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Einleitung

Das Mathematik-Paket beinhaltet einen Satz leistungsfihiger Werkzeuge zur Losung einer Vielzahl
von Problemstellungen aus den Bereichen der Mathematik, Physik und der Ingenieurwissenschaften.
Der Zugriff auf diese Werkzeuge ist sehr einfach und bequem, da sie in Form von BASIC-
Schliisselworten zur Verfiigung gestellt werden. Sobald das beiliegende Modul in Ihrem HP-71
eingesteckt ist, haben Sie sofort Zugriff auf die durch das Modul implementierten Schliisselworte; Sie
brauchen weder ein Programm zu laden, noch sonstige zeitraubende Operationen auszufithren. Diese
Schliisselworte kénnen innerhalb eines Programms beliebig verwendet werden; Sie vermeiden dadurch
die fiir Programmaufrufe geltenden Beschrinkungen und reduzieren die fiir Unterroutinen erforder-
lichen Speicherplatzanforderungen.

Das Mathematik-Paket erweitert den Leistungsumfang IThres HP-71 um die folgenden Funktionen und
Operationen:

Komplexwertige Variablen und Matrizen

Héhere reell- und komplexwertige Funktionen

Reell- und komplexwertige Matrizenoperationen

Losungen linearer Gleichungssysteme

Nullstellen von Polynomen und beliebiger reeller Funktionen

Numerische Integration

Finite Fouriertransformation
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Verwendung dieses Handbuchs

Dieses Handbuch unterstellt, daf Sie mit der Bedienung Ihres HP-71 allgemein vertraut und ins-
besondere in der Lage sind, Programme einzugeben, zu editieren, zu speichern und auszufiihren. Des
weiteren sollten Sie die mathematischen Grundlagen der Operationen, die Sie ausfihren wollen,
verstanden haben. Da die im Mathematik-Paket enthaltenen Funktionen und Operationen relativ viele
Teilgebiete der Mathematik abdecken, kann dieses Handbuch aus Platzgriinden nicht als Lehrbuch fur
die jeweils behandelten mathematischen Konzepte dienen.

Die Schliisselworte des Mathematik-Pakets sind unabhéngig voneinander; Sie kénnen sich daher beim
Durcharbeiten dieses Handbuchs auf diejenigen Schliisselworte beschranken, die fiir Sie von be-
sonderem Interesse sind. Jeder Abschnitt in diesmm Handbuch enthélt Information tber Schlisselworte,
die ein bestimmtes mathematisches Teilgebiet abdecken - reellwertige Funktionen,
Matrizenrechnungen usw. Alle nach Abschnitt 5 vorgestellten Schlisselworte (mit Ausnahme von
FHEOOT und IMTEGRAL) benutzen Felder bei der Ausfiihrung. Die Verwendung von Feldern mit dem
HP-71 wird in den Abschnitten 3 und 14 des HP-71 Benutzerhandbuchs beschrieben.

Feldtypen

Das Mathematikpaket unterscheidet zwei Typen von Feldern: Vektoren und Matrizen. In diesem Hand-
buch entspricht der Begriff Vektor einem einfach indizierten (eindimensionalen), der Begriff Matrix
einem doppelt indizierten (zweidimensionialen) Feld. Indizes miissen reellwertige Ausdriicke sein. Bei
der Programmausfithrung werden Indexausdriicke ganzzahlig gerundet. Der Wert dieser Ganzzahl muf
sich im Bereich [0,656535] (JFTI0H EASE @) oder [1,65535] (JFTIOH ERSZE 1) befinden. In
praktisch allen Fillen ist die Anzahl der Elemente eines Felds nur durch die Grofie des verfiigharen
Speicherplatzes beschrankt.

Felder konnen vom (Daten-) Typ REAL, SHORT, INTEGER, COMFLEY oder COMFLER SHORT
(siche unter CUOMFLEX und COMPLEX SHORET in Abschnitt 3) sein. MAT Anweisungen des
Mathematik-Pakets dndern nicht die Typdeklaration eines Felds; bei der Zuweisung von Werten aus
einem FEFAL Feld an ein SHORT oder IHTEGEFR Feld werden die Werte gerundet, bevor sie in dem
betreffenden Feld gespeichert werden.



Umdimensionieren von
Einige Schliisselworte erlauben ein optionales Umdimensionieren eines Felds; diese Art der
Umdimensionierung wird im folgenden als explizite Umdimensionierung bezeichnet. Andere Schliissel-
worte dimensionieren Ergebnisfelder, wenn mdglich, automatisch um, um die Anzahl der durch die
Schliisselwortoperation erzeugten Elemente zu verarbeiten. Dies wird als implizite Umdimensionierung
bezeichnet. Die durch ein Schliisselwort ausgefiihrte Art der Umdimensionierung, implizit oder explizit,
wird in der Beschreibung des Schliisselworts angegeben.

Eine explizite Umdimensionierung liegt vor, wenn die Grofie des Felds und die Anzahl der Indizes
durch Vorgabe der Anzahl und des Werts neuer Indizes gedndert wird. Die 3 x 4 Matrix A vom Typ
FEAL wird beispielsweise mit der HP-71 Anweisung REAL A3} explizit in einen 3-dimensionalen
Vektor umdimensioniert. Beachten Sie, daf Felder mit expliziter Umdimensionierung von Matrizen in
Vektoren und umgekehrt umgewandelt werden kdénnen. Bei einer expliziten Umdimensionierung wird
auch OFTIOM EASE neu ausgewertet; d.h. die untere Grenze der Feldindizes wird bei verinderter
OFTIOH BASE Einstellung zuriickgesetzt.

Eine implizite Umdimensionierung liegt bei Operationen des Mathematik-Pakets nur in Form von
MAT Ergebnisfeld = Operation (Operandenfeld(er))

vor. Eine implizite Umdimensionierung éndert nur die Grofe eines Felds und erlaubt weder das
Umwandeln von Matrizen in Vektoren und umgekehrt noch wird JFTIOH EA'SE neu ausgewertet.

ochiusseiworteriauterungen

In jedem Abschnitt dieses Handbuchs wird zur Beschreibung von Name, Aufgabe, Syntax und Arbeits-
weise der einzelnen Schliisselworte das folgende Format verwendet:

Schliisselwortname Aufgabe des Schiiisselworts

Syntax

| Zuldssige Datentypen und Wertebereiche fiir das Schilisselwort.

Beschreibung der vom Schliisselwort zuriickgegebenen Werte und der allgemeinen Arbeitsweise des
Schlisselworts.

Schliisselwortname. Innerhalb dieses Handbuchs wird iber diesen Namen auf das jeweilige
Schliisselwort Bezug genommen. Der Name ist in der Regel eine mnemonische Umschreibung der von
dem Schliisselwort ausgefithrten Funktion. In den meisten Fillen ist der Name in eine langere An-
weisung einzubetten, die zusétzlich Argumente, Klammern und dhnliches enthilt; der Name allein ist
normalerweise keine zuldssige BASIC-Anweisung.



der
ssel-
 die
rung
lizit,

lizes
alen
n in

wird
rter

das
et.

its-

orts

es

lige
von
An-

ist

Die Namen von mehreren Schlisselworten sind identisch mit den Namen von Schliisselworten, die
bereits standardméifig in Threm HP-71 vorhanden sind. Beispiele dafiir sind O I5F, + und #. In diesen
Fallen bestimmt die Syntax, in die das Schliusselwort jeweils eingebettet ist, welche Operation aus-
gefithrt wird. Grundsétzlich sind alle Operationen, die durch den HP-71 selbst angeboten werden, auch
nach dem Einsetzen des Mathematik-Moduls verfigbar.

Syntax. Dies ist eine Beschreibung der zuldssigen BASIC-Anweisungen, in denen der Name des
Schlisselworts auftreten kann. Auf der nichsten Seite finden Sie eine Beschreibung der zur Er-
lauterung der Syntax eines Schliisselworts benutzten Konventionen.

Typographische Darstellung Bedeutung

Funktmatr i In Punktmatrix gesetzte Elemente (wie COMFLE ) kénnen in Grof-
oder Kleinschreibung eingegeben werden. Die in den Beispielen
dieses Handbuchs verwendeten Anweisungen, Funktionen und

Operatoren werden in CROSSELUCHSTAEEHN eingegeben.

kursiv Kursiv gesetzte Elemente wie X in der Anweisung S IHH X sind
von Thnen einzugebende Variablen oder Parameter.

halbfett In halbfett gesetzte Variablen stellen Felder dar.

[] Eckige Klammern kennzeichnen optionale Elemente. ZOMFLEX
Indexgrenze [, Liste von Indexgrenzen] gibt beispielsweise an, daf
COMFLE % mehrere, jedoch mindestens eine Dimensionsspezifikation
enthalten kann.

iibereinander Ubereinandergesetzte Elemente deuten an, daR genau eines der an-
gesetzt gegebenen Elemente auszuwihlen ist.

Drei Punkte deuten als Wiederholungszeichen an, daR in eckige
Klammern gesetzte Elemente wiederholt angegeben werden kénnen.
MAT IWFUT A[.B]... gibt beispielsweise an, daf MAT IHFUT
mindestens eine Variable benétigt; die Anweisung akzeptiert jedoch
auch mehrere durch Komma voneinander getrennte Variable.

Zuléssige Datentypen und Wertebereiche. Den Angaben in der Syntaxbox kénnen Sie entnehmen,
welchen Datentyp ein Wert haben und in welchen Bereich er liegen muf, um als Argument fiir das
Schlisselwort verwendet werden zu konnen. Lesen Sie diese Information sorgfiltig, um das Auftreten
von Fehlern zu vermeiden bzw. um Fehlerursachen aufzuspiiren. Dies ist keine Beschreibung des
mathematischen Definitionsbereichs der Funktion, die von dem Schlisselwort berechnet wird.

Zuriickgegebene Werte und Operationseinzelheiten. Diese in der Box unterhalb der Syntaxbox
gemachten Angaben erldutern die Funktion des Schliisselworts und geben an, welche Werte das
Schlusselwort zuriickgibt und ob eine Feldumdimensionierung (falls notwendig) implizit oder explizit
durchgefiithrt wird.
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Beispiele

Jeder Abschnitt enthalt eine Reihe von Beispielen, die die Verwendung der in dem Abschnitt
vorgestellten Schliisselworte beschreiben. Wenn Sie eine Beispiel nachvollziehen wollen, sollten Sie die
unter der Uberschrift Eingabe/Ergebnis aufgefiihrten Anweisungen (in Grof- oder Kleinschreibung)
eintasten und jede Zeile mit abschliefen. Danach sollte die Anzeige Thres HP-71 wie die
unter dem Befehl erscheinende Anzeigeillustration aussehen - sofern Sie die Betriebszustéinde Ihres
HP-71, wie nachstehend angegeben, eingestellt haben.

» Alle, aufier den nachstehend genannten Betriebszustinden sollten gemift den unter Rucksetz-
bedingungen in Abschnitt ”Systemcharakteristika” des Referenzhandbuchs gemachten Angaben
eingestellt werden.

» Stellen Sie die Zeilenbreite mit WIOTH 22 auf 22 Zeichen ein.

» Stellen Sie die Zeitspanne zwischen aufeinanderfolgenden Anzeigen mit DEL FY so ein, daf jede
Anzeigezeile gelesen und verstanden werden kann. Die Anweisung DELAY wird im HP-71
Referenzhandbuch und in Abschnitt 1 des HP-71 Benutzerhandbuchs beschrieben. Dort konnen Sie
nachlesen, wie die Zeitdauer, in der eine Anzeige sichtbar ist, eingestellt wird. Es empfiehlt sich zur
Anzeige von Feldelementen die Einstellung DEL A" & zu verwenden. Dadurch bleibt jede Anzeige
solange sichtbar, bis Sie eine beliebige Taste wie beispielsweise driicken.

Zusatzliche Information

Einige Abschnitte des Mathematik-Pakets enthalten Angaben zur effizienten Verwendung der
jeweiligen Schliisselworte bei der Durchfithrung anspruchsvollerer Operationen. Sollten Sie trotzdem
noch weitere Angaben benétigen, schlagen Sie bitte im Handbuch HP-15C Fortgeschrittene Funktionen
nach. Obwohl sich das Mathematik-Paket in seiner Arbeitsweise und seinen Fahigkeiten von dem
technisch-wissen-schaftlichen Taschenrechner HP-15C unterscheidet, treffen viele der in dem
genannten Handbuch enthaltenen Beschreibungen auch auf das Mathematik-Paket zu. Dies gilt ins-
besondere fiir die Techniken zur Steigerung der Effizienz der implementierten Algorithmen zur Lésung
von Gleichungssystemen, numerischen Integration, Nullstellenbestimmung und zur Durchfiihrung von
Matrizenoperationen sowie fir die Ausfilhrungen hinsichtlich der Genauigkeit von numerischen
Berechnungen.
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Zum Einsetzen des Moduls sollten Sie das Modul mit der
Beschriftung nach oben halten und dann in den Einschubschacht
drucken, bis es einrastet. Dabel sollten die obigen Vorsichts-
mafinahmen beachtet werden.

Abschnitt 1

Einsetzen und Entfernen des Moduls

Sie konnen das Mathematik-Modul in jeden der vier Einschubschichte auf der Vorderseite des
Computers einsetzen.

VORSICHT

» Achten Sie darauf, daB der HP-71 (durch Driicken von (OFF]) ausgeschaltet ist, bevor Sie

irgendein Applikations-Modul einsetzen oder entfernen.

Wenn Sie ein Modul entfernt haben, um das Mathematik-Modul einsetzen zu konnen, sollten Sie
zum Zurlicksetzen interner Zeiger den Computer vor dem Einsetzen des Mathematik-Moduls ein-
und ausschalten.

» Stecken Sie keine Finger, Werkzeuge oder sonstige Fremdobjekte in die Einschubschéchte des

Computers. Die Nichtbeachtung dieser VorsichtsmaBnahme kann zu geringfligigen elektrischen
Schldgen und Stdrungen von Herzschrittmacherfunktionen fiihren. Des weiteren konnten die
Kontakte in den Einschubschéchten sowie die internen Schaltkreise des Computers beschédigt
werden

Sollte ein Modul beim Einsetzen klemmen, kdnnten Sie es verkehrt herum halten. Der Versuch, das
Modul mit Gewalt in den Einschubschacht zu driicken, kann zu einer Beschadigung des Computers
oder des Moduls flihren.

Behandeln Sie nichteingesetzte Einsteck-Module besonders vorsichtig. Fiihren Sie keine Gegen-
stdnde in die Kontaktbuchsen des Moduls ein. VerschlieBen Sie ebenso nichtbenutzte
Einschubschdchte immer mit Modulattrappen. Die Nichtbeachtung dieser VorsichtsmaBnahmen
kann zu einer Beschédigung des Moduls oder des Computers fiihren.

Zum Entfernen des Moduls ist das Modul mit den Fingerndgeln am Griffstiick auf der Vorderseite
anzufassen und dann aus dem Einschubschacht herauszuziehen. Anschliefiend ist der Einschubschacht
mit einer Modulattrappe zu verschliefen, um die Kontakte vor Staub und sonstigen Partikeln zu
schitzen.
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Abschnitt 2

&.meandlung zZwischnen Zaniensystemen

Binare, oktale und hexadezimale Darst:

Die in diesem Abschnitt beschriebenen Funktionen erméglichen die Manipulation von Zahlen, die zu
anderen Zahlensystemen als dem {iblichen Dezimalsystem gehdren.

Der HP-71 unterstellt, daf jede in einer numerischen Variablen abgelegte oder iiber das Tastenfeld
eingegebene Zahl eine Zahl aus dem dezimalen Zahlensystem ist; aus diesem Grund muf jede Zahl aus
einem anderen Zahlensystem als Zeichenkette (oder String) eingegeben und gespeichert werden. Ins-
besondere konnen derartige Zahlen nur in Variablen gespeichert werden, deren Namen mit einem
Dollarzeichen ($) enden, und miissen bei der Eingabe tiber das Tastenfeld in Anfiihrungszeichen gesetzt
werden.

In den nachstehenden Tabellen reprisentiert S§ einen Bindr-, Oktal- oder Hexadezimalstring bzw.
einen Stringausdruck des entsprechenden Typs.

Ein Bindrstring ist eine Zeichenkette, die nur aus den Werten 0 und 1 besteht und eine Zahl aus
dem bindren (dualen) Zahlensystem (Basis 2) darstellt. Ein bindrer Stingausdruck ist entsprechend
ein Stringausdruck, der bei der Auswertung einen Bindrstring liefert.

Ein Oktalstring ist eine Zeichenkette, die nur aus den Werten O bis 7 besteht und eine Zahl aus
dem oktalen Zahlensystem (Basis 8) darstellt. Entsprechend ist ein oktaler Stringausdruck ein
Stingausdruck, der bei der Auswertung einen Oktalstring liefert.

Ein Hexadezimalstring besteht aus den Zahlen 0 bis 9 und den Buchstaben A bis F und stellt eine
Zahl aus dem hexadezimalen Zahlensystem (Basis 16) dar. (Die Buchstaben kdnnen in Grof- oder
Kleinschreibung eingegeben werden.) Ein hexadezimaler Stringausdruck ist ein Stringausdruck, der
bei der Auswertung einen Hexadezimalstring liefert.

nktionen zur Basisumwandlung
BVAL

Umwandlung von binér, oktal und hexadezimal in dezimal

ELVHLCSS. N

wo S$ ein bindrer Stingausdruck ist, mit einem Wert nicht groBer als
1110100011010100101001010000111111111111 (bindr), und N ein numerischer Ausdruck, dessen
gerundeter Wert 2 ergibt;

oder S$ ein oktaler Stringausdruck ist, dessen Wert nicht gréBer als 16432451207777 (oktal) ist, und N
ein numerischer Ausdruck, dessen gerundeter Wert 8 ergibt;

oder S$ ein hexadezimaler Stringausdruck ist, dessen Wert nicht gréBer als EBD4A50FFF (hexadezimal)
ist, und N ein numerischer Ausdruck, dessen gerundeter Wert 16 ergibt.

15



2. Umwandlung zwischen Zahlensystemen

BVAL (Fortsetzung)

Wandelt einen Stringausdruck S$, der eine Zahl zur Basis N reprdsentiert, in den Aquivalenten |
- Dezimalwert um. Der Wert des Dezimaldquivalents darf nicht groBer als 999 999 999 999 (dezimal) sein. |

Kann nicht im CALC-Modus verwendet werden.

L —e —

BSTR$ Umwandlung von dezimal in binar, oktal oder hexadezimal

BETREEIX,N?

| wo X ein numerischer Ausdruck im Bereich 0 < X < 999999999 999,5 und N ein numerischer Ausdruck |
| ist, der bei der Auswertung nach Rundung auf eine ganze Zahl entweder 2, 8 oder 16 ergeben muB. |

Wandelt den gerundeten ganzzahligen Wert von X (dezimal) in den &quivalenten String zur Basis N um. i

Bei N = 16 werden die GroBbuchstaben A bis F zurlickgegeben.

Kann nicht im CALC-Modus verwendet werden.

Beispiele
Eingabe/Ergebnis
BEMRL O LELTEY

16 Dezimalédquivalent von 1010 (binér).

SEEEN
4%, 20 [ENDLINE

§ Dezimalaquivalent des Binarstings “1111”.

Bl

Dezimalédquivalent des Binéarstrings “11111111".

BEETREECE, 20 [ENDLINE

i1 Binérdarstellung von 3 (dezimal).
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RELTE B

Oktaldarstellung von 72 (dezimal).

Binardarstellung von AF1C8 (hexadezimal).

Oktale Summé von 14772 (oktal) und 570
(oktal).

Weitere Informationen

Bei der Bestimmung des Bereichs der zuldssigen Parameter fur die drei Schlisselworte zur
Basisumwandlung lagen die folgenden Betrachtungen zugrunde:

, Die Schliisselworte geben das exakte Resultat fur jede ganze Zahl im Bereich der zuldssigen
Parameter zurtck.

, Die Schliisselworte erzeugen zu einander inverse Abbildungen; d.h. die Hintereinanderausfithrung
liefert in beiden Richtungen fiir ganze Zahlen jeweils die Identitatsabbildung.

Die ganzen Zahlen von 0 bis 999 999 999 999 bilden den gréfiten Block von aufeinanderfolgenden,
nichtnegativen ganzen Zahlen, die der HP-71 in einem Ganzzahl-Format anzeigen kann.






Abschnitt 3

X

i in diesem Abschnitt beschriebenen Anweisungen und Funktionen dienen zur Deklaration und
Manipulation komplexer Zahlen. Folgende Operationen sind verfiighar:

* Deklaration von komplexen Variablen und Feldern mit den Anweisungen COMFLEX und
dHMRFLER SHORET,

* Erweiterung der Variablenzuweisungen des HP-71 und der Funktion FEZ auf komplexe

Anwendungen.

* Erweiterung des HP-71 Formatstrings IMAGE auf komplexe Felder.

* Umwandlung von reellen in komplexe Zahlen.

De

COMPLEX Erzeugen von komplexen Variablen mit 12-stelliger Genauigkeit
| g

"MELEX Dimensionsspezifikator [, Dimensionsspezifikator]

wo die Syntax von COMFLEX der Syntax der Schllisselworte FEAL, SHORT und IHTEGER ent-
- spricht. Dimensionsspezifikator steht hier flr numerische Variable [* Dimension 1 [. Dimension 2] ],
wobei Dimension 1 und Dimension 2 reelle numerische Ausdriicke sind.

-

- ®ann nicht im CALC-Modus verwendet werden.

-

COMPLEX SHORT Erzeugen von komplexen Variablen mit 5-stelliger Genauigkeit
MELER ZHORT Dimensionsspezifikator [, Dimensionsspezifikator)
wo die Syntax von COMFLEX SHORET der Syntax der Schiliisselworte FEFAL, SHORT und

(HTEGER entspricht. Dimensionsspezifikator steht hier fir numerische Variable [ Dimension 1 [,
Dvmension 2] ], wobei Dimension 1 und Dimension 2 reelle numerische Ausdriicke sind.

#ann nicht im CALC-Modus verwendet werden.
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Der von Variablen und Feldern der Typen CCOMFLEY und COMFLE ZHORT bendtigte Speicherplatz
wird bei der Ausfilhrung der entsprechenden Deklarationsanweisung zugewiesen; zusétzlich werden
nicht zuvor existierende Variablen und die Elemente noch nicht existierender Felder mit dem Wert
(0,0) vorbesetzt. Die Auswertung von Feldobergrenzen erfolgt gleichfalls bei der Ausfihrung der
Deklarationsanweisung. Die Untergrenze fiir jeden Feldindex ist in Abhingigkeit von der bei der Aus-
fiihrung der Deklarationsanweisungen giiltigen CF TI0OH EA=E Einstellung entweder 0 oder 1.

Die Anweisung C:[1MFLE* dimensioniert bereits existierende Felder vom Typ COMFLE um, setzt die
Feldelemente jedoch nicht auf (0,0) zurick. Entsprechend dimensioniert die Anweisung
COMELEY SHORT bereits existierende Felder vom Typ COMFLEX ZHORT um, setzt die
Feldelemente jedoch nicht auf (0,0) zuriick. Bei einer Erweiterung eines Felds werden alle neu |
erzeugten Elemente mit (0,0) vorbesetzt. Bei einer Umdimensionierung bleibt die Reihenfolge der Ele-
mente innerhalb eines Felds erhalten, jedoch nicht notwendigerweise deren Lage innerhalb des Felds.
Weitere Informationen konnen Sie unter “Deklarieren von Feldern (DXIM, REARL, SHOET,
IMTEGER)” in Abschnitt 3 des HP-71 Benutzerhandbuchs nachlesen.

In der nachstehenden Tabelle werden die fiir Variablen und Felder vom Typ COMFLE: und
COMPLEX SHORT geltenden Bedingungen angegeben.

Numerische Variablen vom Typ COMFLEX und COMFLEX SHORET

Anfangswert (0,0)
Numerische Genauigkeit
COMPLE R 12 Dezimalstellen
COMPLES SHORET 5 Dezimalstellen
Bereich des Exponenten +499
Maximale Anzahl der Felddimensionen 2
Maximale Anzahl von Feldelementen 65535

Speicherplatzbelegung von einfachen Variablen

(in Bytes)
COMPLER 25.5
COMPLEX SHORT 18.5
Speicherplatzbelegung von Feldern
COfPLE®= 16 x (Dimension 1 — OFTIOH EASZE Einstellung + 1)
x (Dimension 2 — OFTI0H EARSE Einstellung + 1) + 9.5
COMPLEX SHORT 9 x (Dimension 1 — OF T Ik BEASE Einstellung + 1)

x (Dimension 2 — OF T 1M BAZE Einstellung + 1) + 9.5
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{,) Umwandlung reeller in komplexe Zahlen

X. Yo
wo X und Y reell- oder komplexwertige numerische Ausdriicke sind.

Der HP-71 erkennt eine komplexe Zahl als geordnetes Paar reellwertiger Zahlen. (X,Y) ist als (Realteil
von X, Realteil von Y) definiert. Daher entspricht (X,Y) bei komplexwertigem X oder Y nicht unbedingt

X =Y.

Kann im CALC-Modus verwendet werden.

REPT Realteil einer komplexen Zahl

FEFTCZN
wo Z ein reell- oder kompexwertiger numerischer Ausdruck ist.

Gibt den Realteil (die erste Komponente) von Z zuriick. Bei reellwertigem Z ist EEFT (2 = Z.

Kann im CALC-Modus verwendet werden.

IMPT Imaginérteil einer komplexen Zahl
IMFTCZY
wo Z ein reell- oder komplexwertiger numerischer Ausdruck ist.

Gibt den Imagidrteil (die zweite Komponente) von Z zuriick. Bei reellwertigem Z ist IMFTCZ2 = 0.

Kann im CALC-Modus verwendet werden.
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Weitere komplexe Operationen

Das Mathematik-Paket erlaubt die Ausdehnung vieler Operationen des HP-71 auf den komplexen Fall.
In Abschnitt 5 wird die Anwendung numerischer Funktionen wie & I H, # usw. auf den komplexen Fall
beschrieben. Weitere Erweiterungen umfassen die Zuweisung von Werten auf komplexe Variablen, die
Ausfiihrung der Funktion FEZ, wenn das letzte Ergebnis komplexwertig war, usw. Der HP-71 ist also
bei eingestecktem Modul in der Lage, mit komplexen Zahlen in fast der selben Weise zu arbeiten wie
mit reellen Zahlen.

Ein weiteres Leistungsmerkmal des Mathematik-Pakets ist die nachstehend beschriebene Erweiterung
von Formatstrings auf komplexe Feldspezifikatoren. Zusitzliche Informationen tber die Verwendung
von Formatstrings kénnen Sie im HP-71 Referenzhandbuch unter dem Schlisselwort IMAGE
nachlesen.

C(,) * Komplexe Felder in Formatstrings

| [n] © Formatstring *

wo n ein optionaler Multiplikator ist.

' Ein komplexwertiger Ausdruck wird bei der Ausgabe mit 01 =F oder FRIMT dem Formatstring ent-
| sprechend formatiert. Zuerst wird der Realteil, anschlieBend der Imaginérteil formatiert. Bei der Ausgabe

wird die Zahl in Klammern eingeschlossen, wobei Real- und Imaginérteil durch Komma getrennt werden.
| Das Komma wird nur bei vorhandenem Imaginérteil gesendet.

| Im Formatstring darf nicht vorhanden sein:

» Stringfelder
« Eingebettete komplexe Formatstrings

| Der Formatstring muB zwei numerische Spezifikatoren enthalten. Fiir nichtnumerische Spezifikatoren
gelten (auBer den oben angegeben) keine Einschrdnkungen.

!
i
|
i
t
; » Ein Wagenriicklaufzeichen (#)
|
|
E

| Kann nicht im CALC-Modus verwendet werden.

|
|
|
|
l
I
L

Komplexwertige Ausdriicke in einer DISF WS IHG oder FRIMT WS IMEG Ausgabeliste diirfen nur
iiber ein in der IMAZE Liste angegebenes komplexes Feld formatiert werden. Reellwertige Ausdriicke
in einer OI%F LSIHG oder FRIMNT USIHG Ausgabeliste diirfen jedoch nicht {ber ein in der
IMFAGE Liste angegebenes komplexes Feld formatiert werden.
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Beispiele

COMPLEX, COMPLEX SHORT, (,), REPT, IMPT

Eingabe/Ergebnis
DESTROY ALL

COMFLEM

END LINE

COMFLEH

END LINE

L}

_ ENDLINE

b

o= w1l ERRCZED

TaZa, MOV, 7l

SHORT Cod, 70,

2 |END LINE

= . Sa=2 [END LINE

.12 06, S (ENDLINE
CEL,E DRI &
=col,2n 41 (END LINE]

END LINE

£1,3

—

Stellt sicher, daf keine der in den nach-
stehenden Anweisungen verwendeten Variablen
und Felder existieren. Bereits existierende
Felder und Variablen wiirden bei den an-
schliefenden Feld- und Variablendeklarationen
nicht mit (0,0) vorbesetzt werden.

Erzeugt eine komplexe Variable, einen
komplexen Vektor und eine komplexe Matrix. Die
Variable & und alle Elemente der Felder |11 und
'/ werden mit (0,0) vorbesetzt.

Erzeugt ein komplexes Feld und eine komplexe
Variable vom Typ SHOET. % und alle Elemente
von [ werden mit (0,0) vorbesetzt.

Weist der Variablen Z die komplexe Zahl 1 + 5i
zu.

Die Darstellung der komplexen Zahl 1 + 5i auf
dem HP-71.

Weist dem Feldelement '/ : &, 53 die reelle Zahl

S ZU.

Zeigt die Werte von zwei Feldelementen an.

Dem komplexen Feldelement %'+ 1, 1 wurde

bei der Erzeugung der Wert © &, & zugewiesen.
Die reelle Zahl = wurde durch die Zuweisung auf
ein komplexes Feldelement in die komplexe Zahl

o

© 3, B umgewandelt.

Weist v den komplexen Wert (1,3) zu (wegen
(1,3) = ¢REFTCL .2 ,REFTC3,45).

Zeigt die komplexe Zahl %' an.



RES Zeigt den Wert des zuletzt ausgefilhrten oder
angezeigten numerischen Ausdrucks an, der in
diesem Falle komplexwertig ist.

L

REPT O IMRTOY D

—
el

Komplexe Formatstrings
Eingabe/Ergebnis

5 STD @ COMPLEX Y

10 Y=(69.14,—12.7)

20 DISP USING 100; Y

30 DISP USING 200; Y,Y

40 DISP USING 300; Y,Y

50 DISP USING 400; Y,Y,Y

60 DISP USING “C(DDD,DDD)";Y
100 IMAGE C(2D.2D,4D.2D"i")

200 IMAGE C(4Z XXX, 4%),/,C(4Z XXX4%)
300 IMAGE C(B,K”i”),X,C(*,4%.2DE)
400 IMAGE 3C(2(DDD,XX))

RUN

[ ‘ P = B Von Zeile 100 erzeugte IMAGE Anzeige.
RS S L=d130 Von Zeile 200 erzeugte I MFAGE Anzeige.




sder

ler in

Von Zeile 300 erzeugte IMAGE Anzeige.

Von Zeile 400 erzeugte IMAGE Anzeige.

Von Zeile 60 erzeugte 1MAGE Anzeige.






Abschnitt 4

Reelle Skalarfunktionen

perbolische Funktionen

(nachstehend beschriebenen) Funktionen =IHH, C%H und THAMH sind auch fiir komplexe
Argumente definiert. Siehe Abschnitt 5.

H Sinus Hyperbolicus

SIHHOX?

 wo X ein reellwertiger numerischer Ausdruck mit [X| < 1151.98569368 ist.

Kann im CALC-Modus verwendet werden.

- COSH Cosinus Hyperbolicus

COSHOX

wo X ein reellwertiger numerischer Ausdruck mit [X| < 1151.98569368 ist.

Kann im CALC-Modus verwendet werden.

TANH Tangens Hyperbolicus

THHHOX?

~ wo X ein reellwertiger numerischer Ausdruck ist.

Kann im CALC-Modus verwendet werden.
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ASINH Inverser Sinus Hyperbolicus
ASIHHOX D
wo X ein reellwertiger numerischer Ausdruck ist.

Kann im CALC-Modus verwendet werden.

ACOSH Inverser Cosinus Hyperbolicus
ACOSHOXD
wo X ein reellwertiger numerischer Ausdruck mit X = 1 ist.

Kann im CALC-Modus verwendet werden.

ATANH Inverser Tangens Hyperbolicus

HTAMHCX
wo X ein reellwertiger numerischer Ausdruck mit —1 < X < 1 ist.

Kann im CALC-Modus verwendet werden.

Weitere numerische Funktionen

GAMMA Gamma Funktion
GARFMA X
wo X ein reellwertiger numerischer Ausdruck ist, dessen Bereich wie folgt definiert ist:
X ungleich Null oder einer negativen ganzen Zahl und

—253 < X < 254.1190554375

Wie der Graph von GAMMA (X zeigt, bedingen bestimmte X-Werte im Bereich —263 < X < —253
eine Bereichsunterschreitung von GHMMA X,

Werte von X < —263 und [GAMMACX?| < MIMREAL bedingen immer eine Bereichsunterschreitung
von GAMMA (X
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yolicus
(Fortsetzung)

X eine positive ganze Zahl ist, gilt GAMMACX? = FACT<X—11.
ein ist GAMMACXY = [ (X) fur X > 0 als

Tx) = J;mtx_’e_'dt

olicus g fur andere Werte von X durch analytische Fortsetzung definiert.

im CALC-Modus verwendet werden.

Logarithmus zur Basis 2
— ) —

Roczx

:_ o X ein reellwertiger numerischer Ausdruck mit X > 0 ist.

— S —— L — |

olicus

LOGZ:XT = logyX) = IT:(%%

im CALC-Modus verwendet werden.

ALE10

Skalierung mit Zehnerpotenzen

SCALELEOX, PO |
o X ein reellwertiger numerischer Ausdruck ist und P ein reellwertiger numerischer Ausdruck ist, der |

nktion der Auswertung eine ganze Zahl ergeben muB.

. ipliziert X mit 10 hoch P durch Addition von P zum Exponenten von X. Bei langen Kettenrechnungen
wonnen Bereichsiiberschreitungen und -unterschreitungen durch die Verwendung von ZCHLELH 5
wermieden werden.

'Iann im CALC-Modus verwendet werden. i

-253

tung




Reelle Skalarfunktionen

Ganzzahlige Rundung

IROUND Rundung auf eine ganze Zahl
TR X

wo X ein reellwertiger numerischer Ausdruck ist.

| Rundet X unter Verwendung der momentanen JF T IOH ROUMD Einstellung auf eine ganze Zahl.

Kann im CALC-Modus verwendet werden.

Information zuriickgebende Funktionen

NANS$

NaN-Ursache
FEAMHE X

wo X ein reellwertiger numerischer Ausdruck ist.

| Gibt einen String zuriick, der die im NaN-Argument der Funktion enthaltene Fehlernummer enthalt; d.h.
es wird die Nummer desjenigen Fehlers zuriickgegeben, durch den M=zt erzeugt wurde. Der zurlick-
' gegebene String entspricht der von der Funktion EFFH zurlickgegebenen Nummer. (Siehe HP-71
Referenzhandbuch.) Die LEX-Identifikationsnummer ist jedoch O fir alle von Funktionen des Mathematik-
| Pakets erzeugte Hat‘s, da das Mathematik-Paket das Auftreten von Hab's nur durch HP-71
| Fehlermeldungen kennzeichnet.

| Wenn X ungleich HaH ist, gibt HFAM% X einen Nullstring zuriick.

Kann nicht im CALC-Modus verwendet werden.

NEIGHBOR N#chste Maschinenzahl

HEIGHEOR (X, Y

wo X und Y reellwertige numerische Ausdriicke sind.

Gibt die ndchste zu X in Richtung von Y liegende, maschinendarstellbare Zahl zuriick. Dies ist in Ab-
hangigkeit von ¥ entweder die néchstkleinere oder néchstgroBere Machinenzahl zu X. HE I GHEOF dient
speziell zur Auswertung einer Funktion in unmittelbarer Nachbarschaft eines gegebenen Wertes.

' Kann im CALC-Modus verwendet werden.
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Typ und Dimension eines Ausdrucks

X ein reell- oder komplexwertiger Ausdruck, ein Stringausdruck oder ein Feld ist.

S wie in nachstehender Tabelle angegeben je nach Typ und Dimension von X eine ganze Zahl im
sch von 0 bis 8 zuriick.

auBer bei String- und Feldargumenten im CALC-Modus verwendet werden.

