
Scientific Pocket Calculator Extends 
Range of Built-In Functions 
Matrix operations, complex number functions, integration, 
and equation solving are only some of the numerous 
preprogrammed capabilities of HP's latest scientific 
calculator, the HP-15C. 

by Eric A. Evett, Paul J. McClellan, and Joseph P. Tanzini 

HE NEW HP-15C Scientific Programmable Calcu­
lator (Fig. 1) has the largest number of prepro­
grammed mathematical functions of any handheld 

calculator designed by Hewlett-Packard . For the first time 
in an HP calculator. all arithmetic . logarithmic. exponen­
tial, trigonometric. and hyperbolic functions operate on 
complex numbers as well as real numbers. Also. built-in 
matrix operations are provided . including addition. sub­
traction. multiplication. system solution. inversion. trans­
position. and norms . 

The HP-15C also performs the SOLVE and r functions. 
which are very useful tools in many applic~tions . The 
SOLVE operator numerically locates the zeros of a func­
tion programmed into the calculator by the user.1 The s: operator numerically approximates the definite integral 
of a user-programmed function .2 

Design Objectives 
The HP-15C was designed with the following goals in 

mind: 
• Provide all functions of the HP-11C and HP-34C Calcu­

lators in the same slim-line package used for the HP-11C 
• Provide additional convenient. built-in advanced 

mathematical functions which are widely used in many 
technical disciplines. 
Achieving the first objective posed a keyboard layout 

problem. The nomenclature for the HP-11C functions filled 
every position on the keyboard . Since the display is limited 
to seven-segment characters. functions could not be re­
moved from the keyboard and accessed by typing the func­
tion name as is done on the HP-41 Handheld Computers. 
Therefore. to free some space on the keyboard. only the two 
most common conditional tests are placed on the keyboard . 
x=O and x""'y. A TEST prefix is added to access the other ten 

Fig. 1. The HP-15C is an ad­
vanced programmable calculator 
with special functions that enable 
the user to solve problems involv-
ing matrices, integrals , complex 
arithmetic, and roots of equations. 
Its slim-line design fits easily in a 
shirt pocket. 
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tests by executing TEST 0, TEST1, .. .. , TEST 9. A table on the 
back of the calculator indicates the correspondence be­
tween the digits and tests . This frees enough positions on 
the keyboard to add the SOLVE and I; functions , plus a few 
more. 

In striving to attain the second objective, we noted that 
nearly every text covering advanced mathematics for sci­
ence and engineering includes chapters on complex analy­
tic functions and matrix algebra. They are fundamental 
tools used in many disciplines. Furthermore, the complex 
functions and many of the matrix operations can be viewed 
as extensions of the functions already on the keyboard. This 
is an important consideration because of the limited 
number of key positions available. Thus , our goal was to 
extend the domain of some of the built-in functions to 
complex numbers and matrices in a natural way without 
altering how those functions operate on real numbers. 

Complex Mode 
A complex mode was introduced in which another regis­

ter stack for imaginary numbers is allocated parallel to the 
traditional register stack for real numbers (Fig . 2). Together 
they form what is referred to as the complex RPN * stack. 

The real X register is always displayed. A complex 
number a +ib is placed in the X register by executing a, 
ENTER, b, I. The user may display the contents of the imagi­
nary X register by executing Re:;;lm to exchange the con­
tents of the real and imaginary X registers. Or the user may 
hold down the (i) key to view the imaginary part without 
performing an exchange. 

ENTER, R!, Rt, x:;;y, and LST x all operate on the complex 
stack, but CLx and CHS operate only on the real X register so 
that one part of a complex number can be altered or com­
plemented without affecting the other. For example, the 
complex conjugate is performed by executing Re:;; lm, CHS, 
Re:;; lm. 

The following functions include complex numbers in 
their domain: +, -, x , +, 1/x, v'X, x2 , ASS (magnitude), LN, 
eX, LOG , 10x, yX, SIN, COS, TAN, SIN-1, cos-1, TAN-1

, SINH, 
COSH, TANH, SINH-1

, COSH-1, and TANH-1
. These functions 

assume the complex inputs are in the rectangular form, 
a+ib. 

Often complex numbers are expressed in polar form: rei6 

= r(cosO + isinO) . In complex mode , the polar-to­
rectangular conversion functions ~p and ~R provide a 
'Reverse Polish notation. a log ic system that eliminates the need for parentheses and 
"equals" keystrokes in calculator operations. 

T 

Z 

Y 

x 

Real 

LSTX _ -Fig. 2. To handle complex numbers, the HP-15C uses 
another register stack in parallel with the traditional APN stack. 
Only the contents of the X register in the real stack are dis­
played. 
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Z,=3-j4 

Z2 = 1'0 
Z.q=1/(1 /Z, +1/Z2) 

I~ 

10 

-j4 

Fig. 3. The complex arithmetic capabilities of the HP-15C 
make it easy to solve for the equivalent impedance of this 
parallel circuit (see text). 

convenient means for converting between the polar and 
rectangular forms of a complex number. 

