
HEWLETT-PACKARD

J(QJO::D~~&[s AUGUST 1987

A Handheld Business Consultant, by Susan L. Wechsler You can enter your own
equations for solution by HP's latest financial calculator.

7 Cash Flow Analysis Using the HP-18C
8 The Equation Solver Menu in the Hp·18C

10 History and Inspiration of the Solve Interface

An Evolutionary RPN Calculator for Technical Professionals, by William C. Wickes
Symbolic entry and a display large enough for plotting data are some of the useful features.

13 Example Problem
15 HP-28C Plotting

Mechanical Design of the HP-18C and Hp·28C Handheld Calculators, by Judith A.
Layman and Mark A. Smith A folding case and two keyboards enhance functionality

while reducing label clutter.

A~ Symbolic Computation for Handheld Calculators, by Charles M. Patton A special
G operating system was developed to allow processing of a variety of data types from

simple numbers to alphanumeric expressions.

A Multichip Hybrid Printed Circuit Board for Advanced Handheld Calculators, by
Bruce R. Hauge, Robert E. Dunlap, Cornelis D. Hoekstra, Chong Num Kwee, and Paul R.

Van Loan All of the electronics and the display are mounted on a single 1.5-inch-by-3-inch board.

An Equation Solver for a Handheld Calculator, by Paul J. McClellan A combination of
direct and iterative solving algorithms is used.

Electronic Design of An Advanced Technical Handheld Calculator, by Preston D.
Brown, Gregory J. May, and Megha Shyam Custom CPU, ROM, and display driver ICs

are key elements.

3 In this Issue
3 What's Ahead

39 Authors

Editor. Richard P. Dolan. Associate Editor, Business Manager, Kenneth A. Shaw. Assistant Editor, Nancy R Teater. Art Director, Photographer, Arvid A Danielson
Support Supervisor, Susan E Wright • Administrative Services, Typography, Anne S. LoPresti • European Production SuperVisor, Michael Zandwijken

2 HEWLETI·PACKARD JOURNAL AUGUST 1987 © Hewlett·Packard Company 1987 Printed In U,S,A

Handheld calculator designs always seem to require the expert application
of a broader variety of disciplines than other product designs. Perhaps it's
the challenge of building more and more capability into a severely limited
volume. In this respect, this month's subjects, the HP-18C Business Consul­
tant and the HP-28C Scientific Professional Calculator, are typical. Their
design story has interesting aspects not only in circuit design and firmware
development, but also in materials, packaging, operating system design,
algorithms, user interface design, display technology, and ergonomics.

The first thing you notice is the package. Users didn't like keys that had
three different labels, so the designers added more keys, and the package opens to reveal two
keyboards side by side. How do you reliably connect the two halves of the electronics through a
rotating hinge? See the mechanical design paper on page 17. Business users want to customize
their calculators without programming, so the HP-18C has soft key menus and the Solve interface,
which lets you type in an equation algebraically using any convenient variable names and then
solve for an unknown variable by pressing the softkey labeled with its name (page 4). While the
HP-18C is algebraic, the HP-28C still uses RPN, the programming language of earlier HP scientific
calculators, but the language has been extended to include symbolic entry of variables and a
variety of data types (page 11). Behind these advanced features of both calculators is a new
operating system developed especially for handheld calculators. Called RPL, it has similarities to
both Lisp and Forth (page 21). For solving equations, the iterative solver of earlier HP scientific
calculators has been augmented with a direct solver and implemented in both the HP-18C and
the HP-28C. The solver first tries to solve a user's equation by algebraic operations. If it can't, it
uses trial-and-error methods (page 30).

You'll find the electronic design of these new calculators described in the papers on pages 25
and 34. In a future issue, we'll have papers on the calculators' accessory printer and its infrared
interface, and on the manufacturing process.

-R. P. Dolan

§

Next month's issue is another in our series devoted to the new HP Precision Architecture.
Three papers will describe the design and development of the processor chip set for the first
VLSI implementation of the architecture, and two papers will describe system processing units
that use this chip set. One of the SPUs is for the HP 9000 Model 850 and HP 3000 Series 950
Computers, and the other is for the HP 9000 Model 825.

The HP Journal encourages technical diSCUSSion of the tOPICS presented in recent articles and will publish leUers expected to be of interest to our readers. Letters must be 'brief and are subject

to editing. Letters should be addressed to: Editor, Hewlett·Packard Journal, 3200 Hillview Avenue, Palo Alto, CA 94304, U.S.A.

AUGUST 1987 HEWLETI·PACKARD JOURNAL 3

A Handheld Business Consultant
The latest model in HP's line of calculators designed for
business and financial applications features a menu-driven
user interface for selecting any of its many built-in functions
or custom equations entered by the user.

by Susan L. Wechsler

P'S BUSINESS CONSULTANT (Fig. 1) is an ad­
vanced handheld calculator that combines many of
the most popular features of the earlier HP-12C with

enhancements such as a menu-driven user interface, cus­
tomization without programming, a four-line dot-matrix
display, and an infrared transmitter for sending data to an
optional cordless printer. Because the Business Consultant
uses the same CPU as the HP-71B Handheld Computer,l
its financial calculations run at least 15 times faster than
those on the HP-12C.

The major applications (menus) contained in the HP-18C
Business Consultant are (see Fig. 2):
;5. FIN-time value of money, cash flow analysis, interest

conversions
... BUS-percent change, percent total, markup

SUM-running total, one-variable statistics, forecasting
with one of four models

51 TIME-date arithmetic, running clock with the ability to
set up to six alarms

lid SOLVE-new way for users to solve their own special
problems without programming.

4 HEWLETT-PACKARD JOURNAL AUGUST 1987

What makes this product special is its ease of use. The
popularity of the HP-12C told us that its feature set met
customer needs, and yet we were confident that there were
ways we could improve the usability of those features. To
discover how, we contacted our customers through focus
panels on both coasts of North America, and our contingent
of sales representatives overseas. The response guided
many aspects of the design of the business consultant.

Localization
From outside the United States came significant feedback

regarding localization. Many people wanted a calculator
that communicates in their primary (or perhaps only) lan­
guage. To do this, every message and softkey label was put
into a single table, thus eliminating the possibility of over­
looking a message during the translation process. The idea
of a single table, as opposed to strings scattered throughout
ROM space, appealed to us for financial reasons also. To
expedite release of the product, the HP-18C's operating
system was initially stored in two 32K-byte ROM chips. It
was highly desirable to be able to accomplish localization

Fig. 1. The HP-18C Business
Consultant is HP's latest handheld
calculator deSigned for business
and financial applications. It fea­
tures several built-in applications
accessed by a menu-driven user
interface, an equation solver, alge­
briac entry of formulas without the
need for programming, and an in­
frared transmitter for sending data
to an optional printer.

BUS

i-, I I
'''foeHG (l/QTOTL MU%C MU%P

Eh.~. I elDJDt..l
(a) a-. ... ~

FIN

I--------t------I
TVM ICONV CFLO

I I ~---l I

EFFECT CONT

mf;~. c&~

SUM

~-I---t------r---·l
CALC INSRT DELET NAME GET

I ~
I 'NEW Names

L
' of lists

---·--·---~---l

r-r--r--------r--'..------,I
€m.3 GD CID c:mD Cltl':3 MORE

t T--,
SORT FRCST MORE

I
Name of List

(Select X~variable)

I I ll_~
LIN LOG EXP PWR

I I I -.-J

mta da-JD .. ~ J,
(c)

TIME

I . I I
CALC APPT AOJST

(d)

(8)

(I)

I ,- ,
I

.HR -HR ~MIN -MIN +SEC ·-SEC I
I r------r- 'I I I

APPT1 APPT2 APPT3 APPT4 APPT5 APPT6

L_J_J-,_~.J~
,--r----T-...L-1 I

I mJ B!!!I A PM 6:ZJ!I RPr HELP

I I I I 1 1

I
I NONE ~ lID E!SI J:I11:1

** I
l__ J A PM MD 1224

SOLVE
I

1--1;--1
CALC EDit DELET

!
'%Nt[1·!'··il'M.'.

I
LOG

--..

MATH

I
I

I I
LN EXP N! PI

Variable used to store and/or calculate values.

Variable used to calculate or display values;
cannot be used to store values.

Variable used to store values;
cannot be used to calculate values.

1

l

HELP

Fig. 2. Built-in application menu structures for HP-18C.

AUGUST 1987 HEWLETI-PACKARD JOURNAL 5

I

by replacing only one of these two chips. By ensuring that
the message table did not cross a chip boundary, we were
able to meet this goal. So far, the Business Consultant has
been localized in German, French, Italian, and Spanish.

Softkey Menus
Many people in our target market disliked keyboards

cluttered with labels. We did not want to sacrifice function­
ality to address this concern, so instead we added more
keys, both physical and virtual. The physical keys were
added by providing a second keyboard, using a clamshell
package design. The virtual keys were added by incorporat­
ing a menu-driven interface, using six softkeys that are
positioned directly beneath the display. There are no labels
on these six keys. Instead, their functionality is indicated
by the labels shown directly above them. For example, to
get to the percent change application, the user presses the
softkey labeled BUS (Fig. 2a), which brings up a choice of
four menus: %CHG, %TOTL, MU%C, and MU%P. Pressing the
softkey labeled %CHG puts the user into the percent change
menu.

The Business Consultant is Hewlett-Packard's first
menu-driven calculator. The menu scheme was not free-it
came at a cost of approximately 5% of the ROM space. A
menu table and corresponding menu handler had to be
constructed to handle the changing execution address and
ASCII string bound to each softkey, and to deal with the
idiosyncrasies of each menu.

People are emphatic about wanting a calculator that they
can learn to use by merely pressing the keys. They want
an operating environment that is intuitive and consistent.
So, the Business Consultant provides help messages to
guide the user through the various applications, and within
any application, the same interface produces answers
quickly and simply. This generalized interface succeeds in
providing one consistent method for solving problems
throughout the machine. It is the same as the top-row-key
interface (Fig. 3) used to solve time-value-of-money prob­
lems on the HP-38C and HP-12C. On these earlier HP finan­
cial calculators, the n, i, PV, PMT, and FV keys provided a
great "what-if?" tool for time-value-of-money problems
such as loans, savings, and leasing. To store a value into
the number-of-periods register, the user keys in the desired
value and presses the n key. After storing values into four

II I I IN! \lr~\1 f~f\lD \F~R

n. _, _ J:J£. eM1i iti. £!:!§. ..L..

Fig. 3. Top-row-key interface for solving time-value-of-money
problems on HP-12C Calculator. On the HP-18C, the top-row­
key interface has become a more generalized softkey struc­
ture where the key labels are displayed on the bottom of the
display above the keys.

6 HEWLETI-PACKARO JOURNAL AUGUST 1987

of the five variables, the user simply presses the key corre­
sponding to the unknown variable to solve for its value.
In this fashion, any variable can be derived after values are
assigned to the other four variables.

Through the use of the six softkeys positioned directly
beneath the HP-18C's display, the Business Consultant user
can bring up various built-in application menus that make
use of the same top-row-key interface. When a given appli­
cation is in effect, its variable names come up in the display
directly above the associated softkeys. We call this general­
ized top-row-key interface the Solve interface. Built-in ap­
plications that use the Solve interface are listed in Table
I, along with their associated softkey labels.

Table I

HP·18C Applications Using Solve Interface

Application

Time value of money:
interest rate conversions:
Percent change:
Percent of total:
Markup as percent of cost:
Markup as percent of price:
Days between two dates:

Softkey Labels

N I%YR PV PMT FV
NOM% EFF% P
OLD NEW %CH
TOTAL PART %T
COST PRICE M%C
COST PRICE M%P
DATE1 DATE2 DAYS

Using this standardized interface, functions that tradi­
tionally have been confusing to use on previous calculators
become extremely intuitive. Two such functions are per­
cent change and percent of total. To determine what percent­
age 17.5 is of 67, press BUS and then press %TOTL. The
display shown in Fig. 4a appears. Then, pressing keys 6 7

TOTAL 17.5 PART % T results in the display shown in Fig. 4b.
As can be seen from Fig. 4b, the Solve interface has been

further enhanced by adding the labeling of values. When
a value is stored in a variable, a confirmation consisting

Fig.4. Use of the HP-18C's softkey user interface. (a) % TOTL
menu of BUS application. (b) Answer to determining what
percentage of 67 a value of 17.5 is.

Cash Flow Analysis Using the HP-18C

An investor has an opportunity to purchase a piece of property
for $100,000. Yearly cash flows are anticipated as indicated in
Table I, and the investor expects to be able to sell the property
for $120,000 in 10 years. The investor would like an 11.5% return.

Table I

Year Cash Flow Year Cash Flow
1 $15,000 6 $10,000
2 12,000 7 9,500
3 12,000 8 9,500
4 12,000 9 9,500
5 10,000 10 120,000

Press the FIN soft key on the HP-18C to access its financial
application menu and then press the CFLO softkey to select cash
flow analysis. Then press keys 1 00000 +/- INPUT. The screen
shown in Fig. 1 a appears, prompting for the first flow in the series.
A prompt is also given for the number of times a particular flow
occurs, simplifying grouped flow entry.

Pressing keys 1 5 0 0 0 INPUT gives the display shown in Fig.

1 b. Note that the ~ symbol has migrated down to the TIMES
prompt. Note also the 1.00 in the calculator line. This value is put
in the calculator line whenever a flow is entered, so that if a flow
occurs once, only the INPUT key must be pressed to enter the
number of occurrences. This feature was added so that the inter­
face for simple cash flow problems wouldn't pay a penalty for
the ease of use introduced for grouped cash flow problems.

Pressing INPUT causes the screen shown in Fig. 1 c to appear.
To finish entering the data, press:

1 2 0 0 0 INPUT 3 INPUT

1 0 0 0 0 INPUT 2 INPUT

9 5 0 0 INPUT 3 INPUT

1 2 0 0 0 0 INPUT INPUT

To calculate net present value and internal rate of return, press
the soft key labeled CALC. The screen shown in Fig. 1 d appears.
To input the desired rate of return, press 1 1 .5 1%. To get the
net present value, press NPV and the HP-18C displays NPV =

2,914.83. To calculate the internal rate of return, press IRR%, ob­
taining a displayed result of IRR% = 12.01.

Fig. 1. HP-18C displays for cash flow analysis example. (a) Prompt display for first cash flow
entry. (b) After first entry of 15,000 is input, the display prompts for the number of times entry
occurs. A value of 1.00 is displayed as a default value. (c) Pressing the INPUT key prompts for
the next entry. (d) After completing the cash flow entries, pressing the CALC softkey gives this
display. Entering the desired interest value and pressing the 1% key then allows calculation of

the net present value, net uniform series, or net future value.

of the variable name and its value is shown in the display.
In the percent change application, pressing 1 0 OLD 1 5

NEW %CH results in the display shown in Fig. 5. Whenever
a variable is recalled, stored, or solved for, a confirmation
is given. The Business Consultant maintains a history stack
of the last four such confirmations given. Up to three can
be viewed at a time; the fourth is easily accessed via the
scrolling keys i and t. The idea of labeling results is
special to the Business Consultan-t.

Data entry for cash flow analysis, running total, and statis­
tics is simplified by conceptualizing this data as number

lists. The user is prompted for each item in the list. Using
the scroll keys, the user can move up and down through
the list for reviewing or editing, and with a single keystroke,
items in the list can be inserted or deleted. Because the
list can be named, several lists can exist in memory at a
time (the exact number is limited only by available mem­
ory). The example in the box above illustrates the simplicity
with which data can be entered for cash flow analysis.

AUGUST 1987 HEWLEIT·PACKARD JOURNAL 7

The Equation Solver Menu in the HP-18C

The user programming language of the HP-18C Business Con­
sultant is equations. The user types in an equation using variable
names of the user's choice, traditional algebraic operators, and
any of the HP-18C's built-in set of advanced mathematical func­
tions and conditional expressions. Several equations can be en­
tered in the HP-18C, the number limited only by available mem­
ory. A name can be typed at the beginning of each equation to
identify it for future recall. An equation is selected from the stored
list by moving a display pointer up and down the list of equations.
When the pointer points to the desired equation, pressing the
CALC menu key causes the HP-18C to interpret the equation and
bring up the variable names as soft key labels at the bottom of
the HP-18C's display. The associated softkeys, or menu keys,
below the display are used to store and calculate solutions using
the relationships in the equation. The user enters values for all
but one of the variables and the HP-18C solves for the unknown
variable.

The programming characteristics of the equation solver are
enhanced by 26 advanced functions and conditional expressions
that can be used in formulating an equation. While trigonometric
functions are not provided, natural and base-10 logarithms, fac­
torial, absolute value, minimum, maximum, pi, integer part, frac­
tional part, rounding and truncation, modulo, sign, and square
root are available. Another six functions specific to finance
mathematics are available as are date and delta-days functions.

As a simple example, consider a formula that expresses the
economics of performing a tune-up on an automobile engine:

COST x MPGSEFORE x MPGAFTER -i- (MPGAFTER - MPGSEFORE)

-i- PRICE GAS = SEMILES

The equation includes five variables: cost of the tune-up, miles
per gallon before and after the tune-up, price per gallon of
gasoline, and break-even miles-the number of miles at which
the cost of the tune-up is recovered by the benefit of the reduced
gasoline consumption.

A user "programs" the HP-18C to solve the above equation
by pressing the SOLVE menu key, typing in the equation (Fig.,
1 a), and then pressing the CALC menu key. When the CALC menu
key is pressed, the keys are customized to the above equation.
The variable-width character font for the soft key labels allows up
to five characters of the variable name to show as a label. In this
case, the labels are COST, MPGS, MPGA, PRICE, and SEMI (Fig.
1 b). However, when a variable name appears as a result in the
other lines of the display, the complete variable name is dis­
played.

Solving this problem parallels that for solving problems using
the built-in functions of the machine. A solution can be calculated
for each of the variables in the equation, given values for the
other variables. A quick example using the tune-up formula is to
key in 28 and press the softkey labeled MPGS, key in 33 and
press softkey MPGA, key in 0.839 and press PRICE, and key in
15000 and press SEMI. Then press COST to solve the equation
and see displayed COST=68.10, (Fig. 1c), the cost of a tune-up
that would pay for itself by improved gasoline mileage for 15,000
miles. If the tune-up cost is $85, key it in, press COST, and then
press SEMI to see displayed SEMILES= 18,722.29, the number of
miles that must be driven to break even on a tune-up costing
$85 and improving mileage from 28 to 33 miles per gallon.

