
NOTES

EDITED UY SAnRA S. ANDERSON, SIIELDON AxLER, AND J. ARtHUR SEEBACH, JR.

For inSfrLlCliollS ahoLif slIhmiffing Notes jar pLlhlication in this department see the inside jront cover.

FACTORING LARGE NUMBERS ON A POCKET CALCULATOR

W. D. ilLAIR

EDUCALC Department of Mathematics, Northern Illinois University, DeKalh, I L ()0115

r 27953 CABOT ROAD
LAGUNA NIGUEL, CA 92677 c. il. LACAMPAGNE

Deportment of Mathemotics. University of Michigan, Flint, M 148503 L TEL tt (7/'+) 5&:2 2637

.....

.....

J. L. SELFRlDGE

Departlllent of Mathematics, Northern Illinois University, DeKalb, I L 60115

Factoring large numbers has long intrigued both amateur and serious number theorists, and
factoring has been given increased attention with recent applications to cryptography. We present
algorithms for factoring which can be featured in a first course in number theory and which form
an attractive path to understanding many important concepts such as greatest common divisor,
Fermat's little theorem, quadratic reciprocity calculations, Lucas sequences, etc.

In addition to a short discussion and a step-by-step description of each algorithm, we have
included programs which factor numbers up to 19 digits using the Hewlett-Packard HP-16C. This
calculator has a 64-bit word size and built-in double-precision multiplication and remainder (or
quotient) on division. These programs and instructions for use are formatted so that they can be
photocopied, mounted or laminated, and carried in the calculator case for easy access. The
algorithms given here would only work up to about five or six digit numbers on other
programmable calculators.

The strategy. After dividing out any power of two, we may assume that the number N which
we wish to factor is odd. We start with "baby divide" which simply divides N by successive odd
numbers and halts when it finds a factor. This program is time-consuming and should only be
used to take out small factors. Selfridge and Guy [5] recommend using baby divide to find factors
up to about ten times the number of decimal digits of N.

After removing any small factors, we use the power algorithm described below to compute
2N

-
1 (mod N). Fermat's little theorem asserts that 2N - 1 == 1 (mod N) for any odd prime N. If

this congruence does not hold, then N is composite, and we apply the Pollard rho algorithm to
find two factors of N which mayor may not be prime. However, we do not have to check
primali ty for any factor which is smaller than the square of the largest divisor tried in baby
divide, since such a factor is necessarily prime .

If, on the other hand, 2N -1 == 1 (mod N), then N is probably prime, and to confirm this we
apply the Lucas test. Define a Lucas sequence by Va = 0, VI = 1, Vn + 1 = u" - Q u" -1 for fixed
Q (not 0 or 1). The following theorem is an analogue of Fermat's little theorem: If N is prime,
N > Q, and the Jacobi symbol «1 - 4Q)IN) = -1, then NI VN + l' The Lucas test for the
number N then consists of first finding small integers D and Q such that (DIN) = -1, where
D = 1 - 4Q, and then checking to see if VN + 1 == 0 (mod N). If this congruence does not hold,
then N is composite* (go to Pollard rho), but if it does hold then N is almost certainly prime. In
fact, if the D is chosen as suggested in our discussion of the algorithm, and N passes both the
Fermat test 2N

-
1 == 1 (mod N) and the Lucas test VN + 1 == 0 (mod N), then Pomerance, Selfridge

and Wagstaff [4] have shown that N is prime for any N < 25 . 109 . Even if N > 25 . 109 , there is

'Composite numbers for which N 12N - 2 are called pscudoprimes (base 2). They are much rarer than primes.

I

1

NOTES

no known composite N which passes the two tests. In their paper, Pomerance, Selfridge and
Wagstaff offer $30, since incre<lsed to $120, for the first submission of such" compnsitl' Nor rpr

a proof tha t none exis Is.

Input N
1 1. (

L Uo [04

3. ! + 2 -> !

TIl(' algorithllls

4. If! f N, go to 3

~ N If • N
6. Hall showing, I
7. Go to 4

Power algorithm: a E (mod N). In order to compute 322 we could perform 21 multiplications
by 3, but a faster approach is to compute 31, 32 , 35 , 311 , 322

, the exponents in binary being 1, 10,
101, 1011 and 10110. Each step is a squaring, and we also multiply by 3 when the new binary
digit is a one.

