
HEWLETI-PACKARD

HP-15C
ADVANCED FUNCTIONS

HANDBOOK

NOTICE
Hewlett-Packard Company makes no express or implied
warranty with regard to the keystroke procedures and
program material offered or their merchantability or their
fitness for any particular purpose. The keystroke procedures
and program material are made available solely on an "as is"
basis, and the entire risk as to their quality and performance is
with the user . Should the keystroke procedures or program
material prove defective, the user (and not Hewlett-Packard
Company nor any other party) shall bear the entire cost of all
necessary correction and all incidental or consequential
damages. Hewlett-Packard Company shall not be liable for
any incidental or consequential damages in connect ion with
or arising out of the furnishing, use, or performance of the
keystroke procedures or program material.

F/,;' HEWLETT
~e. PACKARD

HP-15C

Advanced Functions Handbook

August 1982

00015-90011

Printed in U.S.A. © Hewlett-Packard Company 1982

Sr m l,Orv' Chl" Mnf pc

Contents

Introduction 5
Section 1: Using(SOLVE (Effectively 6

Finding Roots 6
How (SOLVE (Samples 7
Handling Troublesome Situations 9

Easy Versus Hard Equations 9
Inaccurate Equations. .. 10
Equations With Several Roots. .. 10

Using (SOLVE (With Polynomials. .. 10
Solving a System of Equations 15
Finding Local Extremes of a Function 17

Using the Derivative 17
Using an Approximate Slope 20
Using Repeated Estimation 23

Applications. .. 26
Annuities and Compound Amounts 26
Discounted Cash Flow Analysis 39

Section 2: Working with 0 45
Numerical Integration Using 0 45
Accuracy of the Function to be Integrated 47

Functions Related to Physical Situations 47
Round-Off Error in Internal Calculations 49

Shortening Calculation Time 49
Subdividing the Interval of Integration 50
Transformation of Variables 54

Calculating Difficult Integrals 55
Application. .. 60

Section 3: Calculating in Complex Mode 65
Using Complex Mode 65
Trignomometric Modes. 68
Definitions of Math Functions. 68

Arithmetic Operations 69
Single -Valued Functions 69

2

Contents 3

Multivalued Functions 69
Using I SOLVE I and [ZiJ in Complex Mode 73
Acuracy in Complex Mode 73
Applications. .. 76

Storing and Recalling Complex Numbers Using a Matrix 76
Calculating the nth Roots of a Complex Number 78
Solving an Equation for Its Complex Roots 80
Contour Integrals 85
Complex Potentials 89

Section 4: Using Matrix Operations 96
Understanding the LV Decomposition. 96
III-Conditioned Matrices and the Condition Number 98
The Accuracy of Numerical Solutions to Linear Systems 103
Making Difficult Equations Easier 104

Scaling 104
Preconditioning 107

Least-Squares Calculations 110
Normal Equations 110
Orthogonal Factorization 113

Singular and Nearly Singular Matrices 117
Applications 119

Constructing an Identity Matrix 119
One -Step Residual Correction 119
Solving a System of Nonlinear Equations • 122
Solving a Large System of Complex Equations 128
Least -Squares Using Normal Equations 131
Least -Sq uares Using Successive Rows 140
Eigenvalues of a Symmetric Rea l Matrix 148
Eigenvectors of a Symmetric Real Matrix 154
Optimization 160

Appendix: Accuracy of Numerical Calculations 172
Misconceptions About Errors 172
A Hierarchy of Errors 178
Level 0: No Error 178
Level 00: Overflow/ Underflow • 179
Level 1: Correctly Rounded , or Nearly So 179
Level 1 C: Complex Level 1 183
Level 2: Correctly Rounded for Possibly Perturbed Input 184

Trigonometric Funct ions of Real Radi an Angles 184
Backward Error Analysis 187

4 Contents

Backward Error Analysis Versus Singularities • 192
Summary to Here 194
Backward Error Analysis of Matrix Inversion 200
Is Backward Error Analysis a Good Idea? 204

Inde x 212

Introduction

The HP-15C provides several advanced capabilities never before
combined so conveniently in a handheld calcu lator:

• Finding the roots of eq uations .

• Evaluating definite integrals.

• Calculating with complex numbers.

• Calculating with matrices.

The HP-15C Owner's Handbook gives the basic information about
performing these advanced operations. It also includes numerous
examples that show how to use these features. The owner's hand­
book is your primary reference for information about the advanced
functions.

This HP-15C Advanced Functions Handbook contin ues where the
owner's handbook leaves off. In this ha ndbook you will find
information about how the HP-15C performs the advanced computa­
tions and information that explains how to interpret the results
that you get.

This handbook also contains numerous programs, or applications.
These programs serve two purposes. First, they suggest ways of
using the advanced functions , so that you might use these capa­
bilities more effectively in your own applications . Second, the
programs cover a wide range of applications-they may be useful
to you in the form presented in this handbook.

Note: The discussions of most topics in this handbook
presume that you already understa nd the basic information
about using the advanced funct ions and th at you are
generally familiar with the subject matter being discussed.

5

Section 1

Using I SOLVE I Effectively

The 1 SOLVE 1 algorithm provides an effective method for finding a
root of an equation. This section describes the numerical method
used by 1 SOLVE 1 and gives practica l informa tion about using
1 SOLVE 1 in various situations.

Finding Roots
In general, no numerical technique can be guaranteed to find a root
of every equation that has one. Because a finite number of digits
are used, the calculated function may differ from the theoretical
fun ction in certa in intervals of x, it may not be possibl e to
represent the roots exactly, or it may be impossible to distinguish
between zeros and discontinuities of the function being used .
Because the function can be sampled a t only a finite number of
places, it's a lso possible to conclude fa lsely that the equation has
no roots.

Despite these inherent limitations on any numerica l method for
finding roots, an effectiv e method-like tha t used by 1 SOLVE 1-
should s trive to meet each of the following objectives:

• If a real root exists and can be exactl y represented by the
calculator, it should be returned. Note that the calculated
function may underflow (and be set to zero) for some va lues of
x other than the true roots.

• If a real root exists, but it can't be exactly represented by the
calcula tor , the value returned shou ld differ from the true root
only in the las t significant digit.

• If no real root exists , a n error message should be displayed .

The 1 SOLVE 1 algorithm was designed with these objectives in mind.
It is a lso easy to use and requires little of the calculator's memory.
And because 1 SOLVE 1 in a program can detect the situation of not
finding a root, your programs can remain entirely automatic
regardless of whether 1 SOLVE 1 finds a root.

6

Section 1: Using I SOLVE I Effectively 7

Howl SOLVE ISamples
The I SOLVE I routine uses only five registers of a llocatable memory
in the HP-15C. The five registers hold three sample values (a, b,
a nd c) and two previous function values (f(a) and (b)) while your
function subroutine calculates (c) .

The key to the effectiveness ofl SOLVE I is how the next sample value
c is found.

Normally, 1 SOLVE 1 uses the secant method to select the next value.
This method uses the values of a, b , (a), and (b) to predict a value
c where (c) might be close to zero.

fIx)

--~--------~~~~~--------~----- x

If c isn 't a root , but (c) is closer to zero than (b), then b is
relabeled as a, c is relabeled a s b, a nd the prediction process is
repeated . Provided the graph of (x) is smooth a nd provided the
initial values of a a nd b are close to a simple root, the secant
method rapid ly converges to a root.

However, under certai n conditions the secant method doesn't
suggest a next value that will bound the search or move the search
closer to a root, such as finding a sign change or a sma ller function
magnitude. In such cases, I SOLVE I uses a different approach .

If the calculated secant is nearl y horizonta l, I SOLVE I modifies the
secant method to ensure that I c - b I ~ 100 I a - hi. This is especia lly
important because it a lso reduces the tendancy for the secant
meth od to go astray when rounding error becomes s ign ificant near
a root.

8 Section 1. Using I SOLVE I Effectively

((x)

I ~~'-~~-- --- --_
...... ,

\
\
\
\

--~--~~--------------------~'--_x
a b c

Ifl SOLVE I has already found values a and b such that f(a) and f(b)
have opposite signs, it modifies the secant method to ensure that c
always lies within the interval containing the sign change. This
guara ntees that the search interval decreases with each iteration ,
eventua lly finding a root.

((x)

/
/

/

/
/

/
/

/

--4-------~--~--~~--~~-------x

Ifl SOLVE I hasn't found a sign ch ange and a sample value c doesn 't
yield a function value with diminished magnitude, then I SOLVE I fits
a parabola through the function values at a, b, a nd c.1 SOLVE I finds
the value d at which the para bola has its maximum or minimum,
relabels d as a, and then continues th e search using the secant
method .

Section 1: Using I SOLVE I Effectively 9

I SOLVE I abandons the search for a root only when three successive
parabolic fits yield no decrease in the fu nction magnitude or when
d = b. Under these conditions, the calculator displays Error 8.
Because b represen ts the point with the sma llest sampled fu nction
magnitude, b and ((b) are return ed in the X- and Z-registers,
respectively . The Y-register contains the value of a or c. With this
information , you can decide what to do next. You might resume the
search where it left off, or direct t he search elsewhere, or decide
that ((b) is negligible so that x = b is a root, or transform the
equation into another equation easier to solve, or conclude that no
root exist s.

Handling Troublesome Situations
The fo llowing informa tion is useful for working with problems th at
could yield misleading results. Inaccurate roots are caused by
calculated function values that differ from the intended function
values. You can freq uently avoid trouble by knowing how to
diagnose inaccuracy a nd redu~e it.

Easy Versus Hard Equations

The two equations ((x) = 0 a nd ef(x) - 1 = 0 have the same real
roots , yet one is a lmost a lways much easier to solve numerically
than the other. For instance, when ((x) c= 6x - x4-1 , the first
equation is easier. When ((x) = In(6x - x4) , the second is easier. The
difference lies in how the function 's graph behaves, particularly in
the vicinity of a root.

f{x) = 6x - X4 - 1 f{x) = exp{6x - X4 - 1) - 1

--~~~--~-----t-+~x
o 2

- 60

10 Section 1: Using I SOLVE I Effectively

In genera l, every equa tion is one of a n infinite fa mily of equiva lent
eq uations with the same real roots . And some of th ose equ a ti ons
must be easier to solve than others. While I SOLVE I may fail to find a
root fo r one of those eq ua tions, it may succeed with a nother.

Inaccurate Equations

I SOLVE I can 't calcula te a n eq ua tion 's root incorrectly unless the
fun ction is incorrectly calculated. The a ccuracy of your fun ction
subroutine affects the accuracy of the root tha t you find.

You should be aware of conditions that might cause your
calcul ated function value to di ffer from the theoretical value you
wan t it to have. I SOLVE I can 't infe r in tended values of your
function . Frequently , you can minimize calcul a tion error by
carefully writing your function subroutine.

Eq uations W ith Several Roots

The task of fi nding a ll roots of a n eq ua tion becomes more di fficul t
as the n umber of roots increases. An d a n y roots t ha t cluster closely
will us ua lly defy attempts at accura te resolu tion . You can use
defla tion to eliminate roots , a s described in the HP·15C Owner's
Ha ndbook.

An eq ua tion with a mul tiple root is characterized by the fun ction
a nd its first few h igher· order derivatives bei ng zero at the mul tiple
root. When I SOLVE I finds a double root, the las t h alf of its digits ma y
be in accura te. For a triple root , two· thirds of the root's digits tend
to be obscured. A qua druple root tends to lose about three-fourths of
its digits.

Using I SOLVE I With Polynomials
Polynomia ls a re a mong the easies t fun ctions to evaluate. That is
why they a re traditio na lly used to a pproxima te fun ctions that
m od el p h ys ica l processes or m or e comp lex m ath em atica l
functions.

A polynomia l of degree n can be represented as

a"x"+ a,, _ lx,, - l + ... + alx + aO

This fun ction eq ua ls zero at no more th a n n real values of x , called
zeros of t he polynomi a l. A limit to the number of pos itive zeros of
th is function can be determin ed by counting the number of times

Sect ion 1: Using I SO LVE I Effecti ve ly 11

the signs of th e coefficients change as you scan the polynomia l
from left to right. Similarly , a limit to the number of negative zeros
can be determined by scanning a new function obtained by
substituting - x in place of x in the original polynomial. If the
actual number of real positive or negative zeros is less tha n its
limit, it will differ by an even number. (These relationships are
known as Descartes ' Rule of Signs.)

As an example, consider the third-degree polynomia l function

((x) = x3 - 3x2 - 6x + 8 .

It can h ave no more than three real zeros. It has at most two
positive rea l zeros (observe the sign changes from the first to
second and third to fourth terms) a nd at most one negative real
zero (obtained from ((- x) = - x3 - 3x2 + 6x + 8).

Polynomial functio ns are usually evaluated most compactly using
nested multiplication. (This is sometimes referred to as Horner's
method.) As a n illustration, the function from the previous
example can be rewritten as

((x) = [(x - 3)x - 6]x + 8.

This representation is more easily progra mmed and more
efficiently executed than the origina l form, especially since I SOLVE I
fills the stack with the va lue. of x.

Example: During the winter of '78, Arctic explorer J ean-Claude
Coulerre, isolated at his froz en camp in the far north , began
scanning the southern horizon in anticipation of the sun's
reappearance. Coulerre knew tha t the su n would not be visible to
him until early March , when it reached a declin ation of 5° 18'S . On
what day and time in March was the chilly explorer's vigi l
rewarded?

The time in March when the sun reached 5° 18'S declination can be
computed by solvin g the following equation for t :

where D is the decli nation in degrees, t is the time in days from the
beginning of the month, and

12 Section 1: Using 1 SOLVE 1 Effectively

a 4 = 4.2725 X 10- 8

a 3 = - 1.9931 X 10- 5

a 2 = 1.0229 X 10- 3

al = 3.7680 X 10- 1

a O = -8.1806 .

This eq uation is valid for 1 :s;; t < 32, representing March , 1978.

First convert 5°18'S to decimal degrees (press 5.18 1 CHS 1 w 1 +H I),
obtaining - 5.3000 (using ffiK] 4 display mode). (Southern latitudes
are expressed as negative numbers for calculation purposes.)

The sol ution to Coulerre's problems is the value of t satisfying

Expressed in the form req uired by 1 SOLVE I, the equation is

where the last, constant term now incorporates the value of the
declination.

Using Horner's method, the function to be set equa l to zero is

To shorten the subroutin e, store a nd recall the constants using the
registers corresponding to the exponent of t.

Keystrokes Display

[Qill /G Pr Error Clears calculator's
memory.*

[±] 0.0000
wl P/R I 000- Program mode.

*This step is included here onl y to ensure that sufficient memory is available for the
exa mples that follow in this handboo k.

Section 1: Using I SOLVE I Effectively 13

Keystrokes Display
ITlI lBl l0 001-42,21,11
IRCl l4 002- 45 4

0 003- 20
I RCl l3 004- 45 3

G 005- 40

0 006- 20
IRCl l 2 007- 45 2

G 008- 40

0 009- 20
IRCl l 1 010- 45 1

G 011- 40

0 012- 20
IRCl lO 013- 45 0

G 014- 40
WI RTN I 015- 4332

In Run mode, key in the fiv e coefficients :

Keystrokes Display

wi P/ R I Run mode.

4.2725 1 EEX 18 1 CHS I 4 .2725 -08

I STO 14 4 .2725 -08 Coefficient of t4.

1.9931 1cHS II EEX I
5 1cHS II sTO l 3 -1 .9931 -05 Coefficientof tl.

1.0229 1 EEX 13 1 CHS I 1.0229 -:03

I STO 12 0 .0010 Coefficient of t2.
37680lEEX I1 1cHS I 3.7680 -01

I STO 11 0.3768 Coefficient of t.
2.8806 1 CHS II STO 10 -2.8806 Constant term.

Because the desired solution should be between 1 a nd 32, key in
these two values for initi a l estimates. Then use I SOLVE I to find the
roots.

Keystrokes

1 IENTER I

32

ITlI SOLVE 10

[[I]

Display

1 .0000

32

7.5137

7 .5137

Initial estimates.

Root fo und.

Same previous estimate.

14 Secti o n 1: Using I SOLVE I Effectively

Keystrokes Display

0.0000

7 .5137

Function value.

Restores stack.

The day was March 7th. Convert the fractiona l portion of the
number to decimal h ours and then to h ours, minutes, and seconds.

Keystrokes

ITlI FRAC I

24 0

ITlI +HMS I

Display

0.5137

12.3293

12.1945

Fractional portion of day.

Decimal h ours.

Hours, minutes, seconds.

Explorer Cou lerre sh ould expect to see the sun on March 7th at
12h 19m 455 (Coordin a ted Universal Time).

By examining Coulerre's function f(t), you realize that it ca n have
as many as four real roots-three positive a nd one negative. Try to
find addition a l positive roots by using I SOLVE I with larger positive
estimates.

Keystrokes Display

1000 I ENTER 111 00 1.100 Two larger, positive
estimates .

ITlISOLVE I~ Error 8 No root fou nd.

[±] 278.4497 Last estimate tried.

[TI] 276.7942 A previous es timate.

[TI] 7.8948 Non zero va lue of function.

W[[!JW[[!J 278.4497 Restores stack to original
state.

ITl I SOLVE I~ Error 8 Agai n , no root found.
[±] 278.4398 Approximately same

estimate.
[TI] 278.4497 A previous estimate.

[TI] 7 .8948 Same function value.

You have found a positive local minimum rather th a n a root. Now
try to find the negative root.

Section 1: Using I SOLVE I Effectively 15

Keystrokes Display

1000 I CHS II ENTER I -1.000 .0000

1100 lcHs i -1.100 Two la rger, negative
estimates.

mISOLVE I~ -108.9441 Negative root.

[Kf] -108.9441 Same previous estimate.

[Kf] 1.6000 -08 Function value.

There is no need to search further- you have found a ll possible
roots. The negative root has no meaning s ince it is outside of the
range for which the declination a pproximation is valid. The graph
of the function confirms the results you h ave found.

f(x l

----~------~------4-------~------~------x

- 20

Solving a System of Equations
I SOLVE I is designed to find a single variable value th at satisfies a
single eq ua tion . If a problem involves a system of equations with
several variables, you may sti ll be able to I SOLVE I to find a solu tion.

For some systems of equations, expressed as

fn(Xl, ... , xn) = 0

it is possible through a lgebraic manipulation to eliminate a ll but
one variable. That is, you can use the eq uations to derive

16 Section 1: Using I SOLVE I Effectively

expressions for a ll but one variable in terms of the remaining
variable. By using these expressions , you can reduce the problem to
using I SOLVE I to find the root of a s ingle equation . The values of the
other variables at the solution can then be calculated using the
derived expressions.

This is often useful for solving a complex eq uation for a complex
root. For such a problem, the complex equa tion can be expressed as
two real-valued equations-one for the real component and one for
the imaginary component-with two real variables-representing
the real and imagina ry pa rts of the complex root.

For example, the complex equation z + 9 + 8e-z = 0 has no real roots
z, but it h as in finitely ma ny complex roots z = x + iy. This equation
can be expressed as two real equations

x + 9 + 8e-Xcosy = 0

y - 8e-xsin y = 0 .

The followin g manipulations ca n be used to eliminate y fro m the
eq uations. Because the s ign of y doesn 't matter in the equations,
ass ume y > 0, so that a ny solution (x,y) gives a noth er solution
(x, - y). Rewrite the second equation as

x = In (8(si n y) / y),

which requ ires that sin y > 0 , so that 2n rr < y < (2n + l)rr for
integer n = 0, 1,

From the first equation

y = cos-1(- eX(x + 9)/ 8) + 2n rr

= (2n + l)rr - cos-1(ex(x + 9)/ 8)

for n = 0,1, ... Substitute this expression into the second equation,

x + In ((2n + l)rr - cos-
1
(ex(x + 9) / 8)) = o.

J 64 - (e-t(x + 9))2

Section 1: Using 1 SOLVE 1 Effectively 17

You can then use 1 SOLVE 1 to find the root x of this eq uation (for any
given value of n, the number of the root). Knowing x, you can
calculate the corresponding value of y.

A final consideration for this example is to choose the initial
estimates that would be appropriate. Because the argument of the
inverse cosine must be between -1 and 1, x must be more negative
than about -0.1059 (found by trial and error or by using 1 SOLVE I).
The initial guesses might be near but more negative than this
value, -0.11 and -0.2 for example.

(The complex equation used in this example is solved using an
iterative procedure in the example on page 81. Another method for
solving a system of nonlinear equations is described on page 122.)

Finding Local Extremes of a Function

Using the Derivative

The traditional way to find local maximums and minimums of a
function's graph uses the derivative ofthe function. The derivative
is a function that describes the s lope of the graph. Values of x at
which the derivative is zero represent potential local extremes of
the function. (Although less common for well-behaved functions,
values of x where the derivative is infinite or undefined are also
possible extremes.) If you can express the derivative of a function
in closed form, you can use 1 SOLVE 1 to find where the derivative is
zero-showing where the function may be maximum or minimum.

Example: For the design of a vertical broadcasting tower, radio
engineer Ann Tenor wants to find the angle from the tower at
which the relative field intensity is most negative. The relative
intensity created by the tower is given by

E = COS(27Thcos 0) - COS(27Th)

[1 - cos(27Th)]sin 0

where E is the relative field intensity, h is the antenna height in
wavelengths, and 0 is the angle from vertical in radians. The
height is 0.6 wavelengths for her design.

The desired angle is one at which the derivative of the intensity
with respect to 0 is zero.

18 Section 1: Using I SOLVE I Effectively

To save program memory space a nd execution time, store the
following constants in registers a nd recall them as needed:

TO = 2rrh

TI = cos(2rrh)

T2 = 1/ [1 - cos(2rrh)]

a nd is stored in register Ro,

and is stored in register R 1,

a nd is stored in register R2.

The derivative of the intensity E with respect to the a ngle e is given
by

dE [. COS(TOCOS e) - rl] = T2 rQsm (rocos e) - . .
de sm e tan e

Key in a subroutine to calculate the derivative.

Keystrokes Display

[]]I P/R I Program mode.

ITl CLEAR I PRGM I 000-

ITlI LBL la 001-42.21. 0

Icos l 002- 24

I RCL la 003- 45 0

0 004- 20

lcosl 005- 24

I RCL 11 006- 45 1

B 007- 30

~ 008- 34

ISIN I 009- 23

G 010- 10

~ 011- 34

ITAN I 012- 25

G 013- 10

ICHs l 014- 16

~ 015- 34

Icos l 016- 24

I RCL la 017- 45 0

Section 1: Using I SOLVE I Effectively 19

Keystrokes Display

0 018- 20

ISINI 019- 23

IRCl lO 020- 45 0

0 021- 20

G 022- 40

I RCll2 023- 45 2

0 024- 20

WIRTN I 025- 4332

In Radians mode, calculate and store the three constants.

Keystrokes Display

wl P/R I Run mode.

WIRAOI Specifies Radians mode.

2wGJ0 6.2832

.601sTO IO 3.7699 Constant roo

I COS II STO 11 -0.8090 Constant rl'

ICHs I1 G 1.8090

~ISTO I2 0.5528 Constant r2'

The relative field intensity is maximum at an angle of 90°
(perpendicular to the tower). To find the minimum, use angles
closer to zero as initial estimates, such as the radian equivalents of
10° and 60°.

Keystrokes Display

1oITlI+RAOI 0.1745

6oITlI+RAO I 1 .0472 Initial estimates.

ITlISOlVE lo 0.4899 Angle giving zero slope.

[IT)[IT) -5 .5279 -10 Slope at specified angle.

wffi!Jwffi!J 0.4899 Restores the stack.

WI+OEG I 28.0680 Angle in degrees.

20 Section 1: Using I SOLVE I Effect ive ly

The relative field intensity is most negative at an a ngle of 28.0680°
from vertical.

dE

de
2

Using an Approximate Slope

The deriva tive of a function can a lso be approximated numerically.
If you sample a function at two points relatively close to x (namely
x + ~ a nd x - ~) , yo u can use the s lope of the secant as an
approximation to the slope at x:

s=

f(xl

f(x + ~l

f(x - ~l

r(x + ~) - r(x - ~)

2~

x - ~ x+~
x

Section 1: Using I SOLVE I Effectively 21

The accuracy of this approximation depends upon the increment 6.
and the nature of the function . Smaller values of 6. give better
approximations to the derivative, but excessively small values can
cause round-off inaccuracy. A value of x at which the slope is zero
is potentially a local extreme of the function.

Example: Solve the previous example without using the eq uation
for the derivative dE I dO.

Find the angle at which the derivative (determined numerically) of
the intensity E is zero.

In Program mode, key in two subroutines: one to estimate the
derivative of the intensity and one to evaluate the intensity
function E. In the following subroutine, the slope is calculated
between 0 + 0.001 and 0 - 0.001 radians (a range equivalent to
approximately 0.1 °).

Keystrokes

wlP/RI
[IJ I LBL I [6J
IEEX I

IC HS I
3

[!]
IENTER I

I GSB IffiJ

IEEXI

ICHS !
3

B
IENTERI

I GSB IffiJ

B
2

IEEXI

ICHS I
3

Display

000- Program Mode.

001-42,21,11

002- 26
003- 16
004- 3 Evaluates Eat 0 + 0.001.

005- 40

006- 36
007- 3212

008- 34
009- 26

010- 16
011- 3 Evaluates Eat 0 - 0.001.

012- 30
013- 36
014- 3212

015- 30
016- 2

017- 26

018- 16

019- 3

22 Section 1: Using I SOLVE I Effectively

Keystrokes Display

G 020- 10

WI RTNI 0 2 1- 4332

ml lBl loo 022-42.2 1.12 Subroutine for E(()).

Icosl 023- 24

IRCl lo 024- 45 0

0 025- 20

Icosl 026- 24

I RCl l1 027- 45 1

G 028- 30

[ili] 029- 34

ISIN I 030- 23
G 031- 10

IRCl l2 032- 45 2

0 033- 20

WI RTNI 034- 4332

In th e previous example, the calcu lator was set to Radians mode
and the three constants were stored in registers Ro, R 1, and R2 . Key
in the same initia l estimates as before a nd execute I SOLVE I.
Keystrokes Display

wl P/R I Run mode.

10 ml +RAD I 0. 1745

6o ml +RADI 1 .0472 Initial estimates.

miSOlVEI0 0 .4899 Angle given zero slope.

[!ill[!ill 0 .0000 Slope at specified angle.

w[[I]w[[I] 0 .4899 Restores the stack.

I ENTER II ENTER Imoo -0.2043 Uses function subroutine
to calculate minimum
intensity.

[ili] 0 .4899 Recalls () value.

WI +DEG I 28 .0679 Angle in degrees.

This numerical a pproximation of th e derivative indicates a
minimum field intensity of -0.2043 a t a n angle of 28.0679°. (This
angle differs from the previous solution by 0.0001 °.)

, len v,)lly Ie rt ~ MlJt pr.

Section 1: Using I SOLVE I Effectively 23

Using Repeated Estimation

A third technique is useful when it isn't practical to calculate the
derivative. It is a slower method because it requires the repeated
use of the I SOLVE I key. On the other hand , you don't have to find a
good value for A of the previous method. To find a local extreme of
the function ((x) , define a new function

g(x) = ((x) - e

where e is a number slightly beyond the estimated extreme value of
((x). If e is properly chosen , g(x) will approa ch zero near the
extreme of ((x) but will not equal zero. Use I SOLVE I to analyze g(x)
near the extreme. The desired result is Error 8 .

• If Error 8 is displayed , the number in the X-register is an x
value near the extreme. The number in the Z-register tells
roughly how far e is from the extreme value of ((x). Revise e to
bring it closer (but not equal) to the extreme value. Then use
I SOLVE I to examine the revised g(x) near the x value previously
found . Repeat this procedure until successive x values do not
differ significantly .

• If a root of g(x) is found, either the number e is not beyond the
extreme value of ((x) or else I SOLVE I has found a different
region where ((x) equals e. Revise e so that it is close to-but
beyond-the extreme value of ((x) and try I SOLVE I again. It
may also be possible to modify g(x) in order to eliminate the
dis tan t root.

f(x) f(x)

e

e

x x

24 Section 1: Using I SOLVE I Effective ly

Example: Solve t he previous example without calculating the
derivative ofthe rela tive fie ld intensity E.

The subroutine to calculate E and the required consta nts h ave been
en tered in the previous example.

In P rogra m mode, key in a subroutine th at subtracts an estimated
extreme number from the field intensity E. The extreme number
should be stored in a register so that it can be m a nually ch anged as
needed.

Keystrokes Display

wi P/ R I 000- Progra m mode.

[IJ ILBL I1 001-42.21 . 1 Begins with la bel.

I GSB ICID 002- 3212 Calculates E.
I RCL I9 003- 45 9

G 004- 30 Subtracts extreme
estimate.

wi RTN I 005- 4332

In Run mode, estimate the minimum intensity value by manua lly
sampling the function.

K eystrokes D isplay

Wi P/R I Run mode.

1o [IJI +RAOI 0 . '745
I ENTER I[IJ CID -0.1029

30 [IJI +RAO I 0.5236 Samples the function at

I ENTER I[IJCID -0.2028 10°, 30°, 50°,

5o [IJI +RAO I 0 .8727

I ENTER I[IJCID 0 .0405

Section 1: Using I SOLVE I Effectively 25

Based on these samples, try using an extreme estima te of -0.25 and
initial I SOLVE I estimates (in radians) near 100 and 300.

Keystrokes Display

.25 IcHSl l sTO I9 -0.2500 Stores extreme estimate.

.21 ENTER I 0 .2000

.6 0 .6 Initial estimates.

ITlI SOLVE 11 Error 8 No root found.

[±]I STol4 0.4849 Stores e estimate.

(]1]1 STo l5 0 .4698 Stores previous e estimate.

(]1] 0 .0457 Distance from extreme.

.90 0 .0411 Revises extreme estimate
ISTO l09 0 .0411 by 90 percent ofthe

distance.

I RcLi4 0.4849 Recalls e estimate.

I ENTER II ENTER IITlOO -0.2043 Calculates intensity E.
[±] 0 .0000 Recalls other e estimate,
I RCL l5 0 .4698 keeping first estimate in

V-register.

ITlI SOLVE 11 Error 8 No root found .

[±] 0.4898 e estimate.

[iliJ 0.4893 Previous e estimate.

[iliJ 0.4898 Recalls e estimate.

I ENTER II ENTER IITlOO -0.2043 Calculates intensity E.
[iliJ 0.4898 Recalls e value.

[]]I +DEG I 28.0660 Angle in degrees.

[]]I DEG I 28.0660 Restores Degrees mode.

The second intera tion produces two e estimates that differ in the
fourth decim al place. The field intensities E for the two iterations
are equal to four decimal places. Stopping at this point, a minimum
field intensity of -0.2043 is indicated at an angle of 28.06600. (This
angle differs from the previous solutions by about 0.0020.)

26 Section 1 Usi ng I SOLVE I Effectively

Applications

The following applications illustrate how you can use I SOLVE I to
simplify a calculation that would normally be difficult-finding an
interest rate that can't be calcul ated directly. Other applications
that use the I SOLVE I function are given in sections 3 and 4.

Annuities and Compound Amounts

This program solves a variety of financial problems involving
money, time, and interest. For these problems, you normally know
the values of three or four of the fo llowing variables and need to
find the value of another:

n The number of compounding periods. (For example, a 30
year loan with monthly payments has n =12 X 30 = 360.)

The interest rate per compounding period expressed as a
percent. (To calcul ate i, divide the annual percentage rate
by the number of compounding periods in a year. That is,
12% annual interest compounded monthly eq uals 1%
periodic interest.)

PV The present value of a series of future cash flows or the
initial cash flow.

PMT The periodic payment amount.

FV The future value. That is, the fina l cash flow (balloon
payment or remaining balance) or the compounded value
of a series of prior cash flows.

Section 1: Using I SOLVE I Effectively 27

Possible Problems Involving Annuities and
Compound Amounts

Allowable Typical Applications

Combination For Payments For Payments Initial

of at End at Beginning Procedure

Variables of Period of Period

n, i, PV,PMT Direct reduc- Lease. Use
(Enter any tion loan. Annuity due. ITl CLEAR I REG I
three and Discounted or set FV to zero.
calculate the note.
fourth .) Mortgage.

n ,i, PV, Direct reduc- Lease with None.
PMT,FV tion loan residual
(Enter any with value.
four and balloon Annuity due.
calculate the payment.
fifth.) Discounted

note.

n, i, PMT, FV Sinking fund . Periodic Use
(Enter any savings. ITl CLEAR I REG I
three and Insurance. or set PV to
calculate the zero.
fourth .)

n , i, PV, FV Compound growth. Use
(Enter any Savings. ITl CLEAR I REG I
three and or set PMTto
calculate the zero.
fourth.)

The program accommodates payments that are made at the
beginning or end of compounding periods. Payments made at the
end of compounding periods (ordinary annuity) are common in
direct reduction loans and mortgages. Payments made at the

28 Section 1: Using I SOLVE I Effectively

beginning of compounding periods (annuity due) are common in
leasing. For payments at the end of periods, clear flag O. For
payments at the beginning of periods, set flag O. If the problem
involves no payments, the status offlag 0 has no effect.

This program uses the convention that money paid out is entered
and displayed as a negative number, and that money received is
entered and displayed as a positive number.

A financial problem can usually be represented by a cash flow
diagram. This is a pictorial representation of the timing and
direction of financial transactions. The cash flow diagram has a
horizontal time line that is divided into equal increments that
correspond to the compounding period-months or years, for
example. Vertical arrows represent exchanges of money, following
the convention that an upward arrow (positive) represents money
received and a downward arrow (negative) represents money paid
out. (The examples that follow are illustrated using cash flow
diagrams.)

Money received

t t t t

J

2 3 4

Money paid out

Pressing IT] CLEAR I REG I provides a convenient way to set up the
calculator for a new problem. However, it isn't necessary to press
IT] CLEAR I REG I between problems. You need to reenter the values of
only those variables that change from problem to problem. If a
variable isn't applicable for a new problem, simply enter zero as its
value. For example, if PMT is used in one problem but not used in
the next, simply enter zero for the value of PMT in the second
problem.

Section 1: Using ! SOLVE ! Effectively 29

The basic eq uation used for the financial calculations is

PMTA
PV + [1 - (1 + iIlOOr"] + FV(l + i/ l00rn = 0

i / l00

where i ,.. 0 and

{
I for end-of-period payments

A = 1 + il 100 for beginning-of-period payments.

The program h as the following characteristics :

• ! SOLVE I is used to find i. Because this is an iterative function ,
solving for i takes longer than finding other variables. It is
possible to define problems which cannot be solved by this
technique. If! SOLVE I can't find a root, Error 4 is displ ayed .

• When finding any of the variables listed on the left below,
certain conditions result in an Error 4 display:

n

PV
PMT

FV

PMT = -PViI(100 A)
(PMT A - FV i/ l00) / (PMT A + PV ill 00) ,;;; 0
i';;;-100
I SOLVE I can't find a root
i';;;-100
n=O
i=O
i ,;;; -100
i';;;-100

• If a problem has a specified interest rate of 0, the program
generates an Error 0 display (or Error 4 when solving for
PMT).

• Problems with extremely large (greater than 106) or extremely
small (less than 10-6) values for nand i may give invalid
results:

• Interest problems with balloon payments of opposite signs to
the periodic payments may have more than one mathemati­
cally correct answer (or no answer at a ll). This program may
find one of the a nswers but h as no way of finding or
indicating other possibilities .

Keystrokes

W!P/RI

OJ CLEAR ! PRGM I

Display

Program mode.

000-

30 Section 1. Using I SOLVE I Effectively

Keystrokes Display

mILB L I~ 001-42,21 ,11 n routine.

ISTO l l 002- 44 1 Stores n .

IR/s l 003- 31

IGSB l l 004- 32 1 Calculates n.

wlLSTx l 005- 4336

IRCL I00 006-45,20, 0

I RCL I5 007- 45 5

~ 008- 34

G 009- 30 Calculates
FV - 100 PMT A li.

wl LSTx l 010- 4336

IRCL IG 3 011-45,40, 3 Calculates
PV + 100 PMT A l i.

wlx =o l 012- 4320 Tests
PMT = - PVi/ (lOOA).

IGTO IO 013- 22 0
G 014- 10

ICHSI 015- 16

Wl TESTI4 016-43,30, 4 Tests x :S;; O.

IGTOIO 017- 22 0
w[ill] 018- 4312

I RCL I6 019- 45 6

w[ill] 020- 4312

G 021- 10

ISTOl l 022- 44 1

WI RTN I 023- 4332

ml LBL llID 024-42,21 ,12 i routine.

ISTO l2 025- 44 2 Stores i .

IR/s l 026- 31
[] 027- 48
2 028- 2

IENTER I 029- 36

IEEX I 030- 26

Secti on 1: Using I SO LVE I Effec tive ly 31

Keystrokes Display

ICHS I 031- 16

3 032- 3

W[ill1 033-43. 5. Clears flag 1 for I SOLVE I
subroutine.

[Ill SOLVE 13 034-42.10. 3
IGTO l4 035- 22 4

IGTO IO 036- 22 0

[Ill LBL 14 037-42.21. 4

IEEX I 038- 26

2 039- 2

0 040- 20 Calcula tes i.

ISTO I2 041- 44 2

WIRTN I 042- 4332

[Ill LB L![I] 043-42.21 .13 PVroutine.

ISTO I3 044- 44 3 Stores PY.

IRls l 045- 31
IGSB I1 046- 32 1 Calculates PV.

