Personal Calculator Algorithms IV

Logarithmic Functions

A detailed description of the algorithms used in

Hewlett-Packard hand-held calculators to compute

fogarithms.

by William E. Egbert

EGINNING WITH THE HP-35,"? all HP personal

calculators have used essentially the same al-
gorithms for computing complex mathematical func-
tions in their BCD (binary-coded decimal) micropro-
cessors. While improvements have been made in
newer calculators,” the changes have affected
primarily special cases and not the fundamental
algorithms,

This article is the fourth in a series that examines
these algorithms and their implementation.*®® Each
article presents in detail the methods used to imple-
ment a common mathematical function. For simplic-
ity, rigorous proofs are not given and special cases
other than those of particular interest are omitted.

Although tailored for efficiency within the en-
vironment of a special-purpose BCD microprocessor,
the basic mathematical equations and the techniques
used to transform and implement them are applicable
to a wide range of computing problems and devices.

The Logarithmic Function Algorithm

This article will discuss the method of generating
the In(x) and log,y(x) functions. To minimize pro-
gram length, a single function, In(x), is always com-
puted first. Once In(x] is calculated, log,4(x) is found
by the formula

log,, (%) = In(x)

10 In(10) -
In(x) is generated using an approximation process
much the same as the one used to compute trigono-
metric functions.® The fundamental equation used in
this case is the logarithmic property that

In (a;-a;-a; - ... - a,) = In(a,) + In(a,)

+ Infay) + .. +Infa,) (1)

This algorithm simply transforms the input number
x into a product of several terms whose logarithms
are known. The sum of the logarithms of these various
partial-product terms forms In(x).

o,

Exponent

Numbers in HP calculators are stored in scientific
notation in the form x = M-10%. M is a number
whose magnitude is between 1.00 and 9.999999999
and K is an integer between —99 and +99. Using
equation 1, it is easy to see that

In(M-10%) = In[M) + In{10%)

At this point, another logarithmic property becomes
useful, which is

In[A®) = b-In{A).
Using this relationship
In(M-10%) = In(M} + K-In[10).

Thus to find the logarithm of a number in scientific
notation, one calculates the logarithm of the mantissa
of the number and adds that to the exponent times
In{10).

Mantissa

The problem of finding In(x) is now reduced to
finding the logarithm of its mantissa M.

Let F = 1/M. Then

In(PM) = In(P) + In[M)

In(1) = In(P) + In(M)

0 = In(P) + In[M)

=In(P) = In(M) (2]

This may appear to be a useless exercise since at
first glance —In(P) seems to be as hard to compute as
In(M].

Suppose, however, that a new number P,, is formed
by multiplying P by r which is a small number close
to 1.

P, =P-r

In addition, let P, be defined as a product of powers

of numbers a; whose natural logarithms are known.

Kq L

P, =agf0.a, k. | ~ajxi f. oty

Thus
P =P,
In(F) = In(P,) - In(r)
Using equation 2
In{M] = In(r) — In[P,)
Finally

In(M) = In(r] — (KyIn[a,) + K,ln{a,) + ... + K;ln(ay)
+ ..+ Kyln(a,))

Thus to find In(M) one simply multiplies M by the
carefully selected numbers a; so that the product
MP,, is forced to approach 1. If all the logarithms of
a; are added up along the way to form In(P,) then
In(M) is the logarithm of the remainder r minus this
sum, Notice that the remainder r is nothing more than
the final product MP,,.

Implementation

How is this algorithm implemented in a special-
purpose microprocessor? First of all, the terms of P,,
were chosen to reduce computation time and mini-
mize the amount of ROM [read-only memory) needed
to store a; and its logarithm. The numbers chosen for
the a; terms are of the form a; = (1 + 1077), where
i = 0-4 [see Table 1).