In general, to compute aJ:: we express E in b~nary. Then, examining E left to right and
starting with R = 1, we square the current value of R and multiply by a when we encounter a
one bit and merely square R when we encounter a zero bit. Usually E will end with one or more
zero bits, and it is convenient in our algorithm to annex a signal bit 1 at the right of E. We shift
E left one place at each iteration and simply check for zero to see when we have finished.

Power algorithm: a E (mod N).

Input N, a, E = (bm bm - 1 ••• boh
1. 2E + 1 - E

(annex trailing bit 1)
2. Shift E left until bit

shifted ou t is 1
3.1- C
4.1 - R
5. R2 (mod N) - R

6. If C = 0, go to 8
7. aR (mod N) - R

(shift left when a = 2)
8. Shift E left one place
9. Bit shifted out - C

10. If E * 0, go to 5
11. Halt showing R

Pollard rho. The Pollard rho method [3] gets its name from Pollard and from the fact that if

.Y". I = X"'".I

x" = x>.."

•
•

fl G, I
TN~O 2.-

W. D. BLAIR, C. D. LACAMPAGNE, AND J. L. SELf-IUDGE [December

we iterate a function I from a finite set into itself, x" + 1 = I(x,,), then there exist positive integers ,\ and 'TT such that x A+j = x A+ w +j for all nonnegative integers j. The least such ,\ and 'TT are called the tail length and the period, respectively, of the function. The picture we get is given in Fig. 1 and resembles the letter rho.
We apply this simple observation to factor N by noting that if the prime p divides N, and if we recursively apply I(x) = x 2 + a to the integers modulo p starting with xo, then eventually x" == X k (mod p) and so pIGCD(x" - Xk, N). Of course we do not know p, but we have noted that GCD(x" - X k , N) is a factor of N greater than 1 for some hand k. Next we note that if x" == X k (~od N) then x" == X k (mod p), and so we can keep track of x" - Xk (mod N) even though we don't know p. We observe that if x" == X k (mod p), then x"+j == xk+j (mod p) for all positive integers j. Thus, we are only interested in the difference of the indices h - k. Since it is not necessary to find A and 7T, we simply compute GCD(x" - Xk, N) for h - k = m + 1, m + 2, . " . We expect the prime p to appear within about pl/2 iterations. It can be seen from the table at the end of the paper that any prime shows up in a reasonable time, using our chosen function.
We begin computing x" - Xk with k = ° and h = m + j for j = 1,2, ... , m. Then we let k = 2m and h = 4m + j for j = 1,2, ... ,2m, and so on. For the lth iteration k = (21 - 2)m and h = k + 2[-l m + j for j = 1,2, ... , 21

-
1m. In this way, we have h - k take every value

from m + 1 onward, and at each iteration we advance the smaller index forward along the tail toward the periodic part of the rho. Thus we eventually have both indices larger than A, and even if we do not have k ~ A when h - k = 7T, we will have k ~ A for h - k equal to some multiple of 'TT. To speed things up, we do not compute the GCD for each xh - x k , but rather we form the product (mod N) of m consecutive Xh - Xk and then compute the GCD. (This makes it convenient to start h - k at m + 1.) We have used m = 8 in our HP-16C program.
The possibility exists that when we find a GCD greater than 1, it may turn out to be N. Fortunately, this happens only rarely and almost never after a long computation. Although an obvious strategy would be to go back and repeat the last cycle of m differences, computing the GCD for individual Xh - Xk rather than for the product, we do not do this since we are too short of ::pace in the HP-16C. Even if we did this individual check, we might still have the GCD equal to 1 or N for each x h - x k . We suggest that the a in I(x) = x 2 + a be increased by 1, and the Pollard rho run again.
The version of the Pollard rho algorithm that we have used follows modifications due to Brent [1]. Originally Pollard used X2k - Xk (mod N), but this meant that both terms had to be advanced when we go to X2k+2 - Xk+l' Brent's modification was foul}d to be about 24% faster than the original.

Pollard rho.

Input N,'a, m
1. Xo -+ X
2. m/2 -+ !
3. 2! -+ S, J, !
4. X -+ Y
5. X2 + a (mod N) -+ X
6. S - 1 -+ S
7. If S =1= 0, go to 5
8. If J = 0, go to 3
9. m -+ S

GCD(N,R) (N > R ~ 0).

l.R-+X
2. N - R -+ Y
3. X ~ Y (swap X and Y)

10. J - m -+ J
11. 1 -+ R
12. X 2 + a (mod N) -+ X
13. IX- YI . R (mod N) -+ R
14. S - 1 -+ S
15. If S '* 0, go to 12
16. GCD(N, R) -+ D
17. If D = 1, go to 8
18. Halt showing D
19. Show NID

4. Y (mod X) -+ Y
5. If Y =1= 0, go to 3
6. Return showing X

1986J NOTES

Lucas test.

