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Handheld calculator designs always seem to require the expert application 
of a broader variety of disciplines than other product designs. Perhaps it's 
the challenge of building more and more capability into a severely limited 
volume. In this respect, this month's subjects, the HP-18C Business Consul­
tant and the HP-28C Scientific Professional Calculator, are typical. Their 
design story has interesting aspects not only in circuit design and firmware 
development, but also in materials, packaging, operating system design, 
algorithms, user interface design, display technology, and ergonomics. 

The first thing you notice is the package. Users didn't like keys that had 
three different labels, so the designers added more keys, and the package opens to reveal two 
keyboards side by side. How do you reliably connect the two halves of the electronics through a 
rotating hinge? See the mechanical design paper on page 17. Business users want to customize 
their calculators without programming, so the HP-18C has soft key menus and the Solve interface, 
which lets you type in an equation algebraically using any convenient variable names and then 
solve for an unknown variable by pressing the softkey labeled with its name (page 4). While the 
HP-18C is algebraic, the HP-28C still uses RPN, the programming language of earlier HP scientific 
calculators, but the language has been extended to include symbolic entry of variables and a 
variety of data types (page 11). Behind these advanced features of both calculators is a new 
operating system developed especially for handheld calculators. Called RPL, it has similarities to 
both Lisp and Forth (page 21). For solving equations, the iterative solver of earlier HP scientific 
calculators has been augmented with a direct solver and implemented in both the HP-18C and 
the HP-28C. The solver first tries to solve a user's equation by algebraic operations. If it can't, it 
uses trial-and-error methods (page 30). 

You'll find the electronic design of these new calculators described in the papers on pages 25 
and 34. In a future issue, we'll have papers on the calculators' accessory printer and its infrared 
interface, and on the manufacturing process. 

-R. P. Dolan 

§ 

Next month's issue is another in our series devoted to the new HP Precision Architecture. 
Three papers will describe the design and development of the processor chip set for the first 
VLSI implementation of the architecture, and two papers will describe system processing units 
that use this chip set. One of the SPUs is for the HP 9000 Model 850 and HP 3000 Series 950 
Computers, and the other is for the HP 9000 Model 825. 

The HP Journal encourages technical diSCUSSion of the tOPICS presented in recent articles and will publish leUers expected to be of interest to our readers. Letters must be 'brief and are subject 

to editing. Letters should be addressed to: Editor, Hewlett·Packard Journal, 3200 Hillview Avenue, Palo Alto, CA 94304, U.S.A. 
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A Handheld Business Consultant 
The latest model in HP's line of calculators designed for 
business and financial applications features a menu-driven 
user interface for selecting any of its many built-in functions 
or custom equations entered by the user. 

by Susan L. Wechsler 

P'S BUSINESS CONSULTANT (Fig. 1) is an ad­
vanced handheld calculator that combines many of 
the most popular features of the earlier HP-12C with 

enhancements such as a menu-driven user interface, cus­
tomization without programming, a four-line dot-matrix 
display, and an infrared transmitter for sending data to an 
optional cordless printer. Because the Business Consultant 
uses the same CPU as the HP-71B Handheld Computer,l 
its financial calculations run at least 15 times faster than 
those on the HP-12C. 

The major applications (menus) contained in the HP-18C 
Business Consultant are (see Fig. 2): 
;5. FIN-time value of money, cash flow analysis, interest 

conversions 
... BUS-percent change, percent total, markup 

SUM-running total, one-variable statistics, forecasting 
with one of four models 

51 TIME-date arithmetic, running clock with the ability to 
set up to six alarms 

lid SOLVE-new way for users to solve their own special 
problems without programming. 
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What makes this product special is its ease of use. The 
popularity of the HP-12C told us that its feature set met 
customer needs, and yet we were confident that there were 
ways we could improve the usability of those features. To 
discover how, we contacted our customers through focus 
panels on both coasts of North America, and our contingent 
of sales representatives overseas. The response guided 
many aspects of the design of the business consultant. 

Localization 
From outside the United States came significant feedback 

regarding localization. Many people wanted a calculator 
that communicates in their primary (or perhaps only) lan­
guage. To do this, every message and softkey label was put 
into a single table, thus eliminating the possibility of over­
looking a message during the translation process. The idea 
of a single table, as opposed to strings scattered throughout 
ROM space, appealed to us for financial reasons also. To 
expedite release of the product, the HP-18C's operating 
system was initially stored in two 32K-byte ROM chips. It 
was highly desirable to be able to accomplish localization 

Fig. 1. The HP-18C Business 
Consultant is HP's latest handheld 
calculator deSigned for business 
and financial applications. It fea­
tures several built-in applications 
accessed by a menu-driven user 
interface, an equation solver, alge­
briac entry of formulas without the 
need for programming, and an in­
frared transmitter for sending data 
to an optional printer. 
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by replacing only one of these two chips. By ensuring that 
the message table did not cross a chip boundary, we were 
able to meet this goal. So far, the Business Consultant has 
been localized in German, French, Italian, and Spanish. 

Softkey Menus 
Many people in our target market disliked keyboards 

cluttered with labels. We did not want to sacrifice function­
ality to address this concern, so instead we added more 
keys, both physical and virtual. The physical keys were 
added by providing a second keyboard, using a clamshell 
package design. The virtual keys were added by incorporat­
ing a menu-driven interface, using six softkeys that are 
positioned directly beneath the display. There are no labels 
on these six keys. Instead, their functionality is indicated 
by the labels shown directly above them. For example, to 
get to the percent change application, the user presses the 
softkey labeled BUS (Fig. 2a), which brings up a choice of 
four menus: %CHG, %TOTL, MU%C, and MU%P. Pressing the 
softkey labeled %CHG puts the user into the percent change 
menu. 

The Business Consultant is Hewlett-Packard's first 
menu-driven calculator. The menu scheme was not free-it 
came at a cost of approximately 5% of the ROM space. A 
menu table and corresponding menu handler had to be 
constructed to handle the changing execution address and 
ASCII string bound to each softkey, and to deal with the 
idiosyncrasies of each menu. 

People are emphatic about wanting a calculator that they 
can learn to use by merely pressing the keys. They want 
an operating environment that is intuitive and consistent. 
So, the Business Consultant provides help messages to 
guide the user through the various applications, and within 
any application, the same interface produces answers 
quickly and simply. This generalized interface succeeds in 
providing one consistent method for solving problems 
throughout the machine. It is the same as the top-row-key 
interface (Fig. 3) used to solve time-value-of-money prob­
lems on the HP-38C and HP-12C. On these earlier HP finan­
cial calculators, the n, i, PV, PMT, and FV keys provided a 
great "what-if?" tool for time-value-of-money problems 
such as loans, savings, and leasing. To store a value into 
the number-of-periods register, the user keys in the desired 
value and presses the n key. After storing values into four 

II I I IN! \lr~\1 f~f\lD \F~R 

_n_. _, _ J:J£. eM1i iti. £!:!§. ..L.. 

Fig. 3. Top-row-key interface for solving time-value-of-money 
problems on HP-12C Calculator. On the HP-18C, the top-row­
key interface has become a more generalized softkey struc­
ture where the key labels are displayed on the bottom of the 
display above the keys. 
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of the five variables, the user simply presses the key corre­
sponding to the unknown variable to solve for its value. 
In this fashion, any variable can be derived after values are 
assigned to the other four variables. 

Through the use of the six softkeys positioned directly 
beneath the HP-18C's display, the Business Consultant user 
can bring up various built-in application menus that make 
use of the same top-row-key interface. When a given appli­
cation is in effect, its variable names come up in the display 
directly above the associated softkeys. We call this general­
ized top-row-key interface the Solve interface. Built-in ap­
plications that use the Solve interface are listed in Table 
I, along with their associated softkey labels. 

Table I 

HP·18C Applications Using Solve Interface 

Application 

Time value of money: 
interest rate conversions: 
Percent change: 
Percent of total: 
Markup as percent of cost: 
Markup as percent of price: 
Days between two dates: 

Softkey Labels 

N I%YR PV PMT FV 
NOM% EFF% P 
OLD NEW %CH 
TOTAL PART %T 
COST PRICE M%C 
COST PRICE M%P 
DATE1 DATE2 DAYS 

Using this standardized interface, functions that tradi­
tionally have been confusing to use on previous calculators 
become extremely intuitive. Two such functions are per­
cent change and percent of total. To determine what percent­
age 17.5 is of 67, press BUS and then press %TOTL. The 
display shown in Fig. 4a appears. Then, pressing keys 6 7 

TOTAL 17.5 PART % T results in the display shown in Fig. 4b. 
As can be seen from Fig. 4b, the Solve interface has been 

further enhanced by adding the labeling of values. When 
a value is stored in a variable, a confirmation consisting 

Fig.4. Use of the HP-18C's softkey user interface. (a) % TOTL 
menu of BUS application. (b) Answer to determining what 
percentage of 67 a value of 17.5 is. 



Cash Flow Analysis Using the HP-18C 

An investor has an opportunity to purchase a piece of property 
for $100,000. Yearly cash flows are anticipated as indicated in 
Table I, and the investor expects to be able to sell the property 
for $120,000 in 10 years. The investor would like an 11.5% return. 

Table I 

Year Cash Flow Year Cash Flow 
1 $15,000 6 $10,000 
2 12,000 7 9,500 
3 12,000 8 9,500 
4 12,000 9 9,500 
5 10,000 10 120,000 

Press the FIN soft key on the HP-18C to access its financial 
application menu and then press the CFLO softkey to select cash 
flow analysis. Then press keys 1 00000 +/- INPUT. The screen 
shown in Fig. 1 a appears, prompting for the first flow in the series. 
A prompt is also given for the number of times a particular flow 
occurs, simplifying grouped flow entry. 

Pressing keys 1 5 0 0 0 INPUT gives the display shown in Fig. 

1 b. Note that the ~ symbol has migrated down to the TIMES 
prompt. Note also the 1.00 in the calculator line. This value is put 
in the calculator line whenever a flow is entered, so that if a flow 
occurs once, only the INPUT key must be pressed to enter the 
number of occurrences. This feature was added so that the inter­
face for simple cash flow problems wouldn't pay a penalty for 
the ease of use introduced for grouped cash flow problems. 

Pressing INPUT causes the screen shown in Fig. 1 c to appear. 
To finish entering the data, press: 

1 2 0 0 0 INPUT 3 INPUT 

1 0 0 0 0 INPUT 2 INPUT 

9 5 0 0 INPUT 3 INPUT 

1 2 0 0 0 0 INPUT INPUT 

To calculate net present value and internal rate of return, press 
the soft key labeled CALC. The screen shown in Fig. 1 d appears. 
To input the desired rate of return, press 1 1 .5 1%. To get the 
net present value, press NPV and the HP-18C displays NPV = 

2,914.83. To calculate the internal rate of return, press IRR%, ob­
taining a displayed result of IRR% = 12.01. 

Fig. 1. HP-18C displays for cash flow analysis example. (a) Prompt display for first cash flow 
entry. (b) After first entry of 15,000 is input, the display prompts for the number of times entry 
occurs. A value of 1.00 is displayed as a default value. (c) Pressing the INPUT key prompts for 
the next entry. (d) After completing the cash flow entries, pressing the CALC softkey gives this 
display. Entering the desired interest value and pressing the 1% key then allows calculation of 

the net present value, net uniform series, or net future value. 

of the variable name and its value is shown in the display. 
In the percent change application, pressing 1 0 OLD 1 5 

NEW %CH results in the display shown in Fig. 5. Whenever 
a variable is recalled, stored, or solved for, a confirmation 
is given. The Business Consultant maintains a history stack 
of the last four such confirmations given. Up to three can 
be viewed at a time; the fourth is easily accessed via the 
scrolling keys i and t. The idea of labeling results is 
special to the Business Consultan-t. 

Data entry for cash flow analysis, running total, and statis­
tics is simplified by conceptualizing this data as number 

lists. The user is prompted for each item in the list. Using 
the scroll keys, the user can move up and down through 
the list for reviewing or editing, and with a single keystroke, 
items in the list can be inserted or deleted. Because the 
list can be named, several lists can exist in memory at a 
time (the exact number is limited only by available mem­
ory). The example in the box above illustrates the simplicity 
with which data can be entered for cash flow analysis. 
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The Equation Solver Menu in the HP-18C 

The user programming language of the HP-18C Business Con­
sultant is equations. The user types in an equation using variable 
names of the user's choice, traditional algebraic operators, and 
any of the HP-18C's built-in set of advanced mathematical func­
tions and conditional expressions. Several equations can be en­
tered in the HP-18C, the number limited only by available mem­
ory. A name can be typed at the beginning of each equation to 
identify it for future recall. An equation is selected from the stored 
list by moving a display pointer up and down the list of equations. 
When the pointer points to the desired equation, pressing the 
CALC menu key causes the HP-18C to interpret the equation and 
bring up the variable names as soft key labels at the bottom of 
the HP-18C's display. The associated softkeys, or menu keys, 
below the display are used to store and calculate solutions using 
the relationships in the equation. The user enters values for all 
but one of the variables and the HP-18C solves for the unknown 
variable. 

The programming characteristics of the equation solver are 
enhanced by 26 advanced functions and conditional expressions 
that can be used in formulating an equation. While trigonometric 
functions are not provided, natural and base-10 logarithms, fac­
torial, absolute value, minimum, maximum, pi, integer part, frac­
tional part, rounding and truncation, modulo, sign, and square 
root are available. Another six functions specific to finance 
mathematics are available as are date and delta-days functions. 

As a simple example, consider a formula that expresses the 
economics of performing a tune-up on an automobile engine: 

COST x MPGSEFORE x MPGAFTER -i- (MPGAFTER - MPGSEFORE) 

-i- PRICE GAS = SEMILES 

The equation includes five variables: cost of the tune-up, miles 
per gallon before and after the tune-up, price per gallon of 
gasoline, and break-even miles-the number of miles at which 
the cost of the tune-up is recovered by the benefit of the reduced 
gasoline consumption. 

A user "programs" the HP-18C to solve the above equation 
by pressing the SOLVE menu key, typing in the equation (Fig., 
1 a), and then pressing the CALC menu key. When the CALC menu 
key is pressed, the keys are customized to the above equation. 
The variable-width character font for the soft key labels allows up 
to five characters of the variable name to show as a label. In this 
case, the labels are COST, MPGS, MPGA, PRICE, and SEMI (Fig. 
1 b). However, when a variable name appears as a result in the 
other lines of the display, the complete variable name is dis­
played. 

Solving this problem parallels that for solving problems using 
the built-in functions of the machine. A solution can be calculated 
for each of the variables in the equation, given values for the 
other variables. A quick example using the tune-up formula is to 
key in 28 and press the softkey labeled MPGS, key in 33 and 
press softkey MPGA, key in 0.839 and press PRICE, and key in 
15000 and press SEMI. Then press COST to solve the equation 
and see displayed COST=68.10, (Fig. 1c), the cost of a tune-up 
that would pay for itself by improved gasoline mileage for 15,000 
miles. If the tune-up cost is $85, key it in, press COST, and then 
press SEMI to see displayed SEMILES= 18,722.29, the number of 
miles that must be driven to break even on a tune-up costing 
$85 and improving mileage from 28 to 33 miles per gallon. 

Other equations can be typed in just as easily. Each additional 
formula is added to the formula list in continuous memory. You 
can see and select each formula by using the scroll-up and 
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scroll-down keys i and ~. The RAM in the HP-18C is sufficient 
to store about ten equations of the length and number of variables 
illustrated by the tune-up example above. 

Direct Solution 
The advantage of the HP-18C's equation solver as a program­

ming language is evident-one equation with n variables does 
the work of n traditional programs written to solve for a single 
variable as a function of the n -1 other variables. The equation 
solver solves directly for any variable that meets all of the following 
conditions: 
J, Appears only once in the equation 
" Does not appear as an exponent 

Involves only the operators for addition, subtraction, multiplica­
tion, division, and exponentiation 
The only functions, if any, in which the variable appears are 
seven specifically identified functions such as logarithm, in­
verse logarithm, and square root. 

These conditions are met for COST, PRICEGAS, and SEMILES in 
the example above. 

Iterative Solution 
The variables MPGSEFORE and MSGAFTER in the example do 

not meet the above conditions for direct solution. The solution 

Fig. 1. Displays during solution of tune-up cost study. (a) 
Entry of tune-up cost equation. (b) Pressing CALC key assigns 
labels to softkeys as shown. (c) Break-even cost for 15,000 
miles with mileage improved from 28 to 33 mpg. 



for either of these variables in the equation solver uses an iterative 
search process. The process systematically varies the value of 
the subject variable until the value of the left side of the equation 
equals the value of the right side of the equation. While this 
search is taking place, the value used for each iteration is dis­
played to give the user a sense of the progress toward a solution. 
The user can start a search using one or two estimates of the 
solution; otherwise, default values are used. 

