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Handheld Calculator Evaluates Integ~als 
The HP-34C is the first handheld calculator to have a key 
that performs numerical integration almost automatically. 
It may change your attitude towards what used to be 
regarded as a dreary tedious task. 

by William M. Kahan 

N UMERICAL INTEGRATION has been the subject 
of about two thousand books and learned papers, 
with a dozen or so "new" methods published every 

year. And yet the task in question has a simple geometrical 
interpretation seen in Fig. 1: given an expression flu) and 
lower and upper limits y and x respectively, the value 

I = r flu) du y 

represents the area under the graph of flu) for u between y 
and x. Why so much fuss? 

As I write this an electrical engineering colleague, Pro­
fessor J. R. Woodyard , enters my office and asks to have 

11 = r1 
( Vu __ 1_ ) du 

J o u-l In u 

evaluated on my HP-34C Calculator (Fig. 2). Let's do it. 
Step 1. Key into the calculator under, say, label A a pro­

gram that accepts a value u in the display (X regis­
ter) and displays instead the computed value ofthe 
integrand 

W /(U-1) - 1/(ln u) 

Fig. 3 shows an HP-34C program to do this. 
Step 2. Restore the calculator to RUN mode and set the dis­

play to, say, FIX 5 to display five decimal digits after 
the point, which are as many digits ofthe integrand 
as my client says he cares to see. (More about this 
later.) 

Step 3. Key in the lower and upper limits of integration 
thus,O ENTERt 1, thereby putting 0 into the Y reg­
ister and 1 into X. 

Step 4. Press I: A, wait 25 seconds until the display shows 
0.03662, then press x~y to see 0.00001. We 
have just calculated 

11 = 0.03662 ± 0.00001. 

That was easy-too easy. Woodyard smiles as if he knew 
something I don't know. Could the calculator be wrong? 
How does the calculator know the error lies within ±O.OOOOI ? 

Many other questions come to mind: 
• Why is numerical integration impossible in general? 
• Why do we persist in trying to do it anyway? 
• How do we do it? How well do we do it? 
• How does the I: key compare with other integration 

schemes? 

• What can go wrong and how do we avoid it? 
• What else have we learned? 
These questions and others are addressed in the following 
pages. 

Tolerance and Uncertainty 
Integrals can almost never be calculated precisely. How 

much error has to be tolerated? The f; key answers this 
question in a surprisingly convenient way. Rather than be 
told how accurately I = I; f(u)du should be calculated, the 
HP-34C asks to be told how many figures of flu) matter. In 
effect, the user is asked to specify the width of a ribbon 
drawn around the graph of f(u), and to accept in place of 
I an estimate of the area under some unspecified graph lying 
entirely within that ribbon. Of course, this estimate could 
vary by as much as the area of the ribbon, so the calculator 
estimates the area of the ribbon too. Then the user may 
conclude from Fig. 4 that 

I = (area under a graph drawn in the ribbon) 
± ('12 area of the ribbon) 

The calculator puts the first area estimate in its X register 
and the second, the uncertainty, in the Y register. 

For example, flu) might represent a physical effect whose 
magnitude can be determined only to within , say, ±0.005. 
Then the value calculated as flu) is really flu) ± M(u) with 
an uncertainty M(u) = 0.005. Consequently FIX 2, which 
tells the calculator to display no more than two decimal 
digits after the point, is used to tell the calculator that 
decimal digits beyond the second cannot matter. Therefore 
the calculator need not waste time estimating I ± III = 
f; (f(u) ± M(u))du more accurately than to within an 
uncertainty III = II; M(u)du I. This uncertainty is esti­
mated together with I ± Ill, thereby giving the calculator's 
user a fair idea of the range of values within which I 
must lie. 

f(u) 

Area I = f: f(u) du 

-----~------------------~------.u 
u=y u=X 

Fig. 1. An integral interpreted as an area . 
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Fig. 2. HP-34C Calculator has keys to solve any equation and 
to compute integrals . 

The uncertainty M(u) is specified by the user via the dis­
play setting. For instance, SCI 5 displays six significant 
decimal digits, implying that the seventh doesn't matter. 
The HP-34C allows the user's f-program to change the dis­
play setting, thereby providing for uncertainties M(u) 
that vary with u in diverse ways. But users usually leave 
the display set to SCI 4 or FIX 4 without much further 
thought. 

By asking the user to specify M(u) instead of III the 
HP-34C helps avoid a common mistake-wishful think­
ing. Other integration procedures , which conventionally 
expect the user to specify how tiny III should be, blithely 
produce estimates of I purporting to be as accurate as the 
user wishes even when the error ~f(u) is far too big to justify 
such claims to accuracy. The HP-34C does not prevent us 
from declaring that flu) is far more accurate that it really is , 
but our attention is directed to the right question and not dis­
tracted by questions we cannot answer. Whether we spec­
ify M after a careful error analysis or just offer a guess, we 
get estimates I ±Ill that we can interpret more intelligently 
than if we got only I with no idea of its accuracy or inaccuracy. 