To apply the Lucas test, we pick an appropriate Q (and D) and compute VN + I (mod N). To
get Q, we first find the least D in the sequence 5, -7, (9), -11, 13, -1:5, ... such that
(D/N) = -1 by using the elementary properties of the Jacobi symbol. Then IQ = (1 - D)/4.
We have included in the program description a table of Q which works for 99.2% of N's.

To compu te UN + I we define the auxiliary sequence Vo = 2, ~ = V2 r1 ~. The following
formulas are well known:

Doubling Formulas: V2t = ~~ and V2t = v? - 2Qt.

Sidestep Formulas: V2t + 1 = (U2t + V2t)/2 and V2t + 1 = (DV2t + V2t)/2.

Starting with Va = 0 and Va = 2, the sequence of doublings and sidesteps necessary to
compute VN + 1 and VN + 1 is obtained from the binary expansion of N + 1,just as we handle E in
the algorithm for aE(mod N). .

Lucas test.

Input N, Q, I = N + 1 =

(b",b",_l ... bah
1.1---+R
2. 2 ---+ V
3. 0 ---+ U
4. 21 + 1 ---+ 1

(annex trailing bit 1)
5. Shift 1 left until leftmost

bit is 1
6. VV (mod N) ---+ V
7. V2 (mod N) - 2R ---+ V
8. R2 (mod N) ---+ R
9. Shift 1 left one place

10. Bit shifted out ---+ C
11. If C = 0, go to 16

. 12. V ---+ T
13. (V + V)/2 (mod N) ---+ V
14. «1'- 4Q)T (mod N)

+ V)/2 (mod N) ---+ V
15. QR (mod N) ---+ R
16. 1 ---+ X
17. Shift X left one place
18. If X =1= 0, go to 6
19. Halt showing U

Factoring programs for the HP-16C

We include the HP-16C code for 'implementing the above algorithms. The main reason for
presenting the actual code is that one must be careful when writing these programs to take full
advantage of the HP-16C's 19-digit capacity. After the necessary 40 bytes are set aside for storing
five 19-digit numbers, there are 161 bytes remaining for program storage. The programs
presented here use 159 of these bytes. (See Fig. 2 on p. 806.)

Using unsigned mode we can handle numbers up to 264 in baby divide and Pollard rho. In our
program for a E (mod N), when N > 262 we must store a in the 1 register and have GSB F in
025; also E must be less than 263. This forces us to check a(N-l)/2 == 1 or N - 1 (mod N) in the
Fermat test when N> 263. In the Lucas test we must be in 2's complement mode with
N < 263 /5.

In these programs labels 9 and A are not used, and label F is used several times "locally". By
changing the word size, storage can be made available for short temporary programs without
disturbing the factoring package.

Two other programs. We have also written programs for division or multiplication of a
number having up to 396 digits by factors up to 264 . These two programs can be obtained by
writing to us.

EXAMPLE 1. We enter 1542 74344626 34653133 into the machine. (Since N > 263 , we use
unsigned integer mode.) First we use baby divide which finds the factor 17 in 12 sec., a second 17
in two more sec.,' and the f~c~or 101 a minute later. Since the remaining cofactor is a IS-digit
number, we contlTIue baby diVide for 40 sec. longer, trying aJl odd divisors less than 159. Next we

4

I!

1986]
NOTES

use a E mod N with a = 2. We find 2N
- 1 ¢ 1 (mod N) in two min. Thus the remaining number is composite, so we use Pollard rho to find the factors 23209 and N = 227 72885633 in 29 min. Since 23209 < 159 2 , we know that 23209 is prime. We next test N using aE mod N. We find 2N

- 1 == 1 (mod N) in 1.5 min., and then proceed to the Lucas test. Because N ends in 3, Q = -1. The Lucas test ta.1.ces 5.5 min. and shows UN + 1 == 0 (mod N). Since N < 25 . 10 9
, we are wre that it is prime. Thus

1542 74344626 34653133 = 172 . 101 . 23209 . 22772885633.
The complete factorization is accomplished in about 40 min.

