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Einleitung 

Das Mathematik-Paket beinhaltet einen Satz leistungsfähiger Werkzeuge zur Lösung einer Vielzahl 
von Problemstellungen aus den Bereichen der Mathematik, Physik und der Ingenieurwissenschaften. 
Der Zugriff auf diese Werkzeuge ist sehr einfach und bequem, da sie in Form von BASIC­
Schlüsselworten zur Verfügung gestellt werden. Sobald das beiliegende Modul in Ihrem HP-71 
eingesteckt ist, haben Sie sofort Zugriff auf die durch das Modul implementierten Schlüsselworte; Sie 
brauchen weder ein Programm zu laden, noch sonstige zeitraubende Operationen auszuführen. Diese 
Schlüsselworte können innerhalb eines Programms beliebig verwendet werden; Sie vermeiden dadurch 
die für Programmaufrufe geltenden Beschränkungen und reduzieren die für Unterroutinen erforder­
lichen Speicherplatzanforderungen. 

Das Mathematik-Paket erweitert den Leistungsumfang Ihres HP-71 um die folgenden Funktionen und 
Operationen: 

• Komplexwertige Variablen und Matrizen 

• Höhere reell- und komplexwertige Funktionen 

• Reell- und komplexwertige Matrizenoperationen 

• Lösungen linearer Gleichungssysteme 

• NullstelIen von Polynomen und beliebiger reeller Funktionen 

• Numerische Integration 

• Finite Fouriertransformation 

3 



Inhalt 

Verwendung dieses Handbuchs 

Abschnitt 1: Einsetzen und Entfernen des Moduls 

9 

13 

Abschnitt 2: Umwandlung zwischen Zahlensystemen 15 
Binäre, oktale und hexadezimale Darstellung von Daten . . . . . . . . . . 15 
Funktionen zur Basisumwandlung (E:',.'Rl, B',; TF:$ ) ....... • . .. • .. . . . 15 
Beispiele . . . . . . . . . . . . . . . . . . . 16 
Weitere Informationen . ... .. . ... .... . . . . . . . . . . .. . . 17 

Abschnitt 3: Komplexe Variablen 19 
Komplexe Daten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Deklarieren von komplexen Variablen (C 0 1'1 F' l D·:, CO 1'1 F' l E;o-': ,,; H 0 P T) 19 
Operationen mit komplexen Zahlen (0:: .' ::0, F: E F' T. lI'1F' T) 21 
Weitere komplexe Operat ionen (C 0:: .' ::0) . . . . . . . . . . . . . . . • . 22 
Beispiele . . . . . . . . . . . . . . . . 23 

Abschnitt 4: Reelle Skalarfunktionen 
Hyperbolische Funktionen (:,; I HH, CO',;H, TRI·IH, R',; I I·IH, 

R CO,,; H, R T R H H) 
Weitere numerische Funktionen 

(GRI'H1R, lOG2, ',;CRlElü) 
Ganzzahlige Rundung (I F: 0 U I'W) . . . . . . . . ......... . ..... . . . . 
Information zurückgebende Funktionen (1,1 R 1-1$ . 1·1 EI G H E: elF:, 1'/ F' E) 
Beispiele . ...... . . . .... .. . . ... . . . . . ....... .. . . 

Abschnitt 5: Komplexe Funktionen und Operationen .. . . .. ... . . 
Operatoren (+, -, :1:, .... "') . ... .................... . • .. 
logarithmische Funkt ionen (lOG, E:";F') ... . .... . . 
Trigonometrische und hyperbolische Funktionen 

(:3 I 1,1, CO~;, TRI·I, ,,; I I·IH, CO',;H, TRI'IH) 
Umwandlungen zwischen Polar- und Rechteckskoordinaten (F' 0 l R F" PE C T) 
Allgemeine Funktionen (:,;';'PT, ~;GII, RE::,;, RF:G, COI·I,J, F·F:O.J) 
Verhältnisoperatoren (=, .... , .... , #, .,. ) .. ...... . . 

Beispiele ...... . ................... .. . . 
Weitere Informationen 

4 

27 

27 

28 
30 
30 
31 

35 
35 
37 

38 
40 
40 
43 
43 
48 



Abschnitt 6: Einlesen und Ausgeben von Feldern 
Wertzuweisungen (=, =(::-, COI'I, IDI·I, ZEF:) 
Einlesen von Feldern (HIF' UT) 

Inhalt 

Ausgeben von Feldern (D I SF', PR!lH, D I :,:p U2: I HG, PF: I IH IY,: HIG) 
Beispiele 

Abschnitt 7: Matrizenrechnung ..... ... . ... .. .. . 
Operatoren (=-, +, - , ():t, :t, TRH :t) 
Beispiele 

Abschnitt 8: Skalarwertige Matrixfunktionen ........ . . 
Determinantenfunktionen (D E T, D E TL) ........ . ... . . . 
Matrixnormen (CI'IO F: 1'1 , F: I-IOF: 1'1, FI'IORI'I) 
Punktprodukt (DOT) ............... . . .. . .. . , . . . . . 
Feldgrenzen (UB I'ID, L E:I·ID ) ......... . ...... . 
Beispiele 

Abschnitt 9: Matrixinversion, -transposition und Gleichungssysteme 
Operationen ( I I·H! , T R 1,1) .. .. . . .. . ........ . . .. . . . ... . 
Lösen eines linearen Gleichungssystems (3'-( :,: ) ........ . 
Beispiele .. ...... . . ...... . 
Zusätzliche Information 

Abschnitt 10: NullstelIen einer reellen Funktion 
Schlüsselworte (F I, F: OOT , n ,' AR , n I ALUE , FGUE3 S) 
Beispiele .. . .. . .. .......... . . 
Weitere Informationen 

Abschnitt 11: Numerische Integration . .. . .. .. . ........... . .. . . 
Schlüsselworte (IIH EGRAL, I ',l A F.: , l\..'fILUE, I BOU!-lD) ... .. . . . . 
Beispiele .............................. . 
Weitere Informationen 

Abschnitt 12: Bestimmen der Nullstellen eines Polynoms 
Schlüsselwort (P F.: 0 I] T) ........ . 
Beispiel 
Weitere Informationen .. ............. . ............ . . . . 

Abschnitt 13: Finite Fouriertransformation . .. 
Schlüsselwort (F OUR) ........... . . 
Beispiel ........ . 
Weitere Informationen 

5 

51 
51 
53 
54 
56 

63 
63 
66 

69 
69 
70 
71 
71 
72 

77 
77 
78 
79 
86 

89 
89 
91 
94 

101 
101 
105 
109 

119 
119 
120 
121 

133 
133 
135 
136 



6 Inhalt 

Anhang A: Benutzerinformation 
Einsetzen und Entfernen des Moduls 
Gewährleistung .. 
Service . . . . . . . . . .. . .... .. . 
Händler- und Produktinformation 

Anhang B: Speicheranforderungen 

Anhang C: Fehlerbedingungen 
Fehlermeldungen des Mathematik-Pakets 
Fehlermeldungen des HP-71 ........ . 

Anhang D: Wirkung von I ATTN I 
Feldausgabeanweisungen .. 
Weitere 11 A T Anweisungen 
Skalare Matrixfunktionen .. . ......... . 

Anhang E: Mathematische Ausnahmen und IEEE-Vorschlag 
Einleitung . . . . . . . . . . . . ....... . . 
Reelle Skalarfunktionen ........... . . 
Komplexe Funktionen und Operationen 
Matrizenfunktionen und -operationen 
Weitere Funktionen des Mathematik-Pakets 

Schlüsselwortindex 

143 
143 
143 
145 
148 

149 

151 
151 
153 

155 
155 
155 
156 

157 
157 
158 
160 
171 
174 

176 





Di 
b€ 
w, 
V€ 

T, 
cli 

D 
D 
sc 
cl 
M 
F 
H 

F 

p 
s 

€ 

b 



Verwendung dieses Handbuchs 

Dieses Handbuch unterstellt, daß Sie mit der Bedienung Ihres HP-71 allgemein vertraut und ins­
besondere in der Lage sind, Programme einzugeben, zu editieren, zu speichern und auszuführen. Des 
",eiteren sollten Sie die mathematischen Grundlagen der Operationen, die Sie ausführen wollen, 
"erstanden haben. Da die im Mathematik-Paket enthaltenen Funktionen und Operationen relat iv viele 
Teilgebiete der Mathematik abdecken, kann dieses Handbuch aus Platzgründen nicht als Lehrbuch für 
die jeweils behandelten mathematischen Konzepte dienen. 

Die Schlüsselworte des Mathematik-Pakets sind unabhängig voneinander; Sie können sich daher beim 
Durcharbeiten dieses Handbuchs auf diejenigen Schlüsselworte beschränken, die für Sie von be­
sonderem Interesse sind. Jeder Abschnitt in diesm Handbuch enthält Informat ion über Schlüsselworte, 
di e ein best immte s mathematisc h es Teil ge bie t a bde cken - reellwertige Funktionen, 
~1at ri zenrechnungen usw. Alle nach Abschnitt 5 vorgestell ten Schlüsselworte (mit Ausnahme von 
FtlF: OOT und I tHEGRR L) benutzen Felder bei der Ausführung. Die Verwendung von Feldern mit dem 
HP-71 wird in den Abschnitten 3 und 14 des HP-71 Benutzerlumdbuchs beschrieben. 

Feldtypen 

Das Mathematikpaket unterscheidet zwei TYPen von Feldern: Vektoren und Matrizen. In diesem Hand­
buc h entspricht der Begriff Vektor einem einfach indizierten (eindimensionalEn), der Begriff Matrix 
ei nem doppelt indizierten (zweidimensionialen) Feld. Indizes müssen reellwertige Ausdrücke sein. Bei 
der Programmausführung werden Indexausdrücke ganzzahlig gerundet. Der Wert dieser Ganzzahl muß 
sich im Bereich [O,65535J (OF'T I Ot·~ E:A:,:E 0) oder [I,65535J (OPT I Ot·~ E:R~:E 1) befinden. In 
praktisch allen Fällen ist die Anzahl der Elemente eines Felds nur durch die Größe des verfügbaren 

peicherplatzes beschränkt. 

Felder können vom (Daten-) TYP RERL, , :HORT, IHTEGEf;:, C:OI'IF' LEi< oder C:OI'IF'LE X , :HOf;:T 
(siehe unter C:O I'IF'LE X und CO I'IF' LE >·: :,:HOf;:T in Abschnitt 3) sein. I'IRT Anweisungen des 
~1athematik-Pakets ändern nicht die TYPdeklaration eines Felds; bei der Zuweisung von Werten aus 
ei nem RE AL Feld an ein :,:HOf;:T oder I tHEGEF: Feld werden die Werte gerundet, bevor sie in dem 
betreffenden Feld gespeichert werden. 
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10 Verwendung dieses Handbuchs 

Umdimensionieren von Feldern 

Einige Schlüsselworte erlauben ein optwnales Umdimensionieren eines Felds; diese Art der 
Umdimensionierung wird im folgenden als explizite Umdimensionierung bezeichnet. Andere Schlüssel­
worte dimensionieren Ergebnisfelder, wenn möglich, automatisch um, um die Anzahl der durch die 
Schlüsselwortoperation erzeugten Elemente zu verarbeiten. Dies wird als implizite Umdimensionierung 
bezeichnet. Die durch ein Schlüsselwort ausgeführte Art der Umdimensionierung, implizit oder explizit, 
wird in der Beschreibung des Schlüsselworts angegeben. 

Eine explizite Umdimensionierung liegt vor, wenn die Größe des Felds und die Anzahl der Indizes 
durch Vorgabe der Anzahl und des Werts neuer Indizes geändert wird. Die 3 x 4 Matrix A vom Typ 
f;:EAL wird beispielsweise mit der HP-71 Anweisung F: EAL A( 3) explizit in einen 3-dimensionalen 
Vektor umdimensioniert. Beachten Sie, daß Felder mit expliziter Umdimensionierung von Matrizen in 
Vektoren und umgekehrt umgewandelt werden können. Bei einer expliziten Umdimensionierung wird 
auch CI P T I CI t·1 B A~; E neu ausgewertet; d.h. die untere Grenze der Feldindizes wird bei veränderter 
elF' T I CI t~ B ASE Einstellung zurückgesetzt. 

Eine implizite Umdimensionierung liegt bei Operationen des Mathematik-Pakets nur in Form von 

t1AT Ergebnis/eid; Operation (Operanden/eld(er)) 

vor. Eine implizite Umdimensionierung ändert nur die Größe eines Felds und erlaubt weder das 
Umwandeln von Matrizen in Vektoren und umgekehrt noch wird OPT I Clt·1 8A:3E neu ausgewertet. 

Schlüsselworterläuterungen 

In jedem Abschnitt dieses Handbuchs wird zur Beschreibung von Name, Aufgabe, Syntax und Arbeits­
weise der einzelnen Schlüsselworte das folgende Format verwendet: 

Schlüsselwortname Aufgabe des Schlüsselworts 

Syntax 

Zulässige Datentypen und Wertebereiche für das Schlüsselwort. 

Beschreibung der vom Schlüsselwort zurückgegebenen Werte und der allgemeinen Arbeitsweise des 
Schlüsselworts. 

Schlüsselwortname. Innerhalb dieses Handbuchs wird über diesen Namen auf das jeweilige 
Schlüsselwort Bezug genommen. Der Name ist in der Regel eine mnemonische Umschreibung der von 
dem Schlüsselwort ausgeführten Funktion. In den meisten Fällen ist der Name in eine längere An­
weisung einzubetten, die zusätzlich Argumente, Klammern und ähnliches enthält; der Name allein ist 
normalerweise keine zulässige BASIC-Anweisung. 
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Die Namen von mehreren Schlüsselworten sind identisch mit den Namen von Schlüsselworten, die 
bereits standardmäßig in Ihrem HP-71 vorhanden sind. Beispiele dafür sind 0 I S P, + und :1:. In diesen 
Fällen bestimmt die Syntax, in die das Schlüsselwort jeweils eingebettet ist, welche Operation aus­
geführt wird. Grundsätzlich sind alle Operationen, die durch den HP-71 selbst angeboten werden, auch 
nach dem Einsetzen des Mathematik-Moduls verfügbar. 

rung Syntax. Dies ist eine Beschreibung der zulässigen BASIC-Anweisungen, in denen der Name des 
lizit, Schlüsselworts auftreten kann. Auf der nächsten Seite finden Sie eine Beschreibung der zur Er­

läuterung der Syntax eines Schlüsselworts benutzten Konventionen. 
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Typographische Darstellung Bedeutung 

F·'.mk t "'a tri x In Punktmatrix gesetzte Elemente (wie COr·WLE X) können in Groß­
oder Kleinschreibung eingegeben werden. Die in den Beispielen 
dieses Handbuchs verwendeten Anweisungen, Funktionen und 
Operatoren werden in G F: 0 :,;:,: 8 U C H S T A 8 E t·~ eingegeben. 

kursiv 

halbfell 

[J 

übereinander 
gesetzt 

Kursiv gesetzte Elemente wie X in der Anweisung S I t·~ H ( X ) sind 
von Ihnen einzugebende Variablen oder Parameter. 

In halbfett gesetzte Variablen stellen Felder dar. 

Eckige Klammern kennzeichnen optionale Elemente. c o r·1 P L E ,: 
Indexgrenze [ , Liste von IndexgrenzenJ gibt beispielsweise an, daß 
CI] t'l P L E ~":; mehrere, jedoch mindestens eine Dimensionsspezifikation 
enthalten kann. 

Übereinandergesetzte Elemente deuten an, daß genau eines der an­
gegebenen Elemente auszuwählen ist. 

Drei Punkte deuten als Wiederholungszeichen an, daß in eckige 
Klammern gesetzte Elemente wiederholt angegeben werden können. 
~IAT I t·~PUT AL BJ ... gibt beispielsweise an, daß r·IAT I t·~P U T 

mindestens eine Variable benötigt; die Anweisung akzeptiert jedoch 
auch mehrere durch Komma voneinander getrennte Variable. 

Zulässige Datentypen und Wertebereiche. Den Angaben in der Syntaxbox können Sie entnehmen, 
welchen Datentyp ein Wert haben und in welchen Bereich er liegen muß, um als Argument für das 
Schlüsselwort verwendet werden zu können. Lesen Sie diese Information sorgfältig, um das Auftreten 
von Fehlern zu vermeiden bzw. um Fehlerursachen aufzuspüren. Dies ist keine Beschreibung des 
mathematischen Definitionsbereichs der Funktion, die !IOn dem Schlüsselwort berechnet wird. 

Zurückgegebene Werte und Operationseinzelheiten. Diese in der Box unterhalb der Syntaxbox 
gemachten Angaben erläutern die Funktion des Schlüsselworts und geben an, welche Werte das 
Schlüsselwort zurückgibt und ob eine Feldumdimensionierung (falls notwendig) implizit oder explizit 
durchgeführt wird. 



12 Verwendung dieses Handbuchs 

Beispiele 

Jeder Abschnitt enthält eine Reihe von Beispielen, die die Verwendung der in dem Abschnitt 
vorgestellten Schlüsselworte beschreiben. Wenn Sie eine Beispiel nachvollziehen wollen, sollten Sie die 
unter der Überschrift Eingabe/Ergebnis aufgeführten Anweisungen (in Groß- oder Kleinschreibung) 
eintasten und jede Zeile mit I END UNE I abschließen. Danach soll te die Anzeige Ihres Hp·7l wie die 
unter dem Befehl erscheinende Anzeigeillustration aussehen - sofern Sie die Betriebszustände Ihres 
HP-7l , wie nachstehend angegeben, eingestellt haben. 

• Alle, außer den nachstehend genannten Betriebszuständen sollten gemäß den unter Rücksetz­
bedingungen in Abschnitt "Systemcharakteristika" des Referenzhandbuchs gemachten Angaben 
eingestellt werden. 

• Stellen Sie die Zeilenbreite mit ~·l lOT H 22 I END UNE I auf 22 Zeichen ein. 

• Stellen Sie die Zeitspanne zwischen aufeinanderfolgenden Anzeigen mit 0 E LA"· so ein, daß jede 
Anzeigezeile gelesen und verstanden werden kann. Die Anweisung DE LA'-!' wird im HP-7i 
Referenzlumdbuch und in Abschnitt 1 des HP-7! Benutzerhandbuchs beschrieben. Dort können Sie 
nachlesen, wie die Zeitdauer, in der eine Anzeige sichtbar ist, eingestellt wird. Es empfiehlt sich zur 
Anzeige von Feldelementen die Einstellung 0 E LA"· ::: zu verwenden. Dadurch bleibt jede Anzeige 
solange sichtbar, bis Sie eine beliebige Taste wie beispielsweise I END UN E I drücken. 

Zusätzliche Information 

Einige Abschnitte des Mathematik-Pakets enthalten Angaben zur effizienten Verwendung der 
jeweiligen Schlüsselworte bei der Durchführung anspruchsvollerer Operationen. Sollten Sie trotzdem 
noch weitere Angaben benötigen, schlagen Sie bitte im Handbuch HP-! 5C Fortgeschrittene Funktionen 
nach. Obwohl sich das Mathematik-Paket in seiner Arbeitsweise und seinen Fähigkeiten von dem 
technisch-wissen-schaftlichen Taschenrechner HP-15C unterscheidet, t reffen viele der in dem 
genannten Handbuch enthal tenen Beschreibungen auch auf das Mathematik-Paket zu. Dies gilt ins­
besondere für die Techniken zur Steigerung der Effizienz der implementierten Algorithmen zur Lösung 
von Gleichungssystemen, numerischen Integrat ion, Nullstellenbestimmung und zur Durchführung von 

( 

Matrizenoperationen sowie für die Ausführungen hinsichtlich der Genauigkeit von numerischen 2 
Berechnungen. I 
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Abschnitt 1 

Einsetzen und Entfernen des Moduls 

Sie können das Mathematik-Modul in jeden der vier Einschubschächte auf der Vorderseite des 
Computers einsetzen. 

VORSICHT 

• Achten Sie darauf , daß der HP-71 (durch Drücken von [D I OFF Il ausgeschaltet ist , bevor Sie 
irgendein Applikations-Modul einsetzen oder entfernen. 

• Wenn Sie ein Modul entfernt haben, um das Mathematik-Modul einsetzen zu können, sollten Sie 
zum Zurücksetzen interner Zeiger den Computer vor dem Einsetzen des Mathematik-Moduls ein­
und ausschalten. 

• Stecken Sie keine Finger, Werkzeuge oder sonstige Fremdobjekte in die Einschubschächte des 
Computers . Die Nichtbeachtung dieser Vorsichtsmaßnahme kann zu geringfügigen elektrischen 
Schlägen und Störungen von Herzschrittmacherfunktionen führen. Des weiteren könnten die 
Kontakte in den Einschubschächten sowie die internen Schaltkreise des Computers beschädigt 
werden 

• Sollte ein Modul beim Einsetzen klemmen , könnten Sie es verkehrt herum halten. Der Versuch , das 
Modul mit Gewalt in den Einschubschacht zu drücken, kann zu einer Beschädigung des Computers 
oder des Moduls führen . 

• Behandeln Sie nichteingesetzte Einsteck-Module besonders vorsichtig . Führen Sie keine Gegen­
stände in die Kontaktbuchsen des Moduls ein . Verschließen Sie ebenso nichtbenutzte 
Einschubschächte immer mit Modulattrappen. Die Nichtbeachtung dieser Vorsichtsmaßnahmen 
kann zu einer Beschädigung des Moduls oder des Computers führen . 

en Zum Einsetzen des Moduls soll ten Sie das Modul mi t der 
Beschriftung nach oben halten und dann in den Einschubschacht 
drücken , bis es einrastet. Dabei soll ten die obigen Vorsichts­
maßnahmen beachtet werden_ 

Zu m Entfernen des Moduls ist das Modul mit den Fingernägeln am Griffstück auf der Vorderseite 
anzufassen und dann aus dem Einschubschacht herauszuziehen. Anschließend ist der Einschubschacht 
mit einer Moclulattrappe zu verschließen, um die Kontakte vor Staub und sonst igen Partikeln zu 
schützen. 
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Abschnitt 2 

Umwandlung zwischen Zahlensystemen 

Binäre, oktale und hexadezimale Darstellung von Daten 

Die in diesem Abschnitt beschriebenen Funktionen ermöglichen die Manipulation von Zahlen . die zu 
anderen Zahlensystemen als dem üblichen Dezimalsystem gehören. 

Der HP -71 unterstellt. daß jede in einer numerischen Variablen abgelegte oder über das Tastenfeld 
eingegebene Zahl eine Zahl aus dem dezimalen Zahlensystem ist; aus diesem Grund muß jede Zahl aus 
einem anderen Zahlensystem als Zeichen kette (oder String) eingegeben und gespeichert werden. ins­
besondere können derartige Zahlen nur in Variablen gespeichert werden, deren Namen mit einem 
Dollarzeichen ($) enden. und müssen bei der Eingabe über das Tastenfeld in Anführungszeichen gesetzt 
werden. 

In den nachstehenden Tabellen repräsentiert S$ einen Binär- . Oktal- oder Hexadezimalstring bzw. 
einen Stringausdruck des entsprechenden Typs. 

• Ein Binärstring ist eine Zeichenkette. die nur aus den Werten 0 und 1 besteht und eine Zahl aus 
dem binären (dualen) Zahlensystem (Basis 2) darstellt. Ein binärer Stingausdruck ist entsprechend 
ein Stringausdruck. der bei der Auswertung einen Binärstring liefert. 

• Ein Oktalstring ist eine Zeichenkette, die nur aus den Werten 0 bis 7 besteht und eine Zahl aU5 

dem oktalen Zahlensystem (Basis 8) darstellt. Entsprechend ist ein oktaler Stringausdruck ein 
Stingausdruck. der bei der Auswertung einen Oktalstring liefert. 

• Ein Hexadezimalstring besteht aus den Zahlen 0 bis 9 und den Buchstaben Abis F und stellt eine 
Zahl aus dem hexadezimalen Zahlensystem (Basis 16) dar. (Die Buchstaben können in Groß- oder 
Kleinschreibung eingegeben werden.) Ein hexadezimaler Stringausdruck ist ein Stringausdruck. der 
bei der Auswertung einen Hexadezimalstring liefert. 

Funktionen zur Basisumwandlung 
BVAL Umwandlung von binär. oktal und hexadezimal in dezimal 

B' . .' AL ( S$ . N ) 

wo S$ ein binärer Stingausdruck ist, mit einem Wert nicht größer als 
11 10100011010100101001010000111111111111 (binär) , und N ein numerischer Ausdruck. dessen 
gerundeter Wert 2 ergibt; 

oder S$ ein oktaler Stringausdruck ist, dessen Wert nicht größer als 16432451207777 (oktal) ist . und N 
ein numerischer Ausdruck. dessen gerundeter Wert 8 ergibt; 

oder S$ ein hexadezimaler Stringausdruck ist, dessen Wert nicht größer als E8D4A50FFF (hexadezimal) 
ist , und N ein numerischer Ausdruck , dessen gerundeter Wert 16 ergibt 

15 



16 Abschnitt 2: Umwandlung zwischen Zahlensystemen 

BVAL (Fortsetzung) 

Wandelt einen Stringausdruck $$, der eine Zahl zur Basis N repräsentiert, in den äquivalenten 
Dezimalwert um. Der Wert des Dezimaläquivalents darf nicht größer als 999999999999 (dezimal) sein . 

Kann nicht im CALC-Modus verwendet werden. 

BSTR$ Umwandlung von dezimal in binär, oktal oder hexadezimal 

[::::TF"'>: X .. N> 

wo X ein numerischer Ausdruck im Bereich 0 '" X < 999999999999,5 und N ein numerischer Ausdruck 
ist, der bei der Auswertung nach Rundung auf eine ganze Zahl entweder 2, 8 oder 16 ergeben muß. 

Wandelt den gerundeten ganzzahligen Wert von X (dezimal) in den äquivalenten String zur Basis N um. 

Bei N ~ 16 werden die Großbuchstaben Abis F zurückgegeben . 

Kann nicht im CALC-Modus verwendet werden. 

Beispiele 
Eingabe/Ergebnis 

E: I,} F"i L .:: " 1 0 1 0 " .' c::. I END LI NE I 

lO 

E: l " " 1 1 1 1 " I END LI NE 
E:',)RL" EI. 2:, I END LlNE I 

1. ~5 

E',.!fiL" E: ' :!E$ .. 2:' I END LlNE I 

"', C" "". 
,:: ._1 ._1 

E: ::TF'$:>:3. 2:, I ENDLINEI 

1 1 

Dezimaläquivalent von 1010 (binär). 

Dezimaläquivalent des Binärstings " 11 11". 

Dezimaläquivalent des Binärstrings "11111111". 

Binärdarstellung von 3 (dezimal). 



~ 
J 
mal 

:k 

n. 

E,TFn72.:':' I ENDLINEI 

1 1 li 

E T P :.t .. E: I,} fi L 0:: " HF 1 C :::: 11 .' 1':; ,2::-

I EDLINE I 

10101 110001 1001000 

E :T P:f<E: I"Ifi l .. (" 14;:';::'2", :::> 
"'E ',,' AL " ~=;-?U ", :::: .' ::::::. I END lI NE I 

Weitere Informationen 

Abschnitt 2: Umwandlung zwischen Zahlensystemen 

Oktaldarstellung von 72 (dezimal). 

Binärdarstellung von AF1C8 (hexadezimall. 

Oktale Summe von 14772 (okta!) und 570 
(okta!). 

17 

Be i der Bestimmung des Bereichs der zulässigen Parameter für die drei Schlüsselworte zur 
Basisumwandlung lagen die folgenden Betrachtungen zugrunde: 

• Die Schlüsselworte geben das exakte Resultat für jede ganze Zahl im Bereich der zulässigen 
Parameter zurück. 

• Die Schlüsselworte erzeugen zu einander inverse Abbildungen; cl.h. die Hintereinanderausführung 
liefert in beiden Richtungen für ganze Zahlen jeweils die Identitätsabbildung. 

• Die ganzen Zahlen von 0 bis 999999999999 bilden den größten Block von aufeinanderfolgenden, 
nicht negativen ganzen Zahlen, die der HP-71 in einem Ganzzahl-Format anzeigen kann. 





Abschnitt 3 

Komplexe Variablen 

omplexe Daten 

in diesem Abschnitt beschriebenen Anweisungen und Funktionen dienen zur Deklaration und 
ipu lat ion komplexer Zahlen, Folgende Operationen sind verfügbar: 

• Deklarat ion von komplexen Variablen und Feldern mit den Anweisungen COt'1F'L E >~ und 
: Ol'l F'LDi :,: HOPT, 

• Erweiterung der Variablenzuweisungen des HP-71 und der Funktion F: E :,; auf komplexe 
Anwendungen. 

• Erweiterung des HP-71 Formatstrings I I'IACE auf komplexe Felder, 

• l mwandlung von reellen in komplexe Zahlen, 

k eren von komplexen Variablen 
COMPLEX Erzeugen von komplexen Variablen mit 12-stelliger Genauigkeit 

on F' L D·: Dimensionsspezifikator [.. Dimensionsspezifikator] l 
die Syntax von CO 1'1 F' L D i der Syntax der Schlüsselworte PE AL. :,: HOF: T und ItH E G E F: ent­
ht. Dimensionsspezifikator steht hier für numerische Variable [ <: Dimension 1 [ " Dimension 2] ) ] . 

.obei Dimension 1 und Dimension 2 reelle numerische Ausdrücke sind. 

n nicht im CALC-Modus verwendet werden , 

COMPLEX SHORT Erzeugen von komplexen Variablen mit 5-stelliger Genauigkeit 

on F' L D ·: :,: H elF: T Dimensionsspezifikator [.. Dimensionsspezifikator] 

die Syntax von CCi'IF'L E:-: S HOF: T der Syntax der Schlüsselwor te P EA L. :,:HOPT und 
TE C E P entspricht , Dimensionsspezifikator steht hier für numerische Variable [ ( Dimension 1 [.. 
ension 2] ) ], wobei Dimension 1 und Dimension 2 reelle numerische Ausdrücke sind . 

---
n nicht im CALC-Modus verwendet werden, 

19 



20 K"I"'1plex Va' ,arier 

Der von Variablen und Feldern der Typen c: 0 1'lF' L E :": und c: I) 1'lF' L D': :,: H elF: T benötigte Speicherplatz 
wird bei der Ausführung der entsprechenden Deklarationsanweisung zugewiesen; zusätzlich werden 
nicht zuvor exist ierende Variablen und die Elemente noch nicht existierender Fdder mit dem Wert 
(0,0) vorbesetzt. Die Auswertung von Feldobergrenzen erfolgt gleichfalls bei der Ausführung der 
Deklarationsanweisung, Die Untergrenze für jeden Feldindex ist in Abhängigkeit von der bei der Aus· 
führung der Deklarationsanweisungen gültigen I)PT I I)t·~ E:A:,:E Einstellung entweder ° oder L 

Die Anweisung C (I 1'1 F' L E ::< dimensioniert bereits exist ierende Felder vom 'TYP CO t:1 P L E::-; um, setzt die 
F e ldelemente jedoch nicht a uf (0 ,0) zurü ck. Entsp rechend d imensionie r t di e Anweis un g 
CI) 1'lF' L E :,< :,: H elF: T bereits existierende Felder vom Typ c: I) 1'lF' L D': :,: H 0 P T um, setzt die 
Feldelemente jedoch nicht auf (0,0) zurück. Bei einer Erweiterung eines Felds werden a lle neu 
erzeugten Elemente mit (0,0) vorbesetzt. Bei einer Umdimensionierung ble ibt die Reihenfolge de r Eie· 
mente innerhalb eines Felds erhalten, jedoch nicht notwendigerweise deren Lage innerhalb des Felds. 
Weitere Informationen können Sie unter "Deklarieren von Feldern ([I I t'1, PERL, :::HORT, 
ItH E G E F:)" in Abschnitt 3 des Hp ·71 Benutzerhandbuclls nachlesen. 

In der nachstehenden Tabelle werden die für Variablen und Felder vom Typ c: I) 1'1 F' L E :": und 
CO 1'1 F' L E :': :,: H 0 P T gel tenden Bedingungen angegeben, 

Numerische Variable n vom Typ c: 0 1'1 F' L D': und CO 1'lF' L E >: :,: H I) F: T 

Anfangswert 

Numerische Genauigkeit 

CI)I'IF'LE:': 
C:OI'IF'LE:": :,: HOFT 

Bereich des Exponenten 

Maximale Anzahl der Felddimens ionen 

Maximale Anzahl von Feldelementen 

S peicherplatzbelegung von einfachen Variablen 
(i n Bytes) 

CI)I'IPLE:'·': 
C:OI'IF'LE:: :,:HOFT 

Speicherplatzbelegung von Feldern 
c: I) 1'1 F'L E :": 

(0 ,0) 

12 Dezimalstellen 
5 Dezimalstellen 

± 499 

2 

65535 

25.5 
18.5 

16 x (Dimension 1 - OPT I OH E:A~:E Einste llung + 1) 
x (Dimension 2 - elf' T I I) t·~ E: A :,: E Einstellung + 1) + 9 .5 

9 x (Dimension 1 - elf' T I I) H E: A :,: E Einstellung + 1) 
x (Dimension 2 - I) F' T I I) t~ E: A ',: E Einstellung + 1) + 9. 5 
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rplatz 
erden er'3tlonen mit komplexen Zahlen 
Wert 

g der (, ) Umwandlung reeller in komplexe Zahlen 
Aus-

X, Y) 

zt die wo X und Y reell- oder komplexwertige numerische Ausdrücke sind. 
sung 
: die Der HP-?I erkennt eine komplexe Zahl als geordnetes Paar reellwertiger Zahlen. (X,y) ist als (Realteil 
, neu von X, Realteil von Y) definiert. Daher entspricht (X , Y) bei komplexwertigem X oder Y nicht unbedingt 
. Eie-
'eids. X iY. 

(I F: T , ann im CALC-Modus verwendet werden. 

und 

I ) 
!- 95 

I) 
!- 9.5 

REPT Realteil einer komplexen Zahl 

PEF' T <Z) 

wo Z ein reell- oder kompexwertiger numerischer Ausdruck ist. 

Gibt den Realteil (die erste Komponente) von Z zurück. Bei reellwertigem Z ist PEPT <Z :' ~ Z. 

Kann im CALC-Modus verwendet werden. 

IMPT Imaginärteil einer komplexen Zahl 

I I'I F'T <Z > 

wo Z ein reell- oder komplexwertiger numerischer Ausdruck ist. 

Gibt den Imagiärteil (die zweite Komponente) von Z zurück. Bei reellwertigem Z ist 11'1 F' T < Z > ~ O. 

Kann im CALC-Modus verwendet werden. 
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Weitere komplexe Operationen 
Das Mathematik-Paket erlaubt die Ausdehnung vieler Operationen des HP-71 auf den komplexen Fall. 
In Abschnitt 5 wird die Anwendung numerischer Funktionen wie :,; I H, l usw. auf den komplexen Fall 
beschrieben. Weitere Erweiterungen umfassen die Zuweisung von Werten auf komplexe Variablen, die 
Ausführung der Funktion ":E:,;, wenn das letzte Ergebnis komplexwertig war, usw. Der HP-71 ist also 
bei eingestecktem Modul in der Lage, mit komplexen Zahlen in fast der selben Weise zu arbeiten wie 
mit reellen Zahlen. 

Ein weiteres Leistungsmerkmal des Mathematik-Pakets ist die nachstehend beschriebene Erweiterung 
von Formatstrings auf komplexe Feldspezifikatoren. Zusätzliche Informationen über die Verwendung 
von Formatstrings können Sie im HP-71 Referenzhandbuch unter dem Schlüsselwort I l'if'i C; E 
nachlesen. 

C(,) Komplexe Felder in Formalslrings 

[n] C >: Formatstring ) 

wo nein optionaler Multiplikator ist. 

Ein komplexwertiger Ausdruck wird bei der Ausgabe mit [I I :,; F' oder F'", I 1·1 T dem Formatstring ent­
sprechend formatiert. Zuerst wird der Realteil , anschließend der Imaginärteil formatiert. Bei der Ausgabe 
wird die Zahl in Klammern eingeschlossen , wobei Real- und Imaginärteil durch Komma getrennt werden. 
Das Komma wird nur bei vorhandenem Imaginärteil gesendet. 

Im Formatstring darf nicht vorhanden sein: 

• Ein Wagenrücklaufzeichen (#) 

• Stringfelder 

• Eingebettete komplexe Formatstrings 

Der Formatstring muß zwei numerische Spezifikatoren enthalten . Für nichtnumerische Spezifikatoren 
gelten (außer den oben angegeben) keine Einschränkungen. 

Kann nicht im CALC-Modus verwendet werden. 

Komplexwertige Ausdrücke in einer [I I :,; F' U :,; I 11 C; oder F'": I 1·1 TU:,; I 1·1 C; Ausgabeliste dürfen nur 
über ein in der H1 A C; E Liste angegebenes komplexes Feld formatiert werden. Reellwertige Ausdrücke 
in einer [I I :,; F' U :,; I 1·1 C; oder F' P I 11 T U:,; I 1·1 C; Ausgabeliste dürfen jedoch nicht über ein in der 
11'1 A C; E Liste angegebenes komplexes Feld formatiert werden. 
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Beispiele 

COMPLEX, COMPLEX SHORT, (,), REPT, IMPT 

Eingabe/Ergebnis 

E S T PI)"" AL L I~E~N=D~l~1 N=E~I 

on F' L E >:: Z, ~,~ 1 .:: 3 ::0, ~} ( 7 .' ( ) 
E'ro lI NE I 

o lF' LE >:; :::HOF.:T (: ( 4 , 7 ), '"( 
II NE I 

= ( 1 .. SG!P ( 25 ):;' IENOLlNE] 

:: I END lINE I 

( 1 " 5::' 

,; , 5) ::: 3 I END UNE I 

1 • 1 ) ,: I.} ( 6 .' 5 ) I END LI NE I 

( 0 ._ (1 ) ( 3" ü ) 

= ( ,~ 1 ,. 2) ,(3, 4» I ENDLINE I 

I END llNE I 

i 0: L:3) 

Stellt sicher, daß keine der in den nach­
stehenden Anweisungen verwendeten Variablen 
und Felder existieren. Bereits exist ierende 
Felder und Variablen würden bei den an­
schließenden Feld- und Variablendeklarationen 
nicht mit (0,0) vorbesetzt werden. 

Erzeugt eine komplexe Variable, einen 
komplexen Vektor und eine komplexe Matrix. Die 
Variable Z und alle Elemente der Felder I·~ 1 und 
'.} werden mit (0,0) vorbesetzt. 

Erzeugt ein komplexes Feld und eine komplexe 
Variable vom Typ S H I) ~: T. 'l und alle Elemente 
von C werden mit (0,0) vorbesetzt . 

Weist der Variablen Z die komplexe Zahl 1 + 5i 
zu. 

Die Darstellung der komplexen Zahl 1 + 5i auf 
dem HP-71. 

Weist dem Feldelement '.} 0: 6 .. 5) die reelle Zahl 
3 zu. 

Zeigt die Werte von zwei Feldelementen an. 

Dem komplexen Feldelement ' .... 0: 1 .' 1 ) wurde 
bei der Erzeugung der Wert (ü J Ü ) zugewiesen. 
Die reelle Zahl :3 wurde durch die Zuweisung auf 
ein komplexes Feldelement in die komplexe Zahl 
( 3 .' [1 ::' umgewandelt. 

Weist ./ den komplexen Wert (1,3) zu (wegen 
(1,3) = (PEF'T ( 1. 2). F:EPTC3 .. 4 ) . 

Zeigt die komplexe Zahl '.,.' an. 
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F:E', ' I ENDLINE I 

( 1 , 3::' 

REP T (' .... ;..: H 1F'T ('0 I END LlNE I 

1 3 

Komplexe Formatstrings 

Eingabe/Ergebnis 

5 STD @ COMPLEX Y 
10 Y~(69 . 14 ,- 12.7) 

20 DISP USING 100; Y 
30 DISP USING 200; Y,Y 
40 DISP USING 300; Y,Y 
50 DISP USING 400; Y, Y, Y 
60 DISP USING · C(DDD,DDD)";Y 
100 IMAGE C(2D.2D,4D.2D" i" ) 
200 IMAGE C(4Z,XXX,4*),/,C(4Z,XXX4*) 
300 IMAGE C(B,K"i" ),X,C(A,4* .2DE) 
400 IMAGE 3C(2(DDD,XX)) 

( 6 9, 14 .. -12 , 7~3i) 

( 0069 .,-l13 ) 
( ~1ü 69 , -:1:1 3 ;' 

Zeigt den Wert des zuletzt ausgeführten oder 
angezeigten numerischen Ausdrucks an, der in 
diesem Falle komplexwcrtig ist. 

Von Zeile 100 erzeugte I 1'1 A G E Anzeige. 
Von Zeile 200 erzeugte I 1'1 A G E Anzeige. 



oder 
ier in 

I 
I 

( E ,- 1 2 , 7i) (/- 127,00E -
00 1 :0 

( 6 9 , - 1 :3 ) ( 6 9 .' - 1 
:> ) ': 6 9 - 1 -, ) .' '-' 

( 69 .,- 13) 
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Von Zeile 300 erzeugte I t'l R G E Anzeige. 

Von Zeile 400 erzeugte I t'l R G E Anzeige. 

Von Zeile 60 erzeugte I t'l A G E Anzeige. 



r 
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Abschnitt 4 

Reelle Skalarfunktionen 

yperbolische Funktionen 

(nachstehend beschriebenen) Funktionen :,; I HH, CO::;H und TAt~H sind auch für komplexe 
ente definiert. Siehe Abschnitt 5. 

SlNH Sinus Hyperbolicus 

Slt~H( X> 

NO X ein reellwertiger numerischer Ausdruck mit M < 1151 .98569368 ist 

Kann im CALC-Modus verwendet werden. 

COSH Cosinus Hyperbolicus 

CO::: H O:: X ) 

wo X ein reellwertiger numerischer Ausdruck mit M < 1151 .98569368 ist 

ann im CALC-Modus verwendet werden. 

TANH Tangens Hyperbolicus 

TA I'~H ( X> 

wo X ein reellwertiger numerischer Ausdruck ist 

Kann im CALC-Modus verwendet werden. , 

27 
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ASINH Inverser Sinus Hyperbolicus 

wo X ein reellwertiger numerischer Ausdruck ist. 

Kann im CALC-Modus verwendet werden. 

ACOSH Inverser Cosinus Hyperbolicus 

ACO S H( X) 

wo X ein reellwertiger numerischer Ausdruck mit X ;. 1 ist. 
I 

Kann im CALC-Modus verwendet werden . 

