
Personal Calculator Has. Key to Solve Any
Equation f(x) = 0
The HP-34C is the first handheld calculator to have a built-in
numerical equation solver. That's why one of its keys is
labeled SOLVE.

by Wi lliam M. Kahan

BUlL T INTO HEWLETT -PACKARD'S new handheld
calculator, the HP-34C, is an automatic numerical
equation solver. It is invoked by pressing the

SOLVE key (see Fig. 1). For an illustration of how it finds a
root x of an equation f(x) = 0 take the function

with constants C1 and C2. Equations f(x) = 0 involving
functions like this one have to be solved in connection
with certain transistor circuits, black-body radiation, and
stability margins of delay-differential equations. If the
equation f(x) = 0 has a real root x three steps will find it:
Step 1 . Program f(x) into the calculator under, say, label

A (see Fig. 2) .
Step 2. Enter one or two guesses at the desired root:

(first guess) ENTER (second guess if any)
Any x will do as a guess provided f(x) is defined at
that value of x, but the closer a guess falls to a de­
sired root the sooner that root will be found.

Step 3. Press SOLVE A and wait a little while to see
what turns up .

Figs . 3a-3d show what turns up for a typical assortment of
constants C1 and C2 and first guesses.

When a root is found it is displayed. But is it correct?
When no root exists , or when SOLVE can't find one, ERROR 6

is displayed. But how does the calculator know when to
abandon its search? Why does it not search forever? And if
it fails to find a root, what should be done next? These
questions and some others are addressed in the sections that
follow.

What does SOLVE Do, and When Does It Work?
Neither SOLVE nor any other numerical equation solver

can understand,the program that defines f(x). Instead, equa­
tion solvers blindly execute that program repeatedly. Suc­
cessive arguments x supplied to the f(x) program by
SOLVE are successive guesses at the desired root, starting
with the user's guess(es). If all goes well, successive guesses
will get closer to the desired root until , ideally, f(x)=O at the
last guess x, which must then be the root. SOLVE is distin­
guished from other equation solvers by its guessing
strategy , a relatively simple procedure that will surely find
a root , provided one exists , in an astonishingly wide range
of circumstances. The three simplest circumstances are the
ones that predominate in practice:
1. f(x) is strictly monotonic, regardless of initial guesses, or

20 HEWLETI-PACKAR D JOURNAL DECEMBER 1979

2. ±f(x) is strictly convex, regardless of initial guesses, or
3. Initial guesses x and y straddle an odd number of roots ,

i.e. , f(x) and fry) have opposite signs , regardless of the
shape of the graph of f.

In these cases SOLVE always finds a root of f(x)=o if a root
exists.

About as often as not, SOLVE must be declared to have
found a root even though f(x) never vanishes. For example,
take the function:

g(x) ;:; x+Z ' (x-5)

Fig. 1. The HP-34C. a new handheld programmable cal­
culator, has two keys that are new to handheld calculators­
!rintegrate) and SOLVE SOL VE, a numerical equation solver, is
described in this article.

)

PRGMnm:::JRUN Switch to Program Mode

CL Gm'l!J Clear Program Memory

1EIf'J x Is in the X Register

III eX

I!D:I Get x Back

milD c,

13 C,x

• eX - C,x

milEI C2

• !(x) = eX - C, x - C2

mm Return !(x) in the X register

PRG Mc::JIIlJ RUN Switch to Run Mode

... C, .. .

ED Store C, in Register 1

... c2 .. .

EEl Store C2 in Register 2

Fig. 2. This is an HP-34C program for the function f(x)
eX - Ctx -C2. It replaces x by f(x) in the HP-34C's X register
(display). It is labeled A, but labels B, 0, 1,2, or 3 would serve
as well.

Of course g(x) = 3x-10, and when calculated as prescribed
above (don 't omit the parentheses!) it is calculated exactly
(without roundoff) throughout 1 ~x~ 6 . 666666666. Con­
sequently, the calculated value of g(x) cannot vanish be­
cause the obvious candidate x=10/3=3.333 ... cannot be
supplied as an argument on an ordinary calculator. SOLVE
does the sensible thing when asked to solve g(x)=O; it
delivers final guesses 3.333333333 and 3.333333334 in the
X and Y registers in a few seconds . In general, when SOLVE
finds a root off(x)=0 it returns two final guesses x and y in
the X and Y registers respectively; either x=y and f(x) =0, or
else x and y differ in their last (10th) significant decimal
digit and f(x) and fly) have opposite signs. In both cases the
Z register will contain f(x).