Adyanced Pollard rho. When applying the Pollard rho algorithm to a composite N, it is not necessarily the case tbat the factor D of N, which is found first, is the smallest factor of N, and indeed it may not even be prime. If D is not prime, its prime factors will not show up using X2 + a with the current value of a. However, this value of a is probably still good for finding further factors of]v! = NjD. If M is composite, we should continue the Pollard rho algorithm on M with the parameters at those values where D was found. Thus, when D appears, we set it aside for further work later, and first do a Fermat test on M. If 2M
- 1 == 1 (mod M), we confirm the primality of Ai by a Lucas test. If 2M

- 1 ¢ 1 (mod M), we reduce X k and x" (moq M) and continue Po11ard rho working on M with these values of X k and Xh' Later when we return to consider the factor D we do a Fermat test and, if need be, a Lucas test. If D is not prime, we have a choice: continue baby divide until it finds a factor or increase the current value of a and start Pol1ard rho from the beginning.
EXAMPLE 2. Consider N = 7500596246954111183. After running baby divide for 2.5 minutes, we have tried all potential odd factors up to 200 and found none. After 3.25 minutes on a Fermat test, we know that N is not prime. (Note that when we use a E (mod N) on an N > 262 we must have GS3 F in 025 and a in the I register. We then check whether a (N -1)/2 == 1 or N - 1 (mod N). We remember to restore SL in 025 when this task is done.) The Pollard rho algorithm finds the factor D = 3350797 after 7.25 minutes. (It is surprising to see such a large factor in so short a time.) We write down D for consideration later and apply a Fermat test on M = NjD by simply executing RL STO 0, 1, -, GSB E. In 1.7 minutes, we observe that 21>1-1 ¢ 1 (mod M), and so we reduce the current Xk and XI! modulo M by executing RCL 1, RCL 0, RMD, STO 1; RCL 2, RCL 0, RMD, STO 2, and then continue Pollard rho by GSB O. After 1.7 minutes, the factor 24977 appears, and it is necessarily prime since it is less -than 200 2. We determine that the cofactor 89620507 is prime by the Fermat and Lucas tests in 5 minutes. We next return to 3350797 and run a Fermat test, determining that it is composite (1 min.). We then change a = 1 in 082 to a = 2 and run Po11ard rho, finding the prime factors 1873 and 1789 in 5 minutes. Thus

7500596246954111183 = 1789 . 1873 . 24977 . 89620507.
The complete factorization is accomplished in less tban half an hour. However, for some stubborn large numbers, you have to let Pollard rho run overnight (in the worst possible case even longer). The machine turns off the power soon after finding the factors,' and you have them in the morning.

Just as it is unnecessary to check the primality of any factor found which is less tban the square of the largest divisor used in baby divide, it is often unnecessary to check the primality of one (or even both) Pollard rho factors. Specifically, when Pollard rho halts note the power of two, 2
1

, in register 4. If we let PI denote the least prime for which register 4 is equal to (or greater than) 21 when the prime is found, then N has no prime factor smaller than P . Hence any factor D of N found with 21 in register 4 must be prime if D < p? We have includ~d a table of P for the function X2 + 1.
I

«

B Baby divide

Usc Baby divide to find small odd factors. Go up to about
ten times the number of decimnl digits of N.

Storage: N in X; STO 0; fo (= 3) in X. GSB B.

Halts showing factor. Record and GSB B to continue (N
has been replaced by N/f).

To show current f: RIS, LSTX.
To continue: Rl. RIS.

C Pollard rho ",2 + a

If 21'1-1 t 1 (mod N) or UN+ 1 t 0 (mod N), use Pollard
rho to find factors of N. First check MEM. If r < 5, sec
directions in Lucas test.

Storage: N in 0; 2 in 2 (xo); 4 in 4 (2'); a (= 1) in program
step 082. GSB C. Halts with factors in X and Y. If result
is N aIle! 1, increase a and try again.

Note: Subroutine D may be used alone to find GCO's.
Compute the difference (in the X register) of the two num­
bers for which you wish to find the GCO and GSB O.

B Baby divide 001-{)12 E a E mod N 013-034
(and 085-091)

LBL 1 LBL E
RCL 0 Sf 4 SL (GSB F)
2 RLC RT
LSTX LJ SL
+ RJ XiO
LBL B SL GTO 7

1 xn
F? 4 xn RTN
GTO 1 LBL 7
STO 0 X'<Y LBL F
LSTX GSB 3 RCL I
nTN F? 4 GTO 4

C Pollard rho 035-{)99

LBL C STO 2 GSB F GSB D 1 (= a) LBL 0
nCL 4 LBL 0 STO 2 1 + LSTX
SL RCL 3 RCL 1 X=Y RTN xn
STO I X=O X>Y GTO 0 RMD
STO 3 GTOC X>':Y RCL 0 LBL 3 XiO
STO 4 8 LSTX ENTER GTO 0
RCL 2 STO I GSB 4 LBL 4 LSTX
STO 1 DSZ LSTX OBLx RTN
LBL 6 STO 3 GTO 8 RTN RCL 0
GSB F 1 RCL 0 'DBLR
DSZ LBL 8 X~Y LBL F nTN
GTO 6 RCL 2 GSB 3