ATANH Inverser Tangens Hyperbolicus 

ATfmH ( X;' 

I wo X ein reellwertiger numerischer Ausdruck mit - 1 < X < 1 ist. 

Kann im CALC-Modus verwendet werden . 

Weitere numerische Funktionen 

GAMMA Gamma Funktion 

wo X ein reellwertiger numerischer Ausdruck ist, dessen Bereich wie folgt definiert ist: 

X ungleich Null oder einer negativen ganzen Zahl und 

- 253 < X < 254.1190554375 

Wie der Graph von GAt'H1A ( X;' zeigt, bedingen bestimmte X-Werte im Bereich - 263 < X < -253 
eine Bereichsunterschreitung von GA tm A .; x ;. . 

Werte von X < - 263 und IG A t1 t'l A ( X ;. I < t'l I f1 R E AL bedingen immer eine Bereichsunterschreitung 
von GAt'HIA .; X;. . 
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JOlicus 
A (Fortsetzung) 

X eine positive ganze Zahl ist, gilt GA t'm A ( X ::- ~ FA CT( X- 1 ). 
I .... ein ist GAt'1 t'1A (X ) ~ r (X) für X > 0 als -. 

[(X) ~ f''''t'' - 'e - Idl 
0 

)()licus l.nd fü r andere Werte von X durch analytische Fortsetzung definiert. 

I"" im CALC-Modus verwendet werden. 

~2 Logarithmus zur Basis 2 

I ... OG2( X ) 

1_ X ein reellwertiger numerischer Ausdruck mit X > o ist. 
Kllicus 

L OG2 ( X) ~ 10 (X) ~ J.r!ffi 
g2 In(2) -

III.ann im CALC-Modus verwendet werden. 

IItALE10 Skalierung mit Zehnerpotenzen 

AL E 1 <] ( X .' P ::-

nktion 
I .., X ein reellwertiger numerischer Ausdruck ist und Pein reellwertiger numerischer Ausdruck ist, der 
I'" der Auswertung eine ganze Zahl ergeben muß. 

i WUtipliziert X mit 10 hoch P durch Addition von P zum Exponenten von X. Bei langen Kettenrechnungen 
I IIoilnnen Bereichsüberschreitungen und -unterschreitungen durch die Verwendung von SC: ALE 1 [1 

.-mieden werden. 

n im CALC-Modus verwendet werden. 

-253 

~ung 
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, 

~ Ganzzahlige Rundung 
• • j 

IROUND Rundung auf eine ganze Zahl 1-
IROUND( X ) r3 wo X ein reellwertiger numerischer Ausdruck ist. 

I-
Rundet X unter Verwendung der momentanen CI F' TI 0 t·j R 0 U tHI Einstellung auf eine ganze Zahl. ~ 

Kann im CALC-Modus verwendet werden . 

Information zurückgebende Funktionen 

NAN$ NaN-Ursache 

NAIH ( X ) 

wo X ein reellwertiger numerischer Ausdruck ist. 

Gibt einen String zurück , der die im NaN-Argument der Funktion enthaltene Fehlemummer enthält; d.h. 
es wird die Nummer desjenigen Fehlers zurückgegeben , durch den N .• t·j erzeugt wurde. Der zurück-
gegebene String entspricht der von der Funktion ER F: N zurückgegebenen Nummer. (Siehe HP-71 

Referenzhandbuch .) Die LEX-Identifikations nummer ist jedoch 0 für alle von Funktionen des Mathematik-
Pakets erzeugte l·j .• Ws, da das Mathematik-Paket das Auftreten von t·j .• Ws nur durch HP-71 
Fehlermeldungen kennzeichnet. 

Wenn X ungleich t·L. N ist, gibt t·jAtH (X ) einen Nullstring zurück. 

Kann nicht im CALC-Modus verwendet werden. 

",0'''0 .000"'0"0': ~ NEIGHBOR 

t·j E I GH E:OF: ( X .' n ~c 
wo X und Y reellwertige numerische Ausdrücke sind. ,....-; 

Gibt die nächste zu X in Richtung von Y liegende, maschinendarstellbare Zahl zurück . Dies ist in Ab-
hängigkeit von Yentweder die nächstkleinere oder nächstgrößere Machinenzahl zu X. t·jE I GHE:OR dient ~ 

speziell zur Auswertung einer Funktion in unmittelbarer Nachbarschaft eines gegebenen Wertes. 

Kann im CALC-Modus verwendet werden . 
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, .. - "TYP und Dimension eines Ausdrucks 

'9 Zahl _ . ein reell- oder komplexwertiger Ausdruck, ein Stringausdruck oder ein Feld ist. 

,1. 

-

rsache 
-

- ' 

:; d.h. 
lrück­
-IP-77 
natik­
i P-71 

.. wie in nachstehender Tabelle angegeben je nach Typ und Dimension von X eine ganze Zahl im 
von 0 bis 8 zurück . 

....... außer bei String- und Feldargumenten im CALC-Modus verwendet werden. 

x 

Einfach reell (einschließlich einfache 
Variablen vom Typ I fIT E GER, 

TYPE ( X) 

'3HOIH und REAL). [1 

Einfach komplex (einschließlich ein 
fache Variablen vom Typ C Ot1 P LE X 
und CO t'lPLE X SHO RT.) 

Einfacher String 

Feld vom Typ ItHE GER 

Feld vom Typ SHORT 

Feld vom Typ REAL 

Feld vom Typ COt'lPLE :'; SHORT 

Feld vom Typ COt'lP LE :' : 

Stringfeld 

2 

4 

5 

6 

7 

_ I Beispiele 

enzahl COSH, SINH, ATANH, ACOSH 
- I KiDgabeiErgebnis 

SH'; ü :> I END U NE I 

-
, Ab­
dient 

-

[ 1 

Cosinus Hyperbolicus einer numerischen 
K onstanten. 
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:::: -9 I END LlNE I 
ATAt~H <: 1 / SG!F: <: c'::::O::O I END LlNE I 

,3 465735 9 02 ::: 

ACO:'::H (C OS H (2 t1 ~~1 ;' ) I END UNE I 

LOG2, IROUND 

Eingabe/Ergebnis 

LOG2 <: 2" "1 7 ::0 I END LlNE I 

17 

OPT ION F:OUI'1O t·1E AR I ENDLINE I 

I F:O UllD <: 234 , 5 :> I END LI NE I 

23 4 

OPT I Ot·l ROUtlO PO:,: I END LlNE I 

I F~ OUt.w <: 234,5:> I END LlNE I 

235 

Sinus Hyperbolicus eines numerischen 
Ausdrucks. 

Inverser Tangens Hyperbolicus eines 
numerischen Ausdrucks mit einer numerischen 
Variablen. 

Inverser Cosinus Hyperbolicus eines 
numerischen Ausdrucks. 

Logarithmus (zur Basis 2) eines numerischen 
Ausdrucks. 

Rundet auf die nächste ganze Zahl (im 
Zweife lsfall auf die nächste gerade ganze Zahl) , 

Rundet auf die nächstgrößere ganze ZahL 



..... NEIGHBOR. TYPE 

p ( J', .. ' L. 2) I END LI NE I 

len 

1t1F ) I END LlNE I 

Ll NE I 

H X ) I END LlNE I 
n 

1 1 

: G H E: 0 F: 0: 1 • 5) I END LI NE I 

hl). 

IG HE:O F'O: 1. -1,,1) IENDLINEI 

. 9999999999 99 

EIG HE:O F:O: lE400 .. lE401 ) IENDLINEI 
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Setzt 2 als J',..'L-Auffangwert. Die Funktion 
TF:AP wird im HP-7I Referenzhandbuch 
beschrieben. 

Der Wert 2 als I'.} L-Auffangwert verursacht bei 
Ausführen der unzulässigen Operation 
::; I I~ 0: I HF ) eine Warnung, jedoch nicht einen 
Fehler. 

Da der I I.} L -Auffangwert auf 2 eingestellt ist, 
wird ::< durch die unzulässige Operation der Wert 
I·~ .31·~ (Not-a-Number) zugewiesen. 

Die mit dem Wert H 3 1~ verbundene 
Meldungsnummer identifiziert die Meldung 
I t"!\·'a 1 id At-,;!. 

Die nächstgrößere Maschinenzahl zu 1. 

Die nächstkleinere Maschinenzahl zu 1 . 

Die nächstgrößere Maschinenzahl zu 1 E 4 ',1 D. 



34 Abschnitt 4: Reelle Skalarfunktionen 

f~E! GHBOR ( 1 ,234E-63 , 0 l I END UNE I 

1 , 23399999999E-63 

I1HEGER ! , cl (3 , 9 ) IENDUNEI 

COt'lF'LE:": SHORT Z (2), 1'1IENDUNEI 

T y pE ( 2 l; TYPE ( ! ); T YPE ( J l; T YPE ( Z l 
.: TYF' E ( I~ l I END UNE I 

o 3 6 1 

Die nächstkleinere Maschinenzahl zu 
1 , 234E-63, 

Die von T Y F' E zurückgegebenen Kennzahlen 
identifizieren den Typ und die Dimension jedes 
Ausdrucks. 
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Komplexe Funktionen und Operationen 

",Ie mathematische Funktionen sind sowohl für reelle als auch für komplexe Argumente deliniert. Das 
athematik-Paket erlaubt die Verwendung vieler HP-71 Schlüsselworte sowohl mit reellen als auch 
-t komplexen Argumenten. Zusätzlich werden in diesem Abschnitt speziell für komplexe Operat ionen 
linierte Schlüsselworte beschrieben. 

le in diesem Abschnitt beschriebenen Funktionen (außer AE"3 , ARG , CO!·J.'! und den Verhältnis­
rataren) geben ein komplexwertiges Ergebnis zurück. 

wird angenommen, daß außer bei der Funktion ,,: E C T alle komplexen Zahlen Z und W m 
l:arthesischer und nicht in polarer Form dargestellt sind. 

Aufgrund der zweidimensionalen Natur dieser Funktionen ist es nicht möglich, einfache Schranken für 
die Funktionsargumente anzugeben, die ein Auftreten von Bereichsunterschreitungen oder Bereichs­
überschreitungen verhindern würden. 

Operatoren 

+ Addition 

Z+W 

wo Z und/oder W komplexwertige numerische Ausdrücke sind. 

Kann im CALC-Modus verwendet werden. 

Einwertiges Minus 

- Z 

wo Zein komplexwertiger numerischer Ausdruck ist. 

Kann im CALC-Modus verwendet werden. 

35 



36 Abschnitt 5 Komplexe FunktiOnen und Operationen 

z- w 

wo Z und/oder W komplexwertige numerische Ausdrücke sind. 

Kann im CALC-Modus verwendet werden . 

* 

I 

Zt W 

wo Z und/oder W komplexwertige numerische Ausdrücke sind . 

Kann im CALC-Modus verwendet werden. 

Z/W 

wo Z und/oder W komplexwertige numerische Ausdrücke sind . W '" (0,0). 

Kann im CALC-Modus verwendet werden . 

wo Z und/oder W komplexwertige numerische Ausdrücke sind . 

Gibt den Hauptwert von ZW ~ eWln(Z) zurück. 
Kann im CALC-Modus verwendet werden . 

Subtraktion 

Multiplikation 

Exponentiation 
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ogarithmische Funktionen 

Natürlicher Logarithmus 

oe; ( Z ) oder Uj ( Z ) 

NO Zein komplexwertiger numerischer Ausdruck ungleich (0,0) ist. 

enn Z = x + iy und R (cos 0 + i sin 0) die polare Darstellung von Z ist, gilt 

LOG C: Z> = In R + iO. 

wo - ~ '" 0 '" ~ (in Radiant). 

ann im CALC-Modus verwendet werden. 

EXP 

wo Zein komplexwertiger numerischer Ausdruck ist . 

Wenn Z = x + iy, dann gilt 

D·:F' ( Z ) = e' + Iy = e' (cos y + i sin y). 

wo y in Radiant gemessen wird. 

Kann im CALC-Modus verwendet werden. 

Exponential 
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Trigonometrische und hyperbolische Funktionen 
Unahängig von der W inkeleinstellung verwenden alle trigonometrischen Funktionen in Radiant an­
gegebene Argumente. 

SIN 

wo Zein komplexwertiger numerischer Ausdruck ist. 

Wenn Z ~ x + iy, dann gilt 

::: I H <Z::' ~ sin (x + iy) ~ sin x cosh y + i cos x sinh y. 

Kann im CALC-Modus verwendet werden. 

COS 

wo Zein komplexwertiger numerischer Ausdruck ist. 

Wenn Z ~ x + iy , dann gilt 

CO::: <Z ) ~ cos (x + iy) ~ cos x cosh Y - i sin x sinh y. 

Kann im CALC-Modus verwendet werden . 

TAN 

TAt,~ <Z ) 

wo Zein komplexwertiger numerischer Ausdruck ist. 

Wenn Z ~ x + iy, dann gilt 

TAtl <z::. ~ tan (x + iy) ~ sin (x + iy) 
cos (x + iy) 

Kann im CALC-Modus verwendet werden. 

sin x cas x + i sinh V cash y 
sinh2y + cos 2x 

Sinus 

Cosinus 

Tangens 
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Zein komplexwertiger numerischer Ausdruck ist. 

+ iy . dann gilt 

,,: H~ H( z::. - sinh(x + iy) - ( - i) sin ( - y + ix). 

nn im CALC-Modus verwendet werden. 

COSH 

CC",:H <Z ) 

wo Zein komplexwertiger numerischer Ausdruck ist. 

Wenn Z - x + iy . dann gilt 

CC",:HO::Z ) - cosh (x + iy) - cos (-y + ix). 

Kann im CALC-Modus verwendet werden. 

TANH 

T A I·HI 0:: z::. 

wo Zein komplexwertiger numerischer Ausdruck ist. 

Wenn Z - x + iy . dann gilt 

TAt·~H(z::. - tanh (x + iy) - ( - i) tan (-y + ix). 

Kann im CALC-Modus verwendet werden. 

Sinus Hyperbolicus 

Cosinus Hyperbolicus 

Tangens Hyperbolicus 



I 

40 Abschnitt 5: Komplexe Funktionen u nd Operationen 

Umwandlungen zwischen Polar- und Rechteckskoordinaten 

POLAR Rechtecks/Polarumwandlung 

F'ClLAF: ( 2) 

wo Zein reell- oder komplexwertiger num erischer Ausdruck ist. 

Wenn Z ~ x + iy und R (cos 0 + i sin 0 ) die Polardarstellung von Z ist , dann gilt 

ClLA F: ( 2) ~ (R , 0) F' 

Der Winkel 0 wird in Abhängigkeit von der momentanen Winkeleinstellung entweder in Grad ( - t 80 .; 0 

ngegeben. .; 180) oder in Radiant (-". .; 0 .; ".) a 

Kann im CALC-Modus verwendet werden . 

REeT Polar/Rechtecksumwandlung 

PECT( Z> 

wo Zein reell- oder komplexwertiger num erischer Ausdruck ist. 

PECT ist das einzige Schlüsselwort in diesem Abschnitt , das ein Argument Z nur in polarer Form 
verarbeitet . 

Wenn Z ~ (R,O ), wo R (cos 0 + i sin 0) d 

F: 

ie Polardarstellung der komplexen Zahl x + iy ist , dann gilt 

ECTO:: Z> ~ x + iy 

Der Winkel 0 wird in Abhängigkeit von der momentanen Winkeleinstellung in Grad oder in Radiant 
interpretiert. 

Kann im CALC-Modus verwendet werden . 

Allgemeine Funktionen 

SORT Quadratwurzel 

::;OPT <Z ) oder :::OP ( Z > 

wo Zein komplexwertiger numerischer A usdruck ist. 

Gibt den komplexen Hauptwert der Quad ratwurzel von Z zurück . 

Kann im CALC,Modus verwendet werden . 
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SGN 

SGHO:: Z> 

wo Zein komplexwertiger numerischer Ausdruck ist. 

Gibt den Einheitsvektor in Richtung von Z zurück, d.h. 

wo Z ~ x + iy . 

Wenn Z ~ (0,0), dann gilt '=: G 11 0:: Z> ~ Z. 

Kann im CALC-Modus verwendet werden. 

ABS 

ABS( Z ) 

wo Zein komplexwertiger numerischer Ausdruck ist. 

Wenn Z ~ x + iy , dann gilt 

x + iy 

Yx2 + y2 

RE::; O:: Z> ~ Ix + iy l ~ Yx2 + v' 
AB:::; .: Z ) gibt immer einen reellen Wert zurück . 

Kann im CALC-Modus verwendet werden . 

Einheitsvektor 

Betrag 
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ARG Argument 

AF:G< Z ) 

wo Zein reell- oder komplexwertiger numerischer Ausdruck ist. 

Wenn Z ~ x + iy und R (cos e + i sin e) die Polardarstellung von Z ist, dann gilt 

HF~G( Z ) =0. 

Der Winkel e wird in Abhängigkeit von der momentanen Winkeleinstellung in Grad ( - 180 ,,; 0 ,,; 180) 
oder in Radiant ( - ~ ,,; e ,,; ~) angegeben. 

HF: G ( Z ) gibt immer einen reellen Wert zurück . 

Kann im CALC-Modus verwendet werden . 

CONJ Komplexe Konjugation 

COt'~,J ( Z ) 

wo Zein ree"- oder komplexwertiger numerischer Ausdruck ist . 

Wenn Z ~ x + iy , dann gilt 

COt'~ ,J ( 1 ) = x - iy 

C CI I·j ,J':: z::. gibt immer einen Wert vom gleichen Typ (reell oder komplex) wie Z zurück . 

Kann im CALC-Modus verwendet werden . 

PROJ Projektion auf 00 

PF:O.J ( 1 ) 

wo Zein reell- oder komplexwertiger numerischer Ausdruck ist . 

Wenn Z ~ x + iy , dann gilt 

PF:CI,J ( Z ) ~ Z , falls fi8 ~; ':: Z ) ~ In f 

oder 

PF:O,J <1 > = I n f + iO , falls AB:; <1> In f. 

Kann im CALC-Modus verwendet werden. 
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Verhältnisoperatoren 

= , < , > , #, ? Gleich oder Ungeordnet 

Z Verhältnisoperator W 

wo Z und/oder W komplexwertige numerische Ausdrücke sind . 

Wenn mindestens einer der zwei Ausdrücke komplexwertig ist, sind nur zwei Vergleichsergebnisse mög­
lich: Die Ausdrücke sind entweder gleich oder ungeordnet (oder verschieden, was in diesem Fall 
ungeordnet entspricht). 

Es sei Z ~ x + iy und W ~ u + iv. 

Wenn x ~ u und y ~ v, dann ist jeder Vergleich , der = enthält , wahr (d .h. gibt den Wert 1 zurück). 

Wenn x '" u oder y '" v, dann ist jeder Vergleich , der # oder ." enthält, wahr. 

Jeder Vergleich , der <: oder :> ohne .,. oder # enthält, resultiert in einer Ausnahme. 

Kann im CALC-Modus verwendet werden. 

Beispiele 

+, -, *, I 
Eingabe/Ergebnis 

TD I. CClt'lPLD:: Z .. I,j 1 END LlNE 1 

2=< 4,5) I!! l,J=(-3 .. 2) IENDLINE I 

2 +I·j 1 END LlNE 1 

(1 .. 7' ) 

3+Z Hj+l I ENDLINE I 

I <5., n 

:-1·11 END LlNE 1 

I (7, :3:> 
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( 2 " 3 ::. :i: ( 4 " 5::- I END LI NE I 

( -7 .. 22) 

(1 ,.2) ./( 3 .< 4 ) I ENDLINE I 

(,44 ) ,~~1 :=:) 

2/(3, 4 ) IENDLINE I 

(,2 4 ., -, 32) 

", LOG, EXP 
Eingabe/Ergebnis 

F j)~ 4 I END Ll NE I 

0:: 3 .' 4 ) ..... ( 6 .. 9::' I END LI NE I 

(1,3472 ._:3 , 4 565) 

LI] GO::< 1 .. 2) ) I END UNE I 

(l1 ,:::047 .. 1 ,107) 

E >~ P 0:: 0:: 1 .' 2 > ::. I END LI NE I 

(- 1 , 1312 .. 2 , 4717> 



SIN, TAN, COSH 
Eingabe/Ergebnis 

F 1:<: 4 I END LlNE I 

:,: I 1·1 < < 2 1 , 2> > I END LlNE I 

<:3,1 4 77.' - 1 , 3::: 65) 

TA t·j ( <5 .. 5» I ENDUNE I 

(- 4, 9 4ülE - 5 .. 1, 0 0( 1 ) 

C Cl ::: H ( .:: 2 .' :3 ) ) I END UNE I 

(-3,724 5 .. 0, 511 8) 

ABS,ARG, CONJ, PROJ 
Eingabe/Ergebnis 

F I :': 4 I END LlNE I 

AB:,:< <3, 4> > I ENDLINE I 

5 , 000 ~~1 

DEG F:EE:,: I END LlNE I 

RF: G< <3, 4 > > I ENDLINE I 

53,1301 

F: AD I AI·I:,: I END LlNE I 

A PG( (3.< 7» I ENDUNE I 

-1,1659 
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Der in Radiant gemessene Winkel im vierten 
Quadranten, der das Argument der komplexen 
Zahl 3 - 7i ist, 
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:,:TD I~ COH,_' O:: 0:: 1 , 2::'::' I END LlNE I 

( 1 " -2::' 

F' P 0 ,j ( ( - I n f .' - I n f ::0 ::. I END LI NE I 

( I nf ,. O) 

F'PÜ .J( ( 1 ._ 2);' IENDLINEI 

( 1 .' 2 ::. 

POLAR, REeT, SGN 

Eingabe/Ergebnis 

:,:TD I END LlNE I 
DEGPEE:,: I END LlNE I 
F' OLAI': 0:: - 1 ::' I END LINE I 

( 1 ., 1 ::: 0 ) 

F I :,H I END LlNE I 
POLAP( (3 .. 4 );' I ENDLINEI 

(5, OO ~~1 0., 53, 13~~11 ) 

PAD I At'I~: I END LlNE I 
PE C T 0:: 0:: - 5 , F' I / 4 ::. ::. I END LI NE I 

Rechteck/ Polarumwandlung für ein reeJlwertiges 
Argument. 

Der Betrag (r) ist 1 und das Argument (0) ist 
1 :,"3 Grad, 

Rechteck/ Polarumwandlung fü r eine 
komplexwert iges Argument. 

Der Betrag (r) ist 5 , (1 (1 Ü (1 und das Argument 
(8) ist 53 , 1301 Grad. 

Polar/ Rechteckumwandlung für ein komplex­
wertiges Argument. Der Betrag (r) ist 5 und das 
Argument (0) ist - 30 ,,/ 4 Radiant. Der für R an­
gegebene negat ive Wert stell t die Spiegelung des 
in Polarkoordinaten angegebenen Punkts (5, ,,/4) 
am Ursprung dar. 



(-3. 5355. - 3 , 5355 ) 

SQRT, LOG 

Abschnitt 5: Komplexe Funktionen und Operationen 47 

Sowohl Real- (x) als auch Imaginärteil (y) haben 
den Wert - 3 , 5355. 

Beachten Sie das Verhalten an der SprungsteIle in den Zweigen von :30 1n und LOG . Die Zweige von 
komplexen Funktionen werden nachfolgend unter "Weitere Infor mationen" erläutert. 

Eingabe/Ergebnis 

-:; G! ~:T':: 0:: 1 ,, 2 > ::' I ENDLINE ! 

( 1 , 27 2 0 ,.0,7 :::62) 

-::; ORT ( (- 16 .. 0 ):;' I ENDLINEI 

':.ORT ( (- 16 .. -Ü )::' I END LI NE I 

( [1, ü~jÜÜ . , -4, ÜOÜ~1 > 

L (I G 0:: 0:: - E >:: F' 0:: 5 ) .' [1::' ::' I END LI NE I 

L OG 0:: 0:: - E :=-::P (5 )., - 0 ::- ) I END LINE I 

(5 , 0000 ., -3 , 1416) 
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Weitere Informationen 
Im allgemeinen hat die Inverse t- 1(z) einer Funktion !(z) mehrere Funktionswerte für ein gcgchcncs 
Argument z. Das Mathematik-Paket berechnet jedoch für jede gegebene Umkehrfunktion f l( z) imme r 
den eindeutigen Hauptwert, der im als Hauptzweig definierten Teil des Wertebereichs der 
Umkehrfunktion liegt. 

Die nachfolgenden Illustrationen zeigen die Hauptzweige der vom Mathematik ·Paket berec hneten 
Funktionen '3G' RT und LO G. Der linke Graph in jeder Abbildung stellt den Definitionsbere ich der 
Umkehrfunktion dar; der rechte Graph zeigt jeweils den Wertebereich für den Hauptzweig. Die blauen 
und schwarzen Linien im linken Graph werden jeweils unter der Umkehrfunkt ioll auf die 
entsprechenden blauen und schwarzen Linien im rechten Graph abgebildet. 

SQRT 

- - --,/ 

--- "- ---/ "-
/ "- "-

I \ \ 
/ \ \ 
I \ 

0 

/ / 
\ / / 

"- / / 

"- / 
,/ 

--- -- -
z w 
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LN(z) = In r + i8 für -" .. 8 .. " i" 

~ 

./ "-
/ "-

/ '\ 

/ \ 

I \ 

I f \ \ 
0 o 

/ (/ / / / /I /1/1 / / I 

\ "- ~ / 
\ 

/ 

I 

1///////// 

'\ 
/ 

'\ 
"-

/ 

'-
./ /////////N/II 

- i1r 

z w LN(z) 

Oer Hauptzweig von w' leitet sich aus dem Hauptzweig der Logarithmusfunktion und der Gleichung 

ur = exp (z LN w), 

, wo LN die einwertige Funktion bezeichnet. 

·enn Sie sämtliche Werte einer Umkehrfun ktion bestimmen wollen , können Sie diese mit Hilfe der 
eh stehenden Ausdrücke von dem vom Mathematik·Paket berechneten Hauptwert ableiten. In diesen 

,-'usdrücken steht k für eine beliebige ganze Zahl. Eine einwertige Funktion wird durch Groß· 
hstaben gekennzeichnet. 

F = ±SQR(z) In (z) = LN(z) + 2"ik 
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Einlesen und Ausgeben von Feldern 

Die in diesem Abschnitt beschriebenen Schlüsselworte ermöglichen die folgenden Operationen: 

• Besetzen eines Felds mit Werten 

• Anzeigen und Ausdrucken der in einem Feld befindlichen Werte 

Wertzuweisungen 

= 

t I'I AT A=B 

wo A und B entweder beide Vektoren oder beide Matrizen sind, 
Das Feld B kann reell oder komplex sein, 
Wenn B komplex ist, dann muß A komplex sein. 

Einfache Zuweisung 

Wenn B reell ist, dann kann A reell oder komplex sein; bei komplexem A werden die Imaginärteile von A 
auf Null gesetzt. 

Dimensioniert A automatisch auf die Größe von B um und weist jedem Element von A den Wert des 
entsprechenden Elements von B zu, 

Die Operation kann durch zweimaliges Drücken von I AHN I angehalten werden, 

I Kann nicht im GALG-Modus verwendet werden , 

51 
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=0 Zuweisung von numerischen Ausdrücken 

1'1AT A= ( X ) 

wo X ein reell- oder komplexwertiger numerischer Ausdruck ist. 
Wenn X komplex ist , dann muß das Feld A ebenfalls komplex sein. 
Wenn X reell ist, dann kann das Feld A reell oder komplex sein ; bei komplexem A werden die 
Imaginärteile von A auf Null gesetzt. 

Weist X allen Elementen von A zu. Das Feld A wird nicht umdimensioniert. 

Die Operation kann durch zweimaliges Drücken von I ATIN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden . 

CON 

I l't AT A=C OH [ ( X [.. Y] ) ] 

Initiatisieren auf 1 

wo A ein reelles oder komplexes ist und die optionalen Umdimensionierungsindizes X und Y reellwertige 
numerische Ausdrücke sind. X und Y werden wie Indizes in CI I I't Anweisungen auf die nächste ganze 
Zahl gerundet. 

Weist allen Elementen von A den reellen Wert 1 zu. Bei Angabe von Umdimensionierungsindizes wird A 
nach Maßgabe dieser Werte explizit umdimensioniert. 

Kann nicht im CALC-Modus verwendet werden. 

ION Einheitsmatrix 

l'tA T A= I Dt~ [ ( X .' Y:> ] 

wo A ein reelles oder komplexes Feld ist und die optionalen Umdimensionierungsind izes X und Y 
reellwertige numerische Ausdrücke mit dem gleichen gerundeten ganzzahligen Wert sind . X and Y 
werden wie Indizes in CI I t,t Anweisungen auf die nächste ganze Zahl gerundet. A muß bei 
nichtangegebenen X und Y eine quadratische Matrix sein (d.h. zwei gleiche Indizes haben) . 

Bei fehlenden Angaben der Indizes X und Y wird A in eine Einheitsmatrix umgewandelt. Bei an­
gegebenen Umdimensionierungsindizes wird A explizit in eine quadratische Matrix umdimensioniert, 
wobei die Obergrenze für jeden Index durch den auf eine ganze Zahl gerundeten gemeinsamen Wert von 
X und Y bestimmt wird; anschließend werden dem Feld die Werte einer Einheitsmatrix zugewiesen . 

Kann nicht im CALC-Modus verwendet werden. 
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ZER Initialisieren auf Null 

I'IAT A=Z Ef;: [ ( X [ , Y) ») oder t'IAT A= ZEF:O [ ( X [ , Y) ») 

wo A ein reelles oder komplexes Feld ist und die optionalen Umdimensionierungsindizes X und Y 
reellwertige numerische Ausdrücke sind , X and Y werden wie Indizes in D I t'l Anweisungen auf die 
nächste ganze Zahl gerundet. 

Weist jedem Element von A den Wert 0 zu , Bei Angabe von Umdimensionierungsindizes wird A nach 
Maßgabe dieser Werte explizit umdimensioniert. 

Kann nicht im CALC-Modus verwendet werden , 

Einlesen von Feldern 

INPUT Einlesen über das Tastenfeld 

t'IAT I tWUT A [ , B) .. , 

wo A (und B) reelle oder komplexe Felder sind , 

Weist den spezifizierten Feldern reelle oder komplexe Werte zu , Komplexe Werte können nicht reellen 
Feldelementen zugewiesen werden , t'IA T I t~ F' U T fordert Sie durch Anzeige des Namens eines 
Feldelements zur Eingabe eines numerischen Ausdrucks über das Tastenfeld auf, Anschließend wird 
dieser Ausdruck ausgewertet und das Ergebnis als Wert dem Feldelement zugeordnet. Für jedes Feld 
wird zeilenweise (von links nach rechts und von der obersten zur untersten Zeile) zur Eingabe von 
Werten aufgefordert. Bei Angabe mehrerer Felder werden diese in der spezifizierten Reihenfolge 
abgearbeitet. 

Sobald der Name eines Feldelements angezeigt wird , können Sie den für dieses Element vorgesehenen 
numerischen Ausdruck eintasten und die Eingabe wie üblich mit I END UNE I abschließen, Sie können 
gleichzeitig die Werte für mehrere aufeinanderfolgende Feldelemente eingeben, indem Sie die einzelnen 
Zahlen durch Kommas trennen, Sobald ein Feld gefüllt ist , werden die verbleibenden Werte automatisch 
111 das nächste Feld eingetragen, Nach dem Drücken von I END UNE I zeigt der Computer den Namen des 
nächsten Feldelements (wenn vorhanden) an , dem ein Wert zuzuweisen ist. 
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INPUT (Fortsetzung) 

Die Arbeisweise von rl A T I 1·1 F' U T ist im übrigen mit der von I 1·1 P U T vergleichbar: 

• Der Befehls-Stack ist während der Ausführung von 1'1 A T I I·W U T immer aktiv. Mit ~, [!] , I]J 
00, und I]J [Y] können Sie durch den Befehls-Stack gehen, ohne zuvor I]J I eMDS I gedrückt zu 
haben. 

• Sie können mit einer benutzerdefinierten Direktausführungstaste auf die 1'1 A T I 1·1 P U T 
Eingabeaufforderung antworten. 

• Die Tastenfolgen [D I VIEW I und I]J I ERRM I sind während der Ausführung von 1'1 A T I HP U T aktiv. 

• Wenn Sie auf eine 1'1 A T HW U T Anweisung antworten, können Sie die Eingabe vor dem Drücken 
von I END LI NE I durch einmaliges Drücken von I ATTN I löschen. Wenn Sie I ATTN I zweimal drücken , 
löscht der HP-71 die Eingabe, hält die Programmausführung an und löscht die Anzeige . 

Kann nicht im CALC-Modus verwendet werden . 

Ausgeben von Feldern 

Die Operation der nachstehend beschriebenen Schlüsselworte kann durch einmaliges Drücken der 
Taste I ATTN I angehalten werden. 

DISP Anzeige im Standardformat 

1'1AT OI:3P A [ ; BJ. .. [ ' ] 

wo A (und B) reelle oder komplexe Felder sind. 

Zeigt die Werte der Elemente der spezifizierten Felder an . Die Anzeige erfolgt zeilenweise ; jede Feldzeile 
beginnt auf einer neuen Anzeigezeile. Zusätzlich werden die letzte Zeile eines Feldes und die erste Zeile 
des nächsten Felds durch eine Leerzeile getrennt. 

Der Terminator (Komma oder Semikolon) bestimmt die Abstände zwischen den einzelnen Feldelementen. 

Terminator Abstände zwischen Elementen 

Eng: Die einzelnen Elemente werden durch je zwei Leerstellen getrennt. Bei 
negativen Werten belegt das Minuszeichen die zweite Leerstelle. 

Breit: Jedes Element wird in einer aus 21 Spalten bestehenden Anzeigezone 
abgelegt. 

Bei fehlender Angabe eines Terminators für das letzte Feld werden die Elemente dieses Felds mit breiten 
Abständen angezeigt. 

Kann nicht im CALC-Modus verwendet werden. 
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PRINT Ausdruck im Standsrdlormat 

wo A (und B) reelle oder komplexe Felder sind . 

Druckt die Werte der Elemente der spezifizierten Felder aus. Die Arbeitsweise von ~t A T PR I H T ent­
spricht der von t·t A T D I :3 P mit der Ausnahme, daß die Ausgaben an die momentane F' R I tH E R I S 
Einheit gesendet werden. Zur Deklaration einer F' F, I ti TE", I :,: Einheit muß ein HP-IL Interfacemodul 
HP 82401A in den HP-71 eingesetzt sein. Wenn keine F'", I tHER I :,: Einheit deklariert ist, werden die 
Ausgaben auf die Anzeige oder die momentane HP-IL DIS P LA''''' I :,: Einheit gelenkt. t1 R T PR I t~ T 
sendet standardmäßig am Ende einer Zeile eine Wagenrücklauf/Zeilenvorschub-Sequenz an die 
PI', I tHEF: I :,: Einheit. Diese Sequenz kann durch die Et'IDL I tiE Anweisung modifiziert werden. 
EtlDL It-iE wird im HP-71 Referenzhandbuch und in Abschnitt 13 des HP-71 Benutzerhandbuchs 
beschrieben. 

Kann nicht im CALC-Modus verwendet werden. 

DISP USING 

t·tRT DISF' LI:,:It·iG Formatstring .: Ar ·· B 1 ... r .' 1 
Zeilennummer L .: J L .: J 

wo A (und B) reelle oder komplexe Felder sind. 

Anzeige im Benutzerformat 

Zeigt die Werte der Elemente der angegebenen Felder in dem durch den Formatstring oder die (über die 
Zeilennummer) spezifizierte I t·t A G E Anweisung bestimmten Format an. (Eine Diskussion von Format­
strings und Beschreibungen der Anweisungen D I :3 PLIS I t·i G und I t1 R G E finden Sie im HP-71 
Referenzhandbuch . 

Zur Anzeige komplexer Felder muß der entsprechende Feldspezifikator des Formatstrings oder der 
I t·t A G E Anweisung komplexwertig sein. Der komplexe Feldspezifikator (C ( , ) ) wird in Abschnitt 3 auf 
Seite 22 beschrieben. 

Die Werte werden zeilenweise angezeigt. Jede Zeile beginnt auf einer neuen Anzeigezeile; die letzte 
Zeile eines Felds und die erste Zeile des nächsten Felds werden durch eine Leerzeile getrennt. 

Die Interpunktionszeichen (Kommata oder Semikolons) zwischen den einzelnen Feldern dienen lediglich 
als Trennzeichen und haben keinerlei Auswirkung auf das Anzeigeformat. 

Das Mathematik-Modul muß zum Umnumerieren (mit REtlU t'IE:ER) eines Programms, das eine 
t·tAT D I SF' LI,,: I l·i G [Zeilennummerj Anweisung enthält, eingesteckt sein; andernfalls wird die 
Zeilennummer nicht korrekt aktualisiert. 

Kann nicht im CALC-Modus verwendet werden. 
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PRINT USING Ausdruck im Benutzerformat 

IHn P F.: ItH U S H~ G 
Formatstring [ , 

.: A 
Zeilen nummer .: 

wo A (und B) reelle oder komplexe Felder sind. 

Die Arbeitsweise von 1'1 A T PR I IH U :,: I HG entspricht der von 1'1 A T CI I S P U:,: I I~ G mit der Aus­
nahme, daß die auszugebende Information an die momentane F' F: I I'~ T E R I S Einheit gesendet wird. 
Zur Deklaration einer F' F: I IH E F: I S Einheit muß ein HP-IL Interfacemodul HP 82401 A in den HP-71 
eingesetzt sein. Wenn keine F' F: I I~ T E R I :,: Einheit deklariert ist, werden die Ausgaben auf die Anzeige 
oder die momentane HP-IL CI I SF'LAY I ~: Einheit gelenkt. 11AT PR I IH US I HG sendet 
standardmäßig am Ende einer Zeile ei ne Wagenrücklauf/Zeilenvorschub-Sequenz an die 
F' F: I I'~ T E R I S Einheit. Diese Sequenz kann durch die E I~ CI L I I'~ E Anweisung modifiziert werden. 
EI·WL I I'~E wird im HP-71 Referenzhandbuch und in Abschnitt 13 des HP-71 Benutzerhandbuchs 
beschrieben. 

Kann nicht im CALC-Modus verwendet werden . 

Beispiele 
Wenn Sie die Anzeigeverzögerung auf 8 oder größer setzen, bleibt die momentan angezeigte Zeile 
unbegrenzt lange in der Anzeige stehen, Erst durch Drücken von I END LI NE I (oder einer beliebigen 
anderen Taste) wird die nächste Zeile angezeigt. Dies gibt Ihnen die Möglichkeit, die Anzeigedauer 
jeder Feldzeile selbst zu bestimmen, 

CON, ION, ZER, OISP 

Eingabe/Ergebnis 

OF'T! Ol~ BASE 1 I~ STD I END L1NE I 
CI It'l A ( 3 .' 3) , B ( 1 ) I END UNE I 

C:OI'1PLE X c: ( 1 Ü, 20;' I END L1NE I 

I'IAT A= I ClI'~ I END LINE I 
I'IAT CI I SF' A .: I ENDLINE I 

1 (1 (1 
Ü 1 Ü 

Ü Ü 

B wird als einelementiger Vektor dimensioniert. 

Zeigt die Einheitsmatrix A mit engem 
Elementabstand an. 



I'HiT B=ZEF: (2.,2;, 1 END LI NE 1 

1'1 AT [I! :,;P E' , 
" 1 END LlNE 1 

(1 (1 

~j (1 

1'1 AT C=COt~ 0:: 3.,3::0 1 END LlNE 1 

1'1 AT [I! :,;F' C .: 1 END LlNE 1 

1 (1 :' ( 1 , 1:"::1 

" 
1 

1 .' ~~1 ) (" 1 .' (1 ') 1 
1 (1 ) ( 1 , (1 ') ( 1 

INPUT 

Eingabe/Ergebnis 

elF' T ! 0 t·~ E: A :,; E 1 "I E"'N;;;D'"'L7., N"'E"I 

[I Ii'1 A 0:: 2 .' 3 ::0 , B 0:: 3" 1 END LI NE 1 

OF'T! Ot·~ BA:,;E Ü 1 END LlNE 1 

COI'1F'LE>: C(2, 1" I ENDLINE I 

1'1 AT !t'~F'UT A, E: ., C I ENDLINE I 

A(l .,l)? • 

1 , 2 .' 3 , 4 1 END LI NE 1 

A<2.,2)? • 

~~1 ) 

.' Ü ) 

(1 ':, 
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Dimensioniert E: von einem einelementigen 
Vektor in eine 2 x 2 Matrix um und initialisiert 
diese auf Null. 

Dimensioniert C um und belegt C mit der 
Konstanten L 

Deklariert C als komplexe 3 x 2 Matrix. 
(OFT! Ot·~ E:A:,;E Ü ist auch 
Systemvoreinstellung. ) 

Fordert zur Eingabe des ersten Elements auf. 

Es können mehrere Werte eingegeben werden. 

Fordert zur Eingabe des fünften Elements auf, 
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5 " 6 , 7 I END UNE I 

8 ( 2 ) '7-' • 

::: , :3 , 1 Ü I END UNE I 

1 I 2} ( 5 ., 6) .' ( 7 ., :::) I END UNE I 

C( 2.> 1 ) '? • 

HAll I END UNE I 

:,:TD @ 1'1AT D I SP A.: E: .: C; I END UNE I 

1 
4 

7 
o 
'. ' 

2 3 
6 

(l f1 .,(1) (1 , (1) 

( 2 ., ~j ) (5.,6) 

(7 .,::: ) (t'~a~~ , [1 ) 

Weist den letzten beiden Elementen von A und 
dem ersten Elpt'l''''mt von B Werte zu. 

Weist den letzten beiden Elementen von B und 
dem ersten Element der komplexen Matrix C 
Werte zu. 

Weist den nächsten vier Elementen von C Werte 
zu. 

Weist dem letzten Element von C den Wert 1·1 A 1·1 
zu, 

Zeigt nacheinander jedes Feld durch eine Leer­
zeile getrennt an. 



DISP USING 

Eingabe/Ergebnis 

10 OPTION BASE 1 @ INTEGER A(5,5) 

15 WIDTH 22 @ DELAY 8 

20 COMPLEX SHORT Z(3,4) 

25 MAT A- IDN @ MAT Z - ((4,5)) 

30 MAT DISP USING 'DDD,ZZZ' ;A,A 

35 MAT DISP USING ' #,D' ;A @ DISP 4 

40 MAT DISP USING 100;Z 

45 DELAY 1 

100 IMAGE C(K,2D,'i') 
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Stellt die Anzeige auf die nachstehend 
dargestellte Anzeigeweise ein. Der Anzeigevorgang 
kann durch Drücken einer beliebigen Taste (wie 
I END LI NE I) fortgesetzt werden. 