Because the iterative solution is numerical rather than analytic, 
and because an arbitrary variable in an arbitrary equation may 
have one solution, more than one, or no solution, the HP-18C 
Business Consultant Owner's Manual describes some anomalies 
that the user might encounter, as well as procedures for learning 

SOLVE Application 
We were told that most users of financial and business 

calculators do not want to be bothered with programming 
in the traditional sense. But at the same time, there was 
no consensus by any focus panel as to desired functions. 
Clearly some form of customization was called for, but not 
in the guise of programming. The SOLVE application ad­
dresses this need. It incorporates the same unknown-vari­
able solution concept that was generalized for the built-in 
applications, but extends it a step farther. The user types 
in an equation that describes a particular problem. Several 
variables can be used (the number is limited only by avail­
able memory), and each variable name can have up to 10 
characters. At the press of a key, the equation is interpreted, 
and the variable names are extracted and used to label the 
softkeys. Here, as elsewhere in the machine, when variable 
names are assigned to the softkeys, the same Solve interface 
is in effect. The user keys in values for all but one of the 
variables, then presses the key corresponding to the un­
known variable to solve for it. This ability to enter equations 
and then solve for different variables is known as the Equ­
ation Solver, a feature new to handheld calculators. (See 
box on page 8 for more details and an example of the use 
of the Equation Solver.) 

Of all the decisions made by the design team regarding 
the user interface, the one that was by far the most difficult 
(as well as the most controversial) was the one that made 
the HP-18C operation algebraic, rather than RPN. But, a 
thorough survey told us that an algebraic HP financial cal­
culator would appeal to new users, and algebraic notation 
is consistent with the Equation Solver interface. 

Print Option 
We repeatedly heard that a printer would be a welcome 

pe.ripheral for our businesslfinancial calculators. So, avail­
able as an option is the HP 82240A Infrared Printer that 
receives data from the Business Consultant via an infrared 
beam, thus eliminating the need for wires between cal­
culator and printer. All variables and data associated with 
a particular application can be printed out, whether it be 
an amortization schedule or the variable values associated 
with a user-input equation. In TRACE mode, every keystroke 
is printed to provide a complete record of what the user 
has done. 

values that might indicate minimum, maximum, or undefined 
points in the equation. 

Conventions 
There are a few conventions that the user must learn to type 

in general algebraic equations. For example, there are no implied 
operators (Z = 3Y must be typed Z = 3xY), and there are no 
subscripts or superscripts (Y cubed must be typed Y/\3). 

RPL 

Paul Swadener 
Development Engineer 

Handheld Computer and Calculator Operation 

The Business Consultant is one of the first HP calculators 
(the HP-28C being the other) that has a major portion of 
its operating system written in a high-levellanguage-RPL. 
This assisted us in reaching our ease-of-use goal. It allowed 
us to prototype user interface changes quickly in response 
to focus panel feedback and to test the newly implemented 
modifications. Ironically, programming in a high-level lan­
guage also provided us with one of our major implementa­
tion challenges-minimizing response time. In many cases, 
this meant careful review of RPL code to see where the 
code could be optimized. In critical areas it meant rewriting 
some sections in assembly code. 

Throughout the design of the Business Consultant, we 
were confronted with the delicate balance between ad­
vanced functionality and ease of use. We devised ways to 
provide the functionality without sacrificing the product's 
short learning curve. Some of the techniques we use to 
accomplish this are displaying numerous help messages, 
asking for confirmation when attempts are made to clear 
significant amounts of data, using the top-row-key interface 
and history stack throughout the machine's many applica­
tions, and providing an easy mechanism for entering and 
modifying data. 

Acknowledgments 
I would like to acknowledge the rest of the software 

development team. Stan Blascow wrote all the math 
routines, with the exception of the solver, Pam Raby was 
responsible for the time application, Bruce Stephens de­
veloped the low-level code that interfaces directly to the 
hardware, such as the display driver, printer, and self-test 
software, Paul McClellan wrote the numeric solver, and 
Charlie Patton, Bob Miller, Gabe Eisenstein, and Laurence 

Fig. 5. Answer to percent change problem given in text. 

AUGUST 1987 HEWLETI-PACKARO JOURNAL 9 



History and Inspiration of the Solve Interface 

The equation solver concept and interface for the HP-18C and 
HP-28C Calculators were developed one evening after midnight 
in an effort to avoid the boredom of debugging the HP-71 Hand­
held Computer's Circuit Analysis Pac. 

I was attempting to solve an equation by hand to determine 
whether the results of the Pac were correct. After three attempts 
and three different results with the same equation, I decided 
another approach was needed. Using the HP-71 and its Math 
Pac, I wrote a small function to represent the equation and solved 
for the equation's roots using the FNROOT function. At first, this 
seemed to be as difficult as using the pencil-and-paper ap­
proach. The variable in question needed to be isolated and 
pointed at, and the function needed to be in a specific form. 
Although I had used this feature before, it was necessary to read 
the manual again to remember how to do it. But once the function 
was completed, the roots were found quickly. 

Once the mechanics were understood, it seemed simple to 
repeat the process with other equations. While experimenting 
with this structure, it became clear that the ability to select any 
variable easily would be very useful. Then the same equation 
could be solved readily for any of its variables. 

Paul Swadener implemented a version that would accomplish 
this on several HP calculators. The variable was usually selected 
by specifying a number corresponding to the occurrence of the 
variable as it mapped to a register in an RPN program that 
represented the equation. He also accomplished this in the 
BASIC language by using subscripted arrays in place of the 
simple variables of the equations. The interface allowed a number 
to specify the required subscript. 

What seemed to be missing at this point was an intuitive inter­
face that could be used easily without burdening the user with 
the mechanics or strict requirements of the operating system. 
This interface should allow the user to enter any equation and 
solve for any unknown within that equation without requiring a 
manual each time the interface was used. It should support any 
additional operation that would contribute to using the results 
obtained from the equation. The interface should also reassure 
the user that the appropriate keys had been pressed and that 
the specified answer had been obtained. Finally, the require­
ments of a friendly equation solver interface became apparent: 
I1ll It should be possible to assign values easily and independently 

to all of the variables of an equation or formula. 
"" It must be possible to select any variable as the unknown to 

be determined. 
'" The keystrokes required to perform these operations should 

be minimal in number, and intuitive to the lay person. 
'" Output should be clearly labeled to confirm the solutions. 

Grodd developed the RPL kernel. Paul Swadener was our 
financial consultant, Chris Bunsen pioneered the SOLVE 

user interface with his early prototype (see box above), 
Anne Ellendman was our patient manual writer, and Shar­
on Bolden was our quality assurance person with a seem­
ingly endless supply of energy. 

Reference 
1. S.L. Wechsler, "A New Handheld Computer for Technical Pro­
fessionals," Hewlett-Packard Journal, Vol. 35, no. 7, July 1984. 
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III The equation should not require any special processing by 
the user before it is typed in. 
Pondering these factors, I saw the similarities between the 

requirements of general equation solving and the HP-12C's time­
value-of-money keys. The HP-12C uses an efficient interface that 
supports the assignment and/or select'lon of any variable with 
the fewest keystrokes possible. The only problems were that it 
only worked for the variables that were printed on the keys and 
the results were not labeled. Could this interface be applied to 
any equation? The solution is to use a row of keys for the physical 
interface and let them be used for all equations. The display 
above them can be used to label the keys in a manner similar 
to the softkey approach used on many terminals and computers. 
This requires either a multiple-line display or a very long single­
line display, since the display must also show the values as they 
are input or output. 

The last missing piece was how to enter equations in the form 
required for the root-finding program. The easiest solution for 
the user would be simply to allow an equation to be entered in 
any form whether or not an equals sign is present. 

When all of these ideas were combined and labels were added 
to the output, I was surprised at how easy the interface was to 
use. As different equations were tried, certain additional en­
hancements became desirable. Occasionally it was helpful to 
be able to use the value of a variable from one equation as a 
variable in another. To accomplish this, ali variables are allowed 
to be global. Thus, a variable maintains its value from one equ­
ation to another unless it is recalculated or reassigned. At this 
point, the ability to scroll up and down a list of equations was 
added. This made it possible to solve for a variable, press one 
key, and be in a different equation with the value for that variable 
already assigned. 

Once a working model of this interface was complete, simply 
showing its use to someone was enough to generate excitement 
and support, from both marketing and the lab. Here was an 
interface that could help write programs for us, and clear up 
some of the keyboard clutter that comes from many functions 
on a few keys. By using at least two display lines, we could make 
available many formulas or equation solutions without requiring 
more keys. The softkeys could also be used for more traditional 
menus, supporting the functions already found on our calculators 
and computers, reducing keyboard clutter even further, and im­
proving some of our more traditional user interfaces. 

Chris M. Bunsen 
Development Engineer 

Handheld Computer and Calculator Operation 
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An Evolutionary RPN Calculator for 
Technical Professionals 
Symbolic algebraic entry, an indefinite operation stack size, 
and a variety of data types are some of the advancements 
in HP's latest scientific calculator. 

by William C. Wickes 

HE HP-28C (Fig. 1) provides the most extensive 
mathematical capabilities ever available in a hand­
held calculator. Its built-in feature set exceeds even 

the capabilities of the earlier HP-71B Handheld Computerl 
with its Math ROM.2 Furthermore, the HP-28C introduces 
a new dimension in calculator math operations-symbolic 
algebra and calculus. A user can perform many real and 
complex number calculations with purely symbolic quan­
tities, delaying numerical evaluation indefinitely. This al­
lows a user to formulate a problem, work through to a 
solution, and study the mathematical properties of the so­
lution entirely on the calculator. 

The HP-28C has the following features: 
An RPN calculator interface allowing an indefinite 
number of stack levels and a variety of data types 
A softkey menu system for key-per-function execution 
of all built-in and user-defined procedures and data 
Extensive real and complex number functions 

iii Symbolic algebra and calculus 
!iIII An automated numerical root-finder (see article on page 

30. 
Ii!l Vector and matrix math operations 
fa Automatic plotting of functions and statistical data 
iii Unit conversions among arbitrary combinations of 120 

built-in units and user-defined units 
II Integer base arithmetic, bit manipulations, and logic op­

erations in either binary, octal, decimal, or hexadecimal 
notation 

li!I A keystroke-capture programming language enhanced 
by high-level program control structures 

Il!l An infrared printer interface for printing and graphics 
output on the optional HP 82240A Infrared Printer. 
The HP-28C's physical package differs from that of the 

HP-18C Business Consultant (see page 4) in only two as­
pects. The HP-28C uses different key nomenclature op­
timized for its math operations, and it contains an addi-

Fig. 1. The HP 28C Scientific Pro­
fessional Calculator features sym­
bolic entry of algebraic expres­
sions for an extensive range of 
functions capable of handling real 
and complex numbers, vectors 
and matrices, base 2, 8, 10, and 
16 integers, lists, and built-in con­
version factors. The display can 
display up to four lines of the indef­
inite-depth stack or be used to plot 
functions with a resolution of 
32 x 137 pixels. An integral in­
frared transmitter allows output of 
data and graphs to an optional 
printer. 
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tional 64K bytes of ROM, for a total of 128K bytes. 
The design philosophy for the HP-28C was to generalize 

the ease of use, power, and flexibility of HP's RPN cal­
culator interface to a wider class of data types and applica­
tions while also eliminating some of the shortcomings of 
that interface. In the remainder of this article, we describe 
some of the features of the HP-28C in the context of the 
evolution of the RPN interface. 

Enhanced RPN 
Reverse Polish notation (RPN) , in which mathematical 

expressions are written with functions following their argu­
ments, is embodied in computers and calculators by means 
of a last-in-first-out (LIFO) data stack. Mathematical and 
logical functions take their arguments (inputs) from the top 
of the stack, and return their results to the stack where 
they can be used as the arguments for subsequent opera­
tions. An RPN stack is the most efficient medium for chain­
ing and nesting calculations, and provides the greatest 
keystroke efficiency in a calculator. 

The original HP RPN calculator user interface was first 
used in the HP-35 Calculator3 in 1972. In that and sub­
sequent HP calculators, the stack consisted of four fixed­
length registers, each of which could contain one floating­
point number (the HP-41C Calculator4 also permits al­
phanumeric data in the form of a character string con­
strained to fit in a fixed-length number register). This sys­
tem was satisfactory for the numeric-only capability of the 
early calculators, but with the advent of programmability 
and algorithms for more complicated data types, the restric­
tions of the fixed stack became more and more of a design 
impediment. For example, in the HP-41C and HP-15C5 Cal­
culators, complex numbers are represented by two real 
floating-point numbers, one for the real part and one for 
the imaginary part. Two stack registers are needed for each 
complex number, which means that a four-register stack 
can hold only two complex numbers, severely restricting 
the types of complex-number math operations that can be 
performed on the stack. For example, the complex-number 
expression (A + BHC + D) cannot be evaluated without stor­
ing an intermediate result away from the stack. 

The HP-28C is the first HP calculator to modify the tra­
ditional RPN interface. To begin with, the concept of a 
stack register is generalized to a stack level that can hold 
an object of indeterminate size. An object can be one of 
several types of data or procedures, each characterized by 
its internal structure and execution logic. Any object can 
be manipulated on the stack as a single unit. For example, 
a complex number is represented by an ordered pair of 
floating-point numbers that is entered and displayed in the 
form (number, number). Since a complex-number object 
now occupies a single stack level, it can be manipulated 
with the same keystrokes used for a real-number object. 
For example, complex numbers in the first two stack levels 
can be added by pressing the + key, multiplied by pressing 
the x key, etc. 

Besides real and complex numbers, HP-28C data objects 
include real and complex-valued arrays (matrices and vec­
tors), alphanumeric strings, binary integers, and lists. Bi­
nary integers are binary coded integers of 1-to-64-bit words 
which can be entered or displayed in binary, octal, decimal, 
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or hexadecimal bases. Lists are ordered collections of other 
objects. Data objects are characterized by the simple prop­
erty that the evaluation of the object just returns the same 
object. 

The generalized stack concept permits the introduction 
of object classes that have no counterpart in previous RPN 
implementations. A name object, for example, is a character 
sequence that is used to identify other objects by name. In 
the HP-28C, the numbered storage registers on earlier cal­
culators are replaced by variables. A variable is a combina­
tion of a name object and any other object stored together 
in a linked list independent of the stack. Name objects have 
the property that evaluation of the name returns the object 
stored with the named variable (and if the object is a pro­
gram, executes the program). This means that a user variable 
behaves exactly like a built-in command. (In HP-28C ter­
minology, a command is a built-in, programmable operation.) 

A name for which no variable has yet been created fills 
the role of a formal variable in mathematics, upon which 
operations can be performed, even before evaluation. Such 
names just return themselves when evaluated. This prop­
erty is central to the implementation of symbolic mathema­
tics on the HP-28C. 

Evaluation by name and the linked list of variables are 
modeled after a Forth dictionary. Built-in commands are 
compiled as their execution addresses, as in Forth. How­
ever, user-defined names are compiled unresolved. This 
permits compilation of undefined (formal) variables, and 
also allows selective purging of variables from memory, 
neither of which is possible in Forth. There is a degradation 
of performance compared to Forth because of the necessity 
for run-time resolution of user variables, but the overall 
throughput for user problem solving is usually better be­
cause of the ease of programming and flexibility of the 
HP-28C language. 

The remaining new object class defined in the HP-28C 
is procedure objects. A procedure object contains an arbi­
trary number of other objects that are executed automati­
cally and sequentially when the procedure object itself is 
evaluated. The procedure class includes programs, which 
are unrestricted sequences of data, commands, or variables, 
and algebraic objects, which represent mathematical ex­
pressions and equations and therefore must satisfy certain 
syntax rules. Both procedure object types can be manipu­
lated on the stack, or named in a variable. In previous 
calculators, programs were created and edited only in a 
special program mode. 

Variable Stack Depth 
In another major break with earlier calculator architec­

tures, the HP-28C stack grows dynamically as new objects 
are entered onto the stack and shrinks as they are removed. 
The number of objects on the stack is limited only by avail­
able memory. There are two major benefits of this approach. 
First, mathematical calculations of arbitrary complexity 
can be carried out entirely on the stack. Second, it facilitates 
structured programming-procedures can be defined exter­
nally in terms of the number and type of arguments they 
take from the stack and the number and type of result 
objects they return. Subroutines can be nested to an arbi­
trary depth without concern for stack overflow. 



