

CONTROL THE WORLD
WITH HP-IL

A New World Of Uses for Hewlett­
Packard Handheld Computers

By
GARY FRIEDMAN

Pictorial Artwork by
Steve Luchsinger

Published by Synthetix
P.O. Box 1080

Berkeley, CA 94701-1080
USA

© 1987 by SYNTHETIX, Berkeley, CA 94701-1080

All rights reserved. No part of this book may be reproduced in
any form or by any means without permission in writing from the
publisher.

Rocky and Bullwinkle cartoons copyright P.A.T. Ward Productions.
Characters used with permission.

Library of Congress Catalog Card Number: 87-60210

ISBN 0-9612174-9-9

To my parents,
who during the course of this book

have forgotton what I look like.

Special thanks to:

Ken Emery, David Erbas-White, Michael D. Varnen,
Sergio Morales, Jason and Jenni Levine,

Ruth Brodsley, and Brian Ramage.

TABLE OF CONTENTS

Foreword .. Vll

Ch.1 The Basics.. 1
Ch. 2 More Simple Examples.. 41
Ch. 3 Inexpensive I/O Using the Time Module.................. 53
Ch. 4 Darkroom Controller... 69
Ch. 5 Speech Synthesis ... 105
Ch. 6 Intelligent Autodialer .. 119
Ch.7 Telephone Answering Machine Utilizing

Speech Synthesis and Touch Tone ® Decoding 149
Ch. 8 Keyboards for the 71.. 175
Ch. 9 Electronic Tape Measure 205
Ch.10 Slide Projector Dissolve Unit 233
Ch.11 An Introduction to RS-232 257

Appendices

A. Barcode for 41 Programs .. 271
B. Sources of Non-Standard Items 297
C. Dissertation as to Why Positive Handshake Logic

is Not Worth Pursuing .. 301
D. Pinouts of Common Integrated Circuits 305
E. Glossary .. 309

Afterword .. 317
Index .. 321

v

FOREWORD

There is probably no group of people in existence that can
appreciate all of the 41 's capabilities more than college students
who must constantly crunch numbers. As opposed to
professionals who use it for a handful of things in their day-to-day
activities, students rely on it most of the day to help solve an
incredibly diverse set of problems. And the more one is introduced
to new mathematical applications, the more one can appreciate
the power and versatility of this simple-looking machine!

But most people never see the power of both the HP-41 and HP-71
pocket computers beyond their obvious number-crunching
capability. With the addition of a deceivingly simple-looking
interface, these same calculators are transformed into powerful
controllers that can interact with over 900 devices in the outside
world simultaneously! Coupled with their characteristic small
size, continuous memory and low power consumption, they are
uniquely suited to field applications that everyone else's IBM or
Apple would be too bulky, noisy, and cumbersome to implement.

Controt.th!LWorld with HP-IL illustrates the interface
capabilities of the HP-41 and 71. It shows useful and (to be certain)
unique functions that exploit these machines' unique properties
and offers enough background so you can design solutions to suit
your own applications.

Many chapters in this book provide complete information for you
to duplicate what's presented; others are designed to give you
enough background information so you can implement your own
modifications. Or, as is the case in Chapter 8, enough information
for you to convert whatever is available into something quite

Vll

Control The World with HP-IL

useful.
This book assumes the reader is reasonably familiar with either

the HP41 or 71 handheld computers, and has a very basic
knowledge of digital electronics (i.e., knows what a gate is), and is
confident about their ability to solder and disassemble things.
Although I do try to describe the circuits at a detailed level for
those who are unfamiliar with electronics, experience and
experimentation are the best tools to insure project completion,
and most of all learning.

viii

Chapter One

THE BASICS

"There are only 2 kinds of people:
those who own Hewlett Packard calculators,
and those who say, 'Where's the equals?'."

--G. Friedman

This book is centered around 2 pocket-sized units you can use to
control the outside world: the Hewlett Packard 41 and 71
computers. Do not let their size fool you; both machines were light
years ahead of their time when they were introduced.

I prefer these small controlling machines to their more famous
larger counterparts for some fairly fundamental reasons: 1) for
control applications, they are just as powerful as the larger
machines, (even more so when the 71 's math capabilities are
compared), 2) HP-IL (Hewlett Packard Interface Loop) gives you an
order of magnitude more Input/Output (110) opportunities than
ANY personal computer, and 3) you can use them in the field, as
they do not need to be tied to an AC outlet. This last point is
especially important if the devices you are controlling are battery
operated, such as the time exposure camera controller of Chapter
3.

There are many who might say these machines greatly lack the
speed necessary for any application involving instant response to
an event, and therefore should not be bothered with. To this I say
HA!!!, and I offer as evidence the chapters covering ultrasonic
distance measurement, the intelligent autodialer that can
recognize ringing and busy signals, and the slide projector
dissolve unit, which varies the intensities of 2 high-wattage lamps

1

Control The World with HP-IL

using pulse-width modulation in real time! (Don't worry; these
terms will all be explained clearly later.)

The Machines

In order to demonstrate versatility, two handhelds will be
utilized in this book: the HP41 C/CV/CX calculator, and the HP71B
BASIC computer. Because it is unlikely that any person would
own both, brief descriptions of each are presented here, and some
of their strengths and weaknesses can be explained, and then later
on exploited.

TheHP-41

Possibly the most powerful handheld calculator ever made, the
41 was designed to be efficient, versatile, and easy-to-use. A
numeric-entry system called RPN (which stands for Reverse
Polish Notation, giving credit to the origins of this method) allows
users to get answers using fewer keystrokes, bypassing the
traditional nested parentheses and "equals" keys. Most people are
put off by this feature because it does take a while to learn, but ask
anyone who has invested the few hours it takes to master it and
they will tell you about the quantum level of superiority RPN has
over any other method.

This characteristic is further enhanced by programmability, a
feature that is so straightforward on the 41 that learning RPN and
learning how to program are practically the same thing.

4 expansion slots, or "ports", exist on the 41 to add to its existing
built-in library of over 200 functions, and to give it extra capabilities
such as timer and alarm functions or the ability to communicate
with peripherals.

The 41 comes in 3 flavors: The just-described 41C, a unit so basic
that it's no longer being made; the 41 CV, which is identical to the
41C except that it has the maximum amount of memory already
built in, thereby freeing a port space; and finally the 41 CX, which
builds on the CV by adding a Time module, Extended
FunctionslExtended memory module, and even throws in some
extra functions never before seen on a 41. The unit you choose

2

The Basics

depends on what level you plan to exploit your calculator and how
many port spaces you plan to occupy while exploiting it.
Configured properly, any flavor 41 provides a tool, forever at your
disposal, that can solve your unique problems more easily than
any other machine available today.

The Extra ROMS

The 41, however, initially has several shortcomings when it
comes to acting as a controller. These stem mostly from the fact
that it was the first machine to implement HP-IL, (it's murder
being a pioneer!) and back then the designers had only envisioned
an interface that was so user-friendly that people wouldn't NEED
to have low-level control of the loop. The 41 's HP-IL was initially
introduced with 2 products designed to work together: the 82162A
thermal printer and 82161A digital cassette drive, and if these
were your only 2 peripherals, you'd swear that the system was
well-implemented.

Well, suddenly other HP divisions started producing HP-IL
products that actually adhered to specifications (like responding to
"Send Device ID" requests, something the original printer and
tape drive didn't do), and it was clear that new functions had to be
provided. HP then came out with 2 plug-in ROMs as an
afterthought: The IL Development ROM, which gave absolute
control to those who knew what they were doing, and the Extended
I/O ROM, for "the rest of us". AT LEAST ONE of these ROMS is
mandatory for just about every project described henceforth. In
most cases it doesn't matter, except for Chapter 4, which requires
the Development ROM. (An explanation of HP-IL and how this
ROM is used will also be presented later.)

The other shortcoming of the 41, the inability to quickly load the
ALPHA register (which doubles as the Input/Output register
when communicating with the loop) with characters other than
A-z or 0-9, only slows the machine down and greatly inflates the
program size. For example, let's say you want the thermal printer
to go into Double wide mode (normally done by setting flag 12) by
sending an "escape sequence". A quick check on page 13 of the
thermal printer's manual reveals that this is what the printer will

3

Control The World with HP-IL

expect to see:

ASCII Character sequence: {escape}
I

Decimal Equivalents: 27

& k

I
1 S

I I
38 107 49 83

And using XTOAR (append X to Alpha on the Right) with an
Extended I/O ROM, (or XTOA with the Extended Functions ROM),
this is what it takes to send this sequence:

01 CLA 09 XTOAR
02 27 10 83
03 XTOAR 11 XTOAR
04 38 12 SF 17
05 XTOAR 13 OUTA
06 107 14 "ABCDE"
07 XTOAR 15 CF 17
08 49 16 OUTA

Lines 1-11 put the necessary escape sequence into the ALPHA
register. (Line 12, SF 17, is needed to suspend the normal
Carriage Return/Line Feed norm ally sent via OUTA.) Try
running the program and stopping at line 11. The ALPHA
register will contain what the escape sequence looks like:
GARBAGE! This is one of the reasons these characters cannot be
keyed in the normal way.

Synthetics to the rescue!

Synthetic text lines contain instructions that cannot be keyed
into program memory by conventional means, but will execute
flawlessly once they are there. Their history is a little spectacular,
as they were discovered and nurtured by user groups and their
existence denied (for the first few years, anyway) by HP. Synthetic

4

The Basics

instructions in general allow any user to access internal registers,
pointers, noises (127 tones, rather than just 10), and display
characters. They allow the 41 to do things that aren't normally
within the machine's realm.

In this book, synthetics will be used for one thing: loading the
ALPHA register quickly. (Okay, two things: In Chapter 4 we need
to suspend all Time Module alarms and synthetic techniques are
the ONLY way to do this.) There are currently two best ways to
load synthetic instructions into the 41. The best is via the
ZENROM, a plug-in accessory produced in Great Britain that
makes entering synthetics as easy as normal instructions. The
second best, and possibly most common, method is by the LB (Load
Bytes) program which is found in the PPC ROM. Both programs
take as input numbers between 0 and 255, and insert them into
program memory. A valid 41 instruction then appears in that
space if a proper number sequence has been entered.

If you are not familiar with synthetics, there is no need to learn
them. Appendix A contains barcode of every HP-41 program listed
in this book, so the entire program, synthetics and all, can be
loaded with the Wand. Additionally, all the necessary program
bytes for creating synthetic instructions are included in each
program listing, for use with the utilities provided by either
ZENROM or the PPC ROM. If you would like to learn more about
synthetics, there are a couple of highly-recommended books on the
subject:

HP-41 Synthetic Programming Made Easy by Keith Jarett
Published by SYNTHETIX, P.O. Box 1080
Berkeley, CA 94701-1080 USA

Synthetic Programming on the HP-41 by Bill C. Wickes
Larken Publications
4517 NW Queens Ave.
Corvallis, OR 97330 USA

HP-41 Instruction Summary

I'm sure many who own both the 41 and the IL module are

5

Control The World with HP-IL

wondering exactly how these two items are used to talk to items
other than printers and tape drives. Well, just to quench your
thirst for knowledge, here's a table which summarizes all the
instructions available in the 41's IL Module that can be used to
send data to an 8-bit port. (This list does not include the
supplemental instructions provided by the Extended I/O or IL
Development ROM.) The 41 must be in MANIO (Manual 1/0)
mode when these are used, otherwise most commands will try to
route the data to a printer.

OUTPUT

ACA

PRA

Sends alpha register contents to the 8-bit port as a string of
ASCII characters.

Same as ACA but terminates with an End-of-Line indicator.
Some special non-alpha characters, such as decimal 13 and
126, are not transmitted properly.

OUTA

ACX

PRX

Same as ACA but sends an End-of-Line indicator only when
flag 17 is clear.

Sends X register contents to the 8-bit port as a string of
ASCII characters using the current display format.

Same as ACX but terminates with an End-of-Line indicator.

ADV,PRBUF
Sends End-of-Line indicators to the port.

ACCHR

6

Will send anyone character specified by its decimal
equivalent in the X register. For example, to send the Greek
character (mu) or to send the binary word 00001100, put "12"

The Basics

into the X register and ACCHR. Any character code up to
127 can be sent except 10,13, and 126. (See text.)

TRIGGER
On the GPIO or the IL Converter, pulses the GETO (Group
Execute Trigger Out) line low for a brief period.

INPUT

INA

IND

Fills the alpha register with up to 24 ASCII characters from
the 8-bit port. If flag 17 is set, the calculator does not wait for
a CRILF (Carriage ReturnlLine Feed) to terminate the
incoming string of characters.

Interprets the next incoming ASCII encoded word as a
number and places it into the X register.

INSTAT
Places the first status word into the X register and sets flags
0-7 accordingly. This is the only way to test the 8-bit port's
MSRQ (Manual Service Request) line.

TheHP-71

The HP-71 is a rather deceiving machine. It was originally
designed to be a more powerful replacement for the 41 (it was
originally called the HP-44), and I guess that during the
development process they just got carried away. Contained within
its tiny dimensions are 3 programming languages (BASIC, 20-bit
FORTH, and Assembly), an advanced CALCulations mode, the
world's best HP-IL, and a 512K address space. It's
number-crunching capability is unparalleled for anything of its
size; in fact it adhered to the IEEE floating point math standard
even before it was a standard!

But I am not trying to be a salesman. Blatantly missing from
the 71 is the RPN environment raved about a few pages ago; it has

7

Control The World with HP-IL

been replaced by a more sophisticated CALCulations mode. (HP
does sell a plug-in ROM that turns the 71 into an incredibly fast 41,
thereby closing the gap somewhat.) The most impressive aspect as
far as this book is concerned is its implementation of HP-IL, which
is the world's best. Offering both high- and low-level control
(something the 41 had a hard time doing), it has the capability to
act as a device as well as controller, pass control to another device
on the loop, wake the 71 up to process important frames, or pass
unimportant ones through while the machine stays off.

If you are a newcomer to HP equipment and especially to HP-IL,
the 71 will make for an easier transition than the 41 because 1) it's
programmable in a very robust implementation of BASIC, a
language that marketing people seem to think is so obvious to use
that everyone is born with the intuitive knowledge of it, and 2)
because of its superb HP-IL interface, it is much easier to
manipulate devices on the loop and have absolute control over
what's going on.

Just as the 41 can't communicate without its IL Module, the 71
must have 2 peripherals to allow it to interface with the projects
described in this book. The first is the IL Module, which is
absolutely mandatory for obvious reasons. Almost as necessary is
the FORTH/AssemblerlDebugger ROM, which practically doubles
the power of the 71. Programming in FORTH gives you absolute
control over the machine at 10 times the speed of BASIC, and is an
easy language to learn if you're already familiar with RPN on the
41. But if FORTH isn't for you, then there's an assembler that
allows you to program in assembly language, giving you the
freedom to write your own commands and extend the BASIC or
FORTH languages to fit your own needs. (Assembly language can
also be used to bypass HP-IL and control the outside world at
lightning-fast speeds, as demonstrated in Chapters 9 and 10.) The
Debug utilities put the icing on the cake, allowing you to look inside
the machine's registers and see why that simple little assembly
language program didn't work right. Learning how to get the
most out of this ROM takes time. But then again, the same goes
for any good tool. In short, the 71 without the FORTH/Assembler/
Debugger ROM is like a Jeep without 4-wheel drive.

8

The Basics

Equally handy are the ROM's line editor, called EDTEXT, and
its KEYBOARD IS lexfile, an assembly language routine that
allows you to hook up an external keyboard to the 71 so it can be
used as comfortably as the big machines. (See Chapter 8 or 11 for
examples of external keyboards using KEYBOARD IS.)

HP-IL Introduction

HP-IL is one of those unique solutions that, like the handheld
units that drive them, fit such a specialized need so perfectly it's
hard to imagine anything that compares to it in terms of speed,
versatility, and especially power consumption. A typical loop setup
is shown in Fig. 1-1.

DISK DRIVE

PRINTER

CALCULATOR

Figure 1-1
Typical Loop
Configuration

Very basically, all the wires between devices form a loop.
Messages sent out are passed along from one intelligent device to
the other. In this case 'intelligent device' means they each have

9

Control The World with HP-IL

built-in microprocessors, so they can react to messages in a
meaningful way. Eventually the message reaches the sender,
which then compares the returned message against the one sent to
check for errors. Each device then tries to act on the message it
had just copied, but most discard it because it wasn't meant for
them.

HP-IL's simple physical layout is also responsible for these
attributes:

1. Low power, allowing operation on batteries for extended
periods of time.

2. Versatile, can set up multiple listeners for mass printing or
tape duplication. Imagine 930 LaserJets printing at the same
time! (Imagine the cost!)

3. All devices can be selectively controlled. With normal
addressing, up to 31 devices can be connected to a controller. With
extended addressing, over 900 devices can be accessed!

4. Average data rate is comparable or faster than RS-232.
5. Devices can be separated by as much as 10 meters with special

twisted-pair IL cables.
6. Devices can be powered down and powered up by remote

commands, meaning the entire battery-operated system can
conserve its energy until needed. (Not all devices possess this
capability.)

Getting into the full details of HP-IL is too complicated to cover
completely in this one section. Rather, this chapter offers a
beginner's introduction to HP-IL, encompassing everything you
need to know to understand what goes on in the rest of the book. If
more information is desired, I highly recommend another book:

THE HP-IL SYSTEM: An introductory Guide to the
Hewlett-Packard Interface Loop by Gerry Kane, Steve
Harper, David Ushijima; OsbornelMcGraw-Hill, 1982

Let's start off with some basics. The following is a list of some
HP-IL messages that all devices respond to. These are commands
that are invisible to most IL owners; the IL Module's dedicated
microprocessor invisibly generates and decodes them in response

10

::VEN THOUGH THIS
~ECENT FOREIGN El(­
"HANGE STUDENT HAD
5WFICULTY READING
~NGI.ISH I HE COuLD
~I.WAYS RELY ON /.lIS
JIlf>,qNE.S£ SAWY TO
NSLIRE THtlT TI-1E
"IESSAGE 40T TO
THE: ~IGI1T PI.ACJ:.

The Basics

TO H 1.5 6055 ...

Y~MOTO WAS v£RY NERVOUS

AS HIS FIRST DAY AS
ME5SAG£· BOY t=OR THE
PENrA~oN BEGAN ...

(Gut-Pi) lOON)T
EVE N KNOW WHO
T~E ORIGINAL.
MESSA0E wAS
MEANT FOR?

11

Control The World with HP-IL

to some high-level user command. Don't worry if they look like
Greek to you; some usage examples are coming up shortly.

DCL--Device Clear. All devices on the loop receiving this
message will do something different. A printer might clear its
buffer and eject the current page. A tape drive might just rewind
its tape.

SDC--Selected Device Clear. Same as above, except instead of it
being directed to every device on the loop, this one is executed only
to devices that are currently "listening".

LAD xx--Listener Address. This tells the xxth device on the loop
to become a "listener", which means the peripheral or controller is
to grab all subsequent data bytes as they pass around the loop and
treat them as input. "Listener" status stays in effect until a
clearing instruction, such as the "unlisten" (UNL) command, is
sent.

TAD xx-- Talker address. The xxth device gets ready to transmit
data when receiving this command. It is up to the controller to set
up listeners on the loop to receive the transmission. Although you
can have as many listeners on the loop as you want, only one
device can be assigned the role of "talker". UNT (Untalk) or
assigning a different talker cancels this mode.

SDI--Send Device ID. This instructs the current talker to send its
name. For example, the HP-ILIGPIO interface would respond by
sending the character sequence "HP82165A", the non-descriptive
name given to it by HP.

SAI--Send Accessory ID. The talker sends a number describing
the type of device it is. Accessory ID's are discussed in detail
shortly.

DDL--Device Dependent Listen. Tells the current listener(s) to
interpret the following data as commands rather than input.
Every device responds to DDL commands differently, depending on
how it was programmed at the factory. You'll be hearing plenty
about this later, believe you me!

DDT--Device Dependent Talker. Same concept as DDL, above,
except this command addresses the current talker. Different
devices will transmit different information depending on their
device class and programming.

12

I'll JUST MA55 01 srRIBur£
THESE SDII'S. <HNERAL
t 27 SHOUlD ((NOW

fN OU&4 TO RE5~ND •

. • . I HOPE"!

The Basics

13

Control The World with HP-IL

SST--Send Status. Tells the current talker to send at least 1 byte
of status. Different devices, of course, need to report on different
things, which is why every status word is interpreted differently,
depending on the device that sent it.

AAD--Auto Address. This lets all devices on the loop know what
position they're in. This command (also known as "configuring
the loop") is performed every time the controlling calculator is
turned on.

Here is a sample of how these commands are used in a typical
loop session. Soon after the controlling device (such as a
calculator) is turned on, an "auto-address" takes place, which
works like this: The controller sends out the Auto address
command. The first machine on the loop captures the message
and says to itself "Hmmm ... Nobody's modified this AAD message
yet ... I must be the first device on the loop. Until further notice, I'll
call myself #1." The first device then modifies the AAD message to
show that one device has responded to it so far and sends it onto the
next device in the loop. The next device does precisely the same
thing, calling itself #2 and passing the message along the loop.
When the message finally makes its way back to the sender, the
modified frame will contain the number of devices on the loop.
This information is crucial since loop addressing is done by
position number rather than by name. (NOTE: This is not always
the case, but for this book, it is gospel.)

The user then asks the computer to print a file, to which the
computer responds, "Golly, you told me to print something, and
I'm not even sure there's a printer in the loop!" So then it goes
about the job of asking each device, in order, what its function is.
First, it makes the first device a talker, and then it issues the SAl
(Send Accessory ID) command, to which the mystery device
responds with a number, classifying it as a printer, mass
medium, plotter, 8-bit port, etc. This process is repeated for every
item on the loop until the first printer is found. When this
happens, the computer stops and says, "Well, why didn't you say
you wanted to send it to device #N in the first placeT. It then
makes that printer a listener, makes itself a talker, and then starts

14

The Basics

15

Control The World with HP-IL

sending data. After the last byte is transferred, the controlling
computer de-assigns the talker (UNT) and listener (UNL) status'
and returns to the tedious task of waiting for the user to do
something.

That was a brief going-over. Now, on to some badly-needed
explanations.

After each device has been assigned a number, it is sometimes
useful to know the function of each device, so information destined
for a printer can be routed there (as in the previous example).
Most HP-IL devices have 2 ways of conveying this information:
Device ID's (such as "HP82166", which is the name of the IL
Converter), and Accessory ID's (such as 64, which classifies it as
an interface type device). Having two methods at your disposal can
be advantageous, as the following example will show:

25-Pin Connector \

16

"GPIO"

IIIllI 00

~ 34-Pin Connector

Figure 1-2
A Situation
where Accessory
IDs will not uniquely
identify the device.

The Basics

As will be fully explained in a couple of sections, the two devices on
the loop in Fig. 1-2 are almost identical. Because they are slightly
different, they have two different names and transmit two different
ID's. Because they perform the same function, they will send the
same accessory ID. We can take advantage of the sameness and
the differences by tailoring their use to the situation.

With the 41 as a controller, as shown in Fig. 1-2, we wish to send
information to the GPIO but not the IL Converter. Two steps are
needed in order to talk to that device: first, find its loop position,
and second, SELECT it. (SELECTing it on the 41 means that all
future communications will go there by default.) Device ID's are
used to insure talking to the proper device. Here is the code needed
for the 41 to accomplish this:

01 MANIO

02 "HP82165"

03 FINDID

04 SELECT

05 "ABCDEFG"

06SF17

070UTA

or for the 71:

The printer is no longer the default device.
(Not necessary in this case, but it's a sound
programming technique that helps avoid
confusion later.)

Device ID for the 82165A GPIO 8-bit port,
loaded into the ALPHA register.

Puts the device's loop position into the X
register.

Makes it the primary device. (All
subsequent data gets routed to there.)

A test string.

Disables automatic CR/LF (Carriage
ReturniLine Feed) on output.

Send the ALPHA register to the selected
device.

OUTPUT :HP82165; "ABCDEFG"

17

Control The World with HP-IL

Sometimes situations come up (like in this book, for example)
when you don't care whether an IL Converter or a GPIO will be
connected to the loop, but you do want to the program to work
without modification in either case. For this, we can use
Accessory ID's, which were created specifically for this purpose.
Accessory ID's just identify the type of device without worrying
about specifics, such as whether or not the mass storage device is
the cassette type or the floppy disk variety. The Accessory ID's fall
into the following categories as defined by Hewlett Packard:

DEVICE CLASS ACCESSORY 10 RANGE
Controllers 0-15
Mass Storage Devices 16-31
Printers 32-47
Displays 48-63
Interfaces 64-79
Instruments 80-95
Graphics Devices 96-111
Undefined 112-223
EPROM Programmers 224

So, if your program wanted to find an interface device, it would
(ideally) search for an Accessory ID anywhere between 64 and 79.
It will be seen shortly, though, that in our case only the number 64
need be sought after.

Using Accessory ID's, the following program will work with
either of the configurations in Fig. 1-3 (next page):

01

02

03

04
05
06
07

18

MANIO

64

FINDAID

SELECT
"ABCDEFG"
SF 17
OUTA

Again, good programming
practice.
Accessory 10 for "interface
class" device.
Find Accessory 10, from the
Extended I/O ROM.
Make it the primary device.

The Basics

"GPIO"

III 0 0 mJIill

Q)

t::
--,Q)
->

c:
o
o

Figure 1-3
2 Configurations
that respond to
"64 FINDAID"

or for the 71:

or

PRINTER IS :INTRFCE Treats the first
interface-class device
as a printer.

OUTPUT :INTRFCE; "BLAH, BLAH, BLA-BLAH!"
Sends string to first
interface-class device.

19

Control The World with HP-IL

Another example: When the 71 's "PRINTER IS :PRINTER"
command is executed, it just looks for the first device on the loop
whose Accessory ID (falling between 32 and 47) classifies it as a
printer, and then routes all future PRINT functions to that device.
It shouldn't care whether there's a thermal or a ThinkJet (tm)
printer attached.

When information is to be transferred from one device to
another, the controller must first assign the appropriate devices to
be either talkers or listeners and then start the data going. Most of
the time this activity is invisible to the user, but if we take the time
to understand what's going on we can do some pretty impressive
things. For example, let's look at the common case of the HP71
sending data to a printer, and then we'll perform some magic and
have it drive 30 printers at once!

Here are the steps involved in "outputting" to a printer:

1) IdentifY the first printer on the loop using Accessory IDs.
(Look for an Accessory ID of 32.)

2) Make the printer a Listener.
3) Make the 71 a Talker.

20

The Basics

Figure 1-4
Multiple Listeners

4) Send the file as a bunch of data bytes.
5) Remove the 71 from Talker status (the UNTalk command).
6) Remove the printer from listener status (the UNListen

command).

All the above are automatically performed for you every time
anything is printed using the standard commands. But if you
wrote your own program, you could set up more than one listener
on the loop and transmit the same information.

The following 71 program does just that.

05 RESET HPIL

10 PRINTER IS :LOOP

Resets the machine to a known
condition.
All future PRINT functions go
only to user-assigned
listeners.

20 SEND UNT UNL LISTEN 1,2,3 MTA ! Assigns the first 3

30 PLIST ANYFILE
40 SEND UNT UNL

devices on the loop as
listeners and the 71 as a
talker (MTA)
Print any old file.
Undoes Talker and Listener
status.

21

Control The World with HP-IL

Here's another wonderful possibility: Take 2071's and connect
them all together in a loop. Throw in some other peripherals in
random places on the loop if you desire. By turning only one of the
71s on and running the program below, you can have it turn all the
other devices on, assign only the 71s as listeners, transfer a
program to them, and shut everything om Here's the program
that does this:

10 INPUT "PROGRAM NAME? "; P$! p$ is the name of
! the program you want to send.

20 CONTROL ON @ OPTION BASE 1
30 DIM A(32) A is the array which will

contain the loop position of
all the 71s.

40 FOR N=l TO 31
50 A(N) =DEVADDR ("HP71 ("&STR$ (N) &") ") ! Find the Nth

60 IF A(N)=-l THEN 80

70 NEXT N

22

71 on the loop and store its
loop position in A(N) .
Branch here if there are no
more 71s.

80 REMOTE :LOOP
90 FOR X=l TO N-1
100 SEND LISTEN A(X)
110 NEXT X

The Basics

Remote Enable all devices.
For each 71 on the loop
Make it a listener

120 SEND MTA Make the 71 a talker.
130 OUTPUT :LOOP;"CONTROL OFF" ! The first remote

! command to be sent.
140 OUTPUT :LOOP; "BEEP @ COpy ";P$;":LOOP @ BYE"

150 COpy P$ TO :LOOP

160 BYE

Line 140 sends the remote
command to copy the specified
program from the loop.
Copies the program to all the
current listeners.
Shut the sending machine off.

[Note for experts: Both loops in the above program could have been
eliminated by sending the Auto Address Unconfigure command
and doing a LAD 3 (the 71 's default address). Keep in mind,
though, this is supposed to be for educational purposes, and
special cases like this only serve to confuse beginners.] [Note for
beginners: See what I mean?]

41 vs. 71 Implementations

Well, that's a brief introduction. Throughout the examples you
many have noticed that, even though the messages generated
around the loop were the same, the steps required to generate
them on each machine were quite different. The 41 's instructions
are much closer to what's actually sent around the loop; whereas
the 71's instructions are of a very high level in order to shield the
average user from unnecessary complexity.

Unlike the 41, however, the 71 has the capability to go from
high-level, user-friendly mode to low-level, user-has-total-control
mode. The 41 needs outside help to do this, and HP has provided it
in the form of one of two plug-in ROMs: the IL Development ROM
and the Extended I/O ROM.

The IL Development ROM (sometimes affectionately known as
the DevIL ROM) is the more powerful of the two ROMs, and
therefore a little more difficult to use. In addition to allowing you

23

Control The World with HP-IL

to generate ANY type of HP-IL message, it also offers a SCOPE
mode, which lets you put your 41 in the loop and will display all the
low-level IL messages being passed around, giving the user a
"window" to what's being sent from machine to machine. You
also have the ability to store these frames away for future analysis,
or capture them and output something completely different. For
development purposes, this is invaluable. In addition, this ROM
also provides very handy routines for base conversion, covering
Hex (base 16), Octal (base 8), and Binary (base 2) words up to 32 bits
wide.

Although not quite as powerful, the Extended I/O ROM is
nevertheless the one that will be recommended for all but one of the
41-based projects described in future chapters. This is because in
the never-ending tradeoff struggle between absolute control and
user friendliness, this one wins out on friendliness (and in some
cases speed). (Chapter 4 is the only example that requires a
feature in the Development ROM.)

The Extended I/O ROM generally requires fewer commands
than the DevIL ROM when doing loop configuration or sending out
a finite number of characters, and provides a means of accepting a
byte value of "0" as the first character in a string, something the 41
doesn't usually allow. It also uses the ALPHA register as a
24-character input/output buffer, whereas the DevIL ROM uses a
separate memory buffer that must be read and written to with
greater difficulty.

It is unfortunate that one must make a choice between the two
ROMs. Even those of us who are foolish enough to buy both have
difficulty using them simultaneously since some of their duplicate
function names perform their tasks slightly differently.

Well, that should be enough information to get started. The
next section gives the basics of the hardware aspects of interfacing.
Then, Chapter 2 will offer some simple examples so we can put all
this information to use immediately.

Theory of 110: Triacs, Opto-Isolators, Gates

This section will help to answer the age-old question, "How do
you actually get a computer to interact with the outside world?". It

24

The Basics

certainly is not an obvious thing even to those who possess degrees
in computer science, yet it is no less important a topic than
Fast-Fourier Transforms or Runge-Kutta root finders. (For those
of you who just said "Huh?": Don't worry; these are subjects best
saved for another book.)

Surely everyone can associate with the analogy of a light switch:
When someone or something throws the switch, two pieces of
metal come into contact and complete a circuit. Relays were the
offshoot of this; they added an electromagnet to perform the
mechanical action of "throwing the switch". Relays, however,
have several shortcomings: 1) They consume a lot of power (and
therefore are dangerous to drive directly from a tiny computer
circuit), 2) their contacts should be cleaned on a regular basis, and
3) they are slow. This last shortcoming will prove to be prohibitive
when we discuss light dimmers in a later chapter.

The Opto Isolator

Consider a better alternative to a relay: the Optical Isolator.
(Also called an Opto Coupler.) Comprised of an LED (Light
Emitting Diode) and a photosensitive transistor, the Opto Isolator
comes in an innocent 6-pin DIP package and is perfectly suited for
turning small things in the outside world on and off by computer
control.

100 Ohms

Opto-Isolator
EGG 3048

6

Subminiature
Phono
Jack

Figure 1-5
Turning on
a tape recorder

TAPE
RECORDER

25

Control The World with HP-IL

As an example, consider Fig. 1-5. Here, we have an Opto­
Isolator connected to the REMote input of a tape recorder, an input
originally designed for the on/off switch on many comm on
microphones to turn the recorder off or on depending on how many
mental blocks the dictator has. Here the Opto Isolator is behaving
like the microphone's switch: it connects/disconnects the REMote
input's contacts.

The LED, firmly encased inside the Opto Isolator, works like a
light bulb: apply 2.5 to 4.5 volts to it and it will light up. In this
case, when the LED (which you cannot see) lights up it makes the
light-sensitive transistor conduct electricity, in effect acting like a
switch and starting the tape recorder. (At this point, don't ask
how to get the computer to make the proper voltage appear on the
LED's input lead-- we'll cover that shortly.)

The Triac

Opto isolators are not the ultimate in interface tools. Despite
their unparalleled ease of use, they can only handle small loads
like tape recorders, cameras, buzzers, LEDs, and the like. This
makes it a good time to introduce the TRIAC.

Triacs were specifically designed to allow computers to control
alternating current devices consuming up to about 650 watts.
Figure 1-6 (next page) shows how a triac can be hooked up to solve
the infamous "how do you turn on a light bulb" problem. (I might
mention that triacs are made for AC loads only; this circuit will
not work if the bulb were hooked up to a 11 OV DC battery. (Actually
it would; but when you remove the input signal from the Opto
Isolator the bulb will not turn off.))

Triacs should only be used on resistive loads (such as light
bulbs, clocks, and toasters) and not on reactive or inductive loads
(such as blenders, vacuum cleaners, or generally anything with a
motor).

As with all projects involving AC voltages, certain precautions
must be taken to insure safety. Never touch the triac during
operation; the large tab used for mounting the heat sink is
electrically connected to pin 2, which means touching it is the

26

The Basics

3010
Triac Driver

, I ,

Figure 1-6
How to Drive
an AC Light
BUlb.

equivalent of sticking your finger into the wall outlet.
One must also be careful of excess heat dissipation from triacs

when they are driving heavy loads. Unchecked heat buildup in
these situations has been known to cause one or more parts to
explode. Heat sinks (devices that help radiate the heat to the air)
come in two varieties: the "clip-on" type for relatively light loads
such as low-wattage light bulbs, and "monsters", which should be
employed as shown in Fig. 1-7 (next page). Note the use of both a
Mylar thermal insulator and silicon grease between the triac and
the large heat sink! If not for the insulator, the heat sink will be
attached to l10V and it's easier to accidentally electrocute oneself.

Real Heavy

For incredibly large applications, (like turning Las Vegas on
and off by computer control), the only way to go is to have the Opto
Isolator drive a relay (Fig. 1-8, next page). Relays are kind oflike
vacuum tubes, in that for the most demanding applications
nothing else will suffice. For control applications, they should be
driven with an opto-isolator, just like the triacs. Never ever
connect a heavy duty relay without an opto isolator or transistor
driving it!

27

Control The World with HP-IL

Anodized Aluminum
Heat Sink

CF=----i--(i]-----B--~
Nylon Screw

Latch
Output

28

5v _

ground

Triac

1 Megn

Mylar Insulator
coated with

Heat Sink Compound

+28v

NPN
Type

28v
ground

Nylon Bolt

Figure 1-7
The proper way
to mount a Triac.

28 Volt Relay
(Coil between
100 and 600n)

Figure 1-8
Controlling
Large Loads

The Basics

To be sure, there are many other methods of computer I/O. The
ones mentioned here are the ones that will be used from now on, so
these simple interfaces will be recognizable in future chapters.

What's an 8-bit port?

You've seen larger computers with all those connectors in the
back that allow it to communicate with the outside world. The
most common type is a serial (RS-232) port, a 3-wire (most of the
time) scheme which connects your machine to common
peripherals such as modems, printers, etc. An HP-IL computer
can be hooked up to these peripherals, too. Using a box called
(appropriately enough) the HP-IL to RS-232 converter, you can
attach more than 900 serial ports onto one machine! (Who says the
small machines can't blow the big ones away?) RS-232 is covered
more thoroughly in Chapter II.

The other type of computer port common to most machines is
called a parallel port, and gets its name from the way words are
sent out. Many popular computer architectures represent data
using B-digit binary numbers, and therefore sending them out to
the outside world is accomplished with B wires. (Refer to Fig. 1-9.)

85 (decimal) o 1 0 1 0 1 0 1

~ ~~il~-----
5 volts------

1..-------0 volts ------
1---------5 volts ------

1..--------0 volts ------

DAO
DA1

DA2
DA3
DA4
DA5
DA6
DA7

Figure 1-9
How One Byte
Translates to
Eight Wires.

29

Control The World with HP-IL

There are three devices which attach to the loop and provide the
function of an 8-bit port. All of them feature software selectable
options, a 32 word data buffer, and handshaking lines to allow it to
talk to almost any other machine. But before talking about their
features and differences, let's go over some of the basics so the
above sentence will seem less cryptic.

One of the most crucial aspects of transmitting data is making
sure the destination machine is ready to accept it. For example,
printers are notorious for printing information about a billion
times slower than they receive it. How does a computer handle it?
Well, in the olden days, it would just wait. Today, the printer
might suck up the information as fast as the computer sends it
and store it in its own memory, then print it at its own sweet pace.
Either way, the machines transfer the information via an accepted
social pattern.

Here is what a typical conversation between a computer and
printer looks like while transferring 1 byte of data:

COMPUTER: Are you ready to receive some
information?

PRINTER: Yes, I am.
COMPUTER: Okay, here it is: "Blah, blah,

bla-blah!" Did you get that?
PRINTER: Yes, I did.

(This offers some insight as to why computers are so boring.)
There are three extra wires (added to the 8 we already have)

whose sole purpose in life is to allow the above conversation to take
place:

RDYI (Ready Data In): This line "goes high" (measures 5v)when
the printer says "Yes, I am", and tells the 8-bit port that it is OK to
send the next piece of data.

DAVO (DAta Valid Out): This line goes high each time the 8-bit
port says "Okay, here it is:". It lets the printer know that whatever
is appearing on the 8 data lines is valid, so the printer had better
grab it now before it goes away.

DACI (Data ACcepted In): This wire goes high when the printer

30

The Basics

tells the 8-bit port "Yes, I did". (Transmitting information to a
computer can be kind oflike writing a book: You never really know
if your information was received properly. This extra wire fixes
that situation; it reassures the computer that its information is
being accepted and to please continue, for it really is interesting!)

These three wires are used only for data transfers from the 8-bit
port to the printer. But some peripherals, such as telephone
modems, must transfer information in both directions, making it
necessary for the 8-bit port to possess three more lines of opposite
function:

RDYO (ReaDY Out): Tells the modem that the 8-bit port is now
ready to receive information.

DAVI (DAta Valid In): The modem sets this line high to tell the
8-bit port that the data it sees on the 8 wires is valid; better grab it
now before it goes away.

DACO (Data ACcepted Out): Tells the modem that the last datum
was received; thank you very much.

(Yes, there are reasons why the 8-bit port might not be ready to
receive information all the time. These will be covered in a few
pages.)

All three of the 8-bit ports share some impressive common
attributes:

1) You can, by software commands, tell the port how many of its
16 wires to use for data transfer: You can have 8 wires that carry
data in both directions; you can have 8 wires carrying data in each
direction (16 total); or you can have all 16 wires carry a 16-bit word
in both directions.

2) You can, by software commands, specify positive or negative
logic. Positive logic means a wire measures 5 volts when the
computer wants to say "Yes"; negative logic means the same wire
measures 0 volts when the computer wants to say "Yes". The 8/16

31

Control The World with HP-IL

data lines and the six handshake lines can be specified separately
so you can have positive data logic and negative handshake logic if
you wanted to. (This is, by the way, the default configuration.)

3) You can have it automatically affix a Carriage ReturnlLine
feed (CRlLF) (or ANY OTHER character sequence) at the end of
every line. You can also have CRILFs automatically extracted
from the input and replaced with the termination characters of
your choice in case you're talking to some weird equipment that
expects different line-termination etiquette.

4) You can specify how much handshaking is to occur. This
ranges from full handshaking as just described, to valid/accept
handshaking where you assume the other side is always ready to
receive, to none at all (kind of like mailing a letter and not knowing
if the person received it or even if helshe were still alive).

5) You can specify how long the data is to appear on the data
lines, from 5 to 250 milliseconds.

6) The uni t possesses a 32 register transfer buffer that
temporarily holds only data in case one computer receives more
slowly than the other transmits. It's nota lot, but for slow
machines like the 41 it can make a big difference!

(WARNING! This is not a full duplex buffer, meaning it cannot
accommodate both machines trying to send at the same time! The
buffer will only hold onto information going in one direction, and
information travelling the other way will be lost!)

7) MSRQ (Manual Service ReQuest) and GETO (Group Execute
Trigger Out) wires that can provide two additional bits of 1/0
(Input/Output) for unusual interface situations. Future chapters
will explain how each computer interacts with these wires.

Most of these incredibly versatile features are accessible only via
DDL and DDT (Device Dependent Listen I Device Dependent Talk)
commands. Their use is not obvious and certainly not well
documented in average HP literature, and an off-the-shelf 41 can't

32

The Basics

even do it without one of the two afterthought ROMs described a
couple of sections ago. So, an example of usage is in order.

Setting up the GPIO's internal control registers is easiest on the
71. Let's say we want to establish the following configuration: (See
Fig. 1-10 for GPIO's control register map):

First word (ROO): Respond to service requests when one of three
conditions is met: Manual Service Request line is low, the buffer is
full, or there's data ready for HP-IL.

To specify these conditions, the total of bits for the first word
should equal: 64+8+2 = 74.

Second word (R01): Send an End-of-Data frame if the 32 register
buffer is empty.

Total of bits for the second word: 16.

Third word (R02): Full handshake, positive data logic, negative
handshake logic, 100 microsecond DAVO duration, 8-bit
bidirectional, DA VO timeout disabled.

Total of bits for third word: 128+64+0+16+0+0+0+0 = 208.

R03-R18: Default values will suffice.

Here's a program for the 71 that will perform the above setup:

5 A = DEVADDR("%64")
10 SEND UNT UNL MTA LISTEN A DDL 0 DATA 74,16,208 UNT

UNL

UNT and UNL just clear all devices from whatever status they
might have been in prior to line 10. The next two words assign
talker and listener status: MTA means My Talk Address,
meaning the 71 is both a controller and a talker. LISTEN A
assigns listener status to the device with an accessory ID = 64, as
defined in line 5. (We also could have used its full name, which is
"HP82166A", but for reasons described previously the Accessory ID
is more useful.) DDL 0 is the first command sent after the talker

33

I

Control The World with HP-IL

ROO-Service Request Conditions (Default 01 000000. Value = 64)

BIT 7 BIT 6 BIT 5 i BIT 4 I BIT 3 i BIT 2 BIT I I BIT D I
Status ServIce Manual ServIce I All Status Ser- ~ Buffer Busy Buffer Full No GPID Data Ready For Ready For HP·IL ,
Requests Request vice Requests Handshake HP-Il Data ,

I

I
0:= Disable O=Oisable o = Disable 0= Disable O=Oisable 0= Disable 0= Disable 0= Disable I
, = Enable I ~Enable I ~ Enable I ~ Enable I ~ Enable I ~Enable I ~ Enable I ~ Enable j
Value ~ 128 Value ~ 64 Value ~ 32 I Valu. -16 i Valu. - 8 Value -4 1 Value - 2 Value -1 i

R01-Control and Status of Handshake (Default 00000000. Value = 0)

BIT 7 BIT 6 I BITS BIT 4 I BIT 3 i BIT 2 I BIT I I BIT D

OACO and ROYO' Not Used Set OACO Buffer Empty Set ROYO OACI Statu, ! Not Used

1

00

""'"

,
! : !

Control End-at·Data ,
i

,
I

a = Disable 0::::: False I 0= Disable o ~ False 10 =False I o = False
! I ~Enable 1 = True I ~ Enable 1 = True 1 = True : 1 = True

Value ~ 12B I Value = 64 Value = 32 i Value = 16 I Value = 8 ; Value = 4 i Valu. ~ 2 I Valu. ~ I i

R02-Handshake and Data Formats (Default 11011000. Value = 216)

BIT7 BIT 4 BIT 3 I BIT 2 I BIT I I BIT 0

Handshake DAVa Time Unn Data Format ! Data Bus Setup ; OAVa Timeout
logiC

00 = Strobed
01 = ReadytValld 0= Positive o = POSitive O~ IOO~, D ~ B-blt O=BidirectlOnal 0= Disable
10 = Valid/Accepted

11 ~Full 1 = Negative I = Negative I ~5~, I ~ 16-b't 1 =Unldlrectional I ~ Enable

---------------_._--
Value ~ 128 Value = 64 Value = 32 Value ~ 16 Value = 8 Value =4 Value = 2 Value = 1

BIT7

34

R03-DAVO Pulse Width Number (Default 00000101. Value = 5)

BIT 6 BIT 4 , BIT 3 BIT 2 BIT I iBIT 0
I

Total value specifies number of DAVO time units added to baSIC 25-~s DAVa pulse Width. except that a value of zero specifies

256 units. (DAVa pulse Width IS limited to 25 ~s plus speCified number of time unlts-40 ~s minimum)

, Value = B Value =4
I
:Value = 2 iValue = 1

Figure 1-10
GPIO Register
Control Map

The Basics

and listener roles have been assigned. An 8-bit port interprets a
DDL 0 as meaning "Don't send the following bytes to the outside
world. Rather, interpret them as input to the control registers."
Finally, UNT and UNL clean things up for the next data
transmissions.

For the 41 to perform the identical task, either the HP-IL
Development ROM or the Extended I/O ROM must be plugged into
any port. Using the latter ROM as an example,

01 LBL "TEST" 12 64
02 CLA 13 FINDAID
03 68 14 SELECT
04 XTOAR 15 LAD
05 74 16 0
06 XTOAR 17 DDL
07 16 18 3
08 XTOAR 19 OUTAN
09 208 20 UNL
10 XTOAR 21 ADRON
11 ADROFF 22 END

Lines 2 through 10 (about half the program) load the bytes
destined for the control registers into the ALPHA register. Notice
that there is an extra character (decimal 68), which is needed
because the OUTAN command at line 19 insists on a leading
dummy character in ALPHA. Line 11, ADROFF (Address Off), is
a strange command needed to bypass some automatic feature in
the Extended I/O ROM. 64, FINDAID, and SELECT set up as the
primary device anything that has an accessory ID = 64 (which
classifies is as an interface device). LAD makes it a listener; and
0, DDL prepares the 8-bit port for the forthcoming data. 30UTAN
puts out 3 bytes of ALPHA to the listeners, and then UNL removes
the listener status. Finally, ADRON (Address On) nullifies
ADROFF (Address Off).

