
Series 9800 Desktop Computers

System 35/45
Assembly Language

Optimizing program execution times.

r/iOW HEWLETT
~I:JI PACKARD

Enhancing a desktop computer's
program efficiency and speed

Programming on today's desktop computer Is best
accomplished using a high level language such as HP
Enhanced BASIC. however there are certain computa­
tion-intensive tasks and specialized I/O routines that could
be made faster and more efficient if they could be coded
in a lower levellanguag€. Of ten, the best solution is to
combine the speed of a low level language plus
the power and flexibility of a
general -purpose BASIC -
intermixed in the same
program .

Thai's exactly what
we've done.

Hewlett-Packard's new System 35/ 45 Assembly
Language capability gives experienced programmers all
the versatility and control they need to get the most oul of
desktop computer programs. It Is designed specifically to
enhance the System 35 and 45 Desktop Computer by
prOViding speed increases in time-critiCilI portions of
BASIC programs. It offers the programmer complete con­
trol of the System 35 or 45 Central Processing Units
(CPUs) through the use of machine instructions, pseudo­
instructions and extensions to the BASIC language . It
allows specialized subroutines to be written in Assembly

•
_--__ ...:L~.:n:guage which are then callable

from a BASIC program.

c

If you have ever programmed in Assembly Language.
you know it can be very unfriendly . But we have
developed an Assembly Language System that takes
advantage of all the friendly features of our desktop com­
puters - and then adds a few new ones :

• source statements that are syntaxed as they are
entered . allowing you to catch errors as they are
made;

• an assembly process that is entirely integrated. i.e . ,
the assembler and editor are in Read Only Memory
(ROM) and the Source/ Object codes are in Read /
Wrll:e Memory, thereby eliminating flme consuming
mass storage accesses ;

• an assembler that can assemble code at up t0800
statements per second;

• a system that Is available in two different ROM con­
figurations: an Execution and Development ROM .
and an Execution ROM:

• and , most importantly. an extensive set of debug
tools that allow interactive debugging from the
System 35 or 45 keyboard plus the ability to write
and execute debug routines in BASIC .

The sum of these features results in getting Assembly
Language routines up-and-running much quicker than
you might have thought possible .

Increasing the speed of computation. BASIC Language
statements are usually written as general purpose routines
capable of handling a wide assortment of requirements.
With Assembly Language. you can tailor a subprogram to
handle a specific task, thus eliminating unnecessary
overhead . In general. speed increases with Assembly
Language are the result of the programmer knowing very
speCific information about the task and then writing code
in a streamlined fashion to efficiently handle that task. For
example, significanl increases can be realized when using
integer precsion , as seen in the table below_

Speed up 1/ 0 response. Many I/O applications require
the desktop computer to respond quickly to interrupts.
Assembly Language Interrupt Service Routines (ISRs) on
the System 35 and 45 Desktop Computers are attended
to within 80 to 150 microseconds Instead of waiting for the
end of the BASIC line . This can result in a 300X increase
In the efficiency of handling Interrupts .

I/ O throughput can be dramatically increased using
Assembly language by redUCing the amount of overhead
incurred by a BASIC program. This overhead is a result

Add

APPROXIMATE SPEED INCREASES'

BASIC
(dOlI ling point)

In miCf05eCOnds

SubtrllCl
MultJply
DIvide fouhne

Auem bly
(Integer miluh)

in microse(:onds

22
44

13.5
1000

290
350

1 000
3100

APII'OK. Speed
Improvement

FaCl"Qr

1300
800
75.0
31

Single floating point operation vs BASIC 0 8
Array mllnlpulauon

\nl~ \900
Real 3 .0

loops. Branehmg. Compares. lndeKlng 100.0

' These eKeCUtlofl tim" are approKltnale and rtpr~nt an
averBge O\'er a number o f tnttm'l IIonS

of the Interpretive operating system of the System 35 and
45 , plus the flexibility of the HP Enhanced BASIC
statements.

Some specific areas where Assembly Language can
aid in redUCing overhead are:

• repetitive , small word-count transfers;
• fast scanning of devices on different select codes;
• intermixed computation and I/ O ;
• evaluating I/O "on -the-fly" for error conditions, etc.