Complex numbers are used extensively in electrical en­
gineering. For example, to find the equivalent impedance 
in the parallel circuit shown in Fig. 3, perform the following 
steps on the HP-15C: 

Keystrokes 

3 ENTER 

1/x 

0 

1/x 

+ 

1/x 

..... p 

4 CHS 

Calculation 

1/Z 2 

1/Z 1 + 1/Z 2 

Zeq = 1/(1 /Z1 + 1/Z 2 ) · 

Hold down (I) key to 
view imaginary part. 
Zeq = 2.9730 - 2.1622i 

Convert to phasor form . 
Zeq = 3.6761 L -36.0274° 

This example is a very elementary application of the 
built-in complex function capability. Since complex opera­
tions can be used in conjunction with the SOLVE and f~ 
functions, the HP-15C can be programmed to carry out some 
sophisticated calculations such as computing complex line 
integrals and solving complex potentials to determine 
equipotential lines and streamlines. 3 

Matrix Descriptors 
No set of matrix operations is complete without addition, 

subtraction, multiplication, system solution, and inversion. 
To provide these operations on the HP-15C, it seemed 
natural to extend the domains of the +, -, x, +, and 1/x 
functions to include matrix arguments . Since these func­
tions operate on the stack contents , a means of placing a 
matrix name (descriptor) on the stack is essential. The set of 
alpha characters that can be represented in a seven-segment 
font is limited, but the letters A, B, C, D, and E have reason-



li. ,- n­
,'DLe,C 

Fig. 4. The seven-segment font used in the HP-1SC's liquid­
crystal display allows representations of the alphabetic 
characters A, B, C, D, and E as shown above for use in labeling 
matrices. 

able representations (Fig. 4). 
Thus the decision was made to allow up to five matrices 

to reside in memory simultaneously, named A, B, C, D, and 
E. Their descriptors are recalled into the X register by the 
sequence RCL MATRIX followed by the appropriate letter. 
When the X register contains a matrix descriptor, the matrix 
name and dimensions are displayed. Matrix descriptors 
may be manipulated by stack operations and stored in regis­
ters just like real numbers, and certain functions accept 
matrix descriptors as valid inputs. For example, suppose C 
and Dare 2-by-3 and 3-by-4 matrices, respectively, which 
are already stored in memory. To compute the matrix prod­
uct CD and place the result in matrix A, the user parallels 
the steps required for real number multiplication, except 
that the result destination must be specified: 

Keystrokes 

RCL MATRIX C 

RCL MATRIX D 

RESULT A 

HP-15C Display 

C 

d 

d 

2 3 

3 4 

3 4 

At this point, the HP-15C's RPN stack contains the informa­
tion shown in Fig. 5a. The matrix operands \ire in the stack, 
and the result matrix is specified. The user now executes x 
to compute the matrix product. When x is executed, the 
presence of the matrix descriptions in the Y and X registers 
is detected, the matrices are checked for compatible dimen­
sions, the result matrix A is automatically dimensioned to a 
2-by-4 matrix, the product is computed, and the matrix 
descriptor of the result is placed in the X register and dis­
played (Fig. 5b). 

The operators + and - work similarly, and + performs the 
matrix operation X-1Y if the X and Y registers contain 
matrix descriptors. This is useful for linear system solution, 
since the solution to the matrix equation XR=Y is 
R=X-1y. The 1/x function key performs matrix 
inversion. 

Other important matrix operations that are not natural 
extensions of functions on the keyboard are accessed by the 
prefix MATRIX followed by a digit. These include transpose, 
determinant, and matrix norms. A table on the back of the 
calculator indicates the correspondence between the digits 
and matrix operations. 

Internal Format of Descriptors 
Normal floating-point numbers are internally rep-

resented in the HP-15C by uSIng a 14-digit (56-bit) binary­
coded-decimal (BCD) format (Fig. 6). 

The exponent e is given by XX if XS=O, and by 
-(100-XX) ifxs=9. The value of the number is interpreted 
as (-l)s(M.MMMMMMMMM) X10 e

. For example, 

01234000000002 represents 1.234 x 102 

and 

91234000000994 represents -1.234X10-6
. 

Matrix descriptors, on the other hand, are distinguished 
by a 1 in the mantissa sign digit and a hexadecimal digit 
corresponding to the matrix name in the most significant 
digit of the mantissa field. For example, the matrix descrip­
tor C is represented internally as 1COOOOOOOOOOOO. 

When a matrix descriptor is detected in the X register, the 
matrix name is displayed, and the current dimensions of 
that matrix are fetched from a system memory location and 
also displayed. 

Creating Matrices and Accessing Individual Elements 
A matrix is dimensioned by entering the row and column 

dimensions in the Y and X registers of the stack, respec­
tively, and then executing the DIM prefix followed by the 
matrix name. Individual matrix elements are accessed by 
executing the STO or RCL prefixes followed by the matrix 
name. The element accessed is determined by the row and 
column indexes stored in registers RO and R1, respectively. 