On the other hand, SOLVE may fail to find a place where
f(x) vanishes or changes sign, possibly because no such
place exists. Rather than search forever , the calculator will
stop where 1 f(x) 1 appears to be stationary, near either a local
positive minimum of 1 f(x) 1 as illustrated in Fig. 3d or where
f(x) appears to be constant. Then the calculator displays
ERROR 6 while holding a value x in the X register and f(x) in
the Z register for which f(y) /f(x) ~ l at every other guess y
that was tried, usually at least four guesses on each side of x.
(One of those guesses is in the Y register.) When this hap­
pens the calculator user can explore the behavior of f(x) in
the neighborhood of x, possibly by pressing SOLVE again, to
see whether 1 fl really is minimal near x, as it is in Fig. 3d, or
whether the calculator has been misled by unl ucky guesses.
More about this later.

So SOLVE is not foolproof. Neither is any other equation
solver, as explained on page 23 .

How Does SOLVE Compare with Other Root-Finders?
Program libraries for large and small computers and cal-

culators usually contain root-finding programs, but none of
them works over so wide a range of problems or so conve­
niently as does the HP-34C's SOLVE key. Other root-finders
are hampered by at least some of the following limitations:
1. They insist upon two initial guesses that straddle an odd

number of roots. SOLVE accepts any guess or two and
does what it can to find a root nearby, if possible, or else
farther away.

2. They may have to be told in advance how long they are
permitted to search lest they search forever . Con­
sequently their search permit may expire after a long
search , but just moments before they would have found a
root. SOLVE knows when to quit; it can't go on forever,
but it can go on for a long time (e.g., when f(x)=l /x).

3. They may require that you prescribe a tolerance and then
oblige you to accept as a root any estimate closer than
that tolerance to some previous estimate, even if both
estimates are silly. SOLVE will claim to have found a root
x only when either f(x) =0 or f(x) ' fly) < 0 for some y
differing from x only in their last (10th) significant dec­
imal digit.

4. They may claim that no root exists when they should
admit that no root was found. SOLVE will not abandon
its search unless it stumbles into a local minimum of 1 fl,
namely an argument x for which f(y) /f(x) ~ l at all other
(usually at least nine) sampled arguments y on both
sides of x.

5. They may deny to the program that calculates f(x) certain
of the calculator's resources; for instance

"begin with no label other than A' "
"do not use storage registers 0 through 8"
" do not use certain operations like CLR or =".

SOLVE allows the f(x) program to use everything in
the calculator except the SOLVE key. Moreover, SOLVE
may be invoked from another program just like any other
key on the calculator; and f(x) can use the HP-34C's
powerful f; key.

A lot of thought has gone into making SOLVE conform to
Albert Einstein's dictum: "As simple as possible, but no
simpler."

How Does SOLVE Work?
The SOLVE key's microprogram uses very little of the

HP-34C's resources. Reserved for SOLVE's exclusive use are
just five memory registers for data and a handful of other
bits . Those five memory registers hold three sample argu­
ments a, {3, and y and two previously calculated sample
values f(a) and f({3) while the user 's f(x) program is calculat­
ing f(x) from the argument x = y, which it found in the stack.
How does SOLVE choose that argument y?

