
Scientific Pocket Calculator Extends
Range of Built-In Functions
Matrix operations, complex number functions, integration,
and equation solving are only some of the numerous
preprogrammed capabilities of HP's latest scientific
calculator, the HP-15C.

by Eric A. Evett, Paul J. McClellan, and Joseph P. Tanzini

HE NEW HP-15C Scientific Programmable Calcu­
lator (Fig. 1) has the largest number of prepro­
grammed mathematical functions of any handheld

calculator designed by Hewlett-Packard . For the first time
in an HP calculator. all arithmetic . logarithmic. exponen­
tial, trigonometric. and hyperbolic functions operate on
complex numbers as well as real numbers. Also. built-in
matrix operations are provided . including addition. sub­
traction. multiplication. system solution. inversion. trans­
position. and norms .

The HP-15C also performs the SOLVE and r functions.
which are very useful tools in many applic~tions . The
SOLVE operator numerically locates the zeros of a func­
tion programmed into the calculator by the user.1 The s: operator numerically approximates the definite integral
of a user-programmed function .2

Design Objectives
The HP-15C was designed with the following goals in

mind:
• Provide all functions of the HP-11C and HP-34C Calcu­

lators in the same slim-line package used for the HP-11C
• Provide additional convenient. built-in advanced

mathematical functions which are widely used in many
technical disciplines.
Achieving the first objective posed a keyboard layout

problem. The nomenclature for the HP-11C functions filled
every position on the keyboard . Since the display is limited
to seven-segment characters. functions could not be re­
moved from the keyboard and accessed by typing the func­
tion name as is done on the HP-41 Handheld Computers.
Therefore. to free some space on the keyboard. only the two
most common conditional tests are placed on the keyboard .
x=O and x""'y. A TEST prefix is added to access the other ten

Fig. 1. The HP-15C is an ad­
vanced programmable calculator
with special functions that enable
the user to solve problems involv-
ing matrices, integrals , complex
arithmetic, and roots of equations.
Its slim-line design fits easily in a
shirt pocket.

MAY 1983 HEWLETT-PACKARD JOURNAL 25

tests by executing TEST 0, TEST1, , TEST 9. A table on the
back of the calculator indicates the correspondence be­
tween the digits and tests . This frees enough positions on
the keyboard to add the SOLVE and I; functions , plus a few
more.

In striving to attain the second objective, we noted that
nearly every text covering advanced mathematics for sci­
ence and engineering includes chapters on complex analy­
tic functions and matrix algebra. They are fundamental
tools used in many disciplines. Furthermore, the complex
functions and many of the matrix operations can be viewed
as extensions of the functions already on the keyboard. This
is an important consideration because of the limited
number of key positions available. Thus , our goal was to
extend the domain of some of the built-in functions to
complex numbers and matrices in a natural way without
altering how those functions operate on real numbers.

Complex Mode
A complex mode was introduced in which another regis­

ter stack for imaginary numbers is allocated parallel to the
traditional register stack for real numbers (Fig . 2). Together
they form what is referred to as the complex RPN * stack.

The real X register is always displayed. A complex
number a +ib is placed in the X register by executing a,
ENTER, b, I. The user may display the contents of the imagi­
nary X register by executing Re:;;lm to exchange the con­
tents of the real and imaginary X registers. Or the user may
hold down the (i) key to view the imaginary part without
performing an exchange.

ENTER, R!, Rt, x:;;y, and LST x all operate on the complex
stack, but CLx and CHS operate only on the real X register so
that one part of a complex number can be altered or com­
plemented without affecting the other. For example, the
complex conjugate is performed by executing Re:;; lm, CHS,
Re:;; lm.

The following functions include complex numbers in
their domain: +, -, x , +, 1/x, v'X, x2 , ASS (magnitude), LN,
eX, LOG , 10x, yX, SIN, COS, TAN, SIN-1, cos-1, TAN-1

, SINH,
COSH, TANH, SINH-1

, COSH-1, and TANH-1
. These functions

assume the complex inputs are in the rectangular form,
a+ib.

Often complex numbers are expressed in polar form: rei6

= r(cosO + isinO) . In complex mode , the polar-to­
rectangular conversion functions ~p and ~R provide a
'Reverse Polish notation. a log ic system that eliminates the need for parentheses and
"equals" keystrokes in calculator operations.

T

Z

Y

x

Real

LSTX _ -Fig. 2. To handle complex numbers, the HP-15C uses
another register stack in parallel with the traditional APN stack.
Only the contents of the X register in the real stack are dis­
played.

26 HEWLETI-PACKARD JOURNAL MAY 1983

I~

Z,=3-j4

Z2 = 1'0
Z.q=1/(1 /Z, +1/Z2)

I~

10

-j4

Fig. 3. The complex arithmetic capabilities of the HP-15C
make it easy to solve for the equivalent impedance of this
parallel circuit (see text).

convenient means for converting between the polar and
rectangular forms of a complex number.