X

TYPE X

Einfach reell (einschlieBlich einfache
Variablen vom Typ IMNTEGEFR,
SHORT und REAL).

Einfach komplex (einschlieBlich ein
fache Variablen vom Typ COMFLE X
und COMFLEX SHORT.)
Einfacher String

Feld vom Typ IHMTEGER

wl a e

TN R

|

Cosinus Hyperbolicus einer numerischen

Konstanten.

. Feld vom Typ SHLOET
:;C;; Feld vom Typ FERAL
stk | Feld vom Typ COMPLEY SHORT
iP-71 | Feld vom Typ COMFPLEX

Stringfeld

| @Beispiele
onzahl IBOSH, SINH, ATANH, ACOSH
~— | |Bingabe/Ergebnis

| IeocsH i@ (ENDLINE]
— .
1 Ab-
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SIHMHO L Z+27 30

SEER, 1ZASSEE
=" [(END LINE
ATAMHO LSRR CH )
L AAESTIGIAZE
FOOSHOCOSHS2@8 2 2 [ENDLINE
ZEE
LOG2, IROUND
Eingabe/Ergebnis
LOGEC2"17 5 [ENDLINE
17

QFTION ROUMD HEAR
IROUMOC 234, 50

oy
o,
Caliie ]

OFTION ROUHD FPOS
IROUMOEZE4, S0

Sinus Hyperbolicus eines numerischen
Ausdrucks.

Inverser Tangens Hyperbolicus eines
numerischen Ausdrucks mit einer numerischen
Variablen.

Inverser Cosinus Hyperbolicus eines
numerischen Ausdrucks.

Logarithmus (zur Basis 2) eines numerischen
Ausdrucks.

Rundet auf die nachste ganze Zahl (im
Zweifelsfall auf die nachste gerade ganze Zahl).

Rundet auf die nichstgrofiere ganze Zahl.




1en

hl).

, NEIGHBOR, TYPE

e/Ergebnis
RAPCIVL,. 20

= 1M IHF 1 [ENDLINE

MEH: Inwalid HAra

i

11

IGHEOR L, 52

e ICHEORCL, -187

LEICHEORCIE4@E, 1IE481

Setzt = als I''L-Auffangwert. Die Funktion
TRAF wird im HP-71 Referenzhandbuch
beschrieben.

Der Wert = als I/l -Auffangwert verursacht bei
Ausfiihren der unzuldssigen Operation
ZIHTIHF » eine Warnung, jedoch nicht einen
Fehler.

Da der IVL-Auffangwert auf = eingestellt ist,
wird  durch die unzuldssige Operation der Wert
fzk (Not-a-Number) zugewiesen,

Die mit dem Wert =M verbundene
Meldungsnummer identifiziert die Meldung
ITrwalid Hrag,

Die néichstgrofere Maschinenzahl zu 1.

Die néchstkleinere Maschinenzahl zu 1.

Die néichstgrofiere Maschinenzahl zu 1E4 @&,
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i.,=2 z Z99933999E-£3 Die nichstkleinere Maschinenzahl zu
1, 234E-E3.

IHTEGER I,J03,30

COMFLEY SHORT Z¢2), W [ENDLINE]
TYPEC2) ; TYPECT ) TYPECJy ; TYFECZ Y
; TYFECK? (ENDLINE]

A a ) & 1 Die von T%FE zurickgegebenen Kennzahlen
identifizieren den Typ und die Dimension jedes
Ausdrucks.




Abschnitt 5

Komplexe Funktionen und Operationen

Viele mathematische Funktionen sind sowohl fiir reelle als auch fir komplexe Argumente definiert. Das
Mathematik-Paket erlaubt die Verwendung vieler HP-71 Schliisselworte sowohl mit reellen als auch
mit komplexen Argumenten. Zuséatzlich werden in diesem Abschnitt speziell fiir komplexe Operationen
definierte Schliisselworte beschrieben.

'Alke in diesem Abschnitt beschriebenen Funktionen (aufler AEZ, ARG, COH.J und den Verhaltnis-
operatoren) geben ein komplexwertiges Ergebnis zurick.

' Es wird angenommen, daf aufer bei der Funktion RECT alle komplexen Zahlen Z und W in
 karthesischer und nicht in polarer Form dargestellt sind.

~ Aufgrund der zweidimensionalen Natur dieser Funktionen ist es nicht moglich, einfache Schranken fiir
. die Funktionsargumente anzugeben, die ein Auftreten von Bereichsunterschreitungen oder Bereichs-
i iberschreitungen verhindern wiirden.

, Operatoren

o+ Addition
Z+W

wo Z und/oder W komplexwertige numerische Ausdriicke sind.

Kann im CALC-Modus verwendet werden.

_ Einwertiges Minus

-Z

wo Z ein komplexwertiger numerischer Ausdruck ist.

Kann im CALC-Modus verwendet werden.
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- : Subtraktion

Z-W

wo Z und/oder W komplexwertige numerische Ausdriicke sind.

Kann im CALC-Modus verwendet werden.

* Multiplikation

ZEW

wo Z und/oder W komplexwertige numerische Ausdriicke sind.

Kann im CALC-Modus verwendet werden.

/ Division

Z -~ W

wo Z und/oder W komplexwertige numerische Ausdriicke sind. W = (0,0).

Kann im CALC-Modus verwendet werden.

Exponentiation

Z-W

wo Z und/oder W komplexwertige numerische Ausdriicke sind.

| Gibt den Hauptwert von Z% = e"@ zyriick.
Kann im CALC-Modus verwendet werden.
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on pgarithmische Funktionen

Natiirlicher Logarithmus

- 0CoZr oder LHuZ:

wo Z ein komplexwertiger numerischer Ausdruck ungleich (0,0) ist.

- Wenn Z = x + iy und R (cos & + i sin §) die polare Darstellung von Z ist, gilt
' LOZeZy =InR + if.
 wo —7 < # < = (in Radiant)

~ Kann im CALC-Modus verwendet werden.

Exponential

EXFLZ:

wo Z ein komplexwertiger numerischer Ausdruck ist.

Wenn Z = x + iy, dann gilt
ExFiZr =¥ =g (cosy + isiny).
wo y in Radiant gemessen wird.

Kann im CALC-Modus verwendet werden.




38 Abschnitt 5: Komplexe Funktionen und Operationen

Trigonometrische und hyperbolische Funktionen

Unahéngig von der Winkeleinstellung verwenden alle trigonometrischen Funktionen in Radiant an-
gegebene Argumente.

SIN Sinus

SIHCZ

wo Z ein komplexwertiger numerischer Ausdruck ist.

Wenn Z = x + iy, dann qilt
SIMCZy = sin (x + iy) = sin x cosh y + i cos x sinh y.

Kann im CALC-Modus verwendet werden.

Ccos Cosinus

CrseZn

wo Z ein komplexwertiger numerischer Ausdruck ist.

| Wenn Z = x + iy, dann gilt
|

COZ0Zy = cos (x + fy) = cos x cosh y — i sin x sinh y.

Kann im CALC-Modus verwendet werden.

TAN Tangens

CTAMEZ

| wo Z ein komplexwertiger numerischer Ausdruck ist.

 Wenn Z = x + iy, dann gilt

THH{ZY = tan (x + iy) = sin (x + .'y) _ sinx co§ x2+ i 5|nh2y cosh y
cos (x + iy) sinh“y + cos“x

Kann im CALC-Modus verwendet werden.




wo Z ein komplexwertiger numerischer Ausdruck ist.

Wenn Z = x + iy, dann gilt
SIHHCZy = sinh(x + iy) = (=) sin (—y + ix).

| Kann im CALC-Modus verwendet werden.

COSH

COSHOZ)

wo Z ein komplexwertiger numerischer Ausdruck ist.

Wenn Z = x + iy, dann gilt
COSHeZy = cosh (x + iy) = cos (—y + ix).

Kann im CALC-Modus verwendet werden.

- - R i
TANH
ez " ”
- wo Z ein komplexwertiger numerischer Ausdruck ist.

jens f ] ]
— Wenn Z = x + iy, dann gilt
TRMH:Z = tanh (x + iy) = (=) tan (—y + ix).
Kann im CALC-Modus verwendet werden.

Sinus Hyperbolicus

Cosinus Hyperbolicus

Tangens Hyperbolicus
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Umwandlungen zwischen Polar- und Rechteckskoordinaten

POLAR Rechtecks/Polarumwandlung

1

CFOLARCZ

' wo Z ein reell- oder komplexwertiger numerischer Ausdruck ist.

Wenn Z = x + iy und R (cos # + i sin ) die Polardarstellung von Z ist, dann gilt
FOLARECZY = (R, )

Der Winkel # wird in Abh#ngigkeit von der momentanen Winkeleinstellung entweder in Grad (—180 < ¢
| < 180) oder in Radiant (—= < f# < =) angegeben.

' Kann im CALC-Modus verwendet werden.

RECT Polar/Rechtecksumwandlung

|

RECT:Z3

| wo Z ein reell- oder komplexwertiger numerischer Ausdruck ist.

FECT ist das einzige Schliisselwort in diesem Abschnitt, das ein Argument Z nur in polarer Form
| verarbeitet.
| Wenn Z = (R.0), wo R (cos # + i sin #) die Polardarstellung der komplexen Zahl x + iy ist, dann gilt

RECTCZY = x + iy

e

| Der Winkel § wird in Abhéngigkeit von der momentanen Winkeleinstellung in Grad oder in Radiant
| interpretiert. “

Kann im CALC-Modus verwendet werden.

Aligemeine Funktionen

SQRT Quadratwurzel

| SORTIZY oder SHRIZ:

. wo Z ein komplexwertiger numerischer Ausdruck ist.

| I—

! Gibt den komplexen Hauptwert der Quadratwurzel von Z zurlick.

Kann im CALC-Modus verwendet werden.
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Elnheltsvektor

SHZ é

wo Z ein komplexwertiger numerischer Ausdruck ist. J

Gibt den Einheitsvektor in Richtung von Z zurlick, d.h. '

; SCHOZY = _Z L xtiy ‘,

' x + iyl Vx® + y* ,

| woZ =x + ly. f

! Wenn Z = (0,0), dann gilt SGHIZy = Z.
"; Kann im CALC-Modus verwendet werden.

ABS Betrag
ng - S —
— ABRSCZD :

?
| wo Z ein komplexwertiger numerischer Ausdruck ist.
| |
| _ - -
——{ Wenn Z = x + iy, dann gilt
mll RESCZ) = |x +iy| = Vo + P
" * AESZY gibt immer einen reellen Wert zuriick.
1

| Kann im CALC-Modus verwendet werden.
ant |
wurzel

i.
|
\,

|

|



FY
>

"
J

ARG Argument

ARGIZ:

wo Z ein reell- oder komplexwertlger numerischer Ausdruck ist.

Wenn Z = x + iy und R (cos § + i sin B) die Polardarstellung von Z ist, dann gllt

_ ARGCZY = 0.
Der Winkel ¢ wird in Abhéngigkeit von der momentanen Winkeleinstellung in Grad (—180 < ¢ < 180) :
oder in Radiant (—7 < # < =) angegeben. |
HEGCZY gibt immer einen reellen Wert zurlick.
Kann im CALC-Modus verwendet werden.

CONJ Komplexe Konjugation

O CZ

wo Z ein reell- oder komplexwertlger numerischer Ausdruck ist.

Wenn Z = x + iy, dann gilt
COMJEZY = x — iy
L0 ZY gibt immer einen Wert vom gleichen Typ (reell oder komplex) wie Z zuriick.

' Kann im CALC-Modus verwendet werden.

PROJ Projektion auf co

FROICZ:

wo Z ein reell- oder komplexwertlger numerischer Ausdruck ist.

Wenn Z = x + iy, dann gilt
FROJCZY = Z, falls RES(Z) # Inf
oder

FROJCZE = Intf + 0, falls AES 2y = Ikf.

Kann im CALC-Modus verwendet werden.




=, <, >, #,7? Gleich oder Ungeordnet

Z Verhéltnisoperator W

wo Z und/oder W komplexwertige numerische Ausdriicke sind.

Wenn mindestens einer der zwei Ausdriicke komplexwertig ist, sind nur zwei Vergleichsergebnisse mdg-
lich: Die Ausdriicke sind entweder gleich oder ungeordnet (oder verschieden, was in diesem Fall

ungeordnet entspricht).

EsseiZ = x +iyund W = u + iv.

Wenn x = v und y = v, dann ist jeder Vergleich, der = enthélt, wahr (d.h. gibt den Wert 1 zurlick).
Wenn x # u oder y # v, dann ist jeder Vergleich, der # oder 7 enthélt, wahr.

Jeder Vergleich, der < oder > ohne = oder # enthlt, resultiert in einer Ausnahme.

Kann im CALC-Modus verwendet werden.

B el
+; s *! l
Eingabe/Ergebnis

ST0E COMPLER T, M
T=0d 50 @ M=0-3,2 % [ENDLINE
~ +H [END LINE]

|| (ENDLINE]
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2,34 04,5 [ENDLINE

unktionen und Operationen

£1,20-03, 472 [ENDLINE

o444, BED
ERNC I

CoRd - 380
~, LOG, EXP
Eingabe/Ergebnis

Flnd
O, 4008, % [ENDLINE

01,3472, 3. 45850
LOGool, 22 [ENDLINE
CELEE4T, 11870

Fupool, 230

f-1, 1312, 2.47172




SIN, TAN, COSH

Eingabe/Ergebnis
FIid
SIHC 21, 200

THAMC S, Sl

]

c-d 5348 1E~-5, 1,

i
A
[x]
1
—

COsHo 02, 32 [END LINE

-

-3, 7245,8, 51185

ABS, ARG, CONJ, PROJ
Eingabe/Ergebnis

Flx4

AESCCZ, 400

|
—
fan ]
=
o
T
i
)
fn)

)
)

ODEGREES ENDLINE
AREGOCE, 450 [ENDLINE

SADTANS
HREGOCE, =V 2 3 [ENDLINE

-1, 1865% Der in Radiant gemessene Winkel im vierten

Quadranten, der das Argument der komplexen
Zahl 3 — 7i ist.
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STO @ COMJdCoL, 233

FROJCC=Tmn$ ,~Int 2 [ENDLINE

R S

FROJCO1, 2% [END LINE

POLAR, RECT, SGN
Eingabe/Ergebnis

BN
NEGREES
FOLARG =13

[nx]
T

DO

Flid
FOLARCCE, 400

FADIAHS
RECTCO=-5, PT g0

Rechteck/Polarumwandlung fur ein reellwertiges
Argument.

Der Betrag (r) ist 1 und das Argument (6) ist
128 Grad.

Rechteck/Polarumwandlung fur eine
komplexwertiges Argument.

Der Betrag (r) ist 5. 85 &E und das Argument
(@ ist 2. 1281 Grad.

Polar/Rechteckumwandlung fiir ein komplex-
wertiges Argument. Der Betrag (r) ist & und das
Argument (f) ist —3=7/4 Radiant. Der fiir R an-
gegebene negative Wert stellt die Spiegelung des
in Polarkoordinaten angegebenen Punkts (5,7/4)
am Ursprung dar.
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o

37,5355 Sowohl Real- (x) als auch Imagindrteil (y) haben
den Wert -3, 53255,

SCHOCL La

Y
=

SYETL,

.,.
A
-]
15
=}
—

i
)

SQRT, LOG

Beachten Sie das Verhalten an der Sprungstelle in den Zweigen von =2F T und L0, Die Zweige von
komplexen Funktionen werden nachfolgend unter ”Weitere Informationen” erldutert.

Eingabe/Ergebnis
SORTCCL, Zu

1V EVEE B, T8

SHRETOO-1&, 83 0 [ENDLINE

SHORETOO—-18, =30

LOGC=ERP eSS, Bl

LOGoo-ESPCSy =@ ) [ENDLINE




Weitere Informationen

Im allgemeinen hat die Inverse f~(z) einer Funktion f(z) mehrere Funktionswerte fiir ein gegebenes
Argument z. Das Mathematik-Paket berechnet jedoch fiir jede gegebene Umkehrfunktion [/ '(z) immer
den eindeutigen Hauptwert, der im als Hauptzweig definierten Teil des Wertebereichs der
Umkehrfunktion liegt.

Die nachfolgenden Illustrationen zeigen die Hauptzweige der vom Mathematik-Paket berechneten
Funktionen =OFT und L0OG. Der linke Graph in jeder Abbildung stellt den Definitionsbereich der
Umkehrfunktion dar; der rechte Graph zeigt jeweils den Wertebereich fiir den Hauptzweig. Die blauen
und schwarzen Linien im linken Graph werden jeweils unter der Umkehrfunktion auf die
entsprechenden blauen und schwarzen Linien im rechten Graph abgebildet.

SQRT
- T ™ ~ - —_
Ve - ~ =~ ~
7/ N N
/ N \
/ \ \
| 0 1 0 '
T I ]
\ / /
\ / /
\ / /
AN Y /
~ “ Ve — -
~ - -~ L




LN(z) =Inr +ipfir —r <8 <=

//’J-— H\\ ‘

s ~ |

/ N [
/ \

/ \ |
f \ !
} 0 | 0 J

|
\ |
/ I

\

/ |
\ /
\ p l
N P |
~ —~

~ o | _ - }

—im

z w = LN(z)

Der Hauptzweig von w? leitet sich aus dem Hauptzweig der Logarithmusfunktion und der Gleichung

w? = exp (z LN w),

b, wo LN die einwertige Funktion bezeichnet.

. Wenn Sie sdmtliche Werte einer Umkehrfunktion bestimmen wollen, kénnen Sie diese mit Hilfe der
- machstehenden Ausdriicke von dem vom Mathematik-Paket berechneten Hauptwert ableiten. In diesen
Ausdricken steht k fir eine beliebige ganze Zahl. Eine einwertige Funktion wird durch Grof-
. buchstaben gekennzeichnet,

z = £SQR(2) In(z) = LN(2) + 2xik w? = wielrikz






Abschnitt 6
Einlesen und Ausgeben von Feldern

Die in diesem Abschnitt beschriebenen Schliisselworte erméglichen die folgenden Operationen:

o Besetzen eines Felds mit Werten

e Anzeigen und Ausdrucken der in einem Feld befindlichen Werte

Wertzuweisungen

= Einfache Zuweisung

MAT A=B

wo A und B entweder beide Vektoren oder beide Matrizen sind.

Das Feld B kann reell oder komplex sein.

Wenn B komplex ist, dann muB8 A komplex sein.

Wenn B reell ist, dann kann A reell oder komplex sein; bei komplexem A werden die Imaginérteile von A
auf Null gesetzt.

Dimensioniert A automatisch auf die GroBe von B um und weist jedem Element von A den Wert des
entsprechenden Elements von B zu.

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.
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=) Zuweisung von numerischen Ausdriicken

MAT A=CX

wo X ein reell- oder komplexwertiger numerischer Ausdruck ist.
Wenn X komplex ist, dann muB das Feld A ebenfalls komplex sein.
Wenn X reell ist, dann kann das Feld A reell oder komplex sein; bei komplexem A werden die

Imagindrteile von A auf Null gesetzt.
Weist X allen Elementen von A zu. Das Feld A wird nicht umdimensioniert.
Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

CON Initialisieren auf 1

MAT A=COM [£X [LY] 7]

wo A ein reelles oder komplexes ist und die optionalen Umdimensionierungsindizes X und Y reellwertige
numerische Ausdriicke sind. X und Y werden wie Indizes in O I Anweisungen auf die ndchste ganze
Zahl gerundet.

Weist allen Elementen von A den reellen Wert 1 zu. Bei Angabe von Umdimensionierungsindizes wird A
nach MaBgabe dieser Werte explizit umdimensioniert.

Kann nicht im CALC-Modus verwendet werden.

IDN Einheitsmatrix

MAT A=TOH [£X. Y]

wo A ein reelles oder komplexes Feld ist und die optionalen Umdimensionierungsindizes X und Y
reellwertige numerische Ausdriicke mit dem gleichen gerundeten ganzzahligen Wert sind. X and Y
werden wie Indizes in I Anweisungen auf die ndchste ganze Zahl gerundet. A muB bei
nichtangegebenen X und Y eine quadratische Matrix sein (d.h. zwei gleiche Indizes haben).

Bei fehlenden Angaben der Indizes X und Y wird A in eine Einheitsmatrix umgewandelt. Bei an-
gegebenen Umdimensionierungsindizes wird A explizit in eine quadratische Matrix umdimensioniert,
wobei die Obergrenze fiir jeden Index durch den auf eine ganze Zahl gerundeten gemeinsamen Wert von
X und Y bestimmt wird; anschlieBend werden dem Feld die Werte einer Einheitsmatrix zugewiesen.

Kann nicht im CALC-Modus verwendet werden.




ZER Initialisieren auf Null

MAT A=ZER [cX [, Y] 2] oder MAT A=ZERD [CX [.Y] ]

wo A ein reelles oder komplexes Feld ist und die optionalen Umdimensionierungsindizes X und Y |
reellwertige numerische Ausdriicke sind. X and Y werden wie Indizes in [I 1 Anweisungen auf die
ndchste ganze Zahl gerundet.

Weist jedem Element von A den Wert 0 zu. Bei Angabe von Umdimensionierungsindizes wird A nach
MaBgabe dieser Werte explizit umdimensioniert.

Kann nicht im CALC-Modus verwendet werden.

Einlesen von Feldern

INPUT Einlesen iiber das Tastenfeld

MAT ITHEUT A [LB]...

wo A (und B) reelle oder komplexe Felder sind.

Weist den spezifizierten Feldern reelle oder komplexe Werte zu. Komplexe Werte konnen nicht reellen |
Feldelementen zugewiesen werden. MAT IHMFLIT fordert Sie durch Anzeige des Namens eines |
Feldelements zur Eingabe einés numerischen Ausdrucks iiber das Tastenfeld auf. AnschlieBend wird

dieser Ausdruck ausgewertet und das Ergebnis als Wert dem Feldelement zugeordnet. Fiir jedes Feld |
wird zeilenweise (von links nach rechts und von der obersten zur untersten Zeile) zur Eingabe von

Werten aufgefordert. Bei Angabe mehrerer Felder werden diese in der spezifizierten Reihenfolge |
abgearbeitet.

Sobald der Name eines Feldelements angezeigt wird, kdnnen Sie den fir dieses Element vorgesehenen 3
numerischen Ausdruck eintasten und die Eingabe wie iblich mit abschlieBen. Sie kénnen
gleichzeitig die Werte fiir mehrere aufeinanderfolgende Feldelemente eingeben, indem Sie die einzelnen |
Zahlen durch Kommas trennen. Sobald ein Feld gefiillt ist, werden die verbleibenden Werte automatisch
in das n#chste Feld eingetragen. Nach dem Driicken von zeigt der Computer den Namen des
nachsten Feldelements (wenn vorhanden) an, dem ein Wert zuzuweisen ist. '




INPUT (Fortsetzung)

Die Arbeisweise von MAT IHFUT ist im (brigen mit der von IHFUT vergleichbar:

e Der Befehls-Stack ist wihrend der Ausfilhrung von MST IHFUT immer aktiv. Mit [(a], (], (8]
[X], und (@) (Y] konnen Sie durch den Befehls-Stack gehen, ohne zuvor (9] gedriickt zu
haben.

e Sie kdnnen mit einer benutzerdefinierten Direktausfiihrungstaste auf die MRT IHFUT
Eingabeaufforderung antworten.

o Die Tastenfolgen (f] und (9] sind wihrend der Ausfiihrung von MAT IHFUT aktiv.

e Wenn Sie auf eine MAT IHFUT Anweisung antworten, konnen Sie die Eingabe vor dem Driicken

von durch einmaliges Driicken von Idschen. Wenn Sie zweimal driicken,
l6scht der HP-71 die Eingabe, halt die Programmausfiihrung an und Idscht die Anzeige.

Kann nicht im CALC-Modus verwendet werden.

Die Operation der nachstehend beschriebenen Schliisselworte kann durch einmaliges Driicken der
Taste angehalten werden.

DISP

o eea [ o]

wo A (und B) reelle oder komplexe Felder sind.

Anzeige im Standardformat

Zeigt die Werte der Elemente der spezifizierten Felder an. Die Anzeige erfolgt zeilenweise; jede Feldzeile |
beginnt auf einer neuen Anzeigezeile. Zusétzlich werden die letzte Zeile eines Feldes und die erste Zeile
des nichsten Felds durch eine Leerzeile getrennt. -

Der Terminator (Komma oder Semikolon) bestimmt die Absténde zwischen den einzelnen Feldelementen.

Terminator Abstdnde zwischen Elementen

Eng:  Die einzelnen Elemente werden durch je zwei Leerstellen getrennt. Bei
negativen Werten belegt das Minuszeichen die zweite Leerstelle.

Breit: Jedes Element wird in einer aus 21 Spalten bestehenden Anzeigezone
abgelegt.

Bei fehlender Angabe eines Terminators fiir das letzte Feld werden die Elemente dieses Felds mit breiten
Abstdnden angezeigt.

Kann nicht im CALC-Modus verwendet werden.



PRINT

wo A (und B) reelle oder komplexe Felder sind.

Ausdruck im Standardformat

Druckt die Werte der Elemente der spezifizierten Felder aus. Die Arbeitsweise von MAT FRIHT ent-
spricht der von MAT [ IZF mit der Ausnahme, daB die Ausgaben an die momentane FRIHTER I%
Einheit gesendet werden. Zur Deklaration einer FRIMTER I3 Einheit muB ein HP-IL Interfacemodul |
HP 82401A in den HP-71 eingesetzt sein. Wenn keine FREIHTER I% Einheit deklariert ist, werden die |
Ausgaben auf die Anzeige oder die momentane HP-IL DI SFLAY I3 Einheit gelenkt. MAT FRIWT |
sendet standardmiBig am Ende einer Zeile eine Wagenriicklauf/Zeilenvorschub-Sequenz an die |
FRIMTEFR I3 Einheit. Diese Sequenz kann durch die EMOL IME Anweisung modifiziert werden, |
EHOLIME wird im HP-71 Referenzhandbuch und in Abschnitt 13 des HP-71 Benutzerhandbuchs |
beschrieben.

Kann nicht im CALC-Modus verwendet werden.

DISP USING Anzeige im Benutzerformat

Formatstring [ -I [_l
MAT DISF USIHG A Bl..

Zeilennummer L_: J |_ : _|

wo A (und B) reelle oder komplexe Felder sind.

Zeigt die Werte der Elemente der angegebenen Felder in dem durch den Formatstring oder die (liber die
Zeilennummer) spezifizierte IMAGE Anweisung bestimmten Format an. (Eine Diskussion von Format-
strings und Beschreibungen der Anweisungen CIISF LISIHG und IMAGE finden Sie im HP-71
Referenzhandbuch.

Zur Anzeige komplexer Felder muB der entsprechende Feldspezifikator des Formatstrings oder der
IMAGE Anweisung komplexwertig sein. Der komplexe Feldspezifikator (It . *) wird in Abschnitt 3 auf |
Seite 22 beschrieben. -

Die Werte werden zeilenweise angezeigt. Jede Zeile beginnt auf einer neuen Anzeigezeile; die letzte
Zeile eines Felds und die erste Zeile des ndchsten Felds werden durch eine Leerzeile getrennt.

Die Interpunktionszeichen (Kommata oder Semikolons) zwischen den einzelnen Feldern dienen lediglich
als Trennzeichen und haben keinerlei Auswirkung auf das Anzeigeformat.

Das Mathematik-Modul muB zum Umnumerieren (mit FEHUMEEFR) eines Programms, das eine
MAT DISF USIHG [Zeilennummer] Anweisung enthdlt, eingesteckt sein; andernfalls wird die
Zeilennummer nicht korrekt aktualisiert.

Kann nicht im CALC-Modus verwendet werden.




PRINT USING Ausdruck im Benutzerformat

Formatstring . .
MAT FRIMT USIHG A BJi..
Zeilennummer : :

' wo A (und B) reelle oder komplexe Felder sind.

Die Arbeitsweise von MAT FRIMT IISIMG entspricht der von MAT OISF LIS IHE mit der Aus- |
| nahme, daB die auszugebende Information an die momentane FFREINTEF 1% Einheit gesendet wird.
| Zur Deklaration einer FRIHTEFR IS Einheit muB ein HP-IL Interfacemodul HP 82401A in den HP-71 |
| eingesetzt sein. Wenn keine FF 1 HTER 1% Einheit deklariert ist, werden die Ausgaben auf die Anzeige
'oder die momentane HP-IL DISFLAY IS Einheit gelenkt. MAT FRIHT USIHE sendet
' standardmiBig am Ende einer Zeile eine Wagenriicklauf/Zeilenvorschub-Sequenz an die
| FEIMTER I% Einheit. Diese Sequenz kann durch die EHOLIHE Anweisung modifiziert werden.
| EM[OLIHE wird im HP-71 Referenzhandbuch und in Abschnitt 13 des HP-71 Benutzerhandbuchs

beschrieben. |

' Kann nicht im CALC-Modus verwendet werden.

S o ————— e e e e - SN |

Wenn Sie die Anzeigeverzogerung auf 8 oder grofer setzen, bleibt die momentan angezeigte Zeile
unbegrenzt lange in der Anzeige stehen. Erst durch Dricken von (oder einer beliebigen
anderen Taste) wird die néchste Zeile angezeigt. Dies gibt Thnen die Moglichkeit, die Anzeigedauer
jeder Feldzeile selbst zu bestimmen.

CON, IDN, ZER, DISP

Eingabe/Ergebnis
OFTIOH EASE 1 @ =70
LIM ACE, 30, B0l E wird als einelementiger Vektor dimensioniert.

COMPLES CO18, 280
MAT FA=I10H

MAT DISF A Zeigt die Einheitsmatrix F mit engem
Elementabstand an.

ot
—

it
—
el

)

T
—
p—
i

.
T
—




MAT E=fERCE, 20

MAT DISF B

i
i

4 [l
MAT C=C0OMCE, 27 [ENDLINE

MAT DISP O

LA T I T ol RO & B S I
cl,ax Dl | 0l
LR A & D R = cil,ED
INPUT
Eingabe/Ergebnis

OFTICOH EASE 1 (ENDLINE]
OIM A2, 32, BO3D

COfFLER COZ

1
MAT THFUT A.E. T [ENDLINE

. [ENDLINE])

Hol, 1 B

1,8 ,.%,4 ENDLINE
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Dimensioniert E von einem einelementigen
Vektor in eine 2 x 2 Matrix um und initialisiert
diese auf Null.

Dimensioniert  um und belegt = mit der
Konstanten 1.

Deklariert = als komplexe 3 x 2 Matrix.
(GFTIOH EBASE B ist auch
Systemvoreinstellung.)

Fordert zur Eingabe des ersten Elements auf.

Es konnen mehrere Werte eingegeben werden.

Fordert zur Eingabe des fiinften Elements auf.



[xa]

.7, 52 [ENDLINE

coE.lx? M

HFH

STD @ MAT DOISF AIE:C;

1 = =

4 5 £

'l:.‘

5

cl@, @y 1,
(E,E) (5.6
(FLEY {HaM

)
A

—
=

Weist den letzten beiden Elementen von A und
dem ersten Element von E Werte zu.

Weist den letzten beiden Elementen von & und
dem ersten Element der komplexen Matrix
Werte zu.

Weist den néichsten vier Elementen von [ Werte
zu.

Weist dem letzten Element von  den Wert HAH
Zu.

Zeigt nacheinander jedes Feld durch eine Leer-
zeile getrennt an.




DISP USING
Eingabe/Ergebnis

10 OPTION BASE 1 @ INTEGER A(5,5)
15 WIDTH 22 @ DELAY 8

20 COMPLEX SHORT Z(3,4)
25 MAT A=IDN @ MAT Z=((4.5))

30 MAT DISP USING 'DDD,ZZZ',AA

35 MAT DISP USING '#,D;A @ DISP 4

40 MAT DISP USING 100;Z
45 DELAY 1
100 IMAGE C(K,2D,")

Stellt die Anzeige auf die nachstehend
dargestellte Anzeigeweise ein. Der Anzeigevorgang
kann durch Driicken einer beliebigen Taste (wie

[END LINE]) fortgesetzt werden.

Besetzt A als Einheitsmatrix und weist jedem
Element von Z die komplexe Zahl © 4,5 zu.

Dieser Formatstring besteht aus zwei Feld-
spezifikatoren, OO0 und ZZZ. Mit Hilfe dieser
Feldspezifikatoren werden nacheinander alle
Elemente von A angezeigt. Das letzte Element von
A wird ODD entsprechend formatiert und
angezeigt. Anschliefend wird eine Leerzeile und
dann alle Elemente von A ein weiteres Mal
angezeigt. Dabei wird das erste Element von A
tiber den Feldspezifikator 277 (dem néchsten
Spezifikator im Formatstring) formatiert.

Das Symbol # unterdriickt die automatisch zum
Abschluf der Anzeige von A erzeugte Wagen-
rucklauf/Zeilenvorschub-Sequenz. Dadurch wird
die Zahl 4 auf der gleichen Zeile angezeigt wie das
letzte Element von A.

Die Anweisung IMAGE muf zur Formatierung
eines komplexen Felds in der Form ¢, &
aufgebaut sein. Die Klammern miissen zwei
numerische Feldspezifikatoren enthalten.



RUN
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BEE 1RRE Baan
BEER 18@8| @
REE BEER 16868
AREE BEeEs 1
HEL B0RR  S88d
I R v v T R
ARG fEEl HEEE
HEBE BEE1 @
AEE ORBEE 86801

Feldern

Das Formatsymbol [! ersetzt fiihrende Nullen
durch Leerzeichen. Das Element (1,1) der
Einheitsmatrix A ist 1. Daher werden die zwei
fihrenden Nullen durch Leerzeichen ersetzt und
das Element (1,1) als 1 angezeigt. Das
Formatsymbol £ fillt jede fithrende Null mit &
auf, so daR das Element (1,2) als 553 angezeigt
wird. Die restlichen Elemente der Zeile werden
durch wiederholte Auswertung des
Formatstrings OO0, 227 formatiert und
angezeigt.

Nachdem das letzte (fiinfte) Element der ersten
Zeile angezeigt ist, wird eine Wagenriicklauf/
Zeilenvorschub-Sequenz gesendet, so daf die An-
zeige von Element (2,1) mit einer neuen Zeile
beginnt.

Der Feldspezifikator [i[1[} bestimmt das
Anzeigeformat des letzten Elements von i, so daf
1 angezeigt wird.

Auf das letzte Element der letzten Zeile folgend
wird eine Wagenrticklauf/Zeilenvorschub-Sequenz
gesendet, so dafl zwischen den zwei Anzeige-
ausgaben von Feld A eine Leerzeile eingefiigt
wird.

Da die auf den Formatstring in Zeile 30 folgende
Variablenliste zweimal das Feld A enthalt, wird
das Feld F zweimal angezeigt. Bei der zweiten
Anzeige von H wird das Element (1,1) dem
Spezifikator £ZZ entsprechend angezeigt, da
OO0 bei der ersten Anzeige von & bereits zur
Formatierung des letzten Elements von H

verwendet wurde.

Dies ist die Anzeige des letzten Felds in der
Variablenliste von Zeile 30. Obwohl diese
Anzeigezeile mit dem letzten Element der letzten
Zeile von H endet, wird daher trotzdem keine
Leerzeile eingefigt.



1HEE6

I - oy

3 HlEEA

; HEETA

E HEEEL 4

|

]

i

;

| cd, Smiaod, Sixcd, i
4, Sil

/'/

4, Hiwod, Sivdid, Si0
4, Sil
cd, Siadd, Sivdd, 510
4, Sil
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Da derjenige Teil des Formatstrings in Zeile 35,
der die Anzeigeweise von Zeichen steuert, nur aus
einem O besteht, werden die Elemente einer
Zeile von A ohne Zwischenrdume und ohne
zusitzliche Zeichen hintereinander angezeigt.

Das # Symbol in dem Formatstring in Zeile 35
unterdriickt die normalerweise nach dem An-
zeigen der letzten Zeile des letzten Felds in der
Variablenliste gesendete Wagenriicklauf/Zeilen-
vorschub-Sequenz.

Das Symbol E in dem Formatstring in Zeile 100
spezifiziert ein Kompaktfeldformat, bei dem keine
filhrenden oder nachgestellten Leerzeichen an-
gezeigt werden. Das Anzeigeformat der Realteile
der (identischen) Elemente von £ wird tber
dieses Symbol bestimmt. Das Anzeigeformat der
Imagnaérteile wird tiber 20! (OD) bestimmmt. Da
der Imaginirteil () einstellig ist, wird bei der
Anzeige ein Leerzeichen vorangestellt. Die An-
zeige der Klammern und des Kommas wird durch
die Zeichenfolge T,  erzeugt.

