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FFactoring large numbers has long intrigued both amateur and serious number theorists, and
factoring has been given increased attention with recent applications to cryptography. We present
algorithms for factoring which can be featured in a first course in number theory and which form
an attractive path to understanding many important concepts such as greatest common divisor,
Fermat’s little theorem, quadratic reciprocity calculations, Lucas sequences, etc.

- In addition to a short discussion and a step-by-step description of each algorithm, we have
included programs which factor numbers up to 19 digits using the Hewlett-Packard HP-16C. This
calculator has a 64-bit word size and built-in double-precision multiplication and remainder (or

- quotient) on division. These programs and instructions for use are formatted so that they can be
photocopied, mounted or laminated, and carried in the calculator case for easy access. The
algorithms given here would only work up to about five or six digit numbers on other

- programmable calculators.

The strategy. After dividing out any power of two, we may assume that the number N which
we wish to factor is odd. We start with “baby divide” which simply divides N by successive odd
numbers and halts when it finds a factor. This program is time-consuming and should only be
used to take out small factors. Selfridge and Guy [5] recommend using baby divide to find factors
up to about ten times the number of decimal digits of N.

After removing any small factors, we use the power algorithm described below to compute
2M=1 (mod N). Fermat’s little theorem asserts that 2V~ = 1 (mod N) for any odd prime N. If
this congruence does not hold, then N is composite, and we apply the Pollard rho algorithm to
find two factors of N which may or may not be prime. However, we do not have to check
primality for any factor which is smaller than the square of the largest divisor tried in baby
divide, since such a factor is necessarily prime.

If, on the other hand, 2"~! = 1 (mod N), then N is probably prime, and to confirm this we
apply the Lucas test. Define a Lucas sequence by Uy =0, U, = 1, U,,; = U, — QU,_, for fixed
- Q (not O or 1). The following theorem is an analogue of Fermat's little theorem: If N is prime,

N > Q, and the Jacobi symbol (1 — 4Q)/N) = —1, then N|Uy,,. The Lucas test for the
number N then consists of first finding small integers D and Q such that (D/N) = —1, where
- D =1 — 4Q, and then checking to sce if Uy, ; = 0 (mod N). If this congruence does not hold,
then N is composite* (go to Pollard rho), but if it does hold then N is almost certainly prime. In
fact, if the D is chosen as suggested in our discussion of the algorithm, and N passes both the

- Fermat test 2¥~! = 1 (mod N) and the Lucas test Uv+1 = 0 (mod N), then Pomerance, Selfridge
and Wagstaff [4] have shown that N is primic for any N < 25 - 10%. Even if N > 25 - 10, there is

*Composite numbers for which N|2% — 2 are called pscudoprimes (base 2). They are much rarer than primes.
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no known composite N which passes the two tests. In their paper, Pomerance, Selfridge and

Wagstafl offer $30. since increased to $120, for the first submission of such a compaosite N or for
a proofl that none exists.

The alporithms

Baby divide,

Input ¥ 4 I f+N,goto3
17 S N/[ N

2. Golod 6. Halt showing f
3 f+2-f 7. Go to 4

Power algorithm: a* (mod N). In order to compute 3?2 we could perform 21 multiplications
by 3, but a faster approach is to compute 3!, 32, 3%, 31, 322 the exponents in binary being 1, 10,
101, 1011 and 10110. Each step is a squaring, and we also multiply by 3 when the new binary
digit is a one. .

In general, to compute a® we express E in binary. Then, examining E left to right and
starting with R = 1, we square the current value of R and multiply by a when we encounter a
one bit and merely square R when we encounter a zero bit. Usually E will end with one or more
zero bits, and it is convenient in our algorithm to annex a signal bit 1 at the right of E. We shift
E left one place at each iteration and simply check for zero to see when we have finished.

Power algorithm: af (mod V).

Input N,a, E=(b,b,_;...by), 6. IfC=0,g0to8

1. 2E+1-E 7. aR (mod N) - R
(annex trailing bit 1) (shift left when a = 2)

2. Shift E left until bit 8. Shift E left one place
shifted out is 1 9. Bit shifted out - C

3.3.1-C 10. f E+0,goto5

4 1->R 11. Halt showing R

5. R* (mod N) - R

Pollard rho. The Pollard rho method [3] gets its name from Pollard and from the fact that if

Y = X

Xy = Xyim
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we iterate a function / from a finite set into itself, x,,; = f(x,), then there exist positive integers
A and 7 such that XA+ = Xxynq4; for all nonnegative integers j. The least such A and o are

called the tail length and the period, respectively, of the function. The picture we get is given in
Fig. 1 and resembles the letter rho.