Example Problem 

A farmer has 100 yards of fencing to enclose a rectangular 
field, which is bounded on one side by a river. What length L 
and width W of the field will enclose the maximum area? 

Solution using HP-28C: 

1. The length of the fence is 100, i.e., L + 2W = 100. Enter 
equation using keystrokes: . L + 2 x W = 1 00 ENTER 

2. Solve for L, i.e., 100-2W, by pressing' L SOLV ISOL. 

3. Assign this value to L by pressing' L STO. 

4. The area of the field is LW, i.e., LW = AREA. Press' L x W 

= ARE A ENTER. 

5. Substitute for L, i.e., (1 00-2W)W = AREA, by pressing EVAL. 

6. To find the maximum area, differentiate by pressing' W ENTER 

d/dx, obtaining the expression ~(2'W)+(100~2'W)=0. 
7. Collect terms, i.e., 1 00-4*W = 0, by pressing ALGEBRA 

COLCT. 

8. Solve for W by pressing' W SOLV ISOL. 

9. Assign this value, i.e., 25, to Wand solve for L by pressing 
, W STO L EVAL. This gives a result of 50. 

Answer: The width of the field should be 25 yards, and the length 
50 yards. The entire problem can be formulated and solved in 
the HP-28C without recourse to pencil and paper. 

The use of an indefinite stack size as the central user 
interface is again reminiscent of Forth. The names of vari­
ous stack manipulation commands-DUP, SWAP, ROLL, 
PICK, etc,-were adapted from Forth. However, the HP-28C 
adds a dimension of user protection derived from its cal­
culator heritage. It is not possible to cause memory loss 
by, for example, pushing too many objects onto the stack 
as most Forth programmers have experienced. The HP-28C 
has an elaborate low-memory handler that prevents such 
drastic results. 

The memory stack is a stack of 5-nibble object pointers, 
not the objects themselves. The objects are stored either in 
a temporary object area or in user variable memory. Thus, 
when an object on the stack is duplicated, only the pointer 
is duplicated. But when the stack is decompiled, the objects 
are shown, not the pointers, so that the stack has the visible 
and logical behavior of a stack of the actual objects. The 
existence and management of the object pointers is entirely 
transparent to the user. 

Command Line 
In keeping with its theme of uniform treatment of all 

object types, the HP-28C provides a free-form command 
line in place of the multiple entry modes of its predecessors. 
For example, in the HP-41C the user enters floating-point 
numbers directly into the stack's X register, alpha data into 
an alpha register in alpha mode, and programs into program 
memory via program mode. In the HP-28C, all new objects 
are typed as character strings into the command line, which 
is created dynamically when a number or letter key is pressed. 
The contents of the command line can be edited with cur­
sor, backspace, delete, and insert keys. The unrestricted 
size of the command line allows the entry of more than 
one object on one line, as well as calculator commands 

that are specified by name. 
Different object types are identified within the command 

line by characteristic delimiter characters. For example, 
strings are enclosed in double quotes, variable names and' 
algebraic expressions are surrounded by single quotes, and 
lists are enclosed in curly brackets. These delimiters are 
also used when objects are displayed on the stack. 

The centerpiece of RPN keyboards has always been the 
ENTER key. On previous calculators the ENTER operation 
terminates digit entry, copies the contents of the X register 
into the Y register, and then disables stack lift. On the 
HP-28C, the concept of stack lift disable has been elimi­
nated (with an indefinite-depth stack, it serves no purpose 
and would only add confusion), and the role of the ENTER 

key has been generalized to mean "parse and evaluate the 
command line." 

Context-Sensitive Keys 
The use of a command line entry method on a calculator 

that provides immediate key-per-function execution re­
quires a dynamically configured keyboard that is sensitive 
to the current content of the command line. For example, 
the primary definition of the + key is to add the contents 
of stack levels one and two, and normally, the addition is 
performed immediately when the key is pressed. To pre­
serve keystroke similarity with previous RPN calculators, 
+ should act on the most recently entered arguments, 
whether or not they have been moved from the command 
line to the stack. On the other hand, if the user is entering 
an algebraic expression or a program, pressing the + key 
should just append the plus sign to the command line. 
There is a large group of such context-sensitive keys, in­
cluding virtually all programmable command keys. The 
remaining keys either execute immediately, like ENTER, or 
add characters and numbers to the command line, like the 
letter and digit keys. 

The action of context-sensitive keys is determined by 
three entry modes: 
Il!i In immediate mode, the default state, context-sensitive 

keys execute immediately. Where appropriate, most keys 
automatically perform ENTER before executing their own 
definitions. Thus the standard RPN sequence to add 3 
and 6 of 3 ENTER 6 + is preserved-pressing the + key 
enters 6 onto the stack and then executes the addition. 

iii In algebraic entry mode, keys corresponding to com­
mands such as +, SIN, and LN that are legal in algebraic 
expressions append their function names to the com­
mand line. All other commands execute immediately. 
These include, for example, stack operations that are 
outside of the scope of ordinary algebraic expressions. 

iii! In alpha entry mode, all context-sensitive keys append 
their labels to the command line. 

The active entry mode is indicated by the shape of the 
command line cursor. An open rectangle indicates im­
mediate mode, a rectangle with two horizontal lines inside 
shows algebraic mode, and a filled rectangle means alpha 
mode. Similar arrow shapes are used when command line 
entry is insertion mode rather than replacement mode. 

The choice of entry mode depends most often on the 
type of object being entered into the command line. The 
HP-28C automatically changes entry mode when certain 
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delimiter keys are pressed. Pressing the' key signifies the 
beginning of an algebraic object, which automatically 
changes the entry mode from immediate to algebraic entry. 
Similarly, pressing the" key (strings) or the « key (pro­
grams) sets alpha entry mode. These automatic changes 
mean that most of the time, the user does not have to be 
concerned about the mode. 

Visible Stack 
The visible appearance of the stack is considerably differ­

ent from previous calculators, beyond the simple consider­
ation that the four-line display can show up to four stack 
levels simultaneously. A typical display might look like 
Fig. 2. Here we see that there is a 2X2 matrix in levell, a 
complex number in level 2, and an algebraic expression in 
level 3. Note that each object occupies only one stack level, 
even though each is composed of several parts. The nota­
tion 1:, 2:, 3:, etc., was adopted to name the stack levels, 
because there was no logical extension of the traditional 
X, Y, Z, T sequence used for the earlier four-register stack 
to an indefinite number of stack levels. 

A major design challenge was solving the problem of 
how to handle the partial decompilation of objects for view­
ing. In many cases, an object is too big to display on a 
single line, or even in the entire display. Therefore, it was 
necessary to devise a scheme to permit scrolling the display 
up or down through such an object. At the same time, the 
limited RAM of the HP-28C makes it preferable not to de­
compile an entire object into a character string form, since 
there might not be enough memory available to hold a long 
display string in addition to the object itself. 

This problem is most severe in the case of algebraic ex­
pressions. The internal RPN order of the objects that define 
an expression is not the same as the order of the terms in 
the decompiled form. The first object in the written form 
of an algebraic expression may well be the last object in 
the RPN execution order of the expression. The solution 
is to generate a compact binary code to represent the display 
order of the objects in an algebraic expression, including 
the positions of parentheses and other special characters. 
This code is preserved as long as any portion of the alge­
braic expression is displayed. Pointers into the code indi­
cate the currently displayed portion and which portions 
to display next if the user moves the display window. 

Symbolic Mathematics 
The first electronic calculators were characterized by 

their ability to apply a fixed set of operations to data 
supplied by the user in the form of real numbers. Program­
mable calculators provided a new generation of capability 
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Fig. 2. Typical HP-28C display with a 2 x 2 matrix in level 1, 
a complex number in level 2, and an algebraic expression in 
level 3. 
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by allowing users to add their own custom operations to 
the built-in function set. The HP-28C represents a third 
generation of calculator design with its capability of apply­
ing logical and mathematical operations to programs. 

A conventional program can be considered as a symbolic 
calculation. That is, the program is written in advance of 
the data to which it is to be applied, and refers to that data 
only by name or other form of abstraction. However, cal­
culator languages share the common limitation that they 
cannot manipulate the programs themselves or their sym­
bolic results in their unevaluated form. This includes non­
keystroke languages like BASIC, which accept expressions 
in a pseudomathematical form. 

The HP-28C provides two symbolic object types: name 
and algebraic. In this context, name objects can be consid­
ered as expressions consisting of only a single variable. 
Algebraic objects are just procedures that are entered and 
dec om piled in expression form. They are identical inter­
nally to RPN procedures (called programs, for simplicity), 
except that they are marked as algebraic objects. They are 
restricted in their definition to satisfy so-called algebraic 
syntax-they must take no arguments from the stack, return 
exactly one result, and be completely divisible into a hierar­
chy of subexpressions, each of which also satisfies algebraic 
syntax. 

The key to performing symbolic math operations on the 
HP-28C is the behavior of commands corresponding to 
mathematical functions, which accept symbolic argu­
ments. Such a function examines its arguments, and if one 
or more is symbolic, returns a new symbolic object repre­
senting the function applied to the symbolic argument. For 
example, if 'A' and '8' are on the stack, pressing the + key 
returns the result 'A + 8'. Then pressing keys 2 and 1\ returns 
'(A+8) 1\2'. 

When an algebraic object is evaluated by pressing the 
EVAL key, it behaves exactly like the equivalent program­
each object in the algebraic object is evaluated in an RPN 
sequence. Consider the evaluation of the algebraic object 
'(A+ 8)*C', where A is has the value 2, B has the value X + Y, 

and C has no value. The expression is equivalent to the 
program key sequence A B + C x. When the EVAL key is 
pressed: 
1. A is evaluated, returning its value 2. 
2. B is evaluated, pushing its value X + Y onto the stack, 
which now looks as shown in Fig. 3a. 
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Fig. 3. (a) Display after 8 is evaluated (see text). (b) Display 
after C is evaluated, returning just its name. 



HP-28C Plotting 
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The HP-28C includes a simple plotting capability for the gen­
eration of mathematical function plots and statistical data scatter 
plots. Although the size and resolution of the liquid-crystal display 
severely limit the detail and elegance of the graphics, such plots 
can be extremely useful in providing a global picture of the be­
havior of a function or a set of statistical data. In particular, a 
plot is almost indispensable for finding initial guesses for the 
HP-28C's equation solver, and for sorting out the ambiguities of 
multiple roots. 

As an example, consider the equation: 

This equation has three roots, of which at least one is real. If we 
plot the expression on the left, using the default plot parameters, 
we obtain the display shown in Fig. 1 a. From this picture, we 
can observe that there are three real roots, which correspond to 
the points where the plotted curve crosses the axis. To zoom in 
on the region containing the roots, we can execute .3 oW, which 
multiplies the horizontal range by 0.3, then plot again (Fig. 1 b). 

To determine a precise value for any of the roots, we: 
Digitize two points from the plot at selected values of the 
horizontal coordinate on both sides of the root 

2. Exit the plot and combine the two digitized coordinates into 
a list 

3. Activate the equation solver and store the list into the variable 
X as a first guess for the root-finder. 

4. Solve for X. 
Digitizing is achieved by means of a cursor superimposed on 

the plot The cursor can be moved with the cursor menu keys. 
In Fig. 1, the cursor is invisible because it coincides with the 
axes at the origin. We move the cursor up off the X-axis to make 
it more visible and over just to the left of the middle root by using 
the. and ~ keys (see Fig. 2a). Pressing the INS key digitizes 
the cursor location by returning its coordinates to the stack as 
an ordered pair (x,y). Now we move the cursor to the right of the 
intersection as shown in Fig. 2b and digitize a second point 
Pressing the ON key exits the plot so that the two point coordinates 
are shown on the stack (Fig. 3a). 

Combine the two points into a list by executing -.LlST. Then 
activate the equation solver by pressingt SOLV SOLVR. The result­
ing display is shown in Fig. 3b. 

Finally, press the menu key x to store the list as a first guess, 
then shifted X to solve for the 12-digit root = .337301614083 (Fig. 
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Fig. 2. (a) Digitizing point just to left of middle root of plotted 
equation. (b) Digitizing point just to right of middle root. 

-: .. __ I • 

.-, • .''-, I:' '. 

.::. • I.. • .:_, • __ I } 

1: ( . 42, .5) 
1.1 i ~-:I I itt! (-:1 I ~ N. ~: II a N CR'. ~: I,] ~ a I,] ita ~. 

(a) 

.-, . .:: .. 

.-, . 
,c,. 

1 •• .- ,., -::' I:' ", ". ' .• ,_, ~ • ,J .. ( . 42, .5) 
-.~: -1~!ie.iifW 

(c) 

.-, .-, ""':' .-, '-11 .:: 1 4 '-1'-' .-, . .:, ':' ( .::' ".:. '-' "':' ':'.::' 
IM!ie-.~iinfW-

Fig. 3. (a) Digitized points from Fig. 2. (b) Combining POints 
in (a) into a list. (c) Solution for middle root of equation using 
list of paints from (b). 

3c). The message Zero indicates that the expression evaluates 
to machine zero at that point 

Other HP-28C plotting features include: 
!Ill Autoscaling for statistical data plots 
III Turning on specified pixels 
\Ii! Printing display images on the optional HP 82240A Infrared 

Printer. 

Gabe L. Eisenstein 
Development Engineer 

Handheld Calculator and Computer Operation 
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(continued from page 14) 

3. + examines its arguments, finds that one is symbolic, 
and so returns the symbolic sum 2 + (X + Y). 
4. C is evaluated. Since it is a formal variable, it just returns 
its name as shown in Fig. 3b. 
5. Finally, * returns the symbolic result (2 + (X + Y))*C. 

In addition to mathematical functions that can be in­
cluded within algebraic expressions, the HP-28C provides 
a host of operations that are not representable as functions, 
but can be applied to algebraic objects. These operations 
include expansion, collecting terms, subexpression sub­
stitution, symbolic variable isolation, and an expression 
editor that permits rearranging an expression according to 
standard rules of algebra. See the box on page 13 for an 
example of the formulation and solution of a problem in­
volving algebra and calculus on the HP-28C. 

This application of RPN principles to algebraic expres­
sions reflects the conviction that algebra, perhaps even 
more than numerical calculation, is an interactive, postfix 
process where a user decides how to proceed with a calcu­
lation according to step-by-step, intermediate results as the 
calculation develops. An important aspect of the approach 
is that the HP-28C is the first calculator to offer a smooth 
integration of RPN and algebraic interfaces. A user can 
enter an entire calculation in expression form, as the user 
might using BASIC, or where appropriate, the calculation 
can be broken into subexpressions for partial eval uation, 
with the intermediate results conveniently held on the RPN 
stack. 

Type Dispatching 
The inspection of arguments described above for alge­

braic functions is an illustration of the more general type 
of checking and dispatching steps common to most HP-28C 
operations. Every HP-28C command has the following 
structure: 

chec!carguments, type_and_dispatch. dispatch_list 

The chec!carguments process determines if the appropriate 
number of arguments are present, and issues the "Too Few 
Arguments" error if not. Note that this error condition is 
not possible on previous RPN calculators. in which the 
four stack levels are never empty. The chec!carguments pro­
cess also saves copies of the arguments for possible retrieval 
by the LAST command. 

The type_and_dispatch process returns a code representing 
the type and position of the arguments and then inspects 
the dispatch list until it finds a matching code. Adjacent 
to each argument code in the dispatch list is a pointer to 
the executable program code for the command corre­
sponding to the argument combination. If a match is found. 
execution branches accordingly. If the dispatch list is 
exhausted without a match, the "Bad Argument Type" 
error is returned. 

The type-and-dispatch command structure has some use­
ful side benefits: 
III The USE option, available when the CATALOG operation 

is active, inspects the dispatch list to create a stack-use 
table to guide a user in the correct use of a command. 
This provides an important help facility at very little 
cost in ROM use. 
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ill The type_and_dispatch word is different for commands that 
are legal in algebraic objects and those that are not. In 
algebraic entry mode, it is only necessary to check this 
word to determine whether to execute a command or add 
its name to the command line. Similarly, the chec!cargu­
ments word indicates whether to append an opening paren­
thesis to an algebraic command name as a typing aid. 
In addition to the type and dispatch encoding, algebraic 

functions also include pointers to the code for their corres­
ponding derivative and inverse functions. 

Recovery Features 
The LASTX feature on RPN calculators, which returns the 

contents of the X register before the most-recent X-register 
operation, serves a dual purpose. First, it provides a means 
of recovering from an incorrect operation-thus pressing 
LASTX - LASTX restores the stack to its state preceding an 
inadvertent press of the + key. Second, it permits repeated 
use of the same argument-pressing SIN LASTX COS + com­
putes sin x + cos x. Both of these features are present in 
the HP-28C, but they have been separated and extended 
into more powerful operations. 