Other equations can be typed in just as easily. Each additional
formula is added to the formula list in continuous memory. You
can see and select each formula by using the scroll-up and

8 HEWLEn·PACKARD JOURNAL AUGUST 1987

scroll-down keys i and ~. The RAM in the HP-18C is sufficient
to store about ten equations of the length and number of variables
illustrated by the tune-up example above.

Direct Solution
The advantage of the HP-18C's equation solver as a program­

ming language is evident-one equation with n variables does
the work of n traditional programs written to solve for a single
variable as a function of the n -1 other variables. The equation
solver solves directly for any variable that meets all of the following
conditions:
J, Appears only once in the equation
" Does not appear as an exponent

Involves only the operators for addition, subtraction, multiplica­
tion, division, and exponentiation
The only functions, if any, in which the variable appears are
seven specifically identified functions such as logarithm, in­
verse logarithm, and square root.

These conditions are met for COST, PRICEGAS, and SEMILES in
the example above.

Iterative Solution
The variables MPGSEFORE and MSGAFTER in the example do

not meet the above conditions for direct solution. The solution

Fig. 1. Displays during solution of tune-up cost study. (a)
Entry of tune-up cost equation. (b) Pressing CALC key assigns
labels to softkeys as shown. (c) Break-even cost for 15,000
miles with mileage improved from 28 to 33 mpg.

for either of these variables in the equation solver uses an iterative
search process. The process systematically varies the value of
the subject variable until the value of the left side of the equation
equals the value of the right side of the equation. While this
search is taking place, the value used for each iteration is dis­
played to give the user a sense of the progress toward a solution.
The user can start a search using one or two estimates of the
solution; otherwise, default values are used.

Because the iterative solution is numerical rather than analytic,
and because an arbitrary variable in an arbitrary equation may
have one solution, more than one, or no solution, the HP-18C
Business Consultant Owner's Manual describes some anomalies
that the user might encounter, as well as procedures for learning

SOLVE Application
We were told that most users of financial and business

calculators do not want to be bothered with programming
in the traditional sense. But at the same time, there was
no consensus by any focus panel as to desired functions.
Clearly some form of customization was called for, but not
in the guise of programming. The SOLVE application ad­
dresses this need. It incorporates the same unknown-vari­
able solution concept that was generalized for the built-in
applications, but extends it a step farther. The user types
in an equation that describes a particular problem. Several
variables can be used (the number is limited only by avail­
able memory), and each variable name can have up to 10
characters. At the press of a key, the equation is interpreted,
and the variable names are extracted and used to label the
softkeys. Here, as elsewhere in the machine, when variable
names are assigned to the softkeys, the same Solve interface
is in effect. The user keys in values for all but one of the
variables, then presses the key corresponding to the un­
known variable to solve for it. This ability to enter equations
and then solve for different variables is known as the Equ­
ation Solver, a feature new to handheld calculators. (See
box on page 8 for more details and an example of the use
of the Equation Solver.)

Of all the decisions made by the design team regarding
the user interface, the one that was by far the most difficult
(as well as the most controversial) was the one that made
the HP-18C operation algebraic, rather than RPN. But, a
thorough survey told us that an algebraic HP financial cal­
culator would appeal to new users, and algebraic notation
is consistent with the Equation Solver interface.

Print Option
We repeatedly heard that a printer would be a welcome

pe.ripheral for our businesslfinancial calculators. So, avail­
able as an option is the HP 82240A Infrared Printer that
receives data from the Business Consultant via an infrared
beam, thus eliminating the need for wires between cal­
culator and printer. All variables and data associated with
a particular application can be printed out, whether it be
an amortization schedule or the variable values associated
with a user-input equation. In TRACE mode, every keystroke
is printed to provide a complete record of what the user
has done.

values that might indicate minimum, maximum, or undefined
points in the equation.

Conventions
There are a few conventions that the user must learn to type

in general algebraic equations. For example, there are no implied
operators (Z = 3Y must be typed Z = 3xY), and there are no
subscripts or superscripts (Y cubed must be typed Y/\3).

RPL

Paul Swadener
Development Engineer

Handheld Computer and Calculator Operation

The Business Consultant is one of the first HP calculators
(the HP-28C being the other) that has a major portion of
its operating system written in a high-levellanguage-RPL.
This assisted us in reaching our ease-of-use goal. It allowed
us to prototype user interface changes quickly in response
to focus panel feedback and to test the newly implemented
modifications. Ironically, programming in a high-level lan­
guage also provided us with one of our major implementa­
tion challenges-minimizing response time. In many cases,
this meant careful review of RPL code to see where the
code could be optimized. In critical areas it meant rewriting
some sections in assembly code.

Throughout the design of the Business Consultant, we
were confronted with the delicate balance between ad­
vanced functionality and ease of use. We devised ways to
provide the functionality without sacrificing the product's
short learning curve. Some of the techniques we use to
accomplish this are displaying numerous help messages,
asking for confirmation when attempts are made to clear
significant amounts of data, using the top-row-key interface
and history stack throughout the machine's many applica­
tions, and providing an easy mechanism for entering and
modifying data.

Acknowledgments
I would like to acknowledge the rest of the software

development team. Stan Blascow wrote all the math
routines, with the exception of the solver, Pam Raby was
responsible for the time application, Bruce Stephens de­
veloped the low-level code that interfaces directly to the
hardware, such as the display driver, printer, and self-test
software, Paul McClellan wrote the numeric solver, and
Charlie Patton, Bob Miller, Gabe Eisenstein, and Laurence

Fig. 5. Answer to percent change problem given in text.

AUGUST 1987 HEWLETI-PACKARO JOURNAL 9

History and Inspiration of the Solve Interface

The equation solver concept and interface for the HP-18C and
HP-28C Calculators were developed one evening after midnight
in an effort to avoid the boredom of debugging the HP-71 Hand­
held Computer's Circuit Analysis Pac.

I was attempting to solve an equation by hand to determine
whether the results of the Pac were correct. After three attempts
and three different results with the same equation, I decided
another approach was needed. Using the HP-71 and its Math
Pac, I wrote a small function to represent the equation and solved
for the equation's roots using the FNROOT function. At first, this
seemed to be as difficult as using the pencil-and-paper ap­
proach. The variable in question needed to be isolated and
pointed at, and the function needed to be in a specific form.
Although I had used this feature before, it was necessary to read
the manual again to remember how to do it. But once the function
was completed, the roots were found quickly.

Once the mechanics were understood, it seemed simple to
repeat the process with other equations. While experimenting
with this structure, it became clear that the ability to select any
variable easily would be very useful. Then the same equation
could be solved readily for any of its variables.

Paul Swadener implemented a version that would accomplish
this on several HP calculators. The variable was usually selected
by specifying a number corresponding to the occurrence of the
variable as it mapped to a register in an RPN program that
represented the equation. He also accomplished this in the
BASIC language by using subscripted arrays in place of the
simple variables of the equations. The interface allowed a number
to specify the required subscript.

What seemed to be missing at this point was an intuitive inter­
face that could be used easily without burdening the user with
the mechanics or strict requirements of the operating system.
This interface should allow the user to enter any equation and
solve for any unknown within that equation without requiring a
manual each time the interface was used. It should support any
additional operation that would contribute to using the results
obtained from the equation. The interface should also reassure
the user that the appropriate keys had been pressed and that
the specified answer had been obtained. Finally, the require­
ments of a friendly equation solver interface became apparent:
I1ll It should be possible to assign values easily and independently

to all of the variables of an equation or formula.
"" It must be possible to select any variable as the unknown to

be determined.
'" The keystrokes required to perform these operations should

be minimal in number, and intuitive to the lay person.
'" Output should be clearly labeled to confirm the solutions.

Grodd developed the RPL kernel. Paul Swadener was our
financial consultant, Chris Bunsen pioneered the SOLVE

user interface with his early prototype (see box above),
Anne Ellendman was our patient manual writer, and Shar­
on Bolden was our quality assurance person with a seem­
ingly endless supply of energy.

Reference
1. S.L. Wechsler, "A New Handheld Computer for Technical Pro­
fessionals," Hewlett-Packard Journal, Vol. 35, no. 7, July 1984.

10 HEWLEn·PACKARO JOURNAL AUGUST 1987

III The equation should not require any special processing by
the user before it is typed in.
Pondering these factors, I saw the similarities between the

requirements of general equation solving and the HP-12C's time­
value-of-money keys. The HP-12C uses an efficient interface that
supports the assignment and/or select'lon of any variable with
the fewest keystrokes possible. The only problems were that it
only worked for the variables that were printed on the keys and
the results were not labeled. Could this interface be applied to
any equation? The solution is to use a row of keys for the physical
interface and let them be used for all equations. The display
above them can be used to label the keys in a manner similar
to the softkey approach used on many terminals and computers.
This requires either a multiple-line display or a very long single­
line display, since the display must also show the values as they
are input or output.

The last missing piece was how to enter equations in the form
required for the root-finding program. The easiest solution for
the user would be simply to allow an equation to be entered in
any form whether or not an equals sign is present.

When all of these ideas were combined and labels were added
to the output, I was surprised at how easy the interface was to
use. As different equations were tried, certain additional en­
hancements became desirable. Occasionally it was helpful to
be able to use the value of a variable from one equation as a
variable in another. To accomplish this, ali variables are allowed
to be global. Thus, a variable maintains its value from one equ­
ation to another unless it is recalculated or reassigned. At this
point, the ability to scroll up and down a list of equations was
added. This made it possible to solve for a variable, press one
key, and be in a different equation with the value for that variable
already assigned.

Once a working model of this interface was complete, simply
showing its use to someone was enough to generate excitement
and support, from both marketing and the lab. Here was an
interface that could help write programs for us, and clear up
some of the keyboard clutter that comes from many functions
on a few keys. By using at least two display lines, we could make
available many formulas or equation solutions without requiring
more keys. The softkeys could also be used for more traditional
menus, supporting the functions already found on our calculators
and computers, reducing keyboard clutter even further, and im­
proving some of our more traditional user interfaces.

Chris M. Bunsen
Development Engineer

Handheld Computer and Calculator Operation

r
An Evolutionary RPN Calculator for
Technical Professionals
Symbolic algebraic entry, an indefinite operation stack size,
and a variety of data types are some of the advancements
in HP's latest scientific calculator.

by William C. Wickes

HE HP-28C (Fig. 1) provides the most extensive
mathematical capabilities ever available in a hand­
held calculator. Its built-in feature set exceeds even

the capabilities of the earlier HP-71B Handheld Computerl
with its Math ROM.2 Furthermore, the HP-28C introduces
a new dimension in calculator math operations-symbolic
algebra and calculus. A user can perform many real and
complex number calculations with purely symbolic quan­
tities, delaying numerical evaluation indefinitely. This al­
lows a user to formulate a problem, work through to a
solution, and study the mathematical properties of the so­
lution entirely on the calculator.

The HP-28C has the following features:
An RPN calculator interface allowing an indefinite
number of stack levels and a variety of data types
A softkey menu system for key-per-function execution
of all built-in and user-defined procedures and data
Extensive real and complex number functions

iii Symbolic algebra and calculus
!iIII An automated numerical root-finder (see article on page

30.
Ii!l Vector and matrix math operations
fa Automatic plotting of functions and statistical data
iii Unit conversions among arbitrary combinations of 120

built-in units and user-defined units
II Integer base arithmetic, bit manipulations, and logic op­

erations in either binary, octal, decimal, or hexadecimal
notation

li!I A keystroke-capture programming language enhanced
by high-level program control structures

Il!l An infrared printer interface for printing and graphics
output on the optional HP 82240A Infrared Printer.
The HP-28C's physical package differs from that of the

HP-18C Business Consultant (see page 4) in only two as­
pects. The HP-28C uses different key nomenclature op­
timized for its math operations, and it contains an addi-

Fig. 1. The HP 28C Scientific Pro­
fessional Calculator features sym­
bolic entry of algebraic expres­
sions for an extensive range of
functions capable of handling real
and complex numbers, vectors
and matrices, base 2, 8, 10, and
16 integers, lists, and built-in con­
version factors. The display can
display up to four lines of the indef­
inite-depth stack or be used to plot
functions with a resolution of
32 x 137 pixels. An integral in­
frared transmitter allows output of
data and graphs to an optional
printer.

AUGUST 1987 HEWLETT-PACKARD JOURNAL 11

.:1

tional 64K bytes of ROM, for a total of 128K bytes.
The design philosophy for the HP-28C was to generalize

the ease of use, power, and flexibility of HP's RPN cal­
culator interface to a wider class of data types and applica­
tions while also eliminating some of the shortcomings of
that interface. In the remainder of this article, we describe
some of the features of the HP-28C in the context of the
evolution of the RPN interface.

Enhanced RPN
Reverse Polish notation (RPN) , in which mathematical

expressions are written with functions following their argu­
ments, is embodied in computers and calculators by means
of a last-in-first-out (LIFO) data stack. Mathematical and
logical functions take their arguments (inputs) from the top
of the stack, and return their results to the stack where
they can be used as the arguments for subsequent opera­
tions. An RPN stack is the most efficient medium for chain­
ing and nesting calculations, and provides the greatest
keystroke efficiency in a calculator.

The original HP RPN calculator user interface was first
used in the HP-35 Calculator3 in 1972. In that and sub­
sequent HP calculators, the stack consisted of four fixed­
length registers, each of which could contain one floating­
point number (the HP-41C Calculator4 also permits al­
phanumeric data in the form of a character string con­
strained to fit in a fixed-length number register). This sys­
tem was satisfactory for the numeric-only capability of the
early calculators, but with the advent of programmability
and algorithms for more complicated data types, the restric­
tions of the fixed stack became more and more of a design
impediment. For example, in the HP-41C and HP-15C5 Cal­
culators, complex numbers are represented by two real
floating-point numbers, one for the real part and one for
the imaginary part. Two stack registers are needed for each
complex number, which means that a four-register stack
can hold only two complex numbers, severely restricting
the types of complex-number math operations that can be
performed on the stack. For example, the complex-number
expression (A + BHC + D) cannot be evaluated without stor­
ing an intermediate result away from the stack.

The HP-28C is the first HP calculator to modify the tra­
ditional RPN interface. To begin with, the concept of a
stack register is generalized to a stack level that can hold
an object of indeterminate size. An object can be one of
several types of data or procedures, each characterized by
its internal structure and execution logic. Any object can
be manipulated on the stack as a single unit. For example,
a complex number is represented by an ordered pair of
floating-point numbers that is entered and displayed in the
form (number, number). Since a complex-number object
now occupies a single stack level, it can be manipulated
with the same keystrokes used for a real-number object.
For example, complex numbers in the first two stack levels
can be added by pressing the + key, multiplied by pressing
the x key, etc.

Besides real and complex numbers, HP-28C data objects
include real and complex-valued arrays (matrices and vec­
tors), alphanumeric strings, binary integers, and lists. Bi­
nary integers are binary coded integers of 1-to-64-bit words
which can be entered or displayed in binary, octal, decimal,

12 HEWLETT·PACKARD JOURNAL AUGUST 1987

or hexadecimal bases. Lists are ordered collections of other
objects. Data objects are characterized by the simple prop­
erty that the evaluation of the object just returns the same
object.

The generalized stack concept permits the introduction
of object classes that have no counterpart in previous RPN
implementations. A name object, for example, is a character
sequence that is used to identify other objects by name. In
the HP-28C, the numbered storage registers on earlier cal­
culators are replaced by variables. A variable is a combina­
tion of a name object and any other object stored together
in a linked list independent of the stack. Name objects have
the property that evaluation of the name returns the object
stored with the named variable (and if the object is a pro­
gram, executes the program). This means that a user variable
behaves exactly like a built-in command. (In HP-28C ter­
minology, a command is a built-in, programmable operation.)

A name for which no variable has yet been created fills
the role of a formal variable in mathematics, upon which
operations can be performed, even before evaluation. Such
names just return themselves when evaluated. This prop­
erty is central to the implementation of symbolic mathema­
tics on the HP-28C.

Evaluation by name and the linked list of variables are
modeled after a Forth dictionary. Built-in commands are
compiled as their execution addresses, as in Forth. How­
ever, user-defined names are compiled unresolved. This
permits compilation of undefined (formal) variables, and
also allows selective purging of variables from memory,
neither of which is possible in Forth. There is a degradation
of performance compared to Forth because of the necessity
for run-time resolution of user variables, but the overall
throughput for user problem solving is usually better be­
cause of the ease of programming and flexibility of the
HP-28C language.

The remaining new object class defined in the HP-28C
is procedure objects. A procedure object contains an arbi­
trary number of other objects that are executed automati­
cally and sequentially when the procedure object itself is
evaluated. The procedure class includes programs, which
are unrestricted sequences of data, commands, or variables,
and algebraic objects, which represent mathematical ex­
pressions and equations and therefore must satisfy certain
syntax rules. Both procedure object types can be manipu­
lated on the stack, or named in a variable. In previous
calculators, programs were created and edited only in a
special program mode.

Variable Stack Depth
In another major break with earlier calculator architec­

tures, the HP-28C stack grows dynamically as new objects
are entered onto the stack and shrinks as they are removed.
The number of objects on the stack is limited only by avail­
able memory. There are two major benefits of this approach.
First, mathematical calculations of arbitrary complexity
can be carried out entirely on the stack. Second, it facilitates
structured programming-procedures can be defined exter­
nally in terms of the number and type of arguments they
take from the stack and the number and type of result
objects they return. Subroutines can be nested to an arbi­
trary depth without concern for stack overflow.

Example Problem

A farmer has 100 yards of fencing to enclose a rectangular
field, which is bounded on one side by a river. What length L
and width W of the field will enclose the maximum area?

Solution using HP-28C:

1. The length of the fence is 100, i.e., L + 2W = 100. Enter
equation using keystrokes: . L + 2 x W = 1 00 ENTER

2. Solve for L, i.e., 100-2W, by pressing' L SOLV ISOL.

3. Assign this value to L by pressing' L STO.

4. The area of the field is LW, i.e., LW = AREA. Press' L x W

= ARE A ENTER.

5. Substitute for L, i.e., (1 00-2W)W = AREA, by pressing EVAL.

6. To find the maximum area, differentiate by pressing' W ENTER

d/dx, obtaining the expression ~(2'W)+(100~2'W)=0.
7. Collect terms, i.e., 1 00-4*W = 0, by pressing ALGEBRA

COLCT.

8. Solve for W by pressing' W SOLV ISOL.

9. Assign this value, i.e., 25, to Wand solve for L by pressing
, W STO L EVAL. This gives a result of 50.

Answer: The width of the field should be 25 yards, and the length
50 yards. The entire problem can be formulated and solved in
the HP-28C without recourse to pencil and paper.

