
Programming the Personal Computer
Wherein are revealed the functions of the keys, how

problems are solved, and a bit of what goes on inside.

by R. Kent Stockwell

T HE HP-65 CALCULATOR uses the same reverse

Polish keyboard language, the same four­

register operational stack, and the same architecture

as its predecessors, the HP-35,1 the HP-45, and the

HP-80. 2 It also has two important features that are

new to hand-held calculators. One is its greatly ex­

panded function set, and the other is program­

mability, complete with conditional and uncondi­

tional branching, user-definable functions, and

magnetic-card program storage.

Function Set

Thirteen HP-65 keys are for data entry. These are

the digits 0 to 9, the decimal point, CHS (change sign),

and EEX (enter exponent). Numbers may be entered

with or without a power-of-ten exponent.

Keyed-in digits set the value ofthe X register, which

is also the display, in the four-register operational

stack. * The CLx (clear x) key allows corrections. Any

other key except SST and R/S terminates entry of a

number.
The four arithmetic functions (+, -, x, -:-) operate

on x and y, the contents of the X and Y registers. Oper­

ands are loaded into the stack with the ENTER: key;

they may then be operated upon by the function keys.

Operations execute immediately and results appear

in X.
Thirty-three other functions derive from using

three prefix keys (I, f " g) to condition eleven suffix

keys (digits 0-9 and decimal point). The two gold­

colored prefix keys, labeled I and 1-\ access the func­

tions printed in gold above the suffix keys and the in­

verses or complements of these functions. The blue

prefix key, g, accesses the functions printed in blue

on the angled lower side of the suffix keys. (The no­

prefix meanings of the suffix keys appear on their

top faces.) All of these functions execute immediate-

• Capital letters are names 01 registers and lower-case letters are register contents.

8

ly, operating on x, or x and y, or the entire operational

stack. Thus, for example, the key sequence f 4 obtains

sin x in the display, 1- 1 4 obtains sin- 1 x, and 9 4 ob­

tains 1/x.
Computations requiring more data storage than is

provided by the operational stack may use any of

nine data storage registers. For example, pressing

STO 4 stores x into register four, leaving x un­

changed. Pressing RCL 4 recalls r4 to X, leaving r4

unchanged. Arithmetic accumulation to any storage

register is accomplished by inserting the desired op­

eration key between STO and the digit key that ad­

dresses the register. Thus the key sequence STC

<arithmetic operator> <digit n> gives rn<arithmet­

ic operator>x in register Rn and leaves x' in the dis­

play.
The user can change the display format as required

by the particular problem. The key sequence DSP

<digit n> rounds the display value to n digits after

the decimal point in scientific notation, * while DSP .

<digit n> results in an absolute display rounded to n

digits following the decimal point. For example,

12.366 gives 1.24 01 in DSP 2 mode and 12.37 in

DSP . 2 mode. Display rounding does not affect inter­

nal values.
All functions involving angles, that is, sin, cos, tan,

R~ P (rectangular to polar conversion), ~ D.MS

(conversion to degrees, minutes, seconds), and the in­

verses of these functions accept arguments or pro­

duce results in degrees, radians, or grads, set by the

key sequence 9 ENTERj or 9 CHS or 9 EEX, respective­

ly. These settings remain in effect until changed.

On the theory that users should be able to correct

key-sequence errors with minimal effort, any prefix

key overrides any previous prefix key, and the se­

quence I ENTERj clears any prefix keys. Thus, for ex­

ample, the key sequence STO + I 9 9 4 gives l/x,

'One digit to the left of the decimal point with power-of-ten exponent. e.g .. 2.54 x 10" .

• •
while 9 f ENTERj 4 gives the value 4 in the display.

By now it must be clear how key conditioning with
color-coded keys and legends has been used to pro­
vide access to many functions with a limited number
of keys on a small keyboard. Although another level
of conditioning would further expand the function
set (e.g., f 9 4 or f' 9 4 or 9 f 4 could possess func­
tional meanings), this would greatly increase key­
board complexity, keyboard busyness, and internal
control programming. For these reasons, most of the
key conditioning remains at the one-prefix level.

HP-65 functions are listed on page 14. Fig. 1 shows
an example of a problem solution.

. Programming
All operations described so far apply when the

switch in the upper right-hand corner of the HP-65
keyboard is in the RUN position. When this switch is
in tbe W/PRGM position, the keystrokes are stored in
the lOa-step program memory instead of being exe­
cuted. Twenty-five frequently used two-keystroke
sequences merge into a single memory step; thus
the prognm memory may actually contain more than
100 keys!:rokes.

Problem:

Evaluate kT (10) VB - -In\-I ~ 1 - RID
q 5

for Va = 8 volts, kT/q = 0.026 volts, 10 = 6 X 10-3 amperes,

Is = 10-'0 amperes, R = 1200 ohms

Solution:

Stack Registers

Display
,Keystrokes X Y Z T

8 8.