IGSB I2 047- 32 2
ICHS I 048- 16
ISTO l3 049- 44 3

WI RTN I 050- 4332
[]J I LBL I [QJ 051-42.21.14 PMTroutine.
ISTO I4 052- 44 4 Stores PMT.
IRls l 053- 31
1 054- Calcul a tes PMT.
ISTO I4 055- 44 4
IGSB I1 056- 32
I RCL! 3 057- 45 3
IGSB I2 058- 32 2

~ 059- 34

G 060- 10
ICHS I 061- 16
ISTO I4 062- 44 4
WI RTN I 063- 4332

32 Section 1: Using I SOLVE I Effectively

Keystrokes Display

[Ill LBL 1m 064-42.21.15 FVroutine.

ISTO I5 065- 44 5 Stores FV.

IRl s l 066- 31

IGSB I1 067- 32 Calcula tes FV.

IRCL IG 3 068-45,40. 3

IRCL IG] 7 069-45.10. 7

ICHS I 070- 16

ISTO I5 071- 44 5

[]] I RTN I 072- 4332

[Il ILBL I1 073-42.21 .
[]][@ 1 074-43. 4 . Sets fl ag 1 for

subroutine 3.

1 075-
IRCLI2 076- 45 2

[]]oo 077- 4314 Calcula tes il l00.

[Il l LBL 13 078-42.21 . 3 ISOLVE I
subroutine.

ISTO la 079- 44 8

1 080-

ISTO lo 081 - 44 0

G 082- 40
[]]I TESTI4 083-43.30. 4 Tests i ,:;; 100.

IGTOIO 084- 22 0

ISTOl6 085- 44 6

[]][TI] o 086-43. 6 . 0 Tests for end·of-period
payments .

ISTO lo 087- 44 0

I RCLI1 088- 45

ICHSI 089- 16

0 090- 14 Calculates (1 + i/ l00rn
.

ISTO I7 091- 44 7
1 092-
[ili] 093- 34

G 094- 30 Calculates
1 - (1 + iIlOOr".

Keystrokes

w lx=o l

IGTOIO

IRCL I0 0

IRCL I4

IRCL IG 8

o
w[fl] 1

WIRTNI

IRCL IG 3

[Il l LBL 12
I RCL l s

IRCLI0 7

G

Section 1: Using I SOLVE I Effectively

Display

095- 4320 Tests i = 0 or n = O.

096- 22 0

097-45,20, 0

098- 45 4

099-45,10, 8

100- 20

101-43, 6, 1 Tests flag 1 set.

102- 4332

103-45,40, 3 I SOLVE I subroutine
continues .

104-42,21, 2

105- 45 S

106-45,20, 7 Calculates
FV(l + i / 100r n .

107- 40

wi RTN I 108- 43 32 I SOLVE I subroutine ends.

La bels used: A, B, C, D, E , 0,1,2,3, a nd 4.

33

Registers used: Ro (A), RI (n), R2 (i), R3 (PV), R4 (PMT), R5 (FV),
Rt; , R7 , and Rs·

To use the program:

1. Press 8 [Il l DIM I [ill] to reserve Ro through Rs.

2. Press [Ill USER I to activate User mode.

3. If necessary, press CD CLEAR I REG I to clear a ll of the financial
va riables. You don't need to clear the registers if you intend
to specify all ofth e values.

4. Set flag 0 according to how payments are to be figured:

• Press wiIEJ 0 for payments at the end of the period.

• Press W [§II 0 for payments at the beginning of the
period.

5. Enter the known values of the financia l variables:

• To enter n , key in the value and press 0 .
• To enter i , key in the value and press []].

34 Section 1: Using I SOLVE I Effectively

• To enter PV, key in the value and press [Il.

• To enter PMT, key in the value and press [QJ.

• To enter FV, key in the value and press W.
6. Calculate the unknown value:

• To calcula te n, press 0 1 RIS I.

• To calculate i, press []]I RIS I.

• To calculate PV, press [Il l RIS I.

• To calculate PMT, press [QJI RIS I.

• To calculate FV, press wi RIS I.
7. To solve another problem, repeat steps 3 through 6 as

needed. Be sure that any variable not to be used in the
problem has a value of zero .

Example: You place $155 in a savings account paying 5"1<1%
compounded monthly. What sum of money can you withdraw at
the end of9 years?

?
FV

r--I---I-----l- i ~ 5,:5 ~
J 2 3 106 1 07 108

PV
-155

Keystrokes

mlp/RI

[IJ CLEAR I REG I

[IJ[£02
[IJlusER I

mCITl o
9 1ENTER I1200

Display

Run mode.

Clears financial
variables.

Activates User mode.

Ordinary a nnuity .

108.00 Enters n = 9 X 12.

Section 1: Using 1 SOLVE 1 Effectively 35

Keyst r okes

5.75 1 ENTER 112 G[[]
155 1cHS I(9

D is play

0 .48

-155 .00

259 .74

Enters i = 5.75/ 12.

Enters PV = - 155 (mon ey
paid out).

Calculates FV.

If you desire a sum of $275, wh at would be th e req uired interest
rate?

Keystrokes

275 W

[[]I Rl s l

12 0

Dis play

275 .00

0 .53

6.39

Enters FV = 275.

Calculates i.

Calculates a nnual interest
rate.

Example: You receive $30,000 from the bank as a 30-year, 13%
mortgage. Wha t mon thly payment must you make to th e bank to
fully a mortize th e mortgage?

30,000
PV

. 13
/= -

PMT
?

K eystr o k es Dis play

CD CLEAR 1 REG 1

30 1 ENTER 112 0~ 360.00

13 1 ENTER 112 G[[] 1.08

12

30000 (9 30,000.00

@]I Rl s l -331 .86

l 358 l 359 l 360 ~

Clears financia l variables .

Enters n = 30 X 12.

E nters i = 13/ 12.

Enters PV = 30,000.

Calculates PMT
(money paid out).

36 Section 1: Using I SOLVE I Effectively

Example: You offer a loan of $3,600 that is to be repaid in 36
monthly payments of $100 with an annual interest rate of 10%.
What balloon payment amount, to be paid coincident with the 36th
payment, is required to pay off the loan?

PV
-3600

100
PMT

. 10 ,=-
12

Keystrokes Display

ill CLEAR I REG I
36 ~ 36 .00

lo l ENTER I12 GCID 0 .83

36001cHSI© -3600.00

100 [QJ 100.00

[Ill RIS I 675 .27

?
FV

t t t I
34 35 36

Clears financial variables.

Enters n = 36.

Enters i = 10/ 12.

Enters PV = -3600
(money paid out).

EntersPMT= 100
(money received).

Calculates FV.

The final payment is $675.27 + $100.00 = $775.27 because the final
payment and balloon payment are due at end of the last period.

Example: You're collecting a $50,000 loan at 14% annual interest
over 360 months. Find the remaining balance after the 24th
payment and the interest accrued between the 12th and 24th
payments.

You can use the program to calcul ate accumulated interest and the
remaining balance for loans. The accumulated interest is equal to
the total payments made during that time less the principal
reduction during that time. The principal reduction is the
difference between the remaining balances at the start and end of
the period.

Section 1: Using I SOLVE I Effectively 37

First, calculate the payment on the loan.

Keystrokes Display

ITl CLEAR I REG I
3600 360.00

141ENTERI12GlID 1 .17

50000 I CHS I~ -50.000 .00

[Q]I RIS I 592.44

Clears financial variables.

Enter n = 360.

Enters i =14112.

Enters PV = -50,000.

Calculates P MT.

Now calculate the remaining balance at month 24.

Keystrokes

240

[IJIRls l

Display

24.00

49.749.56

Enters n = 24.

Calculates FV at
month 24.

Store this remaInIng balance, then calculate the remaInIng
balance at month 12 and the principal reduction between
payments 12 and 24.

Keystrokes

I STO IITl
120

[IJIRIS!

Display

49.749.56
12.00

49.883.48

49.749 .56

133 .92

Enters n = 12.

Calculates FV at
month 12.

Recalls FV at month 24.

Calculates principal
reduction.

The accrued interest is the value of 12 payments less the principal
reduction.

Keystrokes

[RCL!4

120

Display

592 .44

7.109 .23

6.975.31

Recalls PMT.

Calculates value of
payments.

Calculates accrued
interest.

38 Section 1: Using 1 SOLVE I Effectively

Example: A leasing firm is considering the purchase of a
minicomputer for $63,000 and wants to achieve a 13% a nnual yield
by leasing the computer for a 5-year period. At the end of the lease
the firm expects to sell t he computer for at least $10,000. What
monthly payment should the firm ch arge in order to achieve a 13%
yield? (Because the lease paymen ts a re due at the beginning of
each month , be sure to set fl ag 0 to specify beginning-of-period
payments.)

PV
- 63,000

Keystrokes

ill CLEAR 1 REG 1

5 1ENTER I 12 0~

13 1 ENTER 11 2 GJOO
63000 1 CHS I~

1 0000 [[]

@]I Rls l

?
PMT

2 3
. 13 ,=-

12

Display

60.00

1.08

-63,000 .00

10,000.00

1 ,300.16

t t
58 59

t

10,000
FV

I
60

Clears financial
variables.

Specifies beginning-of­
period payments.

Enters n = 5 X 12.

Enters i = 13/ 12.

Enters PV = -63,000.

E nters FV = 10,000.
Calcul a tes PMT.

If the price of the com puter increases to $70,000, what should the
payments be?

Keystrokes

70000 1 CHS I~

@]IRls l

Display

-70,000 .00

1.457.73

Enters PV = -70,000.

Calcul ates PMT.

Section 1: Using 1 SOLVE 1 Effectively 39

If the payments were increased to $1,500, what would the yield be?

Keystrokes Display

1500 [Q] 1,500.00 Enters PMT = 1500.

001 RIS 1 1 .18 Calculates i (monthly).

14.12

14.12

Calculates annual yield.

Deactivates User mode.

Discounted Cash Flow Analysis

This program performs two kinds of discounted cash flow analysis:
net present value (NPV) and internal rate of return (lRR). It
calculates NPV or IRR for up to 24 groups of cash flows.

The cash flows are stored in the two-column matrix C. Matrix C
has one row for each group of cash flows . In each row of C, the first
element is the cash flow amount; the second element is the number
of consecutive cash flows having that amount (the number of flows
in that group.) The first element of C must be the amount of the
initial investment. The cash flows must occur at equal intervals; if
no cash flow occurs for severa l time periods, enter 0 for the cash
flow amount and the number of zero cash flows in that group.

After all the cash flows have been stored in matrix C, you can enter
an assumed interest rate and calculate the net present value (NPV)
of the investment. Alternatively, you can calculate the internal
rate of return (lRR). The IRR is the interest rate that makes the
present value of a series of cash flows equal to the initial
investment. It's the interest rate that makes the NPV equal zero.
IRR is also called the yield or discounted rate of return.

The fundamental equation for NPV is

k -~n,
"\' (1 - (1 + i ll 00)-nj) L. . L.J CF (1 + i l l00) , <}

j = 1} i l l00

k NPV=

LCFjnj
j = l

where L n, is defined as -l.
/< 1

fori > -100
i#O

for i = 0

40 Section 1: Using 1 SOLVE 1 Effectively

The program uses the convention that money received is entered
and displayed as a positive number, and that money paid out is
entered and displayed as a negative number.

The program has the following characteristics:

• The cash flow sequence (including the initial investment)
must contain both a positive flow and a negative flow. That is ,
there must be at least one sign change.

• Cash flows with multiple sign changes may have more than
one solution. This program may find one solution, but it has
no way of indicating other possibilities.

• The IRR calculation may take several minutes (5 or more)
depending of the number of cash flow entries.

• The program displays Error 4 if it is unable to find a solution
for IRR or if the yield i.;; -100% in the NPV calculation.

Keystrokes Display

wlP/RI Progra m mode.

[IJ CLEAR 1 PRGM I 000-

[IJ 1 LBL I [6] 001-42,21,11 NPV routine.

IEEX I 002- 26
2 003- 2
G 004- 10 Calculates IRRIlOO.

IGSBI2 005- 32 2
IRlsl 006- 31
[IJ I LBL I[[] 007-42,21,12 IRR routine.

1 008- 1
I ENTER I 009- 36
IEEXI 010- 26
ICHsl 011- 16
3 012- 3
[IJI SOLVE 12 013-42,10, 2
IGTOll 014- 22 1
IGTO IO 015- 22 0 Branch for no IRR

solution.

[IJILBLil 016-42,21, 1
IEExl 017- 26

Section 1: Using I SOLVE I Effectively 41

Keystrokes Display

2 018- 2

0 019- 20
IRls l 020- 31
ITlI LBL 12 021-42.21 . 2 Calculates NPV.

w[ITJo 022-43. 5. 0
ISTO l2 023- 44 2
1 024-
ISTOl4 025- 44 4

G 026- 40 Calculates 1 + IRRI 100.

Wl TEST I4 027-43.30. 4 Tests IRR ,;;; -100.

IGTO IO 028- 22 0 Branch for IRR ,;;; -100.

ISTO l3 029- 44 3
0 030- 0
ISTOl5 031- 44 5
ITliMATRIX l 1 032-42.16. 1
ITlI LBLi 3 033-42.21 . 3
w[TI]o 034-43. 6. 0 Tests if a ll flows used.

IGTO l7 035- 22 7 Branch for a ll flows used.

IGSB I6 036- 32 6
I RcLi2 037- 45 2
wlx=ol 038- 4320 Tests IRR = O.

IGTOl4 039- 22 4 Branch for IRR = O.

1 040-
G 041- 40
IGSB I6 042- 32 6
ICHSI 043- 16
[Z] 044- 14
ISTO l4 045- 44 4
1 046-
~ 047- 34
G 048- 30
IRCL IG 2 049-45.10. 2
IRCL I03 050-45.20. 3
IGTO l5 051- 22 5
ITlI LBL I4 052-42.21. 4
~ 053- 34
IGSB I6 054- 32 6
ITlI LBL 15 055-42.21. 5

42 Section 1: Using I SOLVE I Effectively

Keystrokes

o
ISTO IG 5
IRCLI4
ISTO I0 3
IGTO l3
[Ill LBL 16
[Il l USER II RcLl [IJ
[Il l USER I
[]]I RTN I
[]][gJO
[]]I RTN I
[Ill LBL 17
IRCLI5
[]] IRTN I

Display

056- 20
057-44.40, 5
058- 45 4
059-44,20, 3
060- 22 3
061-42,21, 6 Recalls cash flow element.
062u 4513

063- 4332
064-43, 4, 0 Sets flag 0 iflast element.
065- 4332
066-42,21, 7
067- 45 5 Recalls NPV.
068- 4332

Labels used: A, B, and 0 through 7.

Registers used: Ro through R5.

Matrix used: C.

To use the discounted cash flow analysis program:

1. Press 5 [Il l DIM ICillJ to a llocate registers Ro through R5.

2. Press [Ill USER I to activate User mode (unless it's a lready
active).

3. Key in the number of cash flo w groups, then press I ENTER 12
[Il l DIM I[IJ to dimension matrix C.

4. Press [Il l MATRIX 11 to set the row and column numbers to 1.

5. For each cash flow group:
a. Key in the amount and press I STO I[IJ , then
b. Key in the n urn ber of occurrences and press I STO I [IJ .

6. Calculate the desired parameter:
• To calculate IRR , press [ID.
• To calculate NPV, enter periodic interest rate i in percent

and press 0 . Repeat for as many interest rates a s
needed.

7. Repeat steps 3 through 6 for other sets of cash flows.

Secti on 1: Using I SOLVE I Effectively 43

Example: An investor pays $80,000 for a duplex that he intends
to sell after 7 years. He must spend some money the first year for
repairs. At the end of the seventh year the duplex is sold for
$91,000. Will he achieve a desired 9% after-tax yield with the
following after-tax cash flows?

91,000

1 7

-600

-80,000

Keystrokes Display

wlP/RI Run mode.

ITl[@2
5 ITlI DIM I[]JI) 5.00 Reserve registers Ro

through R5.

61ENTER I2 2
ITlIDIMI~ 2 .00
ITlI MATRIX 11 2 .00
ITlI USER I 2.00
80000 I CHS II STO I~ -80,000.00 Initial investment.

1 IsTO I~ 1.00
600 I CHS II STO I~ -600.00
1 ISTOI~ 1.00
6500 1sTO I[IJ 6,500 .00
1 I sTOI~ 1.00
80001sTO I~ 8,000.00
2IsTOI~ 2.00
75001sTO I~ 7 ,500.00
2IsTO I~ 2.00
91000 1 sTO I~ 91,000.00
1 ISTO I~ 1 .00
9 9 Enters assumed yield.

0 -4,108 .06 NPV.

44 Section 1: Using I SOLVE I Effectively

Since the NPV is negative, the investment does not achieve the
desired 9% yield. Calculate the IRR.

Keystrokes

lID
Display

8.04 IRR (after about 8
minutes).

The IRR is less than the desired 9% yield.

Example: An inves tment of $620,000,000 is expected to have a n
annual income stream for the next 15 years as shown in the
diagram.

100,000,000

~ ... t j 1 2 10

t t
11

-620,000,000

What is the expected rate of return?

Keystrokes

3 1ENTER I2

OJ~~
OJI MATRIX 11
620000000 icHS I
I STO I~
1 I sTO I~
100000000 1 STO I~
10 1 sTO I~
5000000 1 sTO I~
5 I sTO I~

Display

2
2.00
2.00

-620,000,000
-620,000,000.0

1.00
100,000,000.0
10.00
5,000,000.00
5.00

5,000,000

t f t
12 13 14

lID 10.06 IRR .

OJ[lliJ4 10.0649

t
15

OJI USER 1 10.0649 Deactivates User mode.

Section 2

WorkingWith[E]

The HP-15C gives you the ability to perform numerical integration
using 0 . This section shows you how to use 0 effectively and
describes techniques that enable you to handle difficult integrals.

Numerical Integration Using [ill
A calculator using numerical integration can almost never
calculate an integral precisely. But the 0 function asks you in a
convenient way to specify how much error is tolerable. It asks you
to set the display format according to how many figures are
accurate in the integrand (x). In effect, you specify the width of a
ribbon drawn around the graph of (x). The integral estimated by
o corresponds to the area under some unspecified graph lying
entirely within the ribhon. Of course, this estimate could vary by as
much as the area of the ribbon, so 0 estimates this area too. If I is
the desired integral, then

1 = (area urlder a ~raph) ± ('/2 area of)
drawn m the nbbon the ribbon

The HP-15C places the first area estimate in the X-register and the
second-the uncertainty-in the Y-register.

f(x)

f(x)

...
--+-----~----------------~------x

a b

45

46 Section 2 Work ing With [flJ

For example, ((x) might represent a physical effect whose
magnitude can be determined only to within ± 0.005. Then the
value calculated as ((x) has an uncertainty of 0.005. A display
setting of ffi8]2 tells the calculator that decimal digits beyond the
second can't matter. The calculator need not waste time estimating
the integral with unwarranted precision. Instead, the calculator
can more quickly give you a fair idea of the range of values within
which the integral must lie.

The Hp·15C doesn't prevent you from declaring that ((x) is far
more accurate than it really is. You can specify the display setting
after a careful error analysis, or you can just offer a guess. You
may leave the display set to 1 5CI14 or ffi8]4 without much further
thought. You will get an estimate of the integral and its
uncertainty, enabling you to interpret the result more intelligently
than if you got the answer with no idea of its accuracy or
inaccuracy.

The [flJ algorithm uses a Romberg method for accumulating the
value of the integral. Several refinements make it more effective.

Instead of using uniformly spaced samples, which can induce a
kind of resonance or aliasing that produces misleading results
when the integrand is periodic, [flJ uses samples that are spaced
nonuniformly. Their spacing can be demonstrated by substituting,
say,

3 1
x = -u - -u3

2 2

into
1 = f1 ((x)dx = f1 ((~u - 2.u3) ~ (1 - u2) du

-1 -1 2 2 2

and sampling u uniformly. Besides suppressing resonance, the
substitution has two more benefits. First, no sample need be drawn
from either end of the interval of integration (except when the
interval is so narrow that no other possibilities are available). As a
result, an integral like

Section 2: W orking With CZD 47

(3 .
), SIn X dx

o x

won't be interrupted by division by zero at an endpoint. Second, CZD
can integrate functions that behave like JiX=(iT, whose slope is
infinite at an endpoint. Such functions are encountered when
calculating the area enclosed by a smooth, closed curve.

Another refinemen t is that CZD uses extended precision, 13
significant digits , to accumulate the internal sums. This allows
thousands of samples to be accumulated, if necessary, without
losing to roundoff any more information than is lost within your
function subroutine.

Accuracy of the Function to be Integrated
The accuracy of an integral calcu lated using CZD depends on the
accuracy of the function calculated by your subroutine. This
accuracy, which you specify using the display format, depends
primarily on th ree considerations:

• The accuracy of empirical constants in the function.

• The degree to which the fun ction may accurately describe a
physical situation.

• The extent of round·off error in the internal calculations of the
calculator.

Functions Related to Physical Situations

Functions like cos(40 - sin 0) are pure mathematical functions. In
this context, this means that the functions do not contain any
empirical constants, and neither the variables nor the limits of
integration represent actual physical quantities. For such
functions, you can specify as many digits as you want in the
display format (up to nine) to achieve the desired degree of
accuracy in the integral.* All you need to consider is the trade·off
between the accuracy and calculation time.

* Provided that (x) is still calculated accurately, despite round-off error, to the number of
digits shown in the display.

48 Section 2: Working With CZD

There are additional considerations, however, when you're
integrating functions relating to an actual physical situation.
Basically, with such functions you should ask yourself whether the
accuracy you would like in the integral is justified by the accuracy
in the function. For example, if the function contains empirical
constants that are specified to only, say, three significant digits , it
might not make sense to specify more than three digits in the
display format.

Another important consideration-and one which is more subtle
and therefore more easily overlooked-is that nearly every
function relating to a physical situation is inherently inaccurate to
a certain degree, because it is only a mathematical model of a n
actual process or event. A mathematical model is itself an approxi­
mation that ignores the effects of known or unknown factors which
are insignificant to the degree that the results are still useful.

An example of a mathematical model is the normal distribution
function

which has been found to be useful in deriving information
concerning physical measurements on living organisms, product
dimensions, average temperatures, etc. Such mathematical descrip­
tions typically are either derived from theoretical considerations or
inferred from experimental data. To be practially useful, they are
constructed with certain assumptions, such as ignoring the effects
of relatively insignificant factors . For example, the accuracy of
results obtained using the normal distribution function as a model
of the distribution of certain quantities depends on the size of the
population being studied. And the accuracy of results obtained
from the equation s = So - 1/ 2gt2, which gives the height of a falling
body, ignores the variation with altitude of g, the acceleration of
gravity.

Thus, mathematical descriptions of the physical world can provide
results of only limited accuracy. If you calculated an integral with
an apparent accuracy beyond that with which the model describes

Section 2: Working With 0 4 9

the actual behavior of the process or event, you would not be
justified in using the calcul ated value to the fu ll apparent accuracy.

Round-Off Error in Internal Calculations

With any computational device-including the HP-15C-calcu­
lated results must be "rounded off' to a finite number of digits (10
digits in the HP-15C). Because of this round-off error, calculated
results-especially results of evaluating a function that contains
several mathematical operations-may not be accurate to all 10
digits th at can be displayed . Note that round-off error affects the
evaluation of any mathematical expression, not just the evaluation
of a function to be integrated using 0. (Refer to the appendix for
additional information.)

If ((x) is a function relating to a physical situation , its inaccuracy
due to round-off typically is insignificant compared to the
inaccuracy due to empirical constants, etc. If ((x) is what we have
called a pure mathematical function, its accuracy is limited only by
round-off error. Generally, it would require a complicated an alysis
to determine precisely how many digits of a calculated function
might be affected by round-off. In practice, its effects are typically
(and adeq uately) determined through experience rather than
a nalysis.

In certain situations, round-off error can cause peculiar results,
particularly if you should compare the results of calculating
integrals that are equivalent mathematically but differ by a
transformation of variables. However, you are unlikely to
encounter such situations in typical applications.

Shortening Calculation Time
The time required for 0 to calculate an integral depends on how
soon a certain density of sample points is acl.ieved in the region
where the fun ction is interesting. The calculation of the integral of
any function will be prolonged if the interval of integration
includes mostly regions where the function is not interesting.
Fortunately, if you must calculate such an integral, you can modify
the problem so that the calcu lation time is reduced. Two such
techniques are subdividing the interval of integration and
transformation of variables.

50 Section 2: Working With em
Subdividing the Interval of Integration

In regions where the slope of ((x) is varying appreciably, a high
density of sample points is necessary to provide an approximation
that changes insignificantly from one iteration to the next.
However, in regions where the slope of the function stays nearly
constant, a high density of sa mple points is not necessary. This is
because evaluating the function at additional sample points would
not yield much new information about the function , so it would not
dramatically affect the disparity between successive approxima­
tions. Consequently, in such regions an approximation of
comparable accuracy could be achieved with substantially fewer
sample points: so much of the time spent eva luating the function in
these regions is wasted. When integrating such functions, you ca n
save time by using the following procedure:

1. Divide the interval of integration into subintervals over
which the function is interesting and subintervals over
which the function is uninteresting.

2. Over the subintervals where the function is interesting,
calculate the integral in the display format corresponding to
the accuracy you would like overall .

3. Over the subintervals where the function either is not
interesting or contributes negligibly to the integral, calculate
the integral with less accuracy, that is, in a display format
specifying fewer digits.

4. To get the integral over the entire interval of integration, add
together the approximations and their uncertainties from
the integrals calculated over each subinterval. You can do
this easily using the I 2 + I key.

Before subdividing the integration, check whether the calculator
underflows when evaluating the function around the upper (or
lower) limit of integration.* Since there is no reason to evaluate the
function at values of x for which the calculator underflows, in some
cases the upper limit of integration can be reduced , saving
considerable calculation time.

* When th e ca lculation of any quantity would res ul t in a num ber less than 10-99, the
result is repl aced by zero. This co ndition is known as underflow.

Section 2: Working With [Z£J 51

Remember that once you have keyed in the subroutine that
evaluates ((x), you can calculate ((x) for any value of x by keying
that value into the X-register and pressing I ENTER II ENTER II ENTER I
I GSB I followed by the label of the subroutine.

If the calculator underflows at the upper limit of integration, try
smaller numbers until you get closer to the point where the
calculator no longer underflows.

For example, consider the approximation of

("'xe-Xdx JO .

Key in a subroutine that evaluates the function ((x) = xe-x.

Keystrokes

wl P/ RI

OJ CLEA R I PRGM I

OJILBL ll
ICHS I

~
o
WIRTN I

Display

Program mode.

000- Clears program memory.

001-42,21, 1
002- 16
003- 12
004- 2 0
005 - 4 3 32

Set the calculator to Run mode and set the display format to Isc113.
They try several values of x to find where the calculator underflows
for your function.

Keystrokes Display

WIP/RI Run mode.
OJiscI 13 Sets format to ~3.
I EEXl 3 03 Keys 1000 into X·register.

I ENTER II ENTER II ENTER I 1 .000 03 Fills the stack with x .

IGSBll 0 .000 00 Calculator underflows at
x = 1000.

3001 ENTER I 3 .000 0 2 Tries a smaller value of x.

I ENTER II ENTER I 3 .000 02
IGSBll 0 .000 0 0 Calculator still

underflows.
200iENTER I 2.000 02 Try a smaller value of x.

52 Section 2: Working With IE]

Keystrokes

I ENTER II ENTER I
IGsa l1

225 1ENTER I
I ENTER II ENTER I
IGsa l1

Dis play

2.000 02
2 .768 - 8 5

2 .250 02
2.250 02
4 .324 -96

Calculator doesn't
underflow at x = 200; try a
number between 200 and
250.

Calculator is close to
underflow.

At this point, you can use I SOLVE Ito pinpoint the smallest value of x
at which the calculator underfl ows.

Keystrokes Dis play

(K!J 2 .250 02 Roll down stack until the
last value tried is in the x-
and Y-registers.

CDI SOLVE 11 2 .280 02 The minimum value of x
at which the calculator
underflows is about 228.

You've now determined that you need integrate only from 0 to 228.
Since the integrand is interesting only for values of x less than 10,
divide the in terval of integration there. The problem has now
become:

100 1228 110 J228
xe-Xdx = xe-Xdx = xe-Xdx + xe-Xdx.

o 0 0 10

Keystrokes Dis play

7 CD I DIM ICillJ 7 .000 00 Allocates statistical
storage registers.

CD CLEAR [E) 0 .000 00 Clears statistical storage
registers.

o I ENTER I 0 .000 00 Keys in lower limit of
integration over first
subinterval.

10 10 Keys in upper limit of
integration over first
subinterval.

Section 2: Working With CZD 53

Keystrokes Display

[IJCZD 1 9.995 -01 Integral over (0, 10)
calculated in ISCI13.

CEl 1.000 00 Sum approximation and
its uncertainty in registers
R3 and R5.

~ 1.841 -04 Uncertainty of
approximation.

[!jJJIR+ I 1.000 01 Roll down stack until
upper limit offirst
integral appears in X·
register.

228 228 Keys upper limit of second
integral into X-register.
Upper limit offirst
integral is lifted into Y-
register, becoming lower
limit of second integral.

[IJISCIlo 2. 02 Specifies I SCllo display
format for a quick
calculation over (10,228).
If the uncertainty ofthe
approximation turns out
not to be accurate enough,
you can repeat the
approximation in a
display format specifying
more digits.

[IJCZD 1 5. -04 Integral over (10, 228)
calculated in I SCllo.

[IJlscl13 5.328 -04 Changes display format
back to I SC113.

~ 7.568 -05 Checks uncertainty of
approximation. Since it is
less than the uncertainty
ofthe approximation over
the first subinterval,
I SCI I 0 yielded a n
approximation of
sufficient accuracy.

54 Section 2: Working With CZiJ

Keystrokes Display

~ 5 .328 -04 Returns approximation
and its uncertainty to the
x- a nd V-registers,
respectively, before
summing them in
statistical storage
registers.

I ~ + I 2 .000 00 Sums approximation and
its uncertainty.

IRCLII ~ + I 1 .000 00 Integral over total
interval (0, 228) (recalled
from R3).

~ 2 .598 -04 Uncertainty of integral
(from R5).

Transformation of Variables

In many problems where the function cha nges very slowly over
most of a very wide interval of integration, a suitable transfor­
mation of variables may decrease the time required to calculate the
in tegral.

For example, consider again the integral

Let

Then

and

Substituting,

x = -31n U

du
dx = -3-.

u

J, OOxe'Xdx = J :o'~(-3 In U)(U3)(_3dU)
o e U

= 1
1

0
9u21n u duo

Key in a subroutine that evaluates the function f(u) = 9u21n U.

Keystrokes

Wl P/ RI

ITJI LBL 13
w[ill]
[ili]
w[ZJ
o
9

o
WI RTN I

Section 2 : Working With em 55

Display

000- Program mode.

001-42.21. 3
002- 43 12
003- 34
004- 43 11
005- 20
006- 9
007- 20
008- 4332

Key in th e limits of integration , then press ITJem 3 to calculate the
integral.

Keystrokes Display

WI P/R I Run mode.

1 I ENTER I 1 .000 00 Keys in lower limit of
integration.

0 0 Keys in upper limit of
integration.

ITJem 3 1.000 00 Approximation to
equivalent integral.

[ili] 3 .020 -04 Uncertainty of
approximation.

The approximation agrees with the value calculated in the
previous problem for the same integral.

Evaluating Difficult Integrals
Certain conditions can prolong the time required to evaluate an
integral or can ca use inaccurate results. As discussed in the
HP-15C Owner's Handbook, these conditions are related to the
nature of the in tegrand over the interva l of integration.

One class of integrals that a re difficult to calculate is improper
integra ls. An improper integral is one that involves 00 in at least
one of the fo llowing ways :

56 Section 2: Working With 0
• One or both limits of integration are ±oo, such as r: e-

u2
du = Vrr.

• The integrand tends to ±oo someplace III the range of
integration, such as

• The integrand oscillates infinitely rapidly somewhere in the
range of integration, such as

f01 cos (In u) du = 112.

Equally troublesome are nearly improper integrals, which are
characterized by

• The integrand or its first derivative changes wildly within a
relatively narrow subinterval of the range of integration, or
oscillates freq uently across that range.

The HP-15C attempts to deal with certain of the second type of
improper integral by usually not sampling the integrand at the
limits of integration.

Because improper and nearly improper integrals are not
uncommon in practice, you should recognize them and take
measures to evaluate them accurately. The following examples
illustrate techniques that are helpful.

Consider the integrand

f
- J -21n coS(x2)

(x) - 2 .
X

This function loses its accuracy when x becomes small. This is
caused by rounding cos(x2) to 1, which drops information about
how small x is . But by using u = cos(x2), you can evaluate the
integrand as

f(X) ={~
cos-1 U

ifu = 1

if u ~ 1.

Section 2: Working With [EJ 57

Although the branch for u = 1 adds four steps to your subroutine,
integration near x = 0 becomes more accurate.

As a second example, consider the integral

(l(JX 1) J, --- -- dx o x - 1 In x .

The derivative ofthe integrand approaches 00 as x approaches 0, as
shown in the illustration below. By substituting x = u2, the
function becomes more well behaved, as shown in the second
illustration. This integral is easily evaluated:

(1 (2U2 u) J I ------ - -- du
o (u + l)(u - 1) In u .

Don't replace (u + l)(u - 1) by (u2 - 1) beca use as u approaches I,
the second expression loses to roundoff ha lf of its significant digits
and introduces to the integrand's graph a spike near u = 1.

0.1
0.1 u

(u + 1)(u - 1) I n(u)

Ol+-~------~--X '~-------~u
o .

As another example, consider a function whose graph has a long
tail that stretches out many, many times as far as the main " body"
(where the graph is interesting)-a function like

.2
((x) = e-' or g(x) = x 2 + 10-10'

58 Section 2 Working With CZiJ

Thin tails, like that of ((x) , can be truncated without greatly
degrading the accuracy or speed of integration. But g(x) has too
wide a tail to ignore when calculating

ittg(X) d X

if t is large.

For such functions, a substitution like x = a + b tan u works well,
where a lies within the graph's m ain " body" a nd b is roughly its
width . Doing this for ((x) from a bove with a = 0 a nd b = 1 gives

(t (tan-It
J 0 ((x) dx = J 0 e -tan2u(1 + tan2u)du ,

which is calculated rea dily even with t as large as 1010. Using the
same substitution with g(x), values near a = 0 and b = 10-5 provide
good results.

This example involves subdividing the interval of integration .
Although a function may have features that look extreme over the
entire interval of integration , over portions of that interval the
function may look more well-behaved. Subdividing the interval of
integration works best when combined with appropriate substitu­
tions. Consider the integral

foOO dxl (1 + x 64) = fo1 d x l (1 + X64) + f
1

°O dx l (1 + X64)

= fo1 dxl (1 + X64) + f o1 u62du I (u64 + 1)

= f o\1 + x 62)dx l (1 + x 64)

= 1 + f o\x62 - x 64)dx l (1 + x64)

= 1 + 1/8 f o\1 - uJ 14)u55/8 du l (1 + u8).

These steps use the substitutions x = 11 u and x = Ul / 8 and some
a lgebraic manipulation. Although the origina l in tegral is
improper, the last integra l is easily handled by CZiJ . In fact, by
separating the constant term from the integral, you obtain (using
I SC1 18) a n a nswer with 13 significant digits:

Section 2: Working With 0 59

1.000401708155 ± 1.2 X 10-12.

A final example drawn from real life involves the electrosta tic field
about an ellipsoidal probe with principa l semiaxes a, b, and c:

V = [" dx

o (a2 + x)V(a2 + x)(b2 + x)(c2 + x)

fora= 100, b =2, and c= 1.*

Transform this improper integral to a proper one by substituting
x = (a2 - c2)/ (1 - u2) - a2:

where

V = p J1 J(1 - u2)/ (u2 + q) du
r

p = 2/ ((a2 - c2JJ a2 - b2) = 2.00060018 X 10-6

q = (b2 - 2)/ (a2 - b2) = 3.001200480 X 10-3

r = c/ a = 0.01 .

However, this integral is nearly improper because q a nd r are both
so nearly zero. But by using an integral in closed form that
sufficiently resembles the troublesome part of V, the difficulty can
be avoided. Try

J1 1
W = p du / Ju2+ q = pln(u + J u2+ q)1

r r

= pln((l + ~)/(r + Jr2+ q))

= 8.40181880708 X 10-6.

Then

V = W + p J \J(1 - u2)/ (u2 + q) - 11) u2 + q)du
r

= pt(W / p _ u
2

)dU
r 1 - r (1 +~)Ju2 + q .

* From Stratton, J. A., Electromagnetic Th eory, McGraw-Hill , New York, 1941,
pp.201 -217.

60 Section 2: Working With em
The HP-15C readily handles this integral. Don't worry about
\/1 - u2 as u approaches 1 because the figures lost to roundoff
aren't needed.

Application
The following program calculates the values of four speci a l
functions for any argument x:

1 Joo ?
Q(x) = 1 - P(x) = - e- t - / 2dt

2rr x

2 (X
erf(x)= IJI e-

t2
dt

V rr 0

2 Joo
erfc(x) = 1- erf(x) = I e- t2dt

V rr x

(normal distribution
function)

(complementary normal
distribution function)

(error function)

(coffiplementaryerror
function)

The program calculates these functions using the transformation
u = e- t2 whenever Ixl > 1.6 .

The function value is returned in the X-register, and the
uncertainty of the integral is returned in the Y·register. (The
uncertainty of the function value is approximately the same order
of magnitude as the number in the Y·register.) The original
argument is available in register RD.

The program has the fo ll owing characteristics:

• The display form at specifies the accuracy of the integrand in
the same way a s it does for em itself. However, if you specify
an unnecessarily large number of display digits , the
calculation will be prolonged .

• Small function values, such as Q(20), P(-20), and erfc(lO), are
accurately computed as quickly as moderate values.

Section 2: Working With em 61

Keystrokes Display

mlp/RI Program mode.