A Survey of Integration Schemes 
Students are taught the fundamental theorem of calculus: 

1= JX flu) du = F(x)-F(y) provided..!L F(u) = flu) 
y du 

This means that one could calculate I if one could dis­
cover somehow an expression F(u) whose derivative is 
the given expression flu). Students are taught integration 
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as a process , applied to expressions, that starts with f and 
ends with F. But in professional practice that process 
hardly ever succeeds . A compact expression F(u) is al­
most always difficult or impossible to construct from any 
given flu) . For instance, neither 

f x exp( -u2/2)du/',/2; nor foX exp( -u + x In u)du 

possesses a closed.form, that is, an expression involving only 
finitely many elementary operations (+, - , x , ..;-, In, exp, tan, 
arctan, .. . ) upon the variable x. Nevertheless , both integrals 
can be approximated arbitrarily accurately by aptly chosen 
formulas. So often do statisticians and engineers need 
values of those integrals that formulas for them, accurate 
to ten significant decimal digits, can now be calculated in 
a few seconds by pressing a key on 'certain handheld cal­
culators. (Press Q on the HP-32E to get the first integral , 
the cumulative normal distribution; press xl on the HP-34C 
to get the second integral, the gamma function [(1 +x) , 
whether x be an integer or not.) 

Almost every rare integrand flu) whose indefinite in­
tegral F(x) = fX f(u)du + c is expressible in a compact or 
closed form can be recognized by a computer program that 
accepts the string of characters that defines f and spews out 
another string that represents F. (Such a program is part of 
the MACSYMA system, developed at MIT, that runs on a 
few large computers-two million bytes of memory-at 
several universities and research labs.) Perhaps the terms 
"compact" and "closed form" should not be attached to the 
expression F(x), since usually, except for problems as­
signed to students by considerate teachers , the integral 

Begin with u in the X register 

'@h" Save u in the stack 

... Vu 

'fiE- Recall u 

- ... W(u-1) 

Recall u again 

-!I-
. .. 1/In(u) 

- Display v'Ui(u-1) - 111n u 

Fig. 3. This program makes the HP-34C calculate the inte­
grand Vul(u -1) - 1 lin u when the argument u is in the X 
register and key A is pressed. Labels B, D. 1, 2, or 3 would have 
served as well as A. 

I 



6J = Y2 Area of Ribbon = fy' .l.f(u) du 

----......... 
' ..... f(u)+..lf(u) 

.......... f(u) ? 
.. f(u)-Af(u) 

Area I = Jy' f(u) du 

------+-----------------~-------.u 
u=y u=x 

Fig.4. The graph of an uncertain integrand f(u) ±AJ(u) can run 
anywhere in the ribbon bounded by the dashed lines . The area 
under such a graph , I±A/, is uncertain by ±A/, which is one­
half the area of the ribbon . The HP-34C displays its estimate of 
I ± AI in its X register and holds an estimate of AI in its Y register . 

F(x) far exceeds the integrand flu) in length and complex­
ity. Shown in Fig. 5 are two compact forms and one closed 
form for F(x) when f(u)=l /(l +U64). The extent to which F(x) 
is here more complicated than flu) is atypically modest out 
of consideration for the typesetter. The formulas in Fig. 5 
will remind many readers of hours spent on calculus prob­
lems , but they do not provide economical ways to calculate 
F(x) for any but very big or very tiny values of x. When I use 
the HP-34C's I: key to calculate F(l) = fJ du/(1+u 64 ) = 
0.989367 ± 0.000004 the answer appears in 200 seconds 
including 20 seconds taken to enter the f-program plus 180 
seconds for a result (in SCI 5) . Calculating F(l) from any 
formula in Fig. 5 takes at least about ten times longer, not 
including the time taken to deduce the formula. Engineers 
and scientists have long been aware of the shortcomings of 
integration in closed form and have turned to other 
methods. 

Perhaps the crudest way to evaluate g f(u)du is to plot 
the graph of flu), like Fig. 1, on uniformly squared paper 
and then count the squares that lie inside the desired 
area . This method gives numerical integration its other 
name: numerical quadrature. Another way, suitable for 
chemists, is to plot the graph on paper of uniform density, 
cut out the area in question, and weigh it. Engineers used 
to measure plotted areas by means of integrating engines 
called planimeters . These range from inexpensive hatchet 
planimeters of low accuracy to Swiss-made museum 
pieces costing hundreds of dollars and capable of three 
significant decimals . (For more details see reference 1). 
Nowadays we re ckon that the computer will drive 
the graph plotter so it might as well integrate too. 

Today's numerical integration techniques are best ex­
plained in terms of averages like 

A= I/(x-y) = r f(u)du /(x-y) 
y 

which is called "the uniformly weighted average of flu) 
over the interval between x and y." Another kind of average , 

n n 

A = Lw;f(ui) where w i>O and LWi=l , 
i-1 i-1 

is a finite weighted average of n samples f(Ul), f(u2), .. . , f(un). 