We apply this simple observation to factor N by noting that if the prime p divides N, and if
we recursively apply f(x) = x2 + a4 to the integers modulo p starting with x,, then eventually
X, = x4 (mod p) and so PIGCD(x, — x,, N). Of course we do not know p, but we have noted
that GCD(x, — x,, N) is a factor of N greater than 1 for some 4 and k. Next we note that if
Xp = X4 (mod N) then x, = x, (mod p), and so we can keep track of X; — x; (mod N) even
though we don’t know p. We observe that if x, = X, (mod p), then Xj+j = X4y, (mod p) for all
positive integers j. Thus, we are only interested in the difference of the indices 4 — k. Since it is
not necessary to find A and #, we simply compute GCD(x), — x,, N) for h — k = m + 1, m+
2,.... We expect the prime p to appear within about p'/? jterations. It can be seen from the
table at the end of the paper that any prime shows up in a reasonable time, using our chosen
function.

We begin computing Xp — X, with k=0 and h = m +J for j=1,2,... m. Then we let
k=2m and h = 4m +J for j=1,2,...,2m, and so on. For the rth iteration k = (2! — 2)ym
and h =k + 2" m+j for j=1,2,....2"'m. In this way, we have h — k take every value
from m + 1 onward, and at each iteration we advance the smaller index forward along the tail
toward the periodic part of the rho. Thus we eventually have both indices larger than A, and even
if we do not have k > A when 4 — k = 7, we will have k > A for & — k equal to some multiple
of 7. To speed things up, we do not compute the GCD for each x, — X, but rather we form the
product (mod N) of m consecutive X, — x; and then compute the GCD. (This makes it
convenient to start & — k at m + 1.) We have used m = 8 in our HP-16C program.

The possibility exists that when we find a GCD greater than 1, it may turn out to be N,
Fortunately, this happens only rarely and almost never after a long computation. Although an
obvious strategy would be to go back and repeat the last cycle of m differences, computing the
GCD for individual x, — x, rather than for the product, we do not do this since we are too short
of tpace in the HP-16C. Even if we did this individual check, we might still have the GCD equal
tolor N for each x, — x,. We suggest that the a in f(x) = x2 + ¢ be increased by 1, and the
Pollard rho run again.

The version of the Pollard rho algorithm that we have used follows modifications due to Brent
(1]. Originally Pollard used X2, = X, (mod N), but this meant that both terms bad to be
advanced when we go to X2k+2 = X41- Brent’s modification was found to be about 24% faster
than the original.

Pollard rho.

Input N, a, m 100 J-m—J

L X,- X 11.1 - R

2. m/2 - J 12. X + a (mod N) » X
3.2 - 8,J,1 13. |X—=Y|-R (mod N) - R
4. X->7Y 14. §~-1-=5

5. X* + a (mod N) » X 15. If S+ 0, go to 12

6. S-1-> 8§ 16. GCD(N, R) - D

7. 1S +#0,g0t05 172 1f D=1,g0t0 8

8. If J =0, go to 3 18. Halt showing D

9. m—> S 19. Show N/D
GCD(NV,R) (N> R > 0),

1. R> Xx 4 Y(mod X) > Y

2 N=-R—-oY 510 Y+0,g0to3

3. X2 Y (swap X and Y) 6. Return showing X
TNV 0
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Lucas test.

To apply the Lucas test, we pick an appropriate Q (and D) and compute Uy, ; (mod N). To
get O, we first find the lcast D in the sequence 5, —7, (9), —11, 13, ~15,... such that
(D/N) = —1 by using the elementary properties of the Jacobi symbol. Then !Q = (1 - D)/4.
We have included in the program description a table of Q which works for 99.2% of N'’s.

To compute U,,,; we define the auxiliary sequence V, =2, V, = U,,/U,. The following
formulas are well known:

Doubling Formulas: Uy, = UV, and V,, = V?—2Q"
Sidestep Formulas: Uy,,; = (U,, + ¥,)/2 and V,,,, = (DU, + V,,)/2.

Starting with U; =0 and V, = 2, the sequence of doublings and sidesteps necessary to
compute Uy, and V), is obtained from the binary expansion of N + 1, just as we handle F in
the algorithm for af(mod N). '

Lucas test.
Input N,Q,I=N+1-=
(b by - by)sy 10. Bit shifted out —» C
1.1-R 11. If C=0,go to 16
2.2-V 12, U->T
3.0-U 13. (U+ V)/2(mod N) - U
4. 2I+1 -1 14. (1 — 4Q)T (mod N)
(annex trailing bit 1) + V)/2(mod N) = V
5. Shift I left until leftmost 15. QR (mod N) —» R
bit is 1 16. I - X
6. UV (mod N) - U 17. Shift X left one place
7. V? (mod N) — 2R - V 18. If X+ 0,g0t0 6
8. R? (mod N) = R 19. Halt showing U
9. Shift I left one place

Factoring programs for the HP-16C

We include the HP-16C code for implementing the above algorithms. The main reason for
presenting the actual code is that one must be careful when writing these programs to take full
advantage of the HP-16C’s 19-digit capacity. After the necessary 40 bytes are set aside for storing
five 19-digit numbers, there are 161 bytes remaining for program storage. The programs
presented here use 159 of these bytes. (See Fig. 2 on p. 806.)