The error recovery feature has evolved into the HP-28C's 
UNDO operation. When ENTER is executed by pressing the 
ENTER key or any other key that does an automatic ENTER, 
a copy of the current stack (object pointers) is saved in a 
temporary environment. After the command line is 
evaluated, the effects of the evaluation on the stack can be 
canceled by pressing the UNDO key, which replaces the 
new stack with the saved version. 

All HP-28C commands that use stack arguments save 
copies of those arguments that can be retrieved by the LAST 
command. LAST pushes the recovered arguments onto the 
stack like its LASTX predecessor, but returns all (up to three 
-no command uses more) of the arguments, not just the 
one returned by LASTX. 

These recovery features, together with the four-level 
command stack that saves the most recent command stack 
entries, can consume a significant amount of RAM in certain 
circumstances. Each of the three features can be disabled by 
the user when more RAM is required for an operation. 

Development Methodology 
The HP-28C firmware was developed in a year by a small 

team using the RPL operating system and language (see the 
article on page 21). The use of a highly structured language 
was necessary for the implementation of symbolic mathe­
matics, but also yielded a significant increase in productiv­
ity compared with previous products, which were coded 
entirely in assembly language. A RAM-based prototype HP-
28C was available only three months after beginning the 
project, which made possible significant design changes 
based upon customer testing of the prototype. Thus, the 
emphasis throughout the project was on rapid prototyping 
of features followed by design modifications based on ac­
tual keyboard use, rather than detailed advance specifica­
tions. 
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Mechanical Design of the HP-18C and 
HP-28C Handheld Calculators 
by Judith A. Layman and Mark A. Smith 

HE HP-18C AND HP-28C represent a new mechani­
cal design for HP handheld calculators. These prod­
ucts use a vertical clam-shell format with a simpli-

fied keyboard in a coat-pocket-size package. Using the pro­
ductivity advantages provided by the use of CAD/CAM 
(computer-aided design and manufacturing) tools, the 
package was designed for manufacturability and then 
thoroughly tested for reliability to ensure quality perfor­
mance for the customer. 

Layout 
The HP-18C/28C package was the first product at HP's 

Corvallis site to be designed principally on a CAD/CAM 
system. This system improved communication between de­
sign engineers and manufacturing engineering C-:uring the 
initial layout phase of the product. It also simplified check­
ing tolerances and provided the expedient automatic trans­
fer of information to the tooling shop for plastic part molds. 
CAD allowed easy analysis of the design such as package 
cross sections and the graphical simulation of case rotation 
(Fig. 1). 

Case Design 
The continual design challenge for handheld calculator 

products is providing more functionality in smaller pack­
ages. Many components in the HP-18C and HP-28C are 
integrated to provide more than one function (Fig. 2). This 
minimizes volume in the product and also decreases the 
part count for production assembly. For example, the bot­
tom cases not only provide the cosmetic and protective 

shell, but also support the flexible keyboard assembly. In 
addition, the case half that houses the alphabetic keys is 
made to deflect slightly to create a latch which holds the 
product closed. 

Heatstaking is a proven manufacturing process for pro­
viding uniform keyboard support. Using this in combina­
tion with the case assembly eliminates the need for screws. 
This process was easily automated because it is controlla­
ble, requires fewer parts that are easily presented to the 
tooling, and results in a sturdier product. The industrial 
design team chose to give the outside of the HP-18C and 
HP-28C a clean appearance by keeping the package simple 
and free of overlays. Because of this, reverse ejection is 
used to move the molding gate remnant from the cavity 
(outside) to the core (inside) side of the part. Contrary to 
convention, heatstaking is done from the top side of the 
keyboard. The existing keyboard overlay is used to cover 
the heatstake rivet heads in addition to providing the sec­
ondary function labels. The choice of polycarbonate as a 
case material helps ensure that the product will survive a 
one-meter drop on all six sides. 

Dense Packaging 
A hybrid printed circuit board (see article on page 25) 

is used because the high pin count of the two display driver 
ICs did not allow them to be packaged in the conventional 
manner for a surface-mounted device. Because of the high 
cost of the polyimide substrate material used for hybrid 
circuits, the board size was kept as small as possible. In 
all, five lCs, twelve discrete surface-mounted devices, and 
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four discrete leaded devices are contained on this board. 
The hybrid portion on one side of the board includes two 
display driver chips and the CPU chip with 263 wire bonds. 
The chips are surrounded by a molded plastic dike and 
encapsulated in epoxy. On the other side of the board, all 
the surface-mounted devices, including two 44-pin quad 
packs, are loaded by robots and then vapor phase soldered. 
The four discrete leaded devices that cannot be vapor phase 
soldered have their leads preformed in a fixture and then 
are loaded by hand. One of these leaded devices is an 
infrared light-emitting diode (LED) used to transmit data 
to a detached optional printer via an infrared link. In addi­
tion to the components, the hybrid circuit board has contact 
pads for 21 key lines, a beeper, battery springs, and 178 
lines to the liquid-crystal display (LCD). 

LCD Interconnection 
The liquid-crystal display is a four-line, 23-character dot­

matrix display with seven status annunciators. The 178 
pads for connecting the circuit board to the LCD have a 
pitch of 0.032 inch and are laid out in two rows along the 
edges of the hybrid circuit board. The connection between 
the LCD and the hybrid board uses two elastomeric (zebra) 
connectors. To establish and maintain proper registration 
between the hybrid board and the LCD pads, the position 
of the LCD pads is determined optically. The LCD is then 
secured in a stainless-steel display clip using double-sided 
pressure-sensitive adhesive tape. The display clip is then 
positioned into the hybrid board using a hole that has been 
precisely punched with an accuracy of ±0.002 inch relative 
to the display pads. This assembly is then tested and 
crimped. 

Fig. 1. CAD drawing of a longitudinal cross section of the closed package (top) and a plot 
(bottom) of opened case half rotated in several positions. 
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Although this basic display assembly concept has been 
used successfully in two earlier calculator product lines, 
a few improvements were made in the HP-18C Business 
Consultant. The first is the inclusion of a relief in the dis­
play clip along the edges of the LCD to eliminate stress 
concentration on the display glass. This allows the product 
to be dropped from a height of one meter onto all six faces 
with no functional damage. The second improvement is 
that the legs of the display clip are flared to allow a lead-in 
for easy assembly. The precisely punched hole not only 
establishes proper registration of the LCD to the hybrid 
board pads during assembly, but also ensures that the LCD 
will not shift after assembly. 

Hinge Link 
A compound hinge is used to connect the two halves of 

the HP-18C/28C case because it allows the product to be 
used in different positions throughout its 360 degrees of 
rotation (Fig. 1). By allowing full rotation, this also prevents 
a situation where the product might be highly stressed if 
dropped. Several methods of fastening the two hinge halves 
were investigated. These included gluing, ultrasonic weld­
ing, heatstaking, and fastening with screws. Even though 
it requires more complex plastic tooling, a snap-fit design 

Flex Circuit 

Hinge Half 

is used because it offers the most repeatable, simplified 
process for assembly. 

The hinge pins on which the link rotates perform several 
functions. They are conically tapered to provide axial se1£-' 
centering of the hinge piece in each case half. The tip of 
the hinge pin is designed to preload against the inside of 
the hinge link. This creates frictional dtag which provides 
a high-quality feel to the product as it is rotated. The fragile 
tip is supported by the main body of the hinge pin which 
carries any high-stress loads. The hinge pins are open on 
the top for inserting the interconnect portion of the 
keyboard into the case halves. 

Keyboard and Flex Interconnect 
The technology used for the integrated keyboard and 

flexible interconnect is conductive silver ink screened onto 
a polyester film substrate. This design allows a single sub­
strate and screening to be used for both keyboards and the 
flexible interconnect, thus improving the reliability of the 
system. Twelve key lines run through the 0.140-inch in­
side-diameter hinge link between the two keyboard halves. 
Because of the trace width limitations of the screened silver 
ink process, a complex folded design was implemented to 
run four layers of the substrate through the hinge link with 

Hybrid Circuit 

1M" --~ .ltt11 _._. .}-" .. 

• • • 
• • 

• • 
• • • 

Flexible Membrane 
Keyboard 

Keyboard Protection 
Layer 

Fig. 2. Exploded view of parts in HP-28C. The HP-18C is the same except for different key 
colors and labels and one less ROM on the hybrid circuit. 
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each layer carrying three lines (see Fig. 3). Inside the link, 
the four layers run along one hinge axis, cross over to the 
other hinge axis, and return while being supported at both 
ends of each parallel segment. 

The torsional stress is induced in a controlled fashion. 
Controlling the motion of the flexible circuit minimizes 
locations of stress concentration. As the product is rotated 
through its full range, the four flexible layers are twisted 
in torsion. Torsion was chosen over bending because it is 
less damaging to the conductive ink. The reliability of this 
design was verified by cycling each leg of the flex circuit 
through 180 degrees for two million cycles without a failure. 

The two keyboards that are an integral part of this flex 
circuit use the same screened conductive ink for the 
keypads and circuit matrix. The keyboard technology is 
typical of that used for membrane keyboards. After the 
silver ink is cured, a second screening operation deposits 
a carbon/graphite layer over the silver ink traces. This pro­
tects the exposed key line connections to the hybrid circuit 
against silver migration. The carbon screening process also 
allowed the ready incorporation of 21 resistors for ESD 
(electrostatic discharge) protection. In one pass, a resistor 
is created in each key line by using the screened carbon 
to bridge a controlled gap in the silver traces. A pressure 

Fig. 3. Double exposure photograph showing shape of flex 
circuit and its location within the hinge assembly. 
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connection is made between the carbon on the key lines 
and the gold pads on the hybrid circuit board using two 
low-compression-set urethane foam pads. 

Tactile feel for the 72 keys is provided by two separate 
dome sheets of formed polyester. A spacer layer supports 
the domes while also providing a vent at pressure extremes 
and whenever a dome is actuated. These layers are all 
attached to create a single part for ease of product assembly. 
The keyboard assembly was tested to half a million key 
cycles with no electrical failures and minimal degradation 
in tactile feel. Life testing was done at both ambient temper­
ature and under environmental conditions of high temper­
ature and humidity. Several iterations of key design and 
testing were required to achieve the life and tactile feel 
desired. 

ESO Protection 
ESD testing has consistently been a challenge in trying 

to release products to production on schedule. The testing 
typically cannot be performed until late in the project be­
cause the completed product is required. Fixes that are a 
result of ESD testing, therefore, do not have time to be 
integrated into the product properly. With this in mind, 
special consideration was given to ESD protection early in 
the design of the HP-18C and HP-28C. A prototype model 
was built using a similar existing chip set on a prototype 
hybrid circuit. Results of this testing were incorporated in 
the final circuit design. Additional testing revealed a 
localized ESD susceptibility. As a result, an aluminum 
shield is incorporated in the back side of the keyboard 
assembly. This shield provides an alternate path for electri­
cal discharge with lower impedance and higher capaci­
tance to ground. Hence, the HP-18C and HP-28C can sur­
vive a 25-kV discharge with no permanent damage. This 
is a significant achievement for a handheld portable prod­
uct with no external ground. 

Conclusion 
The attention given to manufacturability in the initial 

phases of development was worth the effort. The HP-18C 
Business Consultant was a fast-track project requiring 18 
months to develop. Even so, it made a smooth transition 
from the lab to production. It was up to mature volumes 
and yields after only four months in production. 

The mechanical design of the HP-28C leveraged the work 
done on the HP-18C. It required only the addition of one 
ROM to the hybrid circuit and different overlays and key 
nomenclature. 
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Symbolic Computation for Handheld 
Calculators 
by Charles M. Patton 

CALCULATOR OR COMPUTER operating system 
is primarily a set of conventions for memory organi­
zation, data structures, and resource allocation 

combined with a set of software tools to aid in performing 
operations in accordance with those conventions. In con­
trast, an application is software built using the resources 
and conventions of the operating system. 

In software development cycles for previous HP cal­
culators the overall scope of the project was small enough 
that it did not make sense to segregate code into operating 
system and applications, or even to formalize many of the 
conventions developed during the course of the project. 
However, we have passed the point at which it makes sense 
to create such disposable code for each new machine. 
Paradoxically, this has come about through our attempts 
to make calculators simpler, rather than more complicated. 
Simpler, of course, means simpler to humans, and what is 
simple and seemingly natural to humans is anything but 
simple and natural from the point of view of the machine 
(and vice versa). 

In 1984 we began the design of an operating system to 
meet the needs of future calculators and handheld comput­
ers. 

Design Goals 
The design goals for the system were strongly influenced 

by the orientation of various research and development 
projects under way at the time. The goals included: 
IIil Supporting symbolic mathematics operations in a hand­

held computing environment 
III Allowing for maximal trade-off of ROM space for RAM 

space 
11 Providing a compact, extensible system able to support 

a variety of handheld computation systems 
III Providing a rapid prototyping environment for calculator 

development 
a Paving the way for future expert-system capabilities. 
In the remainder of this article, I will try to explain what 
these goals entail, how the design team attempted to ad­
dress them in the RPL operating system, and something of 
how the features are used in the HP-28C. 

Design 
The characteristic that most clearly differentiates a sym­

bolic math system from numerical systems is the ability to 
use an expression (or more generally, a program) as both 
a procedure to run and as data to manipulate. An example 
that illustrates this requirement is the derivative operator. 
Suppose you were to implement the derivative operator 
on your programmable calcula-tor so that you could take 
the derivative of a program. You would need to find some 
way to have the program passed to the derivative program 

unevaluated, since if it were evaluated all you would get 
as a result would be a number. Your derivative program 
would need to take the argument program apart, compute 
the derivative, and reassemble the result into a new pro­
gram. 

In the process of investigating the feasibility of imple­
menting symbolic math operations on a calculator, the de­
sign team examined a variety of operating systems, includ­
ing BASIC, Forth, and Lisp. While any of these systems 
can be made to support the capabilities necessary for sym­
bolic math, it is Lisp that most fully integrates them into 
the structure of the system. On the other hand, the efficient 
memory management scheme of Forth, along with its RPN 
style consistent with previous HP calculators, made it a 
serious contender as well. The ultimate result is a combi­
nation of features from both Lisp and Forth that we call 
the ROM-based procedural language, or RPL. 
RPL and Lisp. Features RPL has in common with Lisp 
include: 
I!lI The notions of atomic and composite objects and mech­

anisms to create and dissect composite objects 
IlI1 Strict call-by-reference protocol 
l1li The quote operation, whereby an unevaluated object can 

be passed as an argument 
i!II Temporary (or lambda) variables useful in defining func­

tions 
III A temporary object area and a garbage collection scheme 

for reclaiming memory from this area. 
RPL and Forth. Features RPL has in common with Forth 
include: 
l1li Reverse Polish notation (RPN) 
III Arguments passed to operators on an unlimited stack 
l1li Full complement of stack-manipulation operations 
il1I Threaded execution. 

However, RPL differs from both Lisp and Forth in a 
number of significant respects. These differences are direct 
responses to the challenges posed by a handheld computing 
environment. While great strides have been made in in­
creasing the amounts of random access memory available 
in handheld calculators at a reasonable price, RAM is still 
a relatively scarce commodity. Similarly, while the execu­
tion speed of central processing units at a given power 
consumption has increased dramatically, so have the over­
all power requirements for calculators. Consequently, cal­
culator CPUs are often run at a leisurely pace compared to 
their rated speed. These two facts have had an especially 
significant impact on the design of RPL. 

In RPL the fundamental data structure is an object. An 
RPL object is similar in design to a Forth word, and consists 
of the address of the executable code that determines the 
type of the object (the prolog), and the data that makes up 
the body of the object (Fig. 1). 
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Objects can be classified as either atomic or composite. 
The data part, or body, of a composite object consists of a 
sequence of objects and/or addresses of objects terminated 
with a special end marker (Fig. 2). Any other structure is 
classified as atomic. 

This composite object structure is quite different from 
its Lisp and Forth analogs. In Lisp, a composite object is 
a binary tree of addresses corresponding to the address of 
the first object and the address of the rest. In RPL, the 
address of both the first object and the rest are computable 
from the address of the object, but they are not explicitly 
part of the object. This implicit addressing tends to decrease 
RAM use when objects don't stay in RAM very long, as is 
the case for a limited RAM system. 