Matrix data is usually entered or reviewed from left to 

T 

Z 

Y 

X Display 

LSTx 

(a) 

T 

Z 

Y 

X Display 

LSTx 

(b) 

Fig. 5. Before multiplying matrices C and D, the information in 
the RPN stack is located as shown in (a). After multiplication, 
the result, matrix A, is located as shown in (b) and the LSTx 
register contains the information for matrix D. 
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right along each row and from the first row to the last. To 
facilitate this process. a user mode is provided in which the 
indexes are automatically advanced along rows after each 
STO or RCL matrix access operation. After the last element 
of the matrix has been accessed. the indexes wrap around to 
1.1. As an added convenience. executing MATRIX 1 ini­
tializes the indexes to 1.1. 

The following example illustrates some of these features 
by solving the following matrix equation for C: 

A c 

[
54 -6

2
] [C(l .l) 

c(2 .1) 

Keystrokes Display 

USER 

MATRIX 

2 ENTER DIM A 2.0000 

DIM B 2.0000 

5 STO A 5.0000 

2 CHS STO A -2.0000 

4 STO A 4.0000 

6 STO A 6.0000 

8 STO B 8.0000 

3 STO B 3.0000 

2 STO B 2.0000 

6 CHS STO B -6.0000 

RCL MATRIX B b 2 2 

RCL MATRIX A A 2 2 

RESULT C A 2 2 

+ C 2 2 

RCL C 1.3684 

RCL C 0.1579 

RCL C -0.5789 

RCL C -1.1053 

C(1 .2)] 
c(2.2) 

B 

Comments 

Select USER mode. 

Initialize indexes in 
registers RO and 
Rl to 1. 

Dimension matrix A to 
2 by 2. 

Dimension matrix B to 
2 by 2. 

a(l .l) 

a(1 .2) 

a(2.1) 

a(2 .2) . Indexes wrap 
around to 1.1. 

b(l .l) 

b(1 .2) 

b(2 .1) 

b(2.2) . Indexes wrap 
around to 1.1. 

Recall right-hand side 

Recall coefficient matrix 

Specify matrix C as result. 

Compute C=A -1 B. 

c(l.l) 

c(1.2) 

c(2 .1) 

c(2.2) 
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+;5=0 
-;5=9 

Ten-Digit Mantissa 
~ 

Two-Digit 
Exponent 

+;X5=0 
-; X5=9 

Fig. 6. The internal representation for floating-point numbers 
in the HP-15C uses a 14-digit (56-bit). binary-coded-decimal 
format. 

Available Matrix Memory, Speed 
A maximum of 64 matrix elements can be distributed 

among the five matrices . Since the HP-15C can invert ma­
trices in place. up to an 8-by-8 matrix can be inverted. There 
is also enough memory to solve a 7-by-7 linear system of 
equations. Table I specifies the approximate time required 
to perform certain matrix operations. 

Table I 
Time in Seconds for Selected Matrix Operations 

Order of 
Determinant 

Solving a Matrix 
Matrix System Inversion 

1 0.5 0.5 0.5 
2 1.3 2.0 1.8 
3 2.8 4.2 5.3 
4 5.3 7.6 12 
5 9.1 12 22 
6 14 19 36 
7 21 28 55 
8 30 80 

Designing the Complex Function Algorithms 
After deciding to extend the real-valued functions and 

the RPN stack to the complex domain. our next step was to 
design the algorithms for complex arithmetic . Although 
their defining formulas are very simple. some disturbing 
examples made us question what accuracy should be 
achieved to parallel the high quality of the real-valued 
functions. 

The real functions are generally computed with a small 
relative error (less than 6 x 10 -10) except at particular points 
of certain functions. where it is too costly in execution time 
or ROM space for the result to be computed that accurately.3 

The relative difference R(x.y) between two numbers x and 
y is given by 

R(x.y) = 
Ix-yl 

Iy l 

When X is an approximation of x. then we say R(X.x) is the 
relative error of the approximation X. Notice that the size of 
the relative error is related to the number of digits that are 
accurate. More precisely. R(X.x) <0.5 xl0-n implies that X 



is an approximation to x that is accurate to n significant 
digits . 

If we always wish to obtain small relative errors in each 
component of a complex result, then the out~ome of the 
following example is very disappointing. For simplicity we 
will use four-digit arithmetic , instead of the 13 digits used 
internally to calculate the 1 O-digit results delivered to the X 
register of the calculator. 
Example 1: Using the definition for complex multiplica­
tion, 

(a + ib)(c + id) = (ac - bd) + (ad + bc)i , 

consider the four-digit calculation of Z x W, where 
Z = 37.1 + 37 .3i and W = 37.5 + 37 .3i. We get, 

Z x W = (1391 - 1391) + (1384 + 1399)i 
=0 + 2783i 

Since the exact answer is -0.04 + 2782 .58i , itisclearthat 
accurate components are not always achieved by a simple 
application of this formula. The difference a Xc-b x d has 
been rounded off to result in a loss of all significant digits of 
the real part. The loss can be eliminated, but the calculation 
time would increase roughly by a factor of 4. Is it really 
worth this higher cost in execution time? For comparison 
we will consider an alternative definition of accurate com­
plex results. 