Table 1 Values of a; Terms
j HJ In EJ
0 2 0.6931
1 1.1 0.09531
2 1.01 0.009950
3 1.001 0.00099495
4 1.0001 0.000099995

To achieve high accuracy using relatively few a,
terms, an approximation is used when r = MP,
approaches 1. For numbers close to 1, In(r) = r—1.
This yields

InM=(r-1) - % Kiln{a) (3]
=0

Since all of the a; terms are larger than 1, M must be

between 0 and 1 if the product P .M is to approach 1.
As M is defined to be between 1 and 10, a new quan-
tity A is formed by dividing M by 10. A is now in the
proper range (0.1=A<1) so that using the a; terms as
defined will cause the product AP, to approach
1 without exceeding 1.

The product P, can now be formally defined as a
series, where j goes from 0 to n. Each partial product
AP, has the form

K.
APi=AP ,1+107 ' j=0,1,2,...,n

F_; = 1,and K is the largest integer such that P; <1.

In practice, each A-P; is formed by multiplying
A-Pi_; by (1 + 107"), K| times. There is one inter-
mediate product, T;, for each count of K;, as shown
below.

u!l
Ty = A(1 + 1079

T, = A(1 + 1079’

K
Ty, = Al1 + 1079 "

K
Tiger = Al +107°) (1 + 1077

K
Tw = A1+ 1079 °(1 + 107"

K
w1 +107%) " = AP,

m=K; +K; +... +K,

T; =T;_4(1 + 1071) for some j (4]

Notice that each multiplication of the intermediate
product T;_, by a; simply amounts to shifting T,_,
right the number of digits denoted by the current
value of j and adding the shifted value to the original
T;_,. This very efficient multiplication method is
similar to the pseudo-multiplication of the trigono-
metric algorithm, 3

An Example

A numeric example to illustrate this process is now
in order. Let A = 0.155. To compute In{A), A must be
multiplied by factors of a; until AP, approaches 1.
Tobegin the process A = 0,155 is multiplied by a, = 2
to form the intermediate product Ty = 0.31. Another
multiplication by a; gives T, = 0,62, A third multi-
plication by 2 results in 1.24, which is larger than 1.
Thus K, = 2 and APy = 0.62. The process is con-
tinued in Table 2,

Table 2z Generation of In{0.155)
i aj APF K' Tj].l'l{ﬂj]
-1 0.155 0.155

o 2z 1 0.31 0.6931

o 2 0.62 2 0.62 0.6931
w

1 11 1 0.682 0.0953

1 11 2 0.7502 0.0953

1 1.4 3 0.82522 0.0953

1 1.1 4 0.9077 0.04953

1 1.1 094985 5 0.9985 0.04953

2 1.0 0.9985 0O il

3 1.001 099495 1 0.99495 000099

4 1.0001 09996 1 0.9996 0.00009

0.9996 = A-P, = r 1.8638 = ¥ In(a;)

*Another x2 would result in AP, >1. Thus a; is
changed to 1.1,
**The 1.01 constant is skipped entirely.

Applying the values found in Table 2 to equation 3
results in

In{0.155) = (0.9996 — 1) —1.8638

—1.8642

This answer approximates very closely the correct
10-digit answer of —1.864330162.

This example demonstrates the simplicity of this
method of logarithm generation. All that is required
is a multiplication (shift and add) and a test for 1.
To implement this process using only three working
registers, a pseudo-quotient similar to the one gen-
erated in the trigonometric algorithm is formed. Each
digit represents the number of successful multipli-
cations by a particular a;. For the preceding example,
the pseudo-guotient would be

With =In(r) = (r — 1) as the first term, the appro-
priate logarithms of (aj) are then summed according
to the count in the pseudo-quotient digit correspond-
ing to the proper a;. The final sum is —In(A).

At this point one more transformation is needed to
optimize this algorithm perfectly to the micropro-

cessor’s capabilities. Recall that the factors a; were
chosen to force the product P, A towards 1. Suppose
By = T, —1. Forcing B, towards 0 causes P A to be
forced to 1. Substituting B; into (4) and simplifying
yields

(Bi+1) = (B;_,+1)(1+1077) for some j
Bi+1=8B,,(1410) +1+10"]

By =B, _,i1+10) +107

Multiplying through by —1 results in the following
equation, which is equivalent to equation 4.