GraphicS with Assembly Language. Assembly Lan­
guage provides complete control of the System 45 CRT
hardware and includes the setting and checking of indi ­
vidual dots. the writing and reading of full words of
graphic information and the control of two graphics cur­
sors. The major advantage of using Assembly Language
rather than BASIC to create and manipulate graphics in ­
formation is speed Graphical data can be manipulated
and input information ploued in real time using Assembly
Limguage .

The display of graphics Informatio n is essentially
an 1/ 0 operation to the graphics hardware. Thus, all
speed increases associated with I/O also apply to
graphics_ An algorithm that intermixes data input. compu­
tation and display will realize a significant speed increase
over BASIC. However. since full access to the CRT
graphics hardware is available in BASIC (and is much
simpler). the use of Assembly Language should be limited
to those graphics areas where speed is critical

The Processors
The CPUs used in the System 35 and 45 Desktop

Computers are Hewlett-Packard designed 16-bit hybrids
that offer:

• 2 arithmetic accumulators {A & BJ,
• 2 genera! purpose stack pointers (C & OJ with byte

or word addreSSing capability .
• indirect addressing (one level) ,
• 2 levels of priority interrupts with 8 hardware vectors

per level,
• Direct Memory Access (DMA) capability,
• hardware floating point BCD arithmetic with two

floating point registers: Ar 1 (located in R/ W
memory) and Ar2 (located in the processor) .

• 16 bit instructions and data,
• integer arithmetic ,
• 16 sixteen-btt bi-directional I/O ports.

The System 45 features a unique dual prOcessor
(CPU) system: a single one is used in the Syslem 35. For
non-ISR Assembly Language code, the System 45's dual
processors function as a single unit to maintain compata­
bilily with the System 35 The major advantages of the
dual processor system in the System 45 are:

• overlapped I/O can. in some cases, bring about
increased throughput :

• Assembly Interrupt Service Routines can be
executed simultaneously with a BASIC program .

The Assembler
The System 35/ 45 Assembly Language System has a

relocating assembler whose pre-eminent feature is speed .
It can assemble statements at 400 to 800 per second .
This speed is possible because the assembly process is
integrated and the source statements are syntaxed as they
are entered.

Other features Include :

• symbols up to 15 characters long; programs are
more self-documented:

• symbols can represent constants, relocatable
addresses. machine addresses or external symbols;

• constants can be octal or decimal Integers. full or
short preCision floating paint or ASCII ;

• selected sections of source code can be omitted from
the assem bly process via conditional assembly
instructions;

• statements are prOVided to generate listings and
cross references,

This assembler can perform any add, subtract. multip­
ly or divide operation that occurs within the operand field.

The System
The System 35/ 45 Assembly Language System con­

sists of a set of plug-in ROMs that contain the Assembly
Language statements and functions . These ROMs are
offeTed in two configurations: Execution and Develop­
ment, and Execution Only.

The advantage of having these two configu rations can
be seen when building an economical desktop computeT+
based system utilizing the Assembly Language capability .
For example, you could have a single desktop computer
that has full capability , I.e .• equipped with the Assembly
Execution and Development ROM fQr writing and debug­
ging programs. The rest of the units In your system could
be equipped with the tower cost Execution ROMs.

Figure 1. BASIC program using on Assembly Language
subprogram.

10 'THIS PPOGRqM OUTPUTS A STRI~G USING ~RHDSHAKE TO A GPIO-LIKE INTERFACE
.. 20 ICOl'! 1000 ' SET ASIDE RcW FO~ O&JECT CODE

)0 DIH Input l llS0] , ALLO~ fOR 160 CHARACTER STRING
.. 40 IASSEI'IBlE 0"lp ... ,,;L1Sl, ' :PEf , ASSEMBLE MODULE O ... p ... t WITH LlSTltlG

:50 t AND CROSS REFEREIICE
60Inp ' llNPUT ·STRINe; TO W!>ITE"·,I"putt I ASk USE!> FOR STRIIiG TO OUTPUT

.. 70 ICAlL O""PUI_<;Jp,o_h.' Input I) t CfllL THE ASSEttBlY SUBPPOGRfHI
80 COTO I np ... t " ,

..)00 ". .,.
ISOURCE NflI'! o .. ",put ! NAME THE MODULE

Parameter
passing

Subprogram
entry point

'" .. ,
'" .. ,

':=1=="" • 1 sa

'" '" '10
Catling utili ly---I-- 220

230
~"12J

".
'" 270 , ..
290
30'

'" '" * 331l
_ ;HIl
[-3'0-

O . ---1'--4 '" utput rout me)7e

>e,
'" ...
.10 ...
".