Die Anzeige jeder Zeile wird mit einer
Wagenriicklauf/Zeilenvorschub-Sequenz ab-
geschlossen, so daf mit jeder neuen
Matrizenzeile eine neue Anzeigezeile begonnen
wird.






Abschnitt 7

Die nachstehend gelisteten Schliisselworte fithren arithmetische Grundoperationen auf Felderﬁ‘\‘ax{s.
* Dabei ist darauf zu achten, daf die Dimensionen der Operandenfelder mit der jeweiligen Operation
. kompatibel sind.

+ Fir Addition und Subtraktion missen beide Operandenfelder Vektoren oder Matrizen sein und
jeweils die gleiche Anzahl von Zeilen und Spalten haben. (Matrizen missen jedoch nicht notwen-
digerweise quadratisch sein.) Felder, die diese Anforderungen erfiillen, werden im folgenden als
vereinbar beziiglich Additionen bezeichnet.

» Fiir die Multiplikation von zwei Feldern muf das erste Feld eine Matrix sein, wiahrend das zweite
Feld eine Matrix oder ein Vektor sein kann. Die Anzahl der Spalten des ersten Felds muf gleich
der Anzahl der Zeilen des zweiten Felds sein. Felder, die diese Anforderungen erfiillen, werden im
folgenden als vereinbar beziiglich Multiplikationen bezeichnet.

Fir die transponierte Multiplikation von zwei Feldern muf das erste Feld eine Matrix sein,
wihrend das zweite Feld eine Matrix oder ein Vektor sein kann. Die Anzahl der Zeilen des ersten
Felds muf gleich der Anzahl der Zeilen des zweiten Felds sein. Felder, die diese Anforderungen
erfiillen, werden im folgenden als vereinbar beztiglich transponierter Multiplikationen bezeichnet.

= Negation
MAT A=-B

wo A and B entweder beide Vektoren oder beide Matrizen sind.

Das Feld B kann reell oder komplex sein.

Wenn B komplex ist, dann muB3 A komplex sein.

wenn B reell ist, dann kann A reell oder komplex sein; fiir komplexe Felder A werden in diesem Fall die
Imagindrteile aller Elemente auf Null gesetzt.

Bedingt eine automatische Umdimensionierung von A auf die GroBe von B und weist jedem Element von
A den Wert des entsprechenden Elements von B mit umgekehrtem Vorzeichen zu.

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.
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+ Addition

| MAT A=B+C

| i
wo A, B und C entweder simtlich Vektoren oder samtlich Matrizen und B und C vereinbar beziglich |
Additionen sind.

Die Felder B und C konnen reell oder komplex sein.

Wenn entweder B oder C komplex ist, dann muB A komplex sein.

Wenn sowohl B als auch C reell ist, dann kann A reell oder komplex sein; fiir komplexe Felder A werden |
in diesem Fall die Imaginérteile aller Elemente von A auf Null gesetzt

T

Bedingt eine automatische Umdimensionierung von A auf die GréBe von B und C und weist jedem Ele- |
ment von A die Summe der entsprechenden Elemente von B und C zu. ‘

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

— Subtraktion

| |
t wo A, B und C entweder sdmtlich Vektoren oder sdmtlich Matrizen und B und C vereinbar beziiglich |
| Additionen sind.

| Die Felder E und = konnen reell oder komplex sein.

Wenn entweder B oder C komplex ist, dann muB A komplex sein.

| Wenn sowohl B als auch C reell ist, dann kann A reell oder komplex sein; fiir komplexe Felder A werden
| in diesem Fall die Imaglnartene aller Elemente von A auf Null gesetzt

Bedingt eine automatische Umdimensionierung von A auf die GréBe von B und C und weist jedem Ele-
ment von A die Differenz der entsprechenden Elemente von B und C zu.

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.
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()* Multiplikation mit einem Skalar

H

AT A= X2 B .

wo A und B entweder beide Matrizen oder beide Vektoren sind und X ein numerischer Ausdruck ist.
Feld B kann reell oder komplex und der Ausdruck X reell- oder komplexwertig sein.

Wenn entweder B oder X komplex ist, dann muB A komplex sein. |
Wenn\aowohl B als auch X reell ist, dann kann A reell oder komplex sein; fiir komplexe Felder A werden
in diesem Fall die Imaglnartenle aller Elemente von A auf Null gesetzt ‘

Bedingt eine automatische Umdimensionierung von A auf die GréBe von B und weist jedem Element von |
A das Produkt des Werts von X und des entsprechenden Elements von B zu.

Die Operation kann durch zweimaliges Driicken von angehalten werden. e

Kann nicht im CALC-Modus verwendet werden.

b3 Matrixmultiplikation

— — S ——————————— s s o e ey

MAT A=B%C

wo B eine Matrix, A und C entweder beide Vektoren oder beide Matrizen und B und C vereinbar |
bezliglich Multiplikationen sind. i
Die Felder B und C kdnnen reell oder komplex sein.

Wenn entweder B oder C komplex ist, dann muB A komplex sein.

Wenn sowohl B als auch C reell ist, dann kann A reell oder komplex sein; fiir komplexe Felder A werden [
in diesem Fall die Imaginartelle aller Elemente von A auf Null gesetzt. ‘

SN —— — -

Bedingt eine automatische Umdimensionierung von A auf die Anzahl der Zeilen von B und die Anzahl der |
Spalten von C. Die Werte der Elemente von A werden nach den iblichen Regeln der Matrixmultiplikation
gebildet. E

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC Modus verwendet werden.




TRN *

Transponierte Multiplikation

MAT A= TREH(B1*C

wo B eine Matrix, A und C entweder beide Vektoren oder beide Matrizen und B und C vereinbar
beziiglich transponierter Multiplikationen sind.

Die Felder B und C kdnnen reell oder komplex sein.

Wenn entweder B oder C komplex ist, dann muB A komplex sein.

Wenn sowohl B als auch C reell ist, dann kann A reell oder komplex sein; fiir komplexe Felder A werden
in diesem Fall die Imaginérteile aller Elemente auf Null gesetzt.

Bedingt eine automatische Umdimensionierung von A, so daB die Anzahl der Zeilen von A gleich der
Anzahl der Spalten von B und die Anzahl der Spalten von A gleich der Anzahl der Spalten von C ist. |

Das Ergebnis dieser Operation ist das gleiche, als wenn zuerst die Transponierte von B (oder die
konjugiert komplexe Transponierte von B bei komplexem B) berechnet und anschlieBend das Ergebnis
mit C multipliziert wird. Das Mathematik-Paket verwendet jedoch spezielle Multiplikationsregeln, so daB
B vor der Multiplikation nicht explizit transponiert werden muB.

Die Operation kann durch zweimaliges Driicken von [ATTN] angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

-y %, ()%, TRN %
Eingabe/Ergebnis
OFTIOM BASE 1 @ STO (ENDLINE]

REAL RCE, 20 ,BC3, 40
COMPLES SHORT CoZ, 13,0020, Ecgn

MAT A=I0HCZ, 20

MAT C=003, 40 0%A C wird zu einer 2 x 2 Matrix umdimensioniert.
Jedem Element von = wird das Produkt der
komplexen Zahl ¢ Z, 4 mit dem

entsprechenden Element von A zugewiesen.

MAT DISF C;

A Die Matrix .




AT O A=COH @ MAT C=0+A Weist = die Summe von A und C zu. Eine
Umdimensionierung von = ist nicht erforderlich,
da : bereits korrekt dimensioniert ist.

MAT DISF O

LI A = Die Matrix .
cl,En o 0d 40
MAT B=AEA Weist E das Matrixpodukt A#H zu. Dazu wird E

zu einer 2 X 2 Matrix umdimensioniert.

MAT DISFE B

Die Matrix E.

“AHT IMFUT O

Dol W
1,2y, 03, 40
MAT E=TRHOC 340D Weist E das Produkt der konjugiert komplexen

Transponierten von I mit dem Vector I! zu. Dazu
wird E zu einem zweielementigen Vektor
umdimensioniert.

AT DISF E

i Die Matrix E.







Abschnitt 8

Skalarwertige Matrixfunktionen

Die in diesem Abschnitt beschriebenen Schliisselworte reprdsentieren Funktionen, die reelle oder
komplexe Felder als Argumente verwenden (COE T verwendet nur reelle Matrizen) und reelle Zahlen als
Ergebnis zuriickgeben. (00T kann sowohl reelle als auch komplexe Zahlen zuriickgeben.) Wie alle
ibrigen Funktionen des HP-71 koénnen diese Funktionen einzeln oder zusammen mit anderen
Funktionen zum Aufbau von numerischen Ausdriicken benutzt werden.

Determinantenfunktioner

DET Determinante

OETCA?

wo A eine quadratische reelle Matrix ist.

Gibt die Determinante der Matrix A zuriick.

Die Operation kann durch zweimaliges Driicken von [ATTN ] angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

DETL Determinante der letzten Matrix

DETL oder DET

Gibt die Determinante der letzten reellen Matrix zuriick, die
e in einer FIAT . . . IHY Anweisung (siehe Abschnitt 9) oder
e als erstes Argument in einer MAT . . . 5%5 Anweisung (siehe Abschnitt 9)

spezifiziert wurde. Der von DETL zuriickgegebene Wert bleibt (selbst bei ausgeschaltetem HP-71)
solange erhalten, bis eine andere FMAT. .. IH. Anweisung (mit reellem Argument) oder eine
MAT .. .57% Anweisung (bei der das erste Argment reellwertig ist) ausgefiihrt wird.

Kann nicht im CALC-Modus verwendet werden.
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CNORM Eins-Norm (Spaltensummennorm)
CH R A
wo A ein reelles oder komplexes Feld ist.

Gibt das Maximum (liber alle Spalten von A) der Summen der Betrdge aller Elemente in einer Spalte
zurlick. Die Definition des Betrags einer komplexen Zahl ist unter der Beschreibung des Schliisselworts
HEZ auf Seite 45 in Abschnitt 5 zu finden.

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

RNORM Unendlich-Norm (Zeilensummennorm)
FEHOREMCAS
wo A ein reelles oder komplexes Feld ist.

Gibt das Maximum (iiber alle Zeilen von A) der Summen der Betrége aller Elemente in einer Zeile zuriick.
Die Definition des Betrags einer komplexen Zahl ist unter der Beschreibung des Schliisselworts RE = auf
Seite 45 in Abschnitt 5 zu finden.

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

FNORM Frobenius-Norm (euklidische Norm)
FHORM T A
wo A ein reelles oder komplexes Feld ist.

Gibt die Quadratwurzel der Summe der Quadrate der Betrdge aller Elemente von A zuriick. Die
Definition des Betrags einer komplexen Zahl ist unter der Beschreibung des Schliisselworts HE = auf
Seite 45 in Abschnitt 5 zu finden.

Die Operation kann durch zweimaliges Driicken von [ ATTN | angehalten werden.

Kann nicht im CALC-Modus verwendet werden.



DOT Punktprodukt (Skalarprodukt)
DOTEX, Yo
wo X und Y reelle oder komplexe Vektoren mit der gleichen Anzahl von Elementen sind.

Gibt das Punktprodukt XsY der Vektoren X und Y zuriick. Das Ergebnis ist reell, wenn sowohl X als auch
Y reell sind. Das Ergebnis ist komplex, wenn entweder X oder Y komplex ist.

Bei einem komplexen Vektor X werden zur Berechnung des Punktprodukts die konjugiert komplexen
Elemente von X verwendet.

Die Operation kann durch zweimaliges Driicken von [ATTN] angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

Die nachstehenden Funktionen sind besonders niitzlich zur Kontrolle der méglicherweise durch
Dimensionieren oder Umdimensionieren von Feldern geénderten OFTIOH EASZE Einstellung, der
Anzahl der Dimensionen eines Felds und der Gréfe in jeder Dimension.

UBND Feldobergrenze
JEMDOCA, N oder UEDQUMHDOCA, N

wo A ein reelles oder komplexes Feld und N ein numerischer Ausdruck ist, dessen auf eine ganze Zahl
gerundeter Wert 1 oder 2 ergeben muB. -

Gibt die Obergrenze fiir den N-ten (ersten oder zweiten) Feldindex von A zuriick. Fir Vektoren A gilt
UEHDOCAR, 23 = —1.

Kann nicht im CALC-Modus verwendet werden.
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LBND

Felduntergrenze

LEHDCA, N oder LECLUHDOCA, N2

gerundeter Wert 1 oder 2 ergeben muB.

wo A ein reelles oder komplexes Feld und N ein numerischer Ausdruck ist, dessen auf eine ganze Zahl

Vektoren A gilt LEHOCAH, 20 = —1.,

Kann nicht im CALC-Modus verwendet werden.

Gibt den Wert der bei der Dimensionierung von A giiltigen CJFTIORM EARSE Einstellung zurlick. Fur

S———

Beispiele

DET, DOT
Eingabe/Ergebnis
OFTION EAZE 1 [ENDLINE]

DIM AC1G, 197 (ENDLINE]
MAT F=10H [ENDLINE)
MAT FA=:-33%FA [ENDLINE)

OETCHY [ENDLINE

T
facn]
£
L

MAT A=I0OHCZ, 33
MAT A=¢2 %A (ENDLINE]

MAT A=THY A
DET (END LINE]

Weist jedem Diagonalelement den Wert -3 zu;
alle anderen Elemente bleiben Null.

Zeigt die Determinante von H an.

Weist jedem Diagonalelement den Wert = zu;
alle anderen Elemente bleiben Null.

Berechnet die Inverse von A.

Zeigt die Determinante der zuletzt mit einer
MAT. .. IHY Anweisung invertierten oder als er-
stes Argument in einer FMAT . . . 575 Anweisung
verwendeten reellen Matrix an. IHY und %=
werden in Abschnitt 9 auf den Seiten 000 bis 000
beschrieben.
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OIM ACl@s , Bol@n

MAT A=(23 Weist jedem Element von f den Wert Z zu.

MAT EB=C0H Initialisiert die Matrix E auf Eins.

OOTOA, B2 Zeigt das Punktprodukt von f und E an.
2

COMPLES Col@s

MAT C=o0l, 200 Weist jedem Element von = die komplexe Zahl
rloE zu
OOTCC, A Zeigt das Punktprodukt (ein komplexer Wert)

von = und A an.

]
I
Iu
[

RNORM, CNORM, FNORM, UBND, LBND

Eingabe/Ergebnis
OFTIOM EASE 1 [ENDLINE]

OIM Fe3, 5 [ENDLINE)

MAT A=C0H Initialisiert die Matrix A auf Eins.
FHORMOA D Zeigt die Zeilensummennorm von H an.

i




COMFLE® SHORT AcZ, 40

MAT IHFUT A

NI DU = T B A = DA I <
AEr, 013, 14,015, 168
RHOREMCA Zeigt die Zeilensummennorm von H an.
FELOTERIEEELITE
CHORMOA? Zeigt die Spaltensummennorm von A an.
I2.96812580122
FHORMCA Zeigt die Frobenius-Norm von A an.
A8, EVELE21LV
COMPLEY BOZ3
UEHDGA, Lo UEHDGA, 20 Zeigt die Obergrenze des ersten Index und dann
die Obergrenze des zweiten Index von A an.
z 4
UEHDCE, 13 UEHDOCE, 20 Zeigt zuerst die Obergrenze des ersten Index von

E an und versucht anschliefend die Obergrenze
des zweiten Index von E anzuzeigen. Da E ein
Vektor ist, gibt UEHDOCE, 2 den Wert —1
zurick.



3 -1

LEHDOA, 10 Zeigt den Wert der bei der letzten
Dimensionierung von H giltigen JFTICOH EBARZE
Einstellung an.







Abschnitt 9

\ P N,
perationen
}

INV Matrixinversion

MAT A=IHW B2

wo A und B reelle oder komplexe quadratische Matrizen sind, wobei gilt:

Wenn B komplex ist, dann muB A ebenfalls komplex sein.

Wenn B reell ist, dann kann A reell oder komplex sein; fiir komplexe Felder A werden in diesem Fall die
Imagindrteile aller Elemente auf Null gesetzt.

Bedingt eine automatische Umdimensiconierung von A auf die gleiche GréBe von B und weist A die
Invertierte der Matrix B zu.

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

TRN Transponierte Matrix oder konjugiert komplexe transponierte Matrix

MAT A=TEH B>

wo A und B Matrizen sind. B kann reell oder komplex sein; wenn B komplex ist, dann muB A ebenfalls |
komplex sein.

Wenn B reell ist, dann kann A reell oder komplex sein; fiir komplexe A werden in diesem Fall die
Imaginérteile aller Elemente auf Null gesetzt.

Bedingt eine automatische Umdimensionierung von A auf die GréBe von B. Wenn B reell ist, dann wird A |
die Transponierte der Matrix B zugewiesen. Wenn B komplex ist, dann wird A die konjugiert komplexe
Transponierte von B zugewiesen.

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.
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Losen eines linearen Gleichungssystems

Mit Hilfe des Mathematik-Pakets kénnen Sie auf sehr einfache Weise die Lisung eines Systems von
linearen Gleichungen mit reellen und komplexen Koeffizienten exakt bestimmen. Als erster Schritt ist
dabei zundchst das Gleichungssystem in ein Tripel von Feldern umzusetzen: Ergebnisfeld,
Koeffizientenfeld, Konstantenfeld. Das Ergebnisfeld entspricht dabei den Variablen in den Gleichungen;
das Koeffizientenfeld nimmt die Werte der Koeffizienten der Variablen auf; im Konstantenfeld werden
die Werte der (konstanten) rechten Seiten der Gleichungen abgelegt. Betrachten Sie beispielsweise das
nachstehende Gleichungssystem:

5x + 3y + 2z = 4
Tx +y + 3z = 14
6x + 4y + 9z =1

Hier wiirde das Ergebnisfeld dem Vektor

entsprechen; das Koeffizientenfeld ware die Matrix

5 3 2
71 3
6 4 9
und das Konstantenfeld wére der Vektor
4
14
1

Wenn das Ergebnisfeld mit X, das Koeffizientenfeld mit A und das Konstantenfeld mit B bezeichnet
wird, 1dRt sich das Gleichungssystem in Matrizenschreibweise formulieren als AX=B. Dies ist die vom
Schlisselwort == bendtigte Darstellung.
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Lésen eines linearen Gleichungssystems

wo A eine quadratische Matrix, X und B entweder beide Vektoren oder beide Matrizen und A und B
vereinbar beziiglich Multiplikationen sind. Zu Beginn von Abschnitt 7, Seite 63 wird der Begriff "verein- |
bar beziiglich Multiplikationen” definiert. ‘

Die Felder A und B konnen reell oder komplex sein.
Wenn entweder A oder B komplex ist, dann muB X ebenfalls komplex sein.

Wenn sowohl A als auch B reell sind, dann kann X reell oder komplex sein: fiir komplexes X werden in
diesem Fall die Imagmartelle aller Elemente auf Null gesetzt

Bedlngt eine Umdnmensnomerung von X auf die GréBe von B und weist den Elementen von X Werte zu,
die die Matrizengleichung AX=B erfiillen.

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

leispiele
INV, TRN

Eingabe/Ergebnis

OFTION BRSE 1
OIM ACZE, 30
MAT HA=I0H [ENDLINE] m

MAT A=CZ3%A [ENDLINE) Weist allen Diagonalelementen von A den Wert
2 zu. Alle anderen Elemente sind Null.

MAT A=THYCA S

MAT DOIZF A: [ENDLINE Zeigt die Inverse von A an.
5 B @
[} 5 5}

= -
o

[ e I




8: Matrixinversion, -transposition und Gleichungssysteme

80 Abschnitt
OIM CoZ, 20
MAT C=CoH
MAT DISF O
1 1
11
1 1
OIM Doz, 2o
MAT De=TRHCD:
MAT OISF O
1 1
11 1
COMPLEY SHORT DoZ2,33,C003

MAT DO=cil, 203

MAT DIZF O

MAT D=TRH(DO:

MAT DISF O

Initialisiert Matrix . auf Eins.
Zeigt T an.

Berechnet die Transponierte von = und
dimensioniert 0 zu einer 2 X 3 Matrix um.

Zeigt die Transponierte von [ an.

Weist allen Elementen von [' den komplexen
Wert © 1,2 zu.

Die komplexe Matrix [.

Dimensioniert O' zu einer 3 x 2 Matrix um und
weist [ die Werte der konjugiert komplexen
Transponierten von [ zu.

Die konjugiert komplexe Transponierte von [,
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MAT IMPUT ©

1,01,2%,02,182 [ENDLINE

ol 1l 0|, 30, 0-5,14 [ENDLINE

o A AT o D T A= S
MAT DISF C; (ENDLINE

2 URERR Die komplexe Matrix .

—_
=
ol [

c1.1 TEL, 5D
=Rl

MET DO=IHWOC) Dimensioniert [l zu einer 3 X 3 Matrix um und
weist 0 die Werte der Inversen der Matrix C zu.

MAT DISF O

ci@E, 1y I-E, e Die exakte Inverse der komplexen Matrix T ist
r=3, -2 die Matrix

e, -3

reV L ESE-11,820 10+i —2+61 —3-—2i
IR L, 9—3i 8i —3-2

¢1,-1,1832E—113 —9492i —1-2 1




SYS

Das bereits auf Seite 78 betrachtete Gleichungssystem

koénnte wie folgt gelost werden.

bx + 3y + 22 =4
Tx +y + 3z = 14

6x + 4y + 92 =1

Eingabe/Ergebnis
OFTION BASE 1 @ STO [ENDLINE)
OIM He33, BOZo,ACE, 30

MAT IHFUT E.A

Eola? B

4,14, 1 [ENDLINE]

Weist den Elementen von B Werte zu.

MAT #=%%YS0FA, B> (ENDLINE

Weist den Elementen von A Werte zu.

Zeigt die Werte des Ergebnisfelds an.

I
NRoR

I

Obwohl das Ergebnisfeld X und das Konstantenfeld B in typischen Anwendungen Vektoren sind, ist die
Verwendung von 5% nicht nur auf einspaltige Felder beschrankt. Dadurch kann eine beliebige, nur
durch den vorhandenen Speicherplatz beschrinkte Anzahl von Gleichungssystemen mit n Gleichungen
und n Unbekannten simulatan gelost werden, vorausgesetzt, daR die Koeffizienten jedes
Gleichungssystems identisch sind. Das nachstehende Beispiel soll diese Verwendung von 543

verdeutlichen.



Beispiel. Die Abteilung fiir Offentlichkeitsarbeit der Firma XYZ will die von zwei externen
Druckereien verwendeten Kostenfaktoren bestimmen. Es ist bekannt, daf jede der Druckereien einen
Auftrag auf der Basis der Anzahl der Seiten und der Anzahl der Illustrationen plus einen
Festkostenanteil kalkuliert. Unter Benutzung von jeweils drei Angeboten pro Druckerei (siehe unten)
ist ein Programm zu schreiben, das die Kosten pro Seite, pro Illustration und den Festkostenanteil
berechnet.

Anzahl der Anzahl der Gesamtkosten
Au"rag Seiten lllustrationen - 1 ‘M;
Z Druckerei A | Druckerei B |
| S— - 4 B ._____.__.m_..._,_{
' 1 273 35 | 5835.00 DM ‘ 7362.50 DM |
2 150 8 3240.00 DM | 4085.00 DM |

3 124 19 2775.00 DM | 3517.50 DM |

Zur Schitzung der Kosten ist fiir jede der Druckereien das folgende Gleichungssystem zu losen:
273x; + 35xy + x3 = Angebot;
150x, + 8xy + x3 = Angebot,
124x, + 19x, + x3 = Angeboty

Diese Gleichungen lassen sich in Matrizenschreibweise als AX = B darstellen, wobei:

o A die Koeffizientenmatrix mit der Anzahl der Seiten in Spalte 1, der Anzahl der Illustrationen in
Spalte 2 und dem Festkostenanteil (jeweils 1) in Spalte 3 ist. Jede Zeile enthilt diese Daten far die
einzelnen Auftrige.

» B die Konstantenmatrix, in diesem Fall ein Feld der Dimension 3 X 2 ist. Jede Zeile enthalt die
Angebote der beiden Druckereien fir die drei Auftrage.

* X das Ergebnisfeld mit den unbekannten Kostenfaktoren x;, xo und x4. Dabei sind x; die Kosten
pro Seite, x, die Kosten pro Illustration und x stellt den Festkostenanteil dar. Da zwei
Gleichungssysteme simultan gelést werden sollen, muf das Ergebnisfeld eine Matrix sein; d.h. es
sollte zweidimensional deklariert werden. (Wenn die Gréfie des Ergebnisfelds nicht mit der Grofe
der Konstantenmatrix B {ibereinstimmt, wird das Ergebnisfeld automatisch vor der Ausfiihrung
von =% % auf die Gréfe von B umdimensioniert.) Jede Spalte enthélt dann die Kostenfaktoren fir
eine Druckerei.




10 OPTION BASE 1 @ STD
20 DIM A(3,3).X(3,2),B(3,2)
30 DATA 273,35,1

40 DATA 150,8,1

50 DATA 124,19,1

60 DATA 5835,7362.5

70 DATA 3240,4085

80 DATA 2775,3517.5

90 READ A,B

100 MAT X=SYS(A,B)

110 DISP USING "11A,3X,11A,/";
‘DRUCKEREI A’,'DRUCKEREI B’

120 MAT DISP USING '2X3D.2D,8X,

Spezifikationen fir Auftrag 1.
Spezifikationen fiir Auftrag 2.
Spezifikationen fir Auftrag 3.
Angebote fir Auftrag 1.
Angebote fir Auftrag 2.
Angebote fiir Auftrag 3.

3D.2D";X
RUN
ORUICEERETI A OREUCKEREI B
2R, AR 5 A Festkostenanteil
5 Aa TSR Kosten pro Seite
SRR AA 275 AR Kosten pro Illustration
Beipiel. Dieses Beipiel demonstriert die Anwendung von 55 bei der Berechnung eines Schaltkreises.

Die Impedanzen der Schaltelemente in dem nachstehend abgebildeten Schaltkreis sind in komplexer
Form angegeben. Die komplexe Darstellung der Stéme 7; und I, soll bestimmt werden.

ZR:1O
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Dieses System kann durch die folgende komplexe Matrizengleichung

10+200: —200: I, 5

—200¢ (200—30)i || I, 0

oder durch
AX =B

dargestellt werden. Das nachstehende Programm bestimmt [; und I,.

10 OPTION BASE 1 @ STD

85

20 COMPLEX SHORT A(2,2),X(2) Wenn entweder A oder B komplex ist, dann muf

X ebenfalls komplex sein.
30 DIM B(2)
40 MAT INPUT A,B
50 MAT X=SYS(A,B)

60 MAT DISP X
RUN
Aol 157 B
1EZAEY 0B, -Z8@ , 08, 288, Weist den Elementen von A Werte zu.
Eeola® B
5.0 Weist den Werten von B Werte zu.
DR DU W =Y 121142 I
CLRGETIE 154280 1,
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Zusatzliche Information

Fir reelle quadratische Matrizen A benutzen die Operationen DETCAX, MAT B=IHWIA* und
MAT X=5vS0A, B> des Mathematik-Pakets die LR-Zerlegung von A als Zwischenschritt. Dabei wird
das Verfahren von Crout mit partieller Pivotsuche und erhohter arithmetischer Genauigkeit zur
Konstruktion der LR-Zerlegung verwendet. Die LR-Zerlegung kann durch die Gleichung PA = LR be-
schrieben werden, wobei

¢ L eine linke untere Dreiecksmatrix (alle Elemente oberhalb der Diagonalen sind 0) ist.
* R eine rechte obere Dreiecksmatrix (alle Elemente unterhalb der Diagonalen sind 0) ist.
* P eine Permutationsmatrix ist, die die von der partiellen Pivotsuche herrithrende Zeilen-

vertauschung in der Matrix A repriasentiert.

Die Faktorisierung PA = LR kann auf jede beliebige nichtsinguldre Matrix angewendet werden. Im
Falle von singuldren oder “maschinensinguldren” Matrizen wird die LR-Zerlegung geringfiigig gedndert,
wobei der resultierende Fehler klein im Vergleich zum Rundungsfehler ist. Die resultierende LR-
Zerlegung von A stimmt dann fast mit der LR-Zerlegung einer anderen Matrix A‘ Gberein, d.h. die
Norm der Matrix A entspricht fast der Norm der Matrix A‘, vorausgesetzt, dafl keine Bereichs-
unterschreitung bzw. -iiberschreitung eintritt.

Die fast singuldre Matrix

1 3 0
0 0 1
.666666666667 2 0

kann mit dem Schliisselwort IH!!' erfolgreich invertiert werden:

Eingabe/Ergebnis

DFTION BARSE 1

ODIM AOZ, 20 B2, 30
MAT THFUT A

Hiol, 1% B
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A enthélt nun die oben abgebidete Matrix.

MAT E=IHWOA: B ist die berechnete Inverse der Matrix A.

MAT BE=E*A

MET DISPE B Zeigt die Einheitsmatrix B an, die hier als
Produkt der Matrix A mit ihrer Inversen erzeugt
wurde.

) 1 a8 @

{ (S A

? BooR 1

|

Das Schlisselwort =% lost die Matrizengleichung AX = B in mehreren Schritten nach X auf. Zuerst

wird zur Ermittlung von PA = LR die LR-Zerlegung von A gebildet.

Unter Verwendung von PA = LR stellt sich das Problem als die Auflésung von LRX = PB nach X dar.
Dazu wird zunidchst LY = PB nach Y (Vorwdrtssubstitution) und anschliefend RX = Y nach X
(Ruicksubstitution) aufgelost. Der Wert von X wird nun als erste Naherung der tatséchlichen Losung in
einer iterativen Verfeinerungsroutine verwendet, die das Endergebnis ermittelt.

In vielen Fillen ermittelt das Mathmatik-Paket eine korrekte Losung selbst dann, wenn die
Koeffizientenmatrix singuldr (d.h. die Gleichung X = A~ 1B nicht erfiillt) ist. Durch diese Eigenschaft
sind Sie in der Lage, mit ="' % unter- und Uberbestimmte Gleichungssysteme zu l6sen.

In einem unterbestimmten System (mehr Unbekannte als Gleichungen) enthélt die Koeffizientenmatrix

v

weniger Zeilen als Spalten. Zur Losung dieses Systems mit =% =:

» Fiigen Sie geniigend Nullzeilen an Thre Koeffizientenmatrix von unten an, so dafl Sie eine quadratische
Matrix erhalten.

* Fagen Sie entsprechende Nullzeilen an das Konstantenfeld an.

,,,,,,

Durch Anwendung des Schlisselworts ="' = auf diese Felder erhalten Sie eine Losung fir das urspriingliche
Gleichungssystem.

In einem iberbestimmten System (weniger Unbekannte als Gleichungen) enthilt die Koeffizientenmatrix
weniger Spalten als Zeilen. Zur Losung des Problems mit =% 5:

¢ Fiigen Sie geniigend Nullspalten an Ihre Koeffizientenmatrix von rechts an, so daf Sie eine quadratische
Matrix erhalten.

® Stellen Sie sicher, dafl Thr Ergebnisfeld so dimensioniert ist, daft die Zahl der Zeilen mindestens der Zahl
der Spalten der neuen Koeffizienmatrix entspricht.
Durch die Anwendung des Schlisselworts =% = auf diese Felder erhalten Sie eine Losung fir das urspring-
liche Gleichungssystem. Jedoch sind nur diejenigen Elemente des Ergebnisfelds von Bedeutung, die lhren
urspringlichen Variablen entsprechen.
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Sowohl unterbestimmte als auch {iberbestimmte Systeme haben singuldre Koeffizientenmatrizen. Daher

A

sollten Sie immer priifen, ob die von =% S zuriickgegebenen Ergebnisse die Originalgleichung erfiillen.

MAT C=IHYCAY und MAT X=3%¥Z:A,B! wenden die gleichen, oben genannten Techniken bei einer
komplexen quadratischen Matrix A an, wobei die Matrizen A und B durch entsprechende reelle zerlegte
Matrizen ersetzt werden.

Das Schlisselwort %% kann auch zur Invertierung einer quadratischen Matrix A verwendet werden.
MAT X=Z4YZoA,B» gibt die Invertierte von A zuriick, wenn X, A und B die gleiche Dimension haben und
B als Einheitsmatrix gewihlt wurde. Dieses Verfahren ist im allgemeinen schneller und genauer als
MAT X=IHWCAY, jedoch benétigt dieses Verfahren mehr Speicherplatz. (Speicherplatzanforderungen
werden in Anhang B erldutert.)




Abschnitt 10

Nullstellen einer reellen Funktion
Schliisselworte

\it Hilfe der in diesem Abschnitt beschriebenen Schliisselworte kénnen Sie Nullstellen oder Minima
von Funktionen mit bis zu finf reellen Variablen bestimmen.

Der grofte Teil dieses Abschnitts behandelt die Anwendung dieser Schlisselworte auf Funktionen einer
Variablen. Funktionen mehrerer Varaiblen werden unter Schachtelungsregeln behandelt.

Das Schliisselwort FHFOOT kann tber das Tastenfeld oder in einem Programm zur Bestimmung eines
+-Wertes, fiir den f(x) Null oder ein Minimum ist, verwendet werden, vorausgesetzt, daf die Definition
der Funktion zusammen mit dem Schliisselwort eingegeben wurde oder im Programm enthalten ist.

Die Schliisselworte FWALLUE und FGUESS unterstitzen die Verwendung von FHREOOT und sind
niitzlich bei der Interpretation der zuriickgegebenen Ergebnisse. Alle drei Schliisselworte geben einzelne
numerische Werte zuriick und kénnen daher einzeln oder zusammen mit anderen numerischen
Funktionen oder Variablen zu numerischen Ausdriicken kombiniert werden. Ein viertes Schlisselwort
AR reprasentiert die Variable in der Funktion, deren Nullstellen mit FHFEOOT zu bestimmen sind.
Des weiteren gibt das Schliisselwort den wahrend der Ausfithrung von FHFEU 1T zuletzt berechneten
Nihrungswert fiir die Nullstelle zurtick.

FNROOT Nullstellen einer Funktion

FHEOOTCA,B.F2
wo A, B und F reelle numerische Ausdriicke sind.

Sucht von den Anfangsniherungen A und B ausgehend nach einer reellen Nulistelle der Funktion F. Die
Anfangsnidherungen konnen gleich sein; in diesem Fall wird jedoch vor Beginn der Berechnung einer

dieser Werte gestort.
Der erste Wert erflillt eine der folgenden Bedingungen:

1. Der zuriickgegebene Wert ist eine exakte Nullstelle der spezifizierten Funktion.

2. Der zuriickgegebene Wert ist eine auf 12 Stellen genaue Naherung einer Nullstelle der spezifizierten
Funktion. :
3. Der zuriickgegebene Wert ist eine N#herung fir eine lokales Minimum der Absolutwerte der
spezifizierten Funktion. '
4. Der zuriickgegebene Wert ist der Wert der spezifizierten Funktion in einem Bereich, in dem diese |
konstant ist.

5. Der zuriickgegebene Wert ist +9.99999999999E499, wenn die gesuchte Nullstelle nicht im Bereich
der darstellbaren Zahlen gefunden werden konnte.

| ——

89
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FNROOT (Fortsetzung)

Kann nicht im CALC-Modus verwendet werden. Zusétzliche Informationen iiber FHEZOT und den ‘

r
Ir CALC-Modus finden Sie auf Seite 97.

L Auf den Seiten 97-99 erhalten Sie weitere Information Uber FHREOOT Schachtelungen und die
‘ Wechselwirkungen zwischen FHEOOT und und zwischen FHEOOT und benutzerdefinierten
i Funktionen.
|

FVAR Funktionsvariable

| FuAR

Représentiert die Variable x in f(x), d.h. die Variable, deren Wert von FHFEOOT bestimmt wird.
' Gibt ebenso den wihrend der Ausfilhrung von FHEDOOT zuletzt berechneten Naherungswert zuriick. |

| Kann im CALG-Modus verwendet werden.

FVALUE Funktionswert

| FWALUE
| I
| Gibt den Wert der Funktion F (drittes Argument von FHREOOT), der mit der letzten Ausfuhrung von

. FHEOOT berechnet wurde zuriick.