Provided the sample arguments Ul' U2' ... , un' called nodes, 
all lie between x and y the sample average A will approxi­
mate, perhaps poorly, the desired average A, and hence 
provide I = (x-y)A as an approxim,!tion to I = (x-y)A. " 
Statisticians might be tempted to spilnkle the nodes Uj ran­
domly between x and y-that is what Monte Carlo methods 
do. But randomness is a poor substitutet for skill because 
the error A -A tends to dimirilsh like l lYn as the number 
n of random samples is increased, whereas uniformly 
spaced and weighted samples provide an error that dimin­
ishes like 1/n 2 . Other more artful methods do even better. 

Different numerical integration methods differ princi­
pally in the ways they choose their weights Wj and nodes Uj' 
but almost all have the following characteristics in com­
mon. Each average A is associated with a partition of the 
range of integration into panels as shown in Fig. 6. Each 
panel contains one node Uj whose respective weight is 

Wj = (width of panel il/(width of range of integration). 

The formula given above for A amounts to approximating 
the area in each panel under the graph of flu) by the area of 
a rectangle as wide as the panel and as high as the sample 
f(uj)' The simplest method is the midpoint rule, whose 
nodes all lie in the middles of panels all of the same width. 
Other methods, like the trapezoidal rule and Simpson's 
rule , vary the panel widths (weights) and nodes in ways 
designed to exploit various presumed properties of the 
integrand flu) for higher accuracy. Which method is best? 
If this question had a simple answer there would not be so 
many methods nor would we need texts like "Methods of 
Numerical Integration" by P.J. Davis and P. Rabinowitz,2 
which contains 16 FORTRAN programs and three bib­
liographies with well over 1000 citations. 

For example, consider Gaussian quadrature. This method 
is widely regarded as "best" in the sense that it very often 
requires fewer samples than most other methods to achieve 
an average A that approximates the desired A to within 
some preassigned tolerance. But the weights and nodes of 
Gaussian quadrature take quite a while to calculate. Pro­
grams to do so, and the resulting tables of weights and nodes 
for various sample counts n , have been published.3 Had 
we chosen Gaussian quadrature for the I: key we would 

F(x) .. foX f(u) du where f(u) .. 1/(1 + US4) . 

F(x) = xi: (-X
S4t I (64k + 1) if x2 ,,;;; 1 

k- O 

= i2 I ~in8k . arctan (2X Sin:k) + Y2cos8k . In ~ + 2 1 ~ 
k= l 1- x \' ~-1 

2cos8k 

+ (ii csc(ii) sign (x) if x2> 1) where 8k = (k-V2)1T 132 

Fig. 5. Formal integration transforms many a simple expres­
sion f(u) into messy formulas F(x) of limited numerical utility. 
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4 f' f(u) du = (X-y) . L WI ' f(ul) 
Y j . , 

y u, 

0.2 0.3 0.3 

flu) 

0.2 

Fig. 6. The integral, regarded as an area, is here divided into 
four panels each of whose areas is approximated by the area 
of a rectangle as wide as the panel and as high as a sample. 

have had to store at least as many nodes and weights as we 
could expect to need for difficult integrals , amounting to 
at least several hundred 13-digit numbers, in read-only 
memory. But that would have left no space in the HP-34C 
for anything else, so a different method had to be found. 

The f: key could not use a method that generates just 
one average A because that gives no indication of how 
accurately it approximates A. Instead we looked only at 
methods that sample repeatedly and with increasing 
sample counts nl < n2 < n3 < ... to produce a sequence of 
increasingly accurate averages Al , A2, A3, .... Provided 
that sequence converges to A so fast that each I Ak+l - A I 
is considerably smaller than its predecessor, the error 
I Ak-A I can be approximated accurately enough by 
IAk-Ak+l l , and the last average Ak+l can be accepted in 
lieu of A as soon as I Ak-Ak+ll is tolerably small. 

How small is "tolerably small"? That depends upon the 
area of the ribbon discussed above under "Tolerance and 
Uncertainty." Since the integral I = g f(u)du inherits an 
uncertainty III = I g M(u)du I from the uncertainty M(u) 
in the integrand, so does A = V(x-y) inherit an uncertainty 
M = Ill/l x-yl, which may be approximated by 

n 

6.A = 2.: wjM(uj) 
j=l 

in the same way as A is approximated by A. Indeed, A and 
tlA can be computed together since they use identical 
weights and nodes. And so the sequence Al , A2, A3, ... is 
accompanied by a sequence of respective uncertainty esti­
mates tlAl , tlA2, tlA3, .... Now "tolerably small" can be 
defined to mean "rather smaller than tlAk+l ." 

The foregoing argument provides an excuse for accept­
ing Ak+l in lieu of A whenever two consecutive estimates 
Ak and Ak+l agree to within tlAk+l , but it provides no 
defense against the possibility that convergence is not so 
fast, in which case Ak and Ak+1 might agree by accident 
and yet be both quite different from A. The I: key waits for 
three consecutive estimates Ak, Ak+l' and Ak+2 to agree 
within tlAk+2. Only the most conservative integration 
schemes wait that long. While this conservatism strongly 
attenuates the risk of accidental premature acceptance of 
an estimate, the risk that three consecutive estimates might 
agree within the tolerance and yet be quite wrong cannot 
be eliminated. Later, under "How to Deceive Every Nu-
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merical Integration Procedure," some such risk will be 
proved unavoidable, but the risk now is so small that 
further attenuation is not worth its cost. 

