Personal Calculator Algorithms IV

Logarithmic Functions

A detailed description of the algorithms used in

Hewlett-Packard hand-held calculators to compute

fogarithms.

by William E. Egbert

EGINNING WITH THE HP-35,"? all HP personal

calculators have used essentially the same al-
gorithms for computing complex mathematical func-
tions in their BCD (binary-coded decimal) micropro-
cessors. While improvements have been made in
newer calculators,” the changes have affected
primarily special cases and not the fundamental
algorithms,

This article is the fourth in a series that examines
these algorithms and their implementation.*®® Each
article presents in detail the methods used to imple-
ment a common mathematical function. For simplic-
ity, rigorous proofs are not given and special cases
other than those of particular interest are omitted.

Although tailored for efficiency within the en-
vironment of a special-purpose BCD microprocessor,
the basic mathematical equations and the techniques
used to transform and implement them are applicable
to a wide range of computing problems and devices.

The Logarithmic Function Algorithm

This article will discuss the method of generating
the In(x) and log,y(x) functions. To minimize pro-
gram length, a single function, In(x), is always com-
puted first. Once In(x] is calculated, log,4(x) is found
by the formula

log,, (%) = In(x)

10 In(10) -
In(x) is generated using an approximation process
much the same as the one used to compute trigono-
metric functions.® The fundamental equation used in
this case is the logarithmic property that

In (a;-a;-a; - ... - a,) = In(a,) + In(a,)

+ Infay) + .. +Infa,) (1)

This algorithm simply transforms the input number
x into a product of several terms whose logarithms
are known. The sum of the logarithms of these various
partial-product terms forms In(x).

o,

Exponent

Numbers in HP calculators are stored in scientific
notation in the form x = M-10%. M is a number
whose magnitude is between 1.00 and 9.999999999
and K is an integer between —99 and +99. Using
equation 1, it is easy to see that

In(M-10%) = In[M) + In{10%)

At this point, another logarithmic property becomes
useful, which is

In[A®) = b-In{A).
Using this relationship
In(M-10%) = In(M} + K-In[10).

Thus to find the logarithm of a number in scientific
notation, one calculates the logarithm of the mantissa
of the number and adds that to the exponent times
In{10).

Mantissa

The problem of finding In(x) is now reduced to
finding the logarithm of its mantissa M.

Let F = 1/M. Then

In(PM) = In(P) + In[M)

In(1) = In(P) + In(M)

0 = In(P) + In[M)

=In(P) = In(M) (2]

This may appear to be a useless exercise since at
first glance —In(P) seems to be as hard to compute as
In(M].

Suppose, however, that a new number P,, is formed
by multiplying P by r which is a small number close
to 1.

P, =P-r

In addition, let P, be defined as a product of powers



of numbers a; whose natural logarithms are known.

Kq L

P, =agf0.a, k. | ~ajxi f. oty

Thus
P =P,
In(F) = In(P,) - In(r)
Using equation 2
In{M] = In(r) — In[P,)
Finally

In(M) = In(r] — (KyIn[a,) + K,ln{a,) + ... + K;ln(ay)
+ ..+ Kyln(a,))

Thus to find In(M) one simply multiplies M by the
carefully selected numbers a; so that the product
MP,, is forced to approach 1. If all the logarithms of
a; are added up along the way to form In(P,) then
In(M) is the logarithm of the remainder r minus this
sum, Notice that the remainder r is nothing more than
the final product MP,,.

Implementation

How is this algorithm implemented in a special-
purpose microprocessor? First of all, the terms of P,,
were chosen to reduce computation time and mini-
mize the amount of ROM [read-only memory) needed
to store a; and its logarithm. The numbers chosen for
the a; terms are of the form a; = (1 + 1077), where
i = 0-4 [see Table 1).

Table 1 Values of a; Terms
j HJ In EJ
0 2 0.6931
1 1.1 0.09531
2 1.01 0.009950
3 1.001 0.00099495
4 1.0001 0.000099995

To achieve high accuracy using relatively few a,
terms, an approximation is used when r = MP,
approaches 1. For numbers close to 1, In(r) = r—1.
This yields

InM=(r-1) - % Kiln{a) (3]
=0

Since all of the a; terms are larger than 1, M must be

between 0 and 1 if the product P .M is to approach 1.
As M is defined to be between 1 and 10, a new quan-
tity A is formed by dividing M by 10. A is now in the
proper range (0.1=A<1) so that using the a; terms as
defined will cause the product AP, to approach
1 without exceeding 1.

The product P, can now be formally defined as a
series, where j goes from 0 to n. Each partial product
AP, has the form

K.
APi=AP ,1+107 ' j=0,1,2,...,n

F_; = 1,and K is the largest integer such that P; <1.