The use of an indefinite stack size as the central user
interface is again reminiscent of Forth. The names of vari­
ous stack manipulation commands-DUP, SWAP, ROLL,
PICK, etc,-were adapted from Forth. However, the HP-28C
adds a dimension of user protection derived from its cal­
culator heritage. It is not possible to cause memory loss
by, for example, pushing too many objects onto the stack
as most Forth programmers have experienced. The HP-28C
has an elaborate low-memory handler that prevents such
drastic results.

The memory stack is a stack of 5-nibble object pointers,
not the objects themselves. The objects are stored either in
a temporary object area or in user variable memory. Thus,
when an object on the stack is duplicated, only the pointer
is duplicated. But when the stack is decompiled, the objects
are shown, not the pointers, so that the stack has the visible
and logical behavior of a stack of the actual objects. The
existence and management of the object pointers is entirely
transparent to the user.

Command Line
In keeping with its theme of uniform treatment of all

object types, the HP-28C provides a free-form command
line in place of the multiple entry modes of its predecessors.
For example, in the HP-41C the user enters floating-point
numbers directly into the stack's X register, alpha data into
an alpha register in alpha mode, and programs into program
memory via program mode. In the HP-28C, all new objects
are typed as character strings into the command line, which
is created dynamically when a number or letter key is pressed.
The contents of the command line can be edited with cur­
sor, backspace, delete, and insert keys. The unrestricted
size of the command line allows the entry of more than
one object on one line, as well as calculator commands

that are specified by name.
Different object types are identified within the command

line by characteristic delimiter characters. For example,
strings are enclosed in double quotes, variable names and'
algebraic expressions are surrounded by single quotes, and
lists are enclosed in curly brackets. These delimiters are
also used when objects are displayed on the stack.

The centerpiece of RPN keyboards has always been the
ENTER key. On previous calculators the ENTER operation
terminates digit entry, copies the contents of the X register
into the Y register, and then disables stack lift. On the
HP-28C, the concept of stack lift disable has been elimi­
nated (with an indefinite-depth stack, it serves no purpose
and would only add confusion), and the role of the ENTER

key has been generalized to mean "parse and evaluate the
command line."

Context-Sensitive Keys
The use of a command line entry method on a calculator

that provides immediate key-per-function execution re­
quires a dynamically configured keyboard that is sensitive
to the current content of the command line. For example,
the primary definition of the + key is to add the contents
of stack levels one and two, and normally, the addition is
performed immediately when the key is pressed. To pre­
serve keystroke similarity with previous RPN calculators,
+ should act on the most recently entered arguments,
whether or not they have been moved from the command
line to the stack. On the other hand, if the user is entering
an algebraic expression or a program, pressing the + key
should just append the plus sign to the command line.
There is a large group of such context-sensitive keys, in­
cluding virtually all programmable command keys. The
remaining keys either execute immediately, like ENTER, or
add characters and numbers to the command line, like the
letter and digit keys.

The action of context-sensitive keys is determined by
three entry modes:
Il!i In immediate mode, the default state, context-sensitive

keys execute immediately. Where appropriate, most keys
automatically perform ENTER before executing their own
definitions. Thus the standard RPN sequence to add 3
and 6 of 3 ENTER 6 + is preserved-pressing the + key
enters 6 onto the stack and then executes the addition.

iii In algebraic entry mode, keys corresponding to com­
mands such as +, SIN, and LN that are legal in algebraic
expressions append their function names to the com­
mand line. All other commands execute immediately.
These include, for example, stack operations that are
outside of the scope of ordinary algebraic expressions.

iii! In alpha entry mode, all context-sensitive keys append
their labels to the command line.

The active entry mode is indicated by the shape of the
command line cursor. An open rectangle indicates im­
mediate mode, a rectangle with two horizontal lines inside
shows algebraic mode, and a filled rectangle means alpha
mode. Similar arrow shapes are used when command line
entry is insertion mode rather than replacement mode.

The choice of entry mode depends most often on the
type of object being entered into the command line. The
HP-28C automatically changes entry mode when certain

AUGUST 1987 HEWLETI·PACKARD JOURNAL 13

) i

delimiter keys are pressed. Pressing the' key signifies the
beginning of an algebraic object, which automatically
changes the entry mode from immediate to algebraic entry.
Similarly, pressing the" key (strings) or the « key (pro­
grams) sets alpha entry mode. These automatic changes
mean that most of the time, the user does not have to be
concerned about the mode.

Visible Stack
The visible appearance of the stack is considerably differ­

ent from previous calculators, beyond the simple consider­
ation that the four-line display can show up to four stack
levels simultaneously. A typical display might look like
Fig. 2. Here we see that there is a 2X2 matrix in levell, a
complex number in level 2, and an algebraic expression in
level 3. Note that each object occupies only one stack level,
even though each is composed of several parts. The nota­
tion 1:, 2:, 3:, etc., was adopted to name the stack levels,
because there was no logical extension of the traditional
X, Y, Z, T sequence used for the earlier four-register stack
to an indefinite number of stack levels.

A major design challenge was solving the problem of
how to handle the partial decompilation of objects for view­
ing. In many cases, an object is too big to display on a
single line, or even in the entire display. Therefore, it was
necessary to devise a scheme to permit scrolling the display
up or down through such an object. At the same time, the
limited RAM of the HP-28C makes it preferable not to de­
compile an entire object into a character string form, since
there might not be enough memory available to hold a long
display string in addition to the object itself.

This problem is most severe in the case of algebraic ex­
pressions. The internal RPN order of the objects that define
an expression is not the same as the order of the terms in
the decompiled form. The first object in the written form
of an algebraic expression may well be the last object in
the RPN execution order of the expression. The solution
is to generate a compact binary code to represent the display
order of the objects in an algebraic expression, including
the positions of parentheses and other special characters.
This code is preserved as long as any portion of the alge­
braic expression is displayed. Pointers into the code indi­
cate the currently displayed portion and which portions
to display next if the user moves the display window.

Symbolic Mathematics
The first electronic calculators were characterized by

their ability to apply a fixed set of operations to data
supplied by the user in the form of real numbers. Program­
mable calculators provided a new generation of capability

.-.. .:- .

.-.. .::..
1 : [[

[
1 .-,
. :.

.-,

.::.
4

1 ' .. ' -+ ,-.,-,,: ':.:' "1 + t:' 1
I .. _. _ '_' '.' '.' ._1

]
]]

I.·.· 1 .-:' .:' 4 t:'.::: "1 • .:.... '_' , • ._1,_, ..

Fig. 2. Typical HP-28C display with a 2 x 2 matrix in level 1,
a complex number in level 2, and an algebraic expression in
level 3.

14 HEWLETI·PACKARD JOURNAL AUGUST 1987

by allowing users to add their own custom operations to
the built-in function set. The HP-28C represents a third
generation of calculator design with its capability of apply­
ing logical and mathematical operations to programs.

A conventional program can be considered as a symbolic
calculation. That is, the program is written in advance of
the data to which it is to be applied, and refers to that data
only by name or other form of abstraction. However, cal­
culator languages share the common limitation that they
cannot manipulate the programs themselves or their sym­
bolic results in their unevaluated form. This includes non­
keystroke languages like BASIC, which accept expressions
in a pseudomathematical form.

The HP-28C provides two symbolic object types: name
and algebraic. In this context, name objects can be consid­
ered as expressions consisting of only a single variable.
Algebraic objects are just procedures that are entered and
dec om piled in expression form. They are identical inter­
nally to RPN procedures (called programs, for simplicity),
except that they are marked as algebraic objects. They are
restricted in their definition to satisfy so-called algebraic
syntax-they must take no arguments from the stack, return
exactly one result, and be completely divisible into a hierar­
chy of subexpressions, each of which also satisfies algebraic
syntax.

The key to performing symbolic math operations on the
HP-28C is the behavior of commands corresponding to
mathematical functions, which accept symbolic argu­
ments. Such a function examines its arguments, and if one
or more is symbolic, returns a new symbolic object repre­
senting the function applied to the symbolic argument. For
example, if 'A' and '8' are on the stack, pressing the + key
returns the result 'A + 8'. Then pressing keys 2 and 1\ returns
'(A+8) 1\2'.

When an algebraic object is evaluated by pressing the
EVAL key, it behaves exactly like the equivalent program­
each object in the algebraic object is evaluated in an RPN
sequence. Consider the evaluation of the algebraic object
'(A+ 8)*C', where A is has the value 2, B has the value X + Y,

and C has no value. The expression is equivalent to the
program key sequence A B + C x. When the EVAL key is
pressed:
1. A is evaluated, returning its value 2.
2. B is evaluated, pushing its value X + Y onto the stack,
which now looks as shown in Fig. 3a.

.-.. . : ..

.-.. .::..
1 :

(a)

.-.. .:- .

.-.. .::..
1 :

(b)

(continued on page 16)

.-,

.::.
1',,'+',,' 1

,"', I

1 .::' + ... ':.:' + ' .. ' "1 1
..... '." I.·

1 C 1

Fig. 3. (a) Display after 8 is evaluated (see text). (b) Display
after C is evaluated, returning just its name.

HP-28C Plotting

I

I
!

I

I
I

I

The HP-28C includes a simple plotting capability for the gen­
eration of mathematical function plots and statistical data scatter
plots. Although the size and resolution of the liquid-crystal display
severely limit the detail and elegance of the graphics, such plots
can be extremely useful in providing a global picture of the be­
havior of a function or a set of statistical data. In particular, a
plot is almost indispensable for finding initial guesses for the
HP-28C's equation solver, and for sorting out the ambiguities of
multiple roots.

As an example, consider the equation:

This equation has three roots, of which at least one is real. If we
plot the expression on the left, using the default plot parameters,
we obtain the display shown in Fig. 1 a. From this picture, we
can observe that there are three real roots, which correspond to
the points where the plotted curve crosses the axis. To zoom in
on the region containing the roots, we can execute .3 oW, which
multiplies the horizontal range by 0.3, then plot again (Fig. 1 b).

To determine a precise value for any of the roots, we:
Digitize two points from the plot at selected values of the
horizontal coordinate on both sides of the root

2. Exit the plot and combine the two digitized coordinates into
a list

3. Activate the equation solver and store the list into the variable
X as a first guess for the root-finder.

4. Solve for X.
Digitizing is achieved by means of a cursor superimposed on

the plot The cursor can be moved with the cursor menu keys.
In Fig. 1, the cursor is invisible because it coincides with the
axes at the origin. We move the cursor up off the X-axis to make
it more visible and over just to the left of the middle root by using
the. and ~ keys (see Fig. 2a). Pressing the INS key digitizes
the cursor location by returning its coordinates to the stack as
an ordered pair (x,y). Now we move the cursor to the right of the
intersection as shown in Fig. 2b and digitize a second point
Pressing the ON key exits the plot so that the two point coordinates
are shown on the stack (Fig. 3a).

Combine the two points into a list by executing -.LlST. Then
activate the equation solver by pressingt SOLV SOLVR. The result­
ing display is shown in Fig. 3b.

Finally, press the menu key x to store the list as a first guess,
then shifted X to solve for the 12-digit root = .337301614083 (Fig.

'

II, !-----....----+--+--+---f-'o......--:.-__+___t--+--_ . ~ ('l····. :. :::

Fig.1. (a)Plotofx3 -x2 -x+.7S.
tal range expanded.

(b) Plot of (a) with horizon-

(a)

(b)

Fig. 2. (a) Digitizing point just to left of middle root of plotted
equation. (b) Digitizing point just to right of middle root.

-: .. __ I •

.-, • .''-, I:' '.

.::. • I.. • .:_, • __ I }

1: (. 42, .5)
1.1 i ~-:I I itt! (-:1 I ~ N. ~: II a N CR'. ~: I,] ~ a I,] ita ~.

(a)

.-, . .:: ..

.-, .
,c,.

1 •• .- ,., -::' I:' ", ". ' .• ,_, ~ • ,J .. (. 42, .5)
-.~: -1~!ie.iifW

(c)

.-, .-, ""':' .-, '-11 .:: 1 4 '-1'-' .-, . .:, ':' (.::' ".:. '-' "':' ':'.::'
IM!ie-.~iinfW-

Fig. 3. (a) Digitized points from Fig. 2. (b) Combining POints
in (a) into a list. (c) Solution for middle root of equation using
list of paints from (b).

3c). The message Zero indicates that the expression evaluates
to machine zero at that point

Other HP-28C plotting features include:
!Ill Autoscaling for statistical data plots
III Turning on specified pixels
\Ii! Printing display images on the optional HP 82240A Infrared

Printer.

Gabe L. Eisenstein
Development Engineer

Handheld Calculator and Computer Operation

,
______ ,~. ___ • ___________ u __ ~~ ____ ~_" __ _

AUGUST 1987 HEWLETI·PACKARD JOURNAL 15

(continued from page 14)

3. + examines its arguments, finds that one is symbolic,
and so returns the symbolic sum 2 + (X + Y).
4. C is evaluated. Since it is a formal variable, it just returns
its name as shown in Fig. 3b.
5. Finally, * returns the symbolic result (2 + (X + Y))*C.

In addition to mathematical functions that can be in­
cluded within algebraic expressions, the HP-28C provides
a host of operations that are not representable as functions,
but can be applied to algebraic objects. These operations
include expansion, collecting terms, subexpression sub­
stitution, symbolic variable isolation, and an expression
editor that permits rearranging an expression according to
standard rules of algebra. See the box on page 13 for an
example of the formulation and solution of a problem in­
volving algebra and calculus on the HP-28C.

This application of RPN principles to algebraic expres­
sions reflects the conviction that algebra, perhaps even
more than numerical calculation, is an interactive, postfix
process where a user decides how to proceed with a calcu­
lation according to step-by-step, intermediate results as the
calculation develops. An important aspect of the approach
is that the HP-28C is the first calculator to offer a smooth
integration of RPN and algebraic interfaces. A user can
enter an entire calculation in expression form, as the user
might using BASIC, or where appropriate, the calculation
can be broken into subexpressions for partial eval uation,
with the intermediate results conveniently held on the RPN
stack.

Type Dispatching
The inspection of arguments described above for alge­

braic functions is an illustration of the more general type
of checking and dispatching steps common to most HP-28C
operations. Every HP-28C command has the following
structure:

chec!carguments, type_and_dispatch. dispatch_list

The chec!carguments process determines if the appropriate
number of arguments are present, and issues the "Too Few
Arguments" error if not. Note that this error condition is
not possible on previous RPN calculators. in which the
four stack levels are never empty. The chec!carguments pro­
cess also saves copies of the arguments for possible retrieval
by the LAST command.

The type_and_dispatch process returns a code representing
the type and position of the arguments and then inspects
the dispatch list until it finds a matching code. Adjacent
to each argument code in the dispatch list is a pointer to
the executable program code for the command corre­
sponding to the argument combination. If a match is found.
execution branches accordingly. If the dispatch list is
exhausted without a match, the "Bad Argument Type"
error is returned.

The type-and-dispatch command structure has some use­
ful side benefits:
III The USE option, available when the CATALOG operation

is active, inspects the dispatch list to create a stack-use
table to guide a user in the correct use of a command.
This provides an important help facility at very little
cost in ROM use.

16 HEWLETT-PACKARD JOURNAL AUGUST 1987

ill The type_and_dispatch word is different for commands that
are legal in algebraic objects and those that are not. In
algebraic entry mode, it is only necessary to check this
word to determine whether to execute a command or add
its name to the command line. Similarly, the chec!cargu­
ments word indicates whether to append an opening paren­
thesis to an algebraic command name as a typing aid.
In addition to the type and dispatch encoding, algebraic

functions also include pointers to the code for their corres­
ponding derivative and inverse functions.

Recovery Features
The LASTX feature on RPN calculators, which returns the

contents of the X register before the most-recent X-register
operation, serves a dual purpose. First, it provides a means
of recovering from an incorrect operation-thus pressing
LASTX - LASTX restores the stack to its state preceding an
inadvertent press of the + key. Second, it permits repeated
use of the same argument-pressing SIN LASTX COS + com­
putes sin x + cos x. Both of these features are present in
the HP-28C, but they have been separated and extended
into more powerful operations.

The error recovery feature has evolved into the HP-28C's
UNDO operation. When ENTER is executed by pressing the
ENTER key or any other key that does an automatic ENTER,
a copy of the current stack (object pointers) is saved in a
temporary environment. After the command line is
evaluated, the effects of the evaluation on the stack can be
canceled by pressing the UNDO key, which replaces the
new stack with the saved version.

All HP-28C commands that use stack arguments save
copies of those arguments that can be retrieved by the LAST
command. LAST pushes the recovered arguments onto the
stack like its LASTX predecessor, but returns all (up to three
-no command uses more) of the arguments, not just the
one returned by LASTX.

These recovery features, together with the four-level
command stack that saves the most recent command stack
entries, can consume a significant amount of RAM in certain
circumstances. Each of the three features can be disabled by
the user when more RAM is required for an operation.

Development Methodology
The HP-28C firmware was developed in a year by a small

team using the RPL operating system and language (see the
article on page 21). The use of a highly structured language
was necessary for the implementation of symbolic mathe­
matics, but also yielded a significant increase in productiv­
ity compared with previous products, which were coded
entirely in assembly language. A RAM-based prototype HP-
28C was available only three months after beginning the
project, which made possible significant design changes
based upon customer testing of the prototype. Thus, the
emphasis throughout the project was on rapid prototyping
of features followed by design modifications based on ac­
tual keyboard use, rather than detailed advance specifica­
tions.

Acknowledgments
Because of the close interaction of the members of the

HP-28C firmware team, it is difficult to separate the many

contributions of each person. Some major areas of respon­
sibility were as follows. Gabe Eisenstein handled display
and keyboard management, menus, printing, and plotting.
Laurence Grodd took care of the operating system, real and
complex scalar and array functions, numeric integration,
and type and dispatch logic. Paul McClellan developed the
solver, algebraic object parse and decompile, statistics, and
unit conversions. Robert Miller worked on the program­
ming commands, object decompile, the command catalog,
low-memory handler, and binary integer operations.
Charles Patton dealt with the operating system, hardware
configuration, symbolic mathematics, command line
parser, and program control macros. Max Jones, the author
of the Getting Started Manual for the HP-28C, made numer­
ous contributions to the user interface and the design of
certain symbolic operations.

