Time
D03 3331 | Invalid Repeat
D04 3332 | Nonexistent Alarm

Appendix A: Messages

(

R N N N N G G

(

Appendix A: Messages

Hex Dec | Polynomial Root Finder
C001 | 49153 | Unable to find root
Hex Dec | Multiple Equation Solver
E401 | 58369 | Invalid Mpar
E402 | 58370 | Single Equation
E403 | 58371 | EQ Invalid for MINIT
E404 | 58372 | Too Many Unknowns
E405 | 58373 | All Variables Known
E406 | 58374 | Illegal During MROOT
E407 | 58375 | Solving for
E408 | 58376 | Searching
Start | End | Unlisted Message Numbers
B901 | B99B | Miscellaneous
BAO1 | BA43 | I/O operations
BBO1 | BB3F | Statistics
BCO1 | BC3B | Time system
BDO1 | BD27 | Symbolic operations
BEO1 | BE77 | Plotting
BFO1 | BF56 | Solver
E101 | E129 | Constants Library
E301 | E304 | Equation Library
E601 | E60D | TVM Library
E701 | E706 | Minehunt game

221

Appendix B: Character Codes

DEC _HEX CHR | DEC _HEX CHR]DEC HEX CHR] DEC HEX CHR
0 00 - 32 20 64 40 e 96 60 ‘
01 . 33 21 ! 65 41 A 97 61 a
2 02 . 34 22 " 66 42 B 98 62 b
3 03 = 35 23 # 67 43 c 99 63 c
4 04 . 36 24 $ 68 44 D 100 64 d
5 05 = 37 25 “ 69 45 E 101 65 e
6 06 . 38 26 & 70 46 F 102 66 f
7 07 . 39 27 ! 71 47 G 103 67 9
8 08 . 40 28 < 72 48 H 104 68 h
9 09 . 41 29 p) 73 49 I 105 69 i
10 0A = 42 2A * 74 4A J 106 6A J
11 0B = 43 2B + 75 4B K 107 6B k
12 0C . 44 2C ’ 76 4C L 108 6C 1
13 0D - 45 2D - 77 4D M 109 6D m
14 OE . 46 2E . 78 4E N 110 6E n
15 OF = 47 2F s 79 4F 0 111 6F o
16 10 . 48 30 %) 80 50 P 112 70 P
17 11 . 49 31 1 81 51 Q 113 71 9
18 12 . 50 32 2 82 52 R 114 72 r
19 13 . 51 33 3 83 53 S 115 73 s
20 14 . 52 34 4 84 54 T 116 74 t
21 15 . 53 35 S 85 55 u 117 75 u
22 16 . 54 36 6 86 56 v 118 76 v
23 17 . 55 37 T 87 57 W 119 77 w
24 18 . 56 38 8 88 58 b 120 78 X
25 19 . 57 39 9 89 59 Y 121 79 y
26 1A = 58 3A : 90 S5A Z 122 TA z
27 1B . 59 3B H 91 5B L 123 7B {
28 1C . 60 3C < 92 5C N 124 7C |
29 1D - 61 3D = 93 5D] 125 7D ¥
30 1E . 62 3E > 94 SE ~ 126 7E ~
31 1F 63 3F ? 95 SF - 127 7F ¥

222 Appendix B: Character Codes

(

C C C ¢

(

DEC HEX CHR] DEC HEX CHR | DEC HEX CHR | DEC HEX CHR
128 80 P 160 A0 192 CO A | 224 EO 3
129 81 % 161 Al i 193 CI A 225 El F
130 82 v 162 A2 ¢ 194 C2 A 226 E2 8
131 83 I 163 A3 £ 195 C3 A 227 E3 5
132 84 iy 164 A4 o 196 C4 A 228 E4 3
133 85 = 165 A5 ¥ 197 C5 A 229 E5 8
134 86 > 166 A6 ! 198 Cé6 3 230 E6 "
135 87 m 167 A7 & 199 C7 c 231 E7 G
136 88 3 168 A8 - 200 C8 3 232 E8 &
137 89 £ 169 A9 8 | 200 9 £ 233 E9 é
138 8A 2 170 AA 2 202 CA e 234 EA &
139 8B ® 171 AB « | 203 CB g | 235 EB &
140 8C p 172 AC - 204 CC 1 236 EC i
141 8D > 173 AD - 205 CD f 237 ED i
142 SE « 174 AE 8 | 206 CE t 238 EE i
143 8F 4 175 AF - | 207 cCF i 239 EF i
144 90 + 176 BO = | 208 DO p 240 FO 4
145 91 ~ 177 Bl + | 2090 D1 5 241 Fl1 A
146 92 S 178 B2 2 210 D2 & 242 F2 5
147 93 € 179 B3 3 211 D3 6 243 F3 é
148 94) 180 B4 ‘ 212 D4 & 244 F4 5
149 95 8 181 B5 w | 213 D5 & 245 F5 >
150 96 Y 182 B6 9 | 214 D6 & 246 F6 5
151 97 P 183 B7 . 215 D7 x | 247 F7 =
152 98 a 184 BS s 216 DS g 248 F8 %
153 99 T 185 B9 1 217 D9 U 2499 F9 o
154 9A w 186 BA e | 218 DA 6 | 250 FaA G
155 9B a 187 BB » | 219 DB & 251 FB &
156 9C T 188 BC % | 220 DC 4] 252 FC O
157 9D Q 189 BD v | 221 DD ¥ 253 FD g
158 9E . 190 BE %¥ | 222 DE B 254 FE p
159 9F ® 191 BF ¢ | 223 DF B 255 FF g