The combination of ignorance with conservatism is 
surprisingly costly. Had we known in advance that Ak 
would be accurate enough we would have calculated none 
of the other averages. Instead, waiting for three consecu­
tive averages to agree could easily cost some methods al­
most 6.25 times as many samples as if only Ak had to be 
calculated , and more than that if the sample counts nl, 
n2, n3' ... are not chosen optimally. For the f: key we chose 
nk = 2k_l and we chose a method whose successive aver­
ages each share almost half of the previous average's 
samples, thereby preventing the cost of ignorance from 
much exceeding a factor of 4. 

Memory limitations precluded the use of another family 
of methods known as adaptive quadrature . These methods 
attempt to distribute nodes more densely where the inte­
grand f(u) appears to fluctuate rapidly, less densely else­
where where f(u) appears to be nearly constant or relatively 
negligible. They succeed often enough that the best 
general-purpose integrators on large computers are adap­
tive programs like Carl de Boor's CADRE; this and others 
are described in reference 2. Alas, adaptive programs con­
sume rather more memory for scratch space than the 
twenty registers available in the HP-34C. 

What Method Underlies the f; Key? 
The HP-34C uses a Romberg method; for details consult 

reference 2. Several refinements were found necessary. In­
stead of uniformly spaced nodes , which can induce a kind 
of resonance or aliasing that produces misleading results 
when the integrand is periodic, the f; key's nodes are 
spaced nonuniformly. Their spacing can be explained by 
substituting, say, 

into 

11 11 3 1 3 I = f(u)du = f (- v - - v 3
) . - (l-l)dv 

-1 -1 2 2 2 

and distributing nodes uniformly in the second integral. 
Besides suppressing resonance, the substitution confers 
two more benefits. One is that no sample need be drawn 
from either end of the interval of integration, except when 
the interval is so narrow that no other possibilities are 
available, and consequently an integral like 

1
3 . 

smu du 
o u 

won't hang up on division by zero at an endpoint. Second, 
I = J; f(u)du can be calculated efficiently when 
f(u) = g(u)ViX=UI or g(u)V(x-u)(u-y) where g(u) is 
everywhere a smooth function, without any of the expedients 
that would otherwise be required to cope with the infinite 
values taken by the derivative {'(u) at u = x or u = y. Such 
integrals are encountered often during calculations of areas 
enclosed by smooth closed curves. For example, the area of 
a circle of radius 1 is 



g V u(4-u)du = 3.14159 ± 8.8xl0-6 

which consumes only 60 seconds when evaluated in SCI 5 
and only 110 seconds to get 3.141592654±1.4Xl0-9 

in SCI 9. 
Another refinement is the use of extended precision, 

13 significant decimal digits, to accumulate the sums that 
define Ale, thereby allowing thousands of samples to be 
accumulated, if necessary, without losing to roundoff any 
more information than is lost within the user's own f-pro­
gram. The last example's 10 significant decimal digits of 
'TT could not have been achieved without such a refinement. 

How Does the f; Key Compare with Other Integrators? 
What most distinguishes the HP-34C's g key from all 

other schemes is its ease of use. No step-size parameters, no 
plethora of error tolerances, no warning indicators that 
"can usually be ignored." Only the minimum informa­
tion needed to specify g (f(u)±M(ulldu has to be supplied. 
And because the g key is effective over so wide a range of 
integrals it ranks among the most reliable procedures avail­
able anywhere. Usually it is far faster than simpler proce­
dures like the trapezoidal rule or Simpson's rule com­
monly used previously on calculators . For integrands de­
fined by programs that fit comfortably into a mid-sized 
handheld calculator that can hold at most 210 program 
steps, the f; key is comparable in speed (count the number 
of samples) with the integrators available on large com­
puters. For much more complicated integrands the best 
adaptive integrators on large computers are appreciably 
faster. 

One of the HP-34C's most important components is its 

Owner's Handbook. It is for most owners the first guide to 
the foothills of an awesome range of new possibilities. Two 
chapters are devoted to f;. The first is introductory, and 
allows the user to evaluate simple integrals effortlessly 
and confidently. The second chapter is a longer explana- ,r 
tion of the power and the pitfalls, concerned mainly with 
numerical integration generally rath~r than with the 
HP-34C in particular. This chapter had to be included be­
cause its explanations and practical advice are not yet to be 
found in any text likely to be consulted by an owner, nor 
are they supplied by the instructions that accompany other 
integrators on other computers or calculators. This second 
chapter is part of the educational burden that must be 
borne by innovators and pioneers. The Owner's Handbook 
provides no formulas for the nodes and weights used by 
the HP-34C because they are not needed to understand 
how the f; key works; instead they can be deduced from 
information in this article. 