[I CLEAR I PRGM I 000-
[lILBL I0 001-42,21,11 Program for P(x) .

ISTOI2 002- 44 2 Stores x in R2.

ICHS I 003- 16 Calculates -x.

IGTOl2 004- 22 2 Branches to calculate
P(x) = Q(-x).

[II LBL I[]] 005-42,21,12 Program for Q(x).

ISTOl2 006- 44 2 Stores x in R2.

[lILBL I2 007-42,21, 2
2 008- 2
[KJ 009- 11
B 010- 10
I GSB I[IJ 011- 3213 Calculates erfc(x I v'z).
2 012- 2

B 013- 10 Calculates
Q(x) = l/z erfc(x l y2).

I RCL I2 014- 45 2
ISTOlo 015- 44 0 Stores x in Ro.

ern 016- 33
mlRTN I 017- 4332 Returns function value.

[II LBL I[IJ 018-42,21,13 Program for erfc(x).

1 019-
IGSBI4 020- 32 4
m[TI] 1 021-43, 6, Tests flag 1 set.

IGTOl5 022- 22 5 Branches for flag 1 set.

1 023- 1

G 024- 30 Calculates erf(x) - 1 for
flag 1 clear.

[lILBLI5 025-42,21, 5
ICHS I 026- 16 Calculates erfc(x).

mlRTNI 027- 4332 Returns function value.

[lILBLI[]] 028-42,21,15 Program for erf(x).

a 029- 0
[I I LBL 14 030-42,21, 4 Subroutine for erf(x) or

erfc(x).

mcm1 031-43, 5, Clears flag 1.

62 Section 2: Working With [EJ

Keystrokes Display

ISTO 11 032- 44 1 Stores 0 for erf(x), 1 for
erfc(x).

~ 033- 34

ISTO lo 034- 44 0

WIABS I 035- 4316 Calculates Ix l.

1 036-
[J 037- 48
6 038- 6
WI TEST ls 039-43.30. 8 Tests Ix l > 1.6 .

IGTO l6 040- 22 6 Branch for Ix l > 1.6 .

0 041- 0
IRCl lo 042- 45 0 Recalls x.

m[EJ o 043-42.20. 0 Integrates e-t2 from 0 to x.

2 044- 2

0 045- 20
ml lBl l3 046-42.21. 3 Subroutine to divide by

..;;-.
W@ 047- 4326
em 048- 11
G 049- 10
WI RTN I 050- 4332
ml lBl l6 051-42.21. 6 Subroutine to integrate

when Ix l> 1.6 .

W[@ 1 052-43. 4. 1 Sets flag 1.

0 053- 0
IRCl lo 054- 45 0

w0 055- 4311
ICHS I 056- 16
ra 057- 12

.2
Calculates e-x .

m[EJ l 058-42.20. Integrates (- In ur l / 2 from
o to e-x2

.

IGSBI3 059- 32 3 Divides integral by ,;;-.

I RcLi o 060- 45 0
IENTER I 061- 36
WIABSI 062- 4316
G 063- 10 Calculates sign of x .

0 064- 20

Section 2: Working With em 63

Keystrokes Display

I RCLl l 065- 45 1 Recalls 1 for erfc(x}, 0 for
erf(x}.

w lLSTx l 066- 4336
G 067- 30
G 068- 40 Adjusts integral for sign

of x and function.

IC HS I 069- 16
WIRTN I 070- 4332
ITJI LBL 10 071-42,21 , 0 Subroutine to calculate

- t2
e .

w[ZJ 072- 4311
IC HS I 073- 16
ra 074- 12
W[RTN I 075- 4332
ITJI LBL[1 076-42,21, 1 Subroutine to calculate

(-ln ur l 12.

wlx=o l 077- 4320
WI RTNI 078- 4332
wlliD 079- 4312
[cHsl 080- 16
(K] 081- 11
[lliJ 082- 15
WIRTN I 083- 4332

Labels used: A, B, C, E, 0, 1,2,3,4,5, and 6.

Registers used: Ro (x), Rj, R2.

F lag used: 1.

To use this program:

1. Enter the argument x into the display.

2. Evaluate the desired function:

• Press ITJ0 to evaluate P(x) .

• Press ITJ[]] to evaluate Q(x}.

• Press ITJ[I] to evaluate erf(x}.

• PressITJ~toevaluateerfc(x}.

64 Section 2: Working With em
Example: Calculate Q(20) , P(1.234) , and erf(0.5) in I SCI I 3 display
format.

Keystrokes Display

[[II P/R I Run mode.

ITl~3 Specifies format.

20 ITl[ID 2.754 -89 Q(20).

1.234ITl0 8.914 -01 P(1.234).

.5 ITlw 5 .205 -01 erf(0.5).

Example: For a Normally distributed random variable X with
mean 2.1 51 and standa rd deviation 1.085, calculate the probability
Pr [2 < X ~ 3l .

Pr[2 < X ~3l =Pr[2 - 2.151 < X - J.l ~ 3 - 2.151 J L 1.085 a 1.085

= p(3 - 2.151) _ p(2 - 2.151)
1.085 1.085

Keystrokes Display

21ENTER I 2.000 00
2.151 G -1.510 -01
1.085G -1 .392 -01

ITl0 4.447 -01 Calculates Pr[X ~ 2].

ISTO l3 4.447 -01 Stores value.

3 l ENTER I 3.000 00
2.151 G 8 .490 -01
1.085G 7.825 -01

ITl0 7 .830 -01 Calculates Pr[X ~ 3].

IRCL l3 4 .447 -01 Recalls Pr[X ~ 2].

G 3 .384 -01 Calculates Pr[2 < X ~ 3].

ITl[ill]4 0.3384

Section 3

Calculating in Complex Mode

Physically important problems involving real data are often solved
by performing relatively simple calculations using complex
numbers. This section gives important insights into complex
computation and shows several examples of solving problems
involving complex numbers.

Using Complex Mode
Complex mode in the HP-15C enables you to evaluate complex­
valued expressions simply. Generally, in Complex mode a
mathematical expression is entered in the same manner as in the
normal "real" mode. For example, consider a program that
evaluates the polynomial P(x) = a"x" + ... + ajx + ao for the value x
in the X-register. By activating Complex mode, this same program
can evaluate P(z), where z is complex. Similarly, other expressions,
such as the Gamma function rex) in the next example, can be
evaluated for complex arguments in Complex mode.

Example: Write a program that evaluates the continued-fraction
approximation

In(r(x)) = (x - '/2)ln x - x + a o + ~
x +~

x +~

x + ...

for the first six values of a:

ao = '/2 In(2rr)
a 1 = 1/12
a 2 = 1/30
a 3 = 531210
a4 = 195/ 371
a 5 = 1.011523068
a6 = 1.517473649.

65

66 Section 3: Calculating the Comp lex Mode

Because this approximation is valid for both real arguments and
complex arguments with Re(z) > 0, this program approximates
In(r(z)) in Complex mode (for sufficiently large Izl). When Izl > 4
(and Re(z) > 0), the approximation has about 9 or 10 accurate
digits.

Enter the following program.

Keystrokes Display

WI P/R I Program mode.

[IJ CLEAR I PRGM I 000-
[IJl lBl l~ 001-42.21.11
6 002- 6
I STO I[] 003- 4425 Stores counter in Index

register.

~ 004- 34
I ENTER I 005- 36
I ENTER I 006- 36
IENTER I 007- 36 Fills stack with z.

I RcLi6 008- 45 6 Recalls a6'

[IJl lBl l l 009-42.21. 1 Loop for continued
fraction.

G 010- 40
I RcLi [ill] 011- 4524 Recalls ai'

~ 012- 34 Restores z.

G 013- 10
[IJI DSE I[] 014-42. 5.25 Decrements counter.

IGTOl l 015- 22 1
IRCl lo 016- 45 0 Recalls ao.

G 017- 40
~ 018- 34 Restores z.

G 019- 30
WllsTx l 020- 4336 Recalls z .

w[ffiJ 021- 4312 Ca lculates In(z).

WllSTx l 022- 4336 Recalls z .
[J 023- 48
5 024- 5

G 025- 30 Calculates z - '/2.

Section 3: Calculating in Complex Mode 67

Keystrokes Display

0 026- 20

G 027- 40 Calculates In(r(z)).
W[RTN[028- 4332

Store the constants in registers Ro through R6 in order according to
their subscripts.

Keystrokes Display

W [P/R[Run mode.

2w~0 6.2832
W[hill2G 0.9189
[STO[O 0 .9189 Stores ao.

12 DEl [STO [1 0 .0833 Stores al '

30 DEl [STO [2 0.0333 Stores a2'

53 [ENTER [210 G 0.2524
[STO I3 0.2524 Stores a 3'

1951ENTERI371 G 0 .5256
ISTO I4 0.5256 Stores a4'

1.0115230681 STO 15 1.0115 Stores a5'

1.5174736491 STO 16 1 .5175 Stores a6'

Use this program to calculate In(r(4.2)), then compare it with
In(3.2!) calculated with the [ill function. Also calculate In(r(l + 5i)).

Keystrokes Display

4.2m0 2.0486 Calculates In(r(4.2)).
m[IiK)9 2.048555637 Displays 10 digits.
3.2 m[ill 7 .756689536 Calculates

(3.2)! = r(3.2 + 1).

w[hill 2.048555637 Calculates In(3.2!).
1 [ENTERI 1.000000000 Enters real part of 1 + 5i .

5m[j] 1 .000000000 Forms complex number
1 + 5i .

68 Section 3: Calculating in Complex Mode

Keystrokes Display

-6.130324145 Real part of In(r(l + 5i)).

3.815898575 Imaginary part of
In(r(l + 5i)).

3.8159

The complex result is calculated with no more effort than that
needed to enter the imaginary part of the argument z. (The result
In(r(l + 5i)) has 10 correct digits in each component.)

Trigonometric Modes
Although the trignometric mode annunciator remains lit in
Complex mode, complex functions are always computed using
radian measure. The annunciator indicates the mode (Degrees,
Radians, or Grads) for only the two complex conversions: ~ and
I+R I.

If you want to evaluate re iO where e is in degrees, ~ can't be used
directly because e must be in radians. If you attempt to convert
from degrees to radi a ns, there is a slight loss of accuracy,
especially a t va lues like 1800 for which the radian measure 7T can't
be represented exactly with 10 digits.

However, in Complex mode the I +R I function computes reiO

accurately for e in any measure (indicated by the annunciator).
Simply enter rand e into the complex X-registers in the form r + ie ,
then execute I +R Ito calculate the complex value

re iO = r cos e + ir sin e.
(The program listed under Calculating the nth Roots of a Complex
Number at the end ofthis section uses this function.)

Definitions of Math Functions
The lists that follow define the operation of the HP-15C in Complex
mode. In these definitions, a complex number is denoted by
z = x + iy (rectangular form) or z = re iO (polar form). Also
Izl = Jx2 + y 2.

Section 3 : Calculating in Complex Mode 69

Arithmetic Operat ions

(a + ibj±(c+ id) =(a ± c) + i(b ± d)

(a + ib)(c +id) = (ac - bd) + i(ad + bc)

z2= z X z

1/z = x / lzl2 - iy/ lzl2

ZI 7 z2 = zl X 1/z2

Single-Valued Functions

e Z = eX(cos y + i sin y)

10z = e l ln 10

1 . .
sin z = 2i(e"- e-Il)

cos z = 1/2(eiz + e- il)

tan z = sin z / cos z

sinh z = 1/2(eZ
- e-')

cosh z = 1/2(e' + e-')

tanh z = sinh z / cosh z

Multivalued Functions

In general, the inverse of a function f(z)-denoted by f-l(z)-has
more than one value for any argument z. For example, cos-1(z) has
infinitely many values for each argument. But the HP-15C
calculates the single principal value, which lies in the part of the
range defined as the principal branch of [1(z). In the discussion
that fo llows, the single-valued inverse function (restricted to the
principal branch) is denoted by uppercase letters- such as
COS-l(Z)-to distinguish it from the multi valued inverse-cos-1(z).

For example, consider the nth roots of a complex n umber z. Write z
in polar form as z = rei (O + 2krr) for -rr < e ,,;; rr and k = 0, ±1, ±2,
Then if n is a positive integer,

Only k = 0,1, ... , n - 1 are necessary since ei2krrl n repeats its values
in cycles of n. The equation defines the nth roots of z, and rl / neiOl n

with -rr < e,,;; rr is the principal branch of zl l n. (A program listed on
page 78 computes the nth roots of z .)

70 Sect ion 3 : Ca lculatin g in Compl ex M ode

The illustrations that follow show the principal branches of the
inverse relations. The left-hand graph in each figure represents the
cut domain of the inverse function ; the right-hand graph shows the
ra nge of the principal branch.

For some inverse relations, the definitions of the principal
branches are not universally agreed upon. The principal branches
used by the HP-15C were carefully chosen. First, they are analytic
in the regions where the arguments of the real-valued inverse
functions are defined. That is , the bra nch cut occurs where its
corresponding real-valued inverse function is undefined. Second,
most of the important symmetries are preserved. For example,
SIW1(-z) = -SIW1(z) for all z .

.....
./

/
I

\
\

"--

,-
/

I

\
\

"-

z

"-

"' \
0 \

I
/

./

vz = JT e lB12

z

.....

" \
\
I

I
/

./

LN(z) = In r+ie

w=vz

" \
o ~

for -rr < e ~ rr

/
./

w = LN(z)

irr

o
I
I

I I
/V/////////./.I v//u //////.

-irr

for -rr < e ~ rr

Section 3 : Ca lcu lating in Comp lex Mode 71

z

I ~
, ~ , ~

I ~
I ~ , ~

-~~ 0 IT

\ 2~ 2
\ ~ '- ~ §

sin-1(z) = -i In[iz + (1- z2)'1']

z w =COS-'(z)

o
\

'-

z

'" " I i \
\. I

0 IT o - -
, 2

f- i
\

• •
i i + z

tan-1(z) = - In-, -
2 L -Z

72 Section 3: Calculating in Complex Mode

z

irr t--_-----
,

.....
•••• ~ ••• ;.... -;~a.ru.~

- 1 o 1 /

o ,
........... ":"". i'Ti ... T ... -- ---,.

,
-irr '///Y/////////////,

The principal branches in the last four graphs above are obtained
from the equations shown, but don 't necessarily use the principal
branches ofln(z) and ..JZ.
The remaining inverse functions may be determined from the
illustrations above a nd the following equations :

LOG(z) = LN(z) / LN(lO)

SINW1(z) = -i SIN-1(iz)

TANH-l(z) = -i TAWl(iz)

w' = e' LN(w) .

To determine all values of an inverse relation, use the following
expressions to derive these values from the principal value
calculated by the HP·15C. In these expressions, k= 0, ± I, ±2,

z'/' = ±..JZ
In(z) = LN(z) + i2krr

sin-1(z) = (-I)k SIN-1(z) +krr

cos-1(z) = ±COS-l(z) + 2krr

tan-1(z) = TAW1(z) + krr

sinh-1(z) = (-1)" SINW1(z) + ikrr

cosh-1(z) = ± COSWl(z) + i2krr

tanh-1(z) = TANW1(z) + ik rr

Section 3: Calculating in Complex Mode 73

Using I SOLVE I and em in Complex Mode
The [SOLVE [and em functions use algorithms that sample your
function at values along the real axis. In Complex mode, the
[SOLVE I and em functions operate with only the real stack, even
though your function subroutine may have complex computations
in it.

For example, [SOLVE I will not search for the roots of a complex
function, but rather will sample the function on the real axis and
search for a zero ofthe function's real part. Similarly, em computes
the integral of the function's real part along an interval on the real
axis. These operations are useful in various applications, such as
calculating contour integrals and complex potentials. (Refer to
Applications at the end of this section.)

Accuracy in Complex Mode
Because complex numbers have both real components and
imaginary components, the accuracy of complex calculations takes
on another dimension compared to real-valued calculations.

When dealing with real numbers, an approximation X is close to x
if the relative difference E(X,x) = I(X - x) / xl is small. This relates
directly to the number of correct significant digits of the
approximation X. That is, if E(X,x) < 5 X lO-n , then there are at
least n significant digits. For complex numbers, define E(Z,z) =
I(Z - z) / zl. This does not relate directly to the number of correct
digits in each component of Z , however.

For example, if E(X,x) and E(Y,y) are both small, then for z =
x + iy, E(Z,z) must also be small. That is, if E(X,x) < sand
E(Y,y) < s, then E(Z,z) < s. But consider z = 1010 + i and Z = 1010.
The imaginary component of Z is far from accurate, and yet
E(Z,z) < 10-1°. Even though the imaginary components of z and Z
are completely different, in a relative sense z and Z are extremely
close.

There is a simple, geometric interpretation of the complex relative
error. Any approximation Z of z satisfies E(Z,z) < s (where s is a
positive real number) if and only if Z lies inside the circle of radius
slzl centered at z in the complex plane.

74 Section 3 : Calculating in Complex Mode

y

" / .z "-
I ______ , slzl
I e-; I
\ I

" / _

--r-------------------------------x

To require approxima tions with accurate components is to demand
more than keeping relative errors small. For example, consider this
problem in which the calculations are done with four significant
digits. It illustrates the limitations imposed on a complex
calcula tion by finite accuracy.

and

ZI X Z 2

ZI = ZI = 37. 1 + 37.3i

Z2 = Z 2 = 37.5 + 37.3i

= (37.10 X 37.50 - 37.30 X 37.30)+ i(37.10 X 37.30 +37.30 X 37.50)

= (1391. - 1391.) + i(1384. + 1399.)

= 0 + i(2783.)

The true value z 1z2 = -0.04 + 2782.58i. Even though ZI and Z 2 have
no error, the real part of their four-digit product has no correct
significant decima ls, a lthough the relative error of the co mplex
product is less than 2 X 10-4

The example illustrates t hat complex multiplication doesn 't
propogate its errors componentwise. But even if complex
multiplication produced accurate components, the rounding errors
of a chain computation could quickly produce inaccurate
com ponents . On the other hand, the relative error, which
corresponds to the precision of the calcu lation , grows only slowly.

Section 3: Calculating in Complex Mode 75

For example, using four-digit accuracy as before

then

Zl = (1 + 11300) + i
Zl = 1.003 + i
Z2 =Z2 = 1 + i

Zl X Z2 = (1.003 + i) X (1 + i)
= 0.003 + 2.003i

= 3.000 X 10-3 + 2.003i

The correct four-digit value is 3.333 X 10-3 + 2.003i. In this
example, Zl and Z2 are accurate in each component and the
arithmetic is exact. But the product is inaccurate-that is, the real
component has only one significant digit. One rounding error
causes an inaccurate component, although the complex relative
error ofthe product remains small.

For the HP-15C the results of any complex operation are designed
to be accurate in the sense that the complex relative error E(Z,z) is
kept small. Generally, E(Z,z) < 6 X lO- lO.

As shown earlier, this small relative error doesn't guarantee 10
accurate digits in each component. Because the error is relative to
the size Izl, and because this is not greatly different from the size of
the largest component of z , the smalier component can have fewer
accurate digits. There is a quick way for you to see which digits are
generally accurate. Express each component using the largest
exponent. In this form , approximately the first 10 digits of each
component are accurate. For example, if

Z = 1.234567890 X 10-10 + i(2 .222222222 X 10-3),

then think of Z as

0.0000001234567890 X 10-3 + i(2.222222222 X 10-3).

The accurate digits are

0.000000123 X 10-3 + i(2.222222222 X 10-3).

76 Section 3: Calculating in Complex Mode

Applications
The capability of the HP-15C to work with complex numbers
enables you to solve problems that extend beyond the realm of
rea l-valued numbers . On the fo llowing pages are several programs
that illustra te the usefulness of complex calculations-and the
HP-15C.

Storing and Recalling Complex Numbers Using a Matrix

This program uses the stack and matrix C to store and recall
complex numbers. It has the following characteristics:

• If you specify an index greater than the matrix's dimensions,
the calculator displays Error 3 and the stack is ready for
another try.

• If the calculator isn 't in Complex mode, the program activates
Complex mode and the imaginary part of the number is set to
zero.

• When you store a complex number, the index is lost, the stack
drops, and the T-register is duplicated in the Z-register.

• The " Store" progra m uses t he [QJ key, which is above the I STO I
key. The "Recall" program uses the []] key, which is above the
IRc Llkey .

Keystrokes Display

[]:l lp/R I Program mode.

ITl CLEAR I PRGM I 000-
ITlI LBL I[QJ 001-42.21 .14 "Store" program.

ITli MATRlx I1 002-42.16. 1 Sets Ro = R1 = l.
ISTO lo 003- 44 0 Ro=k.
[TIJ 004- 33
0 005- 0 Enters 0 in real (and

imaginary) X-registers.

G 006- 40 Drops stack and has
a + ib in X-register.

ITlI USER II STO I~ 007u 4413 Stores a a nd increments
ITlIUS ER I indices (User mode).

ITlI Re~lm l 008- 4230

Section 3: Calculating in Complex Mode 77

K eystrokes D is play

ISTO I[IJ 009- 4413 Stores b (no User mode
h er e).

ITlI R e ~ l m l 010- 4230 Restor es a + ib in
X-registers.

WI RTN I 011- 4332
ITl ILBL I[IJ 012-42.21.15 "Recall" progr a m.

ISTO IO 013- 44 0 Ro= k.
W ICLx l 014- 4335 Disables stack.

2 015- 2
ISTO ll 016- 44 1 Sets R J = 2.

[[f] 017- 33
0 018- 0

G 019- 40 Sets stack for an other try
if Erro r 3 occurs n ext .

1 RCL I[IJ 020- 4513 Recalls b (ima gina ry
part).

ITl IR e ~ l m l 021- 4230
ITl IDSE ll 022-42. 5 . 1 Decrements to R l = 1.

W ICLx l 023- 4335 Disables stack and clear s
rea l X-register.

1 RCLI[IJ 024- 4513 Recalls a (real pa r t) .

W IRTN I 025- 4332

Exa mple : Store 2 + 3i a n d 7 + 4i in elements 1 a nd 2 using the
previous program. Th en recall a n d add th em. Dimens ion m atrix C
to 5 X 2 so tha t it can stor e up to 5 com plex numbers.

After en tering the preceding program:

K eystrokes Display

W IP/R I

5 1ENTER I2 2

ITl IDIM lw 2 .0000

2 1 ENTER 13 ITl ITl 2 .0000

1 ITl[QJ 2 .0000

Run mode.

S pecifies 5 rows and 2
columns.

Dimen sions matrix C.
Enters 2 + 3i.
Stores n umber in C using
index 1.

78 Secti on 3: Ca lcu lating in Complex Mode

Keystrokes Display

7 I ENTER 14 [Il OJ 7 .0000 Enters 7 + 4i.

2 [Il[QJ 7 .0000 Stores number in C using
index 2.

1 [Il[I] 2 .0000 Recalls first number.
2 [Il[I] 7 .0000 Recalls second number.

G 9 .0000 Real part of sum.

[Ill Re ~ 1m I 7 .0000 Imaginary part of sum.

Calculating the nth Roots of a Complex Number

This program calculates the nth roots of a complex number. The
roots are zk for k = 0, 1,2, ... , n - 1. You can a lso use the program to
calculate z 1I r, where r isn 't necessarily an integer. The program
operates the same way except that there may be infinitely many
roots zk for k = 0, ± 1, ± 2,

Keystrokes Display

wl P/R I

000-[Il CLEAR I PRGM I
[Il I LBL I [6J 001-42,21,11
~

~
wl LSTx l

[[f]
wlms
[ZJ
ISTOl2

[IlI R e~ lm l
ISTO l3

3
6
o
w[ff]
G
ISTOl4

o
I STO IOJ

002-

003-
004-
005-
006- 43,

007-
008-
009-
010-

011-
012-
013-
014-
015-
016-
017-
018-

34

15
4336

33
4, 8

14

44 2
4230
44 3

3
6
0

4333
10

44 4

0
4425

Program mode.

Places n in X-register, Z in
Y-registers.

Calculates lin.

Retrieves n.

Activiates Complex mode.
Calculates zl / n.

Stores rea l part of Zo in R2.

Stores imaginary part of
Zo in R3·

Calculates 3601 n.

Stores 360l n in R4.

Stores 0 in Index register.

Section 3: Ca lcu lat ing in Complex Mode 79

Keystrokes Display

[IJILBLIO 019-42,21 , 0
IRCLI4 020- 45 4 Recalls 3601 n.

IRCL I00J 021-45,20,25 Calculates 360k I n using
Index register.

[IJIRe~lml 022- 4230
w lCLx l 023- 4335
1 024- Places 1 +i(k360In)in

the X-register.

WIDEGI 025- 43 7 Sets Degrees mode.

[IJI+RI 026- 42 1 Calculates eik 360l n.

IRCL I2 027- 45 2 Recalls real part of 20'

IRCLI3 028- 45 3 Recalls imaginary part
of 20'

[IJOJ 029- 4225 Forms complex zoo

0 030- 20 Calculates zoeik 360 l n, root
numberk.

I RCL IOJ 031- 4525 Recalls number k.

~ 032- 34 Places Zk in X-registers, k
in Y-register.

1 033-
ISTO IGOJ 034-44,40,25 Increments number kin

Index register.

ern 035- 33 Restores Zk and k to X-
and Y-registers.

IRlsl 036- 31 Halts execution.

IGTOIO 037- 22 0 Branch for next root.

Labels used: A and O.

Registers used: R2, R3, R4, and Index register.

To use this program:

1. Enter the order n into the Y-register and the complex number
2 into the X-registers.

2. Press [IJ0 to calculate the principal root, Zo, which is placed
in the real and imaginary X-registers. (Press and hold [IJ [ill]
to view the imaginary part.)

80 Section 3: Calculating in Complex Mode

3. To calculate higher number roots Zk:

• Press I R/S I to calculate each successive higher-number
root. Each root zk is placed in t he complex X-registers and
its number k is placed in the Y-register. Between root
calculations, you can perform other calculations without
disturbing this program (if R2, R3, R4, and the Index
register aren't changed).

• Store the number of the root k in the Index register (using
I STO I[]), then press I R/S I to calculate zk. The complex root
and its number are placed in the X- and Y-registers,
respectively . (By pressing I R/S I again , you can continue
calculating higher-number roots .)

Example: Use the previous progra m to compute (l)l / lOO. Calculate
zo, Z!, a nd Z50 for this expression.

Keystrokes Display

[]::ll p/R I Run mode.

100 I ENTER 11 Enters n = 100 and Z = 1
(purely real).

ITl~ 1.0000 Calculates Zo (real part).

ITl[ill] (hold) 0 .0000 Imaginary part of zoo

IR/s l 0.9980 Calculates Z! (real part).

ITl[ill] (hold) 0 .0628 Ima ginary part of Z l.

50l sTO I[] 50.0000 Stores root n um ber in
Index register.

IR/sl -1.0000 Calculates z 50 (real part).

ITl[ill] (hold) 0 .0000 Imaginary part of z 50.

Solving an Equation for Its Complex Roots

A common method for solving the complex equation f (z) = 0
numerically is Newton's iteration. This method starts with an
approximation Zo to a root a nd repeatedly calculates

until Zk converges.

The following example shows how I SOLVE I can be used with
Newton 's iteration to estimate complex roots. (A different

Section 3: Calculating in Complex Mode 81

technique that doesn't use Complex mode is mentioned on page 16.)

Example: The response of an automatically controlled system to
small transient perturbations has been modeled by the differential­
delay equation

d
diw(t) + 9 w(t) + 8 w(t -1) = 0.

How stable is this system? In other words, how rapidly do solutions
of this equation decay?

Every solution w(t) is known to be expressible as a sum

w(t) = Lc(z)ezt

k

involving constant coefficients c(z) chosen for each root z of the
differential-delay equation's associated characteristic equation :

z + 9 + 8e-z = 0.

Every root z = x + iy contributes to w(t) a component ezt =
ext(cos(yt) + i sin(yt)) whose rate of decay is faster as x, the real
part of z, is more negative. Therefore, the answer to the question
entails the calculation of a ll the roots z of the characteristic
equation. Since that equation has infinitely many roots , none of
them real, the calculation of all roots could be a large task.

However, the roots z are known to be approximated for large
integers n by z = A(n) = -In((2n + 1/~)IT/8) ± i(2n + Ii2) IT for
n = 0, 1, 2, The bigger is n , the better is the approximation.
Therefore you need calculate only the few roots not well
approximated by A(n)-the roots withlzl not very big.

When using Newton's iteration, what should ((z) be for this
problem? The obvious function ((z) = z + 9 + 8e-z isn't a good
choice because the exponential grows rapidly for larger negative
values of Re(z). This would slow convergence considerably unless
the first guess Zo were extremely close to a root. In addition, this
((z) vanishes infinitely often, so it's difficult to determine when all
desired roots have been calculated. But by rewriting this equation
as

eZ = -8 / (z + 9)

and taking logarithms, you obtain an equivalent equation

82 Section 3: Calculating in Complex Mode

Z = In(-8/ (z + 9)) ± i2nrr for n = 0, 1, 2, ...

This equation has only two complex conjugate roots Z for each
integer n . Therefore use the equivalent function

((z) = z - In(-8 / (z + 9)) ± i2nrr

and apply Newton's iteration

for n = 0, 1,2,

zk + I = Zk - (zk - In(-8 / (z k + 9)) ± i2nrr) / (1 + lI(Zk + 9)).

As a first guess, choose Zo as A (n) , the approximation given earlier.
A bit of algebraic rearrangement using the fact that In(±i) = ±i rrl2
leads to this formula:

Zk + I = A(n) + ((zk - A(n)) + (zk + 9)ln(iIm(A(n)) / (zk + 9))) / (Zk + 10).

In the program below, Re(A(n)) is stored in Ro and Im(A(n)) is
stored in R I . Note that only one of each conjugate pair of roots is
calculated for each n.

Keystrokes Display

wlP/R I Program mode.

[IJ CLEAR I PRGM I 000-
[IJILBLI0 001-42.21.11 Program for A(n).

w[ill8 002-43. 5. 8 Specifies real arithmetic.
IENTER I 003- 36
G 004- 40
0 005- 48
5 006- 5

G 007- 40
WG] 008- 4326
0 009- 20 Calculates (2n + 1/2)rr.

I ENTER I 010- 36
ISTO l1 011- 44 1
8 012- 8
G 013- 10
wCill] 014- 4312
ICHS I 015- 16 Calculates

-In((2n + 1/2)rr/ 8).

ISTOlo 016- 44 0
~ 017- 34
[IJ[j] 018- 4225 Forms complex A(n).

Sect ion 3: Calcu lat ing in Comp lex Mode 83

Keystrokes Display
WIRTN I 019- 4332
[IJ I LBL I lID 020-42,21 ,12 Program for Zk + l '

IENTERI 021- 36
I ENTER I 022- 36
I RCLll 023- 45 1
[IJIRe~lm l 024- 4230 Creates ilm(A(n)).

[iliJ 025- 34
9 026- 9

G 027- 40
G 028- 10
wlLSTx l 029- 4336
[iliJ 030- 34
w[ill] 031- 4312
0 032- 20
[iliJ 033- 34
I RCLll 034- 45 1
[IJIRe~lml 035- 4230
IRCL IGo 036-45,40, 0
G 037- 30
wlLSTx l 038- 4336
IR+I 039- 33
G 040- 40
[iliJ 041- 34

042- 1
0 043- 0
G 044- 40
G 045- 10
G 046- 40
WIRTN I 047- 4332
[IJI LBLI[IJ 048-42,21,13 Program for residual,

Ie' + 8/ (z + 9)1·
IENTER I 049- 36
ca 050- 12
9 051- 9
w l LSTx l 052- 4336
G 053- 40
8 054- 8
[iliJ 055- 34
G 056- 10
G 057- 40

84 Section 3: Calculating in Complex Mode

Display Keystrokes

WIABS I
WI RTNI

058- 43 16 Calculates Ie' + 8 / (z + 9)1.

059- 4332

Labels used: A, B, a nd C.

Registers used: Ra and R I .

Now run the program. For each root, press [ID until the displayed
real part doesn't change. (You might also check that the imaginary
part doesn 't change.)

Keystrokes Display

WlP/R I Run mode.

ITJ I USER I Activ ates User mode.

0 0 1 .6279 Displays
Re(A(O)) = Re(zo).

[ID -0.1487 Re(zj) .

[ID -0 .1497 Re(z2)'

[ID -0.1497 Re(z).

ITJilllJ (ho ld) 2.8319 Im(z).

[g 1.0000 -10 Calculates residua l.

~ -0.1497 Restores z to X-register.

By repea ting the same process for n = 1 through 5, you will obtain
the results listed below. (O nly one of each pair of complex roots is
listed .)

n A(n) Root zk Residual

0 1.6279 + i1 .5708 - 0.1497 + i2.83 19 1 X 10-10

0.0184 + i7.8540 - 0.4198 + i 8 .636 1 6 X 10-10

2 - 0.5694 + i14 .1372 - 0.7430 + i14.6504 2 X 10-9

3 - 0.9371 + i20.4204 - 1.0236 + i20.7868 5 X 10-10

4 - 1.2054 + i26.7035 -1.2553 + i26.9830 9 X 10-10

5 - 1.4167 + i32.9867 - 1.4486 + i33.21 03 2 X 10-9

Section 3: Calculating in Complex Mode 85

As n increases, the first guess A (n) comes ever closer to the desired
root z. (When you're finis hed, press m [USER I to deactivate User
mode.)

Since a ll roots have negative real parts, t h e system is stable, but
the margin of stability (the smallest in magnitude a mong the real
parts, namely -0.1497) is small enough to cause concern if the
system must withstand much noise.

Contour Integrals

You can use 0to evaluate the contour integral! c((Z)dZ, where C is a
curve in the complex plane.

First parameterize the curve C by z(t) = x(t) + iy(t) for t\ ~ t ~ t2.
Let G(t) = ((z(t))z ' (t). Then

Jc((Z)dZ = f 12 G(t)dt
t1

= f t2Re(G(t))dt + if \m(G(t)) dt.
t 1 11

These integrals are precisely the type that 0 evalua tes in Complex
mode. Since G(t) is a complex function of a real variable t, em will
sample G(t) on the interval t\ ~ t ~ t2 and integrate Re(G(t))-the
value that your function returns to the real X-register. For the
imaginary part, integrate a function that evaluates G(t) and uses
[Re ~ 1m I to place 1m (G(t)) into t he real X·register.

The general-purpose program listed below evaluates the complex
integral

a long the straight line from a to b, where a a nd b are complex
numbers. The program assumes that your complex function sub­
routine is labeled "B" and evaluates th e co mplex function ((z), and
that the limits a and b are in the complex y. a nd X-registers,
respectively. The complex components of the integral I and the
un certainty .::J are returned in the X- and Y-registers .

Keystrokes Display

w[P/R I Program mode.

m CLEAR [PRGM I 000-

86 Section 3: Calculating in Complex Mode

Keystrokes Display

IIlI LBL I~ 001 - 42,2 1, 1 1
~ 002- 34

G 003- 30 Calculates b - a .

ISTO I4 004- 44 4 Stores Re(b - a) in R4.

IIlI R e ~lm l 005- 4230
ISTO l5 006- 44 5 Stores Im(b - a) in R5 .

WI LSTxl 007- 4336 Recalls a.

ISTO l6 008- 44 6 Stores Re(a) in R;;.
IIlI R e ~l m l 009- 4230
ISTO l7 010- 44 7 Stores Im(a) in R7.

0 011- 0
IENTER I 012- 36
1 013- 1
[D[ZiJ o 014-42,20, 0 Calculates Im(l) a n d

Im(M).

ISTO l2 015- 44 2 Stores Im(l) in R2 ·

(IT] 016- 33
ISTO l3 017- 44 3 Stores Im(M) in R3.

(IT] 018- 33
III [ZiJ 1 019- 42,20, Calculates Re(l) and

Re(M).

IRCLI2 020- 45 2 Recalls Im(l).

IIlOJ 021- 4225 Forms complex I.

~ 022- 34
IRCLI3 023- 45 3 Recalls Im(~I).

IIlOJ 024- 4225 Forms complex ~I.

~ 025- 34 Restores I to X-register.

WI RTN I 026- 4332
IIlI LBLI 0 027-42,21 , 0 Subroutine for

Im(f(z)z'(t)).

IGSBl l 028- 32 Calculates f(z)z'(t).

IIlI Re~lm l 029- 4230 Swaps complex
components.

WIRTNI 030- 4332
IIlILBLI l 031-42,21 , 1 Subroutine to calculate

f(z)z'(t).

Section 3: Calculating in Complex Mode 87

Keystrokes Display

IRCL I4 032- 45 4
IRCL I5 033- 45 5
m[IJ 034- 4225 Forms complex b - a.

0 035- 20 Calculates (b - alt.

IRCL I6 036- 45 6
IRCL I7 037- 45 7

m[IJ 038- 4225 Forms complex a .

G 039- 40 Calculates a + (b - a) t.

I GSB I[[] 040- 3212 Calculates ((a + (b - a)t).

IRCLI4 041- 45 4
I RCLI5 042- 45 5
m[IJ 043- 4225 Forms complex

z'(t) = b - a .

0 044- 20 Calculates ((z)z'(t) .

W IRTNI 045- 4332

Labels used: A, 0, and 1.

Registers used: R2, R3, R4, R5, R6, and R7.

To use this program:

1. Enter your function subroutine labeled "B" into program
memory.

2. Press 7 m I DIM I [j]j] to reserve registers Ro through R7. (Your
subroutine may require additional registers.)

3. Set the display format for em .
4. Enter the two complex points that define the ends of the

straight line that your function will be integrated along. The
lower limit should be in the Y-registers; the upper limit
should be in the X-registers.

5. Press m [6J to calculate the complex line integral. The value
of the integral is in the X-registers; the value of the
uncertainty is in the Y·registers.