• ~"0

IsaURCE EXT GIl't ,,~lu"

I SOURCE E:<T Errar _.->< l ~
I SOUI<"CE String: BSS 8 1
ISOUPCE Stl.(,_cod,,:EOU 9
ISOURCE !

50'
f>.r. ,,-, STI<"

! DECLRRE R~Y ROUTINES
, E:<TERNRL TO THE MODULE
, RESERVED FOf> 160 CHAR SiRlrlG
, EQUATE FOR SELECT CODE

, DECLARES ENTRY POIHT
Outp .. t 9P'0 hi

TO iE I$OU~CE

ISOURCE
ISOURCE
ISOURCE
ISOURCE
ISOURCE
ISOU R' CE
ISOU~CE

ISOURCE

O ... tP;:;t_'ilP10_h.:

"" Ln"

LDA -S.l.ct_(od.' Po SET THE-SELECT CODE

1 SOURCE
ISOURCE
ISOURCE
ISOURCE
ISOURCE
ISOUPCE
ISOURCE
I$OURCE
ISOURCE Do". :
I SOURCE ,
{SOURCE
ISOURCE
ISOURCE
ISOURCE
I SOURCE
ISOURCE
ISOURCE
ISOURCE
ISOURCE f
ISOURCE

en,
"" CD" 'Re
ST"
CB'

"Stt"lr.g
-Par • • tt"
(; .. \ ".1 .. "
-St;:-,r.<;Jtl ,
e

lDA Strln9
SZA Do
IoIBC A,I
JSH U!"It. byt.
DSZ Stt"; ... 'Q

JKP 1.It"l\. loop
RET) -

sse
SFC
m

'" '"

("I'd down
Wnl; byte " -
" ,

lOA .-164
JSM Error _'" \ '

, (;ET THE STRIN(; PARAMETER
US I NG SYSTEM UTILITY

, SET UP C TO GET snES FROM
, THE SnHHG

, IF THE STRlliG lENGTH IS ZERO
, THEN THERE IS HOTHING TO 00 .
, GET THE !lEXl CHAR FOR OUTPUT
, OUTPUT THE CHARACTER TO CARD
! SEE If DONE
, IF tIOT , REPERT
, RETURN TO iASIC

, SKIP IF CARL IS DO~H
, ELSE WAIT FOP CARD
1 OUTPUT DATA TO CARD
t TR'IGGER HAtlDSHA £

, PETUR'" ERROP 164 TO PASIC

t END THE MODULE

• Essential s tatements for Assembly programming.

The Development ROMs provide the following BASIC
statements and functions:

ISOURCE - allows the programmer to write Assem­
bly Language source statements that are integrated within
the framework of a BASIC language program.

IASSEMBLE - reduces source code to object code.
IBREAK - allows breaking (pausing) at either a data

or program location ; allows transfer at break time to a
BASIC subprogram and then resumption of the Assembly
subprogram; provides 8 independent break polnlS.

INORMAL - discontinues conditions set up by
[BREAK.

IPAUSE ON / OFF - allows or disallows STEP and
PAUSE to operate normally within an assembled routine ;
when STEPping through a routine , if the source is pre­
sent, the Assembly Language instruction and associated
commenl Is displayed .

!DUMP - allows printing of memory location in any
of 5 formats: binary, octal , decimal. hexidecimal and
ASCII .

ICHANGE - changes the content of a memory loca­
tion to a specified value.

IADR - returns the value of a symbol. usually an
address.

IM EM - returns the content of a memory location .
OCTAL - converts a decimal expression to its octal

Image .

The Language

The language supported by the System 35/ 45 pro­
cessors and assemblers is extensive. Here is a listing of
mnemonics , a brief description of the function and typical
execution times in microseconds (numbers in parenthesis) .