Complex Relative Error 
As with real approximations we often want our errors 

small relative to the magnitude of the true answer. That is to 
say, we want I (approximate value) - (true value) II I (true 
value) I to be small enough for our purposes . So relative 
error may be extended to the complex plane by R(Z,z) = 
IZ -z I/ lz I. This extension may be applied to vectors in any 
normed space. A simple geometric interpretation is illus­
trated in Fig. 7. ApproximationsZ ofz will satisfy R(Z,z) <8 
if and only if the points Z lie inside the circle of radius 81 z I 
centered at z. This condition for complex relative accuracy 
is weaker than that for component accuracy. If the errors in 
each component are small, then the complex error is small. 
To show this, assume that R(X,x) < 8 and R(Y,y) < 8 where 
z=x+iy. Then, 

R(Z,z) = I (X - x) + i(Y - y) I/l z I 
~ X -xl /lz i + IY -y l/l zi 
~ R(X,x) + R(Y,y) 
< 28 

Actually, R(Z,z) is less than 8, but this is slightly more 
difficult to show. On the other hand, however, a small 
complex error does not imply small component errors. Re­
ferring back to Example 1, we see that R(ZW, zw)=0.0002, 
which is respectably small for four-digit precision, even 
though the real component has no correct digits. 

It is not unusual for only one component to be inaccurate 
when the result is computed accurately in the sense of 
complex relative error. In fact, because the error is relative 
to the size Iz I, and because this is never greatly different 
from the size of the larger component, only the smaller 
component can be inaccurate. 

z 

Fig. 7. A simple geometric representation of complex relative 
error R(Z,z)< /). 

To show this we shall assume, without loss of generality, 
that Ix I is the larger component. Then 

which implies that 1~ Iz/x I ~ V2, since Iy I ~ Ix I by 
assumption. Thus Ix I and Iz I do not differ greatly. The 
important part is that Ix I ;;;. I z 1/Y2. This gives 

IX-x l/l xl ~ IZ-z l/l xl ~ Vzlz-z l/i z i < VzR(Z,z) 

So the relative error of the larger component (assumed to be 
x here) is very nearly as small as the complex relative error 
bound R(Z,z). It also follows that the smaller component is 
accurate relative to the larger component's size (Le. , 
IY-yl /lx l ~ IZ-z l/l xl ~VzR(Z,z) . 

This provides a quick way to determine which digits of a 
calculated value can possibly be incorrect when it is known 
that the calculated value has a certain complex error. By 
representing the smaller component with the exponent of 
the larger component, the complex error indicates the 
number of correct digits in each component. 

For instance, in Example 1 we obtained the approxima­
tion Z = 0 + 2783i of the true answer -0.04 + 2782 .58i. 
Since the larger component is 2.783 x 103 we will represent 
the first component with the same exponent (0 .000 x 103

) to 
obtain Z=0000.0+2783i. These components must be accu­
rate to nearly four digits since R(Z,z) = 0.0002. 

Perhaps the zero component of Z confuses the issue here, 
so another example may be appropriate. First, let 

Z = 1.234567890 X10-10 + 2.222222222 x 10-3i 

Then think of Z as 

Z = 0.0000001234567890 X10-3 + 2.222222222 x 10- 3
j 

If the complex relative error indicates 10-digit accuracy, 
Le. , R(Z,z) < 0.5 x 10 -1~ then this implies that the first 10 
digits are correct, that is , 

Z = 0.000000123 X10-3 + 2.222222222 X 10-3i 
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I 

Error Propagation 
We have seen that computing the product oftwo complex 

numbers in the straightforward manner does not necessar­
ily result in a small error in each component (Example 1). 
However it can be shown that the product does have a 
complex relative error bound of roughly 10-n whenever n 
digits of precision are used in the calculation. Moreover, 
small relative errors in the input values give rise to relative 
errors nearly as small in the output values . This is not true 
for small component errors. One acceptable rounding error 
in an input value may produce an inaccurate component, 
even when the multiplication is exact. This is illustrated by 
the following example. 
Example 2: Let z = (1 + 1/300) + i and w = 1 + i, then 
using four-digit precision we have 

Therefore, 

exactly, yet 

Z = 1.003 + 1.000i 
and W = 1.000 + 1.000i 

ZW = 0.003 + 2.003i 
= 3.000 x 10-3 + 2.003i 

zw = 3.333 X 10 - 3 + 2.003i 

to four digits . The single rounding error of 1 +1/300 
~ 1.003 in the component of the input Z was magnified 
from a relative error of 0.0003 to 0.1. 

So, in general, computing accurate components will not 
improve the result of a chain calculation because inter­
mediate input values are often inexact (this is the idea of 
backward error analysis and is explained more fully in 
reference 3). It is important to realize that this is not, in 
itself, a good reason to forsake accurate results based on the 
assumption that the input values are not exact. For exam­
ple , if we assume that X has an error in its eleventh digit and 
thus decide that sin(X) for x> 105 degrees, say, need not be 
compu ted accurately, then we would have failed to provide 
a useful result for those special cases where we know that 
the input value is exact. 