References
1. S.L. Wechsler, "A New Handheld Computer for Technical Pro­
fessionals," Hewlett-Packard Journal, Vol. 35, no. 7, July 1984.
2. L.W. Grodd and C.M. Patton, "ROM Extends Numerical Func- ;
tion Set of Handheld Computer," ibid.
3. T.M. Whitney, F. Rode, and C.C. Tung, "The 'Powerful Pocket­
ful': an Electronic Calculator Challenges the Slide Rule," Hewlett­
Packard Journal, Vol. 23, no. 10, June 1972.
4. B.E. Musch, J.]. Wong, and D.R. Conklin, "Powerful Personal
Calculator System Sets New Standards," Hewlett-Packard Journal,
Vol. 31, no. 3, March 1980.
5. E.A. Evett, P.]. McClellan, and J.P. Tanzini, "Scientific Pocket
Calculator Extends Range of Built-In Functions," Hewlett-Packard
Journal, Vol. 34, no. 5, May 1983.

Mechanical Design of the HP-18C and
HP-28C Handheld Calculators
by Judith A. Layman and Mark A. Smith

HE HP-18C AND HP-28C represent a new mechani­
cal design for HP handheld calculators. These prod­
ucts use a vertical clam-shell format with a simpli-

fied keyboard in a coat-pocket-size package. Using the pro­
ductivity advantages provided by the use of CAD/CAM
(computer-aided design and manufacturing) tools, the
package was designed for manufacturability and then
thoroughly tested for reliability to ensure quality perfor­
mance for the customer.

Layout
The HP-18C/28C package was the first product at HP's

Corvallis site to be designed principally on a CAD/CAM
system. This system improved communication between de­
sign engineers and manufacturing engineering C-:uring the
initial layout phase of the product. It also simplified check­
ing tolerances and provided the expedient automatic trans­
fer of information to the tooling shop for plastic part molds.
CAD allowed easy analysis of the design such as package
cross sections and the graphical simulation of case rotation
(Fig. 1).

Case Design
The continual design challenge for handheld calculator

products is providing more functionality in smaller pack­
ages. Many components in the HP-18C and HP-28C are
integrated to provide more than one function (Fig. 2). This
minimizes volume in the product and also decreases the
part count for production assembly. For example, the bot­
tom cases not only provide the cosmetic and protective

shell, but also support the flexible keyboard assembly. In
addition, the case half that houses the alphabetic keys is
made to deflect slightly to create a latch which holds the
product closed.

Heatstaking is a proven manufacturing process for pro­
viding uniform keyboard support. Using this in combina­
tion with the case assembly eliminates the need for screws.
This process was easily automated because it is controlla­
ble, requires fewer parts that are easily presented to the
tooling, and results in a sturdier product. The industrial
design team chose to give the outside of the HP-18C and
HP-28C a clean appearance by keeping the package simple
and free of overlays. Because of this, reverse ejection is
used to move the molding gate remnant from the cavity
(outside) to the core (inside) side of the part. Contrary to
convention, heatstaking is done from the top side of the
keyboard. The existing keyboard overlay is used to cover
the heatstake rivet heads in addition to providing the sec­
ondary function labels. The choice of polycarbonate as a
case material helps ensure that the product will survive a
one-meter drop on all six sides.

Dense Packaging
A hybrid printed circuit board (see article on page 25)

is used because the high pin count of the two display driver
ICs did not allow them to be packaged in the conventional
manner for a surface-mounted device. Because of the high
cost of the polyimide substrate material used for hybrid
circuits, the board size was kept as small as possible. In
all, five lCs, twelve discrete surface-mounted devices, and

AUGUST 1987 HEWLEIT-PACKARD JOURNAL 17

four discrete leaded devices are contained on this board.
The hybrid portion on one side of the board includes two
display driver chips and the CPU chip with 263 wire bonds.
The chips are surrounded by a molded plastic dike and
encapsulated in epoxy. On the other side of the board, all
the surface-mounted devices, including two 44-pin quad
packs, are loaded by robots and then vapor phase soldered.
The four discrete leaded devices that cannot be vapor phase
soldered have their leads preformed in a fixture and then
are loaded by hand. One of these leaded devices is an
infrared light-emitting diode (LED) used to transmit data
to a detached optional printer via an infrared link. In addi­
tion to the components, the hybrid circuit board has contact
pads for 21 key lines, a beeper, battery springs, and 178
lines to the liquid-crystal display (LCD).

LCD Interconnection
The liquid-crystal display is a four-line, 23-character dot­

matrix display with seven status annunciators. The 178
pads for connecting the circuit board to the LCD have a
pitch of 0.032 inch and are laid out in two rows along the
edges of the hybrid circuit board. The connection between
the LCD and the hybrid board uses two elastomeric (zebra)
connectors. To establish and maintain proper registration
between the hybrid board and the LCD pads, the position
of the LCD pads is determined optically. The LCD is then
secured in a stainless-steel display clip using double-sided
pressure-sensitive adhesive tape. The display clip is then
positioned into the hybrid board using a hole that has been
precisely punched with an accuracy of ±0.002 inch relative
to the display pads. This assembly is then tested and
crimped.

Fig. 1. CAD drawing of a longitudinal cross section of the closed package (top) and a plot
(bottom) of opened case half rotated in several positions.

18 HEWLETI·PACKARD JOURNAL AUGUST 1987

Although this basic display assembly concept has been
used successfully in two earlier calculator product lines,
a few improvements were made in the HP-18C Business
Consultant. The first is the inclusion of a relief in the dis­
play clip along the edges of the LCD to eliminate stress
concentration on the display glass. This allows the product
to be dropped from a height of one meter onto all six faces
with no functional damage. The second improvement is
that the legs of the display clip are flared to allow a lead-in
for easy assembly. The precisely punched hole not only
establishes proper registration of the LCD to the hybrid
board pads during assembly, but also ensures that the LCD
will not shift after assembly.

Hinge Link
A compound hinge is used to connect the two halves of

the HP-18C/28C case because it allows the product to be
used in different positions throughout its 360 degrees of
rotation (Fig. 1). By allowing full rotation, this also prevents
a situation where the product might be highly stressed if
dropped. Several methods of fastening the two hinge halves
were investigated. These included gluing, ultrasonic weld­
ing, heatstaking, and fastening with screws. Even though
it requires more complex plastic tooling, a snap-fit design

Flex Circuit

Hinge Half

is used because it offers the most repeatable, simplified
process for assembly.

The hinge pins on which the link rotates perform several
functions. They are conically tapered to provide axial se1£-'
centering of the hinge piece in each case half. The tip of
the hinge pin is designed to preload against the inside of
the hinge link. This creates frictional dtag which provides
a high-quality feel to the product as it is rotated. The fragile
tip is supported by the main body of the hinge pin which
carries any high-stress loads. The hinge pins are open on
the top for inserting the interconnect portion of the
keyboard into the case halves.

Keyboard and Flex Interconnect
The technology used for the integrated keyboard and

flexible interconnect is conductive silver ink screened onto
a polyester film substrate. This design allows a single sub­
strate and screening to be used for both keyboards and the
flexible interconnect, thus improving the reliability of the
system. Twelve key lines run through the 0.140-inch in­
side-diameter hinge link between the two keyboard halves.
Because of the trace width limitations of the screened silver
ink process, a complex folded design was implemented to
run four layers of the substrate through the hinge link with

Hybrid Circuit

1M" --~ .ltt11 _._. .}-" ..

• • •
• •

• •
• • •

Flexible Membrane
Keyboard

Keyboard Protection
Layer

Fig. 2. Exploded view of parts in HP-28C. The HP-18C is the same except for different key
colors and labels and one less ROM on the hybrid circuit.

AUGUST 1987 HEWLETI·PACKARD JOURNAL 19

I

each layer carrying three lines (see Fig. 3). Inside the link,
the four layers run along one hinge axis, cross over to the
other hinge axis, and return while being supported at both
ends of each parallel segment.

The torsional stress is induced in a controlled fashion.
Controlling the motion of the flexible circuit minimizes
locations of stress concentration. As the product is rotated
through its full range, the four flexible layers are twisted
in torsion. Torsion was chosen over bending because it is
less damaging to the conductive ink. The reliability of this
design was verified by cycling each leg of the flex circuit
through 180 degrees for two million cycles without a failure.

The two keyboards that are an integral part of this flex
circuit use the same screened conductive ink for the
keypads and circuit matrix. The keyboard technology is
typical of that used for membrane keyboards. After the
silver ink is cured, a second screening operation deposits
a carbon/graphite layer over the silver ink traces. This pro­
tects the exposed key line connections to the hybrid circuit
against silver migration. The carbon screening process also
allowed the ready incorporation of 21 resistors for ESD
(electrostatic discharge) protection. In one pass, a resistor
is created in each key line by using the screened carbon
to bridge a controlled gap in the silver traces. A pressure

Fig. 3. Double exposure photograph showing shape of flex
circuit and its location within the hinge assembly.

20 HEWLETI-PACKARD JOURNAL AUGUST 1987

connection is made between the carbon on the key lines
and the gold pads on the hybrid circuit board using two
low-compression-set urethane foam pads.

Tactile feel for the 72 keys is provided by two separate
dome sheets of formed polyester. A spacer layer supports
the domes while also providing a vent at pressure extremes
and whenever a dome is actuated. These layers are all
attached to create a single part for ease of product assembly.
The keyboard assembly was tested to half a million key
cycles with no electrical failures and minimal degradation
in tactile feel. Life testing was done at both ambient temper­
ature and under environmental conditions of high temper­
ature and humidity. Several iterations of key design and
testing were required to achieve the life and tactile feel
desired.

ESO Protection
ESD testing has consistently been a challenge in trying

to release products to production on schedule. The testing
typically cannot be performed until late in the project be­
cause the completed product is required. Fixes that are a
result of ESD testing, therefore, do not have time to be
integrated into the product properly. With this in mind,
special consideration was given to ESD protection early in
the design of the HP-18C and HP-28C. A prototype model
was built using a similar existing chip set on a prototype
hybrid circuit. Results of this testing were incorporated in
the final circuit design. Additional testing revealed a
localized ESD susceptibility. As a result, an aluminum
shield is incorporated in the back side of the keyboard
assembly. This shield provides an alternate path for electri­
cal discharge with lower impedance and higher capaci­
tance to ground. Hence, the HP-18C and HP-28C can sur­
vive a 25-kV discharge with no permanent damage. This
is a significant achievement for a handheld portable prod­
uct with no external ground.

Conclusion
The attention given to manufacturability in the initial

phases of development was worth the effort. The HP-18C
Business Consultant was a fast-track project requiring 18
months to develop. Even so, it made a smooth transition
from the lab to production. It was up to mature volumes
and yields after only four months in production.

The mechanical design of the HP-28C leveraged the work
done on the HP-18C. It required only the addition of one
ROM to the hybrid circuit and different overlays and key
nomenclature.

Acknowledgments
The mechanical development was truly a team effort

from many departments throughout the division. The lab
design engineers spent long hours learning a new CAD
system while designing a fast-track product. Much effort
was spent to maintain reliability and manufacturability
goals while on a tight schedule. Manufacturing engineering
did an excellent job in designing the plastic mold and
assembly tooling as well as providing early input in product
design. The production team that assembled the products
through the prototype builds and into production had
much to do with the success of these products.

\
r

Symbolic Computation for Handheld
Calculators
by Charles M. Patton

CALCULATOR OR COMPUTER operating system
is primarily a set of conventions for memory organi­
zation, data structures, and resource allocation

combined with a set of software tools to aid in performing
operations in accordance with those conventions. In con­
trast, an application is software built using the resources
and conventions of the operating system.

In software development cycles for previous HP cal­
culators the overall scope of the project was small enough
that it did not make sense to segregate code into operating
system and applications, or even to formalize many of the
conventions developed during the course of the project.
However, we have passed the point at which it makes sense
to create such disposable code for each new machine.
Paradoxically, this has come about through our attempts
to make calculators simpler, rather than more complicated.
Simpler, of course, means simpler to humans, and what is
simple and seemingly natural to humans is anything but
simple and natural from the point of view of the machine
(and vice versa).

In 1984 we began the design of an operating system to
meet the needs of future calculators and handheld comput­
ers.

Design Goals
The design goals for the system were strongly influenced

by the orientation of various research and development
projects under way at the time. The goals included:
IIil Supporting symbolic mathematics operations in a hand­

held computing environment
III Allowing for maximal trade-off of ROM space for RAM

space
11 Providing a compact, extensible system able to support

a variety of handheld computation systems
III Providing a rapid prototyping environment for calculator

development
a Paving the way for future expert-system capabilities.
In the remainder of this article, I will try to explain what
these goals entail, how the design team attempted to ad­
dress them in the RPL operating system, and something of
how the features are used in the HP-28C.

Design
The characteristic that most clearly differentiates a sym­

bolic math system from numerical systems is the ability to
use an expression (or more generally, a program) as both
a procedure to run and as data to manipulate. An example
that illustrates this requirement is the derivative operator.
Suppose you were to implement the derivative operator
on your programmable calcula-tor so that you could take
the derivative of a program. You would need to find some
way to have the program passed to the derivative program

unevaluated, since if it were evaluated all you would get
as a result would be a number. Your derivative program
would need to take the argument program apart, compute
the derivative, and reassemble the result into a new pro­
gram.

In the process of investigating the feasibility of imple­
menting symbolic math operations on a calculator, the de­
sign team examined a variety of operating systems, includ­
ing BASIC, Forth, and Lisp. While any of these systems
can be made to support the capabilities necessary for sym­
bolic math, it is Lisp that most fully integrates them into
the structure of the system. On the other hand, the efficient
memory management scheme of Forth, along with its RPN
style consistent with previous HP calculators, made it a
serious contender as well. The ultimate result is a combi­
nation of features from both Lisp and Forth that we call
the ROM-based procedural language, or RPL.
RPL and Lisp. Features RPL has in common with Lisp
include:
I!lI The notions of atomic and composite objects and mech­

anisms to create and dissect composite objects
IlI1 Strict call-by-reference protocol
l1li The quote operation, whereby an unevaluated object can

be passed as an argument
i!II Temporary (or lambda) variables useful in defining func­

tions
III A temporary object area and a garbage collection scheme

for reclaiming memory from this area.
RPL and Forth. Features RPL has in common with Forth
include:
l1li Reverse Polish notation (RPN)
III Arguments passed to operators on an unlimited stack
l1li Full complement of stack-manipulation operations
il1I Threaded execution.

However, RPL differs from both Lisp and Forth in a
number of significant respects. These differences are direct
responses to the challenges posed by a handheld computing
environment. While great strides have been made in in­
creasing the amounts of random access memory available
in handheld calculators at a reasonable price, RAM is still
a relatively scarce commodity. Similarly, while the execu­
tion speed of central processing units at a given power
consumption has increased dramatically, so have the over­
all power requirements for calculators. Consequently, cal­
culator CPUs are often run at a leisurely pace compared to
their rated speed. These two facts have had an especially
significant impact on the design of RPL.

In RPL the fundamental data structure is an object. An
RPL object is similar in design to a Forth word, and consists
of the address of the executable code that determines the
type of the object (the prolog), and the data that makes up
the body of the object (Fig. 1).

AUGUST 1987 HEWLETI·PACKARD JOURNAL 21

Objects can be classified as either atomic or composite.
The data part, or body, of a composite object consists of a
sequence of objects and/or addresses of objects terminated
with a special end marker (Fig. 2). Any other structure is
classified as atomic.

This composite object structure is quite different from
its Lisp and Forth analogs. In Lisp, a composite object is
a binary tree of addresses corresponding to the address of
the first object and the address of the rest. In RPL, the
address of both the first object and the rest are computable
from the address of the object, but they are not explicitly
part of the object. This implicit addressing tends to decrease
RAM use when objects don't stay in RAM very long, as is
the case for a limited RAM system.

The Forth structure most analogous to the RPL composite
is that of a secondary. The key difference is that in RPL a
pointer to an object or a copy of the object itself can be
included in a composite with operationally identical re­
sults. This embedding capability allows RPL to use address
referencing when the addressed object is not likely to move
(or be removed) and copy referencing otherwise. One con­
sequence of this structure is that object addresses within
composite objects can reference objects within other com­
posite objects (Fig. 3). This capability also allows for more­
sophisticated memory compaction schemes.

Object Types
Seventeen object types are currently defined for the RPL

system although object types can be added and removed
from the system in a relatively straightforward manner. We
can break down the atomic objects further into classes de­
pending on certain characteristics of their prologs. The
classes are identifier class, data class, and procedure class.
Identifier Class Objects. There are three object types in the
identifier class: ordinary identifier, temporary identifier,
and ROM pointer. An ordinary identifier is a self-executing
variable name. When an ordinary identifier is executed, it
searches through the user's variable area for the value
bound to the variable name, and executes the bound object.

A temporary identifier is similar to an ordinary identifier,
except that when executed, it searches through a stack of
temporary environments for its bindings and returns the
bound object without evaluating it.

A ROM pointer is used in place of the address of an
object when the referenced object is in a plug-in ROM
which can move, or be removed from the system. When a
ROM pointer is executed, it executes the object it refer­
ences.
Data Class Objects. Data class objects have the property
that when executed, they merely return themselves. These
objects include:

Lower Addresses

Address of Prolog

Higher Addresses

Fig. 1. Structure of an RPL object.

22 HEWLEIT·PACKARD JOURNAL AUGUST 1987

Lower Addresses

Address of Prolog

End Marker

Higher Addresses

Fig. 2. Structure of a composite object.

Standard and extended-precision floating-point real and
complex numbers
Sequences of characters and sequences of hexadecimal
digits
Unsigned short binary integers

'1lI Arrays and linked arrays of objects of uniform type.
An unusual data class object supported by RPL is the

RAMIROM pair. A RAMIROM pair is essentially a pair of
name-object association lists, one of which resides in built­
in or plug-in ROM, and the other of which resides in RAM.
It embodies the idea of an extensible ROM-based vocabu­
lary with subvocabularies and context switching.
Procedure Class Objects. Procedure class objects actually

Address of Prolog

End Marker

Address of Prolog

End Marker

Fig. 3. An address within a composite may reference an
object within another composite.

do something when they are executed. There is only one
type of atomic procedure class object, and that is the
machine-code object. The body of a machine-code object
contains a sequence of instructions, interpretable by the
native CPU of the system, which are executed when the
object is executed.
Composite Objects. There are three composite object types:
the list, which is data class, the program, which is proce­
dure class, and the algebraic expression, which is also data
class. The three types have a very similar internal structure,
with a program body being a refinement of a list body, and
an algebraic expression body being a refinement of a pro­
gram body.

