HP 9835 and 9845
Assembly Language

A Technical Supplement for
Hewlett-Packard Computer Systems

i 5N

& il P

"l [

L =
. (1

RENTREL

15 9JddsS
FREHE . 55 LRk
TEREA W
N R
PRUNE

D

HEWLETT
PACKARD

Desktop computers that use interpretive operating
systems and an enhanced version of BASIC language
can provide highly flexible and easy-to-program
computing solutions. In these systems, high level
BASIC statements are entered via the desktop’s
integrated keyboard or from a mass storage device.
The statements are then syntaxed and stored as
internal code. This code is interpreted, line-by-line,
into machine (low level) language instructions which
are then executed. For most applications, this
procedure produces sufficient speed and performance.
However, in speed-critical situations such overhead is
unacceptable. In these areas, a computer that uses a
low level language can increase computation, graphics
and /O speeds dramatically since it bypasses the
interpreter by creating object code ready for final
assembly into machine code.

Many applications require both these capabilities;
the ease of programming and friendliness of an
interpretive system combined with the ability to call
upon the speed and performance of a low level
language system.

To meet the demands of these applications, we
have implemented a ROM-based Assembly Language
programming system for the System 35 and 45
Desktop Computers that allow you to call Assembly
Language subprograms from a BASIC program. These
Assembly instructions, pseudo-instructions and
extensions to the BASIC language offer the
programmer control over the System 35 and 45 CPUs
and, at the same time, provide the power and
flexiblity of BASIC. The system is totally integrated
and includes powerful debug toals and a software
Programmer Utility to aid in program development.

If you have ever programmed in Assembly
Language, you know it can be very unfriendly. But
we have developed an Assembly Language system
that takes advantage of all the friendly features of our
desktop computers — and then adds a few new ones:
e spurce statements that are syntaxed as they are

entered, allowing you to catch errors as they are

made;

® an assembly process that is entirely integrated,
i.e.,the assembler and editor are in Read Only
Memory (ROM) and the Source/Object codes are in
Read Write Memory, thereby eliminating time
consuming mass storage accesses;

® an assembler that can assemble code at up to 800
statements per second;

» a system that is available in two different ROM
configurations: an Execution and Development
ROM, and an Execution ROM;

® a software-based Programmer Utility that can be
used to translate more than 75 Integer BASIC
commands;

® and, most importantly, an extensive set of debug
tools that allow interactive debugging from the
System 35 or 45 keyboard plus the ability to write
and execute debug routines in BASIC.

The sum of these features results in getting
Assembly Language routines up-and-running much
quicker than you might have thought possible.
Increasing the speed of computation. BASIC
Language statements are usually written as general
purpose routines capable of handling a wide
assortment of requirements. With Assembly
Language, you can tailor a subprogram to handle a
specific task, thus eliminating unnecessary overhead,
In general, speed increases with Assembly Language
are the result of the programmer knowing very
specific information about the task and then writing
code in a streamlined fashion to efficiently handle that
task. For example, significant increases can be realized
when using integer precision, as seen in the table
below.

APPROXIMATE SPEED INCREASES*

Assembly BASIC Approx. Speed

(integer math) (floating point) Improvement
in microseconds in microsecands Factor
Add 2.2 200 130:0
Subtract 44 350 B0.0
Multiply 13.5 1 000 75.0
Divide routine 1000 3 100 31
Single floating point operation vs. BASIC 08

Array manipulation

Integer 120.0
Real 30
Loops. Branching, Compares; Indexing 100.0

*These execution times are approximate and represant an
average over a number of interations.

Speed up [/O response. Many /O applications require
the desktop computer to respond quickly to
interrupts. Assembly Language Interrupt Service
Routines (ISRs) on the System 35 and 45 Desktop

Computers are attended to within 80 to 150

microseconds instead of wailing for the end of the
BASIC line. This can result in a 300X increase in the
efficiency of handling interrupts.

/O throughput can be dramatically increased using
Assembly Language by reducing the amount of
overhead incurred by a BASIC program. Some specific
areas where Assembly Language can aid in reducing
overhead are:

e repetitive, small word-count transfers;

o fast scanning of devices on different select codes;
® intermixed computation and V/O;

® evaluating IO “on-the-fly”” for error conditions, etc.
Graphics with Assembly Language. Assembly
Language provides complete control of the System 45
CRT hardware and includes the setting and checking
of individual dots, the writing and reading of full
words of graphic informaticn and the control of two
graphic cursors. The major advantage of using
Assembly Language rather than BASIC to create and
manipulate graphics information is speed. Graphical
data can quickly be mampulated and input
information plotted using Assembly Language.