Appendix B: Character Codes

223

Appendix C: Flags

User flags are numbered 1 through 64. System flags are numbered from -1 through —64. By convention,
application developers are encouraged to restrict their use of user flags to the range 31-64. All flags are clear by
default, except for the wordsize (flags -5 to —10).

224

Flag | Description | Clear | Set | Default
Symbolic Math
-1 Principal Solution General solutions Principal solutions Clear
-2 Symbolic Constants Symbolic form Numeric form Clear
-3 Numeric Results Symbolic results Numeric results Clear
—4 Not used
Binary Integer Math
=5 Binary integer wordsize n + 1: 0 < n <63 64
—10 | Flag —10 is the most significant bit
Base -11 -12 DEC
-11 | DEC Clear Clear
and | BIN Clear Set
-12 | OCT Set Clear
HEX Set Set
—13 | Not used
Finance
-14 | TVM Payment Mode End of Period Begining of Period End
Coordinate System -15 -16 Rect.
—15 | Rectangular Clear Clear
and | Cylindrical Polar Clear Set
—16 | Spherical Polar Set Set
Trigonometric Mode -17 -18 Degrees
—17 | Degrees Clear Clear
and | Radians Set Clear
—18 | Grads Clear Set
Math Exception
—19 | Vector/complex Vector Complex Vector
—20 | Underflow Exception Return O, set Error Clear
flag -23 or 24
21 Overflow Exception Return t+MAXR, Error Clear
set flag —-25
—22 | Infinite Result Error Return tMAXR, Error
set flag —26
—23 | Pos. Underflow Indicator No Exception Exception Clear
—24 | Neg. Underflow Indicator No Exception Exception Clear
—25 | Overflow Indicator No Exception Exception Clear
—26 | Infinite Result Indicator No Exception Exception Clear
—27 | Symbolic Decompilation X+Y*' > (X,Y) K+Y* >’ X+Y*1’ Clear
Plotting and Graphics
—28 | Plotting Multiple Functions Plotted serially Plotted Clear
simultaneously
—29 | Trace mode Trace off Trace on Off
-30 | Not used
-31 | Curve Filling Filling enabled Filling disabled Enabled
—32 | Graphics Cursor Visible light bkgnd | Visible dark bkgnd Light

