Series 9800 Desktop Computers

System 35/45
Assembly Language

Optimizing program execution times.

A pacinro

Enhancing a desktop computer’s
program efficiency and speed

Programming on today’s desktop computer is best
accomplished using a high level language such as HP
Enhanced BASIC, however there are certain computa-
tion-intensive tasks and specialized 1/O routines that could
be made faster and more efficient if they could be coded
in a lower level language. Often,the best solution is to
combine the speed of a low level language plus
the power and flexibility of a
general-purpose BASIC —
intermixed in the same
program.

That's exactly what
we've done.

Hewlett-Packard’s new System 35/45 Assembly
Language capability gives experienced programmers all
the versatility and control they need to get the most out of
desktop computer programs. It is designed specifically to
enhance the System 35 and 45 Desktop Computer by
providing speed increases in time-critical portions of
BASIC programs. It offers the programmer complete con-
trol of the System 35 or 45 Central Processing Units
(CPUs) through the use of machine instructions, pseudo-
instructions and extensions to the BASIC language. It

allows specialized subroutines to be written in Assembly

Language which are then callable
from a BASIC program.

If you have ever programmed in Assembly Language,
vou know it can be very unfriendly. But we have
developed an Assembly Language System that takes
advantage of all the friendly features of our desktop com-
puters — and then adds a few new ones:

* source statements that are syntaxed as they are
entered, allowing you to catch errors as they are
made;

* an assembly process that is entirely integrated, i.e.,
the assembler and editor are in Read Only Memory
(ROM) and the Source/Object codes are in Read/
Write Memory, thereby eliminating time consuming
mass storage accesses;

* an assembler that can assemble code at up to 800
statements per second;

® a system that is available in two different ROM con-
figurations: an Execution and Development ROM,
and an Execution ROM;

* and, most importantly, an extensive set of debug
tools that allow interactive debugging from the
System 35 or 45 keyboard plus the ability to write
and execute debug routines in BASIC.

The sum of these features results in getting Assembly
Language routines up-and-running much quicker than
you might have thought possible.

Increasing the speed of computation. BASIC Language
statements are usually written as general purpose routines
capable of handling a wide assortment of requirements.
With Assembly Language, you can tailor a subprogram to
handle a specific task, thus eliminating unnecessary
overhead. In general, speed increases with Assembly
Language are the result of the programmer knowing very
specific information about the task and then writing code
in a streamlined fashion to efficiently handle that task. For
example, significant increases can be realized when using
integer precsion, as seen in the table below.

Speed up 1/0 response. Many [/O applications require
the desktop computer to respond quickly to interrupts.
Assembly Language Interrupt Service Routines (ISRs) on
the System 35 and 45 Desktop Computers are attended
to within 80 to 150 microseconds instead of waiting for the
end of the BASIC line. This can result in a 300X increase
in the efficiency of handling interrupts.

[/0 throughput can be dramatically increased using
Assembly Language by reducing the amount of overhead
incurred by a BASIC program. This overhead is a result

APPROXIMATE SPEED INCREASES*
Assembly BASIC Approx. Speed
(integer math) (floating point) Improvement
in microseconds in microseconds Factor
Add 2.2 290 130.0
Subtract 4.4 350 80.0
Multiply 13.5 1 000 75.0
Divide routine 1.000 3 100 3.1
Single floating point operation vs. BASIC 0.8
Array manipulation
Integer 1900
Real 3.0
Loops, Branching, Compares, Indexing 100.0
*These execution times are approximate and represent an
average over a number of interations

of the interpretive operating system of the System 35 and
45, plus the flexibility of the HP Enhanced BASIC
statements.

Some specific areas where Assembly Language can
aid in reducing overhead are:

repetitive, small word-count transfers;

fast scanning of devices on different select codes;
intermixed computation and 1/0;

evaluating 1/0 “on-the-fly" for error conditions, etc.

Graphics with Assembly Language. Assembly Lan-
guage provides complete control of the System 45 CRT
hardware and includes the setting and checking of indi-
vidual dots, the writing and reading of full words of
graphic information and the control of two graphics cur-
sors. The major advantage of using Assembly Language
rather than BASIC to create and manipulate graphics in-
formation is speed. Graphical data can be manipulated
and input information plotted in real time using Assembly
Language.