We could shorten the 41 's program length and execution time by
replacing lines 2-10 with only one synthetic text line: 244, 68, 74, 16,
208. All this helps to prove a simple point: Low-level

35

Control The World with HP-IL

loop control is easier and faster on the n.
Once one of the above programs have been run, the 8-bit port

retains the parameters until the power is removed or some other
reset occurs. Subsequent data transfers are then accomplished by
SENDing individual strings, or pretending the device is actually a
printer and sending it characters. For example, to output
characters on the 41:

MANIO
[position of 8-bit port in loop] SELECT
[ALPHA] ABCDE [ALPHA]

ACA

and, of course, for the 71:

OUTPUT :GPIO; "ABCDE"

Now, on to the individual 8-bit-port descriptions.

The IndividualS-bit Port Descriptions

The first and the best is the HP82166A IL Converter,
manufactured by HP. It featured taps from the HP-IL
transformers so you could design your own power up/power down
circuitry to turn on when a message passed through the loop or
turn off when a special command was given. It possessed a chip
select input (haven't quite figured out why I'd need it since
handshake lines already exist), and ran forever on 4 AA batteries
(and a 5v regulator, of course!). Notice the past tense in this
paragraph; as this compact and power-mising unit is no longer
available from Hewlett Packard.

All is not lost, however. All of the individual components that
comprised the IL Converter EXCEPT THE CIRCUIT BOARD are
available from speciality shops, so for the couple of projects that
require the Converter's unique properties you can still wire one

36

The Basics

together yourself.
(You see, the reason HP's IL Converter was so small is because

they used a custom 4-layer printed circuit board, and when the
initial production run was exhausted, HP decided to come out with
the more expensive (but less versatile, see below) 82165A
HP-ILIGPIO interface, and stopped making the 4-layer boards.
Tooling costs for such boards are prohibitive for any volume less
than 10,000, which is why no third party hasn't jumped in and
designed a suitable replacement board.)

The third option, the HP82165A HP-ILIGPIO interface ("GPIO"
is a suitable nickname), is still available from HP as of this writing
and performs the same function as the IL Converter. HP has
added a power supply (but still expects the other circuitry to have
one of its own) and has taken away four interface lines. Other
drawbacks are A) your battery-powered computer and your
battery-powered circuitry must now be tied to an AC outlet if they
are to talk to each other, B) power-conserving features (the ability
of the circuitry to respond to the powerup/powerdown commands)
cannot be implemented, and C) it costs roughly twice as much as
it's predecessor.

I have found the GPIO extremely valuable for one task:
prototyping. Its built-in power supply (you have to open the unit in
order to "tap" into it) gives you one less thing to worry about when

Photo #1 A visual comparison of the two 8-bit ports.

37

Control The World with HP-IL

AC Transforner

Input ~

25 Pin r)
connectoj

...-;:::::;---F====!---.

................. -
5V Power Tap ~III

88 i~ Q~

Power & T/R LEOs IL Connectors

B1~--MSRQ

Figure 1-11
Power Tap inside the
GPIO

throwing circuits together and trying them out. Its shape invites
the installation of a proto-board on top of it. Its POWER and T/R
(TransmitlReceive) LEDs offer just a little visual confirmation of
the transference of data.

To tap into the GPIO's power supply, it is necessary to void the
warranty and open the case. (Unlike HP's calculators, this is an
easy thing to do.) This is done by removing the two Phillips-head
screws on the case's bottom. Then just solder a wire onto the 330
microfarad capacitor as shown in Fig. 1-11 This becomes the +5v
wire to power your outside circuitry; the GND (Ov) wire is already
available at pin 21 of the 25-pin connector.

I should emphasize that, despite the stated differences and
drawbacks, any of the 8-bit ports described above can be used to
construct all the forthcoming projects (Well, almost all; the

38

The Basics

telephone answering machine in Chapter 7 requires the extra
PWRDN interface line).

Now that the differences have been all spelled out, I will hence
forth refer to any of the generic 8-bit ports mentioned thus far
simply as "GPIO". This should make life easier for both of us.

39

40

Control The World with HP-IL

This page intentionally left blank.

(Yet another in a series of self-referential jokes.)

Chapter Two

MORE SIMPLE EXAMPLES

"Nothing is so simple that somebody doesn't know it".
--George Friedman

Let's finally get to some immediate gratification. The circuit
shown on the next page is the hardware needed to have the
computer visually count in binary. It is a simple experiment, yet
reveals a great deal about how the GPIO (meaning ANY of the 3
8-bit ports described in the last chapter) works.

Figure 2-1 shows the circuitry. In addition to the 8 LEDs (Light
Emitting Diodes) needed for the counting, only 2 other components
are necessary: a latch, and 1/6 of a 4069 hex inverter.

The latch is a device that holds onto the data it sees until the
next byte comes along. Compare this with the output of a GPIO,
whose data appears on the data lines for a mere 65 ms. We know
when the data appears because the DAVO line pulses low at that
instant.

The hex inverter is shown symbolically as a triangle with a
circle on its output. When you consider that computers represent
signals as either being 0 or 1, and that a "0" is less than 2v and a
"1" is about 5v, an inverter simply outputs the opposite of what it
was fed. One of the most common uses for inverters is as "glue" to
make different components work together. In this example, it is
making a negative signal coming from the GPIO suitable for the
latch, which expects a positive signal.

The particular latch mentioned, the 74C373, has the 8 LEDs of
Fig. 2-1 connected directly to its output. This Method of driving

41

Control The World with HP-IL

o
0::
C)

-
Vc
Vc ~~

DA
DA
DA
DA
DA
DA
DA
DA

0
1
2
3
4
5
6
7

~
~ DAV 0 1 2

l.L

ROY
DAC
GND

I
I

-

Figure 2-1

- '--

Data Bus
Output Monitor

0 +5V

20

~ 00 00
?

4 01 5
01

7 02 02 6

il 03 74C373
03

9

13 Latch 12 04 04
14 05 15

17
05 16 06 06

lil 07 07 19

11 LE a= 1

10 I

-1
' .:'"/'

9-
, /'/'

..1' -
~,

~
9"

-,

q -

-'----

4069
Hex Inverter

external components (including Opto-Isolators) should not be used
with anything but CMOS integrated circuits!! In addition to their
many other attributes, CMOS circuits have the ability to provide up
to 4 rnA of current to outside devices that need them, like LEDs.

42

More Simple Examples

Other popular logic families such as TTL or LS can't supply that
much current; and placing such a demand on them could damage
the IC! CMOS-type circuits can be identified by a "C" in their part
number, or a part number of the form 4XXX.

Building the Circuit

If this is your first encounter with either the GPIO or electronic
circuits in general, I offer a few tips. Often the most difficult
aspect of assembling a circuit is trying to isolate what went wrong
when it doesn't work. (And it never works on the first try!)
Generally, all the hardware can be broken down into 2 commonly
troublesom e categories: the G PI 0' s wiring, and the
hand-assembled circuitry.

The GPIO, and specifically the IL Converter, make many
connections to the outside world via the devices' 25-pin (82165A
GPIO) or 34-pin (82166A IL Converter) connectors. One miswired
handshake line or one forgotten ground will make the whole
system inoperable, and generate all sorts of errors on the
controlling computer.

The most common error occurs while trying to hook up the IL
Converter, as its dense 34-pin connector is both hard to count and
its first pin is not clearly labeled. Even worse, most people use the
standard 34-pin ribbon cables (used for common computer
applications) to interface the converter. This often requires cutting
the cable in half, separating and stripping each conductor, and
carefully counting from the end every wire that is to be connected.
This situation, although unavoidable, invites all sorts of wiring
errors.

Therefore, when constructing a project, an im portan t
intermediate step is to power-up only the 8-bit port and see if it
responds to commands like STATUS or INST AT. If you get a
LOOP BROKEN error message, remove all power immediately and
check for miswiring. This simple step is guaranteed to save you
much frustration during construction and troubleshooting of
projects.

Also recommended for troubleshooting is something called a
Digital Logic Probe, which is used to visually show whether an IC

43

Control The World with HP-IL

pin is at a "1" or a "0" state. If you're on a budget, an LED
connected between the pin in question and Grou.nd will show the
same thing; but the logic probe is designed to interfere with the
circuit as little as possible so as to not influence its behavior.

After the circuit in Figure 2-1 is hooked up and working, run
the driver program on the 41 (In this example, make sure the
GPIO is the only device on the loop):

01 LBL "COUNT" 07 LBL 01
02 MANIO 08 RCL 01
03 SF 17 09 ACCHR
04 SF 21 10 ISG 01
05 .127 11 GTO 01
06 STO 01 12 GTO "COUNT"

Well, the program certainly looked simple enough! All it is
supposed to do is count from 0 to 127 in binary, and send each
number to the loop via the ACCHR (ACcumulate CHaRacter)
command. However, that didn't quite happen. Notice that the
numbers 10,13, and 126 appeared on the LEDs as 0, 253, and 28,
respectively. Also notice that we couldn't have counted up to 255
even if we wanted to. (We do have 8 LEDs, after all!) Why?

This traces back to what the IL Module was originally designed
to do: communicate in ASCII characters. In the ASCII definition,
character codes 10 and 13 represent Carriage Return and Line
Feed. ACCHR's function is to accumulate characters, so it decides
to change codes 10 and 13 to something else. The reason 126
doesn't translate correctly is a little less obvious: 126 on the 41
defines the "Sigma" character, which is represented on the 82162
printer as 28. The 41 is simply translating one non-standard
character so it will show up on the printer correctly.

The way to correctly count to 255 is to change line 5 to .255 and
replace line 9 (ACCHR) with three lines: CLA, XTOAR, and
OUTA. XTOAR (X to A Right) is the same as XTOA in the
Extended Functions Module: it takes the decimal in X and stores it
as a character in ALPHA. Throughout this book, these two

44

More Simple Examples

commands are interchangeable.
From watching the unit count, one can conclude that it is

possible to turn on any desired LED or combination of LEDs just by
sending the proper number via ACCHR. For example, to turn the
first one on, just press 1 ACCHR. To turn on every other LED
(positions 2, 4, 6, and 8), just press 170 ACCHR. (Where did the 170
came from? See below.)

p--s
0--0
p--s
@--o
p--s
.~-o
p--s
@--o

vOltS==ill~-.-J1 0101010

vOlts~
volts
volts
volts
volts -------'
volts ______ --1

volts --____ --1

170 (base 10)

Some interesting things to note about flags 17 and 21. OUTA
sends out the entire contents of the alpha register and terminates
it with a CR/LF if flag 17 is clear. If you don't believe me, try
clearing flag 17 and run the program from line 4. Three
characters are now sent in succession instead of one, and the last
one (line feed, =1010 in binary) remains showing.

Two things can be concluded here: 1) For control applications, a
CR/LF is most undesirable; therefore always set flag 17 or use
ACA instead of OUTA. 2) If a control program contains an
AVIEW (mine always do), clear flag 21 before each AVIEW,
otherwise your message will be "outputted" onto the loop. (There I
go, verbing nouns again!) Be sure to immediately SF 21 after an
AVIEW, otherwise future GPIO commands will be ignored.

A NOTE TO 71 OWNERS: You should be glad to know that this
short program does the same thing as the 41 version above, except
it doesn't require 5 paragraphs of discussion:

5 ENDLINE ""
10 FOR X=1 TO 255

45

Control The World with HP-IL

20 OUTPUT ":GPIO"; CHR$(X)
30 NEXT X
40 GOTO 10

The END LINE "" of line 5 does the same thing as setting flag 1 7 on
the 41: it suppressed the automatic CRILF on output.

There are some other hardware aspects of this experiment that
are worth mentioning. Notice that both RDYI (Ready Data In) and
DACI (Data Accepted In) lines are always held low. This is an
easy way of specifying no handshaking: always fool the
handshake lines into thinking you're always ready to receive and
that you're always acknowledging the data. (Incidentally, the way
you're supposed to do this is by sending the following sequence to
the GPIO:

10 A=DEVADDR("%64")
20 SEND UNT UNL MTA LISTEN A DOL ° DATA 64,0,24 UNT

UNL

This sends out a DDL 0 configuration command and tells the GPIO
not to look for handshake. Here's one case where the hardware
solution is infinitely easier than the software version). Line 10 of
the above 71 program, incidentally, looks for a device of interface
class (accessory ID=64). This is done because the IL Converter and
the GPIO have different loop names ("HP82166A" vs "HP82165A"),
and looking for the accessory ID rather than the standard ID will
find either one. (You probably already knew that after reading the
previous chapter, though.)

Turning an AC Device On and Off

In the previous chapter we discussed how to make an AC light
turn on and off, but never went into the details of how to do it.
Here, we remedy that situation.

At this point, after having the 8 LEDs turn on and off in a binary

46

More Simple Examples

fashion, adapting the circuit to control lamps instead of LEDs is a
straightforward task. Fig. 2-2 shows the same circuit used for
binary counting, except the LEDs are gone. In their place is a
single nov AC lamp, being controlled by circuitry introduced
earlier in this chapter.

+5V

Vee
Ve1

20 12 3

DAD
DA1 100 n
DA2
DA3
DA4 04

12

DA5 15
05

0 DA6
16

Triac Driver a:: 06
19

C.9 DA7 07

::1!
DAVO 2 11 LE CE

1
0 a:

10 LL

RDYI
DACI -:-
GND

Figure 2-2
- Driving Something
- Other than an LED.

There just as easily could have been 8 lamps in figure 2-2; which
should start to give you an idea of the IL Converter's power.
Generally speaking, if you can turn an LED on and off, you can
turn anything on and oill

This is a good time to bring up an impressive attribute of
controlling the world via HP-IL. With the above method, one GPIO
type interface can control up to 16 devices (if it has been properly
configured to be 16 bits wide with the DDL command). Using
primary and secondary addressing, a 41 or a 71 can address up to
961 such interfaces, making a grand total of 15,376 light bulbs (or
anything else) that can be controlled by one computer. Not
impressed yet? Multiply that result by three, since the 71 's
operating system can support three separate IL loops
simultaneously. We now have one hand-holdable computer that
can have direct control over 46,128 devices!! Try that with an IBM
PC!!

47

Control The World with HP-IL

Touch Toning ®

Just to show that interfacing can do more than just turn things
on and off, here's a simple circuit that will allow you to turn the 41
into an automatic pushbutton telephone dialer. This project came
in particularly handy back in the days when accessing an
alternative long distance phone service was a painfully long
22-digit (plus waiting) process, and getting a subsequent busy
signal would only help to raise one's blood pressure.

"Touch Tone" refers to a method of telephone dialing which uses
two simultaneous, non-interfering sine waves rather than a pulse
train to signal the central office of the desired digits. Their
advantages are many: in addition to the increased speed in placing
a call, it also provides an inexpensive and accurate method of data
transmission over narrow-bandwidth telephone lines.

First, let me introduce the chip. I am using a National
Semiconductor MM5395 Touch Tone (that's a registered trade
mark of AT+T, you know!) generator which was designed to
replace the many components in a standard pushbutton phone's
keypad with only 3 components: the chip, a 3.579 MHz quartz
crystal, and a resistor.

3.579 MHz
XTAL

Vss

,....-----'-LJ Osc In
NC

+5v

®
MM5395 Touch Tone Generator

The chip's pinout is shown above. It was designed to accept
input from either a standard "2-of-8" keypad (each keystroke closes

48

More Simple Examples

2 of a possible 8 contacts), or from a computer, depending on the
state of the "XMIT" input. Normally, a controlling computer
"dials a digit" by placing a binary representation of the digit onto
pins R1-R4 and setting the chip enable (CE) line high (= 1). After
waiting a short interval, the computer then brings the CE line low
(= 0) to instill a brief period of silence the phone company expects to
hear. It then sends the next digit to the chip and starts the process
all over again.

How does one regulate the speed that the number is dialed? We
theoretically could tell the computer to not transmit so quickly, but
as previous experiments showed, the 41 has two transmitting
speeds: Fast (in 24 character bursts with the 41), and slow, with no
chance of intermediate speeds. The solution employed is this: use
the fast mode, but have the circuitry behave like a printer and say
"you can transmit your information when I'm good and ready!".
How does a printer normally say this? Why, with handshake
lines, of course!

The top half of Fig. 2-3 is pretty straightforward; we are simply
replacing the LEDs with a National Semiconductor MM5395 Touch
Tone generator chip. The bottom half is a little more interesting; it
blindly says "Yes, I'm ready" only at predetermined time
intervals, which holds up the output data. This essentially is
clocked output.

Notice that, in the figure, the RDYI (ReaDY data In) and DACI
(Data ACcepted In) lines are connected to the complementary
outputs of a flip-flop, which in turn gets its pulses from a 555 pulse
generator. The flip-flop's output will alternately hold one of the
lines true, and will change states as soon as a pulse comes in from
the 555. The GPIO will hold its output until the RDYI line goes
true. When it does, it transmits a word which the latch holds onto
and feeds to the Touch Tone chip, and then waits for the next pulse
that makes the DACI line go true. With this method you can make
the Touch Tones go at any speed you wish by rotating the 1
Megohm potentiometer.

The following program shows one way to drive this circuitry:

01*LBL "TTONE"
02*LBL 05
03 MANIO

04 CF 21
05" READY"
06 AVIEW

07 SF 21
08*LBL 00
09 GETKEY

49

DAO
DA1
DA2
DA3
DA4

DAVO

50

2

Control The World with HP-IL

+5v

74C373
Latch

11 LE

Flip Flop

16 +5 GNO 1-8_-1 __,

6 J 4027 Q

CL(1/2) 2

5 K Q

18 14

R1
R2
R3
R4 4
CE 3.579

MM5395 2 c::J MHz

Touch Ton~
Generator

,,--J\IV1'II'-II. TO: Red/Green

TO: Orange/Black
of Touch Tone
Telephone Keypad

I I OR

I ~-- 1000hm
~ Speaker

RDYI-- -------~
DACI--

1 MegOhm

Gnd +5
555 O· -"""""-"--1 T rig ISC

'---.,"--->'-1 Out Th r
Timer

+5v ~-~~~---~~frRS~t ___ ~By~p~5

+5v

560 Kn

Figure 2-3
Touch Tone
Hardware

More Simple Examples

10 GTO IND X 27 SF 21
II*LBL 11 28 .08
12 " 8 5 3 1 2 1 2" 29 STO 06
13 PRA 30*LBL 06
14 GTO 05 31 ISG 06
15*LBL 12 32 GTO 06
16 " 1 7 1 4 " 33 " 9 9 9 9 9 "
17 ACA 34 ACA
18 " 5 4 9 7 6 7 4 " 35 " 3 1 9 "
19 PRA 36 ACA
20 GTO 05 37 " 5 5 5 2 3 1 0 "
21*LBL 14 38 PRA
22 " 9 8 9 0 9 2 8 " 39 GTO 05
23 PRA 40*LBL 84
24 CF 21 41 CLD
25 " WAITING" 42 END
26 AVIEW

(Barcode for this program, as well as all other 41 programs, is
provided in Appendix A pg. 295.) The program works like this:
After XEQ'ing TTONE the 41 displays "READY" and the GETKEY
function waits for a key to be pressed. The above program only has
numbers to dial for the A, B, and D keys, but can easily be
expanded (you can substitute your own numbers, too!). If the A
key is pressed, we branch to LBL 11 (the keycode returned by
GETKEY) and it promptly sends out the string to dial "Time".
Notice the spaces between the digits; they are there to serve as
inter-digit silence so the phone company will be happy. LBL 14 is a
little elaborate; it was designed to access one of those alternate
long-distance phone service back in the days when it was a pain.
It first dials a local number, waits for the local computer to answer
(that's the loop between 28 and 32), dials a 5-digit access code, and
finally the desired area code and number.

ASCII-encoded numbers are handled using 6 binary digits: bits
0-3 for the BCD digit, and bits 4 and 5 which are always on. I used
the first four bits and fed them directly to the touch tone chip, and
used the remaining two bits as "chip enable" signals; one going to
the touch tone chip, the other disabling phone line isolation. To
minimize the number of external parts, the circuit connects to the

51

Control The World with HP-IL

speaker may be attached instead of the resistor and the touch tone
frequencies fed audibly through the phone's mouthpiece. Both
should work equally well.

The stability, immunity to noise, and common availability of
Touch Tone signals makes them easy to use for things other than
dialing. More versatile uses for them are covered in Chapters 6, 7,
and 10.

Well, these have been some examples. Despite their simplicity,
these few techniques will be used and built upon in vastly different
ways throughout the remaining chapters. Armed with the
knowledge presented here, you will be able to take the ideas
presented and modify them to fit your own needs, or come up with
completely new applications!

52

Chapter Three

INEXPENSIVE I/O USING THE
TIME MODULE

"Never trust a computer bigger than you can lift."
--Anonymous

This method of I/O (which stands for Input/Output) doesn't use
HP-IL. In fact, it's tough to justify including it in this book
because it only works with the 41, is very limited, and requires
some modification (maybe). (As it turns out, we're in for more of
the same later, so we may as well include this, too!)

It's primary advantage is it's the cheapest method for turning
one device on and off. No HP-IL module or IL Converter (with its
mandatory extra power source) is needed. Furthermore, both 41 Cs
and 41CVs can use it without modification. (CX owners: read on!)

The Time Module has to be the best-implemented afterthought
that HP has produced for the 41. Yet upon reading some of their
internal documentation, one discovers that the Phineas chip was
designed for even more versatile use. (Phineas is its code name;
every project has one. Its real name is 1LF6, but that's too difficult
to pronounce.) Consider these extras:

1) The Phineas I.C. has inputs to start and stop the stopwatch by
hardware control.

2) Similar inputs exist to start/stop the clock. (Those of you who
enjoy power trips will appreciate this new ability to stop time.)

3) Two outputs are available to mark the occurrence of an alarm
or a stopwatch zero-crossing. This way, when either of the 2
events occur, you can trigger a hardware function rather than or
in addition to waking up the calculator and running a program.

All these extra inputs and outputs are accessible to users who

53

Control The World with HP-IL

are "in the know"; all you have to do is crack open the time module
and there they are! Figure 3-1 contains pictures of what the time
module looks like when you crack it open. When you flip it over,
(2nd photo), you will see 18 unidentified solder pads; 6 of which
have been identified in Fig. 3-2. The pads function as follows:

ill Stop Stopwatch
iI2 Start Stopwatch

These two pads allow you to hook up the stopwatch to the outside
world and measure real time events to ll100th of a second. If the
two pads are connected together, each positive pulse will then
toggle the stopwatch on or off. The ouly curious behavior these
pads exhibit is the last digit (100ths position) of the stopwatch
display does not update, although internally it is stored correctly.
Hitting any key will restore the last digit to the correct value .

54

Figure 3-1: Photos of Phineas, the nickname for the time module,
when cracked open. The left photo (3-1 a) shows the front view; the
rear view on the right (3-1b) reveals previously unknown solder
pads which can be used for interacting with the outside world.

Inexpensive I/O Using the Time Module

#3 Start Clock
#4 Stop Clock

Start SW

Stop sw

DDDDDD

Gnd

vccD
o

D-ALMOlJT

D-#6?

Stop Clock

Figure 3-2
Phineas' Rear View

Although less useful than the above, these two pads enable you
to start or stop the clock advance. The clock functions still operate;
i.e. the quartz crystal still vibrates, the stopwatch still runs, etc.,
it's just that the clock register never gets incremented. If these
two pads are tied together, a single pulse will toggle the clock on
and off. Toggle mode will also turn the 41 on, but since user flag 11
is ignored this is not a useful form of input. Another problem
with stopping time while in clock mode is that sometimes the
ALMOUT output pad will "go crazy" and will randomly turn on
and off several times a second. Undesirable behavior.

Both the clock and stopwatch test pads are internally tied low,
debounced (to a minimal degree), and require a minimum pulse
width ofl0ms to activate.

#5 ALMOUTA (Alarm "A" Out)
[#6 ALMOUTB (Alarm ''B'' Out)]

Pad #5 is the new means of control mentioned earlier. Every
time an alarm becomes active, the time module will 1) pulse the
ALMOUTA pad (once for a normal alarm or twice ifit's a
repeating alarm OR if there are any other alarm s in the

55

Control The World with HP-IL

ALMCAT), and then 2) will turn the 41C on and service the alarm.
This test pad, therefore, becomes the only means for output.

The pad below it, ALMOUTB, is supposed to behave similarly
whenever the stopwatch is counting backwards and crosses zero (a
"TIMER ALARM"), but it seems this never got implemented, as
pad #6 doesn't do anything.

Transforming the ALMOUTA pad's pulses into useful output is
a task that is only slightly more involved than the techniques
discussed in Chapter 1. This time, instead of using an 8-bit latch
to hold onto the momentary signal, we will use something called a
JK Flip-Flop, which will be wired to act like a divide-by-two device.

Such devices' functions are almost self-explanatory. The output
is exactly half the input: two pulses in, one pulse out. One pulse
in, half a pulse (the output stays either low or high) out. This is
precisely what we need to drive the standard light bulb
configuration in Fig. 3-3.

In

11 K

Flip Flop
8

Set
Rs!

520 n
6

~

4
-=-

3010
Triac Driver

Figure 3-3
Turning a Single
Pulse into an
On/Off State.

In the simplest case, where you have a non-repeating alarm
and an em pty alarm catalog, a single pulse appears on the
ALMOUTA pad when an alarm activates. A JK Flip-Flop wired
as in Fig. 3-3 will take the pulse and change the state of the output

56

Inexpensive I/O Using the Time Module

WI-lie 14 Me:AN S W'E!
CAN Acc.uRATE!. '(

MeASuRE THIS S$'R.INTER!i
nME Ar TillS RACE7'AACK.

57

Control The World with HP-IL

!!our MOST IMPoRTANTLY
YOI,j CAN MAKE nM~
MCA5uREMEN lS IINO
RUN PR06RAI'I,s
SlMULTANEOU~L-'f !

58

Inexpensive I/O Using the Time Module

labelled "Q". Since a logic 1 is electrically equivalent to +5v, this
output can be applied directly to the Opto-isolator to switch
anything on and off every time ANY alarm activates.

In

10 J

4027A

Clk

11 K

8

15 6
Q

3

5

J Q

40276

Clk

7

K
Set
Rst

520 n
6

4
":'

3010
Triac Driver

Figure 3-4
Turning 2
Pulses into
an On/Off
State.

If on the other hand your alarm catalog is not empty or a
repeating alarm activates, two pulses come out and a second
divide-by-two Flip-Flop is added to compensate, as in Fig. 3-4. For
consistent behavior, I constructed Fig. 3-4, and always keep a
dummyalarm, settogo offin 1999, in myALMCAT. This
guarantees two pulses at the ALMOUT A pad.

Now the big question is: how can we harness these new features
and still retain the 41 's neatness and portability? The answer
depends on your configuration. If you have a C or CV model, use
two Time Modules: one with wires coming out, one without. Then
just swap the two when the occasion arises.

If you have a 41CX, then more work awaits you, but you get the
fringe benefit of never losing your time, date, or accuracy factor
when switching modules. Modification of the CX will be covered at
the end of this chapter.

59

Control The World with HP-IL

The Perfect Field Application

I purchased an extra time module, and got a hold of a plug and
cable assembly originally designed for the 41 's dedicated printer
(82143A). (I scrounge at swap meets a lot.) I then proceeded to
build into it the circuitry shown in Fig. 3-5. This handy little
package allows maximum versatility, as the 7-conductor cable can
carry 2 wires from the triac driver's output, as well as leads from
pads 1 through 4, and Vcc. (No reference ground is needed.) This
means that all the new I/O previously unattainable is now
available to the outside world through this cable; and in addition
the pulses coming from ALMOUTA are already conditioned!

The first thing I did with it was to hook the triac driver's output
to my electronic 35MM camera and have it take time exposures at
night, one of my all-time favorite applications.

Anyone who's ever taken pictures of the city at night knows that
any good results are lucky ones. With the camera on a tripod and
set to "B", the photographer can only guess as to how long to leave
the shutter open for proper exposure. Good photographers will
take several pictures with many different exposure times, hoping
that one of the frames comes out right. This tedious procedure
involves constant clock watching (ever try watching a clock in the
dark?), boredom, and a stiff finger if you forgot your locking cable
release.

60

Alrm

Out
"A"

Inexpensive I/O Using the Time Module

3010
Triac Driver

Figure 3-5
Time Module
to Camera
Interface.

Release

If your camera has an electronic shutter--the kind that can be
actuated by shorting a pair of contacts together instead of moving a
mechanism--and if you have an automatic winder, then the time
module adapter and the accompanying program called CAMERA
can not only make time exposures fun again, but will also help
guarantee a good result.

The program works as follows: After loading and executing, the
program prompts for BASE TIME? Let's say we want to start with
a I-minute exposure. With the camera on "B", we hit 1 RlS, and
the camera will open the shutter and the display will start
counting up, a la stopwatch mode. After 1 minute has elapsed, the
shutter closes, the camera winds itself, and the HP quickly
calculates a new time to give the next frame 1/2 stop more
exposure, and another picture is taken. The program will take 6
pictures, each increasing the exposure in 112 stop increments.
With a base time of 1 minute, the 6 exposures will last 1 :00, 1 :24,
2:00, 2:49, 4:00, and 5:39. (Keep in mind that the shutter speeds are

61

Control The World with HP-IL

a geometric progression, so halfway between 1 :00 and 2:00 is not
1 :30, but rather 1 :24.5.) One of these times is highly likely to yield a
good picture. When running the program with this sample time,
one might notice a I-second discrepancy; i.e. 4:00 being displayed
as 3:59.99, but the correct duration is still employed.

If you wish to halt all operations during an exposure, hit the R/S
key. It will restore the clock time and tell you to CANCEL
ALARM. Do it!! If this crucial step isn't done, your clock time and
possibly the date will be changed.

Barcode for the CAMERA program, presented below, begins on
page 271.

01*LBL "CAMERA" 30 STO 02 59 RCL 02
02 CLST 31 .00005 60 T+X
03 10.201999 32 HMS- 61 CLK12
04 ENTER" 33 CHS 62 RCL 01
05 10.2 34 T+X 63 HR
06 XYZALM 35 CLX 64 X"2
07 FIX 4 36 RDN 65 2
08 "BASE TIME?" 37 XYZALM 66 *
09 FC? 01 38 " 67 SQRT
10 PROMPT 39 ATIME24 68 HMS
11 100 40 AVIEW 69 STO 01
12 / 41 PSE 70 ISG 03
13 STO 01 42 PSE 71 GTO 03
14 1. 006 43 CLOCK 72 " THATS IT. "
15 STO 03 44 CLST 73 BEEP
16*LBL 03 45 """CLOSE" 74 AVIEW
17 CLST 46 TIME 75 RTN
18 """OPEN" 47 .00015 76*LBL "BB"
19 TIME 48 HMS+ 77 CLST
20 .00015 49 XYZALM 78 I1AACCI1

21 HMS+ 50 RTN 79 TIME
22 XYZALM 51*LBL "CLOSE" 80 .00015
23 RTN 52 RCL 02 81 HMS+
24*LBL "OPEN" 53 T+X 82 XYZALM
25 CLST 54 CLK12 83 RTN
26 RCL 01 55 "CANCEL ALARM" 84*LBL "CC"
27 CLK24 56 AVIEW 85 END
28 """SHUT" 57 RTN
29 TIME 58*LBL "SHUT"

62

Inexpensive I/O Using the Time Module

Flag 1 is used when you set an alarm to have the sequence start
while unattended. With flag 1 set, the number in the X register is
taken as the base time without the program prompting.

This wonderful little setup allows you to walk away from your
camera and have a dozen or so cups of coffee while your equipment
does your bracketing for you. The program will allow for time
exposures as long as 24 hours; however if you try that you'll find
that the camera's batteries will die much earlier. This is because
electronic shutters require battery power to electromagnetically
hold back the second shutter curtain. When your batteries die,
your exposure terminates.

The Versatile Adapter, consisting of a time module, a CMOS Flip·Flop,
and an opto·isolator, fits snugly inside a printer plug.

Information for ex Owners

So here's the thing: if you build the Time Module adapter as
described above and tried to plug it into a ex, you would have two
time modules competing with each other each time a time function
is called. This renders things like CLOCK, DATE, and RCLSW
useless, since their results would randomly come from one
module or the other. (XEQ'ing CLOCK has some really interesting
effects when two time modules are plugged in!)

63

I

Control The World with HP-IL

The suggested solution may seem a little extreme, and some of
you may not wish to attempt it. In the 41CX, the Phineas chip
takes the form of a 20-pin DIP IC rather than in plug-in module
form. It appears as the black vertical IC in the photo below. (The
other parts on top of it are the components required for a speedup.)

Inside the 41CX. The time module chip is located at the lower right.

In order for an external time module to work without conflict, it
is necessary to disable the internal 1LF6 chip. Fortunately, an
easy method exists that not only requires little modification, but the
internal Date and Time are unaffected!

It involves opening the calculator and installing a single, tiny
DIP switch as shown in Figure 3-6. Two wires from this switch
are then drawn over to the 20-pin DIP Phineas chip whose ISA
(pin 7) has been severed between the chip and the PC board it's
mounted on. (A tiny pair of wire cutters should be enough to clip
this pin in half). Using the tiniest of low-wattage pencil soldering
irons, one must solder each of the two DIP switch wires to each
part of the split ISA pin.

The 41 uses the ISA line to either address its peripherals (ROM,
RAM, IL Module, etc.) or to have the peripherals wake the 41 up. If
this crucial line is severed the CPU doesn't "see" the time module,
even though it is still there and still keeping good time. With the
isolation complete, we can now plug the Time Module Adapter

64

To ~
Wherever

Inexpensive I/O Using the Time Module

Install switch 2
to interrupt

3 the ISA line

)
4

5

0
8

9

10

1LF6
20
19

18

17

16

15

14
13

12

11

Figure 3-6.
How to disable the
timer chip's ISA
line on the 41-CX.

into any of the 41's four ports and use it normally. When the
application is completed and the adapter removed, a flip of the DIP
switch will reinstate the internal Time Module without loss of time
or date, and any past due alarms will immediately start
processing.

I realize that most people are not well-versed in micro-electronic
surgery, so I will issue the standard warning: If you're not

65

Control The World with HP-IL

confident with your skills in electronic assembly, get someone who
is to perform the modification for you. (There are also services
available for those of you who would like to have the work done by
somebody else. See Appendix B for more information.)

For applications involving turning only one item on and off, this
new time module technique is superior in terms of size, power
source, and cost. When it comes to taking crucial time
measurements, the time module provides the only means of doing
so. The two capabilities provide an unexploited method of real
world control that rivals many desktop systems.

66

A DIP swilch on the 41's exterior can temporarily disable the
internal time module while the versalile adapter is plugged in. The
module can be made "invisible" without the loss of time, date or
accuracy factor.

I

Inexpensive I/O Using the Time Module

67

Control The World with HP-IL

68

Chapter Four

DARKROOM CONTROLLER

"Someday my prints will come ... "
-- Snow White after her pictures didn't arrive.

Here is one of my all-time favorite applications. Not only has it
shortened my sessions in the darkroom and increased my
productivity, but it is clearly a case where computers can help take
the tedium out of work and leave the user free to concentrate on
creative processes.

You will find that I will try to introduce new techniques in every
chapter while building on previous knowledge, and this chapter is
no exception. Here, with the introduction of the analog to digital
converter, I will describe a 41-based darkroom controller that
performs the following useful functions:

-- It acts as an enlarger timer, precisely controlling the duration
of the enlarger's light source. The latest exposure time is always
remembered, and can be accurately reproduced or "tweaked" as
the user sees fit.

-- It keeps track of all prints in all chemical baths, and issues
distinct audible signals to announce when it's time to move a
print.

-- It computes the change in exposure time necessary when
printing with variable-contrast papers. Changing filters is no
longer a trial-and-error task.

69

Control The World with HP-IL

-- Using an analog-to-digital converter, it takes N readings from
the negative and recommends both an exposure time and a filter to
achieve a technically good print.

This chapter will be divided into two parts: The first part is
quite straightforward; it explains how to build a simple enlarger
and print timer using familiar hardware and software techniques.
The second part in troduces the AID converter for further
automation benefits, and a few software techniques to improve the
response time and consume less battery power.

Part I: A Simple Start

The first phase of this project uses circuitry introduced in
previous chapters, for no other reason than to show that slight
rearrangement of the techniques already covered can yield any
number of truly useful systems.

The hardware needed is that which turns on and off a light
bulb. (The light bulb in this case happens to be surrounded by an
enlarger.) (See Fig. 4-1.) This and a program which uses the
Extended FunctionslMemory module are all that are needed to
implement all but the last feature in the above list.

With the circuitry in Figure 4-1, all you have to do is a "32
ACCHR" to turn on the light, and a "0 ACCHR" to turn it off, and
in fact this is precisely how the FOCUS function (assigned to the +
key) is implemented in the program provided below. But before
talking more, some history describing the evolution of this system
is in order.

A simple print timer

The original need developed (no pun intended) from my many
tedious sessions in the darkroom. After a print was properly
developed, it would have to soak in a chemical bath (called the
fixer) for 2 minutes, then promptly be moved to a wash bath for 4
minutes. On busy nights there were always 1 or 2 prints in the

70

Vcc
Vc1

DAO
DA1
DA2
DA3
DA4
DA5

Q DA6
0-
(!) DA7

~ DAVO
a:
lJ...

RDYI
DACI
GND

Darkroom Controller

+5V

20 321

DO 00

01 01
7 02 02

03 74C373
Latch 03

04

05

06

07

2 11 LE

Figure 4-1
Hardware for an
Enlarger Timer

04

05

06

07

CE

10

6
100 n

1

-:-

fixer and at least 3 in the wash at any given time, and mentally
keeping track of when to move what print while at the same time
concentrating on the creative aspects at the enlarger proved to be
quite taxing. What was needed was something that would
automatically keep track of the prints for me, and quietly
announce when it was time for each to be moved.

Using only a 4IC and a time module, this proved to be an easy
software task. As soon as a print enters the fixer, the RJS key is
pressed, which promptly sets 2 control alarms using the XYZALM
function of the time module. Mter 2 minutes elapse (when it's
time to move the print to the wash), the first alarm (at label AI)
activates, "chirps" three times to announce that a print should be
moved, and updates the display, which always shows a running
count of how many prints are in the fixer and how many are in the

71

Control The World with HP-IL

wash. After an additional 4 minutes (when it's time to remove the
print from the wash and hang it up to dry), the 2nd alarm (at label
A2) activates, "beeps" three times to announce that a print is ready
to be dried, and again updates the scoreboard.

A darkroom is a rather noisy environment, which is why it is
advantageous to have two different, very distinguishable sounds
generated for each alarm. A unique sound which I call the
"chirp" provides this instant recognizability, and is generated via a
whole string of TONE 89s, the synthetic instructions occupying
lines 54-61 and 66-73. (See DKRM3 listing later.) Three
conventional TONE 6s provide the other warning, therefore
allowing instant recognition of which print is to be moved without
having to consult the 41 's display.

The first two lines of the program show another advantage of
synthetic instructions: the ability to set many system parameters,
which are normally not changeable under program control, at
once. Here its main advantage is setting the continuous-on flag
(flag 44), a feat normally accomplished by manually XEQing ON (a
non-programmable function).

Software for added Functionality

Extra software was added to control the duration of the enlarger
lamp, thereby turning this simple capability into more of a
time-saving tool. The system is controlled by the global
assignments that have been PASN'd at the program's onset as
illustrated in Figure 4-2.

As mentioned earlier, pressing the "+" key toggles the enlarger
on and off for focusing. The "*" (MANual) key does the same
thing, except for this key the calculator remembers how long the
enlarger was on and stores it in R04. This way, I can make an
educated guess as to the exposure on a test print. If it was right,
the final print can be exposed simply by hitting "/" (AUTO) and the
enlarger is activated for the exact time of the previous trial.

If my guess was incorrect, the exposure can be "tweaked" by
keying the adjustment into the X register and hitting "-" (ADJust).
If 2 seconds less exposure is desired, for example, I key in "2 CHS
-". Hitting "/" (AUTO) then implements this new time. Once the

72

Darkroom Controller

correct exposure has been
determ ined, making
hundreds of identical
reprints from the same
negative is accomplished
just by hitting AUTO.

Another darkroom task
best left to a computer is
the calculation of exposure
adjustments when
changing enlarger filters.
When I feel the exposure

1 FIX 2 WASH "

Change Flher

llilllHlllll IllIl IEJ Iilllll
ffiJHllill IEJ ITIll EB
EiiiilmlilIlJ Eill IlillI o GEl GEl Ell]]
FoOJs

GJ ElITI ElITI GEl
Manual o EllE Illl.lJ] [llllJ
,&!.!2., New Print
l..L.I Ell]] Ell]] [§]

Figure 4-2:
Darkroom Controller
Key Assignments

is right but the contrast needs changing, I'd press "C" (for
"Change"), and the 41 prompts me for the old and new
Polycontrast filter number, and then adjusts the exposure time (it
always remembers the last exposure time) accordingly. The "/"
(AUTO) key implements this new time.

The program that perform s all this stuff is listed below.
Barcode begins on page 273.

01*LBL "OKRM3" 21 TIME 41 E
02 "++0<+++" 22 STO 01 42 ST+ 02
03 RCL M 23 .0215 43*LBL 02
04 STO d 24 HMS+ 44*LBL 0
05 "FOC" 25 24 45 FIX 0
06 61 26 X<=Y? 46 CF 21
07 PASN 27 XEQ 03 47 CF 22
08 "MAN" 28 RON 48 CF 29
09 71 29 """AI" 49 " "
10 PASN 30 XYZALM 50 ARCL 02
11 "AUTO" 31 CLST 51 "I FX. "
12 81 32 RCL 01 52 ARCL 03
13 PASN 33 .07 53 "I WSH"
14 "AOJ" 34 HMS+ 54 AVIEW
15 51 35 24 55 RTN
16 PASN 36 X<=Y? 56 GTO 01
17 CLRG 37 XEQ 03 57*LBL 03
18 GTO 02 38 RON 58 MOD
19*LBL 01 39 UAAA2" 59 TIME
20 CLST 40 XYZALM 60 INT

73

Control The World with HP-IL

61 X=O? 102 TONE 6 143 FS? 01
62 RTN 103 FS? 03 144 GTO 05
63 RON 104 RTN 145 32
64 DATE 105 GTO 02 146 ACCHR
65 E 106*LBL "MAN" 147 " FOCUS"
66 OATE+ 107 FC?C 02 148 CF 21
67 X<>Y 108 GTO 08 149 AVIEW
68 109 150 SF 01
69 RTN 110 ACCHR 151 RTN
70*LBL B 111 TONE 87 152 GTO 01
71 FIX 6 112 RCLSW 153*LBL 05
72 " 113 STO 04 154
73 RCL 04 114 CF 22 155 ACCHR
74 ATIME24 115 ALMNOW 156 CF 01
75 CF 21 116 GTO 02 157 GTO 02
76 AVIEW 117*LBL 08 158*LBL "AUTO"
77 SF 21 118 "+i+++" 159 FS?C 22
78 CF 22 119 X<> M 160 XEQ 09
79 RTN 120 X<> c 161 "+i+++"
80 GTO 01 121 ALMNOW 162 X<> M
81*LBL "A1" 122 X<> c 163 X<> c
82 E 123 SF 21 164 ALMNOW
83 ST- 02 124 165 X<> c
84 ST+ 03 125 STOPSW 166 SF 03
85 RON 126 SETSW 167 SF 21
86 XEQ "T1" 127 32 168 32
87 PSE 128 ACCHR 169 ACCHR
88 XEQ "T1" 129 TONE 87 170 TONE 87
89 PSE 130 RUNSW 171 "AAEOFF"
90 XEQ "T1" 131 SF 02 172 TIME
91 FS? 03 132 CF 21 173 RCL 04
92 RTN 133 " MANUAL" 174 HMS+
93 GTO 02 134 AVIEW 175 5 E-5
94*LBL "A2" 135 SF 21 176 HMS-
95 E 136 RTN 177 +
96 ST- 03 137 GTO 01 178 CLST
97 RON 138*LBL E 179 LASTX
98 TONE 6 139 CLOCK 180 24
99 PSE 140 GTO 01 181 X<=Y?

100 TONE 6 141*LBL "FOC" 182 XEQ 03
101 PSE 142 SF 21 183 RON

74

Darkroom Controller

184 XYZALM 218 *
185 ALMNOW 219 10
186 GTO B 220 +
187*LBL "EOFF" 221 XEQ
188 SF 21 222 X<>Y

189 223 RON
190 ACCHR 224 /
191 TONE 87 225 RCL
192 CF 03 226 HR

193 GTO 02 227 *
194*LBL 09 228 HMS
195 E4 229 STO
196 / 230 GTO
197 STO 04 231*LBL
198 RTN 232 500

199*LBL "ADJ" 233 RTN

200 E4 234*LBL
201 / 235 250

202 RCL 04 236 RTN

203 HMS+ 237*LBL
204 STO 04 238 400
205 GTO B 239 RTN

206*LBL "FLTR" 240*LBL
207*LBL C 241 320

208 "FILTER #1?" 242 RTN

209 PROMPT 243*LBL
210 2 244 320

211 * 245 RTN
212 10 246*LBL
213 + 247 250
214 XEQ IND X 248 RTN

215 "FILTER #2?" 249*LBL
216 PROMPT 250 100
217 2 251 RTN

Synthetic Text Lines:
02: 68,60,132,136

118: 1,105,1,0,16
161: 1,105,1,0,16

IND x

04

04
B
10

12

13

14

15

16

17

252*LBL 18
253 80
254 RTN
255*LBL e
256 CLA
257 61
258 PASN
259 71
260 PASN
261 81
262 PASN
263 51
264 PASN
265 FIX 4
266 CLST
267 RTN
268*LBL "T1"
269 TONE 89
270 TONE 89
271 TONE 89
272 TONE 89
273 TONE 89
274 TONE 89
275 TONE 89
276 TONE 89
277 TONE 89
278 TONE 89
279 TONE 89
280 TONE 89
281 TONE 89
282 TONE 89
283 TONE 89
284 TONE 89
285 END

75

Control The World with HP-IL

Part II: Make it Better

Now that most of the tedium has been removed from my
darkroom work (courtesy of my 41), I felt it was time to let my
calculator take over one additional aspect: take the guesswork out
of the initial exposure time by measuring the light hitting the
paper and recommending exposure time and filtration. This is
where some additional hardware is needed.

The AID Converter

The chip used here, the National Semiconductor ADC0804, is
your basic, no-frills, been-around-forever analog-to-digital
converter which takes a variable voltage (in this case a
light-sensitive cadmium sulfide photo cell) as its input and
provides an 8-bit number at its output. (See Figure 4-3.)

.01 J.lF

555 7
Trig Disc l

3 Out Thr 6 DAVI
9 4 RS~imeBYp 5

76

200Kn

I .047 J.lF

1M!"!