Every numerical integrator like g, which executes a 
user-supplied program to get the integrand 's value f(u). 
imposes constraints upon that program. Some constraints , 
like requiring f to have a smooth graph on the interval of 
integration, are practically unavoidable. Others are nui­
sances like 
• Begin the f-program with a special label, say A' . 
• Do not use certain memory registers, say #0 - #5. 
• Do not use certain operations, say = and CLR. 

The g key is encumbered with no such nuisances. The 
f-program may begin with any of several labels , so several 
different integrals can be calculated during one long com­
putation. The f-program may use memory registers freely 
and may use any operation key except g itself. One of 

Evaluation In RUN Mode Integrand in PRGM Mode Equation in PRGM Mode 

1111 

a 
'M"M' 

Wait for answer I 
to be displayed 

. .. save u 

ii-1MJID .. . for v 

l1li 

• • 
ImII 

. .. save v, get u 

.. . ulv 

IDID 
a ... getu 

• ••. Uv 

l1li 
.. . .. eU 

• • 
• . . . 1+uve

U 

• • • • 
.. . . . v-u+ln(1 +uveU

) 

Fig. 7. A program to evaluate 
I = J~ udulv(u) where v = v{u) 
satisfies v-u+ln ( 1 +uveU) =0. 
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those keys is the HP-34C's powerful SOLVE key.4 Conse­
quently this calculator is currently the only one that can 
evaluate conveniently integrals of implicit functions . 

For example. let v = . v(u) be the root of the equation 

v - u + In(l + uveU
) = o. 

Then 

g u dulv(u) = 1.81300 ± 0.000005 

results from a program rather shorter than on any previous 
calculator; it is exhibited in Fig. 7. 

Furthermore. I: may be invoked . like any other function . 
from within a program. thereby permitting the HP-34C to 
SOLVE equations involving integral s. For example. 
solving 

f; cos (x sin 8)d8 = 0 

for x = 2.405 .. . takes a short program contained in the 
Owner's Handbook. and exhibits the first zero of the Bessel 
function Jo(x) . 

How to Deceive Every Numerical Integration Procedure 
Such a procedure must be a computer program-call it 

P-that accepts as data two numerical values x and y and 
a program that calculates f(u) for any given value u. and 
from that data P must estimate I = J; f(u) duo The integra­
tion procedure P is not allowed to read and understand 
the f-program but merely to execute it finit ely often. 
as often as P likes. with any arguments u that P chooses . 
What follows is a scheme to deceive P. 

First ask P to estimate I for any two different values x and 
y and for f(u) == O. Record the distinct arguments Ut . Uz ... .. un 
at which P evaluates f(u). Presumably when P finds that 
f(ut) = f(uz) = .. . = f(un) = 0 it will decide that I = 0 and 
say so. Next give P a new task with the same limits x and y 
as before but with a different integrand 

Once again P will calculate f(ut)' f(u2), .... and finding no 
difference between the new f and the old. P will repeat 
exactly what it did before. But the new integral I is quite 
different from the old. so P must be deceived. 

The HP-34C's I: key can be hoodwinked that way. Try 
to evaluateJ~li: f(u)du using first f(u) == 0 programmed 
in a way that pauses (use the PSE key) to display its argu­
ment u . The calculator will display each sample argument 
it uses. namely O. ±88 . ±47 and ±117. Next program 

flu ) "" (u(u -88)(u+88)(u -47)(u +47)(u -117)(u + 117))2 

and evaluate J~gg f(u)du again. The calculator will say 
that both integrals are O. but the second polynomial's 
integral is really 1.310269 x 1028. That polynomial's graph. 
shown in Fig. 8. has the sharp spikes that characterize 
integrands troublesome for every numerical integration 
procedure. To calculate the integral correctly. reevaluate 
it as 2 JJ28 f(u)du . thereby doubling the spikes ' width com­
pared with the range of integration. 
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The threat of deceit impales the designer of a numerical 
integrator upon the horns of a dilemma. We all want our inte­
grators to work fast . especially when the integrand f(u) 
is very smooth and simple like f(u)=3u -4. But if the inte­
grator is too fast it must be easy to deceive; fast integration 
means few samples f(uj), implying wide gaps between some 
samples . which leave room for deceitful misbehavior. 
Figs. 9a-ge illustrate the dilemma with two estimates of 
1; f(u)du . The first estimate is based upon the three sam­
ples drawn at the white dots. the second upon seven sam­
ples including those three white plus four more black dots. 
Fig. 9a shows why all sufficiently smooth graphs f(u) that 
agree at all seven samples have nearly the same integrals. 
but Fig. 9b shows how two integrands could provide the 
same samples and yet very different integrals . The coinci­
dence in Fig. 9b is unlikely; successive estimates based 
upon increasingly dense sampling normally would reveal 
the difference as in Fig. 9c. However. situations like those 
illustrated in Figs. 9d and ge are very likely to deceive. 