ENTERj 8.00 x 100 8
.026 .026 8

ENTERj 2.60 x 10- 2 .026 8
.006 .006 .026 8

ENTERj 6.00 x 10-3 .006 .026 8

EEX 10 CHS 10-.0 .006 .026 8

6.00 x 107 .026 8 8

1 6 X 107 .026 8

+ 6.00 X 107 .026 8 8

fin 1.79 x 10' .026 8 8
x 4.66 x 10-' 8 8 8

7.53 X 10-' 8 8 8

1200 1200 7.53 x 10-' 8 8

ENTERj 1.20 x 103 1200 7.53 x 10-' 8

.006 .006 1200 7.53 x 10-' 8
x 7.20 x 10° 7.53 X 10-1 8 8

~_-~_~.34 xJO-' ___ 8 __ --'- __ ~ _____ l!
Calculator In DSP 2 Mode

Fig. 1. An example of HP-65 use as a scientific calculator,

9

STO 1
STO 2
STO 3
STO 4
STO 5
STO 6
STO 7
STO 8

RCL 1
RCL 2
RCL 3
RCL 4
RCL 5
RCL 6
RCL 7
RCL 8

9 Rt
9 Ri
9 x:;=y
9 LSTx
9 NOP
9 x+y
9 x~y
9 x=y
9 x>y

Fig. 2. User programs may have as many as 100 steps.
These twenty-five keystroke sequences merge into a single
step. Thus programs may contain more than 100 keystrokes.

The memory itself contains no absolute addresses.
Instead, it is a circulating shift register organized in­
to six-bit words. One word is a marker that denotes
the boundary between the beginning and the end of
the memory. Another word is a pointer which
denotes the last step executed in run mode, and the
last step filled in program mode. As a program runs,
this pointer is moved down through memory.
Branching is accomplished by moving the pointer to
the location of the destination label. User-defined
function calls are implemented by leaving the main
pointer at the call and activating a second pointer at
the function location (see Fig. 3). When the return to
the calling location occurs, the second pointer is
deactivated and the first pointer reactivated. Neither
the marker nor the pointers subtract from the 100
user steps.

Programs may contain three types of tests to allow
conditional execution of all operations. These are x-y
comparisons (x~y, x:s.>y, x=y, x>y). four flag tests

Fig. 3. The program memory circulates continuously, its
beginning and end denoted by a marker. The main pOinter
moves as programs are entered or executed. A second
pointer is activated when a user-defined function is called.

Problem:

Find the diode current 10 in the circuit shown. Also find its sensitivity
with respect to VB and R, i.e., 81d8VB and 81d8R.

Equations:

VB = ~In(~ ~ 1) + RID
q Is

[
kT 1] ' -(--)+R
q 10 + Is

Is diode saturation current in amperes
R resistor value in ohms

VB battery voltage In volts
kT/q thermal voltage in volts

Algorithm:

For New1on-Raphson iteration,

f [lo(n)J
lo(n - 1) = lo(n) - f'[lo(n)J

where lo(n) = nth guess

f[lo (n)J = function evaluated for nth guess

R

f'[lo(n)J = first derivative of function, evaluated for nth guess

lo(n + 1) = (n + 1)st guess

Let f(lo) = VB - I<]'ln~ - 1) - RID
q Is

Then [kT 1)] f(lo) = - ~ (-~ - R
q 10 + Is

Specify convergence criterion: if Ilo(n + 1) - lo(n) 1 < C
the algorithm halts.

Program halts after ten iterations. The user may then
start ten more iterations.

Example:

10- 10 A

1.2 kfl
8V

0.026 V

10- 9 A

Load card and follow user instructions.

Results:

6.278A
0.8305 mNV

-5.213 J.LNfl

Time required to compute 10 (step 3): 11 seconds.

Flow Chart for Iteration:

Yes

No

No

Compute & Store
Io(n + 1)

Decrement Counter

Display
9.999999999 x 1099

Flg_ 4_ An example of HP-65 programming. A common problem in many disciplines is the solu­
tion of irreducible equations, such as x = 51n x. Finding the answer requires a clever first guess
at the solution and, based on the results of the first guess, an even more clever second guess,
and so on. The iterative procedure, tedious if done manually, can often be automated. In this

example the Newton-Raphson method is used to solve an electrical engineering problem.

10

Yes

(Continued)

I
/

I

Programs can be stored on magnetic cards for later

use. Cards can be recorded and rerecorded as many

times as desired. To protect a recorded program on a

card, further recording can be prevented by clipping

the notched tab on the upper left corner of the card.

Users may write on the card and place it in a slot

above the keys A through E, thereby labeling any

specially defined keys.
Fig. 4 shows an example of HP-65 programming.

