
:i!J $!.!U
,!j

!: ~.J

.! l J
j!l.)

J~.l

..JJI
~..JJ

)"..J
.loU

Desktop computers that use interprl?tive operating
systems and an enhanced version of BASIC language
can provide highly Oexible and easy-to-program
computing solutions. In these systems, high level
BASIC statements are entered via the desktop's
integrated keyboard or from a mass storage device.
The statements are then syntaxed and stored as
internal code. This code is interpreted, line-by-line,
into machine (low level) language instructions which
afe then executed. For most applications, this
procedure produces sufficient speed and performance.
However, in speed-Critical situations such overhead is
unacceptable. In these areas, a computer that uses il
low level language can increase computation, graphics
and VO speeds dramatically since it bypasses the
interpreter by creating object code ready fo r final
assembly into machine code.

Many applications require both these capabHities;
the ease of programming and friendliness of an
interpretive system combined with the ability to caU
upon the speed and performance of a low level
language system.

To meet U'e demands of these applications, we
have implemented a ROM~based Assembly Language
programming system for the System 35 and 45
Desktop Computers that allow you to call Assembly
language subprograms from a BASIC program. These
Assembly instructions, pseudo~instru('rions and
extensions to the BASIC language offer the
programmer control over the System 35 a.nd 45 crus
and, at the same time, provide the po\'\'er and
flexiblity of BASIC. The system is totally integrated
and indudes powerful debug tools and a sofhvare
Programmer Utility to aid in program development.

If you have ever programmed ill Assembly
Language, you know it Ciln be very unfriendly. But
we have developed an Assembly Language system
t/t,lt t,lkes advantage of all the friendly features of our
desktop computers - and then adds a few new ones:
• source. statements that are syntal(ed as they are

entered, allowing you to catch errors as they are
made;

• an assembly process thai is entirely integrated,
i.e. , the assembler and editor are in Read Only
Memory (ROM) and the Source/Object codes axe in
Read Write Memory, thereby eliminating time
consuming mass storage accesses;

• an assembler that can assemble code af up to 800
sta tements per second:

• a system that is available in two di[ferent ROM
confjgurations: an Execution and Deve.lopment
ROM, and an ExecutiOn ROM;

• a sofhvare-based Programmer Utility that can be
used to trilnslate more than 75 lnl~ger BASIC
commands;

• and, most importantly, an extensive se-t of debug
tools that allow interactive debugging from the
System 35 or 45 keyboard plus the ability to write
and execute debug routines in BASIC.

2

The sum of these features results in getting
Assembly Language routines up-and-running much
quicker than you might have thought possible.
Increasing the speed of computa tion . BASIC
Language statements are usually \'Vritten as general
pu,rpose routines capable of handJing a wide
<lSsortment of requirements. With Assembly
Language, you can tailor a subprogram to handle a
specific task, thus eliminatin g unnecessary overhead.
In general, speed increases with Assembly Language
are the result of lhe programmer knowing very
specific information about the task and then writing
code in a streamlined fashiOn 10 efficiently handJe that
task. For example, Significant increases can be realized
when using integer precision, as seen in the table
below.

APPROXIMATE SPEED INCREASES ·

BASIC Appro". SjH!eu
(floating point) Improvement

In microseconds Factor

Add
Subtt;tCI
MUltIply
[)i"lde routine

Assembly
Orlles~r math)

In microseconds

22
44

'" l OOt'

290
3SO

1000
3 100

130 0
SOO
75.0
31

Single floalin1 poml operation liS BASIC U 8
AlTlIy mllflip\l,lation

ln11!g<o!l' 190 0
Real J 0

Loops. Sram:hlng. Com par". Indexing 100 0

'Th~ II.M\!:Cl,lllon lima aTe apprOM'mille ~ll1d Tep,esem lin
a.~erage over II. !'lumber of Intentlinns