Textbooks tell us how to avoid being deceived: avoid 
integrands f(u) among whose first several derivatives are 
some that take wildly different values at different places 
in the range of integration. Or avoid integrands f(u) that 
take wildly different values when evaluated at complex 
arguments in some neighborhood of the range of integra­
tion. And if wild integrands cannot be avoided they must 
be tamed. We shall rejoin this train of thought later. 

Improper and Nearly Improper Integrals 
An improper integral is one that involves 00 in at least 

one of the following ways: 
• One or both limits of integration are ± 0Cl. e.g .• 

1.8 

102• 

1 1 , , 

- 128 - 88 o 47 

" " 

1171 28 

Fig. 8. The polynomial f(u) was devised to deceive the 
HP-34C into miscalculating its integral as 0 instead of 
1.31 x 1028. This spiky graph is typical of integrands that can 
baffle any numerical integrator. 73% of the area under the 
graph lies under two spikes whose widths span less than 4 % of 
the area of integration. 
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Fig.9. Few samples (open circles) mean fast integration but a 
large possibility of error. More samples (solid dots plus open 
circles) usually mean more accuracy, but not always, as in (b), 
(d), and (e). (a) Which is the graph of feu)? No matter; both 
have almost the same integral. (b) Which is the graph of feu)? 
They have very different integrals . (c) Here two graphs that 
coincide on the first samples 0 are distinguished by a signifi­
cantly different outcome after second samples. are drawn. (d) 
If the graph off(u) has a few sharp and narrow spikes , they will 
probably be overlooked during the estimation of the integral 
based on finitely many samples . (e) If the graph of feu) has a 
step that was not made known during the estimation of the 
integral, then the estimate may be mistaken . 

• The integrand tends to ±::o someplace in the range of 
integration, e.g., 

I~ In(u)du = 1. 

• The integrand oscillates infinitely rapidly somewhere in 
the range of integration, e.g., JJ cos (In u)du = 1/2. 

Improper integrals are obviously troublesome . Equally 
troublesome, and therefore entitled to be called nearly 
improper, are integrals afflicted with the following malady: 
• The integrand or its first derivative changes wildly with­

in a relatively narrow subinterval of the range of integra­
tion, or oscillates frequently across that range. 

This affliction can be diagnosed in many different ways. 
Sometimes a small change in an endpoint can render the 
integral improper, as in 

k1
000l In(u)du = - 0.99898 ... ~ k1 

In(u)du = 1. 

Sometimes a small alteration of the integrand can render 
the integral improper, as in 

I I 2 - 10 II 2 
_ldx/(x + 10 ) = 314157.2654 .. . ~ - 1 dx/x = 00. 

Sometimes the value of the integral is nearly independent 
of relatively huge variations in one or both of the end­
points, as is J; exp (-u 2) du = "';;' 2 for all x > 10. Regard­
less of the cause or diagnosis, nearly improper integrals 
are the bane of numerical integration programs, as we 
have seen. 

During the HP-34C's design a suspicion arose that most 
integrals encountered in practice might be improper or 
nearly so. Precautions were taken. Now that experience 
has confirmed the suspicion, we are grateful for those pre­
cautions. They were: 
1. Avoid sampling the integrand at the ends of the range of 
integration. 
2. By precept and example in the Owner's Handbook, 
warn users against wild integrands, suggest how to recog­
nize them, and illustrate how to tame them. 

The second precaution ignited controversy. Against it on 
one side stood fears that its warnings were excessive and 
might induce paranoia among potential customers . Who 
would buy a calculator that he thinks gets wrong answers? 
Actually wrong answers were very rare, thanks in part to 
the first precaution, and many attempts to vindicate dire 
predictions about mischievous improper and nearly im­
proper integrals were thwarted by unexpectedly correct 
answers like 

I~ In (u) du = 0.9998 ± 0.00021 

in 2 minutes at SCI 3. Or 

30 2 I . exp( -u ) du = 0.886227 ± 0.0000008 
o 

in 4 minutes at SCI 5. If the wages of sin be death, 0 Death, 
where is thy sting? 

On the other side stood a number of e.mbarrassing ex­
amples like 
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f
400 
o exp(-u2

) du 

miscalculated as 0.0 ± 0.0000000005 'in 14 seconds . 
Another, had we known it then, would have been Wood­
yard's example at the beginning of this article; the correct 
answer 

t ( vU - -11 ) du = 0 .03649 ± 0.00000007 
Jo u-1 nu 

in 23 minutes at FIX 7 differs from FIX 5's wrong answer 
0.03662 in the worst way; the error is too small to be ob­
vious and too large to ignore. Adding to the confusion 
were examples like 

for which computation in SCI4 produced ridiculous values 
like A(O.l) = 0.95742 ± 0.00005 , A(O.Ol) = 0.58401 ± 
0.00003 , and A(O.OOl) = 0, all impossibly smaller than 1. 
This example appears to condemn the I: key until the 
integrand f(u)=Y -2 In cos(u2)/u2 is watched for small 
arguments u and seen to lose most of its figures to round­
off, losing all of them for I u I ";;0.003 , despite an absence of 
subtractions that could be blamed for cancellation. Then 
the example appears to condemn the whole calculator. Who 
wants responsibility for a calculator that gets wrong 
answers? 