Figure 4-3
The Analog­
to-Digital
Converter

Darkroom Controller

The underlying principles behind analog to digital converters
are actually quite simple. U sing a two-input element called a
comparator, the converter compares the voltage supplied at the
input with an internally-generated voltage that starts at Ov and
continuously rises until it matches the input voltage, at which
time the comparator says "Okay, they're equal". At that instant,
the voltage increase halts, and an 8-bit counter (whose value is
proportional to the rising reference voltage) is displayed at the AID
converter's output.

The ADC0804 uses something called differential input mode,
which takes as its analog input the difference in voltage between
the (+) and (-) inputs. (Pins 6 and 7.) As will be seen shortly, this
feature combined with the Vref/2 pin (pin 9) allows for an
incredible amount of different configurations. This is important,
since it means we can use anything as input. U sing external
resistors, we can program the chip to scale its output up or down
and allow us to measure the intensities of solar flares or fireflies;
sound intensities of glass being broken or space shuttles taking off;
temperature variations on the Earth or on Venus. In short, you
can magnify or compress the 256-unit range to fit any form of any
input you care to supply!

The lower half of Figure 4-3 also contains something called a
pulse expander, comprised of a commonly available 555 IC timer
and some support components. To understand its function, recall
the handshaking scheme described in Chapter 1. A pulse must
appear on the DAVI line telling the GPIO that the stuff it sees on
the data lines is valid. Well, what wasn't mentioned is that this
DA VI input will only accept pulses that last a minimum of 60
milliseconds. The pulse width of the AID converter's STROBE line
output is only 10 ms, a mere 1/6 of the width required by the GPIO.

This pulse expander does exactly what its name implies: it takes
a pulse of any duration from the input marked STROBE, and
outputs to DAVI a fixed length, 100 ms pulse, much larger than
the required width. When doing any type of general-purpose
interfacing, it is a useful circuit to have for conditioning any
signals, since it debounces as well as expands its input.

For this application, I wish to measure the amount of light
coming from an enlarger using a photo cell, a device whose

77

Control The World with HP-IL

resistance decreases proportionally with the amount of light that
hits it. The three challenges here are 1) somehow convert a
variable resistance into a variable voltage for the ND converter, 2)
"program" the converter to give a full-scale swing in response to
the relatively small variance in intensities coming from the
enlarger, and finally 3) make the AID converter's output
meaningful to the computer that will be receiving it.

Voltage Divider

The solution to the first challenge is to use the most basic of
electric circuits that uses only one other resistor: the voltage
divider. In theory, if you have two resistors of equal value
arranged in series across a 5-v source as in Fig. 4-4, the voltage at
the midpoint would be 2.5 volts.

+Sv

500Kn

~~.5VOI" 1~:I~· _ 1..2_5 Volts
~ -=-

Figure 4-4
Two Equivalent
Voltage Dividers

The two-step method for deriving the midpoint voltage using two
different resistors (as illustrated in Fig. 4-5) comes directly from
Ohm's Law: Volts = Current X Resistance. First, calculate the
total current running through these resistors:

I (=current) = VIR = 5v/1,000,000 Ohms = .005 milliamps

Then, starting from the top, we just subtract the voltage drop due
to each resistor to get the voltage at that point. In this case:

5 - (.005 mA)x(300 KOhms) = 3.5 volts.

78

Darkroom Controller

The steps involved in adapting this converter to your specific
photo cell (not all behave the same way) are very straightforward:

1) Go into your darkroom with an ohmmeter and a photocell.
Making sure that no stray safelight rays hit the cell, take two
readings off the ohmmeter: the photocell's resistance with the
lamp shut off, (call this reading "R(d)") and with the lamp turned
on with no negatives or filters in place and the enlarger head all
the way down Oabel this reading "RO),,). These values correspond
to the darkest and lightest your negative can ever be. If you find
that your two readings do not differ greatly (i.e. by less than a
factor oflO), try a different kind of photocell. I personally find that
Cadmium Sulfide (CdS) cells work best in this environment.

+Sv

300KQ

Figure 4.5
Voltage Divider Using
Unequal Resistors

2) The photo cell will be used as the top resistor in a voltage
divider as pictured in Fig. 4-5. In this way, the change in
resistance will directly affect the voltage appearing at the
midpoint. A value of the lower resistor that will cause the greatest
voltage swing for the measured resistance values must now be
calculated. The formula for the voltage swing is:

(

Rd
Voltage Swing = 5 Rd+X

where X is the value of the bottom resistor. Try "plugging III

several values of X until the voltage swing hits a maximum value.
(You may wish to invest in a fine pocket calculator to help speed up

79

Control The World with HP-IL

the maximization of the above expression.)
Finding the proper value for the bottom resistor will increase

the sensitivity of the AID Converter for your particular
environment, and allows you to go on to the next step, which is:

Building the Circuit

Figure 4-6 shows the entire circuit for the darkroom controller.
For ease of use, this circuit is contained in two separate housings:
the base unit, which contains the power supply, AID converter,
triac, IL Converter, 555 timer, and AC receptacle for the enlarger;
and the "RAT" (which is sort oflike a mouse except the trackball
on the bottom has been replaced by a photocell on top), which
contains the pushbutton switch and the photocell. The rat is
attached to the main housing by a three-conductor cable, which
carries the wires eminating from the dashed box in Figure 4-6.

Because this project involves turning AC devices on and off, and
because it is to be used in the vicinity of water and chemicals, it is
important to take some extra precautions when building the
enclosure and placing the components. Be certain all AC
connections are well insulated; building it into a plastic box is
extra insurance against accidental shock. For extra safety, add a
fuse with the same rating as the enlarger to the power cable.

Calibrating the Circuit in the Darkroom for the First Time

After building the hardware and loading the DKRM4 program
below, the final step is to calibrate the AID converter for your
particular enlarger. To do this, you need a set of calibrated
reference negatives. This is easy to obtain; just get a photographic
18% grey card and, using a 35MM camera, take 7 pictures of it,
each frame having one stop more exposure than the last. Start
with correct exposure, then overexpose one, two, and three stops,
and then underexpose one, two, and three stops. An unexposed
frame (shoot with the lens cap on) is also needed for calibration.
It's helpful to mark the negatives with their respective exposures,

80

00
f-'

DAVO

DA7

DA6

Data I DAS
Bus DA4

A DA3

DA2

DA1

DAO

VCC ;J
VC1

RDY'9 DACI

GND

-:-

+Sv RAT~
i+

sV
Guts

:~~J.
"I D7 .. "~ ',-0 I

12 nc RD
I ,

::1 ~~ ~1~'I~'14 10Kii I 150' PFl '_ -r -----'

. -I LJO 17 ~ 8Kn

" .. "nL..:!.... -:-

....l..- ~fMnl1Mn - Light Dark
Adjust -=- -:- Adjust

.01 flF

I~I---n
200Kn

.047 flF

1

I ~1 o +Sv

174C373
Latch

~

Figure 4-6
Complete Schematic,
including the IEEE's new
standard symbol for an
enlarger.

~

* 8
~

g
;::s
(3
~ ...,

Control The World with HP-IL

so when comparing "corrected" prints later on you'll know what
exposure you started with.

1) First, position the Vrefl2 potentiometer (the one connected to
pin 9 of the ADC) at the halfway position, setting that pin at 2.5
volts. (Disconnecting pin 9 achieves the same thing.)

2) With the photocell safely shielded from the safelight, take a
reading of the ambient light using the INTR routine from the
program DKRM4. Adjust the Yin potentiometer (the one
connected to pin 7) until the HP-41 just reads zero. This pot adjusts
the offset, and insures that both V + and V-are at the same voltage
when the reading should ideally be zero.

3) Turn the enlarger on. With the housing lowered all the way
and with the unexposed negative in the carrier, slowly adjust the
Vrefl2 potentiometer until the readings just hit 255, its full-scale
value. Just seeing "255" off the 41 's display is not enough; the ADC
may be displaying an overflow value without telling you. Because
we're making use of the AID converter's full scale to represent our
relatively narrow range of light intensity, we can now make very
accurate readings.

4) Determine the Exposure Curve. Take the 7-negative strip of
grey card exposures described earlier and make an accurate print
of each frame, without filters, using the old-fashioned
trial-and-error method. This will yield 7 identical photos of grey
cards, so it is best to mark each photo with initial exposure (-1, +2,
etc.), enlarger time, and AID reading. Here are the numbers I
came up with:

41 Reading

EV Exposure (sec)

-2 94
-1 75 2

0 58 4
+1 47 8
+2 36 16

82

Darkroom Controller

41 Reading vs. Correct Exposure Time

20

30 40 50 60 70 80 90 100

41 Reading

This table is used to determine the proper exposure given a
reading of an 18% grey area of the desired negative. The equation
describing this graph turns out to be:

of seconds = 5.38E5 x (reading) 1\ -2.9

Again, the numbers and the equations will be different for every
cell, resistor, and enlarger combination. Those displayed here are
only examples.

5) Make adjustments to the filtration guides. When two or more
readings are taken (lightest, darkest, and 18% grey), the calculator
recommends a polycontrast filter # and an exposure time already
compensated for that filter. The rules this program follows for
determining the filter are as follows:

Range (lightest-darkest)
< 35

36-45
46-55
56-65
66-75
76-85
86 >

Filter #
4

3.5
3
2.5
2
1.5
1

83

Control The World with HP-IL

As you gain more experience with the darkroom controller, these
numbers may be tweaked to meet your personal preferences. It is
an easy thing to do; the constants are stored as comparison
numbers at LBL 33. But since this unit's only purpose is to give a
general recommendation, these numbers should suffice.

Complete Instructions for the Darkroom Controller

1) With all the hardware hooked up, XEQ DKRM4 (or DKRM3 if
you're using the simplified version without the AID converter.)

2) To turn the enlarger lamp on for focusing, hit the FOCus (the
"+") key. To turn the enlarger off, hit the FOCus key again.

3) Once the image has been sized and focused, there are 3 ways to
tell the unit how long to operate:

A) Using the 41 's keyboard, punch in the desired number of
seconds and hit AUTO (the I key). This time is implemented and
stored in R04.

B) Use the MANual (the *) key to turn the lamp on. When you
feel the print has absorbed enough light, hit the MAN key again to
turn the enlarger off. The duration just implemented is
automatically measured and stored in R04 for future use.

C) (This applies only to the AID converter version.) Use the
"RAT" to measure the light coming from the negative and have the
41 calculate the proper exposure. (See below, "Using the RAT".)

4) Develop the print in the normal fashion. When the print enters
the fixing bath, hit the RIS key. This sets 2 alarms which will
automatically remind you when the print should change baths.

With the RAT, the above steps should yield a technically acceptable
print. Many adjustments, however, may be necessary in order to
obtain an artistically excellent one. To make these adjustments,
the following steps should be used:

84

Darkroom Controller

5) To 'tweak' the enlarger time, key in the number of seconds to
add to R04 and hit ADJust (the - key). For example, if you feel the
print needs 2 seconds less to make it perfect, key in 2 CHS ADJ and
the time is altered. Hitting AUTO implements the new time.

6) If a different filter for contrast is desired, the new exposure time
can automatically be calculated. Press "C" (standing for Change
filter) and answer the prompts for "Filter #1" and "Filter #2".
(DKRM4 will only ask for filter #2, since it automatically keeps
track of filter #1.) A new exposure time will be calculated based on
the time already stored in R04.

7) To view the current FIX-WASH scoreboard, press "D" (for
Display) at any time.

8) To view the current enlarger time and filtration, press "B".

9) After an incredibly productive evening, XEQ e to remove all the
global assignments and return the display to something normal.

Using the RAT

The software supporting the RAT (it's a much more descriptive
term than, say, a MOUSE) allows you to measure different aspects
of the negative and calculate the proper exposure and filtration in
different ways.

10) Turn the enlarger lamp on by pressing the FOCus (the +) key
once. (Clicking once on the RAT's button does the same thing.)

11) By making one reading on a portion of the negative that is the
equivalent to 18% grey, the 41 will calculate the proper exposure.

12) By making two readings on the lightest and darkest portions of
the negative, the 41 will determine the negative's density range
and recommend a polycontrast filter to match the paper's range

85

Control The World with HP-IL

with that of the negative. The exposure is calculated based on the
midpoint between the measured spots.

13) By making three (or more) readings on the lightest, darkest,
and "18%-est" areas of the negative (in any order), the 41 will
recommend a polycontrast filter number based on the negative's
extremes, and an exposure based on the average of all readings.

14) After all the readings are taken, hit the FOCus button to shut
offthe enlarger and start the calculations going. The new
exposure time and filtration are then prominently displayed.

Phase IT Software

Here's the software. As always, barcode for this program can be
found in Appendix A, pg. 277.

01*LBL "DKRM4" 23 61 45 X<=Y?
02 "'<0 +0 +0 +" 24 PASN 46 XEQ 03
03 RCL M 25 "MAN" 47 RDN
04 STO d 26 71 48 ItAAA111

05 7 27 PASN 49 XYZALM
06 BSIZEX 28 "AUTO" 50 CLST
07 0 29 81 51 RCL 01
08 PT= 30 PASN 52 .07
09 130 31 "ADJ" 53 HMS+
10 X-BUF 32 51 54 24
11 1 33 PASN 55 X<=Y?
12 LAD 34 -REG 05 56 XEQ 03
13 0 35 CLRG 57 RDN
14 DDL 36 GTO D 58 IIAAA2"

15 1 37*LBL 20 59 XYZALM
16 OUTBUFX 38 RTN 60 E
17 UNL 39 CLST 61 ST+ 02
18 3 40 TIME 62*LBL D
19 ENTER" 41 STO 01 63 FIX 0
20 64 42 .0215 64 CF 21
21 WREG 43 HMS+ 65 SF 18
22 "FOC" 44 24 66 CF 22

86

Darkroom Controller

67 CF 29 93 / 119 CLA
68 " " 94 RCL 04 120 ATIME24
69 ARCL 02 95 HR 121 ,,> I #"
70 "> I FX. " 96 * 122 FIX 1
71 ARCL 03 97 HMS 123 ARCL 00
72 "> I WSH" 98 STO 04 124 ASHF
73 AVIEW 99 GTO B 125 32
74 AUTOIO 100*LBL 03 126 X-AL
75 GTO 20 101 MOD 127 CF 21
76*LBL C 102 TIME 128 AVIEW
77 "FILTER #2?" 103 INT 129 SF 21
78 PROMPT 104 X=O? 130 CF 22
79 RCL 00 105 RTN 131 AUTOIO
80 2 106 RON 132 RTN
81 * 107 DATE 133*LBL "A1"
82 10 108 E 134 E
83 + 109 OATE+ 135 ST-
84 XEQ INO X 110 x<>y 136 ST+
85 RCL Z 111 137 RON
86 2 112 RTN 138 XEQ
87 * 113*LBL B 139 PSE
88 10 114 XEQ 04 140 XEQ
89 + 115 GTO 20 141 PSE
90 XEQ INO X 116*LBL 04 142 XEQ
91 x<>y 117 FIX 6 143 FS?
92 RON 118 RCL 04 144 RTN

And now, a walk-through of the Darkroom
Controller's use.

Follow these simple steps for
faster, easier printing!

02
03

"T1"

"T1"

"T1"
03

87

Control The World with HP-IL

145 GTO 0 168 STO 04 191 GTO 20
146*LBL "A2" 169 CF 22 192*LBL "FOC"
147 E 170 ALMNOW 193 MANIO
148 ST- 03 171 GTO 0 194 SF 21
149 RON 172*LBL 08 195 SF 18
150 TONE 6 173 "0 +iO +0 +0 +" 196 FS? 08
151 PSE 174 X<> M 197 GTO 05
152 TONE 6 175 X<> c 198 32
153 PSE 176 ALMNOW 199 ACCHR
154 TONE 6 177 X<> c 200 AUTOIO
155 FS? 03 178 SF 21 201 3
156 RTN 179 202 ENTER"
157 GTO 0 180 STOPSW 203 64
158*LBL "MAN" 181 SETSW 204 WREG
159 MANIO 182 32 205 CL-
160 SF 21 183 ACCHR 206 " FOCUS"
161 CF 18 184 TONE 87 207 CF 21
162 FC?C 02 185 RUNSW 208 AVIEW
163 GTO 08 186 SF 02 209 SF 08
164 187 CF 21 210 GTO 20
165 ACCHR 188 " MANUAL" 211*LBL 05
166 TONE 87 189 AVIEW 212
167 RCLSW 190 SF 21 213 ACCHR

Step 1 Hit the FOCus key and focus as usual.

88

Darkroom Controller

214 CF 08 237 RCL 04 260 E4
215 RCL 10 238 HMS+ 261 /
216 X=O? 239 5 E-5 262 STO 04
217 GTO 0 240 HMS- 263 RTN
218 GTO 22 241 + 264*LBL "AOJ"
219*LBL "AUTO" 242 CLST 265 E4
220 MAN 10 243 LASTX 266 /
221 SF 21 244 24 267 RCL 04
222 CF 18 245 X<=Y? 268 HMS+
223 FS?C 22 246 XEQ 03 269 STO 04
224 XEQ 09 247 RON 270 GTO B
225 "0 +iO +0 +0 +" 248 XYZALM 271*LBL 10
226 X<> M 249 ALMNOW 272 0
227 X<> c 250 GTO B 273 STO 00
228 ALMNOW 251*LBL "EOFF" 274 RON
229 X<> c 252 MAN 10 275 500
230 SF 03 253 SF 21 276 RTN
231 SF 21 254 277*LBL 12
232 32 255 ACCHR 278 1
233 ACCHR 256 TONE 87 279 STO 00
234 TONE 87 257 CF 03 280 RON
235 """EOFF" 258 GTO 0 281 250
236 TIME 259*LBL 09 282 RTN

Step 2 Using the RAT, take density readings of the brightest, darkest,
and "18% grey-est" areas of your negative. The 41 will recommend
a contrast filter and exposure time.

89

90

Control The World with HP-IL

283*LBL 13 306 RTN 329 GTO B
284 1. 5 307*LBL 17 330*LBL 31
285 STO 00 308 3.5 331 XEQ "EXPOSUR"
286 RDN 309 STO 00 332 1 E4
287 400 310 RDN 333 /
288 RTN 311 100 334 STO 04
289*LBL 14 312 RTN 335
290 2 313*LBL 18 336 STO 00
291 STO 00 314 4 337 RTN
292 RDN 315 STO 00 338*LBL 32
293 320 316 RDN 339 -
294 RTN 317 80 340 XEQ 33
295*LBL 15 318 RTN 341 500
296 2.5 319*LBL 22 342 X<>Y
297 STO 00 320 MEAN 343 /
298 RDN 321 XEQ 31 344 RCL 04
299 320 322 RCL 10 345 HR
300 RTN 323 1 346 *
301*LBL 16 324 X=Y? 347 HMS
302 3 325 GTO B 348 STO 04
303 STO 00 326 RCL 11 349 RTN
304 RDN 327 RCL 12 350*LBL 33
305 250 328 XEQ 32 351 95

Step 3 With paper in the easel and filter in place, press
AUTO to automatically expose for the recommended time.

Darkroom Controller

352 X<=Y? 375 GTO 18 398 CL-
353 GTO 12 376*LBL e 399 1 E9
354 RDN 377 CLA 400 STO 12
355 85 378 61 401
356 X<=Y? 379 PASN 402 STO 11
357 GTO 13 380 71 403 AUTOIO
358 RDN 381 PASN 404 RTN
359 75 382 81 405*LBL 02
360 X<=Y? 383 PASN 406 1
361 GTO 14 384 51 407 TAD
362 RDN 385 PASN 408 INBUFX
363 65 386 FIX 4 409 UNT
364 X<=Y? 387 CLST 410 BUF-XB
365 GTO 15 388 RTN 411 INS TAT
366 RDN 389*LBL "INTR" 412 RDN
367 55 390 CLD 413 FS? 01
368 X<=Y? 391 FS? 08 414 GTO 02
369 GTO 16 392 GTO 02 415 CF 00
370 RDN 393 MANIO 416 128
371 45 394 SF 21 417 X<>Y
372 X<=Y? 395 32 418 X=Y?
373 GTO 17 396 ACCHR 419 GTO 37
374 RDN 397 SF 08 420 255

Step 4 Develop the print in the usual manner. Hit the RIS key
when it gets to the fixer. The 41 will log the print and keep
track of it from here.

91

92

I Control The World with HP-IL

421 X<>Y 444*LBL "T1" 4 67 *
422 X=Y? 445 TONE 89 468 END
423 GTO 37 446 TONE 89
424 TONE 89 447 TONE 89
425 RCL 11 448 TONE 89
426 X<>Y 449 TONE 89
427 X>Y? 450 TONE 89
428 STO 11 451 TONE 89
429 RCL 12 452 TONE 89
430 X<>Y 453 TONE 89
431 X<Y? 454 TONE 89
432 STO 12 455 TONE 89
433 ENTER" 456 TONE 89
434 -+ 457 TONE 89
435 RON 458 TONE 89
436 RTN 459 TONE 89
437*LBL 37 460 TONE 89
438 TONE 13 461 TONE 89
439 CF 21 462 RTN
440
441
442
443

" TRY AGAIN" 463*LBL "EXPOSUR"
AVIEW 464 -2.9
SF 21 465 Y"X
RTN 466 537933.4

Step 5 Go about your business. The 41 will
'chirp' when it's time to move the print to the
wash, and later 'beep' when it's time to hang it
up to dry. This system will keep track of as
many photos in process as you have memory.

Darkroom Controller

Analysis:

LINES 1-36
General initialization. All system flags are set synthetically
in lines 2-4. The I/O buffer required by the IL Development
ROM is set up in lines 6-8. Lines 9-17 configure the GPIO's
first control register (RO) to flag a service request whenever
there's data in the buffer. Lines 18-21 configure the 41's IL
chip to send out IDY s when idle (see Chapter 6 for how
service request and IDY s work.), and finally lines 22-33
assign the global labels necessary for use.

LINES 37-61
Flow control always returns to LBL 20 and stops. Pressing
RIS after a prin t has en tered the fixer au tom a tic ally
continues execution, and sets up 2 interrupting alarms: one
for 2 minutes 15 seconds in the future (line 42), the other for 7
(line 52). Other checking is done (at LBL 03) in case the
current time is close to midnight and the prints may have to
be moved tomorrow. (You can tell my usual darkroom
hours!) Lines 60-61 increment Register 2, which keeps track
of the number of prints in the fixer.

Step 6 Examine the print. If desired, use the system's features to
tweak theexposureor changethefilter with ANSI speed
compensation.

93

Control The World with HP-IL

LINES 62-75
LBL D (for Display) can be called from the keyboard as well
as other subroutines. This simply displays the number of
prints in each bath, as kept track of by regs. 02 and 03.

LINES 76-99
LBL C stands for Change filter, and calculates the new
exposure value when changing polycontrast printing filters.
The ANSI paper speeds have been stored at labels 10-18,
which are moved into the X register at lines 84 and 99, "XEQ
IND X". The old time is multiplied by the ratio of these 2
numbers and stored away into R04 in H.MS format, ready for
action by hitting "AUTO". (! key.) Calling LBL B displays the
current time and filter number, so it may be recorded for
future use.

LINES 100-112

94

Called by the alarm setting routine (LBL 20) when the alarm
has to go off after 12:00 midnight. This subroutine advances
the date and returns with the stack contents in the proper
places.

Step 7 When finished, be proud of your results which were
produced using a minimum number of steps!

Darkroom Controller

LINES 113-132
LBL B calls LBL 04, and the two have been separated because
calling routines need control passed back and finger
execution (pressing the "B" button) does not. LBL 4 simply
displays the current enlarger time stored in R04 and the
current filter number stored in ROO.

LINES 133-145
LBL AI is the "warning" program called by the first alarm,
telling the user that it's time to move a print from the fix to
the wash. After decrementing R02 and incrementing R03
(reflecting the fact that a print is to be moved), the audible
chirping routine "Tl" is called 3 times, and then the
fix-wash scoreboard is displayed (GTO D).

LINES 146-157
This is another warning routine called by the second alarm.
R03 (the number of prints in the wash) is decremented and 3
TONE 6's are sounded, telling the user to remove the print
from the wash and hang it up to dry. The new scoreboard is
displayed (GTO D).

LINES 158-191
This is the MANual routine, called when the * key is
pressed. It simply turns the enlarger on and measures the
time elapsed until the * key is hit again. First, flag 2 is
checked. If it is clear, then the enlarger is off and we branch
to the 'on' routine, LBL 08. Otherwise, the enlarger is shut
off (lines 164-165), the stopwatch time is stored in R04, the
suspended alarms are re-activated (ALMNOW) and we
return. LBL 08 starts off by synthetically suspending all
alarm s via lines 173-177 so there's no potential for
interruption. The stopwatch is reset and started, the
enlarger is turned on, flag 2 is set showing the MANual
operation has started, and we GTO 20, the standard waiting
spot.

LINES 192-210
LBL FOCus does the same job as MANual except no timing

95

Control The World with HP-IL

takes place. First, flag 8 (indicating if this is the OFF cycle
rather than the ON cycle) is checked; if it is we GTO 05 and
shut it off, otherwise the enlarger is turned on. Lines 201-204
reset the IL Module for automatic IDYs (in case the 41 was
turned off since the program was initialized). The statistical
registers are cleared, the word "FOCUS" is displayed, and
we wait.

LINES 211-218
In LBL 05, we try to determine what was done with the
"RAT" while FOCus mode was on. First, the enlarger lamp
is shut off, flag 8 is cleared, and then RIO is checked for how
many ND readings were taken. If RI0=0 (no readings), we
exit. Otherwise, we go on to LBL 22 for further processing.

LINES 219-250
This is not a toggle function. AUTOmatic takes the time
stored in R04 and turns the enlarger on for exactly that
duration. First, flag 22 is checked to see if an overriding
duration was manually punched into the X register. If it
was, that time is stored into R4 and implemented. Either
way, the pending alarms are synthetically suspended (lines
225-229) and the enlarger is turned on. Lines 235-248 then set
an interrupting alarm that will turn the enlarger off. (Lines
239-240 subtract a small amount of time to compensate for
the time it takes to set the alarm, thus guaranteeing a
true-to-request duration.) Line 249 lastly restores all the
suspended alarms, so audible reminders can still occur
during a critically timed exposure.

LINES 251-258
This is the routine we branch to when the alarm set in the
AUTO function comes due. It simply turns the enlarger off
(254-255), clears flag 3 indicating AUTO mode has been
terminated, and exits.

LINES 264-270

96

The ADJust function (the "_" key) takes the number of
seconds in the X register, converts it into the proper format
and adds it to the normal time stored in R04.

Darkroom Controller

Inside the controller is an IL Converter andasmall, unregulated
power supply. A 5v regulator was a:i:led to protect the circuitry.
The front panel (bottom) contains the IL receptacle, 3-pin
miniature phone jack for the RAT, and a master power switch. The
enlarger plugs into an AC receptacle mounted on top of the case (not
shown).

LINES 271-318
Eight subroutines used when calculating new exposure
times for filtration changes. Each label first stores its
respective filter number in ROO, drops the stack, and puts its
effective ANSI paper speed into the X register and returns.
LBL 10 represents the enlarger without a filter; LBLs 12-18
accommodate the seven filters, from #1 through #4 (in
half-steps).

LINES 319-337
If at least one reading was taken with the RAT, we end up
here. The exposure is determined by taking the average of
all the readings and XEQing 31, which converts it to the
number of seconds and stores it into R04. If only one reading
was taken (lines 323-325) that's all we can do; otherwise the
contrast range is computed by recalling the highest and the

97

Control The World with HP-IL

lowest values read (stored in Rll and R12 respectively) and
XEQing32.

LINES 338-349
The required filter value is determined by taking the
difference between the highest and lowest values read and
XEQing 33, which is a look-up table. This subroutine
changes the filter value in ROO and returns with the ANSI
paper speed in the X register. Lines 341-348 then calculate
the new exposure time required when using this new filter
by taking the old time (R04) and multiplying it by the ratio of
the old and new paper speeds.

LINES 350-375
LBL 33 is a look-up table which takes the range of RAT
readings as input and compares it against the arbitrary
thresholds defined earlier. If the number is within a given
range it branches to one of the eight filter subroutines in
lines 271-318.

LINES 376-388
This is an odd place for a "cleanup" subroutine, but that's
precisely what LBL e does. Upon completion of a darkroom
session, this routine gets rid of all the global labels and
"FIXes" the display.

LINES 389-404
This is the interrupt routine jumped to every time the RAT
button is pressed. First flag 08 is checked to see if the
enlarger has already been turned on via the FOCus routine.
If not, the enlarger is turned on and various registers are set
up: the sigma registers are cleared (line 398), a high number
is stored in R12, a low number is stored in Rll, and flag 8 is
set so next time the button is pressed a reading will be taken.

LINES 405-436

98

The number is read from the AID Converter here. The GPIO
is made a talker, a byte is transferred to the buffer and then
to the X register, and the GPIO is immediately queried to see
if more data awaits. If there is it was probably due to switch

Darkroom Controller

bounce, so we disregard the old value and start again. (Lines
411-414.) We then check for "bad" values: if the number just
read was either 128 or 255, it was probably an error and we
branch to LBL 37 to handle it. By the time we get to line 424,
the number is valid and a happy-sounding TONE 89 is issued
for feedback. The remainder of the routine (lines 425-436)
tests the number to see if it's either the lowest or highest
value read so far, and then "sigma-plus"es it. The reading
value is retained in the X register in case some other routine
needs it.

LINES 437-443
The most complex error-handling routine in existence.
Simply sounds a low negative-reinforcement tone, displays
"TRY AGAIN", and exits.

LINES 444-462
This is the "chirp" sound used to give audible warning of a
print that needs to be moved from the fixer to the wash. It is
comprised of a string of TONE 89s, and is called three times
from the "AI" interrupting alarm.

LINES 463-468
This subroutine will be different for every user. It consists of
the equation that was derived in step 4, Determine the
Exposure Curve.

Software Techniques

There are 2 significant techniques used in DKRM4 that warrant
discussion. The first is the suspension of alarms in the ALMCAT,
and the second deals with a no-overhead way of responding quickly
to an event on the loop, such as someone pressing the button on the
RAT.

Since the AUTO function is designed to reproduce a previous
enlarger time EXACTL Y, any alarms activating during an
exposure run the risk of altering that time, since the 41 may be
busy handling the interrupt rather than shutting off the enlarger.

99

Control The World with HP-IL

To insure repeatable results, it is important to guarantee that no
such interruptions occur.

One method for doing so is to fool the time module into thinking
that there aren't any alarms. Using synthetics, it is possible to
move the program/data divider, called a curtain, past the buffer
area where alarms are normally kept, so the time module doesn't
see them. Performing an ALMNOW in this condition tells the 41
"Look Ma! No alarms!" and makes it safe to move the curtain back
without fear of the alarms activating. Other time-crucial activities
can now be performed safely, and as soon as you are done another
ALMNOW will force the 41 to examine the alarm buffer and make
it realize that "Whoa! There are alarms here after all!" and they
will start to activate in sequence. The first 5 lines of LBL 08 (line
172) shows the instructions required to do this. [For further details
on this technique, refer to reference 2.]

Another thing I consider to be "really neat" about this
application is that while the calculator's sitting idle and not
running a program, I can grab the "RAT", press the button, and
the 41 will suddenly start to execute a program! (Recall that in
Chapter 1 it was pointed out that in order for the 41 to respond to
any outside activity, a running program must continually look for
the event. This has the side effect of slowing everything else down
while at the same time increasing battery consumption
significantly.)

To nullify this problem a neat little trick was used, and I shall
now offer a quick demonstration of how it works. Take a 41, an IL
Development ROM, and the 82162A IL Thermal printer and enter
this initializing program:

01 LBL "SETUP"
02 55 09 WREG
03 FS? 55 10 3
04 XROM IF 11 ENTER
05 SF 18 12 64
06 0 13 WREG
07 ENTER 14 END
08 64

and this routine:

100

01 LBL "INTR"
02 BEEP
03 IDY
04 END

Darkroom Controller

Now run the SETUP program, and press either the 'Print' or
'Paper Advance' keys and hear a BEEP. Congratulations! You've
just reassigned the printer keys!

Well, actually the keys weren't reassigned at all; rather the
microprocessor in the 41 's IL Module was told to constantly search
the loop for devices that "needed attention" (set the service request
flag on a passing message frame). If one is found, and if the 41
isn't running a program, a program named "INTR" is run. This
feature is mentioned (slightly) in the Development ROM's User
Manual, Section 2 and Appendix C.

More Details

Using the WREG (Write Register) command in the DevIL ROM,
it is possible to access certain registers of the HP-IL chip. In the
above example, the chip was told to constantly send an IDY
(IdentifY) message around the loop. If any loop device needs
service (i.e., if a printer button is pressed), it alters the IDY
message slightly and passes it on.

As you probably know, the IL Module perform s its error
checking by comparing the messages returning from the loop with
those sent. Once the setup routine above has been run, every time
a message comes back that is different from the one sent, the 41
runs a program called INTR (Interrupt), which will determine the
cause of the interrupt and perform some specified function.

This means that INTR will start to run under the following
conditions:

1) The 41 is in idle mode (CLOCK or programs not running)
AND

101

Control The World with HP-IL

2a) A transmission error has occurred (a frame came back
not-as-sent), OR

2b) ANY device on the loop has requested service by altering the
IDY message.

After determining the cause, INTR can then perform any
routine or function, and then return back to idle mode once again.
(Service Requests are covered more thoroughly in Chapter 6.)

In the general case, the interrupt handling routine should look
more like this:

01 LBL "INTR"
02 FRNS?
03 RFRM
04 INSTAT
05 FS? 01
06 BEEP
07 FS? 02
08 TONE 7
09 IDY
10 END

Lines 2 and 3 check for the transmission error (Frame Received
Not as Sent?) and reads the frame (RFRM) to clear the error. The
rest of the program checks a status word from the printer to
determine which button was pressed. That way, each button can
perform a different function. The disadvantage here is the button
must be held down to both generate an interrupt and be recognized
through INSTAT.

In the DKRM4 program, not much of this extra checking is
performed since the loop configuration is known. As soon as an
interrupt occurs, it simply turns the enlarger on (if it isn't on
already), reads an AID value from the IL Converter, and goes back
to being idle.

The technique does have some undocumented restrictions,
however. For starters, the 41 must be in AUTOIO mode and flag
44 (the continuous ON flag) must NOT be set. You must not be in
PRGM mode when the interrupt occurs, and your program pointer
must not be in ROM. When trying the above printer example make

102

Darkroom Controller

sure flag 55 is clear, otherwise PRX will appear in the display
rather than cause an interrupt.

Conclusion

This darkroom application is only an example. This chapter is
really about how a basic analog to digital converter works and how
to tailor it to your needs. It also serves to give an excellent
philosophical example of what computers ought to be used for:
relieving users of the' dog work' and leaving them free to
concentrate on the creative matters.

References

"Quality Enlarging with Kodak B&W Papers", Eastman Kodak Co.
1982

"Suspending Alarms" Tapani Tarvainen, PPC Journal, August
1983

103

Control The World with HP-IL

104

Chapter Five

SPEECH SYNTHESIS

"The HP-IL system exemplifies the phrase 'What Goes Around,
Comes Around"'.

--Clifford Stem

I've always been a fan of synthetic speech, so when the
opportunity came a few years ago to actually make a portable
system, I jumped at the chance and built what was at the time the
smallest speech development system known. This chapter
describes that system, discusses some unusual interfacing
requirements, and gives several examples of programming (and
even some singing!) using a single speech synthesis I.C.

Most people are probably familiar with computers that can talk,
but few bother to make the distinction between two very different
approaches to computer speech: digitized and synthesized.
Digitized speech works much like a tape recorder. It starts with a
human speaking into a microphone, but instead of being stored on
magnetic media, it is digitized, analyzed, homogenized,
mathematically compressed and stored in computer memory. The
inverse of this process is employed to retrieve the information and
"play it back". Because it starts with a human source, digitized
speech is famous for sounding very much like a human. The price
paid for this, however, is the large amount of data needed to
represent the voice, its qualities, and inflections. Data
compression can help reduce that amount by extracting only the
"characteristic features" and compressing that data to fit into a
small space, but the voice quality becomes heavily degraded as a
result.

105

Control The World with HP-IL

The other method, synthetic speech, doesn't start with a human
voice at all. Using Fourier analysis, all the different sounds of the
English language are recorded, reduced to mathematical
equations, and simulated by digital filter techniques. The result is
that any combination of English language sounds can be strung
together to make words and phrases from relatively little data,
giving the unit an unlimited vocabulary without the usual large
amount of memory! Synthetic speech, unfortunately, also has its
drawbacks: it very often talks with a very heavy Swedish-sounding
accent.

The Votrax Co., a division of Federal Screw Works (I'm not
kidding!) has been one of the early pioneers in synthetic speech for
personal computers as well as mainframes. Their offering is the
SC-Ol chip, a primitive sounding (by today's standards, anyway)
phoneme-based chip that represents a mathematical model of a
human vocal tract.

Votrax has broken the English language up into 64 different
sounds, or phonemes, all of which are illustrated in Fig. 5-l.
These phonemes consist of vowels, consonants, blends,
combinations, and "no-sounds". You can have the speech chip say
anyone of these phonemes by putting its respective address onto
the chip's address bus and grounding the chip's STB (Strobe) line
momentarily. If you took a whole bunch of these phonemes and
fed them in one at a time very quickly, you might hear something
that sounds like a word. For example, to say "Thank you", you
should feed the chip the following sequence of addresses:

PHONEME
SYMBOL:

PHONEME CODE
(ADDRESS) :

TH

57

Al

6

Y N K Y u w

41 13 25 3 41 40 45 3

It would seem a natural that, given this chip's 8-bit bus
interface, both the 41 and 71 ought to be talking.

106

Speech Synthesis

ADDRESS DURATION (ms) ADDRESS DURATION (ms)

SYMBOL SAMPLE WORD SYMBOL SAMPLE WORD

00 EH3 59 jack~ 32 A 185 dll

01 EH2 71 .e.n1ist 33 AY 65 dll

02 EH1 121 h~vy 34 Y1 80 ,¥ard

03 pAQ 47 (--) 35 UH3 47 miss.iQn

04 DT 47 buller 36 AH 250 mQP

05 A2 71 ll\ade 37 P 103 Ilast

06 A1 103 ll\ade 38 0 185 cQld

07 ZH 90 az.ure 39 I 185 p.in

08 AH2 71 hQnest 40 U 185 mQve

09 13 55 inhib.it 41 Y 103 an,¥

10 12 80 .inhibit 42 T 71 .t.ap

11 I1 121 inh.ibit 43 R 90 .J;:ed

12 M 103 mat 44 E 105 m.e..e.t

13 N 80 sun 45 W 80 3iin

14 B 71 bag 46 AE 185 dad

15 v 71 yan 47 AE1 103 after

16 CH (*) 71 ~ip 48 AW2 90 salty

17 SH 121 ~op 49 UH2 71 about

18 Z 71 z.oo 50 UH1 103 J.lncle

19 AWl 146 lillllful 51 UH 185 CJ.lp

20 NG 121 thing 52 02 80 fQr

21 AH1 146 father 53 01 121 abQard

22 001 103 lQQking 54 IU 59

23 00 185 bQQk 55 U1 90 yQJ.l

24 L 103 ~and 56 THV 80 tile

25 K 80 trid 57 TH 71 tilin

26 J (*) 47 judge 58 ER 146 blid

27 H 71 hello 59 EH 185 g.e.t

28 G 71 get 60 E1 121 b.e.

29 F 103 .fast 61 AW 250 call

30 D 55 pai.d 62 PAl 185 (--)

31 S 90 pa~ 63 STOP 47 (--)

* "T" must precede "CH" to produce CH sound.

* "D" must precede "J" to produce J sound.

Figure 5-1
Phoneme Chart

107

DB7

DB6

Control The World with HP-IL

5v
Regulator

DAVo--------+----~1 J

DACI

RDYI~

The Circuit

P5

DB3 -~DP3

Figure 5-2
Diagram of
Speech Synthesizer
and Low-Pass Filter

1Kn

330Kn

330Kn

220pF

Figure 5-2 shows a method of hooking up the speech chip to the
IL Converter. Since this chip was designed to interface with a
microprocessor bus, no separate latch is needed. The 74C3738-bit
latch pictured is used instead to facilitate inflection, which we will
cover later. There is an amplifier attached to the SC-Ol's 2 output
pins; this can consist of a tape recorder with an Auxiliary input
and Monitor mode. Alternatively, there also exist several
self-contained low-fidelity modules available from local electronics
stores; one such module has been included in the figure along with
a low-pass filter to increase the sound quality at moderate-to-high
volumes.

The values of the resistors and capacitors determine the

108

Speech Synthesis

reference frequency needed to generate intelligible speech, and the
valid passband is very narrow. (Putting your finger across the 220
pF capacitor, for example, is enough to slow it down to the point
where it starts doing its H.A.L. 9000 impersonation.) These values
are not crucial; the only sensitive ones are those that are attached
to pins 15 and 16. In general, the values for these parts should be
chosen so that

1
=7,000

R x C
total

where R is the resistance in Ohms and C is the capacitance in
Farads. Most people hooking up a speech chip for the first time
have a great deal of trouble just getting it to say "Ahhhh", because
finding the correct resistor/capacitor combination to fulfill its
narrow tolerances can be difficult withou t pulse coun ters,
capacitance meters, etc. Don't worry; use variable resistors and
try lots of similarly-rated capacitors (they tend to deviate from the
marked value the most) and it shouldn't take more than a day to
hear a sound.

I decided that futuristic packaging is the way to go, so I took two
clear audio cassette cases, glued them back to back, and had
enough room inside to fit all the necessary components: an IL
Converter (minus its case), amplifier, speaker, 9v battery (and
therefore 5v regulator to get the voltage down to a non-destructive
level), speech chip and its interface ICs.

How to Drive it with Software

So how do we get this thing to talk? Let's try it with the 41:

DO COMMENTS

MANIO We're not talking to a printer.
S ACCHR Hear "A"

60 ACCHR Hear "E"
3 ACCHR No sound.

109

Control The World with HP-IL

As a second example, fill the alpha register with this string (refer
to Chapter 1 if you forgot how), SF 17, and OUTA:

H EH1
27 2

LOW
24 38 45 3

"HELLO"

Notice that the last phoneme was a "stop", which keeps the speech
chip from making the "W" sound forever. Some other interesting
phrases it can say are:

"Hewlett Packard":

H Y U1 L EH1 T

27 41 55 24 2 42 3

p AE K ER 0

37 46 25 58 30 3

"Shall we playa game?"

SH AE L W E1 Y
17 46 24 3 45 60 41 3

p L AE Y A Y
37 24 46 41 3 32 41 3

G A1 AY Y M

28 6 33 41 12 3

Adding Inflection

This all sounds hopelessly monotone, making this an ideal time
to introduce the inflection concept. The SC-Ol chip was designed to
operate on 8-bit machines, allowing a byte to be broken down as
follows:

110

Speech Synthesis

8 7 654 3 2 1

I \
INFLECTION PHONEME

The two most significant bits determine the pitch, or inflection, at
which the phoneme is spoken. The greater the inflection bits, the
higher the pitch. Therefore, if you wish to increase the pitch of any
phoneme, simply add multiples of 64 to the phoneme's address.
For example, to hear it sing "A" in 4 musical keys:

DO COMMENTS

MAN 10

5 ACCHR Inflection level =0
5 + 64 69 ACCHR Inflection level =1

69 + 64 =133 ACCHR Inflection level =2
133 + 64 =197 ACCHR Inflection level =3

3 ACCHR Stop

Adding inflection levels to your speech can make it much more
intelligible. For example, we can make "Shall we playa game?"
sound more like a question:

SH AE L W E1 Y

17 46 24 3 45 60 41 3

p L AE Y A Y
101 88 110 105 67 32 41 3

G A1 AY Y M
28 6 97 105 76 131

What a difference! Notice that inflection was added to the STOP

111

Control The World with HP-IL

phoneme as well. Although STOP doesn't produce any sound, its
inflection will determine how the previous phoneme will end. In
this example, it is responsible for the question-like quality at the
end of game?

Here are some other examples:

"Go ahead ... Make my day!"

G 001
28 22

01
53 3

UH1
50

H EH1
27 2

M A1
76 70

AY Y K M AH1
97 105 89 67 76 85

D A1
94 70

13 Y

137 105 3

"Happy Birthday to you ":

H AE1 EH3 P Y
91 111 64 101 105 67

B ER R TH D A1 I3 Y
78 186 107 121 94 6 9 41 3

EH3
64

D

94 3

EH3 Y
64 105 67

T U1 U1 U1 U1 Y U1 U1 U1 U1
(1st Time)

170 183 183 183 183 131 105 119 119 119 119 67
(2nd Time)

234 247 247 247 247 195 169 183 183 183 183 131

"Starbase Operations":

S T AH1 R B A2 AY S
95 106 85 107 78 69 97 95 67

AH1 P ER A2 AY SH UH3 N S
85 101 122 69 97 81 35 13 31 3

112

Speech Synthesis

The latter phrase, from the beginning of a two-part Star Trek
episode, sounds best when programmed into a loop and played
back while adjusting the potentiometer in Fig. 5-2 to extremes.

10 Point Mystery Phrase

76,85,105,67,229,235,230,92,107,175,140,122,67.
170,176,176,170,131,76,108,67,106,119,119,67.
159,138,138,141,156,131,96,97,67,223,176,176,141,156,131.
94,96,33,15,3,PSE
109,86,94,67,34,55,55,3,88,72,105,89,67.
42,55,55,3,91,108,107,67,39,170,131. PSE
180,180,183,131,25,32,33,3. PSE
222,224,224,224,224,225,210,172,172,172,131.
94,96,96,96,96,97,82,44,44,44,3.
92,75,73,79,67,140,188,169,131,233,244,244,235,195.
111,111,111,64,77,95,186,131,30,40,40,40,3.

NOTE: For the most accurate reproduction, one should hold two
fingers across the 220pf capacitor's leads while the above mystery
phrase is being played.

A moment to reflect. The 41, to begin with, is slow. Not helping
the situation any is the fact that the SC-Ol chip uses only one line
for handshaking, while the GPIO likes to use two. If this leftover
handshake line (RDYI = Ready Data In) is tied to ground instead,
data flow to the chip will occur but with the following drawback:
the GPIO's 32 register transfer buffer is disabled; so after an
OUTA is executed, program control will not be returned until the
speech chip says the last phoneme.

Because of this, when long speeches (such as the 10 point
Mystery Phrase) are spoken, the alpha register must load and
output groups of 24 phonemes quickly if noticeable gaps in speech
are not to occur. This necessitates the use of synthetic text lines on
the 41 for speedy alpha filling. (A doubled clock speed on said
machine also helps considerably.) The only problem with this
method is that ER3 (address = 0) will not be sent with an OUTA

113

Control The World with HP-IL

because it is interpreted as a null. EH1 or EH2 should suffice as a
substitute.

Unfortunately, these speed problems also hold true for the 71:
Since the buffer is bypassed, program execution will not continue
until the entire phrase is spoken. Slowness on this machine,
though, should be much less noticeable.