Speed up [/0 response. Many lJD applications require
the desktop computer to respond quickly to
interrupts . Assembly L."lnguage lnterrupt Service
Routines (ISRs) on the System 35 and 45 Desktop
.Computers are ilttended to within 80 to 150
microseconds ins tead of waiting lor the end of the
BASIC line. This can result in a 300X increase in the
efficie.ncy of handling interrupts.

iJO throughput can be dramatically increased using
Assembly Language by reducing the amount of
overhead lncurred by a BASJC program . Some specific
areas where Assembly Language can aid in reducing
overhead are:
• repetitive, small word.-connt transfers;
• fast scanning of devices On different select codes;
• inlermixed computntion and itO;
• evaluating YO "on-the-fl y" for error (onditions, etc.
Graphics with Assembly Language. Assembly
L,nguage provides complete control of the System 45
CRT hardware and includes the setting <lnd checking,
of individuaJ dots, the writing and reading of full
words of graphiC information and the control of two
graphic cursors. The major advantage of using
Assembly Language rather than BASIC to cre<lte and
manipulate graphiCS information is speed. Graphical
data can quickly be manipUlated and input
information plotted using P.ssembly Language.

The display of graphics informCltion is essentjally an
110 operation to the graphics hardware . Thus, all
speed increases associated with 110 also apply to
graphics. An algorithm that intemlixes data input,
computation and di5play will real.ize a signHlcant
speed increase over BASIC. However, since full access
to the CRT graphics hardware is available in BASIC
(and is much simpler), the use of Assembly Language
shouJd be limited to those graphics areas where speed
is cri tical.

The Processors
The crus used on the System 35 and 45 Desktop

Computers are Hewlett-Packard designed 16·bit
hybrids that offer:
• 2 arithmetic accumulators (A & B),
• 2 general purpose stack pointers (C & D) with byte

or word add.ressing capability,
• indirect addressing (one level),
• 2 levels of priority interrupts with 8 hardware

vectors per level,
• Direct Memory Access (DMA) capablility,
• hardware Ooating point BCD arithmetic with two

floating point registers: Ad (located in r/w memory)
and Ar2 (located in the processor).

• l6 bit instructions and data,
• integer arithmetic,
• 16 sixteen-bit bi-directional 110 ports.

The System 45 features a unique dual processor
(CPU) system; a single processor is used in the
System 35. For non-ISR Assembly Language code, the
Systen1 45's dual processors function as a single unit
to maintain compatibility with tho System 35. The
major advantages of the dual processor system in the
System 45 are:
• overlapped 110 can, in some cases, bring about

increased throughput;
• Assembly ISRs can be executed simultaneously with

a BASIC program.

The Assembler
The System 35/45 Assembly Language System has a

re10cating assembler whose pre-eminent feature is
speed. It can assemble statements at 400 to 800 per
second. This speed is possible because the assembly
process is integrated and the source statements are
syntaxed as they are entered.

Other features include:
• symbols up to 15 characters long. programs are

marc self-documenl'ed;
• symbols can represent constants. relocatable addresses.

machine addresses or external symbols;
• constants can be octal or decimal Integers, full or short

precision floating point or ASCII;
• selected sections of source code can be omitted from

the assembly process via conditional assembly
instructions:

3

• statements are provided to generate listings and cross
references.
The assembler can perform any add. subtract. multiply

or divide operation that occurs within the openmd field .

The System
The System 35/45 Assembly Language System

consists of a set of plug·in ROMs that contain the
Assembly Language statements and functions. These
ROMs are offered in two configurations: Execution
and Development and Execution Only.

The advantage: of having these two configurations
can be seen when building an economical desktop
computer-based system utilizing the Assembly
Language capability. For example, you couJd have a
single desktop computer that has full capability, Le.,
equipped with the Assembly Execution and
Development ROM for writing and debugging
programs. The rest oC the units in your system could
be equipped with the lower cost Exec-ution ROMs.