‘ Der Wert von F /AL LIE bleibt (auch nach einem Ausschalten des HP-71) bis zum AbschluB der nachsten |
| Ausfiihrung von FHEOOT erhalten.
| Kann im CALC-Modus verwendet werden.

| —

FGUESS Vorletzte Nullstellennéherung

§FLLIEEE

| Gibt den in der letzten Ausfilhrung von FHEOOT als vorletzte Naherung fur die Nullstelle berechneten |
Wert zuriick. :

Der Wert von FIZLIEZ S bleibt (auch nach einem Ausschalten des HP-71) solange erhalten, bis FHREOOT
erneut ausgefiihrt wird.

Kann im CALC-Modus verwendet werden.




Durch Uberpriifen der Werte von FURLUE und FGUESS konnen Sie das Ergebnis von FHREOOT wie
folgt kontrollieren:

., Wenn FUALLE = 0 gilt, ist das Ergebnis von FHREOIOT eine exakte Nullstelle der spezifizierten
Funktion, und das Ergebnis von FZLUESS liegt sehr nahe an der Nullstelle.

, Wenn sich die Ergebnisse von FHFOIDT und FEUESE nur in der zwolften signifikanten Stelle

unterscheiden und FWALIUE und F{FGLUESS ) verschiedene Vorzeichen haben, begrenzen diese
beiden Werte die exakte Nullstelle.
, Wenn sich das Ergebnis von FHREDOT und das Ergebnis von FGUEZE unterscheiden, der

Funktionswert F.'ALLE jedoch gleich dem Wert der Funktion an der Stelle FGUEZS ist, liegen
beide Ergebnisse in einem Bereich, in dem FHF konstant ist.

Gehen Sie zur Auflosung einer Gleichung nach einer bestimmten Variablen wie folgt vor:

1. Schreiben Sie die zu lésende Gleichung in der Form f(x) = 0.

2. Ersetzen Sie in der die Funktion f(x) definierenden Formel die Variable, nach der Sie die
Gleichung lésen wollen, durch das Schlisselwort '/ HE.

3. Verwenden Sie die f(x) definierende Formel als drittes Argument von FHEDOOT.

4. Wihlen Sie zwei Anfangswerte (die gleich sein konnen) und verwenden Sie diese als erste
Argumente von FHREOOT. Da FHREOOT immer drei Argumente bendtigt, sollten Sie selbst bei
Verwendung von nur einem Anfangswert diesen Wert fiir A und B einsetzen.

Losen der Gleichung x2 = 2 (FH

[ nte
[

Die folgenden sechs Beispiele verdeutlichen verschiedene Verwendungsmoglichkeiten von FHEOOT
und FYHAR zur Losung der Funktion ¥ = 2. Als Anfangswerte werden 1 und Z benutzt. Das Ergebnis
wird im ersten und sechsten Beipiel angegeben.

Beispiel 1:

Eingabe/Ergebnis

FHROOTCL, 2, FYRR 2 -2 FHREOOT kann sowohl Gber das Tastenfeld
eingegeben als auch in einem Programm
verwendet werden.

PoadldzlEhezds

Beispiel 2:

10 DISP FNROOT(COS(0),LOG2(4), Als Startwert kann auch ein arithmetischer
FVAR"2—2) Ausdruck verwendet werden.

20 DISP 'FVALUE =";FVALUE
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Beispiel 3:

10 DEF FNG=FVAR"2—2
20 DISP FNROOT(1,2,FNG)

30 DISP ‘FVALUE=";FVALUE

Beispiel 4:

10 DEF FNF(X)=X*2—2
20 DISP FNROOT(1,2,FNF(FVAR))

30 DISP 'FVALUE=";FVALUE

Beispiel 5:

10 DEF FNH

20 FNH=FVAR"2—-2

30 END DEF

40 DISP FNROOT(1,2,FNH)
50 DISP 'FVALUE=";FVALUE

Beispiel 6:

10 DEF FNJ(X)

20 FNJ=X~2-2

.30 END DEF

40 DEF FNF(X)=2*X

50 DISP FNROOT(1,FNF(1),FNJ(FVAR))

60 DISP 'FVALUE =’;FVALUE

Eingabe/Ergebnis
RUN

141421356238

FUALUE = | GE00QRQARERAZ

Das dritte Argument von FHECOT kann ein
Ausdruck oder der Aufruf einer benutzer-
definierten Funktion sein.

FAF kann in einer benutzerdefinierten
Funktion oder, wie oben, als drittes Argument von
FHREIOT verwendet werden.

Die benutzerdefinierte Funktion kann ein- oder
mehrzeilig sein.

Das erste und zweite Argument von FHREOOT
kann ebenfalls einen Aufruf einer
benutzerdefinierten Funktion enthalten.

Die Lésung von x2 = 2.
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Losen der Gleichung log (x) = e/x (FHEOOT, FUALUE, FURE, FLUESZE)

Zur Lésung von log(x) = e/x ist diese Gleichung erst in die Form f(x) = 0 zu bringen. Dazu ist e/x von
beiden Seiten der Gleichung zu subtrahieren, was zu log(x) — e/x = 0 fiihrt. Dies ist dquivalent zu
x log(x) — e = 0. Da die linke Seite dies:r Gleichung fiir x < 0 nicht definiert ist und der Algorithmus
bei der Suche nach einer Nullstelle méglicherweise auch die negative Halbachse erreicht, soll anstelle
der obigen Gleichung die Gleichung | x | log|x| — e = 0 gelést werden. Diese Gleichung hat die gleichen
positiven Losungen wie die erste Gleichung, ist jedoch zusétzlich auch fir negative x (jedoch wie die
erste Gleichung nicht an der Stelle x = 0) definiert. Das nachstehende Programm enthalt eine
benutzerdefnierte Funktion zur Berechnung der linken Seite der Gleichung und verwendet an-
schlieffend FHEOOT zur Bestimmung einer Lésung der Gleichung.

10 STD @ DESTROY ALL

20 DEF FNF(X) Benutzerdefinierte Funktion zur Berechnung der
linken Seite der Gleichung.

30 FNF =ABS(X)kLOG(ABS(X))— EXP(1)

40 END DEF

50 INPUT AB Die beiden Anfangsniherungen.

60 R=FNROOT(A,B,FNF(FVAR))

70 DISP '‘R=";R

80 DISP 'FNF(R)=";FVALUE

90 DISP 'FGUESS='";FGUESS

Um dieses Programm verwenden zu kénnen, miissen Sie zwei Anfangsndherungen vorgeben. Obwohl
diese Anfangsnidherungen nicht aufsteigend geordnet oder sogar verschieden sein miissen, fithrt die
Verwendung von Anfangsnaherungen, die die Nullstelle eingrenzen, in der Regel zu einer Verkiirzung
der bendétigten Rechenzeit. In dem hier betrachteten Beispiel ist FHF ¢ FU/ AR fir |[FWAR | <1 negativ
und flur grofe |FUAFR| (etwa FUWAR = 100) positiv; daher sind x = 0.5 und x = 100 sinnvolle
Anfangsndherungen.

Tasten Sie das Programm ein und starten Sie es durch Driicken von [RUN]; wenn die Eingabe-
aufforderung * erscheint, sollten Sie . 5. 138 als Anfangsndherungen eingeben und die Eingabe mit

(END LINE ] abschlieffen. Der Computer zeigt dann an:

4 ist der berechnete Wert eine exakte Nullstelle von FHF.

z
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Wahl der Anfangsnédherungen

Bei der Bestimmung von Nullstellen mittels FHF:O0T legen die Anfangsndherungen fest, wo die Suche
nach einer Nullstelle begonnen werden soll. Wenn die beiden Anfangsnéherungen eine ungerade An-
zahl von Nullstellen begrenzen (was durch unterschiedliche Vorzeichen der Funktionswerte der beiden
Naherungen gekennzeichnet ist), findet FHEIIT relativ schnell eine Nullstelle zwischen den
gegebenen Naherungen. Wenn die Funktionswerte der beiden Néaherungen gleiche Vorzeichen besitzen,
mufs FHREOOT zundchst nach einem Bereich suchen, in dem eine Nullstelle liegt. Die Auswahl von
Anfangsniherungen, die moglichst dicht an einer Nullstelle liegen, fiihrt zu einer Beschleunigung dieser
Suche. Wenn Sie lediglich das Verhalten der Funktion in der Nihe der Anfangsniherungen unter-
suchen wollen (etwa ob in diesem Bereich irgendwelche Nullstellen oder lokale Extrema liegen),
kénnen Sie beliebige Anfangsniherungen vorgeben.

Des weiteren sollte bei der Auswahl von Anfangsnaherungen ebenfalls mit in Betrachtung gezogen
werden, in welchem Bereich die Gleichung sinnvoll ist. Bei der Lésung von f(x) = 0 hat die Variable x
méglicherweise nur einen eingeschrinkten Bereich, in dem eine Lésung logisch sinnvoll ist. In diesem
Fall sollten die Anfangsnaherungen sinnvollerweise aus diesem Bereich gewihlt werden. Haufig hat
eine Gleichung, die ein physikalisches Modell reprisentiert, zusétzlich zu der gewiinschten Losung auch
noch weitere Losungen, die physikalisch nicht sinnvoll sind. Diese Situation ist insbesondere dann
gegeben, wenn die zu analysierende Gleichung das physikalische Modell nur fiir bestimmte Bereiche der
Variablen beschreibt. Sie sollten bei der Interpretation von Ergebnissen derartige Einschrankungen
beriicksichtigen.

Interpretieren von Ergebnissen

Bei der Verwendung von FHREOOT sollten Sie immer die Funktion an der zuriickgegebenen Nullstelle
in der zuvor beschriebenen Weise auswerten. Auf diese Weise kénnen Sie das von FHREIOT zuriick-
gegebene Ergebnis interpretieren. Bei der Auswertung der Funktion an der von FHEOIT zurick-
gegebenen Nullstelle lassen sich zwei Falle unterscheiden: 1) Der Funktionswert liegt dicht an Null;
2) der Funktionswert liegt nicht dicht an Null. Es ist von Ihrer jeweiligen Problemstellung abhingig,
wie dicht der Funktionswert an Null liegen muf, um das Ergebnis von FHFOOT als Nullstelle zu
akzeptieren.

Wenn der Funktionswert zu grof ist, kénnen Sie anhand der obigen Betrachtungen und der von
FIZLUESS zuriickgegebenen Information das allgemeine Verhalten der Funktion in diesem Bereich er-
kennen. Es sei beispielsweise unterstellt, daf Sie mittels FHREOIOT eine Nullstelle einer Funktion f(x)
finden wollen, und daf der Funktionswert f(r) des von FHRE OO T zuriickgebenen Werts r zu grof ist, um
r als Nullstelle akzeptieren zu konnen. In diesem Fall kann sich die Funktion in dem betrachteten
Bereich wie folgt verhalten:

Wenn FUWALUE und f(FGLESS) beide das gleiche Vorzeichen besitzen, ist r entweder eine Naherung
fir ein lokales Minimum von [f(x)| oder r liegt in einem Bereich, in dem der Graph der Funktion
horizontal verlduft (d.h. die Funktionswerte konstant sind).
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In diesen beiden Fillen kann FHEZIOT keine abnehmende Tendenz in den Absolutwerten feststellen,
d.h. die Funktion strebt nicht gegen die x-Achse. FHFOOT versucht dann, einen lokalen Extremwert
anzundhern (sofern ein solcher vorhanden ist). Sie kénnen diese Naherungen anschliefend verfeinern,
indem Sie wiederholt FHREQOT mit r und FGLUESS als Anfangsniherungen ausfiihren. Die wiederholte
Ausfithrung von FHROOT auf diese Weise fiihrt in vielen Féllen zu einer Konvergenz gegen den
Extremwert. Die zugrundeliegende Idee ist, daR Sie entweder mittels FHREOOT lokale Extrema
auffinden kénnen oder daf Sie die Information iiber die Lage von lokalen Extrema dazu benutzen die
Suche nach einer Nullstelle in andere Bereiche zu lenken.

Wenn |FYALLUE | zu grof ist, um r als Nullstelle zu akzeptieren, bleibt als zweite Moglichkeit, daf
FUALLUE und f(FZUEZS) unterschiedliche Vorzeichen haben. Auf den ersten Blick sollte in diesem
Fall die Funktion eine Nullstelle zwischen diesen Werten haben, da normalerweise erst ein Uber-
schreiten der x-Achse einen Vorzeichenwechsel in den Funktionswerten bedingt. Bei zwei Niherungen
auf gegentiberliegende Seiten der x-Achse verfeinert FHREOOT diese Naherungen solange, bis die letzte
und die vorletzte Ndherung zwei aufeinanderfolgende Maschinenzahlen darstellen. In diesem Fall exi-
stiert keine maschinendarstellbare Zahl zwischen r und FGUESS; das Verhalten der Funktion
zwischen diesen Punkten kann folglich nicht untersucht Werden. Die drei folgenden Graphen
illustrieren mogliche Ursachen fiir eine derartige Situation:

5\
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In Fall 1 liefern r und FGLUESE die besten Nidherungen fiir eine Nullstelle, die auf der Maschine
darstellbar sind. Fir FHEJOT unterscheidet sich Fall 2 nicht von Fall 1; hier existiert jedoch keine
Nullstelle, da eine Sprungstelle der Funktion vorliegt. Fall 3 zeigt eine Pol, der wiederum wie eine
Nullstelle aussehen kann, wenn Anfangsnidherungen auf beiden Seiten des Pols gewihlt werden. An-
hand der von FHEOOT und FGLESS zuriickgegebenen Information kénnen Sie normalerweise fest-
stellen, ob eine Konvergenz gegen einen Pol oder eine Sprungstelle vorliegt.

Verringern der Ausfiihrungszeiten

Aufgrund des grofien Exponentenbereichs des HP-71 von +499 (TREAF ¢ UHF » = 2 dehnt den Bereich
des negativen Exponenten sogar auf —510 aus) sind sehr genaue Untersuchungen iiber das Verhalten
einer Funktion mdglich. Dies gilt selbst in extremer Néhe einer Nullstelle. FHEOOT macht sich diesen
dynamischen Zahlenbereich zunutze, indem eine Niherung nur dann als Nullstelle akzeptiert wird,
wenn der Funktionswert an dieser Stelle Null ist oder einen Bereichsunterlauf bedingt, oder bis zwei
aufeinanderfolgende Maschinenzahlen gefunden sind, die die Nullstelle eingrenzen. Diese hohe
Genauigkeit hat natirlich einen Preis; es kann gelegentlich vorkommen, daf die Bestimmung einer
Nullstelle auf alle zwolf Stellen einen gewissen Rechenzeitaufwand bedingt. Es kann nun Situationen
geben, in denen Sie die volle Rechengenauigkeit nicht benétigen und daher eine grofiere Fehlerschranke
vorziehen wiirden. Wenn Sie beispielsweise lediglich wissen wollen, an welchen Stellen eine Funktion
kleiner als 1IE—20 ist,kénnen Sie Ihre benutzerdefinierte Funktion so abéndern, daf der Funktionswert
vor der Wertzuweisung an die Funktionsvariable auf die Fehlerschranke abgepriift und gegebenenfalls
durch Null ersetzt wird. Es sei zum Beispiel unterstellt, daf Sie alle Nullstellen der Funktion f(x) = x*
bestimmen wollen und daf Sie einen Funktionswert |f(x)| < 1E—32 als Kriterium fiir eine Nullstelle
akzeptieren. In diesem Fall konnten Sie das nachstehende Programm verwenden.

10 STD @ DESTROY ALL

20 DEF FNF(X) Mehrzeilige Funktion fir f(x) = x*
30 F=X"4
40 IF F<=1.E—32 THEN FNF=0 ELSE Abfrage auf die Fehlerschranke und
FNF=F entsprechende Zuweisung eines Funktionswerts.
50 END DEF
60 DISP FNROOT(2,3,FNF(FVAR)) Berechnet die Nullstelle und zeigt sie an.
70 DISP FVALUE Anzeige des Funktionswerts an der berechneten
Nullstelle.
Eingabe/Ergebnis
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Ohne Verwendung dieser Fehlerschranken-Technik hitte die Berechnung der Nullstelle wesentlich
mehr Zeit in Anspruch genommen. Die Griinde hierfiir liegen darin, daR bei der Berechnung der
Funktion erst dann ein Bereichsunterlauf auftreten wiirde, wenn x sehr nahe an Null ist (da die
Nullstelle im Punkt O liegt), und daR die maschinendarstellbaren Zahlen sich in der Nihe von Null
haufen. Daher wiirde FHREOOT eine Vielzahl von Naherungen benétigen, bis eine akzeptable Néherung
der Nullstelle erreicht ist.

Eine weitere Technik zur Verringerung der Ausfiihrungszeiten besteht darin, die Funktion so zu
transformieren, daf die Nullstelle nicht mehr im Punkt 0 liegt, die Nullstelle dann zu berechnen und
danach zuriickzutranformieren. Dieses Verfahren fiihrt fiir gewisse Funktionen mit Nullstellen in der
Ndhe von Null zu verringerten Ausfithrungszeiten, hat jedoch den Nachteil, daf ein Genauig-
keitsverlust in Kauf genommen werden mufi. Nachstehend finden Sie ein Beispielprogramm fiir
flx) = x4

10 STD @ DESTROY ALL

20 DEF FNF(X)=(X—1)"4 Transformation von x* um 1.
30 R=FNROOT(3,4,FNF(FVAR)) Berechnung der Nullstelle.
40 DISP R—1 Riicktransformation der Nullstelle und Anzeige

von Nullstelle und Funktionswert.
50 DISP FVALUE

Schlieflich sei noch eine Technik erwédhnt, die sowohl die Ausfithrungszeit als auch die Genauigkeit
von FHROOT verbessern kann. Jede Gleichung gehért zu einer unendlich grofien Familie dquivalenter
Gleichungen, die alle die gleichen Loésungen besitzen. Unter Umsténden sind jedoch einige dieser
Gleichungen einfacher zu lésen als andere. Beispielsweise haben die beiden Gleichungen f(x) = 0 und
exp (f(x)) — 1 = 0 die gleichen reellen Nullstellen; jedoch wird eine dieser Gleichungen fast immer
einfacher zu losen sein als die andere. Fiir f(x) = x* — 6x — 1 ist die erste Gleichung einfacher; fir f(x)
= In(x* — 6x —1) jedoch die zweite. Obwohl FHRIOT fiir eine Vielzahl von Problemstellungen exakte
Ergebnisse liefert, kann es jedoch unter Umsténden ratsam erscheinen, die hier vorgestellten Moglich-
keiten zu bericksichtigen.

Anhalten von FHEDOT mit

Wenn keines der Argumente von FHROOT einen Aufruf einer mehrzeiligen benutzerdefinierten
Funktion enthilt, kann die Operation von FHFEOT bis zum Speichern von Zwischenergebnissen nicht
mit abgebrochen werden. Die Operation von FHREOOT lauft im einzelnen wie folgt ab: FHEOUT
gibt den momentanen Wert von FURAF als Wert der angeblichen Wurzel zurtick und speichert diesen
Wert zugleich ab. Der zuletzt angenommene Wert der Wurzel wird als FGIIE S % und der Wert von f(x)
an dem momentanen Wert von FWAR als FWALUE gespeichert. Erst nach Abschluf dieser
Operationen hélt die Ausfihrung von FHREOOT an.
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Wenn dagegen FHROOT eine oder mehrere mehrzeilige benutzerdefinierte Funktionen als Argumente
enthélt (d.h., wenn die Berechnung von FHEOOT die Ausfithrung mehrerer BASIC-Programmzeilen
umfafit), wird solange ignoriert, bis eine dieser benutzerdefinierten Funktionen aufgerufen wird,
Die Ausfiihrung hélt dann an einer Zeile der benutzerdefinierten Funktion an. Dadurch sind Sie in der
Lage, wichtige Werte wie beispielsweise den momentanen Wert von FYAR zu untersuchen und an-
schliefend die Ausfiihrung von FHMROOT fortzusetzen (falls gewlinscht).

Ein weiterer Vorteil in der Verwendung von mehrzeiligen benutzerdefinierten Funktionen als
Argument(en) von FHREOOT bestehtdarin, daf die Umgebung von FHREOOT bei Auftreten eines Fehlers
in der benutzerdefinierten Funktion nicht zerstért wird. Damit stehen Ihnen die Korrektur- und
Fortsetzungsmoglichkeiten des HP-71 vollstandig zur Verfiigung.

CALC-Modus

FHREOOT kann im CALC-Modus weder direkt noch indirekt aufgerufen werden. Wenn Ihr momentaner
File beispielsweise eine einzeilige benutzerdefinierte Funktion FHF enthélt, deren Definition das
Schliusselwort FHRIOT enthilt, fithrt der Versuch, FHMF im CALC-Modus aufzurufen, zu einer
Fehlerbedingung.

Schachtelungsregeln

Wenn das dritte Argument F von FHROOT eine Formel definiert, deren Auswertung einen weiteren
Aufruf von FHROOT impliziert, spricht man von einer FHREOOT Schachtelung. Die Schachtelungstiefe
von FHEQDT Schachtelungen ist auf 5 Ebenen beschrankt.

Als Beispiel fiir die Schachtelung von FHRIOT soll das nachstehende Programm betrachtet werden,
das die Funktion f(x,y) = 22 + y2 — 2x — 2y + 2 nach x und y auflost.

10 STD @ DESTROY ALL
20 DEF FNF(X,Y)=X"2+Y"2—2%X —2%Y +2 Definiert die obige Funktion.

30 DEF FNG(X) Die Zeilen 30 bis 60 definieren eine Funktion

40 R=FNROOT(—4,4,FNF(X,FVAR)) g(x) mit nur noch einer Variablen, die einen

50 FNG=FVALUE festen Wert fir x (namlich FY &) von Zeile 70
bezieht.

60 END DEF

70 DISP FNROOT(—3,3,FNG(FVAR));R Wenn von Zeile 50 ein Ergebnis ungleich 0

zuriickgegeben wird, dann wird ein weiterer
x-Wert fir FHROOT in Zeile 40 ausgewahlt.
Eine Nullstelle von f(x,y) ist gefunden, wenn von
Zeile 50 der Wert 0 zuriickgegeben wird.
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Eingabe/Ergebnis

RUN

1 R R e R o e R R R R Die von FHEQOT in Zeile 70 zurickgegebenen
x- und y-Werte. Der x-Wert wird links angezeigt.

, 3999093999599 ist die beste Naherung, die FHREOOT fiir den wahren y-Wert 1 finden kann, da
bereits dieser y-Wert (zusammen mit dem x-Wert 1) den Funktionswert 0 liefert.

FUALLE [ENDLINE

Diese x- und y-Werte liefern bei Einsetzen in
f(x,y) das Ergebnis &.

T
s

Eine weit verbreitete Verwendung von FHEOOT ist die Bestimmung lokaler Minima. Zur Erlauterung
dieser Anwendung soll die obige Funktion durch Addition von 1 modifiziert werden. Dadurch wird
sichergestellt, daf die Funktion keine Nullstelle hat, d.h. der durch die modifizierte Funktion
reprisentierte Paraboloid schneidet die xy-Ebene nicht mehr. Das Programm wird nur in Zeile 20
modifiziert:

20 DEF FNF(X,Y)=X"2+Y"2—-2%X—2%Y+3

Alle weiteren Programmzeilen bleiben unverandert.

Das zuvor verwendete geschachtelte FHFE QD T-Programm bendtigte etwa 20 Sekunden zum Ermitteln
einer Losung. Da FHROOT mit besonderer Sorgfalt sicherstellt, daft ein echtes Minimum berechnet
wird, benotigt das modifizierte Programm etwa 32 Minuten, um den x- und y-Wert des Funktions-
minimums zu finden.

Eingabe/Ergebnis
RUN
i, EERAR1I21aEs 1, 8004 Der x- und y-Wert des berechneten
SR T Funktionsminimums.
FURLUE Zeigt den Wert der modifizierten Funktion fur

den gegebenenen x- und y-Wert an.
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Sie miissen jedoch nicht die vollen 3% Minuten abwarten, bis das Ergebnis angezeigt wird. Sie kénnen,
wie bereits auf Seite 97 beschrieben, die Ausfilhrung von FHREOOT anhalten und anschliefiend
Zwischenergebnisse anzeigen. Wenn sich bei aufeinanderfolgenden Untersuchungen dieser Werte keine
wesentlichen Verdnderungen, konnen Sie die Zwischenergebnisse als geniigend genau akzeptieren.

Verwendung von benutzerdefinierten Funktionen

Die Funktion FHROOT kann nicht Gber das Tastenfeld ausgefithrt werden, wenn das dritte Argument
von FHEOOT eine benutzerdefinierte Funktion auswertet. In diesem Fall muf FHROOT als
Programmanweisung ausgefiihrt werden. Ebenso kénnen Sie keine benutzerdefnierte Funktion, weder
im BASIC- noch im CALC-Modus, iiber das Tastenfeld ausfithren, wenn die Ausfithrung von FHEOOT
angehalten wurde.
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Schliisselworte

Mit Hilfe der in diesem Abschnitt beschriebenen Schlisselworte kénnen Sie das Intergral einer
Funktion von maximal 5 Variablen mit einer von Thnen gewihlten Genauigkeit berechnen.

Der grofite Teil dieses Abschnitts behandelt die Anwendung dieser Schlisselworte auf Funktionen einer
Variablen. Funktionen mehrerer Variablen werden unter Schachtelungsregeln und Volumenintegration
auf Seite 109/110 beschrieben.

Das Schliisselwort IMTEGRAL kann tber das Tastenfeld oder in einem Programm zur Berechnung des
Integrals einer Funktion verwendet werden, vorausgesetzt, daff die Funktion zusammen mit dem
Schliisselwort eingegeben oder in dem Programm definiert wird.

Die Schliisselworte IEIUMO und IWALIE geben zusétzliche Information zuriick, die die Inter-
pretation des Integralwerts vereinfachen. IHTEGRAL, IBEQOUHD und TWALUE geben jeweils einzelne
numerische Werte zuriick, so daR Sie diese Schliisselworte zusammen mit anderen numerischen
Funktionen und Variablen in numerischen Ausdriicken verwenden kénnen. Ein viertes Schliisselwort,
I\/AR, reprisentiert die Integrationsvariable (oder eine der Integrationsvariablen) der mit IHTEGRHAL
zu integrierenden Funktion. Ebenso gibt I1'/AF die letzte von IHMTEGRHAL benutzte Stiitzstelle zuriick.
INTEGRAL Bestimmtes Integral

| IMTEGRALYA,B,E.F:

| wo A, B, E und F reellwertige numerische Ausdriicke sind.

| Gibt eine Ndherung fir das Integral von A bis B der Funktion F zuriick. Der relative Fehler £
| (1IE—12<E<1) deutet die Genauigkeit von F an und wird zur Berechnung einer Fehlertoleranz in der
| Naherung fiir das Integral verwendet.

| Das berechnete Wert fiir das Integral kann sein:
» Eine N#herung fiir das Integral mit einer durch den relativen Fehler £ vorgegeben Genauigkeit.

» Die letzte von 16 Naherungen fiir das Integral, bei denen der Integrand an 65535 Stiitzpunkten
ausgewertet wurde, ohne daB dabei das Konvergenzkriterium erfiillt wurde.

» Die beim Driicken von zuriickgegebene momentan beste N#herung fir das Integral, wenn F
keine mehrzeilige benutzerdefinierte Funktion aufruft. -
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INTEGRAL (Fortsetzung)

| TMTEGREAL erzeugt eine Folge von immer genaueren Naherungen fiir das gesuchte bestimmte Integral.
| Wenn drei aufeinanderfolgende N&herungen jeweils innerhalb der Fehlertoleranz voneinander liegen (d.h.
| die erste liegt dicht an der zweiten und die zweite liegt dicht an der dritten), wird die Folge abgebrochen,
| und die dritte Ndherung wird als der gesuchte Integralwert zuriickgegeben. Wenn dieses |
| Konvergenzkriterium auch nach 16 Folgengliedern nicht erfiillt ist, wird der Wert der 16. Naherung |
| zuriickgegeben.

| Kann nicht im CALC-Modus verwendet werden. Weitere Informationen iber IMTEGFRFAL und den |
| CALC-Modus werden auf Seite 111 gegeben.

Auf den Seiten 109-111 finden Sie Informationen (ber die Schachtelung von IHTEGEAL
| (Volumenintegration) und {iber die Wechselwirkungen zwischen IMTEGRAL und und zwischen |

| THTEGRAL und benutzerdefinierten Funktionen. 1
IVAR Integrationsvariable
| TMAR

|

| Reprdsentiert die Integrationsvariable in der die Funktion F definierenden Formel. Ist das letzte |
\ Argument von IHTEGERL. i

| Gibt die zuletzt von IHTEGRAL benutzte Stiitzstelle zuriick.

Kann im CALC-Modus verwendet werden.

IVALUE Letztes Ergebnis von INTEGRAL

CIVALUE

| Gibt die letzte von IHTEGRAL berechnete Ndherung zuriick. Wenn die Ausfiinrung von THTEGREFAL |
durch Driicken von oder auf eine andere Weise unterbrochen wurde, gibt I%/ALLIE den Wert der |

| momentanen Naherung zuriick. Ansonsten gibt I./FHLIIE den gleichen Wert zurlick, der auch bei der |
letzten Ausfilhrung von IHTEGREAL zuriickgegeben wurde.

| IWALUE behadlt auch nach einem Ausschalten des HP-71 solange den momentanen Wert, bis |
IHTEGREAL erneut ausgefiihrt wird. ‘

| Kann im CALC-Modus verwendet werden.
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IBOUND Fehlerabschitzung fiir INTEGRAL

IEBOUHD g

Gibt eine Abschétzung des absoluten Fehlers fiir das zuletzt mit INTECGREFAL berechnete Integral :
zuriick. §
|

® Ein positiver IEQLIHDO-Wert deutet an, daB die Folge der N&herungen konvergiert hat. [

® Ein negativer IECIINDO-Wert deutet an, daB die Folge der Niherungen das Konvergenzkriterium
nicht vollsténdig erflillt hat; der von IMTEZRAL zuriickgegebene Wert kann auBerhalb der;
Fehlertoleranz um den wahren Integralwert liegen. 5

i

momentanen Wert, bis IHTEZRHAL erneut ausgefiihrt wird. Im Gegensatz zu I'/HLLIE steht der Wert
von TECOUHD in keinerlei Beziehung zur momentanen N#herung, wenn die Ausfiinrung von |
IMTEGEHAL unterbrochen wird.

é:sann im CALC-Modus verwendet werden.

Wie TWHLLUE erhdlt auch IEQUHD (selbst nach einem Ausschalten des HP-71) solange den |

hen Sie zur Berechnung eines bestimmten Integrals wie folgt vor:
" 1 Schreiben Sie einen Ausdruck, der die zu integrierende Funktion reprisentiert.
% Ersetzen Sie die Integrationsvariable des Ausdrucks durch das Schliisselwort I4AF.
Verwenden Sie diesen Ausdruck als viertes Argument F von IMTEGRAL.

Verwenden Sie die Integrationsuntergrenze als erstes Argument (4) und die Obergrenze als zweites
Argument (B) von IMTEGRAL.

Wiahlen Sie als drittes Argument E von IHTEGRAL einen Wert, der ein MafR fiir den relativen
Fehler in der Berechnung des Integranden darstellt. Jeder fiir E gewihlte Wert wird auf den Be-
reich [1IE—12,1] gerundet und sollte die Ungleichung

|WAHRER INTEGRAND — BERECHNETER INTEGRAND[

< E.
|BERECHNETER INTEGRAND)|

sefillen. Da I[MTEGRAL den wahren Wert des zu bestimmenden Integrals nicht kennt, miissen Sie
#eses MaR fiir den relativen Fehler angeben. Bei vielen rein mathematischen Funktionen (5 IH,
- 7, Polynome usw.) und endlichen Integrationsgrenzen kann die volle 12-stellige Genauigkeit des

#-71 ausgenutzt werden, so daf ein Wert fiir E in der Gréfienordnung von 1E—12 sinnvoll ist.
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Zwischen IHTEGREAL und IEQUHD besteht der folgende Zusammenhang:

1.

3.

Basierend auf dem relativen Fehler E fiir die spezifizierte Funktion berechnet der Computer eine
Fehlertoleranz fiir das Integral der Funktion. Wenn f(X) die durch F approximierte wahre
Funktion darstellt, sollte E so gewéhlt werden, daf

FX) -fX] g
)

fiir alle X im Integrationsintervall erfillt ist. Der fir E spezifizierte Wert wird gerundet, so daf
gilt: IE—12<E<]1.

Wenn F beispielsweise aus Mefidaten mit N signifikanten Stellen abgeleitet wird, sollte E auf
10N gesetzt werden.

Der Computer berechnet eine Folge von Approximationen I, firr das Integral der spezifizierten
Funktion. Die Differenz zwischen zwei aufeinanderfolgenden Néiherungen wird dann jeweils mit der
Fehlertoleranz fiir das Integral verglichen.

Ein Wert fir das Integral wird zuriickgegeben, wenn gilt:

o Die Folge der Approximationen I, hat konvergiert. Zur Bestimmung der Konvergenz wird eine
Folge von Niherungen J, fiir das Integral der Funktion E+F| Gber dem gleichen Inte-
grationsinterval benutzt. J), beschreibt den bei der Berechnung von I, auftretenden Fehler.

IMTEGEAL nimmt an, daf die Folge der Naherungen I, gegen I, konvergiert hat, wenn
[y = Tp—r|<d

firk=n — lund & = ngilt. IMTEGRAL gibt dann den Wert von I, zuriick; IECQUHD gibt
einen positiven Wert als Fehlerabschatzung zurick.

» Das Konvergenzkriterium ist auch nach der Berechnung der Naherungen I; bis I} nicht
erfiillt. IMTEGRAL gibt dann [;4 zuriick; IEQUHD liefert einen negativen Wert als
Fehlerabschatzung.
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Integration von f(x) = x2—2 (IHTEGRAL, IWAR)

Die folgenden sechs Beipiele verdeutlichen verschiedene Verwendungsmoglichkeiten von IHTEGRAL
und I%AF zur Integration der Funktion x> — 2 von 1 bis 2. Das Integrationsergebnis wird im ersten

und sechsten Beispiel angegeben.
Beispiel 1:

Eingabe/Ergebnis
IMTEGRALSL, 2, 1E-11, IVAR"2-22

Beispiel 2:

10 DISP INTEGRAL(COS(0},LOG2(4),
1E—11,IVAR"2—-2)

Beispiel 3:

10 DEF FNG=IVAR"2-2

20 DISP INTEGRAL(1,2,1E—11,FNG)
Beispiel 4:

10 DEF FNF(X)=X"2—2

20 DISP INTEGRAL(1,2,1E—11,FNF(IVAR))
Beispiel 5:

10 DEF FNH

20 FNH=IVAR"2—-2
30 END DEF
40 DISP INTEGRAL(1,2,1E—11,FNH)

IMTEGRAL kann sowohl iiber das Tastenfeld
eingegeben als auch in einem Programm
verwendet werden.

Als Integrationsgrenzen kénnen auch
arithmetische Ausdriicke verwendet werden.

Das vierte Argument von I[HTEGRHAL kann ein
Ausdruck oder der Aufruf einer benutzer-
definierten Funktion sein.

1\'AFR kann wie oben in einer
benutzerdefinierten Funktion oder im vierten
Argument von IMTEGRAL verwendet werden.

Die benutzerdefinierte Funktion kann ein- oder
mehrzeilig sein.
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Beispiel 6:

10 DEF FNJ(X)

20 FNJ=X"2-2

30 END DEF

40 DEF ENF(X)=2%X

50 DISP INTEGRAL(1,FNF(1),1E—11, Das erste, zweite und dritte Argument von
FNJ(IVAR)) IMTEGRAL kann ebenfalls einen Aufruf einer

benutzerdefinierten Funktion enthalten.
60 DISP IBOUND

Eingabe/Ergebnis
RUN
L EEEIEIIEEEEIE Das Integrationsergebnis.
FLOYBRE4IVESTEIE-L2 Eine Abschatzung fiir den absoluten Fehler des
Integrationsergebnisses. Die Konvergenz der

Integralndherungen wird durch den positiven
Wert bestétigt.

Integration von f(x) = eX—2 (IMTEGRAL, IWAR, IWALUE)

Dieses Beispiel erldutert die Verwendung von 1'/ALIIE. Diese Funktion gibt die letzte von IHTEGRAL
berechnete Naherung zuriick und wird selbst wiahrend der Ausfilhrung von IHTERZAL fortwahrend
aktualisiert. I'/ALLE gibt nach Abschluf der Integration den gleichen Wert wie IHTEGRAL zuriick.