Sending text strings on the 71 is a much easier task and can be
done in this fashion:

10 A = DEV ADDR("%64")
20 SEND UNT UNL MTA LISTEN A
30 SEND DATA 91,111,64,101,105,67,78,186,107,121,94,6,9,41,3
40 SEND DATA 170,183,183,183,183,131,105,119,119,119,119,67
50 SEND DATA 91,111,64,101,105,67,78,186,107,121,94,6,9,41,3
60 SEND DATA 234,247,247,247,247,195,169,183,183,183,183,131
70 SEND UNT UNL

This short program has it sing "Happy Birthday". The equivalent
program on the 41 looks like this:

01*LBL "HAPPY" 10 LN
02 SF 17 11 E"X
03 "[o@eiCN+ky"++)+" 12 "[o@eiCN+ky"++)+"
04 OUTA 13 OUTA
05 "++++++++iwwwwC" 14 "++++++++++++++,,
06 OUTA 15 OUTA
07 5 16 PSE
08 LN 17 GTO "HAPPY"
09 E"X 18 END

(The bytes for the four synthetic text lines can be found in lines
30-60 of the 71 program above.) Barcode for "HAPPY" and other
phrases appears on page 282.

For those of you who prefer thinking software, the program on
the next page is designed to recite the correct time. It requires a
time module and an XFIM module with the following ASCII file
named "TIME" loaded into it, which contains the necessary
vocabulary. First, the program (Barcode is provided on page 284):

114

Speech Synthesis

01*LBL "TIMED" 33 GTO 03
02 CF 21 34 RCL Z
03 TIME 35 10
04 FIX 2 36 *
05 " 37 INT
06 ATIME 38 SEEKPT
07 AVIEW 39 ARCLREC
08 STO 01 40*LBL 02
09*LBL 04 41 SF 17
10 RCL 01 42 OUTA
11 INT 43 FS? 05
12 12 44 "elC++++"
13 X<=Y? 45 FC?C 05
14 SF 05 46 "'aCAA++"
15 X<>Y 47 OUTA
16 X>Y? 48 DATE
17 - 49 DOW
18 X=O? 50 FS?C 08
19 12 51 XEQ 05
20 "TIME" 52 24
21 SEEKPTA 53 +
22 GETREC 54 SEEKPT
23 RCL 01 55 GETREC
24 FRC 56 SF 17
25 10 57 OUTA
26 * 58 RTN
27 ENTER" 59*LBL 01
28 INT 60 RDN
29 X=O? 61 10
30 GTO 01 62 *
31 2 63 INT
32 X<=Y? 64 X=O?

Synthetic Text Lines:

44: 101,108,67,129,129,12,3
46: 96,97,67,65,65,12,3

65 GTO 02
66 0
67 SEEKPT
68 ARCLREC
69 X<>Y
70 SEEKPT
71 ARCLREC
72 GTO 02
73*LBL 03
74 RDN
75 18
76 +
77 SEEKPT
78 ARCLREC
79 RDN
80 FRC
81 10
82 *
83 INT
84 X=O?
85 GTO 02
86 SEEKPT
87 ARCLREC
88 GTO 02
89*LBL 05
90 RCL 01
91 1 E2
92 *
93 FRC
94 10
95 *
96 END

115

Control The World with HP-IL

ASCII FILE 'TIME"

REC.# SAYING ASCII DATA

° ZERO 18,44,43,53,55,3.
1 ONE 173,178,13,13,3.
2 TWO 170,168,45,3.
3 THREE 185,171,44,41,3.
4 FOUR 157,180,180,43,3.
5 FIVE 29,21,0,9,41,15,3.
6 SIX 31,39,25,31,3.
7 SEVEN 159,130,143,1,13,3.
8 EIGHT 32,33,42,3.
9 NINE 13,21,41,13,3.
10 TEN 106,65,1,13,3.
11 ELEVEN 44,24,66,79,0,2,13,67.
12 TWELVE 42,45,2,24,15,67.
13 THIRTEEN 121,122,106,172,13,3.
14 FOURTEEN 157,117,107,106,172,13,3.
15 FIFTEEN 93,103,93,170,236,13,3.
16 SIXTEEN 95,103,89,95,106,172,13,3.
17 SEVENTEEN 95,66,79,65,77,106,172,13,3.
18 EIGHTEEN 96,97,106,44,13,3.
19 NINETEEN 77,85,105,77,106,44,13,3.
20 TWENTY 106,109,66,77,106,108,41,3.
21 THIRTY 121,122,106,44,41,3.
22 FORTY 157,180,180,43,42,44,41,3.
23 FIFTY 29,39,29,42,44,41,3.
24 SUNDAY 223,242,227,205,205,158,32,33,3.
25 MONDAY 204,242,227,205,205,158,32,33,3.
26 TUESDAY 170,169,168,146,94,32,33,3.
27 WEDNESDAY 37,194,222,205,223,158,32,33,3.
28 THURSDAY 185,186,171 ,146,94,32,33,3.
29 FRIDAY 221,235,213,233,94,32,33,3.
30 SATURDAY 223,238,170,58,94,32,33,3.

210 Chars. + 31 Regs. +1 = 34.5 = 35 Registers
7

116

Speech Synthesis

There's only one way to input the "TIME" file: take each of the
above numbers, toss it into ALPHA via XTOA, and at the end of
each line INSREC.

Programs like this can be included in verbal alarm clocks,
which also capitalize on the 41's time module capabilities. And
since the whole setup is programmable, it's not too much trouble to
implement an oversleepers anonymous mode, where the unit
actually gets abusive if the 'snooze' function is called upon too
many times.

In a couple of chapters, we'll use the SC-Ol speech chip to greet
your callers in a most sophisticated telephone answering
machine. But that shouldn't stop anyone from coming up with
other practical applications (such as indestructible Trans-Ams
with 4-character acronyms).

117

Control The World with HP-IL

118

Chapter Six

INTELLIGENT AUTODIALER

"Computers are not intelligent. They only think they are."
-Anonymous

This chapter and the next may seem to deal with fun things one
can do with telephones, but actually they are a sample of all the
different things that can be done using the few techniques
introduced in previous chapters.

The intelligent autodialer is a device I originally designed out of
my own frustration with our office's telephone system. Dialing
three digits just to get an outside line, then another ten digits for
the number (plus waiting for the Dimension ™ system to redial the
number for you) only to find a busy signal got to be very annoying.
This system would always listen in on the line and would know
what number I dialed on the telephone's keypad. If it was busy,
I'd just press a button and the 71 would keep trying the last
number it heard until it broke through. Soon, using exactly the
same hardware, the system grew to include a Rolodex-type phone
directory (where you search for the name and it dials the number),
and a phone usage monitor (where the system keeps a log of all
outgoing calls and their dates and times).

The most useful and unique aspect of this system is its ability to
detect busy signals and automatically redial the number without
human intervention, normally a difficult thing because of the
phone companies' varying representation frequencies and signal
strengths. Among those who will really appreciate this feature
are teenagers who participate in radio station contests that award
a billion dollar prize to the 13th caller!

119

Control The World with HP-IL

First, every individual aspect of the system will be described in
detail, so you can get an understanding of how things interact and
will be able to design systems that meet your own needs, should
you desire to do so. Next, I'll describe the system software and
complete schematics. Finally Chapter 7, using almost identical
techniques, will prove once and for all that the 41 is just as capable
a system driver as its horizontal successor (the 71) by making it do
more things than any calculator should be allowed to do by law.

Telephone Line Interface

This is a sticky topic, but must be addressed since two chapters
rely on it. Before 1955, it was illegal for anyone to attach anything
besides phone company equipment to the phone lines. Two
Supreme Court decisions, the "Hush-A-Phone" case in 1955 and
the Carterfone case in 1968 altered the laws to allow foreign
equipment to be attached to the phone company's lines via an
expensive interface called a coupler. The coupler's stated purpose
was to provide insurance against someone's Chen Fu brand
answering machine vaporizing central office equipment, but the
phone company required it even for machines that were FCC
approved.

Couplers were phased out in the late' 70s (as were their
ridiculous surcharge) when the FCC rules were altered in 1975 to
allow direct connection of any FCC-approved device to the phone
lines. Today, in the post-AT+T breakup era, it's suddenly OK to
attach a $10.00 disposable phone without a charge of any kind! (It
must be FCC approved, of course.)

It is still mandatory, however, that any equipment attached to
the phone lines meet these said requirements. Since legitimate
telephone-line interfaces aren't a commonly available off-the-shelf
component, I solved the problem by taking an old telephone and
removing its hybrid transformer, which looks like a rectangular
cube with a wiring block on top. This transformer acts as the
telephone's interface; it takes the two incoming wires from the
central office and splits them into four needed for the mouthpiece
and the earpiece. (See Fig. 6-1.) Best of all, every telephone has

120

Darkroom Controller

this component, so a little bit of scavenging at surplus shops or
garage sales will yield you a perfectly legal and efficient telephone
interface!

Generally, using the" R" contact as a com mon ground,
telephone audio can be heard through "B", and sounds fed to the
phone line should go through "GN". The terminals normally used
for the dial contacts, "F" and "RR", will answer the phone if
shorted ou t and hang up if not connected. An opto-isolator
attached to these two contacts makes that task easy.

Hardware Overview

Just to get familiar with this circuitry, here's an overview of the
components and how they work together. Fig. 6-2 (next page)
shows the entire circuit, which provides all the input necessary for
the software to make its decisions. Notice that this is the first time

Green Red

(Normally Closed)

Speaker

~ ~~----------~
~ ~~--------------

Oatmeal
Microphone

Figure 6-1
Telephone
Hybrid
Transformer

121

f-"
l:\:) +5,
l:\:)

20 Hll-81
14 15

DB5
13 12 Opla-Isolators

D84
74C373 15

D83 ...1J +5,
LATCH

E DB2

4
MM5395

~4 DBl Amp On/Off

10 17
D80 •

"IT" Tou;H
(To + Battery

DAVO TCNE® terminal of (J
GENERATOR Amplifier) 0

1 10
;::l

RDYI
-;- d

DACI 3_579 MHz ~ CNl Colorburst Crystal Pickup/Hangup ('I:>
DA7

DA6
6800 ':" ~ ..,

DA5

DM M-980 ~
Vee

To
~

Vel 19 CALL Amplifier
PFVGRESS

.....
DAO DE1ECTOR

;:r-
12 - -N':""C:"-DAl 22 • Tip (Red)

~ 21 Tahone •
DA2

:~ DA3
20 ~ M-957

ct... r------'1 -=- Ring (Green)
DAVI 13

14 t:f!;::j 1 5
-=- Phone -r 10 ~F

J,MegOhm Transformer
3.579 MHz

XTAl

MSAQ I -0<:1 5
Figure 6-2
Intelligent Autodialer
Schematic

Intelligent Autodialer

we take advantage of the GPIO's 8-bit uni-directional mode: output
goes to Data Bus B, and input comes from Data Bus A.

The Touch Tone dialer portion should look familiar; it's the
same circuit used in Chapter 2, but without the elaborate
handshaking hardware. (More on that later.) Below the Touch
Tone generator we add another chip which performs the inverse
function; it takes the sounds, decodes them, and delivers a binary
code representing the digit pressed. This chip is needed for the
LND (Last Number Dialed) feature, so the computer can mimic
the last number manually dialed on a normal phone.

A chip that detects sound on the phone line is also needed so the
host computer can time the duration of the noise and tell whether
its ringing, busy, or dead. This gets its input from the same place
as the Touch Tone decoder chip above it, but delivers its output not
to the data bus, but to the MSRQ (Manual Service Request) line of
the GPIO.

Finally, the two Darlington-pair opto-isolators answer and
hang up the phone, and turn on an optional audio amplifier so the

123

Control The World with HP-IL

user can monitor the progress of the call along with the HP71.
(This is more of an anti-paranoia device to help the user learn to
trust in the 71's decision-making process. After all, an expert
system's advice is of little value if the user doesn't trust it!)

TouChTone~

Recall that in Chapter 2 we discussed how to hook up the
MM5395 Touch Tone chip to generate the frequencies needed for
automatic telephone dialing. Here we use the chip again, except
the special timer circuitry to control the handshake lines isn't
needed. Instead, we take advantage of the finer control offered by
the 71, and regulate the Touch Tone output rate via software rather
than hardware.

Back in the olden days, decoding these Touch Tone signals
required seven or eight temperature-sensitive phase-locked loop
passband filters all critically adjusted via RC constants. Now,
there's a single IC, the M-957 by TeItone, which only requires a
standard 3.579 MHz crystal and a resistor to do the identical job,
making Touch Tone decoding even easier than learning RPN.

Figure 6-3 shows how this neat little component is attached to
the hybrid transformer. Normally, this chip will be monitoring all

+5v Q
DA4~ J
DA5~------'-

DA6===::l

Figure 6-3
How the Touch
Tone Decoder
Is Hooked Up

DA7 *' M-957

124

5v
DAO---'-D

Hex

~---~~U~

..-----"1012/16

'-------"0 Vp
7 BD

01 p,=27"-2 -- DA1
02 DA2
03 rr-=----

CLR D-'-:-----.
STB D-'-:----i DAVI

Auxelk ~ 1 Megohm

OsCiClk ~
XIN h"-"'--- ---- t:::=l 3WA~HZ

xour ~,--- ----+---'

Sig. In 0:..::0---;-- Signal In ____ -B" From
'---___ --' Transformer

Intelligent Autodialer

audio activity on the phone line. If it hears anyone of the 16 valid
Touch Tone codes, it produces a 4-bit output on its data pins and
pulses its strobe output high to tell anything that's listening that its
data pins have a valid output.

Notice the remaining four data lines: half are tied to positive,
and half are grounded. This is due to a discrepancy between data
representations: the M-957 chip gives its output in binary form,
while the 41 and 71 computers prefer to get their information in
ASCII coded format. (See below for table of discrepancies.) Notice
that for the digits 1 through 9, the only difference between the
binary and ASCII representations is that bits 4 and 5 in the ASCII
words are set to "1". Zero through D aren't as convenient; the
ASCII characters don't correspond to the digit entered. This is
especially troubling with the zero, which MUST be available as a
number. The simplest solution to this problem is to simply tie bits 4
and 5 of the data bus high, allowing digits 1-9 to appear to the
computer as their corresponding ASCII codes, and instruct the
computer to replace any colons (:) in the incoming numeric string
with a zero. Similar correction for *, #, A, B, C, and D are also
necessary.

LOW HIGH ASCII
INPUT FREQ FREQ HEX FORMAT ASCII FORMAT CHAR.

1 697 1209 0000 0001 0011 0001 1
2 697 1336 0000 0010 0011 0010 2
3 697 1477 0000 0011 0011 0011 3
4 770 1209 0000 0100 0011 0100 4
5 770 1336 0000 0101 0011 0101 5
6 770 1477 0000 0110 0011 0110 6
7 852 1209 0000 0111 0011 0111 7
8 852 1336 0000 1000 0011 1000 8
9 852 1477 0000 1001 0011 1001 9
a 941 1336 0000 1010 0011 1010

* 941 1209 0000 1011 0011 1011
941 1477 0000 1100 0011 1100 <
A 697 1633 0000 1101 0011 1101
B 770 1633 0000 1110 0011 1110 >
C 852 1633 0000 1111 0011 1111 ?

D 852 1633 0000 0000 0011 0000 a

125

Control The World with HP-IL

Embedded Control Bits

One aspect of the generator chip should be mentioned at this
time. In order to achieve the features described in the first
paragraph, the circuitry must somehow determine whether the
outgoing data is meant for the touch-tone generator or the
opto-isolators, which control the hookswitch status and the
monitor amplifier. We solve this problem by noting once again the
Touch Tone discrepancy table. This table also represents the way
the 71 sends out ASCII digits; the lower four bits represent the
binary digit transmitted, and bits 4 and 5 are always set to "1", and
never get routed to the dialing chip. These bits do not go to waste;
they are used to control two functions.

Bit 4 is used as a "chip enable" input, hooked up so the chip will
only generate Touch Tones when this line is set to "1". This is
needed so we can tell it to stop transmitting; just output a word
with this bit set to "0" and it shuts up. (Normally, sending it a "0"
sends an ASCII 0 which has bits 4 and 5 set, and therefore dials a
"D", the 16th button.) Bit 5 is tied to two opto-isolators. When this
bit is set it picks up the phone (opto-isolator #1, which is connected
to the hybrid transformer), and turns on an optional audio
amplifier so the user can hear what's going on. (Opto-Isolator #2.)
The sample program below shows how this technique is
implemented.

10 This program picks up the phone, dials the
20 telephone number appearing in T$, and hangs up.
25 Really rude, huh?
30 ENDLINE""

40 A=DEVADDR ("GPIO")

50 SEND MTA LISTEN A

60 OUTPUT :LOOP; CHR$(32)

126

Eliminates automatic
carriage return/line feed
normally appended to
output.
Find the GPIO's address
on the loop.
Makes the GPIO a
listener; the 71 a talker.
Sets bit 5 high, picking
up the phone.

Intelligent Autodialer

70 FOR X=l TO LEN(T$)

80 OUTPUT :LOOP;T$[X,X]

90 WAIT .02

100 SEND DATA 32

110 WAIT .02

120 NEXT X
130 OUTPUT :LOOP; CHR$(O)

140 SEND UNT UNL

150 END

Loop as many times as we
have digits to dial.
Send only 1 ASCII
character.
Let the signal stay for
(at least) .02 seconds.
Turns only bit 5 on.
Keeps phone off-hook;
tells Touch Tone chip to
shut up.
Keep silent for at least
.02 seconds.
Dial next digit.
Shuts everything off.
(SEND DATA 0 would have
worked, too.)
Cancels current talker and
listener status.
Gratuitous exit.

Notice that throughout the above program, bit 5 was always set
during the dialing process, but bit 4 (acting as "chip enable" for the
dialing chip) was set only when we were dialing a digit. We use
this property to solve a small but potentially disastrous situation:
having the Touch Tone decoder do its thing at the same instant
we're dialing numbers. If this were allowed to happen, the sound
generated by the dialer chip would instantly be decoded and fed
back to the GPIO a few milliseconds later. Because of a design
limitation of all three 8-bit ports, data coming and going at the
same time will "lock up" the port, effectively disabling it.

This problem is easily solved by routing bit 4, normally used for
the generator's Chip Enable input, to the CLEAR input of the
M-957 decoder chip as well, setting it to its DISABLE state
whenever we're dialing digits. This connection appears in the full
circuit schematic shown earlier.

127

Control The World with HP-IL

Call Progress Detector

Having a machine detect whether a line is busy or not is much
more difficult than one might initially think. Frequencies used to
signal ringing and/or busy are non-standard; and their volume is
certainly nothing to count on. Only one property remains
consistent throughout all American switching systems: the
rhythm.

Figure 6-4 shows the possible signals that we must recognize.

ill' l

. .

(or)

128

Click

Anything < 0.2 s
(Ignore)

Several Clicks
(Reorder)

0.25s On/0.25s Off

Busy
0.5s On/0.5s Off

Ring

2.0s On/4.0s Off

Figure 6-4
Possible Sounds

3.579 MHz
XTAL

Out

Intelligent Autodialer

+5V

In ("S"
From Transformer)

M-980
Call Progress Tone Detector

The dotted lines show the minimum signal characteristic needed
to determine what it is. For example, it is not necessary to listen to
the entire ring to determine that it is a ring; if we first hear silence
and then a sound for more than a certain amount of time, then we
conclude that it must be a ring.

Given this binary time-domain input, it is up to the controlling
computer to time the duration of the silence/no silence periods and
draw a conclusion as to the status of the connection.

To detect whether the line is busy or not, we therefore need an
additional component that will tell a controlling computer what's
happening on the line. Teltone, the same company that makes the
M-957 DTMF (Dual Tone Multi-Frequency) decoder chip described
above, also makes the M-980 Call Progress Tone Decoder chip, as
shown above. Don't be fooled by its glamorous name; this chip is
little more than a bandpass filter, and will output a "1" if it hears a
sound and a "0" ifit doesn't. This output is attached to the GPIO's
MSRQ (Manual Service Request) line, and it is up to the controlling
computer to retrieve this line's status by asking the GPIO for a
STATUS byte. The computer must be very fast (the 71 barely
makes it using BASIC, and FORTH is slower for any IL activity) in
order to have a high enough sampling rate to separate rings,
busies, and random noise. Here's where careful programming
saves the day.

The diagram in Fig. 6-5 (next page) resembles a state table, and
it represents an algorithm which allows you to recognize incoming
patterns in a stream of incoming data. All of the algorithms for
HP-IL are specified using a more complex version of state tables

129

Control The World with HP-IL

Figure 6-5
Algorithm for
Determining a
Busy Signal in the
Shortest Possible
Time

because they describe the process much more simply than an
equivalent flowchart would. In this application it will, in the
shortest time possible, measure the duration of the sounds and
silences and determine which of the six possible patterns it is
hearing.

The subroutine works like this: as soon as the number is dialed,
the program sits and waits for a sound to occur. When that
happens, we branch to the circle labeled "noise" and we take note
of the noise's duration. If it exceeds a certain threshold, then it
must be a ring so we exit. If not, then it could be either the tail end
of a ring or a busy pulse, and we branch down to the next circle,
where the duration of the silence is measured. At this point, a
long period of silence indicates a ring; a short period must be a
busy. Using this algorithm, the 71 can determine the status of a
connection in as little as half a cycle!

130

Intelligent Autodialer

Anyone with any experience with HP-IL is probably wondering
whether the 71 can take sound samples fast enough to do this job
adequately. Well, the answer is "yes" if you know how to utilize
HP-IL's low-level features.

The only way to determine the status of the MSRQ line is to
request a status word from the GPIO, and then check to see if bit
#5 is set. (The GPIO's owner's manual has more details about
interpreting the STATUS word.) But the 71's SPOLL("GPIO")
(Status POLL) function, the only means of requesting this
information, insists on sending out this lengthy HP-IL message
sequence every time the function is called:

UNL Unlisten. Disable all listeners.
TAD 01
SAl

DAB 35

TAD 02
SAl
DAB 16

TAD 03
SAl
DAB 64

UNL
TAD 03
SST
DAB 1

UNT

Find out what's on the loop: Make the
first device a Talker and Send Accessory
lD.
1st device responds with Data Byte 35;
it's a printer.
Make 2nd device a Talker and Send its
Accessory lD.
2nd device responds with 16 (Mass
Memory)
Same thing with the 3rd device.

64 means it's interface class; we found
it.
That's all on the loop. Stop listening.
Make device #3 a Talker.
Send Status.
GPlO responds with a Data Byte 1.
(Nothing's happening.)
Untalk. Disable all talkers.

UNL Unlisten. Disable all listeners.

We can improve the situation substantially by telling the 71
where the device is:

131

Control The World with HP-IL

A=DEVADDR ("GPIO")

SPOLL (A)

! This only has to be done once.

and the sequence gets shortened to:

UNL
TAD 03

SST

DAB 01

UNT
UNL

An improvement, but still too much overhead. Clearly, in our
controlled situation where a number's just been dialed and the
loop configuration hasn't changed and no other device is going to
be utilized, this is a big waste. Our aim is to take as many samples
per second of the MSRQ line as we can. Fortunately, we can
increase our sampling rate by making use of HP-IL Service
Requests.

Service requests work sort oflike bums on trains: they just hitch
a ride on a vehicle that's making its rounds anyway. As any data
frame is being passed around the loop, any device who needs
service ("Yoo Hoo, Mr. Loop Controller! I have some data for
you!") can simply affix this message to the data frame as it passes
by. When this frame makes it back to the loop controller (as all
frames must), the controller notices it and says "Hmmm ...
someone out there is trying to get my attention, but I don't know
which device it is.", and immediately starts polling each device to
find out which one sent the message.

In our tightly controlled environment we don't need to know
who sent the message; we know to be expecting one from the GPIO
as soon as a number is dialed. And since during this period of
anticipation there is no data being sent, we will instead use a
dummy data byte: the IDY (Identify) frame.

The IDY frame is (in this usage) analogous to empty railroad
cars being sent out for the sole purpose of collecting bums, hobos,

132

Intelligent Autodialer

IT'S A BEAUTIFUL SPRING D\Y
IN LOOPVILLE. THE IL
RAILROAD MAKeS ITS USUAL

RoUNDS CARRYING DATA

133

Control The World with HP-IL

vagabonds, and service requests. In the sample program below,
we first warn the computer that any minute now we'll be expecting
an interrupt frame to come in, and when it does we should branch
to a certain line number. (Refer to lines 1100-1120.) Then, with the
ENABLE INTR 8 command, we tell the 71 what kind of interrupts
to respond to. (8 means to pay attention only to service requests,
and ignore all other frames such as those that might be sent by
other controllers.) Finally, we loop and send IDYs forever until a
device requests service, in which case program control will
automatically branch elsewhere and do something interesting.
The advantage of this method is that we can instantly tell if
another device needs service without the usual large overhead. All
that is needed is a single frame - IDY - to assess whether there's
sound on the line or not.

For this application, the GPIO has been configured by the DDL 0
command to send service requests whenever its MSRQ line goes
low, corresponding to a noise on the telephone line. Because we
also need to know how long there's been noise, we keep track of
every time we loop while waiting for an IDY to come back positive.

1060 SUB BUSY(Y,A) ! Y returns yes/no, A=GPIO address
from calling program.

1070 ! Ring: Y=Oi Busy: Y=1.
1080 Y=O
1090 IF Y>=6 THEN Y=l @ END ! If we have

clicks, assume it's a reorder and exit.
1100 ON INTR GOTO 1130
1110 X=O @ ENABLE INTR 8

too many

1120 SEND IDY @ X=X+1 @ IF X>300 THEN Y=l @ END ELSE
GOTO 1120 ! Wait for noise.

1130 ON INTR GO TO 1140 @ X=O
1140 X=X+1 @ ENABLE INTR 8
1150 IF X>=13 THEN Y=O @ END ! If we hear a long

noise, we have a ring.
1160 ! A noise will loop back to 1140i silence will

drop to 1180.
1170 SEND IDY
1180 IF X<3 THEN Y=Y+1 @ GO TO 1090 ! Ignore short

bursts but recognize reorders.

134

Intelligent Autodialer

OOINU J.lER
OF AN IL SEJMC£ RlQI,IEST,
LASSI£ QLIICI<J.Y "',TCHES
A RIOf ON A '1EWICLE
TWAT'S MAKINC:r IT."

ROUNDS ANNA Y •••

135

Control The World with HP-IL

1190 X=O @ ON INTR GOTO 1220
1200 ENABLE INTR 8
1210 SEND lOY @ X=X+1 @ IF X>20 THEN Y=O @ END ELSE
1210 ! exit on a long pause.
1220 IF X<9 THEN Y=O @ END ELSE Y=l @ END
1230 If X<9 then other party must have picked it up

after 1st ring.

Refinements were made that allow detection of a "re-order"
(which is telephoneese for that fast busy signal you hear when all
circuits are busy), and for the common case when the phone rings
less than one time and someone answers immediately. This
subroutine will detect that correctly, too!

Rolodex Function

Since I've always been a fan of point-and-dial type features, I
decided to implement one in this system. While the application is
running (which ideally should be all the time), the cursor keys are
used to scroll through a data file of your most frequently called
numbers. When the desired name is displayed on the screen,
hitting the "D" key automatically fetches the number associated
with the name, and dials it.

If flag 1 is set, the subroutine "PREPROC"essor is called before
the number is dialed. This flag indicates that I'm at my office, and
will automatically dial the correct prefixes to access the
appropriate outside line. Your office environment may vary, but
mine requires the following rules:

--If it's within the area code, dial "9" first.
--If the area code is 213 or 714, dial "91" first.
--If the area code is not 213, 714 or 818, dial "8" first.

The advantage of doing this with a subroutine is that I can run
this at home with flag 1 clear, and it will dial "1" before any
10-digit string, just like normal people do.

The external file containing the names and numbers of your

136

AND 30 THEY DISPATC.H
SST TRAIN WHOSE ONLY
PUR1'Q.SE ~ TO SEEK
OIJT TIlE SOuRCE
OF TilE DIS­
TRESS

Intelligent Autodialer

SOMEON£ MUS,'
NEED HELP!

'J II. --

137

Control The World with HP-IL

friends is a simple text file named PHBOOK, and can be created
using the EDTEXT function found in the FORTH/Assembler ROM.
It is laid ou t like this, where the nam es alternate wi th the
numbers:

Issac Asimov
2135552310
Carl Sagan
8051357911
Billy Hewlett
1248163

(Notice that "1" does not preced the area code. The "1" is
automatically appended by the "PREPROC"essor routine. That
way, whether this device is used in the home or office
environment, PREPROC can dial the appropriate prefixes.)

Outgoing Call Monitor

With this fringe benefit, we harness something the system does
anyway--constantly monitors the phone line for manually made
outgoing calls so it can mimic them in the "Last Number Dialed"
function. Since we know what numbers are being dialed and what
time and date they were made, why not keep track of them
automatically?

Glad you asked. The difficult part of it, though, is determining
which calls went through and were answered after several rings.
(All the necessary hooks were in the existing algorithms, so the
subroutine "log" was added at the end.) This feature creates and
then appends a data file called PHLOG (Phone Log), which can be
printed out once a month with this simple program:

10 ENDLINE
20 ASSIGN #2 TO * @ ASSIGN #2 TO PHLOG
30 READ #2;N$,T$,D$ @ PRINT N$;" ";T$;" ";D$ @ GOTO 30

138

Intelligent Autodialer

AND UPON In:. RETURN ...
OH, NO! HE'S CAUGHT
IN QUICKSAND! NOW

THAT WE KNOW
WHA T THE MESSAGe.
IS AND WHE.Re:
- CAME FROM

CAN NO""' AC,r
ACCo~D'NGI....Y .'

139

Control The World with HP-IL

TELEPI{ONE

8B8(2)101 ... ·· .

@~i9 ...
5551fJHL .. -(['

87@654.·· .. ~

~ \\~A' i!(@iiTE."i

Some Americans might prefer to rearrange the PRINT statement
so as to display the date in the backward way to which they are
accustomed.

Complete Instructions

0) (Where else but in computer literature do you see anything
numbered "zero"?) Make sure the program (listed below) is in
memory, along with the phone book file PHBOOK and optionally
the program that prints PHLOG out once a month, which I
confusingly call PRLOG (Print Log). Check the status of Flag 1,
which tells the PREPROC subroutine whether you're calling from
your home or office. (Refer to PREPROC subroutine for details.)

1) This system is invisible until you need its special functions.
While your phone isn't being used, the 71 displays a running clock
and checks for keyboard input and touch tone activity on the phone
line.

2) Make an outgoing call on your phone in the usual manner.
The number you dialed is now available as the LAST NUMBER
DIALED (LND).

140

Intelligent Autodialer

3) Ifthe LND was busy, and you want the 71 to keep trying until it
gets through, press "R". The 71 will then keep trying (you can
monitor the call progress yourself using the optional amplifier,
which is only on when the 71 has picked up the phone) until it
determines that the other end is ringing, at which time it tells you
by playing 5 long BEEPs. Pick up the phone, and then press any
key on the 71 so it will "hang up".

4) To blindly redial the LND without the automatic redial-if-busy
feature, press "L". When your call is completed (you'll know when
that occurs if the amplifier's attached), pick up the phone and
press any key on the 71 to have it hang up.

5) To use the Rolodex function, use the up-arrow and down-arrow
keys to scroll through the names in your PHBOOK file. When the
desired name is visible, press "D" to determine the number and
dial it. If flag 1 is set, the proper office prefix will be dialed
according to the instructions in PREPROC. When the call has
gone through, pick up the phone and hit any key. This number is
now the new LAST NUMBER DIALED.

6) Once a month (or sooner!) print out and/or delete the PHLOG
file that the PHONE program appends phone usage data to
whenever an outgoing call is made.

Here's the program:

10 Program PHONE controls just about everything.
20 Two data files are used: PHBOOK, a name/phone #

text file, and PHLOG, which logs all calls.
30 Keys used while active: L redials last number

dialed.
40 R means take the LND and redial until not busy.
50 Up and down arrows access names in your phone

book.
60 D dials the name called up by up- and

down-arrows.
70 Variables used: T$ is the last Touch Toned (r)

number.
80 Z is the size of the Phonebook file.

141

Control The World with HP-IL

90 ! N is the Phonebook file pointer; N$ is the last
name retreived.

100 ! Flag 6 means hold display till x>30.
110 ! **
120 GOSUB 'INIT'
130 'BEGIN': K$=KEY$
140 IF K$="L" THEN BEEP 2000, .07 @ CALL LND(T$,A)
145 ! Last # dialed; bypass preprocessing.
150 IF K$="R" THEN BEEP 2000, .07 @ CALL REDIAL(T$,A)
155 ! Redial till not busy.
160 IF MOD(SPOLL(A),64»1 THEN CALL WHATISIT(T$,A)
165 ! Investigate cause if service request.
170 IF K$="#50" THEN 'UPAR' Uparrow's been hit.
180 IF K$="#51" THEN 'DNAR' Down arrow has been

pressed.
190 IF K$="#162" THEN 'MAXUP' g-uparrow's been hit.
200 IF K$="#163" THEN 'MAXON' g-downarrow's been

hit.
210 IF K$="D" THEN BEEP 2000, .07 @ GOTO 'THIS'
215 '0' means "Dial this name!".
220 IF FLAG(6)=0 THEN DISP FNT$ (TIME$) &FND$ (DATE$) @

GOTO 'BEGIN'
230 X=X+l @ IF X>30 THEN X=O @ CALL LOG(#2,T$)
240 GO TO 'BEGIN'
250 I **
260 'UPAR': N=MAX(N-2,0) @ GOTO 'READ'
270 'DNAR': N=MIN(N+2,Z) @ GOTO 'READ'
280 'MAXUP': N=O @ GOTO 'READ'
290 'MAXON': N=Z @ GOTO 'READ'
300 'THIS': READ #1,N+l;T$ @ DISP "

DIAL(T$,A) @ GOTO 'READ'
"&T$ @ CALL

310 'READ': READ #1,N;N$! Read a name from the phone
book file.

320 DISP N$ @ SFLAG 6 @ X=O @ GOTO 'BEGIN'
330 I **
340 'INIT':
350 RESTORE IO @ RESET HPIL
360 A=DEVADDR("GPIO")
370 SEND UNT UNL LISTEN A MTA DOL 0 DATA

194,16,218,0,0 UNL UNT
380 SEND MTA LISTEN A DATA 0 UNT UNL ! Shuts touch

142

Intelligent Autodialer

tone chip up.
390 DIM T$[20] @ DIM Q$[12]

400 ASSIGN #1 TO * @ ASSIGN #1 TO PHBOOK ! Opens the

PHone BOOK file.

410 Z=FILESZR("PHBOOK")-2 420 ASSIGN #2 TO * @ ASSIGN

#2 TO PHLOG
430 ON ERROR GO TO 440 @ FOR X=l TO 9999 @ READ #2;N$ @

NEXT X
440 OFF ERROR! Ha! Fooled you!

450 DEF FNT$ (T$) ! Displays the current time in a

user-friendly format.

460 C=VAL(T$[1,2])

470
480
485
490
500
510

IF C=O THEN 'MID' Branch here to handle 12 AM.

IF C>12 THEN 'PM' Displays PM format.

IF C=12 THEN FNT$=" "&T$[1,5]&" PM " @ END

FNT$=" "&T$[1,5]&" AM " @ END

'PM' : FNT$=" "&STR$(C-12)&T$[3,5]&" PM " @

'MID' : FNT$=" 12"&T$[3,5]&" AM " @ END

520 END DEF
525 ! FND$ converts a DATE$ into a more familiar

format.
530 DEF FND$(D$)=D$[4,8]&"/"&D$[1,2]

540 ENDLINE "" @ DELAY 0,0 @ CFLAG 0 @ SFLAG -23 !

545 ! Needed to have ENTER terminate with an EOT.

550 RETURN

END

560 I **

570 SUB DIAL(T$,A)

580 CALL PICKUP (A) ! Pick up the phone.

590 CALL PREPROC(T$,N$,A) ! Dial any needed prefixes.

600 CALL DIALIT (T$, A) ! Dial the number.

610 X=O @ T$=N$&T$! The number + any prefixes is

saved for LND.
620 IF KEY$#· .. • OR X>5000 THEN BEEP 2000,.07 @ CALL

HANGUP(A) @ END! Any key exits

630 X=X+1 @ GOTO 620

640 I **

650 SUB DIALIT(T$,A) Dials # without preprocessing.

660 SEND MTA LISTEN A

670 FOR X=l TO LEN(T$)

680 OUTPUT :LOOP ;T$[X,X]

690 WAIT .02

143

Control The World with HP-IL

700 SEND DATA 32 Keeps the phone off hook between
digits .

710 ! WAIT . 005
720 NEXT X
730 SEND UNT UNL
740 SFLAG 6 @ END SUB! Tell main routine that a #'s

just been dialed.
750 ! **
760 SUB PICKUP (A) ! Picks up the phone.
770 OUTPUT :A iCHR$(32) @ WAIT .75 @ END
780 SUB HANGUP(A)
790 OUTPUT :A iCHR$(O) @ END
800 **

Touch Tone
r---~:.:.de:.:c:.:o:.:d:..:e.:..r _J----. +-__ .. -------1

Phone Transformer

144

Call Progress
'----~ Monitor

L
A
T"---
C
H

Answer/Hangup

Monitor Amp
1+----1 0 n/Off

HP-71

Intelligent Autodialer
Block Diagram

Intelligent Autodialer

810 SUB PREPROC(T$,N$,A) ! Preprocessor adds the
proper digits to get outside lines, FTS, etc.

820 If flag 1 set, then office prefixes are used.
825 If flag 1 = clear, then it dials "1" before any
830 string> 7 digits.
840 N$ returns the preprocessor's additions.
850 IF FLAG(l)=O THEN 'HOME'
860 IF LEN(T$)<=7 THEN N$="9" @ CALL DIALIT(N$,A) @

END
870 IF T$[1,3]="213" OR T$[1,3]="714" THEN 'NOTLOCAL'
880 N$="8" @ CALL DIALIT(N$,A) @ WAIT .5 @ END
890 'HOME': IF LEN(T$)<=7 THEN END ELSE N$="I" @ CALL

DIALIT(N$,A) @ END
895 'NOTLOCAL': N$="9" @ CALL DIALIT("9",A) @ WAIT .5

@ T$="l"&T$ @ END
900 ' **
910 SUB WHATISIT (T$,A) ! Determins if noise is TT

activity or a dial tone.
920 S=MOD(SPOLL(A),64)
930 IF S=2 THEN ENTER :A ;Q$
940 IF S=2 AND FLAG(O)=O THEN T$=Q$ @ SFLAG 0 ELSE

T$=T$&Q$
950 IF S=2 THEN DISP T$ @ GOTO 'CHECK'
960 IF S=32 THEN S=MOD(SPOLL(A),64)
970 IF S=2 THEN 930
980 IF S=l AND FLAG(O) THEN DISP T$ @ CFLAG 0 @ END

ELSE END
990 ! If flag 0 set, this indicates that T$ is still

under construction.
1000 'CHECK': X=POS (T$,":") ! Correct for any incoming

zeros.
1010 IF X=O THEN SFLAG 6 @ END ELSE T$[X,X]="O" @ GOTO

'CHECK'
1020 ' ***
1030 SUB REDIAL (T$,A) ! Redials last T$ until ring or

any key hit.
1040 DISP" "&T$
1050 'START': CALL PICKUP (A)
1060 IF LEN(T$»7 THEN CALL DIALIT(T$[l,I],A) @ WAIT

.5 @ CALL DIALIT(T$[2],A) @ GOTO 1090
1080 CALL DIALIT(T$,A)

145

Control The World with HP-IL

1090 CALL BUSY(Y,A)
1100 ! DISP" "&T$! Keep this commented line in.
1110 IF KEY$# THEN BEEP 2000,.07 @ CALL HANGUP (A) @

END! Any key exits.
1120 ! IF Y=l THEN CALL HANGUP(A) @ WAIT 1 @ GO TO

'START'
1121 IF Y=l THEN CALL HANGUP(A) @ WAIT 1 @ GOTO

'START'
1130 FOR X=l TO 5 @ BEEP 880, .25 @ NEXT X
1140 IF KEY$# THEN BEEP 2000, .07 @ CALL HANGUP(A) @

END ELSE GOTO 1140 ! Any key hangs up.
1150 ! ***
1160 SUB BUSY (Y ,A) ! Y returns yes/no, A=GPIO address

from calling proram.
1170 ! Ring: Y=O; Busy: Y=l.
1180 Y=O
1190 IF Y>=6 THEN Y=l @ END ! If we have too many

clicks, assume it's a reorder and exit.
1200 ON INTR GOTO 1230
1210 X=O @ ENABLE INTR 8
1220 SEND IDY @ X=X+1 @ IF X>300 THEN Y=l @ END ELSE

GOTO 1220 ! Wait for noise
1230 ON INTR GOTO 1240 @ X=O
1240 X=X+1 @ ENABLE INTR 8
1250 IF X>=13 THEN Y=O @ END ! If we hear a long

noise, we have a ring.
1260 ! A noise will loop back to 1110; silence will

drop to 1150.
1270 SEND IDY
1280 IF X<3 THEN Y=Y+1 @ GOTO 1190 ! Ignore short

bursts but recognize reorders.
1290 X=O @ ON INTR GOTO 1320
1300 ENABLE INTR 8
1310 SEND IDY @ X=X+1 @ IF X>20 THEN Y=O @ END ELSE
1310 ! exit on a long pause.
1320 IF X<9 THEN Y=O @ END ELSE Y=l @ END
1330

1340

If X<9 then other party must have picked it up
after 1st ring.

1350 SUB LND(T$,A) Performs Last Number Dialed.
1355 DISP .. ";T$ @ X=O

146

Intelligent Autodialer

1360 CALL PICKUP (A)
1370 IF LEN(T$»7 THEN CALL DIALIT(T$[l,l],A) @ WAIT

.5 @ CALL DIALIT(T$[2],A) @ GO TO 1400
1390 CALL DIALIT(T$,A)
1400 DISP" ";T$ @ X=O
1410 IF KEY$#"" OR X>5000 THEN BEEP 2000, .07 @ CALL

HANGUP(A) @ END
1420 X=X+1 @ GOTO 1410
1430 I ***
1440 SUB LOG(#2,T$)
1450 ! Appends numbers to the PHLOG (Phone Log) file.
1460 CFLAG 6
1465 END
1470 PRINT #2;T$,TIME$,DATE$
1480 END SUB

Well, that's all there is to it! Of course, this is just a
demonstration of all the things possible with this hardware. A few
more program refinements will allow the PHLOG file to record the
call's duration as well as time and date; and a fancier PRLOG
program could pull only the calls made between "this date" and
"that date". This is where your needs and your imagination take
over.

147

Control The World with HP-IL

148

Chapter Seven

HP-41 BASED TELEPHONE
ANSWERING MACHINE

Utilizing Speech Synthesis and Touch Tone Decoding

I use my Hewlett Packard for the answers found in Calculus
And problems most encountered in numerical analysis.
It calculates proportions used in heart and lung dialysis.
Eventually I'll work for them and move to where Corvallis is ...

-- from I am the Very Model of an Engineering Graduate
by G. Friedman

This is the most outrageous 41 project I was able to dream up.
It incorporates the speech synthesis discussed in Chapter 5, and in
addition also encompasses Touch Tone recognition, telephone line
interface (see previous chapter regarding FCC rules), and an
Extended Memory database function. It allows you and your
friends to interact with the machine from a pushbutton phone, and
even lets you control things in your house from across the country!

This system performs the same functions as standard telephone
answering machines: detecting a ring, "picking up" the phone,
synthesizing a "Hello, I'm not home" type message, turning on a
tape recorder to record the caller's verbal message, and hanging
up. The fun starts when you start to add the following capabilities:

1) Automatic (verbal) Date and Time Stamping--At the end of
each caller's message, the machine announces the current time
and date, so you'll know upon playback when the calls came in.
(Nobody ever leaves the time they called when you ask them to.)

149

Control The World with HP-IL

2) Priority Message Taking--Priority callers can Touch Tone in
a preassigned 4-digit code in lieu of a verbal message; the caller
then gets a personalized "Thank you" (i.e. "Thank you, Nancy"),
and a phone message containing the first and last name, phone
number, time and date is instantly printed out, resulting in a
printed list of priority clients whose calls should be returned first.
(Non-priority callers will just have to wait until you get around to
listening to their taped messages before their calls are returned.)

3) Priority Message Transmission--The list generated in item #2
can be read back to you over the phone in case you can't get to your
equipment. After the user's 4-digit Touch Tone code is entered, the
system will announce the number of messages, first and last
names of each client, phone number, time and day they called.

4) Extremely Remote Control--This system also allows you to
turn up to five A.C. appliances on or off from anywhere in the
world just by entering the proper 4-digit Touch Tone code. Verbal
confirmation and the status of the device (i.e. "Device number 1 is
off.") is announced.

5) Outgoing Call Monitor--When the user is at home, the system
doubles as an outgoing call monitor, where the time, date, and
number dialed from any Touch Tone extension phone is
automatically logged, providing a hardcopy record of all outgoing
calls so they can be checked against the Phone Co.'s bills.

There is very little new information introduced in this chapter.
It exists because 1) it is the most versatile answering machine on
the planet, and 2) it gives yet another example of the diverse things
that can be done with just a few basic circuits. It also exists to
show that the 41 is no less a capable controller than the 71.

New Hardware Aspects

The circuit needed to implement the above function doesn't
differ greatly from those described in previous chapters. (See
schematic of Fig. 7-1.) The speech synthesizer and accompanying
latch are the same as described in Chapter 5. The Touch Tone
decoder interfaces to the phone line in the same way as in the
previous chapter. So, to avoid repeating myself only the new
hardware aspects will be described.

150

,....
g!

D80. OB1 4
DB2
DBa
DB4
DBS
D86
DBl

74C373

+5V

RDYl

DACl

PWRlN

GETO

DAVO

~ * 4~

~--------------------------,

DM JI = 21

DAVI

1 Mn

To Tape Recorder
"REMote" Jack

T,p

.J

50Kn

6.8KO

120 pF

IN

aJT

General Purpose
Amplifier

ffi

110 V
AC

~ -Record-
..... Input

110UF

Figure 7-1
Speech Synthesis
and Touch Tone
Recognition
Circuit

~
.g
~
o ;::s
<"'>

~ ;::s
<:I)

~
<"'>
"'1

~.

~
('",)

~

S·
<"'>

Control The World with HP-IL

The first things you'll recognize immediately in Fig. 7-1 are
located along the top: an 8-bit latch controlling three opto-isolators.
Sharing the same input lines, directly below the latch, is the
speech circuitry as described in Chapter 5. The opto-isolators are
used to control three things in exactly the same manner as was
demonstrated in the first two chapters: picking up/hanging up the
phone, turning a tape recorder on and off via its "Remote" input,
and switching an AC appliance on and off via a triac driver. This
leaves five outputs unused, which means there is still room to
expand on this system's already awesome capability.

The other part you'll recognize is the M-957 Touch Tone decoder
chip, wired slightly differently, in the lower left-hand corner. The
wiring differences put the chip into a more sensitive receiving
mode, to allow it to hear codes dialed from, say, France.