Because two integrals are being evaluated, the program will
usually take longer than a real integral, although the em routine
doesn't have to use the same number of sample points for both
integrals. The easier integral will use less calculations than the
more difficult one.

88 Section 3: Calculating in Complex Mode

Example: Approximate the integrals

I[= J,oo cos x dx and
1 x + 1/x

J,OO SIn x
12 = dx.

1 x + 1/x

These integrands decay very s lowly as x approaches infinity and
therefore require a long interval of integration and a long
execution time. You can expedite this calculation by deforming the
path of integration from the real axis into the complex plane.
According to complex variable theory, these integrals can be
combined as

J,
l +ioo eiz

I[+ iI2 = dz.
1 z + 1/z

This complex integrand, evaluated a long the line x = 1 and y ;;, 0,
decays rapidly as y increases-like e-Y

To use the previous program to calculate both integrals at the same
time, write a subroutine to evaluate

(z) =
eiz

z + 1/z

Keystrokes Display

[DI LBL I[ID 046-42.21.12
[lli] 047- 15
wi LSTx l 048- 4336
G 049- 40 Calculates z + 1/ z.

wl LSTx l 050- 4336
1 051-
[D I R e~lm l 052- 4230 Forms 0 + i.

0 053- 20
ca 054- 12 Calculates r/z .

~ 055- 34
G 056- 10 Calculates (z).

W IRTN I 057- 4332

Approximate the complex integral by integrating the function
from 1 + Oi to 1 + 6i using a []Q] 2 display format to obtain three
significant digits. (The integral beyond 1 + 6 i doesn 't affect the
first three digits.)

Section 3: Calculating in Complex Mode 89

Keystrokes Display

WlP/RI Run mode.

ITliscI12 Specifies ~ 2 format.

1 I ENTER I 1.00 00 Enters first limit of
integration, 1 + Oi.

1 IENTER I6 6

ITlm 1 .00 00 Enters second limit of
integration, 1 + 6i.

ITl0 -3.24 -01 Calculates I and displays
Re(1) = I) (after about
9 minutes).

ITlffiIJ (hold) 3 .82 -01 Displays Im(1) = lz.
~ 7.87 -04 Displays Re(t1I) = t1Ij •

ITlffiIJ(hold) 1.23 -03 Displays Im(t1I) = t1I2.

ITl[lli]4 0.0008

This result I is calculated much more quickly than if 11 and 12 were
calculated directly along the real axis.

Complex Potentials

Conformal mapping is useful in applications associated with a
complex potential function . The discussion that follows deals with
the problem of fluid flow , a lthough problems in electrostatics and
heat flow are analagous .

Consider the potential function P(z). The equation Im(P(z)) = c
defines a family of curves that are called streamlines of the flow. That
is, for any value of c, a ll values of z that satisfy the equation lie on a
streamline corresponding to that value of c. To calculate some points
zk on the streamline, specify some values for Xk and then use I SOLVE I to
find the corresponding values of Yk using the equation

If the Xk values are not too far apart, you can use Yk _) as an initial
estimate for Yk. In this way, you can work along the streamline and
calcula te the complex points Zk = Xk + iYk' Using a similar
procedure, you can define the equipotential lines , which are given
by Re(P(z)) = c.

90 Section 3: Calculating in Complex Mode

The program listed below is set up to compute the values of Yk from
evenly spaced va lues of Xk. You must provide a subroutine labeled
"B" that places Im(P(z)) in the real X-register. The program uses
inputs that specify the step size h, the number of points n along the
real axis, and Zo = Xo + iyo, the initial point on the streamline. You
must enter n , h, and Zo into the Z·, Y·, and X-registers before
running the program.

The program computes the values of Zk and stores them in matrix
A in the form a k I = Xk -I and a k2 = Yk _ I for k = 1, 2, ... , n.

Keystrokes Display

wlP/R I Program mode.

ITl CLEAR I PRGM I 000-
ITlILBLI~ 001-42,21,11
[HJ 002- 33
ISTO I4 003- 44 4 Stores h in R".

IR+ I 004- 33
2 005- 2
ITlID I MI~ 006-42,23,11 Dimensions matrix A to

be n X 2.

W ICLx l 007- 4335
I STO II MATR lxl~ 008-44,16,11 Makes all elements of A

be zero.

I STO I[IJ 009- 4425 Stores zero in Index
register.

ITlI MATR IX I 1 010-42,16, 1 Sets Ro = RI = l.
w[]1J 011- 4333 Recalls Zo to X-registers.

ISTo l2 012- 44 2 Stores Xo in R2.

ITl I USER II STO I~ 013u 4411 Sets al l = x o·

ITlIUSER I
ITlIRe~lm l 014- 4230
ISTOl3 015- 44 3 Stores Yo in R3.

ITlI USER ll sTO I~ 016u 4411 Sets al2 = Yo·

ITlIUSER I
IGTOl l 017- 22 Bra nches if matrix A not

full (n > 1).

ITl ILBLio 018-42,21, 0
I RCL II MATR lx l~ 019-45,16,11 Recalls descriptor of

ma trix A.

Section 3: Calculating in Complex Mode 91

Keystrokes Display

[]]IRTNI 020- 4332
[IlILBL l l 021-42.21. 1
[IlIRe~lm l 022- 4230 Restores zoo

I GSB II]] 023- 3212 Calculates Im(P(z o»
(or Re(P(zo» for
equipotentia l line.)

ISTO l5 024- 44 5 Stores c in R5.

[Il ILBL I2 025-42.21. 2 Loop for finding Yk'

1 026- 1
[@]G[] 027-44.40.25 Increments counter kin

Index register.

IRCL I4 028- 45 4 Recalls h .

I RCL I[] 029- 4525 Recalls counter k.

0 030- 20 Calculates kh.

I RcLi2 031- 45 2 Recalls Xo.

G 032- 40 Calculates x" = Xo + kh.

ISTOI6 033- 44 6 Stores Xk in R6.

I RCL I3 034- 45 3 Recalls Yk -] fro m R3·

IENTER I 035- 36 Duplicates Yk _] for
second estimate.

[Ill SOLVE 13 036-42.10. 3 Searches for Y/i.

IGTO l4 037- 22 4 Branches for valid Y k root.

038- Starts decreasing step
size.

ISTO IG[] 039-44.30.25 Decrements counter k.
4 040- 4
ISTO IG 4 041-44.10. 4 Reduces h by factor of 4.

ISTO I0[] 042-44.20.25 Multiplies counter by 4.
IGTO l2 043- 22 2 Loops back to find Yk

again.
[Il ILBLI4 044-42.21. 4 Continues finding Yk.

I RCL I6 045- 45 6
[Ill pSE I 046- 4231 Displays Xk '

[Ill USER II STO 10 047u 4411 Setsak+],] =xk'

[Ill USER 1

92 Section 3: Calc ulating in Complex Mode

Keystrokes Display

[[IJ 048- 33
[Ill pSE I 049- 4231 Displays y".
ISTo l3 050- 44 3 Stores y" in R3.

[Ill USER II STO I~ 051u 4411 Sets a,, + 1.2 = y".
[Ill USER I
IGTo l2 052- 22 2 Branch for k + 1 < n

(A isn't full).

IGTO IO 053- 22 0 Branch for k + 1 = n
(A is full).

[Il l LBLj 3 054-42.21. 3 Function subroutin e for
ISOLVEI.

I RCL I6 055- 45 6 Recalls x".

[iW 056- 34 Restores current es tima te
for y".

[IlOJ 057- 4225 Creates estimate
z" = x" + iy".

I GSB I[ID 058- 3212 Calcul a tes Im(P(zl,)) (or
Re(P (zk)) for
eq uipotenti a l lines).

IRCL I5 059- 45 5 Recall s c.

G 060- 30 Calcul ates Im(P (zk)) - c.

WI RTN I 061- 4332

Labels used : A, B, 0, 1,2, 3, and 4.

Registers used: Ro, R1, R2 (xo), R3 (Yo), R4 (h) , R5 (c), R6 (x,,) , and
Index register (k) .

Matrix used: A.

One special fea ture of this program is that if a n Xk value lies
beyond the doma in of the streamline (so that there is no root for
I SOLVE I to find), then the step size is decreased so that Xk

a pproaches the boundary where the streamline turns back. This
feature is useful for determining the nature of th e s treamline when
Yk isn 't a s ingle-valued function of X k . If h is sma ll enough , the
values of Zk will lie on one branch of the streamline a nd approach
th e boundary . (The second exa mple below illustrates this feature.)

Section 3 : Calculating in Complex Mode 93

To use this program:

1. Enter your subroutine labeled " B" into program memory. It
should place into the real X-register Im(P(z)) when
calculating streamlines or Re(P(z)) when calculating
equipotentia l lines.

2. Press 6 m I DIM I [ill] to reserve registers Ro through R6 (and the
Index register). (Your subroutine may require additional
registers.)

3. Enter the va lues of nand h into the Z- and Y-registers by
pressing n I ENTER I h I ENTER I.

4. Enter the complex va lue of Zo = Xo + iyo into the X-registers
by pressing Xo I ENTER Iyo mill·

5. Press m [6J to display the successive values of Xk and Yk for
k = 1, ... , n a nd finally the descriptor of matrix A. The values
for k = 0, ... , n are stored in matrix A.

6. If desired, recall values from matrix A.

Example: Calculate the streamline of the potential P(z) = 11 z + z
passing through z = - 2 + 0.1 i .

First, enter subroutine "B" to compute Im(P (z)).

Keystrokes Display

ml LBL I[ID 062-42,21,12
I ENTER I 063- 36 Duplicates z.

[lli] 064- 15

G 065- 40 Calculates 11 z + z.

ml Re~lm l 066- 4230 Places Im(P(z)) in X-
register.

WI RTNI 067- 4332

Determine the streamline using Zo = - 2 + 0.1 i , step size h = 0.5, and
number of points n = 9.

Keystrokes Display

WIP/RI Run mode.
9 1ENTER I 9 .0000 En ters n.

.51 ENTER I 0.5000 Enters h.

94 Secti on 3 : Ca lcu lating in Comp lex M ode

Keystrokes

21 CHS II ENTER I
.1 [DCO
[DC6l

D isp lay

-2 .0000
-2 .0000

-1 .5000

Enters zo.

Xl·

0.1343 YI.

2 .0000 Xg.

0 .1000

A 9

A 9

2

2

Yg·

Descriptor for matrix A.

Deactivates Complex
mode.

Matrix A contains th e fo llowing values of Xk a n d y,,:

Xk Yk

-2 .0 0 .1000
- 1.5 0 .1343
- 1.0 0.4484
- 0 .5 0 .9161

0 .0 1.0382
0 .5 0 .9161
1.0 0.4484
1.5 0 .1343
2 .0 0. 1000

The streamline and velocity equipotential lines are illustrated
below. Th e derived streamline corresponds to the heavier solid line.

Re(P(z)) = c
I

- --I-_ lm(P(z)) = c

~===t~~~--t---t+--~~==- x

/

Section 3: Calculating in Complex Mode 95

Example: For the same potential as the previous example,
P(z) = liz + z, compute the velocity equipotential line starting at
z = 2 + i and proceeding to the left.

First change subroutine "B" so that it returns Re(P(z))-that is,
remove the I Re ~ 1m I instruction from "B" . Try n = 6 and h = -0.5.
(Notice that h is negative, which specifies that Xk will be to the left
ofxo·)

Although the keystrokes are not listed here, the results that would
be calculated and stored in matrix A are shown below.

Xk Yk

2.0000 1.0000
1.8750 0.2362
1.8672 0.1342
1.8652 0.0941
1.8647 0.0811
1.8646 0.0775

The results show the nature of the top branch of the curve (the
heavier dashed line in the graph for the previous example). Note
that the step size h is automatically decreased in order to follow the
curve-rather than stop with an error-when no y-value is found
for x < 1.86.

Section 4

U sing Matrix Operations

Matrix algebra is a powerful tool. It allows you to more easily
formulate and solve many complicated problems, simplifying
otherwise intricate computations . In this section you will find
information about how the HP-15C performs certain matrix
operations and about using matrix operations in your applications.

Several results from numerical linear a lgebra theory are
summarized in this section. This materia l is not meant to be self­
contained. You may want to consult a reference for more complete
presentations. *

Understanding the LU Decomposition
The HP-15C ca n solve systems oflinear equations, invert matrices,
and calculate determinants. In performing these calculations, the
HP-15C transforms a square matrix into a computationally
convenient form called the L U decomposition of the matrix.

The L U decomposition procedure factors a square matrix A into
the matrix product LV. L is a lower-triangular matrixt with l's on
its diagonal and with subdiagonal elements (those below the
diagonal) between - 1 and + 1, inclusive. U is an upper-triangular
matrix.t For example:

A ~ [: ~ [: ~ [: .. ~ ~ LV

* Two such references are
Atkin s on , Kendall E., An Introdu ction to Numerical Analysis, Wiley, 1978.
Kahan, W. "Numerical Lin ear Algebra," Canadian Ma thematical Bulletin , Volume 9,
1966, pp. 756-80 1.

t A lower-trian gul ar matrix has O's fo r all elements above its diagonal. An upper­
tri angul ar matrix has O's for a ll elements below its diagonal.

96

Section 4: Using Matr ix Opera ti ons 97

Some matrices can't be factored into the L U form. For example,

A~ [: ~ #LU

for any pair of lower- and upper-triangular matrices Land V.
However, if rows are interchanged in the matrix to be factored, an
LU decomposition can always be constructed. Row interchanges in
the matrix A can be represented by the matrix product P A for some
square matrix P. Allowing for row interchanges, the LU
decomposition can be represented by the equation P A = LV. So for
the above example,

P A ~ [: :J [: ~ [: ~ [: ~ [: :J ~ LV.

Row interchanges can also reduce rounding errors that can occur
during the calculation of the decomposition.

The HP-15C uses the Doolittle method with extended-precision
arithmetic to construct the L U decomposition. It generates the
decomposition entirely within the result matrix. The L U
decomposition is stored in the form

It is not necessary to save the diagonal elements ofL since they are
always equal to 1. The row interchanges are also recorded in the
same matrix in a coded form not visible to you. The decomposition
is flagged in the process, and its descriptor includes two dashes
when displayed.

When you calculate a determinant or solve a system of equations,
the L U decomposition is automatically saved. It may be useful to
use the decomposed form of a matrix as input to a subsequent
calculation. If so, it is essential that you not destroy the
information about row interchanges stored in the matrix; don't
modify the matrix in which the decomposition is stored.

98 Section 4: Us ing Matr ix Operati ons

To calculate the determinant of a matrix, A for example, the
HP-15C uses the equation A = p -1 LV, which allows for row
interchanges. The determinant is then just (-1)' times the product
of the diagonal elements of V, where r is the number of row
interchanges. The HP-15C calculates this product with the correct
sign after decomposing the matrix. If the matrix is already
decomposed, the calculator just computes the signed product.

It's easier to invert an upper- or lower-triangular matrix than a
general square matrix. The HP-15C calculates the inverse of a
matrix, A for example, using the relationship

It does this by first decomposing matrix A, inverting both L and V,
calculating their product V-1L-l, and then interchanging the
columns of the result. This is all done within the result matrix­
which could be A itself. If A is already in decomposed form, the
decomposition step is skipped. Using this method, the HP-15C can
invert a matrix without using additional storage registers.

Solving a system of equations, such as solving AX = B for X , is
easier with an upper- or lower-triangular system matrix A than
with a general square matrix A. Using PA = LV, the equivalent
problem is solving LVX = PB for X . The rows of Bare
interchanged in the same way that the rows of the matrix A were
during decomposition. The Hp·15C solves LY = PB for Y (forward
substitution) and then VX = Y for X (backward substitution). The
LU form is preserved so that you can find the solutions for several
matrices B without reentering the system matrix.

The LU decomposition is an important intermediate step for
calculating determinants, inverting matrices, and solving linear
systems. The LU decomposition can be used in lieu of the original
matrix as input to these calculations.

III-Conditioned Matrices
and the Condition Number
In order to discuss errors in matrix calculations, it's useful to define
a measure of distance between two matrices . One measure of the

c" 111 r up chi" Muf PC

Section 4: Using Matrix Operations 99

distance between matrices A and B is the norm of their difference,
denoted IIA - BII. The norm can a lso be used to define the condition
number of a matrix, which indicates how the relative error of a
calculation compares to the relative error of the matrix itself.

The Hp·15C provides three norms. The Frobenius norm of a matrix
A , denoted IIAIIF' is the square root of the sum of the squares of the
matrix elements. This is the matrix analog of the Euclidean length
ofa vector.

Another norm provided by the HP·15C is the row norm. The row
norm of an m X n matrix A is the largest row sum of absolute
values and is denoted IIAIIR:

n

IIAIIR = max LlaJ
1 ~ /~mj = l

The column norm of the matrix is denoted II Aile and can be
computed by IIAlie = IIATIIR. The column norm is the largest column
sum of absolute values.

For example, consider the matrices

Then

and

A ~ [: : :J and B ~ [: : :J
[

-1 0 1J A - B =
003

IIA - BIIF = v'll = 3.3 (Frobenius norm),

IIA - BIIR = 3 (row norm), and

IIA - Bile = 4 (column norm).

The remainder of this discussion assumes that the row norm is
used. Similar results are obtained if any of the other norms is used
instead.

The condition number of a square matrix A is defined as

K(A) = IIAIIIIK111 .

Then 1 ~ K(A) < 00 using any norm. The condition number is

100 Section 4: Using Matrix Operations

useful for measuring errors in calculations. A matrix is said to be
ill-conditioned if K(A) is very large.

If rounding or other errors are present in matrix elements, these
errors will propagate through subsequent matrix calculations.
They can be magnified significantly. For example, suppose that X
and B are nonzero vectors satisfying AX = B for some square
matrix A. Suppose A is perturbed by AA and we compute B + AB =
(A + AA)X. Then

(1 IABII / IIBII)
(IIAAII / IIAII) ~ K(A),

with equality for some perturbation AA. This measures how much
the relative uncertainty in A can be magnified when propagated
into the product.

The condition number also measures how much larger in norm the
relative uncertainty ofthe solution to a system can be compared to
that of the stored data. Suppose again that X and B are nonzero
vectors satisfying AX = B for some matrix A. Suppose now that
matrix B is perturbed (by rounding errors, for example) by an
amount AB. Let X + AX satisfy A(X + AX) = B + AB. Then

(1IAXII / IIXII)
dIABII / IIBII) ~ K(A),

with equality for some perturbation AB.

Suppose instead that matrix A is perturbed by AA. Let X + AX
satisfy (A + AA)(X + AX) = B. If d(A,AA) = K(A)IiAAII I IIAII < 1,
then

(1IAxll / llxli)
(IIAAII I IIAIi) ~K(A) / (1-d(A,AA».

Similarly, if A-I + Z is the inverse ofthe perturbed matrix A + AA,
then

Moreover, certain perturbations AA cause the inequalities to
become equalities.

All ofthe preceding relationships show how the relative error of the
result is related to the relative error of matrix A via the condition
number K(A). For each inequality, there are matrices for which

Section 4: Using Matrix Operations 101

equality is true. A large condition number makes possible a
relatively large error in the result.

Errors in the data-sometimes very small relative errors-can
cause the solution of an ill-conditioned system to be quite different
from the solution of the original system. In the same way, the
inverse of a perturbed ill-conditioned matrix can be quite different
from the inverse of the unperturbed matrix. But both differences
are bounded by the condition number; they can be relatively large
only if the condition number K(A) is large.

Also, a large condition number K(A) of a nonsingluar matrix A
indicates that the matrix A is relatively close, in norm, to a
singular matrix. That is.

11 K(A) = min(IIA - slI / IIAII)

and

where the minimum is taken over all singular matrices S. That is,
if K(A) is large, then the relative difference between A and the
closest singular matrix S is small. If the norm of A -1 is large, the
difference between A and the closest singular matrix S is small.

For example, let

Then

A = [~ .9999;99999]

A-I = [-9,999,999,999
1010

and IIKIII = 2 X lO lD. Therefore, there should exist a perturbation
t.A with IIt.AII = 5 X 10-11 that makes A + t.A singular. Indeed, if

M~[:
with IIt.AII = 5 X 10-11 , then

A+AA~ [:

-5 X lO-
11J

5 X 10-11

.99999999995J

.99999999995

102 Section 4: Using Matrix Operations

and A + D-A is singular.

The figures below illustrate these ideas. In each figure matrix A
and matrix S are shown relative to the "surface" of singular
matrices and within the space of all matrices. Distance is measured
using the norm. Around every matrix A is a region of matrices that
are practically indistinguishable from A (for example, those within
rounding errors of A). The radius of this region is liD-Ali. The
distance from a nonsingular matrix A to the nearest singular
matrix S is lI11K111.

In the left diagram, li D-Ai l < li liA-III. If liD-Ali « 1/ 11KIII (or
K(A)IID-AII / IIAII « 1), then

relative variation in A-I = IIchange in K III / IIA-Ill

= (IiD-AII / IIAII)K(A)

= IID-AII / (lIIIA-III)

= (radius of sphere) / (distance to surface)

In the right diagram, liD-Ail > lil iA-I II . In this case, there exists a
singular matrix that is indistinguishable from A, a nd it may not
even be reasonable to try to compute the inverse of A .

Section 4: Using Matrix Operations 103

The Accuracy of Numerical Solutions
to Linear Systems
The preceding discussion dealt with how uncertainties in the data
are reflected in the solutions of systems of linear equations and in
matrix inverses. But even when data is exact, uncertainties are
introduced in numerically calculated solutions and inverses.

Consider solving the linear system AX = B for the theoretical
solution X. Because of rounding errors during the calculations, the
calculated solution Z is in general not the solution to the original
system AX = B, but rather the solution to the perturbed system
(A + LlA)Z = B . The perturbation LlA satisfies IILlAII ,,;; f IIAII, where
f is usually a very small number. In many cases, LlA will amount to
less than one in the 10th digit of each element of A .

For a calculated solution Z, the residual is R = B - AZ. Then
IIRII ,,;; f IIAllllzll . So the expected residual for a calculated solution is
small. But although the residual R is usua lly small, the error Z - X
may not be small if A is ill-conditioned:

A useful rule-of-thumb for the accuracy of the computed solution is

(numberofc.o~rect) ;;;, (.n~mber ~f) -log(IIAIIIIA-111) - log(10n)
deClma l dIgIts dIgIts carned

where n is the dimension of A. For the HP-15C, which carries 10
accurate digits,

(number of correct decimal digits) ;;;' 9 - log(IIAIIIIK111) - log(n).

In ma ny applications, this accuracy may be a dequate. When
additional accuracy is desired, the computed solution Z can usually
be improved by iterative refinement (also known as residual
correction).

Iterative refinement involves calculating a solution to a system of
equations, then improving its accuracy using the residual
associated with the solution to modify that solution.

To use iterative refinement, first calculate a solution Z to the
original system AX = B. Z is then treated as an approximation to

104 Section 4 : Using Matrix Operations

X, in error by E = X - Z. Then E satisfies the linear system AE =
AX - AZ = R, where R is the residual for Z. The next step is to
calculate the residual and then to solve AE = R for E. The
calculated solution, denoted by F , is treated as an approximation to
E = X - Z and is added to Z to obtain a new approximation to X:
F + Z = (X - Z) + Z = X.

In · order for F + Z to be a better approximation to X than is Z, the
residual R = B - AZ must be calculated to extended precision . The
HP-15C's I MATRI X 16 operation does this. The system matrix A is
used for finding both solutions, Z and F . The LU decomposition
formed while calculating Z can be used for calculating F , thereby
shortening the execution time. The refinement process can be
repeated, but most of the improvement occurs in the first
refinement.

(Refer to Applications at the end of this section for a program that
performs one iteration of refinement.)

Making Difficult Equat ions Easier
A system of equations EX = B is difficult to numerically solve
accurately if E is ill-conditioned (nearly singular). Even iterative
refinement can fail to improve the calculated solution when E is
sufficiently ill-conditioned. However, instances arise in practice when
a modest extra effort suffices to change difficult equations into others
with the same solution, but which are easier to solve. Scaling and
preconditioning are two processes to do this.

Scaling

Bad scaling is a common cause of poor results from attempts to
n umerically invert ill·conditioned matrices or to solve systems of
equations with ill·conditioned system matrices. But it is a cause
that you can easily diagnose and cure.

Suppose a matrix E is obtained from a matrix A by E = LAR,
where Land R are scaling diagonal matrices whose diagonal
elements are all integer powers of 10. Then E is said to be obtained
from A by scaling. L scales the rows of A , and R scales the
columns. Presumably E -1 = R -1 A-I L - 1 can be obtained either from
A -1 by scaling or from E by inverting.

Section 4 : Using Matr ix Operations 105

For example, let matrix A be

A = [3 X ~0-40 1 ~l .
2 1 -lJ

The HP-15C correctly calculates A -I to 10-digit accuracy as

Now let

so that

A-I = [-: -! -~].
-1 2-1

[

1020

L=R= ~

o
10-20

10-40

10-40

o

10~40] .
_10-40

E is very near a singular matrix

and liE - 811 / IIEII = 113 X 10-40. This means that K(8) ;;;' 3 X 1040, so
it's not surprising that the calculated E - 1

[

- 6.67 X 10-11

E- 1 = 0.8569

0.07155

1 10-
10 J

8.569 X 109 -4.284 X 109

-4.284 X 109 2.142 X 109

106 Section 4: Using Matrix Operations

is far from the true value

[

-2 X 10-40

E -1 = 3

-1

3

-4 X 1040

2 X 1040

-1 J 2 X 1040 .

_1040

Multiplying the calculated inverse and the original matrix verifies
that the calculated inverse is poor.

The trouble is that E is badly scaled. A well-scaled ma trix, like A ,
has all its rows and columns comparable in norm and the same
must hold true for its inverse. The rows and columns ofE are about
as comparable in norm as those of A , but the first row and column
of E-1 are small in norm compared with the others. Therefore, to
achieve better numerical results, the rows and columns ofE should
be scaled before the matrix is inverted. This means that the
diagonal matrices Land R discussed earlier should be chosen to
make LER and (LERr' = R- ' E -1L-1 not so badly scaled.

In general, you can 't know the true inverse of matrix E in advance.
So the detection of bad scaling in E and the choice of scaling
matrices Land R must be based on E and the calculated E-1. The
calculated E-1 shows poor scaling and might suggest trying

[0 ' 0 0] L = R = ~ 105 o .
0 105

Using these scaling matrices,

[3X 10'" 102~] LER = 1 10-30

2 10-30 _10-30

which is still poorly scaled, but not so poorly that the HP-15C can 't
cope. The calculated inverse is

[

-2 X 10-
30

3 -1 J
(LERr1 = 3 -4 X 1030 2 X 1030

-1 2 X 1030 _1030

Section 4: Us ing Matrix Operations 107

This result is correct to 10 digits, although you wouldn't be
expected to know this. This result is verifiably correct in the sense
that using the calculated inverse,

(LERrl(LER) = (LER)(LERrl = I (the identity matrix)

to 10 digits.

Then E-1 is calculated as

[

-2 X 10-40

E-1 = R(LERrIL = 3 -4 X 1040

-1 2 X 1040

3
-1]

2 X 1040 ,

_1040

which is correct to 10 digits.

If (LERrl is verifiably poor, you can repeat the scaling, using
LER in place of E and using new scaling matrices suggested by
LER and the calculated (LERrl.

You can also apply scaling to solving a system of equations, for
example EX = B, where E is poorly scaled. When solving for X,
replace the system EX = B by a system (LER)Y = LB to be solved
for Y . The diagonal scaling matrices L and R are chosen as before
to make the matrix LER well-scaled. After you calculate Y from
the new system, calculate the desired solution as X = RY.

Preconditioning

Preconditioning is another method by which you can replace a
difficult system, EX = B, by an easier one, AX = D, with the same
solution X .

Suppose that E is ill-conditioned (nearly singular). You can detect
this by calculating the inverse E -I a nd observing that 1I11E-111 is
very small compared to IIEII (or equivalently by a large condition
number K(E)) . Then almost every row vector u T will have the
property that Ilu Til / IluTE-III is also very small compared with IIEII,
where E -I is the calculated inverse. This is because most row
vectors u T will have Ilu TE-11I not much smaller than Ilu 7lIIIE-11I, and
liE-III will be large. Choose such a row vector u T and calculate
v T = au TE-I. Choose the scalar a so that the row vector r T,

obtained by rounding every element of v T to an integer between
-100 and 100, does not differ much from v T. Then rT is a row vector

108 Section 4 : Usi ng Matrix Operations

with integer elements with magnitudes less than 100.llrTEII will be
small compared with IlrTIIIIEIl-the smaller the better.

Next, choose the kth element of r T having one of the largest
magnitudes. Replace the kth row ofE by r1E and the kth row of B
by r TB . Provided that no roundoff h as occurred during the
evalua tion of these new rows, the new system matrix A should be
better conditioned (farth er from singular) than E was, but the
system will still have the same solution X as before.

This process works best when E a nd A are both scaled so that
every row of E and of A have roughly the same norm as every
other. You can do this by multiplying the rows of the systems of
equations EX = B a nd AX = D by suitable powers of 10. If A is not
far enough from singular, though well scaled, repeat the
preconditioning process.

As an illustration of the preconditioning process, consider the
system EX = B, where

x y y y y 1

y x y y y 0

E= y y x y y , B = 0

y y y x y 0

y y y y x 0

and x = 8000.00002 and y = -1999.99998. If you a ttempt to solve
this system directly, the HP-1 5C calculates the solution X and the
inverse E- 1 to be

2014.6 1

2014.6 1

X "", 2014.6 a nd E -1 "'" 2014.6 1 1 1

2014.6 1 1

2014.6

Section 4: Using Matrix Operations 109

Substituting, you find

1.00146

0.00146

EX = 0.00146

0.00146

0.00147

Upon checking (using I MATRIX I 7), you find that 1I11E-11I =
9.9 X 10-5, which is very small compared with IIEII = 1.6 X 104 (or
that the calculated condition number is large-II Ell liE-I II =
1.6 X 108).

Choose any row vector u T = (1,1,1,1,1) and calculate

u TE- 1 = 10,073 (1,1, 1, 1, 1).

Using a = 10-4,

v T = auTE-1 = 1.0073 (1,1,1,1,1)

rT = (1, 1, 1, 1, 1)

IlrTEl1 = 5 X 10-4

Ilr TllllEl1 = 8 X 104
.

As expected, IlrTEl1 is small compared with IlrTIIIIEII.

N ow replace the first row of E by

107r TE = (1000,1000,1000,1000,1000)

and the first row of B by 107rTB = 107. This gives a new system
equation AX = D, where

A=

1000 1000 1000 1000 1000

y

y

y

y

x

y

y

y

y

x

y

y

y

y

x

y

y

y

y

x

107

o
andD= 0

o
o

110 Section 4: Using Matrix Operations

Note that rTE was scaled by 107 so that each row of E and A has
roughly the same norm as every other. Using this new system, the
HP-15C calculates the solution

2000.000080 107

1999.999980 -10-5

X= 1999.999980 , with AX = -9 X 10-6

1999.999980 0

1999.999980 0

This solution differs from the earlier solution and is correct to 10
digits.

Sometimes the elements of a nearly singular matrix E are
calculated using a formula to which roundoff contributes so much
error that the calculated inverse E- 1 must be wrong even when it is
calculated using exact arithmetic. Preconditioning is valuable in
this case only if it is applied to the formula in such a way that the
modified row of A is calculated accurately. In other words, you
must change the formula exactly into a new and better formula by
the preconditioning process if you are to gain any benefit.

Least-Squares Calculations
Matrix operations are frequently used in least·squares calcula­
tions. The typical least-squares problem involves an n X p matrix
X of observed data and a vector y of n observations from which you
must find a vector b with p coefficients that minimizes

n

IlrII ~ = I>r
i = 1

where r = y - Xb is the residual vector.

Normal Equations

From the expression above,

Solving the least-squares problem is equivalent to finding a
solution b to the normal equations

Section 4 : Using Matrix Operations 111

However, the normal equations are very sensitive to rounding
errors. (Orthogonal factorization , discussed on page 113, is
relatively insensitive to rounding errors.)

The weighted least-squares problem is a generalization of the
ordinary least-squares problem. In it you seek to minimize

n

IIWrllJ = Lwrrr
i = 1

where W is a diagonal n X n matrix with positive diagon a l
elements WI, w2, ... , wit"

Then

IIWrllJ = (y - Xb)TWTW(y - Xb)
and any solution b a lso satisfies the weighted normal equations

XTWTWXb = XTWTWy .

These are the normal equations with X and y replaced by WX and
Wy. Consequentially, these equations are sensitive to rounding
errors also.

The linearly constrained least-squares problem in volves finding b
such that it minimizes

IlrllJ = Ily - XbllJ
subject to the constraints

Cb = d (± Cijbj = di fori = 1, 2, .. . , m) .
; = 1

This is equivalent to finding a solution b to the augmented normal
equations

where 1, a vector of Lagrange multipliers , is part of the solution but
isn 't used further. Again, the a ugmented eq uations are very
sensitive to rounding errors. Note a lso that weights can also be
included by replacing X and y with WX and Wy.

112 Section 4: Using Matrix Operations

As an example of how the normal equations can be numerically
unsatisfactory for solving least-squares problems, consider the
system defined by

Then

a nd

[

100,000, _100,000.] [0.1]
0.1 0.1 0.1

X= and y = .
Q2 0.0 Q1

0.0 0.2 0.1

XTX = [10,000,000,000.05 -9,999,999,999.99J

-9,999,999,999.99 10,000,000,000.05

XT Y = [1O'000.03J .
- 9,999.97

However, when rounded to 10 digits ,

XTX =
[

101 0

- 1010

which is the same as what would be calcula ted if X were rounded to
five significant digits relative to the largest element:

x{TO -lOr]
The HP-15C solves XTXb = XT y (perturbing the singular matrix
as described on page 118) a nd gets

b = [0.060001J
0.060000

Section 4 : Using Matrix Operations 113

with

XTy - XTXb= .
[

0.03]
0.03

However, the correct least-squares solution is

b = [0.5000005J
0.4999995

despite the fact that the calculated solution a nd the exact solution
satisfy the computed normal equations equally well.

The normal equations should be used only when the elements of X
are all small integers (say between -3000 and 3000) or when you
know that no perturbations in the columns Xj of X of as much as
IIxjll / l04 could ma ke those columns linearly dependent.

Orthogonal Factorization

The following orthogonal factorization method solves the least­
squares problem and is less sensitive to rounding errors than the
normal equation method. You might use this method when the
normal eq uations aren 't appropriate.

Any n X p matrix X can be factored as X = QTV, where Q is an
n X n orthogonal matrix characterized by QT = Q-l a nd V is an
n X p upper-triangular matrix. The essential property of
orthogonal matrices is that they preserve length in the sense that

IIQrll J = (Qr)T(Qr)

= r TQ1'Qr

= rTr

= IlrII },.

Therefore, ifr = y - Xb, it has the same length as

Qr = Qy - QXb = Qy - Vb.

114 Section 4 : Usi ng Matrix Operations

The upper-tria ngular matrix U and the product Qy can be written
as

Then

[
U] (P rows)

U= 0 (n-prows) [
gJ (P rows)

a nd Qy = .
f (n - prows)

IIrllJ = IIQrllJ
=IIQy - UbllJ
=llg - vbllJ +llfllJ
;, Ilfll l

with equa lity when g - Vb = O. In other words, the solution to the
ordinary least-squares problem is a ny solution to Vb = g and the
minimal sum of squares is IlfliJ. This is the basis of a ll numerically
sound least-squares programs.

You can solve the unconstrained least-squares problem in two
steps:

1. Perform th e orthogonal factorization of the augmented
n X (p + 1) matrix

where Q T = Q-I, and retain only the upper-triangular factor
V, which you can then partition as

[

V gJ (p rows)
V = 0 q (1 row)

o 0 (n - p - 1 rows)

• L (l column)
L-(p columns)

Only the first p + 1 rows (and columns) of V need to be
retained. (Note th at Q here is not the same as th at mentioned
earlier, since this Q must a lso transform y .)

Section 4: Us ing Matrix Operations 115

2. Solve the following system for b:

(If q = 0, replace it by any small nonzero number, say 10-99.)

The - 1 in the solution matrix automatically appears; it
requires no additional calculations.

In the absence of rounding errors, q = ±lly - xbll F ; this may
be inaccurate iflql is too small , say smaller than Ily111l06. If
you desire a more accurate estimate of Ily - xbll F , you can
calculate it directly from X, y, and the computed solution b.

For the weighted least-squares problem, replace X and y by WX
and Wy, where W is the diagonal matrix containing the weights.

For the linearly constrained least-squares problem, you must
recognize that constraints may be inconsistent. In addition, they
can't always be satisfied exactly by a calculated solution because
of rounding errors. Therefore, you must specify a tolerance t such
that the constraints are said to be satisfied when Ilcb - dll < t.
Certainly t > IIdll / 1010 for 10-digit computation, and in some cases
a much larger tolerance must be used.

Having chosen t, select a weight factor w that satisfies w > Ilyll / t.
For convenience, choose w to be a power of 10 somewhat bigger
than Ilyll l t. Then wliCb - dll > Ilyll unless IICb - dll < t.
However, the constraint may fail to be satisfied for one of two
reasons:

• No b exists for which IICb - dll < t.
• The leading columns of C are nearly linearly dependent.

Ch eck for the first situation by determining whether a solution
exists for the constraints alone. When [w C wd] has been factored
to Q[U g], solve this system for b

(krows) [u
(p + 1 - k rows) 0

g] [bJ [0 J(P rows)
diag(q) -1 - -q (1 row)

using any small nonzero number q. If the computed solution b
satisfies Cb = d, then the constraints are not inconsistent.

116 Section 4: Using Matrix Operations

The second situation is rarely encountered and can be avoided. It
shows itself by causing at least one of the diagonal elements of U
to be much smaller than the largest element above it in the same
column, where U is from the orthogonal factorization wC = QU.