In practice, each A-P; is formed by multiplying
A-Pi_; by (1 + 107"), K| times. There is one inter-
mediate product, T;, for each count of K;, as shown
below.

u!l
Ty = A(1 + 1079

T, = A(1 + 1079’

K
Ty, = Al1 + 1079 "

K
Tiger = Al +107°) (1 + 1077

K
Tw = A1+ 1079 °(1 + 107"

K
w1 +107%) " = AP,

m=K; +K; +... +K,

T; =T;_4(1 + 1071) for some j (4]

Notice that each multiplication of the intermediate
product T;_, by a; simply amounts to shifting T,_,
right the number of digits denoted by the current
value of j and adding the shifted value to the original
T;_,. This very efficient multiplication method is
similar to the pseudo-multiplication of the trigono-
metric algorithm, 3

An Example

A numeric example to illustrate this process is now
in order. Let A = 0.155. To compute In{A), A must be
multiplied by factors of a; until AP, approaches 1.
Tobegin the process A = 0,155 is multiplied by a, = 2
to form the intermediate product Ty = 0.31. Another
multiplication by a; gives T, = 0,62, A third multi-
plication by 2 results in 1.24, which is larger than 1.
Thus K, = 2 and APy = 0.62. The process is con-
tinued in Table 2,



Table 2z Generation of In{0.155)
i aj APF K' Tj ].l'l{ﬂj]
-1 0.155 0.155

o 2z 1 0.31 0.6931

o 2 0.62 2 0.62 0.6931
w

1 11 1 0.682 0.0953

1 11 2 0.7502 0.0953

1 1.4 3 0.82522  0.0953

1 1.1 4 0.9077 0.04953

1 1.1 094985 5 0.9985 0.04953

2 1.0 0.9985 0O il

3 1.001 099495 1 0.99495 000099

4 1.0001 09996 1 0.9996 0.00009

0.9996 = A-P, = r 1.8638 = ¥ In(a;)

*Another x2 would result in AP, >1. Thus a; is
changed to 1.1,
**The 1.01 constant is skipped entirely.

Applying the values found in Table 2 to equation 3
results in

In{0.155) = (0.9996 — 1) —1.8638

—1.8642

This answer approximates very closely the correct
10-digit answer of —1.864330162.

This example demonstrates the simplicity of this
method of logarithm generation. All that is required
is a multiplication (shift and add) and a test for 1.
To implement this process using only three working
registers, a pseudo-quotient similar to the one gen-
erated in the trigonometric algorithm is formed. Each
digit represents the number of successful multipli-
cations by a particular a;. For the preceding example,
the pseudo-guotient would be

With =In(r) = (r — 1) as the first term, the appro-
priate logarithms of (aj) are then summed according
to the count in the pseudo-quotient digit correspond-
ing to the proper a;. The final sum is —In(A).

At this point one more transformation is needed to
optimize this algorithm perfectly to the micropro-

cessor’s capabilities. Recall that the factors a; were
chosen to force the product P, A towards 1. Suppose
By = T, —1. Forcing B, towards 0 causes P A to be
forced to 1. Substituting B; into (4) and simplifying
yields

(Bi+1) = (B;_,+1)(1+1077) for some j
Bi+1=8B,,(1410 ) +1+10"]

By =B, _,i1+10 ) +107

Multiplying through by —1 results in the following
equation, which is equivalent to equation 4.

-B; = -B;_;(1+107) =10 forsomej (5)

This expression is now in a very useful form, since
the a; term is the same as before, but the zero test is
performed automatically when the 107 subtraction
is done. A test for a borrow is all that is required. An
additional benefit of this transformation is that accu-
racy can be increased by shifting —B; left one digit for
each a; term after it has been applied the maximum
number of times possible. This increases accuracy by
replacing zeros generated as B; approaches zero with
significant digits that otherwise would have been lost
out of the right end of the register. This shifting,
which is equivalent to a multiplication by 10/, gives
vet another benefit. Multiplying equation 5 by 10' and
simplifying,

=B %10 = (=B;_,(1+10 1)=10"T) x 10/
=Bix10' = =B;_,;x10" (1+10 7)) -1 forsomej (6)

Notice that the 107/ subtraction reduces to a simple
—1 regardless of the value of j. The formation of the
initial =By is also easy since —By=—-(A - 1) =1 - A,
This is formed by taking the 10's complement of M
(the original mantissa), creating 10 — M. A right
shift divides thisby 10togive1 —M10=1- A =
—-By. A final, almost incredible, benefit of the B,
transformation is that the final remainder —B,, =
10' is in the exact form required to be the first term of
the summation process of equation 4 without further
modification. The correct In(a;) constants are added
directly to —B,, x 10/, shifting the sum right one
digit after each pseudo-quotient digit to preserve
accuracy and restore the proper normalized form dis-
rupted by equation 6. The result is —In[A).

Finally, the required In{M) is easily found by sub-
tracting the computed result —In(A) from In(10].



In(10) - (=In(A))

In(10) + In(M/10)
In(10-Mi10)
= |n{M)

Once In(M) is computed, K-1n(10) is added as pre-
viously discussed to form In(x). At this point log(x)
can be generated by dividing In(x) by In[10).

Summary
In summary, the compulation of logarithmic func-

tions proceeds as follows:

1. Find the logarithm of 10* using K-In (10).

2. Transform the input mantissa to the proper
form required by —B,

3. Apply equation 6 repeatedly and form a pseudo-
quotient representing the number of successful
multiplications by each a;

4. Form —In(A) by summing the In(P;) constants
corresponding to the pseudo-quotient digits with
the remainder —B,, % 10/ as the first term in the
series,

5. Find In(x) or log(x) using simple arithmetic
operations,

6. Round and display the answer.

The calculator is now ready for another operation. 2
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