Outgoing Call Monitor

Just to whet your appetite, here's a program for the 41 which
keeps a record of all your outgoing calls, just like the 71 did in
Chapter 5. (Barcode for this program begins on page 285.) With
the Touch Tone decoder chip attached to the phone line as per the
schematic, this program "listens in" on the line, displays all
Touch Tone activity in blocks, and makes the necessary character
corrections for *, 0, #, A, B, C, and D, as described in the previous
chapter. If a printer is attached, a record of all activity, including
the date and time, is automatically printed out! (To increase the
speed, A, B, C, and D will be decoded only if flag 1 is set.) Now,
next time you scream "I never made those calls!!" upon receipt of
your phone bill, you can prove it (at least to yourself).

01*LBL "INTT2" 10 .035 19 RCLPT
02 XEQ "GPIO" 11 STO 01 20 X>O?
03 "TTONE" 12 CF 21 21 DELREC
04 3 13*LBL 01 22 .035
05 SF 25 14 INS TAT 23 STO 01
06 CRFLAS 15 FS? 01 24 FC?C 08
07 RCLPT 16 GTO 02 25 GTO 11
08 X>O? 17 ISG 01 26 32
09 DELREC 18 GTO 01 27 FINDAID

152

Telephone Answering Machine

28 x=O? 62 65 96 X<O?
29 GTO 11 63 X<>Y 97 GTO 08
30 SF 21 64 YTOAX 98 48
31 SF 12 65 GTO 03 99 X<>Y
32 ADV 66*LBL 04 100 YTOAX
33 PRA 67 62 101 GTO 07
34 CLA 68 POSA 102*LBL 08
35 CF 12 69 X<O? 103 59
36 TIME 70 GTO 05 104 POSA
37 FIX 2 71 66 105 X<O?
38 ATIME 72 X<>Y 106 GTO 09
39 PRA 73 YTOAX 107 42
40 CLA 74 GTO 04 108 X<>Y
41 DATE 75*LBL 05 109 YTOAX
42 FIX 4 76 63 110 GTO 08
43 ADATE 77 POSA 111*LBL 09
44 PRA 78 X<O? 112 60
45 CF 21 79 GTO 06 113 POSA
46*LBL 11 80 67 114 X<O?
47 CLA 81 X<>Y 115 GTO 10
48 GTO 01 82 YTOAX 116 35
49*LBL 02 83 GTO 05 117 X<>Y
50 FC? 08 84*LBL 06 118 YTOAX
51 TONE 8 85 48 119 GTO 09
52 RCL 02 86 POSA 120*LBL 10
53 SELECT 87 X<O? 121 APPCHR
54 INA 88 GTO 07 122 0
55 FC? 04 89 68 123 SEEKPT
56 GTO 07 90 X<>Y 124 GETREC
57*LBL 03 91 YTOAX 125 SF 08
58 61 92 GTO 06 126 AVIEW
59 POSA 93*LBL 07 127 .035
60 X<O? 94 58 128 STO 01
61 GTO 04 95 POSA 129 GTO 01

130 END

CY ou can also find out the sequence required to play "Mary had a
Little Lamb" the next time you're on the phone with an 8-year-old.)

And now, on with the circuit explanations.

153

Control The World with HP-IL

Telephone Line Interface

Half of this critical function is identical to that of the intelligent
autodialer from the previous chapter. The other half, consisting of
a 10 microfarad capacitor, a bridge rectifier, and a relay (yes, a
relay) as shown in Figure 7-1 detects the characteristic AC signal
of a ringing telephone. When the relay is actuated it pulls the
MSRQ line to ground, and the controlling computer must check
the lL Converter's STATUS word periodically to detect the ring.
(This is the identical method used to the tell the 71 there was noise
on the line in the previous chapter.) Yes, there are more modern
ways to detect a ring, but there still is no better way to convert a
90V AC signal into a safe, pull-down ground.

The clump of components in the lower right-hand corner
comprise an amplifier module, which was added between the
speech chip's output and the "GN" input of the hybrid transformer
to insure high voice quality over the phone line. This can be
anything from a tape recorder set to "monitor" mode to a small
I-transistor type, available as an off-the-shelf item in most
electronics stores.

Chip Select

When you wish to communicate with only one of many chips
connected to a data bus, the common method to do so is by utilizing
the 'chip select' inputs which many lCs possess and controlling
them with a ninth address line, as shown in Fig. 7-2a.

Normally, adding a decimal 256 to outgoing words will route
those words to the lower chip, and words less than (or equal to) 255
automatically go to the top. However, this method cannot be
employed here because 1) the SC-Ol has no chip select input, and 2)
in order to obtain a 9th data line, the lL Converter must be
configured to be 16 bidirectional lines. This results in nearly
doubling the time it takes to output an alpha string, as well as
doubling the number of characters in the string needed to say a
phrase. On the 41, these are quite significant!

The solution (shown in Fig. 7-2b) makes use of two NAND gates
configured as a homebrew RJS flip-flop, and two unused lines from

154

Telephone Answering Machine

00
01
02
03
04
05
D6
07

08

-
-
-

Chip #1

Chip Seleel

Chip #2

Chip Select --<

---{>---

Figure 7-2a
Chip
Scheme

Normal
Select

DBO-DB7------------------~~--------------_,

PWRDN ------I

GETO------:-_/

DAVO -------------'

Figure 7-2b
Chip Select the
Way I Had to
Do It.

8

(PWRDN)

...JL

6.------,

SC-01
Speech

74C373
Latch

74C373
Latch

11 L-_---'

155

Control The World with HP-IL

the 82166A IL Converter: PWRDN (Power Down, used to command
a low-power sleep state) and GETO (Group Execute Trigger Out,
normally used to synchronize events around the loop). Both can be
pulsed under program control, making them ideal inputs to the
flip-flop which "memorizes" which line was pulsed last.

The flip-flop's output then enables one of two NOR gates which
route the DAVO (Data Valid Out) signal to the proper chip. This
way the data reaches both chips, but only one chip is being told that
the data is valid. (Clever, huh?) Using this method, a 41 would
route its output to the currently SELECTed device (assume it's the
GPIO) as follows. To send data to the speech chip:

156

TRIGGER (Pulses the GETO output high, and routes
all subsequent info to the speech chip)

SF 17 (Suppresses automatic CR/LF.)
MANIO (Routes information to selected device

instead of a printer.)
*! &A#@ ((It's actually a synthetic text line

containing a speech pattern.)
OUTA (Send it out to the SELECTed device.)

Telephone Answering Machine

and to send data to the control latch:

PWRDN (Pulses the PWRDN output high, and
routes all subsequent info to the
control latch.)

MANIO (Routes information to selected device
instead of a printer.)

2 ACCHR (Turns the tape recorder on.)

Because the PWRDN (Power Down) line plays such a crucial role
in this system, only the 82166 IL Converter can be used. The
82165A HP-ILIGPIO interface, as described in Chapter 1, lacks
this output and therefore cannot easily accommodate our needs.

Software Description

The software detailed below performs as follows: after detecting
a predetermined number of rings, the phone is answered and it
says "Hello. This is Gary's Hewlett Packard. At the tone please
leave your name, message, and telephone number. Beep!" (I'm too
lazy to build an oscillator, so I just programmed the synthesizer to
say "Beep!"). A tape recorder turns on, and the caller has 20
seconds to leave a verbal message. Mter the time is up, the
machine announces the current time and day, (so you'll know
upon playback when the message came in), says "Good-bye", turns
off the tape recorder and hangs up.

You also have the option of assigning priority client status to
any of your friends (or enemies) by giving them a personalized
4-digit code. If this client code is Touch Toned in during the time
normally allotted for a verbal message, the tape recorder shuts off,
and the machine says "Thank you, Isaac" (or whatever that
client's first name happens to be). The current time and day are
announced, and finally, a "Good-bye" and hang up occur. A
message on the IL printer is then generated containing the
caller's first name, last name, phone number, time and date of the
call.

By the way, all this personal information has been stored away

157

Control The World with HP-IL

in an ASCII file named "CLIENT", which has the data on all your
friends organized as follows:

~ __ -------- 4-digit Client Code
4029"

~
- First and last names for printer

Michael ~
~·0~~n0 :~::=~:: _______ ::==~_ Col e - First and last names for synthesizer
'lI ·Il~-©t~
5550429~.~--------

7416
Seth
ai£~-,j·
Vallas
1l-... n0 Q

0 onNa·
2125557416

Client's phone number (any number of digits)

The ASCII file is searched until a match is found to the code
just entered. I usually assign the client's number to be the same
as the last four digits of their phone number, making it easy for
them to remember.

The system also features two user codes. One (which I assigned
as 4111) will tell me, over the phone, how many priority clients
have called, and then will read to me all the information contained
in the printed list so far. The number of messages the calculator
can remember is = (SIZE-12). The other user code, 4132, will
toggle an alternating current device on or off, with verbal
confirmation, each time the code is entered. This gives you remote
control capability from anywhere in the world.

At all times, the display gives a running count of the number of
calls that have been received.

The Program.

All the software needed for this system is provided in the
following pages. The program "TIMED" from Chapter 5 is also
called by many of these routines. (Barcode for these programs, by
the way, is provided beginning on page 287.)

158

Telephone Answering Machine

"GPIO"
This is an initializing program, designed to configure the IL
Converter as follows:

1) 8-bit unidirectional data transfer (8 lines going in, 8 lines
going out.

2) Positive data logic.
3) Full negative handshake logic.
4) No CRILF on input.
5) Status word shows MSRQ and that there's data waiting.
6) End-Of-Transmission occurs when the buffer is empty.

The program is listed below:

01*LBL "GPIO" 09 0 17 PWRON
02 "0+++++" 10 DOL 18 0
03 AOROFF 11 5 19 STO 06
04 64 12 OUTAN 20 XEQ "ACCHAR"
05 FINOAIO 13 UNL 21 TRIGGER
06 SELECT 14 AD RON 22 3
07 STO 02 15 SF 17 23 XEQ "ACCHAR"
08 LAD 16 AUTOIO 24 END

SYNTHETIC TEXT LINES:
02: 246,68,194,16,218,0,0

"ANSWER" (Main driver routine)

01*LBL "ANSWER" 12 "TIME" 23 1
02 XEQ "GPIO" 13 RCLPTA 24 X/Y?
03 CF 29 14*LBL 01 25 "IS"
04 0 15 0 26 AVIEW
05 STO 01 16 STO 01 27 CLA
06 STO 04 17 FIX 0 28*LBL 30
07 .999 18 " 29 FS? 49
08 STO 05 19 RCL 05 30 OFF
09 11 20 INT 31 INSTAT
10 + 21 ARCL X 32 FS? 01
11 STO 08 22 "I CALL" 33 CLROEV

159

Control The World with HP-IL

34 FC? 05 75 5 ll6 LN
35 GTO 30 76 LN 117*LBL "RETURN"
36*LBL 05 77 EAX ll8*LBL 13
37 .999 78 LN ll9 XEQ "BYE"
38 STO 00 79 EAX 120 RCL 06
39*LBL 02 80 INSTAT 121 X<>F
40 INSTAT 81 FC? 01 122 CF 01
41 FC? 05 82 XEQ "MSG2" 123 X<>F
42 GTO 03 83 1 124 STO 06
43 ISG 00 84 XEQ "FLIP" 125 PWRDN
44 85 "++++++" 126 XEQ "ACCHAR"
45 GTO 02 86 OUTA 127 TRIGGER
46*LBL 03 87 XEQ "INTT4" 128 0
47 ISG 01 88 FC? 09 129 XEQ "FLIP"
48 89 GTO 12 130 FC? 09
49 RCL 00 90 ASTO 07 131 GTO 01
50 4 91 "CLIENT" 132 DATE
51 X>Y? 92 0 133 DOW
52 GTO 01 93 SEEKPTA 134 1 E5
53 RCL 01 94 CLA 135 /
54 1 95 ARCL 07 136 TIME
55 X=Y? 96 POSFL 137 FIX 2
56 GTO 06 97 SF 25 138 RND
57 .03 98 X<O? 139 100
58 STO 00 99 GTO IND 07 140 /
59*LBL 04 100 FC? 25 141 +
60 INSTAT 101 CF 09 142 "CLIENT"
61 FS? 05 102 FC?C 25 143 RCLPTA
62 GTO 05 103 GTO 13 144 INT
63 ISG 00 104 "++++++) (-+" 145 +
64 GTO 04 105 INT 146 STO IND 08
65 " ASSHOLE" 106 1 147 ISG 08
66 AVIEW 107 + 148 32
67 PSE 108 SEEKPT 149 FINDAID
68 GTO 01 109 ARCLREC 150 X=O?
69*LBL 06 llO SF 17 151 GTO 01
70 EAX III OUTA 152 "CLIENT"
71 LN 112*LBL 12 153 RCLPTA
72 0 ll3 XEQ "TIMED" 154 1
73 XEQ "FLIP" ll4 5 155 +
74 ISG 05 ll5 EAX 156 INT

160

Telephone Answering Machine

157 SEEKPT 168 SF 17 179 TIME
158 GETREC 169 PRA 180 FIX 2
159 SF 12 170 CLA 181 ATIME
160 SF 21 171 CF 12 182 "I
161 SF 17 172 1 183 DATE
162 ADV 173 + 184 FIX 4
163 PRA 174 SEEKPT 185 ADATE
164 2 175 GETREC 186 PRA
165 + 176 SF 17 187 CF 21
166 SEEKPT 177 PRA 188 GTO 01
167 GETREC 178 CLA 189 END

SYNTHETIC TEXT LINES
104: 250,185,174,169,141,153,131,41,40,

45, 3. "Thank You"
85: 246, 142, 172, 172, 172, 165, 131. "Beep!"

YOU ... AYE
TURE! MESS~S:

M.
0000007
TIFFANY CASE
8880250

161

Control The World with HP-IL

LINES 1-13
General initialization. Configures IL Converter (via
"GPIO" subroutine below) and shuts off all devices and
stores constants in registers. (See also register usage table.)

LINES 14-27
ALSO CALLED LBL 01. Resets display with "(X) CALLS", X
being the integer portion of R05. If only one call occurred,
the "S" at the end is dropped.

LINES 28-35
This is the infinite loop performed while waiting for a call to
come in. After an INSTAT, Flag 5 will indicate if the MSRQ
is grounded, indicating the phone ringing. If not, it checks
for low batteries (Flag 49), and clears the IL converter's
buffer in case someone still at home is making an outgoing
call on a Touch Tone phone (Flag 1 would indicate this
condition.)

LINES 36-45
Waits for the ring to stop. Loop count of ring duration is
stored in ROO.

LINES 46-68
Was the detected ring too short? (ROO<4?) If so, it probably
was transient line current; go back to waiting for a ring. If
not, wait for next ring. If we loop more than 30 tim es
waiting for the next ring and it doesn't occur, the impatient
calling party has hung up, and an appropriate expletive is
displayed. PSE, and continue back to LBL 01, wait mode. If
not, we have a valid call on our hands

LINES 69-82

162

The best way to damage circuitry is to answer the phone in
the middle of a ring. So after the ring has stopped, we wait
(LN, elX) before answering. 0 XEQ "FLIP" means toggle bit
o in the control latch, which will short out F and RR of the
hybrid transformer and answer the phone. We now have a
bona fide call, s<, increment R05, the call count register.
Again we wait a moment (LINES 75-79), and if during that
time any Touch Tone key is pressed, skip the outgoing
message and go directly to the "BEEP!" (If you've ever
grown impatient during extensive debugging, you'll know
why I've included this feature.) Otherwise, "MSG2"
(Message #2, part of a whole library) will speak a message to
the caller.

Telephone Answering Machine

LINES 83-86
Immediately before the beep tone, the tape recorder is turned
on (1, XEQ "FLIP") and then, since building an oscillator
was too much trouble, I have the speech chip say "BEEP!"
(LINE 85,86). Really cute, huh?

LINE 87
Control is then passed to "INTT4" (Input Touch Tone,
version 4) which, while the tape recorder is recording the
caller's verbal message, listens in case the verbal message
happens to be comprised of four Touch Tone digits. If it is,
the tape recorder shuts off, Flag 9 is set, the four-digit
number is AVIEW'd, andwe return. If not, allow 20
seconds for the caller's message, and return with Flag 9
clear. (See documentation of INTT4 for details.)

LINES 88-96
If there was no Touch Tone activity (Flag 9 clear), GTO 12.
Otherwise, begin a search of the ASCII file "CLIENT" for a
match to the 4-digit code. (Register 7 is a temporary location
for the code while "CLIENT" is made the working file.)

LINES 97-103
If no match is found, then maybe one of the many user's
codes was entered. A GTO IND 07 will search for a 4-digit
global label to execute. If the label is not found, (Flag 25
clear), we GTO 13 which will say "Good-bye" and hang up.

LINES 104-111
At this point a client's 4-digit code has been found in the
"CLIENT" file. The system first says "Thank you" and then
GETREC's the phonetic coding of the client's first name and
says it. Your clients are rightfully blown away.

LINES 112-116
Here, "TIMED" (Tim e + Day, a subrou tine covered in
Chapter 5) is executed. If we've determined that a priority
client is calling, the current time and day is spoken to them
and eventually printed out. If this is just an ordinary person
(INTT4 comes back with Flag 9 clear), the time and day is
still spoken and will be picked up by the tape recorder, which
would still be on. Then upon playback you'll know when the
calls came in.

LINES 117-129
"RETURN". The program will always return to this point,

163

Control The World with HP-IL

as it performs the vital function of saying "Good-bye" and
hanging up.

LINES 130-147
If the caller wasn't a priority client, (Flag 9=clear), we go
back and wait for another call. If it was, we will store the
vital statistics of the message into memory (so the program
can read the messages back to you later) and print out a
phone message.

The vital statistics of each message are stored into a data register
as follows:

6.17136

/\~
Record # last
accessed in
"CLIENT" file.
(Points to a
4-digit code.)

The hour and
minute the call
came in.

The day
of the week.

The "4111" program will use this information later to read the
client's first and last name, phone number, time and day they
called back to the user. These "compact messages" are stored in
data register R11 and higher.

LINES 148-188

164

If a printer exists, we print out a phone message. Notice I
rely on the FIND AID (Find Accessory ID) command to verify
printer existence because I don't trust Flag 55 for the IL
printer. The remaining lines simply GETREC and PRA
records from the file, and print the current time and date.
Flag 17 is constantly set to nullify the effects of GETREC and
suppress CRILF on output.

Telephone Answering Machine

"INTT4" (Input Touch Tone, version #4)
NOTE: This subroutine is not to be confused with the Outgoing
call monitor program INTT2, which is a self-contained monitoring
program documented elsewhere.

01*LBL "INTT4" 13 FC? 09 25 48
02 CF 09 14 RTN 26 X<>Y
03 .09 15*LBL 02 27 YTOAX
04 STO 01 16 SF 25 28 GTO 07
05 CF 21 17 4 29*LBL 08
06 CLA 18 INAN 30 AVIEW
07*LBL 01 19 AT OX 31 SF 09
08 INSTAT 20*LBL 07 32 1
09 FS? 01 21 58 33 XEQ "FLIP"
10 GTO 02 22 POSA 34 END
11 ISG 01 23 X<O?
12 GTO 01 24 GTO 08

LINES 1-6
General initializing.

LINES 7-14
Start listening for Touch Tone activity. If flag 1 is cleared
after an INSTAT (=buffer empty), increment a counter (ROl)
and INSTAT again. If we have looped 90 times (= about 20
seconds on a 1.5X machine) exit the subroutine.

LINES 15-19
If there is data (Flag l=set), input four digits using the
INAN command. Flag 25 is set in case your caller enters
less than four digits; the error will be handled by the main
routine later. The ATOX on line 19 gets rid of the extra
dummy character in ALPHA put there by the Extended I/O
ROM command.

LINES 20-28
If a 0 (Operator) button is pressed by the caller, it shows up in
the ALPHA register as a colon (:). These lines replace every
found colon with a zero.

LINES 29-34
The number is AVIEW'd for local feedback, Flag 9 is set
indicating valid data in the ALPHA register, the tape
recorder is shut off early, and control is returned to the
calling program.

165

Control The World with HP-IL

"4132"
(The 4-digit code to turn on or off an A.C. device)

01*LBL "4132" 09 SF 17 17 X<>F
02 CF 09 10 OUTA 18 STO 06
03 2 11 "msMMC'++" 19 PWRDN
04 RCL 06 12 FS? IND Y 20 XEQ "ACCHAR"
05 X<>F l3 "ldMM+" 21 TRIGGER
06 FC?C IND Y 14 FC? IND Y 22 GTO "RETURN"
07 SF IND Y 15 "I S]] +" 23 END
08 "+,Ui -MrL+:+" 16 OUTA

-

SYNTHETIC TEXT LINES
08: 254, 30, 44, 15, 85, 105, 95, 126, 77, 114,

76, 76, 14, 58, 3. "Device number"
11: 248,109,115,77,77,67,39,18,3. "one is"
13 : 245 I 127, 100, 77, 77, 3. "on"
15: 245, 127, 83, 93, 93, 3. "off"

166

Telephone Answering Machine

LINE 2
Clear Flag 9 so "ANSWER" won't try to print a phone
message later on.

LINES 3-16
Flag status from R06 is recalled and Flag 2 is examined and
flipped. It then says "Device number one is", followed by
"on" or "off' depending on the status of Flag 2.

LINES 17-21
New flag status is stored back in R06 and output to control
latch, thereby fulfilling the prophecy just spoken.

LINE 22
Going back to "RETURN" in the driver program terminates
calling session.

"4111"
(This is the user code to read back your priority messages to you
while you are away from your home or office.)

01*LBL "4111" 22 X=O? 43 OUTA
02 CF 09 23 GTO "RETURN" 44 2
03 "TIME" 24 X<>Y 45 +
04 RCLPTA 25 1 46 SEEKPT
05 "iwmC+.++" 2 6 - 47 GETREC
06 RCL 08 27 1 E3 48 XEQ "READ1"
07 INT 28 / 49 RCL IND 08
08 ENTER" 29 11 50 FRC
09 ENTER" 30 + 51 100
10 11 31 STO 08 52 *
11 - 32*LBL 01 53 STO 01
12 SEEKPT 33 RCL IND 08 54 SF 08
13 ARCLREC 34 INT 55 XEQ "TIMED"
14 SF 17 35 "CLIENT" 56 ISG 08
15 OUTA 36 SEEKPTA 57 GTO 01
16 "LB K"+'++" 37 GETREC 58 11.999
17 1 38 2 59 STO 08
18 X=Y? 39 + 60 GTO "RETURN"
19 "LB ++++" 40 SEEKPT 61 END
20 OUTA 41 ARCLREC
21 RDN 42 SF 17

167

Control The World with HP-IL

SYNTHETIC TEXT LINES
05: 248, 105, 119, 109, 67, 27, 46, 15, 3. "You have"
16: 249, 76, 66, 95, 75, 94, 26, 39, 31, 3. "messages."
19: 247,76,66,95,11,30,26,3. "message."

LINE 2
CF 09 so the main routine won't try to print a message.

LINES 3-23
The system will say "You have (# of messages) messages".
The number is based on the value of the loop counter stored
in R08. The "TIME" ASCII file is needed so it knows how to
say a number, and lines 17-19 are used to replace
"messages" with "message" if only 1 message has been
received. If the number of messages =0, subroutine exits.

LINES 24-31
Constructs an ISG loop control to know when to stop reading
messages. Stored in R08.

LINES 32-43
Makes "CLIENT" the working file, takes the integer portion
of the "compact message" (see "ANSWER" lines 130-147) and
uses it as the record pointer. The phonetic form of the first
and last names are put into ALPHA and spoken.

LINES 44-48
The phone number of the client is read from the client file
into ALPHA, and READ1 is called which takes the ALPHA
string of digits and reads them one at a time.

LINES 49-55
The time and day of week are then decoded from the compact
message and spoken. Flag 8 at line 54 tells "TIMED" to
recite the time and day found in the X register rather than
the current time and day.

LINES 56-59
Loop back and read the rest of the messages. If they've all
been read, reset the message index register (R08) to indicate
no priority messages. This way if you call up a second time
to see if more messages have arrived, you won't have to hear
the original ones again.

LINE 60
Jump to "RETURN", the exit point of the main routine.

168

Telephone Answering Machine

Program READ1 "reads" an alphanumeric string and pronounces
everything. It is called from "4111" when reading the list of
priority clients back to the user over the phone.

Ol*LBL "READl" 13 X<>Y 25 FRC
02 ALENG 14 / 26 STO 03
03 ENTER" 15 STO 03 27 RDN
04 ENTER" 16 FS?C 10 28 INT
05 1000 17 XEQ "THANK" 29 SEEKPT
06 / 18 "TIME" 30 GETREC
07 1 19 RCLPTA 31 SF 17
08 + 20*LBL 07 32 OUTA
09 STO 04 21 RCL 03 33 ISG 04
10 X<>Y 22 10 34 GTO 07
11 10"X 23 * 35 END
12 ANUMDEL 24 ENTER"

"ACCHAR" is a handy program for "outputting" a decimal word
without using the ALPHA register. It undoes the default status,
outputs the word to the control latch (not the synthesizer), and then
resets the previous status. The default status is:

AUTOIO

Flag 21 Clear
TRIGGER last

So both the printer and IL Conv. can be
addressed without SELECT'ing each device.
So AVIEW's won't be printed.
Data gets routed to the speech chip by default.

Recommended usage: PWRDN, ACCHAR, TRIGGER.

01*LBL "ACCHAR"
02 SF 21
03 MANIO

04 ACCHR
05 AUTOIO
06 CF 21

07 END

"FLIP" toggles a bit in a control word without disturbing the other
control bits.

01*LBL "FLIP" 05 SF IND Y 09 XEQ "ACCHAR"
02 RCL 06 06 X<>F 10 TRIGGER
03 X<>F 07 STO 06 11 END
04 FC?C IND Y 08 PWRDN

169

Control The World with HP-IL

Finally, MSG2 is a subroutine which says, "Hello. This is Gary's
Hewlett Packard. At the tone please leave your name, message,
and telephone n urn ber." and returns. Rather than give a
line-by-line analysis, I'll show the phonetic symbols of the text
lines since I'm sure no one else will want to use this message
without modification. The two routines at the end, "BYE" and
"THANK", are called upon at other times to appease your callers.

01*LBL "MSG2" 22 5
02 SF 17 23 LN
03 "[BX+m-----yg_ C" 24 E"X
04 OUTA 25 LN
05 "'+-\A@kliRC" 26 E"X
06 OUTA 27 "+++g"Z+++oMM"C"
07 "[iwXAjC+++:++" 28 OUTA
08 OUTA 29 "++++/&I+MrLLN:+"
09 5 30 OUTA
10 LN 31 RTN
11 E"X 32*LBL "BYE"
12 LN 33 "+++NUiC"
13 E"X 34 SF 17
14 LN 35 OUTA
15 E"X 36 RTN
16 "--njCCysC++mMM-" 37*LBL "THANK"
17 OUTA 38 SF 17
18 "eX1++X1iOC" 39 "++++++<>+"
19 OUTA 40 OUTA
20 ")5++M'aL+" 41 END
21 OUTA

Line 3: H EH1 L 0 w
91 66 88 166 109 126 126 126 126 126

TH I S
121 103 95 67

Line 5: I Z
39 18 126

170

Telephone Answering Machine

G EH1 EH3 R E1 Y Z

92 65 64 107 124 105 82 67

Line 7: H Y U1 L EH1 T
91 105 119 88 65 106 67

p AE K ER D

165 174 153 58 30 3

Lines 9-15 Slight delay.

Line 16: AE T TH UH
110 106 67 67 121 115 67

T 0 W N N

170 166 109 77 77 126

Line 18: p L E Z L E Y V

101 88 108 146 131 88 108 105 79 67

Line 20: Y 01 R N A AY M

41 53 43 3 77 96 97 76 190

Lines 22-26 Brief pause.

Line 27: M EH1 S I D J

140 130 159 103 94 90 190 190 190

AE1 N N D

111 77 77 94 67

Line 29: T EH1 L EH2 F 0 N

170 130 152 129 29 38 13 3

N UH1 M M B ER
77 114 76 76 78 58 3

Line 33: G 00 D B AH1 Y
28 23 30 78 85 105 67

Line 39: TH AE Y N K Y U W

185 174 169 141 153 131 41 40 45 3

171

Control The World with HP-IL

Other useful information:

Register Usage:

ROO ISG register to determine how long the relay's been down.
R01 # of rings detected; timing loop for INTT4.
R02 Loop address of IL Converter.
R03 String to be read in READ1. (Temporary.)
R04 Looping control for READ1.
R05 Number of calls received.
R06 Last byte written to the control latch.
R07 Temporary location for ASTO'ing the 4-digit code.
R08 Message index register, for storing priority client's

messages.
Rll and up: Priority client's messages.

Flag Usage:

0-7 Used with INSTAT.
8 Tells TIMED to read the time in X rather than the current

time.
9 There exists valid INTT4 input.

Conclmling Remarks

I believe the Austrian Emperor Joseph II summed it up pretty
well when he said, "Well then ... there it is!".

172

Phot a of campi et ed
answering machine
circuit. Hybrid
transformer is shown in
the lower left- hand
corner.

Telephone Answering Machine

173

Control The World with HP-IL

174

Chapter Eight

KEYBOARDS FOR THE 71

':,4. Keyboard? How quaint!"
--Scotty

Described here is the first of two types of keyboards that
compensate for one of the 71's drawbacks: namely, its own
keyboard. The second type, which is easier to implement, tells how
to convert an IBM (YECCH!) PC to a dumb terminal and is covered
in Chapter 10.

But here we get more creative than just hooking up a dumb
terminal. Nothing's more counterproductive than confining your
71 to a wall outlet (and consuming a billion times more power) just
so you can enhance your productivity. In my quest to preserve
portability, I have built some keyboards that not only run on
batteries, but generate the weird escape sequences that the 71
expects to see as well. Your success at duplicating these efforts
depends on your ability to scavenge at swap meets, surplus shops,
and garage sales in order to find a suitably modifiable keyboard.
And because every keyboard found will require its own unique
solution to attach it to the 71, a thorough understanding of the
principles described in this chapter will help you hook up any
keyboard you happen to possess.

The first keyboard that this chapter will describe is the easiest
type to hook up: the parallel-encoded kind. It is good for very basic
work, but for serious development work further improvements are
necessary, and these are described in the ADD EPROMS FOR
ENHANCEMENTS section. Finally, the Nth degree of complexity
(well, it may seem like it, anyway) is covered as I describe my
favorite keyboard, the one originally designed for the Otrona

175

Control The World with HP-IL

Attache computer.

The 'KEYBOARD IS' Lexfile

Before we get to the hardware, we must first know what the 71
expects to see so we can accommodate it as much as possible. Here
we make use of HP's KEYBOARD IS lexfile, which is available
either on magnetic cards from HP or in the FORTH/ASSEMBLER
ROM. HP designed this Lexfile to allow larger terminals or
computers (in conjunction with the DISPLAY IS command
already resident in the 71) to act as the 71 's keyboard and display.
Used in this way, a programmer might be able to overcome the 71 's
human interface limitations and actually produce some code in
reasonable time without raising his or her blood pressure.

Like most general-purpose interfaces, HP had obstacles to
overcome to make this type of input work with all possible
keyboards. Most 'smart' keyboards that generate their own
characters adhere strictly to the ASCII standard, which defines
how the characters A-Z,a-z,0-9,!-+ and the first 15 control
characters are represented via 7-bit binary numbers.
Unfortunately, all of the other keys such as cursors, functions,
Tab, CAPS LOCK, and even backspace are not as rigidly defined;
these can vary from manufacturer to manufacturer. The 71
represents these in its own individual fashion.

How is a normal keyboard supposed to send these crucial
non-standard keystrokes? HP's solution was to insist that the user
precede every special key with the ESCAPE keystroke. The 71
would then cross-reference any escape-preceded keystrokes with
those already defined in an "escape" buffer and, if a match is
found, "press" the predefined button. A sequence is defined in the
escape buffer by entering a line which looks like this:

ESCAPE "A" ,50

After the above assignment is typed into the 71, hitting the external
keyboard's ESCAPE key followed by the "A" key will activate key
#50 on the 71; the Up Arrow key. (Refer to the 71 's Keyboard map in
their instruction manual for how to specify other keys.) In this
manner, any 71 function (such as ATTN, Command Stack, I1R,

176

Keyboards for the 71

and the cursors) could be executed from the remote keyboard. As
will be seen shortly, this method has its drawbacks.

The Parallel Keyboard

There are generally 3 different types of keyboards that are sold
as surplus: The "matrix only" kind, which is a board full of
switches without any support components (requires too much
work; avoid this type); the "serial" kind, which has between 3 and 5
wires in it's host-going cable and sends the information like an
RS-232 link; and the parallel kind, which is by far the easiest to
hook up since it transfers data the same way as the GPIO: 8 bits at
a time with a 9th line acting as a strobe.

Consider the parallel keyboard presented below. This particular
keyboard has 10 labelled function keys, special characters, a
numeric keypad, and an excellent keyfeel, making blind tying a
cinch.

Hooking up a parallel-encoded keyboard is exactly like attaching
a printer to the GPIO, only the data goes in the other direction.
Parallel keyboards are already programmed, off-the-shelf, to
generate ASCII characters when the appropriate keys are
pressed. Therefore, connecting it is as simple as the drawing in
Figure 8-2:

OAD r-____ -,~~ ______ ~0~1-----

82166A

HP-IL

CCNVERTER

OA1 02

03
10

F"'---------"-"'"i11 OA2

OA3 f-____ ---=:0...,412

0A4 05
~'-'--------"--'-t·13
OA5 06

1-"-""'-------114
OA6 07

OA7 08
15

F---------I16
OAVI Sl"FalE

~ GIlO
I----' I Vee 1

'vee

5V

Acme Parallel
Keyboards, Inc

fCti IAls::Jclllltll-l

::sJiW :nl. ~ "t; ItlNlwl ~~~

Figure 8-2
The Simplicity
of Attaching a
Parallel Keyboard.

177

Control The World with HP-IL

Figure 8-1: A typical Parallel Keyboard.

and the software commands are as simple as:

10 A=DEVADDR ("GPIO")
20 SEND MTA LISTEN A DOL 0 DATA 226,16,24 UNL UNT
30 KEYBOARD IS :GPIO

Obviously, a few key words (again, no pun intended) of
explanation are in order here. If the KEYBOARD IS routine is to
function efficiently, the GPIO must be modified to flag service
requests whenever there is outgoing data in its transfer buffer, and
to send End-of-Data frames when the buffer is empty. Both these
tasks are accomplished by the DDL 0 command of line 20 above,
which sets the following attributes:

226--GPIO will send service requests when any computer-bound
data is waiting in the buffer, in addition to any normal status
request.

16---Send an End-Of-Data frame ifthe buffer's empty.

178

Keyboards for the 71

24---Strobed handshake, positive data and negative handshake
logic.

Every time the GPIO is powered up, the configuration program
must be run (but you already knew that!). To make things easy, I
include in this program all the ESCAPE buffer definitions,
although these really only have to be run once.

While defining the ESCAPE buffer definitions, another problem
(for this keyboard, anyway) cam e up: How can I define a
non-standard keystroke in the ESCAPE buffer if I don't know what
decimal byte the keyboard sends out?

I answered this question by putting my 41 on the loop and, using
a wonderful feature of the IL Development ROM, put it into SCOPE
mode. This mode lets you look at individual HP-IL frames as they
pass through the loop. (It also allows you to save these frames in a
buffer for future observation, generate custom packets of your own,
watch for interrupts, and a host of other tasks.) Anyway, every
time I hit a key of unknown keycode, I'd watch the 41 's display for
the decimal byte, embedded in each DAB frame. These numbers
were then used in the CHR$O's needed for the ESCAPE buffer
definitions in the program below, which configures the GPIO as
well as defining the escape sequences:

5 ! Program KEYBD implements KEYBOARD IS on the
Microswitch keyboard.

10 RESTORE 10 @ RESET HPIL
20 KEYBOARD IS *
30 A=DEVADDR ("GPIO")
40 SEND MTA LISTEN A DDL 0 DATA 226,16,24 UNL UNT
50 SFLAG -15
60 KEYBOARD IS :GPIO
70 ESCAPE CHR$(144),50
80 ESCAPE CHR$(145),51
90 ESCAPE CHR$(147),103

100 ESCAPE CHR$ (146) , 48

assigns up arrow key
assigns down arrow
assigns backarrow to
destructive backspace.
assigns right arrow.

110 ESCAPE CHR$(9),43 assigns tab key to ATTN.
120 ESCAPE CHR$(238),43 assigns SHIFT TAB to

ATTN.
l30 ESCAPE CHR$(99),104 assigns esc 'c' to -CHAR.

179

Control The World with HP-IL

140 ESCAPE CHR$(67),104
150 ESCAPE CHR$(169),162

160 ESCAPE CHR$(185),162

170 ESCAPE CHR$(163),163

180 ESCAPE CHR$(179),163

190 ESCAPE CHR$(171),150

200 ESCAPE CHR$(187),150

210 ESCAPE CHR$(8),159

220 ESCAPE CHR$(237),159

230 ESCAPE CHR$(164),160

240 ESCAPE CHR$(180),160

250 ESCAPE CHR$(108),107

260 ESCAPE CHR$(76),107

270 ESCAPE CHR$(215),106
280 ESCAPE CHR$(231),106
290 ESCAPE CHR$(216),105
300 ESCAPE CHR$(232),105
310 CONTRAST 15
320 END
330 SUB KEYOFF
340 KEYBOARD IS *
350 CFLAG -15
360 CONTRAST 9
370 BYE @ END SUB

assigns 'C' to -CHAR.
assigns left blank key
to all the way up.
assigns shift left blank
key to all the way up.
assigns right blank key
to all the way down.
assigns shift right
blank key to all the way
down.
assigns home to command
stack.
assigns shift home to
command stack.
assigns back space to
far left.
assigns shift backspace
to far left.
assigns back tab to far
right.
assigns shift back tab
to far right.
assigns esc '1' to
-LINE.
assigns esc 'L' to
-LINE.
assigns F7 to LC.
assigns shift F7 to LC.
assigns F8 to IiR.
assigns shift F8 to IiR.

You might notice some other additions, too: FLAG -15 (lines 50 &
350) switches to lowercase mode, and the KEYOFF subroutine at
line 330 (activated by command CALL KEYOFF) restores the

180

Keyboards for the 71

changed parameters when finished.

Other Potential Problems

In theory, parallel keyboards are the easiest to hook up and use.
In reality though, as we have just seen, differences in individual
keyboards can cause problems in implementation. Just like the
non-ASCII keys producing arbitrarily defined output, there also
exists the problem of inadequate pulse widths coming from the
keyboard's STROBE line.

In the past, we dealt with inadequate handshake pulse widths
with something called a pulse expander, which will takes any
length pulse as input and outputs a nice, long lOOms pulse width
so the GPIO will accept it.

The specs of my particular keyboard state that the pulse width it
generates lasts anywhere from 10 to 90 milliseconds, which means
there exists about a 63 to 37 chance of NOT meeting the GPIO's
requirements and losing your data. This necessitates the
additional circuitry shown in Fig. 8-3:

r------------------------10~~ r
1
-
1
------STROBE

.01 ~F

Grd +5 8~5V
1--____ -=-__ --..,;2=_1 Trig 555 Disc 7 200KQ

DAVI -----iI"~ 1-__
3
-; Out Thr 6

8 9 4 Rst TimerByp 5

I

Figure 8-3
Pulse
Expander

0.47 ~F

This circuit is identical to the one introduced in Chapter 4, and
is necessary because if the pulse width is less than 60 ms, the

181

Control The World with HP-IL

GPIO thinks no keys have been pressed and the whole system will
quietly ignore you.

Now that the parallel keyboard has been hooked up and the
pulse expander (if it was needed) has been added and tested, all
one has to do is just power up the keyboard (& the GPIO, too!), run
the setup program, and type away! Notice how much faster you
can tell the 71 what to do! Notice the 32-character "type-ahead"
feature, thanks to the GPIO's 32-character transfer buffer.

There are, regretfully, drawbacks. The keyboard's ESCAPE
key, unlike the more-famous CONTROL key, must be pushed and
then released before the next key depression. This means that
each Backarrow (non-destructive backspace) requires 2 keystrokes:
ESC and <--. When editing text files, this can be a very frustrating
procedure. Specially defined function keys and those important
cursor keys share the same frustrating qualities. These seemingly
trivial drawbacks are so constraining that the rest of this chapter
will be spent explaining a method of overriding them.

Add EPROMs For Enhancements
(Just What The 71 Wants!)

If the 71 expects to see all useful non-alphanumeric functions
presented as 2-character ESCAPE sequences, wouldn't life be
wonderful if we had a keyboard that generated 2 such characters
for every keystroke? (It was a rhetorical question; the answer is

182

w

N

§
Il.
W

Figure 8-4
Sending Two
8-Bit Words
On Every
Keystroke.

Keyboards for the 71

"Yes".)
Through the use of a few extra parts, including some custom

2716 EPROMS, we can take any parallel keyboard and turn it into a
"custom made" job, where all key definitions (especially the
cursors) can all take place with a single keystroke!

This method uses a little trick to generate two 8-bit words for
every single keystroke. Examine the diagram in Figure 8-4. Each
time a key is pressed, a unique ASCII code appears on the 8 data
lines. Normally, this code is fed directly to the GPIO; but this time
we're treating it as an address to the two EPROMs. The EPROMs,
functioning as an electronic lookup table, supply a 16-bit word to
the GPIO, which has previously been configured to have a 16-bit
word size. This means that for every 8 bits that come in, we get 16
user-specified bits coming out.

You can probably guess what happens next. The GPIO sends
one 16-bit word to the 71, but the 71, expecting input in the form of
8-bit words, takes this double-sized word and treats it as 2
CONSECUTIVE bytes.

Let's take an example. If the right-arrow key is pressed on my
particular keyboard, the on-board logic generates a decimal byte of
146 on the 8 data lines, and then pulses the STROBE line
momentarily. The EPROMS immediately assume this is an
address (since, after all, these data lines ~ being fed to their
address lines), and generate a pre-programmed 16 bit word, Hex
IB 2A, to the GPIO. Because the KEYBOARD IS function in the 71
only expects to see 8-bit words, it treats these 16 bit words as 2
words: IB (CHR$(27)) which is Escape, and 2A (CHR$(42)) which is
an arbitrary ASCII character. The KEYBOARD IS escape key
buffer has been told beforehand using the ESCAPE command that
ESCAPE 2A should be interpreted as Right-arrow, so then it
performs that function. If the Right-arrow key is held down, the
repeat function takes effect and multiple escape sequences are
generated, all with one key!

In the case of sending out the letter 'A', no escape sequence is
needed. The two hexadecimal bytes sent are FF 41, where FF is a
dummy byte which is (luckily) completely ignored by the 71, and 41
is the ASCII code for 'A'. Although twice as many characters per
keystroke are being sent with this method as compared to a normal

183

Control The World with HP-IL

keyboard, there is no noticeable decrease in speed.
Because every keyboard will generate different sequences for

cursors, and because you may wish to define unique key sequences
to activate the 71 's functions, a custom set of EPROMs must be
developed for each individual application. It is not a difficult thing
to do; I would imagine the hard part would be for the average user
to get hold of an EPROM burner. Deciding how to map out the
EPROMs is an easy task. Just make a list (and check it twice):

WHAT I WANT TO PRESS

'DEL'
'LINE FEED'
'TAB'
CNTRL-C
CNTRL-L
'A'
'a'

WHAT I WANT IT TO DO

ATTN
COMMAND STACK
I/R
-CHAR
-LINE
A

g-A (shifted)

Then determine what decimal bytes the keyboard normally
generates when the keys in the left column are pressed. These will
become the EPROM addresses. Then go to the right column, and
specify what you want the 71 to see when the key on the left is
pressed. For example, when the 'A' key is pressed, we actually
want the 71 to receive an 'A', so we feed it FF 41. (FF is a dummy
byte used when no escape sequence is desired. 41 is the
hexadecimal ASCII code for 'A'.) Another example: Hitting the
'DEL' key produces a decimal byte of 127; so that goes into the left
column. We want to generate an escape sequence for this one: 1B
(ESCAPE), CB (arbitrary character). This goes into the right
column. We're not done yet! Any escape sequence must also be
defined in the ESCAPE buffer in order to be reassigned by the 71. So
we must now also add 1 line to the configuration routine:

ESCAPE CHR$(127),43

which tells the 71 to press its ATTN key (key #43) every time it
encounters the sequence ESCAPE CHR$(127) (in hex, it looks like

184

Keyboards for the 71

IB 7F).
When filling out your map, be sure to cover every possible key

sequence; both shifted and non-shifted letters, control- , shift- , and
control-shift-. Every hex address (every possible keyboard output)
should generate some sort of code, even if you think you'll never
use it. (A sample of a complete EPROM map is shown later in this
chapter.)

Matrix-Only and Serial Keyboards

Earlier I said not to bother with these, and now I'm going to go
back on my own advice and discuss them at length. You see, my
favorite keyboard in the whole world had characteristics of both the
above boldfaced adjectives. This keyboard (when properly
modified) works with the 71 so nicely, and it has just the right size
and power consumption, that not to discuss it would be a
disservice!

Most keyboards you're likely to find are of the matrix-only type,
as shown in Fig. 8-5.

Multi-pin
Connector \

Figure 8-5
A matrix keyboard.

185

Control The World with HP-IL

As can be seen, pressing a key connects one of the row lines to one
of the column lines, and it requires additional circuitry to detect
which key was pressed and to translate it into an ASCII character.
The previously described parallel keyboard had such circuitry
already on board; and therefore was easier than 1t to hook up.

If you do find such a keyboard (you'll know when you have it;
there are no electronic components at all), Fig. 8-6 shows an
example of what is needed to decode it:

Figure 8-6
A Matrix Keyboard 4040 Encoder.

COUNlER

1.J..J..L1.L +9
f)fJ f) J) fJ J

Input

1. J.. J.. L 1. L SHIFT

J f, ~f J r ~I ~j Sf ...L
? I

1. J.. J.. L 1. L a:
Sf, ~f J r ~I ~ ? ~r

ill ? 0
0

CNTAL

...L
I

u
1. J.. J.. L J.. L

ill
0

Jf Jf Jj ~j ~J J1 co u.
<?
~

l 1·0F-8 DECODER

l I I

~-------------------- ------., • • • • • • • • • • • • • • • ,~~~~ • •

~ I
• • ~ • • EPROM 1 2716 EPROM22716
• • • • ·~llnnnuu ~~nnnn • • • • • • STROBE • DATA BUS A DATA BUS B I •

• L CONVERlER :

~---------------------------------.

186

Keyboards for the 71

This simplified setup works as follows: the keyboard matrix has
two l-of-8 decoders driving its rows and columns. These decoders
are designed to route a signal to any of eight different places,
depending on the status of its three address lines. In the case of
the vertical decoder, it takes the +5v from the input marked "x"
and, depending on the state of its three address lines, redirects it to
one of the four wires connected to the rows. The bottom decoder
sends its information the other way: it scans the six columns of the
keyboard matrix and sequentially routes any signals it finds to the
"x" pin emanating from the bottom. So in normal operation, the
highest bits from the eternally-running counter cause the 5v at "x"
to sequentially appear at each of the rows, and the lowest three bits
allow the status of each column to sequentially appear at the "x" of
the column decoder.