Besetzt R als Einheitsmatrix und weist jedem 
Element von Z die komplexe Zahl ,; 4 .' 5 :> zu. 

Dieser Formatstring besteht aus zwei Feld­
spezifikatoren, D D D und Z Z Z. Mit Hilfe dieser 
Feldspezifikatoren werden nacheinander alle 
Elemente von A angezeigt. Das letzte Element von 
R wird D D D entsprechend formatiert und 
angezeigt. Anschließend wird eine Leerzeile und 
dann alle Elemente von R ein weiteres Mal 
angezeigt. Dabei wird das erste Element von R 
über den Feldspezifikator Z Z Z (dem nächsten 
Spezifikator im Formatstring) formatiert. 

Das Symbol # unterdrückt die automatisch zum 
Abschluß der Anzeige von R erzeugte Wagen­
rücklaufj Zeilenvorschub-Sequenz. Dadurch wird 
die Zahl 4 auf der gleichen Zeile angezeigt wie das 
letzte Element von R. 

Die Anweisung I t" R G E muß zur Formatierung 
eines komplexen Felds in der Form C ( ~ ) 
aufgebaut sein. Die Klammern müssen zwei 
numerische Feldspezifikatoren enthalten. 
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J 

0 0 00 10E1(1 [1 

00 0 0000 1000 
O OO~:::1 OO~:10 1 

00 1 

(1[1 01 

0 0 0 OO~:::11 0000 
O~:::100 (1[101 [1 

O ~j (1 E10~:::1(1 (1 ~:::1~j 1 

Vas Formatsymbol CI ersetzt führende Nullen 
durch Leerzeichen. Das Element (1,1) der 
Einheitsmatrix A ist 1. Daher werden die zwei 
führenden Nullen durch Leerzeichen ersetzt und 
das Element (1,1) als 1 angezeigt. Das 
Formatsymbol Z füllt jede führende Null mit >] 

auf, so daß das Element (1,2) als [1 I] 'j angezeigt 
wird. Die restlichen Elemente der Zeile werden 
durch wiederholte Auswertung des 
Formatstrings CI CI CI , Z Z Z formatiert und 
angezeigt. 

Nachdem das letzte (fünfte) Element der ersten 
Zeile angezeigt ist, wird eine Wagenrücklauf/ 
Zeilenvorschub-Sequenz gesendet, so daß die An­
zeige von Element (2,1) mit einer neuen Zeile 
beginnt. 

Der Feldspezifikator CI CI CI bestimmt das 
Anzeigeformat des letzten Elements von R, sO daß 
1 angezeigt wird. 

Auf das letzte Element der letzten Zeile folgend 
wird eine Wagenrücklauf/Zeilenvorschub-Sequenz 
gesendet, so daß zwischen den zwei Anzeige­
ausgaben von Feld Reine Leerzeile eingefügt 
wird. 

Da die auf den Formatstring in Zeile 30 folgende 
Variablenliste zweimal das Feld R enthält, wird 
das Feld R zweimal angezeigt. Bei der zweiten 
Anzeige von R wird das Element (1 ,1) dem 
Spezifikator Z Z Z entsprechend angezeigt, da 
CI Cl CI bei der ersten Anzeige von A bereits zur 
Formatierung des letzten Elements von A 
verwendet wurde. 

Dies ist die Anzeige des /etzten Felds in der 
Variablenliste von Zeile 30. Obwohl diese 
Anzeigezeile mit dem letzten Element der letzten 
Zeile von R endet, wird daher trotzdem keine 
Leerzeile eingefügt. 



01 0 0~~1 

000l~j 

~j0[101 4 

( 4 ,. 5i )( 4,. 5 i) ( 4 ,. 5i )( 

4 " 5 i ) 
/ 

( 4 ~ i ) ( 4 ~ i ) ( 4 ~ i ) ( ._' .' ." ._' 
4 , ~ ._' i ) 

( 4 ~ i :- ( 4 ~ i ) ( 4 ~ i ) ( 
.' '-' .' ." ._' 

4 .' 
~ ._' i ::. 
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Da derjenige Teil des Formatstrings in Zeile 35, 
der die Anzeigeweise von Zeichen steuert, nur aus 
einem CI besteht, werden die Elemente einer 
Zeile von A ohne Zwischenräume und ohne 
zusätzliche Zeichen hintereinander angezeigt. 

Das 11 Symbol in dem Formatstring in Zeile 35 
unterdrückt die normalerweise nach dem An­
zeigen der letzten Zeile des letzten Felds in der 
Variablenliste gesendete Wagenrücklauf/ Zeilen­
vorschub-Sequenz, 

Das Symbol f< in dem Formatstring in Zeile 100 
spezifiziert ein Kompaktfeldformat, bei dem keine 
fUhrenden oder nachgestellten Leerzeichen an­
gezeigt werden, Das Anzeigeformat der Realteile 
der (identischen) Elemente von Z wird über 
dieses Symbol bestimmt, Das Anzeigeformat der 
Imagnärteile wird über 2 [I ( [I [I) bestimmmt, Da 
der Imaginärteil (5 ) einstellig ist, wird bei der 
Anzeige ein Leerzeichen vorangestellt, Die An­
zeige der Klammern und des Kommas wird durch 
die Zeichenfolge C ( " ) erzeugt. 

Die Anzeige jeder Zeile wird mit einer 
Wagenrücklauf/ Zeilenvorschub-Sequenz ab­
geschlossen, so daß mit jeder neuen 
Matrizenzeile eine neue Anzeigezeile begonnen 
wird. 
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Abschnitt 7 

Matrizenrechnung 

: nachstehend gelisteten Schlüsselworte führen arithmetische Grundoperationen auf Feld~~. 
bei ist darauf zu achten, daß die Dimensionen der Operandenfelder mit der jeweiligen Operatio 
mpatibel sind. 

• Für Addition und Subtraktion müssen beide Operandenfelder Vektoren oder Matrizen sein und 
jeweils die gleiche Anzahl von Zeilen und Spalten haben. (Matrizen müssen jedoch nicht notwen­
digerweise quadratisch sein.) Felder, die diese Anforderungen erfüllen, werden im folgenden als 
vereinbar bezüglich Additionen bezeichnet. 

• Für die Multiplikation von zwei Feldern muß das erste Feld eine Matrix sein, während das zweite 
Feld eine Matrix oder ein Vektor sein kann. Die Anzahl der Spalten des ersten Felds muß gleich 
der Anzahl der Zeikn des zweiten Felds sein. Felder, die diese Anforderungen erfüllen, werden im 
folgenden als vereinbar bezüglich Multiplikationen bezeichnet. 

• Für die transponierte Multiplikation von zwei Feldern muß das erste Feld eine Matrix sein, 
während das zweite Feld eine Matrix oder ein Vektor sein kann. Die Anzahl der Zeikn des ersten 
Felds muß gleich der Anzahl der Zeikn des zweiten Felds sein. Felder, die diese Anforderungen 
erfüllen, werden im folgenden als vereinbar bezüglich transpanierter Multiplikationen bezeichnet. 

=-
IAT A=-B 

wO A and B entweder beide Vektoren oder beide Matrizen sind. 
Das Feld B kann reell oder komplex sein. 
Wenn B komplex ist, dann muß A komplex sein. 

Negation 

Wenn B reell ist , dann kann A reell oder komplex sein; für komplexe Felder A werden in diesem Fall die 
Imaginärteile aller Elemente auf Null gesetzt. 

Bedingt eine automatische Umdimensionierung von A auf die Größe von B und weist jedem Element von 
A den Wert des entsprechenden Elements von B mit umgekehrtem Vorzeichen zu. 

Die Operation kann durch zweimaliges Drücken von I ATTN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 

63 
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+ Addition 

wo A, Bund C entweder sämtlich Vektoren oder sämtlich 
Additionen sind. M"',~ f"' · "", , .... ""oe ."c" "" 
Die Felder Bund C können reell oder komplex sein . 

, 

Wenn entweder Bader C komplex ist, dann muß A komplex sein. 
Wenn sowohl B als auch C reell ist, dann kann A reell oder komplex sein; für komplexe Felder A werden 
in diesem Fall die Imaginärteile aller Elemente von A auf Null gesetzt. 

Bedingt eine automatische Umdimensionierung von A auf die Größe von Bund C und weist jedem Ele­
ment von A die Summe der entsprechenden Elemente von Bund C zu. 

Die Operation kann durch zweimaliges Drücken von I ATIN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 

r'lAT A=B- C 

Subtraktion 

wo A, Bund C entweder sämtlich Vektoren oder sämtlich Matrizen und Bund C vereinbar bezüglich 
Additionen sind . 
Die Felder E: und C können reell oder komplex sein. 
Wenn entweder Bader C komplex ist, dann muß A komplex sein. 
Wenn sowohl B als auch C reell ist , dann kann A reell oder komplex sein; für komplexe Felder A werden 
in diesem Fall die Imaginärteile aller Elemente von A auf Null gesetzt. 

Bedingt eine automatische Umdimensionierung von A auf die Größe von Bund C und weist jedem Ele­
ment von A die Differenz der entsprechenden Elemente von Bund C zu. 

Die Operation kann durch zweimaliges Drücken von I ATIN I angehalten werden . 

Kann nicht im CALC-Modus verwendet werden. 
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()* Multiplikation mit einem Skalar 

I wo A und B entweder beide Matrizen oder beide Vektoren sind und X ein numerischer Ausdruck ist. 
Feld B kann reell oder komplex und der Ausdruck X reell- oder komplexwertig sein . 
Weqn entweder B oder X komplex ist, dann muß A komplex sein. 
wen"'~woh l B als auch X reell ist, dann kann A reell oder komplex sein; für komplexe Felder A werden 
in diesem Fall die Imaginärteile aller Elemente von A auf Null gesetzt. 

Bedingt eine automatische Umdimensionierung von A auf die Größe von B und weist jedem Element von 
A das Produkt des Werts von X und des entsprechenden Elements von B zu . 

Die Operation kann durch zweimaliges Drücken von I ATIN I angehalten werden . 

Kann nicht im CALC-Modus verwendet werden . 

* Matrixmultiplikation 

IHn A=Bl C 

wo B eine Matrix, A und Centweder beide Vektoren oder beide Matrizen und Bund C vereinbar 
bezüglich Multiplikationen sind . 
Die Felder Bund C können reell oder komplex sein. 
Wenn entweder B oder C komplex ist, dann muß A komplex sein. 
Wenn sowohl B als auch C reell ist, dann kann A reell oder komplex sein; für komplexe Felder A werden 
in diesem Fall die Imaginärteile aller Elemente von A auf Null gesetzt . 

Bedingt eine automatische Umdimensionierung von A auf die Anzahl der Zeilen von B und die Anzahl der 
Spalten von C. Die Werte der Elemente von A werden nach den üblichen Regeln der Matrixmultiplikation 
gebildet. 

Die Operation kann durch zweimaliges Drücken von I A TIN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden . 
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TRN * Transponierte Multiplikation 

I'I AT A~ H :fl ( B ) :;:C 

wo B eine Matrix. A und Centweder beide Vektoren oder beide Matrizen und Bund C vereinbar 
bezüglich transponierter Multiplikationen sind . 
Die 'Felder Bund C können reell oder komplex sein . 
Wenn entweder B oder C komplex ist, dann muß A komplex sein. 
Wenn sowohl B als auch C reell ist. dann kann A reell oder komplex sein ; für komplexe Felder A werden 
in diesem Fall die Imaginärteile aller Elemente auf Null gesetzt. 

Bedingt eine automatische Umdimensionierung von A. so daß die Anzahl der Zeilen von A gleich der 
Anzahl der Spalten von B und die Anzahl der Spalten von A gleich der Anzahl der Spalten von C ist. 

Das Ergebnis dieser Operation ist das gleiche. als wenn zuerst die Transponierte von B (oder die 
konjugiert komplexe Transponierte von B bei komplexem B) berechnet und anschließend das Ergebnis 
mit C multipliziert wird, Das Mathematik-Paket verwendet jedoch spezielle Multiplikationsregeln , so daß 
B vor der Multiplikation nicht explizit transponiert werden muß. 

Die Operation kann durch zweimaliges Drücken von I ATTN I angehalten werden . 

Kann nicht im CALC-Modus verwendet werden . 

Beispiele 

-, *, ( >*, TRN * 
Eingabe/Ergebnis 

CIF'T I Ot~ BA ',:E 1 @ :no IENDLINEI 

I',EAL A (2, 3 ), B<3 , 4 ) IENDllNEI 

CO MPLE X SHORT C( 3 , l >. O(2>.E(9) 
I END l lNE I 

I'IAT A~ I 0"1 (2., 2 ) I END LlNE I 

I1AT C ~ « 3,4 » :;:AIENDLINEI 

I'I AT OI SF' C; IEND LI NEI 

( 3 ., 4 ) 
( Ü ., (1 ) 

( Ü . ~1 ) 

( 3 ,,4 ) 

C wird zu einer 2 x 2 Matrix umdimensioniert. 
Jedem Element von C wird das Produkt der 
komplexen Zahl 0:: .3., 4 ::' mit dem 
entsprechenden Element von A zugewiesen. 

Die Matrix C. 



IA T A=CCiI·! I~ 1'I AT C= C +A I ENDLINE I 

DI',;P C.: IENDLINE I 

(4! 4) 

.:: 1 .' 0 ::' 
.:: 1 ! Ci > 
.:: 4 ., 4 ::' 

IA T B=A l A I END LlNE I 

IAT D I ,,;p E:.: I END LlNE I 

2 2 
2 2 

'I AT II·WUT DI ENDLINE I 

D(1)? • 

1 .' 2 ) -' (3" 4 ) I END LI NE I 

'l A T E = H' I·to: C:O:I:[I I END LINE I 

IA T D I ',;F' E I END LINE I 

(15.,:::> 
(29 .> 6) 
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Weist C die Summe von A und C zu. Eine 
Umdimensionierung von C ist nicht erforderlich, 
da C bereits korrekt dimensioniert ist. 

Die Matrix C. 

Weist B das Mat rixpodukt Al A zu, Dazu wird E: 
zu einer 2 x 2 Matrix umdimensioniert. 

Die Mat rix B, 

Weist E das Produkt der konjugiert komplexen 
Transponierten von C mit dem Vectar [I zu. Dazu 
wird E zu einem zweielementigen Vektor 
umdimensioniert. 

Die Matrix E, 





Abschnitt 8 

Skalarwertige Matrixfunktionen 

Die in diesem Abschnitt beschriebenen Schlüsselworte repräsentieren Funktionen, die reelle oder 
komplexe Felder als Argumente verwenden (D E T verwendet nur reelle Matrizen) und reelle Zahlen als 
Ergebnis zurückgeben. (DOT kann sowohl reelle als auch komplexe Zahlen zurückgeben.) Wie alle 
übrigen Funktionen des HP-71 können diese Funktionen einzeln oder zusammen mit anderen 
Funktionen zum Aufbau von numerischen Ausdrücken benutzt werden. 

Determinantenfunktionen 

DET Determinante 

DET(A ) 

wo A eine quadratische reelle Matrix ist. 

Gibt die Determinante der Matrix A zurück. 

Die Operation kann durch zweimaliges Drücken von I ATTN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 

DETL Determinante der letzten Matrix 

DETL oder DET 

Gibt die Determinante der letzten reellen Matrix zurück . die 

• in einer r·, AT ... 11-1 ' . .' Anweisung (siehe Abschnitt 9) oder 

• als erstes Argument in einer r'I AT ... ", . .,..", Anweisung (siehe Abschnitt 9) 

spezifiziert wurde. Der von D E T L zurückgegebene Wert bleibt (selbst bei ausgeschaltetem HP-71) 
solange erhalten, bis eine andere r'l AT . .. 11-1' . .' Anweisung (mit reellem Argument) oder eine 
r'I AT. , . ", . .,.. ", Anweisung (bei der das erste Argment reellwertig ist) ausgeführt wird. 

Kann nicht im CALC-Modus verwendet werden. 

69 
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Matrixnormen 

eNORM Eins-Norm (Spaltensummennorm) 

Ct·jOF:I'l( A :' 

wo A ein reelles oder komplexes Feld ist. 

Gibt das Maximum (über alle Spalten von A) der Summen der Beträge aller Elemente in einer Spalte 
zurück. Die Definition des Betrags einer komplexen Zahl ist unter der Beschreibung des Schlüsselworts 
A 8 :,; auf Seite 45 in Abschnitt 5 zu finden. 

Die Operation kann durch zweimaliges Drücken von I AHN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 

RNORM Unendlich-Norm (Zeilensummennorm) 

wo A ein reelles oder komplexes Feld ist. 

Gibt das Maximum (über alle Zeilen von A) der Summen der Beträge aller Elemente in einer Zeile zurück. 
Die Definition des Betrags einer komplexen Zahl ist unter der Beschreibung des Schlüsselworts A 8 :,; auf 
Seite 45 in Abschnitt 5 zu finden. 

Die Operation kann durch zweimaliges Drücken von I AHN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 

FNORM Frobenius-Norm (euklidische Norm) 

Ft·jOPI'l( A ) 

wo A ein reelles oder komplexes Feld ist. 

Gibt die Quadratwurzel der Summe der Quadrate der Beträge aller Elemente von A zurück . Die 
Definition des Betrags einer komplexen Zahl ist unter der Beschreibung des Schlüsselworts A E::,; auf 
Seite 45 in Abschnitt 5 zu finden. 

Die Operation kann durch zweimaliges Drücken von I AHN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 
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Punktprodukt 

DOT Punktprodukt (Skalarprodukt) 

DOT( X ., y ) 

wo X und Y reelle oder komplexe Vektoren mit der gleichen Anzahl von Elementen sind. 

Gibt das Punktprodukt X·Y der Vektoren X und Y zurück. Das Ergebnis ist reell, wenn sowohl X als auch 
Y reell sind. Das Ergebnis ist komplex , wenn entweder X oder Y komplex ist. 

Bei einem komplexen Vektor X werden zur Berechnung des Punktprodukts die konjugiert komplexen 
Elemente von X verwendet. 

Die Operation kann durch zweimaliges Drücken von I ATTN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 

Feldgrenzen 

Die nachstehenden Funktionen sind besonders nützlich zur Kontrolle der möglicherweise durch 
Dimensionieren oder Urndimensionieren von Feldern geänderten I) P T I CI t·~ E: A ::; E Einstellung, der 
Anzahl der Dimensionen eines Felds und der Größe in jeder Dimension. 

UBND Feldobergrenze 

UE:t~D< A ., N ) oder UBOU t'~D<A , N ) 

wo A ein reelles oder komplexes Feld und N ein numerischer Ausdruck ist , dessen auf eine ganze Zahl 
gerundeter Wert 1 oder 2 ergeben muß. 

Gibt die Obergrenze für den N-ten (ersten oder zweiten) Feldindex von A zurück. Für Vektoren A gilt 
UBt·W ': A ., 2) ~ - 1. 

Kann nicht im CALC-Modus verwendet werden. 
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LBND Felduntergrenze 

LBtm O:: A ., N::- oder LE:oU t·m O:: A ., N::-

wo A ein reelles oder komplexes Feld und N ein numerischer Ausdruck ist, dessen auf eine ganze Zahl 
gerundeter Wert 1 oder 2 ergeben muß. 

Gibt den Wert der bei der Dimensionierung von A gültigen (I F' T I (I t·~ E: A:3 E Einstellung zurück . Für 
Vektoren A gilt L E: t·m 0:: A .' 2 ;' ~ - '1 . 

Kann nicht im CALC-Modus verwendet werden. 

Beispiele 

DET, DOT 

Eingabe/Ergebnis 

(lPT I (lt·~ BA:,:E 1 I END LlNE I 

D H I A 0:: 1 Ü.' 1 ü ::- I END LlNE I 

t'I AT A=I[lt~ I ENDLINE I 

t'IAT A= 0:: -3 ) lA I END LINE I 

DET O:: A::- I ENDLINE I 

59 04 9 

t'IAT A= I Dt·lo:: 3.,3) I END LINE I 

t'IAT A= 0:: 2 ) lA I END Ll NE I 

t'IAT A= H~ ',) 0:: A ;' I END LlNE I 

DET I END LlNE I 

Weist jedem Diagonalelement den Wert - 3 zu; 
alle anderen Elemente bleiben Null. 

Zeigt die Determinante von R an. 

Weist jedem Diagonalelement den Wert 2 zu; 
alle anderen Elemente bleiben Null. 

Berechnet die Inverse von R. 

Zeigt die Determinante der zuletzt mit einer 
t'1RT , , . I H'.} Anweisung invertierten oder als er­
stes Argument in einer t'1 AT , , , S Y ::: Anweisung 
verwendeten reellen Matrix an. I H I,) und ::: 'y' ::: 

werden in Abschnitt 9 auf den Seiten 000 bis 000 
beschrieben , 



[I I 1'1 A" 1 '" > .' E: <: 1 ", > I END LI NE I 

l'l AT A= 0::2 > I END LlNE I 

l'l AT B=COH I END LlNE I 

[l OT" A., B:' I END LlNE I 

20 

l'lA T c=o::" 1., 2> > I ENDLINE I 

[l OT 0:: C , A> I END LlNE I 

<2ü.,-40) 
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Weist jedem Element von A den Wert 2 zu. 

Initialisiert die Matrix E: auf Eins. 

Zeigt das Punktprodukt von A und E: an. 

Weist jedem Element von C die komplexe Zahl 
.:: 1 .' 2) zu. 

Zeigt das Punktprodukt (ein komplexer Wert) 
von C und A an. 

RNORM,CNORM, FNORM,UBND,LBND 
Eingabe/Ergebnis 

OF'TIOt'l BA:,:E l l ENDLINE I 

[I I 1'1 A 0:: 3, 5 > I END LI NE I 

l'lAT A=COt'l l END LlNE I 

F:HCIF:i'1" A > I END LlNE I 

Initialisiert die Matrix A auf Eins. 

Zeigt die Zeilensummennorm von A an. 
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l'l AT I t·W UT A I END UNE I 

1 ._ 2) ., (3 .. 4 ) ., ( 5 ._ 6) ., ( 7 .':::) .' ( 9 ._ 1 0 ) 
11 , 12::0 .' ( 13 ., 14 ::0 .' ( 15., 16 ::0 I END UNE I 

7 0, 76 913~~1[117 2 

ct·~ CW 1'1 ( A ::O I END UNE I 

FtWPI'l ( A ::O I END UNE I 

3 ::: ,6 7 :::1 5 92 11 7 

2 4 

Zeigt die Zeilensummennorm von R an. 

Zeigt die Spaltensummennorm von A an. 

Zeigt die Frobenius-Norm von A an. 

Zeigt die Obergrenze des ersten Index und dann 
die Obergrenze des zweiten Index von A an. 

Zeigt zuerst die Obergrenze des ersten Index von 
E: an und versucht anschließend die Obergrenze 
des zweiten Index von E: anzuzeigen. Da E: ein 
Vektor ist, gibt U E: t·~ D ( 8 .. 2::0 den Wert - 1 
zurück. 



3 -1 

L E: HD( A ., 1 :> IENOLINEI 
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Zeigt den Wert der bei der letzten 
Dimensionierung von A gültigen CI F' TI t) t·~ E: A :,: E 
Einstellung an. 
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Matrixinversion, -transposition und Gleichungssysteme 

Operationen 

INV Matrixinversion 

wo A und B reelle oder komplexe quadratische Matrizen sind, wobei gilt: 
Wenn B komplex ist, dann muß A ebenfalls komplex sein. 
Wenn B reell ist, dann kann A reell oder komplex sein ; für komplexe Felder A werden in diesem Fall die 
Imaginärteile aller Elemente auf Null gesetzt. 

Bedingt eine automatische Umdimensionierung von A auf die gleiche Größe von B und weist A die 
Invertierte der Matrix B zu. 

Die Operation kann durch zweimaliges Drücken von I AITN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 

TRN Transponierte Matrix oder konjugiert komplexe transponierte Matrix 

! 
I'IAT A=T PtHB ) 

wo A und B Matrizen sind. B kann reell oder komplex sein; wenn B komplex ist, dann muß A ebenfalls 
komplex sein. 
Wenn B reell ist, dann kann A reell oder komplex sein; für komplexe A werden in diesem Fall die 
Imaginärteile aller Elemente auf Null gesetzt. 

Bedingt eine automatische Umdimensionierung von A auf die Größe von B. Wenn B reell ist, dann wird A 
die Transponierte der Matrix B zugewiesen. Wenn B komplex ist , dann wird A die konjugiert komplexe 
Transponierte von B zugewiesen. 

Die Operation kann durch zweimaliges Drücken von I AITN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 

77 
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Lösen eines linearen Gleichungssystems 
Mit. Hilfe de~ Mathematik-Pakets können Sie auf sehr einfache Weise die Lösung eines Systems von 
linearen Gleichungen mit reellen und komplexen Koeffizienten exakt bestimmen. Als erster Schritt ist 
dabei zunächst das Gleichungssystem in ein Tripel von Feldern umzusetzen: Ergebnisfeld, 
Koeffizientenfeld, Konstantenfeld. Das Ergebnisfeld entspricht dabei den Variablen in den Gleichungen; 
das Koeffizientenfeld nimmt die Werte der Koeffizienten der Variablen auf; im Konstantenfeld werden 
die Werte der (konstanten) rechten Seiten der Gleichungen abgelegt. Betrachten Sie beispielsweise das 
nachstehende Gleichungssystem: 

5x + 3y + 2z ~ 4 

7x + Y + 3z ~ 14 

6x + 4y + 9z ~ 1 

Hier würde das Ergebnisfeld dem Vektor 

[:] 
entsprechen; das Koeffizientenfeld wäre die Matrix 

und das Konstantenfeld wäre der Vektor 

Wenn das Ergebnisfeld mit X, das Koeffizientenfeld mit A und das Konstantenfeld mit B bezeichnet 
wird, läßt sich das Gleichungssystem in Matrizenschreibweise formulieren als AX~B. Dies ist die vom 
Schlüsselwort :,: \. :,: benötigte Darstellung. 
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SYS Lösen eines linearen Gleichungssystems 

wo A eine quadratische Matrix, X und B entweder beide Vektoren oder beide Matrizen und A und B 
vereinbar bezüglich Multiplikationen sind . Zu Beginn von Abschnitt 7, Seite 63 wird der Begriff "verein­
bar bezüglich Multiplikationen" definiert. 

Die Felder A und B können reell oder komplex sein. 

Wenn entweder A oder B komplex ist , dann muß X ebenfalls komplex sein. 

Wenn sowohl A als auch B reell sind, dann kann X reell oder komplex sein ; für komplexes X werden in 
diesem Fall die Imaginärteile aller Elemente auf Null gesetzt. 

Bedingt eine Umdimensionierung von X auf die Größe von B und weist den Elementen von X Werte zu , 
die die Matrizengleichung AX = B erfüllen. 

Die Operation kann durch zweimaliges Drücken von I ATTN I angehalten werden . 

Kann nicht im CALC-Modus verwendet werden . 

Beispiele 

INV, TRN 

Eingabe/Ergebnis 

OPTIOH E:RS E l lENDUNE I 

DUI R C l , 3) I ENDLINE I 

I'IRT R= I DI'II END LINE I 

I'Hn A= ( 2) lA I END UNE I 

I'IRT A= I I·j'.}': A::' I END UNE I 

I'I RT D I ~: P A; I END UNE I 

~ ._' ü ü 
ü ~ ü '-' 
l:::1 (1 ~ ._' 

Weist allen Diagonalelementen von A den Wer t 
2 zu. Alle anderen Elemente sind Null. 

Zeigt die Inverse von A an. 
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[I II'1 C ( 3 " 2 ) I END LI NE I 

t'1AT C=c Ot'll END UNE I 

1'1AT [I I ~:F' C ,: I END UNE I 

1 1 
1 1 

[lII'1 [1 (2, 2 ) IENDLINEI 

t'1AT [I=TR tH C) I END UNE I 

t'1AT [I I 3P [I ,: I END UNE I 

1 
1 . 1 

COM PLEX 3HORT [1 ( 2,3),[(3,3 ) 
I END UNE I 

t'1 AT [1=( ( 1 ,2) ) I ENDUNE I 

t'1AT [I I :,:p [I ,: I END UNE I 

( 1 .' 2 ::­
( 1 .' 2) 

( 1 .' 2 > 

t'1AT [I=T RtH[I) IENDUNEI 

t'1AT [I I:3P [I ; I END UNE I 

( 1 ., - 2) 
( 1 .' -2 ) 

( 1.' -2) 

( 1 .' -2 ) 
(1, -2) 

(1 ,. - 2) 

.:: 1 " 2::­
( 1 " 2 ) 

Initialisiert Matrix C auf Eins. 

Zeigt C an. 

Berechnet die Transponierte von C und 
dimensioniert D zu einer 2 x 3 Matrix um. 

Zeigt die Transponierte von C an. 

Weist allen Elementen von [I den komplexen 
Wert ( 1 ,2 ) zu. 

Die komplexe Matrix [I . 

Dimensioniert D zu einer 3 x 2 Matrix um und 
weist D die Werte der konjugiert komplexen 
Transponierten von Cl zu. 

Die konjugiert komplexe Transponierte von [I. 
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l't AT HlPUT C I END LlNE I 

CO::l., l )'? • 

1 .' ( 1 .' 2) .' ( 2., 1 [1::' I END UNE I 

C (2 ,.1 ) ? 1 

0:: 1 J 1 ) .' ( [1 ., 3 ) J 0:: - 5 J 1 4 ) I END LI NE I 

C(3 .. 1 )'? • 

( 1 ) 1» O~1 ., 5) .' (- ::::,20 ) I ENDLINE I 
I'IA T 0 I :,:F' c.: I END LINE I 

( 1 ,,[1) 

( 1 .' 1 ::. 
(-5 ,.14) 

(- :::: .. 2[1) 

.:: 1 " 2 ) 
«(1 ., 3 ) 

« (1 " 5 ) 

I'I AT 0= HH! < (:) I END LINE I 

I'I AT 0 I SF' 0; I END LlNE I 

(1~~1.,1) (-2) 6 ) 

(-3 1 -2) 
(9) -3) 
(- 7 , 09E-l1 .. 8) 
(- 3 ,. -2) 

( 2 .. 10 ) 

(- 2 , 2 ) ( -1 .. - 2) 
(1,-I,ICi32E-ll) 

Die komplexe Matrix C. 

Dimensioniert [I zu einer 3 x 3 Matrix um und 
weist D die Werte der Inversen der Matrix C zu. 

Die exakte Inverse der komplexen Matrix e ist 
die Matrix 

[

lO+i 

9- 3i 

- 2+2i 
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SYS 
Das bereits auf Seite 78 betrachtete Gleichungssystem 

könnte wie folgt gelöst werden, 

Eingabe/Ergebnis 

5x + 3y + 2z = 4 

7x + y + 3z = 14 

6x + 4y + 9z = 1 

OPT I Of! E:A:,:E 1 I~ S TD I END UNE I 

D I 1'1 : •• : Cl) " E: <: ::; ::0 " A (3 " ::;::0 I END UNE I 

l'l AT I1~F'U T E:" A I ENDLINE I 

E!(1)? • 

4" 14 " 1 I END LINE I 

A ( 1 ,. 1)? • 

5 ,.3 .. 2 .. 7, 1 ,. 3 ,. 6,. 4 .. 9 IENDLINEI 

l'lAT :·<=:':'''''S <: A" E:::O I END UNE I 

1'l A T D I :3F' :.< I END UNE I 

2, 556603 7 735::: 
-2 , 6 50 9 4339623 
- . 415094339623 

Weist den Elementen von B Werte zu, 

Weist den Elementen von A Werte zu, 

Zeigt die Werte des Ergebnisfelds an, 

= x. 
= y, 
- z, 

Obwohl das Ergebnisfeld X und das Konstantenfeld B in typischen Anwendungen Vektoren sind, ist die 
Verwendung von ::: 'i :,: nicht nur auf einspaltige Felder beschränkt, Dadurch kann eine beliebige, nur 
durch den vorhandenen Speicherplatz beschränkte Anzahl von Gleichungssystemen mit n Gleichungen 
und nUnbekannten simulatan gelöst werden, vorausgesetzt, daß die Koeffizienten jedes 
Gleichungssystems identisch sind, Das nachstehende Beispiel soll diese Verwendung von S 'iS 
verdeutlichen, 
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Beispiel. Die Abteilung für Öffentlichkeitsarbeit der Firma XYZ will die von zwei externen 
Druckereien verwendeten Kostenfaktoren bestimmen. Es ist bekannt, daß jede der Druckereien einen 
Auft rag auf der Basis der Anzahl der Seiten und der Anzahl der I1lu~trationen plus einen 
Festkostenanteil kalkuliert. Unter Benutzung von jeweils drei Angeboten pro Druckerei (siehe unten) 
. t ein Programm zu schreiben, das die Kosten pro Seite, pro Illustration und den Festkostenanteil 
berechnet. 

Anzahl der Anzahl der Gesarntkosten 
Auftrag 

Seiten Illustrationen 
Druckerei A Druckerei B 

1 273 35 5835.00 DM 7362.50 DM 
2 150 8 3240.00 DM 4085.00 DM 
3 124 19 2775.00 DM 3517.50 DM 

Zur Schätzung der Kosten ist für jede der Druckereien das folgende Gleichungssystem zu lösen: 

273x [ + 35x2 + X3 ~ Angebot, 

150x, + 8x2 + X3 ~ Angebot2 

124x, + 19x2 + X3 ~ Angebot3 

Diese Gleichungen lassen sich in Matrizenschreibweise als AX ~ B darstellen, wobei: 

• A die Koeffizientenmatrix mit der Anzahl der Seiten in Spalte I, der Anzahl der Illustrationen in 
Spalte 2 und dem Festkostenanteil (jeweils 1) in Spalte 3 ist. Jede Zeile enthält diese Daten für die 
einzelnen Aufträge. 

• B die Konstantenmatrix, in diesem Fall ein Feld der Dimension 3 X 2 ist. Jede Zeile enthält die 
Angebote der beiden Druckereien für die drei Aufträge. 

• X das Ergebnisfeld mit den unbekannten Kostenfaktoren x" X2 und X3 ' Dabei sind X, die Kosten 
pro Seite, X2 die Kosten pro Tllustration und X3 stellt den Festkostenanteil dar. Da zwei 
Gleichungssysteme simultan gelöst werden sollen, muß das Ergebnisfeld eine Matrix sein; d.h. es 
sollte zweidimensional deklariert werden. (Wenn die Größe des Ergebnisfelds nicht mit der Größe 
der Konstantenmatrix B übereinstimmt, wird das Ergebnisfeld automatisch vor der Ausführung 
von :,;"":3 auf die Größe von B umdimensioniert.) Jede Spalte enthält dann die Kostenfaktoren für 
eine Druckerei. 
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10 OPTION BASE 1 @ STD 

20 OlM A(3,3),X(3 ,2),B(3 ,2) 

30 DATA 273,35.1 

40 DATA 150,8,1 

50 DATA 124,19,1 

60 DATA 5835,7362.5 

70 DATA 3240,4085 

80 DATA 2775,3517.5 

90 READ A,B 

100 MAT X- SYS(A,B) 

110 DISP USING '11 A,3X, 11 A./'; 
'DRUCKEREI N ,'DRUCKEREI B' 

120 MAT DISP USING '2X3D.2D,8X, 
3D.2D' ;X 

DF:UC KEF: E I A 

2 [1 , ~~1(1 

5 ,00 
2 [1(1, ~~1(1 

DF:UCKEF.:E I B 

7 , 5 0 
275 , 00 

Spezifikationen für Auftrag 1. 

Spezifikat ionen für Auftrag 2. 
Spezifikat ionen für Auftrag 3. 
Angebote für Auftrag 1. 

Angebote für Auftrag 2. 
Angebote für Auftrag 3. 

Festkostenanteil 
Kosten pro Seite 
Kosten pro Illustration 

Beipiel. Dieses Beipiel demonstriert die Anwendung von :" \' :" bei der Berechnung eines Schaltkreises. 
Die Impedanzen der Schaltelemente in dem nachstehend abgebildeten Schaltkreis sind in komplexer 
Form angegeben. Die komplexe Darstellung der Stöme hund 12 soll bestimmt werden. 

E= 5 Zc = -30 1 
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Dieses System kann durch die folgende komplexe Matrizengleichung 

oder durch 

[

1O+200i 

-200i 
-200i ] [lI] [5] (200-30)i I, ~ 0 

AX ~ B 

dargestellt werden, Das nachstehende Programm bestimmt hund 12, 

10 OPTION BASE 1 @ STD 

20 COMPLEX SHORT A(2,2),X(2) 

30 OlM B(2) 

40 MAT INPUT A,B 

50 MAT X ~ SYS(A,B) 

60 MAT OISP X 

A(l.,l)? • 

( 10 .> 20[1)., (0.> -20[1 )., (ü.> -20[1 )" 

.:: [1 ., 17[1) I END LI NE I 

E:(l)'" • 

5 .' '" I END LI NE I 

(,037 156 ~, 13114) 
(,043713.> ,1542 ::: ) 

Wenn entweder A oder B komplex ist, dann muß 
X ebenfalls komplex sein. 

Weist den Elementen von A Werte zu. 

Weist den Werten von B Werte zu. 
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Zusätzliche Information 

Für reelle quadratische Matrizen A benutzen die Operationen [I E T 0:: A ::O , t'l A T B= ItH,' 0:: A:' und 
t'l AT X= :,; \ ' :,; 0:: A , B::O des Mathematik-Pakets die LR-Zerlegung von A als Zwischenschritt. Dabei wird 
das Verfahren von Craut mit partieller Pivotsuche und erhöhter arithmetischer Genauigkeit zur 
Konstruktion der LR-Zerlegung verwendet. Die LR-Zerlegung kann durch die Gleichung PA ~ LR be­
schrieben werden, wobei 

• L eine linke untere Dreiecksmatrix (alle Elemente oberhalb der Diagonalen sind 0) ist. 

• R eine rechte obere Dreiecksmatrix (alle Elemente unterhalb der Diagonalen sind 0) ist. 

• P eine ~ermutationsmatrix ist, die die von der partiellen Pivotsuche herrührende Zeilen­
vertauschung in der Matrix Arepräsentiert. 

Die Faktorisierung PA ~ LR kann auf jede beliebige nichtsinguläre Matrix angewendet werden. Im 
Falle von singulären oder "maschinensingulären" Matrizen wird die LR-Zerlegung geringfügig geändert, 
wobei der resultierende Fehler klein im Vergleich zum Rundungsfehler ist. Die resultierende LR­
Zerlegung von A stimmt dann fast mit der LR-Zerlegung einer anderen Matrix A' überein, d.h. die 
Norm der Matrix A entspricht fast der Norm der Matrix A' , vorausgesetzt, daß keine Bereichs­
unterschreitung bzw. -überschreitung eintritt. 

Die fast singuläre Matrix 

kann mit dem Schlüsselwort I t·~ I,} erfolgreich invertiert werden: 

Eingabe/Ergebnis 

elF' TI m·~ E: A :,; E 1 I END UNE I 

[I I t'1 A 0:: :3 .' :3 ::. .' E: 0:: :3 ., :3 ::0 I END U NE I 

t'lAT It-WUT AI ENDUNEI 

A(1 .. 1 ·:. '-:;' • 

1 .' 3 .' 0 ! 0 ! Cl .. 1 I END LI NE I 

A(] ., ":I? 
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6 6 6666 66666 7! 2.,0 I END LI NE I 
rlA T B= HI',}':: A::' I END LlNE I 

It AT B=B lA IENDLINEI 

I1 AT [I I :,:p E: ,: I END LlNE I 

0 ü 
(1 ü 
(1 (1 1 

A enthält nun die oben abgebidete Matrix, 

8 ist die berechnete Inverse der Matrix A, 

Zeigt die Einheitsmatrix 8 an, die hier als 
Produkt der Matrix A mit ihrer Inversen erzeugt 
wurde. 

Das Schlüsselwort :,: '( :,: löst die Matrizengleichung AX ~ 8 in mehreren Schritten nach X auf. Zuerst 
wird zur Ermittlung von PA ~ LR die LR-Zerlegung von A gebildet. 

Unter Verwendung von PA ~ LR stellt sich das Problem als die Auflösung von LRX ~ P8 nach X dar. 
Dazu wird zunächst LY ~ P8 nach Y (Vorwärtssubstitution) und anschließend RX ~ Y nach X 
(Rücksubstitution) aufgelöst. Der Wert von X wird nun als erste Näherung der tatsächlichen Lösung in 
einer iterativen Verfeinerungsroutine verwendet, die das Endergebnis ermittelt. 

In vielen Fällen ermittelt das Mathmatik-Paket eine korrekte Lösung selbst dann, wenn die 
Koeffizientenmatrix singulär (d.h. die Gleichung X ~ A -18 nicht erfüllt) ist. Durch diese Eigenschaft 
sind Sie in der Lage, mit ::: 'y' ::: unter- und überbestimmte Gleichungssysteme zu lösen. 

In einem unterbestimmten System (mehr Unbekannte a ls Gleichungen) enthält die Koeffizientenmatrix 
weniger Zeilen als Spalten. Zur Lösung dieses Systems mit ::; 'y'::: : 

• Fügen Sie genügend Nullzeilen an Ihre Koeffizientenmatrix von unten an, so daß Sie eine quadratische 
Matrix erhalten. 

• Fügen Sie entsprechende Nullzeilen an das Konstantenfeld an. 

Durch Anwendung des Schlüsselworts :::: \' S auf diese Felder erhalten Sie eine Lösung für das ursprüngliche 

Gleichungssystem. 

In einem überbestimmten System (weniger Unbekannte als Gleichungen) enthält die Koeffizientenmatrix 
weniger Spalten als Zeilen. Zur Lösung des Problems mit :::: \ ' ::::: 

• Fügen Sie genügend Nullspalten an Ihre Koeffizientenmatrix von rechts an, so daß Sie eine qua~ratische 
Matrix erhal ten. 

• Stellen Sie sicher, daß Ihr Ergebnisfeld so dimensioniert ist, daß die Zahl der Zeilen mindestens der Zahl 
der Spalten der neuen Koeffizienmatrix entspricht. 