As a simple illustration consider accurately calculating 
the value sin(1,234,567,899.1234567890) where the argu­
ment is in degrees . Using 

sin(1,234,567,899) = 0.9876883406 

is grossly inaccurate. Instead, let x = 1.234567899 x 10~ and y 
= 0.123456789, then evaluate 

sin(x+y) = sin(x)cos(y) + cos(x)sin(y). 

Here we know x is exact, and since sin(x) and cos (x) are 
computed accurately by the HP-15C, the final result 
sin(x+y) = 0.9873489744 is very accurate . 

The point here is that clean results (in particular accurate 
components) are desirable, but in our estimation the cost of 
adding ROM and increasing execution time was too high on 
this machine to provide complex arithmetic that is accurate 
in each component. However, accurate components are de­
livered in those functions where it is more practical. This is 
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discussed further in the following section. 
In general, the HP-15C delivers complex results that 

satisfy R(Z,z) < 6 X 10-tO , except where functions involving 
trigonometric calculations (in radians) are evaluated at very 
large arguments or near transcendental zeros such as mul­
tiples of 1T. This inaccuracy is embedded in the real-valued 
functions and is an example of an error that is too costly to 
correct completely. 3 ,4 

Some Specific Complex Functions 
For complex arithmetic we obtained accurate results (Le., 

small complex relative errors) from the standard formulas 
used to define each operation. But, in general, defining 
formulas are usually not accurate for computers. In this 
section we will single out two particular functions, sin(z) 
and Yz, and very briefly focus on some difficulties that 
arise. 
• Sin(z). A typical defining formula for the complex sine 

function is given by 

sin(z) = 
eiz _ e-iz 

2i 
(1) 

If this is used to compute sin(z) for small Iz I, the two 
exponential terms will be nearly equal and thus cause a 
loss of accuracy. This will result in a large complex 
relative error even though each step of the calculation is 
very accurate. If equation (1) is replaced by 

sin z = sin(x) cosh(y) + icos(x) sinh(y) (2) 

where z = x+iy, then the relative error problem for small 
Iz I will be solved, and furthermore the components will 
become accurate (except for the trigonometric difficulty 
with large angles mentioned earlier). To observe the 
striking difference in results, we calculate 

w = sin (1.234567 Xl0-s + 9.876543 Xl0-si) 

for each formula. The outcome is represented below. 

Eqn. 

(1) 
(2) 

W (10-digit calculation of w) 

1.234567006 Xl0-5 + 9.876530000 x lO-5j 

1.234567006 x 10 -5 + 9.876543015 x 10 - 5j 

R(W,w) 

10 - 6 

10-10 

The HP-15C's internal calculation is based on equation 
(2) , with minor modifications that exploit the relation­
ships between the real functions to eliminate redundant 
computation. . 

• Vi. The most common definition ofthe principal square 
root is 

(3) 

where 0 is the Arg (z), satisfying -1T<()~1T. 
This formula is accurate with respect to complex relative 

error , but not accurate in each component. This can be seen 
by working through the calculation of Va, where a = -1 + 
(-1 Xl0-15i) , with 10-digit precision. Here 0/2 rounds to 
precisely 90 degrees, thus causing Va~o -i, while the true 



i • 

value rounds to 5 x 10 -16 -i. The complex error is small but 
certain information in the real component is lost. The fact 
that Va lies on the right side of the imaginary axis can be 
critical when computing near discontinuities called branch 
cuts. For example, In( -fYaJ = -ini2, but the inaccurate 
component of Va will cause it to evaluate to i7r/2 since 
-iVa is near the branch cut ofln( z). More will be said abou t 
branch cuts in the next section. 

It turns out that Yz can be computed with accurate 
components and without loss in execution time. This func­
tion, along with the inverse trigonometric and hyperbolic 
functions , is computed on the HP-15C with accurate com­
ponents. Their algorithms are not described by a simple 
formula as with sin(z) in equation (2), but rather are de­
scribed in terms of their components. These accurate com­
ponents are achieved by recognizing and eliminating errors 
such as those described above. 

Principal Branches 
The function Yz is an inverse function off(zJ = Z2. As is 

often the case with defining inverses , we must select from 
more than one solution to define the principal branch of the 
inverse. This is done for the real function by selecting the 
non-negative solution of X2 = a and denoting it by Va. 
Because of the branch point at 0, any branch for Va must 
have a discontinuity along some slit (branch cut) . In equa­
tion (3) above, it is along the negative real axis . Notice in 
Fig. 8 that values below the negative real axis map to values 
near the negative imaginary axis, while above the slit, val­
ues map near the positive imaginary axis . Since it is tradi­
tional to have _i = v-=1 we must attach the slit (negative 
real axis) to the upper half plane, making it continuous from 
above and not from below, that is , -77< ()""'77. One will 
occasionally see Vz defined for 0""'()<277, which places the 
discontinuity along the positive real axis . We have avoided 
doing something like this in the branches of all of the 
complex inverse functions so that each will be analytic in a 
region about its real domain. This is important since com­
plex computation is often performed in a region about the 
real domain in which the function's values are defiI)-ed by 
the analytic continuation from the real axis. 

