Personal Calculator Algorithms Il

Trigonometric Functions

A detailed explanation of the algorithms used by HP
hand-held calculators to compute sine, cosine, and

tangent.

by William E. Egbert

EGINNING WITH THE HP-35,"* all HP personal

calculators have used essentially the same al-
gorithms for computing complex mathematical func-
tions in their BCD (binary-coded decimal) micro-
processors. While improvements have been made in
newer calculators,? the changes have affected primarily
special cases and not the fundamental algorithms.

This article is the second of a series that examines
these algorithms and their implementation. Each
article will present in detail the methods used to
implement a common mathematical function. For
simplicity, rigorous proofs will not be given, and
special cases other than those of particular interest
will be omitted.

Although tailored for efficiency within the environ-
ment of a special-purpose BCD microprocessor, the
basic mathematical equations and the technigues
used to transform and implement them are applicable
to a wide range of computing problems and devices.

The Trigonometric Function Algorithm

This article will discuss the method of generating
sine, cosine, and tangent. To minimize program
length, a single function, tan #, is generated first.
Once tan #is calculated, sin # is found by the formula

*=tan #
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It turns out [as will be explained later) that cot # can
easily be generated while generating tan #. Then cos é
is calculated using the formula

*cot f

3 1 +cot?d '

cos i =

It can be seen that these formulas are identical, ex-
cept for the contangent replacing the tangent. Thus
the same routine can solve for either sine or cosine
depending on whether the argument is tangent or
cotangent.

L

Scaling

Since #and #+n(360°) vield identical trigonometric
functions, every angular argument is resolved to a
positive angle between 0° and 360°, For reasons to be
explained later, all calculations assume angles ex-
pressed in radians. An angle in degrees is first con-
verted to radians by:

Brag = Baeg > w180,

Angles expressed in grads are also converted using
the appropriate scale factor.

Once # is in radians, 27 is subtracted repeatedly
from |@| until the absolute remainder is between 0
and 2s. For large angles this would take a long time.
In such cases 27 » 10" can be subtracted in a process
similar to division. Suppose an angle # is expressed
in scientific notation (e.g., 8.510%), 27 %10, or 6.28...
%10", is then repeatedly subtracted from # until
the result becomes negative (underflow]. Thus 6.28...
% 10% is subtracted from 8.5x 105 twice and underflow
occurs. 6.28...10% is then added to the negative re-
mainder to give a number between 0 and 2% x 10%,in
this case 2.2 10°. The remainder is expressed now as
22x10* and the process is repeated, this time sub-
tracting 27> 10% With this method, large angles are
quickly resolved.

The problem with this scaling process is that in cur-
rent computers numbers can be expressed only to a
limited number of digits, so 27 and therefore 27 = 10"
cannot be expressed exactly. Error creeps in with
gach shift of the remainder. Thus, the larger the angle,
the fewer significant digits remain in the scaled re-
sult. A rule of thumb for rough estimates is that for
each count in the exponent, one digit of accuracy
will be lost. For example, 5x10% when scaled will
lose five digits of accuracy.

A negative argument is treated the same as a posi-
tive number until the end, when the scaling routine
returns a number between 0 and —2#. Then 27 is
added to the negative result, giving again a number
between 0 and 2. This addition of 27 causes a digit



to be lost, which results in asymmetry such as
cos(86°) # cos(—B86%). Newer calculators obviate this
problem by scaling to a number between 0 and /4.

Vector Rotation

An angle can be expressed as a vector having X
and Y components and a resultant R (see Fig. 1).
If R is the unit vector, then X=cos # and Y =sin 4.
However, regardless of the length of R, Y/X =tan # and
X/Y=cot#. This holds true for all values of #
from 0 to 2w Thus, if some way could be found
to generate X and Y for a given 8, all the trigonometric
functions could be found.