Durch die Anwendung des Schlüsselworts ::: 'r' :::: auf diese Felder erhalten Sie eine Lösung für das ursprüng­
liche Gleichungssystem. Jedoch sind nur diejenigen Elemente des Ergebnisfelds von Bedeutung, die Ihren 
ursprünglichen Variablen , entsprechen. 
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Sowohl unterbestimmte als auch überbestimmte Systeme haben singuläre Koeffizientenmatrizen. Daher 
sollten Sie immer prüfen, ob die von :::: '-c' :::: zurückgegebenen Ergebnisse die Originalgleichung erfüllen. 

t" AT C= I t·~ I,) ( A) und t" AT X= :::: Y:::: ( A ., B ) wenden die gleichen, oben genannten Techniken bei einer 
komplexen quadratischen Matrix A an, wobei die Matrizen A und B durch entsprechende reelle zerlegte 
Matrizen ersetzt werden. 

Das Schlüsselwort :::; '-(' :::; kann auch zur Invertierung einer quadratischen Matrix A verwendet werden. 
t" AT X= S 'y' :::: ( A ., B) gibt die Invertierte von A zurück, wenn X, A und B die gleiche Dimension haben und 
B als Einheitsmatrix gewählt wurde. Dieses Verfahren ist im allgemeinen schneller und genauer als 
t·, AT X= I t·l l,) ( A ) , jedoch benötigt dieses Verfahren mehr Speicherplatz. (Speicherplatzanforderungen 
werden in Anhang B erläutert.) 



Abschnitt 10 

Nullstellen einer reellen Funktion 
Schlüsselworte 
~!it Hilfe der in diesem Abschnitt beschriebenen Schlüsselworte können Sie Nullstellen oder Minima 
\'on Funktionen mit bis zu fünf reellen Variablen bestimmen. 

Der größte Teil dieses Abschnitts behandelt die Anwendung dieser Schlüsselworte auf Funktionen einer 
Ya riablen. Funktionen mehrerer Varaiblen werden unter Schachtelungsregeln behandelt. 

Das Schlüsselwort F t·n;: 0 0 T kann über das Tastenfeld oder in einem Programm zur Bestimmung eines 
x· Wertes, für den {(x) Null oder ein Minimum ist, verwendet werden, vorausgesetzt, daß die Definition 
der Funkt ion zusammen mit dem Schlüsselwort eingegeben wurde oder im Programm enthalten ist. 

Die Schlüsselworte F ',.I ALU E und F G U ES ',' unterstützen die Verwendung von FfH,: 0 0 T und sind 
nützlich bei der Interpretation der zurückgegebenen Ergebnisse. Alle drei Schlüsselworte geben einzelne 
numerische Werte zurück und können daher einzeln oder zusammen mit anderen numerischen 
Funktionen oder Variablen zu numerischen Ausdrücken kombiniert werden. Ein viertes Schlüsselwort 
F ',.lA R repräsentiert die Variable in der Funktion, deren Nullstellen mit F t·1 R 0 0 T zu bestimmen sind. 
Des weiteren gibt das Schlüsselwort den während der Ausführung von F t·n;: 0 D T zuletzt berechneten 
~ährungswert für die Nullstelle zurück. 

FNROOT Nullstellen einer Funktion 

Ftn;:OOT (A., B , n 
wo A, Bund F reelle numerische Ausdrücke sind. 

Sucht von den Anfangsnäherungen A und B ausgehend nach einer reellen Nullstelle der Funktion F. Die 
Anfangsnäherungen können gleich sein; in diesem Fall wird jedoch vor Beginn der Berechnung einer 
dieser Werte gestört. 
Der erste Wert erfüllt eine der folgenden Bedingungen: 

1. Der zurückgegebene Wert ist eine exakte Nullstelle der spezifizierten Funktion. 

2. Der zurückgegebene Wert ist eine auf 12 Stellen gen aue Näherung einer Nullstelle der spezifizierten 
Funktion. 

3. Der zurückgegebene Wert ist eine Näherung für eine lokales Minimum der Absolutwerte der 
spezifizierten Funktion. 

4. Der zurückgegebene Wert ist der Wert der spezifizierten Funktion in einem Bereich, in dem diese 
konstant ist. 

5. Der zurückgegebene Wert ist ± 9.99999999999E499, wenn die gesuchte Nullstelle nicht im Bereich 
der darstellbaren Zahlen gefunden werden konnte. 
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FNROOT (Fortsetzung) 

Kann nicht im CALC-Modus verwendet werden . Zusätzliche Informationen über F I·n;: CI [I T und den 
CALC-Modus finden Sie auf Seite 97 . 

Auf den Seiten 97-99 erh8Jten Sie weitere Information über F t·n;: [I CI T Schachtelungen und die 
Wechselwirkungen zwischen F t'WClClT und I ATTN I und zwischen FtlPClClT und benutzerdefin ierten 
Funktionen . 

FVAR Funktionsvariable 

F',}AP 

Repräsentiert die Variable x in f(x) , d.h. die Variable, deren Wert von F t·n;: CI CI T bestimmt wird . 

Gibt ebenso den während der Ausführung von Ft·IPClClT zuletzt berechneten Näherungswert zurück . 

Kann im CALC-Modus verwendet werden . 

FVALUE Funktionswert 

F ',..'RLU E 

Gibt den Wert der Funktion F (drittes Argument von FI'lF:ClOT ), der mit der letzten Ausführung von 
F t·lF: [I CI T berechnet wurde zurück. 

Der Wert von F',,oA L UE bleibt (auch nach einem Ausschalten des HP-71) bis zum Abschluß der nächsten 
Ausführung von F 1·1 P [lOT erhalten . 

Kann im CALC-Modus verwendet werden . 

FGUESS Vorletzte Nullstellennäherung 

FGUES:,: 

Gibt den in der letzten Ausführung von F t·n;: I) [I T als vorletzte Näherung für die Nullstelle berechneten 
Wert zurück . 

Der Wert von FGUE :3 :,: bleibt (auch nach einem Ausschalten des HP-71) solange erhalten , bis F t-WOOT 
erneut ausgeführt wird . 

Kann im CALC-Modus verwendet werden . 
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Durch Überprüfen der Wer te von F '.} ALU E und F G U E :,,,,: können Sie das Ergebnis von F H F: CI CI T wie 
fo lgt kontrollieren: 

• Wenn F I,} ALU E = 0 gi lt , ist das Ergebnis von F t'H~:: (I (I T eine exakte Nullstelle der spezifizierten 
Funktion, und das Ergebnis von F G U E :,,,,: liegt sehr nahe an der Nullstelle. 

• Wenn sich die Ergebnisse von F tm CI CI T und F G U E :,,,,: nur in der zwölften signifikanten Stelle 
unterscheiden und F I,) A L LI E und F 0:: F G LI ES :::) verschiedene Vorzeichen haben , begrenzen diese 
beiden Werte die exakte Nullstelle. 

• Wenn sich das Ergebnis von F t ·~ F: 0 (I T und das Ergebnis von F G U E ::: ::: unterscheiden, der 
Funktionswert F '.} ALU E jedoch gleich dem Wert der Funktion an der Stelle F G U E :,,,,: ist, liegen 
beide Ergebnisse in einem Bereich, in dem F t·1 F konstant ist. 

Gehen Sie zur Auflösung e iner Gleichung nach einer bestimmten Variablen wie folgt vor: 

1. Schreiben Sie die zu löse nde Gleichung in der Form ((x) ~ o. 
2. Ersetzen Sie in der die Funktion ((x) definierenden Formel die Variable, nach der Sie die 

Gleichung lösen wollen , durch das Schlüsselwort F '.} A F: . 

3. Verwenden Sie die {(x) definierende Formel als drittes Argument von F t·lF: CI CI T. 

4. Wählen Sie zwei Anfa ngswerte (die gleich sein können) und verwenden Sie diese als erste 
Argumente von F t·1 F: CI CI T. Da F tlF: CI CI T immer drei Argumente benötigt, sollten Sie selbst bei 
Verwendung von nur einem Anfangswert diesen Wert für A und Beinsetzen. 

Beispiele 

Lösen der Gleichung x2 = 2 (nWO CiT, F',.!AL UE, F',.!A F: ) 

Die folgenden sechs Beispiele verdeutlichen verschiedene Verwendungsmöglichkeiten von F tm CI CI T 
und F',}AP zur Lösung der Funkt ion x2 = 2. Als Anfangswerte werden 1 und 2 benutzt. Das Ergebnis 
wird im ersten und sechsten Beipiel angegeben. 

Beispiel 1: 

Eingabe/Ergebnis 

F t·II;:ClClT 0:: 1 .. 2 .. F'.}AP "· 2-2 ::O I END U NE I 

1 .4 142135623:,: 

Beispiel 2: 

10 DI SP FNROOT(COS(0),LOG2(4), 
FVAR A 2 - 2) 

20 DISP 'FVALUE ~ ' ;FVALUE 

F t-lF: CI CI T kann sowohl über das Tastenfeld 
eingegeben als auch in einem Programm 
verwendet werden. 

Als Startwert kann auch ein arithmetischer 
Ausdruck verwendet werden . 
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Beispiel 3: 

10 DEF FNG~FVAR~2 - 2 

20 DISP FNROOT(1 ,2,FNG) 

30 DISP 'FVAlUE- ';FVALUE 

Beispiel 4: 

10 DEF FNF(X)~X~2 -2 

20 DISP FNROOT(1 ,2,FNF(FVAR)) 

30 DISP 'FVALUE~ '; FVALUE 

Beispiel 5: 

10 DEF FNH 

20 FNH = FVAR~2 - 2 

30 END DEF 

40 DISP FNROOT(1 ,2,FNH) 

50 DISP 'FVALUE~ '; FVALUE 

Beispiel 6 : 

10 DEF FNJ(X) 

20 FNJ - X~2-2 

.30 END DEF 

40 DEF FNF(X) - 2·X 

50 DISP FNROOT(1 ,FNF(1 ),FNJ(FVAR)) 

60 DISP 'FVALUE ~';FVALUE 

Eingabe/Ergebnis 

I RUN I 

1,4142135623::: 
FI,) ALUE = ,0 ~10f1(1I:":H~10(Hj2 

Das dritte Argument von F t·j F: [I [I T kann ein 
Ausdruck oder der Aufruf einer benutzer­
definierten Funktion sein. 

F V A R kann in einer benutzerdefinierten 
Funktion oder, wie oben, als drittes Argument von 
FtiROOT verwendet werden. 

Die benutzerdefinierte Funktion kann ein- oder 
mehrzeilig sein. 

Das erste und zweite Argument von F ti F~ 0 I) T 
kann ebenfalls einen Aufruf einer 
benutzerdefinierten Funktion enthalten. 

Die Lösung von x2 ~ 2. 
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Lösen der Gleichung log (x) = e/x (F ~'H;:: CI CI T, F I,}A L LI E, F I,} A F.:, F G U E ::; ::; ) 

'Zur Lösung von log(x) ~ elx ist diese Gleichung erst in die Form f(x) ~ 0 zu bringen. Dazu ist elx von 
beiden Seiten der Gleichung zu subtrahieren, was zu log(x) - elx ~ 0 führt. Dies ist äquivalent zu 
x log(x) - e ~ O. Da die linke Seite dies", Gleichung für x ~ 0 nicht definiert ist und der Algorithmus 
bei der Suche nach einer Nullstelle möglicherweise auch die negative Halbachse erreicht, soll anstelle 
der obigen Gleichung die Gleichung I x I log lxi - e ~ 0 gelöst werden. Diese Gleichung hat die gleichen 
positiven Lösungen wie die erste Gleichung, ist jedoch zusätzlich auch für negative x Uedoch wie die 
erste Gleichung nicht an der Stelle x ~ 0) definiert. Das nachstehende Programm enthält eine 
benutzerdefnierte Funktion zur Berechnung der linken Seite der Gleichung und verwendet an­
schließend F I·n;: I) I) T zur Bestimmung einer Lösung der Gleichung. 

10 STD @ DESTROY ALL 

20 DEF FNF(X) 

30 FNF ~ ABS(X)*LOG(ABS(X)) - EXP(1) 

40 END DEF 

50 INPUT A,B 

60 R~FNROOT(A,B,FNF(FVAR)) 

70 DISP 'R~';R 

80 DISP 'FNF(R)~';FVALUE 

90 DISP 'FGUESS~';FGUESS 

Benutzerdefinierte Funktion zur Berechnung der 
linken Seite der Gleichung. 

Die beiden Anfangsnäherungen. 

Um dieses Programm verwenden zu können, müssen Sie zwei Anfangsnäherungen vorgeben. Obwohl 
diese Anfangsnäherungen nicht aufsteigend geordnet oder sogar verschieden sein müssen, führt die 
Verwendung von Anfangsnäherungen, die die Nullstelle eingrenzen, in der Regel zu einer Verkürzung 
der benötigten Rechenzeit. In dem hier betrachteten Beispiel ist F 1·1 F 0: F I,,.' A P::O für I l' I.,.' A PI< 1 negativ 
und für große I F I,,.' A P I (etwa F',.' A F: ~ 100) positiv; daher sind x ~ 0.5 und x ~ 100 sinnvolle 
Anfangsnäherungen. 

Tasten Sie das Programm ein und starten Sie es durch Drücken von I RUN I; wenn die Eingabe­
aufforderung ? erscheint, sollten Sie ,5., 100 als Anfangsnäherungen eingeben und die Eingabe mit 
I END LI NE I abschließen. Der Computer zeigt dann an: 

P= 2,71828182846 
FHF(P)= '" 
FGU ESS= 2.76000738029 

Wegen F HF':: R:> = '" ist der berechnete Wert eine exakte Nullstelle von F I·j F. 
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Weitere Informationen 

Wahl der Anfangsnäherungen 

Bei der Bestimmung von Nullstellen mittels F I'~ F: 0 0 T legen die Anfangsnäherungen fest, wo die Suche 
nach einer Nullstelle begonnen werden soll. Wenn die beiden Anfangsnäherungen eine ungerade An­
zahl von Nullstellen begrenzen (was durch unterschiedliche Vorzeichen der Funktionswerte der beiden 
Näherungen gekennzeichnet ist), findet F I·WOO T relativ schnell eine Nullstelle zwischen den 
gegebenen Näherungen. Wenn die Funktionswerte der beiden Näherungen gleiche Vorzeichen besitzen, 
muß n w 0 0 T zunächst nach einem Bereich suchen, in dem eine Nullstelle liegt. Die Auswahl von 
Anfangsnäherungen, die möglichst dicht an einer Nullstelle liegen, führt zu einer Beschleunigung dieser 
Suche. Wenn Sie lediglich das Verhalten der Funktion in der Nähe der Anfangsnäherungen unter­
suchen wollen (etwa ob in diesem Bereich irgendwelche Nullstellen oder lokale Extrema liegen), 
können Sie beliebige Anfangsnäherungen vorgeben. 

Des weiteren sollte bei der Auswahl von Anfangsnäherungen ebenfalls mit in Betrachtung gezogen 
werden, in welchem Bereich die Gleichung sinnvoll ist. Bei der Lösung von ((x) ~ 0 hat die Variable x 
möglicherweise nur einen eingeschränkten Bereich, in dem eine Lösung logisch sinnvoll ist. In diesem 
Fall sollten die Anfangsnäherungen sinnvollerweise aus diesem Bereich gewählt werden. Häufig hat 
eine Gleichung, die ein physikalisches Modell repräsentiert, zusätzlich zu der gewünschten Lösung auch 
noch weitere Lösungen, die physikalisch nicht sinnvoll sind. Diese Situation ist insbesondere dann 
gegeben, wenn die zu analysierende Gleichung das physikalische Modell nur für bestimmte Bereiche der 
Variablen beschreibt. Sie sollten bei der Interpretation von Ergebnissen derartige Einschränkungen 

. berücksichtigen. 

Interpretieren von Ergebnissen 

Bei der Verwendung von FI·t F:O OT sollten Sie immer die Funktion an der zurückgegebenen Nullstelle 
in der zuvor beschriebenen Weise auswerten. Auf diese Weise können Sie das von F t~~:üO T zurück­
gegebene Ergebnis interpretieren. Bei der Auswertung der Funktion an der von Ft·n;::ü üT zurück­
gegebenen Nullstelle lassen sich zwei Fälle unterscheiden: 1) Der Funktionswert liegt dicht an Null; 
2) der Funktionswert liegt nicht dicht an Null. Es ist von Ihrer jeweiligen Problemstellung abhängig, 
wie dicht der Funktionswert an Null liegen muß, um das Ergebnis von F I·t F: 0 0 Tals Nullstelle zu 
akzeptieren. 

Wenn der Funktionswert zu groß ist, können Sie an hand der obigen Betrachtungen und der von 
FG UE :3:,: zurückgegebenen Information das allgemeine Verhalten der Funktion in diesem Bereich er­
kennen. Es sei beispielsweise unterstellt, daß Sie mittels FNROO T eine Nullstelle einer Funktion {(x) 
finden wollen, und daß der Funktionswert {(r) des von FlmOOT zurückgebenen Werts r zu groß ist, um 
r als Nullstelle akzeptieren zu können. In diesem Fall kann sich die Funktion in dem betrachteten 
Bereich wie folgt verhalten: 

Wenn f'".'ALUE und {(FGUE:,:3) beide das gleiche Vorzeichen besitzen, ist r entweder eine Näherung 
für ein lokales Minimum von ~(x) 1 oder r liegt in einem Bereich, in dem der Graph der Funktion 
horizontal verläuft (d.h. die Funktionswerte konstant sind). 
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In diesen beiden Fällen kann F I-W 0 0 T keine abnehmende Tendenz in den Absolutwerten feststellen, 
d. h. die Funktion strebt nicht gegen die x-Achse. FI-WOOT versucht dann, einen lokalen Extremwert 
anzunähern (sofern ein solcher vorhanden ist). Sie können diese Näherungen anschließend verfeinern, 
indem Sie wiederholt nWOO T mit rund FG UE:,;,,: als Anfangsnäherungen ausführen. Die wiederholte 
Ausführung von FI~ F: 0 0 T auf diese Weise führt in vielen Fällen zu einer Konvergenz gegen den 
Extremwert. Die zugrundeliegende Idee ist, daß Sie entweder mittels F I'W 0 0 T lokale Extrema 
auffinden können oder daß Sie die Information über die Lage von lokalen Extrema dazu benutzen, die 
Suche nach einer Nullstelle in andere Bereiche zu lenken. 

Wenn I F '.} ALU E I zu groß ist, um r als Nullstelle zu akzeptieren, bleibt als zweite Möglichkeit, daß 
F ' . ..'A LUE und !(FGUE:,;',:) unterschiedliche Vorzeichen haben. Auf den ersten Blick sollte in diesem 
Fall die Funktion eine Nullstelle zwischen diesen Werten haben, da normalerweise erst ein Über­
schreiten der x-Achse einen Vorzeichenwechsel in den Funktionswerten bedingt. Bei zwei Näherungen 
auf gegenüberliegende Seiten der x-Achse verfeinert FI-IRO OT diese Näherungen solange, bis die letzte 
und die vorletzte Näherung zwei aufeinanderfolgende Maschinenzahlen darstellen. In diesem Fall exi­
stiert keine maschinendarstellbare Zahl zwischen rund F G U ES:,:; das Verhalten der Funktion 
zwischen diesen Punkten kann folglich nicht untersucht werden. Die drei folgenden Graphen 
illustrieren mögliche Ursachen für eine derartige Situation: 
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In Fall 1 liefern rund FGUES';; die besten Näherungen für eine Nullstelle, die auf der Maschine 
darstellbar sind. Für Ft1~, ClClT unterscheidet sich Fall 2 nicht von Fall 1; hier existiert jedoch keine 
Nullstelle, da eine Sprungstelle der Funktion vorliegt. Fall 3 zeigt eine Pol, der wiederum wie eine 
Nullstelle aussehen kann, wenn Anfangsnäherungen auf beiden Seiten des Pols gewählt werden. An­
hand der von F tU;, CI CI T und F G U E ';;:;; zurückgegebenen Information können Sie normalerweise fest­
stellen, ob eine Konvergenz gegen einen Pol oder eine Sprungstelle vorliegt. 

Verringern der Ausführungszeiten 

Aufgrund des großen Exponentenbereichs des HP-71 von ±499 (T RAF' <: Ut·W::' ~ 2 dehnt den Bereich 
des negativen Exponenten sogar auf -510 aus) sind sehr genaue Untersuchungen über das Verhalten 
einer Funktion möglich. Dies gilt selbst in extremer Nähe einer Nullstelle. F I·W CI CI T macht sich diesen 
dynamischen Zahlenbereich zunutze, indem eine Näherung nur dann als Nullstelle akzeptiert wird, 
wenn der Funktionswert an dieser Stelle Null ist oder einen Bereichsunterlauf bedingt, oder bis zwei 
aufeinanderfolgende Maschinenzahlen gefunden sind, die die Nullstelle eingrenzen. Diese hohe 
Genauigkeit hat natürlich einen Preis; es kann gelegentlich vorkommen, daß die Bestimmung einer 
Nullstelle auf alle zwölf Stellen einen gewissen Rechenzeitaufwand bedingt. Es kann nun Situationen 
geben, in denen Sie die volle Rechengenauigkeit nicht benötigen und daher eine größere Fehlerschranke 
vorziehen würden. Wenn Sie beispielsweise lediglich wissen wollen, an welchen Stellen eine Funktion 
kleiner als 1E - 20 ist,können Sie Ihre benutzerdefinierte Funktion so abändern, daß der Funktionswert 
vor der Wertzuweisung an die Funktionsvariable auf die Fehlerschranke abgeprüft und gegebenenfalls 
durch Null ersetzt wird. Es sei zum Beispiel unterstellt, daß Sie alle Nullstellen der Funktion ((x) ~ x' 
bestimmen wollen und daß Sie einen Funktionswert I{(x) I ,. 1E-32 als Kriterium für eine Nullstelle 
akzeptieren. In diesem Fall könnten Sie das nachstehende Programm verwenden. 

10 STD @ DESTROY ALL 

20 DEF FNF(X) 

30 F~XA4 

40 IF F < ~1 . E - 32 THEN FNF~O ELSE 
FNF ~ F 

50 END DEF 

60 DISP FNROOT(2,3 ,FNF(FVAR)) 

70 DISP FVALUE 

Eingabe/Ergebnis 

8 , 30442502653E-9 
o 

Mehrzeilige Funktion für {(x) ~ x" 

Abfrage auf die Fehlerschranke und 
entsprechende Zuweisung eines Funktionswerts. 

Berechnet die Nullstelle und zeigt sie an. 

Anzeige des Funktionswerts an der berechneten 
Nullstelle. 
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Ohne Verwendung dieser FehlErschranken- Technik hätte die Berechnung der Nullstelle wesentlich 
mehr Zeit in Anspruch genommen. Die Gründe hierfür liegen darin, daß bei der Berechnung der 
Funktion erst dann ein Bereichsunterlauf auftreten würde, wenn x sehr nahe an Null ist (da die 
Nullstelle im Punkt 0 liegt), und daß die maschinendarstellbaren Zahlen sich in der Nähe von Null 
häufen. Daher würde feH" 0 0 T eine Vielzahl von Näherungen benötigen, bis eine akzeptable Näherung 
der Nullstelle erreicht ist. 

Eine weitere Technik zur Verringerung der Ausführungszeiten besteht darin, die Funktion so zu 
transformieren, daß die Nullstelle nicht mehr im Punkt 0 liegt, die Nullstelle dann zu berechnen und 
danach zurückzutranformieren. Dieses Verfahren führt für gewisse Funktionen mit Nullstellen in der 
Nähe von Null zu verringerten Ausführungszeiten, hat jedoch den Nachteil, daß ein Genauig­
keitsverlust in Kauf genommen werden muß. Nachstehend finden Sie ein Beispielprogramm für 
((x ) ~ x·. 

10 STD @ DESTROY ALL 

20 DEF FNF(X)~(X - W4 

30 R - FNROOT(3.4,FNF(FVAR)) 

40 DISP R - 1 

50 DISP FVALUE 

Transformation von .x4 um 1. 

Berechnung der Nullstelle. 

Rücktransformation der Nullstelle und Anzeige 
von Nullstelle und Funktionswert. 

Schließlich sei noch eine Technik erwähnt, die sowohl die Ausführungszeit als auch die Genauigkeit 
von F I·W I) I) T verbessern kann. Jede Gleichung gehört zu einer unendlich großen Familie äquivalenter 
Gleichungen, die alle die gleichen Lösungen besitzen. Unter Umständen sind jedoch einige dieser 
Gleichungen einfacher zu lösen als andere. Beispielsweise haben die beiden Gleichungen {(x) ~ 0 und 
exp (f(x)) - 1 ~ 0 die gleichen reellen Nullstellen; jedoch wird eine dieser Gleichungen fast immer 
einfacher zu lösen sein als die andere. Für {(x) ~ x· - 6x - 1 ist die erste Gleichung einfacher; für ((x) 
~ ln(x· - 6x - 1) jedoch die zweite. Obwohl F I·W I) I) T für eine Vielzahl von Problemstellungen exakte 
Ergebnisse liefert, kann es jedoch unter Umständen ratsam erscheinen, die hier vorgestellten Möglich­
keiten zu berücksichtigen. 

Anhalten von F t·4 F.: (I (I T mit I A TIN I 

Wenn keines der Argumente von FI·lF: OI)T einen Aufruf einer mehrzeiligen benutzerdefinierten 
Funktion enthält, kann die Operation von F I·IR I) I) T bis zum Speichern von Zwischenergebnissen nicht 
mit I ATIN I abgebrochen werden. Die Operation von FI'~R OI)T läuft im einzelnen wie folgt ab: FI'~RI)I)T 
gibt den momentanen Wert von F I.i A~, als Wert der angeblichen Wurzel zurück und speichert diesen 
Wert zugleich ab. Der zuletzt angenommene Wert der Wurzel wird als FGU E S:3 und der Wert von ((x) 
an dem momentanen Wert von F I.i A R als F '.,1 t't L LI E gespeichert. Erst nach Abschluß dieser 
Operationen hält die Ausführung von Ft-~ R I) I) T an. 
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Wenn dagegen F tiR 0 0 T eine oder mehrere mehrzeilige benutzerdefinierte Funktionen als Argumente 
enthält (d.h., wenn die Berechnung von FfWOOT die Ausführung mehrerer BASIC-Programmzeilen 
umfaßt) , wird I ATIN I solange ignoriert, bis eine dieser benutzerdefinierten Funktionen aufgerufen wird. 
Die Ausführung hält dann an einer Zeile der benutzerdefinierten Funktion an. Dadurch sind Sie in der 
Lage, wichtige Werte wie beispielsweise den momentanen Wert von F'\1AR zu untersuchen und an­
schließend die Ausführung von F t,W 0 0 T fortzusetzen (falls gewünscht). 

Ein weiterer Vorteil in der Verwendung von mehrzeiligen benutzerdefinierten Funktionen als 
Argument(en) von FfIROOT bestehtdarin, daß die Umgebung von FfWOOT bei Auftreten eines Fehlers 
in der benutzerdefinierten Funktion nicht zerstört wird. Damit stehen Ihnen die Korrektur- und 
Fortsetzungsmöglichkeiten des HP-71 vollständig zur Verfügung. 

CALC-Modus 

Ft~ROOT kann im CALC-Modus weder direkt noch indirekt aufgerufen werden. Wenn Ihr momentaner 
File beispielsweise eine einzeilige benutzerdefinierte Funktion Ft~F enthält, deren Definition das 
Schlüsselwort FfW 0 0 T enthält, führt der Versuch, FfW im CALC-Modus aufzurufen, zu einer 
Fehlerbedingung. 

Schachtelungsregeln 

Wenn das dritte Argument F von F t< ~: 0 0 T eine Formel definiert, deren Auswertung einen weiteren 
Aufruf von FfIF: I]OT impliziert, spricht man von einer FfIROOT Schachtelung. Die Schachtelungstiefe 
von F t'l R 0 0 T Schachtelungen ist auf 5 Ebenen beschränkt. 

Als Beispiel für die Schachtelung von F t~ RI]O T soll das nachstehende Programm betrachtet werden, 
das die Funktion f(x ,y) ~ x2 + y2 - 2x - 2y + 2 nach x und y auflöst. 

10 STD @ DESTROY ALL 

20 DEF FNF(X,Y)-X~2+Y~2 -2*X-2*Y+2 

30 DEF FNG(X) 
40 R - FNROOT( - 4,4,FNF(X,FVAR» 
50 FNG ~ FVALUE 

60 END DEF 

70 DISP FNROOT( - 3,3,FNG(FVAR»;R 

Definiert die ooige Funktion. 

Die Zeilen 30 bis 60 definieren eine Funktion 
g(x) mit nur noch einer Variablen, die einen 
festen Wert für x (nämlich n.' A ~:) VOn Zeile 70 
bezieht. 

Wenn von Zeile 50 ein Ergebnis ungleich 0 
zurückgegeben wird, dann wird ein weiterer 
x-Wert für Ft·IF:O OT in Zeile 40 ausgewählt. 
Eine Nullstelle von f(x,y) ist gefunden, wenn von 
Zeile 50 der Wert 0 zurückgegeben wird. 



Eingabe/Ergebnis 

1 ,99 9999999999 
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Die von F t·t F: CI CI T in Zeile 70 zurückgegebenen 
x- und y-Werte. Der x-Wert wird links angezeigt. 

, 9 9999999 9999 ist die beste Näherung, die F~~ROOT für den wahren y-Wert 1 finden kann, da 
bereits dieser y -Wert (zusammen mit dem x-Wert 1) den Funktionswert 0 liefert. 

F',,' ALUE I END UNE I 

(1 Diese x- und y-Werte liefern bei Einsetzen in 
f(x ,y) das Ergebnis O. 

Eine weit verbreitete Verwendung von F t·t F: [I [I T ist die Bestimmung lokaler Minima. Zur Erläuterung 
dieser Anwendung soll die obige Funktion durch Addition von 1 modifiziert werden. Dadurch wUQ 
sichergestell t, daß die Funktion keine Nullstelle hat, d.h. der durch die modifizierte Funkt ion 
repräsentierte Paraboloid schneidet die xy-Ebene nicht mehr. Das Programm wird nur in Zeile 20 
modifiziert: 

Alle weiteren Programmzeilen bleiben unverändert. 

Das zuvor verwendete geschachtelte F t·t R [I [I T -Programm benötigte etwa 20 Sekunden zum Ermitteln 
einer Lösung. Da FttF:OOT mit besonderer Sorgfalt sicherstellt, daß ein echtes Minimum berechnet 
wird, benötigt das modifizierte Programm etwa 3th Minuten, um den x- und y -Wert des Funktions­
minimums zu finden. 

Eingabe/Ergebnis 

I RUNI 

1 ,0 0000191:::32 
',11 4444 

F'.iAL UE I END UNE I 

1 

Der x- und y -Wert des berechneten 
Funktionsminimums. 

Zeigt den Wert der modifizierten Funkt ion für 
den gegebenenen x- und y -Wert an. 
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Sie müssen jedoch nicht die vollen 3'12 Minuten abwarten, bis das Ergebnis angezeigt wird. Sie können, 
wie bereits auf Seite 97 beschrieben, die Ausführung von F 1·1 R (I (I T anhalten und anschließend 
Zwischenergebnisse anzeigen. Wenn sich bei aufeinanderfolgenden Untersuchungen dieser Werte keine 
wesentlichen Veränderungen, können Sie die Zwischenergebnisse als genügend genau akzeptieren. 

Verwendung von benutzerdefinierten Funktionen 

Die Funkt ion F I·W (I (I T kann nicht über das Tastenfeld ausgeführt werden, wenn das dritte Argument 
von FlW(I(lT eine benutzerdefinierte Funktion auswertet. In diesem Fall muß Fl-W(lCiT als 
Programmanweisung ausgeführt werden. Ebenso können Sie keine benutzerdefnierte Funktion, weder 
im BASIC- noch im CALC-Modus, über das Tastenfeld ausführen, wenn die Ausführung von F I~ f;: CI CI T 
angehalten wurde. 



Abschnitt 11 

Numerische Integration 

Schlüsselworte 
Mit Hilfe der in diesem Abschnitt beschriebenen Schlüsselworte können Sie das Intergral einer 
Funktion von maximal 5 Variablen mit einer von Ihnen gewählten Genauigkeit berechnen. 

Der größte Teil dieses Abschnitts behandelt die Anwendung dieser Schlüsselworte auf Funktionen einer 
Variablen. Funktionen mehrerer Variablen werden unter SclUlchtelungsregeln und Volumenintegration 
auf Seite 109/ 110 beschrieben. 

Das Schlüsselwort I fH E G R A L kann über das Tastenfeld oder in einem Programm zur Berechnung des 
Integrals einer Funktion verwendet werden , vorausgesetzt, daß die Funktion zusammen mit dem 
Schlüsselwort eingegeben oder in dem Programm definiert wird. 

Die Schlüsselworte I E:O Ut·W und I ~' ALUE geben zusätzliche Information zurück, die die Inter­
pretation des Integralwerts vereinfachen. I tH EGF: AL , I E:OUt·w und I ' • .' ALUE geben jeweils einzelne 
numerische Werte zurück, so daß Sie diese Schlüsselworte zusammen mit anderen numerischen 
Funktionen und Variablen in numerischen Ausdrücken verwenden können. Ein viertes Schlüsselwort, 
I ',}AR , repräsentiert die Integrationsvariable (oder eine der Integrationsvariablen) der mit I tHEGF:AL 
zu integrierenden Funktion. Ebenso gibt I ' .... A F: die letzte von I t~ T E G F: AL benutzte StützsteIle zurück. 

INTEGRAL Bestimmtes Integral 

I NTEGRAL CA, B , E , F l 

wo A. B. E und F reellwertige numerische Ausdrücke sind . 

Gibt eine Näherung für das Integral von Abis B der Funktion F zurück. Der relative Fehler E 
(1 E -12,.;E,.;1) deutet die Genauigkeit von F an und wird zur Berechnung einer Fehlertoleranz in der 
Näherung für das Integral verwendet. 

Das berechnete Wert für das Integral kann sein : 

• Eine Näherung für das Integral mit einer durch den relativen Fehler E vorgegeben Genauigkeit. 

• Die letzte von 16 Näherungen für das Integral, bei denen der Integrand an 65535 Stützpunkten 
ausgewertet wurde, ohne daß dabei das Konvergenzkriterium erfüllt wurde. 

• Die beim Drücken von I ATTN I zurückgegebene momentan beste Näherung für das Integral, wenn F 
keine mehrzeilige benutzerdefinierte Funktion aufruft. 
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INTEGRAL (Fortsetzung) 

I IH E G R A L erzeugt eine Folge von immer genaueren Näherungen für das gesuchte bestimmte Integral. 
Wenn drei aufeinanderfolgende Näherungen jeweils innerhalb der Fehlertoleranz voneinander liegen (d .h. 
die erste liegt dicht an der zweiten und die zweite liegt dicht an der dritten), wird die Folge abgebrochen, 
und die dritte Näherung wird als der gesuchte Integralwert zurückgegeben. Wenn dieses 
Konvergenzkriterium auch nach 16 Folgengliedern nicht erfüllt ist , wird der Wert der 16. Näherung 
zurückgegeben. 

Kann nicht im CALC-Modus verwendet werden. Weitere Informationen über I I, T E G F: A L und den 
CALC-Modus werden auf Seite 111 gegeben. 

Auf den Seiten 109-111 finden Sie Informationen über die Schachtelung von I IH E G F: A L 
(Volumenintegrat ion) und über die Wechselwirkungen zwischen I I·l T E G R A L und I ATIN I und zwischen 
I IH E G R A L und benutzerdefinierten Funktionen. 

IVAR Integrationsvariable 

I ',}AP 

Repräsentiert die Integrationsvariable in der die Funktion F definierenden Formel. Ist das letzte 
Argument von I IHE GF:AL . 

Gibt die zuletzt von HIT E G R AL benutzte StützsteIle zurück . 

Kann im CALC-Modus verwendet werden . 

IVALUE Letztes Ergebnis von INTEGRAL 

I ',}A LUE 

Gibt die letzte von I IH E G R AL berechnete Näherung zurück. Wenn die Ausführung von ItH E G R A L 
durch Drücken von I ATIN I oder auf eine andere Weise unterbrochen wurde, gibt I',} ALU E den Wert der 
momentanen Näherung zurück. Ansonsten gibt J'..! ALU E den gleichen Wert zurück , der auch bei der 
letzten Ausführung von [ IIT E G R A L zurückgegeben wurde. 

I ',}ALUE behält auch nach einem Ausschalten des HP-?1 solange den momentanen Wert, bis 
I IH E G R A L erneut ausgeführt wird . 

Kann im CALC-Modus verwendet werden . 
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IBOUND Fehlerabschätzung für INTEGRAL 

Gibt eine Abschätzung des absoluten Fehlers für das zuletzt mit I ,n E G R AL berechnete Integral 
zurück . 

• Ein positiver I BOUt·ID-Wert deutet an, daß die Folge der Näherungen konvergiert hat. 

• Ein negativer I 80Ut1D-Wert deutet an , daß die Folge der Näherungen das Konvergenzkriterium 
nicht vOllständig erfüllt hat; der von ItH E G 1': A L zurückgegebene Wert kann außerhalb der 
Fehlertoleranz um den wahren Integralwert liegen . 

Wie J'"IALUE erhält auch I E:OUflD (selbst nach einem Ausschalten des HP-71) solange den 
momentanen Wert, bis I tH EGRAL erneut ausgeführt wird . Im Gegensatz zu I 'J ALUE steht der Wert 
von I SOU ND in keinerlei Beziehung zur momentanen Näherung, wenn die Ausführung von 
I I1 T E G R A L unterbrochen wird . 

Kann im CALC-Modus verwendet werden. 

hen Sie zur Berechnung eines bestimmten Integrals wie folgt vor: 

chreiben Sie einen Ausdruck, der die zu integrierende Funktion repräsentiert. 

Ersetzen Sie die Integrationsvariable des Ausdrucks durch das Schlüsselwort I '.,'A R. 

\'erwenden Sie diesen Ausdruck als viertes Argument F von I tHEGRAL. 

Verwenden Sie die Integrationsuntergrenze als erstes Argument (A) und die Obergrenze als zweites 
Argument (B) von ItHEGI':AL . 

Wählen Sie als drittes Argument E von I tH E G 1': A L einen Wert, der ein Maß für den relativen 
ehler in der Berechnung des Integranden darstellt. Jeder für E gewählte Wert wird auf den Be­
ich [IE - 12,1] gerundet und sollte die Ungleichung 

IWAHRER INTEGRAND - BERECHNETER INTEGRAND I .. E 
IBERECHNETER INTEGRAND I . 

len. Da I 1-1 T E G 1': A L den wahren Wert des zu bestimmenden Integrals nicht kennt, müssen Sie 
Maß für den relativen Fehler angeben. Bei vielen rein mathematischen Funktionen (S I t~, 

, Polynome usw.) und endlichen Integrationsgrenzen kann die volle 12-stellige Genauigkeit des 
I ausgenutzt werden, so daß ein Wert für E in der Größenordnung von lE - 12 sinnvoll ist. 
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Zwischen I fH E G R A L und IBO UND besteht der folgende Zusammenhang: 

1. Basierend auf dem relativen Fehler E für die spezifizierte Funktion berechnet der Computer eine 
Fehlertoleranz für das Integral der Funktion. Wenn {(Xl die durch F approximierte wahre 
Funktion darstellt, sollte E so gewählt werden, daß 

IF(Xl - {(Xl i '" E 
!F(XlI ~ 

für alle X im Integrationsintervall erfüllt ist. Der für E spezifizierte Wert wird gerundet, so daß 
gilt: lE-12 .. E .. 1. 

Wenn F beispielsweise aus Meßdaten mit N signifikanten Stellen abgeleitet wird, sollte E auf 
10 - N gesetzt werden. 

2. Der Computer berechnet eine Folge von Approximationen I k für das Integral der spezifizierten 
Funktion. Die Differenz zwischen zwei aufeinanderfolgenden Näherungen wird dann jeweils mit der 
Fehlertoleranz für das Integral verglichen. 

3. Ein Wert für das Integral wird zurückgegeben, wenn gilt: 

• Die Folge der Approximationen h hat konvergiert. Zur Bestimmung der Konvergenz wird eine 
Folge von Näherungen J k für das Integral der Funktion E'IFI über dem gleichen Inte­
grationsinterval benutzt. J k beschreibt den bei der Berechnung von I k auftretenden Fehler. 

IIHEGI':AL nimmt an, daß die Folge der Näherungen Ik gegen In konvergiert hat, wenn 

für k = n - 1 und k = n gilt. I IHE GRAL gibt dann den Wert von In zurück; I BOUfW gibt 
einen positiven Wert als Fehlerabschätzung zurück . 

• Das Konvergenzkriterium ist auch nach der Berechnung der Näherungen 11 bis f l 6 nicht 
erfüllt. ItHEGI':AL gibt dann h 6 zurück; I BOUI~D liefert einen negativen Wert als 
Fehlerabschätzung. 
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Beipiele 

Integration von f(x) = x2-2 (ItHEGPAL, I',)AP) 

Die folgenden sechs Beipiele verdeutlichen verschiedene Verwendungsmöglichkeiten von 1 flT EGf;:RL 
und H' R R zur Integration der Funktion x2 - 2 von 1 bis 2, Das Integrationsergebnis wird im ersten 
und sechsten Beispiel angegeben, 

Beispiel 1: 

Eingabe/Ergebnis 

IIH EGf;:RL< I " 2 , lE-ll " I ',,'AF:" ' 2 -2 ) 
I END UNE I 

, 333333333331 

Beispiel 2: 

10 DISP INTEGRAL(COS(0),LOG2(4), 
1E-11,IVARA 2-2) 

Beispiel 3: 

10 DEF FNG = IVARA 2 - 2 

20 DISP INTEGRAL(l ,2,1 E -11 ,FNG) 

Beispiel 4: 

10 DEF FNF(X) = XA 2-2 

20 DISP INTEGRAL(l ,2, 1 E - 11 ,FNF(IVAR)) 

Beispiel 5: 

10 DEF FNH 

20 FNH=IVARA 2-2 

30 END DEF 

40 DISP INTEGRAL(1,2,lE-11 ,FNH) 

I IH E G R R L kann sowohl über das Tastenfeld 
eingegeben als auch in einem Programm 
verwendet werden. 