Complex numbers are used extensively in electrical en­
gineering. For example, to find the equivalent impedance
in the parallel circuit shown in Fig. 3, perform the following
steps on the HP-15C:

Keystrokes

3 ENTER

1/x

0

1/x

+

1/x

..... p

4 CHS

Calculation

1/Z 2

1/Z 1 + 1/Z 2

Zeq = 1/(1 /Z1 + 1/Z 2) ·

Hold down (I) key to
view imaginary part.
Zeq = 2.9730 - 2.1622i

Convert to phasor form .
Zeq = 3.6761 L -36.0274°

This example is a very elementary application of the
built-in complex function capability. Since complex opera­
tions can be used in conjunction with the SOLVE and f~
functions, the HP-15C can be programmed to carry out some
sophisticated calculations such as computing complex line
integrals and solving complex potentials to determine
equipotential lines and streamlines. 3

Matrix Descriptors
No set of matrix operations is complete without addition,

subtraction, multiplication, system solution, and inversion.
To provide these operations on the HP-15C, it seemed
natural to extend the domains of the +, -, x, +, and 1/x
functions to include matrix arguments . Since these func­
tions operate on the stack contents , a means of placing a
matrix name (descriptor) on the stack is essential. The set of
alpha characters that can be represented in a seven-segment
font is limited, but the letters A, B, C, D, and E have reason-

li. ,- n­
,'DLe,C

Fig. 4. The seven-segment font used in the HP-1SC's liquid­
crystal display allows representations of the alphabetic
characters A, B, C, D, and E as shown above for use in labeling
matrices.

able representations (Fig. 4).
Thus the decision was made to allow up to five matrices

to reside in memory simultaneously, named A, B, C, D, and
E. Their descriptors are recalled into the X register by the
sequence RCL MATRIX followed by the appropriate letter.
When the X register contains a matrix descriptor, the matrix
name and dimensions are displayed. Matrix descriptors
may be manipulated by stack operations and stored in regis­
ters just like real numbers, and certain functions accept
matrix descriptors as valid inputs. For example, suppose C
and Dare 2-by-3 and 3-by-4 matrices, respectively, which
are already stored in memory. To compute the matrix prod­
uct CD and place the result in matrix A, the user parallels
the steps required for real number multiplication, except
that the result destination must be specified:

Keystrokes

RCL MATRIX C

RCL MATRIX D

RESULT A

HP-15C Display

C

d

d

2 3

3 4

3 4

At this point, the HP-15C's RPN stack contains the informa­
tion shown in Fig. 5a. The matrix operands \ire in the stack,
and the result matrix is specified. The user now executes x
to compute the matrix product. When x is executed, the
presence of the matrix descriptions in the Y and X registers
is detected, the matrices are checked for compatible dimen­
sions, the result matrix A is automatically dimensioned to a
2-by-4 matrix, the product is computed, and the matrix
descriptor of the result is placed in the X register and dis­
played (Fig. 5b).

The operators + and - work similarly, and + performs the
matrix operation X-1Y if the X and Y registers contain
matrix descriptors. This is useful for linear system solution,
since the solution to the matrix equation XR=Y is
R=X-1y. The 1/x function key performs matrix
inversion.

Other important matrix operations that are not natural
extensions of functions on the keyboard are accessed by the
prefix MATRIX followed by a digit. These include transpose,
determinant, and matrix norms. A table on the back of the
calculator indicates the correspondence between the digits
and matrix operations.

Internal Format of Descriptors
Normal floating-point numbers are internally rep-

resented in the HP-15C by uSIng a 14-digit (56-bit) binary­
coded-decimal (BCD) format (Fig. 6).

The exponent e is given by XX if XS=O, and by
-(100-XX) ifxs=9. The value of the number is interpreted
as (-l)s(M.MMMMMMMMM) X10 e

. For example,

01234000000002 represents 1.234 x 102

and

91234000000994 represents -1.234X10-6
.

Matrix descriptors, on the other hand, are distinguished
by a 1 in the mantissa sign digit and a hexadecimal digit
corresponding to the matrix name in the most significant
digit of the mantissa field. For example, the matrix descrip­
tor C is represented internally as 1COOOOOOOOOOOO.

When a matrix descriptor is detected in the X register, the
matrix name is displayed, and the current dimensions of
that matrix are fetched from a system memory location and
also displayed.

Creating Matrices and Accessing Individual Elements
A matrix is dimensioned by entering the row and column

dimensions in the Y and X registers of the stack, respec­
tively, and then executing the DIM prefix followed by the
matrix name. Individual matrix elements are accessed by
executing the STO or RCL prefixes followed by the matrix
name. The element accessed is determined by the row and
column indexes stored in registers RO and R1, respectively.

Matrix data is usually entered or reviewed from left to

T

Z

Y

X Display

LSTx

(a)

T

Z

Y

X Display

LSTx

(b)

Fig. 5. Before multiplying matrices C and D, the information in
the RPN stack is located as shown in (a). After multiplication,
the result, matrix A, is located as shown in (b) and the LSTx
register contains the information for matrix D.

MAY 1983 HEWLEIT·PACKARD JOURNAL 27

right along each row and from the first row to the last. To
facilitate this process. a user mode is provided in which the
indexes are automatically advanced along rows after each
STO or RCL matrix access operation. After the last element
of the matrix has been accessed. the indexes wrap around to
1.1. As an added convenience. executing MATRIX 1 ini­
tializes the indexes to 1.1.