-B; = -B;_;(1+107) =10 forsomej (5)

This expression is now in a very useful form, since
the a; term is the same as before, but the zero test is
performed automatically when the 107 subtraction
is done. A test for a borrow is all that is required. An
additional benefit of this transformation is that accu-
racy can be increased by shifting —B; left one digit for
each a; term after it has been applied the maximum
number of times possible. This increases accuracy by
replacing zeros generated as B; approaches zero with
significant digits that otherwise would have been lost
out of the right end of the register. This shifting,
which is equivalent to a multiplication by 10/, gives
vet another benefit. Multiplying equation 5 by 10' and
simplifying,

=B %10 = (=B;_,(1+10 1)=10"T) x 10/
=Bix10' = =B;_,;x10" (1+10 7)) -1 forsomej (6)

Notice that the 107/ subtraction reduces to a simple
—1 regardless of the value of j. The formation of the
initial =By is also easy since —By=—-(A - 1) =1 - A,
This is formed by taking the 10's complement of M
(the original mantissa), creating 10 — M. A right
shift divides thisby 10togive1 —M10=1- A =
—-By. A final, almost incredible, benefit of the B,
transformation is that the final remainder —B,, =
10' is in the exact form required to be the first term of
the summation process of equation 4 without further
modification. The correct In(a;) constants are added
directly to —B,, x 10/, shifting the sum right one
digit after each pseudo-quotient digit to preserve
accuracy and restore the proper normalized form dis-
rupted by equation 6. The result is —In[A).

Finally, the required In{M) is easily found by sub-
tracting the computed result —In(A) from In(10].

In(10) - (=In(A))

In(10) + In(M/10)
In(10-Mi10)
= |n{M)

Once In(M) is computed, K-1n(10) is added as pre-
viously discussed to form In(x). At this point log(x)
can be generated by dividing In(x) by In[10).

Summary
In summary, the compulation of logarithmic func-

tions proceeds as follows:

1. Find the logarithm of 10* using K-In (10).

2. Transform the input mantissa to the proper
form required by —B,

3. Apply equation 6 repeatedly and form a pseudo-
quotient representing the number of successful
multiplications by each a;

4. Form —In(A) by summing the In(P;) constants
corresponding to the pseudo-quotient digits with
the remainder —B,, % 10/ as the first term in the
series,

5. Find In(x) or log(x) using simple arithmetic
operations,

6. Round and display the answer.

The calculator is now ready for another operation. 2

References
1. T.M. Whitney, F,
ful Pocketful':

Rodé, and C.C. Tung, “The 'Power-
An Electronic Calculator Challenges the

William E. Egbert

Bill Egben is a project manager at
HPF's Corvallis, Oregon Division.
He: produced this series of algorihm
articles as part of his work on the
HP-67 and HP-87 Programmable
Calculators. He was project leader
for the HP-67 and did micre-
programming for both calculators.
Mare recently, he was project
leadear tor the firmware develop-
ment of the HP-19C and the
HP-29C. Bill received his BSEE
degree from Brigham Young Uni-
versily in 1973 and his MSEE from
Stanford Uﬂwersw,r in 1976, He's been with HP since 1973,
Born in Fallon, Nevada, he's married, has two small children,
and lives in Corvallis.

Slide Rule,” Hewlett-Packard Journal, June 1972,

2. .5, Cochran, * Algorithms and Accuracy in the HP-35,”
Hewlett-Packard Journal, June 1972,

3. D.W. Harms, “The New Accuracy: Making 2° = 8,
Hewlett-Packard Journal, November 1976,

4. W.E. Egbert, “Personal Calculator Algorithms I:
Square Roots,” Hewlett-Packard Journal, May 1977,

5. W.E. Egbert, ""Personal Calculator Algorithms I1: Trigo-
nometric Functions,” Hewlett-Packard Journal, June 1977,
6. W.E. Egbert. “Personal Calculator Algorithms 110
Inverse Trigonometric Functions,” Hewlett-Packard Jour-
nal, Movember 1977,

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

