Personal Calculator Algorithms I:

Square Roots

A detailed description of the algorithm used in Hewlett-
Packard hand-held calculators to compute square roots.

by William E. Egbert

EGINNING WITH THE HP-35,"* all HP personal

calculators have used essentially the same al-
gorithms for computing complex mathematical func-
tions in their BCD (binary-coded decimal) micro-
processors. While improvements have been made in
newer calculators,? the changes have affected primarily
special cases and not the fundamental algorithms,

This article is the first of a series that examines
these algorithms and their implementation. Each
article will present in detail the methods used to
implement a common mathematical function. For
simplicity, rigorous proofs will not be given, and
special cases other than those of particular interest
will be omitted.

Although tailored for efficiency within the environ-
ment of a special-purpose BCD microprocessor, the
basic mathematical equations and the techniques
used to transform and implement them are applicable
to a wide range of computing problems and devices.

The Square Root Algorithm

This article will discuss the algorithm and methods
used to implement the square root function.

The core of the square root algorithm is a simple
approximation technique tailored to be efficient
using the instruction set of a BCD processor. The tech-
nique is as follows:

Vx is desired
. Guess an answer g
. Generate g?
. Find R=x—a?
. [fthe magnitude of R is sufficiently small,a =
.If R is a positive number, a is too small.
IfR is a negative number, a is too big.
Depending on the result of step 5, modify a and
return to step 2.
The magnitude of R will progressively decrease until
the desired accuracy is reached,

This procedure is only a rough outline of the actual
square root routine used. The first refinement is
to avoid having to find 0? and x —a? each time a is
changed. This is done by finding a one decade at a
time. In other words, find the hundreds digit of a,
then the tens digit, the units digit, and so on. Once
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the hundreds digit is found, it is squared and sub-
tracted from x, and the tens digit is found. This pro-
cess, however, is not exactly straightforward, so some
algebra is in order.

The following definitions will be used:

x = the number whose square root is desired

a = most significant digit(s) of Vx previously
computed

b = the next digit of vx to be found

j = the power of 10 associated with b

R, = x—a?, the current remainder

a; = the new a when digit b is added in its

proper place. a; = a+(b x10)) (1)
Ry = the portion of remainder R, that would be
removed by adding b to a. R, = a?—al (2)
For example, let x = 54756. Then Vx = 234,
Leta = 200.

b = the digit we are seeking (3, in this case)
i = 1(the 10's digit is being computed)
R, = 54756 —(200)* = 14756.

Note that a; and Ry, will vary with the choice of b.

The pmoess of finding VX one decade at a time
approaches the value of VX from below. That is, at
any point in the computation,a =V, Consequently,
R, =0.

With this in mind it is easy to see that for any
decade j, the value of b is the largest possible digit so
that

H,, =Ry,=10
or
R, =R,. (3)
Using equations 1 and 2 we have

Ry = [a+(bx10)))2 = a2
Expanding and simplifying, _
Ry, = 2abx10'+(b =102 (4)
Inserting (4) into (3) yields the following rule for
finding digit b,
Digit b is the largest possible digit so that
2ab x10'+(bx10"2 =R, (5]
When the digit that satisfies equation 5 is found, a
new a is formed by adding b= 10 to the old a, the
decade counter (j) is decremented by 1, and a new
R, is created; the new R, is the old R, minus Ry,



Continuing the previous example,

x = 54756
=1
a = 200

x—a® =R, = 14756
Applying equation 5 to find b:

B—b=

b 2abx10+(bx10%)?2 R,-R,
0 1] 14756
1 4100 10656
2 8400 6356
3 12900 1856
4 17600 —2844

Thus b=3, since b=4 causes overdraft, i.e.,
R,-R;, <0. The new a=200+3x10'=230. The new
R,=1856, the new j=0. With these new parameters,
the units digit can be found.

This process may seem vaguely familiar, which is
not surprising since upon close inspection it turns
out to be the (usually forgotten) scheme taught in
grade school tofind square roots longhand. Of course,
trailing zeros and digits are not written in the long-
hand scheme.