The Development ROMs provide the
following BASIC statements and [unctions:
ISO URCE - allows the programmer to wTite Assembly
Language source statements that are integrated within
the framework of a BASIC language program.
(ASSEMB LE - reduces source code to Object code.
IBREAl< - allows breaking (pausing) at either a data
or program location; aUows transfer at break time to a
BASIC subprogram and then resumption of the
Assembly subprogram; provi.des 8 independent break
points.
(NORMAL - discontinues conditions set up by
!BREAK.
IPAUSE ONfOFf - allows or disallows STEP and
PAUSE to operale normaUy wilhin an assembled
routine; when STEPping through a routine, if the
source is present, the Assembly Language instruction
and associated comment is displayed .
ID UMP - aJlows printing of memory location in any
of 5 formats: binary, octal, decimal. hexidecimal a,nd
ASCII.
lCHANCE - changes the content of a memory
location to a specified value.
IADR - returns the value of a symbol. usually an
address.
IMEM - returns the content of a memory location.
OcrAl - converts a decimal exression to it's octal
image.
DEOMAL - converts an octal expression to its
decimal image.

The Execution ROMs support these BASIC
statements:
ICOM - sets aside special read/write area in memory
to accepl the output of the assembler.

ICALL - transfers processor con trol to an assembled
subprogram; allows the passing of parameters
behveen BASIC programs and Assembly
subprograms.
ISTORE - allows storage of object modules on mass
storage devices.
ILOAD - allows retrieval of object modules from mass
storage devices.
IDELETE - deletes selected Assembly Language
modules.
ON/OFF INT# - establishes or discontinues end of
line branch condition for ISRs.

Utilities. A number of utilities have been provided
in the s}'stem to help make programming tasks easier
and to give you direct access to some of the operating
system's capabilities and routines. Such capabilities as
translation of BASIC statements into Assembly
La nguage routines, basic arithmetic operations
between full precision numbers, conversions between
number types, storage and retrieval of string and
numeric variables, mass memory read/write record
and unformatted printing are provided in utility form.

The Language
The language supported by the System 35145

processors and assemblers is extensive. Here is a
listing of mnemonics, a brief deSCription of the
function and typical execution times in microseconds
(numbers in parenthesis) .

Load/Store FUNCTIONS
LOA (LOB) Load register A (or B) with the content of
a specified location (specified by an operand, the
syntax of which is not detaiJed here) (2.2).
ST A (5TH) Store content of register A (or S) in
specified location (2.2).
CLR Clear the specified number of wordsl beginning
at the location pointed at by the A register (6.7).
XFR Transfer the specified number of words, from the
location starting at the address pOinted at by the A
register to the location pointed at by the B register
(11.5).

Integer Math Functions
ADA (ADS) Add the content of the specified location
to register A (or S) (2.2).
TCA (TeO) Perform a hYo's complement of the A (or
S) register (1.5).
MPY Integer multiply (13.5).

Branch Functions
JMP lump to specified location (1.3).
15M Subroutine jump to specified location (2.2).
RET Retum from subroutine (2.7).

4

Test/Branch Functions
CPA (CPBI Compare A (or B) to the content of the
specified loca tion, skip if unequal (2.7).
SZA (SZB) Skip to specified location if register A (or
B) is 0 (2.3).
RZA (RZB) Skip to specified location if register A (or
B) is not 0 (2.4) .
SIA (SIB) Skip to specified location if register A (or B)
is 0, then increment register A (or B) by 1 (2.3).
RIA CRIB) Skip to specified location if register A (or B)
is not 0, then increment register A (or B) by 1 (2.3)

Test/Alter/Branch Functions
ISZ (OSZ) lncrement (decrement) content of specified
location, skip if new content is 0 (3.2).
SAP (SBP) Skip to specified location if the A (or B)
register is positive, i.e . bit 15 is 0 (2.3).
SAM (SBM) Skip to specified location if the A (or B)
register is negative, i.e. bit 15 is 1 (2.3).
SLA (SLB) Skip to specified location if the least
significant bit of register A (or S) is 0 (2.3).
RLA (RLB) Skip to specified location if the least
s ignificant bit of register A (or B) is 1 (2.3) .
SOC (SOS) Skip to specified location if Overflow is
clear (or set) (2.3).
SEC (SES) Skip to specified location if Extend is clear
(0' set) (2.3).