The following example illustrates some of these features
by solving the following matrix equation for C:

A c

[
54 -6

2
] [C(l .l)

c(2 .1)

Keystrokes Display

USER

MATRIX

2 ENTER DIM A 2.0000

DIM B 2.0000

5 STO A 5.0000

2 CHS STO A -2.0000

4 STO A 4.0000

6 STO A 6.0000

8 STO B 8.0000

3 STO B 3.0000

2 STO B 2.0000

6 CHS STO B -6.0000

RCL MATRIX B b 2 2

RCL MATRIX A A 2 2

RESULT C A 2 2

+ C 2 2

RCL C 1.3684

RCL C 0.1579

RCL C -0.5789

RCL C -1.1053

C(1 .2)]
c(2.2)

B

Comments

Select USER mode.

Initialize indexes in
registers RO and
Rl to 1.

Dimension matrix A to
2 by 2.

Dimension matrix B to
2 by 2.

a(l .l)

a(1 .2)

a(2.1)

a(2 .2) . Indexes wrap
around to 1.1.

b(l .l)

b(1 .2)

b(2 .1)

b(2.2) . Indexes wrap
around to 1.1.

Recall right-hand side

Recall coefficient matrix

Specify matrix C as result.

Compute C=A -1 B.

c(l.l)

c(1.2)

c(2 .1)

c(2.2)

28 HEWLETT· PACKARD JOURNAL MAY 1983

+;5=0
-;5=9

Ten-Digit Mantissa
~

Two-Digit
Exponent

+;X5=0
-; X5=9

Fig. 6. The internal representation for floating-point numbers
in the HP-15C uses a 14-digit (56-bit). binary-coded-decimal
format.

Available Matrix Memory, Speed
A maximum of 64 matrix elements can be distributed

among the five matrices . Since the HP-15C can invert ma­
trices in place. up to an 8-by-8 matrix can be inverted. There
is also enough memory to solve a 7-by-7 linear system of
equations. Table I specifies the approximate time required
to perform certain matrix operations.

Table I
Time in Seconds for Selected Matrix Operations

Order of
Determinant

Solving a Matrix
Matrix System Inversion

1 0.5 0.5 0.5
2 1.3 2.0 1.8
3 2.8 4.2 5.3
4 5.3 7.6 12
5 9.1 12 22
6 14 19 36
7 21 28 55
8 30 80

Designing the Complex Function Algorithms
After deciding to extend the real-valued functions and

the RPN stack to the complex domain. our next step was to
design the algorithms for complex arithmetic . Although
their defining formulas are very simple. some disturbing
examples made us question what accuracy should be
achieved to parallel the high quality of the real-valued
functions.

The real functions are generally computed with a small
relative error (less than 6 x 10 -10) except at particular points
of certain functions. where it is too costly in execution time
or ROM space for the result to be computed that accurately.3

The relative difference R(x.y) between two numbers x and
y is given by

R(x.y) =
Ix-yl

Iy l

When X is an approximation of x. then we say R(X.x) is the
relative error of the approximation X. Notice that the size of
the relative error is related to the number of digits that are
accurate. More precisely. R(X.x) <0.5 xl0-n implies that X

is an approximation to x that is accurate to n significant
digits .

If we always wish to obtain small relative errors in each
component of a complex result, then the out~ome of the
following example is very disappointing. For simplicity we
will use four-digit arithmetic , instead of the 13 digits used
internally to calculate the 1 O-digit results delivered to the X
register of the calculator.
Example 1: Using the definition for complex multiplica­
tion,

(a + ib)(c + id) = (ac - bd) + (ad + bc)i ,

consider the four-digit calculation of Z x W, where
Z = 37.1 + 37 .3i and W = 37.5 + 37 .3i. We get,

Z x W = (1391 - 1391) + (1384 + 1399)i
=0 + 2783i

Since the exact answer is -0.04 + 2782 .58i , itisclearthat
accurate components are not always achieved by a simple
application of this formula. The difference a Xc-b x d has
been rounded off to result in a loss of all significant digits of
the real part. The loss can be eliminated, but the calculation
time would increase roughly by a factor of 4. Is it really
worth this higher cost in execution time? For comparison
we will consider an alternative definition of accurate com­
plex results.

Complex Relative Error
As with real approximations we often want our errors

small relative to the magnitude of the true answer. That is to
say, we want I (approximate value) - (true value) II I (true
value) I to be small enough for our purposes . So relative
error may be extended to the complex plane by R(Z,z) =
IZ -z I/ lz I. This extension may be applied to vectors in any
normed space. A simple geometric interpretation is illus­
trated in Fig. 7. ApproximationsZ ofz will satisfy R(Z,z) <8
if and only if the points Z lie inside the circle of radius 81 z I
centered at z. This condition for complex relative accuracy
is weaker than that for component accuracy. If the errors in
each component are small, then the complex error is small.
To show this, assume that R(X,x) < 8 and R(Y,y) < 8 where
z=x+iy. Then,

R(Z,z) = I (X - x) + i(Y - y) I/l z I
~ X -xl /lz i + IY -y l/l zi
~ R(X,x) + R(Y,y)
< 28

Actually, R(Z,z) is less than 8, but this is slightly more
difficult to show. On the other hand, however, a small
complex error does not imply small component errors. Re­
ferring back to Example 1, we see that R(ZW, zw)=0.0002,
which is respectably small for four-digit precision, even
though the real component has no correct digits.