Don't panic! The answers are wrong but the calculator 
is right. 

How to Tame a Wild Integral 
Forewarned is forearmed. Every experienced calculator 

user expects to encounter pathological examples like some 
of those above, and expects to cope with them. The ques­
tion is not "whether" but "when" ? And that is when atten­
tion to detail by the calculator's designers is rewarded by 
the user 's freedom from petty distractions that can only 
complicate a task already complicated enough. But like 
the dog that did not bark, * the absence of distracting de­
tails may fail to be appreciated. That is why the examples 
explained below have been chosen- to illustrate the ad­
vantages of liberated thought. Work them on your calcula­
tor as you read them; don't skim them like a novel. Then 
you may come to think of your calculator the way I think 
of mine, as a trusted friend who stays with me when I 
need help. 

The integral A(x) above contains an integrand flu) = 
Y -2 In cos(u2)/u 2 that loses its figures when u becomes 
tiny. The problem is caused by rounding cos(u 2

) to 1, 
which loses sight of how small u 2 must have been. The 
solution compensates for roundoff by calculating flu) 
as follows: 

Let y = cos u2 rounded. 
If y = 1 then let flu) = 1,---...,._ 

else let flu) = V -2 In y/cos- 1 y. 

The test for y = 1 adds four steps to the f-program and, 
provided In and cos -1 are implemented as accurately as 
on all recent HP calculators, the problem goes away. 
'See the last few paragraphs of the Sherlock Holmes story "Silver Blaze" by Conan Doyle . 
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(a) 

(b) 

(e) 

0.12 

v'Ui(u-1) - 1/ln(u) 

0.06 

o-L~~--~--------+-------~--~~·u 
o 0.2 0.5 0.8 

2w2/((w-1)(w+1)) - w/ln(w) 

0.05 

o-L~~---4--------+-------~----~·w 
o 0.2 0.5 0.8 

0.1 

2w2/(w2-1) - w/ln(w) 

0.05 

O~-4~---+--------~------1---~~W 
o 0.2 0.5 0.8 

Fig. 10. Substituting w 2 for u turns the wild graph (a) into the 
easy one (b). But do not rep/ace ((w-1) (w+1)) by (wL1) 
because roundoff errors introduce a spike, as shown in (c). 

Woodyard's example 11 has an integrand flu) whose de­
rative f'(u) -¥lO as u --. o. The graph off(u) shown in Fig. lOa 
looks like a lovers ' leap. Stretching the u-axis near u=o by 
substituting u = w 2 turns the precipice into the hummock 
shown in Fig. lob and transforms the integral into an easy 
calculation: 

I 2w w dw i
1 2 

1 = 0 ( (w-1)(w+ 1) -In w) 

The HP-34C computes this as 0.03649 ± 0.000005 in 100 
seconds at FIX 5 or 0.0364900 ± 0.00000008 in 200 seconds 



i ,. 

at FIX 7. Do not replace (w-1)(w+1) by (w2-1) because 
the latter loses to roundoff half of its significant digits as 
w ·-1 and introduces a gratuitous spike into the integrand's 
graph shown in Fig. 10c, which was plotted on an HP-85. Do 
not worry about w = 0 or w = 1 because they don 't happen, 
but do worry that as w ~ 1 the integrand approaches the un­
reliable expression 00 - 00 = O. This means that FIX 7 dis­
plays about as many digits as could possibly be correct for 
all w < 0.999, beyond which the I: key draws few if any 
samples because it converges so fast. 

The graphs of exp( -u 2) over 0 ,,;; u ,,;; 300 and of 
2 -10 

l /(u + 10 ) over -1 ,,;; u ,,;; 1 both resemble huddled mice 
with very long tails stretched out hundreds or thousands of 
times as long as their bodies. Plotting the graphs on a page 
of normal width is futile because the bodies get squashed 
into vertical whiskers . 

Most people who integrate such functions numerically 
cut off the tails . Thin tails can be cut almost indiscrimi­
nately without much degrading the accuracy or the speed of 
integration. Such is the case for fox exp (-u2)du, which r 
evaluates in less than, say, 4 minutes at SCI 5 provided thit 
x, if bigger than 4 or 10, is cut back to something between 4 

and 10. But rx du/(u 2 + 10-10) has too thick a tail to cut 
without losing accuracy or patience when x is large. That 
is why Procrustean methods are not recommended. Better 
to shrink the tail via an artful substitution like u = A + ,utan v 
where A lies within the body of the mouse and ,u is roughly 
that body's width. Doing so with A = 0 and ,u = 1 changes 
f; exp( -u2

) du into 

f
arctan x 
o exp( -tan2l1) (1 + tan 2l1) dll 

which g evaluates in three minutes at SCI 5 even when 
x is as big as 1010. Don't worry about tan 1T/2 because it can't 
happen on a well-deSigned calculator. 

i: xdu/(U2 + 10- 10 ) 

benefits miraculously from the foregoing substitution 
when A = 0 and ,u = 10-5, but values near those do almost 
as well. 