Supporting Symbolic Math
Systems that support symbolic mathematical capabilities

are often classified by the amount of translation done in
converting from a user's typed input to the internally de­
fined data structures. A system is deemed to be radical if
the translation is extensive and conservative if little trans­
lation is done. In these terms, the HP-28C is very conserva­
tive. The most significant translation done is converting
the user's input from algebraic to reverse Polish notation.
The decision to follow this approach was motivated by a
variety of factors.

One motivation for conservative translation was to
maximize the perceived responsiveness of the system. In
a highly interactive system with the range of processing
speed available in a handheld environment, data entry and
translation can occupy a large fraction of the overall pro­
cessing time. A simple translation minimizes this operating
overhead.

Compact representation was a second motivation. Stan­
dard mathematical notation has evolved over the centuries
toward a very compact encoding of the information relevant
to the problem at hand. Our theory is that if a user types
in an expression in a certain form, that form is likely to
reflect important aspects of the problem the user has in
mind. Those aspects are likely to become hidden in any
radical translation of the form of the expression.

Another motivation was pedagogical. The HP-28C is de­
signed to be a teaching tool as well as a problem solver.
We wanted to provide operations that resemble pencil-and­
paper operations so that the user can follow and/or choose
each step of the operation. To allow this, the internal struc­
ture of an expression must correspond closely to the dis­
played form of an expression, and hence to the form that
the user types in.

A final motivation was the uniformity of structure af­
forded by minimal translation. The internal structure of an
expression is the same as that of a program. Thus, no special
evaluation mechanism is needed to run an algebraic expres­
sion.

Pattern Matching
Pattern matching is another technique commonly used

in symbolic math systems. A variety of pattern matching
tools are used at a variety of levels in the HP-28C. The
lowest-level pattern matching tool is type dispatching,
wherein the data types of a set of objects on the stack are
matched against a set of templates and the resulting match

determines the operation to be applied in this case. This
structure can be observed in the HP-28C's CATALOG opera­
tion. Each function includes a type-dispatching segment
and the CATALOG operation examines the templates in­
cluded in the function to generate the various possibilities
shown by pressing the USE softkey in the CATALOG menu.

At the highest level, an expression-structure pattern
matcher compares an expression with a set of templates.
The resulting match determines the operation to be per­
formed.

Between these two pattern levels are a number of more­
specialized pattern matching utilities which are especially
useful in the standard evaluation and simplification al­
gorithms. Although these pattern matching utilities are
each quite narrow in scope, the uniform RPN structure of
expressions and programs, the ability to use programs and
expressions either as executable procedures or data, and
the ability to dissect and construct programs on the fly,
enable quite general pattern matching operations to be con­
structed easily.

Symbolic operations are typically defined recursively,
that is, the result of applying an operation to an argument
is defined in terms of the result(s) of applying the operation
to simpler argument(s). In this way, the operation need
only be given for the simplest cases, together with a method
for reducing a more-complicated case to simpler cases. This
definition method is natural for symbolic operations and
makes programming the operation simpler and less error­
prone.

The RPL operating system is designed to support recur­
sion in an efficient and flexible form. Efficiency is achieved
through the uniform use of the stack for passing arguments
to operations, the implementation of indirect execution
instructions in the central processing unit, and other
methods of minimizing the operating overhead inherent in
function calls.

Flexibility is achieved by the automatic management of
temporary variable environments, and a full complement
of control structures that can help minimize the unneces­
sary buildup of operating overhead. In the HP-28C it is a
fairly common occurrence, for example, for a program to
create another program and then pass execution control to
the newly created program (which itself may create a new
program), all at the same execution depth. While this is
not the usual case for recursion, it does illustrate the kind
of flexibility available in the RPL system.

Trade-Off: ROM for RAM
In designing the RPL operating system, we decided to

try to make use of the ROM available in a way that would
allow us to get more use out of the limited RAM in the
system. The idea is that if an answer exists in ROM, then
it only needs to be referenced in RAM, and in effect it takes
up very little room. While this seems like a straightforward
technique, it was the determining factor in many of the
design decisions encountered in implementing RPL. Some
examples are the call-by-reference protocol, smart object
creation, and embedded objects.

The standard RPL functions take their arguments from
the data stack and return their results to the data stack.
The data stack, however, is not a stack of objects, but rather

AUGUST 1987 HEWLETI-PACKARD JOURNAL 23

a stack of pointers to objects, that is, memory addresses of
objects. Thus every function is passed the addresses of its
arguments and it returns the address of its result. It is
crucial to the operation of the system that the objects ad­
dressed on the stack be allowed to reside anywhere in the
system-in built-in ROM, in a movable ROM, embedded
as part of the value of some user's variable, or within the
temporary object area. The arguments themselves are not
altered by the operation of the function (indeed, they can't
be if they reside in ROM), but this is not necessary since
all that is required is that the function return the address
of the result, which again can reside anywhere in the sys­
tem. This protocol is put to good use in the HP-28C where
a sizable number of frequently used objects, including one­
letter variable names, are included in ROM. Furthermore,
functions that return results equivalent to one of these ob­
jects do not create another copy in RAM but merely point
to the existing copy.

The composite-object creation and dissection operations
also play an important role in RAM-saving aspects of the
RPL system. Since any object can occur within a composite
object either as an embedded object (the whole object
copied in) or as an object pointer (only the address of the
object is copied in). with functionally equivalent results,
the composite object creation operation can choose to han­
dle objects residing in different areas of memory differently.
If an object resides in ROM, only the address of the object
is copied into the composite object. However, if the object
resides in the temporary object area, the whole object is
copied in, making it unnecessary to change the address
within the composite object when the object is moved in
memory. Other areas of memory with varying degrees of
mobility are handled according to the needs of the system.

When a composite object is dissected, it is never neces­
sary to copy any part of it. For example, if an object was
embedded in some composite object in ROM, it is never
copied to RAM, even if the original composite object is
pulled apart.

To get the maximum use out of ROM, it is sometimes
necessary to be able to copy objects from ROM to RAM
and have these copies act in the same way. With one excep­
tion, the currently defined object types operate the same
in RAM and ROM. The exception is the RAMIROM pair,
which by definition has a RAM component in which a
user's variable values can be stored. Even so, a RAMIROM
pair can be converted to a ROM-like structure (a so-called
ROMP ART) which can itself then be referenced in a RAM/
ROM pair.

Supporting a Variety of Calculators
RPL provides scaffolding for the construction of a system,

as well as a basis for operation. The complete version has
considerably more structure and functionality than was
used in developing either the HP-18C or the HP-28C, al­
though the subsets used in these two machines are rather
different. There are explicit points at which the system can
be either contracted or expanded and still maintain logical
coherence and system integrity. This allows RPL to be used
in a variety of situations.

24 HEWLETI-PACKARO JOURNAL AUGUST 1987

Rapid Prototyping
Taken together, the stack method for passing parameters,

the call-by-reference protocol, and the possibility of embed­
ding arbitrary objects within procedures tends to result in
very modular code. This modularity contributes to both
the possibility of reusing code and the rapid generation of
new code. Even when a programmer needs to perform
nonstandard operations that require machine code, the sim­
ple interface with the stack, together with a complete set
of memory management utilities, mean that a programmer
can make full use of the central processing unit for the
problem at hand. Since this eliminates resource allocation
conflicts, the code is easier to write, test, and reuse.

A typical version of an RPL system is composed of a
number of parts, each part relating to some facet of the
structure. These include:

Prologs: defining the execution behavior of each data
type
Memory management: resource allocation in the tempo­
rary object area, memory movement, address updating,
and garbage collection

~ RAM/ROM pair management: identifier resolution, vari­
able store, recall, purge, RaMPART manipulation, and
context manipulation
Predicate, logic, and address arithmetic: equality, order­
ing, NOT, AND, and OR operations, addition, etc.

'@ Object creation and dissection: head, tail, nth-element,
concatenation, composition, decomposition, length, etc.

,!Ii Data stack manipulation: stack depth, duplicate, swap,
etc.

OIl Data type conversions: character to integer, integer to
character, etc.

m Control structures: quote, evaluate, runstream manipula­
tion, loops, and temporary variable binding

>1! Array manipulation: creating, redimensioning, access­
ing, and changing elements

\IIi Configuration: chip-level configuration, ROMP ART con­
figuration, and polling
Exceptions: error trapping, error generation, and error
handling tools
Interface management: key and menu map manipulation,
and edit buffer manipulation

!l! Parser tools: token parsing and parser-generator tools.
While the operations provided by the bare RPL system

are quite elementary, they are sufficiently generic and sup­
ported by enough structure to make it easy to get a prototype
of a new system going in a short time. Once the design of
a prototype is ironed out in a standard RPL implementation,
it can be optimized further by implementing new data
structures and/or translating critical RPL procedure objects
to more-specialized machine-code equivalents.

Summary
RPL is an operating system designed to support a variety

of applications in a handheld environment. It shares a
number of features with both Forth and Lisp systems, but
has a number of features that allow it to operate in systems
with quite limited RAM. The key design aspects include:
;l!I The universality of structured objects
1l!l Implicit "tail" pointers in composite objects
Ill! Functional equivalence of addressed or embedded ob-

jects within composite objects
II!! Strict call-by-reference protocol
iii Uniform parameter passing on an unlimited data stack
II Automatic temporary variable management
iii! Quoting operation to allow procedures to be passed as

data
lIil Full complement of RPN-style control structures.

While we do not expect the RPL operating system to be
used outside of HP's Handheld Calculator and Computer

Operation, we feel that it provides a firm foundation for
advances in software technology for handheld computing
environments.

Acknowledgments
In addition to all the people acknowledged in the article

on page 11, I would like to acknowledge Susan Wechsler
and Bruce Stephens for all their help in getting the RPL
system up and running.

A Multichip Hybrid Printed Circuit Board
for Advanced Handheld Calculators
by Bruce R. Hauge, Robert E. Dunlap, Cornelis D. Hoekstra, Chong Num Kwee, and Paul R. Van Loan

HEN WE BEGAN the search for an IC packaging
and interconnect system for HP's new series of
calculators, the design challenges were formid­

able. Chief among them was achieving an effective com­
promise among increased circuit density, reduced package
volume, greater reliability, and lower cost. Ultimately, our
decision was to proceed with a hybrid printed circuit board.
No other packaging technology could meet the combined
requirements of high pin count, low package profile, en­
vironmental stability, and low cost.

The use of hybrid printed circuits is not new for HP.
Beginning with development of the HP-41C Calculator
nearly ten years ago, the technology has been designed into
many of our handheld products. This evolution has led to
the hybrid printed circuit board used in the HP-18C and
HP-28C Calculators.

The advantages of hybrid printed circuit boards are:
!!i High density. The use of high VO count chips (>100

pads) with less than 25% of the area required by compar­
able discrete packages, multichip and multicomponent
applications, and linewidth and spacing geometries of
0.005 inch.

!II Design flexibility. A double-sided board allows flexible
adaptation to layout requirements. Artwork changes are
inexpensive and rapid, selective gold plating for
wirebond areas can be used, and finished via hole diam­
eters can be as small as 0.0115 inch.

ilI!i Solderability. Components can be added using a wide vari­
ety of surface mount or lead insertion solder processes.

r1!i High reliability. For example, customer line scrap on the
latest HP-41C hybrid circuits is less than 700 ppm per
IC, and the field failure rate is negligible.

ill! Rapid design turnaround. Artwork changes can be done
in five weeks, and assembly prototyping can be done in
one to two weeks.

iii! Low cost. The cost of a hybrid printed circuit compares

favorably on a per-pin basis with all other medium-to­
high pin-count package types.

Features
The two-sided hybrid printed circuit board used in the

HP-18C and HP-28C Calculators measures approximately
three inches by 1.5 inches (not including the tab for the
infrared LED, see Fig. 1). The top side of the board (the
side that mates with the liquid-crystal display of the cal­
culators) bears three custom ICs, two display drivers, and
a microprocessor, which are epoxy die attached to the board
and connected by a total of 263 gold wire bonds to gold­
plated pads. The three ICs are encapsulated by an epoxy
layer retained by a dike structure. The reverse side of the
board bears two custom ROM chips in plastic quadpacks
and nine passive surface-mounted components. In addi­
tion, four through-hole components are attached, including
an LED for wireless infrared transmission of data to an
accessory printer. The finished hybrid circuit with 18 com­
ponents constitutes virtually the entire electrical system
of the calculator.

Technology
In its basic form, a hybrid printed circuit consists of one

or more chips that are attached to a printed circuit board,
wire-bonded, and then encapsulated to provide mechanical
and environmental protection. The early plug-in video
game cartridges, primarily designed to be inexpensive, con­
tained a chip mounted on a single-sided board. These
boards required no gold plating except for their edge con­
nector, used aluminum wire bonding, and were encapsu­
lated with a glob of epoxy over the IC. Because of their low
cost and minimal environmental requirements, it was more
cost-effective simply to replace defective cartridges, rather
than develop a more reliable assembly. The hybrid process
described here incorporates several improvements over

AUGUST 1987 HEWLEIT·PACKARD JOURNAL 25

ii
'j

,!
::

these "jelly bean" types of hybrid circuits.

Printed Circuit Board. A high-temperature laminate, either

polyimide or a modified polyimide is used. This allows

the use of high-speed gold thermosonic bonding and pro­

vides an additional margin for high-temperature applica­

tions.
Nickel/Gold Plating. The etched copper traces are confor-

26 HEWLETI-PACKARD JOURNAL AUGUST 1987

mally plated with a diffusion layer of nickel. Then high­

purity, soft gold is conformally plated over the nickel. The

conformal plating reduces the possibility of exposed cop­

per, which could lead to dendritic growth between adjacent

traces. The nickel also provides a hard underlying surface

for wire bonding. The gold plating provides an oxide-free

surface for gold wire bonding and protection in harsh and

Fig. 1. Front (top) and back (bot­

tom) sides of hybrid printed circuit

board. Precisely punched rectan­

gular hole is located at upper left

in top view and upper right in bot­

tom view.

moist environments.
Die Attach. A high-purity, silver-filled epoxy is used to
attach the ICs to the board. This provides good thermal
and electrical conductivity to the die-attach pad.
Wire Bonding. Thermosonic (a combination oftemperature
and ultrasonic energy) wire bonding is used to connect the
IC pads to the board traces. The use of gold wire with a
diameter of 0.00125 inch and an average pull strength of
15 grams provides extra margin at temperature extremes.
Encapsulation. A low-ionic-content epoxy is used to en­
capsulate the ICs and their bond wires. Entrapped air is
minimized by pre curing the boards in a vacuum oven. The
thermal coefficient of expansion and the cure cycle are
important aspects of encapsulation that must be carefully
controlled to minimize thermo mechanical stresses on the
ICs and bond wires.

Development Program
Because of the high number of wire bonds (263), it is

imperative to obtain the highest yield possible at this oper­
ation. Our defect rate goal of less than 100 ppm translated
to a part yield at the wire bond operation of 97.4%. To
achieve this, we needed the expertise of the people at HP's
manufacturing facility in Singapore. Therefore, we added
a Singapore engineer to our design team in Corvallis for
six months to work on the tooling and optimization of the
wire bonder.

Tooling modifications were necessary to allow for bond­
ing boards processed in a panel configuration, rather than
a single board at a time. This required changes to the X
and Y travels of the bond head, a much larger heater block,
and a different clamping arrangement.

For the optimization, a partial factorial experiment was
conducted to determine the primary parameters that affect
bond quality. After this experiment was completed, an
operating window study determined the limits of the key
parameters. Table I outlines the results.

Table I

Key Bonding Parameters

Parameter

Temperature
Power

Sink depth

Force

Time

Specification Limits

160to170°C
40 to 45 pulses/s (die side)
70 to 75 pulses/s (lead side)
30 to 90 (.Lm (die side)
150 to 250 (.Lm (lead side)
40 to 50 grams (die side)
90 to 100 grams (lead side)
15 to 25 ms (die side)
35 to 45 ms (lead side)

The choice of laminate for the hybrid substrate was nar­
rowed to materials that could withstand the wire-bonding
temperatures and times without deterioration. FR-4 boards
are normally not usable for thermosonic bonding since a
high glass-transition temperature (T g) is required. A mod­
ified-polyimide laminate was chosen because of its rela­
tively high T g (lS0°C), and its lower cost and ease of

machinability compared with polyimide laminates.
The mechanical design of the hybrid was determined to

a large extent by the needs of the calculator design group
and by the surface mount process in printed circuit assem­
bly. The board thickness was increased from the normal
value of 0.031 inch to 0.047 inch to provide a more rigid
substrate. The height of the encapsulating epoxy must be
kept to less than O.OSO inch because of tight spacing be­
tween the board and the LCD assembly. A molded plastic
dike is used to contain the epoxy and maintain a uniform
thickness.

To exploit automated board assembly fully and to
maximize material use, the boards are delivered from the
vendor in a four-board subpanel, using an interdigitated
layout. The parts are kept in subpanel form throughout the
hybrid and surface mount processes. Only at the hand-sol­
dering operation are the boards separated from the sub­
panel.

One of the special requirements is a precisely punched
rectangular hole (see Fig. 1). This hole must be punched
and referenced to the board artwork to an accuracy of
±0.002 inch. The purpose is to allow the use of prealigned
display assemblies (LCD plus crimped metal can). This
differs from previous HP calculator assembly techniques
that require the LCDs to be adjusted manually for each
calculator. A vendor was located that had developed equip­
ment to achieve this. Once we proved the accuracy of the
machine, we arranged for the precision-punching to be
done by the board vendor.

Some of the more severe tests for hybrid circuits are
moisture resistance, thermal shock, and multi cycle vapor
phase soldering. We ran engineering tests to determine
whether we had sufficient margin to pass our qualification
tests. We saw no problems in the thermal shock and vapor
phase soldering tests. However, during the moisture resis­
tance test, we discovered some procedural and humidity
chamber design problems. By discovering and correcting
these problems before the final qualification run, we avert­
ed any program schedule delays.

Because of differences in the coefficient of thermal ex­
pansion between the printed circuit board, silicon chips,
and encapsulating epoxy, mechanical stresses can develop
during heating and cooling. After cooling the subpanel
down to room temperature from an epoxy curing tempera­
ture of 150°C, a noticeable warpage of the subpanel de­
veloped, often greatly exceeding the allowable maximum
of 0.075 inch.

We focused on revising the cure cycle as the method to
minimize the panel warpage. We needed to cure the epoxy
as completely as possible, but not lock in a high state of
stress. Hence, a two-stage cure cycle was implemented.
The parts are cured for three hours at 125°C, then ramped
down to 5SoC over two hours. This results in parts that
consistently pass the maximum warpage criteria.