In vector geometry a useful formula results when
one rotates a vector through a given angle. Let
us suppose we have a vector whose angle is #,,
and we know its components X, and Y, (see Fig. 2).
The X; and Y; that result when the vector is rotated
an additional angle 8, are given by:

Xy =X, cos8; =Y, sind,
Yz = Y] Cos 62 + X'I sin EZ

Dividing both sides of these equations by cos 6,
gives:

X2 =¥, —Yitan 8, = X'
cos f,
(1)
Y,
= Y1_ + Xltan EZ = Yz’
cos g,

Note that X," and Y,', while not the true values of X,
and Y,, both differ by the same factor, cos f,. Thus
Y,'Xy" = Yo/, From Fig. 2 it is plain that the quo-
tient Y,'/X," is equal to tan (6;+ &;). Thus the tan-
gent of a large angle can be found by manipulating
smaller angles whose sum equals the large one. Re-
turning to equation 1 above, it can be seen that to
generate X, and Y,’, X, and Y, need to be multiplied
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by tan 8, and added or subtracted as needed. If 4, is
chosen so that tan 6, is a simple power of 10
(i.e., 1, 0.1, 0.01,...) then the multiplications simply
amount to shifting X, and Y,. Thus to generate X’
and Y;', only a shift and an add or subtract are needed.

Pseudo-Division

The tangent of # is found as follows. First @ is
divided into a sum of smaller angles whose tangents
are powers of 10. The angles are tan™! [1) = 45°,
tan~ ' (0.1) = 5.7°, tan™! (0.01) = 0.57°, tan"' (0.001)
=0.057" tan~! (0.0001)=0.0057°, and so on.
This process is called pseudo-division. First, 45° is
subtracted from # until overdraft, keeping track of
the number of subtractions. The remainder is restored
by adding 45°. Then 5.7° is repeatedly subtracted, again
keeping track of the number of subtractions. This pro-
cess is repeated with smaller and smaller angles,
Thus:

6 =qgytan”' (1) + q, tan"'(0.1) +q, tan™! (0.01)...+r

The coefficients q; refer to the number of subtractions
possible in each decade. Each q; is equal to or less
than 10, so it can be stored in a single four-bit digit.

This process of pseudo-division is one reason that
all the trigopnometric functions are done in radians.
For accuracy, tan™'(107) needs to be expressed to
ten digits. In degrees, these constants are random digits
and require considerable ROM (read-only memory)
space to store. However, in radians, they become, for
the most part, nines followed by sixes. Because of this,
they can be generated arithmetically, thus using
fewer ROM states. Also, in radians, tan~! (1) = /4,
which is needed anyway to generate 7. The problem
with using radians is that since  is an irrational num-
ber, scaling errors occur as discussed earlier, This
means cardinal points do not give exact answers. For
example, sin (720°) # 0 when calculated this way
but rather 4x10°% See reference 3 for a discussion
of this point.



So far, a pseudo-guotient has been generated that
represents the division of the given angle # into
smaller angles whose tangents are powers of 10. In
many HP calculators the pseudo-quotient is five
hexadecimal digits long. Each digit represents one
series of subtractions and is a number from 0 to 10.
Forexample, if # were 359.9999° the pseudo-quotient
would be 77877, representing # = 7tan~'(1)
+ 7tan”'(0.1) + 8tan~'(0.01) + 7tan~'(0.001)
+ 7tan~(0.0001). There may also be a remainder r,
which is the angle remaining after the previous par-
tial quotient subtractions have taken place.

Tan # can now be found using the vector rotation
process discussed earlier.

Pseudo-Multiplication

To use equation 1 we need an initial X, and Y,.
These correspond to the X and Y of the residual
angle r discussed previously. This angle is small
(less than 0.001°), and for small angles in radians,
sin & = # [another reason to use radians instead of
degrees). Thus, to good accuracy, the initial Y, can
be set to the residual angle, and the initial X, set to 1.
Equation 1 can now be repeatedly applied, where 4,
is the angle whose tangent is 107/, Each time equa-
tion 1 is applied, a new X, and Y, are generated, i.e.,
X;" and Y,". The number of times equation 1 is
applied is determined by the count in the pseudo-
quotient digit for that . Thus if the original angle
had a 3 in the pseudo-quotient digit corresponding to
tan~'0.1, or 5.7°, equation 1 would be applied three
times with X, and Y, being shifted one place right
for tan (tan~'0.1) before the addition or subtraction.
In this manner, new X, and Y, are formed as the vec-
tor is rotated the amount corresponding to the count
in the pseudo-quotient digits which, of course, sum
to the original angle 8.