Shift/Rotate Functions
SAL (SAR) Shift the A register to the left (or right) the
indicated number of bits with all vacated pOSitions
becoming a (2.8).
SBL (SBR) Analogous to SAL (SAR) using B register
(2.8).
AAR (ABK) Shift the A (or B) register right the
indicated number of bits with the sign bit filling all
vacated bit positions (2.8).
RAt (KAR) Rotate the A register left (or right) the
indicated number of bits; bit 15 wiJI rotate into bit 0
(left shift) or bit 0 will rotate into bit 15 (right shift)
(2.8).
RHt (RBR) Rotates the B register analogous to RAL
(RAR) (2.8).

Logical Functions
AND Logical AND between regis ter A and specified
location, result in register A (2.2).
lOR Inclusive OR between register A and specified
location, result in register A (2.2).
CMA (eMB) Perform a one's complement of the A (or
B) register (1.5) .

Stack Functions
PWC (PWO) Push the specified register (fuJI word)
onto the stack pointed at by the C (or D) register (3.8).
PDC (PDD) Push the lower byte (right half) of the
specified register onto the s tack pointed at by the C
(or D) register (3.8).
WWC (WWO) Withdraw a full word from the stack
pointed at by the C (or D) register and place it in the
specified register (3.8).
WBC (wBD) Withdraw a byte from the stack pointed
at by the C (or D) regis ter and place it in the lower
byte (right half) of the specified register (3.8).
CDL (CBU) Clear (or set) the Cb register (C and Cb
together act as a 17·hit address for PBC and WBC)
(2.0) .
OD L (D DU) Clear (or set) the Db register (2.0)

BCD Math Functions
MRX (MRY) Mantissa right shift on Ad (or Ar2), a
special BCD floating point machine register (11.0 for
MR!<, 6.2 fa, MRY).
MLY Mantissa left shift of AI2 for one digit (5.3).
DRS Mantissa right shift of Ad for one digit (9.3).
NRM Normalize the Ar2 mantissa (4.8).
CMX (CMY) Ten's complement of Arl (9,8) or AI2
(3.8).
FXA Fixed point addition; the mantissa of Arl and
Ar2 are added together and the result placed in Ar2
(6.7).
MWA Mantissa \\lord addition of B to Ar2 (4.7).
FMP Fast BCD multiply (24.3).
FDV Fast BCD divide (23.5) .
CDC Clear decimal carry (1.8).
SeD (SOS) Skip to specified location if decimal carry
is dear (or set) (2.3).

va Functions
SFC (SFS) Skip to specified location if 110 nag line is
false (or true) (2.3).
sse (SSS) Skip to specified location if I/O status line
is clear (or set) (2.3).
ElR (DIR) Enable (disable) the interrupt system (2.0)
SOT (SOO) Set DMA inwards (or outwards); reads
from peripheral (or memory), writes to memory (or
peripheral) (2.0).
OMA Enables the DMA mode (2.0).
DOR Cancel the DMA instuction (2.0).

Misce.llaneous Functions
NO P Null operation (2.2).
EXE Execute the contents of any of the first 32
registers; the operand specifies which register (1.3) .

Assembly Programmer Utility.
Another powerful assembly language
tool.

The optional Assembly Language Programmer
Utility softwa re t.ranslates BASIC statements (source
statements) into Assembly routines that are then
saved in a target object data file. The Utility uses
sowce statements entered from the keybo.m1 or from
a mass storage data fiJe and then translates them
using a system library of Assembly subroutines. The
translated code and all necessary system routines are
saved in the object file (see Fig. 1).