Suppose a and {3 both lie close to a root x = ~ of the
equation f(x)=o. Then a secant (straight line) that cuts the
graph off at the points [x=a ,y=f(a)] and [x={3 , y=f({3)]
must cut the x-axis at a point [x= y , y =O] given by

y = {3 - ({3-a) · f({3) /(f({3)-f(a)) (1)

Provided the graph of f is smooth and provided ~ is a
simple root , i.e., fm = 0 ~ i'm, then as Fig. 4 suggests,y
must approximate ~ much more closely than do a and {3.
In fact the new error y-~ can be expressed as

DECEMBER 1979 HEWLETT·PACKARO JOURNAL 21

(a)

100

90

80

70

60

50

-20

-30

fIx) = exp(x) + x - 2

fIx) = exp(x) - 4x - (4 - 41" 4)

0.50

0.40
fIx) = exp(x) - 5x + 3

0.30

0.20

0.10

0.00 ~t-----=-t:--.::!II"'IIIiiiO;;;;;;;;;;j:;;;;;"""""'--:t:--:t.~-:::
1.30 1.40 1.80 1.90 2.00

-0.10

- 0.20

(b)

300.00

250.00

200.00

fIx) = exp(x) - 20x + 90

50.00

-5.00 -4.00 - 3.00 -2.00 -1 .00 0.00 1.00 2.00 3.00 4.00
-2.00 2.00 6.00 10.00

(c) (d)

Fig. 3. Examples of SOLVE results for different values of C1 and C2 and different first guesses for
the root x in the program of Fig. 2. (a) If the first guess is -99 the root x = 0.442854401 is found in
25 seconds. The graph of f(x) on the negative-x side is relatively straight, so SOLVE works quickly.
If the first guess is 99 the root is found in 190 seconds. SOLVE takes longer to get around a sharp
bend. (b) With first guesses 0 and 2 the root 1.468829255 is found in 30 seconds. With first
guesses 2 and 4 the root x = 1.74375199 is found in 20 seconds. Many root finders have trouble
finding nearby roots. (c) With first guesses 0 and 2 the double root 1.386277368 is found in 50
seconds. Many root finders cannot find a double root at all. (d) Since no root exists, SOLVEdisplays
ERROR 6. With first guesses of 0 and 10, SOLVE displays ERROR 6 in 25 seconds. After the error is
cleared SOLVE displays 2.32677 , which approximates the place x = 2.99573 where f(x) takes

its minimum value 50.085

the SOLVE key.

where K is complicated but very nearly constant when a
and f3 both lie close enough to ~. Consequently the secant
formula, equation 1, improves good approximations to ~
dramatically, and it may be iterated (repeated): after fry) has
been calculated a and f(a) may be discarded and a new and
better guess a calculated from a formula just like equation 1:

A lot could be said about the secant iteration's ultimately
rapid convergence, but for two reasons the theory hardly
ever matters. First , the theory shows how strongly the se­
cant form ula (equation 1) improves good estimates of a root
without explaining how to find them, even though the
search for these estimates generally consumes far more time
than their improvement. Second, after good estimates have
been found, the secant iteration usually improves them so
quickly that, after half a dozen iterations or so, the tiny
calculated values of f(x) fall into the realm of rounding error
noise . Subsequent applications of equation 1 are con­
founded by relatively inaccurate values f(a) and f(f3) that

0= y - (Y-f3)'f(y) /(f(y)-f(f3)) (2)

This process repeated constitutes the secant iteration
and is the foundation underlying the operation of

22 HEWLETI-PACKARD JOURNAL DECEMBER 1979

y

L-____________ ~ __ ~--~~---------------J--~x

Fig. 4. Given guesses a and f3 with corresponding function
values f(a) and f(f3) the secant iteration produces a new guess
'I by the formula 'I = f3 - (f3 -a) ·f(f3) / (f(f3)- f(aJ) .

produce a spuri ous v alue for the quotient f({3) /(f({3) -f(a)) .
For these reasons the secant iteration i s capable of dither i ng
interminably (or until the calculator's battery runs down) .
Figs. 5a-5b show examples where the secant iteration cycles
endlessl y through estimates a, {3 , 'Y, a, a, {3 , y , a, .. .

Therefore, the secant iteration must be amended before it
can serve the SOLVE key sati sfactorily.