Als Integrationsgrenzen können auch 
arithmetische Ausdrücke verwendet werden, 

Das vierte Argument von ItH E G F: R L kann ein 
Ausdruck oder der Aufruf einer benutzer­
definierten Funktion sein, 

I I,} A~: kann wie oben in einer 
benutzerdefinierten Funktion oder im vierten 
Argument von 1 NT E G R A L verwendet werden_ 

Die benutzerdefinierte Funkt ion kann ein- oder 
mehrzeilig sein. 
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Beispiel 6: 

10 DEF FNJ(X) 

20 FNJ -X~2 - 2 

30 END DEF 

40 DEF FNF(X) - 2*X 

50 DISP INTEGRAL(1 ,FNF(1), 1 E -11 , 
FNJ(IVAR)) 

60 DISP ISOUND 

Eingabe/Ergebnis 

I RUN I 

,3 3333:3333331 

7,7 0 3 41 7 35781E- 12 

Das erste, zweite und dritte Argument von 
I fIT E G R A L kann ebenfalls einen Aufruf einer 
benutzerdefinierten Funktion enthalten. 

Das Integrationsergebnis. 

Eine Abschätzung für den absoluten Fehler des 
Integrationsergebnisses. Die Konvergenz der 
Integralnäherungen wird durch den positiven 
Wert bestätigt. 

Integration von f(x) = eX - 2 (I ~n E G F.: AL, I ,.) A F.:, I ,.} ALU E) 

Dieses Beispiel erläutert die Verwendung von I '.,1ALUE. Diese Funktion gibt die letzte von ItHEGRA L 
berechnete Näherung zurück und wird selbst während der Ausführung von I tHEF:GAL fortwährend 
aktualisiert . I\.JALUE gibt nach Abschluß der Integration den gleichen Wert wie HITEGRAL zurück. 

Durch Anzeige von I \.1 ALU E können Sie während der Ausführung von I t·~ T E (; F: A L die Verbesserung 
der Integrationsnäherung beobachten. Diese Eigenschaft wird in dem nachstehenden Programm, das 
die Funktion e" - 2 von 1 bis 3 integriert, verdeutlicht. Als Fehlertoleranz wird IE - 12 vorgegeben. 

10 Y-IVALUE 

20 DEF FNF(X) 

30 IF IVALUE - Y THEN 50 

Y - Wert von I\.JALUE bei Beginn der 
Programmausführung. (Setzt voraus, daß 
I fIT E G F: A L mindestens einmal ausgeführt 
wurde.) 

Zeigt I I,} A L LI E nur bei einer Wertveränderung 
an. 



40 DISP IVALUE @ Y~IVALUE 

50 FNF ~ EXP(X) - 2 

60 END DEF 

70 DISP INTEGRAL(1 ,3,.000000000001, 
FNF(IVAR)) 

Eingabe/Ergebnis 

I RUN I 

lü,77:::1121979 
13,6:::3:::97213 
13,3653590516 
13 , 367156~)314 

13.3672555263 
13 , 3672550945 
13,367255121947 
13,367255(1947 
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Erster angezeigter Wert von I I,} AL U E. 

Letzter angeze.igter Wert von I I,} ALU E. 
Wert des Integrals (I tHEGF:A L). 

Integration von f(x) - exp(x3+4x2+X+1) (I tHEGF.:AL, I'.}AF.:, I E:OUt·W, 
I',}ALUE) 

Zur Berechnung des Integrals von 0 bis 1 der Funktion 

{(x) ~ exp(x3 + 4x' + x + 1) 

können Sie das folgende Programm verwenden. 

10 DEF F(X)~EXP(XA3+4*XA2+X+ 1) 

20 INPUT E 

30 DISP ' INTEGRIEREND' 

40 X~ INTEGRAL(O, 1 ,E,F(IVAR)) 

50 BEEP 

60 DISP 'INTEGRALWERT: ' 

70 DISP X 

80 DISP 'GESCHAETZTER FEHLER: ' 

90 DISP IBOUND 

Die benutzerdefinierte Funktion F. 
Fragt nach dem relativen Fehler in F im 
Vergleich zu {(x). 
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Tasten Sie das Programm ein, und starten Sie es durch Drücken von I RUN I. 

Eingabe/Ergebnis 

IRUN I 

? • 

1 E-5 I END UNE I 

I tHEG F: I EF:EtW 

I .lTEGF:AUIERT: 
104 , 291097226 

GE :3 CHAETZTEF: FEHLER : 
1 .0 4 2 639 0 4392E-3 

H' AL UE I END UNE I 

1~14, 291~j97226 

Eingabeaufforderung für den relativen Fehler 
der Funktion. 

Obwohl der HP-71 die Funktion F bis auf eine 
Abweichung von 1 in der zwölften Stelle exakt 
berechnet, soll eine geringere Genauigkeit (hier 
eine Abweichung von 1 in der fünften Stelle) 
vorgegeben werden, um die Ausführungszeit zu 
verkürzen. 

Der Wert des Integrals ist 104.2911 ± 
1.04 x 10- 3. 

I ',' ALU E gibt den Wert des zuletzt berechneten 
Integrals zurück. 

Integration von C(T) = a + bT (I tHEGPAL, I' . ..'AP, I BOUt·l[I) 

Sie können mittels I tHEGRAL die Wärmemenge berechnen, die benötigt wird, um ein Gramm eines 
Gases bei konstantem Volumen von einer gegebenen Temperatur auf eine andere Temperatur zu 
erwärmen. Die benötigte Wärmemenge Q ergibt sich aus der Formel 

Q ~ rT2
C(T) dT JTI 

wo C(T) die spezifische Wärme des Gases als Funktion der Temperatur, Tl die Anfangs- und T2 die 
Endtemperatur ist. 

In dem hier betrachteten Beipiel sei C(T) ~ a + bT, wo a und b experimentell zu a ~ 1.023E-z und 
b ~ 2.384E- z mit je 4 signifikanten Ziffern bestimmt sind. Der relative Fehler in C(T) ergibt sich dann 
näherungsweise zu 5E-4. Das folgende Programm verlangt die Eingabe der Anfangs- und End­
temperatur in Kelvin und berechnet dann die zum Erhöhen der Gastemperatur von der 
Anfangstemperatur auf die Endtemperatur benötigte Wärmemenge. 



10 DEF FNC(T)~.01023+.02384*T 

20 INPUT 'ANFANGST., ENDT. (K)?';Tl,T2 

30 DISP 'INTEGRIEREND' 

40 Q~ INTEGRAL(T1 ,T2,.0005,FNC(IVAR)) 

50 DISP 'BENOETIGTE WAERMEMENGE: ' 

60 DISP Q;'+ ~';IBOUND 
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Benutzerdefinierte Funktion zur Berechnung der 
spezifischen Wärme. 

Berechnung des Integrals. 

Anzeige des Resultats und der 
Fehlerabschätzung. 

Tasten Sie das Programm ein, und berechnen Sie die Wärmemenge, die benötigt wird, um das Gas von 
300 Kauf 310 K zu erhitzen. 

Eingabe/Ergebnis 

IRUNI 

AI·jFAI·jG:::T " EI·j[l T , 0:: 1<:;' ,:., . 

3 Ci Ci .' 3 1 Ci I END LI NE I 

I IHEGF: I EF:EI·m 
E:EHClET I GTE l'IAEF:t'IEi'IEHGE: 

72, :::143 +- , 03 6 40 715 

Weitere Informationen 

Schachtelungsregeln und Volumenintegration 

Wenn das vierte I t·~TEGF:AL-Argument F eine Formel spezifiziert , die eine weitere Auswertung von 
I Ij T E G R AL bedingt, ist eine I 1-1 T E G F: A L Schachtelung gegeben, Bei I I·j T E G R A L Schachtelungen 
sind maximal 5 Schachtelungsebenen zulässig. Programme mit zweifachen I 11 T E G F: A L Schachte­
lungen können beispielsweise zur Berechnung von Volumina verwendet werden. 

Das nachstehende zur Integration von !(x, y) ~ x' + 2y über dem Quadrat 0 < x < 1, 0 < Y < 1 
verwendete Programm verdeutlicht die Schachtelung von I 1·1 T E G F: AL, Das Programm berechnet das 
Doppelintegral 



110 Abschnitt 11 : Numerische Integration 

10 DEF FNF(X , Y) ~ XA2 + 2*Y 

20 DEF FNG(X)~ INTEGRAL(0 , 1 , 1E - 6 , 

FNF(X ,IVAR)) 

30 DISP INTEGRAL(0,1, 1 E - 6,FNG(IVAR)) 

Eingabe/Ergebnis 

I RUNI 

1,33333333 333 

I BOUHD I END UNE I 

1,333 1 7 [11 27 12E- 6 

Definiert die zu integrierende Funktion. 

Für jeden Wert von x wird über einen Streifen 
parallel zur y -Achse integrier t, 

Summiert alle Streifen parallel zur y-Achse auf. 

Das von ItH E c; F, A L in Zeile 30 
zurückgegebene Volumen. 

Obwohl das berechnete Ergebnis exakt ist, 
deutet I E: 0 U t-ID nur eine Genauigkeit von sechs 
Stellen an. 

Das nachstehende Beispiel erläutert die Verwendung von I IH E G PA L zur Auswertung des Integrals 

Eingabe/Ergebnis 

F:AD I Alj:,: I END LlNE I 
I IHEGF:AL 0: [1., F' I .. ···2 .' 1 E-], 
I IHEGPAL <: [1.' I ',.,'AF:.' 1 E-
3 .. ':; It·~( I',)AF.:)::' ':0 

I END UNE I 

,57 0:::001666::: 

IE:OUlm I END UNE I 

5.6995 03281 55E- 4 

f , ;2 fY 
J
o 

J
o 

sin (x) dx dy 

Die erste I I,) AP repräsent iert die 
Intergrationsvariable des äußeren Integrals. 

Das korrekte Ergebnis ist ,,/2 - 1 (ca. 
0.5707963268). 
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Abbrechen von I ~.~ T E G F: A L mit I A TTN I 
\Venn keines der Argumente von I t·~ T E G P R L einen Aufruf einer mehrzeiligen benutzerdefinierten 
Funktion enthält , kann die Operation von I t·j T E C; F: A L bis zum Speichern von Zwischenergebnissen 
nicht mit I AHN I abgebrochen werden. I IH E C F: A L arbeitet im einzelnen wie folgt: I IH E C F' A L gibt 
den momentanen Wert von I I,) ALU E als angeblichen Wert des Integrals zurück und speichert diesen 
zugleich ab. Außerdem bewirkt I IHECF'AL eine Vorzeichenumkehr bei dem Wert von IE:OUIID . Die 
Ausführung von I IH E C F: A L häl t erst nach Abschluß dieser Operationen an . 

\Venn I t·j T E C; PA L dagegen eine oder mehrere mehrzeilige benutzerdefinierte Funktionen als 
Argumente enthält (d.h., wenn die Berechnung von I I·j T E C F: A L die Ausführung mehrerer BASIC­
Programmzeilen umfaßt), wird I ATTN I solange ignoriert, bis eine dieser benutzerclefinierten Funktionen 
aufgerufen wird. Die Ausführung hält dann an einer Zeile der benutzerclefinierten Funktion an. 
Dadurch sind Sie in der Lage, wichtige Werte wie den momentanen Wert von I I,} ALU E zu untersuchen 
und anschließend (falls gewünscht) die Ausführung fortzusetzen. 

Ein weiterer Vorteil in der Verwendung von mehrzeiligen benutzerdefinierten Funktionen als 
I IH E G P A L Argumente besteht darin, daß die Umgebung von I IH E G P A L bei Auftreten eines Fehlers 
in der benutzerdefinierten Funkt ion nicht zerstört wird. Damit stehen Ihnen die Korrektur- und 
Fortsetzungsmögl ichkeiten des HP-71 vollständig zur Verfügung. 

CALC-Modus 

I IHECF:AL kann im CALC-Modus weder direkt noch indirekt aufgerufen werden. Wenn Ihr 
momentaner File beispielsweise eine einzeilige benutzerdefinierte Funktion Ft'~F enthält, deren Defi ­
nition das Schlüsselwort I IHEGF:AL enthält, fü hrt der Versuch, FHF im CALC-Modus aufzurufen, zu 
einer Fehlerbedingung. 

Verwendung von benutzerdefinierten Funktionen 

Die Funktion I t-~ TEe F: A L kann nicht über das Tastenfeld ausgeführ t werden, wenn das vierte 
Argument der I t·~ TEe F: A L Funkt ion eine beliebige benutzerdefinierte Funktion auswertet. In diesem 
Fall muß I t·~ T E G F: A L ais Programmanweisung ausgeführt werden. Ebenso können benutzerdefinierte 
Funktionen, weder im BASIC- noch im CALC-Modus, über das Tastenfeld ausgeführt werden, wenn 
die Ausführung von I IH E G F: A L angehalten wurde. 

Allgemeines zur numerischen Integration 

Alle numerischen Integrat ionsverfahren beinhalten die Auswertung der zu integrierenden Funktion an 
einer Reihe von StützsteIlen im Integrationsintervall. Das berechnete Integral ist dann einfac h ein 
gewichtetes Mittel der Funktionswerte an diesen StützsteIlen. Da ein bestimmtes Integral tatsächlich 
jedoch ein Mittel der Funktionswerte an unendlich vielen StützsteIlen darstellt, kann ein numerisches 
Integrat ionsverfahren nur dann befriedigende Resultate liefern, wenn die gewähl ten StützsteIlen das 
Verhalten der Funktion auf dem Gesamtintervall ausreichend gut beschreiben. 
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Wenn die StützsteIlen dicht zusammen liegen, und die Funktion ihr Verhalten zwischen aufeinancler­
folgenden StützsteIlen nicht zu rasch änder t, liefert die numerische Integration in der Regel verläßl iche 
Resultate. Andererseits liefert die numerische Integration häufig unzureichende Ergebnisse, wenn der 
Graph der Funkt ion auf einem Bereich stark variiert, der klein im Vergleich zum gesamten 
Integrat ionsgebiet ist. Andere Fehler, die das Ergebnis einer numerischen Integrat ion beeinflussen 
können, sind die für jede Gleitkomma-Berechnung typischen Rundungsfehle r und etwaige in der 
Rout ine zur Berechnung der zu integrierenden Funktion auft retende Fehler. 

Behandlung numerischer Fehler 

I H T E G F' AL benötigt die Vorgabe einer Fehlertoleranz E, um die Güte der zu integrierenden Funktion 
abschätzen zu können. Diese Fehlertoleranz sollte den relativen Fehler der benutzerdefinierten 
Funktion im Vergleich zu der "wahren", zu integrierenden Funktion beschreiben und wird dazu be­
nutzt, um ein Band um die benutzerdefinierte Funktion zu legen, in dem die "wahre" Funkt ion liegen 
soll te. Wenn {(x) die "wahre" Funktion und F(x) die berechnete Funkt ion bezeichnet , soll te die 
Ungleichung 

F (x) - Fehler(x) '" {(x) '" F(x) + Fehler(x) 

für alle Punkte x im Integrationsintervall erfüll t sein. Fehler(x) ist hier die halbe Bandbreite an der 
Stelle x. 

~ 

/ 
, , 

/ , 
~ f(x) / 

/ , 
~ 

/ 

---r----~------------~----- x a b 

Es gil t dann 

t {(x) dx '" rb 
F(x) dx ± rb 

Fehler(x) dx a Ja Ja 

wobei das drit te Integral genau die Hälfte des Bandes beschreibt. Mit anderen Worten, die Integrat ion 
der benutzerdefinierten Funktion anstelle der "wahren" Funktion kann zu keinem Fehler führen, der 
größer als d ie Hälfte der Fläche des Bandes um die benutzerdefinierte Funktion ist. I IH E G F: A L 
schätzt diesen Fehler während der Berechnung des Integrals ab; über I E: 0 U I·ID können Sie dann an­
schi ießend diesen Wert abrufen. 
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Auswahl der Fehlertoleranz 
Die Genauigkeit der berechneten Funktion hängt von drei Faktoren ab: 

• Güte der empirischen Konstanten der Funktion. 

• Grad, mit dem das durch die Funktion dargestellte Modell die zugrundeliegende physikalische 
Situation beschreibt. 

• Größe des bei der Berechnung anfallenden Rundungsfehlers. 

Funktionen wie cos(x - sin x) sind rein mathematische Funktionen; d.h. die Funktion selbst enthält 
keine empirischen Konstanten. Für derartige Funktionen können Sie beliebig kleine Fehlertoleranzen 
vorgeben, solange diese Funktion von der BASIC-Funktion trotz des unvermeidlichen Rundungsfehlers 
innerhalb dieser Toleranz berechnet wird. Da eine höhere Genauigkeit in der Regel durch längere 
Rechenzeiten erkauft wird, kann es unter Umständen sinnvoll sein, nicht die kleinstmögliche 
Fehlertoleranz zu wählen. Jede spezifizierte Fehlertoleranz wird auf einen Wert im Intervall [1E - 12, 1J 
gerundet. 

Wenn der Integrand eine physikalische Situation beschreibt, sind zusätzliche Überlegungen zu berück­
sichtigen. In jedem Fall sollten Sie abwägen, ob die für das berechnete Integral gewünschte Genauig· 
keit durch die Genauigkeit des Integranden gerechtfertigt ist. Wenn die Funktion beispielsweise 
empirische Konstanten enthält, die die tatsächlichen Konstanten nur auf drei Stellen annähern, ist es 
sinnlos Fehlertoleranzen kleiner als lE-3 zu spezifizieren. 

Des weiteren sollten Sie in Betracht ziehen, daß nahezu jede mit einer physikalischen Situation 
zusammenhängende Funktion bereits implizit einen Fehler beinhaltet , da die Funktion lediglich ein 
mathematisches Modell des eigentlichen Prozesses oder Ereignisses darstellt. Ein mathematisches Mo­
dell ist typischerweise eine Approximation, die die Auswirkungen aller nicht im Modell erfaßten 
Faktoren vernachlässigt. 

Ein Beispiel für die unvollständige Erfassung eines physikalischen Prozesses durch ein mathematisches 
Modell, ist die Gleichung s = s' - (.5)gt2, die die Höhe eines fallenden Körpers beschreibt, der aus 
einer ursprünglichen Höhe s' fallen gelassen wird. Hier wird die Abhängigkeit der Schwer­
kraftbeschleunigung g von der jeweiligen Höhe ignoriert. Mathematische Beschreibungen physika­
lischer Abläufe können lediglich Ergebnisse mit begrenzter Genauigkeit. liefern. Wenn ein Integral mit 
einer Genauigkeit berechnet wird, die vom Modell nicht mehr unterstützt wird, ist es nicht gerecht· 
fertigt, die (scheinbar) volle Genauigkeit des berechneten Werts zu benutzen. Die vorgegebene 
Fehlertoleranz sollte daher alle in der Funktion enthaltenen Ungenauigkeitsfaktoren berücksichtigen, 
da ansonsten mit einem hohen Rechenaufwand eine bedeutungslose Genauigkeit erkauft würde. Des 
weiteren ist die von I E: 0 U t-W zurückgegebene Fehlerabschätzung möglicherweise nicht mehr 
signifikant. 

Wenn eine Funktion {(x) eine physikalischen Prozess beschreibt, ist der durch Rundung entstehende 
Fehler in der Regel sehr klein im Vergleich zu dem Modellfehler. Wenn {(x) dagegen eine rein 
mathematische Funktion darstellt, ist ihre Genauigkeit lediglich durch den auftretenden Rundungs­
fehler beschränkt. Die exakte Bestimmung des bei der Berechnung einer derartigen Funktion ent­
stehenden Fehlers ist im allgemeinen nur mit sehr komplizierten analytischen Methoden möglich. In 
der Praxis werden solche Effekte normalerweise durch Erfahrungswerte abgeschätzt. 
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Behandlung schwieriger Integrale 

Integration auf Teilintervallen. Bei der Integration einer Funktion, die auf geringe Variationen im 
Argument mit substantiellen Schwankungen in den Funktionswerten reagiert, werden in der Regel 
wesentlich mehr StützsteIlen als bei der Integrat ion einer Funktion , die auf dem Integrationsintervall 
nur geringfügig variiert, benötigt. Der Grund hierfür liegt darin , daß das Verhalten der Funktion auf 
dem Gesamtintervall durch das Ver haI ten der Funkt ionswerte an den Stützstellen adäquat 
repräsentiert werden muß. Wenn eine Funktion in bestimmten Teilintervallen des Integrations­
intervalls stärker variiert als in anderen, ist es sinnvoll, das Gesamtintervall zu unterteilen und die 
Funktion auf den Teilintervallen einzeln zu integrieren. Das Integral über das Gesamtintervall ist dann 
die Summe der Integrale über die Teilintervalle, und der Fehler des Integrals ist die Summe der Fehler 
de r Integrale über die Teil intervalle. 

Der von I IH E ce PA L verwendete Algorithmus entscheidet während der Ausführung, basierend auf dem 
Verhalten des Integranden auf einem bestimmten Intervall , wieviele StützsteIlen benutzt werden sollen. 
Wenn nun das Integrationsintervall aufgeteilt wird, kann diese StützsteIlenauswahl auf das Verhalten 
der Funktion auf dem betrachteten Teilintervall beschränkt werden. Dies führt im allgemeinen zu 
verbesserten Ausführungszeiten und einer erhöhten Genauigkeit. 

Wenn Sie beispielsweise die Funktion {(x) ~ (x2 + 1E - 12) 'h von x ~ -3 bis x ~ 5 mit einer 
Fehlertoleranz von 1E - 12 integrieren wollen, können Sie die dafür benötigte Rechenzeit wesentlich 
verkürzen, indem Sie das Intervall bei x = 0 unterteilen, wO die Funktion einen scharfen Knick hat. 
Da die Funktion über den beiden Teilintervallen [-3, OJ und [0, 51 sehr glatt verläuft, lassen sich die 
Integrale der Funktion über diesen Teilintervallen sehr einfach und schnell berechnen . 

f!(x) dx ~ I~!(x) dx + f ((x) dx 

Das folgende Programm berechnet die beiden Integrale über den Teilintervallen und kombiniert dann 
die Ergebnisse. 

10 DEF FNF(X) ~ SQR(X*X + 1E-12) 

20 I ~ INTEGRAL( - 3,0,1 E - 12,FNF(IVAR)) 

30 E ~ IBOUND 

40 DISP 'WERT DES INTEGRALS:' 

50 DISP 1+ INTEGRAL(0,5, 1 E - 12,FNF(IVAR)) 

60 DISP 'GESCHAETZTER FEHLER:' 

70 DISP E + IBOUND 

Hier wird ~< :*: ~:: anstelle ::< ..... 2 verwendet, da ::< l ::< 
ein genaueres Resultat liefert. Diese 
Genauigkeitsbetrachtung gilt für jede 
ganzzahlige Potenz eines numerischen Ausdrucks. 

Integration über das erste Teilintervall. 

Zwischenspeicherung des Fehlers. 

Summe des ersten und des zweiten Integrals. 

Berechnung des Gesamtfehlers durch 
Summation der beiden Einzelfehler. 
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Tasten Sie das Programm ein, und starten Sie es durch Drücken von I RUN I. In der Anzeige erscheint 
dann das Ergebnis. 

i,JEF:T DE:,: I tH EGF:AL:,: : 
17 

GE:,:CHAETZT EF: F EHLEF: : 
, (100000000 0 17 

Bei Unterteilung des Intervalls werden hier zur Berechnung des Resultats nur wenige Sekunden be· 
nötigt; ohne diese Unterteilung kann die Ausführung des Programms eine beträchtliche Zeitspanne in 
Anspruch nehmen. 

Die Unterteilung des Integrationsintervalls ist auch sinnvoll bei Funktionen mit Singularitäten im 
betrachteten Interval l. Die Singularität kann aus einem oder mehreren Punkten bestehen, an denen die 
Funktion nicht definiert ist oder einen Eckpunkt besitzt. 

Beispielsweise soll te das Integral 

( 2 dx 
Jo (x ~ I ) ' 

in 
(I dx ( 2 dx 
Jo (x ~ I)' + Jo (x ~ I)' 

zerlegt werden , um eine Auswertung der Funktion im Punkt x = 1 zu vermeiden, da die Funktion an 
dieser Stelle nicht definiert ist. Sie können die Funktion nun problemlos auf den beiden Teilintervallen 
integrieren, da x ~ 1 Endpunkt in jedem der beiden Teilintervalle ist und I tHEGPAL keine 
StützsteIlen in die Endpunkte des Integrationsintervalls legt. 

Ähnlich problematisch ist normalerweise die Integration der Funktion V 1 x ~ 11 , die bei x ~ 1 einen 
Eckpunkt besitzt. 

Wenn Sie diese Funktion von 0 bis 2 integrieren wollen, können Sie die Ausführungszeit verringern 
und die Genauigkeit erhöhen, indem Sie einzeln über die Teilintervalle [0, 1[ und )1, 2) integrieren, auf 
denen die Funktion sehr glatt verläuft. 
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Variablen transformationen. Eine zweite Methode zur Behandlung schwieriger Integrale besteht in 
der Transformation der Variablen. Wenn die Variable eines bestimmten Integrals geeignet trans­
formiert wird, ist das resultierende bestimmte Integral unter Umstönden numerisch einfacher zu be­
rechnen. Betrachten Sie zum Beispiel das Integral 

f 1 (----,,-Vx-"-X _ _ 1 ) dx 
JO x-I In x . 

Wie aus dem linken Graphen in der nächsten Abbildung zu ersehen ist, geht die Ableitung des 
Integranden gegen unendlich, wenn x gegen 0 strebt. Der Graph auf der rechten Seite zeigt, wie die 
Substitution x ~ u' ein wesentlich gutartigeres Verhalten bedingt. 

01 

o r-------------------~t_-x 
o 

0.1 

2u' u --c---"'''-------,,- - -
(u + 1 )(u - 1) In u 

O~------------------------~u 
o 

Sie können nun anstelle des ursprünglichen Integrals das aus dieser Substitution resultierende Integral 

fo 
1 (-:(-U-+:-::17~~;:-U----1:-:-) - -In-u-x) du. 

berechnen. (Ersetzen Sie nicht (u + l)(u - 1) durch u' - 1, da dieser Ausdruck für u gegen 1 die 
Hälfte seiner signifikanten Stellen durch Rundungsfehler verliert, was schließlich zu einem großen 
Endergebnis führt.) 
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Betrachten Sie die folgende Funktion als ein weiteres Beispiel für eine sinnvolle Anwendung der 
Substitution. Der Graph dieser Funktion besitzt einen langen Schweif, der sich weit aus dem 
Hauptkörper (der den Großteil der Fläche bildet) heraushebt. 

Obwohl ein sehr dünner Schweif sich ohne große Genauigkeitsverluste abschneiden ließe, ist in diesem 
Fall der Schweif der Funktion zu breit, um bei der Berechnung von 

J' dx 
- , x2 + 10- 10 

für große t ignoriert werden zu können. Im allgemeinen bildet die komprimierende Substitution 
x ~ b tan u die gesamte Zahlengerade in die entsprechenden Thilintervalle von ]- .. /2, .. /2[ ab, wobei 
Teile der reellen Zahlengeraden in die entsprechenden Teilintervalle von ]- .. /2, .. /2[ umgesetzt 
werden. Für b lE-5 erhält man die Substitution x ~ lE-5 tan u, und das Integral wird zu 

tan - '( - 'Ib) 

was sich problemlos für sehr große t berechnen läßt. 

Die komprimierende Substitution ist auch das Standardverfahren zur Behandlung uneigentlicher 
Integrale. Beispielweise gilt: 

Joo dx ~ 105 J'/2 du 
-(XI x2 + 10- 10 -r/2 

In einigen Fällen kann der Schweif einer Funktion auch ohne zu großen Genauigkeitsverlust abge­
schnitten werden. Betrachten Sie dazu die Funktionexp (-x2), die für x > 34 einen Bereichsunterlauf 
bedingt (d.h. in der Maschinenarithmetik das Ergebnis 0 erzeugt). Es gilt dann: 

1000 
. -,> dx ~ 1034 

.-"dx 

Daher können Sie bei der Behandlung uneigentlicher Integrale den Schweif abschneiden, wenn dieser 
nur unwesentlich zur Gesamtfläche beiträgt. In allen anderen Fällen sollte jedoch eine komprimierende 
Substitution verwendet werden. 
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Über den Algorithmus 

Das Mathematik-Paket verwendet das Romberg-Verfahren zur Akkumulation eines Integralwerts. Die 
Effizienz des implementierten Verfahrens wird jedoch durch verschiedene Verfeinerungen gesteigert. 
Anstelle äquidistanter StützsteIlen (d.h. StützsteIlen, die jeweils den gleichen Abstand voneinander 
haben), die zu Resonanzen und damit bei periodischen lntegranten zu verfälschten Ergebn issen führen 
können, benutzt ItH E G PA L nicht äquidistante StützsteIlen. Das verwendete StützsteIlengitter wird 
am besten illustriert, indem man 

3 1 3 x=-u- - u 
2 2 

in t f( x)dx 
a 

substituiert und dann äquidistante StützsteIlen für u verwendet. Neben der Resonanzunterdrückung 
hat die se Substitution noch zwei weitere Vortei le. Zunäch st werden die Endpunkte de s 
Integrationsintervalls nicht als StützsteIlen verwendet; es sei denn, das Intervall ist so klein, daß ein 
Punkt im Intervallinnern durch Rundung zu einem Endpunkt wird. Dies führt dazu, daß die 
numerisc he Berechnung eines Integrals wie 

( 1 sin x dx 
Jo x 

nicht durch eine Division durch Null an einem Endpunkt unterbrochen wird. Des weiteren kann 
I H T E G PA L auch zur Integration von Funktionen verwendet werden, deren Steigung in einem End­
punkt unendlich ist. Derartige Funktionen treten bei der Berechnung von Flächen auf, die von glatten 
geschlossenen Kurven wie x2 + f2(x) ~ R begrenzt werden. 

Zusätzlich verwendet I tHEGRAL eine erhöhte Genauigkeit. Intern werden alle Summen mit 16 
Stellen akkumuliert. Dies fü hrt dazu, daß gegebenenfalls Tausende von StützsteIlenwerten 
aufsummiert werden können, ohne daß durch Rundung mehr signifikante Stellen verloren gehen, als 
dies bereits in der Funktionsroutine geschieht. 

Der durch I tH E G F' A L implementierte Iterationsprozess erzeugt eine Folge von Schätzwerten, die den 
"wahren" Wert des Integrals immer besser annähern. Des weiteren wird bei jeder Iteration auch die 
jeweilige Breite des Fehlerbandes abgeschätzt. Die Ausführung von I tH E G F' R L wird nur dann be­
endet, wenn drei aufeinanderfolgende Iterationen nur jeweils durch den berechneten Fehler vonein ­
ander verschieden sind, oder wenn dieses Abbruchkriterium auch nach 16 Iterationen nicht. erfüllt ist. 

In diesem Fall wurde die Funktion an 65535 Stellen ausgewertet. I BOUt·!D gibt dann den berechneten 
Fehler mit einem negativen Vorzeichen zurück, um anzudeuten, daß der von I t'~TEGPAL zurück ­
gegebene Wert sich wahrscheinlich um mehr als die Fehlertoleranz vom tatsächlichen Wert des 
Integrals unterscheidet. In einer solchen Situation soll ten Sie dann das Integrationsintervall in 
kleinere Teilintervalle zerlegen und die Funktion über jedem der Teilintervalle integrieren. Das Integral 
über dem ursprünglichen Intervall ist dann die Summe der Integrale über den Teilintervallen . Auf 
diese Weise kann die Funkt ion auf jedem Teilintervall an bis zu 65535 StützsteIlen ausgewertet werden, 
was im allgemeinen zu einer höheren Genauigkeit bei der Berechnung des Integrals führt. 

Zusammenfassend gilt, daß I tH E G R A L für einen Vielzahl von Anwendungen auf rasche und bequeme 
Weise verläßliche Lösungen liefert. Die obigen theoretischen Bet rachtungen beziehen sich auf 
allgemeine Probleme bei der numerischen Integration einer Funktion. Durch geeignete Anwendung der 
hier genannten Techniken lassen sich mittels I tH E G F: A L selbst schwierigste Integrale lösen. 
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Bestimmen der Nullstellen emes Polynoms 

Schlüsselwort 

Das in diesem Abschnitt beschriebene Schlüsselwort F' F: 0 0 T erlaubt die Bestimmung sämtlicher 
Lösungen - sowohl der reellen als auch der komplexen - der Gleichung P(x) ~ 0, wo P ein gegebenes 
Polynom mit reellen Koeffizienten ist. Wenn P ein Polynom n-ten Grades ist, existieren n (nicht 
notwendigerweise verschiedene) Lösungen dieser Gleichung. 

L m mittels F' ROOT die Lösungen der Gleichung P(x) ~ 0 zu bestimmen, wo 

ind zunächst die Koeffizienten an. an - I, .... 00 in einem Feld mit insgesamt n + 1 Elementen zu 
peichern , Die Koeffizienten sind in dieser Reihenfolge abzulegen; d,h. der höchste Koeffizient zuerst 

und das konstante Glied zuletzt. Die Dimensionierung des Felds kann beliebig sein; das Mathematik­
Pa ket verwendet lediglich die Gesamtanzahl der Elemente im Feld zur Bestimmung des Polynomgrads. 
Beispielsweise können die Felder 

6 

,. ; , , , ,,[: : :l[; :] ~d ~ 
1 

alle zur Darstellung des Polynoms 

6x5 + 5x4 + 4x3 + 3x' + 2x + 1 

verwendet werden. Das Feld, das die berechneten Lösungen aufnehmen soll, muß bei komplexen 
:\ullstellen ebenfalls komplex sein. Wenn das Ergebnis'eld ein Vektor ist, wird der Vektor bei einem 
Polynom vom Grad N auf N Elemente umdimensioniert. Wenn das Ergebnisfeld eine Matrix ist, wird 
diese auf N Zeilen und eine Spalte umdimensioniert. 

Der Grad des Polynoms, dessen Nullstellen berechnet werden sollen, ist lediglich durch die Größe des 
verfügbaren Speicherplatzes beschränkt. 

119 
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PROOT Nullstellen eines Polynoms 

wo P ein reeller Vektor oder eine reelle Matrix mit N + 1 Elementen ist, und wo N der Grad des 
Polynoms ist, dessen Nullstellen gesucht sind. R ist ein komplexer Vektor oder eine komplexe 
Matrix. 

Dimensioniert R automatisch auf N Elemente um, wenn R ein Vektor ist. Dimensioniert R auto­
matisch auf N Zeilen und eine Spalte um, wenn R eine Matrix ist. Weist R die (komplexen) 
Lösungen der Gleichung P(x) ~ 0 zu (wo P das Polynom n-ten Grades ist, dessen Koeffizienten in 
P abgelegt sind). 

Die Operation kann durch zweimaliges Drücken von I AHN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden. 

Beispiel 

Das folgende Beipiel findet alle Nullstellen des Polynoms 

5Z6 - 45Z5 + 225Z4 - 425Z3 + 170Z' + 370Z - 500 

ClPTlCI t·, E:A:,:E l l ENDLINE I 

[I I 1'1 A>::?::- I END LlNE I 

C:OI'1F'LD·: B" 1 [1::- I END LlNE I 

1'1AT It-WUT A IENDLINEI 

A( l> ? • 

5,-45 , 225,- 4 25, 17 0 , 3 70,-500 
I END LlNE I 

1'1AT B= PF:ClOT>:: A ::- I ENDLINEI 

Erzeugt einen reellen Koeffizientenvektor. 

Erzeugt einen komplexen Vektor zur Aufnahme 
der Nullstellen. 

Dimensioniert zuerst Vektor B auf sechs Ele­
mente um, die erforderliche Mindestgröße zur 
Aufnahme der sechs (komplexen) Nullstellen des 
Polynoms 6-ten Grades. Berechnet anschließend 
alle Null,tellen und speichert diese in B. 



'IA T DI :,: P E: IENDLINEI 

(" 1 .' 1 ::. 
1 " - 1 
- 1 .' 0 ':I 

(2., ~~1 ) 

( 3., 4) 
(3 .. - 4> 

Weitere Informationen 
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Zeigt alle NullstelIen an. 

Es gibt verschiedene Vorgehensweisen zur Überprüfung der Genauigkeit der berechneten NullstelIen. 
Eine Methode besteht darin, den Wert des Polynoms an einer vermeintlichen Nullstelle zu berechnen 
und diese Zahl dann mit Null zu vergleichen. Obwohl in der Theorie einfach und überzeugend, hat 
dieses Verfahren in der Praxis einige schwerwiegende Nachteile. Es kann sehr leicht vorkommen, daß 
die berechnete Nullstelle die beste maschineninterne Darstellung der wahren Nullstelle ist, aber da die 
Ableitung des Polynoms an dieser Stelle einen sehr großen Wert besitzt, ist der Wert des Polynoms an 
der berechneten Nullstelle ebenfalls sehr groß. Ein einfaches Beispiel für dieses Phänomens ist das 
Polynom lE20x2 - 2E20. Die wahre Nullstelle ist in diesem Fall V2; die berechnete Nullstelle ist 
1.41421356237, was der besten Maschinendarstellung von V2 entspricht. Der Wert des Polynoms für 
diese Näherung der Quadratwurzel von 2 ist jedoch -1 000 000 000; ein scheinbar unakzeptabler Wert 
für eine Nullstelle. 

Ein weiterer Nachteil dieses Verfahrens liegt darin, daß aufgrund der Genauigkeitsbeschränkungen in 
jeder numerischen Berechnung die Signifikanz in der Differenz zwischen dem Polynomwert und 0 
du rch Rundungsfehler bei der Auswertung des Polynoms vollständig eliminiert werden kann. Dies gi lt 
insbesondere für Polynome sehr hohen Grades mit weit auseinanderliegenden Koeffizienten oder 
NullstelIen sehr hoher Ordnung. 

Eine zweite Methode zur Abschätzung der Genauigkeit von berechneten NullstelIen besteht darin, daß 
man versucht, das Polynom aus den berechneten Nullstellen zu rekonstruieren. Wenn sich das 
rekonstruierte Polynom nicht zu stark vom ursprünglichen Polynom unterscheidet, werden die 
berechneten NullstelIen als ausreichend genau betrachtet. Diese Methode ist weniger sensitiv bezüglich 
den bei dem Polynom auswertungs-Verfahren beschriebenen Einflüssen. Andererseits liefert diese 
Methode natürlich keinerlei Aufschluß über die Genauigkeit einer einzelenen Nullstelle. 

Das nachstehend gelistete Programm fordert zur Eingabe der Koeffizienten eines Polynoms auf und 
berechnet daraus die NullstelIen dieses Polynoms mit Hilfe des Schlüsselworts F' P 0 0 T. Falls 
gewünscht, rekonstruiert das Programm die Koeffizienten anhand der berechneten Nullstellen. 
Zusätzlich ist das Programm in der Lage, den Wert des Polynoms an einer berechneten Nullstelle oder 
an einer beliebigen anderen reellen oder komplexen Stelle zu berechnen. 

Die Zeilen 10 bis 200 bilden den Hauptteil des Programms zur Berechnung der NullstelIen eines 
gegebenen Polynoms mittels PP 0 0 T. Die Unterroutine in den Zeilen 210 bis 250 wertet das Polynom 
an einem beliebigen reellen oder komplexen Punkt über das Harner-Schema aus. 
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Die Unterroutine in den Zeilen 260 bis 410 rekonstruiert die Koeffizienten aus den berechneten 
Nullstellen. Dazu wird das Polynom (beginnend mit dem Polynom 1) mit den linearen Faktoren 
(Z - R), wobei R eine berechnete reelle Nullstelle ist, oder mit dem quadratischen Ausdruck Z' - 2 • 
REPT(R) + ABS(R)2, wobei R eine berechnete komplexe Nullstelle ist, multipliziert. (Beachten Sie, 
daß auch CONJ(R) eine berechnete Nullstelle ist.) 

10 OPTION BASE 0 @ INTEGER D,E @ 
DIM U$[4] @ DELAY 1 @ WIDTH 96 

20 INPUT "GRAD? "; D 

30 DIM P(D),C(D) @ COMPLEX R(D-1 ) 

40 DISP "KOEFFIZIENTENEINGABE" @ 
MAT INPUT P 

50 DISP "RECHNEND ... ' 

60 MAT R ~ PROOT(P) 

70 DISP "DIE NULLSTELLEN SIND:" @ 
DELAY 8 @ MAT DISP R @ DELAY 1 

80 U$ ~KEY$ @ INPUT 
"REKONSTRUKTION? (J/N)" ;U$ 

90 IF UPRC$(U$)~" J " THEN GOSUB 260 
ELSE 110 

(' 

100 DISP "DIE REKONSTRUIERTEN ' @ 
DISP "KOEFFIZIENTEN SIND: " @ 
DELAY 8 @ MAT DISP C @ DELAY 1 

110 U$ ~ KEY$ @ INPUT 
' AUSWERTUNG? (J/N) "; U$ 

120 IF UPRC$(U$)# ' J ' THEN 190 
ELSE COMPLEX Z 

130 INPUT ' AN NULLSTELLE? (J/N) ';U$ ,-
140 IF UPRC$(U$)# " J " 'rHEN INPUT " AN 

WELCHER STELLE? ';Z @ GOTO 160 

D ist der Grad des Polynoms. 

Die Matrix P wird die Koeffizienten des 
Polynoms in der zuvor angegebenen Reihenfolge 
enthalten, die Matrix R soll d ie berechneten 
Nullstellen aufnehmen und in der Matrix C 
werden die rekonstruierten Koeffizienten 
abgelegt. 

Eingabe der Koeffizienten . Der führende 
Koeffizient soll te ungleich 0 sein, um einen 
einwandfreien Programmablauf zu 
gewährleisten. 

Berechnet die Nullstellen und speichert sie in R. 

Zeigt die gefundenen Nullstellen an. Drücken 
Sie zur Anzeige einer weiteren Nullstelle und zur 
Fortsetzung cles Programms eine beliebige Taste .. 

Falls gewünscht rekonstruiert das Programm die 
Koeffizienten aus den berechneten Nullstellen. 

Die in Zeile 260 beginnende Unterroutine führt 
die Rekonstruktion aus und speichert die 
rekonstruierten Koeffizienten in Matrix C. 

Zeigt die rekonstruierten Koeffizienten an. 
Drücken Sie zur Anzeige einer weiteren Nullstelle 
und zur Fortsetzung des Programms eine 
beliebige Taste. 

Optionale Auswertung des Polynoms an einer 
Nullstelle oder einer beliebigen anderen Stelle. 

Der Wert des Polynoms wird in der komplexen 
Variable Z gespeichert. 