Durch Anzeige von I''ALLUE kénnen Sie wihrend der Ausfilhrung von IHTEGRHAL die Verbesserung
der Integrationsnidherung beobachten. Diese Eigenschaft wird in dem nachstehenden Programm, das
die Funktion e*—2 von 1 bis 3 integriert, verdeutlicht. Als Fehlertoleranz wird 1E—12 vorgegeben.

10 Y=IVALUE 7 = Wert von IVALLE bei Beginn der
Programmausfiihrung. (Setzt voraus, daf
IHTEGRAL mindestens einmal ausgefiihrt
wurde.)

20 DEF FNF(X)

30 IF IVALUE=Y THEN 50 Zeigt IVALUE nur bei einer Wertveridnderung
an.
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40 DISP IVALUE @ Y=IVALUE
50 FNF=EXP(X)—2

60 END DEF
70 DISP INTEGRAL(1,3,.000000000001,
FNF(IVAR))
Eingabe/Ergebnis
RUN
1@, 7¥ali1z1a7Fa Erster angezeigter Wert von I'\/ALLIE.
12, 6838372132
132, 3653533516
12,367V 1568314
12, 2e7V2585263
12, 38725508945
12, 2672558247 Letzter angezeigter Wert von IV HLUE.
2,35 HRgy Wert des Integrals (IMHTEGREAL).

Integration von f(x) = exp(x®+4x2+x+1) (IHTEGEAL, [WAR, [BOUHD,
TVALUE)

Zur Berechnung des Integrals von 0 bis 1 der Funktion
flx) = exp(x® + 422 + x + 1)

kénnen Sie das folgende Programm verwenden.

10 DEF F(X)=EXP(X"3+4%X"2+X+1) Die benutzerdefinierte Funktion F.

20 INPUT E Fragt nach dem relativen Fehler in F im
Vergleich zu f(x).

30 DISP 'INTEGRIEREND’

40 X=INTEGRAL(0,1,E,F(IVAR))

50 BEEP

60 DISP INTEGRALWERT: ’

70 DISP X

80 DISP ‘GESCHAETZTER FEHLER: ’
90 DISP IBOUND
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Tasten Sie das Programm ein, und starten Sie es durch Driicken von [RUN].

Eingabe/Ergebnis
RUN
ENN | Eingabeaufforderung fiir den relativen Fehler
der Funktion.
1E-5 Obwohl der HP-71 die Funktion F bis auf eine

Abweichung von 1 in der zwélften Stelle exakt
berechnet, soll eine geringere Genauigkeit (hier
eine Abweichung von 1 in der finften Stelle)

vorgegeben werden, um die Ausfithrungszeit zu

verkiirzen.
IMTEGRIEREHD
ITHTEGREALMWERT:
184, 291837226
GESCHARETZTER FEHLER:
1. 84263904352E-3 Der Wert des Integrals ist 104.2911 +
1.04x 1073,
TVALUE
184, 221027228 IYALIE gibt den Wert des zuletzt berechneten
Integrals zuriick.

Integration von C(T) = a + bT (IMTEGRERAL, IVAR, TEOUMD)

Sie kénnen mittels IHTEGRAL die Warmemenge berechnen, die benétigt wird, um ein Gramm eines
Gases bei konstantem Volumen von einer gegebenen Temperatur auf eine andere Temperatur zu
erwirmen. Die benétigte Warmemenge @ ergibt sich aus der Formel

Q= [“cm dr

wo C(T) die spezifische Wirme des Gases als Funktion der Temperatur, T1 die Anfangs- und T2 die
Endtemperatur ist.

In dem hier betrachteten Beipiel sei C(T) = a + bT, wo a und b experimentell zu a = 1.023E~2 und
b = 2.384E—2 mit je 4 signifikanten Ziffern bestimmt sind. Der relative Fehler in C(T) ergibt sich dann
niherungsweise zu 5E—4. Das folgende Programm verlangt die Eingabe der Anfangs- und End-
temperatur in Kelvin und berechnet dann die zum Erhohen der Gastemperatur von der
Anfangstemperatur auf die Endtemperatur bendtigte Wiérmemenge.




10 DEF FNC(T)=.01023+.02384%T

20 INPUT "ANFANGST., ENDT. (K)?";T1,T2
30 DISP 'INTEGRIEREND’
40 Q=INTEGRAL(T1,T2,.0005,FNC(IVAR))
50 DISP ‘BENOETIGTE WAERMEMENGE:’
60 DISP Q)+ —";IBOUND
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Benutzerdefinierte Funktion zur Berechnung der
spezifischen Wirme.

Berechnung des Integrals.

Anzeige des Resultats und der
Fehlerabschitzung.

Tasten Sie das Programm ein, und berechnen Sie die Warmemenge, die benétigt wird, um das Gas von

300 K auf 310 K zu erhitzen.

Eingabe/Ergebnis
RUN

FHFAMGET ., EMOT . CE27HE

4
i
b
Led
—t
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m
4
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L
4
m

ITHTEGREITEREHD
EEMOETIGTE MAEREMEMEHGE
FELel4E +-  BIERAE
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[

Weitere Informationen

Schachtelungsregeln und Volumenintegration

Wenn das vierte IHTEGRFAL-Argument F eine Formel spezifiziert, die eine weitere Auswertung von
IMTEGRAL bedingt, ist eine IMTEGRAL Schachtelung gegeben. Bei IHMTEGRFAL Schachtelungen
sind maximal 5 Schachtelungsebenen zuldssig. Programme mit zweifachen THTEZEAL Schachte-
lungen kénnen beispielsweise zur Berechnung von Volumina verwendet werden.

Das nachstehende zur Integration von f(x,y) = x2 + 2y {iber dem Quadrat 0 <x <1, 0 <y <1
verwendete Programm verdeutlicht die Schachtelung von IHTEGRFL. Das Programm berechnet das

Doppelintegral

NIRRT
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10 DEF FNF(X,Y)=X"2+ 2%Y

20 DEF FNG(X)=INTEGRAL(0,1,1E -8,
FNF(X,IVAR))

30 DISP INTEGRAL(0,1,1E—6,FNG(IVAR))

Eingabe/Ergebnis
RUN

aaaaaaaaaaa

Definiert die zu integrierende Funktion.

Fir jeden Wert von x wird tber einen Streifen
parallel zur y-Achse integriert.

Summiert alle Streifen parallel zur y-Achse auf.

Das von IHTEGREAL in Zeile 30
zurtickgegebene Volumen.

Obwohl das berechnete Ergebnis exakt ist,
deutet IEDUHD nur eine Genauigkeit von sechs
Stellen an. -

Das nachstehende Beispiel erldutert die Verwendung von IHTEGFRAL zur Auswertung des Integrals

J;N/ZJ: sin(x) dx dy

Eingabe/Ergebnis

FADTANS
ITHTEGERLCS , FT &, 1E-3,
THTE AL CE, TWAR, 1E-
FLEIMHCTWARE

I

TEOUHD

5L EIIEEIZEISSE-4

Die erste I'/AF reprisentiert die
Intergrationsvariable des dufieren Integrals.

Das korrekte Ergebnis ist #/2 — 1 (ca.
0.5707963268).



Abbrechen von [ HTEGEHL mit [ATTN

Wenn keines der Argumente von IHTEZFAL einen Aufruf einer mehrzeiligen benutzerdefinierten
Funktion enthélt, kann die Operation von IHTEZREAL bis zum Speichern von Zwischenergebnissen
nicht mit abgebrochen werden. THTEGRERAL arbeitet im einzelnen wie folgt: [HTEGREAL gibt
den momentanen Wert von IV ALUE als angeblichen Wert des Integrals zurlick und speichert diesen
zugleich ab. Aufierdem bewirkt IHTEGZFHAL eine Vorzeichenumkehr bei dem Wert von I FEQLHI. Die
Ausfiihrung von IHTEGREAL hédlt erst nach AbschluR dieser Operationen an.

Wenn [HTEGRML dagegen eine oder mehrere mehrzeilige benutzerdefinierte Funktionen als
Argumente enthdlt (d.h., wenn die Berechnung von IHTEGREAL die Ausfiihrung mehrerer BASIC-
Programmzeilen umfaft), wird solange ignoriert, bis eine dieser benutzerdefinierten Funktionen
aufgerufen wird. Die Ausfihrung halt dann an einer Zeile der benutzerdefinierten Funktion an.
Dadurch sind Sie in der Lage, wichtige Werte wie den momentanen Wert von I1fL UE zu untersuchen
und anschliefend (falls gewiinscht) die Ausfithrung fortzusetzen.

Ein weiterer Vorteil in der Verwendung von mehrzeiligen benutzerdefinierten Funktionen als
IHMTEGFAL Argumente besteht darin, daft die Umgebung von IHTEGRFL bei Auftreten eines Fehlers
in der benutzerdefinierten Funktion nicht zerstért wird. Damit stehen Ihnen die Korrektur- und
Fortsetzungsmoglichkeiten des HP-71 vollstdndig zur Verfligung.

CALC-Modus

IMTEGRAL kann im CALC-Modus weder direkt noch indirekt aufgerufen werden. Wenn Ihr
momentaner File beispielsweise eine einzeilige benutzerdefinierte Funktion FHF enthélt, deren Defi-
nition das Schlisselwort IHTEZREAL enthéalt, fiihrt der Versuch, FHF im CALC-Modus aufzurufen, zu
einer Fehlerbedingung.

Verwendung von benutzerdefinierten Funktionen

Die Funktion IMTEGFEHAL kann nicht tber das Tastenfeld ausgefiihrt werden, wenn das vierte
Argument der IHTEGRAL Funktion eine beliebige benutzerdefinierte Funktion auswertet. In diesem
Fall muff THTEZRERAL als Programmanweisung ausgefiihrt werden. Ebenso konnen benutzerdefinierte
Funktionen, weder im BASIC- noch im CALC-Modus, uber das Tastenfeld ausgefuhrt werden, wenn
die Ausfiihrung von IHTEGREAL angehalten wurde.

Aligemeines zur numerischen Integration

Alle numerischen Integrationsverfahren beinhalten die Auswertung der zu integrierenden Funktion an
einer Reihe von Stiitzstellen im Integrationsintervall. Das berechnete Integral ist dann einfach ein
gewichtetes Mittel der Funktionswerte an diesen Stitzstellen. Da ein bestimmtes Integral tatséichlich
jedoch ein Mittel der Funktionswerte an unendlich vielen Stiitzstellen darstellt, kann ein numerisches
Integrationsverfahren nur dann befriedigende Resultate liefern, wenn die gewéhlten Stitzstellen das
Verhalten der Funktion auf dem Gesamtintervall ausreichend gut beschreiben.
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Wenn die Stiitzstellen dicht zusammen liegen, und die Funktion ihr Verhalten zwischen aufeinander-
folgenden Stitzstellen nicht zu rasch dndert, liefert die numerische Integration in der Regel verlafliche
Resultate. Andererseits liefert die numerische Integration héufig unzureichende Ergebnisse, wenn der
Graph der Funktion auf einem Bereich stark wvariiert, der klein im Vergleich zum gesamten
Integrationsgebiet ist. Andere Fehler, die das Ergebnis einer numerischen Integration beeinflussen
konnen, sind die fiir jede Gleitkomma-Berechnung typischen Rundungsfehler und etwaige in der
Routine zur Berechnung der zu integrierenden Funktion auftretende Fehler.

Behandlung numerischer Fehler

ITHTEGREAL bendtigt die Vorgabe einer Fehlertoleranz E, um die Giite der zu integrierenden Funktion
abschédtzen zu konnen. Diese Fehlertoleranz sollte den relativen Fehler der benutzerdefinierten
Funktion im Vergleich zu der “wahren”, zu integrierenden Funktion beschreiben und wird dazu be-
nutzt, um ein Band um die benutzerdefinierte Funktion zu legen, in dem die “wahre” Funktion liegen
sollte. Wenn f(x) die “wahre” Funktion und F(x) die berechnete Funktion bezeichnet, sollte die
Ungleichung

F(x) — Fehler(x) < f(x) < F(x) + Fehler(x)

fur alle Punkte x im Integrationsintervall erfiillt sein. Fehler(x) ist hier die halbe Bandbreite an der
Stelle x.

~

\ "

Es gilt dann

fa ® ) dx ~ j ® Plx) dx + fa * Fehler(x) dx

wobei das dritte Integral genau die Halfte des Bandes beschreibt. Mit anderen Worten, die Integration
der benutzerdefinierten Funktion anstelle der “wahren” Funktion kann zu keinem Fehler fiihren, der
grofer als die Halfte der Flache des Bandes um die benutzerdefinierte Funktion ist. IHTEGREAL
schitzt diesen Fehler wihrend der Berechnung des Integrals ab; iiber IELIHD kénnen Sie dann an-
schliefend diesen Wert abrufen.
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Auswahl der Fehlertoleranz
Die Genauigkeit der berechneten Funktion héngt von drei Faktoren ab:
o Giite der empirischen Konstanten der Funktion.

o Grad, mit dem das durch die Funktion dargestellte Modell die zugrundeliegende physikalische
Situation beschreibt.

» Grofe des bei der Berechnung anfallenden Rundungsfehlers.

Funktionen wie cos(x — sin x) sind rein mathematische Funktionen; d.h. die Funktion selbst enthalt
keine empirischen Konstanten. Fiir derartige Funktionen kénnen Sie beliebig kleine Fehlertoleranzen
vorgeben, solange diese Funktion von der BASIC-Funktion trotz des unvermeidlichen Rundungsfehlers
innerhalb dieser Toleranz berechnet wird. Da eine hohere Genauigkeit in der Regel durch lingere
Rechenzeiten erkauft wird, kann es unter Umstdnden sinnvoll sein, nicht die kleinstmégliche
Fehlertoleranz zu wihlen. Jede spezifizierte Fehlertoleranz wird auf einen Wert im Intervall [LE—12, 1]
gerundet.

Wenn der Integrand eine physikalische Situation beschreibt, sind zusétzliche Uberlegungen zu beriick-
sichtigen. In jedem Fall sollten Sie abwégen, ob die fiir das berechnete Integral gewiinschte Genauig-
keit durch die Genauigkeit des Integranden gerechtfertigt ist. Wenn die Funktion beispielsweise
empirische Konstanten enthlt, die die tatséchlichen Konstanten nur auf drei Stellen anndhern, ist es
sinnlos Fehlertoleranzen kleiner als 1IE—3 zu spezifizieren.

Des weiteren sollten Sie in Betracht ziehen, daf nahezu jede mit einer physikalischen Situation
zusammenhéngende Funktion bereits implizit einen Fehler beinhaltet, da die Funktion lediglich ein
mathematisches Modell des eigentlichen Prozesses oder Ereignisses darstellt. Ein mathematisches Mo-
dell ist typischerweise eine Approximation, die die Auswirkungen aller nicht im Modell erfafiten
Faktoren vernachlassigt.

Ein Beispiel fiir die unvollstindige Erfassung eines physikalischen Prozesses durch ein mathematisches
Modell, ist die Gleichung s = s — (.5)gt?, die die Héhe eines fallenden Kérpers beschreibt, der aus
einer urspriinglichen Hoéhe s fallen gelassen wird. Hier wird die Abhéngigkeit der Schwer-
kraftbeschleunigung g von der jeweiligen Héhe ignoriert. Mathematische Beschreibungen physika-
lischer Ablaufe kénnen lediglich Ergebnisse mit begrenzter Genauigkeit liefern. Wenn ein Integral mit
einer Genauigkeit berechnet wird, die vom Modell nicht mehr unterstitzt wird, ist es nicht gerecht-
fertigt, die (scheinbar) volle Genauigkeit des berechneten Werts zu benutzen. Die vorgegebene
Fehlertoleranz sollte daher alle in der Funktion enthaltenen Ungenauigkeitsfaktoren bertcksichtigen,
da ansonsten mit einem hohen Rechenaufwand eine bedeutungslose Genauigkeit erkauft wiirde. Des
weiteren ist die von IEMLHD zuriickgegebene Fehlerabschitzung maglicherweise nicht mehr
signifikant.

Wenn eine Funktion f(x) eine physikalischen Prozess beschreibt, ist der durch Rundung entstehende
Fehler in der Regel sehr klein im Vergleich zu dem Modellfehler. Wenn f(x) dagegen eine rein
mathematische Funktion darstellt, ist ihre Genauigkeit lediglich durch den auftretenden Rundungs-
fehler beschrankt. Die exakte Bestimmung des bei der Berechnung einer derartigen Funktion ent-
stehenden Fehlers ist im allgemeinen nur mit sehr komplizierten analytischen Methoden moglich. In
der Praxis werden solche Effekte normalerweise durch Erfahrungswerte abgeschitzt.
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Behandlung schwieriger Integrale

Integration auf Teilintervallen. Bei der Integration einer Funktion, die auf geringe Variationen im
Argument mit substantiellen Schwankungen in den Funktionswerten reagiert, werden in der Regel
wesentlich mehr Stiitzstellen als bei der Integration einer Funktion , die auf dem Integrationsintervall
nur geringfiigig variiert, benétigt. Der Grund hierfiir liegt darin, daf das Verhalten der Funktion auf
dem Gesamtintervall durch das Verhalten der Funktionswerte an den Stiitzstellen adiquat
reprasentiert werden muf. Wenn eine Funktion in bestimmten Teilintervallen des Integrations-
intervalls stdrker variiert als in anderen, ist es sinnvoll, das Gesamtintervall zu unterteilen und die
Funktion auf den Teilintervallen einzeln zu integrieren. Das Integral tiber das Gesamtintervall ist dann
die Summe der Integrale iiber die Teilintervalle, und der Fehler des Integrals ist die Summe der Fehler
der Integrale iiber die Teilintervalle.

Der von ITHTEGRFAL verwendete Algorithmus entscheidet wiahrend der Ausfithrung, basierend auf dem
Verhalten des Integranden auf einem bestimmten Intervall, wieviele Stiitzstellen benutzt werden sollen.
Wenn nun das Integrationsintervall aufgeteilt wird, kann diese Stiitzstellenauswahl auf das Verhalten
der Funktion auf dem betrachteten Teilintervall beschrinkt werden. Dies fithrt im allgemeinen zu
verbesserten Ausfilhrungszeiten und einer erhéhten Genauigkeit.

Wenn Sie beispielsweise die Funktion f(x) = (x> + 1E—12)" von x = —3 bis x = 5 mit einer
Fehlertoleranz von 1E—12 integrieren wollen, kénnen Sie die dafiir benétigte Rechenzeit wesentlich
verkiirzen, indem Sie das Intervall bei x = 0 unterteilen, wo die Funktion einen scharfen Knick hat.
Da die Funktion dber den beiden Teilintervallen [—3, 0] und [0, 5] sehr glatt verlduft, lassen sich die
Integrale der Funktion tber diesen Teilintervallen sehr einfach und schnell berechnen.

Lo dx = [° 0 de + [ ) d

Das folgende Programm berechnet die beiden Integrale iiber den Teilintervallen und kombiniert dann
die Ergebnisse.

10 DEF FNF(X)=SQR(X*X+1E—12) Hier wird =% anstelle Z verwendet, da
ein genaueres Resultat liefert. Diese
Genauigkeitshetrachtung gilt fiir jede
ganzzahlige Potenz eines numerischen Ausdrucks.

20 I=INTEGRAL(—3,0,1E—12,FNF(IVAR)) Integration tber das erste Teilintervall.

30 E=IBOUND Zwischenspeicherung des Fehlers.

40 DISP "'WERT DES INTEGRALS

50 DISP I+INTEGRAL(0,5,1E—12,FNF(IVAR)) Summe des ersten und des zweiten Integrals.
60 DISP "GESCHAETZTER FEHLER:’

70 DISP E + IBOUND Berechnung des Gesamtfehlers durch
Summation der beiden Einzelfehler.




Abschnitt 11: Numerische Integration 115

Tasten Sie das Programm ein, und starten Sie es durch Driicken von [RUN]. In der Anzeige erscheint
dann das Ergebnis.

MERT DES ITHTEGREALS
17
CES

CHAETZTER FEHLER:

Bei Unterteilung des Intervalls werden hier zur Berechnung des Resultats nur wenige Sekunden be-
notigt; ohne diese Unterteilung kann die Ausfithrung des Programms eine betréchtliche Zeitspanne in
Anspruch nehmen.

Die Unterteilung des Integrationsintervalls ist auch sinnvoll bei Funktionen mit Singularititen im
betrachteten Intervall. Die Singularitidt kann aus einem oder mehreren Punkten bestehen, an denen die
Funktion nicht definiert ist oder einen Eckpunkt besitzt.

Beispielsweise sollte das Integral
2 dx . 1 dx 2 dx
L(x—n? o fo(x—1)2+fo(x—1)2

zerlegt werden, um eine Auswertung der Funktion im Punkt x = 1 zu vermeiden, da die Funktion an
dieser Stelle nicht definiert ist. Sie konnen die Funktion nun problemlos auf den beiden Teilintervallen
integrieren, da x = 1 Endpunkt in jedem der beiden Teilintervalle ist und IHTEGRAL keine
Stiitzstellen in die Endpunkte des Integrationsintervalls legt.

Ahnlich problematisch ist normalerweise die Integration der Funktion \/|x — 1|, die bei x = 1 einen
Eckpunkt besitzt.

Wenn Sie diese Funktion von 0 bis 2 integrieren wollen, kénnen Sie die Ausflihrungszeit verringern
und die Genauigkeit erhohen, indem Sie einzeln tber die Teilintervalle [0, 1] und |1, 2] integrieren, auf
denen die Funktion sehr glatt verlauft.
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Variablentransformationen. Eine zweite Methode zur Behandlung schwieriger Integrale besteht in
der Transformation der Variablen. Wenn die Variable eines bestimmten Integrals geeignet trans-
formiert wird, ist das resultierende bestimmte Integral unter Umstdnden numerisch einfacher zu be-
rechnen. Betrachten Sie zum Beispiel das Integral

1 \/x
f (_x - )dx
0 \x — 1 In x
Wie aus dem linken Graphen in der néachsten Abbildung zu ersehen ist, geht die Ableitung des

Integranden gegen unendlich, wenn x gegen 0 strebt. Der Graph auf der rechten Seite zeigt, wie die
Substitution x = u? ein wesentlich gutartigeres Verhalten bedingt.

0.14
2
01 |\ 2u u

b+ v —1) Inu

0—+

P
.
>
o
o
G Py
<

Sie konnen nun anstelle des urspringlichen Integrals das aus dieser Substitution resultierende Integral

J‘l ( 2u u )
— du.
0 (u+ )(uw —1) In x

berechnen. (Ersetzen Sie nicht (u + 1)(u — 1) durch w2 — 1, da dieser Ausdruck fiir u gegen 1 die
Hilfte seiner signifikanten Stellen durch Rundungsfehler verliert, was schlieflich zu einem grofen
Endergebnis fihrt.)




Betrachten Sie die folgende Funktion als ein weiteres Beispiel fiir eine sinnvolle Anwendung der
Substitution. Der Graph dieser Funktion besitzt einen langen Schweif, der sich weit aus dem
Hauptkoérper (der den Grofiteil der Fliache bildet) heraushebt.

Obwohl ein sehr dinner Schweif sich ohne grofe Genauigkeitsverluste abschneiden liefe, ist in diesem
Fall der Schweif der Funktion zu breit, um bei der Berechnung von

J‘f dx
—tx? + 10710

far grofie t ignoriert werden zu konnen. Im allgemeinen bildet die komprimierende Substitution
x = b tan u die gesamte Zahlengerade in die entsprechenden Teilintervalle von |—=/2, =/2[ ab, wobei
Teile der reellen Zahlengeraden in die entsprechenden Teilintervalle von ]—=/2, /2] umgesetzt
werden. Fiir b = 1E—5 erhélt man die Substitution x = 1E—5 tan u, und das Integral wird zu

an~ ' (t/b)
10° f . du
tan~'(—t/b)

was sich problemlos fiir sehr grofie ¢ berechnen lifit.

tan~'(-t/b)

Die komprimierende Substitution ist auch das Standardverfahren zur Behandlung uneigentlicher
Integrale. Beispielweise gilt:
®© dx _ 5 W/ 2
f-m x4+ 1071 10 f—w/z du

In einigen Féllen kann der Schweif einer Funktion auch ohne zu grofen Genauigkeitsverlust abge-
schnitten werden. Betrachten Sie dazu die Funktion exp (—x?), die fiir x > 34 einen Bereichsunterlauf
bedingt (d.h. in der Maschinenarithmetik das Ergebnis 0 erzeugt). Es gilt dann:

J(;w e~ ¥ dx ~ J;M e *dx

Daher konnen Sie bei der Behandlung uneigentlicher Integrale den Schweif abschneiden, wenn dieser
nur unwesentlich zur Gesamtflidche beitrigt. In allen anderen Féllen sollte jedoch eine komprimierende
Substitution verwendet werden.
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Uber den Algorithmus

Das Mathematik-Paket verwendet das Romberg-Verfahren zur Akkumulation eines Integralwerts. Die
Effizienz des implementierten Verfahrens wird jedoch durch verschiedene Verfeinerungen gesteigert.
Anstelle dquidistanter Stiitzstellen (d.h. Stttzstellen, die jeweils den gleichen Abstand voneinander
haben), die zu Resonanzen und damit bei periodischen Integranten zu verfilschten Ergebnissen fithren
kénnen, benutzt IHTEGRAL nicht Aquidistante Stiitzstellen. Das verwendete Stiitzstellengitter wird
am besten illustriert, indem man

3 1 3 s b

Su—u in fa f(x)dx

substituiert und dann dquidistante Stiitzstellen fiir u verwendet. Neben der Resonanzunterdriickung
hat diese Substitution noch zwei weitere Vorteile. Zunichst werden die Endpunkte des
Integrationsintervalls nicht als Stiitzstellen verwendet; es sei denn, das Intervall ist so klein, daf ein
Punkt im Intervallinnern durch Rundung zu einem Endpunkt wird. Dies fiihrt dazu, daft die
numerische Berechnung eines Integrals wie

fT sinic_dx
0 X

x =

nicht durch eine Division durch Null an einem Endpunkt unterbrochen wird. Des weiteren kann
THTEGEAL auch zur Integration von Funktionen verwendet werden, deren Steigung in einem End-
punkt unendlich ist. Derartige Funktionen treten bei der Berechnung von Flichen auf, die von glatten
geschlossenen Kurven wie x> + f2(x) = R begrenzt werden.

Zusatzlich verwendet IMTEGRAL eine erhdhte Genauigkeit. Intern werden alle Summen mit 16
Stellen akkumuliert. Dies fithrt dazu, daft gegebenenfalls Tausende von Stitzstellenwerten
aufsummiert werden kénnen, ohne dafi durch Rundung mehr signifikante Stellen verloren gehen, als
dies bereits in der Funktionsroutine geschieht.

Der durch IHTEGRAL implementierte Iterationsprozess erzeugt eine Folge von Schatzwerten, die den
"wahren” Wert des Integrals immer besser annihern. Des weiteren wird bei jeder Iteration auch die
jeweilige Breite des Fehlerbandes abgeschitzt. Die Ausfiihrung von IHTEGFAL wird nur dann be-
endet, wenn drei aufeinanderfolgende Iterationen nur jeweils durch den berechneten Fehler vonein-
ander verschieden sind, oder wenn dieses Abbruchkriterium auch nach 16 Iterationen nicht erfillt ist.

In diesem Fall wurde die Funktion an 65535 Stellen ausgewertet. IEQLIMD gibt dann den berechneten
Fehler mit einem negativen Vorzeichen zuriick, um anzudeuten, daf der von IMTEGLRFAL zurick-
gegebene Wert sich wahrscheinlich um mehr als die Fehlertoleranz vom tatsichlichen Wert des
Integrals unterscheidet. In einer solchen Situation sollten Sie dann das Integrationsintervall in
kleinere Teilintervalle zerlegen und die Funktion iiber jedem der Teilintervalle integrieren. Das Integral
iiber dem urspriinglichen Intervall ist dann die Summe der Integrale tiber den Teilintervallen. Auf
diese Weise kann die Funktion auf jedem Teilintervall an bis zu 65535 Stutzstellen ausgewertet werden,
was im allgemeinen zu einer héheren Genauigkeit bei der Berechnung des Integrals fiihrt.

Zusammenfassend gilt, daf IHTEZRAL fiir einen Vielzahl von Anwendungen auf rasche und bequeme
Weise verlaRliche Lésungen liefert. Die obigen theoretischen Betrachtungen beziehen sich auf
allgemeine Probleme bei der numerischen Integration einer Funktion. Durch geeignete Anwendung der
hier genannten Techniken lassen sich mittels IHTEZRAL selbst schwierigste Integrale ldsen.




Abschnitt 12
Bestimmen der Nullstellen eines Polynoms

Schiusselwort

Das in diesem Abschnitt beschriebene Schliisselwort FREI0T erlaubt die Bestimmung sdmtlicher
Losungen — sowohl der reellen als auch der komplexen — der Gleichung P(x) = 0, wo P ein gegebenes
Polynom mit reellen Koeffizienten ist. Wenn P ein Polynom n-ten Grades ist, existieren n (nicht
notwendigerweise verschiedene) Losungen dieser Gleichung.

U'm mittels FROODT die Losungen der Gleichung P(x) = 0 zu bestimmen, wo
P(x) = ax" + a, "1 + ... + a2 + q

sind zunachst die Koeffizienten a,, @,_;, ..., ay in einem Feld mit insgesamt n + 1 Elementen zu
speichern. Die Koeffizienten sind in dieser Reihenfolge abzulegen; d.h. der héchste Koeffizient zuerst
und das konstante Glied zuletzt. Die Dimensionierung des Felds kann beliebig sein; das Mathematik-
Paket verwendet lediglich die Gesamtanzahl der Elemente im Feld zur Bestimmung des Polynomgrads.
Reispielsweise kénnen die Felder

6
)
6 5
, 6 5 4 4
[6, 5, 4, 3, 2, 1], 14 3], und
3 21 3
1
2
g

alle zur Darstellung des Polynoms
6x° + 5x* + 4x® + 322 + 2x + 1

verwendet werden. Das Feld, das die berechneten Ldésungen aufnehmen soll, muff bei komplexen
Nullstellen ebenfalls komplex sein. Wenn das Ergebnisfeld ein Vektor ist, wird der Vektor bei einem
Polynom vom Grad N auf N Elemente umdimensioniert. Wenn das Ergebnisfeld eine Matrix ist, wird
diese auf N Zeilen und eine Spalte umdimensioniert.

Der Grad des Polynoms, dessen Nullstellen berechnet werden sollen, ist lediglich durch die Grife des
verfiigharen Speicherplatzes beschrankt.
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PROOT Nullstellen eines Polynoms
[MAT R=FREOOTCP

wo P ein reeller Vektor oder eine reelle Matrix mit N + 1 Elementen ist, und wo N der Grad des
Polynoms ist, dessen Nullstellen gesucht sind. R ist ein komplexer Vektor oder eine komplexe
Matrix.

Dimensioniert R automatisch auf N Elemente um, wenn R ein Vektor ist. Dimensioniert R auto-
matisch auf N Zeilen und eine Spalte um, wenn R eine Matrix ist. Weist R die (komplexen)
Ldsungen der Gleichung P(x) = 0 zu (wo P das Polynom n-ten Grades ist, dessen Koeffizienten in
P abgelegt sind).

Die Operation kann durch zweimaliges Driicken von angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

Das folgende Beipiel findet alle Nullstellen des Polynoms

575 — 4575 + 22574 — 425Z3 + 170Z2 + 370Z — 500

GFTIOM ERSE 1 [(ENDLINE]

DIM RO Erzeugt einen reellen Koeffizientenvektor.
COMFLES BCL1ED Erzeugt einen komplexen Vektor zur Aufnahme

der Nullstellen.
MAT THFUT A

AFolax? B

S, 45, 225, —4E25, 17

1
i
)

=]
RN
[N |
:]
=
I
n
=

MAT BE=FROOTOAD Dimensioniert zuerst Vektor B auf sechs Ele-

mente um, die erforderliche Mindestgrofie zur
Aufnahme der sechs (komplexen) Nullstellen des
Polynoms 6-ten Grades. Berechnet anschliefend
alle Nullstellen und speichert diese in B.




MET DISE E Zeigt alle Nullstellen an.

Es gibt verschiedene Vorgehensweisen zur Uberpriifung der Genauigkeit der berechneten Nullstellen.
Eine Methode besteht darin, den Wert des Polynoms an einer vermeintlichen Nullstelle zu berechnen
und diese Zahl dann mit Null zu vergleichen. Obwohl in der Theorie einfach und tberzeugend, hat
dieses Verfahren in der Praxis einige schwerwiegende Nachteile. Es kann sehr leicht vorkommen, daf
die berechnete Nullstelle die beste maschineninterne Darstellung der wahren Nullstelle ist, aber da die
Ableitung des Polynoms an dieser Stelle einen sehr groffen Wert besitzt, ist der Wert des Polynoms an
der berechneten Nullstelle ebenfalls sehr grofl. Ein einfaches Beispiel fiir dieses Phinomens ist das
Polynom 1E20x? — 2E20. Die wahre Nullstelle ist in diesem Fall \/'2 ; die berechnete Nullstelle ist
1.41421356237, was der besten Maschinendarstellung von \/'2 entspricht. Der Wert des Polynoms fiir
diese Ndherung der Quadratwurzel von 2 ist jedoch —1 000 000 000; ein scheinbar unakzeptabler Wert
fir eine Nullstelle.

Ein weiterer Nachteil dieses Verfahrens liegt darin, daf aufgrund der Genauigkeitsbeschrinkungen in
jeder numerischen Berechnung die Signifikanz in der Differenz zwischen dem Polynomwert und 0
durch Rundungsfehler bei der Auswertung des Polynoms vollstdndig eliminiert werden kann. Dies gilt
insbesondere fiir Polynome sehr hohen Grades mit weit auseinanderliegenden Koeffizienten oder
Nullstellen sehr hoher Ordnung.

Eine zweite Methode zur Abschitzung der Genauigkeit von berechneten Nullstellen besteht darin, daf
man versucht, das Polynom aus den berechneten Nullstellen zu rekonstruieren. Wenn sich das
rekonstruierte Polynom nicht zu stark vom urspringlichen Polynom unterscheidet, werden die
berechneten Nullstellen als ausreichend genau betrachtet. Diese Methode ist weniger sensitiv bezlglich
den bei dem Polynomauswertungs-Verfahren beschriebenen Einfliissen. Andererseits liefert diese
Methode natiirlich keinerlei Aufschluft iiber die Genauigkeit einer einzelenen Nullstelle.

Das nachstehend gelistete Programm fordert zur Eingabe der Koeffizienten eines Polynoms auf und
berechnet daraus die Nullstellen dieses Polynoms mit Hilfe des Schlisselworts FECOOT. Falls
gewlinscht, rekonstruiert das Programm die Koeffizienten anhand der berechneten Nullstellen.
Zusitzlich ist das Programm in der Lage, den Wert des Polynoms an einer berechneten Nullstelle oder
an einer beliebigen anderen reellen oder komplexen Stelle zu berechnen.

Die Zeilen 10 bis 200 bilden den Hauptteil des Programms zur Berechnung der Nullstellen eines
gegebenen Polynoms mittels FECOOT, Die Unterroutine in den Zeilen 210 bis 250 wertet das Polynom
an einem beliebigen reellen oder komplexen Punkt tiber das Horner-Schema aus.



Die Unterroutine in den Zeilen 260 bis 410 rekonstruiert die Koeffizienten aus den berechneten
Nullstellen. Dazu wird das Polynom (beginnend mit dem Polynom 1) mit den linearen Faktoren
(Z — R), wobei R eine berechnete reelle Nullstelle ist, oder mit dem quadratischen Ausdruck Z2 — 2 «
REPT(R) + ABS(R)?, wobei R eine berechnete komplexe Nullstelle ist, multipliziert. (Beachten Sie,
daf auch CONJ(R) eine berechnete Nullstelle ist.)

10 OPTION BASE 0 @ INTEGER D.E @
DIM U$[4] @ DELAY 1 @ WIDTH 96

20 INPUT “GRAD? ”;D
30 DIM P(D),C(D) @ COMPLEX R(D-1)

40 DISP "KOEFFIZIENTENEINGABE” @
MAT INPUT P

50 DISP "RECHNEND...”
60 MAT R=PROOT(P)

70 DISP “DIE NULLSTELLEN SIND:” @
DELAY 8 @ MAT DISP R @ DELAY 1

80 U$=KEY$ @ INPUT
"REKONSTRUKTION? (J/N)”;U$

90 IF UPRC$(US$)="J" THEN GOSUB 260
ELSE 110

#2
*

100 DISP "DIE REKONSTRUIERTEN ” @
DISP "KOEFFIZIENTEN SIND: ” @
DELAY 8 @ MAT DISP C @ DELAY 1

110 U$=KEY$ @ INPUT
"AUSWERTUNG? (J/N) “;U$

120 IF UPRC$(U$)#”J” THEN 190
ELSE COMPLEX Z

130 INPUT “AN NULLSTELLE? (J/N) ~;U$
140 IF UPRC$(US$)#”J” THEN INPUT “AN

WELCHER STELLE ? ”;Z @ GOTO 160

D ist der Grad des Polynoms.