The display of graphics information is essentially an

o operation to the graphics hardware. Thus, all
speed increases associated with /O also apply to
graphics. An algorithm that intermixes data input,
computation and display will realize a significant
speed increase over BASIC. However, since full access
to the CRT graphics hardware is available in BASIC
(and is much simpler), the use of Assembly Language
should be limited to those graphics areas where speed
is critical.

The Processors

The CPUs used on the System 35 and 45 Desktop
Computers are Hewlett-Packard designed 16-bit
hyhnds that offer:

2 arithmetic accumulators (A & B),

e 2 general purpose stack pointers (C & D) with byte
or word addressing capability,

e indirect addressing (one level),

® 2 levels of priority interrupts with 8 hardware
vectors per level,

e Direct Memory Access (DMA) capablility,

e hardware floating point BCD arithmetic with two
floating point registers: Arl (located in r/w memory)
and Ar2 (located in the processor),

® 16 bit instructions and data,

® integer arithmetic,

® 16 sixteen-bit bi-directional /O ports.

The System 45 features a unique dual processor
(CPU) system; a single processor is used in the
System 35. For non-ISR Assembly Language code, the
System 45's dual processors function as a single unit
to maintain compatibility with the System 35. The
major advantages of the dual processor system in the
System 45 are:

e overlapped /O can, in some cases, bring about
increased throughput;

e Assembly ISRs can be executed simultaneously with
a BASIC program.

The Assembler

The System 35/45 Assembly Language System has a
relocating assembler whose pre-eminent feature is
speed. It can assemble statements at 400 to 800 per
second. This speed is possible because the assembly
process is integrated and the source statements are
syntaxed as they are entered.

Other features include:

e symbols up to 15 characters long, programs are
more self-documented;

e symbols can represent constants, relocatable addresses,
machine addresses or external symbols;

e constants can be octal or decimal integers, full or short

precision floating point or ASCI;

. e selected sections of source code can be omitted from

the assembly process via conditional assembly

instructions:

e statements are provided to generate listings and cross
references,
The assembler can perform any add, subtract, multiply
or divide operation that occurs within the operand field.

The System

The System 35/45 Assembly Language System
consists of a set of plug-in ROMs that contain the
Assembly Language statements and functions. These
ROMs are offered in two configurations: Execution
and Development and Execution Only.

The advantage of having these two configurations
can be seen when building an economical desktop
computer-based system utilizing the Assembly
Language capability. For example, you could have a
single desktop computer that has full capability, i.e.,
equipped with the Assembly Execution and
Development ROM for writing and debugging
programs. The rest of the units in your system could
be equipped with the lower cost Execution ROMs.

The Development ROMs provide the
following BASIC statements and functions:
ISOURCE - allows the programmer to write Assembly
Language source statements that are integrated within
the framework of a BASIC language program.
IASSEMBLE - reduces source code to object code.
IBREAK - allows breaking (pausing) at either a data
or program location; allows transfer at break time to a
BASIC subprogram and then resumption of the
Assembly subprogram; pravides 8 independent break
points.

INORMAL - discontinues conditions set up by
IBREAK.

IPAUSE ON/OFF - allows or disallews STEP and
PAUSE to operate normally within an assembled
routine; when STEPping through a routine, if the
source is present, the Assembly Language instruction
and associated comment is displayed.

IDUMP - allows printing of memory location in any
of 5 formats: binary, octal, decimal, hexidecimal and
ASCIL

ICHANGE - changes the content of a memory
location to a specified value.

IADR - returns the value of a symbol, usually an
address.

IMEM - returns the content of a memory location.
OCTAL - converts a decimal exression to ifs octal
image.

DECIMAL - converts an octal expression to its
decimal image.

The Execution ROMs support these BASIC
statements:

ICOM - sets aside special read/write area in memory
to accept the output of the assembler.

ICALL - transfers processor control to an assembled
subprogram; allows the passing of parameters
between BASIC programs and Assembly
subprograms.

ISTORE - allows storage of object modules on mass
storage devices. _
ILOAD - allows retrieval of object modules from mass
storage devices.

IDELETE - deletes selected Assembly Language
modules.

ON/OFF INT# - establishes or discontinues end of
line branch condition for ISRs.