The display of graphics information is essentially
an |/ O operation to the graphics hardware. Thus, all
speed increases associated with 170 also apply to
graphics. An algorithm that intermixes data input. compu-
tation and display will realize a significant speed increase
over BASIC. However, since full access to the CRT
graphics hardware is available in BASIC (and is much
simpler}, the use of Assembly Language should be limited
to those graphics areas where speed is critical.

The Processors

The CPUs used in the System 35 and 45 Desktop
Computers are Hewlett-Packard designed 16-bit hybrids
that offer:

* 2 arithmetic accumnulators (A & B),

* 2 general purpose stack pointers (C & D) with byte
or word addressing capability,

* indirect addressing (one level),

e 2 levels of priority interrupts with 8 hardware vectors
per level,

* Direct Memory Access (DMA) capability,

* hardware floating point BCD arithmetic with two
floating point registers: Arl (located in R/W
memory) and Ar2 (located in the processor),

* 16 bit instructions and data,

* integer arithmetic,

16 sixteen-bit bi-directional 1/0 ports.

The System 45 features a unique dual processor
(CPU) system; a single one is used in the System 35. For
non-ISR Assembly Language code, the System 45's dual
processors function as a single unit to maintain compata-
bility with the System 35. The major advantages of the
dual processm system in the System 45 are:

lapped 1/0 can, in some cases, bring about
kmeased throughput;

* Assembly Interrupt Service Routines can be
executed simultaneously with a BASIC program.

The Assembler

The System 35/45 Assembly Language System has a
relocating assembler whose pre-eminent feature is speed.
It can assemble statements at 400 to 800 per second.
This speed is possible because the assembly process is

integrated and the source statements are syntaxed as they

are entered.
Other features include:
* symbols up to 15 characters long; programs are
‘more self-documented;
* symbols can represent constants, relocatable
addresses, machine addresses or external symbols;
* constants can be octal or decimal integers, full or
short precision floating point or ASCII;

Parameter

* selected sections of source code can be omitted from
the assembly process via conditional assembly
instructions;

. statsmemsmpmvkdedtogenemtehhngand
cross references.

This assembler can perform any add, subtract, multip-

ly or divide operation that occurs within the operand field.

The System

The System 35/45 Assembly Language System con-
slstsofaselofphlgvaﬁMsthatcontain the Assembly

'nguage statements and functions. These ROMs are

offered in two configurations: Execution and Develop-
ment, and Execution Only.

The advantage of having these two configurations can
be seen when building an economical desktop computer-
based system utilizing the Assembly Language capability.
For example, you could have a single desktop computer
that has full capability, i.e., equipped with the Assembly
Execution and Develapment ROM for writing and debug-
ging programs. The rest of the units in your system could
be equipped with the lower cost Execution ROMs.

Figure 1. BASIC program using an Assembly Language
subprogram.

The Development ROMs provide the following BASIC
statements and functions:

ISOURCE — allows the programmer to write Assem-
bly Language source statements that are integrated within
the framework of a BASIC language program.

IASSEMBLE — reduces source code to object code.

IBREAK — allows breaking (pausing) at either a data
or program location; allows transfer at break time to a
BASIC subprogram and then resumption of the Assembly
subprogram; provides 8 independent break points.

INORMAL — discontinues conditions set up by
IBREAK.

IPAUSE ON/OFF — allows or disallows STEP and
PAUSE to operate normally within an assembled routine;
when STEPping through a routine, if the source is pre-
sent, the Assembly Language instruction and associated
comment is displayed.

IDUMP — allows printing of memory location in any
of 5 formats: binary, octal, decimal, hexidecimal and
ASCIL.

ICHANGE — changes the content of a memory loca-
tion to a specified value.

IADR — returns the value of a symbol, usually an
address.

IMEM — returns the content of a memory location.

OCTAL — converts a decimal expression to its octal
image.

DECIMAL — converts an octal expression to its
decimal image.

The Execution ROMs support these BASIC statements:

ICOM — sets aside special Read/Write area in mem-
ory to accept the output of the assembler.

