Personal Calculator Algorithms lli:
Inverse Trigonometric Functions

A detailed description of the algorithms used in

Hewlett-Packard hand-held calculators to compute

arc sine, arc cosine, and arc tangent.

by William E. Egbert

EGINNING WITH THE HP-35,"? all HP personal

calculators have used essentially the same al-
gorithms for computing complex mathematical func-
tions in their BCD (binary-coded decimal] micro-
processors, While improvements have been made in
newer calculators,? the changes have affected primarily
special cases and not the fundamental algorithms.

This article is the third of a series that examines
these algorithms and their implementation. Each
article presents in detail the methods used to imple-
ment a common mathematical function. For sim-
plicity, rigorous proofs are not given, and special
cases other than those of particular interest are
omitted.

Although tailored for efficiency within the environ-
ment of a special-purpose BCD microprocessor, the
basic mathematical equations and the techniques
used totransform and implement them are applicable
to a wide range of computing problems and devices.

Inverse Trigonometric Functions

This article will discuss the method of generating
sin”!, cos™!, and tan~'. An understanding of the
trigonometric function algorithm is assumed. This
was covered in the second article of this series and
the detailed discussion will not be repeated here.*

To minimize program length, the function tan™1A
is always computed, regardless of the inverse trig-
onometric function required. If sin™'A is desired,
AN 1—A? is computed first, since

. A
sin"! A =tan™! — .
Vi1-A?

For cos™'A, sin™! A is computed as above and then
cos™' A is calculated using

cos”' A = m/2 — sin"A.

Cos™! is found in the range 0=#=s and sin~! and
tan~! are computed for the range —=/2=#=m/2. The
tan™! routine solves only for angles between 0
and /2, since —tan A = tan (—A). Thus A may be

assumed to be positive and the sign of the input argu-
ment becomes the sign of the answer. All angles are
calculated in radians and converted to degrees or
grads if necessary.

General Algorithm

A vector rotation process similar to that used in the
trigonometric routine is used in the inverse process
as well. A vector expressed in its X and Y components
can easily be rotated through certain specific angles
using nothing more than shifts and adds of simple
integers. In the algorithm for tan™'|A|, the input
argument is |A|, or |tan 8|, where @ is the unknown.
Letting tan 8 = Y,/X,, |A| can be expressed as | A|/1,
where Y, = |A| and X, = 1. A vector rotation pro-
cess [see Fig. 1) is then used to rotate the vector clock-
wise through a series of successively smaller angles
fi;, counting the number of rotations for each angle,
until the Y, component approaches zero. If q;
denotes the number of rotations for #; then

|8] = g + 9,0, +...+ g +...
This process is described in detail below,
Vector Rotation

To initialize the algorithm, A and 1 are stored in
fixed-point format in registers corresponding to Y,
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and X,. This is done in such a way as to preserve as
many digits of A as possible when the exponent of A
differs from zero.

At this point the sign of A is saved and Y, = |A|.
Now comes the vector rotation (see Fig. 1), If the vec-
tor R is rotated in a clockwise direction, Y, becomes
smaller and smaller until it passes zero and becomes
negative. As soon as Y, becomes negative, we know
that we have rotated R just past the desired angle #.
Thus to find @, R is simply rotated clockwise until
¥, becomes negative. The amount of rotation is re-
membered and is equal to the desired angle # =
tan~'|A|. To rotate R, the following formula is used.

X5 e
cos 8, Xy + Y tan 8 = X,
(1)
Yz =Y, - X,tan®, = Y," .
cos fy

This equation is the same as equation 1 of the
article on trigonometric functions,* except that the
plus and minus signs are exchanged because R is
rotated in the opposite direction. As before, tan 4, is
chosen such that the implementation requires a simple
shift and add (tan 6, = 107). To find 6, R is initially
rotated with tan 8, = 1 (8, = 45°). Y.’ soon becomes
negative and the number of successful rotations is
stored as the first digit of what is known as the pseudo-
quotient, Y," is then restored to the last value it had
before becoming negative and R is rotated again, this
time through a smaller angle, ie., tan #, = 0.1
(#, = 5.7°). This process is repeated with the angle of
rotation becoming smaller and smaller until five
pseudo-guotient digits have been generated,

At the end of each series of rotations, Y, is multi-
plied by 10 to preserve accuracy.

Pseudo-Multiplication

It is now time to shift gears and add up all the small
angles represented by the pseudo-quotient digits.
There remains a residual angle r, represented by the
final X," and Y,'. Since the residual angle is small,
we would like to say Y,' = sin r = r. However,
this is true only if X,' = 1. Unfortunately, X,' in this
case is the product of all the 1/eos 4 terms result-
ing from several applications of equation 1. How-
ever, Y,' is this same product times Y,. Thus
Y;'1X;" = Y, 1. Therefore, the final Y, is divided by
the final X, and the result is sin r, which for small
angles in radians is approximately equal to r, the
residual angle.

With the residual angle as the first partial sum, 8 is
generated by adding the angles represented by the
digits of the pseudo-quetient. This is exactly the re-
verse of the pseudo-division operation in the trigono-

metric routine. Thus:

#=q, tan".[lj + g, tan™' [0.1)
+q; tan™? (0.01) +...41 (2)

Each coefficient q; refers to the count in a particular
pseudo-quotient digit.

The result of this summation process, also called
pseudo-multiplication, is an angle # that is equal to
tan~'| A|, where |A| is the input argument to the tan !
routine, At this point the original sign of A is appended
to . For tan™! this angle is normalized, converted
to degrees or grads if necessary, and displayed. Re-
call that for sin™', AW1-A? was first generated.
Thus for sin™', the result of the tan ™! routine is again
simply normalized, converted to degrees or grads if
necessary, and displayed. Forcos ™', the tan ' routine
returns sin~', Cos™! is then simply found as
w2 —sin"1A.

Summary

In summary, the computation of inverse trigono-

metric functions proceeds as follows:

1. Calculate AN 1-A? if the desired function is
sin~' A or cos™! A,

2. Place |A| and 1 in fixed-point format into ap-
propriate registers, while preserving the sign
of A.

3. Repeatedly rotate the vector with A=Y and 1=X
clockwise using equation 1 until Y approaches
zero. The number of rotations and the amount
of each rotation is stored as a pseudo-quotient
along the way.

4. Using the pseudo-multiplication process of
equation 2, sum all of the angles used in the ro-
tation to form |6/.

5. Append the proper sign to the answer and cal-
culate cos™' A = #/2 —sin~! A if required.

6. Convert to the selected angle mode, and round
and display the answer. _

The calculator is now ready for another operation..

References

1. T.M. Whitney, F. Rodé, and C.C. Tung, ‘The Power-
ful Pocketful': An Electronic Calculator Challenges the
Slide Rule,” Hewlett-Packard Journal, June 1972,

2. D.S. Cochran, “Algorithms and Accuracy in the
HP-35," Hewlett-Packard Journal, June 1872,

3. DW, Harms, “The New Accuracy: Making 23=8"
Hewlett-Packard Journal, November 1976,

4. W.E, Egbert, “Personal Calculator Algorithms II:
Trigonometric Functions,” Hewlett-Packard Journal, June
1977.

Bill Egbert is a project manager at HP's Corvallis
{Oregon) Division.



Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.