Utilities. A number of utilities have been provided
in the system to help make programming tasks easier
and to give you direct access to some of the operating
system’s capabilities and routines. Such capabilities as
translation of BASIC statements into Assembly
Language routines, basic arithmetic operations
between full precision numbers, conversions between
number types, storage and retrieval of string and
numeric variables, mass memory read/write record
and unformatted printing are provided in utility form.

The Language

The language supported by the System 35/45
processors and assemblers is extensive. Here is a
listing of mnemonics, a brief description of the
function and typical execution times in microseconds
(numbers in parenthesis).

Load/Store FUNCTIONS

LDA (LDB) Load register A (or B) with the content of
a specified location (specified by an operand, the
syntax of which is not detailed here) (2.2).

STA (STB) Store content of register A (or B) in
specified location (2.2).

CLR Clear the specified number of words, beginning
at the location pointed at by the A register (6.7).

XFR Transfer the specified number of words, from the
location starting at the address pointed at by the A
register to the location pointed at by the B register
(11.5).

Integer Math Functions

ADA (ADB) Add the content of the specified location
to register A (or B) (2.2).

TCA (TCB) Perform a two's complement of the A (or
B) register (1.5).

MPY Integer multiply (13.5).

Branch Functions

JMP Jump to specified location (1.3).
JSM Subroutine jump to specified location (2.2).
RET Return from subroutine (2.7).

Test/Branch Functions

CPA (CPB) Compare A (or B) to the content of the
specified location, skip if unequal (2.7).

SZA (SZB) Skip to specified location if register A (or
B) is 0 (2.3).

RZA (RZB) Skip to specified location if register A (or
B) is not 0'(2.4).

SIA (SIB) Skip to specified location if register A (or B)
is 0, then increment register A (or B) by 1 (2.3).

RIA (RIB) Skip to specified location if register A (or B)
is not 0, then increment register A (or B) by 1 (2.3)

Test/Alter/Branch Functions

ISZ (DSZ) Increment (decrement) content of specified
location, skip if new content is 0 (3.2).

SAP (SBP) Skip to specified location if the A (or B)
register is positive, i.e. bit 15 is 0 (2.3).

SAM (SBM) Skip to specified location if the A (or B)
register is negative, i.e. bit 15 is 1 (2.3).

SLA (SLB) Skip to specified location if the least
significant bit of register A (or B) is 0 (2.3).

RLA (RLB) Skip to specified location if the least
significant bit of register A (or B) is 1 (2.3).

SOC (SOS) Skip to specified location if Overflow is
clear (or set) (2.3).

SEC (SES) Skip to specified location if Extend is clear
(or set) (2.3).

Shift/Rotate Functions

SAL (SAR) Shift the A register to the left (or right) the
indicated number of bits with all vacated positions
becoming 0 (2.8).

SBL (SBR) Analogous to SAL (SAR) using B register
(2.8).

AAR (ABR) Shift the A (or B) register right the
indicated number of bits with the sign bit filling all
vacated bit positions (2.8).

RAL (RAR) Rotate the A register left (or right) the
indicated number of bits; bit 15 will rotate into bit 0
(left shift) or bit 0 will rotate into bit 15 (right shift)
(2.8).

RBL (RBR) Rotates the B register analogous to RAL
(RAR) (2.8).

Logical Functions

AND Logical AND between register A and specified
location, result in register A (2.2).

IOR Inclusive OR between register A and specified
location, result in register A (2.2).

CMA (CMB) Perform a one’s complement of the A (or
B) register (1.5).

Stack Functions

PWC (PWD) Push the specified register (full word)
onto the stack pointed at by the C (or D) register (3.8).
PBC (PBD) Push the lower byte (right half) of the
specified register onto the stack pointed at by the C
(or D) register (3.8).

WWC (WWD) Withdraw a full word from the stack
pointed at by the C (or D) register and place it in the
specified register (3.8).

WBC (WBD) Withdraw a byte from the stack pointed
at by the C (or D) register and place it in the lower
byte (right half) of the specified register (3.8).

CBL (CBU) Clear (or set) the Cb register (C and Cb
together act as a 17-bit address for PBC and WBC)
(2.0).

DBL (DBU) Clear (or set) the Db register (2.0)

BCD Math Functions

MRX (MRY) Mantissa right shift on Arl (or Ar2), a
special BCD floating poeint machine register (11.0 for
MRX, 6.2 for MRY).