Using unsigned mode we can handle numbers up to 2% in baby divide and Pollard rho. In our
program for a® (mod N), when N > 252 we must store a in the I register and have GSB F in
025; also E must be less than 2%, This forces us to check a¥~1/2 = 1 or N — 1 (mod N) in the
Fermat test when N > 2%, In the Lucas test we must be in 2’s complement mode with
N < 29 /5,

In these programs labels 9 and A4 are not used, and label F is used several times “locally”. By

changing the word size, storage can be made available for short temporary programs without
disturbing the factoring package.

Two other programs. We have also written programs for division or multiplication of a

number having up to 396 digits by factors up to 2%, These two programs can be obtained by
writing to us.

ExaMPLE 1. We enter 1542 74344626 34653133 into the machine. (Since N > 253, we use
unsigned integer mode.) First we use baby divide which finds the factor 17 in 12 sec., a second 17
in two more sec., and the factor 101 a minute later. Since the remaining cofactor is a 15-digit
number, we continue baby divide for 40 sce. longer, trying all odd divisors less than 159. Next we
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usc a® mod N with a = 2. We find 21 % 1 (mod N) in two min. Thus the remaining number
is composite, so we use Pollard rho to find the factors 23209 and N = 227 72885633 in 29 min.
Since 23209 < 1592, we know that 23209 is prime. We next test N using a® mod N. We find
2Y"1'=1 (mod N) in 1.5 min., and then proceed to the Lucas test. Because N ends in 3,

1542 74344626 34653133 = 172 . 101 - 23209 - 22772885633.

The complete factorization is accomplished in about 40 min.

Advanced Pollard rho. Whep applying the Pollard rho algorithm to a composite N, it is not
cessarily the case that the factor D of N, which is found first, is the smallest factor of N, and

M with the parameters at those values where D was found. Thus, when D appears, we set it
aside for further work later, and first do a Fermat test on M. If 2M-1 = 1 (mod M), we confirm
the primality of M by a Lucas test. I£ 21 2 1 (mod M), we reduce X, and x, (mod M) and
continue Pollard rho working on M with these values of x, and x,. Later when we return to
consider the factor D we do a Fermat test and, if need be, a Lucas test. If D is not prime, we
have a choice: continue baby divide until it finds a factor or increase the current value of g and
start Pollard rho from the beginning.

EXAMPLE 2. Consider N = 750 05962469 54111183. After running baby divide for 2.5 minutes,
we have tried all potential odd factors up to 200 and found none. After 3.25 minutes on a Fermat

short a time.) We write down D for consideration later and apply a Fermat test on M = N/D by
simply executing R}, STO 0, 1, -,GSBE In1l7 minutes, we observe that 2/ -1 # 1 (mod M),
and so we reduce the current X, and x, modulo M by executing RCL 1, RCL 0, RMD, STO 1;

750 05962469 54111183 = 1789 - 1873 - 24977 - 89620507.

The complete factorization is accomplished in less than half an hour. However, for some
stubborn large numbers, you have to let Pollard rho run overnight (in the worst possible case



B Baby divide

Use Baby divide to find small odd factors. Go up to about
ten times the number of decimal digits of N,

Storage: N in X; STO 0; fo (= 3) in X. GSB B.

Halts showing factor. Record and GSB B to continue (N
has been replaced by N/I).

To show current I: R/S, LSTX.
To continue: R}, R/S.

C Pollard thoz? +a

IF2N-1 £ 1 (mod N) or Uns4y # 0 (mod N), use Pollard
rho to find factors of N. First check MEM. If r < 5, sce
directions in Lucas test.

Storage: Nin 0; 2in 2 (zo); 4in 4 (2%); a (= 1) in program
step 082. GSB C. Halts with factors in X and Y. If result
is N and 1, increase a and try again.

Note: Subroutine D may be used alone to find GCD's.
Compute the difference {in the X register) of the two num-
bers for which you wish to find the GCD and GSB D.