The Forth structure most analogous to the RPL composite 
is that of a secondary. The key difference is that in RPL a 
pointer to an object or a copy of the object itself can be 
included in a composite with operationally identical re­
sults. This embedding capability allows RPL to use address 
referencing when the addressed object is not likely to move 
(or be removed) and copy referencing otherwise. One con­
sequence of this structure is that object addresses within 
composite objects can reference objects within other com­
posite objects (Fig. 3). This capability also allows for more­
sophisticated memory compaction schemes. 

Object Types 
Seventeen object types are currently defined for the RPL 

system although object types can be added and removed 
from the system in a relatively straightforward manner. We 
can break down the atomic objects further into classes de­
pending on certain characteristics of their prologs. The 
classes are identifier class, data class, and procedure class. 
Identifier Class Objects. There are three object types in the 
identifier class: ordinary identifier, temporary identifier, 
and ROM pointer. An ordinary identifier is a self-executing 
variable name. When an ordinary identifier is executed, it 
searches through the user's variable area for the value 
bound to the variable name, and executes the bound object. 

A temporary identifier is similar to an ordinary identifier, 
except that when executed, it searches through a stack of 
temporary environments for its bindings and returns the 
bound object without evaluating it. 

A ROM pointer is used in place of the address of an 
object when the referenced object is in a plug-in ROM 
which can move, or be removed from the system. When a 
ROM pointer is executed, it executes the object it refer­
ences. 
Data Class Objects. Data class objects have the property 
that when executed, they merely return themselves. These 
objects include: 

Lower Addresses 

Address of Prolog 

Higher Addresses 

Fig. 1. Structure of an RPL object. 
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Lower Addresses 

Address of Prolog 

End Marker 

Higher Addresses 

Fig. 2. Structure of a composite object. 

Standard and extended-precision floating-point real and 
complex numbers 
Sequences of characters and sequences of hexadecimal 
digits 
Unsigned short binary integers 

'1lI Arrays and linked arrays of objects of uniform type. 
An unusual data class object supported by RPL is the 

RAMIROM pair. A RAMIROM pair is essentially a pair of 
name-object association lists, one of which resides in built­
in or plug-in ROM, and the other of which resides in RAM. 
It embodies the idea of an extensible ROM-based vocabu­
lary with subvocabularies and context switching. 
Procedure Class Objects. Procedure class objects actually 

Address of Prolog 

End Marker 

Address of Prolog 

End Marker 

Fig. 3. An address within a composite may reference an 
object within another composite. 



do something when they are executed. There is only one 
type of atomic procedure class object, and that is the 
machine-code object. The body of a machine-code object 
contains a sequence of instructions, interpretable by the 
native CPU of the system, which are executed when the 
object is executed. 
Composite Objects. There are three composite object types: 
the list, which is data class, the program, which is proce­
dure class, and the algebraic expression, which is also data 
class. The three types have a very similar internal structure, 
with a program body being a refinement of a list body, and 
an algebraic expression body being a refinement of a pro­
gram body. 

Supporting Symbolic Math 
Systems that support symbolic mathematical capabilities 

are often classified by the amount of translation done in 
converting from a user's typed input to the internally de­
fined data structures. A system is deemed to be radical if 
the translation is extensive and conservative if little trans­
lation is done. In these terms, the HP-28C is very conserva­
tive. The most significant translation done is converting 
the user's input from algebraic to reverse Polish notation. 
The decision to follow this approach was motivated by a 
variety of factors. 

One motivation for conservative translation was to 
maximize the perceived responsiveness of the system. In 
a highly interactive system with the range of processing 
speed available in a handheld environment, data entry and 
translation can occupy a large fraction of the overall pro­
cessing time. A simple translation minimizes this operating 
overhead. 

Compact representation was a second motivation. Stan­
dard mathematical notation has evolved over the centuries 
toward a very compact encoding of the information relevant 
to the problem at hand. Our theory is that if a user types 
in an expression in a certain form, that form is likely to 
reflect important aspects of the problem the user has in 
mind. Those aspects are likely to become hidden in any 
radical translation of the form of the expression. 

Another motivation was pedagogical. The HP-28C is de­
signed to be a teaching tool as well as a problem solver. 
We wanted to provide operations that resemble pencil-and­
paper operations so that the user can follow and/or choose 
each step of the operation. To allow this, the internal struc­
ture of an expression must correspond closely to the dis­
played form of an expression, and hence to the form that 
the user types in. 

A final motivation was the uniformity of structure af­
forded by minimal translation. The internal structure of an 
expression is the same as that of a program. Thus, no special 
evaluation mechanism is needed to run an algebraic expres­
sion. 

Pattern Matching 
Pattern matching is another technique commonly used 

in symbolic math systems. A variety of pattern matching 
tools are used at a variety of levels in the HP-28C. The 
lowest-level pattern matching tool is type dispatching, 
wherein the data types of a set of objects on the stack are 
matched against a set of templates and the resulting match 

determines the operation to be applied in this case. This 
structure can be observed in the HP-28C's CATALOG opera­
tion. Each function includes a type-dispatching segment 
and the CATALOG operation examines the templates in­
cluded in the function to generate the various possibilities 
shown by pressing the USE softkey in the CATALOG menu. 

At the highest level, an expression-structure pattern 
matcher compares an expression with a set of templates. 
The resulting match determines the operation to be per­
formed. 

Between these two pattern levels are a number of more­
specialized pattern matching utilities which are especially 
useful in the standard evaluation and simplification al­
gorithms. Although these pattern matching utilities are 
each quite narrow in scope, the uniform RPN structure of 
expressions and programs, the ability to use programs and 
expressions either as executable procedures or data, and 
the ability to dissect and construct programs on the fly, 
enable quite general pattern matching operations to be con­
structed easily. 

Symbolic operations are typically defined recursively, 
that is, the result of applying an operation to an argument 
is defined in terms of the result(s) of applying the operation 
to simpler argument(s). In this way, the operation need 
only be given for the simplest cases, together with a method 
for reducing a more-complicated case to simpler cases. This 
definition method is natural for symbolic operations and 
makes programming the operation simpler and less error­
prone. 

The RPL operating system is designed to support recur­
sion in an efficient and flexible form. Efficiency is achieved 
through the uniform use of the stack for passing arguments 
to operations, the implementation of indirect execution 
instructions in the central processing unit, and other 
methods of minimizing the operating overhead inherent in 
function calls. 

Flexibility is achieved by the automatic management of 
temporary variable environments, and a full complement 
of control structures that can help minimize the unneces­
sary buildup of operating overhead. In the HP-28C it is a 
fairly common occurrence, for example, for a program to 
create another program and then pass execution control to 
the newly created program (which itself may create a new 
program), all at the same execution depth. While this is 
not the usual case for recursion, it does illustrate the kind 
of flexibility available in the RPL system. 

Trade-Off: ROM for RAM 
In designing the RPL operating system, we decided to 

try to make use of the ROM available in a way that would 
allow us to get more use out of the limited RAM in the 
system. The idea is that if an answer exists in ROM, then 
it only needs to be referenced in RAM, and in effect it takes 
up very little room. While this seems like a straightforward 
technique, it was the determining factor in many of the 
design decisions encountered in implementing RPL. Some 
examples are the call-by-reference protocol, smart object 
creation, and embedded objects. 

The standard RPL functions take their arguments from 
the data stack and return their results to the data stack. 
The data stack, however, is not a stack of objects, but rather 
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a stack of pointers to objects, that is, memory addresses of 
objects. Thus every function is passed the addresses of its 
arguments and it returns the address of its result. It is 
crucial to the operation of the system that the objects ad­
dressed on the stack be allowed to reside anywhere in the 
system-in built-in ROM, in a movable ROM, embedded 
as part of the value of some user's variable, or within the 
temporary object area. The arguments themselves are not 
altered by the operation of the function (indeed, they can't 
be if they reside in ROM), but this is not necessary since 
all that is required is that the function return the address 
of the result, which again can reside anywhere in the sys­
tem. This protocol is put to good use in the HP-28C where 
a sizable number of frequently used objects, including one­
letter variable names, are included in ROM. Furthermore, 
functions that return results equivalent to one of these ob­
jects do not create another copy in RAM but merely point 
to the existing copy. 

The composite-object creation and dissection operations 
also play an important role in RAM-saving aspects of the 
RPL system. Since any object can occur within a composite 
object either as an embedded object (the whole object 
copied in) or as an object pointer (only the address of the 
object is copied in). with functionally equivalent results, 
the composite object creation operation can choose to han­
dle objects residing in different areas of memory differently. 
If an object resides in ROM, only the address of the object 
is copied into the composite object. However, if the object 
resides in the temporary object area, the whole object is 
copied in, making it unnecessary to change the address 
within the composite object when the object is moved in 
memory. Other areas of memory with varying degrees of 
mobility are handled according to the needs of the system. 

When a composite object is dissected, it is never neces­
sary to copy any part of it. For example, if an object was 
embedded in some composite object in ROM, it is never 
copied to RAM, even if the original composite object is 
pulled apart. 

To get the maximum use out of ROM, it is sometimes 
necessary to be able to copy objects from ROM to RAM 
and have these copies act in the same way. With one excep­
tion, the currently defined object types operate the same 
in RAM and ROM. The exception is the RAMIROM pair, 
which by definition has a RAM component in which a 
user's variable values can be stored. Even so, a RAMIROM 
pair can be converted to a ROM-like structure (a so-called 
ROMP ART) which can itself then be referenced in a RAM/ 
ROM pair. 

Supporting a Variety of Calculators 
RPL provides scaffolding for the construction of a system, 

as well as a basis for operation. The complete version has 
considerably more structure and functionality than was 
used in developing either the HP-18C or the HP-28C, al­
though the subsets used in these two machines are rather 
different. There are explicit points at which the system can 
be either contracted or expanded and still maintain logical 
coherence and system integrity. This allows RPL to be used 
in a variety of situations. 
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Rapid Prototyping 
Taken together, the stack method for passing parameters, 

the call-by-reference protocol, and the possibility of embed­
ding arbitrary objects within procedures tends to result in 
very modular code. This modularity contributes to both 
the possibility of reusing code and the rapid generation of 
new code. Even when a programmer needs to perform 
nonstandard operations that require machine code, the sim­
ple interface with the stack, together with a complete set 
of memory management utilities, mean that a programmer 
can make full use of the central processing unit for the 
problem at hand. Since this eliminates resource allocation 
conflicts, the code is easier to write, test, and reuse. 

A typical version of an RPL system is composed of a 
number of parts, each part relating to some facet of the 
structure. These include: 

Prologs: defining the execution behavior of each data 
type 
Memory management: resource allocation in the tempo­
rary object area, memory movement, address updating, 
and garbage collection 

~ RAM/ROM pair management: identifier resolution, vari­
able store, recall, purge, RaMPART manipulation, and 
context manipulation 
Predicate, logic, and address arithmetic: equality, order­
ing, NOT, AND, and OR operations, addition, etc. 

'@ Object creation and dissection: head, tail, nth-element, 
concatenation, composition, decomposition, length, etc. 

,!Ii Data stack manipulation: stack depth, duplicate, swap, 
etc. 

OIl Data type conversions: character to integer, integer to 
character, etc. 

m Control structures: quote, evaluate, runstream manipula­
tion, loops, and temporary variable binding 

>1! Array manipulation: creating, redimensioning, access­
ing, and changing elements 

\IIi Configuration: chip-level configuration, ROMP ART con­
figuration, and polling 
Exceptions: error trapping, error generation, and error 
handling tools 
Interface management: key and menu map manipulation, 
and edit buffer manipulation 

!l! Parser tools: token parsing and parser-generator tools. 
While the operations provided by the bare RPL system 

are quite elementary, they are sufficiently generic and sup­
ported by enough structure to make it easy to get a prototype 
of a new system going in a short time. Once the design of 
a prototype is ironed out in a standard RPL implementation, 
it can be optimized further by implementing new data 
structures and/or translating critical RPL procedure objects 
to more-specialized machine-code equivalents. 

Summary 
RPL is an operating system designed to support a variety 

of applications in a handheld environment. It shares a 
number of features with both Forth and Lisp systems, but 
has a number of features that allow it to operate in systems 
with quite limited RAM. The key design aspects include: 
;l!I The universality of structured objects 
1l!l Implicit "tail" pointers in composite objects 
Ill! Functional equivalence of addressed or embedded ob-



jects within composite objects 
II!! Strict call-by-reference protocol 
iii Uniform parameter passing on an unlimited data stack 
II Automatic temporary variable management 
iii! Quoting operation to allow procedures to be passed as 

data 
lIil Full complement of RPN-style control structures. 

While we do not expect the RPL operating system to be 
used outside of HP's Handheld Calculator and Computer 

Operation, we feel that it provides a firm foundation for 
advances in software technology for handheld computing 
environments. 
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A Multichip Hybrid Printed Circuit Board 
for Advanced Handheld Calculators 
by Bruce R. Hauge, Robert E. Dunlap, Cornelis D. Hoekstra, Chong Num Kwee, and Paul R. Van Loan 

HEN WE BEGAN the search for an IC packaging 
and interconnect system for HP's new series of 
calculators, the design challenges were formid­

able. Chief among them was achieving an effective com­
promise among increased circuit density, reduced package 
volume, greater reliability, and lower cost. Ultimately, our 
decision was to proceed with a hybrid printed circuit board. 
No other packaging technology could meet the combined 
requirements of high pin count, low package profile, en­
vironmental stability, and low cost. 

The use of hybrid printed circuits is not new for HP. 
Beginning with development of the HP-41C Calculator 
nearly ten years ago, the technology has been designed into 
many of our handheld products. This evolution has led to 
the hybrid printed circuit board used in the HP-18C and 
HP-28C Calculators. 

The advantages of hybrid printed circuit boards are: 
!!i High density. The use of high VO count chips (>100 

pads) with less than 25% of the area required by compar­
able discrete packages, multichip and multicomponent 
applications, and linewidth and spacing geometries of 
0.005 inch. 

!II Design flexibility. A double-sided board allows flexible 
adaptation to layout requirements. Artwork changes are 
inexpensive and rapid, selective gold plating for 
wirebond areas can be used, and finished via hole diam­
eters can be as small as 0.0115 inch. 

ilI!i Solderability. Components can be added using a wide vari­
ety of surface mount or lead insertion solder processes. 

r1!i High reliability. For example, customer line scrap on the 
latest HP-41C hybrid circuits is less than 700 ppm per 
IC, and the field failure rate is negligible. 

ill! Rapid design turnaround. Artwork changes can be done 
in five weeks, and assembly prototyping can be done in 
one to two weeks. 

iii! Low cost. The cost of a hybrid printed circuit compares 

favorably on a per-pin basis with all other medium-to­
high pin-count package types. 

Features 
The two-sided hybrid printed circuit board used in the 

HP-18C and HP-28C Calculators measures approximately 
three inches by 1.5 inches (not including the tab for the 
infrared LED, see Fig. 1). The top side of the board (the 
side that mates with the liquid-crystal display of the cal­
culators) bears three custom ICs, two display drivers, and 
a microprocessor, which are epoxy die attached to the board 
and connected by a total of 263 gold wire bonds to gold­
plated pads. The three ICs are encapsulated by an epoxy 
layer retained by a dike structure. The reverse side of the 
board bears two custom ROM chips in plastic quadpacks 
and nine passive surface-mounted components. In addi­
tion, four through-hole components are attached, including 
an LED for wireless infrared transmission of data to an 
accessory printer. The finished hybrid circuit with 18 com­
ponents constitutes virtually the entire electrical system 
of the calculator. 

Technology 
In its basic form, a hybrid printed circuit consists of one 

or more chips that are attached to a printed circuit board, 
wire-bonded, and then encapsulated to provide mechanical 
and environmental protection. The early plug-in video 
game cartridges, primarily designed to be inexpensive, con­
tained a chip mounted on a single-sided board. These 
boards required no gold plating except for their edge con­
nector, used aluminum wire bonding, and were encapsu­
lated with a glob of epoxy over the IC. Because of their low 
cost and minimal environmental requirements, it was more 
cost-effective simply to replace defective cartridges, rather 
than develop a more reliable assembly. The hybrid process 
described here incorporates several improvements over 
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these "jelly bean" types of hybrid circuits. 