10
20
30
40
50
60
70
BO
9.
10e
11 0
120
130
140
150
160
170
Ie.

This program outpu,S a co~mand to ~n HP I B device and
then input~ 2 data byte$ and prlnt$ th.~, 2e tlmE ~ .

I tlTEGER A,B,C,D ! All varlabl.$ ~ust be dec l ared as

OU TPUT 724 USING

TRI GGER 7
FOR A= l TO 20

B=READ!lIH(724)
C=READ[: I '·l (724)
PRINT Bi G

HEXT A
EEEP
Elm

Figure 1. Source program f.'Xilmplf.' ,

! into?ger.
" .. J K" i "R2T3F2D . 50eOs.~l20S"

Ou,pu~ the s trIng to HP(B without
1 ead; ng at',d t ra ill ng b 1 ank$ ",,..d
without a ca~riage-~o?turn/ I ine-feed
t er"'inatQr~ ,

Trlg,;ter Lt',e HPIB d e-vice .
Loop 20 'Imes . and
r"E'ad 2 bl r ~;;'t'y da a b y tes
from the device .
Print ~he data to the
c urrel',t PI" i nt 10" " ,

Continue the loop.
Beep whe n the loop is done .
En d the program .

5

The Programmer Utility can be used to translate
more than 75 Integer BASIC commands. (i.e. real and
string variables cannot be translated) . However, due
to size limitations, this is only a subset of the total
BASIC integer, I/O and graphics commands available
in the System 35 and 45. With these limitations in
mind , the programmer can develop and debug
programs in a high level , flexible language and then
translate time·critical portions of his program into
Assembly routines. These routines can then be linked
together with the main BASIC driver resulting in
low· level language speed being placed exactly where
it's needed .

Translatable Commands
This UtiHly cannot be used as a general purpose

Assembly Language program generator because only a
portion of the available BASIC commands can be
translated. The experienced BASIC user should be
able to recognize those areas where the Utility can
and cannot be used. Experienced Assembly Language
programmers will be able to use the Utility to
incorporate even more capabilities into their
programs. Integer arithmetic (16 bit precision), logical
(AND, OR, etc.), VO and graphiCS commands that are
translatable by this Utility are listed below. NOTE: an
asterisk signifies that the fu U implementation of the
command is NOT provided.

BASIC
BEEP ON COSUB < >
LET ONCOTO X < ~

OPTION BASE DIV <
REM PAUSE

JBS
>

CALL" PRINT" > ~
DISP" PRINT SCN AND
END RETURN SQR OR
FOR-NEXT" STOP CHRS" NOT
CasUB SUB" INT
COTO SUBEND NUM"
ICALL" SUBEXlT ROW
IF-THEN WAlT COL
INTEGER + ~

va
CLEAR WAIT WRITE
ENTER" BINAND
OUTPUT" BINCMP
READ 10 BINIOR
SENDBUS BIT
STATUS DECIMAL
TRIGGER SHIff
WRITE BIN ROTATE
WRITE 10 10FLAG
WAIT READ 10STATUS

6

GRAPHICS (available only on the
System 45)

DRAW
EXlT GRAPHI CS
FRAME
GCLEAR'
GRAPHICS
IPLOT
MOVE
PEN
PENUP

PLOT
PLOlTER IS"
POINTER
LJNElYPE"

In addition to the above commands, thE.> Utility
contains a set of directives that can be indud~ as
comments in the BASIC line to control translator flow.
Directives are not rt>quired, but they provide increased
power and E.>fficiency for the user who is familiar with
Assembly. The folJowing directives are available:

SCOMPON I SCOMPOFF - Enables/disables the
translator for the current BASIC source line. If
disabled, the line is not included even as a comment
in the destination Object file .

SBASON I SBASOFF - Enables/disables transfer of
BASIC source lines to the Assembly program without
translating the lines.

SOVFON I SQVFOFF - Enables/disables integer
overflow checking routines.

SIGN - Ignores the BASIC source line for translation
but includes it as a comment in the AssE.>mbly code.

