
TN SOc:: 

EduCALC TECHNICAL NOTES 
27953 CABOT ROAD LAGUNA NIGUEL, CA 92677 

INPUT - By Example 

A program has many parts. A part common to most sophicated programs 
is prompting the user for the inputs required for the program to do 
its job. Simple programs may start assuming that the proper 
information is on the stack when the program is executed. An example 
is a program called 'MtYR'. This is a calendar program that displays a 
calendar assuming that the month (number 1 thru 12) is on level two 
and the year (1993 for example) is on level one. This is the ultimate in 
simplicity - once you know the program and have run it a couple of 
times. The name of the program also contains the instructions on how 
to run it. The abbreviation YR identifies it in you mind. The letter 
M is associated with year as month. Most programs do not lend themselves 
to such simplicity. What you will normally use is a prompting display 
that also sets up the calculator to receive the inputs. You will also 
want to provide simple instructions to the user as to what to do. All 
of these things are taken care of by the INPUT command. This five letter 
command does so much it requires a few examples to illustrate. 

In a program INPUT looks like this: 

« . . . "prompt-string" "command-line" INPUT . . . » 

This is one of two variations. Let's explore this two string version 
first. 

The INPUT command causes the program to stop running. It displays the 
the prompt-string and starts the command line with the command-line 
string. The user is expected to respond by pressing one or more keys 
followed by ENTER. Since the command line is activated by INPUT any 
keys that you normally press apply. Pressing TAN will place the 
function in the command line, pressing ON will clear the command line. 
Pressing ENTER will terminate the command line and place the 
command-string PLUS your keystrokes on level one AS A TEXT STRING. 
This string is called the result string. Let's see how this works with 
a simple program. 

INPUT may be entered in a program by pressing: SX - PRG, CTRL, NXTi 
GX - PRG, NXT, IN. 

1. DISPLAY THE INPUT PROMPT-STRING AS A SIMPLE MESSAGE. 

'IN1' «"Hello, How are you?" "" INPUT » 
41.5 Bytes # E968h 

If you press the menu key IN1 you will see the "Hello . . . " 
message displayed on line three of the display. This is the first 
line of the normal display area. This area starts just below the 
line that seperates the message (status) area from the stack area. 
The command-line string is empty in this example. 

- PAGE 1 OF 6 -



You will notice that PRG shows in the upper right corner of the 
diaplay. This tells you that the program is temporarily halted 
but still running - and in a higher current use mode that is 
draining your batteries. 

Also notice the blinking command line cursor in 
corner of the display just above the menu line. 
What happens if you just press ENTER, press 77, 
« SWAP » ? 

the lower left 
Run the program. 

press TAN, or press 

2. DISPLAY THE LONGEST ONE LINE MESSAGE POSSIBLE USING INPUT. 

'IN2' «"THIS LINE IS 27 CHARACTERS." '''' INPUT » 
49.5 Bytes # 4256h 

The display will show one line with three little dots at the 
end to tell you that there are more characters that can't be 
seen. If CHARACTERS. is shortened to CHARS. the line will just 
fit on the screen. The display is 22 characters across and that 
is the longest message that will fit ON ONE LINE. Change the 
27 to 22 and delete CTER and 'IN2' will meet the requirement of 
example 2. 

'IN2B' «"THIS LINE IS 22 CHARS." "" INPUT » 
44.5 Bytes # 34DAh 

3. DISPLAY THE LONGEST MESSAGE POSSIBLE USING INPUT. 

'IN3' « "Happy Birthday WilliamJfrom your Mom and DadJwith 
our fondest love." "" INPUT » 
89.5 Bytes # B3DFh 

The J in the text is a new line character placed in the text in 
the 22nd character position. Up to three lines may be in the 
prompt-string of the INPUT command. The new line character is 
entered by pressing RIGHT SHIFT, DECIMAL POINT. 

In order to display the message properly with minimum display 
confusion the ENTER key must be pressed. If ON is pressed the machine 
will show a partial Happy Birthday wi ..• on level two and an empty 
text string on level one. This is not the ideal way for William to 
get the message. The ideal way would be to name the program 'WIL', and 
drop the empty text string after reading the message. To inform the 
new user to press ENTER we may use the prompt-string to tell him what 
to do - "PRESS ENTER TO CLEAR". 

4. DISPLAY A NICE HAPPY BIRTHDAY MESSAGE FOR WILLIAM. 

'WIL' «"Happy Birthday WilliamJfrom your Mom and DadJwith our 
fondest love." "PRESS ENTER TO CLEAR" INPUT DROP » 
112 Bytes # 1D23h 

You will notice that two text sizes are used. The 
command-string font is two dots higher than the prompt-string 
font - 5X7 Vs 5X9. 

- PAGE 2 OF 6 -



Thus far we have only used the prompting aspect of INPUT in a simple 
task of displaying messages rather than inputting data for a program. 
The keyed input is placed on level one as a string object. A more 
common use of inputs is numbers. Suppose we are writing a program to 
compute the area of a circle using the radius as an input. 