Equation 1 shows that to generate X, requires a
shift of ¥, and a subtraction from X,. Likewise Y,
requires a shift of X, and an addition to Y,. To imple-
ment this would require either two extra registers to
hold the shifted values of X, and Y,, or else shifting
one register twice and the other once. It would be
desirable to shift only one register once. Happily,
this is possible. Consider the following: Let Y = 123
and X = 456. Suppose we want Y +(X x0.01). This can
be obtained by keeping the decimal points in the
same places and shifting X two places right.

123
+ 4.56
127.56

MNow suppose instead of shifting X twa places right,
we multiply ¥ by 100, shifting it two places left.
What happens?

A~

12300
456
12756

The digits in both answers are exactly the same. The
only difference between the two is that the second
answer is 100 times the correct value, which is the
same value by which Y was multiplied before the
addition. Thus to aveid shifting X, Y must be multi-
plied by 101,

Expanding this method to the problem at hand also
helps us solve another problem, that of accuracy.
During pseudo-division, the angle # is resolved until
a small angle r is left as the original Y value. Since
this is done in fixed point arithmetic, zero digits are
generated following the decimal point (e.g.. .00123).

Since zero digits do not convey information except
toindicate the decimal point, the remainder is shifted
left one place (multiplied by 10) during each decade
of pseudo-division. This preserves an extra digit of
accuracy with each decade. The final remainder is
equal to rx10* if the pseudo-quotient is five digits
long.

To demonstrate mathematically the implementa-
tion that requires only a single register shift, return
to equation 1 and replace tan #, by 107, This substi-
tution is legal because 6, = tan™' {1077}, where | is
the decade digit.

X'
Yzl =

X,-Y,x107}
Y, +X, <107}

(2)

MNow let Z = Y, 10/, or ¥, =Zx 1071, Substituting
in equation 2,

X, =X,-Zx1074

Y, = Zx1071+X, %107

Multiplying the second equation by 10' gives:

Y, x100 = Z+X,

The left-hand side (Y,' % 10') is in the correct form
to be the new Z for the next iteration. Thus for each
iteration within a decade:

X, = Xy-Zx1078

Y, x100 = Z+X,

X;' becomes the new X,

Y,"x 10! becomes the new Z
Since the shifted remainder [rx10°%) is desired as Z
for the first iteration, the original j is 4.

To implement equation 3, X, and Z are stored in
two registers. Zx10% is formed and stored in a third
register. X, is added to Z to form the new Z. This
leaves X, undisturbed so that Zx107% can be sub-
tracted from it to form the new X,".

This implementation saves extra shifts and in-
creases accuracy by removing leading zeros in 7.
The only register shifted is Z.

(3)



After equation 3 has been applied the number of
times indicated by one pseudo-guotient digit, Z is
shifted right one place, and a new pseudo-quotient
digit is fetched. This in effect creates Y, > 10!, where j
is one less than before. Again equation 3 is applied,
and the process is repeated until all five pseudo-
quotient digits have been exhausted. The result is an
X and a Y that are proportional to the cosine and sine
of the angle 4. Because the final j is zero, the final ¥
[=Z] is correctly normalized with respect to X,

So far, then, an X and a Y have been generated by a
pseudo-multiply operation consisting of shifts and
additions, If tan # is required, Y/X is generated, which
is the correct answer. For sin #, Y/X is calculated, and
for cos 8, X/Y is calculated, Then either X/Y or Y/X is
operated on by the routine described at the beginning
of this article. The only difference between the com-
putation for sin # and that for cos @ is whether X and
Y are exchanged.

In summary, the computation of trigonometric
functions proceeds as follows:

1. Scale the input angle to a number in radians

between 0 and 2.

2. Using the pseudo-division process divide
the scaled number into groups of selected
smaller angles.

3. With the pseudo-multiply process of equation 3
applied once for each angle resulting from the
division of the input argument, generate an X
and a Y that are proportional to the sine and co-

sine of the input angle.
4. With X and Y, compute the required function
using elementary operations.
5. Round and display the answer.
The calculator is now ready for another operation.&
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