The placement of the branch cuts and the function values 
along the slit are fairly standard for Vz and In(z), but the 
inverse trigonometric and hyperbolic functions have not , as 
yet, become standardized. However, by following a few 
reasonable rules there is not much room for variation. 

The first rule, analyticity about the real domain, has al­
ready been mentioned. Secondly, we have tried to preserve 
fundamental relationships such as the oddness or evennes~ 

~· offunctions (~.g., sin( -z) = -sin(z)) and the computational 
formulas relating functions to the standard principal 
branches of In(z) and Yz (e.g., 77/2 -sin(z) = g(z) '\I'l"=z 
where g(z) is analytic at 1, that is , a power series in z -1). 

The determination of formulas involving a choice of 
branches is often quite complicated. W.M. Kahan has pre­
sented a very enlightening discussionS of branch cuts and 
has pointed out to us that the HP-15C branch cuts should 
satisfy certain simple formulas relating them to the princi­
pal branch of In(z). These formulas are satisfied and are 
reproduced below. 

and 
In(z) = In( Iz I) + i Arg(z) 
Vi. = exp(ln(z)l2) 

with -77 < Arg(z) "'" 77 and Yo = 0 

arctanh(z) 

arctan(z) 

arcsinh(z) 

arcsin(z) 

arccos(z) 

arccosh(z) 

[In(1 + z) - In(1 - z) ]/2 
-arctanh( -z) 

- i arctanh(iz) 
-arctan( -z) 

In(z + Vl+z2) 
-arcsinh( -z) 

-i arcsinh(iz) 
-arcsin( -z) 

77/2 - arcsin(z) 

2 In [V(z + 1)/2 + V(z - 1)/2 ] 

These are not intended as algorithms for computation, but 
as relations defining precisely the principal branch of each 
function. 

Matrix Calculations 
As mentioned earlier, the HP-15C can perform matrix 

addition, subtraction, and multiplication. It can also calcu­
late determinants, invert square matrices , and solve sys­
tems of linear equations. In performing these last three 
operations, the HP-15C transforms a square matrix into a 
computationally convenient and mathematically equiva­
lent form called the LU decomposition of that matrix. 

LU Decomposition 
The L U decomposition procedure factors a square matrix, 

say A, into a matrix product LV. L is a lower-triangular 
square matrix with 1s on its diagonal and with subdiagonal 
elements having values between -1 and 1, inclusive. V is an 
upper-triangular square matrix. The rows of matrix A may 
be permuted in the decomposition procedure. The possibly 
row-permuted matrix can be represented as the matrix 

Z w 

(a)Z=w' (b)w=Vz 

Fig. S. The complex function Z = w2 , shown in (a) has an 
inverse function w = vz. shown in (b), which maps the Z 
plane onto the right half plane of w with a branch cut along the 
negative real axis of the Z plane. 
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product PA for some invertible matrix P. The LU decom­
position can then be represented by the matrix equation 
PA = LU or A = P-1LU. 

The HP-15C uses the Doolittle method with partial pivot­
ing to construct the LU decomposition. It constructs the 
decomposition entirely within the result matrix. The 
upper-triangular part of U and the subdiagonal part of L are 
stored in the corresponding parts of the result matrix. It is 
not necessary to save the diagonal elements of L since they 
are always equal to 1. 

Partial pivoting is a strategy of row interchanging to 
reduce rounding errors in the decomposition. The row in­
terchanges are recorded in the otherwise underused XS 
format fields of the result matrix's diagonal elements. The 
recorded row interchanges identify the result matrix as 
containing an LU decomposition and the result matrix's 
descriptor includes two dashes when displayed . 

The determinant of the decomposed matrix A is just 
(_l)r times the product of the diagonal elements of U, 
where r is the number of row interchanges represented by P. 
The HP-15C computes the signed product after decompos­
ing ,the argument matrix A into the result matrix. 

The HP-15C calculates the inverse of the decomposed 
matrix using the relationship 

A -1 = [P - 1LU] -1 = U-1L -1 P 

It does this by inverting both U and L, computing the prod­
uct oftheir inverses, and then interchanging the columns of 
the product in the reverse order of the row interchanges of 
A. This is all done within the result matrix. 

Solving a system AX=B for X is equivalent to solving 
LUX=PB for X, where PA=LU denotes the LU decomposi­
tion of A. To solve this system, the HP-15C first decomposes 
the matrix A in place. The calculator then solves the matrix 
equation LY =PB for matrix Y (forward substitution) and 
finally UX= Y for matrix X (backward substitution), placing 
the solution X into the result matrix. 

The LU decomposition is returned by a determinant or 
system solution calculation and can be used instead of the 
original matrix as the input to subsequent determinant , 
matrix inverse, or system solution calculations. 