If a key has been depressed, eventually the counter will generate
the proper code to let the 5v from the row decoder reach the "x"
output of the column decoder, which we rename as STROBE. This
tells the world, "Hey! Somebody's pressed a key, and if you look at
the counter's bits right now, you'll see a bit pattern which uniquely
defines the pressed key!". The two EPROMS at the bottom are, in
fact, doing just this. They are constantly translating this unique
keycode, as well as the status of the SHIFT and CONTROL keys,
into ASCII code. If a GPIO were to look at this system from the
bottom, it would see 16 data lines and a strobe. And when the
strobe goes to +5v (= "1 "), a 2-byte escape sequence appears at the
output!

The World's Best Keyboard

If you thought that was complicated, take a look at Fig. 8-7 (next
page), which shows the detailed schematic implementing this
keyboard scanning method without the EPROMS. It is easy to see
that, even though a method exists to transform a matrix-only
keyboard into something that can work with the 71, it is really a
great deal of trouble.

Imagine my joy when I stumbled upon a tiny keyboard which
already had the necessary circuitry built in! These schematics
actually describe the keyboard from an old Otrona Attache, a

187

Control The World with HP-IL

r--, . (,] - OEl .
"

U'O , . . , · · 2 "'" ..
, . , · 0 'x>

xL.,

, • , . · ,

• • , ; = /

,
" '~

'Z Xl
'Icc: 7 .,.

0 , Z , . , 6 1 l' Xl

SPACE ESC - - , • ,
B. TAB L' 'R LOC'

"
..

"
, , , Z · xO X< xZ Xl X4 X3 X6

X7\ 40" u.
X V" I • B C ,
~ + '\1'1

Figure 8-7: Schematic for the Otrona Keyboard

188

K[YSWITCH Of TAIL

r----'
I

: :/1

l. rOrD
SHIFT SHIFT
(RIIGHT) (LEFT)

Keyboards for the 71

superb portable computer whose key feel and size I had always
admired. (It's too bad the firm folded; it wasn't for lack of a
superior product.) The keys feel wonderful, and all the circuitry is
constructed in power-saving CMOS. The only problem was that
this was a serial keyboard; the unique keycode goes through a
parallel-to-serial converter before being shipped to the host
computer. (In this instance, this setback is easily remedied by
removing said serial converter, as described later.)

Without going into great detail about how the gates and flip-flops
work, the components function as follows: All the components on
the bottom of the diagram form a clock, whose output goes directly
to pin 10 (the input) of the 4040 CMOS counter chip. The keyboard
scanning behaves exactly as described above, except the counter's
output is fed not to two EPROMs, but to a 4021 parallel-to-serial
converter!

Here, then, is what to do in order to interface with a serial
keyboard: simply remove the parallel-to-serial converter from the
circuit board. We are now back to parallel again. (Wasn't that
easy?)

The dashed box around the 4021 IC represents the component to
be removed and all the wires normally attached to it. In this
application the box is removed and replaced with the two EPROMs
and three gates as shown if Fig. 8-8. These parts take the keycode
as input and output two parallel 8-bit ASCII characters, complete
with the required handshake.

Implementing this scheme requires slight modification of the
Otrona keyboard, whose components are well labeled. First,
transistors Q1 and U1, the only two on the circuit board, should be
removed to cut current consumption. Next, U7, the
parallel-to-serial converter described above, must be de-soldered
and removed from the board. Jumper wires replace this IC and
carry signals over to the EPROM's address inputs as in Fig. 8-6
and detailed in Fig. 8-8. Pin 9 from U7 is used as a handshake
signal. It is ANDed with the RDYO signal from the GPIO. (Notice
the use of NOR gates for this function to reduce the chip count.)
The third handshake line, DACO, is connected to resistor R1 as
shown in the schematic. This way we make use of the otherwise
unused NAND gate (configured as an inverter) for positive

189

Control The World with HP-IL

IOtrona
Figure 8-8
Additiona
Circuitry.

FROvl
4021
(U7)

190

7
6
5
4
,~

14
15
1

9

~3

i"e Fig. 8-7)
16

8

EPROM 1 (5v
1 ... A7 '-" ,.,24
2;:: Vee

P#-3'- A6 AS ,.,22 :;: A5 A9
4 ... A4 V..£.p ~ 5_ A3 ~
6_ A2 OE ,.., 19
7;'" AlQ ~18
8.- A1 CE 17 DA7 -
9_ AO 07 ,.,16 DA6

10::;: 00 06 f-,15 DA5
11-" 01 OS

~14QA4

~~ 04
03 13 DA3

DA2
DAI
DAO -

EPROM 2 (5v
1 '-" h24
2~ A7 Vee

~ 3'- A6 AS pg.-4'" AS A9

* A4 Vpp
5 :F,%-1;'- A3 OE ..., 19
7 A2 A1Q 18
a= A1 CE 17 DA7 -
9::

AO 07 f-,16 DA6
10_ 00 06 ...,15 DA5 ,..gc 01 05 f-,14 DA4

02 04 l-r G\O 03 ~13 DA3

DA2
DAI
nAo -

6
5 ~O •

1 -DAVI E RDVO
DACO

'Lt1'11 5V

.J..

DATA
BUS
A

l..

DATA
BUS
B

RYNER
AND

HANDSHAKE

Keyboards for the 71

handshake logic.
There's also a potentiometer, R9, which is used to control the

speed of the repeat function. I recommend slowing it down to
match the receiving speed of the 71, so the cursor doesn't move
forever when the key is released.

The configuration program below performs exactly the same
functions as the one presented earlier, except it is customized for
the Otrona keyboard. (See the end of this chapter for a list of the
Otrona's EPROMs.)

10 ! "OTRONA" setup program for Otrona Keyboard.
20 RESET HPIL @ RESTORE 10

30 KEYBOARD IS *
40 A=DEVADDR ("GPIO")
50 SEND MTA LISTEN A DDL 0 DATA 226,16,30 UNL UNT
60 SFLAG -15
70 KEYBOARD IS :GPIO
80 ESCAPE CHR$(41),50
90 ESCAPE CHR$(40),51
100 ESCAPE CHR$(42),48

The world's best keyboard.

Assigns up arrow key
Assigns down arrow key
Assigns right arrow key

191

Control The World with HP-IL

110 ESCAPE CHR$(43),47
120 ESCAPE CHR$(203),43
130 ESCAPE CHR$(194),162

140 ESCAPE CHR$(226),162

150 ESCAPE CHR$(193),163

160 ESCAPE CHR$(225),163

170 ESCAPE CHR$(10),150

180 ESCAPE CHR$(196),159

190 ESCAPE CHR$(228),159

200 ESCAPE CHR$(195),160

210 ESCAPE CHR$(227),160

220 ESCAPE CHR$(76),107
230 ESCAPE CHR$(108),107
240 ESCAPE CHR$(67),104
250 ESCAPE CHR$(99),104
260 ESCAPE CHR$(202),106
270 ESCAPE CHR$(234),106
280 ESCAPE CHR$(9),105
290 ESCAPE CHR$(33),103

300 ESCAPE CHR$(83),102
310 ESCAPE CHR$(96),78

320 ESCAPE CHR$(126),80

330 ESCAPE CHR$(92),92

340 ESCAPE CHR$(124),93

192

Assigns left arrow key
Assigns DEL key to ATTN
Assigns shift up key to all
the way up
Assigns LC shift up key to
all the way up
Assigns shift down key to
all the way down
Assigns LC shift down key
to all the way down.
Assigns line feed to
Command stack.
Assigns shift left to far
left.
Assigns LC shift left to
far left.
Assigns shift right to far
right.
Assigns LC shift right to
far right.
Assigns CNTL L to -LINE.
Assigns LC CNTL 1 to -LINE.
Assigns CNTL C to -CHAR.
Assigns LC CNTL c to -CHAR.
Assigns CAPS LOCK to LC.
Assigns LC CAPS LOCK to LC.
Assigns TAB to I/R.
Assigns backspace to
destructive backspace.
Assigns CNTRL S to SST.
Assigns 'Back Apostrophe'
to that character using
text editor's keys.
Assigns Shift Tilda to same
character using text
editor's keys.
Assigns backs lash to same
character using text
editor's keys.
Assigns Shift "two vertical
segments" to same chars

Keyboards for the 71

! using text editor's keys.
350 DELAY .5, .05
360 END
370 SUB KEYOFF
380 KEYBOARD IS *
390 CFLAG -15
400 BYE @ END SUB

Mapping Out the EPROMS

Probably the most complex and tedious task about converting an
arbitrary keyboard into a 71-compatible one is figuring out what
the EPROMs should contain. To that end, I have written a small
program which generates a form you can fill out. It was originally
written for the Otrona keyboard, which the SHIFT and CONTROL
prefixes being inserted into predictable places. Just attach a
ThinkJet (or other 80-column printer) to the 71, enter a "PRINTER
IS PRINTER", and run the following program:

10 ! PROGRAM FORM
20 ! PRINTS TABLE FOR MAPPING OUT OTRONA KEYBOARD.
30 STD
40 CALL HEADER
50 FOR Y=l TO 255
60 PRINT TAB(6);

TAB (52); ": n;

TAB(80); ":n

70 ENDLINE ""

n • " • . , TAB (14) ;
TAB (66) ;

"." . . ,
n. n •

TAB(29);
TAB (73) ;

" • n • . ,
" • It • . ,

80 PRINT Y; TAB(6); II. ";

90 ENDLINE
DTH$(Y); TAB(2); n. n;

100 LET B=Y
110 CALL BINARY(B)
120 PRINT TAB(17); ". ". . ,
130 IF FLAG(2,0)=1 THEN PRINT "CNTRL ";
140 IF FLAG(l,O)=O THEN PRINT "SHIFT ";
150 PRINT TAB(40); II.

TAB(68); "." .
160 PRINT

"; TAB(54); "." . . , TAB(61);

170 PRINT TAB(6);
TAB (52); ".".

".11 . TAB (14); ":"; TAB (29); ":";
TAB (66); ":" ; TAB (73) ;

"." . . ,

"." . . ,

193

Control The World with HP-IL

TAB(80); ":"
180 PRINT

---------------------------"
190 IF MOD(Y,15)=0 THEN PRINT CHR$(12) @ CALL HEADER
200 NEXT Y
210 END
220 SUB BINARY (B)
230 A$="#,D"
240 CFLAG 1 @ CFLAG 2
250 FOR X=7 TO 0 STEP -1
260 PRINT USING A$; INT(B/2 A X);
270 IF X=7 AND RES=l THEN SFLAG 1
280 IF X=6 AND RES=l THEN SFLAG 2
290 B=MOD(B,2 A X)
300 IF X>5 THEN PRINT USING "#,X";
310 NEXT X
320 END SUB
330 SUB HEADER
340 PRINT "DEC

SEQUENCE
350 END SUB

HEX BINARY
CHARS SENT

KEY
ROM 1 ROM 2"

A sample of the program's output appears on the opposite page.
The first three columns represent the eight bits generated by the

keyboard in decimal, hexadecimal, and binary. Notice the two
most significant bits in the binary column have been separated;
this was to help me visually see the effect ofthe SHIFT and
CONTROL keys of the Otrona keyboard, which are directly
responsible for those two bits. Capitalizing on this, I had the
program automatically fill in SHIFT if bit 8 was zero (that's the
effect when the SHIFT key is pressed), and CNTRL when bit 7 was
one (what happens when the CONTROL key is pressed).

To fill in the table, first press any key on the keyboard and notice
its output. (One easy way to do this is to put a 41 in SCOPE mode
into the loop and watch the data go around; another way is to
program the 71 to read in a byte and display it.) Match this output
with an entry in the left columns; use whichever of the decimal,
hex, or binary columns are appropriate, and mark in the "Key

194

Keyboards for the 71

Sequence" column the key you pressed to generate this table entry.
Next, ask yourself "What character(s) do I want to generate
whenever I press this key?". If you pressed the letter "a", you
probably want the letter "a" to be sent. Mark this in the
"Characters Sent" column. A quick check of the ASCII table in
Appendix F reveals that the character "a" is represented by hex
value 61, and this value goes in the rightmost box, labeled "ROM
2". The "ROM 1" column is filled in with hex FF since the "a" is
all we want. (If we want to send an ESCAPE sequence, it is filled
with a hex 1B.)

Another example: Let's say we want the DEL key to act as the
ATTN key on the 71. First, press the DEL key on the keyboard and
find out what key code it generates. Find this in one of the first
three columns of the EPROM map, and enter "DEL" as the Key
Sequence. This time, we want an arbitrary ESCAPE sequence to be
sent, so in the Chars Sent column, we enter two characters:

DEC HEX BINARY KEY SEQUENCE CHARS SENT ROM 1 ROM 2

1 : 00001 0 0 000001 :SHIFT

2 : 00002 : 0 0 000010 :SHIFT

3 : 00003 : 0 0 000011 :SHIFT

: 00004 : 0 0 000100 :SHIFT

5 : 00005 : 0 0 000101 :SHIFT

195

Control The World with HP-IL

ESCape, and decimal 203 (hex CB), an arbitrary character. This
translates to the hex byte 1B in the "ROM 1" column, and the hex
byte CB in the "ROM 2" column. Since this is an ESCAPE
sequence, we must also work this into the configuration program
so the 71 will know to translate this specific code into the ATTN
key. So we add this line to the configuration program:

ESCAPE CHR$(203) ,43 Assigns DEL key to ATTN

It is useful to fill in every possible key sequence. Even if you
have no intention of using, say, the CNTL-SHIFT-TAB
combination, program in an escape sequence there so you may
make use of it later in the configuration program.

If you are trying to map out a keyboard other than the Otrona,
the automatically-included SHIFT and CNTRL keys will no doubt
get in your way, since your keyboard's SHIFT and CNTL key
combinations probably produce very different output. To remove
them from the printed list, delete lines 130 and 140 from the FORM
program listed above.

My Own EPROM Map

Well, here it is finally. This is the EPROM map I produced to go
with the Otrona keyboard. This, in conjunction with the "Otrona"
program listed above, turns this innocent looking keyboard into the
world's best for the 71. (What makes it so good? The size and
keyfeel are wonderful! It's CMOS type integrated circuits
consume so little power that 4 AA batteries will power the thing for
7 months!)

196

Keyboards for the 71

HEX
KEYCODE KEY SEQUENCE ROM 1 ROM 2

00 SHIFT as FF 08
01 SHIFT TAB 1B C5
02 SHIFT LF lB C6
05 SHIFT RETURN FF OD
07 SHIFT CAPS LOCK 1B C7
08 SHIFT SPACE FF 20
OB SHIFT ESC FF 1B
OC SHIFT Left Arrow lB C4
OD SHIFT Right Arrow 1B C3
OE SHIFT Up Arrow 1B C2
OF SHIFT Down Arrow 1B C1
10 SHIFT 0 FF 5E
11 SHIFT 1 FF 21
12 SHIFT 2 FF 40
13 SHIFT 3 FF 23
14 SHIFT 4 FF 24
15 SHIFT 5 FF 25
16 SHIFT 6 FF 26
17 SHIFT 7 FF 2A
18 SHIFT 8 FF 28
19 SHIFT 9 FF 29
lA SHIE'I' ' FF 22
lB SHIFT FF 3A
1C SHIFT , FF 3C
lD SHIFT FF 2B
1E SHIFT • FF 3E
1F SHIFT / FF 3F
20 SHIFT ' 1B 7E
21 SHIFT A FF 41
22 SHIFT B FF 42
23 SHIFT C FF 43
24 SHIFT D FF 44
25 SHIFT E FF 45
26 SHIFT F FF 46
27 SHIET G FF 47
28 SHIFT H FF 48
29 SHIFT I FF 49
2A SHIFT J FF 4A
2B SHIFT K FF 4B
2C SHIFT L FF 4C
2D SHIFT M FF 4D
2E SHIFT N FF 4E
2:5' SHIFT 0 FF 4F
30 SHIFT P FF 50
31 SHIFT Q FF 51

197

Control The World with HP-IL

32 SHIFT R FF 52
33 SHIFT S IT 53
34 SHIFT T FF 54
35 SHIFT U FF 55
36 SHIFT V FF 56
37 SHIFT W FF 57
38 SHIFT X FF 58
39 SHIFT Y FF 59
3A SHIFT Z FF SA
38 SHIFT [FF 78
3C SHIFT "- 18 7C
3D SHIFT J FF 70
3E SHIFT - FF SF
3F SHIFT DEL IB C8
40 CNTRL SHIFT as IB 88
41 CNTRL SHIFT TAB IB 89
42 CNTRL SH I FT LF IB 8A
45 CNTRL SHIFT RETURN IB 00
47 CNTRL SH I FT CAPS LOCK 18 CC
48 CNTRL SHIFT SPlI.CE IB 20
48 CNTRL SHIFT ESC IB 9B
4C CNTRL SHIFT Left Arrow IB CD
40 CNTRL SHIFT Right Arrow IB CE
4E CNTRL SHIFT Up Arrow IB CF
4F CNTRL SHIFT Down Arrow 18 DO
50 CNTRL SH I FT 0 IB BO
51 CNTRL SHIFT 1 IB Bl
52 CNTRL SHIFT 2 IB B2
53 CNTRL SH 1FT 3 IB B3
54 CNTRL SH 1FT 4 IB B4
55 CNTRL SHIFT 5 IB B5
56 CNTRL SHIFT 6 IB B6
57 CNTRL SHIFT 7 IB B7
58 CNTRL SHIFT 8 IB B8
59 CNTRL SHIFT 9 IB B9
SA CNTRL SHIFT ' IB A7
5B CNTRL SHIFT IB BB
5C CNTRL SHIFT , IB AC
5D CNTRL SHIFT IB BO
5E CNTRL SHIFT • IB AE
SF CNTRL SHIFT I IB AF
60 CNTRL SHIFT ' IB EO
61 CNTRL SHIFT A FF 01
62 CNTRL SHIFT B FF 02
63 CNTRL SHIFT C FF 03
64 CNTRL SHIFT 0 FF 04
65 CNTRL SH I FT E FF 05

198

Keyboards for the 71

66 CNTRL SHUT F FF 06
67 CNTRL SHIFT G FF 07
68 CNTRL SHIFT H FF 08
69 CNTRL SHIFT I FF 09
6A CNTRL SHIFT J FF OA
6B CNTRL SH I FT K FF OB
6e CNTRL SH 1FT L FF oe
60 OlTRL SHIFT M FF 00
6E CNTRL SH 1FT N FF OE
6F CNTRL SH I FT 0 FF OF
70 CNTRL SHIFT P FF 10
71 CNTRL SHIFT Q FF 11
72 CNTRL SHIFT R FF 12
73 CNTRL SHIFT S FF 13
74 CNTRL SHIFT T FF 14
75 CNTRL SH I FT U FF 15
76 CNTRL SH IFI V FF 16
77 CNTRL SHIFT W FF 17
78 CNTRL SHUT X FF 18
79 CNTRL SHIFI Y FF 19
7A CNTRL SHIFI Z FF 1A
7B CNTRL SHIFT [1B DB
7e CNTRL SHIFT \. 1B DC
70 CNTRL SHIFT 1 1B DO
7E CNTRL SHIFT - 1B AD
7F CNTRL SHIFT DEL 1B e9

Mounting the components onto the Otrona keyboard.

199

Control The World with HP-IL

80 BS 1B 21
81 TAB 1B 09
82 LF 1B OA
85 RETURN FF 00
87 CAPS L<X:K 1B CA
88 SPACE FF 20
8B ESC FF 1B
SC Left Arrow 1B 2B
80 Right Arrow 1B 2A
SE Up Arrow 1B 29
8F Down Arrow 1B 28
90 0 FF 30
91 1 FF 31
92 2 FF 32
93 3 FF 33
94 4 FF 34
95 5 FF 35
96 6 FF 36
97 7 FF 37
98 8 FF 38
99 9 FF 39
9A FF 27
9B FF 3B
9C FF 2C
90 FF 3D
9E FF 2E
9F / FF 2F
AO 1B 60
A1 A FF 61
A2 B FF 62
A3 C FF 63
A4 0 FF 64
AS E FF 65
A6 F FF 66
A7 G FF 67
AS H FF 6S
A9 I FF 69
M J FF 6A
AB K FF 6B
AC L FF 6C
AD :'1 FF 6D
AE N FF 6E
AF 0 FF 6F
BO P FF 70
B1 Q FF 71
B2 R FF 72
]:l"J
~..J S FF 73

200

Keyboards for the 71

B4 T FF 74
B5 U FF 75
86 V FF 76
B7 W FF 77
B8 X FF 78
B9 Y FF 79
BA Z FF 7A
BB [FF 58
Be "- 1B 5C
ED 1 FF 5D
BE FF 20
BF DEL 1B CB
CO CNTRL BS 18 08
C1 CNTRL TAB 1B D1
C2 CNTRLLF 1B D2
C5 CNTRL RETURN 1B 8D
C7 CNTRL CAPS LOCK 1B D3
C8 CNTRL SPACE FF OD
CB CNTRL ESC 1B D4
CC CNTRL Left Arrow 1B AB
CD CNTRL Right Arrow 1B AA
CE CNTRL Up Arrow 1B A9
CF CNTRL Down Arrow 1B A8
DO CNTRL 0 1B 30
D1 CNTRL 1 1B 31
D2 CNTRL 2 1B 32
D3 CNTRL 3 1B 33
D4 CNTRL 4 1B 34
D5 CNTRL 5 1B 35
D6 CNTRL 6 1B 36
07 CNTRL 7 1B 37
08 CNTRL 8 1B 38
09 CNTRL 9 1B 39
OA CNTRL I 1B 27
DB CNTRL 1B 3B
DC CNTRL , 1B 2C
DD CNTRL 1B 3D
DE CNTRL • 1B 2E
OF CNTRL / 1B 2F
EO CNTRL ' 1B FE
E1 CNTRL A 1B 41
E2 CNTRL B 1B 42
E3 CNTRL C 1B 43
E4 CNTRL D 1B 44
E5 CNTRL E 1B 45
E6 CNTRL F 1B 46
E7 CNTRL G 1B 47

201

Control The World with HP-IL

E8 CNTRL H 1B 48
E9 CNTRL I lB 49
EA QITRL J 1B 4A
EB CNTRL K 1B 4B
EC CNTRL L 1B 4C

ED CNTRL M 1B 40
EE CNTRL N lB 4E
EF CNTRL 0 1B 4F
FO CNTRL P 1B 50
F1 CNTRL Q 1B 51
F2 CNTRL R 1B 52
F3 CNTRL S lB 53
F4 CNTRL T 1B 54
F5 CNTRL U 1B 55
F6 CNTRL V 1B 56
F7 CNTRL W lB 57
F8 CNTRL X 1B 58
F9 CNTRL Y lB 59
FA CNTRL Z lB SA
FE CNTRL [lB 5B
FC CNTRL \ 1B FC

FD CNTRL 1 1B 50
FE CNTRL - 1B 2D
FF CNTRL DEL 1B D5

Closing Statement

Hooking up a simple keyboard isn't nearly as overwhelming a
task as this chapter may have seemed. It is certainly a worthwhile
endeavor, as it allows easy programming of the 71 while in the lab
without giving up its size advantage in the field.

202

Keyboards for the 71

203

Control The World with HP-IL

204

Chapter Nine

AN ELECTRONIC TAPE MEASURE

If you can't measure it,
you can't control it.

--MacNarama's Management Philosophy

The next two chapters will address a topic that is usually
reserved for larger, faster, and more power-hungry computers:
Real-time I/O (Input/Output). This term means that the computer
can detect and react to signals that are only milliseconds apart,
something the HP-IL interface wasn't really designed to do.

As an example of some of the possibilities, this chapter explains
how to harness Polaroid's ultrasonic transducer (that little gold
disk seen atop the SX-70 autofocus cameras) and allow the 71 to
measure distances of objects by bouncing sound off of them. Using
the same I/O technique, Chapter 10 describes a slide projector
dissolve unit, which is a system that will continuously control the
brightness of 2 high-wattage lamps independently using
pulse-width modulation techniques.

Because these applications far exceed the standard I/O
capabilities of even the 71, two things must be employed to attain
this boost in system performance: 1) heavy use of assembly
language for its inherent speed, and 2) connection of the CPU
directly to the outside world. We'll cover that second topic a little
later on.

The Polaroid Transducer

Back in 1972, Polaroid Co. developed a method of autofocusing

205

Control The World with HP-IL

for their new SX-70 cameras which determined the distance
between the camera and the subject by using sound waves. Using
a specially developed transducer which could act both as a
transmitter and receiver, 16 ultrasonic "chirps" would be sent out
and the time ittook for the sound waves to return would be
measured. The system worked exactly the same way a
mountaineer might measure the distance of an adjacent
mountain: yell something and measure the time it takes for the
echo to come back.

If an object is only five feet away, the echo returns in 9
milliseconds. A 71 using HP-IL, or even a 41 using the Time
Module pads described in Chapter 3, isn't nearly fast enough to
detect this echo. Assembly language routines using the CPU
lines, however, have absolutely no problem.

Polaroid has made their technological development available to
other product designers, and even put together a "prototyping kit",
so people like me could buy just one and play around with it. That
was about 10 years ago; since then TI has produced custom ICs
that make interfacing to the special transducer a much easier

206

An Electronic Tape Measure

task, and today everything needed for playing around costs roughly
1/3 of what it used to. (Refer to Appendix B for cost and
availability.)

r 8

-

5 1 3

I

Ll '*' C1
IOmH

o Ol .. F
U1

4 LC
TL852

Vec fL ~ Fil

7 G21N NC~ L.!2. OSC

~ll~F~
6 GIOUT NC~ L-~ INIT

8 BIAS GCA 14 5 GCA

3 GAOJ Gee 13 6 Gee

~
GliN GCC

12 ,
GCC

.----1 X'N GeD 15 4
GCo

R' ,.!.! REC 9 8 REC
68Kn GNo

R,
5Kll

~600PF ;::
e3 r: ; l~F

, 6 7

U'
TL851

J!-ECHO

81NH lL-

BLNK ~

VCC
1

XMIT 2

XTAL! h
~'fl

XTAL2
11

GNo fL

IJ1

T 1

.'IIL
1 4

~ ..

C5
o 002Z F

CR

J'
XOCR

, 1
V 160

"VCR
" 16

,
ov

J3
XGNO

A schematic of the circuit is shown in Fig. 9-1 above. What
makes this module so wonderful is that it will automatically
increase its sensitivity to the returning echo the longer it waits;
extending its measurement range. Even better is it only takes four
wires to interface the unit to a computer. (And two of them are
power!)

Operation is simple: The controlling computer raises the INIT
line to "1" (=5V). This sets the module about its business of
sending the pulses and detecting their return. As soon as an echo
is detected, the module pulses the ECHO line momentarily, which
the controlling computer will detect. The time lapse between the
INIT and ECHO pulses determine the time for the sound to travel,
and therefore the distance. Piece of cake!

207

Control The World with HP-IL

Assembly Language

The results from a simple speed test should explain why
assembly language is essential for this application. Using HP-IL
and one of the 8-bit ports, I tried to program the 71 to generate a
high-frequency symmetrical square wave by turning one bit on and
off as rapidly as possible. The results, measured on an
oscilloscope, were disappointing: A BASIC program could only
produce a frequency of 22 Hz; the equivalent FORTH program
could only reach 14 Hz. (Although FORTH does indeed run 10
times faster than BASIC, FORTH's ENTER and OUTPUT routines
call similar routines in the BASIC environment, thus making
FORTH slower for I/O and nullifying one of its traditional
advantages.) The same task in assembly language bypasses HP-IL
altogether and gives an output of 18 KHZ, roughly 800 times faster
than BASIC!!! Where did this square wave appear? It just so
happens that the 71 possesses some internal CPU pins that are
unused and readily accessible! (But more on this later.)

The 71 was selected for these demanding applications for
several reasons: it has unused CPU lines available for input and
output, its clock speed is faster than that of the 41, and the
machine supports assembly language without a lot of excess bulk
(such as a Machine Language Development Lab). This last
attribute can be a mixed blessing; as at this time there is very little
literature (with the exception of Richard Harvey's excellent book,
"The Basic HP-71 ") to introduce beginners to assembly language
on the 71 's custom CPU. Learning from HP's documentation
requires some previous knowledge, a small investment to
purchase their operating system source code listings, and
considerable study time.

(NOTE: Don't let this scare you away from exploring the
immense possibilities of assembly language and direct 110 lines!
After all, most of the work has already been done for you; and it is
easier to modify someone's example than to re-invent the wheel.)

Figure 9-2 shows the layout of the 71 's CPU registers. As can be
seen, it is a 64-bit machine with nine general-purpose registers
and an 8-level subroutine return stack. Only two of these, the A
and C registers, are powerful enough to be called accumulators

208

An Electronic Tape Measure

Working Reg's Scratch

r- 64 Bits ---1 +- 64 Bits --1
A RO

B R1

C R2

D R3

~ ointer R4
4 bits

I DATOI I DAT11
20 8 Return
~ PC Stack

I I
Indirect Registers

I:tatu~
20
~~ 16 12

Figure 9-2
71's CPU
Registers

209

Control The World with HP-IL

due to the factthatthe instruction set performs almost all
operations on these two registers. The others are used for
temporary storage, loop control, data manipulation, etc. The
FORTH/Assembler ROM's documentation covers the entire
instruction set and explains their usage much better than I could
do here, so I refer you to that as a companion to reading this
chapter. They do not adequately explain the IN and OUT registers'
function, for which I shall now compensate by using them in an
example.

ORll }
OR12

OR3

OR2

ORl
IRa

ORO

IR15
IRl

:::> IR2 a.. IR3
0 IR4

IR5
IRG
IR?
IRa
IR9

IR10
IRll
IR12
IR13

OR5
ORG
OR?
ORa
OR9

210

To
Beeper

} Unused
(But
Accessible!)

Figure 9-3
Keyboard Map
and Word Search

An Electronic Tape Measure

An Example: A Morse Code Keyer Program.

If this will be your first assembly language program, it'll be fun
and it'll give you a feel for it. If it isn't, do it anyway because it will
show how you can directly access some CPU pins otherwise
unreachable using BASIC or FORTH.

The following program turns the 71's keyboard into a Morse
Code keyer, meaning it beeps as long as you hold any key down and
stops when you release it. This deceivingly simple task, which
cannot be accomplished using the 71's high-level languages,
requires some knowledge as to how the keyboard scanning is
performed.

There are twelve dedicated output lines and 16 dedicated input
lines emanating from the CPU for the purpose of keyboard
scanning (among other things). These input and output "words"
are hooked up to the keyboard as shown in Fig. 9-3. When the 71
scans the keyboard to determine if a key has been pressed, the
following sequence of events occur:

1) Line a ofthe output register (called ORO) is set to "I" (which
=5 Volts) via the CPU's OUT=C command. All other output lines
="0".

2) If a key has been pressed (the space key for example), that key
connects its row to its column, therefore the "I" coming from
ORO will appear at IR7 (input register 7).

3) The CPU looks at input lines 0-13 using the CPU's C=IN
command. If all lines are set to "0", then no key has been pressed
in that row. If that word is not ="0", (as in our example), then
the scanning algorithm concludes that the 7th key (IR7="1") in the
zeroth row (ORO="l") has been pressed. It then jumps to a lookup
table to figure out what that key is supposed to do.

4) If no keystrokes were detected, ORO goes to "a" and then OR1
is set to "1", and step #3 is repeated again to check for keys
depressed in the second row.

5) The whole process repeats until all 4 rows have been scanned.

The output register (see Fig. 9-4) also contains two additional
bits, ORll and OR12, which connect directly to the piezo-electric

211

Control The World with HP-IL

buzzer. If the CPU alternately outputs a "1" and then a "0" to
either of these lines, a loud or a soft beep will be heard. (OR12 has a
lesser resistor connected to it, resulting in a louder tone).

I
Keybd Row 1

I

Keybd Row 2

Beeper
Keybd Row 3

Beeper = Loud S'r Row4

I

I I
11 10 9 8 7 6 5 4 3 2 0

Figure 9-4
The OUT Register

As you can see, writing a Morse code keying program means
you must have access to the dedicated input and output registers of
the CPU; something not offered by the powerful BASIC and
FORTH environments. This necessitates programming in
assembly language, which is OK since we also could use the
inherent increase in speed.

The algorithm used for the Morse code keyer is a little different
from the way the keyboard is scanned. It goes something like this:
the program constantly searches for a key being pressed (input
register is not =0) and if it is it sets one of the beeper lines high,
waits a finite period, sets the beeper line low, waits the same finite
period, and goes back to see if the key is still being pressed. The
duration of the finite period determines the frequency of the square
wave generated.

The difficult part of this program was getting it to exit when the
ATTN key was pressed. The method is very simple, but finding it
took awhile. The ATTN key, when pressed, generates a hardware
interrupt which will IMMEDIATELY jump to an interrupt
routine at absolute address Hex OOOOF. This routine does different
things depending on certain conditions, but in this case it just sets
the 12th bit in the status register and returns to the program that

212

An Electronic Tape Measure

was originally running. My program simply checks to see if this
bit is set every so often, and if it is jumps to the ENDBIN exit
routine.

The program listing for the Morse code BINary file appears
below:

1: BIN 'MORSE'

2: CHAIN-1

Line 1 identifies this as a BINary program
and states the name by which it shall be
called: MORSE.

Line 2, CHAIN -1, lists the number of
subroutines called by this program
(which is zero, but the assembler wants to
see -1).

3:ENDBIN EQU #0764B

4: ST=O #C

5: LCHEX OOOOF
6: OUT=C

7: INTOFF

Line 3 is a label which equates the word
ENDBIN with the absolute operating
system address of Hex 0764B. This is the
address of a routine through which all
BIN programs should exit.

Line 4 sets the 12th bit in the status register
to zero. When the ATTN key is eventually
hit, the operating system will set it to 1.

Lines 5&6 perform two functions. LCHEX
OOOOF loads the nibble F into the C register
and clears all remaining nibbles in
the C register's A (address) field. OUT=C
takes the F and puts it into the output
register, driving all the keyboard scanning
outputs high. The program will then
respond to ANY key being hit.

Line 7, INTOFF, disables the interrupt
routine usually jumped to when any key
(except ATTN) is pressed.

213

Control The World with HP-IL

8:LOOP3 C=IN
9: ?C#O A
10: GOYES START

11: ?ST=1 #C
12: GOYESEXIT

13: GOTO LOOP3

Lines 8, 9, & 10 read the input register and
ifit's not zero, then a key has been pressed
and will jump to the label START.

Lines 11-12: If not, it then checks the 12th
bit ofthe status register and if it's =1, then
ATTN has been pressed and it should jump
to EXIT.

Line 13: If not, go back to LOOP3 and check
for everything again.

14:START LCHEX FOO
15: OVT=C

16: LCHEX015
17:LOOPI C=C-l X
18: ?C#O X
19: GO YES LOOPI

20: LCHEX01F
21: OVT=C

22: LCHEX 015
23:LOOP2 C=C-l X
24: ?C#O X
25: GOYES LOOP2

214

Lines 14 & 15: LCHEX FOO and OUT=C set
bits 11 and 12 of the OUTpu t register
(beeper = LOUD) to 1. It also turns bits 8
and 9 on so we can watch this On-Off
action on an Oscilloscope.

Lines 16-19 form a delay loop =Hex 15.
Modifying this constant and the one in Line
22 determines the beep frequency.

Lines 20 & 21 turn the piezoelectric beeper
off and turn the keyboard scanning lines on
again.

Lines 22-25 form another delay loop to
produce a perfect square wave.

An Electronic Tape Measure

26: GOTO LOOP3
Go back to LOOP3 and start scanning the
keys again.

27:EXIT INTON
28: GOVLNG ENDBIN

29: END

Lines 27 & 28 form the EXIT routine. It
re-enables keyboard interrupts and jumps
to the program that returns the user to the
BASIC operating system.

End.

How to Enter Assembly Language Files

Like most assemblers, the FORTH/Assembler ROM expects to
see the above program (without the comments on the right) in a
text file, which can be created using the EDTEXT program
contained in the same ROM. Just type in

EDTEXT (filename) <ENDLINE>

and when the 71 comes back with the 'Eof, Cmd:' prompt, just type

T <ENDLINE>

and start entering the code, one line at a time. WATCH FOR THE
LEADING THREE SPACES ON EACH LINE!!! The assembler
treats anything within the first three spaces as a label rather than
an instruction. Also, you don't need to type in the line numbers;
the text editor will put them in for you. When you are finished, hit
the ATTN key, and at the Cmd: prompt, type 'E' (for Exit) and this
returns control to the 71 you know and love.

When you go into the FORTH environment and type

215

Control The World with HP-IL

" (textfile name)" ASSEMBLE <ENDLINE>

the assembler converts your text file to machine code. If the
assembler detects an error in your code, it will quietly display an
error message with no beeps. Watch it carefully!

After going into FORTH and assembling the program, all you
have to do is type BYE (which returns you to BASIC), type "RUN
MORSE" <ENDLINE> and you're in business.

Other notes while we're on the subject of producing assembly
language files:

Be sure the name of your text file is not the same as the
assembly language file it will be producing! (Le., make sure the
name following 'BIN' is unique!) This is necessary because,
unlike many other computers, the 71 doesn't support different file
types with identical names. If the file you want to access is first in
the filechain, great! All others after that with identical filenames
cannot be accessed.

It is highly recommended that a backup of your latest program
version be kept in independent RAM, so the inevitable MEMORY
LOSTs won't set you back too much timewise. I've defined a few
words in the FORTH environment to make this task automatic:

REPLACE" PURGE MORSET:PORT(2) @ COPY MORSET TO
:PORT(2)" BASICX ;

ASS REPLACE " MORSET" ASSEMBLE " BEEP" BASICX BYE

All I have to do now is go into FORTH mode and type ASS (that's
short for ASSemble, gang!) and it automatically generates a
backup copy of MORSET (the "T" suffix distinguishes it as a Text
file) in PORT(2) of independent RAM, assembles it, BEEPs when
completed and returns me to BASIC.

I know what you're thinking: "Gee, this program sure was fun
to produce and play with, but what does this have to do with
interfacing to the outside world?". Well, it just so happens that the
IN and OUT registers, with which we have just now become

216

An Electronic Tape Measure

intimately familiar, have extra bits that directly control CPU pins
that aren't used for anything, and can be turned on and off using
the OUT=C command!

Referring back to Fig. 9-3 (the OUT register map), we see bits 5
through 9 unused. Furthermore, just as all the other bits (which
control the keyboard rows and the beeper) are accessible at the
CPU pins, so too are these unused bits, just waiting to be
harnessed! There are, unfortunately, no extra pins leading to the
INPUT register for similar applications, but we do have one that
can do double duty: IR14, the input usually used for peripherals
(ROMs, RAMs, card reader, etc.) to generate an interrupt and
grab the CPU's attention. Before we can use any of these, though,
we must first find some way of bringing these signals to the 71 's
surface.

Hardware Modification

I decided to make this modification as versatile as possible by
opening up the 71 and bringing a total of six signals to a
6-conductor modular telephone connector. The six signals are:

OR7, ORB, OR9
IR14
5V,GND

The fun part, of course, is opening up the 71 and soldering wires to
strategic points on its circuit board. Currently, there exist two
versions ofthe 71; the later of the two being much easier to
disassemble than the earlier. Visual inspection of the 71 's exterior
will reveal which version you have: the earlier one has three tiny
brass screw heads showing on the bottom plate; the later one
doesn't. The earlier one has all the springs in the battery
compartment lined up on one side; the later one doesn't. The
earlier one contains a ribbon cable inside that joins the top and
bottom halves and therefore requires a little more caution than the
newer version. Procedures for both are provided next.

217

Control The World with HP-IL

The Easy Part

The first part of the
modification is relatively
risk-free. First, get a small,
6-conductor modular phone
jack. (Not all are small enough
to fit neatly, so scavenge
carefully.) To this, attach six
strands of insulated wire (the
kind used for wire wrapping
works nicely), about 8-10 inches
in length. N ext, we go to work
personalizing the 71.

Every 71 comes with a
"dummy" block to fill in the space that the card reader normally
occupies. If you remove this block and carefully pry off the
decorative metal strip, you can then take a miniature grinding tool
(or a drill with a tiny drill bit) and carefully cut out a square hole.
It is best to do this slowly, and periodically check the hole's size
against the jack to be installed. It is also necessary to remove the
structural rib from inside the block, so the jack can be pushed in
from the bottom and glued there.

How to Disassemble the 71

It is clear by the machine's construction that HP didn't want
anyone to open the 71. (We'll show them!) Getting into it isn't such
a difficult thing once you know how, but there are some basic
precautions: 1) make sure the warranty has expired (some of you
more daring folk may choose to ignore this; I know I did). 2) This
is one case where I definitely recommend soldering and
mechanical experience before attempting this feat! (If you lack
such experience, you may wish to consult Appendix B for firms
that will perform this modification for you.)

The next step is to take the 71 apart and solder the 6 wires from
the modular jack to strategic places on the circuit board. Essential

218

An Electronic Tape Measure

tools needed are 1) a small jeweler's flathead screwdriver, and 2) a
#6 TORX wrench. WARNING: Do not attempt this disassembly if
the proper tools (specifically the TORX wrench, which is probably
difficult to obtain (even from HP, which sells it as part number
8710-1424» are not available. These special screws damage easily
if not handled by the correct instrument. (Appendix B also
contains sources of difficult-to-find items.)

Old 71

If you own the "old" style 71, disassemble it via the following
procedure:

1) Flip the 71 over so its bottom is up and the four ports are
facing you. Remove the rear card reader cover, the battery cover,
and the batteries.

2) With the flathead screwdriver, carefully peel off the three
remaining rubber feet. Fig. 9-6 shows the five visible TORX
screws, one in each corner and one along the top center.

123456

Figure 9-5
Modular Jack
Pinout.

Pin # Color Si nal

White OR8

2 Black OR9

3 Red +5v
4 Green GI\O

5 Yellow IR14

6 Blue OR7

WARNING!!!

Depending on the modular cable's
construction, the receiving jack's pinout
mayor may not be the reverse (i.e,
mirror image) of that shown above.
Examine the cable carefully!

219

220

Control The World with HP-IL

-

u /,J.
(

Figure 9-6. The 71 's back just before opening. Knowing which
brass screws to remove is the key.

The 71's bottom

Loosen only
:;7' these two!

Figure 9-7
Disassembling
the old 71.

An Electronic Tape Measure

3) Carefully unscrew all five TORX screws. DO NOT ATTEMPT
TO DO THIS IF YOU DON'T HAVE THE PROPER TOOL!

4) Notice the three remaining tiny brass screws on the surface
facing you. Using the flathead jeweler's screwdriver, loosen
ONLY the two which are clumped together. See Fig. 9-7.

5) Now comes the crucial part of separating the top and bottom
half. AS YOU DO THIS STEP, BE VERY CAREFUL NOT TO
BEND, TWIST, OR OTHERWISE CRACK THE RIBBON CABLE
CONNECTING THE TWO HALVES TOGETHER. As you attempt
to lift the bottom half away from the remainder of the computer,
you will notice that the "northern" part, which normally
accommodates the batteries, IL Module, and card reader, lifts off
easily; while the edge containing the four plug-in modules seems
hesitant to move. This is normal. Just hold the 71 vertically so the
"ON" key is closest to the ceiling, and gently pull the two halves
apart from the top. The only resistance you are likely to encounter
will be a plastic "catch" placed in the center of the 71's four ports;
"twisting" the almost-separated halves somewhat while pulling
will usually free them. Be careful when separating the two halves
and laying them down flat, for the ribbon cable connecting the two
halves is very fragile. When done, the new unit should be laid
down like a book, with the keyboard half on the right and the
bottom half on the left.

Openthe 71 this waY,with the
ON key pointing up. The old
version has a fragile ribbon
cabl e at the bottom, whi ch
should be treated as a hinge.

221

Control The World with HP·IL

6) On the right half is a large sheet of copper, used to shield the
unit from electromagnetic interference. It can easily be peeled off
from the ICs it is attached to. Doing so reveals three adjacent
ROMS and a somewhat distanced CPU.

7) Sit and stare at the incredible job HP did squeezing such a
powerful computer into a tiny space.

8) We are now going to solder the six wires from the modular
jack to the 71's guts. Pins #3 and 4, which supply +5v and Gnd
respectively, connect to the 470 microfarad capacitor right next to
the 71's AC adapter input. (Fig. 9·8) Pin 3 gets connected to the
side of the capacitor labeled as "+".

9) Now attach pins 1,2,5, and 6 of the modular jack to the right
side (top halO. Figure 9-9 shows a subset of all the plated·through
holes surrounding the one isolated 1LF2 integrated circuit that we
must access. The pinout is as follows:

OR7 CPU Pin 8
ORB CPU Pin 9
ORB CPU Pin 10
1R14 CPU Pin 51

Figure 9·8. +5v and Ground are easily tapped on the 71's power
supply capacitor leads.

222

I

An Electronic Tape Measure

C::::::::::::J C:::::::::::) C::::::::::::J

Figure 9-9
CPU Board
Solder Paints.
(Old Version)

IA14-

OR7 ORB 0R9

I

223

Control The World with HP-IL

Be careful when soldering wires to these plated-through holes;
excessive heat may damage the IC, and excessive solder may
bridge connections elsewhere on the circuit board.

10) Push the block (now with wires attached) through the hole in
the left (lower) half of the 71, and close the machine. Pull the wires
out as far as you can while closing, but be careful that the wires
don't get caught in places that prevent the case from closing fully
or between the card reader's contact pins.

11) Before replacing the screws, replace the batteries and confirm
that the 71 will turn on. (You should expect a MEMORY LOST,
since there's no memory retention when changing batteries.) Also
do a soft and a loud BEEP to insure the piezo- electric buzzer isn't
being disturbed.

12) Replace the five TORX screws, the two small brass screws,
and the three rubber feet.

13) Marvel at your impressive-looking modification, and prepare
to respond to billions of stupid comments like "Wow! You have a
modem? What speed is it?".

New 71

If you have the "new" 71 (without the brass screws on the
bottom), disassemble it using the following instructions:

1) Flip the 71 over so its bottom is up and the four ports are facing
you. Remove the rear card reader cover, the battery cover, and the
batteries.

2) With the flathead screwdriver, carefully peel off the three
remaining rubber feet. There are seven visible TORX screws, one
in each corner, one along the top center, and two in one of the
battery slots.

3) Carefully unscrew all seven TORX screws. DO NOT
ATTEMPT TO DO THIS IF YOU DON'T HAVE THE PROPER
TOOL!

4) Now comes the crucial part of separating the top and bottom
half. Just hold the 71 vertically so the "ON" key is closest to the

224

An Electronic Tape Measure

ceiling, and gently pull the two halves apart from the top. The two
halves separate quite easily and there are no internal wires
connecting them.

5) Sit and stare at the incredible job HP did squeezing such a
powerful computer into a tiny space.