ICALL — transfers processor control to an assembled
subprogram; allows the passing of parameters between
BASIC programs and Assembly subprograms.

ISTORE — allows storage of object modules on mass
storage devices.

ILOAD — allows retrieval of object modules from mass
storage devices.

IDELETE — deletes selected Assembly Language
modules.

ON/OFF INT# — establishes or discontinues end of
line branch condition for ISRs.

Utilities. A number of utilities have been provided in the
System to help make programming tasks easier and to
give you direct access to some of the operating system's
capabilities and routines. Such capabilities as basic
arithmetic operations between full precision numbers, con-
versions between number types, storage and retrieval of
string and numeric variables, mass memory Read/Write
record and unformatted printing are provided in utility
form.

The Language

The language supported by the System 35/45 pro-
cessors and assemblers is extensive. Here is a listing of
mnemonics, a brief description of the function and typical
execution times in microseconds (numbers in parenthesis).

LOAD /STORE FUNCTIONS

LDA (LDB) Load register A (or B) with the content of a
specified location (specified by an operand, the syntax of
which is not detailed here). (2.2)

STA (STB) Store content of register A (or B) in specified
location (2.2)

CLR Clear the specified number of words, beginning at
the location pointed at by the A register. (6.7)

XFR Transfer the specified number of words, from the
location starting at the address pointed at by the A register
to the location pointed at by the B register. (11.5)

INTEGER MATH FUNCTIONS

ADA (ADB) Add the content of the specified location to
register A (or B). (2.2)

TCA (TCB) Perform a two's complement of the A (or B)
register. (1.5)

MPY Integer multiply. (13.5)

BRANCH FUNCTIONS

JMP Jump to specified location. (1.3)

JSM Subroutine jump to specified location. (2.2)
RET Return from subroutine (2.7)

TEST/BRANCH FUNCTIONS

CPA (CPB) Compare A (or B) to the content of the
specified location skip if unequal. (2.7)

SZA2 (SZB) Skip to specified location if register A (or B) is
0. (2.3)

RZA (RZB) Skip to specified location if register A (or B)
isnot 0. (2.3)

SIA (SIB) Skip to specified location if register A (or B) is
0; then increment register A (or B) by 1. (2.3)

RIA (RIB) Skip to specified location if register A (or B) is
not 0; then increment register A (or B) by 1. (2.3)

TEST/ALTER/BRANCH FUNCTIONS

1SZ (DSZ) Increment (decrement) content of specified

location, skip if new content is 0. (3.2)

SAP (SBP) Skip to specified location if the A (or B)
register is positive, i.e. bit 15is 0. (2.3)

SAM (SBM) Skip to specified location if the A (or B)
register is negative, i.e. bit 15is 1. (2.3)

SLA (SLB) Skip to specified location if the least significant
bit of register A (or B) is 0. (2.3)

RLA (RLB) Skip to specified location if the least signifi-
cant bit of register A (or B) is 1. (2.3) ‘

SOC (SOS) Skip to specified location if Overflow is clear
(or set). (2.3)

SEC (SES) Skip to specified location if Extend is clear (or
set). (2.3)

SHIFT/ROTATE FUNCTIONS

SAL (SAR) Shift the A register left (or right) the indicated
number of bits with all vacated positions becoming 0.
(2.8)

SBL (SBR) Analogous to SAL (SAR) using B register.
(2.8)

AAR (ABR) Shift the A (or B) register right the indicated
number of bits with the sign bit filling all vacated bit posi-
tions. (2.8)

RAL (RAR) Rotate the A register left (or right) the in-
dicated number of bits; bit 15 will rotate into bit 0 (left
shift) or bit O will rotate into bit 15 {right shift). (2.8)

RBL (RBR) Rotates the B register analogous to RAL
(RAR). (2.8)

LOGICAL FUNCTIONS
AND Logical AND between register A and specified loca-
tion, result in register A. (2.2)

IOR Inclusive OR between A register and specified loca-
tion, result in register A. (2.2)

CMA (CMB) Perform a one's complement of the A (or B}
register. (1.5)

STACK FUNCTIONS

PWC (PWD) Push the specified register (full word) onto
the stack pointed at by the C (or D) register. (3 8)

PBC (PDB) Push the lower byte (right half) of the

specified register onto the stack pointed at by the C (or D)
register. (3.8)

WWC (WWD) Withdraw a full word from the stack
pointed at by the C (or D) register and place it in the
specified register. (3.8)

WBC (WBD) Withdraw a byte from the stack pointed at
by the C (or D} register and place it in the lower byte
(right half) of the specified register.