SOLVE cannot dither as shown in Fig. 5a because, having
d i scov ered two samples of f(x) with opposite signs, it con­
strains each successive new guess to lie strictly between
every tw o previous guesses at which f (x) took opposite
signs, thereby forcing successi ve guesses to converge to a
place where f vanishes or rev erses sign. That constraint is
accomplished by modify ing equation 2 slightly to bend the

fIx)

----~~--------~~~~~--------~~----_.x

(a)

fIx)

-------¥~--------~----~~--------~~----~x

(b) 'Y '"
Fig. 5. Examples of how the secant iteration can cycle end­
lessly through the values a, f3, 'I, 8. (1) a , f3-y (2) f3, ~8 (3)
'I, Il-a (4) 8, a-f3 and so forth .

Why Is Equation Solving Provably
Impossible?

" The merely Difficult, we do immediately; the Impossible will take
slightly longer." Old British naval maxim.

What makes equation solving merely difficult is the proper calcula­
tion of f(x) when the equation f(x) = 0 has to be solved . Sometimes the
calculated values of f(x) can simultaneously be correct and yet utterly
misleading. For example, let g(x) == x+2' (x-5); this is the function
whose calculated values change sign but never van ish. Next let the
constant c be the calculated value of (g(1 0/3))2; this amounts to c =
10- 18 on an HP handheld calculator, but another calculator may get
some other positive value . Finally, let f(x) == 1-2 exp(_g2(X)/C2). The
graph of f crosses the x-axis despite the fact that the correctly
rounded value calculated for f(x) is always 1. None of the arguments x
for which f(x) differs significantly from 1 can be keyed into the cal­
culator, so it has no way to discover that f(x) vanishes twice very near
10/3, namely at

x = 10/3 ± cvTri2/3

No numerical equation solver could discover those roots.
Worse, perhaps, than roots that can't be found are roots that aren't

roots. Here is an example where the calculator cannot know whether
it has solved f(x) = 0 or f(x) = 00. Cons ider the two functions

f(x) == 1/g(x) and f(x) == 1/ (g(x) + c2/g(x)

where g(x) and c are defined above. These two functions have
identical calculated values, after rounding, for every x that can be
keyed into the calculator, which consequently can't te ll one from the
other despite the fact that at x = 10/3 the first has a pole, f(1 0/3) = 00 ,

and the second a zero, f(10/3) = O. Starting from straddling init ial
guesses x = 1 and x = 10 the SOLVE key finds a "root" of both
equations f(x) = 0 to lie between 3.333333333 and 3.333333334 after
only 49 samples. The user, not the calcu lator, must decide whether
the. place where f(x) changes sign is a root of f(x) = 0 or not. A similar
decision arises when both initial guesses lie on the same side of 10/3,
in which case SOLVE ultimately finds a "root" of f(x) at some huge x
with Ix I > 3.33 X 1098 , where the calculated value of f(x) underflows
to zero. That huge x must be regarded as an approximation to x = ± ""
where both functions f(±oo) = O.

The foregoing examples illustrate how our inability to perform cal­
culations with infin itely many figures makes equation solving difficult.
What makes equation solving impossible, even if rounding errors
never happened, is our natural desire to decide after only finite ly
many samples of f(x) whether it never vanishes. Any procedure that
claims to accomplish this task in all cases can be exposed as a fraud
as follows:

First apply the procedure to "solve" f(x) = 0 when
f(x) == -1 everywhere , and. record the finitely many
sample arguments X1, X2, X3 .. . , Xn at which f(x) was
calculated to reach the decision that f(x) never van­
ishes. Then apply the procedure again to f(x) == (x - X1) '
(X-X2)·(X- X3) ' (.. .) ,(x - xn)-1 . Since both funct ions
f(x) take exactly the same value, -1 , at every sample
argument, the procedure must decide the same way for
both: both equations f(x) = 0 have no real root. But that
is visibly not so.

So equation solving is impossible in general , however necessary it
may be in particular cases of practical interest. Therefore, ask not
whether SOLVE can fail ; rather ask, "When will it succeed?"

Answer: Usually.

DECEMBER 1979 HEWLETI·PACKARD JOURNAL 23

______ ~--------~~~------;_----~-----.x

~~--~I---:::::.:-----=-.--- ?