4. WRITE A PROGRAM TO COMPUTE THE AREA OF A CIRCLE PROMPTING FOR 
RADIUS AS AN INPUT. 

'CIR' «" Area of a CircleJ Key Radius, ENTER" "" INPUT OBJ-> 
SQ PI * » 
73.S Bytes # FE6Fh 

This example includes the instructions of what to do in the 
prompt-string. The command-line string has not been used. Our 
next example uses the command-line string. 

S. CALCULATE THE FREQUENCY ERROR IN PARTS PER MILLION FOR A MEASURED 
CLOCK CRYSTAL. 

The desired frequency is 32,768 hertz. Each crystal is measured 
and the frequency is compared with 32,768 to calculate the error. 
All measured crystals are within a few hertz of 32,768. We will 
use the command-line to enter 3276 for us so we don't have to 
key it each time. 

'INS' «"J Input Frequency" "3276" INPUT OBJ-> 32768 SWAP OVER -
SWAP / lE6 * 2 RND » 89 Bytes # D02h 

The new line character spaces the prompt one line down, the 
leading three spaces centers it. When the program is run the 
command line will show 3276 with a blinking cursor. You 
continue the number and press ENTER. Pressing 7 will enter 
32767 which is one hertz low. This calculates to -30.52 parts 
per million low in frequency. 

New line characters may also be used in the command-line string. The 
display area, however, may only show four lines. Our 'WIL' program 
used three for the prompt-string, a blank line due to the format of 
the INPUT command, and a one line command-line. If new line 
characters are used in the command-line the machine will "over write" 
the lines above from the prompt-string and they won't be displayed. 
The total lines that will be displayed from the two strings is four. 

An exmple using this feature is a program that uses the command line 
for description and quantity for taking inventory. Move the cursor up 
and down and fill in the quantity. 

The prompt-line is suitable for a few limited applications, but there 
are situations where more than completing the command line is desirable. 
For these applications the second variation of the INPUT command is 
used. This variation, instead of using two strings, uses a string 
and a list. In a program, this expanded variation looks like this: 

- PAGE 3 OF 6 -



« •.. "prompt-string" {command-line} INPUT OBJ-> ... » 

The command line list has one or more of the following components - in 
any order. 

{ "command-line" cursor-position operating-options } 

"command-line" 

cursor-position 

Optional. Behaves as described above. 

Optional. May be a single number or a list of two 
{row-character} numbers. 

A single number positions the blinking cursor in 
the command line at that character position. The 
position is from the beginning of the string. A zero 
places the cursor at the end of the command-line 
string even if the new line character is used. If 
the number is positive the insert cursor is used, if 
negative the replace (over write) cursor is used. 
This is independent of how you have set your cursor. 

A cursor-position list specifies the row and character 
position. This is used when the new line character is 
used to display a multiline command-line string. A 
zero specifies the end of the row. A positive 
character position number specifies the insert cursor; 
a negative position number, the replace cursor. 

operating-options Optional, use zero or more of these unquoted names 
in any order. 

ALG - sets algebraic entry mode. Saves pressing 
the single tic key. 

a - alpha lock. 

v - varifies whether the string (without " " 
delimiters) is a valid object or sequence of 
objects. If invalid the Invalid syntax message is 
diaplayed and the prompt is repeated. 

6. USE OUAD TO SOLVE FOR THE ROOTS OF A QUADRATIC EQUATION. 

'quad' «"Enter Expression in X" {'''''' 2 a ALG} INPUT OBJ-> DUP -1 
CF 'X, QUAD DUP 1 'sl' STO EVAL SWAP -1 'sl' STO EVAL 'sl' 
PURGE » 140 Bytes # A2EDh 

The program is stored using lower case to avoid conflict with the 
reserved variable QUAD. An input 'X~2 - X - 6' =>'X = 3', 
'X = -2'. 

The program requires an algebraic input. The algebraic 
delimiters are input as a text string. The cursor position is 

Note: a is HP 48 Greek letter Alpha: RIGHT SHIFT, A in alpha mode. 

- PAGE 4 OF 6 -



moved to the seccond position so the first key pressed is 
following the algebriac delimiter. Alpha mode is desired when 
keying alpha characters in an algebraic. The program is straight 
forward and may be followed after looking up QUAD in your 48S/SX 
Owners Manual or G Series User's Guide. Next is the shortest 
(not fancy) program to solve a quadratic. 

'QD' « 3 PICK / SWAP ROT -2 * / DUP SQ ROT - J + LASTARG - » 
Place coefficents on stack, example: 1, -1, -6 'QD' 

7. PRELOAD A CHOICE THAT IS USED OFTEN. PURGE FILE? Y OR N? 

The cursor position may be specified with the replace cursor to 
make a yes no response simpler. Key strokes are saved by 
setting alpha on. 