It is not unusual for only one component to be inaccurate
when the result is computed accurately in the sense of
complex relative error. In fact, because the error is relative
to the size Iz I, and because this is never greatly different
from the size of the larger component, only the smaller
component can be inaccurate.

z

Fig. 7. A simple geometric representation of complex relative
error R(Z,z)< /).

To show this we shall assume, without loss of generality,
that Ix I is the larger component. Then

which implies that 1~ Iz/x I ~ V2, since Iy I ~ Ix I by
assumption. Thus Ix I and Iz I do not differ greatly. The
important part is that Ix I ;;;. I z 1/Y2. This gives

IX-x l/l xl ~ IZ-z l/l xl ~ Vzlz-z l/i z i < VzR(Z,z)

So the relative error of the larger component (assumed to be
x here) is very nearly as small as the complex relative error
bound R(Z,z). It also follows that the smaller component is
accurate relative to the larger component's size (Le. ,
IY-yl /lx l ~ IZ-z l/l xl ~VzR(Z,z) .

This provides a quick way to determine which digits of a
calculated value can possibly be incorrect when it is known
that the calculated value has a certain complex error. By
representing the smaller component with the exponent of
the larger component, the complex error indicates the
number of correct digits in each component.

For instance, in Example 1 we obtained the approxima­
tion Z = 0 + 2783i of the true answer -0.04 + 2782 .58i.
Since the larger component is 2.783 x 103 we will represent
the first component with the same exponent (0 .000 x 103

) to
obtain Z=0000.0+2783i. These components must be accu­
rate to nearly four digits since R(Z,z) = 0.0002.

Perhaps the zero component of Z confuses the issue here,
so another example may be appropriate. First, let

Z = 1.234567890 X10-10 + 2.222222222 x 10-3i

Then think of Z as

Z = 0.0000001234567890 X10-3 + 2.222222222 x 10- 3
j

If the complex relative error indicates 10-digit accuracy,
Le. , R(Z,z) < 0.5 x 10 -1~ then this implies that the first 10
digits are correct, that is ,

Z = 0.000000123 X10-3 + 2.222222222 X 10-3i

MAY 1983 HEWLETT· PACKARD JOURNAL 29

I

I

Error Propagation
We have seen that computing the product oftwo complex

numbers in the straightforward manner does not necessar­
ily result in a small error in each component (Example 1).
However it can be shown that the product does have a
complex relative error bound of roughly 10-n whenever n
digits of precision are used in the calculation. Moreover,
small relative errors in the input values give rise to relative
errors nearly as small in the output values . This is not true
for small component errors. One acceptable rounding error
in an input value may produce an inaccurate component,
even when the multiplication is exact. This is illustrated by
the following example.
Example 2: Let z = (1 + 1/300) + i and w = 1 + i, then
using four-digit precision we have

Therefore,

exactly, yet

Z = 1.003 + 1.000i
and W = 1.000 + 1.000i

ZW = 0.003 + 2.003i
= 3.000 x 10-3 + 2.003i

zw = 3.333 X 10 - 3 + 2.003i

to four digits . The single rounding error of 1 +1/300
~ 1.003 in the component of the input Z was magnified
from a relative error of 0.0003 to 0.1.

So, in general, computing accurate components will not
improve the result of a chain calculation because inter­
mediate input values are often inexact (this is the idea of
backward error analysis and is explained more fully in
reference 3). It is important to realize that this is not, in
itself, a good reason to forsake accurate results based on the
assumption that the input values are not exact. For exam­
ple , if we assume that X has an error in its eleventh digit and
thus decide that sin(X) for x> 105 degrees, say, need not be
compu ted accurately, then we would have failed to provide
a useful result for those special cases where we know that
the input value is exact.

As a simple illustration consider accurately calculating
the value sin(1,234,567,899.1234567890) where the argu­
ment is in degrees . Using

sin(1,234,567,899) = 0.9876883406

is grossly inaccurate. Instead, let x = 1.234567899 x 10~ and y
= 0.123456789, then evaluate

sin(x+y) = sin(x)cos(y) + cos(x)sin(y).

Here we know x is exact, and since sin(x) and cos (x) are
computed accurately by the HP-15C, the final result
sin(x+y) = 0.9873489744 is very accurate .

The point here is that clean results (in particular accurate
components) are desirable, but in our estimation the cost of
adding ROM and increasing execution time was too high on
this machine to provide complex arithmetic that is accurate
in each component. However, accurate components are de­
livered in those functions where it is more practical. This is

30 HEWLETI-PACKARD JOURNAL MAY 1983

discussed further in the following section.
In general, the HP-15C delivers complex results that

satisfy R(Z,z) < 6 X 10-tO , except where functions involving
trigonometric calculations (in radians) are evaluated at very
large arguments or near transcendental zeros such as mul­
tiples of 1T. This inaccuracy is embedded in the real-valued
functions and is an example of an error that is too costly to
correct completely. 3 ,4