LOAD / STORE FUNCTIONS
LDA (LDB) Load register A (or B) with the content of a
speclfied location (specified by an operand, the syntax of
which Is not detailed here) . (2.2)
STA (STB) Store content of register A (or B) In specified
location (2.2)
CLR Clear the specified number of words, beginning al
the location pointed at by the A register . (6 .7)
XFR Transfer the specified number of words, from the
location starting at the address pointed at by the A register
to the location pointed at by the B register. (l1.5)

INTEGER MATH FUNCTIONS
ADA (ADB) Add the content of the specified location to
register A (or B) . (2.2)
TCA (TCB) Perform a two's complement of the A (or B)
register. (1.5)
MPY Integer multiply . (13.5)

BRANCH FUNCTIONS
J MP Jump to specified location . (1.3)
JS M Subroutine jump to specified location. (2.2)
RET Return from subroutine (2.7)

DECIMAL - converts an octal expression to its
decimal image.

The Execution ROMs support these BASIC statements:
ICOM - sets aside special Read/ Write area In mem­

ory to accept the output of the assembler .
lCAll - transfers processor control to an assembled

subprogram; allows Ihe passing of parameters between
BASIC programs and Assembly subprograms .

lSTORE - allows storage of object modules on mass
storage devices.

ILOAD - allows retrieval of object modules from mass
storage devices .

lD ELETE - deletes selected Assembly Language
modules.

O N/OFF lNTN - establishes or discontinues end of
line branch condition fo r ISRs.

Utilities. A number of utilities have been prOVided In the
System to help make programming tasks easier and to
give you direct access to some of the operating system's
capabilities and routines . Such capabilities as basic
arithmetic operations between full precision numbers, con·
versions between number types, storage and retrieval of
string and numeric variables, mass memory Read/ Write
record and unformatted printing are prOVided in utility
form .

TEST / BRANCH FUNCTIONS
CPA (CPB) Compare A (or B) to the content of the
specified location skip if unequal. (2 .7)
S ZA (SZB) Skip to specified location If register A (or B) is
0. 12.3)
RZA (RZB) Skip to specified location if register A (or B)
is not O. (2 .3)
S IA (S IB) Skip to specified location if register A (or B) is
0; then increment register A (or B) by 1. (2.3)
RIA (RIB) Skip to specified location if register A (or B) is
not 0: then Increment register A (or B) by 1. (2 .3)

TEST / ALTER / BRANCH FUNCTIONS
ISZ (DSZ) Increment (decrement) content of specified
location. skip if new content is O. (3.2)
SAP (SBP) Skip to specified location If the A (or B)
register Is positive, i.e . bit 15 is O. (2.3)
S AM (S BM) Skip to specified location if the A (or B)
register is negative. I.e. bit 15 is I. (2.3)
SLA ISLB) Skip to specified location If the least significant
bit of register A (or B) is 0, (2.3)
RLA (RLB) Skip to specified locatlon if the least signifl·
cant bit of register A (or B) is 1. (2 .3)
SOC (50S) Skip to specified location if Overflow is clear
(or set) . (2 .3)
SEC (SES) Skip to specified location if Extend is clear (or
",t).12.3)

SHIFT / ROTATE FUNCTIONS
S AL (SAR) Shift the A register left (or right) the indicated
number of bits with all vacated positions becoming O.
12.8)
SBL (SBR) Analogous to SAL (SAR) using B register .
12.8)

AAR (ABR) Shift the A (or B) register right the indicated
number of bits with the sign bit filling all vacated bit posi­
tions. (2 .8)
RAL (RAR) Rotate the A register left (or right) the in­
dicated number of bits: bit 15 will rotate into bit 0 (left
shift) or bit 0 will rotate into bit 15 (r;ght shift) . (2.8)
RBL (RBR) Rotates the B register analogous to RAL
(RAR) . 12.8)

LOGICAL fUNCTIONS
AND Logical AND between register A and spedfied loca­
tion, result in register A. (2.2)
lOR Inclusive OR between A reglst~r and specified loca­
tion, result in register A. (2.21
CMA (CMB) Perform a one'S comp:emen! of the A (or 8)
r~gister . (1.5)

STACK FUNCTIONS
PWC (PWD) Push the specified register (full word) onto
the stack pOInted at by the C (or D) register. (3 8)

pse (PDB) Push the lower byte (right half) of the
specified reg:ster onlo the stack pointed at by the C (or OJ
reg!ster. (3.8)
WWC (WWO) Withdraw a (ull word from the stack
pointed at by the C (or OJ register and place it in the
specified register. (3.8)
WBC (WBD) Withdraw a byte from the stack pointed at
by the C (or DJ register and place it in the lower byte
(right halO 01 the specified register.
CBL (CBU) Clear (or set) the Cb register (C and Cb
together acl as a 17-bit address for PSC and WaC) . (2.0)
DBl (D8V) Cl€ar (or set) the Db ".>gisler. (2.0)