'IN7' «"J Purge File?" { "@ YorN @ N" -11 a } INPUT OBJ-> IF 'N' 
SAME THEN "File Saved" ELSE "File Purged" END » 

126 Bytes # CB7Eh 

The program produces 'N' or 'Y' which is tested by the IF 
structure. If 'N', the text string "File Saved" is placed on 
level one. If 'Y', "File Purged" is placed on level one. 
The @ symbol brackets the YorN instruction part of the 
command-line string. OBJ-> strips away the @ symbols and the 
characters inbetween. This program does not provide a means of 
repeating the command-line if something other than an N or Y is 
entered. 

8. REWRITE 'IN7' TO REPEAT THE QUESTION FOR ANYTHING EXCEPT Y OR N. 

'IN8' «"J Purge File?" { "@ YorN @ N" -11 a } INPUT OBJ-> DUP 
{ NY} SWAP POS IF THEN "File " SWAP IF 'N' SAME THEN 
"Saved" ELSE "Purged" END + ELSE IN8 END » 

174 Bytes # 4D22h 

This version of the program uses the input to POS from the N Y 
list. If N, POS returns a 1 (non-zero), if Y POS returns a 2, 
(again non-zero). The first IF tests for non-zero. A 1 or 2 
will cause the following THEN to be executed. This places the 
common word "File " on level one of the stack. A second IF 
checks for the input letter (saved by the DUP following OBJ-» 
to see if it is an N. If true (non-zero) place "Saved" on the 
stack. ELSE put "Purged" on the stack. The + after the END 
adds the two strings. If POS does not find an N or Y, a zero 
is placed on the stack. The first IF tests this and does the 
last ELSE which runs the program until the input is N or Y. 

There is a program flaw. Can you see what it is? Run the 
program with various inputs and you will easily spot the problem. 
This example illustrates the difficulty of getting exactly what 
you want in the display, setting the machine to the desired modes 
for convenient (fewest keystrokes) input, and allowing for 
EVERYTHING the user may do. 

9. REWRITE 'IN8' TO MEET ALL INPUT POSSIBILITIES. 

Note: a is HP 48 Greek alpha character: RIGHT SHIFT, A in alpha mode. 

- PAGE 5 OF 6 -



'IN9' «0 WHILE DROP "J Purge File?" {"@ YorN @ N" a v } INPUT 
OBJ-> DUP { NY} SWAP POS 0 SAME REPEAT END "File " SWAP IF 
'N' SAME THEN "Saved" ELSE "Purged" END + » 
178.5 Bytes # B1D1h 

This version uses a WHILE ... UNTIL ... END loop structure to 
repeat the INPUT command until either an N or a Y is keyed. 
Any other inputs (in alpha mode) cause INPUT to be repeated. 
Testing to produce the correct out put text string is the same as 
the previous programs. If a letter A is keyed the previous 
programs would enter the letter onto the stack. The WHILE 
loop-clause should remove this unacceptable input. The DROP at 
the beginning does this. The stack may be clear and this DROP 
will cause an error so the initial zero provides a "dummy" 
object to drop. Is this the best way to "fix" the problem? 

CONCLUSION 

Programs that provide a quality user interface that allows for every 
possible situation are difficult to write. This brief handout gives 
examples of the the essential elements of the INPUT acommand. Refer 
to your owners manual for additional details. 

Often a complex user interface is called an "engine". 
"front end" program that presents menus, dialog boxes, 
choices from lists. These programs are the type found 
application cards. For the average programmer, INPUT, 
efficient means for many applications. 

EPILOG 

It is a 
or multiple 
on professional 
provides an 

The Purge File? problem above has many solutions. Here is one that 
that does not use INPUT. 

'NY?' « 0 WHILE DROP" Purge File?" CLLCD 3 DISP "Press N or Y" 7 
DISP DO UNTIL KEY END DUP { 32 52 } SWAP POS 0 SAME REPEAT 
END "File " SWAP IF 32 SAME THEN "Saved" ELSE "Purged" END + » 

185.5 Bytes # 27E8h 

The WHILE •.• REPEAT •.• END structure and the selection-of-the­
input letter logic is the same as described above. Two 
differences are the use of DISP and KEY. DISP provides the 
display prompts. KEY provides the input from pressing a SINGLE 
key. This is very nice because only one key pressing is 
required. The POS list uses the key codes instead of N or Y. 
This program is a better solution to the problem in terms of 
performance. 

HOME WORK PROBLEM: 

Write a program that displays a list A thru U in three columns. Put a 
function such as SIN, COS, etc next to the letter. Selecting the key 
should execute the function. Use the KEY command to provide the input. 
"NY' may be used as an example. 

Richard Nelson REV C 931013 TN SOC 
- PAGE 6 OF 6 -



 
 
 
 
 
 
 
 
 

Scan Copyright © 
The Museum of HP Calculators 

www.hpmuseum.org 
 

Original content used with permission. 
 

Thank you for supporting the Museum of HP 
Calculators by purchasing this Scan! 

 
Please to not make copies of this scan or 
make it available on file sharing services.