Printed Circuit Board. A high-temperature laminate, either 

polyimide or a modified polyimide is used. This allows 

the use of high-speed gold thermosonic bonding and pro­

vides an additional margin for high-temperature applica­

tions. 
Nickel/Gold Plating. The etched copper traces are confor-
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mally plated with a diffusion layer of nickel. Then high­

purity, soft gold is conformally plated over the nickel. The 

conformal plating reduces the possibility of exposed cop­

per, which could lead to dendritic growth between adjacent 

traces. The nickel also provides a hard underlying surface 

for wire bonding. The gold plating provides an oxide-free 

surface for gold wire bonding and protection in harsh and 

Fig. 1. Front (top) and back (bot­

tom) sides of hybrid printed circuit 

board. Precisely punched rectan­

gular hole is located at upper left 

in top view and upper right in bot­

tom view. 



moist environments. 
Die Attach. A high-purity, silver-filled epoxy is used to 
attach the ICs to the board. This provides good thermal 
and electrical conductivity to the die-attach pad. 
Wire Bonding. Thermosonic (a combination oftemperature 
and ultrasonic energy) wire bonding is used to connect the 
IC pads to the board traces. The use of gold wire with a 
diameter of 0.00125 inch and an average pull strength of 
15 grams provides extra margin at temperature extremes. 
Encapsulation. A low-ionic-content epoxy is used to en­
capsulate the ICs and their bond wires. Entrapped air is 
minimized by pre curing the boards in a vacuum oven. The 
thermal coefficient of expansion and the cure cycle are 
important aspects of encapsulation that must be carefully 
controlled to minimize thermo mechanical stresses on the 
ICs and bond wires. 

Development Program 
Because of the high number of wire bonds (263), it is 

imperative to obtain the highest yield possible at this oper­
ation. Our defect rate goal of less than 100 ppm translated 
to a part yield at the wire bond operation of 97.4%. To 
achieve this, we needed the expertise of the people at HP's 
manufacturing facility in Singapore. Therefore, we added 
a Singapore engineer to our design team in Corvallis for 
six months to work on the tooling and optimization of the 
wire bonder. 

Tooling modifications were necessary to allow for bond­
ing boards processed in a panel configuration, rather than 
a single board at a time. This required changes to the X 
and Y travels of the bond head, a much larger heater block, 
and a different clamping arrangement. 

For the optimization, a partial factorial experiment was 
conducted to determine the primary parameters that affect 
bond quality. After this experiment was completed, an 
operating window study determined the limits of the key 
parameters. Table I outlines the results. 

Table I 

Key Bonding Parameters 

Parameter 

Temperature 
Power 

Sink depth 

Force 

Time 

Specification Limits 

160to170°C 
40 to 45 pulses/s (die side) 
70 to 75 pulses/s (lead side) 
30 to 90 (.Lm (die side) 
150 to 250 (.Lm (lead side) 
40 to 50 grams (die side) 
90 to 100 grams (lead side) 
15 to 25 ms (die side) 
35 to 45 ms (lead side) 

The choice of laminate for the hybrid substrate was nar­
rowed to materials that could withstand the wire-bonding 
temperatures and times without deterioration. FR-4 boards 
are normally not usable for thermosonic bonding since a 
high glass-transition temperature (T g) is required. A mod­
ified-polyimide laminate was chosen because of its rela­
tively high T g (lS0°C), and its lower cost and ease of 

machinability compared with polyimide laminates. 
The mechanical design of the hybrid was determined to 

a large extent by the needs of the calculator design group 
and by the surface mount process in printed circuit assem­
bly. The board thickness was increased from the normal 
value of 0.031 inch to 0.047 inch to provide a more rigid 
substrate. The height of the encapsulating epoxy must be 
kept to less than O.OSO inch because of tight spacing be­
tween the board and the LCD assembly. A molded plastic 
dike is used to contain the epoxy and maintain a uniform 
thickness. 

To exploit automated board assembly fully and to 
maximize material use, the boards are delivered from the 
vendor in a four-board subpanel, using an interdigitated 
layout. The parts are kept in subpanel form throughout the 
hybrid and surface mount processes. Only at the hand-sol­
dering operation are the boards separated from the sub­
panel. 

One of the special requirements is a precisely punched 
rectangular hole (see Fig. 1). This hole must be punched 
and referenced to the board artwork to an accuracy of 
±0.002 inch. The purpose is to allow the use of prealigned 
display assemblies (LCD plus crimped metal can). This 
differs from previous HP calculator assembly techniques 
that require the LCDs to be adjusted manually for each 
calculator. A vendor was located that had developed equip­
ment to achieve this. Once we proved the accuracy of the 
machine, we arranged for the precision-punching to be 
done by the board vendor. 

Some of the more severe tests for hybrid circuits are 
moisture resistance, thermal shock, and multi cycle vapor 
phase soldering. We ran engineering tests to determine 
whether we had sufficient margin to pass our qualification 
tests. We saw no problems in the thermal shock and vapor 
phase soldering tests. However, during the moisture resis­
tance test, we discovered some procedural and humidity 
chamber design problems. By discovering and correcting 
these problems before the final qualification run, we avert­
ed any program schedule delays. 

Because of differences in the coefficient of thermal ex­
pansion between the printed circuit board, silicon chips, 
and encapsulating epoxy, mechanical stresses can develop 
during heating and cooling. After cooling the subpanel 
down to room temperature from an epoxy curing tempera­
ture of 150°C, a noticeable warpage of the subpanel de­
veloped, often greatly exceeding the allowable maximum 
of 0.075 inch. 

We focused on revising the cure cycle as the method to 
minimize the panel warpage. We needed to cure the epoxy 
as completely as possible, but not lock in a high state of 
stress. Hence, a two-stage cure cycle was implemented. 
The parts are cured for three hours at 125°C, then ramped 
down to 5SoC over two hours. This results in parts that 
consistently pass the maximum warpage criteria. 

In a normal printed circuit board manufacturing process, 
the areas to be plated are defined by a negative resist on 
the copper-clad laminate. The exposed copper areas are 
then plated with additional copper, nickel, and gold. After 
plating, the resist is stripped off and the exposed copper 
between the plated areas is etched away. However, this 
results in traces with exposed copper on their sides. The 
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exposed copper can react with moisture and an applied 
bias to form copper dendrites. Hence, several plating en­
hancements were implemented to improve the reliability 
and reduce the costs. 

The first of these is to process the board in a conformal­
plating configuration. This means that the copper etching 
is done before any plating occurs. Since the sides of the 
traces are now exposed during plating, the copper is sealed 
in by the nickel and gold plating steps, thereby reducing 
the likelihood of dendritic growth. 

For conformal plating, all of the features are electrically 
bused together. This is normally achieved by running small 
traces off the board for connection to the plating bus. How­
ever, since this hybrid board will have a metal can crimped 
around it to hold the LCD, we risked shorting to these 
plating traces. Therefore, an alternative method was de­
veloped. A plating ring is set up around each of the three 
die-attach pads. Small traces from each bond finger are 
connected to these rings, and a single trace is then run off 
the edge of the board in a safe area. After plating, a fine­
diameter router is used to cut away each of the plating 
rings and open up the shorted plating traces. A solder mask 
layer on top of the rings and traces helps anchor them to 
the board to minimize any smearing of the copper during 
routing. 

To reduce the amount of high-purity gold plated on each 
board, a selective plating resist is screened on after the 
boards receive a flash gold plating 5 to 20 microinches 
thick. This resist exposes only the bond fingers, which are 
subsequently plated with 40 microinches of high-purity, 
soft gold for wire bonding. The resist is then stripped off. 

Test Program 
The test software and hardware embodies many features 

absent in the evaluation of previous hybrid circuits. The 
prominent features are a modular test program, the use of 
solid-state analog multiplexers to leverage a few available 
tester channels for testing continuity on many pins, and a 
large free-standing test fixture for testing multihybrid 
panels. The test system tests a hybrid circuit with 250 test 
points in 25 seconds using a tester with 60 active test pins 
and 24 additional pads accessible via multiplexing. 

The hybrid test program was developed in two separate 
parts with the objective of achieving complete modularity 
for the two parts. One engineer wrote the hybrid program, 
which contains a shell for insertion of the display driver 
portion written by another engineer, a subset of the micro­
processor IC test program (old), a system test (new), and 
initialization and exit routines for hardware checkout and 
operator interface (new). This engineer was also responsi­
ble for interfacing with the fixture designer and doing pro­
totype hardware debug. A second engineer was responsible 
for the display driver wafer test program (new), the display 
driver continuity test (new), the final integration of the 
test, documentation, and release to production. Program­
ming proceeded in parallel, with each test of the hybrid 
circuit able to be debugged independently. As needed, com­
mon hooks between the separate portions of the final hybrid 
test program were agreed upon to activate debug features 
and maintain summary data. 

As development proceeded, the display driver portion 
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of the test program was periodically updated with more 
complete code by the transfer of a single block of code from 
the middle of the display driver wafer program. This 
worked well, and ensured that after release to production 
updates to the display driver wafer program could be easily 
transferred to the hybrid circuit test program. 

Even at the wafer level, the pin count (112) of the display 
driver chip was too high to access all pins of the part, even 
with multiplexing of the 60 tester channels to the 24 extra 
pads. In light of this, the display driver was designed to 
allow virtually complete testing of all 92 display pins via 
just four specially designed display pins. Using a combina­
tion of internal connectivity switching and scan path 
methodology, the display pins are tested for functionality, 
pin leakage, and pin shorts through these four pins. 

At the hybrid level, however, we were confronted with 
the need to confirm the presence of wire bonds to the 
display pins of the two display driver chips. This con­
tinuity check requires a physical connection to each dis­
play pin and is done by forcing a current into each pin and 
detecting the presence of a diode voltage drop across a pad 
protection diode. Originally it was anticipated we would 
need to do this test on a separate dedicated commercial 
continuity tester. However, we devised a solution that al­
lows the continuity test to be done as an integral part of 
the total hybrid circuit test. This provides the considerable 
advantage of eliminating the need for a separate commer­
cial continuity tester and being able to do a complete test 
in a single pass. 

The solution consists of a box of solid-state analog multi­
plexers which use a total of seven tester channels to test 
184 pins for continuity in less than 2 seconds. The box 
contains two identical circuit boards, each with six 16-
channel analog multiplexers, one decoder, and one count­
er. The boards plug into edge connectors connected to the 
display pins and the tester control channels. To access any 
pin, the tester increments the counter, which together with 
the decoder selects an analog channel connected to a par­
ticular pin. Since all display pins are in just two contiguous 
groups, the only short circuits that are physically likely 
are adjacent pin shorts. Thus to identify shorted pins as 
well as open circuits we simply wired the box so that the 
multiplexer channels of the two boards are interleaved, 
that is, every other display pin is connected to successive 
channels on the same board. The tester opens one channel 
on each board simultaneously, forces a current into one 
channel and forces a zero level on the other. A short to an 
adjacent pin then results in a current path from the pro­
grammable measurement unit through one multiplexer 
board, through the short, and back out through the other 
multiplexer board to the tester channel forcing the zero 
level. Since the part is designed to allow detection of shorts 
via functional testing, no bad parts would be shipped if 
this shorts test were not done. However, the ability to iden­
tify short circuits directly rather than by interpretation of 
functional test data has proven to be indispensable in fail­
ure analysis and hybrid process monitoring. 

Test Fixture 
The design of this hybrid circuit implied some new chal­

lenges for the capability of the test fixture. Contact had to 



be made to 250 points distributed on both sides of a printed 
circuit board about 3.5 inches long by 1.5 inches wide. The 
minimum spacing between LCD pads is 0.016 inch, with 
a pad size of 0.016 inch. We strongly desired a single fixture 
design that would test the hybrid circuits in both the four­
board panel form during manufacture and the single-board 
form during final assembly. A fixture meeting these require­
ments was designed and implemented by HP's Handheld 
Calculator and Computer Operation. This fixture (Fig. 2) 
has also served well for line scrap analysis. 

The fixture weighs about 50 pounds and is manually 
operated and pneumatically actuated. The four-board panel 
(or single board) slides into the fixture on a movable X-Y 
stage. The panel or board under test is positioned by 
mechanical stops to align closely with the upper and lower 
spring-loaded test pin blocks. Activated by a manual 
switch, the upper and lower pin blocks then move to the 
center and sandwich the panel or board between them. Pre­
cision alignment is achieved by the mating of a fixture guide 
pin to the precisely punched hole in the hybrid circuit. 

Originally the test pins chosen for the fixture were solid 
cylinders with a conical cavity at the contact end, yielding 
a circular knife edge for contact. This configuration was 
chosen to satisfy the need for both a sharp edge to penetrate 
oxides and a large potential contact area to make up for 
registration errors. These pins performed fine when new, 
but soon tended to plug up with particulate contamination. 
Several months into prototype production, a switch was 
made to more conventional pencil-point, spring-loaded test 
pins, 0.027 inch in diameter, with favorable results. 

Initially, the connection to the fixture consisted of a 
three-foot-Iong bundle of coaxial cables terminated by con­
nectors at both ends, mating at the tester end to connectors 

wired to a DUT board mounted on a performance board. 
This arrangement was quickly discarded as noise levels 
were intolerable, and was replaced by a set of shorter cables 
terminated by connectors at only one end, and directly 
wired to the performance board at the other end (see Fig. 
2). The coaxial cable shields are all soldered to a brass 
grounding ring offset from the board. The center wires of 
the coaxial cables are soldered directly to the performance 
board pads with strain-relief loops. Wire lengths are kept 
to a maximum of 18 inches. Inside the fixture, lines be­
lieved to be critical are also wired in coaxial cable to the 
spring-loaded test pins, while the remaining lines are 
twisted pair. As might be expected, even with this arrange­
ment noise is still a problem. This is compensated for by 
setting input levels to the rails and output levels to 0.33 
and 0.67 Vnn. This is acceptable because all parts are tested 
to full level specifications at the wafer stage. 

Qualification Results 
The qualification plan for the hybrid circuit included: 

II! 1000 hours of dynamic burn-in at 100°C 
168 hours moisture-resistance testing at 65°C and 90% 
relative humidity 
200 thermal shock test cycles 
5 vapor-phase solder cycles. 
The 1000-hour dynamic burn-in is normally done at 

150°C. We lowered the temperature to 100°C because of 
thermal limitations imposed by some of the soldered com­
ponents. Earlier moisture-resistance testing of hybrid cir­
cuits at 85°C and 85% relative humidity had shown poor 
results; 65°C and 90% relative humidity was felt to be an 
adequate condition. Table II summarizes the results. To 
date, the hybrid circuits in the HP-18C and HP-28C have 

Continuity 
.... k:---- Box 

Test 
Fixture 

Performance 
Board 

AMP Connectors X-V Plate with 
Hybrid Panel 

Fig. 2. Test fixture for hybrid 
printed circuit board. 
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performed very well in the field. with no known reliability 
problems. This would appear to confirm the validity of our 
qualification matrix. 

-------_._--------------
Table II 

Hybrid Circuit Qualification Results 
(Failures per number tested) 

Test Quality 
Procedure Criteria 

Dynamic burn-in: 1/129 
100°C. 1000 hours 

Moisture resistance: 2/105 
65°C. 90% R.H. 
500 hours 

Thermal shock: 5/116 
200 cycles 

Vapor phase solder: 0/22 
5 cycles 

Results 

1/129 

0/105 

5/116 

0/22 

The six failures from dynamic burn-in and thermal shock 
were analyzed. The one failure during dynamic burn-in 
failed the self-test on the crimper tester. This part was 
subsequently retested on the HP 3065 Circuit Board Test 
System and it passed. It was then retested on the crimper 
tester and it passed. No further failure analysis was per-

formed. 
The remaining five units showed LCD pad leakage and 

functional failures during the first thermal shock tests. 
Examination after decapping showed fractures along the 
outside edge of the ICs. These problems were shown to be 
stress related. associated with the large size of the ICs and 
incomplete die-attach epoxy coverage under the corners. 
Additional units were built in Singapore. with particular 
care to obtain complete epoxy coverage under the ICs. The 
thermal shock test was repeated with no failures and no 
evidence of fracturing after decap. Singapore has since in­
corporated a screening method for the die-attach epoxy to 
ensure process integrity and reliability. 
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An Equation Solver for a Handheld 
Calculator 
by Paul J. McClellan 

HE IDEAL EQUATION SOLVER reliably finds all 
solutions for an arbitrary variable in any equation 
defined by the user. Since this is provably impossible 

in genera V more realistic expectations are to solve for an 
arbitrary variable in a wide range of equations. to provide 
understandable and reliable diagnostic information should 
the solver fail to find a solution. and to provide the means 
for using the solver to obtain multiple solutions of an equa­
tion if more than one solution exists. These were the design 
objectives for the equation solver in the HP-18C Business 
Consultant. 

A Combination of Direct and Iterative Solvers 
The HP-18C employs a combination of a direct solver to 

solve simple equations reliably and quickly and an iterative 
solver to search for solutions of more-difficult equations. 
The direct solver attempts to solve an equation by applying 
rules of algebra to isolate the unknown on one side of an 
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equation. If it succeeds. the value of the other side of the 
equation is the solution to the equation. The iterative solver 
applies a trial-and-error search procedure to obtain a solu­
tion to the equation. 