To avoid this situation, reorder the columns of wC and X and
similarly reorder the elements (rows) of b. The reordering can be
chosen easily if the troublesome diagonal element of U is also
much smaller than some subsequent element in its row. Just swap
the corresponding columns in the original data and refactor the
weighted constraint equations. Repeat this procedure if necessary.

For example, ifthe factorization of wC gives

_ [1.0 2.0 0.5 -1.5
U - 0 0.02 0.5 3.0

o 0 2.5 1.5

0.3J
0.1

-1.2

then the second diagonal element is much smaller than the value
2.0 above it. This indicates that the first and second columns in the
original constraints are nearly dependent. The diagonal element is
also much smaller than the subsequent value 3.0 in its row. Then
the second and fourth columns should be swapped in the original
data and the factorization repeated.

It is always prudent to check for consistent constraints. The test for
small diagonal elements of U can be done at the same time.

Finally, using U and g as the first k rows, add rows corresponding
to X and y. (Refer to Least-Squares Using Successive Rows on
page 140 for additional information.) Then solve the unconstrained
least-squares problem with

[WC] [Wd] X+ X and y+ y .

Provided the calculated solution b satisfies IICb - dll < t, that
solution will a lso minimize Ily - xbll subject to the constraint
Cb=d.

Section 4: Using Matrix Operations 117

Singular and Nearly Singular Matrices
A matrix is singular if and only if its determinant is zero. The
dete!"minant of a matrix is equal to (- 1)' times the product of the
diagonal elements of U, where U is the upper-diagonal matrix of
the matrix 's LU decomposition and r is the number of row
interch anges in the decomposition. Then, theoretically, a matrix is
singular if at least one of the diagon al elements of U , the pivots, is
zero; otherwise it is nonsingular.

However, because the HP-15C performs calculations with only a
finite number of digits , some singular and nearly singular matrices
can't be distinguished in this way. For example, consider the
matrix

which is singular. Using 10-digit accuracy, this matrix is
decomposed as

[

1
LU =

.3333333333

which is nonsingular. The singul ar matrix B can 't be distin­
guished from the nonsingular matrix

[

3
D-

.9999999999 :]
since they both have identical calculated L U decompositions.

On the other hand, the matrix

118 Section 4: Using Matrix Operations

is nonsingular. Using lO-digit accuracy, matrix A is decomposed
as

This would incorrectly indicate that matrix A is singular. The
nonsingular matrix A can't be distinguished from the singular
matrix

c ~ [.9999:99999 .9999:99999]

since they both have identical calculated L U decompositions.

When you use the HP-15C to calculate an inverse or to solve a
system of equations, you should understand that some singular
and nearly singular matrices have the same calculated LU
decomposition. For this reason, the HP-15C always calculates a
result by ensuring that all decomposed matrices never have zero
pivots. It does this by perturbing the pivots, if necessary, by an
amount that is usually smaller than the rounding error in the
calculations. This enables you to invert matrices and solve systems
of equations without being interrupted by zero pivots. This is very
important in applications such as calculating eigenvectors using
the method of inverse iteration (refer to page 155).

The effect of rounding errors and possible intentional perturba­
tions is to cause the calculated decomposition to have all nonzero
pivots and to correspond to a nonsingular matrix A + ~A usually
identical to or negligibly different from the original matrix A.
Specifically, unless every element in some column of A has
absolute value less than 10-89, the column sum norm I I~Al l e will be
negligible (to 10 significant digits) compared with IIAlle.

The HP-15C calculates the determinant of a square matrix as the
signed product of the (possibly perturbed) calculated pivots. The
calculated determinant is the determinant of the matrix A + ~A
represented by the L U decomposition. It can be zero only if the
product's magnitude becomes smaller than 10-99 (underflow).

Section 4 : Us ing Matr ix Operations 119

Applications
The following programs illustrate how you can use matrix
operations to solve many types of advanced problems.

Constructing an Identity Matrix

This program creates an identity matrix In in the matrix whose
descriptor is in the Index register. The program assumes that the
matrix is already dimensioned to n X n. Execute the program using
I GSB 18. The final matrix will have l's for a ll diagonal elements and
O's for all other elements.

Keystrokes Display

[]]IP/RI Program mode.

CD CLEAR I PRGM I 000-
CDI l Bll8 001-42,21, 8
CDI MATRIX I 1 002-42,16, 1 Sets i = j = 1.

CDIlBl l9 003-42,21, 9
IRCl la 004- 45 0
I RCl 11 005- 45 1
[]]ITESTI6 006-43,30, 6 Tests i# j.

[]]IClxl 007- 4335
[]]ITESTI5 008-43,30, 5 Tests i = j.
IEEXI 009- 26 Sets element to 1 if i = j.
CDI USER ICSY6][ill] 010u 4424 Skips next step at last
CDL®fID element.
IGTOl9 011- 22 9
[]]IRTNI 012- 4332
[]]IP/RI Run mode.

Labels used: 8 and 9.

Registers used: Ro, R 1, and Index register.

One-Step Residual Correction

The following program solves the system of equations AX = B for
X, then performs one stage iterative refinement to improve the
solution. The program uses four matrices:

120 Section 4 : Using Matrix Operations

Matrix A B

Input Syste m Right-Ha nd
Matrix Matrix

Output System Corrected
Matrix Solution

Keystrokes Dis play

Wl p/ RI

ITI CLEAR lpRGM I 000-
ITII LBLIA 001-42,21 ,11

I RCL II MATR IX 10 002-45,16,11
I STO II MATRIX I[QJ 003-44,16,14

I RCL II MATRI X I[ID 004-45,16,12

I RCL II MATR IX I[QJ 005-45,16,14

ITI[RESQGJ[9 006-42,26,13

G 007- 10

ITII REsuLT I[ID 008-42,26,12

ITI1 MATRlxI 6 009-42.16. 6

I RCL II MATRIX I[QJ 010-45.16.14

G 011- 10

I RCL II MATR IX 1[9 012-45.16.13

G 013- 40

wi RTN I 014- 4332
wl p/ RI

Label used: A.

Matrices used: A, B , C, and D .

To use t his progra m:

c

Uncorrected
Solution

D

LV Form
of A

Progra m mode.

Stores system ma trix
in D.

Calculates uncorrected
solution , C.

Calcula tes residua l, B .

Calculates correction, B.

Calculates refined
solution , B .

Run mode.

1. Dimension matrix A according to the system matrix and
store those elemen ts in A .

2. Dimension matrix B according to the right-hand matrix and
s tore those elemen ts in B.

3. Press I GSB 10 to calculate the corrected solution in matrix B.

Section 4 : Usi ng Matrix Operations 121

Example: Use the residual correction progra m to calculate the
inverse of matrix A for

16 72J
-10 -57 .

-4 -17

The theoretical inverse of A is

[

- 29/ 3

A -I = 8

8/ 3

-8/ 3 - 32 j
512 51/ 2 .

2/ 3 9

Find the inverse by solving AX = B for X , where B is a 3 X 3
identity matrix.

First, enter the progra m from above. Then, in Run mode, enter the
elements into matrix A (the system matrix) a nd m a trix B (the
right·hand, identity ma trix). Press I GSB I~ to execute the program.

Recall the elements of the uncorrected solution, matrix C:

[

- 9.666666881 - 2.666666726

C = 8.000000167 2.500000046

2.666666728 0.6666666836

-32.00000071 J
25.50000055

9.000000203

This solution is correct to seven digits. The accuracy is well within that
predicted by the equation on page 103.

(number of correct digits) ;;;' 9 - log(iIAIIII C II) - log(3) = 4.8.

Recall the elements of the corrected solution, matrix B:

[

-9.666666667 -2.666666667

B = 8.000000000 2.500000000

2.666666667 0.6666666667

-32.00000000 J
25.50000000

9.000000000

One iteration of refinement yields 10 correct digits in this case.

122 Section 4: Using Matrix Operations

Solving a System of Nonlinear Equations

Consider a system of p nonlinear equations in p unknowns:

fori= 1,2, ... , p

for which the solution Xl , X2, ... , xp is sought.

Let

Xl fl(x) F11(x) ... F1p(x)

X2 f 2(X) F 21(x) .. . F 2p (x)
x = , f(x) = ,andF (x)=

where

a
Fij(x) = -a f i(x)

Xj
for i , j = 1,2, ... , p .

The system of equations can be expressed as f(x) = O. Newton's
method starts with an initial guess x (O) to a root x off(x) = 0 and
calculates

x (k+ 1) = x (k) - (F(x(k)))-lf(x(k))

until x (k + 1) converges.

for k = 0,1,2, ...

The program in the following example performs one iteration of
Newton's method. The computations are performed as

x (k + I) = x (k) - d (iI),

where d (k) is the solution to the p X P linear system

F(x(k))d(k) = f (x(k)).

The program displays the Euclidean lengths of f(x(k)) and the
correction d (k) at the end of each iteration.

Example: For the random variable y having a normal distribution
with unknown mean m and variance v 2, construct an unbiased test
of the hypothesis that v2 = va versus the a lternative that v 2 '" VB for
a particular value va.
For a random sample of y consisting of Y l , Y2, ... , Yn , an unbiased
test rejects the hypothesis if

or

Section 4: Using Matrix Operations 123

where
n

Sn = L(Yi - y)2
i = 1

for some constants x l and X 2'

and

n
_ I,\,
Y=-L..JYi ,

ni = 1

If the size of the test is a (0 < a < 1), you can find xl and X2 by
solving the system of equations (1(X) = (2(X) = 0, where

J
X2

h(x) = (wl2)'nexp(-w / 2)dw - 2(1 - a)r(m + 1).
Xl

Here x2 > xl > 0, a and n are known (n > 1), and m = (n - 1)/ 2 - 1.

An initial guess for (Xl,X2) is

and X~O) = XI~- l , l - a l 2

where XJ,P is the pth percentile ofthe chi-square distribution with d
degrees of freedom.

For this example,

Enter the following program:

Keystrokes

W[P/R[

[!J CLEAR [PRGM [
[!J [LBL I0
2
[ENTER I
[!J[DIMI~

1
[!J [DIM I[[)

Display

000-
001-42,21,11
002- 2
003- 36
004-42,23,13

005-
006-42,23,12

Progra m mode.

Dimensions F matrix to
2 X 2.

Dimensions fmatrix to
2 X !.

124 Section 4: Using Matrix Operations

Keystrokes Display

1 GSB 100 007- 3212 Calculates f a nd F.

IRCL II MATRlx I0 008-45, 16 , 11
I RCL II MATRIX 100 009-45,16,12
I RCL II MATRIX IlIl 010-45,16,13
ITlI RESULT I@] 011-42,26,14

G 012- 10 Calculates d (k)

ITliRESULT I0 013-42,26,11

G 014- 30 Calculates
x (k + I) = x (k) - d (k)

wlLSTx l 015- 4336
ITli MATRlx I8 016-42,16, 8 Calculates IId(k)IIF'

1 RCL II MATRIX 100 017-45,16,12
ITl I MATRIX 18 018-42,16, 8 Calculates Ilf(x(k))I IF'

wlRTN I 019- 4332
ITlI LBL 100 020-42,21,12 Routine to calcula te

f a nd F .

ITlI MATRIX 11 021-42,16, 1

ITlI USER II RCL 10 022u 45 11
ITl I USER I
ISTO I4 023- 44 4 Stores x\k) in R4•

ITlI USER II RCL 10 024u 45 11 Skips next line for last

ITlI USER I element.

ISTO I5 025- 44 5 Stores x~k) in R5.

ISTO I5 026- 44 5

G 027- 30 Calculates XI - x2 '

1 RCL I5 028- 45 5

IRCL IG4 029-45,10, 4
w[ill] 030- 4312 Calculates In(x2/ xI)'

I RCL I2 031- 45 2
1 032-

G 033- 30

0 034- 20 Calculates
(n - 1) In(x2 / x ,).

G 035- 40 Calculates fJ .
ISTo lOO 036- 4412 Stores fl in B.

037-

Section 4: Using Matrix Operations 125

Keystrokes Display

IRCL I2 038- 45 2
1 039- 1

G 040- 30
IRCL IG 4 041-45,10, 4 Calcula tes (n - 1)lxl '

G 042- 30 Calculates F II .

[Ill USER II STO l[g 043u 4413 Stores FII in C.

[Ill USER I
I RCL I2 044- 45 2
1 045- 1

G 046- 30
IRCL IG 5 047-45,10, 5 Calculates (n - 1)1 x2'

1 048- 1

G 049- 30 Calculates F 12.

[Ill USER II STO l[g 050u 4413 Stores FI 2 in C .

[Il l USER I
IRCL I4 051- 45 4
IRCL I5 052- 45 5
[Ilcm[g 053-42,20,13 Calculates integral.

I RCL I3 054- 45 3
1 055- 1

G 056- 30
2 057- 2

0 058- 20 Calcul ates 2(a - 1).

I RcLi2 059- 45 2
3 060- 3

G 061- 30
2 062- 2

G 063- 10 Calculates m .

[Il[ill 064- 42 0 Calculates r(m + 1).

0 065- 20
G 066- 40 Calculates (2'

IsTO I[[] 067- 4412 Stores (2 in B .

IRCL I4 068- 45 4
IGSBI[g 069- 3213
ICHsl 070- 16 Calculates F 21 .

[Il l USER II STO l[g 071u 4413 Stores F 21 in C .

[Il l USER I

126 Section 4: Using Matrix Operations

Keystrokes Display

IRcLI5 072- 45 5
I GSB 1[9 073- 3213 Calculates F 22 .

[D! USER II STO 1[9 074u 4413 Stores F 22 in C.

ITJI USER I
WIRTN I 075- 4332 Skips this line.

WIRTN I 076- 4332
ITJI LBL I [9 077-42.21.13 Integrand routine.

2 078- 2

G 079- 10
ICHS I 080- 16
~ 081- 12 Calculates e-x 12

wl LSTx l 082- 4336
ICHsl 083- 16
IRcL I2 084- 45 2
3 085- 3
G 086- 30
2 087- 2
G 088- 10 Calculates m .

(Z) 089- 14
0 090- 20 Calculates (x / 2)me-x / 2.

wl RTN I 091- 4332

Labels used: A, B, and C.

Registers used: Ro (row), RI (column), R2 (n), R3 (a), R4 (XI(k») , and
R5 (X2(k»).

Matrices used: A (x(k + I»), B (f(x(k»)), C (F(x(k »)), and D (d(k »).

Now run the program. For example, choose the values n = 11 and
a = 0.05 . The suggested initia l guesses are x I (0) = 3.25 and X2(0) =
20.5 . Remember that the display format affects t he uncertainty of
the integral calculation.

Keystrokes

wlp/RI
5 ITJI DIM IffiiJ
11 1sTO I2

Display

5.0000
11 .0000

Run mode.

Reserves Ro through R5·

Stores n in R2.

Section 4: Using Matrix Operations 127

Keystrokes Display

. 051sT0 13 0.0500 Stores a in R3 .

21 ENTER 11
[IJ 1 DIM 1[6] 1.0000 Dimensions A to 2 X L

[IJI USER I 1.0000 Activates User mode.

[IJI MATRIX 11 1.0000
3.25 1 STO 1[6] 3.2500 Stores x iO) from chi-square

distribution.

20.51 STO 1[6] 20.5000 Stores x~O) from chi-square
distribution.

[IJlscl 14 2.0500 01 Sets display format.

[6] 1 .1677 00 Displays norm off(x(O)).

ffiIJ 1.0980 00 Displays norm of
correction d (O).

1 RCL 1[6] 3 .5519 00 Recalls xl!) .

1 RcLi[6] 2 .1556 01 Recalls x~!)

By repeating the last four steps, you will obtain these results:

k Ilf(x(k))IIF lJd< k)IIF x (k+ I)
1

Xkk+ l)

3.2500 20.500

0 1.168 1.098 3.5519 21.556

1.105X lO- 1 1.740X 10- 1 3.5169 21.726

2 1.918X 10-3 2.853 X 10-3 3.5162 21. 729

3 6.021 X 10-7 9.542X 10-7 3.5162 21.729

This accuracy is sufficient for constructing the statistical test.
(Press [IJ ITIRl 4 to reset the display format and [IJ 1 USER I to
deactivate User mode.)

128 Secti on 4 : Using M atri x Operation s

Solving a Large System of Complex Equations

Example: Find the output voltage at a radian frequency of
w = 15 X 103 rad / s for the filter network shown below.

L L

V= 10 volts
Rl = 100 ohms
R2 = 106 oh ms
R3 = 105 ohms

L = 10-2 henry
C I = 25 X 10-8 farad
C2 = 25 X 10-6 farad

Describe the circuit using loop currents:

Solve this complex system for 11,12, 13, and h Then Va = (R3)(l4)'

Because this system is too large to solve using the standard method
for a system of complex eq uations, this a lternate method (described
in t he owner's handbook) is used. First, enter the system matrix
into matrix A in complex form and calculate its inverse. Note that
wL = 150, l/wC1 = 800/ 3, and l/wC2 = 8/ 3.

Keystr ok es

~I p/R I

[D CLEAR I PRGM I

Display

000-

Program mode.
Clears program memory.

Section 4: Using Matrix Operat ions 1 29

Keystrokes Display

Wi P/ R I Run mode.

o ITJI DIM I [ill] 0 .0000 Provides maximum
matrix memory.

ITJ IMATRlx lO 0 .0000 Dimensions all matrices
to 0 X o.

41 ENTER I8 8

ITJ IDIM I~ 8.0000 Dimensions matrix A to
4 X S.

ITJ I MATRIX 11 8 .0000

ITJ I USER I 8 .0000 Activates User mode.

100 1sTO I~ 100.0000 Stores Re(a ll).

150 1 ENTER I 150.0000

800 l ENTER I3 G 266 .6667

Bl sTO I~ -116.6667 Stores Im(all).

150 I ENTER I 150.0000
8 1 ENTER 13 G 2 .6667

B l sTO I~ 147.3333 Stores Im(a44).

I R C L I I MATRlx l~ A 4 8

ITJ~ A 8 4 Transforms A Cto A p .

ITJI MATRlxl2 A 8 8 Transforms A P to A.
ISTO IIRESULT I A 8 8

ITJCl:El A 8 8 Calculates inverse
ofAinA.

Delete the second h a lf of the rows of A to provide space to store the
right-hand matrix B.

Keystrokes

4 1 ENTER 18

ITJIDIM I~

41 ENTER 12

ITJI DIM 100

Display

8
8 .0000

2
2.0000

Redimensions matrix A to
4 X S.

Dimensions matrix B to
4 X 2.

130 Section 4: Using Matrix Operations

Keystrokes

illi MATRlx I 1

10 I STO I[[]

IRCLII MATRIXl0
I RCL II MATRIX I[[]

ill~
ill I MATRIX 12

ill I RESULT I~
o
illlr.:M7 A""T""R""'lx"'1 4

ill I MATRIX 12

1 I ENTER Is
ill I D I M I~

[EIJ I RESULT I
ill I MATRIX 14

m~

Display

2.0000

10 .0000

A 4 8
b 4 2

Stores Re(V). (Other
elements are 0.)

b 8 Transforms B C to B P.

b 8 2 Transforms B P to B.
' b 8 2
C 4 2 Calcula tes solution in C.

C 2 4 Calcula tes transpose.

C 2 8 Transforms C to C.
8
8 .0000 Redimensions matrix C to

1 X 8.

C 1 8
C 8 Calcula tes transpose.

C 4 2 Tran sforms cP to CC.

Matrix C contains t he desired values of II , 12, fa, a n d 14 In

recta ngular form. Their phasor forms are easy to com pute:

Keystrokes

ill I MATRIX 11

ill I SCI 14
I R C L I~

I R CL I~

~ml±EJ

Display

C 4 2

C 4 2
1 .9950 -04

4 .0964 -03

4 .1013 -03

Resets Ro and R I .

Recalls Re(ll)'

Recalls Im(ll)'

Displays 1111.
8 .7212 01 Displays Arg(ll) in

degrees .

-1 .4489 -03
-3.5633 -02

3.5662 -02 Displays 1121.
-9 .2328 01
-1 .4541 -03
-3 .5633 -02

3 .5662 -02 Displays 1131.

Section 4: Using Matrix Operations 131

Keystrokes Display

Ix~YI -9.2337 01
I RCL I[IJ 5.3446 -05
I RC L I[IJ -2.2599 -06
~[]]L±El 5.3494 -05 Displays 1141 .
~ -2.4212 00
~IEEXI50 5.3494 00 Calculates 1 vol = (R3)1 141.
CD[£JKJ4 5.3494
CDI USER I 5.3494 Deactivates User mode.

The output voltage is 5.3494 L -2.4212°.

Least-Squares Using Normal Equations

The unconstrained least-squares problem is known in statistical
literature as multiple linear regression. It uses the linear model

p

y = 2..:bj xj + r.
j=l

Here, bj, ... , bp are the unknown parameters, Xl, ... , Xp are the
independent (or explanatory) variables, y is the dependent (or
response) variable, and r is the random error having expected
value E(r) = 0, variance a2.

After making n observations of y and Xl> X2, . .. , xp ' this problem can
be expressed as

y = Xb+r

where y is an n-vector, X is an n X p matrix, and r is an n-vector
consisting of the unknown random errors satisfying E(r) = 0 and
Cov(r) = E(rrT) = a2In-

If the model is correct and XTX has an inverse, then the calculated
least-squares solution b = (XTXrIXTy has the following
properties:

• E(b) = b, so that b is an unbiased estimator ofb .

• Cov(b) = E((b - b)T(b - b)) = a 2(XTXrl, the covariance matrix
of the estimator b.

132 Section 4: Using Matrix Operations

• E(r) = 0, where r = y - Xb is the vector of residuals .

• E(lIy - Xbll~) = (n - p)a2, so that ;;.2 = Ilrll~/(n - p)}s an
unbiased estimator for a2 . You can estimate Cov(b) by
replacing a2 by ;;'2.

The total sum of sq uares IIYII ~ can be partitioned according to

IIYII ~ = yTy

= (y - Xb + Xb)T(y - Xb + Xb)
= (y - Xbf(y - Xb) - 2b T XT(y - Xb) + (Xb)T(Xb)

= Ily - Xbll~ + IIXbll~
_ (Residual) + (Regression)
- Sum of Squares Sum of Squares

When the model is correct,

and

E(lly - Xbll~/(n - p)) = a2

for b '" O. When the simpler model y = r is correct, both of these
expectations equal a 2

You can test the hypothesis that the simpler model is correct
(against the alternative that the original model is correct) by
calculating the F ratio

F will tend to be larger when the original model is true (b '" 0) tha n
when the simpler model is true (b = 0). You reject the hypothesis
when F is sufficiently large.

If the random errors have a normal distribution, the F ratio has a
central F distribution with p and (n - p) degrees of freedom if
b = 0 , and a non central distribution ifb '" O. A statistical test of the
hypothesis (with probability a of incorrectly rejecting the
hypothesis) is to reject the hypothesis if the F ratio is larger than
the 100a percentile of the central F distribution with p a nd (n - p)

Section 4 : Using Matrix Operations 133

degrees of freedom; otherwise, accept the hypothesis.

The following program fits the linear model to a set of n data points
Xi!, Xi2, ... , Xip' Yi by the method ofleast-squares. The parameters bl>
b2, . . . , bp are estimated by the solution G to the normal equations
X7'Xb = X7' y. The program also estimates 0

2 and the parameter
covariance matrix Cov(b). The regression and residual sums of
squares (Reg SS a nd Res SS) a nd the residuals are also calculated.

The program requires two matrices:

Matrix A: n X p with row i (xi!, x i2, ... , Xip)
for i = 1, 2, ... , n.

Matrix B: n X 1 with element i (y;) for i = 1, 2, ... , n.

The program output is :

Matrix A: unch anged.
Matrix B: n X 1 containing the residuals from the fit

(Y i - b 1 xi! - .. . - bpXip) for i = 1, 2, ... , n, where b i is the
estimate for bi.

Matrix C: p X P covariance matrix of the parameter
estimates.

Matrix D: p X 1 containing the parameter estimates b1, .. • ,

bp .

T-register: contains an estimate of 0 2 .

Y-register: conta in s the regression s um of sq uares
(RegSS).

X-register: contains the residua l sum of squares (Res SS).

The analysis of variance (ANOV A) table below partitions the total
sum of squares (Tot SS) into the regression a nd the residual sums
of squares. You can use the table to calculate the F ratio.

ANOVATable

Source
Degrees of Sumof Mean
Freedom Squares Square F Ratio

Regression RegSS
(RegSS) (RegMS)

p
p (ResMS)

Residual n - p ResSS
(ResSS)

(n - p)

Total n TotSS

134 Section 4: Using Matrix Operations

The program calculates the regression sum of squares unadjusted
for the mean because a constant term may not be in the model. To
include a constant term, include in the model a variable th at is
identically equal to one. The corresponding parameter is then the
constant term.

To calculate the mean·adjusted regression sum of squares for a
model containing a constant term, first use the program to fit the
model and to find the unadjusted regression sum of squares . Then
fit the simpler model y = b1 + r by dropping all variables but the
one identically equal to one (b" for example) and find the
regression sum of squares for this model, (Reg SS) c. The mean­
adjusted regression sum of squares (R eg SS) A = Reg SS -
(Reg SS) c. Then the ANOVA table becomes:

ANOVA Table

Source Degrees of Sumof Mean F Ratio
Freedom Squares Square

Regression I p - l (RegSS)A (RegSS)A (Reg MS)A
Constant (p - l) (ResMS)

Constant (RegSS)c (ResSS)c

Residual n - p ResSS
(ResSS)

(n-p)

Total n TotSS

You can then use the F ratio to test whether the full model fits data
significantly better than the simpler model y = b1 + r.
You may want to perform a series of regressions, dropping
independent variables between each. To do this, order the variables
in the reverse order that they will be dropped from the model. They
can be dropped by transposing the matrix A, redimensioning A to
have fewer rows, and then transposing A once again.

You will need the original dependent variable data for each
regression. If there is not enough room to store the original data in
matrix E, you can compute it from the output of the regression fit.
A subroutine has been included to do this.

Section 4: Using Matrix Operations 135

This program has the following characteristics:

• If the entire program is keyed into program memory, the sizes
of nand p are required to satisfy n ;;;, p and (n + p)(p + 1) ~ 56.
That is ,

if pis 1 2 3 4

then n max is 27 16 11 7

This assumes that only data storage registers Ro and Rl are
allocated. If subroutine "B" is omitted , then n ;;;, p and
(n + p)(p + 1) ~ 58. That is,

if pis 1 2 3 4

then n max is 28 17 11 7

• Even though subroutine "B" uses the residual function with
its extended precision, the computed dependent variable data
may not exactly agree with the original data. The agreement
will usually be close enough for statistical estimation and
tests. If more accuracy is desired, the original data can be
reentered into matrix B.

Keystrokes Display

WlP/RI Program mode.

ITl CLEAR I PRGM I 000-
ITliLBLI0 001-42,21,11 Program to fit model.

I RcLiI MATRIX 100 002-45,16,12
ITlI MATRIX 18 003-42,16, 8
w[ZJ 004- 4311 Calculates Tot SS.
I RCL II MATRIX 10 005-45,16,11

I ENTER I 006- 36
ITlI RESULT I [I] 007-42,26,13
ITlI MATRIX i 5 008-42,16, 5 Calculates C = A TA.

wlLSTx l 009- 4336
I RCL II MATRIX 100 010-45,16,12
ITl [RISQLTJ@] 011-42,26,14

ITlI MATRIX 15 012-42,16, 5 Calculates D = A TB.

~ 013- 34

136 Section 4 : Using Matri x Ope rati ons

Keystrokes

IRCL II MATRlx I0
~
[Ill RESULT I lID
[Ill MATRIX 16

[IlIMATRlxla
[QJ(Z]
IRCLiloIMI0
G
G
I ENTER I
IENTERI
[Bill ;:::1 M7-:A-=TR=IX~1 [I]
[Ill RESULT I [I]

G

[QJIRtl
[Bill 1;:::M;:"'A-=TR=lx~1 lID
[IlIMATRlxla
[QJ(Z]
G
[QJILSTxl
[QJI RTN I
[Il l LBL I lID

IRCLIIMATRlxl0
I RCL II MATRIX I[QJ
~
[Ill RESULT I lID
[Ill MATRIX 16
I RCL II MATRIX I[QJ
ICHS I
[QJI RTN I

Display

014- 10 Calculates parameters in
D.

015-45.16.11
016- 34
017-42.26.12
018-42.16. 6 Calcul ates r esiduals offit

inB.

019-42.16. 8
020- 43 11 Calculates Res SS.

021-45.23.11
022- 30
023- 10 Calculates 0 2 estimate.

024- 36
025- 36
026-45.16.13
027-42.26.13

028- 10 Calculates covariance

029- 4333
030-45.16.12
031-42.16. 8
032- 43 11

matrix in C.

033- 30 Calculates Reg SS .
034- 43 36 Returns Res SS.
035- 4332
036-42.21 .12 Subroutine to reconstruct

dependent variable data.

037-45.16.11
038-45.16.14
039- 16
040-42.26.12
041-42.16. 6 Calculates B = B + AD.

042-45.16.14
043- 16
044- 4332

Labels used: A and B.

Section 4: Using Matrix Operations 137

Registers used: Ro and R J •

Matrices used: A , B , C , and D .

To use this program:

1. Press 1 [Ill DIM I [ill] to reserve registers Ro and R I .

2. Dimension matrix A a ccording to the number of observa­
tions n and the number of parameters p by pressing n I ENTER]
P [Ill DIM 10·

3. Dimension matrix B according to the number of observa-
tions n (and one column) by pressing n I ENTER 11 [Ill DIM I~ .

4. Press[Il IMATRIX I1 tosetregistersRoandR I .

5. Press [Ill USER I to activate User mode.

6. For each observation, store the values of the p variables in a
row of matrix A. Repeat this for the n observations.

7. Store the values of the dependent variable in matrix B.

8. Press 0 to calculate and display the Res SS . The Y-register
contains the Reg SS and the T-register contains the 0 2

estimate.

9. Press I RCL I@]to observe each of the p parameter estimates.

10. If desired, press ~ to recalculate the dependent variable
data in matrix B.

Example: Compare two regression models of the annual change in
the consumer price index (CPI) using the annual change in the
producer price index (PPI) and the unemployment rate (UR):

and

where y , X2, and X 3 represent CPl, PPl, and UR (all as percentages).
Use the following data from the U.S.:

138 Secti on 4: Using Matrix Operati ons

Year CPI PPI UR

1969 5.4 3.9 3.5
1970 5.9 3.7 4.9
1971 4 .3 3.3 5.9
1972 3.3 4.5 5.6
1973 6.2 13.1 4.9
1974 11 .0 18.9 5.6
1975 9.1 9.2 8.5
1976 5.8 4 .6 7.7
1977 6.5 6.1 7.0
1978 7.6 7.8 6.0
1979 11.5 19.3 5.8

Keystrokes Display

[]]I P/R I Run mode.

ITJI MATRIX I 0
11 1 ENTER 13 3
ITJI DIM 10 3.0000 Dimensions A as

11 X 3.
11 I ENTER 11
ITJI DIM II]] 1.0000 Dimensions B as 11 X l.

ITJI MATRIX 11 1.0000
ITJI USER I 1 .0000
1 1sTO l0 1.0000 Enters independent

variable data.

39 1sTO I0 3 .9000
35 1sTO l0 3 .5000

1 ISTO I0 1.0000
19.3 1sT0 10 19.3000
5.8 1sT0 10 5.8000
5.4 1 STO II]] 5.4000 Enters dependent variable

data.

5.9 1 STO II]] 5 .9000

11.5 1 STO II]] 11.5000
0ITJ0RJ 9 13.51217504 Res SS for full model.

ern 587.9878252 Reg SS for fu ll model.

Section 4: Using Matrix Operations 139

Keystrokes Display

[[U[[U 1 .689021880 0 2 estimate.

[RCLI @J 1.245864326 b1 estimate.

[RCLI@J 0.379758235 b2 estimate.

IRCLI@J 0.413552218 b3 estimate.

[[] d 3 Recalculates dependent
data.

[RCLII MATRIXI0 A 11 3
ITl[MATRIXI4 A 3 11
2 [ENTER l l l 11
ITli DIM I0 11 .00000000 Drops last column of A.

[RCL II MATRIX 10 A 2 11
ITl[MATRlxI4 A 11 2 New A matrix.

0 16.78680552 Res SS for reduced model.

[[U 584.7131947 Reg SS for reduced model.

[[U[[U 1 .865200613 0 2 estimate.
[RCLI@J 3.701730745 b1 estimate.

[RCLI@J 0.380094935 b2 estimate.
[[] d 2 Recalculates dependent

data.

[RCLII MATRIXI0 A 11 2
ITli MATRlxI4 A 2 11
1 I ENTER 111 11
ITl[DIM I0 11.00000000 Drops next column of A.

IRCL il MATRlxI0 A 1 11
ITli MATRlxI4 A 11 New A matrix.

0 68.08545454 Res SS.
[R+I 533.4145457 Reg SS for constant.
[[U[[U 6 .808545454 0 2 estimate.
IRCLI@J 6.963636364 b1 estimate.

ITlI USERI 6.963636364 Deactivates User mode.

ITl[lliJ4 6.9636

The Reg SS for the PPI variable adjusted for the constant term is
(Reg SS for reduced model) - (Reg SS for constant) =

51.29864900.

140 Section 4 : Using Matrix Operations

The Reg SS for the UR variable adjusted for the PPI variable and
the constant term is

(Reg SS for full model) - (Reg SS for reduced model) =
3.274630500.

Now construct the following ANOV A table:

Source
Degrees of Sum of Mean

F Ratio
Freedom Squares Square

UR I PPI, Constant 3.2746305 3.2746305 1.939

PPII Constant 51.2986490 51.2986490 30.37

Constant 533.4145457 533.4145457 315.8

Residual (full
model) 8 13.5121750 1.68902188

Total 11 601.5000002

The F ratio for the unemployment rate, adjusted for the producer
price index change and the constant is not statistically significant
at the 10-percent significance level (0' = 0.1). Including the
unemployment rate in the model does not significantly improve the
CPI fit .

However, the F ratio for the producer price index adjusted for the
constant is significant at the O.l-percent level (0' = 0.001). Including
the PPI in the model does improve the CPI fit.

Least-Squares Using Successive Rows

This program uses orthogonal factorization to solve the least­
squares problem. That is, it finds the parameters b1, •. • , bp that
minimize the sum of squares IlrIIJ = (y - Xb)T(y - Xb) given the
model data

Section 4 : Usi ng Matrix Operations 141

x = [::: ::: :::l and Y = [~:l'
~nl X n 2 ~np ~n

The program does this for successively increasing values of n,
although the solution b = b (n) is meaningful only when n;' p.

It is possible to factor the augmented n X (p + 1) matrix [X y] into
QTV, where Q is an orthogonal matrix,

(prows)

(1 row),

(n - p - 1rows)

and U is an upper-triangular matrix. If this factorization results
from including n rows rm = (x m I , Xm2' ... , x mp' Y m) for m = 1, 2, ... , n
in [X y], consider how to advance to n + 1 rows by appending row
rn + 1 to[X y]:

The zero rows of V are discarded.

Multiply the (p + 2) X (p + 1) matrix

A = r~ :]
rn + 1

(p rows)

(1 row)

(1 row)

142 Section 4: Using Matrix Operations

by a product of elementary orthogonal matrices, each differing
from the identity matrix Ip + 2 in only two rows and two columns.
For k = 1,2, ... , p + 1 in turn, the kth orthogonal matrix acts on the
kth and last rows to delete the kth element of the last row to alter
subsequent elements in the last row. The kth orthogonal matrix
has the form

o

1
c 8

o

-8 c

where c = cos(O), 8 = sin(O), and 0 = tan-I(ap + 2.k1 akk)' After p + 1
such factors have been applied to matrix A, it will look like

[
u* g*] (p rows)

A * = 0 q* (1 row)

o 0 (1 row)

where U* is also an upper-triangular matrix. You can obtain the
solution b(n + I) to the augmented system of p + 1 rows by solving

g*] [b(n+I)] = [0].
q* -1 -q*

By replacing the last row of A * by rn + 2 and repeating the factoriza­
tion , you can continue including additional rows of data in the
system. You can add rows indefinitely without increasing the
required storage space.

The program below begins with n = 0 and A = O. You enter the
rows rm successively for m = 1, 2, ... , p - 1 in turn. You then obtain
the current solution b after entering each subsequent row.

Section 4 : Using Matrix Operations 143

You can also solve weighted least-squares problems and linearly
constrained least-squares problems using this program. Make the
necessary substitutions described under Orthogonal Factorization
earlier in this section.

Keystrokes Display

wlP/RI Program mode.

I] CLEAR I PRGM I 000-
1]1 LBL ICE] 001-42,21,11 Program to input new

row.

ISTOl2 002- 44 2 Stores weight in R2.

1 003-
ISTO l l 004- 44 Stores I = 1 in R I .

I]ILBLI4 005-42.21, 4
I RCL II DIM ICE] 006-45.23.11
~ 007- 34
ISTOlo 008- 44 0 Stores k = p + 2 in RD.
I]ILBLI5 009-42.21. 5
I RCLll 010- 45 1
IRlsl 011- 31
IRCL I2 012- 45 2
0 013- 20
1]1 USER II STO ICE] 014u 4411
1]1 USER I
IGTO l5 015- 22 5
IGTO l4 016- 22 4
1]1 LBL I[[) 017-42.21,12 Program to update

matrix A.
I RCL II DIM ICE] 018-45,23.11 Recalls dimensions p + 2

andp + l.
~ 019- 34
ISTol2 020- 44 2 Stores p + 2 in R2.