Appendix C: Flags

Cc C C C CC

c

Flag | Description | Clear Set | Default
I/O and Printing
=33 | /O Device Wire IR Wire
—34 | Printing Device IR Wire IR
-35 | /O Data Format ASCII Binary ASCII
-36 | RECV Overwrite New variable Overwrite New
—37 | Double-spaced Print Single Double Single
-38 | Linefeed Inserts LF Suppresses LF Inserts
-39 | Kermit Messages Msg displayed Msg suppressed Clear
Time Management
—40 | Clock Display TIME menu only All times Clear
—41 | Clock Format 12 hour 24 hour 12 hour
—42 | Date Format MM/DD/YY DD.MM.YY Clear
—43 | Rpt. Alarm Resched. Rescheduled Not rescheduled Clear
—44 | Acknowledged Alarms Deleted Saved Deleted
Notes: If flag —43 is set, unacknowledged repeat alarms are not rescheduled.
If flag —44 is set, acknowledged alarms are saved in the alarm catalog.
Display Format
—45— | Set the number of digits in Fix, Scientific, and Engineering modes 0
—48
Number Display Format —49 =50 STD
49 STD Clear Clear
and | FIX Clear Set
=50 |SCI Set Clear
ENG Set Set
—51 | Fraction Mark Decimal Comma Decimal
—-52 | Single Line Display Multi-line Single-line Multi
-53 | Precedence () suppressed () displayed Clear
Miscellaneous
—54 | Tiny Array Elements Replaces “tiny” No replacement Replaces
pivots with 0
—55 | Last Arguments Saved Not saved Saved
-56 | Beep On Off On
-57 | Alarm Beep On Off On
—58 | Verbose Messages On Off On
—-59 | Fast Catalog Display Off On Off
—60 | Alpha Key Action Twice to lock Once to lock Twice
—61 | USR Key Action Twice to lock Once to lock Twice
—62 | User Mode Not Active Active Clear
—63 | Vectored Enter Off On Off
—64 | Set by GETI or PUTI when their element indices wrap around
Equation Library
60 | Units Type SI units English units SI
61 Units Usage Units used Units not used Used
Multiple Equation Solver
63 | Variable State Change (@) recalls variable | (P)toggles variable | Recalls
state
Appendix C: Flags

225

Appendix D: Object Structures

This appendix describes the structure of some HP 48 objects. It is beyond the scope of this book to address the
detailed structure of directories and libraries, so they are omitted here.

Sizes are expressed in nibbles. Prologues are always 5 nibbles, and unless otherwise noted field sizes (like a length
or dimension count) are 5 nibbles. Length fields are self-relative lengths in nibbles. A length field for a 3 character
string is 5 (length of length field) + 6 (number of nibbles in the string body) = 11.

Binary Integer
Atomic Size = 10
Prologue Body
DOBINT 5 nibbles

Real Number

Atomic Size = 21
Prologue Exponent Matissa Sign
DOREAL 3 nibbles 12 nibbles 1 nibble

The exponent is encoded in tens complement form. A decimal point is implied between the first and second digits of
the mantissa. The sign nibble is O for positive numbers or 9 for negative numbers.

Extended Real Number

Atomic Size = 26
Prologue Exponent Matissa Sign
DOREAL 5 nibbles 15 nibbles 1 nibble

The exponent is encoded in tens complement form. A decimal point is implied between the first and second digits of
the mantissa. The sign nibble is O for positive numbers or 9 for negative numbers.

Complex Number

Atomic Size = 37

Prologue Real Part Imaginary Part
DOCMP 16 nibble real number body | 16 nibble real number body

The real and imaginary parts are encoded using the format of the body of a real number object.

Extended Complex Number

Atomic Size = 47

Prologue Real Part Imaginary Part
DOCMP 21 nibble real number body | 21 nibble real number body

The real and imaginary parts are encoded using the format of the body of a real number object.

226 Appendix D: Object Structures

(

C C CC

4

Character
Atomic Size = 7
Prologue Body
DOCHAR 2 nibbles
String
Atomic Size = 10+2*number_of_characters
Prologue Length Body
DOCSTR 5 nibbles Characters
Hex String
User binary integers (type 10) are implemented as hex strings.
Atomic Size = 10+body_size
Prologue Length Body
DOHSTR 5 nibbles Nibbles
Arrays

While array objects are structured to support an arbitrary number of dimensions, the kernel support is only

meaningful for one or two dimension arrays. Arrays can be composed of most atomic object types.

One-Dimension Array

Atomic Size = 25+X(object body sizes)
Prologue Length Type Dimension | Dimension Object
Prologue Count Size Bodies
DOARRY 5 nibbles 5 nibbles 5 nibbles 5 nibbles
Two-Dimension Array
Atomic Size = 30+Y (object body sizes)
Prologue Length Type Dimension 1st 2nd Object
Prologue Count Dimension Dimension Bodies
Size Size (row order)
DOARRY 5 nibbles 5 nibbles 5 nibbles 5 nibbles 5 nibbles
Linked Array

A linked array is structured like the arrays above, but includes a table of pointers to object bodies. A one
dimensional linked array looks like this:

Atomic Size = 25+5* (number of objects)+X (object body sizes)
Prologue Length Type Dimension Dimension Pointer Object
Prologue Count Size Table Bodies
DOARRY 5 nibbles 5 nibbles 5 nibbles 5 nibbles 5*(#obs)

Appendix D: Object Structures

227

Name Objects

Global Name
Atomic Size = 7+2*number_of_characters
Prologue | Character Body
Count
DOIDNT 2 nibbles Characters
Local Name
Atomic Size = 7+2*number_of_characters
Prologue | Character Body
Count
DOLAM 2 nibbles Characters
XLIB Name
Atomic Size = 11
Prologue Library Number Object Number
DOROMP 3 nibbles 3 nibbles
Graphic Object
Atomic Size = 20+Height*CEIL (Width/8)
Prologue Length Pixel Pixel Grob data in row order
Height Width
DOGROB 5 nibbles 5 nibbles 5 nibbles

Graphic objects store data in row order, and the rows must have even byte widths. The bits in each nibble are
reversed - the most significant bit represents the rightmost pixel.