To make this process efficient for a calculator, still
another refinement is needed.

(b x10')? can be expressed as a series, using the
fact that the square of an integer b is equal to the sum
of the first b odd integers. Thus,

(bx10)? = b? x109
b

= ¥ [(2i-1)x10%
i=1

For example,
(3%10)? =1x10%+3x10% +5x10%
= 9x10%

Thus 2ab % 101+(b % 107)* can be expressed as:

b
20bx10'+(bx10)? = ¥ 20x10 +(2i-1) x10%

or

b
Ry, = S 2ax10+(2i-1)x10% (6)
i=1

Now comes a key transformation in the square root
routine, It was shown earlier how inequality 3 will

give the value b for the next digit of a. Since multi-
plying both sides of an inequality by a positive con-
stant does not change the inequality, equations 3 and
6 can be multiplied by the number 5.

mbﬁmg

b
SR, = ¥ 10ax10'+{10i-5)x10% n
i=1

b becomes the largest digit so that 5R,=5R,. The new
5H, is equal to the old SR, minus 5R,.

These transformations may seem useless until we
examine a few examples of the last term of the right
side of [7) for various values of b.

10a x10'+05x10%, b=1
100 X10'+15x10%, b =2
10a %10 +25%10% h=3

Notice that the two-digit coefficient of 10% con-
sists of (b—1) and a 5. These two digits will be ex-
pressed as (b—1)|5 in succeeding equations. 10a is
formed by a simple right shift and does not change
between terms. If the sum defined in equation 7, as
b is incremented by 1, is subtracted from SR, until
overdraft occurs, the digit in the next-to-last digit
position is b. Best of all, it is in the exact posi-
tion to form the next digit of a without further ma-
nipulation. Redoing the previous example may help
clarify matters.

R, = 14756
i=1
a = 200
5R,= 73780
b 10ax10'+(b—-1)|5x10% 5R,—5R,
1 20500 53280
2 21500 31780
3 22500 9280 new 5H,
4 23500 —14220 overdraft
new value of a
digits

Notice that when overdraft occurs the new value of
a is already created and the new value of 5R, can be
found by restoring the previous remainder.
Decrementing the value of j would cause, in effect,
{10a x 10') to shift right one place, and (b—1) |5 10%to
shift right two places. The result is that the final 5
shifts one place to the right to make room for a new
digit. Continuing with the same example,
5R, = 9280
a =230
i=0



b 10ax10M+(b-1)|5x10% &R, -5R,

1 2305 BA75

2 2315 4660

3 2325 2335

4 2335 0 remainder
5 2345 —2345 overdraft

finala = V'x

For ease of understanding, the preceding example
treated a large positive number. A number in the cal-
culator actually consists of a mantissa between 1 and
10 and an exponent. The problem is to find the square
root of both parts of this argument. Happily, if the
input exponent is an even number, the portion of the
answer resulting from it turns out to be the exponent
of the final answer and is simply the input exponent
divided by 2. Thus to find Vx, the exponent of x is
first made even and the mantissa shifted to keep the
number the same. The exponent of Vx is found by
dividing the corrected input exponent by 2. The
method described above is then used to find the
square root of the shifted input mantissa, which (after
possibly being shifted) can be between 1 and 100, The
result will then be between 1 and 10, which is the
range required for the mantissa of Vx.

During the process of finding Wx the remainder
R, progressively decreases. To avoid losing accu-
racy, this remainder is multiplied by 10' after finding
each new digit b. This avoids shifting a at all, once
the square root extraction process begins. A 12-digit
mantissa is generated, which insures accuracy to
+1 in the tenth digit of the mantissa of Vx.

In summary, the computation of Vx proceeds as
follows:

1. Generate exponent of answer,

2. Multiply mantissa by 5 to create original 5R,

3. With an original a of 0, use the method de-
scribed above to find 12 b digits to form the
mantissa of the answer,

4, Round the mantissa and attach the exponent
found previously.

5. Display the answer.

The calculator is now ready for another operation. £
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