Firmware
To direct the various computational and control

HP-65 Normalization Routine

User input form is stored in two processor registers, A and B.

Example: - 23.624 x 10-2

'. . - spay

BOO 2 0 0 0 99999000 2 - Display, Decimal POint
A 92362400000902 10 01 I

. !. L Lw:-::."B:::":~"~·
Exponent Sign (0 or 9)

Ten Digit Mantissa

Mantissa Sign (0 or 9)

This is converted to internal normal form in a third register, C. For

computational efficiency this is mantissa in sign-magnitude form

with one digit to the left of an implied decimal point and exponent in

ten's complement form (see ref. 4). In the mantissa sign position,

9 represents minus, 0 represents plus. Thus, - 23.624 x 10 -2 would

store internally as

92362400000999

Program Listing:

ROM
Step ROM ROM Subroutine Program

Number Address Code Add Label. Statements

51 L01063 III r))<5 p - I -. P

" L01064 I I C . I .. ([X]

LIOl10£'5 III II I -) lien JSB r1><7

,. L01(17e II II I n:"J 0 -) (["5J

" UHe71 II I II .1><4 13 -) ,
~8 L01(l72 I I C I -, [(I<)

'59 LOI(l?3 I fl)(7 I' B[p 1 0

" Le10?4 II 1111 .) L10E3 THEN GO TO FJX'5

'I L0107'5 II II 12 -) ,
62 UJHl76 I II I FIX6 " AI Pl). I

" L(\II2l77 11111 II -) Ll174 THEN GO TO rl><2

64 L01100 I II SHIn LEtT AI M]

" LeilOl I II I I C - I -) C[X]

66 UHI0Z I -) l1076 J56 FIXE

102 L01146 111111 I rJ)q c I .) C[XS]

103 L01147 II -) LI070 I' "' CARRY GO TO .. iX3

lB' L011'50 I I • - c -) C(X]

105 LOI1'51 I I -) Ll071 ..JSS FiX"

119 L01167 III I III flX0 , EXCHANGE ([W J

12. L01170 II III C -) A(W]

121 L01171 I II II I' A[I'll). I

122 U'l\I72 II II II -) LII'I6 THEN GO TO fJ)n

123 L01173 I III II • -) A[I'll

124 Lell?4 III I II flX2 H EXCHANGE ([M J

functions of the HP-65, 3072 words ofread-only mem­

ory (ROM) are used. Each ROM word contains ten

bits and constitutes a calculator microinstruction.

Microinstructions grouped together in blocks per­

form the various external functional tasks of the cal­

culator. A task may require one block of words or

several blocks woven together. For example, the CLx

function requires only a few words, while the sin

function uses the tan function, which uses the add

function, and so on.
Although production of efficient microcode is an

iterative process, the first step is the choice or design

Flow Chart:

Correct Exponent
For Decimal

Point Position

FIX6

Remove Leading
Zeros by Left

Shifts and Adjust
Exponent

Program Listing Notes:

Subscripts, e.g., C + 1 _ C[xl. refer to various register fields

for arithmetic operation (see ref. 1).

S Mantissa Sign
MS Mantissa and Sign

M Mantissa
XS Exponent Sign

X Exponent and Sign
P Pointer

WP Word up to and Including Pointer, Right to Left

Fig. 5. An example of the HP-65's internal microprogramming. Even such a seemingly trivial

operation as digit entry requires careful design so it seems trivial to the user. Values must be

displayed as keyed in, yet be normalized to a standard internal form. This is the normalization

routine and the flow chart and ROM listing for it.

12

/

/

•

/
I

of an algorithm. This may involve such constraints
as accuracy, execution speed, microinstructions re­
quired, or even available design time. Next, a func­
tional flow chart is drawn to outline the sequence of
various operations and any conditional operations.
This flow chart is then expanded to sufficient detail
that it can be translated to microinstructions and im­
plemented on a calculator simulator. More often than
not there are implementation errors to correct; some­
times the entire algorithm is faulty, requiring a new
design. When the design is complete, integrated-cir­
cuit read-only memories are produced.

Where possible, the HP-65 uses the proven algo­
rithm implementations from the HP-35 and HP-45
(trigonometric, logarithmic, and exponential rou­
hnes). This saved development time and reduced
implementation error probabilities.

Many HP-65 algorithms would provide interesting
descriptions here, but one that demonstrates appre­
ciable complexity is the digit-entry routine. Design­
ing thjs seemingly trivial function so as to seem triv­
ial to t~e user required considerable patience and
careful tllOught. Usually, any entry will produce an
undesirable result unless the designer specifically ac­
counts for it. Values must be displayed as keyed in,
yet they must be normalized to some internal form.
The table below lists some of the design constraints
on this algorithm.