1]1 MATRIX ! 1 021-42.16. Sets k = I = l.
I][LBLll 022-42,21 . 1 Branch to update ith row.
W[Q]O 023-43. 5. 0
[RCL]2 024- 45 2
[RcLi a 025- 45 0
[RCL lwCE] 026-45.43.11 Recalls a p + 2,k '

[RCL ICE] 027- 4511 Recalls akk .

144 Section 4: Using Matrix Operations

Key strokes Display

CIli TEST 12 028-43.30. 2 Tests a kk < O.

CIl (gJo 029-43. 4 . 0 Sets fl ag 0 for negative
diagonal elemen t.

CIlI ABS I 030- 4316
CIl~ 031- 43 1 Calcul ates e.
CIllcLx l 032- 4335
1 033-
CDI +R I 034- 42 Calcula tes x = cos e a nd

y = sin e.
CIl [TIJo 035-43. 6. 0
ICHs l 036- 16 Sets x = e a nd y = s.

CDITl 037- 4225 Formss + ie.

ern 038- 33
CDI LBL 12 039-42.21 . 2 Subroutine to rota te row k.

CIlcrn 040- 4333
IRCL I0 041- 4511 Recalls akl'

I RCL I2 042- 45 2
IRCLll 043- 45 1
IRCL ICIl0 044-45.43.11 Recalls ap + 2. I'

CDITl 045- 4225 Forms a kl - iap + 2,1'

0 046- 20
IRCL I2 047- 45 2
I RcLil 048- 45 1
ISTO lCIl0 049-44.43.11 Stores new akl '

CDI Re~lm l 050- 4230
CDI USER II STO 10 051u 4411 Stores new ap + 2,1,

CD luSER I increments Ro a nd RI·
I RCL l l 052- 45 1 Recalls 1 (column).

IRCL lo 053- 45 0 Recalls k (row).
CIlIx-;;;; yl 054- 4310 Tests k:;;; I.
IGTO l2 055- 22 2 Loops back unti l column

reset to 1.

CIlcm s 056- 43. 5. 8 Turns off Complex mode.

ISTO ll 057- 44 Stores k in RI (I).

IRCL I2 058- 45 2

Section 4: Using Matrix Operations 145

Keystrokes Display

[[]Ix:;;;;;y! 059- 4310 Tests p + 2 :;;;;;; k.

[[]IRTN I 060- 4332 Returns at last row.

IGTOll 061- 22 1 Loops back until last row.

ITlllBll[Il 062-42,21,13 Program to calculate
current solution.

IRCli i oIMI0 063-45,23,11
IENTERI 064- 36
ITlIDlMI0 065-42,23,11 Eliminates last row of A.

ISTO lo 066- 44 0 Stores p + 1 in RD.

ISTOll 067- 44 1 Stores p + 1 in RI .

1 068-
ITlIOIM 1[Il 069-42,23,13 Dimensions matrix e to

(p + 1) Xl.

0 070- 0
I STO II MATRIX 1[Il 071-44,16,13 Sets matrix e to O.

IEEXI 072- 26
9 073- 9
9 074- 9
ICHS I 075- 16 Forms 10-99

IRCll0 076- 45 11 Recalls q = ap + I ,p + I '

[[] Ix=o l 077- 4320 Tests q = O.

Dill 078- 33 Uses 10-99 if q = O.

ICHS I 079- 16
IRCl lO 080- 45 0
1 081- 1
ISTOI[[][Il 082-44.43,13 Sets cp + 1,1 = -q.

I RCl II MATRIX 1[Il 083-45,16,13
IRClIIMATRlxI0 084-45,16,11
ITlIRESUlT I[Il 085-42,26,13
G 086- 10 Stores A-Ie in e.
IRCl lo 087- 45 0
1 088-
G 089- 40
IRCl lo 090- 45 0
ITl i OIM I0 091-42,23,11 Dimensions matrix A as

(p + 2) X (p + 1).

092-

146 Section 4: Using Matrix Operations

Keystrokes

[]TI]0
[IJI MATRlx I 1

[]]IRTN I

Display

093- 30
094-
095-42,23 ,13

096- 45 11

097-42,16, 1

098- 4332

Dimensions matrix C as
pX1.

Recalls q.

Sets k = I '" 1.

Labels used: A, B, C, and 1 through 5.

Registers used: Ro, R) , and R2 (p + 2 and w).

Matrices used: A (working matrix) a nd C (parameter estimates).

Flags used: 0 and 8.

With this progra m stored, the HP-15C h as enough memory to work
with up to p = 4 para meters . If programs "A" and "C" are deleted,
you can work with p = 5 parameters. In either case, there is no limit
to the number of rows that you can enter.

To use this program:

1. Press 2 [IJI DIM I [ill] to reserve registers Ro through R2.

2. Press [IJI USER I to activate User mode.

3. Enter (p + 2) and (p + 1) into the stack, then press [IJI DIM 10
to dimension matrix A. The dimensions depend on the
number of parameters that you use, denoted by p.

4. Press 0 I STO II MATRIX 10 to initialize ma trix A.

5. Enter the weight Wk of the current row, then press 0 . The
display shou ld show 1.0000 to indicate that the program is
ready for the first row element. (For ordinary least-sq uares
problems, use Wk = 1 for each row.)

6. Enter the elements of the row m of ma trix A by pressing X m)

I RIS I Xm 2 I RIS I ... X mp I RIS I Ym I RIS [. After each element is
entered, the display should show the number of the next
element to be entered. (If you make a mistake while entering
the elements, go back a nd repeat steps 5 a nd 6 for that row.

7. Press []] to update the factorization to include the row
entered in the previous two steps.

Section 4: Using Matrix Operations 147

8. Option ally, press [Ij []] 0 to calculate a nd display the
residua l sum of sq uares q2 and to calculate the current
solution h . Then press I RCL l[Ijp times to display bl> b2 , ... , bp

in turn.

9. Repeat steps 5 through 8 for each additional row.

Example : Use this program and the CPl data from the previous
example to fit the model

Y = bl + b 2x 2 + b 3X3 + r,
where Y, X2, a nd X3 represent the CPl, PPl , a nd UR (all as
precentages).

This problem involves p = 3 parameters, so matrix A should be
5 X 4. The rows of matrix A are (1, x m 2, x m3, Ym) for m = 1,2, ... , 11 .
Each row has weight Wm = 1.

Keystrok es D isplay

[]]I p/ RI Run mode.

2 [IJ I DIM I [ill] 2 .0000 Reserves Ro th rough R2.

[IJ I USER I 2 .0000 Activates User mode.

[IJI MATRIX 10 2 .0000 Clears matrix memory.
5 1ENTER I4 4
[IJI DIM 10 4 .0000 Dimensions matrix A to

5 X 4.

o I STO II MATRIX 10 0 .0000 Stores zero in all elements.

1 0 1.0000 Enters weight for row 1.

1 1 R/S I 2 .0000 EntersxII'
3.9I R/sl 3 .0000 Enters x1 2'

3.5 IR/sl 4.0000 Enters x13'

5.41 R/ S I 1.0000 Enters YI'

lID 5.0000 Updates factorization.

10 1.0000 Enters weight for row 11.
1 1R/sl 2 .0000 Enters Xll ,l'

19.3 IR/sl 3 .0000 Enters Xll ,2'

5.81 R/sl 4 .0000 Enters xll ,3'

11 .5I R/s l 1 .0000 Enters YII '
lID 5 .0000 Updates factorization.

148 Section 4: Usi ng Matrix Operations

Keystrokes Display

[9 3 .6759 Calculates current
estimates and q.

ITllIlKl9 3.675891055
w[ZJ 13.51217505 Calculates residual sum of

squares q2.

1 RCL 1[9 1.245864306 Displays b\IP

1 RCL 1[9 0 .379758235 Displays bkll)

1 RCL 1[9 0.413552221 Displays bhll).

These estimates agree (to within 3 in the ninth significant digit)
with the results of the preceding example, which uses the normal
equations. In addition, you can include additional data and update
the parameter estimates. For example, add this data from 1968:
CPI = 4.2, PPI = 2.5, and UR = 3.6 .

Keystrokes Display

10 1.000000000 Enters row weight for new
row.

1 1 RIS 1 2 .000000000 Enters X12,1'
2.51 RIS 1 3 .000000000 Enters XI2,2'

36 1 RIS 1 4 .000000000 Enters xI2,3'

4.2 1 RIS 1 1.000000000 Enters Y12'
[]] 5.000000000 Updates factorization.

[9 3.700256908
w[ZJ 13.69190119 Calculates residual sum of

squares.

1 RcLI [9 1.581596327 Displays b\12).

1 RcLI [9 0.373826487 Displays bkI2).

1 RCL 1[9 0.370971848 Displays bhl2)

ITllIlKl4 0 .3710
ITlIUSER I 0 .3710 Deactivates User mode.

Eigenvalues of a Symmetric Real Matrix

The eigenvalues of a square matrix A are the roots Aj of its
characteristic equation

det(A - AI) = o.

Section 4: Using Matrix Operations 149

When A is real and symmetric (A = AT) its eigenvalues Aj are all
real and possess orthogonal eigenvectors qj. Then

Aqj = Ajqj

and

The eigenvectors (q l,q2, ...) constitute the columns of an orthogonal
matrix Q which satisfies.

QT AQ = diag (A),A2' ...)

and

QT = Q-l.

An orthogonal change of variables x = Qz, which is equivalent to
rotating the coordinate axes, changes the equation of a family of
quadratic surfaces (x TAx = constant) into the form

k

zT(QT AQ)z = I>jz7 = constant.
j

With the equation in this form , you can recognize what kind of
surfaces these are (ellipsoids, hyperboloids, paraboloids, cones,
cylinders, planes) because the surface's semi-axes lie along the new
coordinate axes.

The program below starts with a given matrix A that is assumed to
be symmetric (if it isn't, it is replaced by (A + A T) / 2, which is
symmetric).

Given a symmetric matrix A, the program constructs a skew­
symmetric matrix (that is, one for which B = -BT) using the
formula

if i ¥- j and aij ¥- 0

if i = j or aU = o.

Then Q = 2(1 + B)-1 - 1 must be an orthogonal matrix whose
columns approximate the eigenvalues of A; the smaller are a ll the
elements of B, the better the approximation. Therefore QT AQ must
be more nearly diagonal than A but with the same eigenvalues. If

150 Section 4: Using Matrix Operations

QT AQ is not close enough to diagonal, it is used in place of A above
for a repetition of the process.

In this way, successive orthogonal transformations QJ> Q 2, Q 3, ...
are applied to A to produce a sequence At , A 2, A 3, ... , where

with each successive Aj more nearly diagonal than the one before.

Th is process normally leads to skew matrices whose elements are
a ll small and Aj rapidly converging to a diagonal matrix A.
However, if some of the eigenvalues of matrix A are very close but
far from the others, convergence is slow; fortunately, th is situation
is rare.

The program stops after each iteration to display

l/Z L loff-diagonal elements of A) / IIAjIlF
j

which measures how nearly diagonal is A j . If this measure is not
negligible, you can press I RIS I to calculate Aj + 1; if it is negligible,
then the diagonal elements of Aj approximate the eigenvalues of A.
The program needs only one iteration for 1 X 1 and 2 X 2 matrices,
and rarely more than six for 3 X 3 matrices. For 4 X 4 matrices the
program takes slightly longer and uses all available memory;
usually 6 or 7 iterations are sufficient, but if some eigenvalues are
very close to each other and relatively far from the rest, then 10 to
16 iterations may be needed.

Keystrok es Display

ml p/ RI Program mode.

[IJ CLEAR I PRGM I 000-
[IJ ILBL I(K] 001-42.21.11
I RCL II MATRI X I(K] 002-45.16.1 1
I STO II MATRIX I~ 003- 44.16.12 Dimensions B.

I STO II MATRIX I [I) 004- 44.1 6 .1 3 Dimensions C.

[IJ I MATRIX 14 005- 42.16. 4 Transposes A.

I R CLII MATRlxl~ 006-45 .16.12
I STO II RESULT I 007- 4426
G 008- 40

Section 4 : Using Matrix Operations 151

Keystrokes Display

2 009- 2

G 010- 10
[STO [[MATRIX i~ 011-44,16,11 Calculates

A = (A + A T) / 2.

ITl[MATRIX [8 012-42,16, 8 Calculates IIAIIF'
[sTo l 2 013- 44 2 Stores IIAllFin R2·

w[cLxl 014- 4335
i STO I3 015- 44 3 Initializes off-diagonal

sum.

[STO II MATRIX I~ 016-44,16,13 Sets C = O.

ITliMATRIXI1 017-42,16, 1 Sets Ro = RJ = l.
ITlI LBL I 0 018-42,21, 0 Routine to construct Q.
[RcLio 019- 45 0
I RCL I 1 020- 45
Wl TEST I5 021-43,30, 5 Tests row = column.

IGTo l 3 022- 22 3

Wl TEST I7 023-43,30, 7 Tests column > row.

IGTO l l 024- 22
[ill 025- 34
IRCLlw[[] 026-45,43,12
ICHS I 027- 16
ITlI USER I[STO I[[] 028u 4412 Sets bij = -bji.

ITlI USER I
IGTO IO 029- 22 0
ITl I LBL 11 030-42,21, 1 Routine for column > row.

[RCL IW~ 031-45,43,11
WIABS I 032- 4316 Calculates 1 aij I·
ISTO IG3 033-44,40, 3 Accumulates off-diagonal

sum.

WILSTx l 034- 4336
I ENTER I 035- 36
G 036- 40 Calculates 2aij'

I RcLio 037- 45 0
IENTER I 038- 36
IRCLlW~ 039-45,43,11 Recalls a ii '

IRCLll 040- 45 1
IENTER I 041- 36

152 Section 4 : Using Matrix Operations

Key strokes Display

IRCL lw0 042-45.43.11 Recalls a jj.

G 043- 30 Calculates aii - ajj.

W lTEST I3 044-43.30. 3 Tests x ;" 0.

IGTo l2 045- 22 2
ICHs l 046- 16 Keeps angle of rota tion

between -900 a nd 900
•

~ 047- 34
ICHs l 048- 16

~ 049- 34
ITl iLBL I2 050-42.21 . 2

W~ 051- 43 1 Calcula tes angle of
rota tion.

w lcLx l 052- 4335
4 053- 4

G 054- 10
ITAN I 055- 25 Calculates bij .

ITl I USER II STO I lID 056u 4412
ITlI USER I
IGTO IO 057- 22 0
ITl I LBL 13 058-42.21. 3 Routine for row = column .

1 059-
ISTo l[9 060- 4413 Sets Gii = l.
ITl I USER II STO I lID 061u 4412 Sets bii = l.
ITlI USER I
IGTO IO 062- 22 0
I RCL I3 063- 45 3
IRCLIG 2 064-45.10. 2 Calculates off·dia gonal

ra tio.

IRl sl 065- 31 Displays ratio.

2 066- 2
I RCL II MATRIX I lID 067-45.16.12

G 068- 10
I RCL II MATRIX 1[9 069-45.16.13
G 070- 30 Calcula tes

B = 2(1 + skewf ' - I.

IRCL II MATRlxI0 071-45.16.11
ITl [RESULf] [9 072-42.26.13
ITl I MATRIX 15 073-42.16. 5 Calculates C = B TA .

Keystrokes

I RCL II MATRIX IOO
[IlIRESULTI~

o
IGTOI~

Section 4: Using Matrix Operations 153

Display

074-45,16,12
075-42,26,11
076- 20 Calculates A = BT AB.

077- 2211

Labels used: A, 0, 1, 2, and 3.

Registers used: Ro, RI , R2 (off-diagonal sum), and R3 (1IAjII F).

Matrices used: A (A), B (Q), and C.

To use the program:

1. Press 4 [Ill DIM I [ill] to reserve registers Ro through R4.

2. Press [Ill USER Ito activate User mode.

3. Dimension and enter the elements of matrix A using [Ill DIM I
~ and I STO I ~. The dimensions can be up to 4 X 4, provided
that there is sufficient memory available for matrices Band
C having the same dimensions also.

4. Press ~ to calculate and display the off-diagonal ratio.

5. Press I RIS I repeatedly until the displayed ratio is negligible,
say less than 10-8.

6. Press I RCL I ~repeatedly to observe the elements of matrix A.
The diagonal elements are the eigenvalues.

Example: What quadratic surface is described by the equation
below?

Keystrokes

[]]I P/R I
4 [Il I DIM I [ill]
[Ill USER I

= 2XjX2 + 4XIX3 + 2x~ + 6X2X3 + 4x~

=7

Display

4.0000

4.0000

Run mode.

Allocates memory.

Activates User mode.

154 Section 4: Using Matrix Operations

Keystro k es D is p lay

3 [ENTER 1[Il[DIM 10 3 .0000 Dimensions A to 3 X 3.

[Il[MATRIX 11 3.0000 Sets Ro and Rl to l.

0 i sTo l0 0 .0000 Entersall'

1 [sTo l0 1 .0000 Enters a1 2'

3 1sTO I0 3.0000 Enters a 32'

4[STOI0 4.0000 Enters a 33'

0 0 .8660 Calculates ratio- too
large.

IRIsl 0.2304 Again , too large.

IRIsl 0.1039 Again , too large.

[RISI 0.0060 Again , too large.

[RIS I 3.0463 -05 Again, too large.

[RISI 5.8257 - 10 Negligible ratio.

[RCLI0 -0 .8730 Recalls all = AI'

[RCLI0 -9 .0006 - 10 Recalls a12.

[RCLI0 - 2 .0637 -09 Recalls a1 3'

[RCLI0 - 9 .0006 - 10 Recalls a 2l'

[RCLI0 9 .3429 -11 Recalls a22 = A2'

[RCLI0 1.0725 -09 Recalls a 23'

IRCLI0 - 2 .0637 -09 Recalls a31'

IRCLI0 1.0725 - 09 Recalls a 32'

IRCLI0 6 .8730 Recalls a 33 = A3'
[Il[USER I 6 .8730 Deactivates User mode.

In the new coordinate system the equation of the quadratic surface
is approximately

-O.8730zY + Oz~ + 6.8730z~ = 7.

This is the equation of a hyperbolic cylinder.

Eigenvectors of a Symmetric Real Matrix

As discussed in the previous application, a real symmetric matrix
A has real eigenvalues A], A2, ... and corresponding orthogonal
eigenvectors q], Q2,

Section 4: Using Matrix Operations 155

This program uses inverse itera tion to calculate an eigenvector q k
that corresponds to the eigenvalue Ak such that IlqkllR = 1. The
technique uses an initial vector z(O) to calculate subsequent vectors
w(n) and z (n) repeatedly from the equations

(A - AI)w(n + 1) = z (n)

z(n + 1) = sw(n + 1) I llw(n + 1)IIR

where s denotes the sign of the first component of w (n + 1) having
the largest absolute value. The iterations continue until z(n)

converges. That vector is an eigenvector qk corresponding to the
eigenvalue Ak'
The value used for Ak need not be exa ct; the calculated eigenvector
is determined accurately in spite of small inaccuracies in Ak '
Furthermore, don't be concerned about having too accurate an
approximation to Ak; the Hp·15C can calculate the eigenvector
even when A - AkI is very ill-conditioned.

This technique requires that vector z(O) have a nonzero component
along the unknown eigenvector q k. Because there are no other
restrictions on z(O) , the program uses random components for z(O)
At the end of each iteration, the program displays Ilz(n + 1) - z(n) IIR
to show the rate of convergence.

This program can accommodate a matrix A that isn't symmetric
but has a diagonal Jorda n canonical form-that is, there exists
some nonsingular matrix P such that p -1 AP = diag(A I ,A2,"') '

Keystrokes

[]] IP/R I
[Il CLEAR I PRGM I
[Il l lBLi[IJ
ISTO I2
I R Cl II"7"M'""'"A=TR=lx""'l ~
I STO II MATRIX I[]]
I RcLi I DIM I~
ISTO lo
[Il I lBLi 4
IRcl lO
ISTO l l
I RcLi[]]

Display

000-
001-42.21.13
002- 44 2

003-45.16.11
004-44.16.12

005-45.23.11
006- 44 0
007-42.21. 4
008- 45 0
009- 44
010- 4512

Program mode.

Stores eigenvalue in R2.

Stores A in B.

156 Section 4 : Using Matrix Operati ons

Keystrokes Display

IRCL IG 2 011-45.30. 2
ISTO I[[J 012- 4412 Modifies diagonal

elements of B .

(IlI OSE IO 013-42. 5. 0
IGTO l4 014- 22 4
I RCL ll oIM I~ 015-45.23.11
1 016- 1
(IlI OIM leg 017-42.23.13 Dimensions C to n X l.

(IlI MATRlx l l 018-42.16. 1
(IlI LBL I5 019-42.21. 5
(IlI RAN# 1 020- 4236
(Il l USER II STO leg 021u 4413 Stores random
(Ill USER I components in C.
IGTO I5 022- 22 5
(IlI LBL l s 023-42.21. 6 Routine for iterating z (n)

and w (n) .

I RCL II MATRIX leg 024-45.16.13
I STO II MATRIX I@] 025-44.16.14 Stores z (n) in D.

ISTO II RESULT I 026- 4426
I RCL II MATRIX I[[J 027-45.16.12
G 028- 10 Calculates w (n + I) in C.

IENTER I 029- 36
(Ill MATRIX 17 030-42. 16. 7
G 031- 10 Calculates ± z (n + I) in C.

(Il l MATRIX I 1 032-42.16. 1
(Il ILBL I7 033-42.21 . 7 Routine to find sign of

largest element.

(Ill USER II RCL leg 034u 4513
(Ill USER I
IENTER I 035- 36 (This line skipped for last

element.)

WIABSI 036- 4316
1 037- 1
WI TEST IS 038-43.30. 6 Tests lajl ¥- l.

IGTOl 7 039- 22 7
I RCL II MATRIX leg 040-45.16.13
wl LSTx l 041- 4336 Recalls extreme aj.

G 042- 10 Calculates z (1l + I) in C .

Keystrokes

I RCL II MATRIX I@]
I STO II RESULT I
G

CDIMATRlxI7

CDIMATRlxl1

Section 4: Using Matrix Operations 157

Display

043-45,16,14
044- 4426
045- 30 Calculates z(n + 1) - z(n)

inDo

046-42,16, 7 Calculates
Ilz(n + 1) - z(n)IIR'

047-42,16, Sets Ro = Rl = 1 for
viewingC.

048-

049-

31 Displays convergence
parameter.

22 6

Labels used: C, 4, 5, 6, and 7.

Registers used: Ro, Rj, and R2 (eigenvalue).

Matrices used: A (original matrix), B (A - AI), C (z(n + 1»), and
D (z(n + 1) - z(n »).

To use this program:

1. Press 2 CDI DIM I [ill] to reserve registers Ro, R1, and R2.

2. Press CDI USER I to activate User mode.

3. Dimension and enter the elements into matrix A using CD
I DIM 1~ , CDIMATRIX l l, andISTOI~.

4. Key in the eigenvalue and press ~ . The display shows the
correction parameter Ilz(l) - z(O)IIR'

5. Press I RIS I repeatedly until the correction parameter is
negligibly small.

6. Press I RCL I ~ repeatedly to view the components of q k, the
eigen vector.

Example: For matrix A of the previous example,

calculate the eigenvectors ql, q 2, and Q 3'

158 Section 4: Using Matrix Operations

Keystrokes Display

W[P/R [Run mode.

2 m[DIM IffiD 2 .0000 Reserves registers Ro
through R2.

m[USER I 2 .0000 Activates User mode.

3 1 ENTE R Im[DIM 10 3 .0000 Dimensions m atrix A to
3 X 3.

ml MATRIX l l 3 .0000

0 [sTo 10 0 .0000 Enters elements of A .

1 [sTo l0 1 .0000

4 1sTo l0 4 .0000
.8730 1 CHS I -0 .8730 Enters Al = - 0.8730

(approximation).

[IJ 0 .8982 Ilz(l) - z(O)II. *

[RIS I 0 .000 1 Ilz(2) - z(l) II. *

[RIS I 2.4000 -09 Il z(3) - z(2)11. *

[RIS I 1. 0000 -10 Ilz(4) - z(3) 11 .*

IRls l 0 .0000 Ilz(5) - z(4)11. *

I RCL I[IJ 1 .0000 } [RCL I[IJ 0 .2254 Eigenvector for >'1'

[RCL I[IJ -0.5492
0 [IJ 0 .8485 Uses A2 = 0

(approximation).

IRls l 0 .0000
I RCL I[IJ - 0 .5000 } [RCL I[IJ 1 .0000 Eigenvector for A2.

[RCL I[IJ -0 .5000
6.8730 [IJ 0 .73 7 1 Uses A3 = 6.8730

(approximation).

IRls l 1 .9372 - 06
IRls l 1 .0000 - 10
IRlsl 0 .0000

* The correctio n norms will vary, depending upon the current random number seed.

Keystrokes

IRCll~
IRCll~

I RCll~
ITl IUSER I

Section 4: Using Matrix Operations 159

Display

0.3923
0.6961

1 .0000
1.0000

} Eigenv~tn"",',
Deactivates User mode.

If matrix A is no larger than 3 X 3, this program can be included
with the previous eigenvalue program. Since the eigenvalue
program modifies matrix A , the original eigenvalues must be
saved and the original matrix reentered in matrix A before
running the eigenvector program. The following program can be
added to store the calculated eigenvalues in matrix E.

Keystrokes

ITl llBll[IJ
I RCl II DIM 1[6]
ISTOla
1
ITlI DIM I[IJ
ITlllBl lS
IRCl la
IENTERI
I RcLlw[6]
IRClla
1
®:Q]w[IJ
ITlIDsEla
@IQ]s
ITlIMATRIX l l
WIRTNI
WIP/R I

Labels used: E and 8.

Display

127-42,21,15
128-45,23,11
129- 44 0
130- 1
131-42,23,15

132-42,21, 8
133- 45 0
134- 36
135-45.43,11

136- 45 0
137-
138-44.43,15

139-42, 5, 0
140- 22 8
141-42,16, 1

142- 4332

Registers used: no additional registers.

Dimensions E to n X 1.

Recalls diagonal element.

Stores aii in ei.

Resets Ro = R j = 1.

Run mode.

Matrices used: A (from previous program) and E (eigenvalues).

To use the combined eigenvalue, eigenvalue storage, and
eigenvec.tor programs for an A matrix up to 3 X 3:

1. Execute the eigenvalue program as described earlier.

160 Secti on 4 : Using M atri x Operati ons

2. Press [IJto store the eigenvalues.

3. Enter again the elements of the original matrix into A.

4. Recall the desired eigen val ue from matrix E using I RCL I [IJ.

5. Execute the eigenvector program as described above.

6. Repeat steps 4 and 5 for each eigenvalue.

Optimization

Optimization describes a class of problems in which the object is to
find the minimum or maximum value of a specified function .
Often, the interest is focused on the behavior of the function in a
particular region.

The following program uses the method of steepest descent to
determine local minimums or maximums for a real-valued function
of two or more variables. This method is an iterative procedure that
uses the gradient of the function to determine successive sample
points. Four input parameters control the sampling plan.

For the function

(x) = (Xl, X 2, ... , xn)

the gradient of (, V' (, is defined by

V' (x) =

The critical points of (x) are the solutions to \I (x) = O. A critical
point may be a local minimum, a local maximum, or a point that is
neither.

The gradient of (x) evaluated at a point x gives the direction of
steepest ascent-that is, the way in which x should be changed in
order to cause the most rapid increase in (x). The negative
gradient gives the direction of steepest descent. The direction
vector is

s = {-V'f(X)
V'(x)

for finding a minimum

for finding a maximum.

Section 4: Using Matrix Operat ions 161

Once the direction is determined from the gradient, the program
looks for the optimum distance to move from Xj in the direction
indicated by sj-the distance that gives the greatest improvement
inf(x) toward a minimum or maximum.

To do this, the program finds the optimum value tj by calculating
the slope of the function

at increasing values of t until the slope changes sign. This
procedure is called "bounding search" since the program tries to
bound the desired value t j within an interval. When the program
finds a change of sign, it then reduces the interval by halving it
j + 1 times to find the best t value near t = O. This procedure is
called "interval reduction"-it yields more accurate values for tj as
Xj converges toward the desired solution. (These two processes are
collectively called "line search.") The new value ofx is then

The program uses four parameters that define how it proceeds
toward the desired solution. Although no method of line search can
guarantee success for finding a n optimum value of t , the first two
parameters give you considerable flexibility in specifying how the
program samples t.

d Determines the initial step Ul for the bounding search. The
first value of t tried is

d

(j + l)llsj llF
This corresponds to a distance of

d
II(Xj + UlSj) - xjIlF=-. - ,

J + 1

which shows that d and the iteration number define how close
to the last x value the program starts the bounding search.

a Determines the values U2, U3, ... of subsequent steps in the
bounding search. These values of t are defined by

Ui + I = aui'

162 Section 4: Using Matrix Operations

Essentially, a is an expansion factor that is normally greater
than 1, producing an increasing sequence of values of t.

e Determines the acceptable tolerance on the size of the
gradient. The iterative process stops when

N Determines the maximum number of iterations that the
program will attempt in each of two procedures: the bounding
search and the overall optimization procedure. That is, the
program halts if the bounding search finds no change of sign
within N iterations. Also, th e program halts if the norm of the
gradient is still too large at X N . Each ofthese situations results
in an Error 1 display. (They can be distinguished by pressing
~.) You can continue running the program if you desire.

The program requires that you enter a subroutine that evaluates
((x) and \I((x). This subroutine must be labeled " E" , use the vector
x stored in matrix A , return the gradient in matrix E , and place
((x) in the X-register.

In addition, the program requires an initi a l estimate Xo of the
desired critical point. This vector must be stored in matrix A.

The program has the following characteristics:

• The progra m searches for any point x where \' ((x) = O.
Nothing prevents convergence to a saddle-point, for example.
In genera l, you must use other means to determine the nature
of the critical point that is found. (Also, this program does not
address the problem of locating a maximum or minimum on
the boundary of the domain of ((x).)

• You may a djust the convergence parameters after starting the
program. In many cases, this dramatically reduces the time
necessary for convergence. Here are some helpful hints:

• If the program consistently enters the interval reduction
phase after samplin g on ly one point U I, the initial step size
may be too large. Try reducing the magnitude of d to
produce a more efficient search.

• If the results of the bounding search look promising (that
is, the s lopes are decreasing in magnitude), but then begin
to increase in magnitude, the search may have skipped
past a critical point. Try reducing a to produce more close
sampling; you may have to increase N also.

Section 4: Using Matrix Operations 163

• You can replace I RIS I at line 102 with I PSE I or perhaps delete it
entirely if you have no interest in the intermediate results.

• For a function of n variables, the program req uires 4n + 1
registers devoted to matrices.

Keystrokes Display

I]]I P/R I Program mode.

l] CLEAR I PRGM I 000-
l]I LBL I8 001-42.21. 8 Routine to swap A and C

usingE.

I RCL II MATRIX I[IJ 002-45.16.13
I STO II MATRIX 1m 003-44.16.15
IRCLIIMATR lxlCK] 004-45.16.11
I STO II MATRIX I[IJ 005-44.16.13
I RCL II MATRIX 1m 006-45.16.15
ISTO II MATRlxlCK] 007-44.16.11
I]] IRTN I 008- 4332
l]ILBLI7 009-42.21. 7 Line search routine.

IRCL I4 010- 45 4
IRCLi S 6 011-45.10. 6
ISTO l8 012- 44 8 Stores d l (j + 1) in RB.

I GSB 1m 013- 3215
I RCL II MATRIX 1m 014-45.16.15
I STO II MATRIX I[QJ 015-44.16.14
lEilll MATRIX I[QJ 016-45.16.14
I]] [£I] 0 017-43. 6 . 0
ICHs l 018- 16 For minimum, changes

sign of gradient.

l]IMATRlxI8 019-42.16. 8 Calculates IIVf(x) ll.

I]] lx =o l 020- 4320
I]]I RTN I 021- 4332 Exits ifll\f(x)11 = o.
[lliJ 022- 15
IRCL I0 8 023-45.20. 8 Calculates U I'

ISTO I. 1 024- 44 .1 Stores U I in R I .

0 025- 0
ISTO 10 026- 44 .0
I RCL I5 027- 45 5
ISTOl7 028- 44 7 Stores counter in R7.

164 Section 4: Using Matrix Operations

Keystrokes Display

ITl[LSL I6 029-42.21. 6 Bounding search begins.

[RCL 11 030- 45 .1
IGSSl3 031- 32 3
ITlI PSE I 032- 4231 Shows slope.

w[TI] o 033-43. 6. 0
ICHSI 034- 16
Wl TEST l4 035-43.30. 4 Tests for slope cha nge.

IGTO l5 036- 22 5 Branch to interval
reduction.

[Gss la 037- 32 a Restores original matrix
toA.

IRCL l 1 038- 45 .1
ISTo [.O 039- 44 .0 Stores Ui in R o.
IRCL l2 040- 45 2
ISTO I0· 1 041-44.20 . . 1 Stores ui + I in R I ·

ITlI DSE 17 042-42. 5. 7 Decrements counter.

IGTO l6 043- 22 6 Branch to continue.

I RCL II MATR IX I~ 044-45.16.11
W [ASS I 045- 4316 Displays Error 1 with A in

X-register.

IGTO l6 046- 22 6 Branch for continuation.

ITl [LSL I5 047-42.21. 5 Interval reduction routine.

I RCL l6 048- 45 6
ISTO l7 049- 44 7 Stores j + 1 in R7.

ITll LSL l4 050-42.21. 4
IGSS la 051- 32 8 Restores original matrix

to A.

IRCL I O 052- 45 .0
IRCLlG1 053-45,40 .. 1
2 054- 2

G 055- 10
[STo ia 056- 44 8 Calculates midpoint of

interval.

[GSS I3 057- 32 3 Calculates slope.

w[TI] o 058-43. 6. 0
ICHS I 059- 16 Changes sign for

minimum.

Keystrokes

1
I STO I[)

(H]
WI TEST ll
ITl IDSE I[)
IRCll8
I STO I [ill]

ITliDSEI7
IGTOl4
WIRTNI

ITl I lBll3
I R cLi Ir:-Mc;-";A=TR=lx"'l@J
ITlI RESULT ICfJ
o
I RCl II MATRIX 1[6]
G
IGSB I8

I GSB I [I]
ISTOI9
I R Cl I '-I M7":A=TR=IX"'1 [I]
I RCl II MATRIX I@J
ITl~[]]
ITliMATRlx I5
1
I ENTER I
[@W[]]
WIRTN I

ITlllBll[6]
o
ISTO l6
ITlIlBll2
1

Section 4: Using Matrix Operations 165

Display

060-
061-
062- 44 25 Stores interval register

number.
063- 33
064-43.30. 1
065-42. 5.25
066- 45 8
067- 4424

068-42. 5. 7

069- 22 4
070- 4332

Stores midpoint in Ro or
R j .

Decrements counter.

Exits when counter is
zero.

071-42.21. 3 Routine to calculate slope.

072-45.16.14
073-42.26.13
074- 20
075-45.16.11
076- 40 Calculates point Xj + tSj.

077- 32 8 Swaps original matrix
and new point.

078- 32 15 Calculates \1{(x) in E.

079- 44 9 Stores {(x) in Rg.

080-45.16.15
081-45.16.14
082-42.26.12
083-42.16. 5 Calculates slope as (\1f)Ts.
084- 1
085- 36
086-45.43.12
087- 4332

088-42.21.11

089- 0
090- 44 6
091-42.21. 2
092-

Exits with slope in
X-register.

Main routine.

166 Section 4: Using Matrix Operations

Keystrokes Display

ISTO IG 6 093-44.40, 6 Stores} + 1 in R6.

ITl iSCI l3 094-42, 8 , 3
IGSB I7 095- 32 7 Branches to line search .

I RCL I6 096- 45 6
ITl0Kl o 097-42, 7, 0
ITll pSE I 098- 4231 P a uses with } + 1 in

display.

ITlI MATRIX 11 099-42,16, Sets Ro = Rl = 1 for
viewing.

ITli SCI l3 100-42, 8, 3
IRCL I9 101- 45 9 Recalls ((x).

IRls l 102- 31 Stops progra m.

I RCLI3 103- 45 3 Recalls e.

I RCL II MATRIX 1m 104-45,16,15
ITlI MATRlx la 105-42,16, 8 Calcula tes II ,((x)ll·
Wl x';;; yl 106- 4310 Tests II 'V((x)ll ,,;; e.
IGTO I[]] 107- 2212 Branch for showing

solution .

ITll pSE I 108- 4231 Shows II 'V((x)ll.
I RCLI5 109- 45 5
IRCLI6 110- 45 6
WI TEST la 111-43,30, 8 Tests (j + 1) < N.
IGTO l2 112- 22 2 Branch to continue

iterating.

I RCL II MATRIX I[IJ 113-45,16,13

w lABs l 114- 4316 Displays Error 1 with C in
X-register.

IGTO l2 115- 22 2 Branch for con tinuing.

ITlI LBLI[]] 116-42,21,12 Routine to show solution .

W[@ 9 117-43, 4 , 9 Sets blink fl ag.

IRl sl 118- 31 Stops with II ,((Xj + 1)11 in
display.

IGTO I[]] 119- 2212 Looping branch.

Labels used: A, B, a nd 2 through 8.

Registers used: R2 through Rg, R o, R 1, a nd Index register.

Section 4: Using Matrix Operat ions 167

Matrices used: A, B, C, D, and E.

Your subroutine, labeled "E", may use any labels and registers not
listed above, plus the Index register, matrix B, and matrix E
(which should contain your calculated gradient).

To use the program:

1. Enter your subroutine into program memory.

2. Press 11 CD! DIM '[ill] to reserve registers Ro through HI' (Your
subroutine may require additional registers.)

3. Set flag 0 if you 're seeking a local minimum; clear flag 0 if
you 're seeking a local maximum.

4. Dimension matrix A to n X 1, where n is the number of
variables.

5. Store the required data in memory:

• Store the initial estimate Xo in matrix A.