FIG. 2

E a E mod N

After using Baby divide to take out small factors, use a E

mod N with a = 2 (SL in progrnm step 025) nnd E = N - J
to determine whether N is a probable prime.

Storage: N in 0; E (= N - 1) in X. GSB E. (For a > 2 or
E odd, put a in register I and change step 025 from SL to
GSIJ F. When step 025 contain. SL, E should be even.)

Halts showing result. If 2N - 1 == 1 (mod N), N is probably
prime. (Sec Lucas test.)

2 Lucas test: change to 2's complement mode

If 21'1-1 ;: 1 (mod N), N is a probable prime; use Lu­
cas test to verify primality. First check MEM. If r < 5,
delete temporary programs or use smaller word size so
that r ~ 5.

Storage: N in 0; 1 in 1 (Qk); 2 in 2 (V k); 0 in 3 (Uk); Q
(= (1 - 0)/4) in 4; final subscript (N + 1) in X. GSB 2.

Halts showing Uk (mod N). (k = N + 1)

If UN+I to (mod N), N is composite. Go to Pollard rho.
IfZN-1 == 1 (mod N) and UN+l == 0 (mod NJ, N is prime
if N < 25.109

2 Lucas test (N < 263 /5): Q Tables

If N ends in 3 or 7, Q = -I.
If N mod 7 is 3, 5, or 6, Q = 2.
If N mod 11 is 2, 6, 7, 8, or 10, Q = 3.
If N mod 13 is 2, 5, 6,7,8, or 11, Q = -3.
If N mod 15 is 7, 11, 13, or 14, Q = 4.
If N mod 17 is 3, 5, 6, 7, 10, 11, 12, or 14, Q = -4.
If N mod 19 is 2, 3, 8, 10, 12, 13, 14, 15, or 18, Q = 5.

If Q is not found using any of these moduli, use the follow-
ing: 0 is the first non-square element of the sequence 5,
-7, (9), -11, 13, -15,·" for which (DIN) = -1. Then
Q = (I - 0)/4.

2 Lucas test 100-159 (and 085-{)91)

LBL 2 GSB 3 GSB F LBL F - LBL F
SF 4 nCL 1 nCL I nCL 3 GSB 4 nCL 2
RLC SL SL RCLO GSB f +
LJ .X;a! 0 nCL 3 STO 2 0
RJ STO 2 GTO 5 GSB F RCL 1 B?
STO I nCL 1 RCL 3 STO 3 nCL 4 +
LBL 5 GSB 3 RTN RCL 0 GSB 4 ASR
RCL 3 STO 1 RT STO 1 RTN
RCL 2 RCL I 1 RTN
GSE 4 SL RCL4
STO 3 STO I SL
nCL 2 F? 4 SL

Primality table for a-I

2' p, p,2 ~ 1

32 193 37248
64 607 368448

128 1747 3052008
256 11261 1 26810120
512 21911 480091920

1024 100417 100 83573888

Any factor less than p,2 is prime.

References

1. R. P. Brent, An improved Monte Carlo factorization algorithm, BIT, 20(1980) 176-184.

EDUCALC r
27953 CABOT ROAD

LAGUNA NIGUEL, CA 92677
TE.L~ (714-) 'sK2, '1.~3,7

2. John Brillhart, D. H. Leqmer, and J. L. Selfridge, New primaHty criteria and factorizations of 2'" ± I, Math.
Comp., 29(1975) 620-647.

3. J. M. Pol1ard, A Monte-Carlo method for faclorization, nIT, 15(1975) 331-334.
4. Carl Pomerance, I. L. Selfridge, and Samuel S. Wagstaff, Ir., The Pseudoprimes to 25 . 109, Math. Comp ..

35(1980) 1003-1026. (The $30 prile on page 1025 has been upped to $120.)
S. I. L. Selfridge and Richard K. Guy, Primality Testing with Application to Small Machines, Proe. WSU Conf.

Number Theory, Pullman, WA, 1971,45-51. 7""'# .:l. 0 6

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