Die Matrix P wird die Koeffizienten des
Polynoms in der zuvor angegebenen Reihenfolge
enthalten, die Matrix R soll die berechneten
Nullstellen aufnehmen und in der Matrix C
werden die rekonstruierten Koeffizienten
abgelegt.

Eingabe der Koeffizienten. Der fiithrende
Koeffizient sollte ungleich 0 sein, um einen
einwandfreien Programmablauf zu
gewihrleisten.

Berechnet die Nullstellen und speichert sie in R.

Zeigt die gefundenen Nullstellen an. Driicken
Sie zur Anzeige einer weiteren Nullstelle und zur
Fortsetzung des Programms eine beliebige Taste.-

Falls gewiinscht rekonstruiert das Programm die
Koeffizienten aus den berechneten Nullstellen.

Die in Zeile 260 beginnende Unterroutine fiihrt
die Rekonstruktion aus und speichert die
rekonstruierten Koeffizienten in Matrix C.

Zeigt die rekonstruierten Koeffizienten an.
Driicken Sie zur Anzeige einer weiteren Nullstelle
und zur Fortsetzung des Programms eine
beliebige Taste.

Optionale Auswertung des Polynoms an einer
Nullstelle oder einer beliebigen anderen Stelle.

Der Wert des Polynoms wird in der komplexen
Variable Z gespeichert.

Die Stelle, an der das Polynom ausgewertet
werden soll, kann sowohl reell als auch komplex
sein.
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150 DISP “WELCHE NULLSTELLE ?” @
DISP USING "#,”(1...” K,”)":D @
INPUT E @ Z=R(E—1)

160 GOSUB 210 @ DISP “DER WERT DES ”
@ DISP "POLYNOMS IST” @ DELAY 8
@ DISP Z @ DELAY 1

170 US=KEY$ @ INPUT
"NEUE AUSWERTUNG?(J/N)”;U$

180 IF UPRC$(U$)="J" THEN 130
190 INPUT "NEUES POLYNOM? (J/N) ”;U$

200 IF UPRC$(U$)="J" THEN 20 ELSE STOP
210 COMPLEX B @ B=P(0)

220 FOR K=1TO D
230 B=P(K)+Z*B

240 NEXT K

250 Z=B @ DESTROY B @ RETURN
260 DISP "RECHNEND...”

270 MAT C=ZER @ C(D)=1

280 FOR L=1 TO D

290 IF IMPT(R(L—1))#0 THEN 340

300 FOR K=D—L TO D—1

310 C(K)=C(K+1)—C(K)*REPT(R(L — 1))
320 NEXT K

330 C(D)= —C(D)*REPT(R(L—1)) @
GOTO 400

340 REAL B @ B=REPT(R(L—1))"2
+IMPT(R(L—1))"2

350 FOR K=D—-L—1TOD-2
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Geben Sie die Nummer der Nullstelle ein, an der
Sie das Polynom auswerten wollen.

Die in Zeile 210 beginnende Unterroutine wertet
das Polynom an der angegebenen Stelle aus.
Dieser Wert wird dann angezeigt. Driicken Sie
zur Fortsetzung eine beliebige Taste.

Falls gewiinscht, wertet das Programm das
Polynom an einer weiteren Stelle aus.

Das Programm kann fiir ein weiteres Polynom
erneut gestartet werden.

Die Auswertung des Polynoms erfolgt mit Hilfe
des Horner-Schemas.

Mit dieser Zeile beginnt die Unterroutine zur
Rekonstruktion der Koeffizienten. Durch die
Akkumulation von Rundungsfehlern wahrend
der Rekonstruktion stimmen die rekonstruierten
Koeffizienten moglicherweise selbst bei exakten
Nullstellen nicht mit den urspriinglichen
Koeffizienten {iberein.

Erzeugt das Polynom 1 in C.
Schleife zum Abruf der einzelnen Nullstellen.

Die Zeilen 300 bis 330 multiplizieren das in der
Rekonstruktion befindliche Polynom mit einem
linearen Faktor.

Die Zeilen 340 bis 390 multiplizieren das in der
Rekonstruktion befindliche Polynom mit einem
quadratischen Faktor.



[

360 C(K)=C(K+2)—2%REPT(R(L—1))
*C(K +1)+B*C(K)

370 NEXT K

380 C(D-1)= —2kREPT(R(L—1)*C(K+1)
+B*C(K)

390 C(D)=B*C(D) @ L=L+1

400 NEXT L

410 MAT C=(P(0))*C @ DESTROY B
@ RETURN

Nullstellen eines Polynom:

L wird inkrementiert, da das Polynom sowohl
mit der komplexen Nullstelle als auch mit der
konjugiert komplexen Nullstelle multipliziert

wurde.

Der fithrende Koeffizient des rekonstruierten
Polynoms ist immer 1. Das rekonstruierte
Polynom ist daher zu skalieren, wenn der
urspriingliche fithrende Koeffizient ungleich 1
war.

Beispiel. Es sollen nun die Nullstellen des Polynoms

B+ +at+ B3+ 4+ 0+,

berechnet werden; anschlieRend soll die Giite der gefundenen Nullstellen durch Einsetzen iiberpriift

werden.
Eingabe/Ergebnis
RUN
GEADT N

FOEFFIZIEMTEHEIMGHEE

)
1

Foax? 1

1,1,1,1,1,1,1 (ENDLINE]

FECHHMEWD . . .
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OIE MULLSTELLEM SIRD:

IEOGS, - 3V4027FRL21EE Der Realteil der ersten Nullstelle wird wahrend
der Anzeige des Imaginérteils nach links aus der
Anzeige hinausgeschoben.

Ce  BEEEZASIZSSE, - 974 Der Realteil der ersten Nullstelle.
(END LINE]
QEBASE, , AFT49ETRI21E2 Der Imaginarteil der zweiten Nullstelle.
@]
- 2RIRIAQIIA5S, 2749 Der Realteil der zweiten Nullstelle.

Die verbleibenden Nullstellen kénnen auf die gleiche Weise angezeigt werden:
Dritte Nullstelle: ¢~ 2@@3e23367382, - 4338227351120

Vierte Nullstelle: - ZEGEIE32a7I02, 4322237321182

Sechste Nullstelle: ¢ . £2Z4332012353, - . 7212314224580

Die Programmausfiihrung kann nach dem Anzeigen der letzten Nullstelle durch Driicken von

fortgesetzt werden.

Eingabe/Ergebnis
FEEOHSTRUETION?C J-H: B Jece Eingabe aufer .} oder .i wird als “nein”
interpretiert.
¥

FECHHEMD. ..
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OIE REKOHSTREUIERTEHN

FEOEFFIZITEMTEM STHD:

1 Der Koeffizient von x6.
END LINE
PO I e e B e e e B o Der Koeffizient von x5

Die verbleibenden fiinf Koeffizienten kénnen auf die gleiche Weise angezeigt werden:

Koeffizient von x%: 1

Koeffizient von x% . 93339333355
Koeffizient von x% 1
Koeffizient von x!: . 3¥5333333333
Koeffizient von x0: 1

Die Programmausfithrung kann nach der Anzeige des letzten Koeffizienten durch Driicken von

fortgesetzt werden.
Eingabe/Ergebnis

HUSHERTUHG? Cd-HY B

. [END LINE

AH MULLETELLEY CJdesM> B

.} _[END LINE

WELCHE MULLSTELLE®
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1 | END LINE

DER WERT DEXZ

FOLYHOMS 15T,

s nERE-1 3

K
2]

Fortsetzung der Programmausfiithrung.

END LINE

HEUE AUSHERTUMGT O M08

I LEND LINE

A MHULLETELLEY CJdsH» B

H

AM MELCHER STELLE * B

=, &, .50 [ENDLINE

DER WEET OEZ

FOLYHOME I5T:

END LINE

HELUE AUSHERTUHG? Cd-H2 8

f4 [ END LINE

HELESZ FOLYHOM? Cd-H: B

Beendet die Programmausfiihrung.

i LEND LINE
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Uber den Algorithmus

Das Mathematik-Paket verwendet ein Iterationsverfahren, das sogenannte Laguerre-Verfahren, zur Be-
stimmung der Nullstellen eines Polynoms. Bei diesem Verfahren werden die Nullstellen einzeln
nacheinander berechnet, indem zunichst eine Folge von Approximationen Z1, Z9, ... fir eine Nullstelle
erzeugt wird. Zum Aufbau dieser Folge wird die Formel Z, 41 = Z, + S; benutzt, wobei S, (der
sogenannte Laguerre-Schritt) definiert ist als:

=N+ P(Z,)
P(Z) = [(N-1)*= (P(Z)) — N+ (N-1) = P(Z) + VA

Hier bezeichnen P, P’ und P” das Polynom und seine ersten beiden Ableitungen; n ist der Grad des
Polynoms, und iiber das Vorzeichen des Nenners wird die Wertigkeit des Laguerre-Schritts verringert.
Polynome oder deren Quotienten vom Grad 1 oder 2 werden direkt bzw. iiber die bekannte quadratische
Formel aufgelost.

Das Verfahren von Laguerre ist kubisch konvergent fir einfache Nullstellen und linear konvergent fir
mehrfache Nullstellen.

Die Funktion FEOOT ist in dem Sinne global, daf Sie weder einen Anfangs- oder Startwert noch ein
Abbruchkriterium angeben miissen; d.h. der Algorithmus benotigt keine Vorabinformation tber die
Lage der Nullstellen. FRI0T versucht immer, die Suche (Iteration) im Ursprung der komplexen Ebene
zu beginnen. Es wird ein ringformiges Gebiet bestimmt (mit Hilfe von fiinf theoretischen Grenz-
werten), das die betragsméRig kleinste Nullstelle des (urspriinglichen oder Quotienten-) Polynoms ent-
hélt, und der erste Laguerre-Schritt wird zuriickgewiesen, wenn er aus diesem Gebiet fithren wirde. In
diesem Fall beginnt der Algorithmus eine spiralfsrmige Suche vom Inneren zum &uferen Rand des
Ringgebiets, die solange fortgesetzt wird, bis ein akzeptabler Startwert gefunden ist.

Nach Beginn des Iterationsprozesses wird (mit Hilfe von zwei theoretischen Schranken) um jeden
Iterationswert ein die Nullstelle enthaltender Kreis berechnet. Der Laguerre-Schritt wird permanent
{iberpriift und modifiziert, wenn er aus diesem Kreis herausfilhren oder nicht zu einem kleineren
Polynomwert fithren wiirde. Die Nullstellen werden normalerweise in der Reihenfolge ansteigender
Wertigkeit gefunden, was zu einer Abnahme des durch die Deflation bedingten
Rundungsfehlereinflufes fiihrt.

Die Auswertung des Polynoms und seiner Ableitungen mit einer reellen Iterationsvariablen Z) ent-
spricht genau dem Horner-Schema. Die Auswertung mit einer komplexen Iterationsvariablen ist ein
modifiziertes Horner-Schema, bei dem etwa die Hilfte der Multiplikationen eingespart werden. Diese
Modifikation nutzt die Symmetrie von konjugiert komplexen Losungen der Horner‘'schen Rekursion
aus.

FREOOT bestimmt anhand einer sehr verfeinerten Technik, ob eine Approximation Z als Nullstelle
akzeptiert werden kann. Bei jeder Auswertung des Polynoms an der Stelle Z, wird gleichzeitig eine
Schranke fiir den bei der Auswertung auftretenden Rundungsfehler berechnet. Ist der Wert des
Polynoms kleiner als diese Schranke, wird Z, als Nullstelle akzeptiert, wenn der Wert des Polynoms
abnimmt und gleichzeitig die Grofe des Laguerre-Schritts vernachlassigbar klein wird. Vor der
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Auswertung des Polynoms an der Stelle Z;, wird der Imaginarteil von Z,, auf Null gesetzt, wenn dieser
Wert klein im Vergleich zur Schrittweite ist. Dies verbessert die Geschwindigkeit des Algorithmus, da
reellwertige Auswertungen weniger Zeit als komplexe Auswertungen beanspruchen. Wenn der Wert des
Laguerre-Schritts vernachléssigbar klein geworden ist, aber der Wert des Polynoms immer noch nicht
abnimmt, wird die Meldung FROOT f2ilure angezeigt und die Berechnung abgebrochen. Dieser
Fall sollte in der Praxis niemals auftreten.

Bei der Auswertung des Polynoms werden gleichzeitig die Koeffizienten des durch Division durch den
zu Z, gehérenden linearen oder quadratischen Faktor entstehenden Quotientenpolynoms berechnet.
Wenn die Approximation Zj die obigen Nullstellenkriterien erfiillt, wird dieses Quotientenpolynom zu
dem (Rest-) Polynom, dessen Nullstellen noch zu bestimmen sind, und der gesamte Suchprozess wird
wieder von Anfang an durchlaufen.

Mehrfache Nullstellen

Keine Routine zur Nullstellenbestimmung bei Polynomen — einschlieflich FEZCOT — kann in kon-
sistenter Weise Nullstellen hoher Ordnung mit beliebiger Genauigkeit berechnen. Als Faustregel fiir

EROO0T gilt, da® mehrfache oder nahezu mehrfache Nullstellen mit einer Genauigkeit von ungeféhr
12/K signifikanten Stellen, wo K die Ordnung der Nullstelle ist, berechnet werden.

Genauigkeit

RO0T verwendet als Genauigkeitskriterium, daR die Koeffizienten des aus den berechneten
Nullstellen rekonstruierten Polynoms sehr dicht an den Koeffizienten des urspriinglichen Polynoms
liegen sollten.

Die Leistungsstirke von FROOT bei isolierten Nullstellen wird beispielsweise durch das Polynom

100
PZ) = Sk
k=0

eindrucksvoll illustriert. Von den 200 reellen und imagindren Komponenten der Nullstellen werden
iber die Halfte mit 12-stelliger Genauigkeit berechnet. Bei den restlichen Nullstellen ist der Fehler
nicht grofer als einige Einheiten in der 12-ten Stelle.

Bei der Anwendung von FRII0T auf das Polynom (Z + 1)20 (das —1 als Nullstelle der Ordnung 20 hat)
werden die folgenden Nullstellen berechnet:

(—.997874038627,0)

(—.934656570635,0)

(—.947080146258, —.160105886062)

(—.947080146258,.160105886062)

(—.678701343788,—6.24034855342E —2)

(—.678701343788,6.24034855342E — 2)
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(—.815082852233, —.270565874916)
(—.815082852233,.270565874916)
(—.725960092383, —.178602450179)
(—.725960092383,.178602450179)
(—.934932478844,—.326980158732)
(—.934932478844,.326980158732)
(—1.06905713438,—.337946194292)
(—1.06905713438,.337946194292)
(—1.19977533452,—.295162714497)
(—1.19977533452,.295162714497)
(—1.30383056467, —.200016185042)
(—1.30383056467,.200016185042)
(—1.3593147483,7.00833934259E — 2)
(—1.3593147483,—7.00833934259E — 2)

Die berechneten Nullstellen sind aufgrund der hohen Ordung von —1 als Nullstelle ungenau. Nach der
zuvor erwiahnten Faustregel ware keine oder vielleicht eine signifikante Stelle zu erwarten; die erste
berechnete Nullstelle ist jedoch genauer. Wenn das Polynom aus den berechneten Nullstellen
rekonstruiert wird, stimmen die (auf 12 Stellen gerundeten) Koeffizienten des rekonstruierten
Polynoms sehr gut mit den Koeffizientendes urspriinglichen Polynoms tiberein.

Urspriingliche | Rekonstruierte

Koeffizienten Koeffizienten
1 1

|20 20

190 190.000000001
1140 1140
4845 4845.00000003
15504 15504
38760 38760.0000003
77520 77520.0000007
125970 125970.000001
167960 167960.000002
184756 184756.000002
167960 167960.000003
125970 125970.000002
77520 77520.0000015
38760 38760.0000009
15504 15504.0000004
4845 4845.00000011
1140 1140.00000004
190 190.000000042
20 20.0000000344
1 1.00000001018
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Geschwindigkeit von FREOOT

Die Rechenzeitanforderungen von FRIOT kénnen der nachstehenden Tabelle entnommen werden. Die
angegebenen Zeiten werden zur Berechnung aller Nullstellen des Polynoms

N
P(Z)y= >k
k=0
fur die unter Grad aufgefiihrten Werte von N benétigt.

Die angegebenen Zeiten sind ungefihre Zeiten.

| Grad | Zeit (in Sek.)
3 3
.5 6
|10 | 22
L 15 | 42
20 | 142
30 | 168
50 | 568 |
70 | 1060 |
100 J 2101
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Finite Fouriertransformation

Schliisselwort

Finite Fouriertransformationen stellen eine sehr weit verbreitete Methode zur Losung einer Vielzahl
von Problemstellungen aus den Bereichen der Ingenieurwissenschaften, Physik und Mathematik dar.
Bekannte Anwendungen kommen beispielsweise in der Signalverarbeitung und bei der Lésung von
Differentialgleichungen vor.

Fur einen gegebenen Satz von N komplexen Datenpunkten Z,, Ziy.oy Zy_q liefert die finite
Fouriertransformation einen zugehorigen Satz von N komplexen Werten Wo, Wi...., Wx_1, so daf fiir
k=0,1...,N— 1 gilt:

N-1 . .
Z,= S w (cos 2k | sin 2TRL )
P N N

Die W’s reprisentieren dann die komplexen Amplituden der verschiedenen Frequenzkomponenten des
durch die Datenpunkte dargestellten Signals und ergeben sich aus der Formel:

= 2wk 2wk
VVJ- = l/N k;ﬂ Zk (COS —NJ— — 1 8in _N_L)

Diese Formel gilt fiir jede beliebige Anzahl von Datenpunkten. Das Mathematik-Paket verwendet den
Algorithmus von Cooley-Tukey, der hier in der Maschinensprache des HP-71 codiert ist. Dies fihrt zu
sehr guten Ergebnissen hinsichtlich Ausfiihrungszeiten und Genauigkeit bei der Berechnung von
finiten Fouriertransformierten; bedingt jedoch andererseits die Einschrinkung, daf die Anzahl N der
komplexen Datenpunkte eine positive ganzzahlige Potenz von 2 sein muR (etwa 2,4, 8, 16, 32, 64, 128
USW.).

Um die finite Fouriertransformation anwenden zu konnen, sind zunichst die komplexen Datenpunkte
Zoy.oy Zy_1in aufeinanderfolgenden Elementen eines N-elementigen Felds abzulegen; Z, als erstes
Element, Z, als zweites Element, usw. Das Format des Felds ist dabei unwichtig; es kommt nur darauf
an, daf die Gesamtanzahl der Elemente in dem Feld mit der Anzahl der komplexen Datenpunkte
bereinstimmt. So kann beispielsweise jedes der folgenden 8-elementigen Felder.

133
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(1,2) |
(3,4)
(5.6)
(7,8)
(9,10)
(11,12)
(13,14)
(15,16)

[ 12 G4 ]
5.6) (7.8)

9,100 (11,12)
(13,14) (15,16)

L2y B4 (66 (78
(9,100 (11,12) (13,14) (15,16)

[(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) (13,14) (15,16)]

die Eingabedaten
{(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16) }

repriasentieren. Das Feld, in dem die Koeffizienten der Fouriertransformierten zu speichern sind, muf
komplex sein. Wenn das Ergebnisfeld ein Vektor ist, wird dieser bei N Eingabedaten auf N Elemente
umdimensioniert. Ist das FErgebnisfeld eine Matrix, wird diese auf N Zeilen und 1 Spalte
umdimensioniert. Die Koeffizienten W,,...,Wy_; der finiten Fouriertransformierten werden dann als
komplexe Zahlen in aufeinanderfolgenden Elementen dieses komplexen N-elementigen Ergebnisfelds in
der gleichen Reihenfolge wie die Datenpunkte zuriickgegeben.

Aufer der Einschrdnkung, daf N eine nichtnegative ganzzahlige Potenz von 2 sein muf, ist die Anzahl
der Datenpunkte nur durch die Gréfie des verfiigharen Speicherbereichs begrenzt.




FOUR Finite Fouriertransformierte

MAT W=FIOURCZ)
| wo Z ein komplexer Vektor oder eine komplexe Matrix mit N Elementen, N (eine nichtnegative ganzahlige |

| Potenz von 2) die Anzahl der komplexen Datenpunkte und W ein komplexer Vektor oder eine komplexe |
| Matrix ist.

' Wenn W ein Vektor ist, wird W implizit auf N Elemente umdimensioniert: wenn W eine Matrix ist, wird W
implizit auf N Zeilen und eine Spalte umdimensioniert. Weist W die komplexen Koeffizienten der finiten
Fouriertransformierten fiir die durch Z gegebenen Punkte zu.

| Die Operation kann durch zweimaliges Driicken von [ATTN] angehalten werden.

Kann nicht im CALC-Modus verwendet werden.

Beispiel

In dem nachstehenden Beipiel wird die finite Fouriertransformation fiir den Datensatz ((1,2), (3,4),
(5,6), (7,8), (9,10), (11,12), (13,14), (15,16)) berechnet.

10 OPTION BASE 1

20 COMPLEX SHORT A(8),B(1,2) A enthélt den Datensatz, B enthilt nach einer
Umdimensionierung die Fourierkoeffizienten.

30 MAT INPUT A
40 MAT B=FOUR(A)
50 MAT DISP B

RUN
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Weitere Informationen

Geschwindigkeit des Algorithmus

In nachstehenden Tabelle ist die von FOUF zur Zurtickgabe der Transformierten bendtigte Zeit in
Abhéangigkeit von der Anzahl der Datenpunkte angegeben.

Anzahl der | Rechenzeit
Datenpunkte i (Sekunden)
1 0.07
2 0.11
4 0.26
8 0.75
16 1.9
32 4.7
64 11
128 25
256 55
512 120
1024 260
2048 558
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Zusammenhang zwischen finiten und kontinuierlichen Fouriertransformierten

Die finite (oder endliche) Fouriertransformierte wird in der Regel als Approximation der konti-
nuierlichen (oder unendlichen) Fouriertransformierten benutzt. Zur Begriffskldrung, in welchem Sinn
dies eine Approximation darstellt, und zum Verstdndnis der Auswirkungen der verschiedenen
Auswabhlen, die bei der Verwendung dieser Approximation zu treffen sind, ist es hilfreich, den direkten
Zusammenhang zwischen finiten und kontinuierlichen Fouriertransformationen zu betrachten.

Fiir eine komplexwertige Funktion Z(x) ist die kontinuierliche Fouriertransformierte definiert als
Wi = [7 Z(x) exp (—2nifx) dx

Zoy Z1ye .., Zy_q seien N komplexe Datenpunkte, die durch Abtasten der Funktion an N dquidistanten
Stiitzstellen gebildet werden; d.h.

Zk = Z(IO + kAx) fir &k = 0, 1, ...,N - 1,

4
Die zu diesem Satz von Datenpunkten gehérende finite Fouriertransformierte Wy, Wy,..., Wy _; héngt
mit der kontinuierlichen Fouriertransformierten W(f) wie folgt zusammen. Fir & = 0,..., N — 1 gilt

W, = (r/N) W(k/NAx) wo r = exp (—2mixy).

Hier ist W eine Approxiomation der wahren kontinuierlichen Fouriertransformierten W. Um W aus W
abzuleiten, ist W auf zwei sehr verschiedene Weisen zu mitteln. Die dabei auftretende erste Gewichtung
kann durch die Definition einer neuen Funktion A(f) beschrieben werden, die einen Zwischenschritt
zwischen W und W bildet:

A = S W+ k/an)

k=—oo

Dies besagt, daf® der Wert A in einem Punkt f gleich der Summe der Werte von W an allen Punkten,
die ganzzahlige Vielfache der von f ausgehenden begrenzenden Frequenz 1/Ax darstellen, ist. A besteht
also aus unendlich vielen, in Abstinden von 1/Ax Einheiten vom Ursprung weg angeordneten
Wiederholungen des Frequenzbandes W einer bandbegrenzten Funktion. Dies ist eine Folge der
Verwendung der finiten Fouriertransformation mit endlich grofien Ax. Wenn nun Ax zu groff gewihlt
wird, kann dies bei der Fouriertransformierten zu Frequenzbandtiberlappungen fithren. Da die meisten
der in praktischen Anwendungen vorkommenden Funktionen (und alle reellwertigen Funktionen)
kontinuierliche Fouriertransformierte besitzen, die symmetrisch zum Ursprung sind, tritt fiir jede in W
vorkommende Frequenz f, auch die Frequenz —f, in W auf. Aus diesem Grund sollten Sie Ax so
withlen, daf 1/Ax grofer als die doppelte Bandbreite der Funktion, d.h. zwei mal der Abstand zwischen
der kleinsten und gréften Frequenz, ist. Wenn die finite Fouriertransformierte alle, also auch die
negativen Frequenzen ohne Frequenzbandiiberlappungen enthalten soll, und Af die gréfite in der
Funktion enthaltene Frequenz ist, muf die Bedingung AfAx < 1/2 erfiillt sein.
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Die zweite beim Ubergang von W zu W auftretende Gewichtung ist mehr lokaler Natur und fithrt zu
einem Verlust in der Frequenzauflésung in W im Vergleich zu W. Genauer gesagt gilt:

W) = (NAx) f “ sinc (gNAx) A(f — g) dg

1 wenn a = 0,

wo sinc (a) = .
(@) sin (wa)

wa

sonst

Da sinc (gNAx) im wesentlichen aus einem hockerartigen Bereich um den Ursprung mit einer Breite,
die umgekehrt proportional zu NAx ist, besteht, ist W fiir kleine Werte von NAx mehr verschwommen
(im Vergleich zu W). Dies ist kein besonderes Problem, solange W nicht einen grofien Wert an einer
Frequenz besitzt, die nicht ein Vielfaches der Grundfrequenz N/Ax ist. In diesem Fall fithren die
“Seitenschwingungen” der sinc Funktion zu spiirbaren Auswirkungen auf W. Dieser Effekt laft sich
etwas reduzieren,wenn die Datenpunkte Z; vor der Bildung der finiten Fouriertransformierten mit
einer glattenden (Fenster-) Funktion G(k) multipliziert werden. Dies fiihrt zu einer Gewichtungs-
funktion, die kleinere Seitenschwingungen als sinc hat. Ein Beispiel fiir eine derartige Funktion ist die
Hanning-Funktion G(k) = (1/2)(1 — cos (27k/N)).

Inverse finite Fouriertransformation

Viele Anwendungen der finiten Fouriertransformierten beinhalten die Berechnung der Transformierten
fir einen Satz von Datenpunkten, eine anschliefende Manipulation der transformierten Werte (etwa
Vergroflern oder Verkleinern der Amplituden) und schlieflich eine Riicktransformation der Daten iiber
die inverse finite Fouriertransformierte

= 2nkj . 2mkj
Z, = j;) W, (cos-——ﬁL-F zsin—N'L

Sie kénnen mittels FOLIE auch auf einfach Weise die inverse finite Fouriertransformierte bestimmen.
Wenn W ein N-elementiges komplexes Feld ist, fiir das die inverse finite Fouriertransformierte
bestimmt werden soll, kénnen Sie wie folgt vorgehen:

1. Dimensionieren Sie W auf N Zeilen und eine Spalte um. (Wenn W ein Vektor oder ein Feld mit
einer Spalte ist, ist keine Umdimensionierung notwendig.)

2. Transponieren Sie W (mit TRH). Dies liefert die konjugiert Komplexe von W, ohne daf dabei die
Reihenfolge der Elemente gedndert wird.

3. Bilden Sie die finite Fouriertransformierte des Ergebnisses.

4. Transponieren Sie das Ergebnis der finiten Fouriertransformation und multiplizieren Sie es mit N.
Das Produkt stellt dann die inverse finite Fouriertransformierte des urspriinglichen Felds dar.



Beispiel. Dieses Beispiel illustriert diese Anwendung der finiten Fouriertransformation und die obige
Prozedur zur Bestimmung der inversen finiten Fouriertransfomierten.

Gesucht sei die stationdre Losung Z(x) der inhomogenen Differentialgleichung
Z"(x) + 3Z'(x) + 12Z(x) = P(x)

wo P(x) eine Funktion sei, fir die Stichprobedaten vorliegen. Wenn @ die (kontinuierliche)
Fouriertransformierte einer beliebigen Funktion @ bezeichnet, fiilhrt die Bildung der Fourier-
transformierten fiir die obige Gleichung zu

—f22(f) + 3ifZ(H + 12Z2(H = P(f)

Diese Gleichung ist algebraisch l6sbar:

B(f)
(—f* + 12) + 3if

2 =

Mit einer hinreichend guten Approximation fiir P laft sich die rechte Seite dieser Gleichung problem-
los berechnen. Aus diesem Ergebnis kann dann die Losung der urspriinglichen Gleichung tber die
inverse Fouriertransformierte bestimmt werden.

Aus Grinden der Vereinfachung sei hier unterstellt, daR P(x) durch entsprechende Skalierung der
Gleichung eine Einheitsperiode besitzt, und daf die héchste Frequenzkomponente von P (ungefihr)
dem 30-fachen der Grundfrequenz enspricht. In diesem Fall werden dann Frequenzbandiiberlappungen
vermieden, wenn P 64 Mal pro Periode abgetastet wird.

Um die Eingabe von 64 komplexen Datenpunkten als MeRdaten fiir P zu vermeiden, verwendet das
nachstehende Programm eine relativ einfache Funktion fiir P. Diese Werte koénnten natiirlich auch
iiber jede andere Quelle vorgegeben werden.

10 OPTION BASE 1 @ DESTROY ALL

20 COMPLEX P(64),Q(64,1),Z(1,64) F soll die Datenpunkte, die die Mefwerte fiir P
repréasentieren, aufnehmen. i@ dient der
Speicherung von P und P/(—f2 + 3if + 12). =
wird schlieflich die Lésung der
Differentialgleichung enthalten.

30 COMPLEX T T ist ein komplexer Skalar fiir die komplexe
Division.

40 DISP "RECHNEND; BITTE WARTEN”

50 RADIANS
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60 FOR I=1 TO 64

70 R="PI%I/32

80 P(l)=( 6000%COS(3%R)kSIN(7.5%R)*
COS(5.5%R) , 4000kCOS(13%R)+
3500%SIN(11%R) )

90 NEXT |
100 MAT Q=FOUR(P)
110 FOR F=—-31 TO 32

120 J=MOD(F,64)+1

130 T=(—F"2+12,3%F)
140 QJ,1)=Q,1)/T
150 NEXT F

160 MAT Q=TRN(Q)

170 MAT Z=FOUR(Q)
180 MAT Z=TRN(2)

190 MAT Z=(64)*Z
200 COMPLEX Z(64,1)
210 DISP "LOESUNG:”

220 MAT DISP USING
»C(MDDD.D,MDDD.D)";Z

Routine zur Belegung von F mit Abtastwerten
der komplexwertigen Funktion, die durch die
rechte Seite der Zeile 80 représentiert wird.
Dabei wird eine Auswertung von 64 dquidistanten
Punkten unterstellt.

[ reprasentiert nun P.

F stellt die Frequenzvariable dar und tastet den
gesamten Bereich aller positiven und negativen
Frequenzen ab, deren Auftreten in P zu
erwarten ist.

.l ist die Nummer der Zeile im Feld 1, die die
Amplitude der Frequenz F enthalt.

T ist der Nenner des komplexen Quotienten.

i enthalt nun P/(—f2 + 3if + 12).

-

Routine zur Belegung von Z mit den Werten der
inversen finiten Fouriertransformierten von [l
Die komplex Konjugierte von ! wird hier durch
Transposition gebildet.

Hier wird die Konjugation ebenfalls durch
Transposition gebildet.

Die angezeigten Werte stellen die komplexen
Funktionswerte der stationiren Losung der
Differentialgleichung fiir 64 dquidistante Punkte
in einer Periode dar.




Sinus/Cosinus-Fourierreihen

Fiir rein reelle Datenpunkte Z, kann anstelle der finiten Fouriertransformierten eine Fourierreihen-
Transformierte benutzt werden. Hier wird fiir einen Satz von 2N (reellen) Datenpunkten Z;, Z;, ..

'

Zyn—1 ein Satz von 2N + 1 reellen Konstanten Ay, Ay, ...,An, By, ..., By berechnet, die die
Gleichungen
A2 & 2mjk 2mjk
Zy,=—+ A; <12 4 B sin

kT Ty jgl i8S TN T Y 2N
erfullen.
Wenn W,, Wy, ..., Wyy_; die komplexen Koeffizienten der finiten Fouriertransformierten fiir die
reellen Datenpunkte Zy, ..., Zyy_, darstellen, ergeben sich die Koeffizienten der Fourierreihe aus

Aj = 2REPT(W)  firj =0, ..., N—1,
Ay = REPT(Wy)

B; = —2IMPT(W)) fiirj = 1, ..., N.






Anhang A
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Sie konnen das Mathematik-Modul in jeden der vier ROM-Einschubschéichte auf der Vorderseite des
Computers einsetzen.

VORSICHT 3

* Achten Sie darauf, daB der HP-71 (durch Driicken von [f] [OFF]) ausgeschaltet ist, bevor Sie
irgendein Applikations-Modul einsetzen oder entfernen.

© Wenn Sie ein Modul entfernt haben, um das Mathematik-Modul einsetzen zu kénnen, sollten Sie
zum Zuriicksetzen interner Zeiger den Computer vor dem Einsetzen des Mathematik-Moduls ein-
und ausschalten.

* Stecken Sie keine Finger, Werkzeuge oder sonstige Fremdobjekte in die Einschubschichte des
Computers. Die Nichtbeachtung dieser VorsichtsmaBnahme kann zu geringfiigigen elektrischen
Schldagen und Stérungen von Herzschrittmacherfunktionen filhren. Des weiteren konnten die
Kontakte in den Einschubschéchten sowie die internen Schaltkreise des Computers beschidigt
werden.

» Sollte das Modul beim Einsetzen klemmen, kénnten Sie es verkehrt herum halten. Der Versuch, das
Modul mit Gewalt in den Einschubschacht zu driicken, kann zu einer Beschédigung des Computers
oder des Moduls fiihren.

¢ Behandeln Sie nichteingesetzte Einsteck-Module besonders vorsichtig. Fiihren Sie keine Gegen-
stande in die Kontaktbuchsen des Moduls ein. VerschlieBen Sie des weiteren nichtbenutzte
Einschubschdchte immer mit Modulattrappen. Die Nichtbeachtung dieser VorsichtsmaBnahmen
kann zu einer Beschédigung des Moduls oder des Computers fiihren.

Gewabhrleistun

Hewlett-Packard gewahrleistet, daff das Mathematik-Modul in Bezug auf elektronische Bguteile und
mechanischen Aufbau, jedoch nicht im Bezug auf die Software frei von Material- und
Verarbeitungsschaden ist, und verpflichtet sich, etwaige fehlerhafte Teile kostenlos instandzusetzen
oder auszutauschen, wenn das Modul — direkt oder iiber einen HP-Vertragshindler — an Hewlett-
Packard eingesandt wird. Die Gewahrleistung betragt 12 Monate ab Verkaufsdatum.
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Weitergehende Anspriche, insbesondere auf Ersatz von Folgeschédden, kénnen nicht geltend gemacht
werden. Schaden, die auf unsachgemifle Verinderungen des Moduls durch Dritte zuriickzufiihren sind,
werden von dieser Gewéhrleistung nicht umfaft.

Diese Gewahrleistung gilt nur in Verbindung mit entweder
dem von einem Hewlett-Packard Vertragshiindler ausgestellten Kaufbeleg oder

der Originalrechnung von Hewlett-Packard.

Die Anspriche des Kaufers aus dem Kaufvertrag bleiben von dieser Gewihrleistungsregelung
unberiihrt.

Anderungsverpflichtung

Samtliche Produkte werden auf der Grundlage der technischen Daten bei der Herstellung verkauft.
Hewlett-Packard tibernimmt keine Verpflichtungen, einmal verkaufte Produkte zu modifizieren oder
auf den neuesten Stand zu bringen.