E a® mod N 013-034
(and 085-091)

B Baby divide 001012

E ofmod N

After using Baby divide to take out small factors, use aF
mod N witha = 2 (SL in program step 025) and E = N1
to determine whether N is a probable prime.

Storage: Nin 0; E (=N~ 1) in X. GSBE. (Fora > 2 or
E odd, put a in register I and change step 025 from SL to
GSB F. When step 025 contains SL, E should be cven.)
Halts showing result. If 2N=! = 1 (mod N}, N is probably
prime. (See Lucas test.)

2 Lucas test: change to 2's complement mode

If 2N-1 = 1 (mod N), N is a probable prime; use Lu-
cas test to verily primality. First check MEM. If r < 5,
delete temporary programs or use smaller word size so
that r > 5.

Storage: Nin 0; 1in 1 (Q*); 2in 2 (Vi); 0in 3 (Ux); Q
(= (1 - D}/4) in 4; final subscript (N + 1) in X. GSB 2.

Halts showing Ux (mod N). (k=N +1)

If Unss # 0 (mod N), N is composite. Go to Pollard rho.
If2N-1 = 1 (mod N) and Un4; = 0 (mod N}, N is prime
if N < 25109

2 Lucas test (N < 283/5): Q Tables

LBL 1 LBL G IfN' ends in‘3 or7, Q= ~1.
RCL 0 ST 4 SL (GSB F) N mod 7 is 3,5,0r6, Q=2
IfNmodi1is2,6,7, 8 0r10, Q=23
2 RLC )19 .
LSTX L] SL Ivamod les 2,5,6,7, 8, 0r11,Q=-3.
+ Rl x#o If N mod 15 .IS 7, 11, 13, or 14, Q =4,
LBL B SL GTO 7 If N mod 17 is 3,5,6,7,10,11,12,0r 14, Q = -4.
- 1 XzY If Nmod 19is 2, 3, 8, 10, 12, 13, 14, 15, or 18, Q = 5.
F74 XzY RTN If Q is not found using any of these moduli, use the follow-
GTO 1 LEL 7 ing: D is the first non-square element of the sequence 5,
STO 0 XzY LBLF -7, {9), 11, 13, ~15,-- for which (D/N) = —1. Then
LSTX GSB3 RCLI Q = (1 - D)/4.
RTN T?4 GTO 4
C Pollard rho 035-099 2 Lucas test 100-159 (and 085-091)
LBLC STO2? GSBF GSBD 1(=a) LBLD LBL2 GSB3 GSBF LBLF - LBL F
RCL4 LBLO STO2 ! + LSTX SF4 RCL1 RCLI RCL3 GSB4 RCL2
SL RCL3 RCL1 X=Y RTN XY RLC SL SL RCLO GSBT +
STOI X=0 X>Y GTOO0 RMD L] - -X£0 RCL3 STO2 0
STO3 GTOC XY RCLO LBL3 X#0 R] STO?2 GTOS5 GSBF RCL1 B?
STO4 8 - LSTX ENTER GTOD STOI RCL1 RCL3 STO3 RCL4 +
RCL2 STO1 GSB4 = LBL4 LSTX LBL5 GSB3 RTN RCLO GSB4 ASR
STO1 -~ DSZ LSTX DBLx RTN RCL3 STO1 R1 STO1 RTN
LBL6 STO3 GTO8 RTN RCLO RCL2 RCLI 1 RTN
GSBF 1 RCL 0 DBLR GSB4 SL RCL 4
DSZ LBL8 XY LBLF RTN STO3 STOI SL
GTO6 RCL2 - GSB 3 RCL2 F74 SL
Fi1G. 2
Primality table for g = 1
2 P =1
32 193 37248
64 607 368448
128 1747 3052008
256 11261 126810120 -
512 21911 4 80091920
1024 100417 100 83573888 EDUCAL'C

Any factor less than p? is prime.

References

27953 CABOT ROAD
LAGUNA NIGUEL, CA 92677

TEL* (Tm) S22 2437

1. R. P. Brent, An improved Monte Carlo factorization algorithm, BIT, 20(1980) 176-184.
2. John Brillhart, D. H. Lehmer, and J. L. Sclfridge, New primality criteria and factorizations of 2™ 4 1, Math,

Comp., 29(1975) 620-647.

3. J. M. Pollard, A Monte-Carlo method for factorization, BIT, 15(1975) 331-334.

4. Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff, Jr., The Pseudoprimes to 25 - 10%, Math. Comp.,
35(1980) 1003-1026. (The $30 prize on page 1025 has been upped to §120.)

5. J. L. Selfridge and Richard K. Guy, Primality Testing with Application to Small Machines, Proc. WSU Conl.

Number Theory, Pullman, WA, 1971, 45-51.

TN 20 6



Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.