MLY Mantissa left shift of Ar2 for one digit (5.3).
DRS Mantissa right shift of Arl for one digit (9.3).
NRM Normalize the Ar2 mantissa (4.8).

CMX (CMY) Ten's complement of Arl (9.8) or Ar2
(3.8).

FXA Fixed point addition; the mantissa of Arl and
Ar2 are added together and the result placed in Ar2
(6.7).

MWA Mantissa word addition of B to Ar2 (4.7).
FMP Fast BCD multiply (24.3).

FDV Fast BCD divide (23.5).

CDC Clear decimal carry (1.8).

SCD (SDS) Skip to specified location if decimal carry
is clear (or set) (2.3).

I/O Functions

SFC (SFS) Skip to specified location if /O flag line is
false (or true) (2.3).

$SC (SSS) Skip to specified location if I/O status line
is clear (or set) (2.3).

EIR (DIR) Enable (disable) the interrupt system (2.0)
SDI (SDO) Set DMA inwards (or outwards); reads
from peripheral (or memory), writes to memory (or
peripheral) (2.0).

DMA Enables the DMA mode (2.0).

DDR Cancel the DMA instuction (2.0).

Miscellaneous Functions

NOP Null operation (2.2).

EXE Execute the contents of any of the first 32
registers; the operand specifies which register (1.3).

Assembly Programmer Utility.
Another powerful assembly language
tool.

The optional Assembly Language Programmer
Utility software translates BASIC statements (source
statements) into Assembly routines that are then
saved in a target object data file. The Utility uses
source statements entered from the keyboard or from
a mass storage data file and then translates them
using a system library of Assembly subroutines. The
translated code and all necessary system routines are
saved in the object file (see Fig. 1).

18 | This program cutputs a command to an HPIEB device and

20 I then inputs 2

data bytes and prints them 28 tims:.

) INTEGER FA,E,C, D ! A1l wvariables must be declared as
4@ ' I integer.

Sa OUTFUT 724 USING “#,K"; "R2TIFZI.SoQasNzas"

({8 I Output the string to HFIE without
7a ! Mleading and trailing bBlanks and
e I without a carriage-returnsline-fe=d
98 I terminator,

168 TRIGGER 7 I Trigger the HFIE deyjce.

118 FOR fA=1 TO 28 | Loop 28 times, and

128 E=RERDEIHC7 242 ! read 2 binary data bytes

138 C=RERDEIN{?242 I from the device.

14@ FRINT E;C ' Frint the data to the

158 _ ! current printer.

1664 HEXT A I Continue ths loop.

176 EEEF ! Beep when the loop is dane.

188 END | End the program.

Figure 1. Source program example.

The Programmer Utility can be used to translate
more than 75 Integer BASIC commands. (i.e. real and
string variables cannot be translated). However, due
to size limitations, this is only a subset of the total
BASIC integer, /O and graphics commands available
in the System 35 and 45. With these limitations in
mind, the programmer can develop and debug
programs in a high level, flexible language and then
translate time-critical portions of his program into
Assembly routines. These routines can then be linked
together with the main BASIC driver resulting in
low-level language speed being placed exactly where
it'’s needed.

Translatable Commands

This Utility cannot be used as a general purpose
Assembly Language program generator because only a
portion of the available BASIC commands can be
translated. The experienced BASIC user should be
able to recognize those areas where the Utility can
and cannot be used. Experienced Assembly Language
programmers will be able to use the Utility to
incorporate even more capabilities into their
programs. Integer arithmetic (16 bit precision), logical
(AND, OR, etc.), /O and graphics commands that are
translatable by this Utility are listed below. NOTE: an
asterisk signifies that the full implementation of the
command is NOT provided.

BASIC
BEEP ON GOSUB - ==
LET ON GOTO X e —
! OPTION BASE DIV <
REM PAUSE 1 >
CALL* PRINT* ABS > =
DIsP* PRINT SGN AND
END RETURN SQR OR
FOR-NEXT* STOP CHR$* NOT
GOSUB SUB* INT
GOTO SUBEND NUM*
ICALL* SUBEXIT ROW
IF-THEN WAIT COL
INTEGER - —

1/0
CLEAR WAIT WRITE
ENTER* BINAND
QUTPUT* BINCMP
READ 10 BINIOR
SENDBUS BIT
STATUS DECIMAL
TRIGGER SHIFT
WRITE BIN ROTATE
WRITE 10 IOFLAG
WAIT READ [OSTATUS

GRAPHICS (available only on the
System 45)

DRAW

EXIT GRAPHICS

FRAME

GCLEAR*

GRAPHICS

IPLOT

MOVE

PEN

PENUP

In addition to the above commands, the Utility

contains a set of directives that can be included as
comments in the BASIC line to control translator flow.
Directives are not required, but they provide increased
power and efficiency for the user who is familiar with
Assembly. The following directives are available:

$COMPON / SCOMPOFF - Enables/disables the
translator for the current BASIC source line. If
disabled, the line is not included even as a comment
in the destination object file.