6) We are now going to solder the six wires from the modular
jack to the 71's guts. Pins #3 and 4, which supply +5v and Ground
respectively, connect to the 470 microfarad capacitor right next to
the 71 's AC adapter input. (Refer to Fig. 9-8 from page 222). Pin 3
gets connected to the side of the capacitor labeled as "+".

7) Now to hook up pins 1,2,5, and 6 of the modular jack to the
right side (top half) . Figure 9-10 shows a subset of all the
plated-through holes surrounding the one isolated 1LF2 integrated
circuit. The pinout is as follows:

OR7 Pin 8
ORB Pin 9
OR9 Pin 10
IR14 Pin 51

CJ CJ c:::::::::::)

Figure 9-10
CPU Boord
Solder Points.
(New Version)

O~--_--.,._

IR14~

225

Control The World with HP-IL

Be careful when soldering wires to these plated-through holes;
excessive heat may damage the IC, and excessive solder may
bridge connections elsewhere on the circuit board.

8) Push the block (now with wires attached) through the hole in
the left (lower) half of the 71, and close the machine. Pull the wires
out as far as you can while closing, but be careful that the wires
don't get caught in places that prevent the case from closing fully
or between the card reader's contact pins.

9) Before complete re-assembly, we should check the 71 's health.
Put the two halves together and replace only the two adjacent
TORX screws in the 4th battery chamber. Upon replacing the
batteries, confirm that the 71 will turn on. (You should expect a
MEMORY LOST, since there's no memory retention when
changing batteries.) Also do a soft and a loud BEEP to insure the
piezo- electric buzzer isn't being disturbed.

10) Replace the remaining five TORX screws and the three
rubber feet.

11) Marvel at your impressive-looking modification, and prepare
to respond to billions of stupid comments like "Wow! You have a
modem? What speed is it?".

Connecting the Transducer

Fig. 9-11 shows how we can use the new 71 I/O lines to connect
to the transducer. Here only four of the six lines are used, and the
71 's batteries also power the external circuitry. (I'm always
impressed by what those tiny AAA's can do!) If your module
doesn't work on the first try, you may need to attach an additional
3.9K Ohm pull-up resistor onto the output, which can conveniently
be soldered between module pins 1 and 2.

Next, we need some software to drive it. The following is an
assembly language program called a FORTH primitive, and it
functions very similarly to the Morse Code program presented a
few pages back. Unlike LEX or BIN files, which add new words to
the BASIC environment, this primitive adds a new word, called
"MEASURE", to the FORTH environment:

226

An Electronic Tape Measure

Transducer

Figure 9-11
How the Ultrasonic
Ranging Module is
Attached.

1 : FORTH

2 : WORD 'MEASURE'
3: INTOFF

4 : A=O A

5 : LCHEX 20F

6 : OUT=C
7 : C=O A
8 :WAIT A=IN

9 : C=C+1 A

10: GOC EXIT

11: ?A=O A
12 : GOYES WAIT

To
Modular
Connector

Ranging Module

Module 71
Pin # Connections

Note: A 3.9KQ resistor
may be needed between
pins 1 and 2 for proper
operation.

Pin 1
Pin 2
Pin 5
Pin 8

+5v
EO-lO
INIT
C?rd

Identifies this as a FORTH
word.
Name of the function.
Disable interrupts normally
generated when IR14 is brought
high.
Set the Address field of the A
reg. =0.
Turn OR9 on. (Keyboard is
activated, too. See text.)

Read the inputs. Only IR14
will be recognized.
C keeps track of how long we've
waited.
Provide a timeout in case we
measure the sky.
Has IR14 not come back?
Yes, go back to line 8 and do
it again.

227

Control The World with HP-IL

13:EXIT Dl=Dl- 5
14: DATl=C A

15: C=o A
16: OUT=C
17: RTNCC

Otherwise, we received an echo.
Take the value in C and push it
onto the FORTH stack.
Bring the INIT line low again.

Return with Carry Clear, the
proper way to return to FORTH.

This program, being a FORTH word, must be run in the FORTH
environment. After assembling, just type

MEASURE . <ENDLINE>

which tells it to run the program MEASURE and to display the
first number on the the stack (the "." command). The display will
show something like

163 OK { 0 }

The number on the left shows the number of times the C register
got incremented while waiting for an echo to return, and the
number between the brackets on the right shows how many
numbers are on the stack. We must now calibrate these readings
if the result on the left is to be meaningful.

Calibration is a simple process. Place the transducer at several
fixed, known distances from a flat wall and record the number
returned by MEASURE. Plotting these on graph paper should
yield the straightest of lines, and the slope of the line determines
the number you multiply the result by to get the distance in inches.
My own measurements yielded this equation:

inches = (result from MEASURE)x 0.370

I also discovered during this time that you should NOT plug an AC

228

An Electronic Tape Measure

adapter into the 71 during transducer operation. The noise from
this badly filtered source is so great that the driving module gets
confused and won't recognize echoes that travel further than 10
feet. The following program, written in BASIC, does the proper
conversion:

5 Program TAPEM (Tape Measure) works with the
Polaroid Transducer.

6 It takes the results from the FORTH environment
7 and displays them in feet and inches.
10 FORTHX " MEASURE"
20 N=FORTHI
30 N=N*.37
40 F=INT(N/12)
50 I=MOO(N,12)
60 IF F=O THEN OISP USING 70;1 ELSE OISP USING 80;F,I
70 IMAGE 20.0," Inches"
80 IMAGE 40," Ft. ",20.0," Inches"

"26 x 10)(..
WAIT ... 26 AND,
WAIT ... AI1,

G££Z ...

229

Control The World with HP-IL

This program automatically goes into the FORTH environment
and executes MEASURE (line 10), multiplies the result by the
experimentally obtained slope, and formats the output to read in
feet and inches. Standing in a corner, you could use the above
program to measure the volume of a room by taking only 3
readings!

An extra measure of protection (no pun intended) is provided in
line 5 of the FORTH primitive. In the event that you try to measure
the distance of anything greater than 30 feet away (such as the
ionosphere), no echo will be received and the program will just sit
there forever counting and waiting. Because the keyboard's
ORO-OR3 bits were also turned on in line 5, a returning echo OR
ANY KEYSTROKE will terminate the loop and provide a reading.
This makes for easy recovery from bad aiming; if the program
hangs because it didn't receive an echo, just press any button on
the keyboard and the program terminates instantly.

Personal Space Invasion Alarm for Valley Girls

Another great application combines both high-fashion and
security, and would probably sell a million if it were on the market.
The Personal Space Invasion Alarm audibly warns passers-by that
the user's space is being invaded, and is a must for Valley girls
who travel abroad.

230

An Electronic Tape Measure

In practice, the transducer is worn around the neck as a piece
of fashionable jewelry, while the relatively ugly driver components
are hidden in the purse along with the 71. The 71 has been
programmed to periodically fire the transducer, and will beep
continuously as soon as anything comes within 1 1/2 feet of the
user.

This application requires 2 additional lines to the TAPEM
program above:

25 IF N < 50 THEN BEEP @ GOTO 10
65 GOTO 10

It is unfortunate that any modification must be made at all in
order to harness an otherwise untapped potential of the 71, for its
small size makes it the only practical option for portable
measurement devices. I have found, however, that it is a most
worthwhile change and does nothing but increase the
performance of an already powerful machine.

The fashionable Personal Space
I nvasi on AI ar m consi sts of the
transducer which is worn around the
neck, and the ugly guts which are
hidden in the purse.

231

Control The World with HP-IL

232

Chapter Ten

A SLIDE PROJECTOR DISSOLVE
UNIT

While we're at it, why don't we write a 71 program that decreases
entropy?!

-Richard Nelson

Chapter 9 described a modification to the 71 that allowed direct
access to some CPU pins. This chapter shows a very different use
for this modification. Here the 71 becomes the center of a large
audio/visual system, taking its cues from audio tape and
controlling the intensities of 2 projector lamps.

A slide projector dissolve unit is designed to make slide shows a
more artistic and pleasant experience. Rather than the harsh
bright-black-bright that usually accompanies such shows, this
system uses 2 projectors and slowly fades one image out while the
next image slowly fades on, and the transition looks as if one
image dissolves into the other. Of course, the dissolve intervals
and duration are all user-controlled.

Designing this system required the merging of several
disciplines, including assembly language, FORTH, Touch Tone
signaling, pulse width modulation, and zero-crossing detectors.
All butthe last two items have been discussed in previous
chapters, which means only one or two new techniques must be
introduced in order to accomplish something vastly different.

How Light Dimmers Work

Contrary to popular belief, lights do not have to be dimmed by
putting them in series with a potentiometer or rheostat so as to

233

Control The World with HP-IL

reduce the voltage driving them. Another method best used by
computers actually fools the eye and keeps it on only half the time.
For example:

On

Off

January June January
Figure 10-1
Low Resolution
Light Dimming.

The diagram in Fig. 10-1 will keep a light bulb going 50% of the
time. Its obvious drawback is its 6 month period, which certainly
will not fool the human eye into thinking it's on continuously.

On

Off

Let's do it again, only this time we'll use a faster time scale:

o 1175 2/75 1/25 4175 Figure 10-2
A Trivial
Improvement.

Same duty cycle (50%), but this time it's so fast that the light
appears to be continuously dim when it's actually turning on and
offvery quickly. If you're dimming with this method, any
brightness from 0 to 100% can be attained by varying the duty cycle
(ratio of ontime/offtime).

Controlling an alternating current (AC) lamp is a bit more
complicated. (No pun intended.) For example, let's take the
previous timing diagram and apply it to an incandescent bulb, as
shown in Figure 10-3.

When you try to dim an AC lamp by varying its pulse width,
there's a good chance you'11 develop what's known as an
interference pattern, as shown in Fig. 10-3C. Interference
patterns occur due to the computer not being synchronized with

234

B

c

Slide Projector Dissolve Unit

What's being sent to the bulb
(Pretend it's a Sine wave)

On-Off pattern

What the bulb sees (=A&B)

(=GARBAGE!)

Figure 10-3
Interference
Patterns with
the AC Line.

the AC lines, and make the bulb's output look like there's an
intermittent break in the AC cord, rather than the constant
illumination we're so used to seeing.

The Zero Crossing Detector

The way around this is to synchronize the two waveforms with a
zero-crossing detector (ZCD), whose function is illustrated in Fig.
10-4 (next page).

Every time the AC signal crosses zero volts, the ZCD outputs a
short pulse to the computer generating the control on/off signals.
And if the computer was smart, it would use the pulses as in
Figure 10-5:

235

Input

Output

236

Control The World with HP-IL

~ ~ ~ ~

No

~
Figure 10-4
The Output of a
Zero Crossing
Detector.

Figure 10-5
WhafWe Must
Do Within 1/120
of a Second.

Slide Projector Dissolve Unit

and your output would look like Fig. 10-6:

A

B

c r
Figure 10-6
Clean Output.

The amount of time you wait, of course, determines the intensity
of the lamp. If you don't wait at all the brightness is 100%; if you
wait for more than 1/120 of a second, it behaves more like a lantern
than a lamp. Our purpose, of course, is to wait at a continuously
variable rate between 0 and 100%.

The circuitry shown on the next page not only provides the ZeD
pulses to the computer, but also acts as a power supply for both the
circuitry and the 71. (See Fig. 10-7.)

237

Control The World with HP-IL

3

, ~
(rYY\ ~ '" '---------'3

Figure 10-7
A Walkthrough
of the Zero
Crossing Detector.

1 1~2

TI449B

2

4

TO 71

r=3--+ __ +5V

First, start with HP's standard, hot-running 8v AC
transformer (1). Feed this into the bridge rectifier which turns the
AC into pulsating DC (2). (Notice the load resistor across the bridge
rectifier!) The low power Op Amp which follows is configured for
a gain of 1. Here we make use of the fact that an Op Amp's output
voltage can only be a little less than its power supply, so that with
an inpu t waveform of 8V (2), only the 0-5V portion gets
reproduced correctly and the rest gets "clipped" (3). This now
makes the signal correct for the inverter, which converts (3) into
(4), and we have our end product: a signal to tell the 71 when the
AC power crosses zero volts.

238

Slide Projector Dissolve Unit

The remainder ofthe circuitry near the bottom, which includes
the diodes, the capacitor, and the 5V regulator, form the power
supply which is enough to power all the circuitry as well as the 71.

How to harness it

Here we make use of the two extra wires installed in the last
chapter but never used. We need to access output lines OR7, OR8,
OR9, and Input line IR14. We also use the +5v and Gnd wires to
feed power to the 71, just to insure that your AAA batteries don't
die during a presentation.

Control Signal -------t ~

~fmmOR7 ~bo2 ~3~ ____ ~
Pulses from ___ . ,---- .. IR14
ZCD;.;,..;",;.,;.,.-----~

Figure 10-8
Protecting IR14
From Constant
ZCD Pulses.

Fig. 10-8 shows how one of these wires are hooked up. Since
IR14 is used for all system interrupts (including the ATTN key),
we must be very careful to send it signals ONLY DURING THE
ASSEMBLY LANGUAGE ROUTINES, otherwise the 71 will be
interrupted 120 times a second and will be bogged down with
having to handle them.

OR7 is used with the AND gate to solve this problem and block
out these ZCD inputs when they're not needed. When the assembly
language portion of the program is ready to accept the ZCD as
input, it simply sets OR7 high which "turns the AND gate on" and
allows its other input to appear at its output, letting the pulses
through the gate to reach IR14. Setting OR7 to "0" when it is
through shuts off the pulse train. This way, the 71 can be used

239

Control The World with HP-IL

when it isn't dimming lights.
OR's 8 and 9, which are used to directly control each projector

lamp, are hooked up as shown in Fig 10-9 below. Because we don't
wish to overload the fragile CPU's final driver transistors, an AND
gate whose inputs are tied together is used as a buffer to drive the
3010 Opto Isolator!rriac Driver IC. This in turn controls the high
voltage of a triac, which in turn connects in series with a light bulb
and controls its states.

OR8

OR9

6

rt=)-4~1~~~~·m_n.-2~1n~ 1-64~ ______ 31+_1 ______ ~:PRruECTOR1 5 LAMP CONTROL
_ RECEPTICLE

t 2

woe
3010

• rn 1~~n 1 I. 6 3~1 JPROJECTOR2 t-L--J1 0 2" LAMP CONTROL

1-4~ ______ --+ ________ .. RECEPTICLE

2

Figure 10-9
How Output Register
Bits 8 and 9 Directly
Control Lamps.

Sample Program

Just to show how all this is supposed to work together, let's look
at a "very simple" (I suppose everything's relative) assembly
language program that takes only one light bulb and fades it from
off to on in about 10 seconds.

This program is a FORTH primitive; a new word added to the
FORTH dictionary written in assembly language rather than
other FORTH words. It works like the flowchart of Fig. 10-5, but
alters the "wait awhile" variable so the intensity gradually
changes. The total time to fade from off to on is controlled by the
stack input which can range from 1-15: 1 will fade slowly; 15, the

240

Slide Projector Dissolve Unit

highest you can go with Touch Tone input, will fade so quickly as
to look instantaneous. (Refer to Fig. 10-10 for OUT register map
and Fig. 10-11 for register usage.)

Enable Zero Crossings

Lamp #1

Lamp #2

Beeper--~

11 10 9

Figure 10-10

8 7 6 5 4 3 2

Keybd Row 1

Keybd Row 2

o

The OUT Register.

FORTH ***
WORD 'FADEON'
INTOFF
SETHEX
LCHEX
RO=C
A=DATI
Dl=Dl+
Rl=A
LCHEX

OUT=C
LCHEX
D=C A

SETUP
A=RO
C=Rl
D=D-l
GONC

00120

A
5

00080

00004

A

LOOPI

FADES AN AC LIGHT FROM OFF TO ON ***
(DISSOLVE SPEED --)
Ignore pulses from IR14.

Store wait time in RO.
Pop dissolve speed
off stack.
Store dissolve speed into Rl.
Clear outputs and set OR7 high
to enable ZCD input thru the
AND gate.

Constant in D is used to
uniformly extend the dissolve
time.

Load wait time into A.
Load dissolve speed into C.
Don't go on to change
parameters unless D=O.

241

Control The World with HP-IL

A=A-C A Decrement wait time.
GOC EXIT Exit if at full brightness.
LCHEX 00004
D=C A Reset D counter.
RO=A Store new wait time in RO.

LOOP1
C=IN *
?C=O A * Wait for zero crossing.
GOYES LOOP1 *
C=O A
OUT=C Shut off bulb.
LCHEX 380 Load bit mask to turn either

lamp on and re-enable ZCD
inputs.

LOOP2
A=A-1 A Delay for pre-determined
GONC LOOP2 amount of time.
OUT=C Turn lamp on.
GOTO SETUP That was 1/120 of a second; go
EXIT back and do the whole thing
RTNCC again.
END

I
WAIT TIME A

Temp. storage of
RO WAIT TIME

DISSOLVE SPEED
A=A-C B

(from stack) R1

L SPEED C R2

RATE MULTIPLIER D R3

Rgure 10-11 R4
The 71's CPU
Registers.

242

Slide Projector Dissolve Unit

IL Interface

Despite all the hardware modifications for I/O mentioned above,
an 8-bit port is still needed for two important functions in this
system: Touch Tone signal decoding, and slide projector advance.
(The hardware for both functions have been covered in previous
chapters,) Briefly, sending a "1" or a "2" to the converter and a "0"
immediately afterward will cause the circuitry in Fig. 10-12 to
"press a button" and advance either projector 1 or projector 2. The
Touch Tone (which, by the way, is still a registered trademark of
AT+T) decoder Ie as shown in Fig. 10-13 is used to tell the 71 not
only when to dissolve to the next picture, but also how quickly.

+5v

20

DAO

DA1

4

3

74C373
LATCH

11 10 11

DAVO LE

10

RDYI

l
-:

DACI

C?N)

1

5 100°1 6

2

4
-:

100°1 6

4
-:

YELLOW

RED

PROJECTOR 1
ADVANCE

YELLOW

PROJECTOR 2
ADVANCE

RED

Figure 10-12
Automatic Slide
Projector Advance.

Because I wanted the flexibility to have complete control over the
timing parameters and have the system automated as well, a
scheme was devised where the 71 could either get its input "live"
via an external keypad, or taped so the presentation could forever
be synchronized with music. Once again Touch Tone Technology
(or "T-cubed" for short) is employed to meet all the requirements.

243

t

22 Touch Tone

Jl

//

DAO ~ ®r2 47KO

~~: 21 Decoder ~ 4. 7Kl ~
DA3 20 16 ;:s

1- ~ 0 a Teltone 13 1 2

DAVI --v<......r----1 M-957 ~ 10 ~
14t!85 I <~: ~ _ Touch 0

3.579 MHz - Tone 9 ...,
1 MegOhm Generator s:

~

71 81 §::

~
~

~ ~ ~
DA5 10KO n r/MI : "",,","",0",
DA6 TO/FROM TAPE
DA7 RECORDER

DACI

RDYI

Figure 10-13
_ Touch Tone
• Signaling Circuitry.

Slide Projector Dissolve Unit

Fig. 10-13 shows a familiar pairing: the M-957 Touch Tone
decoder chip on the left, and a Touch Tone generator
(manufactured by Texas Instruments; just trying to be different)
on the right. The decoder chip, which is attached to Data Bus A
the same way it was in Chapters 6 and 7, is the sole source of input
to the 71. This chip's input, however, can come from one of two
sources: the generator chip on the right (with its accompanying
keypad), or from the LEFT CHANNEL-LINE OUT output from a
stereo tape recorder. (The right channel, of course, contains
music or narration or whatever.)

Because of a severe impedance mis-match between the audio
LINE INILINE OUT feed and the Touch Tone Generator chip, we
must also add a simple-looking circuit called an impedance­
matching network. The network is used to generate or receive
signals from either of two sources: 1) Using line in/line out VU
levels from standard low-impedance audio equipment and 2)
the-ultra-high impedance Touch Tone generator chip, allowing
both signal sources to co-exist without the low impedance source
"sucking up" the signal from the high impedance one. In
addition, this network must correctly attenuate the generator
chip's output so a signal traveling to LINE IN will be at standard
VU levels for optimum signal recording.

The solution appears in Fig. 10-13 in the form of the 10K, 47K, &
4.7K resistors and an op amp. The op amp is 1/2 of the 449 dual op
amp, whose other half we used while constructing the
zero-crossing detector.

Connections to the slide projector can be a bit tricky. Although
rumor has it that you can call Kodak and ask them for a 7 -pin
connector with cable, I found that I could get it done faster by
merging a spare remote control cable and one of those universal
car stereo power connectors, available at your local electronics
outlet (See Fig. 10-14).

All in all, the circuitry is shown complete in Fig. 10-15.

The Software

The Driver program, written in FORTH, is shown on the next
page.

245

Control The World with HP-IL

~o Short these two
together momentarily

o to advance the projector.

o 0

o
Short these two
together and the lamp
turns on.

1""11111011111111 I

Figure 10-14
Kodak's slide
projector connector.

VARIABLE 10
: ADVANCE DUP 1+ 10
10 1 OUTPUT;
BASE HEX

10 1 OUTPUT 100 0 DO LOOP 0 10

: SLIDES " CLEARLOOP@STANDBY ON" BASICX "
DEVADDR ('GPIO')" BASICI PRIMARY
o 10 ! 10 1 OUTPUT
o 10 1 ENTER DROP @ FADEON
BEGIN 10 1 ENTER DROP @

DUP C = IF DROP 10 1 ENTER DROP @ FADE OFF "
CLEARLOOP" BASICX -1 ABORT" Enjoy the show?

ELSE DUP B = IF DROP FLASH
ELSE DUP 0 = IF DROP DROP
ELSE DISSOLVE 100 0 DO LOOP ADVANCE THEN THEN

o UNTIL ;

Basically, (or in this case FORTHly), it uses the ENTER command
to wait for a Touch Tone input from either the keypad or an audio
track. If it's =0 it's discarded to avoid an infinite loop; if it's =B (the
* key was hit) it executes the FLASH primitive which just switches
projectors without changing anything else. If it's =C (the # has
been hit), this means that the next signal will be the last slide and
therefore should only fade the current bulb off. If none of these

246

~
-l

OR?

TI 4498
LOWPCINER
OP~AMP

~SKn, ~ 1 1 2 2 3

,. 2 IR14

1

T071

~ 1O~~6 'y : ORB ~ ~ ~ruECTOA 1
5 4 2 lAMP CONTROl

•
~ 2

~~: '£ :
Sv

PAOJECTOR2
tAMP CONTROl

YELL"'"

RED

YEUDW

RED

DAVI

DA'
DAS

DAS

ADYl

LINE INA..INE OUT
TO/FROM TAPE
FECOA!ffi

Figure 10-15
Complete Schematic

~
""-

~
~

c2
~.

~ o ..,
~
1;;'
fS
""­<::
~

~

Control The World with HP-IL

special conditions exist, then it's an ordinary dissolve, and the
primitive DISSOLVE is fed the current projector status CO'=
projector 1 currently lit, '1' = projector 2 currently lit) and the
dissolve speed (1-15, 1 being slowest) from the stack. When
DISSOLVE returns, the new projector status is left floating on the
stack. We wait from 1 to 100 to let it breath, then ADVANCE the
proper projector.

That was the easy part. Now for the primitives.

The Primitives

There are five primitives in all, and they have all been merged
into one big text file. They function very similarly to the single-bulb
example given a few pages ago, except these must now work two
bulbs, each having a different intensity at any given moment.

To load these, EDTEXT DISS4TH and enter the listings below
into a text file. The comments need not be added, but the leading
three spaces on most lines are critical!

Next, EDTEXT DRIVER and enter the driver program listed
above. Finally, go into FORTH and enter the following command:

" DISS4TH" ASSEMBLE " DRIVER" LOADF <ENDLINE>

(watch the spaces!) which loads everything in the proper order into
your FORTHRAM file. Save the FORTHRAM file onto disk; that
way running this application in the future requires you only load
the FORTHRAM file and type SLIDES <END LINE>.

248

WORD 'FLASH'
C=DAT1 A
D1=D1+ 5
?C=o
GOYES
LCHEX
OUT=C
R4=C

A

OTHER 1
100

*** SWITCHES PROJECTORS ***
(Old Status -- New Status)

Pop lamp status off stack.
Is lamp #1 on?
Branch here to handle it.
Set bits to turn lamp #1 on.
Implement it.
Save OUT register status in
R4.

Slide Projector Dissolve Unit

C=O A
D1=D1- 5
DAT1=C A
RTNCC

OTHER1
LCHEX 200

Push new status (=O,indicating
lamp #1 is on) onto stack.

Return carry clear.

OUT=C Enable zero crossing.
R4=C Store OUT status in R4.
LCHEX 001

D1=D1- 5
DAT1=C X
RTNCC

*
WORD 'DISSOLVE'

INTOFF
C=DAT1 A
Dl=D1+ 5

A=DAT1 A
D1=D1+ 5
?A#O A
GOYES OTHER
RO=C
C=-C A
R3=C
LCHEX 00095

R2=C
C=O A

R1=C
ST=O 7

*

LCHEX 280
OUT=C
D=O X
GOTO START

Set status bit to 1,
indicating lamp #2 is on.
Push this value onto stack.

Return carry clear.

(Lamp Status Time -- Lamp
Status)

Pop dissolve time off stack
and into C.
Pop projector status
off the stack and into A.
Is lamp #1 on? (A<>O?).
Yes, branch to OTHER.
Store # on stack into RO.
Take the 2's complement of C
and store it in R3.
095 = wait time of lamp #2.
(0% brightness) .
Store it in R2.
o = wait time of lamp #1.
(100% brightness) .
Store it in R1
Set status bit to show lamp #1
is now on.
(Well, it's about to be,
anyway!)
Turn on lamp #2 and enable
interrupts.
Clear wait loop.
Begin dissolve routine.

249

Control The World with HP-IL

OTHER

250

R3=C
C=-C A
RO=C
LCHEX 00095

Rl=C
C=O A

R2=C
ST=1 7

LCHEX 180

OUT=C
D=O X

*
*

ru
AC Signal

HP-71B

Lamp #1 must have been on.
Store number in R3, and the
2's complement into RO.
095 = wait time of lamp #1 (0%
brightness) .
Store it in Rl.
o = wait time of lamp #2 (100%
brightness) .
Store it into R2.
Set status bit to show lamp #2
is now on.
Turn on lamp #1 and enable
interrupts.

Delay loop index =0

SETUP REGISTERS

the

GUTS!

+5,GND

PROJECTORS

HP-71 Controlled Slide Projector Dissolve Unit

Slide Projector Dissolve Unit

*
START

D=D-I X Decrement slowdown index.
GONC STARTI Repeat same old values if we

haven't looped N times.
LCHEX 004 If we have, reset D register.
CDEX X
C=RI Load C with wait time for lamp

#1.
A=RO Load A with the constant to

add.
C=C+A A Add A and C, and store as new
RI=C wait time.
C=R2 Load C with wait time of lamp

#2.
A=R3 Load A with the constant to

add.
C=C+A A Add, store new lamp #2 wait
R2=C time.

STARTI
C=O A Clears debris not covered by

OUT.
LOOPO

C=IN *
?C=O A * wait for zero crossing pulse.
GOYES LOOPO *
LCHEX 00080 Shut both lamps off, but keep
OUT=C zero-crossing input enabled.
R4=C Store status in R4.
A=RI Load A with lamp #1 wait time.
C=R2 Load C with lamp #2 wait time.

LOOPI
A=A-I A Decrement lamp #1 wait time.
GOC ONI If 0 hit, branch to turn lamp

#1 on.
LOOP2

C=C-I A Decrement lamp #2 wait time.
GOC ON2 If 0 hit, branch to turn lamp

#2 on.
GO TO LOOPI Loop again.

*

251

Control The World with HP-IL

CONTINUE
?ST=O 7 Is lamp #1 being turned to full

power?
GOYES CONT2 If so, branch to CONT2.
LCHEX 00095
CAEX A
C=R2 Load wait time for lamp #2.
A=A-C A Subtract current wait time

from the maximum.
C=R3 Compare with step size.
?C>A A Is difference less than step

size?
GOYES EXIT Yes, exit (lamp #2 is at full

intensity)
GOTO START Otherwise, prepare for another

cycle.
CONT2

LCHEX 00095 Load maximum wait time
CAEX A into A.
C=Rl Load current wait time
A=A-C A and subtract.
C=RO R3= current step size.
?C>A A Is difference < step size?

(lamp #1 = full intensity?)
GOYES EXIT Yes, exit.
GOTO START Otherwise, prepare for another

cycle.

*
ONI

CR4EX Recall R4 and store C away
temp. in R4.

CAEX A Move C into A.
LCHEX 100
C=C!A A Flip lamp #1 bit to 'ON' and
OUT=C implement new status.
CAEX A Move new OUT contents into A

register.
LCHEX 380 What OUT would be if both

lamps were on.
?A=C X Are both lamps on?
GOYES CONTINUE Yes, break out of loop.

252

Slide Projector Dissolve Unit

ON2

CAEX A

CR4EX

GOTO LOOP2

*

AR4EX
LCHEX 200
C=C!A A
OUT=C
CAEX A
LCHEX 380
?A=C
GOYES
AR4EX

GOTO

*

X

CONTINUE

LOOP1

EXIT
?ST=O
GOYES
LCHEX
OUT=C
C=O A
D1=D1- 5

7
EXIT2
100

DAT1=C A
RTNCC

EXIT2
LCHEX 200
OUT=C
LCHEX 00001
D1=D1- 5
DAT1=C A
RTNCC
END

FORTH
WORD 'FADEOFF
INTOFF

*

OUT status moved back to C,
and 380 (which is < 095) into
A.
OUT into R4, previous C status
into C.
Continue counting.

A preserved in R4, OUT into A.

* Flip lamp #2 bit to 'on'.

*
OUT status goes to A.

Are both lamps on?
Yes, break out of loop.
OUT goes to R4, prev A goes to
A, C=380 (which is >095!)

Is lamp #1 to be left on?
Yes, branch to EXIT2.
Turn lamp #1 on.

Push status
(which =0 = lamp #1 on)
onto the stack.
Ahhh ... Gooba !

Turn lamp #2 on.

Push status bit
(which =1 = lamp #2 on)
onto the stack.
So long!

(Lamp status Time--
*** LAST COMMAND IN SLIDE

253

Control The World with HP-IL

SHOW. ***
SETHEX *** FADES CURRENT LAMP OFF.***
LCHEX 00120
R2=C
LCHEX 00005
RO=C
A=DATI A
Dl=D1+ 5
Rl=A
C=DATI A
Dl=Dl+ 5
?C=O A
GOYES LAMP 2

LCHEX 280
R4=C
GOTO

LAMP2
FADE2

LCHEX 180
R4=C

FADE2
LCHEX 080
OUT=C
LCHEX 00004
D=C A

SETUP
A=RO
C=Rl
D=D-l A
GONC LOOPI
A=A+C
C=R2
?A>=C
GOYES
LCHEX
D=C A
RO=A

A

A

EXIT
00004

LOOPI

254

C=IN
?C=O A
GOYES LOOPI

Store wait time in RO.
Pop dissolve speed
off stack.
Store dissolve speed in Rl.
Pop lamp status
off stack.
Is lamp #1 on? If so, branch
here to handle different
setup.
Bit map for lamp #2.
Store in R4.

Bit map for lamp #1.
Store it in R4.

Enable zero crossings.

Constant in D increases
dissolve length.

Load wait time into A.

Decrement wait time.

Exit if at full brightness.

Reset D counter.
Store new wait time in RO.

Wait for zero crossing.

LCHEX 080
OUT=C
C=R4

LOOP2
A=A-l A
GONC LOOP2
OUT=C
GOTO SETUP

EXIT C=O A
OUT=C
RTNCC
END

Slide Projector Dissolve Unit

Shut off bulb, enable zero
crossings.

Delay for pre-determined
amount of time.

Start again.
Shut off both bulbs
and disable zero crossings.
The show's over.

Although I'm not a professional photographer, this dissolve
unit has been a reliable tool that has enhanced my slide
presentations tremendously. But even if you're not heavily into
photography, you have learned one method of how computers can
control the analog world, and most of all have obtained a better
idea of the extended control capabilities ofthe 71.

Special thanks goes to Mr. Sergio Morales for his theoretical
guidance and helpful suggestions while designing this project.

255

Control The World with HP-IL

256

Chapter Eleven

AN INTRODUCTION TO RS-232

Standards are wonderful--Everyone should have one of his own.
--Anonymous

The HP82164A HP-ILIRS-232-C Interface is a most confusing
device to use; not solely due to the haphazard ways it must be
programmed by the controller; but also due to the confusing way
RS-232 has evolved.

RS-232 is perhaps the most non-standard "standard" in the
world, mostly since in the beginning each manufacturer had their
own idea of how it ought to work and implemented it that way. In
general, the only thing guaranteed about RS-232 is that it won't
work on the first try.

If you want to interface your computer to ANY RS-232 device, a
billion (well, maybe not) configuration options must be available,
and the user had better know what they all mean in order to not
give up the very first week. This is one area where HP-IL
outshines RS-232 in terms of I/O for personal computers: The
most basic functions like printers, displays, etc., are already taken
care of for you and will always work on the first try, so a user never
need concern themselves with low-level operation or connection
thereof. (Other functions, admittedly, require knowledge of the
protocol which is a little more complicated; but most people will
never have to worry about it. You, having read this book and
therefore wanting to implement the more difficult stuff, are
obviously the exception.)

When a byte is sent by RS-232, only one wire is used instead of
eight, and the information is transmitted serially (one bit after the
other) rather than in parallel as with the GPIO. On an RS-232

257

Control The World with HP-IL

link, each transmitted byte is also accompanied by the information
in Fig. 11-1:

--~--~ Data IH-H-H~iiiJH-~ Stop Bits /H_
\ \
\ \

\
\
\

\
\

Bit
•

7 or 8 Bits

\
\
\

o or 1 Bit
(None, Odd, or Even)

And the bit stream would look like this:

•
or 2 Bits

Figure 11-1
What Else is Sent
Along with a Byte
of Data

011011001110011001100110111101001100110110011100110011

The data sent can be represented either by 7 bits (which is all
that's required to represent the entire ASCII-defined character
set) or 8 bits (the default nowadays, as it allows a full character set
as well as a wide assortment of cursor control characters and
graphics commands to be sent).

The Start bit is used to get the receiver ready to receive data by
giving it something on which to synchronize. Even though the
transmitting speed is known at the time of data transmission, the
synchronization function must still be performed.

The parity bit is a simple form of error checking and it works
like this: when Even parity is specified, the transmitting program
adds up the total number of "1 "s found in the data field. If there is
an odd number of''1''s counted, the parity bit is set to 1; it is zero
otherwise. Odd parity is just the opposite; the parity bit is set to "1"
if there is an even (flagging an error) number of I' s counted. The
idea behind the inclusion of a parity bit is to be able to recover from
the most common type of transmission error: when a single data
bit is missing. The receiving device (printer, modem, etc.) must,
after receiving every byte, verify that the parity bit correctly

258

An Introduction to RS-232

describes the number of 1 's in the data field. (If it doesn't match,
the device is supposed to request the computer to retransmit the
last byte via established protocol techniques.)

The stop bits simply signifY the end of a transmitted byte. Either
1 or 2 bits is necessary to perform this function.

Because of the variety of valid options listed above, it is
imperative that both the sender and receiver use the same format
for representing data. Most computers have unfriendly
configuration routines where you must answer prompts
requesting how many data bits, what kind of parity (Odd, Even, or
None?), etc. Other devices, such as the HP-IURS-232 Converter,
must be configured via software (even more unfriendly than the
above) to format the information the correct way. In many cases, it
does not matter what you set the parameters to, as long as both
devices on each side of the RS-232 line agree.

The HP-ILIRS-232 converter can be software configured in one of
two ways: DDT and DDL commands (just like the parallel interface
devices), and Remote mode commands. We'll cover those in a few
pages, but first we must address the question as to why a computer
and a serial printer seldom work right when hooked together on
the first try.

Many implementations of RS-232 use only 3 wires as shown in
Fig. 11-2:

TxO(2) ------­

RxO(3) ------­

GNO(1)-------

(2)RxO

(3)TxO

(1)Gnd

Figure 11-2
3-Wire RS-232
Scheme

The top line, TxD (Transmit Data), is used to send information
from the computer to the RxD (Receive Data) line connected to the
modem. The middle line performs the same function for
information coming from the modem to the computer. Notice the
different pinouts on both sides of the connecting cable: TxD is pin 2
on one side, and pin 3 on the other. The original idea behind doing

259

Control The World with HP-IL

it this way was that all computers would universally be wired as
shown on the left, (called DTE, for Data Terminal Equipment) and
all peripherals would be wired up as in the modem on the right
(also called DCE, for Data Communications Equipment). That
way, only a "straight-through" R8-232 cable would ever be needed
to hook any two devices together.

Well, that neat little idea certainly got out of hand. Today,
manufacturers of computer equipment may use either DTE or
DCE wiring on their RS-232 ports, and will interchangeably use a
male or female 25-pin connector, male or female 9-pin connector, a
DIN connector, modular phone jack, or anything else they can
think of. So as you can see, the only existing standard is that
nobody conforms to the existing standard.

As a result of this mass confusion, you will occasionally find
that both the computer and the modem manufacturer installed
their RS-232 port the same way--usually DTE configuration. The
usual solution to this is to use a "null modem cable", which is
simply a cable with at least pins 2 and 3 reversed to compensate for
the sameness on both sides.

The full implementation of RS-232-C is actually more
complicated than the 3-wire scheme described above.
Handshaking is included with the serial lines to facilitate a printer
that has no data buffering ability, and a reasonable
implementation looks like Fig. 11-3 on the next page.

(Notice I said "reasonable implementation". The RS-232
standard actually allows for 20 of its 25-pin connector to be used
("So that's why the connector's so big!") and hooking up one of
those can get to be really hairy!) And if both devices are configured
as a DTE, a larger null modem cable must be wired up to look like
Fig. 11-4.

260

An Introduction to RS-232

DTE DCE

Transmit Data (2) --------- (2) Receive Data
Receive Data (3) (3) Transmit Data
Request To Send (4) (4) Clear To Send
Clear To Send (5) (5) Request To Send
Data Set Ready (6) (6) Data Terminal Ready
Data Terminal Ready (20) (20) Data Set Ready
Ground (7) (7) Ground

Figure 11-3
Closer to the
RS-232 Standard

Fortunately, null modem cables (usually an expensive item since
the manufactures know darn well that the users don't have the
time to sit down and fabricate their own) aren't necessary with the
RS-232 Converter. Within its confines is what HP calls a
configuration selector, which is actually a 16-pin jumper plug.
When inserted one way, the device is wired as a DTE. When
inserted end-for-end, it becomes a DCE. Voila!

The handshake lines, as diagrammed above, function in
precisely the same way as they do for the 8-bit ports described in

2 C===::::::===----===::::==1 3

:t:====~~~===J
6
7~---~~--~~--~

Figure 11-4
Null Modem Cable

261

Control The World with HP-IL

Chapter 1. But in the more recent 3-wire applications,
handshaking mustbe taken care of by software. The most
common software handshaking scheme is called XONIXOFF,
getting its name from the ASCII characters that the device sends
in order to start/stop data transmissions from the computer.

It works like this: the device can tell the computer to stop
transmitting by sending it an XOFF character (=decimal 19).
(Unlike the 8-bit ports, the RS-232 interface allows you to send
information in both directions at the same time. If this wasn't the
case, the XOFF command would be lost.) If the computer has
previously been programmed to respond to XONIXOFF protocol, it
will stop transmitting until it receives an XON (= decimal 17) from
the device.

Another handshake protocol similar to XONIXOFF is called
ENQuire/ACKnowledge, and functions more like the hardware
handshake: Before the computer sends a word, it sends the ENQ
(= decimal 5) byte. If the device is ready to receive, it acknowledges
the inquiry by sending an ACK (= decimal 6) back. Generally, this
is done every time a block (an arbitrarily defined amount of bytes)
is to be sent.

Well, this sure is getting complicated! The really tough part
about interfacing with RS-232 is figuring out which combinations
of options to throw together so the two ends of the cable will act
harmoniously. (The toughest job of all was for HP, for they had to
make a device that was versatile enough to hook up to ANY
implementation of this molested standard.) Sometimes, as with
hooking up a printer or modem, the communications parameters
are designed in, so all you have to do is program the interface to
match what the printer or modem is configured for. Fortunately,
this aspect of interfacing is straightforward.

The HP-IIlRS-232 Interface can have its communications
parameters software-specified by two different methods: DDL
(Device Dependent Listen) commands as explained in Chapter 1,
or Remote commands. Both are equally easy to implement. The
control register descriptions can be found in Appendix D of the
RS-232 Interface's Owner's Manual. Likewise, the Remote
commands list starts on pg. 37 of the same manual. An example
of each follows using the 71 as a loop controller.

262

An Introduction to RS-232

10 ! PRTDRV print driver for the LaserJet Printer.
20 A=DEVADDR ("RS232")
30 SEND UNT UNL LISTEN A MTA DOL ° DATA 0,0,0,0,0,0,0,

14 UNT UNL
40 PRINTER IS :RS232

In the example above, the interface is programmed via the DDL
o command. The subsequent data bytes specify the following
attributes:

Bytes 0-2 (RO-R2) are all 0, signifying that we don't care about
service request conditions in this example.

Byte 3 is 0, indicating that we will not be deleting/replacing
special characters in the data stream.

Byte 4 is 0, disabling the handshake lines that the LaserJet
printer never pays attention to.

Byte 5 can be anything, since it only shows the status of three of
the unused handshake lines when a STATUS is requested from
the host. In this case, it was left as O.

Byte 6 is 0, indicating one stop bit, eight data bits, and no parity.
Byte 7 is 14, indicating a transmitting speed of 9600 bits per

second.

No more DATA bytes were sent, indicating that the default
values for the remaining registers should suffice.

(A quick re-examination of Appendix D indicates that all the
default values in the control registers were exactly what we
specified; meaning the first three lines in the above program
weren't needed at all. (This is a very rare case, mind you. The
example was included here to illustrate more normal cases.)

In addition to the software configuration, the Interface must
physically be changed to look like a DeE by reversing the control
selector jumper plug inside. After this is done, only a straight
through, pin-to-pin 25 line ribbon cable is needed to join the
Interface and the LaserJet. The printer only uses one handshake
line, DTR (Data Terminal Ready), to tell the computer that it's not
ready to transmit. DSR (Data Set Ready), the computer's pin that
receives the DTR signal, automatically reacts to this and doesn't

263

Control The World with HP-IL

have to be initiated by the control registers.
The only drawback one might experience with this printer as

driven by the 71 is that when anything is printed, the last page is
NOT ejected from the printer because the 71 doesn't terminate
PLIST commands with a FORM FEED (= decimal 12). Sure,
programs that print should be responsible for generating the
FORM FEED character, but PLIST and other functions require the
following human intervention to complete: 1) Hit the ONLINE
button to take the printer offline. 2) Hit the FORM FEED button to
eject the last page. 3) Hit the ONLINE button to take the printer
back online.

Let's try a different example. This time, we'll attempt to
compensate for the 71 's lacking keyboard and display by hooking it
up to an IBM PC (a machine whose keyboard and display are also
lacking, but not as much) and using it as a dumb terminal.
Because the RS-232 parameters here are not fixed by either the
IBM or the interface, I arbitrarily set them to the following values:

PArity None
DAta Bits 8
SPeed 2400
STop 1
PMode 1
DUplex Full
OUtfilter On

No parity bits
8 data bits
2400 bits per second (baud)
1 stop bit
Needed for Crosstalk
Needed for Crosstalk
Needed for Crosstalk

Configuration plug set to DTE (needed for IBM
RS-232 port)

Materials needed: KEYBOARD IS lexfile (available in the highly
recommended FORTH/ASSEMBLER ROM), and communications
software for the IBM, such as the popular CrossTalk package.

The KEYBOARD IS lexfile is one of those routines that is
implemented almost perfectly. The idea was to allow a keyboard of
realistic size and feel to provide input, and still allow the key
reassignments to take effect. If all you're going to be typing are the
alphanumeric characters, this is no problem. It is the f- and

264

An Introduction to RS-232

g-shifted keystrokes that provide the difficulty.
HP decided on using 2-character ESCAPE sequences to define

any one- or two-character 71 keystrokes by defining an "escape"
buffer which is used like this:

ESCAPE "A",50

After the above assignmentis typed into the 71, hitting the
ESCAPE key and then the "A" key on the external keyboard will
activate key #50 on the 71; the Up Arrow key. (Refer to the 71 's
Keyboard map in their instruction manual.) (You should have
read this stuff in Chapter 8 anyway.)

The wonderful thing about CrossTalk is that any of the keys can
be reprogrammed to send out a string of characters rather than
just a single character. This way, hitting Fl on the IBM's
keyboard will generate the arbitrarily defined two-character escape
sequence the 71 expects to see. For this application, the IBM's ten
function keys were
redefined as follows using
Crosstalk's key
assignment file (note that
Crosstalk interprets 'A]' as
meaning 'escape'):

Fl A[a
F2 A[b

F3 A[C
F4 A[d
F5 A[e
F6 A[f
F7 A[g
F8 A[h
F9 A[i
FlO A[j

- I , • , l I I.' ~ t .. t.t l 4 l • • • • • • i , • ,
~ • • • « • .. " • I ,

Photo #1 Yet another use for the RS-232
Converter.

265

Control The World with HP-IL

and the following 71 program makes use of these and the function
key escape sequences normally sent out by Crosstalk:

5 ! Program IBM uses XTALK to add keyboard + display
10 RESET HPIL @ CLEAR @ REMOTE
20 OUTPUT :RS232 ;"SEO;SE3;SBA;" @ LOCAL
30 ESCAPE "A",50 Assigns 8 to Up Arrow
40 ESCAPE "B",51 Assigns 2 to Down Arrow
50 ESCAPE "D",47 Assigns 4 to Left Arrow
60 ESCAPE "C",48 Assigns 6 to Right Arrow
70 ESCAPE "a",43 Assigns F1 to ATTN
80 ESCAPE "b",150 Assigns F2 to Command Stack
90 ESCAPE "c",159 Assigns F3 to far Left
100 ESCAPE "d",160 Assigns F4 to far Right
110 ESCAPE "e",162 Assigns F5 to far Up
120 ESCAPE "f",163 Assigns F6 to far Down
130 ESCAPE "i",105 Assigns F9 to I/R
140 ESCAPE "j",104 Assigns FlO to -CHAR
150 KEYBOARD IS :RS232 @ DISPLAY IS :RS232 @ PRINTER

IS :RS232
160 END

Line 20 above is the crucial one. Using Remote mode
programming, it specifies the following parameters:

SEO: Disables all service requests.
SE3: Specifies service requests when the Receive buffer isn't

empty.
SBA: Specifies 2400 baud, because characters get lost at higher

speeds.

The other parameters-- one stop bit, No parity, eight data bits-­
are all default settings and therefore don't need to be specified by
the program.