In a normal printed circuit board manufacturing process,
the areas to be plated are defined by a negative resist on
the copper-clad laminate. The exposed copper areas are
then plated with additional copper, nickel, and gold. After
plating, the resist is stripped off and the exposed copper
between the plated areas is etched away. However, this
results in traces with exposed copper on their sides. The

AUGUST 1987 HEWLEn-PACKARD JOURNAL 27

exposed copper can react with moisture and an applied
bias to form copper dendrites. Hence, several plating en­
hancements were implemented to improve the reliability
and reduce the costs.

The first of these is to process the board in a conformal­
plating configuration. This means that the copper etching
is done before any plating occurs. Since the sides of the
traces are now exposed during plating, the copper is sealed
in by the nickel and gold plating steps, thereby reducing
the likelihood of dendritic growth.

For conformal plating, all of the features are electrically
bused together. This is normally achieved by running small
traces off the board for connection to the plating bus. How­
ever, since this hybrid board will have a metal can crimped
around it to hold the LCD, we risked shorting to these
plating traces. Therefore, an alternative method was de­
veloped. A plating ring is set up around each of the three
die-attach pads. Small traces from each bond finger are
connected to these rings, and a single trace is then run off
the edge of the board in a safe area. After plating, a fine­
diameter router is used to cut away each of the plating
rings and open up the shorted plating traces. A solder mask
layer on top of the rings and traces helps anchor them to
the board to minimize any smearing of the copper during
routing.

To reduce the amount of high-purity gold plated on each
board, a selective plating resist is screened on after the
boards receive a flash gold plating 5 to 20 microinches
thick. This resist exposes only the bond fingers, which are
subsequently plated with 40 microinches of high-purity,
soft gold for wire bonding. The resist is then stripped off.

Test Program
The test software and hardware embodies many features

absent in the evaluation of previous hybrid circuits. The
prominent features are a modular test program, the use of
solid-state analog multiplexers to leverage a few available
tester channels for testing continuity on many pins, and a
large free-standing test fixture for testing multihybrid
panels. The test system tests a hybrid circuit with 250 test
points in 25 seconds using a tester with 60 active test pins
and 24 additional pads accessible via multiplexing.

The hybrid test program was developed in two separate
parts with the objective of achieving complete modularity
for the two parts. One engineer wrote the hybrid program,
which contains a shell for insertion of the display driver
portion written by another engineer, a subset of the micro­
processor IC test program (old), a system test (new), and
initialization and exit routines for hardware checkout and
operator interface (new). This engineer was also responsi­
ble for interfacing with the fixture designer and doing pro­
totype hardware debug. A second engineer was responsible
for the display driver wafer test program (new), the display
driver continuity test (new), the final integration of the
test, documentation, and release to production. Program­
ming proceeded in parallel, with each test of the hybrid
circuit able to be debugged independently. As needed, com­
mon hooks between the separate portions of the final hybrid
test program were agreed upon to activate debug features
and maintain summary data.

As development proceeded, the display driver portion

28 HEWLETI-PACKARD JOURNAL AUGUST 1987

of the test program was periodically updated with more
complete code by the transfer of a single block of code from
the middle of the display driver wafer program. This
worked well, and ensured that after release to production
updates to the display driver wafer program could be easily
transferred to the hybrid circuit test program.

Even at the wafer level, the pin count (112) of the display
driver chip was too high to access all pins of the part, even
with multiplexing of the 60 tester channels to the 24 extra
pads. In light of this, the display driver was designed to
allow virtually complete testing of all 92 display pins via
just four specially designed display pins. Using a combina­
tion of internal connectivity switching and scan path
methodology, the display pins are tested for functionality,
pin leakage, and pin shorts through these four pins.

At the hybrid level, however, we were confronted with
the need to confirm the presence of wire bonds to the
display pins of the two display driver chips. This con­
tinuity check requires a physical connection to each dis­
play pin and is done by forcing a current into each pin and
detecting the presence of a diode voltage drop across a pad
protection diode. Originally it was anticipated we would
need to do this test on a separate dedicated commercial
continuity tester. However, we devised a solution that al­
lows the continuity test to be done as an integral part of
the total hybrid circuit test. This provides the considerable
advantage of eliminating the need for a separate commer­
cial continuity tester and being able to do a complete test
in a single pass.

The solution consists of a box of solid-state analog multi­
plexers which use a total of seven tester channels to test
184 pins for continuity in less than 2 seconds. The box
contains two identical circuit boards, each with six 16-
channel analog multiplexers, one decoder, and one count­
er. The boards plug into edge connectors connected to the
display pins and the tester control channels. To access any
pin, the tester increments the counter, which together with
the decoder selects an analog channel connected to a par­
ticular pin. Since all display pins are in just two contiguous
groups, the only short circuits that are physically likely
are adjacent pin shorts. Thus to identify shorted pins as
well as open circuits we simply wired the box so that the
multiplexer channels of the two boards are interleaved,
that is, every other display pin is connected to successive
channels on the same board. The tester opens one channel
on each board simultaneously, forces a current into one
channel and forces a zero level on the other. A short to an
adjacent pin then results in a current path from the pro­
grammable measurement unit through one multiplexer
board, through the short, and back out through the other
multiplexer board to the tester channel forcing the zero
level. Since the part is designed to allow detection of shorts
via functional testing, no bad parts would be shipped if
this shorts test were not done. However, the ability to iden­
tify short circuits directly rather than by interpretation of
functional test data has proven to be indispensable in fail­
ure analysis and hybrid process monitoring.

Test Fixture
The design of this hybrid circuit implied some new chal­

lenges for the capability of the test fixture. Contact had to

be made to 250 points distributed on both sides of a printed
circuit board about 3.5 inches long by 1.5 inches wide. The
minimum spacing between LCD pads is 0.016 inch, with
a pad size of 0.016 inch. We strongly desired a single fixture
design that would test the hybrid circuits in both the four­
board panel form during manufacture and the single-board
form during final assembly. A fixture meeting these require­
ments was designed and implemented by HP's Handheld
Calculator and Computer Operation. This fixture (Fig. 2)
has also served well for line scrap analysis.

The fixture weighs about 50 pounds and is manually
operated and pneumatically actuated. The four-board panel
(or single board) slides into the fixture on a movable X-Y
stage. The panel or board under test is positioned by
mechanical stops to align closely with the upper and lower
spring-loaded test pin blocks. Activated by a manual
switch, the upper and lower pin blocks then move to the
center and sandwich the panel or board between them. Pre­
cision alignment is achieved by the mating of a fixture guide
pin to the precisely punched hole in the hybrid circuit.

Originally the test pins chosen for the fixture were solid
cylinders with a conical cavity at the contact end, yielding
a circular knife edge for contact. This configuration was
chosen to satisfy the need for both a sharp edge to penetrate
oxides and a large potential contact area to make up for
registration errors. These pins performed fine when new,
but soon tended to plug up with particulate contamination.
Several months into prototype production, a switch was
made to more conventional pencil-point, spring-loaded test
pins, 0.027 inch in diameter, with favorable results.

Initially, the connection to the fixture consisted of a
three-foot-Iong bundle of coaxial cables terminated by con­
nectors at both ends, mating at the tester end to connectors

wired to a DUT board mounted on a performance board.
This arrangement was quickly discarded as noise levels
were intolerable, and was replaced by a set of shorter cables
terminated by connectors at only one end, and directly
wired to the performance board at the other end (see Fig.
2). The coaxial cable shields are all soldered to a brass
grounding ring offset from the board. The center wires of
the coaxial cables are soldered directly to the performance
board pads with strain-relief loops. Wire lengths are kept
to a maximum of 18 inches. Inside the fixture, lines be­
lieved to be critical are also wired in coaxial cable to the
spring-loaded test pins, while the remaining lines are
twisted pair. As might be expected, even with this arrange­
ment noise is still a problem. This is compensated for by
setting input levels to the rails and output levels to 0.33
and 0.67 Vnn. This is acceptable because all parts are tested
to full level specifications at the wafer stage.

Qualification Results
The qualification plan for the hybrid circuit included:

II! 1000 hours of dynamic burn-in at 100°C
168 hours moisture-resistance testing at 65°C and 90%
relative humidity
200 thermal shock test cycles
5 vapor-phase solder cycles.
The 1000-hour dynamic burn-in is normally done at

150°C. We lowered the temperature to 100°C because of
thermal limitations imposed by some of the soldered com­
ponents. Earlier moisture-resistance testing of hybrid cir­
cuits at 85°C and 85% relative humidity had shown poor
results; 65°C and 90% relative humidity was felt to be an
adequate condition. Table II summarizes the results. To
date, the hybrid circuits in the HP-18C and HP-28C have

Continuity
.... k:---- Box

Test
Fixture

Performance
Board

AMP Connectors X-V Plate with
Hybrid Panel

Fig. 2. Test fixture for hybrid
printed circuit board.

AUGUST 1987 HEWLETT-PACKARD JOURNAL 29

performed very well in the field. with no known reliability
problems. This would appear to confirm the validity of our
qualification matrix.

-------_._--------------
Table II

Hybrid Circuit Qualification Results
(Failures per number tested)

Test Quality
Procedure Criteria

Dynamic burn-in: 1/129
100°C. 1000 hours

Moisture resistance: 2/105
65°C. 90% R.H.
500 hours

Thermal shock: 5/116
200 cycles

Vapor phase solder: 0/22
5 cycles

Results

1/129

0/105

5/116

0/22

The six failures from dynamic burn-in and thermal shock
were analyzed. The one failure during dynamic burn-in
failed the self-test on the crimper tester. This part was
subsequently retested on the HP 3065 Circuit Board Test
System and it passed. It was then retested on the crimper
tester and it passed. No further failure analysis was per-

formed.
The remaining five units showed LCD pad leakage and

functional failures during the first thermal shock tests.
Examination after decapping showed fractures along the
outside edge of the ICs. These problems were shown to be
stress related. associated with the large size of the ICs and
incomplete die-attach epoxy coverage under the corners.
Additional units were built in Singapore. with particular
care to obtain complete epoxy coverage under the ICs. The
thermal shock test was repeated with no failures and no
evidence of fracturing after decap. Singapore has since in­
corporated a screening method for the die-attach epoxy to
ensure process integrity and reliability.

Acknowledgments
The authors wish to thank the many contributors to the

hybrid printed circuit board project. Ron Keil developed
the modified encapsulation curing profile. Bill Hanna and
Jim Traut performed failures analysis on the parts. John
Shea managed the test project. Khoa Tran worked on test
and fixture development. Marty Marino designed and as­
sembled the test fixtures. Lucy Cornelius worked on the
performance board and continuity board wiring. and Pres­
ton Brown designed the special test fixtures and provided
the test vectors. Manufacturing implementation in Singa­
pore was spearheaded by Soo Kok Leng and Tay Ewee
Liang.

An Equation Solver for a Handheld
Calculator
by Paul J. McClellan

HE IDEAL EQUATION SOLVER reliably finds all
solutions for an arbitrary variable in any equation
defined by the user. Since this is provably impossible

in genera V more realistic expectations are to solve for an
arbitrary variable in a wide range of equations. to provide
understandable and reliable diagnostic information should
the solver fail to find a solution. and to provide the means
for using the solver to obtain multiple solutions of an equa­
tion if more than one solution exists. These were the design
objectives for the equation solver in the HP-18C Business
Consultant.

A Combination of Direct and Iterative Solvers
The HP-18C employs a combination of a direct solver to

solve simple equations reliably and quickly and an iterative
solver to search for solutions of more-difficult equations.
The direct solver attempts to solve an equation by applying
rules of algebra to isolate the unknown on one side of an

30 HEWLETI·PACKARD JOURNAL AUGUST 1987

equation. If it succeeds. the value of the other side of the
equation is the solution to the equation. The iterative solver
applies a trial-and-error search procedure to obtain a solu­
tion to the equation.

The need for a combination of direct and iterative solvers
became clear early in the development of the HP-18C. Al­
though iterative solvers can be applied to a wide variety
of equations. they can. depending upon the starting point.
take an unacceptable amount of time to find a solution or
even fail for trivial equations. For example. consider at­
tempting to solve the equation l/x = -0.1 for x by applying
the secant method to the difference between the left and
right sides of the equation. Fig. 1 illustrates the shape of
the function l/x + 0.1 near x = o. With initial guesses -1
and 1 the iterates converge to the pole at x = O. With initial
guesses 1 and 2 the iterates diverge toward 00. But with
initial guesses -1 and - 2. the iterates converge to the
solution at x = -10. Although a direct solver would handle

t
-.-. --

... ---.
'.

Fig. 1. HP-28C plot of f(x) = 1 Ix + 0.1.

this situation easily, direct solutions to other equations
may not exist or may require an excessively complex direct
solver. Furthermore, simple direct solvers will return at
most one solution to an equation with multiple solutions,
which forces the user to rewrite the equation to obtain
alternate solutions. Hence, an iterative solver that can ac­
cept user-supplied initial guesses can be useful in tackling
harder equations or obtaining multiple solutions without
rewriting the equation.

To solve an equation, the HP-18C first applies its direct
solver. If the direct solver succeeds, the HP-18C displays
that solution. If an arithmetic error occurs within the direct
solver, then the HP-18C displays the message SOLUTION

NOT FOUND. This screens some equations that obviously
have no solution. If the unknown appears more than once
or if it appears as the argument of a function that the direct
solver cannot invert, then the direct solver fails and the
iterative solver is invoked.

Direct Solver
As described above, the direct solver solves an equation

by applying rules of algebra to isolate ~he unknown on one
side of an equation. If the direct solver succeeds, the value
of the other side of the equation is the solution. Direct
solvers can fail, either because no closed-form solution
exists or because the solution method is too difficult. The
first case is illustrated by attempting to solve the equation
XX = 2 for x.

The second case is illustrated for the HP-18C by attempt­
ing to solve x + x = 1 for x. The solution of this equation
is difficult for the HP-18C because, considering the prod­
uct's applications and resources, we decided that the HP-
18C's direct solver would perform no algebraic simplifica­
tion of the equation and thus would require the unknown
to appear only once in the equation.

The HP-18C parses an equation into an RPN internal
representation of its left and right sides. It parses an expres­
sion as though it were an equation with the expression as
the equation's left side and a zero on the equation's right
side.

The direct solver begins by scanning each side of the
equation and finding the side containing the unknown. If
the unknown appears in both sides, then the direct solver
fails. Otherwise, it initializes the solution accumulator to
the value of the other side and discards that side. The direct
solver then repeatedly applies the following procedure to
the solution accumulator and the remaining subexpression
containing the unknown. If the subexpression consists of
only the unknown, the direct solver has succeeded and it
returns the value of the solution accumulator. Otherwise,
the subexpression is an RPN expression ending in a func­
tion (or operator). If the direct solver does not know how

to invert that function, it fails. Otherwise, it scans the func­
tion's arguments to find the occurrence(s) of the unknown.
If the unknown appears in more than one argument, or in
an argument position for which the direct solver does not'
know how to invert the function, the direct solver fails.
Otherwise, it performs the inversion using the accumulated
solution and the current values of any other function argu­
ment. If an arithmetic error occurs during this inversion,
or if the result violates a rule of algebra, the direct solver
terminates and displays the message SOLUTION NOT FOUND.

Otherwise, the direct solver discards all but the argument
expression containing the unknown and continues this pro­
cess.

Two situations for which the direct solver aborts and
reports SOLUTION NOT FOUND can be illustrated by solving
the equations l/x = 0 and o/x = 1 for x. When the direct
solver attempts to invert the first equation, it triggers a
divide-by-zero error. When it inverts the second equation,
it obtains the result x = 0, which indicates a divide-by-zero
error in the original equation.

For the most part, the HP-18C's direct solver will only
invert functions that have unique inverses for the un­
known's argument position. However, we decided to also
invert an expression containing an unknown raised to a
power. When the power is even, the inverse can be either
positive or negative. The HP-18C selects the positive in­
verse. Sometimes the choice the direct solver makes causes
an arithmetic error later in the inversion process and the
HP-18C reports SOLUTION NOT FOUND in spite of the fact
that the equation has a solution that would have been found
had the direct solver chosen a negative inverse.

Even if the direct solver succeeds with its choice, other
equation solutions may exist. The user can force the direct
solver to choose the other inverse by rewriting the equation.
In effect, the direct solver will select the negative inverse
if the user negates the subexpression that is raised to the
even power. This feature can be illustrated by the following
two examples:
!!!l Solve the equation [1- (1/x)]2 = 1 for x. Because the

direct solver takes the positive inverse of an expression
raised to a power, later in the inversion process it en­
counters the simplified equation l/x = 0 and reports
SOLUTION NOT FOUND. If the original equation is rewritten
as [(1/x)-1]2 = 1 the direct solver returns the solution
x = 0.5.

!l! Solve the equation 1/(1-x)2 = 0.25 for x. The direct
solver returns the solution x = -1. If the equation is
rewritten as 1/(x-1)2 = 0.25 the solver returns the other
solution, x = 3.
We decided not to invert other multivalued inverse func­

tions, such as integer part, because such functions have an
infinite number of mathematical inverses (and a large
number of machine-representable ones) and it would be
more difficult for the user to specify any but the default
inverse that the direct solver would supply. The iterative
solver with its feature of accepting initial guesses from the
user seemed better suited to solve such equations.

Iterative Solver
The iterative solvers in the HP-18C and the HP-28C Cal-

AUGUST 1987 HEWLETI-PACKARD JOURNAL 31

f' ,
,

culators are very similar. The HP-18C's iterative solver is
described first and the HP-28C version's differences are
described later.

When a parsed equation is evaluated internally, the cur­
rent values of the equation's left and right sides are re­
turned. The iterative solver searches for a zero difference
between the left and right sides by repeatedly varying the
value of the unknown and computing the difference be­
tween the sides for that value.

Suppose the goal is to solve the equation A(x) = B(x)
for x. We represent the difference between the equation's
left and right sides by f(x) = A(x)- B(x). Then the goal is
to find a value of x such that f(x) = O. If the iterative solver
succeeds, it has found a numerical solution to the user's
equation or a zero of the user's expression and the solver
terminates immediately and reports that solution. Because
of the finite-precision floating-point arithmetic used by the
HP-18C, a solution may satisfy the equation numerically
but not mathematically.