Fig.6. In the HP-34C, once two samples of f(x) with opposite
signs have been discovered, the secant line (1) is bent to (2)
whenever necessary to prevent an iterate I) from escaping out
of the shortest interval known to contain a place where f(x)
reverses sign.

secant occasionally as illustrated in Fig . 6. Another small
modification to compensate for roundoff in the secant for­
mula (equation 1) protects it from the premature termina­
tion illustrated in Fig. 7. Although SOLVE can now guaran­
tee convergence ultimately , that might not be soon enough
since ultimately we all lose patience. Fortunately, con­
vergence cannot be arbitrarily slow. At most six and nor­
mally fewer iterations suffice to diminish either successive
errors I x-~I or successive values If(x) I by an order of
magnitude, and rarely are more than a dozen or two itera­
tions needed to achieve full ten-significant-digit accuracy.
So fierce is the bent-secant iteration's urge to converge that
it will converge to a pole (where f(x) =(0) if no zero (where
f(x) = 0) is available, and this is just as well because poles
and zeros cannot be distinguished by numerical means

Fig. 7. With a wild initial guess a the rounded value of 'Y
may coincide with {3. This convinces some equation solvers
that 'Y is the root. SOLVE perseveres until it locates the
root ~ correctly.

24 HEWLEn·PACKARD JOURNAL DECEMBER 1979

-1.00

(a)

-1 .00

(b)

-0.50

5.00

4.00

3.00

2.00

1.00

60.00

SO.OO

40.00

30.00

20.00

10.00

-0.50_10.00

-20.00

-30.00

-40.00

-50.00

-60.00

3.00

-2.00

-3.00 t(x) = 6x - x' - 1

-4.00

-5.00

0.50 1.00 1.50

t(x) = exp(6x - x' - 1) - 1

2.00 t(x) = In(6x - x')

1.00

2.00

-1.00 -0.50

(c)

-1.00

-2.00

-3.00

Fig.8. These three equations al/ have the same roots , but (a)
is easy to solve, (b) with a bad initial guess gets worse , and
equation (c) is defined only close to its roots.

alone (see page 23).
What does SOLVE do when all the values f(x) sampled so

far have the same sign? As long as successive samples f(x)
continue to decline in magnitude, SOLVE follows the secant
formula (equation 1) with two slight amendments . One
amendment prevents premature termination (see Fig. 7).
The other deals with nearly horizontal secants, when f(a)
= f(,8) very nearly, by bending them to force I 'Y -,B I ~

100 /.B-a / ' thereby diminishing the secant iteration's ten­
dency to run amok when roundoff becomes significant.
Convergence now cannot be a~bitrarily slow. As long as
successive samples f(x) continue to decline in magnitude
without changing sign they must decline to a limit at least
as fast, ultimately, as a geometric progression with common
ratio 1/2, and usually much faster . When samples f(x) de­
cline to zero , SOLVE finds a root. When they decline to a
nonzero limit, as must happen when f(x) = 1 + e"- or other­
wise declines asymptotically to a nonzero limit as x_±oo ,
SOLVE discovers that limit and stops with either ERROR 6,
meaning no root was found , or ±9.999999999 x 1099 , mean­
ing overflow, in the display.

A different approach is needed when a new sample f(y)
exhibits neither a different sign nor a diminished mag­
nitude. To avoid the dithering exhibited in Fig. 5b, SOLVE
sets the secant formula (equation 2) aside. Instead, it inter­
polates a quadratic through the three points [a,f(a)] ,
[.B,f(.Bl] , [y,f(y)] and sets a to the place where that quadra:
tic 's derivative vanishes. In effect, a marks the highest or
lowest point on a parabola that passes through the three
points . SOLVE then uses a and.B as two guesses from which
to resume the secant iteration. At all times 13 and f(.B) serve
as a record of the smallest I f(x) I encountered so far.

But the parabola provides no panacea. Roughly, what it
does provide is that if I f(x) I has a relatively shallow
minimum in the neighborhood of 13 and a, the calculator
will usually look elsewhere for the desired root. If I f(x) I has
a relatively deep minimum the calculator will usually re­
member it until either aroot is found or SOLVE abandons the
search.