Gewaihrleistungsinformation

Wenn Sie beziiglich dieser Gewéhrleistung Fragen haben, setzen Sie sich bitte mit einem Hewlett-
Packard Vertragshidndler in Verbindung. Falls dies nicht méglich ist, schreiben Sie an:

In Europa:

Hewlett-Packard S.A.
150, route du Nant-d’Avril
P.O. Box
CH-1217 Meyrin 2 (Genf)
Schweiz
Telefon: (022) 83 81 11

Hinweis: Senden Sie keine Gerdte zur Reparatur an diese Adresse.




o In den US.A.:

Hewlett-Packard Company
Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330
U.S.A.

Telefon: (503) 758-1010

» In allen anderen Lindern:
Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, CA 94304

U.S.A.
Telefon: (415) 857-1501

Hinweis: Senden Sie keine Gerdte zur Reparatur an diese Adresse.

Service

Serviceniederlassungen

Hewlett-Packard unterhalt weltweit Serviceniederlassungen. Sie kénnen Ihr Gerit jederzeit von einer
Hewlett-Packard Serviceniederlassung reparieren lassen, sei es mit oder ohne Gewihrleistung. Nach
Ablauf der einjahrigen Gewihrleistungsfrist werden Ihnen die Reparaturkosten berechnet. .




Servicezentrale in den Vereinigten Staaten

Die Servicezentrale fiir batteriebetriebene Computerprodukte von Hewlett-Packard in den U.S.A.
befindet sich in Corvallis, Oregon:

Hewlett-Packard Company

Service Department
P.O. Box 999

Corvallis, OR 97339, U.S.A.

oder
1030 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Telefon: (503) 757-2000

Serviceniederlassungen in Europa

Die folgende Aufstellung zeigt die Serviceniederlassungen in FEuropa. Setzen Sie sich in nicht
aufgelisteten Landern mit dem Héndler in Verbindung, bei dem Sie Ihr Gerét erworben haben.

BELGIEN

HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100

B-1200 BRUSSEL

Tel. (02) 762 32 00

DANEMARK

HEWLETT-PACKARD A/S

Datavej 52

DK-3460 BIRKER@D (Kopenhagen)
Tel. (02) 81 66 40

DEUTSCHLAND
HEWLETT-PACKARD GmbH
Berner Strasse 117
Postfach 560 140

‘D-6000 FRANKFURT 56
Tel. (0611) 50 04 1

FINNLAND
HEWLETT-PACKARD OY
Revontulentie 7

SF-02100 ESPOO 10 (Helsinki)
Tel. (90) 455 02 11

FRANKREICH
HEWLETT-PACKARD FRANCE
Avenue des Tropiques

Z.l. de Courtaboeuf

F-91947 LES ULIS CEDEX
Tel. (6) 907 78 25

GROSSBRITANNIEN
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
BERKSHIRE RG11 5AR
Tel. (0734) 784 774

ITALIEN

HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 CERNUSCO SUL NAVIGLIO
Tel. (2) 90 36 91

NIEDERLANDE

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121

N-1181 KK AMSTELVEEN (Amsterdam)
P.O. Box 667

Tel. (020) 47 20 21

NORWEGEN
HEWLETT-PACKARD NORGE A/S
P.O. Box 34

Pesterndalen 18

N-1345 @ESTERAAS (Oslo)

Tel: (2) 17 11 80

OSTERREICH
HEWLETT-PACKARD Ges.m.b.H.
Lieblgasse 1

P.O. Box 72

A-1222 WIEN

Tel, (0222) 23 65 11 0

OSTEUROPA
Bitte wenden Sie sich an die unter Oster-
reich angegebene Adresse.

SCHWEDEN

HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista

Box 19

5-16393 SPANGA (Stockholm)

Tel. (08) 750 20 00

SCHWEIZ

HEWLETT-PACKARD (SCHWEIZ) AG
Allmend 2

CH-8967 WIDEN

Tel. (057) 31 21 11

SPANIEN

HEWLETT-PACKARD ESPANOLA S.A.
Crta.de la Coruna

Las Rozas

E-MADIRD 16

Tel. (1) 458 2600




Internationale Serviceinformation

Nicht alle Hewlett-Packard Serviceniederlassungen bieten Reparatur fiir alle HP-Produkte an. Wenn
Sie Thr Gerit bei einem HP-Vertragshindler erwoben haben, kénnen Sie allerdings sicher sein, daf in
dem Land, in dem das Gerit gekauft wurde, auch Service angeboten wird.

Wenn Sie sich aufierhalb des Landes befinden, in dem Sie das Gerit gekauft haben, sollten Sie sich mit
der ortlichen Hewlett-Packard Serviceniederlassung in Verbindung setzen und, falls die Reparatur dort
nicht moglich ist, das Gerit an die unter “Servicezentrale in den Vereinigten Staaten” angegebene
Adresse schicken. Von dort kénnen Sie auch eine Liste der Serviceniederlassungen in anderen Lindern
erhalten.

Sémtliche mit dem Versand verbundene Kosten gehen zu IThren Lasten.

Reparaturkosten

Hewlett-Packard erhebt fiir Reparaturen, die auRerhalb der Gewihrleistungsfrist liegen, Gebiihren nach
einem festgesetzten Satz. In den Reparaturkosten sind Arbeitszeit und Materialien eingeschlossen. In
der Bundesrepublik Deutschland wird auf den Rechnungsbetrag Mehrwertsteuer erhoben und auf der
Rechnung getrennt ausgewiesen.

Die festgesetzten Reparatursitze gelten nicht fiir durch Gewalteinwirkung oder Mifbrauch beschidigte
Produkte. In solchen Fallen werden die Reparaturkosten auf der Grundlage von Arbeitszeit- und
Materialaufwand individuell festgelegt.

Gewdbhrleistung auf Servicearbeiten

Auf alle Reparaturen auflerhalb der Gewihrleistungsfrist wird eine Garantie auf Material und
Verarbeitung fiir einen Zeitraum von 90 Tagen ab dem Reparaturdatum gegeben.

Versandanweisungen

Wenn Thr Gerit repariert werden muf, senden Sie es bitte mit den folgenden Unterlagen ein:
» Eine Beschreibung der Stérung.

« Einen Kassenbeleg oder ein anderer Verkaufsnachweis, falls die einjahrige Gewihrleistungsfrist
noch nicht abgelaufen ist.

Das Produkt, eine kurze Fehlerbeschreibung und gegebenenfalls der Beleg des Kaufdatums sollten zur
Vermeidung von Versandschidden in der Originalpackung oder einer anderen angemessenen
Schutzverpackung eingesandt werden. Versandschiden sind in der Jahresgarantie nicht eingeschlossen.
Das verpackte Geridt sollte an die nichstliegende Hewlett-Packard Serviceniederlassung gesandt
werden. Lassen Sie sich dazu von Threm Héndler beraten. (Wenn Sie sich nicht in dem Land aufhalten,
in dem Sie Thr Gerat erworben haben, lesen Sie bitte den vorangegangenen Teilabschnitt “Inter-
nationale Serviceinformation”).



Sonstiges

Hewlett-Packard bietet keine Servicevertrige an. Ausfithrung und Design des von Computerprodukten
sind Eigentum von Hewlett-Packard; Servicehandbiicher sind nicht fiir Kunden verfiigbar. Sollten Sie
weitere Fragen beziiglich Reparaturen haben, wenden Sie sich bitte an Ihre nichste Hewlett-Packard
Serviceniederlassung.

dJandla 1ind Produktinformatior

Einen Bezugsquellennachweis tiber den Fachhandel, sowie Produkt- und Preisinformationen erhalten
Sie in der Bundesrepublik Deutschland tber:

Hewlett-Packard GmbH
Vertriebszentrale/Werbeabteilung
Berner Strafe 117
Postfach 560 140
D-6000 Frankfurt/M 56




Anhang B
Speicheranforderungen

Das Mathematik-Modul belegt 43.5 Bytes des Schreib/Lese-Speichers (RAM) fiir den eigenen Bedarf.
Zusdtzlich fordern die einzelnen Routinen voriibergehend geringe Mengen an Speicherplatz fiir
Overhead-Zwecke an. Wesentlich mehr Speicherplatz wird bei der Deklaration von komplexen
Variablen und Feldern und beim Vergréfiern von Feldern (wahrend Umdimensionierungen) belegt. Der
von den einzelnen Operationen des Mathematik-Pakets benétigte Speicherplatz kann der nach-
stehenden Tabelle entnommen werden.

Schliisselwort Spelcheranforderung der Operatlon

rElnfache Variable
COMPLE X 25.5 Bytes
COMPLEX SHORT 18.5 Bytes

Feld
COMFLER 16%(Dimension 1 — OFTIOH EASE + 1)
*(Dimension 2 — OFTIOH BAZE + 1) + 9.5
COMFLERX SHORET 9%(Dimension 1 — JFTIOH BRSE + 1) |
*(Dimension 2 — OFTION BARSE + 1) + 9.5 2
DETCA 2N(4N +1) Bytes, wo A eine N x N Matrix ist.
MAT FRIMT LUSIHG | 14 Bytes
MAT DISF USIHG
MAT IHEUT 40 Bytes
MAT A=A%*A Belegt nur dann zusétzlichen Speicherplatz, wenn ein Operandenfeld auch i
MAT A=A%B als Ergebnisfeld spezifiziert wird. ;
MAT A=BxA Wenn das Produkt (d.h. die umdimensionierte Matrix A) eine M x N Matrix

ist (bei Vektoren ist N = 1), wird der folgende Speicherplatz belegt: |
3MN Bytes, wenn A vom Typ IHTEGEF ist. i
4.5MN Bytes, wenn A vom Typ SHORT ist.
8MN Bytes, wenn A vom Tvp FEAL ist.
9MN Bytes, wenn A vom Typ COMFLE®X EE:HI} FT ist.
16MN Bytes, wenn A vom Typ COMFLEY is

MAT A=TEMCAX¥A | Belegt nur dann zus#tziichen Speicherplatz, wenn ein Operandenfeld auch |
MAT A=TREH{A:%B r als Ergebnisfeld spezifiziert wird. i
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Schliisselwort

MAT A=TFHCB:%A

| MAT B=THWAD

FIAT C=5%!

by}

LALB

CMAT A=TEHCAD

' MAT B=FROOTCA:

' MAT B=FOURCAZ

FHEDDT

IHTEGREAL

Speicheranforderung der Operation

Wenn das Produkt (d.h. die umdimensionierte Matrix A) eine M x N Matrix '

ist (bei Vektoren ist N = 1), wird der folgende Speicherplatz belegt:
3MN Bytes, wenn A vom Typ IMTEZEFE ist.
4 5MN Bytes, wenn A vom Typ SHOET ist.
8MN Bytes, wenn A vom Typ FEHAL ist.
9MN Bytes, wenn A vom Typ COMFLE SHORET ist
16MN Bytes, wenn A vom Typ COMFLE: ist.

A sei eine N x N Matrix.

Wenn A vom Datentyp FEFRL, SHORET oder IHMTEGER und B vom

Datentyp REHAL ist:
4N Bytes.
Wenn A vom Datentyp FEAL, ZHORET oder IMNTEGER und B nicht vom
Datentyp FEAL ist:
4N(2N + 1) Bytes.
Wenn A vom Datentyp COMFLEX oder COMFLEX ZHOET ist:
BN(4N + 1) Bytes.

A sei eine N X N Matrix und B eine N x P Matrix (fir Vektoren ist P = 1).
Wenn A vom Datentyp FEARL, ZHORET oder IMTEZGER und B vom |

Datentyp REAL, SHORT oder INTEGER ist:
4N(2N + 4P + 1) Bytes.

Wenn A vom Datentyp FEEAL, SHORET oder IMTEGER und B vom;

Datentyp COMFLE oder COMFLES ZHORT ist:
4N(2N + 8P + 1) Bytes.

Wenn A vom Datentyp COMFLEX oder COMFLE: ZHIORET ist:
BN(4N + 4P + 1) Bytes.

. Wenn A eine M x N Matrix und vom Datentyp IHTEZEFR ist:
MN/2 Bytes.

Wenn Operanden- und Ergebnismatrix verschieden sind oder wenn A nicht |

vom Datentyp IHTEGEF ist, wird kein zusatzlicher Speicherplatz belegt.

Wenn A ein Polynom N-ten Grades représentiert.
21N + 261 Bytes.

A enthalte N Elemente.

Wenn B vom Datentyp COMFLEX SHORT ist:
16N Bytes.

Wenn B vom Datentyp COMFLE ist, wird kein zusétzlicher Speicherplatz i

. belegt.
112.5 Bytes, wenn FHEOOT nicht geschachtelt ist.
Zusétzlich fiir jede Schachtelungsebene 96.5 Bytes.
| 208.5 Bytes, wenn IHTEZRAL nicht geschachtelt ist.
| Zusétzlich fir jede Schachtelungsebene 192.5 Bytes.




Anhang C

Fehlerbedingungen

Das Mathematik-Paket gibt zwei Arten von Fehlermeldungen zuriick:

» Fehlermeldungen des Mathematik-Pakets. Diese Fehlermeldungen sind durch die LEX-
Identifikationsnummer 2 gekennzeichnet und werden in der ersten Tabelle erldutert.

» Fehlermeldungen des HP-71, die vom Mathematik-Paket zuriickgegeben werden. Diese
Fehlermeldungen sind durch die LEX-Identifikationsnummer 0 gekennzeichnet und werden in der
zweiten Tabelle erlautert.

Fehlermeldungen des Mathematik-Pakets

Nummer

Fehlermeldung und Fehlerbedingung :
1 e |
e OOTCA.B": A oder B ist eine Matrix. .
o DETCAY, MAT B=IHW{AY, MAT B=TREH:AX, MAT A=I0H, :
MAT X=%ZCA. Y : A oder B ist ein Vektor. ;
o MAT A=I0H /2 Es wurde nur ein Umdimensionierungsindex angegeben. ‘
o MHT A=Operation: Operandenfeldfer):: Die Anzahl der Indizes von A entspricht nicht |
der vom Ergebnis der Operation benétigten Anzahl von Indizes.
2 Mot Squars |

o DETCAY, MAT A=I0H, MAT B=IHVCAY, MAT X=3v5<A,B:: Die Anzahl der :
Spalten der Matrix A entspricht nicht der Anzahl der Zeilen. |
o MHAT A=TOMO, juii # §.
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~

3

| Nummer

N S— - S

Fehlermeldung und Fehlerbedingung

Cornformakbilitg

e MAT A=B+C, MAT A=B-C: B und C sind nicht vereinbar bezliglich Additionen (d.h.
die Anzahl der Spalten oder die Anzahl der Zeilen stimmt nicht berein).

e MAT A=B#C: B und C sind nicht vereinbar beziiglich Multiplikationen (d.h. B ist ein
Vektor oder die Anzahl der Spalten von B stimmt nicht mit der Anzahl der Zeilen von C
iberein). .

o MAT A=TEH:B:>#C: B und C sind nicht vereinbar beziglich transponierter
Multiplikationen (d.h. B ist ein Vektor oder die Anzahl der Zeilen von B entspricht nicht |
der Anzahl der Zeilen von C).

e MAT X=5YS:{A,B»: Obwohl A eine quadratische Matrix ist, sind A und B nicht |
vereinbar beziiglich Multiplikationen.

« DOTCA,B»: A und B sind Vektoren; jedoch entspricht die Anzahl der Elemente in A
nicht der Anzahl der Elemente in B.
Farameter Redim
» Das Ergebnisfeld einer FIAT Anweisung ist ein Unterprogrammparameter. Die 1T An-
weisung erfordert eine Umdimensionierung, bei der die Anzahl der Feldelemente
geandert wiirde.
Me=zting Error
e Mehr als 5 Ebenen in FHREOOT oder IHTEGRAL Schachtelungen.
Fubd FH in FHEOOT-IMTECGEAL
e Versuch der Ausfiihrung von FHECOT oder IHTEGEAL Uber das Tastenfeld im

BASIC-Modus, wobei die Funktion, deren Nullstelle oder Integral zu berechnen ist, eine |
benutzerdefinierte Funktion ist.

« Versuch der Ausfiihrung einer benutzerdefinierten Funktion liber das Tastenfeld, wenn
die Ausfihrung von FHROIOT oder IMTEGRAL wéhrend der Berechnung der
Funktion, deren Nullstelle oder Integral zu berechnen ist, angehalten wurde.

Furmction Interrupted

« Die Ausfilhrung von DETCAN, CHOREMCAX, EMOEMCAD, FHOREMIAD  oder

O0ToA, B wurde durch zweimaliges Driicken von unterbrochen.
Bad Arrayg Size

e MAT B=FOUFR A Die Anzahl der Elemente von A ist nicht eine positive ganzzahlige |
Potenz von 2. [

e MAT B=FEOCOT<A>: A besteht aus genau einem Element (und représentiert damit
ein Polynom vom Grad 0).

FREOOT Failure
e FEDOT kann keine Nullstelle des spezifizierten Polynoms finden.




Anhang C: Fehlerbedingungen 153

Nummer J Fehlermeldung und Fehlerbedingung
! S
10 | GAMMA=Inf
|
e GHMMA 3 ist eine ganze Zahl kleiner oder gleich 0.
|
11| ATAMHHC +-1
e ATAMHC1Y oder ATAMH—1%
Keine Initialisierung
Fehler- | | pie Overhead-Speicheranforderungen des Mathematik-Pakets kénnen wegen unzu-

Nummer |

reichendem Speicherplatz nicht befriedigt werden. Das Mathematik-Paket belegt 43.5
Bytes des Systemspeichers fiir den eigenen Bedarf. Dieser Speicherplatz muB beim
Einsetzen des Moduls verfiigbar sein.

Fehlermeldungen des HP-71

— S —

Nummer

11 |

|

|

24 |
31

| Data Tupe

Fehlermeldung und Fehlerbedingung

Irwalid Arag
o BEVALUBS, Ry, ESTRE X, R1: Der ganzahlig gerundete Wert von R ist ungleich 2, 8
oder 16.
o BEVHL CB§.R:: B$ ist keine zuldssige Stringdarstellung einer Zahl zur Basis R.
e EZTR# X, R:: Der ganzahlig gerundete Wert von X liegt nicht im Interval [0,1E12).
* BEVAL ¢B$, R:: Das Dezimaldquivalent von B$ ist groBer als 999999 999 999.
o LEMOCA N UEBHDCA, N2: Der ganzahlig gerundete Wert von N ist weder 1 noch 2.
e In einer MAT COH, I0H, ZER, COMFLEY oder COMFLEX SHORT Anweisung
wurde ein unzuldssiger Index verwendet.
Irmzufficient Memary

¢ Unzureichender Speicherplatz. In Anhang B sind die Speicherplatzanforderungen der
Operationen des Mathematik-Pakets gelistet.

» Ein (reeller oder komplexer) Skalar wurde anstatt eines an dieser Stelle bendtigten
Felds verwendet. Entsprechendes gilt fiir den umgekehrten Fall.

« Ein Skalar oder Feld vom Typ COMFLE!X wurde anstatt eines an dieser Stelle be-
notigten Skalars oder Felds vom Typ FEFRL verwendet. Entsprechendes gilt fiir den
umgekehrten Fall.
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| Nummer i Fehlermeldung und Fehlerbedingung
| i

32 ‘ Ho Data [
1 ¢ Versuch der Ausfiihrung von DETL vor der ersten Ausflihrung von FAT . . . I HY (mit
[ reellwertigem Argument) oder von MAT . . . Z% % (mit reellwertigem ersten Argument).
1|
| @ Versuch der Ausflihrung von FY/ALLE oder FLLIEZE vor der ersten Ausflihrung von
; FHROOT. i
» Versuch der Ausfihrung von IWALUE oder IECUHD, bevor IMTEGRAL die |
Funktion, deren Integral zu berechnen ist, zum ersten Mal ausgewertet hat.
, » Versuch der Ausfiihrung von FUAE, ohne daB FHEDIOT momentan eine Funktion,
deren Nullstelle gesucht ist, auswertet.
¢ Versuch der Ausfiihrung von I'/FF, ohne daB IHTEGFRAL momentan eine Funktion, |
3 deren Integral gesucht ist, auswertet.

46 | Inwalid USIHG
1 o Formatierung eines reellen Ausdrucks mit einem komplexen Formatstring. Ent-
! sprechendes gilt fir den umgekehrten Fall. ‘

79 2 Illegal Comtest |
|« Es wurde versucht, INTEZRAL oder FHREIOT im CALC-Modus indirekt auszufiihren. |
i

80 | Irnwvalid FParameter

» Ein als Antwort auf eine MAT IMFLUT Eingabeaufforderung eingegebener Ausdruck
enthélt einen Aufruf einer benutzerdefinierten Funktion.




Anhang D
Wirkung von (s
Die Wirkung der Taste wahrend der Ausfihrung der nachstehend aufgefiihrten Schliisselworte
wurde bereits auf der angegebenen Seite erldutert.
AT THFUT Seite 54
FREGDT Seite 97
ITHTEGRERAL Seite 111

Die Ausfithrung der in diesem Anhang gelisteten Schliisselworte kann durch ein- oder zweimaliges
Driicken von abgebrochen werden.

Feldausgabeanweisungen

Die Ausfiihrung der Feldausgabeanweisungen des Mathematik-Pakets (MAT DIZF/FEIHT [UEIHG])
kann jederzeit durch einmaliges Driicken von angehalten werden.

Weitere 17 Anweisungen

Die Ausfiihrung der nachstehenden MAT Anweisungen kann jederzeit durch zweimaliges Driicken von
ATTN ] angehalten werden.

MAT Ergebnis = [~] Operand

MAT Ergebnis = Operand +/-/% Operand

i

"MAT Ergebnis . Skalar : [¥ Operand]

MAT Ergebnis = 1M\ Operand &

AT Ergebnis S5 Operand . Operand

AT Ergebnis TEHM Operand [ Operand ]

it

MAT Ergebnis FOUR © Operand

MHT Ergebnis = FEOOTC Operand
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Es sei unterstellt, Sie wollen ein langes Programm abbrechen, das eine MAT IH. Anweisung enthalt,
und driicken dazu einmal [ATTN]). Die Programmausfihrung halt jedoch nicht an (d.h. die Statusanzeige
SUSP erscheint nicht in der Anzeige). Dies deutet an, daf das Programm momentan die Anweisung
MAT IHY ausfiihrt und Sie erhalten somit die Moglichkeit, zu entscheiden, ob Sie das Ergebnis der
Ausfithrung von MAT IH\' abwarten oder die Programmausfiihrung und damit auch die Ausfithrung
der Anweisung durch ein weiteres Driicken von [ATTN] sofort abbrechen wollen. Diese Verwendung der
Taste ermoglicht einen stufenweisen Programmabbruch.

Wenn Sie wihrend der Ausfithrung einer MAT IHY Anweisung die Taste nur einmal dricken,
wird das Programm erst nach Abschluf der Ausfiihrung der Anweisung abgebrochen.

Skalare Matrixfunktionen

Die Ausfilhrung der nachstehenden skalaren Matrixfunktionen kann jederzeit durch zweimaliges
Driicken von abgehalten werden.

OET < Operand

[T ¢ Operand , Operand
FHORM: Operand
CHOREM: Operand
FHOREMC Operand

Die oben beschriebenen Vorteile des zweimaligen Driickens von treffen auch auf diese
Funktionen zu. Da die Ausfithrung einer Funktion nur durch eine Fehlerbedingung unterbrochen wird,
wird bei den obigen Funktionen nach zweimaligem Driicken von die Fehlermeldung
Furnction Interrupted angezeigt,



Anhang E

Mathematische Ausnahmen und IEEE-Vorschlag

Einleitung

Dieser Anhang erldutert die Realisierung des IEEE-Vorschlags zur Behandlung von mathematischen
Ausnahmen durch die Funktionen und Operationen des Mathematik-Pakets. Dies beinhaltet Berech-
nungen mit HaM und Irif Argumenten, das Setzen von mathematischen Ausnahmeflags, die Behand-
lung von bereichsiberschreitenden Argumenten, Fehlermeldungen oder Warnungen und Vorgabewerte
fir TYL und DOVZ Ausnahmen. Der IEEE-Vorschlag zur Behandlung von mathematischen Aus-
nahmen wird im HP-71 Referenzhandbuch erldutert. Die Funktionen des Mathematik-Pakets setzen,
wenn noétig, die Ausnahmeflags IVL, OWE, OWF, UHF und IH* und geben in Abhéngigkeit von der fiir
diese Flags geltenden Auffangwerte (der jeweiligen TRAF Einstellung) -Fehlermeldungen oder
Warnungen (zusammen mit den mit Vorgabewerten berechneten Ergebnissen) zuriick. Die Definitionen
bzw. Berechnungsformeln fiir einige der hier beschriebenen Funktionen finden Sie in den
entsprechenden Abschnitten dieses Handbuchs.

Die in den Abschnitten 2 und 3 dieses Handbuchs beschriebenen Schliisselworte und die nachstehend
genannten Schliisselworte setzen keine Ausnahmeflags: TFE, - (Negation von komplexen Zahlen),
COM, COM, TDM, ZER, MAT OISF/PREIMT [USIHG], LEMO, UEMD, DETL, FUAR, FYWALUE,
FLUESS, IVWAR, TWALUE und IECQUMD. Die Ausnahmeflags 1M, OWF und UMF werden vom
Mathematik-Paket unter Umsténden gesetzt, wenn Zahlenwerte zur Umwandlung in einen anderen
Zahlentyp gerundet werden miissen (etwa bei der Zuweisung von {MAXFEEAL , MAXREAL > an eine
COMPLER =SHORT Variable oder bei der Ausfithrung von MAT A=B, wobei A vom Typ IHTEGER ist
und B Elemente enthilt, die grofer als 99999 sind).

Die Anweisungen MAT A=B, MAT A=-B, MAT A=TRM:B» und MAT A=:X: setzen zusétzlich zu
den beim Runden auftretenden Ausnahmen nur den Ausnahmeflag I'/L (bei gleichzeitiger Anzeige der
Meldung Ziarnaled 0Of) und auch nur dann, wenn A vom Typ IHTEGER ist und entweder B ein
aktives Mah enthilt oder X ein aktives HaHM ist. Der Grund hierfiir besteht darin, daf IMTEGER-
Variablen nur passive HzM’s enthalten kénnen. Entsprechendes gilt fir MAT IHFUT,

Die in den nachstehenden Tabellen fiir jedes Schliisselwort gegebenen Fille werden in der Reihenfolge
von oben nach unten ausgewertet.

Hinweis: In diesem Anhang reprasentiert das Symbol * ein beliebiges Argument.
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Diese Funktionen wurden in Abschnitt 4 dieses Handbuchs beschrieben. Jedes Argument mit einem
aktiven HaM setzt den I''L-Flag und zeigt die Meldung Sigrialed Op an. Bei TRAFCIWLY = 2
wird HaH in den passiven Zustand versetzt und die Operation kann fortgesetzt werden. Aufier bei der
Funktion HazH# gibt jedes passive Hat-Argument als Ergebnis HaM zuriick, ohne daft dabei
Ausnahmeflags gesetzt werden. (Die Funktionen IRCUMHD und Hat# setzen aufer bei aktiven MaH-
Argumenten keine Ausnahmeflags.)

Reeller Sinus Hyperbolicus (= IHHXX)

Argument Ergebnis
+Inf + Ir¥; keine Ausnahmeflags gesetzt.
+0 +0; keine Ausnahmeflags gesetzt.
# IH gesetzt; LIMF, OUF gesetzt, falls ndtig.

Reeller Cosinus Hyperbolicus (CO5H X 1)

Argument Ergebnis

*Inf |Irif|; keine Ausnahmeflags gesetzt.
+0 1; keine Ausnahmeflags gesetzt.
* IH# gesetzt; 0WF gesetzt, falls notig

Reeller Tangens Hyperbolicus (THHH:X)

Argument Ergebnis
+Inf SGH O+ Inf 1 keine Ausnahmeflags gesetzt.
+0 +0
* I M+ gesetzt; LMF gesetzt, falls ndtig.

Reeller Arcus Sinus Hyperbolicus (R IHH X))

Argument Ergebnis
+Inf + Irf; keine Ausnahmeflags gesetzt.
+0 +0; keine Ausnahmeflags gesetzt.

* I gesetzt; UMF gesetzt, falls ndtig.
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Reeller Arcus Cosinus Hyperbolicus (F:0SH X )

Argument Ergebnis
Itnf . Im kelne Ausnahmeflags gesetzt. 1
X <1 | IVL gesetzt; MzH als Ergebnis; Meldung: Irwalid Ara.
1 - 0; keine Ausnahmeflags gesetzt. ;
* | IMk gesetzt. |

Ree!ler Arcus Tangens Hyperbollcus ( HTHMHH X )

Argument . Ergebnis E
[X| > 1 ‘ I"f_ gesetzt HaH als Ergebnis; Meldung: If! alid Arag. |
[X| =1 - DUZ gesetzt; Meldung: RTAMHH: +-1 3.
SGHOXY x Inf als Ergebnis, falls TRAFCOWE Y = 2, ;‘

SEHOXY x MAXREEAL als Ergebnis und IH3 gesetzt,
falls TRAFCOVZ D = 1, i
+0 | +0; keine Ausnahmeflags gesetzt.
* TH= gesetzt IHF gesetzt, falls nitig.

Logarithmus zur Basis 2 (L0052 -._Xi:!)

Argument ‘ Ergebnis
B U - S—
Inf | Irit; keine Ausnahmeflags gesetzt. ;
X <0 - IV gesetzt; Hat als Ergebnis; Meldung: LG ¢ feg s, |
+0 OWE gesetzt; Meldung: L OG5 . J

—In{ als Ergebnis, falls TRRFCOWZ Y = 2,
| —MAXREAL als Ergebnis mit IH% gesetzt, falls
} TEAFCOVZY =1,
1 | 0; keine Ausnahmeflags gesetzt.
* | IH* gesetzt.

Gammafunktion (i HHHH- x )

————

Argument _ Ergebnis
Inft | Irf; keine Ausnahmeflags gesetzt.
+0 | DV Z gesetzt; Meldung: GRMMA=IHF,

CLASSCXY x Inf als Ergebnis, falls TRAFcOWE Y = 2.
CLASS(XY x MAMREAL als Ergebnis mit IH: gesetzt,
falls TRAFCOWZE s = 1.
X < 0 und ganzzahlig .; 02 gesetzt; Meldung: GRMMA=TIHF,
| —1Inf als Ergebnis, falls TRRF:OWZ 1 = 2.
i —MAXFEAL als Ergebnis und IH: gesetzt, falls
TRAFCODWZ =1,
* | IM# wird fir alle X, die nicht in {1, 2, , 18} enthalten sind,
gesetzt UHF, 0OWF gesetzt, falls notrg
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Nichste Maschinenzahl (MEIGHEOR X, Y2)

Argumente *
S — — Ergebnis
X Y

—_— S U ——— —— I
- X=Y X=Y E X: LIMF, IHX gesetzt, falls TRFAF CUHF Y # 2und 0 < |X| < EFE.
CMARREEAL | Int [ Inf; keine Ausnahmeflags gesetzt.
| —MAEREAL | —Inf | —Inf; keine Ausnahmeflags gesetzt.
| £Imf [ * | SGHXy x MAXREEAL; keine Ausnahmeflags gesetzt.
| £0 * SGHOY: x MIMREEAL; LUHF, IHX gesetzt, falls
. | TRAFCUHF: # 2.

'MIMREAL | %0 | 0; keine Ausnahmeflags gesetzt.

| —MIHREEAL | 0 | —0; keine Ausnahmeflags gesetzt.

* i * | UMF, IH¥ gesetzt, falls HEIGHEORCX.Y: < EFZ und |
{ i | TRAFCUHF 2 = 2.

IS R S S . - -

Skalierung mit Zehnerpotenzen (ZCALEL1BCX.N2)

| Argumente

O — Ergebnis

| X [ N

% | nicht ganzzahlig | I'/L gesetzt; M=t als Ergebnis; Meldung: Irwalid HArg.
T | —Inf | WL gesetzt; HaH als Ergebnis; Meldung: It f %5,

0 | Inf | I\WL gesetzt; M=H als Ergebnis; Meldung: Irif#@.

| £ 1o | * | +Inf; keine Ausnahmeflags gesetzt.

* | —Inf | SEHEX3 x 0; keine Ausnahmeflags gesetzt.

| * | Imef | ZEHCXY x Inf; keine Ausnahmeflags gesetzt.

B | { 1M, OUF, UHF gesetzt, falls nétig.

Komplexe Funktionen und Operationen

Komplexe Funktionen und Operationen werden in Abschnitt 5 dieses Handbuchs behandelt. Nach-
folgend wird fiir die auf komplexe Argumente erweiterten Funktionen des HP-71 und des Mathematik-
Pakets (+, —, %, ~, =, LG, EXP, SIH, COS, TAM, STHH, COSH, TAMH, SART, SGH, RBS, =, <, &
. and #) nur der komplexe Fall diskutiert. Die Berechnung der Funktionen FOLFAR, RECT, ARG und
FRO. mit einem reellen Argument X entspricht der Berechnung der Funktionen mit dem komplexen
Argument (X, 0).

Ein aktives HzH als Argument (M=aH kann sowohl im Real- als auch im Imaginérteil eines komplexen
Arguments stehen) setzt den Flag IYL und gibt die Meldung Sigrmaled Ofp zurick; bei
TRAFIYL s = 2 das urspriinglich aktive Mzt zu einem passiven Mzt und die Operation kann fort-
gesetzt werden. Im folgenden wird nur auf passive HzH’s Bezug genommen.
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Die nachstehenden Begriffe werden im folgenden verwendet:
® Komplex bezeichnet Daten vom Typ COMFLEX oder COMFLEY SHORT.
® Reell bezeichnet Daten vom Typ FEAL, SHORT oder INTEGER.
® CHaH ist eine beliebige komplexe Zahl, die mindestens in einer Komponente H=H enthalt.

® CInf ist eine beliebige komplexe Zahl mit Betrag I+ f; d.h. mindestens eine Komponente der
Zahl ist £ 1n+,

* CZERQO ist eine beliebige komplexe Zahl mit Betrag 0.

® Arg(Z) bezeichnet das Argument von Z, d.h. Arg(Z) ist das mathematisch exakte Aquivalent der
Funktion ARG CZ» des Mathematik-Pakets.

¢ |Z| bezeichnet den Betrag von Z.

* Die komplexen Variablen Z und W werden auch als (x, ¥) und (u, v) angegeben.

+, — (Addition und Subtraktion)

Fir reelles a und komplexes Z gilt « + Z = (a + x, *y). Ist sowohl Z als auch W komplex, gilt Z + W
= {x £ u, y £ v). Der Flag I'/L wird gesetzt und die Meldung 1+ -1t angezeigt, wenn eine der

Komponenten durch Irf — Irnf berechnet wird; der entsprechenden Komponente wird HazH
zugewiesen. Ansonsten wird in Abhéangigkeit von der Art der Fehlerbedingung fiir jede Ergebnis-
komponente der Flag IH:, 0WF oder UHF gesetzt.

# (Multiplikation)

Fir reelles @ und komplexes Z gilt @ x Z = Z x a = (ax, ay). Der Flag I/ wird gesetzt und die
Meldung Irif#@ angezeigt, wenn eine der Komponenten durch die Multiplikation (£ Ir) X (+0)
berechnet wird; der entsprechenden Komponente wird H=H zugewiesen. Ansonsten wird in Abhéngig-
keit von der Art der Fehlerbedingung fiir jede Ergebniskomponente der Flag 1M, 0UF oder LHF
gesetzt.
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Ist sowohl Z als auch W komplex, dann ist Z x W iiber die nachstehende Tabelle gegeben.

Multiplikation zweier komplexer Werte (Z + W)

Argumente : ;
S E— Ergebnis
z oW
CHal | % | ¢Ma3M,HaHI; keine Ausnahmeflags gesetzt. i
* « CHzH CHaM, Hat; keine Ausnahmeflags gesetzt.

[ ClInf 1 CZERO IYL gesetzt; “HaM,Hak ! als Ergebnis; Meldung: Trif %@,
| CZERO | ClIrnf | IL gesetzt; iHat, HaH als Ergebnis; Meldung: Irf#a.

| CInf * RECTCInf . Arg(Z) + Arg(W):,; keine Ausnahmeflags gesetzt.
| * CInf | RECToInf . Arg(Z) + Arg(W):,; keine Ausnahmeflags gesetzt.
* | * | (xu — yv, xv + yu); gegebenenfalls wird fiir jede Ergebniskomponente IH:, OUF,

i | LIMF gesetzt.