Norms and the Condition Number 
A norm of a matrix A, denoted by II A II , is a matrix 

generalization of the absolute value of a real number or the 
magnitude of a complex number. Any norm satisfies the 
following properties: 

• II A II ~ 0 for any matrix and II A II = 0 if and only if 
A=O 

• II aA II = I a I x II A II for any number a and matrix A 
• II A + B II .;; II A II + II B II for any matrices A and B 
• II A B II .;; II A II x II B II for any matrices A and B. 

One measure of the distance between two matrices A and B 
is the norm oftheir difference, II A - B II . A norm can also be . 
used to define a condition number of a square matrix, which 
measures the sensitivity of matrix calculations to perturba­
tions in the elements of that matrix. 
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The HP-15C provides three norms. The Frobenius norm 
of a matrix A, denoted II A II F, is the square root of the sum 
of the squares of the matrix elements . This is a matrix 
generalization of the Euclidean length of a vector. 

The HP-15C also provides the row (or row-sum) norm. 
The row norm of an m-by-n matrix A is the largest row sum 
of absolute values of its elements and is denoted by II A II R: 

n 

II A II R = max L: l aij l 
l .,;i";m j=l 

The column (or column-sum) norm of a matrix A is denoted 
by II A II c and is the largest column sum of absolute values 
of its elements. It can be computed as the row norm of the 
transpose of the matrix A. 

For any choice of norm, a condition number K(A) of a 
square matrix A can be defined by 

K(A) = II A II x II A -1 II 
Then K(A) = II A II x II A -1 II ~ II AA - 1 II = II I II ~ 1 

for any norm. The following discussion assumes the condi­
tion number defined by the row norm. Similar statements 
can be made for the other norms . 

If rounding or other errors are present in matrix elements, 
these errors will propagate through subsequent matrix cal­
culations. They can be magnified significantly. Consider, 
for example, the matrix product AD where A is a square 
matrix. Suppose that A is perturbed by the matrix ~A. The 
relative size of this perturbation can be measured as 

II ~A II III A II ' The relative size of the resulting perturba­
tion in the product is then 

II ~A B II III A B II II ~A A -lA B II I II A B II 
.;; II ~A A -1 II 

.;; II ~A II x II A-
1 11 

= K(A) II ~A II I II A II 

with equality for some choices of A, B, and ~A. Hence K(A) 
measures how much the relative uncertainty of a matrix can 
be magnified when propagated into a matrix product. 

Uncertainties in the square system matrix A or the matrix 
B of the system of equations AX = B will also propagate into 
the solution X. For small relative uncertainties ~A in A, say 

II ~A II I II A II «l/K(A), the condition number is a close 
approximation to how much the relative uncertainty in A or 
B can be magnified in the solution X.6 

A matrix is said to be ill-conditioned if its condition 
number is very large. We have seen that errors in the data­
sometimes very small relative errors-can cause the solu­
tion of an ill-conditioned system to be quite different from 
the solution of the original system. In the same way, the 
inverse of a perturbed ill-conditioned matrix can be quite 
different from the inverse of the unperturbed matrix. But 
both differences are bounded by the condition number; they 
can be relatively large only if the condition number is large. 



Singular and Nearly Singular Matrices 
A large condition number also indicates that a matrix is 

relatively close to a singular matrix (determinant = 0) . 
Suppose that A is a nonsingular matrix. 

l /K(A) min ( II A -S " 1 " A " 1 

and 11" A -1" = min ( " A-S " l, 

where each minimum is taken over all singular matrices S .6 
11" A - 1" is the distance from A to the nearest si~gular 
matrix. l /K(A) is this distance divided by the norm of A. 

For example, if 

A [ ~ 0.9999~99999 ] 
then 

= 
[ 

-9,999,999,999 
A :'" 1 

1010 

10
tO 

] 

-1010 

and " A -1 " = 2 X 1010
• Therefore , there should exist a per­

turbation matrix ~A with "~A " = 5 x l0 - 11 that makes 
A + ~A singular. Indeed, 

has "~A" = 5 XlO-11, and 

A+~A [ ~ 
is singular. 

- 5 X lO - 11 ] 

5 x 10 - 11 

0.99999999995 ] 

0 .99999999995 

In principle, because the HP-15C's matrices are bounded 
in size, exact arithmetic and exact internal storage could be 
used to ensure la-digit accuracy in matrix calculations. 
This was considered prohibitively expensive, however. In­
stead, the HP-15C is designed to perform arithmetic and 
store intermeaiate calculated values using a fixed number 
of digits . 

Numerical determinant, matrix inversion, and system 
solution calculations using a fixed number of digits intro­
duce rounding errors in their results . These rounding errors 
can be conceptually passed back to the input data and the 
calculated results interpreted as exact results for perturbed 
input data A + ~A. If the norm of the conceptual perturba­
tion ~A is comparable to 11 " A - 1 " , the original nonsingu­
lar input matrix A may be numerically indistinguishable 
from a singular matrix. 

For example, a square matrix is singular if and only if at 
least one ofthe diagonal elements of V , the upper triangular 
matrix in the LV decomposition of A, is zero. But because 
the HP-15C performs calculations with only a finite number 
of digits , some singular and nearly singular matrices cannot 
be distinguished in this way. 