SIMG - Transfers the lSOURCE Assembly code in the
source program to Assembly code in the destination
program even if it was a comment in the source
program.

SREGSUP - Supresses generation of code to evaluate
OJ select code. This eliminates identical code when
several I/O operations are directed to the same select
code.

SISR - Allows a BASIC subprogram to be an interrupt
service routine.

$COMDEF - Defines variables that will be common to
Assembly modules .

$COMUSE - Allows access to variables defined by
SCOMDEF.

$HPIB - Allows use of HPIB 110 driversj(HPIB has
not been Specified in the VO source statement.

$CALPARA - Allows up to 2 parameters to be passed
in an ICALL statement in the source program.

Assembly Programmer Utility
System Configuration

The 98358 cannot be used with the Assembly
Programmer Utility software because it does not have
a eRr. Graphics commands must be directed to the
CRTs of the 9845Brf or 9845C. The following
hardwa.re is required (or the eHiden! operation of the
translator software:
9835A 192k bytes r/w memory (Opt. 202)

UO ROM (98332A)

9845BiC
Model 150
Model 250

Assembly Execution and Development
ROMs (98339A)
Assembly Language Programmer Utility
software (09835-10260)

0'
9835A, Opt. 110 (Application System
with Opt. 201)
Assembly Language Programmer Utility
(09835-10260)

187k bytes r/w memory (Opt. 204)
UO ROM (98412A)
Assembly Execution & Development
ROMs (98439A)
Assembly Language Programmer Utility
(09845-10260)
Graphics ROM (9841 I AlB) optional

Assembly Language System
Ordering Information
System 35
Assembly Execution &
Development ROMs
Execution ROM
Assembly Programmer Utilily
sofhvare (optional)
System 45
Assembly Execution &
Development ROM
Execution ROM

Assembly Program.mer Utility
software (optional)

98339A

98338A
09835-10260

98439A or
Opt.439

98438A or
Opt. 438

09845- 10260

7

Supplied Accessories

Quick Reference
Manual
Execution ROM
Manual
Development ROM
Manual
Demonstration
Cartridge
BASIC Language
lnterfacing Concepts
Manual
Assembly Lango.age
Training Course

System 35

09835-90080

09835-90082

09835-900S3

11141-10154

09835-90600

System 45

09845-91080

09845-91082

09845-91083

1]1.41-10155

09845-90600

09835-30020

Scope of the System. The System 35145 Assembly
Language capability is limited to 32K words of
assembled code and data storage space. It can
significantly increase the speed of most, but not
necessarily all, System 35/45 BASIC language
programs. It depends upon the tasks to be perfonned.

You should also keep in mind that writing
Assembly Language code requires more development
time than writing an equivalent BASIC routine.
Therefore, it is recommended that tlUs system be used
only in speed critical areas whe re this additional
development time can be afforded. Also, Assembly
Language capability may not be available on other HP
Desktop Computers.

Hewlett-Packard will support the System 35 and 45
Assembly Language and the BASIC language
extensions listed in this supplement, the VO structure,
and the operating system details described in the
Assembly Language manuals. Hewlett-Packa rd will
nOI' support modifications of the operating system or
accesses to them {other than those provided by the
Utilities} .

Printed !n USA ."

rot ,I1i1C. ,., •• Hot,.,.n·Pacl!S1". 1)01004 Elfl lU.""on, Rd. Fot1 CoIUrwl. Co\ott-Oo
8052$. In E ope. H...,.n·p ... kar" Gm1)H. Detlfltto Cornp'''" 00.1 H _III'
St, 110. 0 ·703 B ... bI;".g.n. 1'0000.eh l~lO. Wut <>-r",.ny; ., het.'n In. _,lei.
ti n·P..,k .. " t~l.,conh"""'""~ $l9~ 0..' C,"_ R~. p_IoAha, C.~tam .. l4»-

HEWLETT
PACKARD

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