$BASON / $BASOFF — Enables/disables transfer of
BASIC source lines to the Assembly program without
translating the lines.

SOVFON / $OVFOFF - Enables/disables integer
overflow checking routines.

PLOT
PLOTTER I5*
POINTER
LINETYPE*

$IGN — Ignores the BASIC source line for translation
but includes it as a comment in the Assembly code.

$IMG — Transfers the ISOURCE Assembly code in the
source program to Assembly code in the destination
program even if it was a comment in the source
program,

SREGSUP — Supresses generation of code to evaluate
a select code. This eliminates identical code when
several I/O operations are directed to the same select
code.

$ISR - Allows a BASIC subprogram to be an interrupt
service routine.

$COMDEF - Defines variables that will be common to
Assembly modules,

$COMUSE - Allows access to variables defined by
$COMDEEF.

$HPIB — Allows use of HPIB I/O drivers if HPIB has
not been specified in the I/O source statement.

$CALPARA - Allows up to 2 parameters to be passed
in an ICALL statement in the source program.

Assembly Programmer Utility
System Configuration

The 9835B cannot be used with the Assembly
Programmer Utility software because it does not have
a CRT. Graphics commands must be directed to the
CRTs of the 9845B/T or 9845C. The following
hardware is required for the efficient operation of the
translator software:

9835A 192k bytes r/w memory (Opt. 202)
/O ROM (983324A)
Assembly Execution and Development
ROMs {98339A)
Assembly Language Programmer Utility
software (09835-10260)
or
9835A, Opt. 110 (Application System
with Opt. 201)
Assembly Language Programmer Utility
(09835-10260)
9845B/C 187k bytes r/'w memory (Opt. 204)
Model 150 /O ROM (98412A)
Model 250 Assembly Execution & Development

ROMSs (98439A)

Assembly Language Programmer Utility

(09845-10260)
Graphics ROM (98411A/B) optional

Assembly Language System
Ordering Information
System 35

Assembly Execution & 98339A

Development ROMs

Execution ROM 98338A

Assembly Programmer Utility 09835-10260

software (optional)

System 45

Assembly Execution & 98439A or

Development ROM Opt.439

Execution ROM 98438A or
Opt. 438

Assembly Programmer Utility 09845-10260

software (optional)

Supplied Accessories

System 35 System 45
Quick Reference 09835-90080 09845-91080
Manual
Execution ROM 09835-90082 (09845-91082
Manual
Development ROM 09835-90083 09845-91083
Manua
Demonstration 11141-10154 11141-10155
Cartridge
BASIC Language 09835-90600 (9845-90600
Interfacing Concepts
Manual
Assembly Language 09835-30020

Training Course

Scope of the System. The System 35/45 Assembly
Language capability is limited to 32K words of
assembled code and data storage space. It can
significantly increase the speed of most, but not
necessarily all, System 35/45 BASIC language
programs. It depends upon the tasks to be performed.

You should also keep in mind that writing
Assembly Language code requires more development
time than writing an equivalent BASIC routine.
Therefore, it is recommended that this system be used
only in speed critical areas where this additional
development time can be afforded. Also, Assembly
Language capability may not be available on other HP
Desktop Computers.

Hewlett-Packard will support the System 35 and 45
Assembly Language and the BASIC language
extensions listed in this supplement, the /O structure,
and the operating system details described in the
Assembly Language manuals. Hewlett-Packard will
not support modifications of the operating system or
accesses to them (other than those provided by the
Utilities).

For assistance wiile Hewleti-Packard, 3404 East Harmony Fid, Forl Collins, Colorado
BOS25, in Europa, Hewlet-Packard GmbH, Deskiop Computar Division, Herrenberger
Stresse 110, D703 Boebdlingen, Postfach 1430, West Garmany; disewhets in the world,
Hawlaf-Packard Intercontinental, 3495 Deer Creek Rd. Paio Altg, Galitarnia 84304

[/ Exciaro

™

Printed in USA
il 59534570

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