Some Specific Complex Functions
For complex arithmetic we obtained accurate results (Le.,

small complex relative errors) from the standard formulas
used to define each operation. But, in general, defining
formulas are usually not accurate for computers. In this
section we will single out two particular functions, sin(z)
and Yz, and very briefly focus on some difficulties that
arise.
• Sin(z). A typical defining formula for the complex sine

function is given by

sin(z) =
eiz _ e-iz

2i
(1)

If this is used to compute sin(z) for small Iz I, the two
exponential terms will be nearly equal and thus cause a
loss of accuracy. This will result in a large complex
relative error even though each step of the calculation is
very accurate. If equation (1) is replaced by

sin z = sin(x) cosh(y) + icos(x) sinh(y) (2)

where z = x+iy, then the relative error problem for small
Iz I will be solved, and furthermore the components will
become accurate (except for the trigonometric difficulty
with large angles mentioned earlier). To observe the
striking difference in results, we calculate

w = sin (1.234567 Xl0-s + 9.876543 Xl0-si)

for each formula. The outcome is represented below.

Eqn.

(1)
(2)

W (10-digit calculation of w)

1.234567006 Xl0-5 + 9.876530000 x lO-5j

1.234567006 x 10 -5 + 9.876543015 x 10 - 5j

R(W,w)

10 - 6

10-10

The HP-15C's internal calculation is based on equation
(2) , with minor modifications that exploit the relation­
ships between the real functions to eliminate redundant
computation. .

• Vi. The most common definition ofthe principal square
root is

(3)

where 0 is the Arg (z), satisfying -1T<()~1T.
This formula is accurate with respect to complex relative

error , but not accurate in each component. This can be seen
by working through the calculation of Va, where a = -1 +
(-1 Xl0-15i) , with 10-digit precision. Here 0/2 rounds to
precisely 90 degrees, thus causing Va~o -i, while the true

i •

value rounds to 5 x 10 -16 -i. The complex error is small but
certain information in the real component is lost. The fact
that Va lies on the right side of the imaginary axis can be
critical when computing near discontinuities called branch
cuts. For example, In(-fYaJ = -ini2, but the inaccurate
component of Va will cause it to evaluate to i7r/2 since
-iVa is near the branch cut ofln(z). More will be said abou t
branch cuts in the next section.

It turns out that Yz can be computed with accurate
components and without loss in execution time. This func­
tion, along with the inverse trigonometric and hyperbolic
functions , is computed on the HP-15C with accurate com­
ponents. Their algorithms are not described by a simple
formula as with sin(z) in equation (2), but rather are de­
scribed in terms of their components. These accurate com­
ponents are achieved by recognizing and eliminating errors
such as those described above.

Principal Branches
The function Yz is an inverse function off(zJ = Z2. As is

often the case with defining inverses , we must select from
more than one solution to define the principal branch of the
inverse. This is done for the real function by selecting the
non-negative solution of X2 = a and denoting it by Va.
Because of the branch point at 0, any branch for Va must
have a discontinuity along some slit (branch cut) . In equa­
tion (3) above, it is along the negative real axis . Notice in
Fig. 8 that values below the negative real axis map to values
near the negative imaginary axis, while above the slit, val­
ues map near the positive imaginary axis . Since it is tradi­
tional to have _i = v-=1 we must attach the slit (negative
real axis) to the upper half plane, making it continuous from
above and not from below, that is , -77< ()""'77. One will
occasionally see Vz defined for 0""'()<277, which places the
discontinuity along the positive real axis . We have avoided
doing something like this in the branches of all of the
complex inverse functions so that each will be analytic in a
region about its real domain. This is important since com­
plex computation is often performed in a region about the
real domain in which the function's values are defiI)-ed by
the analytic continuation from the real axis.

The placement of the branch cuts and the function values
along the slit are fairly standard for Vz and In(z), but the
inverse trigonometric and hyperbolic functions have not , as
yet, become standardized. However, by following a few
reasonable rules there is not much room for variation.

The first rule, analyticity about the real domain, has al­
ready been mentioned. Secondly, we have tried to preserve
fundamental relationships such as the oddness or evennes~

~· offunctions (~.g., sin(-z) = -sin(z)) and the computational
formulas relating functions to the standard principal
branches of In(z) and Yz (e.g., 77/2 -sin(z) = g(z) '\I'l"=z
where g(z) is analytic at 1, that is , a power series in z -1).

The determination of formulas involving a choice of
branches is often quite complicated. W.M. Kahan has pre­
sented a very enlightening discussionS of branch cuts and
has pointed out to us that the HP-15C branch cuts should
satisfy certain simple formulas relating them to the princi­
pal branch of In(z). These formulas are satisfied and are
reproduced below.

and
In(z) = In(Iz I) + i Arg(z)
Vi. = exp(ln(z)l2)

with -77 < Arg(z) "'" 77 and Yo = 0

arctanh(z)

arctan(z)

arcsinh(z)

arcsin(z)

arccos(z)

arccosh(z)

[In(1 + z) - In(1 - z)]/2
-arctanh(-z)

- i arctanh(iz)
-arctan(-z)

In(z + Vl+z2)
-arcsinh(-z)

-i arcsinh(iz)
-arcsin(-z)

77/2 - arcsin(z)

2 In [V(z + 1)/2 + V(z - 1)/2]

These are not intended as algorithms for computation, but
as relations defining precisely the principal branch of each
function.