The matrix 

B 

is singular. Using la-digit accuracy, the calculated LU de­

composition is 

LV 
[ 0 .3333

1

333333 

which is the decomposition of the nonsingular matrix 

[ 

3 
D-

0.9999999999 

Hence the calculated determinants of Band D are identical. 
On the other hand , the matrix 

A=[: 
LV 

is nonsingular. Using 10-digit accuracy, the calculated LU 
decomposition is 

LV = [ 
'1 

0.3333333333 

which is the LV decomposition of the singular matrix 

c=[ 3 

0.9999999999 

The calculated determinants of A and C are also identical. 
Because the calculated LV decompositions of some sin­

gular and nonsingular matrices are identical, any test for 
singularity based upon a calculated decomposition would 
be unreliable. Some singular matrices would fail the test 
and some nonsingular ones would pass it. Therefore, no 
such test is built into the HP-15C. 

Instead, if a calculated diagonal element of V, which we 
call a pivot, is found to be zero during the LV decomposi-
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tion, rather than aborting the matrix calculation and re­
porting the input matrix to be singular, the HP-15C replaces 
the zero pivot by a small positive number and continues 
with the calculation. This number is usually small com­
pared to the rounding errors in the calculations. Specifi­
cally, it will be about 10 -10 times the largest absolute value 
of any element in that column of the original matrix. If 
every element in that column of the original matrix has an 
absolute value less than 10 -89, the value 10 -99 is used 
instead. 

An advantage of replacing zero pivots by nonzero pivots 
is that matrix inversion and system solution calculations 
will not be interrupted by zero pivots. This is especially 
useful in applications such as calculating eigenvectors 
using the method of inverse iteration. Example programs 
calculating eigenvalues and eigenvectors can be found in 
reference 3. 

The effect of rounding errors and possible intentional 
perturbations causes the calculated decomposition to have 
all nonzero pivots and to correspond to a nonsingular ma­
trix usually identical to or negligibly different from the 
original matrix. 

Complex Matrix Calculations 
The HP-15C only operates on real matrices , that is, ma­

trices with real elements. However, it is possible to repre­
sent complex matrices as real matrices and to perform ma­
trix addition, subtraction, multiplication, and inversion of 
complex matrices and to solve complex systems of equa­
tions using these real representations. 

Let Z = X + iY denote a complex matrix with real part X 
and imaginary part Y, both real matrices. One way to repre­
sent Z as a real matrix is as the partitioned matrix 

having twice the number of rows but the same number of 
columns as Z. Complex matrices can be added or subtracted 
by adding and subtracting such real representations. 

is 
Another computationally useful real representation for Z 

_ [X 
Z = 

Y 

-Y 

X ] 
having twice the number of rows , and columns as Z. The 
HP-15C's' built-in matrix operation MATRIX 2 performs the 
transformation 

zP ~ Z 

The operation MATRIX 3 performs the inverse transforma­
tion 

z ~ zP 

Suppose A, B, and C are complex matrices and A is 
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invertible. Then complex matrix multiplication, inversion, 
and system solution can be performed with real matrices 
and built-in HP-15C operations using the relationships: 

p 
(AB) 

AC=B~CP 

- p 
AB, 

_ -1 

(A) 

These procedures are illustrated in the HP-15C Owner's 
Handbook. 

Matrix Transpose 
The operations MATRIX 2 and MATRIX 3 perform their 

transformations using a matrix transpose routine . The rows 
and columns of a matrix are interchanged to form the trans­
pose of that matrix. The transformation is performed in 
place, replacing the original matrix by its transpose. This 
routine is available to the user as MATRIX 4 . Consider the 
following example: 

[: :J b 

e 

Here the elements of the matrices have been displayed in 
a two-dimensional format. However, they are stored in a 
one-dimensional sequence within the calculator' s memory. 
For this example, the transpose operation changes the or­
dering of the elements within the calculator memory as 

abc d e f ~ a d bee f. 

The MATRIX 4 operation moves the elements according to 

o () 
These movements form disjoint loops. The first value in 

the sequence is the first c~didate for moving . As a value is 
copied into its destination, that destination is tagged in its 
XS field. The previous value at that location is the next 
candidate for moving. Movement along a loop continues 
until a destination is encountered that is already tagged. 
The content of the tagged destination is not changed and 
the current loop is terminated. The value in the location 
immediately following that tagged destination is the next 
candidate for moving . 

This operation continues moving values along loops 
until the sequence is exhausted, at which point all destina­
tion tags are removed. Finally, the recorded dimensions of 
the matrix are switched. 



Accuracy of Matrix Calculations 
Accuracy specifications for all matrix operations are 

given in reference 3. These specifications are stated in terms 
of both backward and forward error analysis. Reference 3 
includes a general rule of thumb for the number of signifi­
cant digits in a calculated matrix inverse or system solution. 
It also includes descriptions of techniques to improve upon 
the accuracy of calculated system solutions and to reduce 
the ill-conditioning of systems of equations. 
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