• Store a in R2.

• Store e in R3.

• Store d in R4•

• Store N in R5.

6. Press ' GSB , [EJ to view the slopes during the iteration
procedure.

• View the iteration number and the value of (x).

• If Error 1 appears, press ~ to clear the message. Then
either go back to step 5 and possibly revise parameters as
needed, or press ~ , RIS , to provide one more bounding
search iteration or one more optimization iteration. (If the
descriptor of matrix A was in the display when the error
occurred, the number of bounding search iterations
exceeded N; if the descriptor of matrix C was in the
display, the number of optimization iterations exceeded
N.)

7. Press 'RIS , to view the norm of the gradient and to start the
next iteration.

• If the display flashes the norm of the gradient, press ~
and then recall the values ofx in matrix A.

168 Section 4: Using Matrix Operations

• If the iteration number and value of ((x) are displayed,
repeat this step as often as necessary to obtain the
solution or go back to step 5 a nd revise parameters as
needed.

Example: Use the optimization program to find the dimensions of
the box of largest volume with the sum of the length and girth
(perimeter of cross section) equaling 100 centimeters.

For this problem

1+ (2h + 2w) = 100

v=whl

v(w,h) = wh(100 - 2h - 2w)

= 100wh - 2wh2 - 2hw2

V'v(w ,h) - . _ [2h(50 - h - 2W)]
2w(50 - w - 2h)

The solution should satisfy w + h < 50, w > 0, and h > O.

First, enter a subroutine to calculate the gradient and the volume.

Keystrokes Display

[IlI LBLlw 120-42.21.15 Function subroutine.

IRCLIIDIM I0 121-45.23.11
[IlI DIMlw 122-42.23.15
[Ill MATRIX 11 123-42.16. 1
[Ill USER II RCL 10 124u 45 11
[Ill USER I
IST0I.2 125- 44 .2 Stores w in R 2.

ISTolw 126- 4415 Stores w in e2'

IRCLI0 127- 45 11
ISTol.3 128- 44 .3 Stores h in R 3.

[Ill MATRIX 11 129-42.16. 1
ISTolw 130- 4415 Stores h in e l'

G 131- 40
5 132- 5
0 133- 0

G 134- 30

Keystrokes

ICHS I
2
o
[Il~2

ISTO l0 3
I RCLI.2
I RCL I Ir:-M~A-=TR=lx:-:-11 [[]
[Ill RESULT I[[]
o
I RCLi. 3
IRCL IG·3
G

1 RCLI. 2
IRCLI0 3
WIRTNI

Section 4: Using Matrix Operations 169

Display

16
2

135-
136-
137- 20 Calcul ates

1= 2(50 - h - w).

138-42, 4, .2 Stores I in R 2.

139-44,20,.3 Stores wh in R 3.

140- 45.2
141-45,16,15
142-42,26,15
143- 20
144- 45.3
145-45.40, .3
146- 30 Replaces ei with

147- 45 .2

lei - 2wh, the gradient
elements.

148-45,20, .3 Calculates Iwh .

149- 4332

Now enter the necessary information and run the program.

Keystrokes Display

WI P/R I Run mode.
13 [Il l DIM 1 [ill] 13.0000 Reserves Ro through R 3.

wcmO 13.0000 Finds local maximum.

[Ill USER 1 13.0000 Activates User mode.

[Il l MATRIX 1 1 13.0000
21 ENTER 11 Enters dimensions for

matrix A .

[IlI DIM I0 1.0000 Dimensions matrix A to
2 X L

15 1sTO I0 15.0000
ISTO I0 15.0000 Stores initia l esti mate:

I = w = 15.
31sTOl 2 3 .0000 Stores a = 3.
0.11sT0 13 0 .1000 Stores e = 0.1 .
0.05 1sTo 14 0 .0500 Stores d = 0.05 .

170 Section 4 : Using Matrix Operations

Keystrokes

41sTo l5
~

Display

4.0000

4 .415

4.243

3 .718

2 .045

Error 1
A

Stores N = 4.

04 Slope at Ul '
04 Slope at u 2'

04 Slope at u 3'

04 Slope at u4'

2 Bounding search failed.

Since the results so far look promising (the derivatives are
decreasing in magnitude), allow five additional samples in this
bounding search and set N = 8 for a ll subsequent iterations .

Keystrokes

51sTo l7
81sTo l5
IR/s l

IR/s l
[±]

ITJ0RJ4
I RCL I~

I RCLI~

Display

5 .000

8 .000

-3 .849

1 .

9 .253

3 .480

1.121

9 .431

4 .126

-1.139

2.
9 .259

5.479

-6 .127

3 .

9.259

7.726

7.726

0 .0773
16.6661

16.6661

00 Sets counter to 5.

00 Sets Nto 8.

04 Slope at U5 (sign change).

j + l.
03 Volume at this iteration.

01 Gradient.

03 Slope atul'
02 Slope at u 2'

02 Slope at u 3'

03 Slope at U4 (sign change) .

j + l.
03 Volume at this iteration.

-01 Gradient.

-01 Slope at Ul (sign change).

j + l.
03 Volume a t th is iteration.

-02 Gradient less than e.

-02 Stops blinking.

Recalls h from a l '

Recalls w from a 2'

Section 4 : Using Matrix Operations 171

Keystrokes Display

[DIUSERI 16.6661
[DIMATRlxIO 16.6661 Deallocates matrix

memory.

The desired box size is 16.6661 X 16.6661 X 33.3355 centimeters. (An
alternate method of solving this problem would be to solve the
linear system represented by 'V v (w, h) = 0.)

Appendix

Accuracy of
Numerical Calculations

Misconceptions About Errors
Error is not sin, nor is it always a mistake. Numerical error is
merely the difference between what you wish to calculate and what
you get. The difference matters only if it is too big. Usually it is
negligible; but sometimes error is distressingly big, hard to
explain , and harder to correct. This appendix focuses on errors ,
especially those that might be large-however rare. Here are some
examples.

Example 1: A Broken Calculator. Since (};)2 = x whenever
x ;;;' 0, we expect also

((x) = ((. .. ((J J ... V yx)2)2 ...)2)2
-...-- -,,--

50 50
roots squares

should equal x too.

A program of 100 steps can evaluate the expression ((x) for any
positive x. When x = 10 the Hp·15C calculates 1 instead. The error
10 - 1 = 9 appears enormous considering that only 100 arithmetic
operations were performed, each one presumably correct to 10
digits. What the program actually delivers instead of ((x) = x turns
out to be

((x) = { 0
for x ;;;' 1

forO ~ x < l ,

which seems very wrong. Should this calculator be repaired?

172

Appendix: Accuracy of Numerical Calculations 173

Example 2: Many Pennies. A corporation retains Susan as a
scientific and engineering consultant at a fee of one penny per
second for her thoughts, paid every second of every day for a year.
Rather than distract her with the sounds of pennies dropping, the
corporation proposes to deposit them for her into a bank account in
which interest accrues at the rate of 11 '4 percent per annum
compounded every second. At year's end these pennies will
accumulate to a sum

(l + il n)"- 1
total = (payment) X ---'-=--'-'-"'-'--------'=­

il n

where payment = $0.01 = one penny per second,

i = 0.1125 = 11.25 percent per annum interest rate,

n = 60 X 60 X 24 X 365 = number of seconds in a year.

Using her HP-15C, Susan r eckons that the total will be
$376,877.67. But at year's end the bank account is found to hold
$333,783.35 . Is Susan entitled to the $43,094.32 difference?

In both examples the discrepancies are caused by rounding errors
that could have been avoided. This appendix explains how.

The war against error begins with a salvo against wishful
thinking, which might confuse what we want with what we get. To
avoid confusion, the true and calculated results must be given
different names even though their difference may be so small that
the distinction seems pedantic.

Example 3: Pi. The constant IT = 3.1415926535897932384626433
Pressing the GJ key on the HP-1 5C delivers a different value

GJ = 3.141592654

which agrees with IT to 10 significant digits . But GJ ,,0 IT, so we
should not be surprised when, in Radians mode, the calculator
doesn't produce sin GJ = O.

Suppose we wish to calculate x but we get X instead. (This
convention is used throughout this appendix.) The error is x - X.
The absolute error is I x - XI . The relative error is usually reckoned
(x - X) l xfor x ,,0 0.

174 Appendix : Accuracy of Numerical Calculations

Example 4: A Bridge Too Short. The lengths in meters of three
sections of a cantilever bridge are designed to be

x = 333.76 y = 195.07 z = 333.76.

The measured lengths turn out to be respectively

X= 333.69 y = 195.00 Z = 333.72 .

The discrepancy in total length is

d = (x + y + z) - (X + y + Z) = 862.59 - 862.41 = 0.18.

Ed, the engineer, compares the discrepancy d with the total length
(x + y + z) and considers the relative discrepancy

d/ (x + y + z) = 0.0002 = 2 parts in 10,000

to be tolerably sma ll. But Rhonda, the riveter, considers the
a bsolute discrepa ncy I dl = 0.18 meters (about 7 inches) much too
large for her liking; some powerful stretching will be needed to line
up the bridge girders before she can rivet them together. Both see
the same discrepancy d, but what looks neglibible to one person
can seem awfully big to another.

Whether large or small, errors must have sources which, if
understood, usually permit us to compensate for the errors or to
circumvent them altogether. To understand the distortions in the
girders of a bridge, we should lea rn about structural engineering
a nd the theory of elasticity. To understand the errors introduced by
the very act of computation, we should learn how our calculating
instruments work a nd what are their limita tions. These are details
most of us want not to know, especially since a well-designed
calculator's rounding errors are always nearly minima l and
therefore appear insignificant when they are introduced. But when
on rare occasions they conspire to send a computation awry, they
must be reclassified as "significant" after all.

Appendix : Accuracy of Numerical Calculations 175

Example 1 Explained. Here ((x) = s(r(x» , where

r(x) = J,,;JVX- x (I;,50)

-.-

and

50
roots

s(r) = ((. .. ((r)2)2 ...)2)2 = r (250
). -..-

50
squares

The exponents are 1/250 = 8.8818 X 10- 16 and 250 = 1.1259 X 1015.

Now, x must lie between 10-99 and 9.999 ... X 1099 since no positive
numbers outside that range can be keyed into the calculator. Since
r is an increasing function, r(x) lies between

r(10-99) = 0.9999999999997975 ...

and

r (10100) = 1.0000000000002045

This suggests that R (x), the calculated value of r(x), would be 1 for
all valid calculator arguments x . In fact, because of roundoff,

{

0.9999999999
R(x) =

1.000000000

for O< x < 1

for 1 ,,;; x ,,;; 9.999999999 X 1099.

If 0 < x < 1, then x ,,;; 0.9999999999 in a 10-digit calculator. We
would then rightly expect that Vx";; ";0.9999999999, which is
0.999999999949999999998 ... , which rounds to 0.9999999999 again.
Therefore, if [KJ is pressed arbitrarily often starting with x < 1, the
result cannot exceed 0.9999999999. This explains why we obtain
R(x) = 0.9999999999 for 0 <x < 1 above. When R(x) is squared 50
times to produce F(x) = S(R(x)), the result is clearly 1 for x ;;;: 1, but
whyisF(x) = o for 0 ";; x < I? Whenx < 1,

s(R (x»";; s(0.9999999999) = (1 _10- 1°)2
50 = 6.14 X 10-48898

176 Appendix : Accuracy of Numerical Calculations

This value is so small that the calculated value F(x) = S(R(x»
underflows to O. So the HP-15C isn't broken; it is doing the best that
can be done with 10 significant digits of precision and 2 exponent
digits.

We have explained example 1 using no more information about the
HP-15C than that it performs each arithmetic operation QD and [ZJ
fully as accurately as is possible within the limitations of 10
significant digits and 2 exponent digits. The rest of the information
we needed was mathematical knowledge about the functions (, r,
and s. For instance, the value r(10 100) above was evaluated as

r(lOloo) = (10100)<'/,50)

= exp (In (10100)1250)

= exp (100 (In 10)/ 25°)

= exp (2.045 X 10-13)

= 1 + (2.045 X 10-13) + 1/2(2.045 X 10-13)2 + ...

by using the series exp (z) = 1 + z + 1/2Z 2 + 1/6 Z 3 +
Similarly, the binomial theorem was used for

J O.9999999999 = (l-lO-l o) '/,

These mathematical facts lie well beyond the kind of knowledge
that might have been considered adequate to cope with a
calculation containing only a handful of multiplications and
square roots. In this respect, example 1 illustrates an unhappy
truism: Errors make computation very much harder to analyze.
That is why a well-designed calculator, like the HP-15C, will
introduce errors of its own as sparingly as is possible at a tolerable
cost. Much more error than that would turn an already difficult
task into something hopeless.

Example 1 should lay two common misconceptions to rest:

• Rounding errors can overwhelm a computation only if vast
numbers of them accumulate.

• A few rounding errors can overwhelm a computation only if
accompanied by massive cancellation.

Appendix Accuracy of Numerical Calculations 177

Regarding the first misconception, example 1 would behave in the
same perverse way if it suffered only one rounding error, the one
that produces R(x) = lor 0.9999999999, in error by less than one
unit in its last (10th) significant digit.

Regarding the second misconception, cancellation is what happens
when two nearly equal numbers are subtracted. For example,
calculating

c(x) = (1 - cos x) I x 2

in Radians mode for small values of x is hazardous because of
cancellation. Using x = 1.2 X 10-5 and rounding results to 10 digits,

cos x = 0.9999999999

and

1 - cos x = 0.0000000001

with cancellation leaving maybe one significant digit In the
numerator. Also

Then

C(x) = 0.6944 .

This calculated value is wrong because 0 ~ c(x) < 1/2 for all x ~ O. To
avoid numerical cancellation, exploit the trigonometric identity
cos x = 1 - 2 sin2(xl2) to cancel the 1 exactly and obtain a better
formula

c(x) = ~ (sin (x12))2.
2 x l2

When this latter expression is evaluated (in Radians mode) at
x = 1.2 X 10-5, the computed result C(x) = 0.5 is correct to 10
significant digits. This example, while explaining the meaning of
the word "cancellation," suggests that it is always a bad thing.
That is another misconception to be dispatched later. For the

178 Appendix : Accuracy of Numerical Calculations

present, recall that example 1 contains no subtraction, therefore no
cancellation, a nd is still devastated by its rounding error. In this
respect example 1 is counterintuitive, a little bit scary. Nowhere in
it can we find one or two arithmetic operations to blame for the
catastrophe; no small rearrangement will set everything right as
happened for c(x). Alas, example 1 is not an isolated example. As
computers and calculators grow in power, so do instances of
insidious error growth become more common.

To help you recognize error growth and cope with it is the ultimate
goal of this appendix. We shall start with the simplest kinds of
errors and work our way up gradually to the subtle errors that can
afflict the sophisticated computations possible on the HP-15C.

A Hierarchy of Errors
Some errors are easier to explain and to tolerate than others.
Therefore, the functions delivered by single keystrokes on the
HP-15C have been categorized, for the purposes of easier
exposition, according to how difficult their errors are to estimate.
The estimates should be regarded as goals set by the calculator's
designers rather than as specifications that guarantee some stated
level of accuracy. On the other hand, the designers believe they can
prove mathematically that their accuracy goals have been
achieved, and extensive testing has produced no indication so far
that they might be mistaken.

level 0: No Error
Functions which should map small integers (smaller than 1010) to
small integers do so exactly, without error, as you might expect.

Examples:

V4=2 -23 = - 8

log (109) = 9

320 = 3,486,784,401

6! =720

cos-I(O) = 90 (in Degrees mode)

ABS(4,684,660 + 4,684,659i) = 6,625,109 (in Complex mode)

Also exact for real argments are t ASS I, t FRAC I, lilliI, t RND I, and
comparisons (such as I x.;;;;yl). But the matrix functions 0, G,~,
t MATRIX 16, and I MATRIX 19 (determinant) are exceptions (refer to
page 192).

Appendix: Accuracy of Numerical Calculations 179

Level 00: Overflow/Underflow
Results which would lie closer to zero than 10-99 underflow quietly
to zero. Any result that would lie beyond the overflow thresholds
±9.999999999 X 1099 is replaced by the nearest threshold, and then
flag 9 is set and the display blinks. (Pressing [Q0 [Q0 or [QJ 9 or [±]
will clear flag 9 and stop the blinking.) Most functions that result
in more than one component can tolerate overflow/ underflow in
one component without contaminating the other; examples are
I +R I, I +p I, complex arithmetic, and most matrix operations. The
exceptions are matrix inversion (~ and 0), IMATRlx I9
(determinant), and Q;]J.

Level 1: Correctly Rounded, or Nearly So
Operations that deliver "correctly rounded" results whose error
cannot exceed 1/2 unit in their last (10th) significant digit include
the real algebraic operations 0 , [J, 0,0, [Z), [K), ~, and [ill,
the complex and matrix operations G and [J, matrix by scalar
operations 0 and o (excluding division by a matrix), andl +H.MS I.
These results are the best that 10 significant digits can represent,
as are familiar constants GJ , 1 [ZJ , 2 [ill], 10 [ill], 1 I +RAD I, and
many more. Operations that can suffer a slightly larger error, but
still significantly smaller than one unit in the 10th significant digit
ofthe result, include 1c.%I, I+HI, I+RADI, I+DEGI,~, and~;
[ill], I LOG I,~, andl TANH I for real arguments; I +pl, ~,I COS·' I,
I TAN"I, ISINH"I, I COSH"I, and I TANH" I for real and complex
arguments; ~, [K), and ~ for complex arguments; matrix
norms I MATRIX 17 and I MATRIX 18; and finally I SIN I, I COS I, and I TAN I
for real arguments in Degrees and Grads modes (but not in
Radians mode-refer to Level 2, page 184).

A function that grows to 00 or decays to 0 exponentially fast as its
argument approaches ±oo may suffer an error larger than one unit
in its 10th significant digit, but only if its magnitude is smaller
than 10- 20 or larger than 1020; and though the relative error gets
worse as the result gets more extreme (small or large), the error
stays below three units in the last (10th) significant digit. The
reason for this error is explained later. Functions so affected are
[ZJ, [ZJ , [ill (for noninteger x), I SINH I, and I COSH I for real
arguments. The worst case known is 320l , which is calculated as
7.968419664 X 1095. The last digit 4 should be 6 instead, as is the
case for 7.2933.5, calculated as 7.968419666 X 1028.

180 Appendix: Accuracy of Numerica l Ca lcul ations

The foregoing s ta tem ents a bout errors can be summa rized for a ll
fun ctions in Levell in a way th at will prove conven ient later:

Attempts to calculate a function f in Level 1 produce
instead a computed va lue F = (1 + f)f whose relative error
f, though unknown , is very small :

If I < { 5 X 10-10 if Fis correctly rounded

1 X 10-9 fo r a ll other functions F in Level l.

This simple cha racterization of a ll the functio ns in Level l fai ls to
convey many other important properties they a ll possess,
properties like

• Exa ct integer values: mentioned in Level O.

• Sign symmetry: si n h (- x) = - sinh(x), cosh (- x) = cosh(x),
In(lIx) = - In(x) (if llx is computed exactly).

• Monotonicity: if f (x) ~ f(y), then computed F(x) ~ F(y).

These additiona l properties have powerful implica tions; for
insta n ce, TAN(20 0) = T A N(200 0) = TAN(2 ,000 0) = ... =
TAN(2 X 1099 0) = 0.3639702343 correctly. But t he simple character­
ization conveys most of what is worth knowing, and that can be
worth money.

Example 2 Explained. Susan tried to calcul ate

where

(l +iln)"- l
tota l = payment X --'-"-'--'-'-'-----'-=­

il n

payment = $0.01 ,

i = 0.1125, a nd

n = 60 X 60 X 24 X 365 = 31,536,000.

She calcula ted $376,877.67 on her HP-15C, but the bank's total was
$333,783.35, a nd this latter total agrees with the results calculated
on good, modern fin a ncia l calculators like the HP-12C, HP-37E ,
HP-38E / 38C, a nd HP-92. Where did Susan's calculation go awry?
No severe cancella tion , no vast accumulation of errors; just one
rounding error that grew insidiously caused the damage:

Appe ndix: Accuracy of Num erical Calculations 181

i l n = 0.000000003567351598

1 + i l n = 1.000000004

when rounded to 10 significant digits. There is the rounding error
that hurts. Subsequently attempting to calculate (1 + i l n)n , Susan
must get instead (1.000000004)31,536,000 = 1.134445516, which is
wrong in its second decimal place.

How can the correct value be calculated? Only by not throwing
away so many digits of i l n. Observe that

(1 + iln)n = en In(l + ifni,

so we might try to calculate the logarithm in some way that does
not discard those precious digits. An easy way to do so on the
HP-15C does exist.

To calculate ,,(x) = In(1 + x) accurately for a ll x > - 1, even if I xl is
very small:

1. Calculate u = 1 + x rounded.

2. Then

{

X
,,(x) =

In(u)x l (u - 1)

ifu = 1

ifu~ 1.

The following program calculates ,,(x) = In (1 + x).

Keystrokes Display

wi P/R I
ITl CLEAR I PRGM I 000-

ITliLBLI0 001-42.21.11 Assumes x is in X-register.

IENTERI 002- 36
IENTER I 003- 36
IEEXI 004- 26 Places 1 in X-register.

G 005- 40 Calculates u = 1 + x
rounded.

w[ill) 006- 4312 Calculates In(u) (zero for
u = 1).

~ 007- 34 Restores x to X-register.

wlLSTx l 008- 4336 Recalls u.

182 Appendix : Accuracy of Numerical Calculations

Keystrokes Display

IEEXI 009- 26 Places 1 in X-register.

Wl TEST I6 010-43,30, 6 Tests u 'i' 1.

G 011- 30 Calculates u - 1 when
u'i' 1.

G 012- 10 Calculates x l (u - 1) or
I l l.

0 013- 20 Calculates A(X).

WIRTNI 014- 4332

WlP/RI
The calculated value of u, correctly rounded by the HP-15C, is
u = (1 + ,) (1 + x), where 1,1 < 5 X 10-10. If u = 1, then

I xl = 111(1 + ,) - 11 :;;; 5 X 10-10

too, in which case the Taylor series A(X) = x (1 - 1/2X + '/a x2 - ...)
tells us that the correctly rounded value of A(X) must be just x.
Otherwise, we shall calculate x A(u - 1) / (u - 1) fairly accurately
instead of A(X). But A(x)l x = 1 - 1/2 X + 1/3 X 2 - ... varies very slowly,
so slowly that the absolute error A(x) l x - A(U - 1)/ (u - 1) is no
worse than the absolute error x - (u - 1) = -,(1 + x), and if x :;;; 1,
this error is negligible relative to A(x) l x . When x> 1, then u - 1 is
so nearly x that the error is negligible again; A(X) is correct to nine
significant digits.

As usual in error analyses, the explanation is far longer than the
simple procedure being explained and obscures an important fact:
the errors in In(u) and u - 1 were ignored during the explanation
because we knew they would be negligible. This knowledge, and
hence the simple procedure, is invalid on some other calculators
and big computers! Machines do exist which calculate In(u) and/ or
1 - u with small absolute error, but large relative error when u is
near 1; on those machines the foregoing calculations must be
wrong or much more complicated, often both . (Refer to the
discussion under Level 2 for more about this .)

Back to Susan's sum. By using the foregoing simple procedure to
calculate A(il n) = In(1 + i l n) = 3.567351591 X 10-9, she obtains a
better value:

(1 + i l n)n = en)'(i/ ,,) = 1.119072257

,C I C r I, \i1c HI ,

Appendix: Accuracy of Numerical Calculations 183

from which the correct total follows.

To understand the error in 3201 , note that this is calculated as
e2011n(3) = e220.82l... . To keep the final relative error below one unit in
the 10th significant digit, 201In(3) would have to be calculated
with an absolute error rather smaller than 10-10, which would
entail carrying at least 14 significant digits for that intermediate
value. The calculator does carry 13 significant digits for certain
intermediate calculations of its own, but a 14th digit would cost
more than it's worth.

Level 1 C: Complex Level 1
Most complex arithmetic functions cannot guarantee 9 or 10
correct significant digits in each of a result's real and imaginary
parts separately, although the result will conform to the summary
statement about functions in Level 1 provided f, F, and fare
interpreted as complex numbers. In other words, every complex
function f in Level 1C will produce a calculated complex value
F = (1 + f)f whose small complex relative error f must satisfy
If I < 10-9. The complex functions in Level1C are 0, G, 12], [!]],
I LOG I, ~,I COS·' I, I TAN" 1,lsINH" I, I COSH" I, and I TANH" I· Therefore,
a function like A(Z) = In(l + z) can be calculated accurately for all Z
by the same program as given above and with the same
explanation.

To understand why a complex result's real and imaginary parts
might not individually be correct to 9 or 10 significant digits ,
consider 0, for example: (a + ib) X (c + id) = (ac - bd) + i(ad + bc)
ideally. Try this with a = c = 9.999999998 , b = 9.999999999, and
d = 9.999999997; the exact value of the product's real part (ac - bd)
should then be

(9.999999998)2 - (9.999999999) (9.999999997)

= 99.999999980000000004 - 99.999999980000000003

= 10-18

which requires that at least 20 significant digits be carried during
the intermediate calculation. The HP-15C carries 13 significant
digits for internal intermediate results, and therefore obtains 0
instead of 10-18 for the real part, but this error is negligible
compared to the imaginary part 199.9999999 .

184 Appendix: Accuracy of Numerical Calculations

Level 2: Correctly Rounded for Possibly
Perturbed Input

Trigonometric Functions of Real Radian Angles

Recall example 3, which noted that the calculator's GJ key delivers
an approximation to rr correct to 10 significant digits but still
slightly different from rr, so 0 = sin(rr) o;e sin (GJ) for which the
calculator deli vers

I SIN I(GJ) = -4.100000000 X 10-1°.
This computed value is not quite the same as the true value

sin (GJ) = -4.10206761537356 ... X 10-10.

Whether the discrepancy looks small (absolute error less than 2.1
X 10- 13) or relatively large (wrong in the fourth significant digit) for
a 10-significant-digit calculator, the discrepancy deserves to be
understood because it foreshadows other errors that look, at first
sight, much more serious.

Consider

1014 rr = 314159265358979.3238462643 .. .

with sin (10 14 rr) = 0 and

1014 X GJ = 314159265400000

with I SIN 1(1014 GJ) = 0.7990550814, although the true

sin (10 14 GJ) = -0 .78387

The wrong sign is an error too serious to ignore; it seems to suggest
a defect in the calculator. To understand the error in trigonometric
functions we must pay attention to small differences among rr and
two approximations to rr:

true rr = 3.1415926535897932384626433 ...
key GJ = 3.141592654 (matches rr to 10 digits)
internal p = 3.141592653590 (matches rr to 13 digits)

Then all is explained by the following formula for the calculated
value: [IDill(x) = sin(xrrl p) to within ± 0.6 units in its last (10th)
significant digit.

More generally, if trig(x) is any of the functions sin(x), cos(x), or
tan(x) , evaluated in real Radians mode, the HP-15C produces

Appendix: Accuracy of Numerical Calculations 185

I TRIG I(x) = trig(x 1TI p)

to within ±0.6 units in its 10th significant digit.

This formula has importa nt practical implications:

• Since 1TI p = 1 - 2.0676 ... X 10-131 p = 0.9999999999999342 ... ,
the value produced by I TRIG I(x) differs from trig(x) by no more
than can be attributed to two perturbations: one in the 10th
significant digit of the output trig(x) , and one in the 13th
significant digit of the input x .

If x has been calculated and rounded to 10 significant digits,
the error inherited in its 10th significant digit is probably
orders of magnitude bigger than 1 TRIG I's second perturbation
in x's 13th significant digit, so this second perturbation can be
ignored unless x is regarded as known or calculated exactly.

• Every trigonometric identity that does not explicitly involve 1T

is satisfied to within roundoff in the 10th significant digit of
the calculated values in the identity. For instance,

sin2(x) + cos2(x) = 1, so (I SIN I(x »2 + (I COS l(x»2 = 1

sin(x) / cos(x) = tan(x), so [§I0(x) /1 COS I(x) = ITAN I(x)

with each calculated result correct to nine significant digits
for all x. Note that I COS I(x) vanishes for no value of x
representable exactly with just 10 significant digits. And if 2x
can be calculated exactly given x,

sin(2x) = 2sin(x)cos(x), so I SIN 1(2x) = 2 [§I0(x) 1 COS I(x)

to nine significant digits. Try the last identity for x = 52174
radians on the HP-15C:

1 SIN 1(2x) = -0.00001100815000,

2[§I0(x) 1 COS I(x) = -0.00001100815000 .

Note the close agreement even though for this x, sin(2x) =
2sin(x)cos(x) = -0.0000110150176 ... disagrees with [§I0(2x) in
its fourth significant digit. The same identities are satisfied by
1 TRIG I(x) values as by trig(x) va lues even though 1 TRIG I(x) and
trig(x) may disagree.

• Despite the two kinds of errors in 1 TRIG I, its computed values
preserve familiar relationships wherever possible:

• Sign symmetry: 1 COS I(-x) = 1 COS I(x)
1 SIN I(-x) = -[§I0(x)

186 Appendix: Accuracy of Numer ica l Ca lculations

• Monotonicity: if trig(x) ;;, trig(y),
then I TRIG I(x) ;;' I TRIG I(y)
(provided I x - yl < 3)

• Limiting inequalities: [§I0(x) / x ';;; 1 for all x"# 0
ITAN l(x)lx;;' 1 for 0 <I x l < rr / 2

-1 ,;;; [§I0(x) andICOSI(x) ';;; 1
for all x

What do these properties imply for engineering calculations? You
don 't have to remember them!

In general, engineering calculations will not be affected by the
difference between p and rr, because the consequences of that
difference in the formula defining I TRIG I(x) above are swamped by
the difference between @ and rr and by ordinary unavoidable
roundoff in x or in trig(x). For engineering purposes, the ratio rr / p
= 0.9999999999999342 ... could be replaced by 1 without visible
effect upon the behavior of! TRIG I.

Example 5: Lunar Phases. If the distance between our Earth
and its moon were known accurately, we could calculate the phase
difference between radar signals transmitted to and reflected from
the moon. In this calculation the phase shift introduced by p "# rr

has less effect than changing the distance between Earth and
moon by as little as the thickness of this page. Moreover, the
calculation of the strength , direction , and rate of change of
radiated signals near the moon or reflected signals near the Earth,
calculations that depend upon the trigonometric identities'
continuing validity, are unaffected by the fact that p"# rr; they rely
instea d upon the fact that p is a constant (independent of x in the
formula for I TRIG I(x)), and that constant is very near rr.

The HP·15C 's keyboard functions that involve p are the
trigonometric functions [§I0, I cos I, and I TAN I for real and complex
arguments; hyperbolic functions ISINH I, ICOSH I, a nd ITANH I for
complex arguments; complex operations ~, ~, and [ZJ; and
real and complex I +R I.
It all seems like much ado about very little. After a blizzard of
formulas and examples , we conclude that the error caused by p"# rr
is negligible for engineering purposes, so we need not ha ve
bothered to know about it. That is the burden that conscientious
error analysts must bear; if they merely took for granted that small
errors are negligible, they might be wrong.

Appendix: Accuracy of Numerical Calculations 187

Backward Error Analysis

Until the late 1950's, most computer experts inclined to paranoia in
their assessments of the damage done to numerical computations
by rounding errors. To justify their paranoia, they could cite
published error analyses like the one from which a famous scientist
concluded that matrices as large as 40 X 40 were almost certainly
impossible to invert numerically in the face of roundoff. However,
by the mid 1960's matrices as large as 100 X 100 were being
inverted routinely, and nowadays equations with hundreds of
thousands of unknowns are being solved during geodetic
calculations worldwide. How can we reconcile these accomplish­
ments with the fact that that famous scientist's mathematical
analysis was quite correct?

We understand better now than then why different formulas to
calculate the same result might differ utterly in their degradation
by rounding errors. For instance, we understand why the normal
equations belonging to certain least-squares problems can be
solved only in arithmetic carrying extravagantly high precision;
this is what that famous scientist actually proved. We also know
new procedures (one is presented on page 140) that can solve the
same least-squares problems without carrying much more
precision than suffices to represent the data. The new and better
numerical procedures are not obvious, and might never have been
found but for new and better techniques of error analysis by which
we have learned to distinguish formulas that are hypersensitive to
rounding errors from formulas that aren't. One of the new (in 1957)
techniques is now called "backward error analysis," and you have
already seen it in action twice: first , it explained why the procedure
that calculates ;"(x) is accurate enough to dispel the inaccuracy in
example 2; next, it explained why the calculator's I TRIG I functions
very nearly satisfy the same identities as are satisfied by trig
functions even for huge radian arguments x at which I TRIG J(x) and
trig(x) can be very different. The following paragraphs explain
backward error analysis itself in general terms.

Consider some system F intended to transform an input x into an
output y = ((x) . For instance, F could be a signal amplifier, a filter,
a transducer, a control system, a refinery, a country's economy, a
computer program, or a calculator. The input and output need not
be numbers; they could be sets of numbers or matrices or anything
else quantitative. Were the input x to be contaminated by noise Ax,

188 Appendix: Accuracy of Numerical Calculations

then in consequence the output y + Lly = ((x + Llx) would generally
be contaminated by noise Lly = ((x + Llx) - ((x).

Llx

x-C!::]-y=f(X)
I

x-<±>-0--y = f(x + Llx)

No Noise Noisy Input

Some transformations (are stable in the presence of input noise;
they keep Lly relatively small as long as Llx is relatively small.
Other transformations (may be unstable in the presence of noise
because certain relatively small input noises Llx cause relatively
huge perturbations Lly in the output. In general, the input noise Llx
will be colored in some way by the intended transformation (on the
way from input to output noise Lly, and no diminution in Lly is
possible without either diminishing Llx or changing f. Having
accepted (as a specification for performance or as a goal for
design, we must acquiesce to the way (colors noise at its input.

The real system F differs from the intended (because of noise or
other discrepancies inside F. Before we can appraise the
consequences of that internal noise we must find a way to
represent it, a notation. The simplest way is to write

F(x) = ((+ (jf)(x)

where the perturbation (j(represents the internal noise in F.

x--r--I--~ ~--y=F(x)

I FI L ________ ...J

One Small Output Perturbation (Level 1)

We hope the noise term (j(is negligible compared with f. When that
hope is fulfilled, we classify F in Level 1 for the purposes of

Appendix: Accuracy of Numerical Calculations 189

exposition; this means that the noise internal to F can be explained
as one small addition of to the intended output f .

For example. F(x) = [hill(x) is classified in Levell because the
dozens of small errors committed by the HP-15C during its
calculation of F(x) = (f + of)(x) amounts to a perturbation of (x)
smaller than 0.6 in the last (10th) significant digit of the desired
outputf(x) = In(x) . But F(x) = ~(x) is not in Levell for radian x
because F(x) can differ too much from f(x) = sin(x); for instance
F(1014 G]) = 0.799 ... is opposite in sign from f(1014G]) = - 0.784
so the equation F(x) = (f + of)(x) can be true only if of is sometimes
rather bigger than f. which looks bad.

Real systems more often resemble I SIN I than [hill . Noise in most real
systems can accumulate occasionally to swamp the desired output.
at least for some inputs. and yet such systems do not necessarily
deserve condemnation. Many a real system F operates reliably
because its internal noise. though sometimes large. never causes
appreciably more harm than might be caused by some tolerably
small perturbation ox to the input signal x. Such systems can be
represented as

F(x) = (f + of)(x + ox)

where of is always small compared with fand ox is always smaller
than or comparable with the noise t.x expected to contaminate x.
The two noise terms of and ox are hypothetical noises introduced to
explain diverse noise sources actually distributed throughout F.
Some of the noise appears as a tolerably small perturbation ox to
the input-hence the term "backward error analysis. " Such a
system F. whose noise can be accounted for by two tolerably small
perturbations. is therefore classified into Level 2 for purposes of
exposition.

r---------------I

'~~:
: [+ ~Y=F(X)
I F I L _______________ ~

Small Input and Output Perturbations (Level 2)

190 Appendix: Accuracy of Numerical Calculations

No difference will be perceived at first between Levell and Level 2
by readers accustomed to linear systems and small signals because
such systems' errors can be referred indiscriminately to output or
input. However, other more general systems that are digital or
nonlinear do not admit arbitrary reattribution of output noise to
input noise nor vice-versa.

For example, can all the error in I cos I be attributed, merely by
writing I cos I (x) = cos(x + ox), to an input perturbation ox small
compared with the inputx? Not when x is very small. For instance,
when x approaches 10-5 radians, then cos(x) falls very near
0.99999999995 and must then round to either 1 = cos(O) or
0.9999999999 = cos(1.4l4 ... X 10-5). Therefore I cos I(x) = cos(x + ox)
is true only if ox is allowed to be relatively large, nearly as large as
x when x is very small. If we wish to explain the error in I cos I by
using only relatively small perturbations, we need at least two of
them: one a perturbation ox = (-6.58 .. . X 1O-14)X smaller than
roundoff in the input; and another in the output comparable with
roundoff there, so that I cos I(x) = (cos + ocos)(x + ox) for some
unknown locosl ~ (6 X 1O-10)lcosl.