The need for a combination of direct and iterative solvers 
became clear early in the development of the HP-18C. Al­
though iterative solvers can be applied to a wide variety 
of equations. they can. depending upon the starting point. 
take an unacceptable amount of time to find a solution or 
even fail for trivial equations. For example. consider at­
tempting to solve the equation l/x = -0.1 for x by applying 
the secant method to the difference between the left and 
right sides of the equation. Fig. 1 illustrates the shape of 
the function l/x + 0.1 near x = o. With initial guesses -1 
and 1 the iterates converge to the pole at x = O. With initial 
guesses 1 and 2 the iterates diverge toward 00. But with 
initial guesses -1 and - 2. the iterates converge to the 
solution at x = -10. Although a direct solver would handle 
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Fig. 1. HP-28C plot of f(x) = 1 Ix + 0.1. 

this situation easily, direct solutions to other equations 
may not exist or may require an excessively complex direct 
solver. Furthermore, simple direct solvers will return at 
most one solution to an equation with multiple solutions, 
which forces the user to rewrite the equation to obtain 
alternate solutions. Hence, an iterative solver that can ac­
cept user-supplied initial guesses can be useful in tackling 
harder equations or obtaining multiple solutions without 
rewriting the equation. 

To solve an equation, the HP-18C first applies its direct 
solver. If the direct solver succeeds, the HP-18C displays 
that solution. If an arithmetic error occurs within the direct 
solver, then the HP-18C displays the message SOLUTION 

NOT FOUND. This screens some equations that obviously 
have no solution. If the unknown appears more than once 
or if it appears as the argument of a function that the direct 
solver cannot invert, then the direct solver fails and the 
iterative solver is invoked. 

Direct Solver 
As described above, the direct solver solves an equation 

by applying rules of algebra to isolate ~he unknown on one 
side of an equation. If the direct solver succeeds, the value 
of the other side of the equation is the solution. Direct 
solvers can fail, either because no closed-form solution 
exists or because the solution method is too difficult. The 
first case is illustrated by attempting to solve the equation 
XX = 2 for x. 

The second case is illustrated for the HP-18C by attempt­
ing to solve x + x = 1 for x. The solution of this equation 
is difficult for the HP-18C because, considering the prod­
uct's applications and resources, we decided that the HP-
18C's direct solver would perform no algebraic simplifica­
tion of the equation and thus would require the unknown 
to appear only once in the equation. 

The HP-18C parses an equation into an RPN internal 
representation of its left and right sides. It parses an expres­
sion as though it were an equation with the expression as 
the equation's left side and a zero on the equation's right 
side. 

The direct solver begins by scanning each side of the 
equation and finding the side containing the unknown. If 
the unknown appears in both sides, then the direct solver 
fails. Otherwise, it initializes the solution accumulator to 
the value of the other side and discards that side. The direct 
solver then repeatedly applies the following procedure to 
the solution accumulator and the remaining subexpression 
containing the unknown. If the subexpression consists of 
only the unknown, the direct solver has succeeded and it 
returns the value of the solution accumulator. Otherwise, 
the subexpression is an RPN expression ending in a func­
tion (or operator). If the direct solver does not know how 

to invert that function, it fails. Otherwise, it scans the func­
tion's arguments to find the occurrence(s) of the unknown. 
If the unknown appears in more than one argument, or in 
an argument position for which the direct solver does not' 
know how to invert the function, the direct solver fails. 
Otherwise, it performs the inversion using the accumulated 
solution and the current values of any other function argu­
ment. If an arithmetic error occurs during this inversion, 
or if the result violates a rule of algebra, the direct solver 
terminates and displays the message SOLUTION NOT FOUND. 

Otherwise, the direct solver discards all but the argument 
expression containing the unknown and continues this pro­
cess. 

Two situations for which the direct solver aborts and 
reports SOLUTION NOT FOUND can be illustrated by solving 
the equations l/x = 0 and o/x = 1 for x. When the direct 
solver attempts to invert the first equation, it triggers a 
divide-by-zero error. When it inverts the second equation, 
it obtains the result x = 0, which indicates a divide-by-zero 
error in the original equation. 

For the most part, the HP-18C's direct solver will only 
invert functions that have unique inverses for the un­
known's argument position. However, we decided to also 
invert an expression containing an unknown raised to a 
power. When the power is even, the inverse can be either 
positive or negative. The HP-18C selects the positive in­
verse. Sometimes the choice the direct solver makes causes 
an arithmetic error later in the inversion process and the 
HP-18C reports SOLUTION NOT FOUND in spite of the fact 
that the equation has a solution that would have been found 
had the direct solver chosen a negative inverse. 

Even if the direct solver succeeds with its choice, other 
equation solutions may exist. The user can force the direct 
solver to choose the other inverse by rewriting the equation. 
In effect, the direct solver will select the negative inverse 
if the user negates the subexpression that is raised to the 
even power. This feature can be illustrated by the following 
two examples: 
!!!l Solve the equation [1- (1/x)]2 = 1 for x. Because the 

direct solver takes the positive inverse of an expression 
raised to a power, later in the inversion process it en­
counters the simplified equation l/x = 0 and reports 
SOLUTION NOT FOUND. If the original equation is rewritten 
as [(1/x)-1]2 = 1 the direct solver returns the solution 
x = 0.5. 

!l! Solve the equation 1/(1-x)2 = 0.25 for x. The direct 
solver returns the solution x = -1. If the equation is 
rewritten as 1/(x-1)2 = 0.25 the solver returns the other 
solution, x = 3. 
We decided not to invert other multivalued inverse func­

tions, such as integer part, because such functions have an 
infinite number of mathematical inverses (and a large 
number of machine-representable ones) and it would be 
more difficult for the user to specify any but the default 
inverse that the direct solver would supply. The iterative 
solver with its feature of accepting initial guesses from the 
user seemed better suited to solve such equations. 

Iterative Solver 
The iterative solvers in the HP-18C and the HP-28C Cal-
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culators are very similar. The HP-18C's iterative solver is 
described first and the HP-28C version's differences are 
described later. 

When a parsed equation is evaluated internally, the cur­
rent values of the equation's left and right sides are re­
turned. The iterative solver searches for a zero difference 
between the left and right sides by repeatedly varying the 
value of the unknown and computing the difference be­
tween the sides for that value. 

Suppose the goal is to solve the equation A(x) = B(x) 
for x. We represent the difference between the equation's 
left and right sides by f(x) = A(x)- B(x). Then the goal is 
to find a value of x such that f(x) = O. If the iterative solver 
succeeds, it has found a numerical solution to the user's 
equation or a zero of the user's expression and the solver 
terminates immediately and reports that solution. Because 
of the finite-precision floating-point arithmetic used by the 
HP-18C, a solution may satisfy the equation numerically 
but not mathematically. 

The set of values available to the iterative solver as can­
didates for the value of x is the set of machine-representable 
numbers available to the user. During the search process 
the iterative solver displays selected iterates to show the 
region being searched and the corresponding sign of ftx) 
to provide hints of the shape of the curve and the method 
in progress. The user can interrupt the search process by 
pressing any key. If an arithmetic error occurs during the 
evaluation of f(x) for some x, then f(x) is not defined for 
that value of x and we say that x lies outside the domain 
of definition of f(x). The displayed sign at that point will 
be a question mark. 

The iterative solver begins by claiming adequate scratch 
storage, setting initial search bounds bl = -00 and bz = 

00, and obtaining and ordering two distinct starting values, 
say Xl and Xz, for the unknown x. It obtains Xl and X2 by 
using the last two values stored into x. The default values 
are zero. If these values are identical, one is perturbed by 
the solver. At this point we have bl <Xl <xz<bz. The itera­
tive solver evaluates f(x l) and f(xz). If neither Xl nor X2 is 
within the domain of f(xl. that is, f(x) is not defined for Xl 
and Xz, then the solver terminates with the message BAD 

GUESSES. If only one value, say Xl' is within the domain 
of f(xl. the solver sets bz = Xz and attempts to find another 
value within the domain by first using a modified bisection 
search of the interval from Xl to Xz. The search bound bz 
is reset to any sample value found out of the domain of 
f(x) during this search. If the bisection search exhausts all 
machine-representable values in the interval from Xl to Xz 
without finding one in the domain of f(xJ, the solver sam­
ples the next machine-representable number just before Xl 
in the direction of bl . If this value is also not in the domain 
of f(x), the iterative solver terminates with the message BAD 

GUESSES. Otherwise the iterative solver has the ordered 
pairs (xl'XZ) and (fl.£z) where bl <Xl <xz<b2 , fl = f(xl)"'O, 
and f2 = f(xz)"'O. 

If fl = fz, the solver searches for a slope by alternately 
extending the interval bounds Xl and Xz until it either finds 
Xl and X2 such that fl '" fz or it exhausts the search interval. 
If during this slope-hunting process a sample value is found 
outside the domain of f(x), the search bound in that direc­
tion is set to that value and a modified bisection search is 
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Fig. 2. HP-28C plot of f(x) = v' x + In (x) - 0.5. 

employed to find a sample value in the domain of f(x) in 
that direction. If the values sampled on one side, between 
bl and Xl or between Xz and bz, are exhausted, then sub­
sequent sample values will lie in the other side. If the 
solver fails to find a slope, it terminates with the message 
SOLUTION NOT FOUND. 

Otherwise, fl and fz have different values. If they have 
the same sign, the iterative solver resets the search bound 
closest to the value generating the larger f(x) magnitude to 
that value, sets a counter to seven, and extrapolates in the 
direction of decreasing f(x) magnitude using a modified 
secant method. l It continues searching in that direction 
until the value of f(x) changes sign, its magnitude increases, 
or the search interval is exhausted. 

In the last case, the solver terminates with the message 
SOLUTION NOT FOUND. If during this extrapolation a sample 
value is found that lies outside the domain of f(x), the 
search bound in that direction is set to that value and a 
modified bisection search is employed to find a sample 
value in the domain of f(xl in that direction. This can be 
illustrated by solving the equation V (x + In xl = 0.5 for 

x. The left side of the equation is not defined for x< -In X 
(see Fig. 2). With initial guesses of 1 and 2, the solver 
repeatedly samples within this undefined region, eventu­
ally succeeds, and reports X = 0.662195081464 as the ap­
proximate solution. 

If the value of f(xl does not change sign, but increases 
in magnitude during secant extrapolation, the search bound 
in the direction of search is reset to the sample value for 
X where the magnitude of f(xl increases. The solver then 
employs quadratic interpolation and selects the value 
where the fitted quadratic expression has minimum mag­
nitude as the next sample value. Depending upon the po­
sition of this fitted point, the solver resumes modified se­
cant extrapolation in the same or opposite direction. Each 
time quadratic interpolation is employed, a counter is dec­
remented and tested. Each time secant extrapolation finds 
a value for f(xl with decreasing magnitude, that counter is 
reset to seven. When the decremented counter value is 
zero, the solver returns the last sample value as an approx­
imate solution and displays the values of the left and right 
sides of the equation for that solution. 

If the user immediately asks the calculator to solve the 
equation again for the same variable, the iterative solver 
uses initial guesses in the region of the last sample value. 
Hence approximations to local f(x) magnitude minima can 
be found by repeatedly solving for the same variable. How­
ever, the search procedure is designed to find zeros-not 
local magnitude minima. This case can be illustrated by 
solving the equation XZ + x = -1 for X with initial guesses 
a and 1 (see Fig. 3). The solver reports the approximate 
solution, x = -4.99999994899E-1, with the values of the 
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Fig. 3. HP-28C plot of f(x) = x2 + X + 1 

equation's left and right sides for that solution. 
If fl and f2 have opposite signs, or if during extrapolation 

their values change sign, the solver sets the search bounds 
to those sample values resulting in the values of fl and f2 
having opposite signs and begins attempting to narrow the 
interval bracketing the change of sign. This process may 
employ an adaptive combination of modified bisection and 
secant, cubic, and hyperbolic interpolation to obtain a se­
quence of sample values. For each iteration where the sam­
ple value is within the domain of f(xl, one of the search 
bounds is reset to that value and the interpolation process 
continues. The process continues until it finds one of the 
following cases: 

A solution 
Neighboring values Xl and Xz bracketing a sign change 
in f(x) 

\Ij A value out of the domain of f(x). 
The first case can be illustrated by solving the equation 

XZ + x = 6 for x with initial guesses 0 and 1. The iterative 
solver reports the positive solution x = 2. If the equation 
is immediately solved again for x, the solver again reports 
the solution x = 2. 

The second case occurs when the equation has a solution 
that is not representable in the HP-18C's 12-digit float­
ing-point format. (The set of 12-digit numbers includes 0, 
-1.00000000000 x 10-499 to - 9.99999999999 X 10499

, 

and 1.00000000000 x 10-499 to 9.99999999999 x 10499
.) 

It can also occur if the function f(x) is discontinuous be­
tween two adjacent machine-representable values. In any 
event, the solver returns the value of Xl or X2 that gives a 
minimum f(x) magnitude as the solution. It stores the other 
value in a dedicated location such that if the user im­
mediately solves again for the same variable, Xl and X2 are 
used as initial guesses. The solver also displays the values 
of the left and right sides of the equation for that solution 
if either Xl or x2 is the only value sampled in the interpola­
tion process, or if the process strongly suggests that the 
result represents a pole. 

For example, with initial guesses 0 and 1, the solver 
returns the approximate solution X = 1.30277563773 to 
the equation x2 + x = 3. If the solver is immediately rein­
voked it displays the values of the equation's left and right 
sides for the same approximate solution. For the first try, 
the solver is able to make some progress from the initial 
guesses and the data does not strongly suggest a pole. For 
the second attempt, the solver is unable to progress beyond 
its initial guesses so it returns the values of the left and 
right sides as a warning that the equation is not exactly 
satisfied. 

If the solver is applied to the equation x/(xz-2) = 1 with 
initial guesses 1 and 1.5, it returns the approximate pole 
x = 1.41421356238 and displays the values of the left and 

Fig. 4. HP-28C plot of f(x) = xl(x2 
- 2) - 1. 

right sides of the equation for that solution. The solver in 
this case was able to make some progress from its initial 
guesses, but the process strongly suggested that the result 
was near a pole (see Fig. 4). 

In the third case the iterative solver splits the current 
search region, which brackets a change of sign in the value 
of f(xl, at the out-of-domain value. We then have two inter­
vals, Xl to gl and g2 to x2, where initially Xl <gl = gz<xz· 
The points gl and gz will later be adjusted such that the 
interval between gl and gz defines a gap within which the 
function f(x) is presumed to be undefined. The solver alter­
nately samples values in the left and right subintervals 
using a modified bisection search. Each time, ifthe sampled 
value is out of the domain of f(xl, the appropriate g bound 
is reset to that value and the iteration continues with a 
wider gap between gl and gz. If the value of f(x) at that 
sample value has the same sign as the value of f(x) at the 
corresponding x bound, that bound is reset to that sample 
value and the iterations continue with a narrower outer 
interval [Xl' x 2]' The process continues until it either finds 
a solution, it finds a value for x where the sign of f(x) is 
the opposite of the sign at the corresponding x bound, or 
it exhausts both subintervals [Xl,gl) and (g2'XZ]' If the solver 
finds a value for x where the sign of f(x) is the opposite of 
the sign at the corresponding x bound, the solver discards 
the other interval and resumes narrowing the region around 
the change of sign in f(x) as above. 

This case can be illustrated by solving the equation 
Yx/(x+0.3) = 0.5 for x with initial guesses -1 and 2 
(see Fig. 5). The left side of this equation is not defined for 
x in the interval from - 0.3 to o. With these initial guesses 
the solver first samples on either side of this interval and 
then in this interval, triggering the gap-narrowing process 
just described. Eventually the solver exits that process and 
finds the solution x = 0.1. 

H the solver exhausts both subintervals it returns the 
value of Xl or x2 giving minimum f(x) magnitude as an 
approximate solution. This case can be illustrated by at­
tempting to solve the equation (x/(3x -1))3 = 1 for x with 
initial guesses 0.3 and 0.4 (see Fig. 6). The solver stores 
the other value in a dedicated location such that if the user 
immediately solves again for the same variable, Xl and X2 
are used as initial guesses. The solver also displays the 
values of the left and right sides of the equation for that 
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Fig. 5. HP-28C plot of f(x) = Yx/(x + 0.3) -0,5. 
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Fig. 6. HP-28C plot of f(x) = (x/(3x - 1 )l- 1. 

solution as a warning that the solution is not exact. 