The search will be abandoned only when I f(.B) I has not
decreased despite three consecutive parabolic fits , or when
accidentally a = .B. Then the calculator will display ERROR 6

with.B in the X register, f(.B) in the Z register, and y or a in the
Y register. Thus, instead of the desired root, SOLVE supplies
information that helps its user decide what to do next. This
decis ion might be to resume the search where it left off, to
redirect the search elsewhere, to declare that f(x) is negligi­
ble so x is a root , to transform f(x)=O into another equation
easier to solve, or to conclude that f(x) never vanishes .

When invoked from a running program SOLVE does
something more useful than stop with ERROR 6 in the dis­
play: it skips the next instruction in the program. The cal-

x

2

2x 10- 10 3x 10 - 10

culator's user is presumed to have provided some program
to cope with SOLVE's possible failure to find a root , and then
SOLVE skips into that program. This program might calcu­
late new initial guesses and reinvoke SOLVE, or it might
conclude that no real root exists and act accordingly. There­
fore, SOLVE behaves in programs like a conditional branch:
if SOLVE finds a root it executes the next instruction, which
is most likely a GTO instruction that jumps over the program
steps provided to cope with failure . Therefore the HP-34C,
alone among handheld calculators , can embed equation­
solving in programs that remain entirely automatic regard­
less of whether the equations in question have solutions.

Some Problem Areas
Equation solving is a task beset by stubborn pathologies;

in its full generality the task is provably impossible (see
page 23). Even though equations that matter in practice may
not fall into the Chasm of the Impossible , yet they may teeter
on the brink. Rather than leave the user teetering too , the
HP-34C Owner's Handbook devotes two chapters to SOLVE,
one introductory and one more advanced. The second chap­
ter discusses equation solving in general rather than the
SOLVE key alone , and supplies the kind of helpful advice
rarely found in textbooks . Here follow examples of things
that users might need to know but are unlikely to have
learned except from bitter experiences, which the Hand­
book tries to forestall.
Hard versus Easy Equations. The two equations f(x) =0 and
exp(f(xlJ-l=O have the same real roots, yet one is almost
always much easier to solve numerically than the other. For
instance, when f(x)==6x-x 4 -1 the first equation is easier.
When f(x)==ln(6x-x4) the second is easier . See Figs. Ba-Bc.

In general , every equation is one of an infinite family of
equivalent equations with the same real roots , and some of
those equations must be easier to solve than others. If your
numerical method fails to solve one of those equations, it
may succeed with another.
Inaccurate Equations. Numerical equation solvers have
been known to calculate an equation 's root wrongly. That
cannot happen to SOLVE unless the equation is wrongly
calculated, which is what happens in the next example.
This example resembles equations that have to be solved
during financial calculations involving interest rates or
yields on investments. For every p ~ 0 the equation

4x10- 10 p

Fig. 9. The jagged solid line is a
graph at the ostensible roots at
x - (1-exp(- xp))/xP = 0 calcu­
lated carrying ten significant di­
gits . The colored line is a plot of the
correct root x = 1 (to nine signifi­
cant digits) obtained by a re­
arranged calculation.

DECEMBER 1979 HEWLETI· PACKARD JOURNAL 25

x - h(px) = 0,

where h(O) = 1 and h(z) "" (1 - exp(-z))1z if z f. 0, has just
one root x, and 0 < x :,,; 1. The colored line in Fig. 9 plots this
rootx against p , and shows how smoothlyx~l as p~O. But
when that root x is calculated numerically for tiny values of
p using the most straightforward program possible, some­
thing awful happens, as shown by the black graph in Fig. 9.
That serrated graph reflects the capricious way in which
the calculated equation's left-hand side changes
sign-once for p=10 -11 at "root" x = 10.- 88, seven times for
p=2 .15 x 10-10 at "roots " x=4.65 x 10-90 ,0.233,0.682,
0.698 , 0.964 ,1. 163 and 1.181. All those "roots" are wrong;
the correct root is x = 0.999999999 These aberrations are
caused by one rounding error, the one committed when
exp(-px) is rounded to 10 significant digits. Carrying more
figures will not dispel the aberrations but merely move
them elsewhere.