The set of values available to the iterative solver as can­
didates for the value of x is the set of machine-representable
numbers available to the user. During the search process
the iterative solver displays selected iterates to show the
region being searched and the corresponding sign of ftx)
to provide hints of the shape of the curve and the method
in progress. The user can interrupt the search process by
pressing any key. If an arithmetic error occurs during the
evaluation of f(x) for some x, then f(x) is not defined for
that value of x and we say that x lies outside the domain
of definition of f(x). The displayed sign at that point will
be a question mark.

The iterative solver begins by claiming adequate scratch
storage, setting initial search bounds bl = -00 and bz =

00, and obtaining and ordering two distinct starting values,
say Xl and Xz, for the unknown x. It obtains Xl and X2 by
using the last two values stored into x. The default values
are zero. If these values are identical, one is perturbed by
the solver. At this point we have bl <Xl <xz<bz. The itera­
tive solver evaluates f(x l) and f(xz). If neither Xl nor X2 is
within the domain of f(xl. that is, f(x) is not defined for Xl
and Xz, then the solver terminates with the message BAD

GUESSES. If only one value, say Xl' is within the domain
of f(xl. the solver sets bz = Xz and attempts to find another
value within the domain by first using a modified bisection
search of the interval from Xl to Xz. The search bound bz
is reset to any sample value found out of the domain of
f(x) during this search. If the bisection search exhausts all
machine-representable values in the interval from Xl to Xz
without finding one in the domain of f(xJ, the solver sam­
ples the next machine-representable number just before Xl
in the direction of bl . If this value is also not in the domain
of f(x), the iterative solver terminates with the message BAD

GUESSES. Otherwise the iterative solver has the ordered
pairs (xl'XZ) and (fl.£z) where bl <Xl <xz<b2 , fl = f(xl)"'O,
and f2 = f(xz)"'O.

If fl = fz, the solver searches for a slope by alternately
extending the interval bounds Xl and Xz until it either finds
Xl and X2 such that fl '" fz or it exhausts the search interval.
If during this slope-hunting process a sample value is found
outside the domain of f(x), the search bound in that direc­
tion is set to that value and a modified bisection search is

32 HEWLETI-PACKARD JOURNAL AUGUST 1987

!

---.- -:-...... -

.' I

Fig. 2. HP-28C plot of f(x) = v' x + In (x) - 0.5.

employed to find a sample value in the domain of f(x) in
that direction. If the values sampled on one side, between
bl and Xl or between Xz and bz, are exhausted, then sub­
sequent sample values will lie in the other side. If the
solver fails to find a slope, it terminates with the message
SOLUTION NOT FOUND.

Otherwise, fl and fz have different values. If they have
the same sign, the iterative solver resets the search bound
closest to the value generating the larger f(x) magnitude to
that value, sets a counter to seven, and extrapolates in the
direction of decreasing f(x) magnitude using a modified
secant method. l It continues searching in that direction
until the value of f(x) changes sign, its magnitude increases,
or the search interval is exhausted.

In the last case, the solver terminates with the message
SOLUTION NOT FOUND. If during this extrapolation a sample
value is found that lies outside the domain of f(x), the
search bound in that direction is set to that value and a
modified bisection search is employed to find a sample
value in the domain of f(xl in that direction. This can be
illustrated by solving the equation V (x + In xl = 0.5 for

x. The left side of the equation is not defined for x< -In X
(see Fig. 2). With initial guesses of 1 and 2, the solver
repeatedly samples within this undefined region, eventu­
ally succeeds, and reports X = 0.662195081464 as the ap­
proximate solution.

If the value of f(xl does not change sign, but increases
in magnitude during secant extrapolation, the search bound
in the direction of search is reset to the sample value for
X where the magnitude of f(xl increases. The solver then
employs quadratic interpolation and selects the value
where the fitted quadratic expression has minimum mag­
nitude as the next sample value. Depending upon the po­
sition of this fitted point, the solver resumes modified se­
cant extrapolation in the same or opposite direction. Each
time quadratic interpolation is employed, a counter is dec­
remented and tested. Each time secant extrapolation finds
a value for f(xl with decreasing magnitude, that counter is
reset to seven. When the decremented counter value is
zero, the solver returns the last sample value as an approx­
imate solution and displays the values of the left and right
sides of the equation for that solution.

If the user immediately asks the calculator to solve the
equation again for the same variable, the iterative solver
uses initial guesses in the region of the last sample value.
Hence approximations to local f(x) magnitude minima can
be found by repeatedly solving for the same variable. How­
ever, the search procedure is designed to find zeros-not
local magnitude minima. This case can be illustrated by
solving the equation XZ + x = -1 for X with initial guesses
a and 1 (see Fig. 3). The solver reports the approximate
solution, x = -4.99999994899E-1, with the values of the

·'>--~~-I -~~</~ II L.. ~-_-=-:~-_:-=-_~_:._:. :~··~·" __ "' ___ ::-_:I~~+:t~:I:_~ __ :: .. ~. ::":'-':I_~::L::~:I~--I
Fig. 3. HP-28C plot of f(x) = x2 + X + 1

equation's left and right sides for that solution.
If fl and f2 have opposite signs, or if during extrapolation

their values change sign, the solver sets the search bounds
to those sample values resulting in the values of fl and f2
having opposite signs and begins attempting to narrow the
interval bracketing the change of sign. This process may
employ an adaptive combination of modified bisection and
secant, cubic, and hyperbolic interpolation to obtain a se­
quence of sample values. For each iteration where the sam­
ple value is within the domain of f(xl, one of the search
bounds is reset to that value and the interpolation process
continues. The process continues until it finds one of the
following cases:

A solution
Neighboring values Xl and Xz bracketing a sign change
in f(x)

\Ij A value out of the domain of f(x).
The first case can be illustrated by solving the equation

XZ + x = 6 for x with initial guesses 0 and 1. The iterative
solver reports the positive solution x = 2. If the equation
is immediately solved again for x, the solver again reports
the solution x = 2.

The second case occurs when the equation has a solution
that is not representable in the HP-18C's 12-digit float­
ing-point format. (The set of 12-digit numbers includes 0,
-1.00000000000 x 10-499 to - 9.99999999999 X 10499

,

and 1.00000000000 x 10-499 to 9.99999999999 x 10499
.)

It can also occur if the function f(x) is discontinuous be­
tween two adjacent machine-representable values. In any
event, the solver returns the value of Xl or X2 that gives a
minimum f(x) magnitude as the solution. It stores the other
value in a dedicated location such that if the user im­
mediately solves again for the same variable, Xl and X2 are
used as initial guesses. The solver also displays the values
of the left and right sides of the equation for that solution
if either Xl or x2 is the only value sampled in the interpola­
tion process, or if the process strongly suggests that the
result represents a pole.

For example, with initial guesses 0 and 1, the solver
returns the approximate solution X = 1.30277563773 to
the equation x2 + x = 3. If the solver is immediately rein­
voked it displays the values of the equation's left and right
sides for the same approximate solution. For the first try,
the solver is able to make some progress from the initial
guesses and the data does not strongly suggest a pole. For
the second attempt, the solver is unable to progress beyond
its initial guesses so it returns the values of the left and
right sides as a warning that the equation is not exactly
satisfied.

If the solver is applied to the equation x/(xz-2) = 1 with
initial guesses 1 and 1.5, it returns the approximate pole
x = 1.41421356238 and displays the values of the left and

Fig. 4. HP-28C plot of f(x) = xl(x2
- 2) - 1.

right sides of the equation for that solution. The solver in
this case was able to make some progress from its initial
guesses, but the process strongly suggested that the result
was near a pole (see Fig. 4).

In the third case the iterative solver splits the current
search region, which brackets a change of sign in the value
of f(xl, at the out-of-domain value. We then have two inter­
vals, Xl to gl and g2 to x2, where initially Xl <gl = gz<xz·
The points gl and gz will later be adjusted such that the
interval between gl and gz defines a gap within which the
function f(x) is presumed to be undefined. The solver alter­
nately samples values in the left and right subintervals
using a modified bisection search. Each time, ifthe sampled
value is out of the domain of f(xl, the appropriate g bound
is reset to that value and the iteration continues with a
wider gap between gl and gz. If the value of f(x) at that
sample value has the same sign as the value of f(x) at the
corresponding x bound, that bound is reset to that sample
value and the iterations continue with a narrower outer
interval [Xl' x 2]' The process continues until it either finds
a solution, it finds a value for x where the sign of f(x) is
the opposite of the sign at the corresponding x bound, or
it exhausts both subintervals [Xl,gl) and (g2'XZ]' If the solver
finds a value for x where the sign of f(x) is the opposite of
the sign at the corresponding x bound, the solver discards
the other interval and resumes narrowing the region around
the change of sign in f(x) as above.

This case can be illustrated by solving the equation
Yx/(x+0.3) = 0.5 for x with initial guesses -1 and 2
(see Fig. 5). The left side of this equation is not defined for
x in the interval from - 0.3 to o. With these initial guesses
the solver first samples on either side of this interval and
then in this interval, triggering the gap-narrowing process
just described. Eventually the solver exits that process and
finds the solution x = 0.1.

H the solver exhausts both subintervals it returns the
value of Xl or x2 giving minimum f(x) magnitude as an
approximate solution. This case can be illustrated by at­
tempting to solve the equation (x/(3x -1))3 = 1 for x with
initial guesses 0.3 and 0.4 (see Fig. 6). The solver stores
the other value in a dedicated location such that if the user
immediately solves again for the same variable, Xl and X2
are used as initial guesses. The solver also displays the
values of the left and right sides of the equation for that

.' ---_ ..
. ---'

Fig. 5. HP-28C plot of f(x) = Yx/(x + 0.3) -0,5.

AUGUST 1987 HEWLETT·PACKARD JOURNAL 33

I t
..

--...

Fig. 6. HP-28C plot of f(x) = (x/(3x - 1)l- 1.

solution as a warning that the solution is not exact.

HP-28C Iterative Solver
The HP-28C's iterative solver assumes a higher level of

sophistication on the part of the user. It also searches for
a real solution to an equation or a real zero of an expression.
It differs from the HP-18C version only in the manner that
the user specifies initial guesses, how the solver displays
current iterates, and the solver's termination display.

The HP-28C uses the initial contents of the unknown to
obtain up to three initial guesses, with zero as a default.
The user specifies one initial guess by storing a real or
complex number in the unknown. The HP-28C takes the
real part of a complex number as an initial guess. The user
can specify one, two, or three distinct initial guesses by
including those guesses in a list and storing that list in the
unknown. The HP-28C uses up to the first three distinct
real numbers or real parts of complex numbers in the list.
The reason for handling complex numbers in this way is
to facilitate the user's specifying initial guesses obtained
by digitizing points from plotted equations.

The iterative solver is faster if it does not need to display
iterates, so by default the HP-28C solver does not do so.
However, the user can trigger the display of current iterates
by pressing any key other than ATTN. Additional pressing
of such keys has no effect and the solver purges the key
buffer when it terminates. Pressing ATTN always aborts the

iterative solver, which then returns a list of the three current
iterates on the display stack and stores the list in the un­
known.

If the HP-28C cannot obtain at least two values in the
domain of f(x) using the initial guess(es) of the unknown,
then it leaves the unknown unchanged and displays Bad
Guess(es). If the HP-28C cannot obtain a slope, then it leaves
the unknown unchanged and displays Constant. Otherwise,
the HP-28C overwrites the initial contents of the unknown
during the search process. When the search is complete,
the solver returns a message and an exact or approximate
solution on the display stack and stores the solution in the
unknown. The HP-28C displays the message Extremum if it
exhausts the search interval without finding a change of
sign. If it finds a change of sign but not an exact numerical
solution, it displays Sign Reversal. If it finds an exact nu­
merical solution, it displays Zero.

The solver application menu has labeled softkeys that
can be pressed to evaluate the left and right sides of the
current equation for the current values of the equation's
variables. The user can use these keys to inspect the quality
of a solution in more detail.

Acknowledgments
Charles Patton prototyped the HP-18C direct solver. Prof.

W. M. Kahan of the University of California at Berkeley
authored the original iterative solver algorithm common
to both the HP-18C and the HP-28C.

References
1. W.M. Kahan, "Personal Calculator Has Key to Solve Any Equ­
ation f(xl = 0," Hewlett-Packard Journal, Vol. 30, no. 12, December
1979.
2. HP-18C Business Consultant Owner's Manual, Hewlett-Pack­
ard Company, Publication 00018-90057, October 1986.
3. HP-28C Reference Manual, Hewlett-Packard Company, Publi­
cation 00028-90051, January 1987.

Electronic Design of An Advanced
Technical Handheld Calculator
by Preston D. Brown, Gregory J. May, and Megha Shyam

HE DESIGN of an advanced handheld calculator
such as the HP-28C requires solutions of some spe­
cial problems: how to package the system in a limited

space, how to provide power from three small batteries for
six months, how to keep the cost down, and how to release
the new design in less than 18 months. These challenges
were met by designing three custom CMOS ICs, packaging
the electronics using chip-on-board and surface-mount
technologies, and using powerful design aids. The HP-28C
includes a four-lin~ liquid-crystal display (LCD), 128K

34 HEWLETI-PACKARD JOURNAL AUGUST 1987

bytes of ROM, 2K bytes of RAM, a clock, and an infrared
transmitter for sending data to an optional detached printer.
The HP-18C Business Consultant contains the same elec­
tronics, but only one ROM.

The electronic design (Fig. 1) of the HP-28C provides a
20X improvement in computational speed over its pre­
decessor, the HP-15C. Custom ICs and custom packaging
were required to achieve this functionality on a small cir­
cuit board measuring 3 by 1.5 inches.

A hybrid board design (see article on page 25) is used

Beeper

for the entire system. Two display drivers and the CPU are
bonded directly to the front of the printed circuit board
using 263 bonds. Two ROMs in flatpacks and the rest of
the discrete components are placed on the back of the
board. Pressure contacts are made from the board to the
LCD on the front, and from the board to the keyboard on
the back. The use of chip-on-board technology has proven
to be reliable and cost effective.

Custom Microprocessor
Commercially available microprocessors have a number

of limitations that make them unsuitable for use in a cal­
culator. They require too much power, many support chips,
regulated supplies, or a wide system bus which takes up
too much room on a printed circuit board. Hence, a custom
microprocessor was developed for the HP-28C to avoid
these problems.

The processor used in the earlier HP-71B Handheld Com­
puterl was an excellent starting point for the design; this
processor already met the low-power and interconnect re­
quirements, but it would not run at 3V (the minimum bat­
tery voltage). By porting the design into the newer, smaller
CMOSG process, the part price and the power supply re­
quirements were reduced and the speed was increased.
At the same time, new instructions were added to improve
data manipulation and the interrupt structure was en­
hanced.

The instruction set of the processor is highly optimized
for binary-coded decimal operations on both integer and
real numbers. The main working registers in the processor
are 64 bits long and are broken into three fields: the expo­
nent, the mantissa, and the sign fields. Individual nibbles
or bytes of the registers can be handled independently.

The processor has 16 input pins and 12 general-purpose
output pins, some of which are used to scan the keyboard.
Most of the work of scanning the keyboard is the responsi­
bility of the firmware including the scan sequence, key
debouncing, and type-ahead buffer. Hardware is kept simple.

Fig. 1. System block diagram.

Bus Definition
To reduce printed circuit board area, the bus width must

be limited. A four-bit multiplexed command and data bus
may seem to be an extreme solution, but is necessary to
save space. The challenge is to maintain reasonable perfor­
mance with a four-bit bus. Each IC in the system maintains
its own copy of the 20-bit program counter (PC) and a data
pointer (DP) which are only broadcast on the bus when
necessary. After a read operation to an address pointed to
by the PC, each IC automatically increments its copy of
the PC. Therefore, the PC need only be updated if a branch
is taken. In this case, the PC must be reloaded. The com­
mand LOAD PC is placed on the bus followed by the five
nibbles of the new address. The other fifteen bus commands
include starting reads and writes to the address pointed to

Fig. 2. Layout and architecture of display driver chip.

AUGUST 1987 HEWLETI·PACKARO JOURNAL 35

by the PC or DP, loading the DP, and resetting and configur­
ing the system.

Another feature of this bus definition is soft configura­
tion, which allows the memory space to be allocated as
desired. A daisy-chain signal is routed from one IC to the
next. If an IC has not yet been configured, it drives its
daisy-out (~O) line low. When its daisy-in (01) line is high,
the IC responds to identification and configuration com­
mands which place it in the address space. Once config­
ured, the IC's DO line goes high so that the next chip in
the chain can be configured.

The bus consists of 10 pins: data (pins 0 to 3), CON (signals
if the transfer is a command or data), STRN (system strobe),
01, ~O, Voo, and GNO. The bus supports data transfer at up
to one megabyte/second. However, in the HP-28C the trans­
fer rate is limited to 325 kilobytes/second because of other
limitations.

Display Drivers
The liquid-crystal display requires 184 drivers. Since

there are too many pins to be driven by a single IC, two
identical display driver ICs (Fig. 2) are used, each driving
92 lines. Each driver IC also requires 20 additional pins
for a total of 112 pins per IC. Other system needs are also
integrated onto the display drivers; the CPU and ROM are
the only features that would not fit because of area limita­
tions.

The 32-way multiplexed (see waveforms in Fig. 3) liquid­
crystal display requires up to nine volts peak-to-peak to
operate. This presented some difficulty since the CMOSG
process allows only seven volts maximum because of two
problems. First, the process' polysilicon field threshold
runs around 12V and there would be significant sub­
threshold conduction at nine volts. Second, although a
p-channel transistor can handle the high electric fields pro­
duced, an n-channel FET would only last a short time
before it was damaged. To live within these constraints,
restricted layout rules and circuit designs were developed
to allow nine-volt operation. The layout rule changes in­
cluded increasing the minimum gate length, increasing the
polysilicon-to-diffusion spacing, eliminating polysilicon
p-well crossings, and not allowing two transistors to share
the same gate polysilicon. By making use of a supply level
already needed for the display, VMIO (1.8V), two n-channel

15.6 ms
"'1

01--------- 1 cycle -------.1 0

(64 Hz) I

IN

1.8V

-4.5V
(a)

(b)

DN---

D

LOADN

:-- 4.5V

IN

OUT

4.5[

-4.5

4.5[

-4.5

-~ -- - --4.5V

4.5V

4.5V

High-Voltage
Inverters

Fig. 4. (a) High-voltage inverter. (b) Nine-volt interface circuit
for supplying display drivers.

devices can be placed in series and biased to maintain a
voltage drop of less than seven volts across each of them
(see the high-voltage inverter in Fig. 4a).