Die Stelle, an der das Polynom ausgewertet 
werden soll , kann sowohl reell als auch komplex 
sein. 
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150 DISP " WELCHE NULLSTELLE ?" @ 
DISP USING ' # ,"(1 ... ",K," )"' ;D @ 
INPUT E @ Z ~ R(E - 1) 

160 GOSUB 210 @ DISP " DER WERT DES " 
@ DISP " POLYNOMS IST" @ DELAY 8 
@ DISP Z @ DELAY 1 

170 U$ ~ KEY$ @ INPUT 
" NEUE AUSWERTUNG?(J/N)" ;U$ 

180 IF UPRC$(U$) ~ -J " THEN 1!lO 

190 INPUT " NEUES POLYNOM? (J / N) ";U$ 

200 IF UPRC$(U$) ~'J " THEN 20 ELSE STOP 

210 COMPLEX B @ B ~ P(O) 

220 FOR K ~ 1 TO D 

230 B ~ P(K)+ Z*B 

240 NEXT K 

250 Z ~ B @ DESTROY B @ RETURN 

260 DISP " RECHNEND .. . " 

270 MAT C ~ ZER @ C(D) ~ 1 

280 FOR L ~ 1 TO D 

290 IF IMPT(R(L - 1 ))#0 THEN 340 

300 FOR K ~ D - L TO D- 1 

310 C(K) ~ C(K + 1) - C(K)*REPT(R ( L - 1)) 

320 NEXT K 

330 C(D) ~- C(D)*REPT(R(L - 1 )) @ 
GOTO 400 

340 REAL B @ B ~ REPT(R(L - 1))A2 

+ IMPT(R(L - 1)n 

350 FOR K ~ D - L - 1 TO D- 2 

Geben Sie die Nummer der Nullstelle ein, an der 
Sie das Polynom auswerten wollen. 

Die in Zeile 210 beginnende Unterroutine wertet 
das Polynom an der angegebenen Stelle aus. 
Dieser Wert wird dann angezeigt. Drücken Sie 
zur Fortsetzung eine beliebige Taste. 

Falls gewünscht, wertet das Programm das 
Polynom an einer weiteren Stelle aus. 

Das Programm kann für ein weiteres Polynom 
erneut gestartet werden. 

Die Auswertung des Polynoms erfolgt mi t Hilfe 
des Horner-Schemas. 

Mit dieser Zeile beginnt die Unterroutine zur 
Rekonstruktion der Koeffizienten. Durch die 
Akkumulation von Rundungsfehlern während 
der Rekonstruktion stimmen die rekonstruierten 
Koeffizienten möglicherweise selbst bei exa~ten 
Nullstellen nicht mit den ursprünglichen 
Koeffizien ten überein. 

Erzeugt das Polynom 1 in C. 

Schleife zum Abruf der einzelnen Nullstellen. 

Die Zeilen 300 bis 330 mul t iplizieren das in der 
Rekonstruktion befindliche Polynom mit einem 
I inearen Faktor. 

Die Zeilen 340 bis 390 multiplizieren das in der 
Rekonst ruktion befindliche Polynom mit einem 
quadratischen Faktor. 

, 
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360 C(K)=C(K+2)-2*REPT(R(L-1)) 
*C(K+1)+B*C(K) 

370 NEXT K 

380 C(D-1)= - 2*REPT(R(L-1 ))*C(K + 1) 
+B*C(K) 

390 C(D)=B*C(D) @ L=L+1 

400 NEXT L 

410 MAT C=(P(O))*C @ DESTROY B 
@ RETURN 

L wird inkrementiert, da das Polynom sowohl 
mit der komplexen Nullstelle als auch mit der 
konjugiert komplexen Nullstelle multipliziert 
wurde. 

Der führende Koeffizient des rekonstruierten 
Polynoms ist immer 1. Das rekonstruierte 
Polynom ist daher zu skalieren, wenn der 
ursprüngliche führende Koeffizient ungleich 1 
war. 

Beispiel. Es sollen nun die Nullstellen des Polynoms 

berechnet werden; anschließend soll die Güte der gefundenen Nullstellen durch Einsetzen überprüft 
werden. 

EingabejErgebnis 

I RUN I 

GRADC' • 

6 I END UNE I 

KOEFFIZIENTENEINGABE 

1 • 1. 1 , 1 • 1 .' 1 • 1 I END UNE I 
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OIE NU LLSTELLEN SIN D: 

3 39 5 6~ - , 9749 27 91 2 1 82) 

(-, 2 2 2520 9 33 956 J - , 97 4 

I END LlNE I 

93 3 9 56 ., , 9 7 4 9 2 79121 :::2) 

(-, 22 252 0 93395E ... , 9 7 4 9 

Der Realteil der ersten Nullstelle wird während 
der Anzeige des Imaginärteils nach links aus der 
Anzeige hinausgeschoben. 

Der Realteil der ersten Nullstelle. 

Der Imaginärteil der zweiten Nullstelle. 

Der Realteil der zweiten Nullstelle. 

Die verbleibenden Nullstellen können auf die gleiche Weise angezeigt werden: 

Dritte Nullstelle: (- , 9 0096 :::: ::::6 7 90 2., - , 433:::::::373911 ::: ) 

Vierte Nullstelle: ( - , 9 0096::::::: 6 79 02 ., ,433:::::::3 7 3911 8::' 

Fünfte Nullstelle: (.6 234 :,:9 :,:01 :,: 59 " . 7 ::: 1 :,:314:3246:3 ) 

Sechste Nullstelle: ( ,62 34 ::::9 ::::01 ::::5 9 , - , 781 ::::314 ::::246 :::: ) 

Die Programmausführung kann nach dem Anzeigen der letzten Nullstelle durch Drücken von 
I END LI NE I fortgesetzt werden. 

Eingabe/Ergebnis 

REK ON STRU KTION 0( J , N) • 

. J I END LlNE I 

F.: E C: Ht~Et-lD . 

Je(:e Eingabe außer ,J oder .j wird als "nein" 
interpretiert . 
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DIE F:Ef< Ot·j :HRU I EF:TE t·j 

f'::O EFF I Z I EtH Et'j S I t·m : 

1 Der Koeffizient von xs. 

I END LlNE I 

,99999 999999 Der Koeffizient von x" 

Die verbleibenden fünf Koeffizienten können auf die gleiche Weise angezeigt werden: 

Koeffizient von x4: 

Koeffizient von x3: , 9999999999:3 

Koeffizient von x2: 

Koeffizient von xl : ,9 9999999999 

Koeffizient von xo: 

Die Programmausführung kann nach der Anzeige des letzten Koeffizienten durch Drücken von 
I END LI NE I fortgesetzt werden. 

Eingabe/Ergebnis 

,J I END Ll NE I 

AN NU L LS TELLE? (J / N) • 

,J I END UNE I 

WEL CHE NULLSTELLE? 

( 1 ", 6 )'7-' • 
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1 I END UNE I 

DEF: I'~EF:T DES 

(~j! -7, 52E-13) 

I END UNE I Fortsetzung der Programmausführung. 

t·jEUE RU:,:I'~EF:TUHG'" (.J ..... t·j ::O • 

• .1 I ENDUNEI 

RH HUllSTE lLE? ( J .... H::O I 

Ij I END UNE I 

Atj 1·~ElCH EF: :,:TEllE ., . • 

(" ,2." 9) I END UNE I 

DEF: 1·~Efn DE:,: 

POl·/t·jO t·1:,: I :,:T : 

(" ,222523., , U::5 :::: 14) 

I END UNE) 

t·jEUE RU:,:I·jEF:TUt·jG·'· (.J ..... t·j::O I 

H I END UNE I 

HEUES POlYHOM? (J .... H::O • 

I1 I END UNE I Beendet die Programmausführung. 
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Über den Algorithmus 

Das Mathematik·Paket verwendet ein Iterationsverfahren. das sogenannte Laguerre-Verfahren, zur Be­
stimmung der Nullstellen eines Polynoms. Bei diesem Verfahren werden die Nullstellen einzeln 
nacheinander berechnet, indem zunächst eine Folge von Approximationen Zlo Z2, ... für eine Nullstelle 
erzeugt wird. Zum Aufbau dieser Folge wird die Formel Zk+ 1 = Zk + Sk benutzt, wobei Sk (der 
sogenannte Laguerre-Schritt) definiert ist als: 

-N· P(Z.) 

JY(Zk) ± [(N - 1)' • (P' (Z.))' - N • (N - 1) • P(Z. ) • P" (Z. )],h 

Hier bezeichnen P, JY und P" das Polynom und seine ersten beiden Ableitungen; n ist der Grad des 
Polynoms, und über das Vorzeichen des Nenners wird die Wertigkeit des Laguerre-Schritts verringert. 
Polynome oder deren Quotienten vom Grad 1 oder 2 werden direkt bzw. über die bekannte quadratische 
Formel aufgelöst. 

Das Verfahren von Laguerre ist kubisch konvergent für einfache Nullstellen und linear konvergent für 
mehrfache Nullstellen. 

Die Funktion P F.: 0 0 T ist in dem Sinne global, daß Sie weder einen Anfangs- oder Startwert noch ein 
Abbruchkriterium angeben müssen; d.h. der Algorithmus benötigt keine Vorabinformation über die 
Lage der Nullstellen. PF.:OOT versucht immer, die Suche (Iteration) im Ursprung der komplexen Ebene 
zu beginnen. Es wird ein ringförmiges Gebiet bestimmt (mit Hilfe von fünf theoretischen Grenz­
werten), das die betragsmäßig kleinste Nullstelle des (ursprünglichen oder Quotienten-) Polynoms ent­
hält, und der erste Laguerre-Schritt wird zurückgewiesen, wenn er aus diesem Gebiet führen würde. In 
diesem Fall beginnt der Algorithmus eine spiralförmige Suche vom Inneren zum äußeren Rand des 
Ringgebiets, die solange fortgesetzt wird, bis ein akzeptabler Startwert gefunden ist. 

Nach Beginn des Iterationsprozesses wird (mit Hilfe von zwei theoretischen Schranken) um jeden 
Iterationswert ein die Nullstelle enthaltender Kreis berechnet. Der Laguerre-Schritt wird permanent 
überprüft und modifiziert, wenn er aus diesem Kreis herausführen oder nicht zu einem kleineren 
Polynomwert führen würde. Die Nullstellen werden normalerweise in der Reihenfolge ansteigender 
Wertigkeit gefunden. was zu einer Abnahme des durch die Deflation bedingten 
Rundungsfehlereinflußes führt. 

Die Auswertung des Polynoms und seiner Ableitungen mit einer reellen Iterationsvariablen Zk ent­
spricht genau dem Horner-Schema. Die Auswertung mit einer komplexen Iterationsvariablen ist ein 
modifiziertes Horner-Schema, bei dem etwa die Hälfte der Multiplikationen eingespart werden. Diese 
Modifikation nutzt die Symmetrie von konjugiert komplexen Lösungen der Horner'schen Rekursion 
aus. 

P F., 0 0 T bestimmt anhand einer sehr verfeinerten Technik, ob eine Approximation Zk als Nullstelle 
akzeptiert werden kann. Bei jeder Auswertung des Polynoms an der Stelle Zk wird gleichzeitig eine 
Schranke für den bei der Auswertung auftretenden Rundungsfehler berechnet. Ist der Wert des 
Polynoms kleiner als diese Schranke, wird Zk als Nullstelle akzeptiert, wenn der Wert des Polynoms 
abnimmt und gleichzeitig die Größe des Laguerre-Schritts vernachlässigbar klein wird. Vor der 
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Auswertung des Polynoms an der Stelle Zk wird der Imaginärteil von Zk auf Null gesetzt, wenn dieser 
\\'e rt klein im Vergleich zur Schrittweite ist. Dies verbessert die Geschwindigkeit des Algorithmus, da 
reellwertige Auswertungen weniger Zeit als komplexe Auswertungen beanspruchen. Wenn der Wert des 
Laguerre-Schritts vernachlässigbar klein geworden ist, aber der Wert des Polynoms immer noch nicht 
abnimmt, wird die Meldung P F: CI CI T f .;; i 11.' t· e angezeigt und die Berechnung abgebrochen. Dieser 
Fall sollte in der Praxis niemals auftreten. 

Bei der Auswertung des Polynoms werden gleichzeitig die Koeffizienten des durch Division durch den 
zu Zk gehörenden linearen oder quadratischen Faktor entstehenden Quotientenpolynoms berechnet. 
Wenn die Approximation Zk die obigen Nullstellenkriterien erfüllt, wird dieses Quotientenpolynom zu 
dem (Rest-) Polynom, dessen Nullstellen noch zu bestimmen sind, und der gesamte Suchprozess wird 
wieder von Anfang an durchlaufen. 

Mehrfache Nullstellen 

Keine Routine zur Nullstellenbestimmung bei Polynomen - einschließlich F'F:[lCiT - kann in kon­
sistenter Weise Nullstellen hoher Ordnung mit beliebiger Genauigkeit berechnen. Als Faustregel für 
F' F: ClClClT gilt, daß mehrfache oder nahezu mehrfache Nullstellen mit einer Genauigkeit von ungefähr 
12/K signifikanten Stellen, wo K die Ordnung der Nullstelle ist, berechnet werden. 

Genauigkeit 

P F: CI CI T verwendet als Genauigkeitskriterium, daß die Koeffizienten des aus den berechneten 
Nullstellen rekonstruierten Polynoms sehr dicht an den Koeffizienten des ursprünglichen Polynoms 
I iegen sollten. 

Die Leistungsstärke von P F: CI [I T bei isolierten Nullstellen wird beispielsweise durch das Polynom 

100 
P(Z) ~ 2: k 

k- O 

eindrucksvoll illustriert. Von den 200 reellen und imaginären Komponenten der Nullstellen werden 
über die Hälfte mit 12-stelliger Genauigkeit berechnet. Bei den restlichen Nullstellen ist der Fehler 
nicht größer als einige Einheiten in der 12-ten Stelle. 

Bei der Anwendung von P F: CI [I T auf das Polynom (Z + 1)20 (das -1 als Nullstelle der Ordnung 20 hat) 
werden die folgenden Nullstellen berechnet: 

(- .997874038627,0) 
(- .934656570635,0) 
(- .947080146258, - .160105886062) 
(- .947080146258,.160105886062) 
(- .678701343788, - 6.24034855342E - 2) 
(- .678701343788,6.24034855342E - 2) 
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(- .815082852233, - .270565874916) 
(- .815082852233,.270565874916) 
( - .725960092383, - .178602450179) 
( - .725960092383,.178602450179) 
( - .934932478644, - .326980158732) 
(- .934932478644,.326980158732) 
(-1.06905713438, - .337946194292) 
( -1.06905713438,.337946194292) 
(-1.19977533452, - .295162714497) 
( -1.19977533452,.295162714497) 
(-1.30383056467, - .200016185042) 
( -1.30383056467,.200016185042) 
( -1.3593147483,7.00833934259E-2) 
(-1.3593147483, -7.00833934259E - 2) 

Die berechneten Nullstellen sind aufgrund der hohen Ordung von -1 als Nullstelle ungenau. Nach der 
zuvor erwähnten Faustregel wäre keine oder vielleicht eine signifikante Stelle zu erwarten; die erste 
berechnete Nullstelle ist jedoch genauer. Wenn das Polynom aus den berechneten Nullstellen 
rekonstruiert wird, stimmen die (auf 12 Stellen gerundeten) Koeffizienten des rekonstruierten 
Polynoms sehr gut mit den Koeffizientendes ursprünglichen Polynoms überein. 

Ursprüngliche Rekonstruierte 
Koeffizienten Koeffizienten 

1 1 
20 20 
190 190.000000001 
1140 1140 
4845 4845 .00000003 
15504 15504 
38760 38760.0000003 
77520 77520.0000007 
125970 125970.000001 
167960 167960.000002 
184756 184756.000002 
167960 167960.000003 
125970 125970.000002 
77520 77520.0000015 
38760 38760.0000009 
15504 15504.0000004 
4845 4845.00000011 
1140 1140.00000004 
190 190.000000042 
20 20.0000000344 
1 1.00000001018 
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Geschwindigkeit von F' F.: CI CI T 

Die Rechenzeitanforderungen von Pf;:OOT können der nachstehenden Tabelle entnommen werden. Die 
angegebenen Zeiten werden zur Berechnung aller Nullstellen des Polynoms 

N 
P(Z) ~ I k 

' -0 
fü r die unter Grad aufgeführten Werte von N benötigt. 

Die angegebenen Zeiten sind ungefähre Zeiten. 

Grad Zeit (in Sek .) 

3 3 
5 6 

10 22 
15 42 
20 142 
30 168 
50 568 
70 1060 

100 2101 
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Finite Fouriertransformation 

Schlüsselwort 
Finite Fouriertransformationen stellen eine sehr weit verbreitete Methode zur Lösung einer Vielzahl von Problemstellungen aus den Bereichen der Ingenieurwissenschaften, Physik und Mathematik dar. Bekannte Anwendungen kommen beispielsweise in der Signal verarbeitung und bei der Lösung von Differentialgleichungen vor. 

Für einen gegebenen Satz von N komplexen Datenpunkten Zo, Z" ... , ZN- l liefert die finite Fouriertransformation einen zugehörigen Satz von N komplexen Werten Wo. Wb"" WN - 1, so daß für k = 0, 1, ... , N - 1 gilt: 

Z _ N~l W ( 27rkj + .. 27rkj ) k - L j COS
N 

tsm 
j- O N 

Die W's repräsentieren dann die komplexen Amplituden der verschiedenen Frequenzkomponenten des durch die Datenpunkte dargestellten Signals und ergeben sich aus der Formel: 

N- l (2k · 2k·) Wj = I/ N L Z. cos E!.!9... - i sin E!.!9... '-0 N N 

Diese Formel gilt für jede beliebige Anzahl von Datenpunkten. Das Mathematik-Paket verwendet den Algorithmus von Cooley-Thkey, der hier in der Maschinensprache des HP-71 codiert ist. Dies führt zu sehr guten Ergebnissen hinsichtlich Ausführungszeiten und Gepauigkeit bei der Berechnung von finiten Fouriertransformierten; bedingt jedoch andererseits die Einschränkung, daß die Anzahl N der komplexen Datenpunkte eine positive ganzzahlige Potenz von 2 sein muß (etwa 2, 4, 8, 16, 32, 64, 128 usw.). 

Um die finite Fouriertransformation anwenden zu können, sind zunächst die komplexen Datenpunkte Zo, ... , ZN- l in aufeinanderfolgenden Elementen eines N-elementigen Felds abzulegen; Zo als erstes Element, Z 1 als zweites Element, usw. Das Format des Felds ist dabei unwichtig; es kommt nur darauf an, daß die Gesamtanzahl der Elemente in dem Feld mit der Anzahl der komplexen Datenpunkte übereinstimmt. So kann beispielsweise jedes der folgenden 8-elementigen Felder. 

133 
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[ (1,2) 

die Eingabedaten 

[ (1,2) 

(9,10) 

(3,4) (5,6) 

(1,2) 

(3,4) 

(5,6) 

(7,8) 

(9,10) 

(11,12) 

(13,14) 

(15,16) 

(1,2) (3,4) 

(5,6) (7,8) 

(9,10) (11,12) 

(13,14) (15,16) 

(3,4) (5,6) 

(11,12) (13,14) 

(7,8) ] 

(15,16) 

(7,8) (9,10) (11,12) (13,14) (15.16)J 

{( 1,2),(3,4) ,(5,6),(7,8),(9,10).(11,12),(13,14),(15,16) } 

repräsentieren. Das Feld, in dem die Koeffizienten der Fouriertransformierten zu speichern sind, muß 
komplex sein. Wenn das Ergebnisfeld ein Vektor ist, wird d ieser bei NEingabedaten auf N Elemente 
umdimensioniert. Ist das Ergebnisfeld eine Matrix, wird diese auf N Zeilen und 1 Spalte 
umdimensioniert. Die Koeffizienten Wo, ... , W N - 1 der fin iten Fouriertransformierten werden dann als 
komplexe Zahlen in aufeinanderfolgenden Elementen dieses komplexen N-elementigen Ergebnisfelds in 
der gleichen Reihenfolge wie die Datenpunkte zurückgegeben. 

Außer der Einschränkung, daß N eine nichtnegative ganzzahlige Potenz von 2 sein muß, ist die Anzahl 
der Datenpunkte nur durch die Größe des verfügbaren Speicherbereichs begrenzt. 
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FOUR Finite Fouriertransformierte 

1'1A T W= FOllR( Z ) 

wo Z ein komplexer Vektor oder eine komplexe Matrix mit N Elementen, N (eine nicht negative ganzahlige 
Potenz von 2) die Anzahl der komplexen Datenpunkte und Wein komplexer Vektor oder eine komplexe 
Matrix ist. 

Wenn Wein Vektor ist, wird W implizit auf N Elemente umdimensioniert; wenn Weine Matrix ist, wird W 
implizit auf N Zeilen und eine Spalte umdimensioniert . Weist W die komplexen Koeffizienten der finiten 
Fouriertransformierten für die durch Z gegebenen Punkte zu. 

Die Operation kann durch zweimaliges Drücken von I ATIN I angehalten werden. 

Kann nicht im CALC-Modus verwendet werden . 

Beispiel 

In dem nachstehenden Beipiel wird die finite Fouriertransformation für den Datensatz ((1,2), (3,4), 
(5,6) , (7,8), (9,10), (11,12 ), (13,14), (15,16)) berechnet. 

10 OPTION BASE 1 

20 COMPLEX SHORT A(8),B(1,2) 

30 MAT INPUT A 

40 MAT B - FOUR(A) 

50 MAT DISP B 

A( l ) '7-' • 

A enthält den Datensatz, B enthält nach einer 
Umdimensionierung die Fourierkoeffizienten. 
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( 1 .' 2 ::. .' ';:3., 4 ) .' .:: 5 .' 6 ) .' .:: 7 .' ::: ::. .' (9 ., 1 ü) .' 
(11.> 12) .. ( 13, 14>.> (15, 16) 
I END LlNE I 

.:: :::., 9::' 
<-3,4142.,1,4142) 
(-2 .. 0) 

(-1,4142 .. -,5:::57 9 ) 
(-1.,-1) 

(-,5 :::5 79 .. -1,4142) 
(0 .,- 2) 

(!, 414 2 ., -3,4142) 

Weitere Informationen 

Geschwindigkeit des Algorithmus 

In nachstehenden Tabelle ist die von F (I U F: zur Zurückgabe der Transformierten benötigte Zeit in 
Abhängigkeit von der Anzahl der Datenpunkte angegeben. 

Anzahl der Rechenzeil 
Dalenpunkle (Sekunden) 

1 0.07 
2 0.11 
4 0.26 
8 0.75 

16 1.9 
32 4.7 
64 11 

128 25 
256 55 
512 120 

1024 260 
2048 558 
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Zusammenhang zwischen finiten und kontinuierlichen Fouriertransformierten 

Die finite (oder endliche) Fouriertransformierte wird in der Regel als Approximation der konti­
nuierlichen (oder unendlichen) Fouriertransformierten benutzt. Zur Begriffsklärung, in welchem Sinn 
dies eine Approximation darstellt , und zum Verständnis der Auswirkungen der verschiedenen 
Auswahlen, die bei der Verwendung dieser Approximation zu treffen sind, ist es hilfreich, den direkten 
Zusammenhang zwischen finiten und kontinuierlichen Fouriertransformationen zu betrachten. 

Für eine komplexwertige Funktion Z(x) ist die kontinuierliche Fouriertransformierte definiert als 

W(j) ~ f oo Z(x) exp (-27rifx) dx 
- 00 

Zo, ZI'···' ZN- l seien N komplexe Datenpunkte, die durch Abtasten der Funktion an N äquidistanten 
StützsteIlen gebildet werden; d.h. 

Zh ~ Z(xo + Mx) für k ~ 0, 1, ... , N - 1, 

, 
Die zu diesem Satz von Datenpunkten gehörende finite Fouriertransformierte Wo, Wb"" WN- 1 hängt 
mit der kontinuierlichen Fouriertransformierten W(j) wie folgt zusammen. Für k ~ 0, ... , N - 1 gilt 

Wh ~ (r/N) W(k/ Nt:.x) wo r ~ exp (-27rixo). 

Hier ist Weine Approxiomation der wahren kontinuierlichen Fouriertransformierten W. Um Waus W 
abzuleiten, ist W auf zwei sehr verschiedene Weisen zu mitteln. Die dabei auftretende erst.e Gewichtung 
kann durch die Definition einer neuen Funktion A (f) beschrieben werden, die einen Zwischenschritt 
zwischen Wund W bildet: 

00 

A(j) ~ L: W(f + k/ t:.x) 
k - -00 

Dies besagt, daß der Wert A in einem Punkt f gleich der Summe der Werte von W an allen Punkten, 
die ganzzahlige Vielfache der von f ausgehenden begrenzenden Frequenz 1/ t:.x darstellen, ist. A besteht 
also aus unendlich vielen, in Abständen von 1/ t:.x Einheiten vom Ursprung weg angeordneten 
Wiederholungen des Frequenzbandes W einer bandbegrenzten Funktion. Dies ist eine Folge der 
Verwendung der finiten Fouriertransformation mit endlich großen t:.x. Wenn nun t:.x zu groß gewählt 
wird, kann dies bei der Fouriertransformierten zu Frequenzbandüberlappungen führen. Da die meisten 
der in praktischen Anwendungen vorkommenden Funktionen (und alle reellwertigen Funktionen) 
kontinuierliche Fouriertransformierte besitzen, die symmetrisch zum Ursprung sind, tritt für jede in W 
vorkommende Frequenz fo auch die Frequenz -fo in -.v auf. Aus diesem Grund sollten Sie t:.x so 
wählen, daß 1/ t:.x größer als die doppelte Bandbreite der Funktion, d.h. zwei mal der Abstand zwischen 
der kleinsten und größten Frequenz, ist. Wenn die finite Fouriertransformierte alle, also auch die 
negativen Frequenzen ohne Frequenzbandüberlappungen enthalten soll, und t:.{ die größte in der 
Funktion enthaltene Frequenz ist, muß die Bedingung t:.ft:.x < 1/2 erfüllt sein. 
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Die zweite beim Übergang von W zu IV auftretende Gewichtung ist mehr lokaler Natur und führt zu 
einem Verlust in der Frequenzauflösung in IV im Vergleich zu W. Genauer gesagt gilt: 

W(f) ~ (NtJ.x) Loo si nc (gNtJ.x) A(j - g) dg 
-00 

[ 

1 wenn a = 0, 

wo sinc (a) ~ . ( ) 
sm 7ra sonst 

7ra 

Da si nc (gN tJ.x) im wesentlichen aus einem höckerartigen Bereich um den Ursprung mit einer Breite, 
die umgekehrt proportional zu N tJ.x ist, besteht, ist IV für kleine Werte von N tJ.x mehr verschwommen 
(im Vergleich zu W). Dies ist kein besonderes Problem, solange W nicht einen großen Wert an einer 
Frequenz besitzt, die nicht ein Vielfaches der Grundfrequenz N / tJ.x ist. In diesem Fall führen die 
"Seitenschwingungen" der sinc Funktion zu spürbaren Auswirkungen auf IV. Dieser Effekt läßt sich 
etwas reduzieren,wenn die Datenpunkte Zk vor der Bildung der finiten Fouriertransformierten mit 
einer glättenden (Fenster-) Funktion G(k) multipliziert werden. Dies führt zu einer Gewichtungs­
funktion, die kleinere Seitenschwingungen als sinc hat. Ein Beispiel für eine derartige Funktion ist die 
Hanning-Funktion G(k) ~ (1/2)(1 - cos (27rk/ N)). 

Inverse finite Fouriertransformation 

Viele Anwendungen der finiten Fouriertransformierten beinhalten die Berechnung der Transformierten 
für einen Satz von Datenpunkten, eine anschließende Manipulation der transformierten Werte (etwa 
Vergrößern oder Verkleinern der Amplituden) und schließlich eine Rücktransformation der Daten über 
die inverse finite Fouriertransformierte 

Z - N~' W ( 27rkj + . . 27rkj ) 
k- L j COS lsm 

j - O N N 

Sie können mittels F 0 U R auch auf einfach Weise die inverse finite Fouriertransformierte bestimmen. 
Wenn Wein N-elementiges komplexes Feld ist, für das die inverse finite Fouriertransformierte 
bestimmt werden soll, können Sie wie folgt vorgehen: 

1. Dimensionieren Sie W auf N Zeilen und eine Spalte um. (Wenn Wein Vektor oder ein Feld mit 
einer Spalte ist, ist keine Umdimensionierung notwendig.) 

2. Transponieren Sie W (mit T P t·l). Dies liefert die konjugiert Komplexe von W, ohne daß dabei die 
Reihenfolge der Elemente geändert wird. 

3. Bilden Sie die finite Fouriertransformierte des Ergebnisses. 

4. Transponieren Sie das Ergebnis der finiten Fouriertransformation und multiplizieren Sie es mit N. 
Das Produkt stellt dann die inverse finite Fouriertransformierte des ursprünglichen Felds dar. 
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Beispiel. Dieses Beispiel illustriert diese Anwendung der finiten Fouriertransformation und die obige 
Prozedur zur Bestimmung der inversen finiten Fouriertransfomierten. 

Gesucht sei die stationäre Lösung Z(x) der inhomogenen Differentialgleichung 

Z " (x) + 3Z' (x) + 12Z(x) = P(x) 

wo P(x) eine Funktion sei, für die Stichprobedaten vorliegen, Wenn Q die (kontinuierliche) 
Fouriertransformierte einer beliebigen Funktion Q bezeichnet, führt die Bildung der Fourier­
transformierten für die obige Gleichung zu 

-f' Z(j) + 3ifZ(j) + 12Z(j) P(f) 

Diese Gleichung ist algebraisch lösbar: 

Z(j) 
( - f ' + 12) + 3if 

Mit einer hinreichend guten Approximation für P läßt sich die rechte Seite dieser Gleichung problem­
los berechnen. Aus diesem Ergebnis kann dann die Lösung der ursprünglichen Gleichung über die 
inverse Fouriertransformierte bestimmt werden. 

Aus Gründen der Vereinfachung sei hier unterstellt, daß P(x) durch entsprechende Skalierung der 
Gleichung eine Einheitsperiode besitzt, und daß die höchste Frequenzkomponente von P (ungefähr) 
dem 3D-fachen der Grundfrequenz enspricht. In diesem Fall werden dann Frequenzbandüberlappungen 
vermieden, wenn P 64 Mal pro Periode abgetastet wird. 

Um die Eingabe von 64 komplexen Datenpunkten als Meßdaten für P zu vermeiden, verwendet das 
nachstehende Programm eine relativ einfache Funktion für P. Diese Werte könnten natürlich auch 
über jede andere Quelle vorgegeben werden. 

10 OPTION BASE 1 @ DESTROY ALL 

20 COMPLEX P(64),Q(64,1 ),Z(1 ,64) 

30 COMPLEX T 

40 DISP " RECHNEND; BITTE WARTEN" 

50 RADIANS 

P soll die Datenpunkte, die die Meßwerte für P 
repräsentieren, aufnehmen. G! dient der 
Speicherung von P und P/( _f2 + 3if + 12). Z 
wird schließlich die Lösung der 
Differentialgleichung enthalten. 

T ist ein komplexer Skalar für die komplexe 
Division. 
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60 FOR 1- 1 TO 64 
70 R ~ PI*I/32 
80 P(I)~ ( 6000*COS(3*R)*SIN(7.S*R)* 

COS(S.5*R) , 4000*COS(13*R)+ 
3S00*SIN(11 *R) ) 

90 NEXT 1 

100 MAT Q - FOUR(P) 

110 FOR F~ - 31 TO 32 

120 J ~ MOD(F ,64)+ 1 

130 T~(-FA2+12,3*F) 

140 Q(J , 1)~Q(J,1)/T 

150 NEXT F 

160 MAT Q~TRN(Q) 

170 MAT Z - FOUR(Q) 

180 MAT Z ~ TRN(Z) 

190 MAT Z~(64)*Z 

200 COMPLEX Z(64,1) 

210 DISP HLOESUNG:H 

220 MAT DISP USING 
"C(MDDD.D,MDDD.D)";Z 

Routine zur Belegung von P mit Abtastwerten 
der komplexwertigen Funktion, die durch die 
rechte Seite der Zeile 80 repräsentiert wird. 
Dabei wird eine Auswertung von 64 äquidistanten 
Punkten unterstellt. 

I) repräsentiert nun P. 
F stellt die Frequenzvariable dar und tastet den 
gesamten Bereich aller positiven und negativen 
Frequenzen ab, deren Auftreten in P zu 
erwarten ist. 

,J ist die Nummer der Zeile im Feld 0, die die 
Amplitude der Frequenz F enthält. 
T ist der Nenner des komplexen Quotienten. 

G! enthält nun PI( - 12 + 3il + 12) . 
Routine zur Belegung von Z mit den Werten der 
inversen finiten Fouriertransformierten von (L 

Die komplex Konjugierte von I) wird hier durch 
Transposition gebildet. 

Hier wird die Konjugation ebenfalls durch 
Transposition gebildet. 

Die angezeigten Werte stellen die komplexen 
Funktionswerte der stationären Lösung der 
Differentialgleichung für 64 äquidistante Punkte 
in einer Periode dar. 
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Sinus/Cosinus-Fourierreihen 

Für rein reelle Datenpunkte Zk kann anstelle der finiten Fouriertransformierten eine Fourierreihen· 
Transformierte benutzt werden, Hier wird für einen Satz von 2N (reellen) Datenpunkten Zoo Z" "'. 
Z2N - 1 ein Satz von 2N + 1 reellen Konstanten Ao• A" .. ,,AN. B" .. '. B N berechnet. die die 
Gleichungen 

A 02 N 2 '. 2 'k - + 2: Al COS ~ + B
j 

sin ____ --"'7r~J:'----_ 
2 j - l 2N 2N 

erfüllen, 

Wenn Wo, Wv .. . , W2N- 1 die komplexen Koeffizienten der finiten Fouriertransformierten für die 
reellen Datenpunkte Zoo .. '. Z 2N- l darstellen. ergeben sich die Koeffizienten der Fourierreihe aus 

Aj ~ 2REPT(Wjl 

A N ~ REPT(WN) 

für j = 0, ... , N~ l , 

für j = 1, ... , N. 





Anhang A 

Benutzerinformation 

Einsetzen und Entfernen des Moduls 

Sie können das Mathematik -M odul in jeden der vier ROM -Einschubschächte auf der Vorderseite des 
Computers einsetzen. 

VORSICHT 

o Achten Sie darauf , daß der HP-? l (durch Drücken von IIlI OFF I) ausgeschaltet ist , bevor Sie 
irgendein Applikations-Modul einsetzen oder entfernen . 

o Wenn Sie ein Modul entfernt haben, um das Mathematik-Modul einsetzen zu können , sollten Sie 
zum Zurücksetzen interner Zeiger den Computer vor dem Einsetzen des Mathematik-Moduls ein­
und ausschalten. 

o Stecken Sie keine Finger, Werkzeuge oder sonstige Fremdobjekte in die Einschubschächte des 
Computers. Die Nichtbeachtung dieser Vorsichtsmaßnahme kann zu geringfügigen elektrischen 
Schlägen und Störungen von Herzschrittmacherfunktionen führen . Des weiteren könnten die 
Kontakte in den Einschubschächten sowie die internen Schaltkreise des Computers beschädigt 
werden. 

o Sollte das Modul beim Einsetzen klemmen, könnten Sie es verkehrt herum halten. Der Versuch , das 
Modul mit Gewalt in den Einschubschacht zu drücken, kann zu einer Beschädigung des Computers 
oder des Moduls führen . 

o Behandeln Sie nichteingesetzte Einsteck-Module besonders vorsichtig. Führen Sie keine Gegen­
stände in die Kontaktbuchsen des Moduls ein . VerSChließen Sie des weiteren nichtbenutzte 
Einschubschächte immer mit Modulattrappen. Die Nichtbeachtung dieser Vorsichtsmaßnahmen 
kann zu einer Beschädigung des Moduls oder des Computers führen . 

Gewährleistung 

Hewlett-Packard gewährleistet, daß das Mathematik-M"dul in Bezug auf elektronische Bauteile und 
mechanischen Aufbau, jedoch nicht im Bezug auf die Software frei von Material- und 
Verarbeitungsschäden ist, und verpflichtet sich, etwaige fehlerhafte Teile kostenlos instandzusetzen 
oder auszutauschen, wenn das Modul ~ direkt oder über einen HP-Vertragshändler ~ an Hewlett­
Packard eingesandt wird. Die Gewährleistung beträgt 12 Monate ab Verkaufsdatum. 

143 
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Weitergehende Ansprüche, insbesondere auf Ersatz von Folgeschäden, können nicht geltend gemacht 
werden. Schäden, die auf unsachgemäße Veränderungen des Moduls durch Dritte zurückzuführen sind, 
werden von dieser Gewährleistung nicht umfaßt. 

Diese Gewährleistung gilt nur in Verbindung mit entweder 

• dem von einem Hewlett-Packard Vertragshändler ausgestellten Kaufbeleg oder 

• der Originalrechnung von Hewlett-Packard. 

Die Ansprüche des Käufers aus dem Kaufvertrag bleiben von dieser Gewährleistungsregelung 
unberührt. 

Änderungsverpflichtung 

Sämtliche Produkte werden auf der Grundlage der technischen Daten bei der Herstellung verkauft. 
Hewlett-Packard übernimmt keine Verpflichtungen, einmal verkaufte Produkte zu modifizieren oder 
auf den neuesten Stand zu bringen. 

Gewährleistungsinformation 

Wenn Sie bezüglich dieser Gewährleistung Fragen haben, setzen Sie sich bitte mit einem Hewlett­
Packard Vertragshändler in Verbindung. Falls dies nicht möglich ist, schreiben Sie an: 

• In Europa: 

Hewlett-Packard S.A. 
150, route du Nant-d' Avril 

P.O. Box 
CH-1217 Meyrin 2 (Genf) 

Schweiz 
Telefon: (022) 8381 11 

Hinweis: Senden Sie keine Geräte zur Reparatur an diese Adresse. 



• In den U.S.A.: 

• In allen anderen Ländern: 
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Hewlett-Packard Company 
Portable Computer Division 

1000 N.E. Circle Blvd. 
Corvall is, OR 97330 

U.S.A. 
Telefon: (503) 758-1010 

Hewlett-Packard Intercontinental 
3495 Deer Creek Rd. 
Palo Alto, CA 94304 

U.S.A. 
Telefon: (415) 857-1501 

Hinweis: Senden Sie keine Geräte zur Reparatur an diese Adresse. 

Service 

Serviceniederlassungen 

Hewlett-Packard unterhält weltweit Serviceniederlassungen. Sie können Ihr Gerät jederzeit von einer 
Hewlett-Packard Service niederlassung reparieren lassen, sei es mit oder ohne Gewährleistung. Nach 
Ablauf der einjährigen Gewährleistungsfrist werden Ihnen die Reparaturkosten berechnet . . 
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Servicezentrale in den Vereinigten Staaten 

Die Servicezentrale für batteriebetriebene Computerprodukte von Hewlett-Packard in den U.S.A. 
befindet sich in Corvallis, Oregon: 

Hewlett-Packard Company 
Service Department 

P.O. Box 999 
Corvallis, OR 97339, U.S.A. 

oder 
1030 N.E. Cirele Blvd. 

Corvall is, OR 97330, U.S.A. 
Telefon: (503) 757 ·2000 

Serviceniederlassungen in Europa 

Die folgende Aufstellung zeigt die Serviceniederlassungen in Europa. Setzen Sie sich in nicht 
aufgelisteten Ländern mit dem Händler in Verbindung, bei dem Sie Ihr Gerät erworben hahen. 

BELGIEN 

HEWLETT·PACKARD BElGIUM SA/NV 
Woluwedal 100 
6-1200 BRÜSSEl 
Tel. (02) 762 32 00 

DÄNEMARK 
HEWLETT-PACKARD AIS 
Datavej 52 
DK-3460 BIRKER0D (Kopenhagen) 
Tel. (02) 81 66 40 

DEUTSCHLAND 
HEWLETT -PACKARD GmbH 
Berner Strasse 117 
Postfach 560 140 
D-6000 FRANKFURT 56 
Tel. (0611) 50 041 

FINNLAND 
HEWLETT-PACKARD OY 

Revontulentie 7 
SF-Q2100 ESPOO 10 (Helsinki) 
Tel. (90) 455 02 11 

FRANKREICH 
HEWLETT -PACKARD FR AN CE 

Avenue des Tropiques 
Z.I. de Courtaboeuf 
F-91947 LES ULiS CEDEX 
Tel. (6) 907 78 25 

GROSSBRITANNIEN 
HEWLETT -PACKAAD Ud 
King Street Lane 
GB-Winnersh, Wok ingham 
BEAKSHIAE AG11 5AR 
Tel. (0734) 784 774 

ITALIEN 
HEWLETT-PACKARD ITALIANA S.P.A. 
Casella postale 3645 (Milano) 
Via G. Di Vittorio, 9 
1-20063 CERNUSCO SUL NAVIGLIO 
Tel. (2) 90 36 91 

NIEDERLANDE 
HEWLETT-PACKARD NEDEALAND B.V. 
Van Heuven Goedhartlaan 121 
N-1181 KK AMSTELVEEN (Amsterdam) 
P.O. Box 667 
Tel. (020) 47 20 21 

NORWEGEN 
HEWLETT-PACKARD NORGE AIS 
P.O. Box 34 
0esterndalen 18 
N-1345 0ESTERAAS (0510) 
Tel : (2) 17 11 80 

ÖSTERREICH 
HEWLETT-PACKARD Ges.m.b.H 
Lieblgasse 1 
P.O. Box 72 
A-1222 WIEN 
Tel. (0222) 23 65 11 0 

OSTEUROPA 
Bitte wenden Sie sich an die unter Öster­
reich angegebene Adresse . 

SCHWEDEN 
HEWLETT -PACKAAD SVEAIGE AB 
Skalholtsgatan 9 , Kista 
Box 19 
S-16393 SPANGA (Stockholm) 
Tel. (08) 750 20 00 

SCHWEIZ 
HEWLETT-PACKAAD (SCHWEIZ) AG 
Allmend 2 
CH-8967 WIDEN 
Tel. (057) 31 21 11 

SPANIEN 
HEWLETT -PACKARD ESPANOLA S.A. 
Crta .de la Coruna 
Las Aozas 
E-MADIRD 16 
Tel. (1) 458 2600 
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Internationale Serviceinformation 

Nicht alle Hewlett-Packard Serviceniederlassungen bieten Reparatur für alle HP-Produkte an. Wenn 
Sie Ihr Gerät bei einem HP-Vert ragshänd ler erwoben haben, können Sie allerdings sicher sein, daß in 
dem Land, in dem das Gerät gekauft wurde, auch Service angeboten wird. 