To solve x-h(px) = 0 correctly one must calculate h(z)
accurately when z is tiny. Here is the easiest way to do that:
if exp(-z) rounds to 1 then set h(z) = 1, otherwise set h(z) =
(exp(-z) - l)lln exp(-z). This reformulation succeeds on
all recent HP handheld calculators because the LN key on
these calculators retains its relative accuracy without de­
gradation for arguments close to 1 (see reference 1) . Con­
sequently, In exp(-z) conserves the rounding error in the
last digit of exp(-z) well enough for that error to cancel
itself in the subsequent division, thereby producing an ac­
curate h(z) and a trustworthy root x.

Generally, wrong roots are attributable more often to
wrong equations than to malfunctioning equation solvers.
The foregoing example, in which roundoff so contaminated
the first formula chosen for f(x) that the desired root was
obliterated, is not an isolated example. Since the SOLVE
key cannot infer intended values of f(x) from incorrectly
calculated values , it deserves no blame for roots that are
wrong because of roundoff. Getting roots right takes care­
fully designed programs on carefully designea. calculators.
Equations with Several Roots. The more numerous the
roots the greater is th~ risk that some will escape detection.
Worse, any roots that cluster closely will usually defy at­
tempts at accurate resolution. For instance, the double root
in Fig. 3c ought to be x = In 4 = 1.386294361 instead of
1.386277368, but roundoff in the 10th decimal causes the
calculated f(x) to vanish throughout 1.386272233 :,,; x :,,;
1.386316488, thereby obscuring the last half of the double
root's digits . Triple roots tend to lose 2/3 of the digits car­
ried, quadruple roots 3/4, and so on. All these troubles can
be attacked by finding where the first few derivatives f'(xl.
f"(xl. etc . vanjsh, but nobody knows how to guarantee
victory in all cases.

What Have We Learned?
The reader will recognize, first, how little the pathologies

illustrated above have to do with the specifics of the
SOLVE key, and second, how nearly certain is the user of so
powerful a key to stumble into pathologies sooner or later,
however rarely . While the SOLVE key enhances its user 's
powers it obliges its user to use it prudently or be misled.

And here is Hewlett-Packard's dilemma. The company
cannot afford a massive effort to educate the public in nu-

26 HEWLETI·PACKARD JOURNAL DECEMBER 1979

merical analysis. But without some such effort most poten­
tial purchasers will remain unaware of SOLVE's value to
them. And without more such effort many actual purchas­
ers may qlame their calculator for troubles that are intrinsic
in the problems they are trying to SOLVE. To nearly
minimize that required effort and its attendant risks ,
SOLVE has been designed to be more robust, more reliable
and much easier to use than other equation solvers previ­
ously accepted widely by the computing industry. Whether
that effort is enough remains to be seen. Meanwhile we
enjoy the time SOLVE saves us when it works to our satisfac­
tion, which is almost always .

Acknowledgments
I am grateful for help received from Dennis Harms, Stan

Mintz , Tony Ridolfo and Hank Schroeder. Hank wrote the
Handbook 's chapters on SOLVE. Tony found ways to im­
prove the SOLVE key's program while microcoding it.
Dennis contributed some improvements too, both to the
program and to this explanation of it, but lowe him most
thanks for , along with Stan , supporting our efforts en­
thusiastically despite justifiable doubts .

Reference
1. D.W. Harms , " The New Accuracy: Making 23 =8,"
Hewlett-Packard Journal, November 1976.

William M. Kahan
Will iam Kahan is professor of mathema­
tics and computer science at the Uni­
versity of California at Berkeley. An HP
consultant since 1974, he has helped
develop increasingly accurate arithme­
tic and elementary functions for the
HP-27, ,67/97, 32E, and 34C Calcula­
tors, financial functions for the HP-92
and 38E1C, and other functions for the
HP-32E and 34C, including f and SOLVE

for the 34C. A native of Toronto,
Canada, he received his BA and PhD
degrees in mathematics and computer
science from the University ofToronto in
1954 and 1958, then taug ht those su b­

jects at Toronto for ten years before moving to Berkeley. A member of
the American Mathematical Society, the Association for Computing
Machinery, and the Society for Industrial and Applied Mathematics,
he has authored several papers and served as a consultant to several
companies. He is married , has two teenage sons, and lives in Ber­
keley.

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