CBL (CBU) Clear (or set) the Cb register (C and Cb
together act as a 17-bit address for PBC and WBC). (2.0)
DBL (DBU) Clear (or set) the Db register. (2.0)

BCD MATH FUNCTIONS

MRX (MRY) Mantissa right shift on Arl (or Ar2), a
special BCD floating point machine register. (11.0 for
MRX, 6.2 for MRY}

MLY Mantissa left shift on Ar2 for one digit. (5.3)

DRS Mantissa right shift of Arl for one digit. (9.3)

NRM Normalize the Ar2 mantissa. (4.8)

CMX (CMY) Ten's complement of Arl (9.8)or ArZ. (3.8}

FXA Fixed point addition; the mantissas of Arl and Ar2
are added together and the result placed in Ar2. (6.7)

MWA Mantissa word addition of B to Ar2. (4.7)
FMP Fast BCD multiply. (24.3)

FDV Fast BCD divide. (23.5)

CDC Clear decimal carry. (1.8)

SCD (SDS) Skip to specified location if decimal carry is
clear (or set). (2.3)

1/0 FUNCTIONS

SFC (SFS) Skip to specified location if 1/0 Flag line is
false [or true). (2.3)

SSC (SSS) Skip to specified location if 1/0 Status line is
clear (or set). (2.3)

EIR (DIR) Enable (disable) the interrupt system. (2.0)

@

Printed in U.S A.
12/79

SDI (SDO) Set DMA inwards (or outwards); reads frem
peripheral {or memory), writes to memory (or peripheral).
(2.0)

DMA Enable the DMA mode. (2.0)
DDR Cancel the DMA instruction. (2.0)

MISCELLANEOUS FUNCTIONS
NOP Null operation. (2.2)

EXE Execute the contents of any of the first 32 registers;
the operand specifies which register. (1.3)

Ordering Information

SYSTEM 35
Assembly Execution & Development ROMs 98339A
Execution ROM 98338A
SYSTEM 45

Assembly Execution
& Development ROM
Execution ROM
SUPPLIED ACCESSORIES
System 35

98439A or Opt 439
98438A or Opt 438

System 45B

Quick Reference

Manual 09835-90080 (09845-91080
Execution ROM

Manual 09835-90082 (9845-91082
Development ROM

Manual 09835-90083 (09845-91083

Demonstration
Cartridge
BASIC Language
Interfacing Concepts
Manual

11141-10154 11141-10155

09835-90600 09835-90600

Scope of the System. The System 35 /45 Assembly Language
capability is limited to 32K words of assembled code and data
storage space. It can significantly increase the speed of most, but
not necessarily all, System 35/ 45 BASIC Language programs
depending upon the tasks to be performed.

Writing Assembly Language code requires more development
time than an equivalent BASIC routine. Also, Assembly Lan-
guage capability may not be available on other HP Desktop
Computers. Therefore, it is recommended that this System be
used only in speed critical areas where this additional develop-
ment time can be afforded.

Hewlett-Packard will support the System 35 and 45B Assemn-
bly Language and the BASIC language extensicns listed in this
brochure, the 1./ O structure, and the operating system details
described in the Assembly Language Manuals. Hewlett-Packard
will not support modifications of the operating systems or acces-
ses to them (other than those provided by the Utilities).

For ass:stance call the HP regional oifice neares! you' Eastern 301 - 258.2000. Western
210/077-1282. Midwest 312 2559800, Southern 404/ 985-1500, Canadian
416, 678-9430 Ask for an HF Deskiop Compuler representadive. Or write 10
Hewlet:-Packard 3404 East Harmony Heoad, Fort Colins, Colorado 80525

HEWLETT
PACKARD

5953-1091

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