Another technique might be called "subdivide and con­
quer. " It subdivides the range of integration into subinter­
vals upon each of which the integrand f(u) is tame, al­
though f(u) may look wild on the range as a whole. For 
example, f(u) == V u 2 + 10-10 has a V-shaped graph prac­
tically the same as that of 1 u I. Evaluating L\ f(u) du 
accurately takes a long time if done with one press of 
g, but subdividing the integral into 

f~3 flu) du + g f(u)du 

takes two presses of g and one of 1:+ but much less time. 
Subdivide and conquer works best when combined with 

apt substitutions. For example, if the formulas in Fig. 5 
were unavailable how would F(oo) = f; dU/(l + U 64) be 
calculated? 

... subdivided 

r1 J.l = Jo du/(l + U64
) + 0 w 62dw/(w64 + 1) ... u=l/w 

= f; (1 + U
62

) du/(l + U 64) 

= 1 + f; (U62 _U 64) du/(l + U 64) 

= 1 +'Ia f; (l-lI'!') lISS/B dll /(l + liB) 

= 1.000401708155 ± 1.2 x lO- 12 

.. . merged via w=u 

... some algebra 

... u=lI'Ia to shrink 
a tail 

in 10 minutes at SCI 8. Thus we have calculated F(oo) 
(1T/64)csC(1T/64) to 13 significant decimals on a ten-sig­
nificant-decimal calculator. 

Oscillatory integrals like f~ cos On u) du sometimes suc­
cumb to stretching substitutions like u = v 2 that damp the 
oscillations , but generally oscillatory integrals cannot be 
calculated accurately and quickly without sophisticated 
tricks beyond the scope of an article like this. A simple 
trick worth trying when the period of oscillation is known 
in advance is called folding, though it is really another 
instance of subdivide and conquer. Here is a didactic 
example. 

r6007T • 2 
13 = J, VuSl~ du = still running after over three 

o u+ U+1T hours at SCI 5 

S99 
~ In7T+7T sin2u = ~ du 
n~ O n7T Vu + VU+1T 

after being subdivided and with u = v + n1T. Exchanging 
f and L produces 

7T S99 

1 f · 2 ~ 1 
3 = sm II . ~ dll. 

o n ~O VlI+n1T + VlI+ n1T +1T 

At this point a program should be written to calculate 
the sum, but because the example is didactic the sum 
collapses to yield 

I =17T 600 sin2
l1 _ + 

3 ,r, ;--:-;::-:::-;: dll - 21.10204 - 0.00007 
o VlI + vlI+6001T 

in 5 minutes at SCI 5. 
Now for a final example drawn from life: 

v - f oe du fora=100,b=2 ,c=1. 
o (a2 +u) Y(a2 +u) (b2 +u) (c 2 +u) 

This integral pertains to the electrostatic field about an 
ellipsoidal body with principal semiaxes a, b , c. S The 
ellipsoid is needle-shaped like an antenna or a probe. The 
classical approach transforms V into a standard form called 
an elliptic integral of the second kind and interpolates on 
two variables in published tables to get a numerical value. 
The following approach takes less time. . 

First transform the improper integral (f;) into a proper 
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one by substituting , say, u = (aL c2)1(1-v2) - a 2 to get 

V = Af V (1-v 2)/(v 2+ a) dv 
JJ. 

where 
A = 21((a2-c2

) ~) = 2.00060018 X 10- 6 

J.l.. = cia = 0.01 

ex = (b 2-c 2 )/(a 2 -V) = 3.001200480 X 10- 3 

Now, as always happens when a » b > c, the integral 
is nearly improper because 0: and f..L are both so nearly O. We 
suppress this near impropriety by finding an integral in 
closed form that sufficiently resembles the troublesome 
part of V. One candidate is 

W=A J: dvlv'v
2
+a = A In (v+v'v2+a) I :=JJ. 

= A In ((1+ ~)I(J.l..+VJ.l..2+ a)) 

= 8.40181880708 x lO- 6 

Then 

= 7.78867525 x lO-6 ± 1.3 XlO- 14 

after seven minutes at FIX 8. Don't worry about V I-v 2 

as v ~ 1 because the figures lost to roundoff are not needed 
and its infinite derivative doesn't bother the HP-34C. 

Conclusion 
A powerful mathematical idea has been placed at the 

disposal of people who will invoke it with fair confi­
dence by pressing-a button marked g without having to 
understand any more about its internal workings than 
most motorists understand about automatic transmissions . 
Integrals that might previously have challenged the 
numerical expert and a big computer now merely amuse 
the scientist or engineer, and tomorrow they will be rou­
tine. And now those engineering students who do attend 
classes in numerical analysis need no longer be expected 
to memorize th~ names nor the remainder terms of quadra-
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ture formulas but may instead be tau~ht to use integra­
tion wisely. 
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