Matrix Calculations
As mentioned earlier, the HP-15C can perform matrix

addition, subtraction, and multiplication. It can also calcu­
late determinants, invert square matrices , and solve sys­
tems of linear equations. In performing these last three
operations, the HP-15C transforms a square matrix into a
computationally convenient and mathematically equiva­
lent form called the LU decomposition of that matrix.

LU Decomposition
The L U decomposition procedure factors a square matrix,

say A, into a matrix product LV. L is a lower-triangular
square matrix with 1s on its diagonal and with subdiagonal
elements having values between -1 and 1, inclusive. V is an
upper-triangular square matrix. The rows of matrix A may
be permuted in the decomposition procedure. The possibly
row-permuted matrix can be represented as the matrix

Z w

(a)Z=w' (b)w=Vz

Fig. S. The complex function Z = w2 , shown in (a) has an
inverse function w = vz. shown in (b), which maps the Z
plane onto the right half plane of w with a branch cut along the
negative real axis of the Z plane.

I

MAY 1983 HEWLETT-PACKARD JOURNAL 31

product PA for some invertible matrix P. The LU decom­
position can then be represented by the matrix equation
PA = LU or A = P-1LU.

The HP-15C uses the Doolittle method with partial pivot­
ing to construct the LU decomposition. It constructs the
decomposition entirely within the result matrix. The
upper-triangular part of U and the subdiagonal part of L are
stored in the corresponding parts of the result matrix. It is
not necessary to save the diagonal elements of L since they
are always equal to 1.

Partial pivoting is a strategy of row interchanging to
reduce rounding errors in the decomposition. The row in­
terchanges are recorded in the otherwise underused XS
format fields of the result matrix's diagonal elements. The
recorded row interchanges identify the result matrix as
containing an LU decomposition and the result matrix's
descriptor includes two dashes when displayed .

The determinant of the decomposed matrix A is just
(_l)r times the product of the diagonal elements of U,
where r is the number of row interchanges represented by P.
The HP-15C computes the signed product after decompos­
ing ,the argument matrix A into the result matrix.

The HP-15C calculates the inverse of the decomposed
matrix using the relationship

A -1 = [P - 1LU] -1 = U-1L -1 P

It does this by inverting both U and L, computing the prod­
uct oftheir inverses, and then interchanging the columns of
the product in the reverse order of the row interchanges of
A. This is all done within the result matrix.

Solving a system AX=B for X is equivalent to solving
LUX=PB for X, where PA=LU denotes the LU decomposi­
tion of A. To solve this system, the HP-15C first decomposes
the matrix A in place. The calculator then solves the matrix
equation LY =PB for matrix Y (forward substitution) and
finally UX= Y for matrix X (backward substitution), placing
the solution X into the result matrix.

The LU decomposition is returned by a determinant or
system solution calculation and can be used instead of the
original matrix as the input to subsequent determinant ,
matrix inverse, or system solution calculations.

Norms and the Condition Number
A norm of a matrix A, denoted by II A II , is a matrix

generalization of the absolute value of a real number or the
magnitude of a complex number. Any norm satisfies the
following properties:

• II A II ~ 0 for any matrix and II A II = 0 if and only if
A=O

• II aA II = I a I x II A II for any number a and matrix A
• II A + B II .;; II A II + II B II for any matrices A and B
• II A B II .;; II A II x II B II for any matrices A and B.

One measure of the distance between two matrices A and B
is the norm oftheir difference, II A - B II . A norm can also be .
used to define a condition number of a square matrix, which
measures the sensitivity of matrix calculations to perturba­
tions in the elements of that matrix.

32 HEWLETT· PACKARD JOURNAL MAY 1983

The HP-15C provides three norms. The Frobenius norm
of a matrix A, denoted II A II F, is the square root of the sum
of the squares of the matrix elements . This is a matrix
generalization of the Euclidean length of a vector.

The HP-15C also provides the row (or row-sum) norm.
The row norm of an m-by-n matrix A is the largest row sum
of absolute values of its elements and is denoted by II A II R:

n

II A II R = max L: l aij l
l .,;i";m j=l

The column (or column-sum) norm of a matrix A is denoted
by II A II c and is the largest column sum of absolute values
of its elements. It can be computed as the row norm of the
transpose of the matrix A.

For any choice of norm, a condition number K(A) of a
square matrix A can be defined by

K(A) = II A II x II A -1 II
Then K(A) = II A II x II A -1 II ~ II AA - 1 II = II I II ~ 1

for any norm. The following discussion assumes the condi­
tion number defined by the row norm. Similar statements
can be made for the other norms .

If rounding or other errors are present in matrix elements,
these errors will propagate through subsequent matrix cal­
culations. They can be magnified significantly. Consider,
for example, the matrix product AD where A is a square
matrix. Suppose that A is perturbed by the matrix ~A. The
relative size of this perturbation can be measured as

II ~A II III A II ' The relative size of the resulting perturba­
tion in the product is then

II ~A B II III A B II II ~A A -lA B II I II A B II
.;; II ~A A -1 II

.;; II ~A II x II A-
1 11

= K(A) II ~A II I II A II

with equality for some choices of A, B, and ~A. Hence K(A)
measures how much the relative uncertainty of a matrix can
be magnified when propagated into a matrix product.