When using this IBM-to-71 system, there are, unfortunately, a
number of disadvantages. First is the IBM's keyboard, whose shift
and return keys are located where no one would expect to find

266

An Introduction to RS-232

them. Second is the slight incompatibility of the cursor commands
between the 71 's display and the IBM's. For example, the IIR and
-CHAR functions delete the current line from the IBM's screen
before performing their functions. And when a line longer than 80
columns is displayed onto the screen, the wraparound function
works perfectly; but when the cursor is repositioned back to the
beginning by a series of backspace commands, the IBM's cursor
goes only to the beginning of the wraparound line.

By all admission, it ain't perfect. If you want perfection, see
Chapter 8.

267

Control The World with HP-IL

268

APPENDICES

A. Barcode for 41 Programs .. 271
B. Sources of Non-Standard Items 297
C. Dissertation as to Why Positive Handshake Logic

is Not Worth Pursuing ... 301
D. Pinouts of Common Integrated Circuits 305
E. Glossary .. 309

269

270

Appendix A

BARCODE FOR 41 PROGRAMS

CHAPTER 3

PROGRAM:CAMERA 35 REGISTERS PROGRAM USES 19 ROWS
1 LINES

271

Control The World with HP-IL

PROGRAM:CAMERA

272

Appendix A: Barcode

CHAPTER 4

PROGRAM:DKRM3 91 REGISTERS PROGRAM USES 49 ROWS

IlmflIWllllllllll~~~lflllill~ltlfllljlllllllllllllllllllllllll111
11~~Willlflllll~flm~I~II~~lfl[1I11
IIm~Willlillllllili~llilfllllijlllflllflllllllllllllllllllllll111
ROW 4 LINES 11-1

111111111111111111111111111111111

IlllimNillillllll~flrn~IiII~\III~~lilllllllllllllllllllllllll111
IlilmNillijllll~~~I~I~II~Mlfl~II~11III
11~~I~llllllll~lrmlil~ll~f1l1lflil~i1llllllllllllllllllllll11
IIW[lrnll~IIII~~mW~II~~lfI~I[I~111
11~lfll~llfllllll~~~~IIiII~~MIII1f111II
11~lfllmllllf1IIII~~~~~I~rllil~lflfllllllllllllllllllllllll11II
II~m~II'IIIIIII~llili~lflllllfllfl~illiflllllllllllllllllllll11
Illlil~I~1111111l111~~rn~lrlllmfllllfl~1I11I
1I~1~~II'IIIiIIII~fM~IIiI~lIllilllrlfljllllllllllllllllllllll11I
Ililm[jII'lijllll~lll~rn~llflil[l~MilllllllllllllllIllllllllll11
IIm~WiII'lflllll~ll@mflllllrllilll~lrlrllllllllllllllllllllll11III

273

Control The World with HP-IL

PROGRAM:DKRM3

IIrnmffilllillll1l~li~I~IMIIiMfilill11111111111111111111111111111111
1I~~I~1I111""I1~ij~mfllllfll]I~ltlfllflilllll"lllllllllll"lllllllllllllllllllllllllllll1111111111111111111111111
1I~1~~IIltl~lIIl1l1ij~rnMil[llI1111[lrlll111111111111111111111111111111111
IImij~III1~1I1I~lfl~~~I~II[I[lllllf
lIilmijll~lll1l1l~fl~lli~II~illlI1Ifllllilill11111111111111111111111111111111111
ROW 21 LINES 118-123

I I

lIilm~IIij~IIII~lfl~rn~l~il~lfI~lllrlflillllllllllllllllllllll""IIIIIIIIIIIIII1111111111111111111111111111111111
1~lmNII~lfIIII~fl~~11I1~11IIi1[111(1"IiIIIIIIIIIIII""IIIIIIIIIIIIIIIIIIIII11111111111111111111111111111
lIilrnNlllflillll~~ru~~II~11I1111111Irlfllilllllllllllllll""IIIIIIIIIIIIIIIIIIIIIII11111111111111111111111111111111
II~MNII~lfllIllI~liilllil~IIMI]~~ill]lfI 111111111111111111111,

1I~lflINII~lfllIlI~lfl~lm~IIIiI~lilrl(I~I"IIIIIIIIIIIIIIIIIIIIIIIII"IIII1I11
IImrnmllllflllll~~rum~1I1111i1"lllilfllllill11111111111111111111111
lIimmlllflijllll~rIM~IIIIM"~I~lil,,~lilll1111111111111111111111111111111
IIm~INII~~IIl1tJllrnl~llIl~illfl~llll~ltll1111111111111111111111111111111111
1I~@~II11f11111~lf@I~llillltl~lllllll]~III11111111111111111111111111111
274

Appendix A: Barcode

111

1111111111111111111111111

I I 11111111111111111111111

Ilrn~Willlflfllllll~~m~lfllllilfllllllil~illillllllllllllllllllll11
Ilill~f1llltlllllll~~~liI~lllilflil[I~I[I~1I111
IlrnrnWlllfllilllll~IIW~~II~fI~lIlrlfllllillllllllllllllllllll11III
11~I~mll~ltlllll~IIIES 08 - 211

11~lrnflllll~IIII~li~f1lijll~fllillllij~1111f1illlllllllllllll11II
IImm[jII~~IIII~III~liI~lllllililfl~lflflfllllllllllllllllllll11II
IlillrnWllllI1111111~rlllirnijll~f1~lfI~lflfI~11
II~rnmIIMIIIII~~~~~III~llilllrl~I]~lllllllllllllllllllll111
Ililwl~IIIIIiIIIII~~MfllijllflflllI11Irl~I~lIilllllllllllllll11III
11~~I~I[I]IIII~III~~~IIII~~lrlflflllllllllllllllllllllllllll11
11~I~WiII~lflllllllI~~~lill~flllflflflIlIIlllllllllllllllllllllll11

275

Control The World with HP-IL

PROGRAM:DKRM3

Ililm~l~fllll~~rn~1111~fIIlfI~~IIlflllIIl"""IIIIIII""IIIIIIIIII"III""1I11111111111111111111111111111111
ROW 49 LINES 0-2

IIIIIIIIIIIIII~IIIIIIIIIIIIIIIIIIIIII

276

Appendix A: Barcode

PROGRAM:DKRM4 138 REGISTERS PROGRAM USES 74 ROWS
1

277

Control The World with HP-IL

278

Appendix A: Barcode

279

Control The World with HP-IL

PROGRAM:DKRM4

Ilillm~l~ijlllll~lflfllillfll~f1Ii1f111IfIIlilIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 11111111111111111111111111111111111111
Ilrnfillilll~"IIIII~~~fI~II~~IIlrlij~lflijlrlllllllllllllllllll11
IlffimNlllllilllll~flfll~IM~I~III[lfI~fllilllllllllllllllllllllllll111
Ilrn~OOII~lfllllll~~m~~IIII~lflfllll~lllf1i1111111111111111111111 11
IlilmNlllflijlllll~lil~~llllflil~lrl~lfllllrlrlllllllllll11
11~1~~llillllllllltJlfl~~lflll~~llI111~lfllllllilllllllllllllllll 111
Ilill~IMllfI~IIIII~~W~~IMII~~lfllflMIIIIIIIIIIIIIIIIIIIIIIIIIII111
ROW 53

111111111111111111111111111 11111111111111111111111111111111111111

Ilill~~llfI~IIIII~llf1If1~II~f1~lllrlfililillllllllllllllllllllll 111
Ililm~lllflflllll~lfl~lfI~111111~liIMI~lijlilllllllllllllll 111
Ilill~IMllfllillllltJflWfllfIIMI]~lrlilillllllllllllllllllllllll11
11~lrnOOllfllllllll~lfl~rnMlilflfll~lfI~lfllIIIIIIIIIIIIIIIIIIIIIIIII111
IIrnmffilllfl~IIIII~ll~~llillflilfllllrlflijflflllllllllllllllllllllllllll11
Ilm~IOOllflfllllll~l)rn~lilIMlijlllrlfililfllllllllllllllllllllll 111
IlillmOOllillilllll~flflrn~III"IJI~lrIMllI11Illlllllllllllllllll 11
280

Appendix A: Barcode

PROGRAM:DKRM4

1I~1~[!1111f1I111m~ijmilllflllrlfllrl~~III1111111111111111111111111111111111111
II~rnllilllfl~llll~fl~m~II~~~I"lij~lfl~lilllllllllllllllllllllllllll111
Ilrn~illllllflllll~lrlllrnlllllijlllfIMllll~1111II11II11II111
Ililfiooll~lijlllll~foo~lflllll~III"III]lllijllllllllllllllll111
Ililfll~IIIII~IIIII~~~rnllllllilfllllij[lllllilllllllllllllllllll111
Ilm~[!llij~IIII~lrl~mflllm[lij~~lilflfllllllllllllllllllllllllllllllllll111
II~OO~llfI~lIll~fl~mflll~~[lllll~~mllllllllllllllllllllllllllllllllll11
11~lfIilllllfllllll~l1mmillll[lilil~Mlililllllllllllllllllllllllllllllllllll111
Ilm~lliIllijlllll1l~~m~~lIf~f1lflrlijfllrlilllllllllllllllllllllllllllllllllllllll1111111111111111111111111111111111111
Ilrn~~llflflllllllillfimillll[lflij~~ijlllilllllllllllllllllllllllllllllllllll111
1I~lflill~I[IIII~fl~m~llfl]lllf111lijlllflillllllllllllllllllllllllllllllll11
11~lm~II"~IIII~~ij~lflllf~III~III]lllijlllllllllllllllllllllllllllll111111111111111111111111111111

281

Control The World with HP-IL

CHAPTER 5

PROGRAM:HAPPY 34 REGISTERS PROGRAM USES 18 ROWS
1

~ilruOOOOII~tlilijlllrnililll~IiII"III~lnllmlllulrullllllllll~llll!ru11111II11!1~illlll
rn~lmmrllillll~i~mm~liillllflm~llllru~llllllmlll~lllllrulllli~~II!II~IIWillllmlll

9

rnilmlijllillillllm~OO~llil~II"I~I~II~rnrnlrn~ilillll~llilml~1111llllllllrulll~imllllllllil
IlmruWruillillltrnrnlfl"ll~lllml~"I~~IOOI~lllllli.IIIiOOIIIIIII11111111~llllllllmlll
rnilmillillllmilwlmlil~~~[llIi"llllrulllllilllrulloolllllllllllI!IIIIIIIIII!IIIIIIIIIIIIIIIIIIIIII

~mruillllillrnrnrnliIMflljlim!lrullllllllllllilllllllllllll~1111111111111111111~llIIlllillllllllll
282

Appendix A: Barcode

PROGRAM:HAPPY

Ilm~lrulltlllllllllllrnrnfll~II~lllrlrlilllllllllllllllllllllllllllllll 111
IImmmlllll~llll~fllll~~IMflflfllmllllllllllllllllllllllllllllllllll11
1I~1~lillllllillllllillllil~lillillII111f1MIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1111111111111111111111111111111

283

Control The World with HP-IL

PROGRAM:TIMED 25 REGISTERS PROGRAM USES 14 ROWS
1

Ilrnrn~III~III~lflill~[II~ijlrlll~llf1IIIIII11I1I1IIIIIIII111

11~~lillilllll~lli1I~~I~f1~lllij~~1I1111111I1I1II1111111111111I1I111
II~fll[jIIIlIII~llrnl~[IIII~~~~~IIIII1IIIIIIII11IIIIIIII11I11
Ilrnm[jII~IIIIII~M~lilll~il"I~llifIilll11
IIm~~lIillllIl~III~I~IIiII~fllll~IiI~lilll1111111111111111111111111111111111111

lIi1m~lIillll1l1lt1~mIIMij~I~II~III1I1I1I1I11I1I1I1I1I111
lI~rnl[jllflfllllll~lflrn~~lIllllil~lllf1I1I1I1I11 111111111111111111111111111111111
Ililfll~IIMIIIII~fM~~II[lllil~lIlf1rlll11111111111111111111111111111111
1I~1~~IIilflllllltl~~~[III[lfI[lflll~1i1l1l1l1l111l1l11l1l1

284

Appendix A: Barcode

CHAPTER 7

PROGRAM:INTT2 35 REGISTERS PROGRAM USES 19 ROWS

285

Control The World with HP-IL

PROGRAM:INTT2

1If1lm~"illl1lll~ll~lfllfll~rl~I]~lllilillllllllllllllllllllllllll1111111"11111111""11"111111"11"1"11111111111
111111

1Ii1lm~11I11i1lll1mrl~~I~llflllilfl~lil~lflllllllllllllllllllllllll 11
lIi1m~llrllillll~lrl~I~~lIllfllflflMI"lll1lllll11l1llll1l11l1l1llll1lll 1111111111111111111

286

Appendix A: Barcode

PROGRAM:GPIO 10 REGISTERS PROGRAM USES 6 ROWS

1I~~illllllllllllillf1I~IIiII~ltlflflill 11
11~~illllflllll~ll~I~IIiII~~lllflillllllllllllllllllllllllllll 11
II~millilllll~II~~I~llfllflillI111111111111111111111111111 11III
II~mililll]IIII~lfl~rnfll~~~lllfI~~111111111111111111111111111 11 I
Ilrnlliililllflllll~lilrn~fllll~III[lfI~1!1111111111111111111111 111
Ilil~lijllflllll~~lill~~ (24-24)

287

Control The World with HP-IL

PROGRAM:ANSWER 61 REGISTERS PROGRAM USES 33 ROWS

II~rnffillllll1l1l~llrn~"III~"IJllIII1111111111111111111111111111111111

1~I~Nilllllltl~illI~~I~flMI~I""I"""I"""I"II""II11IIII""I"I"""11111111111111111

ImmNi"~"I~ll[j~li"~~fll]II~III""II""I""""I""III"II""""11111""1111""""111111
"mlfll~III11111~lil~~lillllflfll]ijllllillllllllllllllllllllllllllllllllllllllli111111111111111111111111111111111111111
1I~I~Nilllllltlllrnl~I"II~~lfIfI~flIIIIIIIIIIIIIIIIII""II1II1I1I11I1II1I1I1II11111111111111111111111111111
1I~lfll~IIfllIlIl~lil~lllill~fllll]li[jrlllllllllllllll"II1II11""11I11I1I1I111111111"""11"1111"""""111111
"ml~illllllililimilil~I~"I~fI~lllf1I1I1I11I111I1111I1111I11I1111II1I1I1I11111111111111111"1111111111111111111111111
IIm~I~I"1111l1l1~IIMI~~IIII~11Iij~f1l1l11"I1I1""I""III""""""""I11""1I111111111111"""111"11111111
ImrnNillll~lllItI~~I~[II~~I~I]~~(jIllIllIllIlIllIl"IIIII""IIIIIIIIIIIIIIIIIIIIIIIIIIII1111111111111111111111
lI~rui"IIIiIII~lrl~rn,,"~ijlll~MII"II"IIIII11I11III1IIII11I11""II"I""11111111111111111111111111
1I~lrniIMIIIII~lil~III~"lflIIMlflilIIIIIIIIIIIIIIIIIIIIIIIIIIIII""I1I""II"1111111111111111111111111111
IImmffilllllflllll~I)~mflI1111i1~[llirlllllllllllllllllllllllll""1111111111111111111111111""111111111111111111
288

Appendix A: Barcode

PROGRAM:ANSWER

289

Control The World with HP-IL

PROGRAM:ANSWER

PROGRAM:INTT4 10 REGISTERS PROGRAM USES 6 ROWS

290

Appendix A: Barcode

PROGRAM:4132 13 REGISTERS PROGRAM USES 7 ROWS

291

Control The World with HP-IL

PROGRAM:4111 23 REGISTERS PROGRAM USES 13 ROWS

292

Appendix A: Barcode

PROGRAM:READl 10 REGISTERS PROGRAM USES 6 ROWS
ROW 1 LINES

PROGRAM:ACCHAR 4 REGISTERS PROGRAM USES 2 ROWS

Ilil~lililllfllllll~~rn~[III~"lllillllllllllllllllllllllllllllllllll111

PROGRAM:FLIP 5 REGISTERS PROGRAM USES 3 ROWS

Ililrnillll
l LIlllim[III~"ll~flll 11
2

293

Control The World with HP-IL

PROGRAM:MSG2 28 REGISTERS PROGRAM USES 15 ROWS

lI~llil~lllfllllll~illii~flll~111II1Iill111111111111111111111111111111111111
II~ml~lllfllII~lf@rn~ll~fI~lll1l11ll1111I11I1111I11I1111I11I111111II1111I11I111
Ilffirn~lllillllltJlfl~I~"I~llflflillllllllllllllllllllllllllllllllll111
II~ooillll~IIII~lirnl~lfll~~lfII"IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111
Ilm~lillllfllllltl~~lfI~llli"MI~illllllllllllllllllllllllllllllll111
IlfI~~llfllII~ll~lflMtl~~llI1~1II11
Ilru~i1II~IIII~mlllfll~mlfIM(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11
11~@lillillll~mll~ll~rllllllf1mlllllllllllllllllllllllllllllll111
II~millllilllllrnrlrnll~II~f1f1~~I"'111
Ilrn~illllil~IIII~llm~I~III~IIlflfIIiillllllllllllllllllllllllllllllllll111
Ilm~lillllillll11~li~I~lflllllfilillllllilillllllllllllllllllllllll111
11~1~lillllflflllll~~m~~II~flfl~lllilillllllllllllllllllllllllll111

lII~flm~~lIlfllilflflliilll1111111
IIrn~i111il~IIIIIII~OOrn~lIlfll"IMlflilll111111111111111111111111111
IIrn~MIII)IiIlIlI~llmfl~lI~i1f1I111i111111111
294

Appendix A: Barcode

CHAPTER 2

PROGRAM:TTONE 26 REGISTERS PROGRAM USES 14 ROWS

11~I~illIIll""llm~mlil~II~i1111111i1Iltllllllllllllllllllllllllllllll11
Ilmmillillflllllll~llrn~llill~fllllflfl"ljllllllllllllllllllll111

295

Control The World with HP-IL

296

Appendix B

Sources for Non-Standard Items

This appendix lists several excellent sources of hardware,
information, and services for and relating to HP handheld
computers.

Hardware

Polaroid Sonic Ranging Module .. $60
SC-Ol Speech Synthesis Chip .. $22

available from:
The Micromint, Inc.

25 Terrace Dr.
Vernon, CT 06066

(800) 635-3355

Teltone M-980 Call Progress Tone Detector
Teltone M-957 DTMF Receiver

available from:
High Technology Semiconductors

Tustin, CA
(714) 544-4871
(408) 942-0600

IL Converter Parts
HP-71 Torx wrench available from:

297

Control The World with HP-IL

EduCALC Mail Store
27953 Cabot Road

Laguna, Niguel, CA 92677
(714) 582-2637

Otrona Keyboard available from:
Advanced Computer Products

P.O. Box 17329
Irvine, CA 92713

1310B E. Edinger
Santa Ana, CA 92705

(800) 854-8230

Custom Conversions, (41 + 71), and any HP-specific modifications:

Books

S.O.S.
1850 E. 17th St. Suite #102

Santa Ana, CA 92701

The following books are available from:

The HP-IL System

EduCALC Mail Store
27953 Cabot Road

Laguna, Niguel, CA 92677
(714) 582-2637

THE HP-IL SYSTEM: An introductory Guide to the
Hewlett-Packard Interface Loop by Gerry Kane, Steve Harper,
David Ushijima; OsbornelMcGraw-Hill, 1982

298

Appendix B: Sources for Non-Standard Items

71 IDS Volumes

Highly technical, complete documentation of the 71B hardware,
bus, and operating system. The Internal Design Specification
comes in five volumes:

#71-900068 Vol. 1, Detailed Description $ 50.00
#71-900069 Vol. 2, Entry Points 50.00
#71-900070 Vol. 3, Source Code 200.00
#71-900071 Vol. 4, Hardware Specification 200.00
#82401-90023 Vol. 5, HP-IL Module Source Code 50.00

299

Control The World with HP-IL

300

Dissertation
Handshake

Appendix C

Why
Not

as to
Logic is

Pursuing

Positive
Worth

HP says their GPIO and IL Converter interfaces can be
programmed to have positive handshake logic, while I say it's so
difficult to implement that it's hardly worth the trouble. (Some
people might also feel this way about Chapter 10.) What follows is
a detailed discussion as to what is involved when implementing
positive handshake and why I avoid it.

The whole problem stems from the fact that 1) positive
handshake logic must be initiated via DDL commands sometime
after power is applied to the GPIO, and 2) if the handshake lines
are held in the improper states, (if the outside world looks as if it's
not ready), the 32-register buffer fills and locks up all
communication on the loop as well as the controlling computer's
program. This same "ready" condition must also exist in order for
DDL commands to execute properly, which means your external
circuitry must use negative handshake logic before the switch and
positive handshake afterwards.

For example, here's a step-by-step account of what happens
when positive handshake is requested:

When you first power up, the GPIO is in its default negative
handshake mode (which means Ov is interpreted as "1", and 5v is
interpreted as "0"; just the opposite of its data lines), and the two
incoming handshake lines (RDYI and DACI) must be grounded in
order to establish data transfers or initiate any Device Dependent
instructions.

When the positive handshake logic is set via the DDL 0

301

Control The World with HP-IL

command (see Chapter 1), it instantly takes effect and the GPIO
then hangs and waits for the two incoming handshake lines to go
to 5v (the new definition of ''I'm ready") before proceeding.

If this outside event doesn't occur, the DDL command is never
completed, and everything (including the commanding computer)
freezes up.

This requires some sort of external circuit which knows
precisely when the positive logic bit is being set so that it can
change the status of the handshake lines the instant it's required.
How does the external circuit know precisely when to do this?
Because the original IL Converter thoughtfully possessed the
HLLO line, which instantly switches states to alert the circuit of
precisely this condition!

However, the 82165A HP-IUGPIO interface doesn't even provide
the HLLO line. (This deficiency is further aggravated by the unit's
lack ofPWRDN and WKUP lines, large size, and its insistence on
being powered from an AC outlet.) According to HP, the only way
to get positive handshake on it is by human interference: First, run
the program. Then, connect the external device to the interface
when it locks up. Again, very inconvenient and no benefits are
obtained.

The only way I can possibly imagine to implement HP's
suggested solution is shown in the figure top right. Six XOR
(Exclusive OR) gates in series with all handshake lines, are all
controlled by the HLLO signal. When the HLLO line goes low
(signalling that positive handshake logic has been specified by the
computer), it goes into all of the XOR gates and inverts their
otherwise negative output. Not a difficult solution, but certainly
less efficient than the bottom figure, which uses only one chip, less
wiring, and doesn't even need a complex DDL 0 command. (This
is substantial when the 41 is the controller,)

I use a simple solution for both interfaces as shown in the lower
figure: just attach one extra component, a Hex Inverter, to all six
handshake lines, and stick to the default negative logic. This
keeps all configuration automatic and retains versatility, and in
many cases eliminates the need for an IL Converter configuration
routine.

302

Appendix C: Positive Handshake

HLlO

or-------,
DAVO , ...-- , ..
RDYO

,
--)

,
, • - ,

DACO , ow- , -- ,
DAVI

,
.- ,

, - , , ,

.. -----.,
RDYI , _ ,

, - ,
DACI .-, - ,

------ One Way to
4070 Quad Achieve Positive

Exclusive OR Handshake Logic
Gates Using the HLLO Line.

,------, , ,
• o<J

,
DAVI i

RDYI • o<J
DACI • o<J A Simpler Way

Which Works on
DAVO I> • All 8-Bit Ports.

ROYO [>0 •
DACO , [>0 •

'-------
,

4069 Hex
Inverter

I believe that the positive handshake option exists because
Hewlett Packard designed the interface to be truly versatile, and
for that they should be applauded. However, using the hex
inverter is a much better method to achieve this because it
simplifies the software and removes the need for human
intervention.

303

Control The World with HP-IL

304

Appendix 0

PINOUTS OF COMMON ICS

4069
Hex Inverter

4081 4001
Quad AND Gate Quad NOR Gate

305

--

-=-

306

Control The World with HP-IL

+5V

CJE
20

00)
DO

5
D1)
01

02)
7

D2

9
D3)
03

10
Gnd

74C373
Octal Latch

Data In----.,
Latched Data Out f-------)

4027 Dual
J-K Flip Flop

+Sv

DAVO

DB?
DB6

DAVO
DACI

RDYI~

3.579 MHz
XTAL

Out

Appendix D: Pinouts

Vp AO
12 AF
11 CB

TP1
MCRC

AIR MCX
P5 PO
P4 P1
P3 P2

SC-Ol Speech Synthesizer

M-980
Call Progress Tone Detector

d 5V

1KQ

330KQ

I
220pF

In ("8"
From Transformer)

307

+5v 0
g~:=:J. I
DA6==:l
DA7 OJ,-

5v

308

Control The World with HP-IL

01
22

02
21

03
CLR

12116 8TB
Vp Auxelk

BD 6SCiClk

XIN
XOVT

Gnd
8ig. In

M-957 Touch Tone@Oecoder Ie

3.579 MHz
XTAL

DA1
DA2

DAVI
____ 1 Megohm

____ n3.579 MHz J...Y XTAL

Signal In _____ "8" From
Transformer

+5v

® MM5395 Touch Tone Generator

Appendix E

GLOSSARY

AID Converter
Analog to Digital Converter. One useful tool that takes real
world information (usually measured via an analog sensor,
such as a microphone for sound, a photo cell for light, etc.)
and converts it to a digital form, which is something the
computer can work with.

Accessory ID
One of two ways an HP-IL peripheral can identifY itself.
Accessory IDs are comprised of a number (rather than a
name) that classifies it as a type of device (i.e. printer, video
interface, etc.). This makes it easy for a computer when you
tell it to print something; it just look for the first printer and
sends the information there, without caring whether its a
thermal printer or a ThinkJet variety.

ASCII

Bit

American Standard Code for Information Exchange. A
recognized standard for representing alphanumeric
characters by l's and O's.

A single signal that can only have two states: "I" or "0";
(sometimes referred to as "on" or "off'.) Most computers are
loosely based on this concept.

1) A "computer" magazine that isn't even aware of HP's
existence. 2) A collection of 8 bits, normally assembled to

309

Control The World with HP-IL

represent an ASCII character or a number. BYTE used to
refer to the computer's internal word size back in the days
when micros had an 8-bit architecture.

CMOS
Complimentary Metal Oxide Semiconductor. Fancy name
for an integrated circuit fabrication technique whose chief
attribute is very low power consumption. Rival fabrication
techniques include TTL (Transistor- Transistor Logic), and
NMOS.

CR/LF

DCE

DDL

])IJf

310

Carriage Return/Line Feed. These are two ASCII
characters automatically sent after each line of transmitted
data, and are analogous to the return bars on the old manual
typewriters. Well designed computers allow you to either
disable this automatic sending feature or replace the CRILF
with special characters of your own choosing.

Data Communications Equipment. The fancy name used to
describe the wiring configuration of an RS-232 device. DCEs
can only communicate with a device wired as a DTE.

Device Dependent Listen. An HP-IL command that instructs
peripherals that the following data should be interpreted as
configuration instructions rather than data. An HP41 must
have either an Extended VO ROM or an IL Development
ROM to generate this important command.

Device Dependent Talk. An HP-IL command that instructs
peripherals to send some information about its status to the
listener, rather than sending what it usually does when
configured as a talker. The HP41 requires either the
Extended VO ROM or the IL Development ROM in order to
generate this important command.

DIE

Appendix E: Glossary

Data Terminal Equipment. The fancy name used to describe
the wiring configuration of an RS-232 device. DTE devices
can only talk to a device wired as a "DCE".

EDTEXT
The name of the 71's line editor. This program is available
in either the FORTH/Assembler ROM or the Text Editor
ROM.

:&cape Sequenre
A cryptic string of characters, preceded by the "escape"
character (decimal 27), which is often used to tell a
peripheral how to configure itself. Printers often employ
escape sequences to let the host computer set their boldface,
double wide, or italics mode. There is no real standard for
escape sequences; it seems every peripheral manufacturer
arbitrarily defines some random string when designing
their peripherals, therefore most printers are not really
compatible with each other.

Extended I/O ROM
One of two 41 plug-in ROMs that allows finer control of
HP-IL. Since it uses the ALPHA register as a transmit
buffer and generally provides higher-level commands than
its counterpart (the IL Development ROM), it is considered
the friendlier of the two.

frames
Another word for "HP-IL message".

GPIO
General purpose inputJoutput, a term specifically referring
to the HP82165A 8-bit port. Often, to save my breath, this
term will be used as a generic term to describe ANY of the
three 8-bit ports as discussed in Chapter 1.

IIP-IL
Hewlett Packard Interface Loop. An interface scheme where
all desired peripherals are strung together with a

311

I/O

IDY

IEEE

Control The World with HP-IL

2-conductor "thread", allowing selective communication
with any or all peripherals on the loop and instant error
checking. Both the 41 and 71 employ this method of I/O.

Input/Output. (Most people erroneously associate it with one
of Jupiter's moons.) Catch-all phrase for the way the
computer communicates with the outside world. The GPIO
is one form of I/O; so are the keyboard and display.

Identify. The equivalent of idle small talk when nothing's
happening on the loop.

Institute of Electrical and Electronics Engineers.

IL Development ROM
One of2 41 plug-in ROMs that allows finer control of HP-IL.
Amongst its offerings is absolute low-level control of IL
messages, a SCOPE mode for monitoring messages traveling
through the loop, and a large general purpose data buffer for
sophisticated I/O. Much more powerful than its counterpart
(the Extended I/O ROM), and therefore more difficult to use.

ILModule
An optional peripheral that allows the 41 and 71 to access the
Hewlett-Packard Interface Loop. Both the 41 and 71 use
different attachments to add this capability; many other
portable computers come with them built in.

KEYBOARD IS

LED

312

An extra feature of the FORTH/Assembler ROM that allows
a larger, external keyboard to replace the 71' sown
Smurf-sized keyboard. This LEXFILE is also available
separately from HP.

Light Emitting Diode. Functions like a normal diode except
it gives off light when forward-biased.

Appendix E: Glossary

LEXFILE
Short for Language Extension File. LEX files are assembly
language routines that extend the 71 's BASIC language
environment, and are capable of adding new keywords,
responding to system polls, rearranging the keyboard layout,
and translating error messages to another language.

Opto-Isolator
Short for Optical Isolator. A method of switching a high
voltage item from a low-voltage signal without exposing the
signal to high voltage hazards (analogous to a relay's
function). Opto-Isolators work by having the small signal
drive an LED, and having the heavy load driven by a
photosensitive transistor. Two common types are available:
3010, with a triac driver output, and the Tll, with a
photo-darlington pair.

phoneme
The basic sound components that comprise the English
language. These are not quite the same as vowel and
consonant sounds; for example the sound "I" can be broken
down into two phonemes: "Aaa""Eee" (Aaa as in father, Eee
as in Ellipsoid).

PWM
Pulse Width Modulation. An unobvious way to dim an AC
lamp by turning it on and off very quickly rather than
reducing the lamp's peak voltage.

reorder

ROM

One of the possible sounds that can be heard after dialing a
telephone number. A reorder sounds exactly like a busy
signal except it is twice as fast; and is used to signify that" all
the circuits are busy now; please try your call again later."

Technically an acronym for Read Only Memory, originally
meant to distinguish it from RAM, meaning Random Access
Memory. (The label is somewhat misleading; as the
information in both types can be randomly accessed.) ROM

313

Control The World with HP-lL

has its information programmed in at the factory, and,
unlike most RAM, retains the information forever. This
makes it an ideal distribution medium for application
software, which is commonly sold as a "Plug-in ROM".

Service Request
When a device on the loop wants the controller's attention,
(such as when someone presses the PRINT key on the IL
thermal printer when it's attached to the 41), the device must
set a bit on the passing frame to alert the controller that
someone needs attention. Usually, the passing data bytes are
a valid transport mechanism, but when there is no routine
traffic, the controller can constantly send IDY (Identify)
commands during otherwise idle times to allow peripherals
to make their needs known.

Synthetic Instructions
HP-41 instructions that cannot be entered into memory by
normal means but execute flawlessly once there. This
powerful technique has been the subject of many books (refer
to Chapter 1), including one that the publisher is willing to
endorse.

Touch Tone (®)
A trade name referring to an efficient tone-signaling method
of telephone dialing. Rather than utilizing pulse trains as in
the olden days, the digits are specified using two
simultaneous, non-harmonic sine waves that sound to many
people like musical notes in the earpiece.

ZENROM

314

A plug-in application ROM developed in Great Britain to
allow direct-entry synthetics and an MeODE programming
environment for the HP-41.

Appendix E: Glossary

315

Control The World with HP-IL

316

AFTERWORD

"Writing a book to increase the world's knowledge is like taking an
eyedropper to the Pacific Ocean and saying, 'Here. '"

-- G. Friedman

Well, I finally got thJ:J1 book off my chest. Most people will view
the contents as an illumination into the world of computers.
However, it should be viewed from a little larger perspective.

Every time we notice a quasar's double image separated by a
couple of arc minutes, we can infer another gravitational lens due
to the mass of about a million previously unnoticed galaxies. A
million galaxies here and a million galaxies there; pretty soon it
adds up to real mass. According to Friedman [1], the universe is
either open or closed, depending on its total mass. As we discover
more mass lurking out there in the dark corners, we can
increasingly look forward to a collapsing closed universe, instead
of a perpetually expanding (open) universe. Thus, our eventual
end will come in a "gigantic crunch" in about 101\11 years rather
than the thermodynamic "heat death" that would have taken over
101\200 years. This is serious business; it's not every day that we
discover our future is cut back by a factor of101\189!

First of all, we are now about 10% of the way from the big bang to
the big crunch. This, therefore, is probably the last book -- and the
last afterword -- to be published during the first tenth of the life of
this universe.

Next -- and much more important -- certain computations
which were possible in an open universe are impossible in a closed
one. For example, consider the insightful paragraph within the

317

Control The World with HP-IL

rectangle at the bottom of this page. This message has about 100
characters, or 600 bits (assuming 6 bits per byte, which is all that is
needed in this case). In order to construct this message by random
search, 2"600 (which is roughly 10"180) distinct states must be
tested. In the open universe of10"200 years, we would have plenty
of time; in the closed universe of only 10"11 years, we would not
have nearly enough time, even if we converted all the universe's
10"90 atoms into computers running at 1 0"30 Hertz.

Thus, extremely convergent processes -- rather than random
ones -- must be at work. Friedman [2] has shown that evolution
and constraint theory have sufficiently powerful convergence over
purely random processes to produce observed results in times
compatible with closed universes.

Finally, just prior to the big crunch, when the Encino sky will be
as uniformly bright as the sun, the proximity of the 10"90 atoms
will permit some truly massive parallel computing at a decent
cycle time. "Picture that!" Friedman [3] said.

As we rush to conclude, a note regarding motivations:
Friedman [4] favors financial gain. On the other hand, Friedman
[5] favors love. The truth, however, is the insight that Friedman
[6] brings:

References

The universe is all 1's and O's.
All else is illusion. The bits

are out there to be crunched
Go get 'em!!

[1] Alexander Friedman, a cosmologist with the same name as
my grandfather (but a little older) who developed the first models
of the expanding universe.
Barrow, "The Anthropic Cosmological Principle", Oxford 1986

318

Afterword

[2] George Friedman, my father, who erroneously thinks that he
has influenced me through either heredity or environment. MS
Thesis UCLA 1956; PhD Dissertation UCLA 1967.

[3] Gary Friedman, photographer for the Los Angeles Times, and
2nd best photographer bearing that name.

[4] Milton Friedman, Nobel Laureate in Economics, whose
hypothesis is that money is important in the affairs of mankind.

[5] David Friedman, the president of Adult Films Association
the same name as my brother (but a little older) -- whose
hypothesis is that sex is important in the affairs of mankind.

[6] Gary Friedman, me.
This book, this page, this line, this this.

319

Control The World with HP-IL

320

INDEX

18% grey card, 80
555 timer, 49,77
74C373 latch (see l.atill2
8-bit port

definition, 29
discriptions, 36
8-bitunidirectional mode, 123

82143A printer, 60
AID converter, 76

calibration, 82
AID full-scale compression and

expansion, 82
AAD,14
AAU,23
AC adapter, 222, 228
AC circuit precautions, 80
AC Devices, 46
AC transformer, 238
ACA,6, 45
accessory ID, 14-18
ACCHR,6, 44
accuracy factor, 59
ACX, 6
ADC0804,76
ADROFF,35
ADRON,35
ADV, 6
alarms, 53

ALMCAT,56
ALMNOW, 100
ALMOUT,55
alpha nulls, 114
ALPHA register, 3
Analog to Digital converter, 76
AND gate buffer, 240
AND gate mask, 239
answering machines, 149
ASCII, 44, 176, 258

ASCII file "TIME", 116
representation, 51, 125

Asimov, Issac, 138
assembly language, 7, 8, 206,

208,211
entering programs, 215
labels, 215

ATTN key recognition, 212
auto address, 14
auto address unconfigure, 23
autodialer, 119
autofocusing, 205
AUTOIO, 102, 169
AVIEW,45
bandpass filter, 129
BIN files, 226
binary

code, 123

321

Control The World with HP-IL

programs, 213
representation, 125

bridge rectifier, 238
busy signal

cadence, 128
state table, 130
subroutine, 130

buzzer, piezo-electric, 211
CALC mode, 7
calibration, transducer, 228
camera attachments, 60
capacitors, deviation from

marked values, 109
Carriage Return, 44
cassette drive, 3
CdS cell, 76
chip select method, 154
chirps, 72
circuitry damage, 162
clock control, 54
clock speed, 208
CMOS, 42,43
comparitor, 77
continuous ON flag, 72, 102
control bits, embedded, 126
converter interface, 43
counting in binary, 41
CPU for 71

IN and OUT registers, 210
instruction set, 210
registers in 71, 209
unused pins, 211

CRlLF,32
Crosstalk, 264
cursor commands, 267
CX modifications, 63
DACI, 30, 49
DACO,31

322

darkroom controller
walk-through, 87
complete instructions, 84

Data communications
equipment(DCE)wiring,
260

data compression, 105
Data terminal equipment (DTE)

wiring, 260
DAVI,31

pulse width, 77
DAVO, 30,41

pulse width, 32
DCL,12
DDL, 12, 32, 47, 134
DDT, 12, 32
debug utilities, 8
device ID, 16
differential input mode, 77
digital filters, 106
DIP switch, 64
disassembly

new 71, 224
old 71, 219

discrepancies, ASCII and
binary, 125

disposable phones, 120
dissolve unit, 233
DSR (Data Set Ready), 263
DTR (Data Terminal Ready), 263
duty cycle, 234
echo, sound, 207
EDTEXT,215
ENABLE INTR, 134
ENQuire/ ACKnow ledge

handshake protocol, 262
ENTER,208
EPROM map, 193, 197

Index

EPROMs, 182
error checking, IL, 101
ESCAPE buffer, 176
escape sequence, 3, 184, 265
expletive, 160
exposure bracketing, 60
exposure curve, 82
extended memory, 149

data files" 116
external interrupts, 101
f- and g- shifted keystrokes, 265
fast busy signal, 136
FINDAID,35
flags for the 41, 17 45

flag 21, 169
flag 55, 103

flip-flop,4,49,56,154
FORTH,7

primitives, 226, 240, 248
FORTH/Assembler ROM (See

ROM)
Fourier analysis, 106
FRNS?,102
GETO, 32, 156
GPIO

transfer buffer, 32
16-bit mode, 183
control register map, 34
power tap, 38

grey card, 18%, 80
HAL 9000 computer, 109
handshake, 30, 32,49

logic, 31
pulse widths, 181
via software, 262

Happy Birthday, 114
hardware modification, 217
hardware precautions, 218

heat sinks, 27
heat, IC damage, 224
Hewlett, Billy, 138
hex inverter, 41
hookswitch status, 126
HP-IL, 1,8,9

chip, 101
HP-ILIRS-232 converter, 259
hybrid transformer, 120
I/O, 53, 205

BASIC and FORTH
compared, 208

IBM PC, 175, 264
IDY, 101, 132
IL Development ROM (See

ROM)
impedance matching network,

245
INA,7
IND,7
inflection, 11 0
INSTAT, 7, 102
interference pattern, 234
interrupts

restrictions, undocumented,
102

hardware, 212
ionosphere, measuring the, 230
IR14,239
ISA line, 12
JK Flip-Flop (See flip flop)
Joseph II, Emperor, 172
keyboards

KEYBOARD IS, 9, 176, 264
scanning, 211
Otrona, 187
scanning techniques, 186
matrix, 177, 185

323

Control The World with HP-IL

parallel, 177
LAD,12
Lassie, 133
last number dialed, 138, 140
latch, 74C373, 41, 108
LED (See Li~ht Emittin~ Diodes)
LEX files, 226
light bulb, 46
light dimmers, 233
Light Emitting Diodes, driving,

41
line feed, 44
line in/line ou, t 245
Load Bytes, 5
lock-up, 127
logic probe, 43
M-957 Touch Tone decoder chip,

124
M-980 Call progress detection

chip, 129
memory retention, 224
MLDL,208
modifications, CX, 63
modular phone jack, 218
Morse code keyer, 211
MSRQ, 32, 123, 129
MTA,33
mystery phrase, 113
NAND gates, 154
negative handshake, 159
null modem cable, 260, 261
offset voltage, 82
Ohm's law, 78
op-amp, 238
opto-isolator, 25, 59,240
OUT register, 217
OUTA, 6, 44, 45
outgoing call monitor, 138, 152

324

OUTPUT,208
parity, 258
passbands, 109
personal space invasion alarm

for Valley Girls, 230
PHBOOK,140
philosophy of tools, 103
Phineas, 53
phone usage monitor, 119
phonemes, 106
photo cell, cadmium sulfide, 76,

79
photographic print timer, 70
pitch (See inflection)
Polaroid SX-70, 205
power supply, 239
PPCROM, 5
PRA,6
PRBUF,6
PREPROC, 136
printer cable assembly, 60
PRINTER IS, 20
prototyping, 206
PRX, 6
pull-up resistors, 226
pulse expander, 77, 181
pulse width modulation, 234
PWRDN, 156, 169
RJS flip-flops, 154
RAT usage, 85
RC time constants, 109
RDYI, 30, 49,113
RDYO, 31
re-order, 136
reference negatives, 80
regulator, 5v, 109
relays, 25,27,154
REMote commands, 262, 266

Index

repeating alarms, 59
RFRM,102
ribbon cable, 221
ringing signal detection, 128
rolodex function, 136, 141
ROM

Extended I/O, 3, 24
FORTH/Assembler, 8, 210,

264
IL Development, 3, 23

RPN,2
RS-232, 29, 257

configuration selector, 261,
263

three-wire scheme, 259
null modem cable, 260, 261

Sagan, Carl, 138
SAI,12
SC-Ol speech synthesis IC, 106
SCOPE mode, 24, 1 79
SDC, 12
SDI,12
SELECT,17
self-reference, 325
serial transmission, 257
service requests, 101, 132, 178,

263
shock potential, 80
slide projectors

advance,243
connection, 245

software handshaking, 262
solder pads, 54
sound track synchronization,

243
speech

digitized, 105
inflection, 11 0

speed, machines, 114
square wave, 208
SST,14
Star Trek, 113
start bit, 258
state table, 129
STATUS, 129, 131
stop bit, 259
stopwatch resolution, 54
suspending alarms, 99
Synthetic Instructions, 4, 72, 113
synthetic speech, 105, 152
TAD,12
telephone line interface, 120,154

coupler, 120
FCC rules, 120

telephone number
preprocessing, 136

telephone, voice quality, 154
Teltone, 129
thermal printer, 3, 44
Thinkjet printer, 20
time module, 53, 206
timed exposures, 60
timer IC (See 555 timer)
torx wrench, 218
Touch Tone (®), 48,123,150

decoding, 124,243
transfer buffer, 113
transmission errors, 102
triac, 26
TRIGGER,7
troubleshooting, 43
tweaking enlarger time, 85
ultrasonic transducer, 205
UNL,16
UNT,16
user codes, 158

325

Control The World with HP-IL

Valley girls, personal space
invasion alarm, 230

voltage
divider, 78
calibration, 80
swing, 79
destructive levels, 109

Votrax Co, 106
Vrefi'2, 82
VU levels, 245
word search, 210
WREG,101
XONIXOFF handshake protocol,

262
XYZALM,71
ZENROM,5
zero-crossing detector, 235

326

ORDER BLANK

Price
per

copy

For HP-7I'S
HP-71 Basic Made Easy, by Joseph Horn $18.95

For HP-7I'S & HP-4I'S
Control the World with HP-IL, by Gary Friedman $24.95

For HP-4I'S
HP-41 Advanced Programming Tips, by A. McCornack & K. Jarett $20.95

HP-41 M-Code for Beginners, by Ken Emery

Inside the HP-41, by Jean-Daniel Dodin

Extend Your HP-41, by W. Mier-Jedrzejowicz

HP-41 Extended Functions Made Easy, by Keith Jarett

HP-41 Synthetic Programming Made Easy, by Keith Jarett
(Includes one Quick Reference Card)

Quick Reference Card for Synthetic Programming

Synthetic Quick Reference Guide (SQRG)

For HP-IOC, IIC, 15C, AND 16C
ENTER (Reverse Polish Notation Made Easy), by J.Dodin

Humor
It's Amazing How These Things Can Simplify Your Life:
The Harold Guide to Computer Literacy

ROM's
Barcode Generating ROM by Ken Emery

AECROM by Redshift Software

Sales tax (California orders only, 6 or 7%)

$24.95

$12.95

$29.95

$16.95

$16.95

$2.00

$5.95

$4.95

$4.95

$199.95

$ 99.00

Add'i
Shipping I st book books

within USA, book rate (4th class) $1.50 $0.50
USA 48 states, United Parcel Service $2.50 $1.00
USA, Canada, air mail $3.00 $1.50
elsewhere, book rate (6 to 8 week wait) $2.00 $1.00
elsewhere, air mail $12.05 for Extend Your HP-41, $6.05 for others

Qty

Free shipping for ENTER and It's Amazing ... with purchase of any other book
Free shipping for QRC plastic cards or SQRG (any number)
Free shipping for ROM's

Enter shipping total here

Total due

Checks must be in U.S. funds, and payable through a U.S. bank.

Amount

$_---­

$_----

Name
Addr~es~s--

Clty=-:-::::-:-_____________________________ Sta te _____ Zlpcode _________ _
Country ___ _

Mail to:
SYNTHETIX, P.O.Box 1080, Berkeley, CA 94701-1080, USA Phone (415) 339-0601

CONTROL THE WORLD WITH HP-IL

Want to try something different than the usual programming applications with

your HP-41 or HP-71? "Control the World with HP-IL" will show you how to

use HP-IL to build and control such diverse items as an intelligent

telephone autodialer/answering machine (complete with a speech

synthesizer!), an automated photographic darkroom controller, an ultrasonic

distance measurement unit, a slide projector dissolve controller for two

projectors, and more. Imagine being able to accomplish all this with your

battery powered, portable calculator/computer!

All the applications are explained in clear, crisp terms, with an easy-to-'

read informal style. Photos, illustrations, and circuit diagrams are used

throughout the book to make all project instructions easy to follow. The

general purpose building blocks and the concepts behind them are so clever

and creative that you'll find dozens of your own uses for them.

Complete program listings and barcode included for all necessary programs.

ISBN 0-9612174-9-9

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