Wenn Sie sich außer halb des Landes befinden, in dem Sie das Gerät gekauft haben, sollten Sie sich mit 
der örtlichen Hewlett-Packard Service niederlassung in Verbindung setzen und, falls die Reparatur dort 
nicht möglich ist, das Gerät an die unter "Servicezentrale in den Vereinigten Staaten" angegebene 
Adresse schicken. Von dort können Sie auch eine Liste der Serviceniederlassungen in anderen Ländern 
erhalten . 

Sämtliche mit dem Versand verbundene Kosten gehen zu Ihren Lasten. 

Reparaturkosten 

Hewlett-Packard erhebt fü r Reparaturen, die außerhalb der Gewährleistungsfrist liegen, Gebühren nach 
einem festgesetzten Satz. In den Reparaturkosten sind Arbeitszeit und Materialien eingeschlossen. In 
der Bundesrepublik Deutschland wird auf den Rechnungsbetrag Mehrwertsteuer erhoben und auf der 
Rechnung getrennt ausgewiesen. 

Die festgesetzten Reparatursätze gelten nicht für durch Gewalteinwirkung oder Mißbrauch beschädigte 
Produkte. In · solchen Fällen werden die Reparaturkosten auf der Grundlage von Arbeitszeit- und 
Materialaufwand individuell festgelegt. 

Gewährleistung auf Servicearbeiten 

Auf alle Reparaturen außer halb der Gewährleistungsfrist wird eine Garantie auf Material und 
Verarbeitung für einen Zeitraum von 90 Tagen ab dem Reparaturdatum gegeben. 

Versandanweisungen 

Wenn Ihr Gerät repariert werden muß. senden Sie es bitte mit den folgenden Unterlagen ein: 

• Eine Beschreibung der Störung . 

• Einen Kassenbeleg oder ein anderer Verkaufsnachweis, falls die einjährige Gewährleistungsfrist 
noch nicht abgelaufen ist . 

Das Produkt, eine kurze Fehlerbeschreibung und gegebenenfalls der Beleg des Kaufdatums soll ten zur 
Vermeidung von Versandschäden in der Originalpackung oder einer anderen angemessenen 
Schutzverpackung eingesandt werden . Versanclschäden sind in der Jahresgarantie nicht eingeschlossen. 
Das verpackte Gerät sollte an die nächstliegende Hewlett-Packard Service niederlassung gesandt 
werden. Lassen Sie sich dazu von Ihrem Händler beraten. (Wenn Sie sich nicht in dem Land aufhalten, 
in dem Sie Ihr Gerät erworben haben, lesen Sie bitte den vorangegangenen Teilabschnitt "Inter­
nationale Serviceinformat ion"). 
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Sonstiges 

Hewlett-Packard bietet keine Serviceverträge an. Ausführung und Design des von Computerprodukten 
sind Eigentum von Hewlett-Packard; Servicehandbücher sind nicht für Kunden verfügbar. Sollten Sie 
weitere Fragen bezüglich Reparaturen haben, wenden Sie sich bitte an Ihre nächste Hewlett-Packard 
Serviceniederlassung. 

Händler- und Produktinformation 
Einen Bezugsquellennachweis über den Fachhandel, sowie Produkt- und Preisinformationen erhalten 
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Anhang B 

Speicheranforderungen 

Das Mathematik-Modul belegt 43.5 Bytes des Schreib/ Lese-Speichers (RAM) für den eigenen Bedarf. 
Zusätzlich fordern die einzelnen Routinen vorübergehend geringe Mengen an Speicherplatz für 
Overhead-Zwecke an. Wesentlich mehr Speicherplatz wird bei der Deklaration von komplexen 
Variablen und Feldern und beim Vergrößern von Feldern (während Umdimensionierungen) belegt. Der 
von den einzelnen Operationen des Mathematik -Pakets benötigte Speicherplatz kann der nach­
stehenden Tabelle entnommen werden. 

Schlüsselwort 

Einfache Variable 
CO I'IF'LE:·< 
CO I'1F'LE:": :3HORT 

Feld 
COI'IF'L E:···: 

DET( A ) 

I'I RT PI<:! HT U:,: ! I·I G 
I'IR T D ! :,: P U:,: I I·I G 

I'IRT ! IIPUT 

I'I RT A; A:t: A 
I'IRT A; A:t: B 
I'IRT A; B:t: A 

I'I RT A;TF:I·I ( A ) :t: A 
I'IRT A; TF:I'I ( A ) :t: B 

25 .5 Bytes 
18.5 Bytes 

Speicheranforderung der Operation 

16*(Dimension 1 - CIF' T ! 0 1·1 B R :,: E + 1) 
* (Dimension 2 - OPT I Oll BR:,:E + 1) + 9.5 

9*(Dimension 1 - OPT I 01·1 BR,,:E + 1) 
* (Dimension 2 - CIF' TI 01·1 E: R:3 E + 1) + 9.5 

2N(4N + 1) Bytes, wo A eine N x N Matrix ist . 

14 Bytes 

40 Bytes 

Belegt nur dann zusätzlichen Speicherplatz , wenn ein Operandenfeld auch 
als Ergebnisfeld spezifiziert wird . 

Wenn das Produkt (d.h. die umdimensionierte Matrix A) eine M x N Matrix 
ist (bei Vektoren ist N - 1), wird der folgende Speicherplatz belegt: 

3MN Bytes. wenn A vom Typ! IH EGER ist . 
4.5MN Bytes. wenn A vom Typ :,:HO F~T ist. 
8MN Bytes. wenn A vom Tvp F: E R List. 
9MN Bytes. wenn A vom ~yp COI'IF'LD( SHCIF:T ist. 
16MN Bytes, wenn A vom Typ CIJIo1F' LE )<: ist. 

Belegt nur dann zusätzlichen Speicherplatz . wenn ein Operandenfeld auch 
als Ergebnisfeld spezifiziert wird. 
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Schlüsselwort 

1'IAT C=3'r'::: ( A , B > 

1'IAT A=TF:I'l< A > 

1'1 AT B= F' F: CI CI T ( A > 

1'IAT B=FClUF'( A > 

FHF'ClClT 

IIHEGF'AL 

Speicheranforderung der Operation 

Wenn das Produkt (d .h. die umdimensionierte Matrix A) eine M x N Matrix 
ist (bei Vektoren ist N ~ 1), wird der folgende Speicherplatz belegt: 

3MN Bytes, wenn A vom Typ ItH E G E F' ist. 
4.5MN Bytes, wenn A vom Typ ::: H CIF: T ist. 
8MN Bytes , wenn A vom Typ F: E A L ist. 
9MN Bytes , wenn A vom Typ C CI 1'1F' L D·: ::: H CI F' T ist. 
16MN Bytes, wenn A vom Typ C CI 1'1 F' L D·: ist. 

A sei eine N x N Matrix. 

Wenn A vom Datentyp F' E AL, ::: H CI F: T oder ItH E G E F: und B vom 
Datentyp F: E A L ist: 

4N Bytes. 

Wenn A vom Datentyp F' E AL, ::: H CI F: T oder ItH E G E F: und B nicht vom 
Datentyp F: E A L ist: 

4N(2N + 1) Bytes. 

Wenn A vom Datentyp C CI 1'1F' L E:'< oder C CI 1'1 F' L D·: ::: H CI F: T ist: 
8N(4N + 1) Bytes. 

A sei eine N x N Matrix und Beine N x P Matrix (für Vektoren ist P ~ 1). 

Wenn A vom Datentyp F: E AL, ::: H CI F: T oder ItH E G E F' und B vom 
Datentyp F' E AL, ::: H CIF: T oder ItH E G E F' ist: 

4N(2N + 4P + 1) Bytes. 

Wenn A vom Datentyp F' E AL, ::: H CI F' T oder HIT E G E F' und B vom 
Datentyp C CI 1'1F' L E : •• : oder C CI 1'1 F' L D·: ::: H CI F' T ist: 

4N(2N + 8P + 1) Bytes . 

Wenn A vom Datentyp C CI 1'1 F' L D·: oder C CI 1'1F' L C< ::: H CI F' T ist: 
8N(4N + 4P + 1) Bytes . 

Wenn A eine M x N Matrix und vom Datentyp I IH E G E F' ist: 
MNj 2 Bytes . 

Wenn Operanden- und Ergebnismatrix verschieden sind oder wenn A nicht 
vom Datentyp I I·j T E G E F' ist, wird kein zusätzlicher Speicherplatz belegt. 

Wenn A ein Polynom N-ten Grades repräsentiert. 
21N + 261 Bytes. 

A enthalte N Elemente. 

Wenn B vom Datentyp C CI 1'1 F' L D·: ::: H CI F' T ist: 
16N Bytes . 

Wenn B vom Datentyp C CI 1'1F' L L< ist, wird kein zusätzlicher Speicherplatz 
belegt. 

112.5 Bytes, wenn nw CI CI T nicht geschachtelt ist. 
Zusätzlich für jede Schachtelungsebene 96.5 Bytes. 

208.5 Bytes, wenn ItH E G F' A L nicht geschachtelt ist. 
Zusätzlich für jede Schachtelungsebene 192.5 Bytes . 



Anhang C 

Fehlerbedingungen 

Das Mathemat ik-Paket gibt zwei Arten von Fehlermeldungen zurück: 

o Fehlermeldungen des Mathematik-Pakets, Diese Fehlermeldungen sind durch die LEX­
Identifikationsnummer 2 gekennzeichnet und werden in der ersten Tabelle erläutert, 

o Fehlermeldungen des HP-7l , die vom Mathematik -Paket zurückgegeben werden, Diese 
Fehlermeldungen sind durch die LEX-Identifikationsnummer 0 gekennzeichnet und werden in der 
zweiten Tabelle erläuter t. 

Fehlermeldungen des Mathematik-Pakets 

Nummer Fehlermeldung und Fehlerbedingung 

# D I t'I:,: 

• [lOT ( A ., B ) : A oder B ist eine Matrix . 

o DE T ( A :' , t'lAT B=Hj'.}( A ::> , t'lAT B= H: IH A ::>, t'l AT A= ID I4, 
t'l A T X = :,: '{ ',: " A , y) : A oder B ist ein Vektor, 

o t'l AT A= I D 1,1 (i' : Es wurde nur ein Umdimensionierungsindex angegeben, 

o t'l AT A=Operation ( Operandenfeld(er) ::> : Die Anzahl der Indizes von A entspricht nicht 
der vom Ergebnis der Operation benötigten Anzahl von Indizes, 

o DET ':: A :: , t'lAT A= I DI'I , t'l AT B= HI'o' ( A ::> , t'l AT X= :,:'{ !:: ( A , B ::> : Die Anzahl der 
Spalten der Matrix A entspricht nicht der Anzahl der Zeilen . 

o t-1AT A=IDIF i , j ::>: i.,ej. 
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Nummer Fehlermeldung und Fehlerbedingung 

3 Cont"orn"I .:t bi li t'::I 

• I"AT A=B +C,I"AT A=B- C: Bund C sind nicht vereinbar bezüglich Additionen (d .h. 
die Anzahl der Spalten oder die Anzahl der Zeilen stimmt nicht überein). 

• I" AT A= Bl C: Bund C sind nicht vereinbar bezüglich Multiplikationen (d .h. B ist ein 
Vektor oder die Anzahl der Spalten von B stimmt nicht mit der Anzahl der Zeilen von C 
überein). 

• I" A T A= TF, I·j 0:: B ::O l C: Bund C sind nicht vereinbar bezüglich transponierter 
Multiplikationen (d.h. B ist ein Vektor oder die Anzahl der Zeilen von B entspricht nicht 
der Anzahl der Zeilen von CI . 

• I" AT X=:3'.,..SO:: A .. B ) : Obwohl A eine quadratische Matrix ist, sind A und B nicht 
vereinbar bezüglich Multiplikationen. 

• DOT O:: A ., B ) : A und B sind Vektoren ; jedoch entspricht die Anzahl der Elemente in A 
nicht der Anzahl der Elemente in B. 

4 Parameter Redim 

• Das Ergebnisfeld einer I" A T Anweisung ist ein Unterprogrammparameter. Die I" A T An­
weisung erfordert eine Umdimensionierung, bei der die Anzahl der Feldelemente 
geändert würde. 

• Mehr als 5 Ebenen in F I·j P 0 0 T oder ItH E G F, A L Schachtelungen. 

6 Kybd FN in FNPOOT / INTE GRAL 

• Versuch der Ausführung von F N R 0 0 T oder ItH E G R A L über das Tastenfeld im 
BASIC-Modus, wobei die Funktion, deren Nullstelle oder Integral zu berechnen ist, eine 
benutzerdefinierte Funktion ist. 

• Versuch der Ausführung einer benutzerdefinierten Funktion über das Tastenfeld , wenn 
die Ausführung von F I·j F, 0 0 T oder I I·j T E G R A L während der Berechnung der 
Funktion, deren Nullstelle oder Integral zu berechnen ist, angehalten wurde. 

7 Func t ion Interrupted 

• Die Ausführung von DET ( A ::O , CI·jORI" ( A ) , RI·jORI" O:: A ::O , FI·jORI" ': A ) oder 
D CI T ( A .. B ) wurde durch zweimaliges Drücken von I AHN I unterbrochen. 

8 Bad Arra~ Size 

• I" AT B= F 0 LI R 0:: A ::O : Die Anzahl der Elemente von A ist nicht eine posit ive ganzzahlige 
Potenz von 2. 

• I" AT B= F' F, 0 0 T 0:: A ::O : A besteht aus genau einem Element (und repräsentiert damit 
ein Polynom vom Grad 0). 

9 PROOT Failure 

• FF:OOT kann keine Nullstelle des spezifizierten Polynoms finden. 
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Nummer Fehlermeldung und Fehlerbedingung 

10 GAt'HIA=In f 

o GA t'II'1 A ( i·;:> : i'; ist eine ganze Zahl kleiner oder gleich 0, 

11 ATAt IH ( +-1 :> 

Keine 
Fehler­

Nummer 

o ATAt'IW 1 :> oder ATAt·IH (- 1:> 

Initialisierung 

o Die Overhead-Speicheranforderungen des Mathematik-Pakets können wegen unzu­
reichendem Speicher platz nicht befriedigt werden, Das Mathematik-Paket belegt 43,5 
Bytes des Systemspeichers für den eigenen Bedarf. Dieser Speicherplatz muß beim 
Einsetzen des ModulS verfügbar sein , 

Fehlermeldungen des HP-71 

Nummer Fehlermeldung und Fehlerbedingung 

11 I n',_,' a 1 i d t=U-9 

o E: ',,' A L ( B$ ., R :> , E: '" T f;, $ 0:: X ., R :> : Der ganzahlig gerundete Wert von R ist ungleich 2, 8 
oder 16, 

o E: ',,'AL ( BS .. R :> : BS ist keine zulässige Stringdarstellung einer Zahl zur Basis R, 

o E::::T f;, $ :: X , R " : Der ganzahlig gerundete Wert von X liegt nicht im Interval [0,1 E12), 

o E: ',,' A L 0:: BS .. R " : Das Dezimaläquivalent von BS ist größer als 999999999999. 

o L E: t·1[i 0:: A ., N" , U E: t·m ( A , N :> : Der ganzahlig gerundete Wert von N ist weder 1 noch 2, 

o In einer t'IAT COtl, [[I t·1 , ZEf;" COl'IF'LD: oder COl'IF'LEi·; ',:HCWT Anweisung 
wurde ein unzulässiger Index verwendet. 

o Unzureichender Speicherplatz . In Anhang B sind die Speicherplatzanforderungen der 
Operationen des Mathematik-Pakets gellstet. 

31 [I.~ ~ .~ T':;Ipe 

o Ein (reeller oder komplexer) Skalar wurde anstatt eines an dieser Stelle benötigten 
Felds verwendet, Entsprechendes gilt für den umgekehrten Fall. 

o Ein Skalar oder Feld vom Typ CO 1'1 P L D·; wurde anstatt eines an dieser Stelle be­
nötigten Skalars oder Felds vom Typ f;,EAL verwendet. Entsprechendes gilt für den 
umgekehrten Fall. 
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Nummer Fehlermeldung und Fehle,bedingung 

32 t·~o 0 .:. ~ .~ 

• Versuch der Ausführung von CI E T L vor der ersten Ausführung von t'l AT , , , I t·j 1,1 (mit 
reeliwertigem Argument) oder von t'l AT , , , ~: ''( :,: (mit reeliwertigem ersten Argument). 

• Versuch der Ausführung von F 1,1 AL U E oder F G U E :,::,: vor der ersten Ausführung von 
FHPClCl T. 

• Versuch der Ausführung von !'...'A L U E oder lE: CI U t·m, bevor ItH E G F: A L die 
Funktion, deren Integral zu berechnen ist , zum ersten Mal ausgewertet hat. 

• Versuch der Ausführung von F 1,1 A F:, ohne daß F H P CI CI T momentan eine Funktion , 
deren Nulistelie gesucht ist, auswertet. 

• Versuch der Ausführung von H,IAF:, ohne daß ItHEGF:RL momentan eine Funktion, 
deren Integral gesucht ist , auswertet. 

46 In valid USIHG 

• Formatierung eines reelien Ausdrucks mit einem komplexen Formatstring. Ent­
sprechendes gilt für den umgekehrten Fall. 

79 11 1 >?'3: .:' 1 Con1: e x 1: 

• Es wurde versucht, I t·j T E G F: R L oder F H F: CI [I T im CALC-Modus indirekt auszuführen . 

80 In v alid Parame1 e r 

• Ein als Antwort auf eine t'l R T I t·jf' U T Eingabeaufforderung eingegebener Ausdruck 
enthält einen Aufruf einer benutzerdefinierten Funktion. 



Anhang D 

Wirkung von IAHNI 

Die Wirkung der I AHN I Taste während der Ausführung der nachstehend aufgeführten Schlüsselworte 
wurde bereits auf der angegebenen Seite erläutert. 

Seite 54 

F HF,OOT Seite 97 

IIH EGF,AL Seite 111 

Die Ausführung der in diesem Anhang gelisteten Schlüsselworte kann durch ein - oder zweimaliges 
Drücken von I AHN I abgebrochen werden. 

Feldausgabeanweisungen 

Die Ausführung der Feldausgabeanweisungen des Mathematik-Pakets (I'IA T CI I ','P / F' R I IH [1_"" I l·jGJ) 
kann jederzeit durch einmaliges Drücken von I AHN I angehalten werden. 

Weitere !"I H T Anweisungen 

Die Ausführung der nachstehenden 1'1 AT Anweisungen kann jederzeit durch zweimaliges Drücken von 
> TT N 1 angehalten werden. 

I'IAT Ergebnis ; [ - ] Operand 

1'1 A T Ergebnis ; Operand + / - / 1 Operand 

I'IAT Ergebnis ; 0:: Skalar ::0 [:I: Operand] 

1'1 A T Ergebnis ; It-H,' 0:: Operand " 

1'1 A T Ergebnis ; :" '{ :" 0:: Operand Operand ::O 

1'1 AT Ergebnis ; T f;, I·j 0:: Operand " [:I: Operand] 

I'I AT Ergebnis ; F OU l', 0:: Operand " 

I'I AT Ergebnis ; P RO OT O:: Operand " 
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Es sei unterstellt, Sie wollen ein langes Programm abbrechen, das eine r'1 R T I t·, ',) Anweisung enthält, 
und drücken dazu einmal 1 ATTN I, Die Programmausführung hält jedoch nicht an (d,h, die Statusanzeige 
SUSP erscheint nicht in der Anzeige). Dies deutet an, daß das Programm momentan die Anweisung 
r'1 R T I t·, ',) ausführt und Sie erhalten somit die Möglichkeit, zu entscheiden, ob Sie das Ergebnis der 
Ausführung von r'1 R T I t·, ',) abwarten oder die Programmausführung und damit auch die Ausführung 
der Anweisung durch ein weiteres Drücken von I ATIN I sofort abbrechen wollen. Diese Verwendung der 
Taste I ATTN I ermöglicht einen stufenweisen Programm abbruch. 

Wenn Sie während der Ausführung einer t'1AT I t·g} Anweisung die Taste I ATTN I nur einmal drücken, 
wird das Programm erst nach Abschluß der Ausführung der Anweisung abgebrochen. 

Skalare Matrixfunktionen 

Die Ausführung der nachstehenden skalaren Matrixfunktionen kann jederzeit durch zweimaliges 
Drücken von 1 ATTN 1 abgehalten werden, 

DET 0:: Operand ::0 

D I) T 0:: Operand Operand 

H <O F: r'1 0:: Operand 

CHI) F: r'1 0:: Operand 

F: t·<O F: r'1 0:: Operand 

Die oben beschriebenen Vorteile des zweimaligen Drückens von I ATTN I treffen auch auf diese 
Funktionen zu, Da die Ausführung einer Funktion nur durch eine Fehlerbedingung unterbrochen wird, 
wird bei den obigen Funktionen nach zweimaligem Drücken von 1 A TTN 1 die Fehlermeldung 
F IJnc ti on In 1: et" t" up t ed angezeigt. 



Anhang E 

Mathematische Ausnahmen und IEEE-Vorschlag 

Einleitung 

Dieser Anhang erläutert die Realisierung des IEEE-Vorschlags zur Behandlung von mathematischen 
Ausnahmen durch die Funktionen und Operationen des Mathematik-Pakets. Dies beinhaltet Berech­
nungen mit H, 1·1 und I n f Argumenten, das Setzen von mathematischen Ausnahmeflags, die Behand­
lung von bereichsüberschreitenden Argumenten, Fehlermeldungen oder Warnungen und Vorgabewerte 
für I'.} L und [I '.} Z Ausnahmen. Der IEEE-Vorschlag zur Behandlung von mathematischen Aus­
nahmen wird im HP-7i Referenzhandbuch erläutert. Die Funktionen des Mathematik-Pakets setzen, 
wenn nöt ig, die Ausnahmeflags I 1,.J L, CI V Z, 0 I,} F, U ti F und I t~ ~< und geben in Abhängigkeit von der für 
diese Flags geltenden Auffangwerte (der jeweiligen TI,:RP Einstellung) .Fehlermeldungen oder 
Warnungen (zusammen mit den mit Vorgabewerten berechneten Ergebnissen) zurück. Die Definitionen 
bzw. Berechnungsformeln für einige der hier beschriebenen Funktionen finden Sie in den 
entsprechenden Abschnitten dieses Handbuchs. 

Die in den Abschnitten 2 und 3 dieses Handbuchs beschriebenen Schlüsselworte und die nachstehend 
genannten Schlüsselworte setzen keine Ausnahmeflags: TYF' E, - (Negation von komplexen Zahlen), 
COfl.J, COI·I, I [1 1" ZER, j'1RT [I I ~: P / F' f;: I In [ U~: I I,G I, LE:flD , UE:I·lD, DETL, FVRf;:, FVRLUE, 
FGUE:,:S, I '.}RP, II}RLUE und I E:OUflD. Die Ausnahmeflags IN :<, O'.,.'F und UNF werden vom 
Math"matik-Paket unter Umständen gesetzt, wenn Zahlenwerte zur Umwandlung in einen anderen 
Zahlentyp gerundet werden müssen (etwa bei der Zuweisung von ( j'1R XPERL , f1R r; RERL ) an eine 
CO j.1P LE:": S HORT Variable oder bei der Ausführung von j'1AT A=B, wobei A vom Typ I IHEGER ist 
und B Elemente enthält, die größer als 99999 sind). 

Die Anweisungen j'1RT A=B, j'1 AT A=-B, j'1AT A=TR N( B) und j'1 RT A= (X ) setzen zusätzlich zu 
den beim Runden auftretenden Ausnahmen nur den Ausnahmeflag I I,) L (bei gleichzeitiger Anzeige der 
Meldung :::: i 9 na 1 e d 0 p) und auch nur dann, wenn A vom Typ I t·~ T E G E F.: ist und entweder Bein 
aktives l'a l·1 enthält oder X ein aktives l, aN ist. Der Grund hierfür besteht darin, daß I HTE GE R­
Variablen nur passive Ihtrs enthalten können. Entsprechendes gilt für j'1 RT HIPUT. 

Die in den nachstehenden Tabellen für jedes Schlüsselwort gegebenen Fälle werden in der Reihenfolge 
von oben nach unten ausgewertet. 

Hinweis: In diesem Anhang repräsentiert das Symbol '/< ein beliebiges Argument. 
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Reelle Skalarf unktionen 
Diese Funkt ionen wur den in Abschnitt 4 dieses Handbuchs beschrieben. Jedes Argument mit einem 

I '.iL-Flag und zeigt die Meldung :" i9 n .• l ed COP an. Bei TRAF' ( I '.iL) = 2 
ven Zustand versetzt und die Operation kann fortgesetzt werden. Außer bei der 

jedes passive flal'I-Argument als Ergebnis 1·1 .• 1·1 zurück, ohne daß dabei 
werden. (Die Funktionen I R 0:0 U H D und I~ a IH setzen außer bei aktiven 1·1 a I~ ­

snahmeflags. ) 

aktiven 1·1 .• fl setzt den 
wird H .• I·I in den passi 
Funktion I·I .• IH gibt 
Ausnahmeflags gesetzt 
Argumenten keine Au 

Reeller Sinus Hyperbo lieus <", II-IH O:: X») 

Argument 

±I nf 
± O 
." 

Ergebnis 

± I n f; keine Ausnahmellags gesetzt. 
± 0; keine Ausnahmellags gesetzt. 
It~ : •• : gesetzt ; U I~ F, 0:0 I.i F gesetzt . lalls nötig . 

Reeller Cosinus Hyper bolieus (CO:O :3H O:: X») 

Argument 

± I nf 
± O 
." 

Reeller Tangens Hyper 

± I n f 
± O 
." 

Argument 

Ergebnis 

[ I n f [; keine Ausnahmellags gesetzt. 
1; keine Ausnahmellags gesetzt. 
I fl '·: gesetzt; 0:0 ',,' F gesetzt, lalls nötig 

bolicus (TAI'IH O:: X») 

Ergebnis 

::; G t·j ( ± I n f ); keine Ausnahmeflags gesetzt. 
± O 
Ilü: gesetzt; U fl F gesetzt, lalls nötig . 

Reeller Arcus Sinus Hyperbolieus (A SI I·IH 0:: X ») 

Argument Ergebnis 

±Inf ± I n f; keine Ausnahmellags gesetzt. 
± O ± 0; keine Ausnahmellags gesetzt. 
." 11-1 :·; gesetzt; UI·IF gesetzt. lalls nötig . 
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Reeller Areus Cosinus Hyperbolieus (AC(I :,:H O:: X») 

In f 
X < 1 
1 

" 

Argument Ergebnis 

I n f; keine Ausnahmeflags gesetzt. 
I',) L gesetzt; 1·1., 1,1 als Ergebnis; Meldung: I n'",' a l i d A ,- '", 
0; keine Ausnahmeflags gesetzt. 
I H i< gesetzt. 

Reeller Areus Tangens Hyperbolieus ( A T A H H 0:: X) ) 

± O 

'" 

Argument Ergebnis 

I ',) L gesetzt; 1·1 a 1·1 als Ergebnis; Meldung: In \/ al i d A ,- '" , 
[I',,'Z gesetzt; Meldung: AT AI·1H ( +-1 ) , 

::;Gt·~ ( X ) x In f als Ergebnis, falls T~: AP ( [1 1,,12) - 2 . 
:,:G IHX) x l'tAi(R EAL als Ergebnis und an,; gesetzt , 

fa lls TF:AP ( [I\)Z ) ~ 1, 
± 0; keine Ausnahmeflags gesetzt. 
an,: gesetzt; UI·lF gesetzt , falls nötig, 

Logarithmus zur Basis 2 (L (I G 2 ( X » ) 

I 

In f 
X < 0 
± O 

Argument 

Gammafunktion (G A 1'11'1 A 0:: X ) ) 

In f 
± O 

Argument 

x < 0 und ganzzahlig 

Ergebnis 

I n f; keine Ausnahmeflags gesetzt. 
I'..! L gesetzt ; N., 1'1 als Ergebnis; Meldung: L (I G ( n "':J ), 
D I,} Z gesetzt; Meldung: LI) G 0:: t1 ) . 

- I n f als Ergebnis , falls TF: AP ( [1',)2 ) ~ 2, 
- 1'IAi( F:EAL als Ergebnis mit al X gesetzt, falls 

TF.:AP ( [I',}Z) = 1. 
0; keine Ausnahmeflags gesetzt. 
I I,n< gesetzt. 

Ergebnis 

In i; keine Ausnahmeflags gesetzt , 
[I ',) Z gesetzt; Meldung: GA 1'11'1 A = I 11 F, 

CLA t::,:O::X) x In f als Ergebnis, falls TRAF' ( [lVZ ) ~ 2, 
CLA :,::,: (X ) x l'I Ai< F:EA L als Ergebnis mit 11'1:,'; gesetzt, 

fall s TF: AF' ( [I ',)Z) ~ 1, 
[I ',) Z gesetzt ; Meldung: GA i'1t'1 A = I 1·1 F, 

- I ni als Ergebnis, falls TRAP ( [1 ',12 ) ~ 2, 
- 11A :< RE AL als Ergebnis und al X gesetzt, falls 

TF:AP(D',}Z ) = 1. 
11,1 ;": wird für alle X, die nicht in {1, 2, "" 18 } enthalten sind , 
gesetzt; UI·1F, (I'..!F gesetzt, falls nötig , 
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Nächste Maschinenzahl (fl E I G H E: (I R <: X .. y ) 

Argumente 

X y 

X - Y X - Y 
1'IA:<R EAL Inf 
- 1'1 A>(f;: E A L - Inf 
± Inf 'Ir 

± O 'Ir 

1'1 HWEAL ± O 
- 1"1 II·WEAL ± O 
'Ir 'Ir 

Ergebnis 

X; UI·IF .. I 1·li< gesetzt .. fa ll s H:AP <: UI·IF ) "" 2 und 0 < lXI< EP:,. 
ne Ausnahmeflags gesetzt. I nf; kei 

- I nf; k eine Ausnahmeflags gesetzt. 
::::GH ( X ) 

:::G~~ ( Y ) 

x 1"1 Ac·: f': E AL; ke ine Ausnahmeflags gesetzt. 
x In 1·1 f': E AL; U 1·1 F .. HI c': gesetzt, falls 
:UI~F) "" 2. TF: AF' ': 

0; keine A usnahmeflags gesetzt. 
- 0; keine Ausnahmeflags gesetzt. 
UIIF, I I ~ : .. : gesetzt.. fall s 11'1 E I G H E: elf': 0:: X ... Y ::' I < E P :,: und 

IF) "" 2. H :AP <: UI 

Skalierung mit Zehnerpotenzen (:,: C ALE 1 0 <: X .. N» 

Argumente 

X N 

'Ir nicht ganzzahlig 
± I nf - Inf 
0 Inf 
± I nt" 'Ir 

'Ir - In f 
'Ir I n f 
'Ir 'Ir 

I ' .. }L ges 
I \}L ges 

Ergebnis 

etzt; Nall als Ergebnis; Meldung: I I·' .. · ..... a 1 i d AI' "" 
etzt; 1·1.,1'1 als Ergebnis; Meldung : I n f :1: O. 

I I,) L gese tzt; I1 a 1·1 als Ergebnis; Meldung: In f:H' . 
± I n f; k 
:,: G 1'1 <: X ) 
:,:GN ( X ) 
I t~::<, 0 1.) 

eine Ausnahmeflags gesetzt. 
x 0; keine Ausnahmeflags gesetzt. 
x I n f; keine Ausnahmeflags gesetzt. 

F .. U N F gesetzt .. fal ls nötig. 

Komplexe Funktionen und 0 perationen 
Komplexe Funktionen und Operationen wer 
fo lgend wird für die auf komplexe Argumente 

den in Abschnitt 5 dieses Handbuchs behandelt. Nach· 
erweiterten Funktionen des Hp·71 und des Mathematik· 
TA~~, ::;I~~H, CO :::H, TAt'~H, ::::G!RT, ::; Gt'~ t RB ::: , =, <, >, Pakets (+, -, :t, ........... , LOG, E>::P, :::: I t·~, CO:::, 

.. ) , and #) nur der komplexe Fall diskutiert. D ie Berechnung der Funktionen P (I LA;;:, PE C T, A;;: G und 
cht der Berechnung der Funktionen mit dem komplexen P F: I] .. J mit einem reellen Argument X entspri 

Argument (X, 0). 

Ein aktives I~ ., fl als Argument (1'1.,1'1 kann so wohl im Real- als auch im Imaginärteil eines komplexen 
und gibt die Meldung :; i '3 n.3 1 e d I) p zurück; bei 
.3 t~ zu einem passiven t·~ .:. t·~ und die Operation kann fort ­
ssive t·~ .:. t·Vs Bezug genommen. 

Arguments stehen) setzt den Flag I',}L 

TRAP( IVL ) _ . 2 das ursprünglich aktive 1·1 
gesetzt werden. Im folgenden wird nur auf pa 
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Die nachstehenden Begriffe werden im folgenden verwendet: 

• Komplex bezeichnet Daten vom Typ CO t,lF' L E :': oder CO t,lF' LE X ::: H 0 R T, 

• Reell bezeichnet Daten vom Typ REA L, :,:HOF:T oder I tHEGER , 

• Ctj " t·j ist eine beliebige komplexe Zahl, die mindestens in einer Komponente tj " t~ enthält, 

• eI n f ist eine beliebige komplexe Zahl mit Betrag In f; d.h. mindestens eine Komponente der 
Zahl ist ± I n f. 

• CZERO ist eine beliebige komplexe Zahl mit Betrag 0, 

• Arg(Z) bezeichnet das Argument von Z, d,h. Arg(Z) ist das mathematisch exakte Äquivalent der 
Funktion AR G O:: Z > des Mathematik-Pakets. 

• I Z I bezeichnet den Betrag von Z. 

• Die komplexen Variablen Z und W werden auch als (x, y) und (u, u) angegeben. 

+, - (Addition und Subtraktion) 

Für reelles a und komplexes Z gilt a ± Z ~ (0 ± x, ± y ). Ist sowohl Z als auch W komplex, gilt Z ± W 
~ (x ± u, y ± u). Der Flag I',} L wird gesetzt und die Meldung I n f - I n f angezeigt, wenn eine der 
Komponenten durch I 11 f - I n f berechnet wird; der entsprechenden Komponente wird tj., t·j 
zugewiesen. Ansonsten wird in Abhängigkeit von der Art der Fehlerbedingung für jede Ergebnis­
komponente der Flag Itü,:, 0 '.} Fader U t·jF gesetzt. 

l (Multiplikation) 

Für reelles 0 und komplexes Z gilt a x Z ~ Z x 0 ~ (ox, ay). Der Flag I VL wird gesetzt und die 
Meldung I n f lO angezeigt, wenn eine der Komponenten durch die Multiplikation (± I nf) x (±O) 
berechnet wird; der entsprechenden Komponente wird t< ., t·j zugewiesen. Ansonsten wird in Abhängig­
keit von der Art der Fehlerbedingung für jede Ergebniskomponente der Flag I tn; , O'.}F oder Ut·jF 
gesetzt. 
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Ist sowohl Z als auch W komplex, dann ist Z x W über die nachstehende Tabelle gegeben. 

Multiplikation zweier komplexer Werte (2 • W) 

Argumente 

Z W 

CI·1 .. I·1 * 
* CH .• Il 

Clni CZERO 

CZERO Clni 

Cl ni * 
* Clni 

* * 

Ergebnis 

( 1·1.,1·1 .' 1·1., H :>; keine Ausnahmeflags gesetzt. 

': 1·1= 1·1 .' 1·1.,1·1 :> ; keine Ausnahmeflags gesetzt. 

I ',,'L gesetzt; (1,1.,01-1 .,1,1 .. 1,1:> als Ergebnis; Meldung: In i :1:0. 

I VL gesetzt; ( ll .,I·l ., 1'1.,1'1:> als Ergebnis; Meldung: I n i :1:0. 

F: E C T ( I ni .' Arg(Z) + Arg(W) :> ; keine Ausnahmeflags gesetzt. 

RE C T ( I ni ., Arg(Z) + Arg(W) :> ; keine Ausnahmeflags gesetzt. 

(xu - yv, xv + yu); gegebenenfalls wird für jede Ergebniskomponente Hl:·:, o I,,.'F , 

U 1·1 F gesetzt. 
L-_--'--_----1._ 

/ (Division) 

Für reelles a und komplexes Z gilt Z/a ~ (x/a , y/a) . Der Flag I I,,.' L wird gesetzt und die Meldung ':, ./ <3 

angezeigt, wenn eine der Komponenten durch die Division (±O)/ (±O) berechnet wird; in die ent­
sprechende Ergebniskomponente wird H., 1·1 eingetragen, Der Flag I I,,.' L wird gesetzt und die Meldung 
I n f ./ I n f angezeigt, wenn eine der Komponenten durch die Division ( ± I n f / ± I n f) berechnet wird; 
in die entsprechende Ergebniskomponente wird 1·1.1·1 eingetragen, Der Flag [I I,,.' Z wird gesetzt und die 
Meldung ./ 2;. ,- ':' angezeigt, wenn eine der Komponenten durch die Division T/( ±O) berechnet wird, 
wobei T weder Il .. Il noch ± I ni oder ±O sein darf; in die entsprechende Komponente wird I n f mit 
dem entsprechenden Vorzeichen als Ergebnis eingetragen, falls T RAP ( [I I,,.' Z :> ~ 2 gesetzt ist; wenn 
T F: A F' ( [I V Z :> ~ 1 gesetzt ist, dann wird 1'1 A ,: F: E A L mit dem entsprechenden Vorzeichen in d ie ent­
sprechende Komponente eingetragen und der Flag I H ,: gesetzt, Ansonsten wird in Abhängigkeit von 
der Fehlerbedingung für jede Ergebniskomponente der Flag 11·1 ::<, 0 I,,.' F oder U 1·1 F gesetzt, 

Für komplexes Z gelten die folgenden Definitionen: Für Z ~ CZERO ist l / Z als (CL A ::: :3 (x) x I n f, 
-SG t1(y)) definiert_ Für Z ~ Clnf ist l / Z als (SGtl(x) x 0, - :::GIl(y) x 0) festgelegt, 
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a/ Z ist bei reellem a und komplexem Z über die nachstehende Tabelle definiert. 

Division einer reellen Zahl durch eine komplexe Zahl (a I Z) 

Argumente 

a Z 

I·j a 1·1 -I< 

-I< CI·C. I·j 

± I nf Cl ni 

± O CZERO 

±Inf CZERO 

-I< CZERO 

-I< C lni 

±In f "* 

-I< -I< 

I 

Ergebnis 

" Ij .• 1·1, 1·1 .• 1·1 ) ; keine Ausnahmeflags gesetzt 

" 11 .• 1·1 .' 1·1 .• 1·1 ) ; keine Ausnahmeflags gesetzt 

I ',,' L gesetzt; ,, 1·1 .• I·j .. 1·1 a I·j ) als Ergebnis; Meldung: I I', i .... I n i 

I ',,' L gesetzt ; ,, 11 .• 1,1 .. I1 a 1'1) als Ergebnis; Meldung: "' ./ "' . 

:,: G II (a) x (1 /Z) (Multiplikation reell x komplex); keine Ausnahmeflags gesetzt 

[I I,} Z gesetzt ; Meldung: .... Z e t- Q . 

a x (1 /Z) (Multiplikation reell x komplex); ein Ergebnis wird nur bei TF:A F' " [I',,': ) 

~ 2 zurückgegeben . 
a x (1/Z) (Multiplikation reell x komplex); bei T fi: A F'" [I ',,': ) ~ 1 wird ± I n i in 
einer Ergebniskomponente durch ± I" A ;,.: F: E A L ersetzt und der Flag 11·1 :.: gesetzt. 

a x (1/Z) (Multiplikation reell x komplex); keine Ausnahmeflags gesetzt 

a x c: CI I·j ,J" Z ) (Multiplikation reell x komplex); ]'..,' L wird gesetzt und die Mel­
dung In i;j: '" angezeigt , wenn eine der Komponenten durch die Multiplikation 
(± I n i) x (± O) berechnet wird; in die entsprechende Ergebniskomponente wird 
1-131 j eingetragen. In allen anderen Fällen werden keine Ausnahmeflags gesetzt. 

(a/ IZ I ') x C:OI·I ,J ':Z ) (Mul t iplikation reell x komplex) ; It-I ~< , O',,' F, UI·IF wer­
den in Abhängigkeit von der Fehlerbedingung für jede Ergebniskomponente 
gesetzt . 
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Wenn sowohl Z als auch W komplex ist, dann ist W /Z über die nachstehende Tabelle gegeben. 

Division zweier komplexer Zahlen (WIZ) 

Argumente 
Ergebnis 

W Z 

CfJafJ * ( t·J.3 t·J .' t·J a t~ ) ; keine Ausnahmeflags gesetzt. 

* Ct~ .3fJ ( t·J.3 fJ .' t·J a t·J ); keine Ausnahmeflags gesetzt. 

CZERO CZERO I I.'!L gesetzt; ( t·J.3t~ .. t·J .3t~) als Ergebnis; Meldung: 13/13. 

CI nt Clnt I \.' L gesetzt; (H a t·J , H.3 t·J) als Ergebnis; Meldung: In f ./ In f. 

Clnt CZERO W x (1/Z) (Multiplikation komplex x komplex); keine Ausnahmeflags gesetzt. 

* CZERO D\'!Z gesetzt; Meldung: / 2",,· (> 

W x P IZ) (Multiplikation komplex x komplex); ein Ergebnis wird nur bei 
TRAP ( DI,)2 ) ~ 2 zurückgegeben. 
W X (1/Z) (Multiplikation komplex x komplex); wenn T F: AP O:: D I.,! Z;:' ~ 1, dann 
wird ±Inf in einer Ergebniskomponente durch ± I" A :.: R E A L ersetzt und I t·J :.: 
gesetzt. 

* Cl nt W x PIZ) (Multiplikation komplex x komplex); keine Ausnahmeflags gesetzt. 

* * (W x COt·J.J ( Z » /IZP (Multiplikation komplex x komplex und Division kom· 
plex/reell); gegebenenfalls wird für jede Ergebniskomponente HJ:·:, Ot,}F oder 
U t·JF gesetzt. 

Die nachstehenden Tabellen definieren für die angegebenen Funktionen den Funktionswert f(Z) für 
komplexe Argumente Z. 
Komplexer Sinus (~: I fJ ( Z ;:' ) 

Argument Ergebnis 

CfJafJ ( fJ a H .' fJ.3 H ;:.; keine Ausnahmeflags gesetzt. 

(± I I) t, *) I ,,,, L gesetzt; ( t·JaH.' t·J.3t·J;:' als Ergebnis; Meldung: In \ ... ~lid At-9. 