- (Division)

Fiir reelles ¢ und komplexes Z gilt Z/a = (x/a, y/a). Der Flag 1'/L wird gesetzt und die Meldung & .- &
angezeigt, wenn eine der Komponenten durch die Division (+0)/(£0) berechnet wird; in die ent-
sprechende Ergebniskomponente wird Hati eingetragen. Der Flag I'/L wird gesetzt und die Meldung
Irif . 1rf angezeigt, wenn eine der Komponenten durch die Division (+Inf/+Irf) berechnet wird;
in die entsprechende Ergebniskomponente wird Mzt eingetragen. Der Flag ['\/Z wird gesetzt und die
Meldung - Z&r o angezeigt, wenn eine der Komponenten durch die Division 7/(£0) berechnet wird,
wobei T weder Mzt noch + Irf oder +0 sein darf; in die entsprechende Komponente wird Iri{ mit
dem entsprechenden Vorzeichen als Ergebnis eingetragen, falls TRAF COWZ 3} = 2 gesetzt ist; wenn
TRAP(OWZ s = 1 gesetzt ist, dann wird MA¥FEEAL mit dem entsprechenden Vorzeichen in die ent-
sprechende Komponente eingetragen und der Flag IH:i gesetzt. Ansonsten wird in Abhéngigkeit von
der Fehlerbedingung fiir jede Ergebniskomponente der Flag IH:, OWF oder LHF gesetzt.

Fiir komplexes Z gelten die folgenden Definitionen: Fir Z = CZERO ist 1/Z als (CLA%E(x) X Inf,
- 53H(y)) definiert. Far Z = CIrnf ist 1/Z als (SGH(x) x 0, —SGH(y) x 0) festgelegt.



a/Z ist bei reellem a und komplexem Z iiber die nachstehende Tabelle definiert.

Division einer reellen Zahl durch eine komplexe Zahl (a / Z)

S — E— S ey

Argumente
a I 4 |
| Hah * tHakl . Hat; keine Ausnahmeflags gesetzt
* . CHak tHaH, Hak; keine Ausnahmeflags gesetzt |
L +Inf | Clnf | IWL gesetzt; HaM,HaHx als Ergebnis; Meldung: Inif . Irf
+0 - CZERO | IVL gesetzt; “Hat . HaH > als Ergebnis; Meldung: & - 4.
L+ Inf . GZERO SGH(@) x (1/Z) (Multiplikation reell x komplex); keine Ausnahmeflags gesetzt
* ' CZERO | DUZ gesetzt; Meldung: ~Zev o,
‘ ' a x (1/2) (Multiplikation reell x komplex); ein Ergebnis wird nur bei TRAF 04 E 0
| = 2 zurlickgegeben.
| @ x (1/Z) (Multiplikation reell x komplex); bei TEAF COWZY =1 wird £Inf in
_ | einer Ergebniskomponente durch +MA=FRERL ersetzt und der Flag It gesetzt.
| % | CInf a x (1/Z) (Multiplikation reell x komplex); keine Ausnahmeflags gesetzt
+Inf | % '@ x C0HJCZ0 (Multiplikation reell x komplex); 1%/l wird gesetzt und die Mel-
| dung Imf#E angezeigt, wenn eine der Komponenten durch die Multiplikation

| (xInmf) x (£0) berechnet wird; in die entsprechende Ergebniskomponente wird
| HaH eingetragen. In allen anderen Fillen werden keine Ausnahmeflags gesetzt.
* " ' (af1Z]?) x COHJcZy (Multiplikation reell % komplex); IH:=, OWF, LIHF wer-
den in Abhidngigkeit von der Fehlerbedingung fiir jede Ergebniskomponente
gesetzt.
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Wenn sowohl Z als auch W komplex ist, dann ist W/Z iber die nachstehende Tabelle gegeben.

Division zweier komplexer Zahlen (W/Z)

|
|

Argumente
— Ergebnis ;
w 4 |
| CHaH * tHaM,HaH2; keine Ausnahmeflags gesetzt.
| * CHaH CHaM, Hali; keine Ausnahmeflags gesetzt.

| CZERO | CZERO | I'/L gesetzt; tHaM, HaM als Ergebnis; Meldung: &.-f,

| CInf Clinf I\'L gesetzt; “MHaM,MHak> als Ergebnis; Meldung: Itif . Irf,

| CInf CZERO | W x (1/2) (Multiplikation komplex x komplex); keine Ausnahmeflags gesetzt.

| % | CZERO | D2 gesetzt; Meldung: ~Zer o

| W x (1/Z) (Multiplikation komplex x komplex); ein Ergebnis wird nur bei |
[ TEARFIDWZY = 2 zuriickgegeben. :
[ W x (1/2) (Multiplikation komplex x komplex); wenn TRAFCOWZ: = 1, dann |
;‘ | wird £ Irnf in einer Ergebniskomponente durch +MAXFEEAL ersetzt und IH: |
_ | gesetzt. ‘
| * Cinf W x (1/2) (Multiplikation komplex x komplex); keine Ausnahmeflags gesetzt.

|
| W x COHJCZY) fiZ2 (Multiplikation komplex x komplex und Division kom- |
| plex/reell); gegebenenfalls wird fiir jede Ergebniskomponente IH:, OWF oder |
| |

| UMF gesetzt.

Die nachstehenden Tabellen definieren fiir die angegebenen Funktionen den Funktionswert f(Z) fiir
komplexe Argumente Z.
Komplexer Sinus (S IMH:ZY)

Argument Ergebnis
CHaHM MaH,MHakM>; keine Ausnahmeflags gesetzt.
5 (Imf, %) 'L gesetzt; iHaH,HaH>» als Ergebnis; Meldung: Irwalid Arg.
| (%, £In1) | RECT((Inf + Arg((sin(x), SGH Ty rcos(x))): ; keine Ausnahmeflags gesetzt.
| * | Gegebenenfalls wird fiir jede Ergebniskomponente IH:, 0O'F oder LIMF gesetzt.

Komplexer Sinus Hyperbolicus (5 IHH:ZY)

Argument | Ergebnis
| CHaH tHaM,HakM>; keine Ausnahmeflags gesetzt.
(%, £Inf) I\ gesetzt; HaM,Hak> als Ergebnis; Meldung: Irwalid HAra.
(xInf, #) | RECTECInF, Arg((=GH x rcos(y), sin(y)))* *; keine Ausnahmeflags gesetzt.

* | Gegebenenfalls wird fir jede Ergebniskomponente I3, OYF oder LIHF gesetzt. |
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Komplexer Cosinus (CO%0Z 5 )

‘ Argument | Ergebms

f— —_— -—
| CHaH i HjH HaH:; keine Ausnahmeflags gesetzt.

, (£Inf, %) | IVL gesetzt; “HaM, HaM: als Ergebnis; Meldung: Irivalid Ara. ;
(&, £Ir) RECTCCInf . Arg((cos(x), ~SGHyIsin(x): 1; keine Ausnahmeflags gesetzt.
% ‘ Gegebenenfalls wird fur ;ede Ergebmskomponente THH, I_f“F oder UHF gesetzt

Komplexer Cosinus Hyperbolicus (Z05H z )

- |

: Argument Ergebms

. ; — S — S
| CHaM | CHMaEM, HaH; keme Ausnahmeflags gesetzt.

| (&, £Inf) | IWL gesetzt; iHzH, Hak > als Ergebnis; Meldung: Iriwalid Arg.

(£Inf, %) [ RECTCCInf . Arg((cos(y), Z=HixIsin(y))r »; keine Ausnahmeflags gesetzt.

* ; Gegebenenfalls wird fiir Jede Ergebnlskomponente ITHx, OUF oder LINF gesetzt

Komplexer Tangens (THHZ )

Argument Ergebnls
| CHaH THak, Hak s, keme Ausnahmef!ags gesetzt.
(FImf, £Int) ‘ nE, ZGH Oy keine Ausnahmeflags gesetzt.
(£Inf, %) IVL gesetzt; tHMaM,HaM> als Ergebnis; Meldung: Irwvalid Arg
| (%, £1rF) ’ LE M sin(x) cos(x)r#E, ZGH (y 1 1; keine Ausnahmeflags gesetzt.
* Gegebenenfalls wird fiir Jede Ergebnlskomponente THE, OUWF oder LUHF gesetzt

Komplexer Tangens Hyperbohcus (TAMHCZ )

Argument f Ergebnls

CHaH aM ., HaM kelne Ausnahmeflags gesetzt.
(£Inf, £Inf) LEGH Xy . —E 0, keine Ausnahmeflags gesetzt.

(#, £Int) E IWL gesetzt; “Hah,HzH> als Ergebnis; Meldung: Iriwvalid FAra.

(£Inf, %) | CEGHOxD, SGHCsin(y) cos(y)r #8 1; keine Ausnahmeflags gesetzt.
%* Gegebenenfalls wird fiir jede Ergebmskomponente IH=, OWF oder LIMF gesetzt
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Betrag einer komplexen Zahl (HE:=©Z)

Argument Ergebnls
| CHaH | HaH; keine Ausnahmeflags gesetzt.
| CInf ' Inf,; keine Ausnahmeflags gesetzt.
% | IHH, OUF, UNF gesetzt, falls ndtig.

Argumem (ARGCZ: )

Argument i Ergebnis
CHaH 1 HaH; keine Ausnahmeflags gesetzt.
Clef . It 45 Grad bzw. =/4 Radiant; 1M gesetzt, falls im Radiant-Modus.
Li-Inf, Inf | | 135 Grad bzw. 3x/4 Radiant; IH¥ gesetzt, falls im Radiant-Modus.
Clmt,=Imfo ! —45 Grad bzw. —«/4 Radiant; 1M gesetzt, falls im Radiant-Modus.
SR WL P N R 3 —135 Grad bzw. —3x/4 Radiant; IH gesetzt, falls im Radiant-Modus.
% FHGLE X, ys; THE oderl HF gesetzt falls notlg
Prolektlon auf o (F FOJCZy )

Argument Ergebms
| CHaH | vHal, ; keine Ausnahmeflags gesetzt.
Cinft ©Int, B keine Ausnahmeflags gesetzt.
* | Z fiir jede Komponente, deren Betrag zwischen 0 und EF % liegt wird LIHF und

L ITHE gesetzt falls TRAFCUHF Y + 2.

Einheitsvektor (ZGHZ3)

Argument Ergebnls
j CHat CCHaM, Hab kelne Ausnahmeflags gesetzt.
| CZERO Z; keine Ausnahmeflags gesetzt.
| (£Inf, £Inf)  RECTOO1, Arg(Z)r; IH: gesetzt.
[ (£Inf, %) CEGHEx, SGHOy A, keine Ausnahmeflags gesetzt.
| (&, £Inf) | tSGHox2%@, SGH Iy 1, keine Ausnahmeflags gesetzt.

* Gegebenenfalls wird flir jede Ergebnlskomponente IH¥ oder UMF gesetzt
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Quadratwurzel (SHRET0Zx)

Argument Ergebnis
CHaM . CHakl . Hak 1, keine Ausnahmeflags gesetzt.
Clnf | RECTCCInf, Arg(Z)-2:; keine Ausnahmeflags gesetzt.
* Gegebenenfalls wird fiir jede Ergebniskomponente I3 oder LIHF gesetzt.

Rechtecks/Polarumwandlung (FOLFAF CZ71)

Argument Ergebnis

* CAESCZY  ARGCZY r; gegebenenfalls wird fiir jede Ergebniskomponente IH:,
COVF oder IMF gesetzt.

Polar/Rechtecksumwandlung (RECT:2)

Argument Ergebnis
CHaH “HaM, Hal; keine Ausnahmeflags gesetzt.
(£Inf, £1Inf) vEGMex3E Ind @0, keine Ausnahmeflags gesetzt.
(£0, £1Inf) (x, x); keine Ausnahmeflags gesetzt.
(*, £Irf) IVL gesetzt; (HaM, Hat 1 als Ergebnis; Meldung: Irwvalid Ara.
(£Inf, %) (acos(y),bsin(y)); keine Ausnahmeflags gesetzt;

a = {x falls cos(y) # 0
ZGMoxr falls cos(y) = 0
und
b = {x falls sin(y) # 0
SCEHOx falls sinfy) = 0

(xcos(y).xsin(y)); gegebenenfalls wird fiir jede Ergebniskomponente IH: oder
IINF gesetzt.
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Naturllcher Loganthmus (Ll I 1)

Argument [ Ergebms :
| CHaH | CHaM,MaH:; keine Ausnahmeﬂags gesetzt.
| CZERO | DWE gesetzt; Meldung: LOGCE .

C—-Inf, HARGOZY: als Ergebnis, falls
TREAFCOWZY = 2.

C-MAMEEAL , ARG CZ 3 1 als Ergebnis und IH: gesetzt, falls
TRAFCONZ S = 1.

CCInf CInf, ARGCZ s 15 gegebenenfalls wird fiir den Imagindrteil des Ergebnisses I H
| oder LUIHF gesetzt.
* f Gegebenenfalls W|rd fur Jede Ergebmskomponente M= oder LIHF gesetzt

Exponentiation (E = F (Z)

Argument ; Ergebms
| CHal THakM . Hal s, keine Ausnahmeflags gesetzt.

(=Inf, £Inf) L@, A ; keine Ausnahmeflags gesetzt.

(Irf, £Inf) o Irf . @5, keine Ausnahmeflags gesetzt.

(*, £Irt) I[\/L gesetzt; “Hak, HaHl als Ergebnis; Meldung: Trwalid HArag. [
| (=Inf, %) | (0 x cos(y),0 x sin(y)); 1H: wird fiir jede Ergebniskomponente gesetzt, falls notig.
| (Inf, ) 4 RECTZ%; keine Ausnahmeflags gesetzt.

# [ Gegebenenfalls wird fur ;ede Ergebmskomponente IH¥, OWF oder LIMF gesetzt.

Verhiltnisoperatoren

Jede numerische Vergleichsoperation mit komplexen Operanden, die die Operatoren : oder > ohne 7
bzw. # enthalt, bedingt das Setzen des I'/L-Flags und die Anzeige der Meldung Urior der ed. Wenn
TRAFCIVL? auf 2 gesetzt ist, dann wird 0 oder 1 nur dann zurickgegeben, wenn der
Vergleichsoperator = vorhanden ist. D.h. Z <= W, Z = Wund Z <= W sind nur dann wahr, wenn x
=yuundy =vist; Z < W, Z » Wund Z <> W sind immer falsch.



“ (Exponentiation)

Vor der Berechnung von W ~ Z werden die nachstehenden Vorbereitungsmafnahmen getroffen:

1. Ein reelles W oder Z wird fiir die Berechnung in eine komplexe Zahl mit Imaginérteil 0
umgewandelt.

2. Wenn die Variable W bzw. Z den Wert CHaH enthalt, wird das Ergebnis ¢ tHzH . Mat ¥ zurick-
gegeben und kein Ausnahmeflag gesetzt.

3. W und Z werden anschlieflend zur Berechnung in eine kanonische Darstellung umgeformt. Dies
geschieht wie folgt: Wenn eine Komponente der komplexen Zahl + I+ f, die andere Komponente
jedoch endlich ist, wird der endliche Teil in der kanonischen Form durch +0 ersetzt (d.h. das
Vorzeichen wird erhalten). In allen anderen Fillen wird die vorliegende Form der komplexen Zahl
als die kanonische Form betrachtet. ¢ &, Irn+ > ist beispielsweise die kanonische Form von
LELT Intap o—-Inf, ~B% ist die kanonische Form von < -Irf, -MAXREAL ». Im folgenden
wird unterstellt, da W und Z bereits in der kanonischen Darstellung vorliegen.

W - Z wird fur W = CZERO durch die nachstehende Tabelle gegeben.
Exponentlatlon (W Z) W = CZERO

Argument Ergebnis
¥4
x>0 (=101 ¢ D7D S & I ke:ne Ausnahmeflags gesetzt
x <0 ' |'_’“ gesetzt; Meldung “Heg.

CEGHOutx EINF B als Ergebnls falls TRAFCOWZY = 2,
CEGEH LU x D EMAE FEHL d 2 als Ergebnis und 1M gesetzt, falls
TEAFCOWZ: =1,

x =0undy = 0  Keine Ausnahmeflags gesetzt; Meldung: &~ &; als Ergebnis wird der Vorgabewert
| ©1,@: zurlickgegeben, sofern TRRFC IWL > = 0.
x =20 undy =0 | ITVL gesetzl CHal,HaH> als Ergebms Meldung Irwalid Arg.

W Z w1rd firy # 0 durch dle nachstehende Tabelle gegeben

Exponentlatlon (w - Z) y+0

Argumente
S Ergebnis
w Z
(1, +0) [ Clmé | IWL gesetzt; "HaH, HzHM als Ergebnis; Meldung: 1= Imf.
* " | BEHPCZELOGCW: o (Multiplikation komplex x komplex). Wenn Z#L 0110 ¢ W

gleich (0, +1nf) ist, dann ist dieser Wert nicht im Definitionsbereich von
E=F enthalten und I'/L wird gesetzt, ©HaH , HaH zurlickgegeben und die
Meldung It+iwalid FArg angezeigt. Ansonsten wird gegebenenfalls fiir jede |
Ergebmskomponente IHX, 3UF oder LIMF gesetzt
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W - Z wird fiir y = 0 und v # 0 durch die nachstehende Tabelle definiert.

Exponentlatlon (W Z) y Oandv+ 0

Argumente
—— Ergebnis
W | Z
S ——— E—— —
;W| | CInf f UL gesetzt 'Hs” Hal als Ergebnls Meldung Tnwalid Ara. .
5 | CInf | CZERO | Keine Ausnahmeflags gesetzt; Anzeige der Meldung Inf=@; falls
' E | TRAFCIWLY % 0 wird der Vorgabewert 1. &1 als Ergebnis zuriick- |
5 ! | gegeben. f
| | * | EPoxELOG oW s (Multiplikation reell X komplex); gegebenenfalls wird fiir

jede Ergebmskomponente IHH, OWF oder LMF gesetzt.

W  Z wird fir y = 0 und v = 0 durch die nachstehende Tabelle definiert.

Exponentlatlon (W Z) y Oundv # 0

Argumente :
S — Ergebnis ,
w oz |

éu = xInf x =20 Keme Ausnahmeﬂags gesetzt Anzeige der Meldung Inf ™, fallsg
| TRAFCIWLY # 0 wird der Vorgabewert 1, E als Ergebnis zuriick- |

- | gegeben.

LU= +1 Cinft I4L gesetzt; “Hat, Hak > als Ergebnis; Meldung: 1™ 1nf.

L% | CInf | t|u["x, &%; keine Ausnahmeflags gesetzt.

% . * DEMPOXELOGIWS ) (Multiplikation reell x komplex); gegebenenfalls wird fiir
= | jede Ergebniskomponente IH:H, OUF oder UHF gesetzt '
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trizenfunktionen und -operationen

Matrizenfunktionen und -operationen werden in den Abschnitten 7, 8 und 9 dieses Handbuchs
beschrieben. Die im letzten Teilabschnitt eingefithrten Definitionen fiir CZERO, CInf, komplex, usw.
werden auch in diesem Absatz verwendet.

CHORMCAY , RHORMCA D

Wenn A eine M x N Matrix ist (bei Vektoren ist N = 1), dann gilt:

M N
CHORMCAY = max ,-; o] RHORMCAY = max j; |ay]
Wenn der Real- oder Imaginarteil eines Elements von A ein aktives HazH enthélt, so bedingt dies ein
Setzen des Flags I'/L und die Anzeige der Meldung Siarzled Op. Bei TRRFCIUL Y = 2 wird als
Ergebnis ein passives Hat zuriickgegeben, und es werden keine weiteren Elemente verarbeitet.

Wenn der Real- oder Imaginirteil eines Elements von A eine passives HaH enthilt, so bedingt dies ein
Setzen des I'/L-Flags und die Anzeige der Meldung Uricr der ed; als Ergebnis wird HaH zurick-
gegeben. In allen anderen Fillen wird gegebenenfalls IH:, 0F oder LIHF gesetzt.

FHROEMCH D
Wenn A eine M x N Matrix ist (bei Vektoren ist N = 1), dann gilt:
N N \
ZI%U
=1 j=1
Wenn der Real- oder Imaginirteil eines Elements von A ein aktives HzH enthalt, so bedingt dies ein

Setzen des I'/L.-Flags und die Anzeige der Meldung Zigrizaled Op. Bei TRAF:IVL " = 2 wird als
Ergebnis ein passives HzH zuriickgegeben, und es werden keine weiteren Elemente verarbeitet.

FHORMCAY = (

L

Passive Hzt’s werden weitergereicht, ohne daf ein Ausnahmeflag gesetzt wird. In allen anderen Fallen
wird gegebenenfalls IH}, 0OWF oder LIMF gesetzt.



I
\

Wenn sowohl A als auch B ein N-elementiger Vektor ist, dann gilt:

N

DOTCA.Br = D apb,

i=1
(Wenn einer der beiden Vektoren komplex ist, gelten die zuvor gegebenen Definitionen fiir komplexe
Addition und Multiplikation.) Wenn der Real- oder Imaginirteil eines Elements von A oder B ein
aktives MaM enthélt, so bedingt dies ein Setzen des I''L-Flags und die Anzeige der Meldung
Zianaled Op. Wenn bei der Berechnung des obigen Ausdrucks +0 oder CZERO mit + I+ oder
CIrn{ multipliziert wird, dann wird der I'/L-Flag ebenfalls gesetzt und die Meldung I+ f#5 an-
gezeigt. Schlieflich wird der I'/L-Flag gesetzt und die Meldung I+ -1Irf angezeigt, wenn in dem
obigen Ausdruck eine Inf — Inf entsprechende Addition durchgefiihrt wird.

Wenn nur eine den I \/|.-Flag setzende Ausnahmebedingung auftritt, dann wird die der Ausnahme ent-
sprechende Meldung angezeigt. Bei Auftreten von mehrereren I'/L-Ausnahmebedingungen héngt die
angezeigte Meldung von der Reihenfolge des Auftretens und vom Typ der Ausnahmebedingungen ab.

Bei TRAFCIWL» = 2 wird als Ergebnis im reellen Fall HzH oder im komplexen Fall ein komplexer
Wert mit einer oder zwei MHaH-Komponenten zuriickgegeben. Passive Hat’s werden weitergereicht,
ohne daf Ausnahmeflags gesetzt werden. In allen anderen Fillen gegebenenfalls IH:, 0WF oder UHF
gesetzt.
MAT C=A%B
Wenn A eine M x N Matrix und B eine N x P Matrix ist (bei Vektoren ist P=1), dann gilt:

N

¢ = > ayb;;
k=1

(Wenn einer der beiden Vektoren komplex ist, gelten die zuvor gegebenen Definitionen fiir komplexe
Addition und Multiplikation.) Da sich jedes Ergebniselement aus einem Punktprodukt berechnet, ent-
spricht die hier geltende Ausnahmebehandlung derjenigen bei der Anwendung von OOT ¢ A,B> fiir
jedes einzelne Ergebniselement.

MAT C=TEHIAI¥B

Wenn A eine M X N Matrix und B eine M X P Matrix ist (bei Vektoren ist P=1), dann gilt:
M

¢y = kZl by

(Wenn entweder A oder B komplex ist, gelten die zuvor gegebenen Definitionen fiir komplexe Addition
und Multiplikation.)

Da jedes Ergebniselement tiber ein Punktprodukt berechnet wird, entspricht die hier geltende
Ausnahmebehandlung derjenigen bei der Anwendung von DT CA,B: fiir jedes einzelne Ergebnis-
element.



MAT C=A+B

Alle Elemente von C werden einzeln iiber

berechnet. (Wenn entweder A oder B komplex ist, dann gelten die zuvor gegebenen Definitionen fiir
komplexe Addition und Multiplikation.)

Wenn ein Element von A oder B (oder bei komplexen Matrizen A oder B der Real- oder Imaginérteil
eines Elements) ein aktives HMzM enthalt, wird der I%L-Flag gesetzt und die Meldung
Digrnaled Op angezeigt. Bei TRAF < IWL » = 2 wird das urspriinglich aktive Hzt in einem Ele-
ment oder einer Elementkomponente zu einem passiven HzH und die Operation wird fortgesetzt.
Passive Hat’s werden weitergereicht, ohne daff Ausnahmeflags gesetzt werden.

Der I'l.-Flag wird gesetzt und die Meldung I+f~-1r+ angezeigt, wenn eine Addition oder
Subtraktion (oder eine komponentenweise Addition oder Subtraktion) I+ — Irf entspricht; HzH
wird in das entsprechende Ergebniselement oder in die entsprechende Ergebniskomponente ein-
getragen. In allen anderen Fallen wird fir das entsprechende Ergebniselement oder die entsprechende

Ergebniskomponente gegebenenfalls IH, UF oder UHF gesetzt.
MAT B=isiHA
Alle Elemente von B werden einzeln iiber

b = sa;

berechnet. (Wenn entweder s oder A komplex ist, gilt die zuvor gegebene Definition fir komplexe
Multiplikationen.) Wenn s (oder bei komplexem s der Real- oder Imaginirteil) ein aktives Hatl ent-
hélt, wird der I'/L-Flag gesetzt und die Meldung Zisraled Of angezeigt; entsprechendes gilt,
wenn ein Element von A (bzw. bei komplexem A der Real- oder Imaginarteil eines Elements) ein aktives
HaH enthélt. In beiden Féllen werden bei TRAF ¢ IW/L* = 2 urspriinglich aktive H=H’s zu passiven
HaM’s, und die Operation wird fortgesetzt. Passive MzH’s werden weitergereicht, ohne daf
Ausnahmeflags gesetzt werden.

Wenn bei der Berechnung eines Ergebniselements +0 oder CZERO mit +Irf oder Clrf
multipliziert wird, dann wird der I''L-Flag gesetzt und die Meldung Ir## angezeigt. Das ent-
sprechende Ergebniselement ist bei TRAF (IWL 3 = 2 entweder der Wert Mzt oder ein komplexer
Wert mit einer oder zwei MzMH-Komponenten. In allen anderen Fillen wird fir das entsprechende
Ergebniselement oder die entsprechende Ergebniskomponente gegebenenfalls IH:, CiUF oder LIHF
gesetzt.

DETCAY, MAT C=IHVCALY, MAT C=ZYZ A, B:

Die Ausnahmebehandlung dieser drei Operationen ist wegen deren komplizierten Grundalgorithmen
auferst schwierig. Daher wird hier nur eine Zusammenfassung gegeben.
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Wenn ein Element von A oder B (oder bei komplexen Matrixelementen der Real- oder der Imaginérteil)
ein aktives Hal enthéalt, wird der I'L-Flag gesetzt und die Meldung Ziarnzled [z angezeigt. Bei
TEAFCIWL.» = 2 wird das ursprunglich aktive H=zM in einem Element oder einer Element-
komponente zu einem passiven HzH und die Operation wird vorgesetzt.

Gegebenenfalls wird fiir jedes Ergebniselement 4 F, UHF oder IH: gesetzt. Diese Flags kénnen auch
wiahrend des Ablaufs der Berechnung gesetzt werden. ('L wird speziell bei Auftreten einer
(maschinen-) singulidren Matrix A gesetzt.) Ebenso kann der I'/L-Flag gesetzt werden, wobei die
entsprechenden Meldungen (Irf#&, Irnf~Ir¢ und/oder I+:f.-Ir+) angezeigt werden. Diese Mel-
dungen werden nur bei Auftreten von £Irf in A oder B oder bei einer Bereichsiiberschreitung an
einem Zwischenschritt angezeigt. Im letzteren Fall kann das Anzeigen einer Meldung durch Setzen von
TEAFCOWF > = 1 vor Beginn der Berechnung unterdriickt werden.

Weitere Funktionen des Mathematik-Pakets
FROOT

Bei der Ausfiihrung von FFROOT untersucht der Algorithmus das Koeffizientenfeld zunéchst auf das
Auftreten der Werte tat und I sowie auf filhrende und nachlaufende Nullen.

Zuerst wird auf M zH’s abgepriift. Wenn nur ein Element des Koeffizientenfelds den Wert =t enthélt,
wird jedem Element des Ergebnisfelds der Wert «H=zH . HaM> zugewiesen, und die Ausfithrung von
FEOOT wird beendet, ohne daR Ausnahmeflags gesetzt werden. (Insbesondere setzen Koeffizienten mit
einem aktiven Hat nicht den IVL-Flag.)

Der als nachstes untersuchte Sonderfall ist das Auftreten von I+i+’s im Koeffizientenfeld. Wenn nur
einer der Koeffizienten + 1+ { ist, werden alle endlichen Koeffizienten auf Null gesetzt, und die
Berechnung wird mit der Abfrage auf fithrende und nachlaufende Nullen fortgesetzt.

Fihrende Nullen werden als nichstes behandelt. Fir jeden fiihrenden Nullkoeffizient wird eine
Nullstelle im Punkt ¢ Irn¢, I+f» im Ergebnisfeld abgelegt, ohne dafl dabei Ausnahmeflags gesetzt
werden. Anschliefend wird der néchste Koeffizient als fithrender Koeffizient angenommen und der
Prozef von vorne durchlaufen. Bei jedem Ablegen einer Nullstelle im Ergebnisfeld wird der Grad des
Polynoms heruntergesetzt, und die Ausfilhrung von FEZOT ist beendet, wenn der Grad des Polynoms 0
1st.

Anschliefend werden nachlaufende Nullen behandelt. Fir jeden nachlaufenden Nullkoeffizienten wird
im Ergebnisfeld eine Nullstelle im Punkt &, & abgelegt. Ausnahmeflags werden dabei nicht gesetzt.
Der vorletzte Koeffizient wird zum letzten Koeffizient und der Prozefs von vorne durchlaufen. Wie bei
fithrenden Nullkoeffizienten wird auch hier fiir jede im Ergebnisfeld abgelegte Nullstelle der Grad des
Polynoms reduziert, und die Ausfithrung von FEOOT ist beendet, sobald der Grad des Polynoms 0 ist.

Wenn alle diese Spezialfille abgearbeitet sind, ist der Grad des Polynoms positiv und die
(verbleibenden) Koeffizienten sind entweder séamtlich endlich oder der erste und der letzte Koeffizent



des (Rest-) Polynoms sind beide + I+ . Im ersten Fall werden die Nullstellen des (Rest-) Polynoms
berechnet. Im zweiten Fall sind mindestens zwei der Koeffizienten des urspringlichen Polynoms + I+ ¢
und eine Zerlegung des Polynoms ist sinnlos; der Algorithmus legt dann D Nullstellen im Punkt
tMHat, HzH» im Ergebnisfeld ab (wo D der Grad des Restpolynoms ist) und beendet die Ausfiihrung
von FEOOT. Jede dieser Nullstellen bedingt ein Setzen des I'/L-Flags und die Anzeige der Meldung
Inwalid Ara.

Nach AusschluR der oben genannten Spezialfille wird gegebenenfalls fir jedes Element des
Ergebnisfelds 0'/F oder LIMF gesetzt; der Flag IH* wird immer gesetzt.

PO

Wie bei FEOOT werden auch bei FIilF zuerst die Spezialfille (Hal und I+ ¢ in den Komponenten
von Datenfeldelementen) behandelt.

Zuerst wird auf H=zH’s abgepraft: Wenn sich unter den Komponenten der Datenfeldelemente der Wert
MzH befindet, dann wird jedem Element des Ergebnisfelds der Wert ¢ HaH , HaH s zugewiesen. Die
Ausfiihrung von FILUFE wird beendet, und es werden keine Ausnahmeflags gesetzt. (Der I.L-Flag wird
durch aktive HzH-Komponenten nicht gesetzt.)

Anschliefend fragt der Algorithmus auf Irf ab. Wenn sich unter den Komponenten der
Datenfeldelemente der Wert +Irf befindet, dann wird jedem Element des Ergebnisfelds der Wert
tlrt, Inf» zugewiesen. Die Ausfihrung von FOUF wird beendet, und es werden keine
Ausnahmeflags gesetzt.

Nach Ausschluff der oben genannten Spezialfille wird gegebenenfalls fiir jedes Element des
Ergebnisfelds 0'/F oder LIMF gesetzt; der Flag IH} wird immer gesetzt. Dies trifft nur zu, wenn das
Datenfeld ungleich Null ist.

FHREOOT und THTEGRFAL

Wenn bei der Auswertung der Argumente von IMTEGRAL oder FHROOT ein (aktives oder passives)
tHak auftritt, wird die Fehlermeldung Irw=1id FAra angezeigt. Dieser Fehler hélt die Ausfiithrung
der Operation an. Es wird kein Ausnahmeflag gesetzt.

Allgemein wird jedes + Ir¥, das bei der Berechnung eines Arguments von FHFEECOT oder IHTEGRAL
auftritt, zur Fortsetzung der Berechnung von FHROOT oder TMTEZRAL in den Wert +MAXFEAL
umgewandelt. Gegebenenfalls wird fiir das Ergebnis IH:, 0UF oder LIHF gesetzt.

Sie sollten daran denken, daf FHREOIT mit Hilfe des Werts von TRAF ¢ LIHF & entscheidet, ob eine
Nullstelle im denormalisierten Zahlenbereich gesucht werden soll oder nicht. Dieser Bereich wird nur
durchsucht, wenn bei Beginn der Ausfithrung von FHRECOT der Auffangwert TRAF ¢ LUHF % auf 2
gesetzt ist.
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HP-71
Benutzerdokumentation

Addendum

Dieses Addendum enthélt zusatzliche Informationen zur Verwendung von zwei HP-71 Schliisselworten.

HP-71 Benutzerhandbuch, Seite 181. In den beiden nachstehend beschriebenen Situationen
bedingt die Ausfithrung von OH . . . GOTO und OH . . . GOSLUE Anweisungen keine Programmverzwei-
gung. Stattdessen kann jede dieser Anweisungen die Wirkung einer OH. . . RESTORE Anweisung

haben. In jedem Fall wird der Speicherinhalt nicht verandert.

Situation 1. Verwenden Sie nicht 0. . GOTO/GOZUE, solange eine der Rundungseinstellungen
OFTIOH ROUHD FOS oder OFTION ROUMD HEG aktiv ist.

Um dieses Problem zu vermeiden, sollten Sie eine OFTIOH EOUHD HEAR oder OFTIOHN ROLIMD
ZEFRD Anweisung in jedes Programm einfiigen, das OH . . . GOTO/G05UE Konstruktionen enthélt.
Stellen Sie sicher, daf bei der Ausfihrung von OH. .. GOTO/GOSUE die OFTIOW REOUHD
HEAR/ZEFRD Einstellung aktiv ist. Dadurch wird verhindert, daf eine gegebenenfalls aktive OFTICOH
ROUMDO FOS/HES Einstellung die korrekte Ausfithrung einer OH . .  GOTO/GOELE Verzweigung
beeintrachtigt; unabhéngig davon, ob die QFTIOH ROUHD FOZ/MEG Einstellung durch eine
entsprechende Anweisung in lhrem Programm erzeugt oder durch den Permanentspeicher erhalten
wurde.

Situation 2. Der in einer OH. . GOTO/GI5UE Anweisung verwendete numerische Ausdruck (OH
numerischer Ausdruck GOTO/=051UE) darf keine Operatoren aufier +, —, #, .~ und 01\ sowie keine
Funktionen (einschlieflich benutzerdefinierter Funktionen, trigonometrischer Funktionen, ZGRET,

usw.) enthalten.

Um dieses Problem zu umgehen, sollte der numerische Ausdruck nur einfache Variablen enthalten und
nur die Operatoren +, —, %, .~ und OI% verwenden. Wenn Sie fiir den Ausdruck eine Funktion oder
einen anderen Operator bendtigen, sollten Sie den Wert des Ausdrucks zuvor einer einfachen Variablen

zuweisen und dann diese einfache Variable als Pointer in der oM. ..ZOTO/GOSUE Anweisung
verwenden.

Beispiele: Nachstehend finden Sie Beispiele fir den falschen und den richtigen Gebrauch eines
Ausdrucks als Pointer in einer 0OH, . . GOTO/G0SUE Anweisung, wenn der Ausdruck eine Funktion
und einen von +, —, ¥, . oder ['I% verschiedenen Operator enthalt.

Falsch:

O FHJCT S IHOMY GOSUE 5868, 6808, YA Diese OH . . . GISUE Anweisung bedingt keine
Programmverzweigung.



Richtig:

A=FHICT2"5IHC
OH A GOSUE SEG3, ¢ Diese 0OH., . GOZUE Konstruktion bedingt
eine Programmverzweigung;

die Anweisung
wird korrekt ausgefiihrt.

A =aciaro

Portable Computer Division
1000 N.E.Circle Blvd., Corvallis, OR 97330
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