HP-28C Iterative Solver 
The HP-28C's iterative solver assumes a higher level of 

sophistication on the part of the user. It also searches for 
a real solution to an equation or a real zero of an expression. 
It differs from the HP-18C version only in the manner that 
the user specifies initial guesses, how the solver displays 
current iterates, and the solver's termination display. 

The HP-28C uses the initial contents of the unknown to 
obtain up to three initial guesses, with zero as a default. 
The user specifies one initial guess by storing a real or 
complex number in the unknown. The HP-28C takes the 
real part of a complex number as an initial guess. The user 
can specify one, two, or three distinct initial guesses by 
including those guesses in a list and storing that list in the 
unknown. The HP-28C uses up to the first three distinct 
real numbers or real parts of complex numbers in the list. 
The reason for handling complex numbers in this way is 
to facilitate the user's specifying initial guesses obtained 
by digitizing points from plotted equations. 

The iterative solver is faster if it does not need to display 
iterates, so by default the HP-28C solver does not do so. 
However, the user can trigger the display of current iterates 
by pressing any key other than ATTN. Additional pressing 
of such keys has no effect and the solver purges the key 
buffer when it terminates. Pressing ATTN always aborts the 

iterative solver, which then returns a list of the three current 
iterates on the display stack and stores the list in the un­
known. 

If the HP-28C cannot obtain at least two values in the 
domain of f(x) using the initial guess(es) of the unknown, 
then it leaves the unknown unchanged and displays Bad 
Guess(es). If the HP-28C cannot obtain a slope, then it leaves 
the unknown unchanged and displays Constant. Otherwise, 
the HP-28C overwrites the initial contents of the unknown 
during the search process. When the search is complete, 
the solver returns a message and an exact or approximate 
solution on the display stack and stores the solution in the 
unknown. The HP-28C displays the message Extremum if it 
exhausts the search interval without finding a change of 
sign. If it finds a change of sign but not an exact numerical 
solution, it displays Sign Reversal. If it finds an exact nu­
merical solution, it displays Zero. 

The solver application menu has labeled softkeys that 
can be pressed to evaluate the left and right sides of the 
current equation for the current values of the equation's 
variables. The user can use these keys to inspect the quality 
of a solution in more detail. 
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Electronic Design of An Advanced 
Technical Handheld Calculator 
by Preston D. Brown, Gregory J. May, and Megha Shyam 

HE DESIGN of an advanced handheld calculator 
such as the HP-28C requires solutions of some spe­
cial problems: how to package the system in a limited 

space, how to provide power from three small batteries for 
six months, how to keep the cost down, and how to release 
the new design in less than 18 months. These challenges 
were met by designing three custom CMOS ICs, packaging 
the electronics using chip-on-board and surface-mount 
technologies, and using powerful design aids. The HP-28C 
includes a four-lin~ liquid-crystal display (LCD), 128K 
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bytes of ROM, 2K bytes of RAM, a clock, and an infrared 
transmitter for sending data to an optional detached printer. 
The HP-18C Business Consultant contains the same elec­
tronics, but only one ROM. 

The electronic design (Fig. 1) of the HP-28C provides a 
20X improvement in computational speed over its pre­
decessor, the HP-15C. Custom ICs and custom packaging 
were required to achieve this functionality on a small cir­
cuit board measuring 3 by 1.5 inches. 

A hybrid board design (see article on page 25) is used 



Beeper 

for the entire system. Two display drivers and the CPU are 
bonded directly to the front of the printed circuit board 
using 263 bonds. Two ROMs in flatpacks and the rest of 
the discrete components are placed on the back of the 
board. Pressure contacts are made from the board to the 
LCD on the front, and from the board to the keyboard on 
the back. The use of chip-on-board technology has proven 
to be reliable and cost effective. 

Custom Microprocessor 
Commercially available microprocessors have a number 

of limitations that make them unsuitable for use in a cal­
culator. They require too much power, many support chips, 
regulated supplies, or a wide system bus which takes up 
too much room on a printed circuit board. Hence, a custom 
microprocessor was developed for the HP-28C to avoid 
these problems. 

The processor used in the earlier HP-71B Handheld Com­
puterl was an excellent starting point for the design; this 
processor already met the low-power and interconnect re­
quirements, but it would not run at 3V (the minimum bat­
tery voltage). By porting the design into the newer, smaller 
CMOSG process, the part price and the power supply re­
quirements were reduced and the speed was increased. 
At the same time, new instructions were added to improve 
data manipulation and the interrupt structure was en­
hanced. 

The instruction set of the processor is highly optimized 
for binary-coded decimal operations on both integer and 
real numbers. The main working registers in the processor 
are 64 bits long and are broken into three fields: the expo­
nent, the mantissa, and the sign fields. Individual nibbles 
or bytes of the registers can be handled independently. 

The processor has 16 input pins and 12 general-purpose 
output pins, some of which are used to scan the keyboard. 
Most of the work of scanning the keyboard is the responsi­
bility of the firmware including the scan sequence, key 
debouncing, and type-ahead buffer. Hardware is kept simple. 

Fig. 1. System block diagram. 

Bus Definition 
To reduce printed circuit board area, the bus width must 

be limited. A four-bit multiplexed command and data bus 
may seem to be an extreme solution, but is necessary to 
save space. The challenge is to maintain reasonable perfor­
mance with a four-bit bus. Each IC in the system maintains 
its own copy of the 20-bit program counter (PC) and a data 
pointer (DP) which are only broadcast on the bus when 
necessary. After a read operation to an address pointed to 
by the PC, each IC automatically increments its copy of 
the PC. Therefore, the PC need only be updated if a branch 
is taken. In this case, the PC must be reloaded. The com­
mand LOAD PC is placed on the bus followed by the five 
nibbles of the new address. The other fifteen bus commands 
include starting reads and writes to the address pointed to 

Fig. 2. Layout and architecture of display driver chip. 
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by the PC or DP, loading the DP, and resetting and configur­
ing the system. 

Another feature of this bus definition is soft configura­
tion, which allows the memory space to be allocated as 
desired. A daisy-chain signal is routed from one IC to the 
next. If an IC has not yet been configured, it drives its 
daisy-out (~O) line low. When its daisy-in (01) line is high, 
the IC responds to identification and configuration com­
mands which place it in the address space. Once config­
ured, the IC's DO line goes high so that the next chip in 
the chain can be configured. 

The bus consists of 10 pins: data (pins 0 to 3), CON (signals 
if the transfer is a command or data), STRN (system strobe), 
01, ~O, Voo, and GNO. The bus supports data transfer at up 
to one megabyte/second. However, in the HP-28C the trans­
fer rate is limited to 325 kilobytes/second because of other 
limitations. 

Display Drivers 
The liquid-crystal display requires 184 drivers. Since 

there are too many pins to be driven by a single IC, two 
identical display driver ICs (Fig. 2) are used, each driving 
92 lines. Each driver IC also requires 20 additional pins 
for a total of 112 pins per IC. Other system needs are also 
integrated onto the display drivers; the CPU and ROM are 
the only features that would not fit because of area limita­
tions. 

The 32-way multiplexed (see waveforms in Fig. 3) liquid­
crystal display requires up to nine volts peak-to-peak to 
operate. This presented some difficulty since the CMOSG 
process allows only seven volts maximum because of two 
problems. First, the process' polysilicon field threshold 
runs around 12V and there would be significant sub­
threshold conduction at nine volts. Second, although a 
p-channel transistor can handle the high electric fields pro­
duced, an n-channel FET would only last a short time 
before it was damaged. To live within these constraints, 
restricted layout rules and circuit designs were developed 
to allow nine-volt operation. The layout rule changes in­
cluded increasing the minimum gate length, increasing the 
polysilicon-to-diffusion spacing, eliminating polysilicon 
p-well crossings, and not allowing two transistors to share 
the same gate polysilicon. By making use of a supply level 
already needed for the display, VMIO (1.8V), two n-channel 
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Fig. 4. (a) High-voltage inverter. (b) Nine-volt interface circuit 
for supplying display drivers. 

devices can be placed in series and biased to maintain a 
voltage drop of less than seven volts across each of them 
(see the high-voltage inverter in Fig. 4a). 

While the majority of the system is powered by three 
N-cell batteries (4.5V), the display drivers need nine volts. 
Therefore, an interface circuit was necessary to provide 
±4.5V. The high-voltage inverter could allow a O-to-4.5V 
logic input to produce a ±4.5V output, but current drains 
would be high since both the pull-up and pull-down tran­
sistors are on when the input is at ground. However, by 
incorporating two high-voltage inverters into a latch (Fig. 
4b), the full voltage swing is placed across the inputs of 
both inverters, and no dc current flows. 
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Fig. 3. Multiplexed waveforms for 
driving liquid-crystal display_ 
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Programmable Switching Supply 
The power supply uses only three discrete components 

and a 50-to-150-kHz clock signal to generate a negative 
display supply (VOREF' - 4.5V) from a 2.7-to-6V input. The 
other display voltages are generated by buffering voltages 
from a resistor divider strung between Voo (4.5V) and VOREF. 

The negative supply is adjusted versus ambient tempera­
ture by comparing the voltage from a string of three parasitic 
npn transistors to the voltage from a switched capacitor 
divider driven by VOREF. A 5-bit register which directly 
varies the ratio of this divider gives the user control of the 
display contrast by altering the negative supply voltage 
with respect to Voo. 

System Functions 
Other features necessary to complete the system are in­

tegrated onto the display driver (see Fig. 2). A two-port 
RAM consisting of ninety-two 32-bit words is used for a 
display bit map. The read-only second port is formed by 
the addition of a second word line, a second bit line, and 
two transistors to the basic static RAM cell (see Fig. 5). 
Each display driver also provides lK bytes of system RAM. 

In the low-battery detection circuit, the supply voltage 
Voo is divided down and compared to a bandgap reference. 
The reference produces 1.3V:!:15 mV over process vari­
ations and the operating temperature range of -30 to 

! I 
Bit 2 

+ 75°C. 

Fig. 5. Static RAM cells (a) Tra­
ditional static RAM. (b) HP-18C 
and HP-28C display RAM cell. 

Display control logic handles the display refresh and 
synchronization of multiple chips. 

A 32-bit crystal-controlled timer provides a real-time 
clock and other timing functions. 

A flexible I/O pin allows TTL-level serial communica­
tions and several other I/O possibilities. In the HP-18C and 
HP-28C Calculators, this pin drives an infrared LED trans­
mitter for sending data to an optional printer with an in­
frared receiver. The timer and I/O sections provide minimal 
hardware support for these features; as much of the com­
plexity as possible is handled by the firmware. 

512K-Bit ROM 
The third custom IC used in the HP-28C is a 512K-bit 

ROM. One or two ROMs in flatpack packages are soldered 
to the back of the hybrid circuit board. The ROMs are not 
bonded directly to the board for three reasons. First, by 
placing the ROMs in separate packages the HP-28C and all 
language versions ofthe HP-18C can be produced by simply 
loading the boards with a different ROM. Second, that 
much ROM would consume a large amount of tester mem­
ory and is best tested separately. Third, the CPU and display 
drivers require most of the room on the front of the board, 
and directly bonding chips to both sides of the board is 
not practical. 

Fig. 6. Architecture of 512K-bit 
ROM chip. 
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Early in the development cycle it became apparent that 
a high-density CMOS process was essential to help keep 
the cost of the product at realistic levels. Hence, this ROM 
chip was designed using a third-generation CMOS process 
developed at HP's Northwest Integrated Circuits Division. 

The chip architecture (Fig. 6) consists of four 128K-bit 
quadrants, each organized in 512 rows and 256 columns. 
The data from each quadrant is read four nibbles at a time. 
Considerable design effort went into minimizing power 
supply drain by the ROM in both the operating and standby 
modes. Our design approach incorporates decoded virtual 
ground drivers so that only part of each quadrant is active 
at any time. The use of virtual ground drivers minimizes 
precharge current contribution to the operating current. 

Our choice for the ROM core cell is the so-called X core, 
where the polysilicon word line snakes around the island 
line at 45° angles. The traditional diffusion resistance to 
ground is not present in this design, which eliminates 
periodic ground bus lines. Data from the ROM core is 
sensed by special differential sense amplifiers that detect 
the difference between the selected cell and a dummy cell. 
The ROM is island programmable, which implies that a 
one or zero is detected by the presence of an island complet­
ing the transistor. The design calls for the ROM to operate 
from 3.0 to 5.5 volts with 200-ns access time at 65°C. 

The ROM interfaces to the CPU using the 4-bit data bus 
and two control lines. For proper operation, the chip needs 
only 11 pads. The chip was designed to be configurable in 
the address space of the CPU either by hard configuration 
(Le., the address is predefined and set) or soft configuration 
(Le, the address can be mapped anywhere in the CPU ad­
dress space). The interface of the ROM core with the CPU 
consists of a command decoder and two 20-bit program 
counter and data pointer registers. 

The CMOS process development played a key role in 
the availability of the ROMs. Some of the principal charac­
teristics of this new CMOS process are: 
ill It is an n-well process, as contrasted to previous p-well 

processes. 
.. It uses p-type epitaxial silicon on a p + substrate instead 

of a mono crystalline silicon structure. 
m; 5 x optical steppers are used for all critical lithography 

levels. 
;/! The metal interconnection layers (first and second) have 

a linewidth-spacing pitch of 4.0 /Lm. 
\!Ii The polysilicon lines are drawn 2.8 /Lm wide and are 

placed at least 1.2 /Lm apart. 
~ The islands that define p-channel or n-channel transistor 

widths are 2.8 /Lm wide. 
llli The n-channel and p-channel threshold voltages are 

0.75V and symmetrical. 
02 The effective size of a minimum-geometry device is 1.8 

/Lm wide and 1.3 /Lm long. 
Ii The maximum operating voltage is 5.5V. 

ESD and EMI Design Considerations 
From the very beginning of the project, the design goal 

for electrostatic discharge (ESD) protection was to elimi­
nate any breakdowns through the case with the calculator 
placed on a reference ground plane for discharges up to 
25 kV. Hence, the emphasis on sealing the product with 
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an RTV compound was partly because of ESD require­
ments. However, the problem with that design philosophy 
is that anyone entry point can eliminate all chances of 
success. In this case, the weak point was the battery door. 
Interestingly enough, the observed arc path was from the 
battery door to the battery case and over through the elec­
tronics to the CPU key lines. The reason for this was sim­
ple-the keyboard provides a larger capacitance to refer­
ence ground than anything else in the product (Le., the 
highest charge path is through the electronics). The solu­
tion is to isolate the keyboard using a series resistance and 
to provide an alternate path for this charge with an appro­
priately placed ground plane. The keyboard-to-ground 
capacitance is reduced by inserting a grounded metal shield 
between the keyboard and the reference ground. This de­
sign at the same time provides an alternate, more desirable 
charge path to this internal ground plane because of its 
predominant capacitance to the reference ground. This 
technique has proven to be quite successful in previous 
projects.2 

Electromagnetic interference (EMI) generation was not a 
problem, mainly because of an early emphasis on proper 
printed circuit board layout. Possible RF sources are elimi­
nated by minimizing the physical loop areas created by 
the signal and ground return paths, and by laying out the 
power and ground lines first on the hybrid. This is an 
extremely quiet product, considering its speed capabilities. 

Tools 
An aggressive schedule was met with this project. Since 

the CPU was a redesign, the display driver and ROM were 
the most critical IC designs. Three months were required 
for design, schematic entry, and simulation. Our first pro­
totypes, built six months later, were fully functional. 

The Hierarchial Custom Design System, developed at HP 
for in-house use, is a highly integrated set of tools running 
on HP 9000 Computers. The schematic capture system pro­
duces a net list which is fed to the circuit (HP Spice) or 
logic simulator. The logic simulator handles CMOS designs 
including bidirectional transmission gates and circuit 
fights created, for example, when over driving cross­
coupled inverters to load a latch. A high-level, Pascal-like 
language is used to develop all the test patterns. This lan­
guage can then be compiled for the logic simulator or for 
the IC test system. Often the output of the simulator is used 
to create the production test patterns, but recompiling the 
high-level language has three benefits. First, changes in the 
test patterns can be implemented quickly, without having 
to resimulate the entire IC. Second, the test patterns are 
well documented. Finally, the features of the language re­
duce the time required to develop test patterns for both 
simulation and production testing. 

Standard cells were used whenever possible, but some 
layout was done manually while the RAM was drawn by 
a module generator. All design rule and electrical errors 
in the layout were caught with a hierarchical design rule 
check (DRC) and schematic compare program. One error 
was caught in the module generator's work. With thousands 
of dollars of mask charges and months of debugging time 
at stake, correct by construction is a nice goal, but it can­
not beat correct by double checking. The DRC and compare 



program ran quickly and produced concise listings of any 
errors. 
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