(*, ± Int) RECT«Inf) Arg«sin(x), :3 G t·J 0:: y ) cos(x))) ) ;:.; keine Ausnahmeflags gesetzt. 

* Gegebenenfalls wird für jede Ergebniskomponente HJi":, 0 I.,! F oder U t·JF gesetzt. 

Komplexer Sinus Hyperbolicus C:: I t·J H .: z::. ) 

Argument Ergebnis 

CfJat·J 0:: t·J at~ , t·J.3 t·J;:'; keine Ausnahmeflags gesetzt. 

(*,±II)f) I I.,! L gesetzt; .: fJat·J.' fJ .3t·J;:' als Ergebnis; Meldung: In v.3 1 id Aro;l . 

(±Inf,*) RECT«Inf } Arg((':: G t·J .: x;:. cos(y), sin(y)));:' ;:. ; keine Ausnahmeflags gesetzt. 

* Gegebenenfalls wird für jede Ergebniskomponente I t·J ;.;, 0 I.,! F oder IHJF gesetzt. 
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Komplexer Cosinus (C 0 S ( Z » ) 

Argument Ergebnis 

Ct·j .• t·j ': tj .• H , t·j. t·j ) ; keine Ausnahmeflags gesetzt . 

(± I n f, * ) I -,,.t L gesetzt; <: fj .• t·j, t·j a t·j) als Ergebnis; Meldung: I n'v'al id At-';!. 

(* , ± I n f) RECT « Int , Arg((cos(x), - :,: Gt·j <: y ) sin(x))) ) ) ; keine Ausnahmeflags gesetzt. 

* Gegebenenfalls wird für jede Ergebniskomponente I t·e< , er I,} F oder U t·~ F gesetzt. 

Komplexer Cosinus Hyperbolicus (C 0 S H ( Z » ) 

Argument Ergebnis 

Ct·j .• t~ <: fj .• H .' t·j a t·j ) ; keine Ausnahmeflags gesetzt. 

( ... , ± I nf) ] I,) L gesetzt; <: t·j .• t~ , t·j aH ) als Ergebnis; Meldung: I n './.~l id At- 9. 

(±Inf, ... ) F:ECT« Inf .. Arg((cos(y), :,: G t·j <: x ) sin(y))) ) ) ; keine Ausnahmeflags gesetzt. 

... Gegebenenfalls wird für jede Ergebniskomponente I t·j :': , 0 '') F oder U t·W gesetzt . 

Komplexer Tangens (T A tH Z)) 

Argument Ergebnis 

Ct·j .• t·j <: t·j .; H , t·j .• H ) ; keine Ausnahmeflags gesetzt . 

(± I "I f , ± I n f ) (ü! :,: G t·j <: y ) ) ; keine Ausnahmeflags gesetzt. 

(±Inf , "') I ',) L gesetzt; ( t·j at·j ., H .• t·j;' als Ergebnis; Meldung: I n·,.·'.~l id At-,~ . 

("' , ± In f ) ( :,: G H ( sin(x) cos(x) ;' l c1 .' :3 G t·j <: y ) ;. ; keine Ausnahmeflags gesetzt. 

... Gegebenenfalls wird für jede Ergebniskomponente I t·i >~, o I, . .'F oder U t·W gesetzt. 

Komplexer Tangens Hyperbolicus (T A fj H <: Z> ) 

Argument Ergebnis 

CHa t·j <: t·j .• H .' tj .• t·j ;.; keine Ausnahmeflags gesetzt . 

(± I n f, ± I nf) ( ::: G t-l ( x ) .' - ü ) ; keine Ausnahmeflags gesetzt. 

( ... , ± Inf) I I,}l gesetzt; <: t·j .• t·j , t·j .• t·j ;. als Ergebnis; Meldung: In .... '.~l id At-';!. 

(±I nf, ... ) <: :, : G t~ <: x ) .' :,: G t·j <: sin(y) cos(y) ;' l c1 ) ; keine Ausnahmeflags gesetzt. 

... Gegebenenfalls wird für jede Ergebniskomponente I H:: , o 1,,1 F oder UHF gesetzt . 
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Betrag einer komplexen Zahl (R E:~; ,:: Z )) 

Argument 

Cf~ ·; I'~ 

C l n i 

* 

Argument (R F: C; ( Z » 

Argument 

C I~;t·~ 

( Inf.,In+" ) 

(-I nf" In+"::' 

( I n+"., -Int" ) 

(-Inf.,- I n f ) 

* 

Ergebnis 

t·~.; I'~ ; keine Ausnahmeflags gesetzt. 

I ni; keine Ausnahmeflags gesetzt. 

I Ni: , 0 '.} F, U t·~ F gesetzt, falls nötig. 

Ergebnis 

t·~ .; t·~ ; keine Ausnahmeflags gesetzt. 

45 Grad bzw. 1'/4 Radiant ; H~ >,: gesetzt, falls im Radia nt-Modus. 

diant-Modus. 

Radiant-Modus. 

135 Grad bzw. 31'/4 Radiant; I t·~ >: gesetzt, falls im Ra 

- 45 Grad bzw. - 1'/4 Radiant; I m: gesetzt, falls im 

- 135 Grad bzw. - 3,,/4 Radiant ; H~ :': gesetzt, falls i m Radiant-Modus. 

RI·~C;L E ( x , y ) ; I H >: oder U t·~ F gesetzt, falls nötig . 

Projektion auf 00 (PRO ,J( Z)) 

Argument Ergebnis 

Cf~ ·; I'~ ( t·~.o I'~ .' I '~ .; I'~ ) ; keine Ausnahmeflags gesetzt. 

C lni ( I n i " '" ); keine Ausnahmeflags gesetzt. 

* Z; für jede Komponente, deren Betrag zwischen 0 und EP :,; liegt wird UHF und 
I I'~ :': gesetzt, falls T R R P ( LI I·W ) ~ 2. 

Einheitsvektor (:,; G t·~ 0:: Z ) ) 

Argument Ergebnis 

C t~.; I'~ 0:: I'~ ,; I·~ . , H.o t,~ ) ; keine Ausnahmeflags gesetzt. 

CZERO Z; keine Ausnahmeflags gesetzt. 

(± Ini, ± I n i) RE e T « !, Arg(Zp ) ; I t·~ i: gesetzt. 

(± Ini, *) (:,; G 1-1( x ) , S G t·~ ( y ) :t "' ) ; keine Ausnahmeflags gesetzt. 

(*, ± In i) ( ::: G t·/ ( x ) :t: ü .' ::; G t·~ ':: Y > ) ; keine Ausnahmeflags gesetzt . 

* Gegebenenfalls wird für jede Ergebniskomponente I I-H': oder LI I'~ F gesetzt. 
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Quadratwurzel (S 0 F~ T ( 1) ) 

Argument Ergebnis 

0 ;.,,1,; <: I·; ." I,; .' I,; " I; ;. ; keine Ausnahmeflags gesetzt. 

C lnf PECT( ( In+" ., Arg(Z) / 2 ;. ;. ; keine Ausnahmeflags gesetzt. 

1< Gegebenenfalls wird für jede Ergebniskomponente !t; ;:; oder U I,; F gesetzt. 

Rechtecks/Polarumwandlung (F' CI L A P ( Z ;' ) 

Argument Ergebnis 

1< (A BS ( Z )" ARG ( Z ) ; gegebenenfalls wird für jede Ergebniskomponente I W·; , 
CI',} F oder U H F gesetzt. 

Polar/Rechtecksumwandlung (pE eT ( Z )) 

Argument Ergebnis 

C H .. I·; <: I,;" I,; .' I·; ." I,; ;.; keine Ausnahmeflags gesetzt. 

(±I n f , ±Ini) (S G t·~ ( x )l I n f .' ',1 ;. ; keine Ausnahmeflags gesetzt. 

(± O,±ln i) (x, x); keine Ausnahmeflags gesetzt. 

(1<, ±lroi) 1'0.,' L gesetzt ; ( I; ." I,; .' I·; ." I,; ;. als Ergebnis ; Meldung: In v.;;,lid At-'3. 

(± l n f , 1<) (acos(y),b sin(y)) ; keine Ausnahmeflags gesetzt ; 

a _ {x falls cos(y) "" 0 

~:GH (x ) falls cos(y) - 0 

und 

b _ { x falls sin(y) "" 0 

:3 GI,; (x ;' falls sin(y) - 0 

1< (x cos(y) ,x sin(y)); gegebenenfalls wird für jede Ergebniskomponente H; i; oder 
UI'!F gesetzt. 
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Natürlicher Logarithmus (L <:I G <: Z ) 

Argument 

CI·j.,I·j 

CZERO 

CInf 

* 

Ergebnis 

<: Ij .,I·j ., l·j .,H :: ' ; keine Ausnahme/lags gesetzt. 

Meldung: L [I C .:: (1 ::0 . [I I,} Z gesetzt; 

( 

.:: - I n f .' 
H:AF'<: 

A P G <: Z )) als Ergebnis, falls 
[I I,) Z ::. = 2. 

<: -1'1 A ;,.,; F' E AL.' A F: G <: Z )) als Ergebnis und I j.j ;,.,; gesetzt, falls 
CI',}Z) = 1. H:A F'<: 

I nf., APG ( 
oder UI·W ge 

Z :o ) ; gegebenen/alls wird für den Imaginärteil des Ergebnisses I jj ;,,; 
setzt. 

Gegebenenfal Is wird für jede Ergebniskomponente I H ;,.,; oder U jj F gesetzt. 

Exponentiation (D W <: Z ) ) 

Argument 

O j ·,I·j 

(- I n f, ± I n f) 

( I n f , ± I n f ) 

(*, ± I nf ) 

(- I nf , * ) 

(In f, *) 

* 

Ergebnis 

<: l·j .,I·j., I·jal·j ) ; keine Ausnahme/lags gesetzt. 

e Ausnahme/lags gesetzt. .:: (1 .' (1::' ; kein 

(In f .. O>; k eine Ausnahmeflags gesetzt. 

I ',} L gesetzt; 

(0 x cos(y),O 

F:ECT <Z>; k 

(/.j ., j.j .' j.j., j.p als Ergebnis ; Meldung: In',.,' ., lid A ,. '" . 

x sin(y)); I jj ;,,; wird für jede Ergebniskomponente gesetzt , falls nötig. 

eine Ausnahme/lags gesetzt. 

Gegebenen/all s wird für jede Ergebniskomponente Jl-j ;"'; , <:I ',} F oder LI j·W gesetzt. 

Verhältnisoperatoren 

Jede numerische Vergleichsoperati on mit komplexen Operanden, die die Operatoren <: oder :> ohne ? 
bzw. # enthält, bedingt das Setzen des I '.) L-Flags und die Anzeige der Meldung Uno t- det' ed . Wenn 

t , dann wird 0 oder 1 nur dann zurückgegeben, wenn der 
, D ,h. Z <= W, Z > = Wund Z ('> = W sind nur dann wahr, wenn x 
Wund Z i ",. W sind immer falsch. 

TPAP':: I ',} L ::' auf 2 gesetzt is 
Vergleichsoperator = vorhanden ist 
~ u und y ~ v ist; Z < W, Z > 



Anhang E: Mathematische Ausnahmen und IEEE-Vorschlag 169 

. (Exponentiation) 

Vor der Berechnung von W .• Z werden die nachstehenden Vorbereitungsmaßnahmen getroffen: 

1. Ein reelles W oder Z wird für die Berechnung in eine komplexe Zahl mit Imaginärteil 0 
umgewandelt. 

2. Wenn die Variable W bzw. Z den Wert CI'l a l'l enthält, wird das Ergebnis (1'1.;; 1'1., 1'1.;;1-1) zurück­
gegeben und kein Ausnahmeflag gesetzt. 

3. Wund Z werden anschließend zur Berechnung in eine kanonische Darstellung umgeformt. Dies 
geschieht wie folgt: Wenn eine Komponente der komplexen Zahl ± I n i, die andere Komponente 
jedoch endlich ist, wird der endliche Teil in der kanonischen Form durch ±O ersetzt (d.h. das 
Vorzeichen wird erhalten). In allen anderen Fällen wird die vorliegende Form der komplexen Zahl 
als die kanonische Form betrachtet. ( 0 ., In f::' ist beispielsweise die kanonische Form von 
( 6 , 7 .' I n f ) ; .: - I n f .' - [1::' ist die kanonische Form von 0:: - I n f .' - N A )-:: R E AL ::' . [m folgenden 
wird unterstellt, daß Wund Z bereits in der kanonischen Darstellung vorliegen. 

IY .". Z wird für W ~ CZERO durch die nachstehende Tabelle gegeben. 

Exponentiation (W ..... Z): W = CZERO 

Argument 
Ergebnis Z 

x > 0 (~::GH( u ' ·x ) " [1); keine Ausnahmeflags gesetzt. 

x < 0 O',)Z gesetzt ; Meldung: ü · .... t·~e9 . 
(~::Gt'~ ( u "' x ) lInf! [1) als Ergebnis, falls TF.:AP ([11.)2 ) ~ 2. 
( S GN(u" x ) *MAXREAL , ü) als Ergebnis und I 11 >: gesetzt, falls 

TF.:AP(D',}Z) ~ 1. 

x ~ o und y ~ 0 Keine Ausnahmeflags gesetzt; Meldung: 0 ·····0; als Ergebnis wird der Vorgabewert 
( 1 " Ei) zurückgegeben , sofern TRA P ( I ',..tL) ~ O. 

x ~ o und y ~ 0 I',}L gesetzt; ( 1·la l·l .. 1·1 a 1·1 ) als Ergebnis; Meldung: In \.'alid Ar';;! . 

W ,. Z wird für y ~ 0 durch die nachstehende Tabelle gegeben. 

Exponentiation (W ,". Z) : y ~ 0 

Argumente 
Ergebnis 

W Z 

(1 , ± O) CI n t I ',,' L gesetzt; ( 1'1.;;1'1 .. II .;;N) als Ergebnis; Meldung: l '·' Inf. 

-I< -I< E ; .. ; F' ( Z :I: LOG ( W) ) (Multiplikation komplex x komplex). Wenn Z* L I] G ( W;' 
gleich (± O, ± I n i ) ist , dann ist dieser Wert nicht im Definitionsbereich von 
E ) .. : F' enthalten und I ',,' L wird gesetzt, (1'1 .;; 1·1 .' 1·1 aN ) zurückgegeben und die 
Meldung I Ir,i ·;; 1 i d A r'~ angezeigt. Ansonsten wird gegebenenfalls für jede 
Ergebniskomponente IN >·: , O',,' F oder UI·IF gesetzt . 
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W .... Z wird für y ~ 0 und v '" 0 durch die nachstehende Tabelle definiert . 

Exponentiation ( W .... Z): y ~ 0 and v," 0 

Argumente 

W 

IWI ~ 1 C 

CI nt C 

1< 1< 

Ergebnis 
Z 

In f I',} L gesetzt; ( t·~ a t·~ .' t·~.;; t·~ ;. als Ergebnis; Meldung: In \,' .;; 1 i dAr ';J • 

ZERO Keine Ausnahmeflags gesetzt; Anzeige der Meldung In f ,'. ü; falls 
T P A F' ( I ',,' L ;' '" 0 wird der Vorgabewert (1.' 0;' als Ergebnis zurück· 
gegeben. 

E >.: F' 0:: xl L I) G ( W ;' ;. (Multiplikation reell x komplex); gegebenenfalls wird für 
jede Ergebniskomponente I t·H( , I) ',i F oder U H F gesetzt. 

W .... Z wird für y o und v ~ 0 durch die nachstehende Tabelle definiert . 

Exponentiation (W .... Z): y ~ 0 und v '" 0 

u ~ 

u ~ 

1< 

1< 

Argumente 

W 

±Inf 

± 1 

x 

Ergebnis 
z 

~ 0 Keine Ausnahmeflags gesetzt; Anzeige der Meldung I n f .". ",; falls 
T P A F' ( I',} L ;' '" 0 wird der Vorgabewert 0:: 1 .' ,,1;' als Ergebnis zurück· 
gegeben. 

CI n f I '..J L gesetzt; <: t·~.;; t·~., t~.3 t~;. als Ergebnis; Meldung: 1 ". I n f. 

CI 

1< 

n f qul"'f , "j) ; keine Ausnahmeflags gesetzt. 

E:,:P O::xlLI)G ( W ;';' (Multiplikation reell x komplex); gegebenenfalls wird für 
jede Ergebniskomponente H~ :'<, I) ',i F ode, U t·~ F gesetzt. 
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Matrizenfunktionen und -operationen 
Matrizenfunktionen und -operationen werden in den Abschnitten 7, 8 und 9 dieses Handbuchs 
beschrieben. Die im letzten 'Thilabschnitt eingeführten Definitionen für CZERO, eIn f, komplex, usw. 
werden auch in diesem Absatz verwendet. 

Ct·10F.:r'10:: A::O F.: t·l 0 F.: r'1 0:: A :' 

Wenn A eine M x N Matrix ist (bei Vektoren ist N = 1). dann gilt: 

Wenn der Real- oder Imaginärteil eines Elements von A ein aktives t·I.;; t·1 enthält, so bedingt dies ein 
Setzen des Flags I '0' L und die Anzeige der Meldung :;: i," n·;; I e d [I p. Bei T~: A F' 0:: I '.,! L) = 2 wird als 
Ergebnis ein passives t·~ .~ t·t zurückgegeben, und es werden keine weiteren Elemente verarbeitet. 

Wenn der Real- oder Imaginärteil eines Elements von A eine passives t·1 a t·1 enthält, so bedingt dies ein 
Setzen des I I.)L -Flags und die Anzeige der Meldung Uncl t" d e t- ed; als Ergebnis wird t·l .:t t·l zurück­
gegeben. In allen anderen Fällen wird gegebenenfalls I t·1 >':, 0 '.,! Fader U t·1 F gesetzt. 

Ft·1opr·1 0:: A::O 

Wenn A eine M x N Matrix ist (bei Vektoren ist N = 1). dann gilt: 

Ft·IOF:t·1< A) = C~l JI lau!') 
Wenn der Real- oder Imaginärteil eines Elements von A ein aktives t·l a t·1 enthält. so bedingt dies ein 
Setzen des 1'-.. ' L -Flags und die Anzeige der Meldung :,: i," ",.;; I e d 0 F·. Bei T F: A F' 0:: H ' L) = 2 wird als 
Ergebnis ein passives t·L:, t·t zurückgegeben, und es werden keine weiteren Elemente verarbeitet. 

Passive tl .;; t'l's werden weitergereicht, ohne daß ein Ausnahmeflag gesetzt wird. In allen anderen Fällen 
wird gegebenenfalls Jt-J::": , 0 '.,! Fader U t·1 F gesetzt. 
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DOT<A.,E:> 

Wenn sowohl A als auch B ein N-elementiger Vektor ist, dann gilt: 

N 
DOT ( A, B) ~ I a.bi 

i - I 

(Wenn einer der beiden Vektoren komplex ist, gelten die zuvor gegebenen Definitionen für komplexe 
Addition und Multiplikation.) Wenn der Real- oder Imaginärteil eines Elements von A oder Bein 
aktives t·~ ." t·~ enthält, so bedingt dies ein Setzen des I',} L -Flags und die Anzeige der Meldung 
0': i., n ." 1 e d I] p. Wenn bei der Berechnung des obigen Ausdrucks ± 0 oder CZERO mit ± I n f oder 
eI n f multipliziert wird, dann wird der I ',}L-Flag ebenfalls gesetzt und die Meldung I nf:l:O an­
gezeigt, Schließlich wird der HJ L-Flag gesetzt und die Meldung I n f - I n f angezeigt, wenn in dem 
obigen Ausdruck eine In f - In f entsprechende Addition durchgeführt wird. 

Wenn nur eine den I ',}L -Flag setzende Ausnahmebedingung auftritt, dann wird die der Ausnahme ent­
sprechende Meldung angezeigt. Bei Auftreten von mehrereren I ',J L -Ausnahmebedingungen hängt die 
angezeigte Meldung von der Reihenfolge des Auftretens und vom Typ der Ausnahmebedingungen ab. 
Bei T R A F' ( I ',) L ;' - 2 wird als Ergebnis im reellen Fall t ·~ ." t~ oder im komplexen Fall ein komplexer 
Wert mit einer oder zwei t·4 .:d·4· Komponenten zurückgegeben. Passive t·L~ Ws werden weitergereicht, 
ohne daß Ausnahmeflags gesetzt werden, In allen anderen Fällen gegebenenfalls It-I>,: , O"JF oder Ut·I F 
gesetzt. 

t'lAT C=Al B 

Wenn A eine M x N Matrix und Beine N x P Matrix ist (bei Vektoren ist P - l) , dann gilt: 

N 

cij = L a ikbij 
k - I 

(Wenn einer der beiden Vektoren komplex ist, gelten die zuvor gegebenen Definitionen für komplexe 
Addition und Multiplikation.) Da sich jedes Ergebniselement aus einem Punktprodukt berechnet, ent­
spricht die hier geltende Ausnahmebehandlung derjenigen bei der Anwendung von DOT ( A, B) für 
jedes einzelne Ergebniselement. 

t'lAT C= TF.:t·j <A) lB 

Wenn A eine M x N Matrix und Beine M x P Matrix ist (bei Vektoren ist P - l), dann gilt: 

M 

cij = L a kl.bkj 
k - l 

(Wenn entweder A oder B komplex ist, gelten die zuvor gegebenen Definitionen für komplexe Addition 
und Multiplikat ion.) 

Da jedes Ergebniselement über ein Punktprodukt berechnet wird, entspricht die hier geltende 
Ausnahmebehandlung derjenigen bei der Anwendung von DO T ( A ., B ) für jedes einzelne Ergebnis­
element. 

• 



Anhang E: Mathematische Ausnahmen und IEEE-Vorschlag 173 

['lAT C= A ± B 

Alle Elemente von C werden einzeln über 

berechnet. (Wenn entweder A oder B komplex ist. dann gelten die zuvor gegebenen Definitionen für 
komplexe Addition und Multiplikation.) 

Wenn ein Element von A oder B (oder bei komplexen Matrizen A oder B der Real- oder Imaginärteil 
eines Elements) ein aktives 1·1, I1 enthält. wird der I '.} L -Flag gesetzt und die Meldung 
::; i 9 n.:t 1 e d CI p angezeigt. Bei T PA P ( I I,) L::O = 2 wird das ursprünglich aktive t·~ .~ t~ in einem Eie· 
ment oder einer Elementkomponente zu einem passiven t·~ a ~~ und die Operation wird fortgesetzt. 
Passive 1·1., Ws werden weitergereicht. ohne daß Ausnahmeflags gesetzt werden. 

Der I',} L -Flag wird gesetzt und die Meldung I n i- I n i angezeigt, wenn eine Addition oder 
Subtraktion (oder eine komponentenweise Addition oder Subtraktion) In i -I n i entspricht; I~, 1·1 
wird in das entsprechende Ergebniselement oder in die entsprechende Ergebniskomponente ein­
getragen. In allen anderen Fällen wird für das entsprechende Ergebniselement oder die entsprechende 
Ergebniskomponente gegebenenfalls HI:·; , CI '.} F oder U I1 F gesetzt. 

['lAT B= <8> lA 

Alle Elemente von B werden einzeln über 

berechnet. (Wenn entweder s oder A komplex ist, gilt die zuvor gegebene Definition für komplexe 
Multiplikationen.) Wenn s (oder bei komplexem s der Real- oder Imaginärteil) ein aktives 1'1,1'1 ent­
hält, wird der I '.}L -Flag gesetzt und die Meldung :,: i9 n ·, I e d Clp angezeigt; entsprechendes gilt, 
wenn ein Element von A (bzw. bei komplexem A der Real- oder Imaginärteil eines Elements) ein aktives 
1·1 a 1,1 enthält. In beiden Fällen werden bei H: AP o:' I',} L ::O ~ 2 ursprünglich aktive Ih Ws zu passiven 
t·~ ·:, Ws, und die Operation wird fortgesetzt. Passive t·~ -:d-l's werden weitergereicht, ohne daß 
Ausnahmeflags gesetzt werden. 

Wenn bei der Berechnung eines Ergebniselements ± O oder CZERO mit ± I ni oder e In i 
multipliziert wird, dann wird der I ',,'L -Flag gesetzt und die Meldung Inil O angezeigt. Das ent­
sprechende Ergebniselement ist bei TF: A F' <: I '.,' L::O ~ 2 entweder der Wert 1-1,1·1 oder ein komplexer 
Wert mit einer oder zwei H .=d·~ -Komponenten. In allen anderen Fällen wird für das entsprechende 
Ergebniselement oder die entsprechende Ergebniskom:,.onente gegebenenfalls H I:';, ü '.,' F oder UI'IF 
gesetzt. 

CI E T 0: A >, ['1 AT C= I t·j I.} < A ) , ['1 AT C= :::..,.. ::: 0: A .. B > 

Die Ausnahmebehandlung dieser drei Operationen ist wegen deren komplizierten Grundalgori thmen 
äußerst schwierig. Daher wird hier nur eine Zusammenfassung gegeben. 
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Wenn ein Element von A oder B (oder bei komplexen Matrixelementen der Real- oder der Imaginärtei!) 
ein aktives t·j ." t·j enthäl t, wird der I ' . ..' L -Flag gesetzt und die Meldung S 19 na I e d CI p angezeigt. Bei 
TPAP (I ',}L) = 2 wird das ursprünglich aktive t'L:tt~ in einem Element oder einer Element­
komponente zu einem passiven H .~ t·~ und die Operation wird vorgesetzt. 

Gegebenenfalls wird für jedes Ergebniselement CI ' . ..' F, U t·jF oder I t·j i< gesetzt. Diese Flags können auch 
während des Ablaufs der Berechnung gesetzt werden. (C1' . ..'L wird speziell bei Auftreten einer 
(maschinen-) singulären Matrix A gesetzt.) Ebenso kann der I ' . ..'L-Flag gesetzt werden, wobei die 
entsprechenden Meldungen (I n f lO, In f - I n f und/oder In f .d n f) angezeigt werden. Diese Mel · 
dungen werden nur bei Auftreten von ± I n f in A oder B oder bei einer Bereichsüberschreitung an 
einem Zwischenschritt angezeigt. Im letzteren Fall kann das Anzeigen einer Meldung durch Setzen von 
T P A P ( CI I,) F) = 1 vor Beginn der Berechnung unterdrückt werden. 

Weitere Funktionen des Mathematik-Pakets 

PPOOT 
Bei der Ausführung von PPClClT untersucht der Algorithmus das Koeffizientenfeld zunächst auf das 
Auftreten der Werte t~." t~ und In f sowie auf führende und nachlaufende Nullen . 

Zuerst wird auf tj ."t-J's abgeprüft. Wenn nur ein Element des Koeffizientenfelds den Wert t·j"tj enthält, 
wird jedem Element des Ergebnisfelds der Wert ( t~ ." t·j .' t·j." t·j:> zugewiesen, und die Ausführung von 
PP CI CI T wird beendet, ohne daß Ausnahmeflags gesetzt werden. (Insbesondere setzen Koeffizienten mit 
einem aktiven t·jatj nicht den I '.,oL -Flag.) 

Der als nächstes untersuchte Sonderfall ist das Auftreten von In f's im Koeffizientenfeld. Wenn nur 
einer der Koeffizienten ± I n f ist, werden alle endlichen Koeffizienten auf Null gesetzt. und die 
Berechnung wird mit der Abfrage auf führende und nachlaufende Nullen fortgesetzt. 

Führende Nullen werden als nächstes behandelt. Für jeden führenden Nullkoeffizient wird eine 
Nullstelle im Punkt 0:: In f .' In f) im Ergebnisfeld abgelegt, ohne daß dabei Ausnahmeflags gesetzt 
werden. Anschließend wird der nächste Koeffizient als führender KoeffIzient angenommen und der 
Prozeß von vorne durchlaufen. Bei jedem Ablegen einer Nullstelle im Ergebnisfeld wird der Grad des 
Polynoms heruntergesetzt, und die Ausführung von F' F: CI CI T ist beendet, wenn der Grad des Polynoms 0 
ist. 

Anschließend werden nachlaufende Nullen behandelt. Für jeden nachlaufenden Nullkoeffizienten wird 
im Ergebnisfeld eine Nullstelle im Punkt ( 'Cl . Ü ) abgelegt. Ausnahmeflags werden dabei nicht gesetzt. 
Der vorletzte Koeffizient wird zum letzten Koeffizient und der Prozeß von vorne durchlaufen. Wie bei 
führenden Nullkoeffizienten wird auch hier für jede im Ergebnisfeld abgelegte Nullstelle der Grad des 
Polynoms reduziert, und die Ausführung von PP CI CI T ist beendet, sobald der Grad des Polynoms 0 ist. 

Wenn alle diese Spezialfälle abgearbeitet sind, ist der Grad des Polynoms positiv und die 
(verbleibenden) Koeffizienten sind entweder sämtlich endlich oder der erste und der letzte Koeffizent 
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des (Rest-) Polynoms sind beide ± I n f . Im ersten Fall werden die Nullstellen des (Rest-) Polynoms 
berechnet. Im zweiten Fall sind mindestens zwei der Koeffizienten des ursprünglichen Polynoms ± I n f 
und eine Zerlegung des Polynoms ist sinnlos; der Algorithmus legt dann D Nullstellen im Punkt 
0-1 .• 1,1 .. 11 .• 1-1) im Ergebnisfeld ab (wo D der Grad des Restpolynoms ist) und beendet die Ausführung 
von PPClClT . Jede dieser Nullstellen bedingt ein Setzen des !'..!L-Flags und die Anzeige der Meldung 
I n -.... a 1 i d A r '~ . 

Nach Ausschluß der oben genannten Spezialfälle wird gegebenenfalls für jedes Element des 
Ergebnisfelds CI ' .. ' F oder U 1·1 F gesetzt ; der Flag I 1·1 :.: wird immer gesetzt. 

FDUP 
Wie bei F' f;: (I (I T werden auch bei F CI U f;: zuerst die Spezialfälle (1-1 .• 1·1 und I n f in den Komponenten 
von Datenfeldelementen) behandelt. 

Zuerst wird auf I·h I-I's abgeprüft: Wenn sich unter den Komponenten der Datenfeldelemente der Wert 
1·1 .• 1·1 befindet, dann wird jedem Element des Ergebnisfelds der Wert -:: 11. 1·1 .' 1-1 .• 1,1" zugewiesen. Die 
Ausführung von F CI U P wird beendet, und es werden keine Ausnahmeflags gesetzt. (Der I '.! L -Flag wird 
durch aktive I·I.I·I -Komponenten nicht gesetzt.) 

Anschließend fragt der Algorithmus auf I n f ab. Wenn sich unter den Komponenten der 
Datenfeldelemente der Wert ± I n f befindet, dann wird jedem Element des Ergebnisfelds der Wert 
( I nf .. lnf ) zugewiesen. Die Ausführung von FOUP wird beendet, und es werden keine 
Ausnahmeflags gesetzt. 

Nach Ausschluß der oben genannten Spezialfälle wird gegebenenfalls für jedes Element des 
Ergebnisfelds (I ' .. ' F oder U I1 F gesetzt; der Flag I 1·1 : .• : wird immer gesetzt. Dies trifft nur zu, wenn das 
Datenfeld ungleich Null ist. 

F t-H:: CI CI T und I H T E G P A L 

Wenn bei der Auswertung der Argumente von It-IT E G f;: A L oder F 1·1f;: CI CI T ein (aktives oder passives) 
1-1 .• 1·1 auft ritt, wird die Fehlermeldung In · .... . I 1 -:J A t- '" angezeigt. Dieser Fehler hält die Ausführung 
der Operation an. Es wird kein Ausnahmeflag gesetzt. 

Allgemein wird jedes ± I n f, das bei der Berechnung eines Arguments von F 1·If;:P (I T oder I I-IT E G PA L 
auftritt, zur Fortsetzung der Berechnung von F 1·1f;: CI [I T oder I I-IT E G P A L in den Wert = 1'1 A :.< P E A L 
umgewandelt. Gegebenenfalls wird für das Ergebnis Itl :·< , CI'.}F oder UI·IF gesetzt. 

Sie sollten daran denken, daß FI-W(l (lT mit Hilfe des Werts von TF: AF' -:: UI'IF " entscheidet, ob eine 
Nullstelle im denormalisierten Zahlenbereich gesucht werden soll oder nicht. Dieser Bereich wird nur 
durchsucht, wenn bei Beginn der Ausführung von F IIf;: CI CI T der Auffangwert T P A F'o:: U 1-1 F " auf 2 
gesetzt ist. 
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AE: 2; 
ACO~:; H 

Af;:G 
A:,; H JH 
ATAIJH 
E::,; T Rt 
B',} AL 
C ( " ::0 

CtJORt'l 
COt'IP LE :": 
CO t'IF'LE:',: :,;HOPT 

( .' ::. 
COt'J,J 
CO S 
COS H 

COSH 
DETL 

DET 
DET (ohne Operand) 
DOT 
o :p 
FGUE :,;:3 
F t,JOF: t'l 
F t·JR OO T 
F'.,,'ALUE 
F ',}A~: 

GAt'H1A 
I BO Ut·W 
I t,1F' T 
I tHEGf;:AL 
I f;:OUtW 
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I Seite I Beschreibung 

41 Betrag einer komplexen Zahl 
28 Inverser Cosinus Hyperbolicus 
41 Argument einer komplexen Zahl 
28 Inverser Sinus Hyperbolicus 
28 Inverser Tangens Hyperbolicus 
16 Umwandlung von dezimal in binär/oktal/ hexadezimal 
15 Umwandlung von binär/oktal/hexadezimal in dezimal 
22 Komplexer Feldspezifikator in Formatstrings 
70 Spaltensummennorm (1-Norm) eines Feldes 
19 Deklaration von komplexen Variablen mit 12-stell iger Genauigkeit 
19 Deklaration von komplexen Variablen mit 5-stell iger Genauigkeit 
21 Umwandlung reeller in komplexe Zahlen 
42 Komplexe Konjugation 
38 Komplexer Cosinus 
27 Cosinus Hyperbolicus 
39 Komplexer Cosinus Hyperbolicus 
69 Determinante der letzten reellen Matrix , die als Operand von I t·J'..! 

oder als erster Operand von ':: 'y' ::: verwendet wurde . 

69 Determinante einer Matrix 

69 Siehe DETL. 
71 Punktprodukt zweier Vektoren 
37 Komplexer Exponent (el ) 

90 Vorletzte Näherung bei Nullstellenbestimmung 
70 Frobeniusnorm einer Matrix 
89 Nullstellenbestimmung einer reellen Funktion 
90 Funktionswert bei der letzten Ausführung von F tW 0 0 T 
90 Variable in der Funktion, deren Nullstellen mit FflF: 0 0 T best immt 

werden sol len , 
28 Gamma-Funktion 
103 Fehlerabschätzung der letzten Integration 
21 Imaginärteil einer komplexen Zahl. 
101 Bestimmtes Integral einer vorgegebenen Funktion 
30 Rundung auf eine ganze Zahl 
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I'\,'ALUE 
I',)RP 

LE: I~D 

LE:OUltD 
LOG 
LOG2 
t'IAT D I :,:P 
tHH D I :,: PU:,: I I~ G 
t1AT I I-WUT 
t'IAT , ,C OI-t 
t'IAT , , WH 
t'IAT, , ZEF: 
t'IAT, ,zn:o 
t'iAT, ,F'F:IIH 
t'IAT PF: I IH U:,: I l-tG 
t'IAT 
t'IAT 
t'IAT 
t'IAT = 
t'IAT 

, + 

, :\: 

t'IAT =" 
t'IAT =( ):1 

t'IAT FOUF: 
t'IAT = I In} 
t'IAT = F'POOT 
t'IAT = :,: 0,':3 

t'IAT TPlt 
t'I AT = TPI-t, l 
l-t AIH 
HE I CHE:O F: 
POlAF: 
PF:O ,J 
RECT 
REPT 
RI-tOF:t'l 
:,:CAlEl'" 
:,:C H 
:,: I I t 
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t 02 Wert des zuletzt berechneten Integrals 
102 Integrationsvariable in der mit ItH E C F: A L zu integrierenden 

Funktion 
72 
72 
37 
29 
54 
55 
53 
52 
52 
53 
53 
55 
56 
51 
63 
64 
64 
65 
52 
65 

Untergrenze von Feldindizes 
Siehe l E: I,m, 
Natürlicher logarithmus einer komplexen Zahl 
Logarithmus zur Basis 2 
Anzeige eines Felds im Standardformat 
Anzeige eines Felds im Benutzerformat 
Wertzuweisung auf Felder über das Tastenfeld 
Initialisierung auf 1 mit Umdimensionierung 
Einheitsmatrix mit Umdimensionierung 

Initialisierung auf Null mit Umdimensionierung 
Siehe t'IAT , , ,zn:, 
Ausdruck eines Felds im Standardformat 
Ausdruck eines Felds im Benutzerformat 
Einfache Zuweisung 
Feldnegation 
Feldaddition 
Feldsubtraktion 
Feldmultiplikation 
Zuweisung eines numerischen Atlsdrucks 
Multiplikation eines Felds mit einem Skalar 

135 Finite Fouriertransformation 
77 Matrixinversion 

120 Nullstellen eines Polynoms 
79 l ösung eines linearen Gleichungssystems 
77 Transponierte einer Matrix 
66 Transponierte Multiplikation 
30 I-t -. It -Ursache 
30 
40 
42 
40 
21 
70 
29 
41 
38 

Nächstgrößere bzw, -kleinere Maschinenzahl 
Umwandlung von Rechtecks- in Polarkoordinaten 
Projektion auf 00 

Umwandlung von Polar- in Rechteckskoordinaten 
Realteil einer komplexen Zahl 
leilensummennorm eines Felds (oo+Norm) 

Skalierung mit Zehnerpotenzen 
Komplexer Einheitsvektor 

Komplexer Sinus 



178 Schlüsselwort index 

Schlüsselwort I Seite I Beschreibung 

"" I f. H 

'=' I t·'H 
S PF~ 

'3 G!F:T 
TRt. 

TRt'H 
TRt'H 
T\'F'E 
UE: tlD 
UE:OU tjD 
+ 

< 
> 
# 
? 

27 
39 
40 
40 
38 
27 
39 
31 
71 
71 
35 
35 
36 
36 

Sinus Hyperbolicus 
Komplexer Sinus Hyperbolicus 

Siehe '=' G! F: T . 
Komplexe Quadratwurzel 
Komplexer Tangens 
Tangens Hyperbolicus 
Komplexer Tangens Hyperbolicus 
Typ und Dimension eines Ausdrucks 
Obergrenze eines Feldindizes 
Siehe UE:t·W. 
Komplexe Addition. 
Einwertiges komplexes Minus 

Komplexe Subtraktion 
Komplexe Multiplikation 

36 Komplexe Division . 
36 Komplexe Exponentiation (Zw) 

43 Komplexe Verhäitnisoperatoren 



HP-71 
Benutzerdokumentation 

Addendum 

Dieses Addendum enthält zusätzliche Informationen zur Verwendung von zwei HP-71 Schlüsselwortm. 

Verwendung von O~·l , , ,GOTO und O~·l , , , GO ~:; UE: 

HP-71 Benutzerhandbuch, Seite 181. In den beiden nachstehend beschriebenen Situationen 
bedingt die Ausführung von (I t·~ , , ,G (I T (I und (I t·~ , , , G (I :,: U B Anweisungen keine Programmverzwei­
gung. Stattdessen kann jede dieser Anweisungen die Wirkung einer (I t~ . . . RE :,; T 0 F~ E Anweisung 
haben. In jedem Fall wird der Speicherinhalt nicht verändert. 

Situation 1. Verwenden Sie nicht Ot·~ . .. GO T D/GD:,;U E:, solange eine der Rundungseinstellungen 
DF'T I Dt·~ F:OUt·W F·D :'; oder DF'T I Ot·~ F:OUt·W t~ E G aktiv ist. 

Um dieses Problem zu vermeiden, sollten Sie eine DF' T I Dt·~ RDUHD t·~ERR oder OF·T I Ot~ ROUt·W 

Z ERO Anweisung in jedes Programm einfügen , das DN , , ,GOTO/GOSU E: Konstruktionen enthält. 
Stellen Sie sicher, daß bei der Ausführung von Ot·~, , ,GO TO /GO:,;UE: die OF' TIO t~ ROUt·W 

t·~ERR /ZEF:O Einstellung aktiv ist. Dadurch wird verhindert, daß eine gegebenenfalls aktive OF'T I D t·~ 

F:DU t-W F'O~;/ t·~EG Einstellung die korrekte Ausführung einer OH , , ,GO TO /GOSU8 Verzweigung 
beeinträchtigt; unabhängig davon, ob die OF'T I OH ROUt·W F'O:3/HEG Einstellung durch eine 
entsprechende Anweisung in Ihrem Programm erzeugt oder durch den Permanentspeicher erhalten 
wurde. 

Situation 2. Der in einer Ot·~ , , , GOT O/GO~;UE: Anweisung verwendete numerische Ausdruck (OH 
numerischer Ausdruck GOT O/GO:::U B) darf keine Operatoren außer +, -, l , ./ und [I I I,} sowie keine 
Funktionen (einschließlich benutzerdefinierter Funkt ionen, t rigonometrischer Funktionen, ::: OR T, 
usw.) ent halten. 

Um dieses Problem zu umgehen, sollte der numerische Ausdruck nur einfache Variablen enthalten und 
nur die Operatoren +, -, l, ./ und [I I I,) verwenden. Wenn Sie für den Ausdruck eine Funktion oder 
einen anderen Operator benötigen, sollten Sie den Wert des Ausdrucks zuvor einer einfachen Variablen 
zuweisen und dann diese einfache Variable als Pointer in der O~~, , , GOTO/GO:::UE: Anweisung 
verwenden. 

Beispiele: Nachstehend finden Sie Beispiele für den falschen und den richtigen Gebrauch eines 
Ausdrucks als Pointer in einer Ot·~ . . , GOTO/ GO :;UB Anweisung, wenn der Ausdruck eine Funktion 
und einen von +, - , J , ,/ oder [I I I,} verschiedenen Operator ent häl t. 

Falsch: 

Diese CI t·~ , , ,G 0:3 U E: Anweisung bedingt keine 
Programmverzweigung. 



Richtig: 

A = FI·!,J ( T)·· .. :,;II·!(1'1) 
ON A GO::;UB 500 .. 600 .. 700 

00071-90074 German 

Diese CI H, , ,C; CI :,; U E: Konstruktion bedingt 
eine Programmverzweigung; die Anweisung 
wird korrekt ausgeführt, 
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