While the majority of the system is powered by three
N-cell batteries (4.5V), the display drivers need nine volts.
Therefore, an interface circuit was necessary to provide
±4.5V. The high-voltage inverter could allow a O-to-4.5V
logic input to produce a ±4.5V output, but current drains
would be high since both the pull-up and pull-down tran­
sistors are on when the input is at ground. However, by
incorporating two high-voltage inverters into a latch (Fig.
4b), the full voltage swing is placed across the inputs of
both inverters, and no dc current flows.

15.6 ms
1 cycle ------~·~I
(64 Hz)

r------·-·----·~-----··~---
Row 0

36 HEWLETI-PACKARD JOURNAL AUGUST 1987

488 !'-S

Fig. 3. Multiplexed waveforms for
driving liquid-crystal display_

Bit Bit Bit Voo Bit
, I I '

~ Word .W-.--.--~-- ----~-2;l-LJ-
I ' 'I I I

I ~ ~!I

~~ lhJ;T;4 f - - ~-ll
Word Word ~: ____ •. ____ ---~--H_-

I I I
(a) (b)

Programmable Switching Supply
The power supply uses only three discrete components

and a 50-to-150-kHz clock signal to generate a negative
display supply (VOREF' - 4.5V) from a 2.7-to-6V input. The
other display voltages are generated by buffering voltages
from a resistor divider strung between Voo (4.5V) and VOREF.

The negative supply is adjusted versus ambient tempera­
ture by comparing the voltage from a string of three parasitic
npn transistors to the voltage from a switched capacitor
divider driven by VOREF. A 5-bit register which directly
varies the ratio of this divider gives the user control of the
display contrast by altering the negative supply voltage
with respect to Voo.

System Functions
Other features necessary to complete the system are in­

tegrated onto the display driver (see Fig. 2). A two-port
RAM consisting of ninety-two 32-bit words is used for a
display bit map. The read-only second port is formed by
the addition of a second word line, a second bit line, and
two transistors to the basic static RAM cell (see Fig. 5).
Each display driver also provides lK bytes of system RAM.

In the low-battery detection circuit, the supply voltage
Voo is divided down and compared to a bandgap reference.
The reference produces 1.3V:!:15 mV over process vari­
ations and the operating temperature range of -30 to

! I
Bit 2

+ 75°C.

Fig. 5. Static RAM cells (a) Tra­
ditional static RAM. (b) HP-18C
and HP-28C display RAM cell.

Display control logic handles the display refresh and
synchronization of multiple chips.

A 32-bit crystal-controlled timer provides a real-time
clock and other timing functions.

A flexible I/O pin allows TTL-level serial communica­
tions and several other I/O possibilities. In the HP-18C and
HP-28C Calculators, this pin drives an infrared LED trans­
mitter for sending data to an optional printer with an in­
frared receiver. The timer and I/O sections provide minimal
hardware support for these features; as much of the com­
plexity as possible is handled by the firmware.

512K-Bit ROM
The third custom IC used in the HP-28C is a 512K-bit

ROM. One or two ROMs in flatpack packages are soldered
to the back of the hybrid circuit board. The ROMs are not
bonded directly to the board for three reasons. First, by
placing the ROMs in separate packages the HP-28C and all
language versions ofthe HP-18C can be produced by simply
loading the boards with a different ROM. Second, that
much ROM would consume a large amount of tester mem­
ory and is best tested separately. Third, the CPU and display
drivers require most of the room on the front of the board,
and directly bonding chips to both sides of the board is
not practical.

Fig. 6. Architecture of 512K-bit
ROM chip.

AUGUST 1987 HEWLETT~PACKARD JOURNAL 37

Early in the development cycle it became apparent that
a high-density CMOS process was essential to help keep
the cost of the product at realistic levels. Hence, this ROM
chip was designed using a third-generation CMOS process
developed at HP's Northwest Integrated Circuits Division.

The chip architecture (Fig. 6) consists of four 128K-bit
quadrants, each organized in 512 rows and 256 columns.
The data from each quadrant is read four nibbles at a time.
Considerable design effort went into minimizing power
supply drain by the ROM in both the operating and standby
modes. Our design approach incorporates decoded virtual
ground drivers so that only part of each quadrant is active
at any time. The use of virtual ground drivers minimizes
precharge current contribution to the operating current.

Our choice for the ROM core cell is the so-called X core,
where the polysilicon word line snakes around the island
line at 45° angles. The traditional diffusion resistance to
ground is not present in this design, which eliminates
periodic ground bus lines. Data from the ROM core is
sensed by special differential sense amplifiers that detect
the difference between the selected cell and a dummy cell.
The ROM is island programmable, which implies that a
one or zero is detected by the presence of an island complet­
ing the transistor. The design calls for the ROM to operate
from 3.0 to 5.5 volts with 200-ns access time at 65°C.

The ROM interfaces to the CPU using the 4-bit data bus
and two control lines. For proper operation, the chip needs
only 11 pads. The chip was designed to be configurable in
the address space of the CPU either by hard configuration
(Le., the address is predefined and set) or soft configuration
(Le, the address can be mapped anywhere in the CPU ad­
dress space). The interface of the ROM core with the CPU
consists of a command decoder and two 20-bit program
counter and data pointer registers.

The CMOS process development played a key role in
the availability of the ROMs. Some of the principal charac­
teristics of this new CMOS process are:
ill It is an n-well process, as contrasted to previous p-well

processes.
.. It uses p-type epitaxial silicon on a p + substrate instead

of a mono crystalline silicon structure.
m; 5 x optical steppers are used for all critical lithography

levels.
;/! The metal interconnection layers (first and second) have

a linewidth-spacing pitch of 4.0 /Lm.
\!Ii The polysilicon lines are drawn 2.8 /Lm wide and are

placed at least 1.2 /Lm apart.
~ The islands that define p-channel or n-channel transistor

widths are 2.8 /Lm wide.
llli The n-channel and p-channel threshold voltages are

0.75V and symmetrical.
02 The effective size of a minimum-geometry device is 1.8

/Lm wide and 1.3 /Lm long.
Ii The maximum operating voltage is 5.5V.

ESD and EMI Design Considerations
From the very beginning of the project, the design goal

for electrostatic discharge (ESD) protection was to elimi­
nate any breakdowns through the case with the calculator
placed on a reference ground plane for discharges up to
25 kV. Hence, the emphasis on sealing the product with

38 HEWLEIT·PACKARD JOURNAL AUGUST 1987

an RTV compound was partly because of ESD require­
ments. However, the problem with that design philosophy
is that anyone entry point can eliminate all chances of
success. In this case, the weak point was the battery door.
Interestingly enough, the observed arc path was from the
battery door to the battery case and over through the elec­
tronics to the CPU key lines. The reason for this was sim­
ple-the keyboard provides a larger capacitance to refer­
ence ground than anything else in the product (Le., the
highest charge path is through the electronics). The solu­
tion is to isolate the keyboard using a series resistance and
to provide an alternate path for this charge with an appro­
priately placed ground plane. The keyboard-to-ground
capacitance is reduced by inserting a grounded metal shield
between the keyboard and the reference ground. This de­
sign at the same time provides an alternate, more desirable
charge path to this internal ground plane because of its
predominant capacitance to the reference ground. This
technique has proven to be quite successful in previous
projects.2

Electromagnetic interference (EMI) generation was not a
problem, mainly because of an early emphasis on proper
printed circuit board layout. Possible RF sources are elimi­
nated by minimizing the physical loop areas created by
the signal and ground return paths, and by laying out the
power and ground lines first on the hybrid. This is an
extremely quiet product, considering its speed capabilities.

Tools
An aggressive schedule was met with this project. Since

the CPU was a redesign, the display driver and ROM were
the most critical IC designs. Three months were required
for design, schematic entry, and simulation. Our first pro­
totypes, built six months later, were fully functional.

The Hierarchial Custom Design System, developed at HP
for in-house use, is a highly integrated set of tools running
on HP 9000 Computers. The schematic capture system pro­
duces a net list which is fed to the circuit (HP Spice) or
logic simulator. The logic simulator handles CMOS designs
including bidirectional transmission gates and circuit
fights created, for example, when over driving cross­
coupled inverters to load a latch. A high-level, Pascal-like
language is used to develop all the test patterns. This lan­
guage can then be compiled for the logic simulator or for
the IC test system. Often the output of the simulator is used
to create the production test patterns, but recompiling the
high-level language has three benefits. First, changes in the
test patterns can be implemented quickly, without having
to resimulate the entire IC. Second, the test patterns are
well documented. Finally, the features of the language re­
duce the time required to develop test patterns for both
simulation and production testing.

Standard cells were used whenever possible, but some
layout was done manually while the RAM was drawn by
a module generator. All design rule and electrical errors
in the layout were caught with a hierarchical design rule
check (DRC) and schematic compare program. One error
was caught in the module generator's work. With thousands
of dollars of mask charges and months of debugging time
at stake, correct by construction is a nice goal, but it can­
not beat correct by double checking. The DRC and compare

program ran quickly and produced concise listings of any
errors.

References
1. J.P. Dickie, "Custom CMOS Architecture for a Handheld Com­

puter," Hewlett-Packard Journal, Vol. 35, no. 7, July 1984.

2. G.J. May, "Electrostatic Discharge Protection for the HP-75,"

Hewlett-Packard Journal, Vol. 34, no. 6, June 1983.

• Susan Wechsler has been
with HP since 1980 and
worked on the operating
system for the HP-71B
Handheld Computer be­
fore contributing to the de­
sign and implementation of
the operating system and
user interface for the HP-
18C Calculator. She's the

author of two technical papers related to product
quality and to the HP-71 B, and is named coinventor
on a patent application for calculator software.
Born in Burbank, California. Susan attended
California State University at Long Beach, complet­
ing her BA in mathematics in 1979. She and her
husband and baby live in Corvallis. Oregon. When
she's not working on home remodeling projects,
she enjoys sewing dnd gardening.

William C. Wickes
With HP since 1981, Bill
Wickes was R&D project
manager for the HP-28C
Calculator and contributed
to the operating system de-

, sign for the HP-18C. He has
developed ROMs for sev­
er ai other products, includ­
ing the HP-41 C Calculator
and the HP-75C and HP-

71 B Computers. He's named inventor on two pat­
ent applications related to the operating system for
the HP-28C. Born in Lynwood, California, he
studied physics at the University of California at Los
Angeles (BS 1967) and at Princeton University
(PhD 1972). Before coming to HP he was an assis­
tant physics professor at both Princeton and the
University of Maryland. A member of the American
Astronomical Society, he has published six papers
on observational cosmology. He has also written
and published a book on synthetic programming
on the HP-41 C. Bill lives in Corvallis, Oregon, is
married, and has two children. He's active in the
Boy Scouts and likes sailing and volleyball.

Judith A. Layman
Judi Layman studied
mechanical engineering at
Montana State University
and received her BSME de­
gree in 1981 After joining
HP the same year, she con­
tributed to the design of an
expansion pod for the HP-
75C Portable Computer
and continued with it into

production. More recently she worked on the
keyboard and flexible 'Interconnect design for the
HP-18C and HP-28C Calculators. She's named
coinventor on a patent application related to the ar­
ticulating hinge for the HP-18C and HP-28C. A re­
sident of Corvallis, Oregon, Judi enjoys running,
bicycling, volleyball, backpacking, textiles, and
travel.

Mark A. Smith
Mark Smith joined HP in
1980, the same year he
graduated with a BSME de­
gree from California
Polytechnic State Univer­
sity at San Luis Obispo. He
has worked on the design
and production of a
number of portable com­
puter and calculator prod­

ucts, including the HP-10, HP-15C, HP-16C, HP-
18C, and HP-28C Calculators, and the HP-75D
Portable Computer. He's also the author of an ar­
tic�e on the flex circuit that is used in the HP-18C
and HP-28C. Born in Livermore, California, Mark
now lives in CorvalliS, Oregon. He's married and
has two sons. He's finishing work on the home he
built and enjoys soccer and skiing.

Charles M. Patton
Charlie Patton earned a
PhD degree in mathema­
tics from the State Univer­
sity of New York at Stony
Brook in 1977 and was a
mathematics professor at
the University of Utah be­
fore coming to HP in 1982.
He's a specialist in mathe­
matical software and al-

gorithm development and has worked on a number
of ROMs for the HP-75C and HP-718 Computers.
He also contributed to the development of the HP-
18C and HP-28C Calculators. He's author or co­
author of five papers in mathematics and mathe­
matical physics and is a member of the American
Mathematical Society and the American Associa­
tion for the Advancement of SCience

Chong Num Kwee
Chong Kwee was born in
Kulai, Malaysia and at­
tended the University of
Dundee. His BSc degree in
mechanical engineering
was granted in 1981. He
joined HP upon graduation
and is now an R&D en­
gineer in the Singapore IC

.. Operation. His contribu-
tions to the HP-18C and HP-28C were the wire­
bonding process and transfer of the assembly pro­
cess to Singapore. Chong is married and is expect­
ing his first child this year.

Corne lis D. Hoekstra
With HP since 1977, Casey
Hoekstra has held a

. number of process and test
engineer positions. He has
worked on thermal print­
heads, plasma deposition,
photolithography, and
CMOS IC yield and reliabil­
ity. Born in Schyndel, The
Netherlands, he served as

a medic in the U.S. Army and then studied physics
at the University of Oregon. His 8S degree was
granted in 1976 and his MA in 1977 Casey and his
wife and two daughters live in Corvallis, Oregon.
Mountain climbing, hiking, and gardening head his
list of leisure activities.

Robert E. Dunlap
Bob Dunlap started at HP
in 1976 as a wafer fabrica­
tion engineer and is now a
project leader for R&D
packaging. He has been
responsible for developing
hybrid PC boards for the
HP-41C, HP-85A, HP-86A,
HP-75C, and HP-718 Com­
puters and for the HP-18C

AUGUST 1987 HEWLETT-PACKARD JOURNAL 39

and HP-28C Calculators. Born in LaJolla, Califor­
nia, he completed work for his BS degree in
chemistry from San Jose State University in 1966.
He was a wafer fabrication engineer before coming
to HP. Bob is married, has four children, and lives
in Corvallis, Oregon. Outside of work he enjoys ski­
ing, boating, and backpacking.

Bruce R. Hauge
A graduate of Oregon State
University, Bruce Hauge
completed work for his BS
in chemical engineering in
1979. He worked as an
R&D engineer for Cordis­

'""'l! Dow Company before com­
ing to HP in 1981. An IC
packaging engineer, he
has worked on quad packs

for HP-1 0 Series Calculators, printed circuit board
hybrids for several handheld computers and cal­
culators, and pin-grid array packages. An Oregon
native, Brucewas born in Salem and now lives in
Corvallis. He's married and has two daughters. His
outside interests include church activites, personal
computers, playing guitar, and recording music.

Paul R. Van Loan
With HP since 1977, Paul
Van Loan specializes in IC
package development and
is a project manager for the
company's Northwest IC
Division. His first project at
HP involved the develop­
ment and production of
LCDs. Later, he contrib­
uted to work on the HP-

10C, HP-15C, HP-16C, and HP-41C Calculators.
His work on ceramic and refractory materials and
on thick-film resistor formulations has resulted In
three patents. He's also the author of over 25 pa­
pers in the fields of mineralogy, materials science,
hybrid microelectronics, and display technology.
Born in Toronto, Canada, Paul earned a BS in earth
sciences in 1957 and an MS in mineralogy in 1958
from the University of Toronto. He continued his
studies at McGill University, from which he re-

5953-8563

ceived his PhD degree in crystallography in 1968.
His professional experience before coming to HP
included the development of LCDs and flat panel
displays and thick-film and thin-film hybrids. He
and his wife and two children are residents of Cor­
vallis, Oregon. His hobbies include gardening,
music, running, hiking, and reading to his children.

Paul J. McClellan
An Oregon native, Paul
McClellan received his BS
in physics and mathema­
tics in 1974 from the Univer­
sity of Oregon and his PhD
in statistics in 1984 from
Oregon State University.
Before coming to HP in
1979 he developed soft­
ware for digital measure­

ment system applications and for robot calibration.
At HP, he has contributed to the development of
a series of calculators and handheld computers,
including the HP-15C Calculator, HP-71 B Comput­
er, HP-18C, and HP-28C. He's coauthor of a May
1983 HP Journal article on the HP-15C. Paul was
born in Salem and lives in Corvallis. He's a member
of Corvallis Mountain Rescue and enjoys Nordic
and alpine skiing, rock climbing, mountain climb­
ing, and reading.

Megha Shyam
A native of India, Megha
Shyam received his BSEE
degree from the Indian In­
stitute of Science in 1961
and his PhD in electrical en­
gineering from Stanford
University in 1967. He
worked for several com­
panies, including Fairchild
Semiconductor, Bell &

Howell, and Data General, before joining HP in
1977. He has contributed to the design of inte­
grated circuits for the HP-85B and HP-75C Com­
puters, was project leader for the card reader for
the HP-71 B Computer, and deSigned portions of the
HP-18C and HP-28C. He's the author of 14 papers

related to diodes, GaAs characterization, and
solid-state devices, and his work in these fields has
led to four patents. He's also an adjunct professor
at Oregon State University and teaches courses on
VLSI design. A resident of Lewisburg, Oregon,
Megha is married and has three children. He's ac­
tive in the Baha'i faith and enjoys meeting people,
reading, and listening to music

Preston D. Brown
Preston Brown joined HP in
1981 and has contributed
to the development of the
HP-IL module for the HP-
71 B Handheld Computer,
to the ThinkJet Printer, and
to the IC design and system
design for the HP-41 C
Handheld Computer. He
was responsible for the dis­

play driver IC and was a production engineer for
the HP-18C Calculator. He has written two papers
for internal HP conferences on IC artwork verifica­
tion and on a display driver. Born in Pensacola,
Florida, Preston studied electrical engineering at
the University of Florida (BSEE 1981). He's now a
resident of Philomath, Oregon and likes skiing and
hiking.

Gregory J. May
Greg Maywas born in Day­
ton, OhiO and earned a
BSEE degree in 1980 from
the University of Tennessee
at Knoxville. After coming
to HP the same year, he
worked on the power sup­
ply and memory board for
the HP-75C Portable Com­
puter and later was a pro­

duction engineer for the product. He has also
worked on the HP-94 Handheld Computer and on
bar code wands. His contribution for the HP-18C
and HP-28C Calculators was the analog design for
the display driver IC and system ESD and EM\,
Greg and his wife and daughter are residents of
Corvallis, Oregon. He's an amateur radio operator
(KB40X) and woodworker and recently restored a
1972 Fiat 124 Spyder. He's also working toward an
MBA degree from Oregon State University

BUlk Rate
U.S Postage

Paid

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