USER ACTION

More than ten mantissa
digits

First key of new entry

Extra digits after EEX

Multiple decimal point

Decimal point after EEX
Leading zeros keyed in

DESIRED RESULT

Ignore all digits after tenth

Overwrite existing x if key
follows ENTER' or CLx;
otherwise do automatic
ENTER;

Shift exponent left; new
digit becomes least sig­
nificant digit of
exponent.

Ignore all decimal points
after first

Ignore
Accept and display lead­

ing zeros, zero normal
form.

EEX first key of new entry Enter one in mantissa;
following digits enter

Decimal point first key
of new entry

Digits after decimal point

exponent.
Display only decimal

point; zero normal form.
Continue appending dig­

its; no effect on internal
exponent

13

Digits before decimal
point

following

Multiple

Continue appending dig­
its, increment internal
exponent.

Complement exponent
sign

Complement mantissa
sign, or exponent sign if

has been pressed.

Such an algorithm was explained in a previous
issue. 3 Fig. 5 shows the flow chart and ROM listing
for the normalizing routine.

Acknowledgments
Many people of course, contributed ideas to this ef­

fort. Particular acknowledgment is due the follow­
ing: Paul Stoft and Tom Whitney for bringing to­
gether the necessary technical resources and people;
Dave Cochran, for the trigonometric and exponential
routines used in the HP-35, and for help in un­
derstanding the HP-35 architecture; France Rode
for further explanations of the HP-35 architecture;
Peter Dickinson for suggestions and criticisms con­
cerning algorithm implementations, particularly the
extension of the HP-35 algorithms; Tom Osborne for
helpful advice and suggestions regarding the func­
tion set and the external behavior of the HP-65;
Homer Russell and Wing Chan for helpful sugges­
tions and criticisms for the function set, and for

patiently keeping up with numerous daily changes;
Steve Walther for providing the microinstruction lan­
guage compiler; Darrel Lauer and Al Inhelder for
crystallizing the keyboard layout from a myriad of
suggestions; Ed Heinsen and Lynn Tillman for ex­
tending the simulation software to accommodate the
increased complexity of the HP-65. S
References
1. T.M. Whitney, F. Rode, and C.C. Tung, "The 'Powerful
Pocketful': an Electronic Calculator Challenges the Slide
Rule", Hewlett-Packard Journal, June 1972.
2. W.L. Crowley and F. Rode, "A Pocket-Sized Answer
Machine for Business and Finance", Hewlett-Packard
Journal, May 1973.
3. D.S. Cochran, "Internal Programming of the 9100A
Calculator", Hewlett-Packard Journal, September 1968.
4. M.M. Mano, "Computer Logic Design", Prentice-Hall,
1972, chapter 1.

R. Kent Stockwell
Kent Stockwell joined HP four years ago. As a member of
HP Laboratories for most of that period, he's done program
development, modeling, and numerical analysis for com­
puter-aided circuit design and, more recently, the firmware
development for the HP-65. Kent studied electrical enginee;'­
ing at Massachusetts Institute of Technology, graduating in
1970 with SB and SM degrees. A native of Kalamazoo, Wichi­
gan, he now lives in Palo Alto, California, where he's ..:ur­
rently remodeling his house and putting his woodwCJrking
skills to good use. He also plays trombone and baritone horn,
and enjoys backpacking in the mountains of California and
Colorado.

APPENDIX
HP-65 Programmable Pocket Calculator

Functions and Operations

Arithmetic
add
subtract
multiply
divide

Logarithmic
natural logarithm (base e)
natural antilogarithm (base e)
common logarithm (base 10)
common antilogarithm (base 10)

Trigonometric
set operating mode (degrees, radians, or grads)
sine
arc sine
cosine
arc cosine
tangent
arc tangent
add or subtract degrees/minutes/seconds
convert angle from degrees, radians, or grads to degrees/minutes/seconds and
vice versa

convert polar coordinates to rectangular coordinates and vice versa

Exponential
square
square root
raising a number to a power (yX)
reciprocal (can be used with yX function to extract nth roots)

14

Other Preprogrammed Functions and Operations
extract integer or decimal portion of a number
factOrial
recall value of 1T to 10 significant digits
convert decimal·base integers to or from octal·base integers
"roll down" or "roll up" numbers in operational stack
clear display
clear operational stack
clear aU nine addressable memory registers
recall last input argument from separate "last-x" storage register
store or recall numbers from any of the nine addressable memory registers
register arithmetic
display formatting

Program Structure and Edit Functions
clear program memory
user-definable keys (A-E)
label
go-to
return
run/stop
no-operation
set flag 1
test flag 1
set flag 2
test flag 2
x ~ y

x f y
x~y

x> y
decrement and Skip on zero
delete program step
single-step

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