BCD MATH FUNCTIONS
MRX (MRY) Mantissa right shift on Arl (or Ar2). a
special BCD floating point machine register. (11 .0 for
MRX. 6.2 {Or MRY/
MLY Mantissa left shift on Ar2 for one digit . (5.3)
ORS Mantissa right shift of Arl for one digit. (9 .3)
NRM Normalize the Ar2 mantissa . (4.8)
CMX (CMY) Ten's complement of Ad (9 .810r Arl. (3 .8}
FXA Fixed point addition; the mantissas of Arl and Ar2
are added together and the result placed in Ar2 . (6 .7)
MWA Mantissa word addition of B to Ar2 . (4.7)
FMP Fast BCD multiply. (24.3)

FOV Fast BCD divide.. (23 .5)
CDC Clear decimal carry. (1.8)

SeD (SOS) Skip to speCified location if decimal caTTy is
dear (or set) (2.3)

I / O fUNCTIONS
SFC (SFS) Skip 10 specified location if I/O Flag line is
false for true) . (2.3)
SSC (SSS) Skip to sPi!cified location if 1/0 Status line is
clear (or set). (2.3)
EIR (OIR) Enable (di~ble) the interrupt system. (2 .0)

SOl (SOO) Set DMA Inwards (or outwards) : reads from
peripheral (or memory}. writes 10 memory (or perjph~al) .
(2.0)
OMA Enable the DMA mode. (2 .0)
DDR Cancel the DMA instruction. (2 .0)

MISCELLANEOUS FUNCTIONS
NOP Null operation. (2.2)

EXE Execute the CQntents of any of the first 32 registers:
the operand specifies which reglster. (1.3)

Ordering Information
SYSTEM 35
Assembly Execution & Development ROMs
Execution ROM

SYSTEM 45
Assembly Execution

98339A
98338A

& Dellelopmen! ROM
Execution ROM

98439A or Opt 439
98438A or Opt 438

SUPPLIED ACCESSORIES
System 35 System 458

QUick Reference
Manual 09835-90080 09845-91080

Execution ROM
Manual 09835-90082 09845-91082

Development ROM
Manual 09835-90083 09845-91083

Demo nstration
Cartridge 11141 · 10154 11141 - 10155

BASIC Language
Interfaci ng Concepts

Manual 09835·90600 09835-90600

Scope of the Sy$lI~m. The SYSlem 35 / 45 Assembly Language
capability 15 limited 10 32K wOfds of assembled o;ode /Iond delll
storage space. It can significantly Increase the spO!ed of most. but
not nece5S11ri1y 1111. System 35 / 45 BASIC Lang\lage programs
depending upon me tasks 10 be performed.

Writing Assembly Language o;ode requires mOfe developmenf
time then lin equl\lilltenl BASIC routine. Also, Assembly Lan­
gUllge capability may nOI be a\l/loi]lIble on other HP Desktop
Computers. TherefCJre. It is recommended thatlhls System be
u5ed only In speed critici!.lafellS IA.here this addltionlll develop­
ment time CIIn be afforded

Heo.ulett·Packard will MlPport the System 35 and 45B Assem­
bly unguage lind the BASIC IilInguage extensions listed In this
brochure, the 1/ 0 !trU(:lure. and Ihe operlltlng ~ystem details
de1crfbed in the AS!iembly langullge Manuals. Hewlett-Peckard
will nol supporl modifications 01 the operlltingsYSlems or accu·
ses to them (other than those prO'lided by the Utilities)

For __ HjIo __ ... ,... _XI' 2iie. __
~1l Uf.1l.'112 _. 3'2 ~._. ~ _ ts~·,1oO() c..nao. ..
4'~ .rt- XI ,0. ., .If' OH>.II>P c-.t.< ,_ 0< _ 10
....... ~ P d _ En' !Uo, ftV ~ , ... Cd Cooor_ to515

PrlOted in U .S A
12/79

HEWLETT
PACKARD 5953-1091

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