Uncertainties in the square system matrix A or the matrix
B of the system of equations AX = B will also propagate into
the solution X. For small relative uncertainties ~A in A, say

II ~A II I II A II «l/K(A), the condition number is a close
approximation to how much the relative uncertainty in A or
B can be magnified in the solution X.6

A matrix is said to be ill-conditioned if its condition
number is very large. We have seen that errors in the data­
sometimes very small relative errors-can cause the solu­
tion of an ill-conditioned system to be quite different from
the solution of the original system. In the same way, the
inverse of a perturbed ill-conditioned matrix can be quite
different from the inverse of the unperturbed matrix. But
both differences are bounded by the condition number; they
can be relatively large only if the condition number is large.

Singular and Nearly Singular Matrices
A large condition number also indicates that a matrix is

relatively close to a singular matrix (determinant = 0) .
Suppose that A is a nonsingular matrix.

l /K(A) min (II A -S " 1 " A " 1

and 11" A -1" = min (" A-S " l,

where each minimum is taken over all singular matrices S .6
11" A - 1" is the distance from A to the nearest si~gular
matrix. l /K(A) is this distance divided by the norm of A.

For example, if

A [~ 0.9999~99999]
then

=
[

-9,999,999,999
A :'" 1

1010

10
tO

]

-1010

and " A -1 " = 2 X 1010
• Therefore , there should exist a per­

turbation matrix ~A with "~A " = 5 x l0 - 11 that makes
A + ~A singular. Indeed,

has "~A" = 5 XlO-11, and

A+~A [~
is singular.

- 5 X lO - 11]

5 x 10 - 11

0.99999999995]

0 .99999999995

In principle, because the HP-15C's matrices are bounded
in size, exact arithmetic and exact internal storage could be
used to ensure la-digit accuracy in matrix calculations.
This was considered prohibitively expensive, however. In­
stead, the HP-15C is designed to perform arithmetic and
store intermeaiate calculated values using a fixed number
of digits .

Numerical determinant, matrix inversion, and system
solution calculations using a fixed number of digits intro­
duce rounding errors in their results . These rounding errors
can be conceptually passed back to the input data and the
calculated results interpreted as exact results for perturbed
input data A + ~A. If the norm of the conceptual perturba­
tion ~A is comparable to 11 " A - 1 " , the original nonsingu­
lar input matrix A may be numerically indistinguishable
from a singular matrix.

For example, a square matrix is singular if and only if at
least one ofthe diagonal elements of V , the upper triangular
matrix in the LV decomposition of A, is zero. But because
the HP-15C performs calculations with only a finite number
of digits , some singular and nearly singular matrices cannot
be distinguished in this way.

The matrix

B

is singular. Using la-digit accuracy, the calculated LU de­

composition is

LV
[0 .3333

1

333333

which is the decomposition of the nonsingular matrix

[

3
D-

0.9999999999

Hence the calculated determinants of Band D are identical.
On the other hand , the matrix

A=[:
LV

is nonsingular. Using 10-digit accuracy, the calculated LU
decomposition is

LV = [
'1

0.3333333333

which is the LV decomposition of the singular matrix

c=[3

0.9999999999

The calculated determinants of A and C are also identical.
Because the calculated LV decompositions of some sin­

gular and nonsingular matrices are identical, any test for
singularity based upon a calculated decomposition would
be unreliable. Some singular matrices would fail the test
and some nonsingular ones would pass it. Therefore, no
such test is built into the HP-15C.

Instead, if a calculated diagonal element of V, which we
call a pivot, is found to be zero during the LV decomposi-

J

MAY 1983 HEWLETI-PACKARD JOURNAL 33

tion, rather than aborting the matrix calculation and re­
porting the input matrix to be singular, the HP-15C replaces
the zero pivot by a small positive number and continues
with the calculation. This number is usually small com­
pared to the rounding errors in the calculations. Specifi­
cally, it will be about 10 -10 times the largest absolute value
of any element in that column of the original matrix. If
every element in that column of the original matrix has an
absolute value less than 10 -89, the value 10 -99 is used
instead.

An advantage of replacing zero pivots by nonzero pivots
is that matrix inversion and system solution calculations
will not be interrupted by zero pivots. This is especially
useful in applications such as calculating eigenvectors
using the method of inverse iteration. Example programs
calculating eigenvalues and eigenvectors can be found in
reference 3.

The effect of rounding errors and possible intentional
perturbations causes the calculated decomposition to have
all nonzero pivots and to correspond to a nonsingular ma­
trix usually identical to or negligibly different from the
original matrix.

Complex Matrix Calculations
The HP-15C only operates on real matrices , that is, ma­

trices with real elements. However, it is possible to repre­
sent complex matrices as real matrices and to perform ma­
trix addition, subtraction, multiplication, and inversion of
complex matrices and to solve complex systems of equa­
tions using these real representations.