Code Object
Atomic Size = 10+body_size
Prologue Length Body
DOCODE 5 nibbles Nibbles
Secondary
Composite Size = 10+) (object sizes)
Prologue Body SEMI
DOCOL ... objects ... 5 nibbles
228

Appendix D: Object Structures

(

c C C (

¢

Tagged
Atomic Size = 12+2*number_of_haracters+object_size
Prologue Tag Length Tag Object SEMI
DOTAG 2 nibbles Characters S nibbles

NOTE: A tagged object is considered atomic, and cannot be decomposed with INNERCOMP.

List
Composite Size = 10+ (object sizes)
Prologue Body SEMI
DOLIST ... objects ... 5 nibbles
Symbolic
Composite Size = 10+ (object sizes)
Prologue Body SEMI
DOSYMB ... objects ... 5 nibbles
Unit
Composite Size = 31+X(object sizes)
Prologue Real Number Body umEND
DOEXT 21 nibbles ... objects ... 5 nibbles

Appendix D: Object Structures

229

Library Data Objects
A Library Data object is a "generic bucket” into which an arbitrary set of data may be stored. This object type is
used by Equation Library applications, like the Multiple Equation Solver, the MineHunt game, and the Periodic

Table application.
Atomic Size = 10+body_size
Prologue Length Body
DOEXTO 5 nibbles Nibbles

To avoid conflicts between applications, HP uses a convention for storing a list of information into a library data
object. The information stored is actually a list consisting of a bint and another object, typically a list. The first five
nibbles of the body encode the ROMID of the parent application. To illustrate this, consider Mpar, a library data
object used by the Multiple Equation Solver. Mpar looks like this:

Prologue Length Romid Rest of Body
DOEXTO | S5nibbles | 5nibbles | DOLIST Mpar SEMI SEMI
Objects

When Mpar is recalled by the Multiple Equation solver, it is copied to TEMPOB. If the ROMID matches the
ROMID of the Multiple Equation Solver the first part of the object is overwritten with the prologue for a list and bint

as follows:

DOLIST

DOBINT

Romld
5 nibbles

DOLIST Mpar SEMI

Objects

SEMI

The object MESRc1Egn does this job for the Multiple Equation Solver:

230

MESRcC1lEg@n

#E4012h

Recalls the contents of the reserved variable Mpar

— { equation list }

G/GX XLIB 228 18

Appendix D: Object Structures

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	crooked_Page_001
	crooked_Page_002
	crooked_Page_003
	crooked_Page_004
	crooked_Page_005
	crooked_Page_006
	crooked_Page_007
	crooked_Page_008
	crooked_Page_009
	crooked_Page_010
	crooked_Page_011
	crooked_Page_012
	crooked_Page_013
	crooked_Page_014
	crooked_Page_015
	crooked_Page_016
	crooked_Page_017
	crooked_Page_018
	crooked_Page_019
	crooked_Page_020
	crooked_Page_021
	crooked_Page_022
	crooked_Page_023
	crooked_Page_024
	crooked_Page_025
	crooked_Page_026
	crooked_Page_027
	crooked_Page_028
	crooked_Page_029
	crooked_Page_030
	crooked_Page_031
	crooked_Page_032
	crooked_Page_033
	crooked_Page_034
	crooked_Page_035
	crooked_Page_036
	crooked_Page_037
	crooked_Page_038
	crooked_Page_039
	crooked_Page_040
	crooked_Page_041
	crooked_Page_042
	crooked_Page_043
	crooked_Page_044
	crooked_Page_045
	crooked_Page_046
	crooked_Page_047
	crooked_Page_048
	crooked_Page_049
	crooked_Page_050
	crooked_Page_051
	crooked_Page_052
	crooked_Page_053
	crooked_Page_054
	crooked_Page_055
	crooked_Page_056
	crooked_Page_057
	crooked_Page_058
	crooked_Page_059
	crooked_Page_060
	crooked_Page_061
	crooked_Page_062
	crooked_Page_063
	crooked_Page_064
	crooked_Page_065
	crooked_Page_066
	crooked_Page_067
	crooked_Page_068
	crooked_Page_069
	crooked_Page_070
	crooked_Page_071
	crooked_Page_072
	crooked_Page_073
	crooked_Page_074
	crooked_Page_075
	crooked_Page_076
	crooked_Page_077
	crooked_Page_078
	crooked_Page_079
	crooked_Page_080
	crooked_Page_081
	crooked_Page_082
	crooked_Page_083
	crooked_Page_084
	crooked_Page_085
	crooked_Page_086
	crooked_Page_087
	crooked_Page_088
	crooked_Page_089
	crooked_Page_090
	crooked_Page_091
	crooked_Page_092
	crooked_Page_093
	crooked_Page_094
	crooked_Page_095
	crooked_Page_096
	crooked_Page_097
	crooked_Page_098
	crooked_Page_099
	crooked_Page_100
	crooked_Page_101
	crooked_Page_102
	crooked_Page_103
	crooked_Page_104
	crooked_Page_105
	crooked_Page_106
	crooked_Page_107
	crooked_Page_108
	crooked_Page_109
	crooked_Page_110
	crooked_Page_111
	crooked_Page_112
	crooked_Page_113
	crooked_Page_114
	crooked_Page_115
	crooked_Page_116
	crooked_Page_117
	crooked_Page_118
	crooked_Page_119
	crooked_Page_120
	crooked_Page_121
	crooked_Page_122
	crooked_Page_123
	crooked_Page_124
	crooked_Page_125
	crooked_Page_126
	crooked_Page_127
	crooked_Page_128
	crooked_Page_129
	crooked_Page_130
	crooked_Page_131
	crooked_Page_132
	crooked_Page_133
	crooked_Page_134
	crooked_Page_135
	crooked_Page_136
	crooked_Page_137
	crooked_Page_138
	crooked_Page_139
	crooked_Page_140
	crooked_Page_141
	crooked_Page_142
	crooked_Page_143
	crooked_Page_144
	crooked_Page_145
	crooked_Page_146
	crooked_Page_147
	crooked_Page_148
	crooked_Page_149
	crooked_Page_150
	crooked_Page_151
	crooked_Page_152
	crooked_Page_153
	crooked_Page_154
	crooked_Page_155
	crooked_Page_156
	crooked_Page_157
	crooked_Page_158
	crooked_Page_159
	crooked_Page_160
	crooked_Page_161
	crooked_Page_162
	crooked_Page_163
	crooked_Page_164
	crooked_Page_165
	crooked_Page_166
	crooked_Page_167
	crooked_Page_168
	crooked_Page_169
	crooked_Page_170
	crooked_Page_171
	crooked_Page_172
	crooked_Page_173
	crooked_Page_174
	crooked_Page_175
	crooked_Page_176
	crooked_Page_177
	crooked_Page_178
	crooked_Page_179
	crooked_Page_180
	crooked_Page_181
	crooked_Page_182
	crooked_Page_183
	crooked_Page_184
	crooked_Page_185
	crooked_Page_186
	crooked_Page_187
	crooked_Page_188
	crooked_Page_189
	crooked_Page_190
	crooked_Page_191
	crooked_Page_192
	crooked_Page_193
	crooked_Page_194
	crooked_Page_195
	crooked_Page_196
	crooked_Page_197
	crooked_Page_198
	crooked_Page_199
	crooked_Page_200
	crooked_Page_201
	crooked_Page_202
	crooked_Page_203
	crooked_Page_204
	crooked_Page_205
	crooked_Page_206
	crooked_Page_207
	crooked_Page_208
	crooked_Page_209
	crooked_Page_210
	crooked_Page_211
	crooked_Page_212
	crooked_Page_213
	crooked_Page_214
	crooked_Page_215
	crooked_Page_216
	crooked_Page_217
	crooked_Page_218
	crooked_Page_219
	crooked_Page_220
	crooked_Page_221
	crooked_Page_222
	crooked_Page_223
	crooked_Page_224
	crooked_Page_225
	crooked_Page_226
	crooked_Page_227
	crooked_Page_228
	crooked_Page_229
	crooked_Page_230
	crooked_Page_231
	crooked_Page_232
	crooked_Page_233
	crooked_Page_234
	crooked_Page_235
	crooked_Page_236
	crooked_Page_237
	crooked_Page_238