Let Z = X + iY denote a complex matrix with real part X
and imaginary part Y, both real matrices. One way to repre­
sent Z as a real matrix is as the partitioned matrix

having twice the number of rows but the same number of
columns as Z. Complex matrices can be added or subtracted
by adding and subtracting such real representations.

is
Another computationally useful real representation for Z

_ [X
Z =

Y

-Y

X]
having twice the number of rows , and columns as Z. The
HP-15C's' built-in matrix operation MATRIX 2 performs the
transformation

zP ~ Z

The operation MATRIX 3 performs the inverse transforma­
tion

z ~ zP

Suppose A, B, and C are complex matrices and A is

34 HEWLETI-PACKARD JOURNAL MAY 1983

invertible. Then complex matrix multiplication, inversion,
and system solution can be performed with real matrices
and built-in HP-15C operations using the relationships:

p
(AB)

AC=B~CP

- p
AB,

_ -1

(A)

These procedures are illustrated in the HP-15C Owner's
Handbook.

Matrix Transpose
The operations MATRIX 2 and MATRIX 3 perform their

transformations using a matrix transpose routine . The rows
and columns of a matrix are interchanged to form the trans­
pose of that matrix. The transformation is performed in
place, replacing the original matrix by its transpose. This
routine is available to the user as MATRIX 4 . Consider the
following example:

[: :J b

e

Here the elements of the matrices have been displayed in
a two-dimensional format. However, they are stored in a
one-dimensional sequence within the calculator' s memory.
For this example, the transpose operation changes the or­
dering of the elements within the calculator memory as

abc d e f ~ a d bee f.

The MATRIX 4 operation moves the elements according to

o ()
These movements form disjoint loops. The first value in

the sequence is the first c~didate for moving . As a value is
copied into its destination, that destination is tagged in its
XS field. The previous value at that location is the next
candidate for moving. Movement along a loop continues
until a destination is encountered that is already tagged.
The content of the tagged destination is not changed and
the current loop is terminated. The value in the location
immediately following that tagged destination is the next
candidate for moving .

This operation continues moving values along loops
until the sequence is exhausted, at which point all destina­
tion tags are removed. Finally, the recorded dimensions of
the matrix are switched.

Accuracy of Matrix Calculations
Accuracy specifications for all matrix operations are

given in reference 3. These specifications are stated in terms
of both backward and forward error analysis. Reference 3
includes a general rule of thumb for the number of signifi­
cant digits in a calculated matrix inverse or system solution.
It also includes descriptions of techniques to improve upon
the accuracy of calculated system solutions and to reduce
the ill-conditioning of systems of equations.

Acknowledgments
Numerous individuals made valuable contributions to

the HP-15C software effort. As the software project man­
ager , Rich Carone helped formulate some of the original
design concepts and kept the software effort on track. Diana
Roy, Robert Barkan, and Hank Schroeder wrote the HP-15C
Owner's Handbook. We would like to give special thanks to
Professor William Kahan, who contributed many design
ideas, provided strong guidance in developing the
mathematical algorithms, and wrote a portion of the
HP-15C Advanced Functions Handbook. His unbounded
enthusiasm for the product helped keep us going, espe­
cially when we still had features to implement and no ROM
space left.

References
1. W.M. Kahan, "Personal Calculator Has Key to Solve Any Equa­
tion f(x)=O," Hewlett-Packard Journal , Vol. 30, no. 12, December
1979.
2. W.M. Kahan, "Handheld Calculator Evaluates Integrals,"
Hewlett-Packard Journal, Vol. 31, no . 8, August 1980.
3. HP-15C Advanced Functions Handbook.
4. D.W. Harms, "The New Accuracy: Making 23 =8," Hewlett­
Packard Journal, Vol. 28, no. 3, November 1976, p . 16.
5. W.M. Kahan, "Branch Cuts for Complex Elementary Func­
tions," working document for IEEE Floating-Point Standards Sub­
committee, September 9, 1982.
6. E. Atkinson, An Introduction to Numerical Analysis, John
Wiley & Sons, 1978, pp . 461-463.

Paul J. McClellan
Paul McClellan started working part­
time at HP in 1979 while he was a
graduate student at Oregon State Uni­
versity. He has a BS degree in physics
and mathematics awarded by the Uni­
versity of Oregon in 1974 and an MS
degree in statistics from Oregon State.
He plans to complete the requirements
forthe PhD degree in statistics this year.
Paul began full-time work at HP in late
1982 and worked on the SOLVE and
matrix computation routines for the
HP-15C. He is a member of the Ameri­
can Statistical Association and
coauthor of the HP-15C Advanced

Functions Handbook . When not busy with work or his studies, Paul
enjoys rock climbing, mountaineering, cross-country skiing, and vis it­
ing Portland , Oregon. He is single and lives in Corvallis, Oregon.

Joseph P. Tanzlni
!Er::::';;"~_:::!iI.ii;; Joe Tanzini was born in Trenton , New

Jersey and attended Trenton State Col­
lege, receiving a BA degree in
mathematics in 1973. He continued his
mathematics studies at Lehigh Univer­
sity and earned the MS and PhD de­
grees in 1975 and 1982. Joe started at
HP as a software engineer in 1980 and
wrote firmware for calculators , includ­
ing coding the integrate algorithm and
complex functions for the HP-15C. He
also coauthored the HP-15C Advanced

'. Functions Handbook. Joe enjoys
bicycling and walking during his leisure
time. He is married , has two daughters,

, and lives in Corvallis, Oregon.

I

MAY 1983 HEWLETI·PACKARD JOURNAL 35

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