Like I cos I, every system F in Level 2 is characterized by just two
small tolerances-call them f and '1-that sum up all you have to
know about that system's internal noise. The tolerance f constrains
a hypothetical output noise, I ofl ~ flfl, and '1 constrains a
hypothetical input noise, I oxl ~ '11 x l , that might appear in a simple
formula like

F(x) = (f + of)(x + ox)

The goal of backward error analysis is to ascertain that all the
internal noise of F really can be encompassed by so simple a
formula with satisfactorily small tolerances f and '1. At its best,
backward error analysis confirms that the realized value F(x)
scarcely differs from the ideal value f(x + ox) that would have been
produced by an input x + ox scarcely different from the actual
input x, and gives the word "scarcely" a quantitative meaning (f
and '1). But, backward error analysis succeeds only for systems F
designed very carefully to ensure that every internal noise source is
equivalent at worst to a tolerably small input or output
perturbation. First attempts at system design, especially programs
to perform numerical computations, often suffer from internal
noise in a more complicated and disagreeable way illustrated by
the following example.

Appendix: Accuracy of Numerical Calculations 191

Example 6: The Smaller Root of a Quadratic. The two roots x
and y ofthe quadratic equation c - 2bz + az2 = 0 are real whenever
d = b2 - ac is nonnegative. Then the root y of smaller magnitude
can be regarded as a function y = f(a,b,c) of the quadratic's
coefficients

_ {(b - Vd sgn(b)) / a
f(a,b,c) -

(c / b) / 2

if a'" 0

otherwise.

Were this formula translated directly in a program F(a, b, c)
intended to calculate f(a, b, c), then whenever ac is so small
compared with b 2 that the computed value of d rounds to b 2, that
program could deliver F = 0 even though f ,., O. So dras tic a n error
cannot be explained by backward error analysis beca use no
relatively small perturbations to each coefficient a, b, and c could
drive c to zero, as would be necessary to change the smaller root y

into O. On the other h and, the algebraically equivalent formula

_ { c / (b + Vd sgn(b)) if divisor is nonzero
f(a ,b,c) - o otherwise

translates into a much more accurate program F whose errors do
no more damage than would a perturbation in the last (10th)
significant digit of c. Such a program will be listed later (page 205)
and must be used in those instances, common in engineering, when
the smaller root y is needed accurately despite the fact that the
quadratic's other unwanted root is relatively large.

Almost all the functions built into the HP-15C have been designed
so that backward error analysis will account for their errors
satisfactorily. The exceptions are 1 SOLVE I, em, and the statistics
keys [i] , 11]] , and [iD which can malfunction in certain
pathological cases. Otherwise, every calculator function F
intended to produce f(x) produces instead a value F(x) no farther
from f(x) than iffirst x had been perturbed to x + ox with loxl ~ '7lxl,
then f(x + ox) were perturbed to (f + of)(x + ox) with lorl ~ flfl. The
tolerances '7 and f vary a little from function to function ; roughly
speaking,

'7 = 0 and f < 10-9 for a ll functions in Levell ,

'7 < 10-12 a nd f < 6 X 10-10 for other real and complex functions.

192 Appendix: Accuracy of Numerical Calculations

For matrix operations, the magnitudes loxl.lxl, lofl, and If I must be
replaced by matrix norms lIoxll, IIxll, Ilorll, and Ilfll respectively,
which are explained in section 4 and evaluated using I MATRIX 17 or
I MATRIX 18. Then all matrix functions not in Levell fall into Level 2
with roughly

for matrix operations (other than
determinant I MATRIX Is, G, and [lliJ)

for determinant I MATRIX l s, 11/xl,
and G with a matrix divisor

where n is the largest dimension of any matrix involved in the
operation.

The implications of successful backward error analysis look simple
only when the input data x comes contaminated by unavoidable
and uncorrelated noise LlX, as is often the case. Then when we wish
to calculate f(x), the best we could hope to get is f(x + LlX), but we
actually get F(x + LlX) = (f + of)(x + LlX + ox), where loti ~ <If I and
loxl~rylxl·

What we get is scarcely worse than the best we could hope for
provided the tolerances < and ry are small enough, particularly if
ILlxl is likely to be at least roughly as big as rylxl. Of course, the best
we could hope for may be very bad, especially if f possesses a
singularity closer to x than the tolerances upon x's perturbations
LlX and ox.

Backward Error Analysis Versus Singularities

The word "singularity" refers to both a special value of the
argument x and to the way f(x) misbehaves as x approaches that
special value. Most commonly, f(x) or its first derivative ('(x) may
become infinite or violently oscillatory as x approaches the
singularity. Sometimes the singularities of Inlfl are called
singularities of f, thereby including the zeros of f among its
singularities; this makes sense when the relative accuracy of a
computation of f is at issue, as we shall see. For our purposes the
meaning of "singularity" can be left a little vague.

What we usually want to do with singularities is avoid or
neutralize them. For instance, the function

c(x)= {
(l-cosx) l x2 ifx#O

112 otherwise

Appendix: Accuracy of Numerical Calculations 193

has no singularity at x = 0 even though its constituents 1 - cos x
and x 2 (actually, their logarithms) do behave singularly as x
approaches O. The constituent singularities cause trouble for the
program that calculates c(x). Most of the trouble is neutralized by
the choice of a better formula

{~ (Sin (X / 2))2
c(x) = 2 xl2

112

ifx / 2#0

otherwise.

Now the singularity can be avoided entirely by testing whether
x / 2 = 0 in the program that calculates c(x).

Backward error analysis complicates singularities in a way that is
easiest to illustrate with the function A(X) = In(1 + x) that solved
the savings problem in example 2. The procedure used there
calculated u = 1 + x (rounded) = 1 + x + t.x. Then

if u= 1
A(X) = {x

In(u) x / (u - 1) otherwise.

This procedure exploits the fact that A(X)/ x has a removable
singularity at x = 0, which means that A(x)/ x varies continuously
and approaches 1 as x approaches O. Therefore, A(X)/ x is relatively
closely approximated by A(X + t.x) / (x + t.x) when It.xl < 10-9, and
hence

A(X) = X(A(X)/ x) = X(A(X + t.x) / (x + t.x)) = x(ln(u)/ (u - 1)),

all calculated accurately because Chill is in Level 1. What might
happen if Chill were in Level 2 instead?

If Chill were in Level 2, then "successful" backward error analysis
would show that, for arguments u near 1, Chill (u) = In(u + Ilu) with
Illul < 10-9. Then the procedure above would produce not
x(ln(u)/ (u - l)) , but

x(ln(u + Ilu) / (u - 1)) = XA(X + t.x + Ilu) / (x + t.x)

X + t.x+llu
= X(A(X + t.x + Ilu) / (x + t.x + Ilu))----­

x+ t.x

= X(A(X)/ x)(1 + Ilu /(x + t.x))

= A(x)(1 + Ilu / (x + t.x)).

194 Appendix : Accuracy of Numerical Calculations

When Ix + /lxl is not much bigger than 10-9, the last expression can
be utterly different from A(X). Therefore, the procedure that solved
example 2 would fail on machines whose [ill] is not in Level l.
There are such machines, and on them the procedure does collapse
for certain otherwise innocuous inputs. Similar failures also occur
on machines that produce (u + 0' u) - 1 instead of u - 1 because
their G function lies in Level 2 instead of Level 1. And those
machines that produce In(u + ou)/ (u + 0' u - 1) instead of
In(u)/(u - 1), because both [ill] and G lie in Level 2, would be
doubly vulnerable but for an ill-understood accident that usually
correlates the two backward errors ou and 0' u in such a way as
causes only half the significant digits of the computed A, instead of
all of them, to be wrong.

Summary to Here

Now that the complexity injected by backward error analysis into
singularities has been exposed, the time has come to summarize, to
simplify, and to consolidate what has been discussed so far.

• Many numerical procedures produce results too wrong to be
justified by any satisfactory error analysis, backward or not.

• Some numerica l procedures produce results only slightly
worse than would have been obtained by exactly solving a
problem differing only slightly from the given problem. Such
procedures, classified in Level 2 for our purposes, are widely
accepted as satisfactory from the point of view of backward
error analysis.

• Procedures in Level 2 can produce results relatively far from
what would have been obtained had no errors at all been
committed, but large errors can result only for data relatively
near a singularity ofthe function being computed.

• Procedures in Level 1 produce relatively accurate results
regardless of near approach to a singularity. Such procedures
are rare, but preferable if only because their results are easier
to interpret, especially when several variables are involved.

A simple example illustrates all four points.

Example 7: The Angle in a Triangle. The cosine law for
triangles says

,2 = p 2 + q 2 - 2pq cos e

Appendix: Accuracy of Numerical Calculations 195

for the figure shown below. Engineering and scientific calculations
often require that the angle e be calculated from given values p, q,
and r for the length of the triangle's sides. This calculation is
feasible provided 0 < p ,;;; q + r , 0 < q ,;;; p + r, and 0 ,;;; r ';;; p + q, and
then

0 ';;; e = cos-I(((p2 + q2) - rZ)/ (2pq)) ';;; 180° ;

otherwise, no triangle exists with those side lengths, or else e = 0/ 0
is indeterminate.

q

The foregoing formula for e defines a function e = f(p, q , r) and also
in a natural way, a program F(p,q,r) intended to calculate the
function . That program is labeled " A" below, with results
FA (p, q, r) tabulated for certain inputs p , q, and r corresponding to
sliver-shaped triangles for which the formula suffers badly from
roundoff. The numerical unreliability ofthis formula is well known
as is that of the algebraically equivalent but more reliable formula
e = f(p,q,r) = 2 tan-I) ab / (cs), where s = (p + q + r) / 2, a = s - p,
b = s - q, and c = s - r. Another program F(p, q, r) based upon this
better formula is labeled "B" below, with results FB(p,q , r) for
selected inputs . Apparently F B is not much more reliable than FA­
Most of the poor results could be explained by backward error
analysis if we assume that the calculations yield F(p,q,r) =
f(p + op,q + oq,r + or) for unknown but small perturbations
satisfyiDg lopl < 1O-9 1pl , etc. Even if this explanation were true, it
would have perplexing and disagreeable consequences, because the
angles in sliver-shaped triangles can change relatively drastically
when the sides are perturbed relatively slightly; f(p,q,r) is
relatively unstable for marginal inputs.

Actually the preceding explanation is false. No backward error
analysis could account for the results tabulated for FA and F B
under case 1 below unless perturbations 0 p, 0 q , and 0 r were
allowed to corrupt the fifth significant digit of the input, changing
1 to 1.0001 or 0.9999 . That much is too much noise to tolerate in a
10-digit calculation. A better program by far is Fe, labeled "c" and
explained shortly afterwards.

196 Appendix: Accuracy of Numerical Calculations

The three bottom lines in the table below show results fo r three
progra ms "A", " B", a nd "e" based upon three different formulas
F (p ,q , r) a ll a lgebraically equivalent to

e = f (p ,q , r) = cos-1((p 2 + q2 - r2)/ (2 pq)).

Disparate Results from Three Programs FA. F8 • Fe

Case 1 Case 2 Case 3

p 1. 9.999999996 10.

q 1. 9.999999994 5.000000001

r 1.00005 X 10-5 3 X 10-9 15.

FA O. O. 180.

F8 5.73072 X 10-4 Error 0 180.

Fe 5.72986 X 10-4 1.28117 X lO-8 179.9985965

Case 4 Case 5 Case 6

p 0.527864055 9.999999996 9.999999999

q 9.472135941 3 X 10-9 9.999999999

r 9.999999996 9.999999994 20.

FA Error 0 48.1 8968509 180.

F8 Error 0 Error 0 180.

Fe 180. 48.18968510 Error 0

Case 7 Case 8 Case 9

p 1.00002 3.162277662 3.162277662

q 1.00002 2.3 X 10-9 1.5555 X 10-6

r 2.00004 3.162277661 3.162277661

FA Error 0 90. 90.

F8 180. 70.52877936 89.96318706

Fe 180. 64.22853822 89.96315156

To use a progr am, key in p I ENTER I q I ENTER I r, run program "A",
"B", or "e", a nd wait to see the program 's approximation F to e = f.
Only progra m "e" is reliable.

Keystrokes

Appendix: Accuracy of Numerical Calcu lations 197

Display

000-
001-42.21.11
002- 4311
003- 34
004- 4311
005- 4336
006- 4333
007- 20
008- 34
009- 4336
010- 4311
011 - 40
012- 4333
013- 30
014- 34
015- 36
016- 40
017- 10
018- 4324
019- 4332
020-42.21.12
021- 44 1
022- 36
023- 4333
024-44.40. 1
025- 4333
026-44.40. 1
027- 2
028-44.10. 1
029- 33
030-45.30. 1
031- 34
032-45.30. 1
033- 20
034- 11
035- 34
036-45.30. 1
037-45.20. 1

198 Appendix: Accuracy of Numerical Calculations

Keystrokes Display

ICHS I 038- 16
[K] 039- 11

W~ 040- 43 1
[HJ 041- 33

0 042- 20
WI RTN I 043- 4332
[IJ ILBL I[IJ 044-42,21,13
ISTO lo 045- 44 0
[HJ 046- 33
W lx';;;yl 047- 4310

~ 048- 34
ISTO l l 049- 44 1
ISTO IG o 050-44,40, 0

~ 051- 34
ISTO IG o 052-44,40, 0

B 053- 30
w [MJ 054- 4333
ISTO IB l 055-44,30, 1
wi LSTx l 056- 4336
IENTER I 057- 36
I RcLiG 1 058-45,40, 1
[K] 059- 11
[IJ~ O 060-42, 4 , 0
[K] 061 - 11
ISTo l0 0 062-44,20, 0
wl CLx l 063- 4335

G 064- 40
[HJ 065- 33

G 066- 40
[IJ~ 1 067-42, 4 , 1
w[MJ 068- 4333
wi LSTxl 069- 4336
Wlx,;;;yl 070- 4310
IGTO l 9 071 - 22 .9
[HJ 072- 33
W lTEST I2 073-43,30, 2
[K] 074- 11

~ 075- 34
IGTO I S 076- 22 .8
[IJ I LBLi 9 077-42,21, .9

Appendix: Accuracy of Numerical Ca lculations 199

Keystrokes Display

078-43,30, 2
079- 11
080- 4333
081-42,21, .8
082- 30
083- 11
084- 45 1
085- 11
086- 20
087- 45 0
088- 43 1
089- 4320
090- 10
091- 34
092- 36
093- 40
094- 4332

The results Fc(p,q,r) are correct to at least nine significant digits .
They are obtained from a program "C" that is utterly reliable
though rather longer than the unreliable programs "A" a n d "B".
The method underlying program "C" is:

l.

2.

3.

4.

Ifp <q, then swap them toensurep;:'q.

Calculate b = (p - q) + r , C = (p - r) + q, and s = (p + r) + q.

Calculate

{

r - (p - q)

a = q - (p - r) if r > q ;:, 0

Error 0 otherwise (no triangle exists).

if q;:' r;:' 0

Calculate Fc(p,q,r) = 2 tan- l (..;aE / ,J cs).

This procedure delivers Fc(p,q,r) = () correct to a lmost nine
significant digits, a result surely easier to use and interpret than
the results given by the other better-known formulas. But this
procedure's internal workings are hard to explain; indeed, the
procedure may malfunction on some calculators and computers.

200 Appendix: Accuracy of Num eri ca l Ca lcul at ions

The procedure works impeccably on only certain machines like the
HP-15C, whose subtraction operation is free from avoidable error
and therefore enjoys the following property: Whenever y lies
between x 12 and 2x, the subtraction operation introduces no
roundoff error into the calculated value of x - y. Consequently,
whenever cancellation might leave relatively large errors contami­
nating a, b, or c, the pertinent difference (p - q) or (p - r) turns out
to be free from error, and then cancellation turns out to be
advantageous!

Cancellation remains troublesome on those other machines that
calculate (x + ox) - (y + oy) instead of x - y even though neither
ox nor oy amounts to as much as one unit in the last significant
digit carried in x or y respectively. Those machines deliver
Fc(p,q ,r) = f(p + op, q + oq, r + or) with end-figure perturbations
op, oq , and or that always seem negligible from the viewpoint of
backward error analysis, but which can have disconcerting
consequences. For insta nce, only one of the triples (p,q,r) or
(p + op, q + oq, r + or), not both , might constitute the edge lengths
of a feasible triangle, so Fe might produce an error message when
it shouldn't, or vice-versa, on those machines.

Backward Error Analysis of Matrix Inversion

The usual measure of the magnitude of a matrix X is a norm Ilxll
such as is calculated by eith er I MATRIX 17 or I MATRIX 18; we shall use
the former norm, the row norm

Ilxll =maxI: lxij l
I j

in what follows. This norm has properties similar to those of the
length of a vector and also the multiplicative property

Ilxyll ~ IIXllllyll·

When the equation Ax = b is solved numerically with a given n X n
matrix A and column vector b , the calculated solution is a column
vector c which satisfies nearly the same equation as does x ,
namely

(A+M)c=b

with IIMII < 1O-9 n IIAII .

Appendix: Accuracy of Numerical Calculations 201

Consequently the residual b - Ae = (.sA)e is always relatively
small; quite often the residual norm lib - Aell is smaller than
lib - Axil where x is obtained from the true solution x by rounding
each of its elements to 10 significant digits. Consequently, e can
differ significantly from x only if A is nearly singular, or
equivalently only if IIA-III is relatively large compared with 1I1iAII;

Ilx - ell = IIKI(b - Ae)11

~ IIKIIIIIMllllell

~ 1O-9 n Ilell / a(A)

where a(A) = lIdlAl1 IIKIII) is the reciprocal of the condition
number and measures how relatively near to A is the nearest
singular matrix 8, since

min IIA - 811 = a(A) IIAII.
det(S)=O

These relations and some of their consequences are discussed
extensively in section 4.

The calculation of A -I is more complicated. Each column of the
calculated inverse 11/x l(A) is the corresponding column of some
(A + .sArI, but each column has its own small .sA. Consequently,
no single small .sA, with II.sAII ~ 10-9 n IIAII, need exist satisfying

roughly. Usually such a .sA exists, but not always. This does not
violate the prior assertion that the matrix operations ~ and B
lie in Level 2; they are covered by the second assertion of the
summary on page 194. The accuracy of~(A) can be described in
terms of the inverses of all matrices A + Ll.A so near A that
IILl.AII ~ 1O-9 nIIAII; the worst among those (A + Ll.Ar l is at least
about as far from A -I in norm as the calculated ~(A). The figure
below illustrates the situation.

O (9]
-

/ 1 (A + Ll.A)- 1 is in here
A f A - \ . \ . ,

\ /

X
A + Ll.A is in here - - ~(A) is in here

202 Appendix: Accuracy of Numerical Calculations

As A + LlA runs through matrices with II LlAII at least about as large
as roundoff in IIAII, its inverse (A + LlArl must roam at least about
as far from A -I as the distance from A -I to the computed ~(A).
All these excursions are very small unless A is too near a singular
matrix, in which case the matrix should be preconditioned away
from near singularity. (Refer to section 4.)

If among those neighboring matrices A + LlA lurk some that are
singular, then many (A + LlArl and ~(A) may differ utterly
from A-I . However, the residual norm will always be relatively
small:

-",-11 A--'(A"..,,----+_Ll_A'---r 1_--,-1,::-11 II LlA II -9 -,- ,;;;--,;;; 10 n.
IIAIIII(A + LlAnl IIAII

This last inequality remains true when ~(A) replaces
(A+ LlArl.

If A is far enough from singularity that all

then a lso

This inequality also remains true when ~(A) replaces
(A + LlArl, and then everything on the right-hand side can be
calculated, so the error in ~(A) cannot exceed a knowable
amount. In other words, the radius of the dashed ball in the figure
above can be calculated.

The estimates above tend to be pessimistic. However, to show why
nothing much better is true in general, consider the matrix

x = [;00002
-50,000 50,000.03 _45]
50,000 -50,000.03 45

0 0.00002 -50,000.03

0 0 52,000

Appendix: Accuracy of Numerical Calculations 203

and

X-I = [50'00~ 50.00~.00002 50.00~.03 48.07:.98077...] .

o 0 50.000 48.076.95192 ...

o 0 0 0.00001923076923 ..

Ideally. p = q = O. but the HP-15C's approximation to X-I. namely
~(X). has q = 9.643.269231 instead. a relative error

IIx-1 - ~(X)II
IIx-1 11 = 0.0964 ... •

nearly 10 percent. On the other h and. if X + D.X differs from X only
in its second column where - 50.000 and 50.000 are replaced
respectively by - 50.000.000002 and 49.999.999998 (altered in the
11th significant digit) . then (X + D.Xr l differs significantly from
X-I only insofa r as p = 0 and q = 0 must be replaced by p =
10.000.00600 ... and q = 9.615.396154 Hence.

the relative error in (X + D.Xr l is nearly twice that in ~(X). Do
not try to calculate (X + D.Xr l directly. but use instead the formula

(X - cbTrl = X-I + X-1cbTX-1 / (1 - b 1X-1c) •

which is valid for any column vector c and row vector b r • and
specifically for

, = [;] "nd b' = [0 0000002 0 01.

Despite that

IIx-1 - ~(X)II < IIx-1 - (X + D.Xnl •

it can be shown that no very small end-figure perturbation oX
exists for which (X + oXrl matches ~(X) to more than five
significant digits in norm.

204 Appendix: Accuracy of Numerical Calculations

Of course, none of these horrible things could happen if X were not
so nearly singular. Because IIxll IIx- l ll > 1010, a change in X
amounting to less than one unit in the 10th significant digit of Ilxll
could make X singular; such a change might replace one of the
diagonal elements 0.00002 of X by zero. Since X is so nearly
singular, the accuracy of ITZ!J(X) in this case rather exceeds what
might be expected in general. What makes this example special is
bad scaling; X was obtained from an unexceptional matrix

_ 0 5. -5.000003 4.5 X 10-12

[

2. -5. 5.000003 -4.5 X 10_12
]

X=
o 0 2. -5.000003

o 0 0 5.2

by multiplying each row and each column by a carefully chosen
power of 10. Compensatory division of the columns and rows ofthe
equally unexceptional matrix

[

0.5 ~5 p q]
X-I = 0 0.2 0.5000003 0.4807698077. ..

o 0 0.5 0.4807695192 .. .

o 0 0 0.1923076923 .. .

yielded X-I, with p = q = o. The HP-15C calculates ITZ!J(X) = X-I
except that q = 0 is replaced by q = 9.6 X 10-11 , a negligible change.
This illustrates how drastically the perceived quality of computed
results can be altered by scaling. (Refer to section 4 for more
information about scaling.)

Is Backward Error Analysis a Good Idea?

The only good thing to be said for backward error analysis is that it
explains internal errors in a way that liberates a system's user
from having to know about internal details of the system. Given
two tolerances, one upon the input noise 8x and one upon the
output noise 8f, the user can analyze the consequences of internal
nOIse In

F(x) = (f + 8f)(x + {)x)

by studying the noise propagation properties of the ideal system f
without further reference to the possibly complex internal structure
ofF.

Appendix: Accuracy of Numerical Calculations 205

But backward error analysis is no panacea; it may explain errors
but not excuse them. Because it complicates computations
involving singularities, we have tried to eliminate the need for it
wherever we could. If we knew how to eliminate the need for
backward error analysis from every function built into the
calculator, and to do so at tolerable cost, we would do that and
simplify life for everyone. That simplicity would cost too much
speed and memory for today's technology. The next example will
illustrate the trade-offs involved.

Example 6 Continued. The program listed below solves the real
quadratic equation c - 2 bz + az2 = 0 for real or complex roots.

To use the program, key the real constants into the stack (c I ENTER I
b I ENTER I a) and run program " A ".

The roots x and y will appear in the X- and V-registers. If the roots
are complex, the C annunciator turns on, indicating that Complex
mode has been activated. The program uses labels "A" and ".9"
and the Index register (but none of the other registers 0 to .9);
therefore, the program may readily be called as a subroutine by
other programs. The calling programs (after clearing flag 8 if
necessary) can discover whether roots are real or complex by
testing flag 8, which gets set only if roots are complex.

The roots x and yare so ordered that Ixl ~ Iy l except possibly when
Ix l and Iy l agree to m ore than nine significant digits. The roots are
as accurate as ifthe coefficient c had first been perturbed in its 10th
significant digit, the perturbed equation had been solved exactly,
a nd its roots rounded to 10 significant digits. Consequently, the
computed roots match the given quadratic's roots to at least five
significant digits. More generally, if the roots x and y agree to n
significant digits for some positive n:(5, then they are correct to at
least 10 - n significant digits unless overflow or underflow occurs.

Keystrokes Display

W IP/R I
ITlCLEARlpRGMI 000-
ITlILBLI[6J 001-42,21 ,11
IENTER I 002- 36
wffiI] 003- 4333
0 004- 20
wlLSTx l 005- 4336

206 Appendix: Accuracy of Numerical Calculations

Keystrokes Display

~ 006- 34

wffi!J 007- 4333
I STO I[] 008- 4425
w[ZJ 009- 4311

G 010- 30
W lTEST I1 011-43.30. 1
IGTo l 9 012- 22 09
ICHS I 013- 16
[KJ 014- 11
[]~[] 015-42. 4.25
Wl TEST I2 016-43.30. 2
IRCLIG[] 017-45.30.25
Wl TEST I3 018-43.30. 3
IRCL IG[] 019-45.40.25
WI TEST lo 020-43.30. 0

G 021- 10
wi LSTx l 022- 4336
wffi!J 023- 4333

G 024- 10
WIRTNI 025- 4332
[]I LBL I 9 026-42.21. 09
[KJ 027- 11
I RCL I[] 028- 4525
wffi!J 029- 4333
G 030- 10

~ 031- 34
wlLSTx l 032- 4336
G 033- 10
[f][] 034- 4225
IENTER I 035- 36
[f]I Re~lm l 036- 4230
ICHSI 037- 16
[f]IRe~ l ml 038- 4230
WI RTN I 039- 4332
Wl P/R I

The method uses d = b2 - aco

If d < 0, then the roots are a complex conjugate pair

(b l a) ± iHl ao

Appendix : Accuracy of Num eri cal Calcul ations 207

If d ~ 0, then the roots a re real numbers x a nd y calcula ted by

s = b + Jd sgn(b)

x =s / a

if s'" 0

if s = o.

The s calcula tion avoids destructive cancell a tion .

When a = 0 ,.. b, the la rger root x, which should be 00, encounters
division by zero (Error 0) that can be cleared by pressing []±] three
times to exhibit the sm aller root y correctly calculated. But when
all three coefficients vanish, the Error 0 message signa ls th a t both
roots are arbitrary.

The results of several cases are summarized below.

Case 1 Case 2 Case 3 Case4

c 3 4 1 654,321

b 2 0 1 654,322

a 1 1 10-13 654,323

Roots Real Compl ex Real Real

3 o ± 2 i 2 X 1013 0 .9999984717

1 0 .5 0.9999984717

Case 5 Case 6

c 46,152,709 12,066,163

b 735,246 987,644

a 11,713 80,841

Roots Rea l Complex

62.77179203 12.21711755 ± i O.001377461

62.77179203

208 Appendix: Accuracy of Numerical Calculations

The last three cases show how severe are the results of perturbing
the 10th significant digit of any coefficient of any quadratic whose
roots are nearly coincident. The correct roots for these cases are

Case 4: 1 and 0.9999969434

Case 5: 62.77179203 ± i8.5375 X 10-5

Case 6: 12.21711755 ± iO.001374514

Despite errors in the fifth significant digit of the results, subroutine
"A" suffices for almost all engineering and scientific applications
of quadratic equations. Its results are correct to nine significant
digits for most data, including c, b , and a representable exactly
using only five significant digits; and the computed roots are
correct to at least five significant digits in any case because they
cannot be appreciably worse than if the data had been entered with
errors in the 10th significant digit. Nonetheless, some readers will
feel uneasy about results calculated to 10 significant digits but
correct to only 5. If only to simplify their understanding of the
relationship between input data and output results, they might still
prefer roots correct to nine significant digits in all cases.

Programs do exist which, while carrying only 10 significant digits
during arithmetic, will calculate the roots of any quadratic
correctly to at least nine significant digits regardless of how
nearly coincident those roots may be. All such programs calculate
d = b2 - ac by some trick tantamount to carrying 20 significant
digits whenever b2 and ac nearly cancel, so those programs are a
lot longer and slower than the simple subroutine "A" provided
above. Subroutine "B" below, which uses such a trick,* is a very
short program that guarantees nine correct significant digits on a
10-digit calculator. It uses labels "B", ".7", and ".8" and registers
Ro through R9 and the Index register. To use it, key in c I ENTER I b
I ENTER la, run subroutine "B", and wait for results as before.

Keystrokes

@:llp/R I
ITl CLEAR I PRGM I
ITlI LBLI[[i
I STO I[)
[Bl]

Display

000-
001-42,21,12
002- 4425
003- 33

* Program "B" exploits a tricky property of the ~ and [B keys wh ereby certain
calculations can be carried out to 13 s ign ificant digits before being rounded back to 10.

Appendix: Accuracy of Numerical Calculations 209

Keys trokes Display

ISTO lo 004- 44 0
ISTo la 005- 44 8

~ 006- 34
ISTO ll 007- 44
ISTOl9 008- 44 9
ITl iscI 12 009-42. 8 . 2
ITl llBl l·a 010-42.21 .. 8
ITl CLEAR []] 011- 4232
I RCl ia 012- 45 8
ISTO l7 013- 44 7
I Rc LiGITl 014-45.10.25
WI RND I 015- 4334
I RCl lITl 016- 4525
w [EJ 017- 4349
IRCl l9 018- 45 9
ITl [ill7 019-42. 4 . 7
~ 020- 34
IRCl la 021- 45 8
w [EJ 022- 4349
[IT] 023- 33
w[EJ 024- 4349
IRCl l7 025- 45 7
WI ABS I 026- 4316
IRCl l9 027- 45 9
WI ABs l 028- 4316
Wl x,;;;yl 029- 4310
I GTO I lID 030- 2212
IENTER I 031- 36
w [ff] 032- 4333
ISTo la 033- 44 8
IRCll7 034- 45 7
ISTO l9 035- 44 9
WI ABs l 036- 4316
IEEXI 037- 26
2 038- 2
0 039- 0
0 040- 20
I RCl il 041- 45 1
wl ABs l 042- 4316
Wlx';;;yl 043- 4310

210 Appendix: Accuracy of Numerical Calculations

Keystrokes Display

[GTol.s 044- 22 .8
[IJ [LBL I [[] 045-42,21,12
[IJffiR] 9 046-42, 7, 9
[RCLls 047- 45 8
w[ZJ 048- 4311
[sT0 17 049- 44 7
[RCL I[j] 050- 4525
[RCLI9 051- 45 9

wCEJ 052- 4349
[RCLI7 053- 45 7
W [TESTI2 054-43,30, 2
[GTOI 7 055- 22 .7
[KJ 056- 11
[IJ[ill o 057-42, 4, 0
WITESTI2 058-43,30, 2
[RCLIGo 059-45,30, 0
W[TEST I3 060-43,30, 3
[R CLIG o 061-45,40, 0
[IJ[ill1 062-42, 4, 1
WI TEST lo 063-43,30, 0
[RCLIG1 064-45,10, 1
[RCLI1 065- 45 1
[RCLIG [j] 066-45,10,25
WI RTN I 067- 4332
[IJ[LBL I. 7 068-42,21 , .7
[cHs l 069- 16
[KJ 070- 11
[RCLIG[j] 071-45,1 0 ,25
[ENTER I 072- 36
[cHs l 073- 16
[RCLIO 074- 45 0
[RCL I[j] 075- 4525

G 076- 10

~ 077- 34
[IJ[j] 078- 4225
[ENTER I 079- 36
wffiI] 080- 4333
[IJ[j] 081- 4225
W[RTN I 082- 4332
w [P/ RI

Appendix: Accuracy of Numerical Calculations 211

This program's accuracy is phenomenal: better than nine
significant digits even for the imaginary parts of nearly
indistinguishable complex roots (as when c = 4,877,163,849 and
b = 4,877,262,613 and a = 4,877,361,379); if the roots are integers,
real or complex, and if a = 1, then the roots are calculated exactly
(as when c = 1,219,332,937 X 10' , b = lll ,ll1.5, and a = 1). But the
program is costly; it uses more than twice as much memory for
both program and data as does subroutine "A", and much more
time, to achieve nine significant digits of accuracy instead of five
in a few cases that can hardly ever matter-simply because the
quadratic's coefficients can hardly ever be calculated exactly. If
any coefficient c, b, or a is uncertain by as much as one unit in its
lOth significant digit, then subroutine "B" is overkill. Subroutine
"B" is like Grandmother's expensive chinaware, reserved for
special occasions, leaving subroutine "A" for everyday use.

Index

Page numbers in bold type indicate primary references; page
numbers in regular type indicate secondary references.

A
Absolute error, 173, 182
Accuracy

in Complex mode, 73-75
of integrand, 47-49
of numerical calculations, 172-211
of solutions to linear system, 103-104

Aliasing, 46
Analysis, discounted cash flow , 39-44
Analysis of variance, 133-140
Angle in triangle, 194-199
Annuities, 26-39
Annuity, ordinary, 27
Annuity due, 27-28
Annunciator, C, 205
Annunciator, trig mode, 68
ANOV A table, 133,134,140
Augmented matrix, 141
Augmented normal equations, 111
Augmented system, 142

B

Backward error analysis, 187-211
Balloon payment, 27, 29, 36
Binomial theorem, 176
Bounding search, 161 , 162
Branch, principal, 69-72
Bridge too short, 174
Broken calculator, 172, 175-176

C
Calculation time, [EJ , 49-55
Calculations, numerical accuracy, 172-211
Cancellation, 176-178,200, 207

212

Cash flow analysis, discounted, 39-44
Cash flow diagram, 28, 28-44
Characteristic equation, 148
Column norm, 99
Complementary error function, 60-64
Complementary normal distribution function, 60-64
Complex components, accurate, 74
Complex equations, solving large system, 128-131
Complex math functions, 68-72
Complex mode, 65-95

accuracy, 73-75
ISOLvE land[E),73

Complex multi valued functions, 69-72
Complex number, nth roots, 69, 78-80
Complex number, storing and recalling, 76-78
Complex potential function, 89-95
Complex relative error, 183
Complex roots of equation, 16-17,80-85
Complex roots of quadratic equation, 205-211
Complex single-valued functions, 69
Components, accurate complex, 74
Compound amounts, 26-39
Condition number, 98-102,107, 201
Conformal mapping, 89
Constrained least-squares, 111, 115-116, 143
Consumer price index, 137-140, 147-148
Contour integral, 85-89
Correctly rounded result, 179-183

perturbed input, 184-211
Covariance matrix, 131
Critical point, 160, 162, 163

D
Declination, 11-15
Decomposition, LU, 96-98, 117, 118

descriptor, 97
Deflation, 10
Degrees offreedom, 132
Delay equation, 81-85
Derivative, 10, 17-20, 192
Descartes' Rule of Signs, 10-11

Index 213

214 Index

Descriptor of L U decomposition, 97
Determinant, 97-98,118
Diagram, cash flow, 28, 28-44
Discounted cash flow analysis, 39-44
Discounted rate of return, 39
Display format, 45-46, 48
Doolittle method, 97

E
Eigenvalue, 148-160

storage, 159-160
Eigenvector, 149, 154-160
Electrostatic field, 59
Endpoint, [ZiJ sampling at, 46-47,56
Equations

complex, solving large system, 128-131
equivalent, 9-10
solving inaccurate, 10
solving nonlinear system, 122-128
with several roots, 10

Equipotential line, 89-95
Equivalent equations, 9-10
Error 0 , 29,196, 199,207
Error 1, 162, 167
Error 4 , 29, 40
Error 8 , 9, 23
Error analysis , backward, 187-211
Error function, 60-64

complementary, 60-64
Error, 173

absolute, 173, 182
hierarchy, 178
in matrix elements, 100-101
misconceptions, 172-178
relative, 173, 182, 183

Example
angle in triangle, 194-199
annuities, 34-39
bridge too short, 174
broken calculator, 172, 175-176
cash flow, 43-44
compound amounts, 34-39

Index 215

consumer price index regression, 137-140, 147-148
contour integral, 88-89
declination of sun, 11-15
delay equation, 81-85
eigenvectors, 157-159
equipotential line, 95
field intensity of antenna, 17-25
filter network, 128-131
Gamma function , 65-68
lunar phases, 186
normal distribution function, 64
nth roots of complex number, 80
optimizing box, 168-171
pennies, 173, 180-183
pi, 173, 184-186
quadratic surface, 153-154
residual correction, 121
roots of quadratic equation, 191,205-211
special functions, 64
storing and recalling complex numbers, 77-78
streamline, 93-94
subdividing interval of integration, 51-54
transformation of variables, 54-55
unbiased test of hypothesis, 122-128

Extended precision, 47,104,208
Extremes of function, 17-25

F

Fratio , 132-140
Factorization, orthogonal, 113-116, 140-148
Field intensity, 17-25
Financial equation, 29, 39
Financial problems, 26-44
Format, display, 45-46, 48
Frobenius norm, 99
Functions, complex, 68-73
Future value, 26-39

G
Gamma function, complex, 65-68
Gradient, 160, 162
Grandmother's expensive chinaware, 211

216 Index

H

Hierarchy of error, 178
Horner's method, 11, 12
Hyperbolic cylinder, 153-154

I

Identity matrix, 119
Ill-conditioned matrix, 98-102, 107, 155
Ill-conditioned system of equations, 104-110
Improper integral, 55-60
Inaccurate equations, solving, 10
Inaccurate roots, 9-10
Input noise, 187-192
Integral

contour, 85-89
evaluating difficult, 55-60
improper, 55-60

Integration, numerical, using[]], 45-64
Integration in Complex mode, 73
Interchange, row, 97,117
Interest rate, 26-44
Internal rate of return, 39-44
Interval of integration, subdividing, 50-54, 58
Interval reduction, 161, 162
Inverse iteration, 155
Inverse of function, 69
Inverse of matrix, 98,101-102, 110,118, 187

backward error analysis, 200-204
IRR,39-44
Iterative refinement, 103-104, 119-121

J
Jordon canonical form, 155

L

Large system of complex equations, solving, 128-131
Least-squares, 110-116, 131-148, 187

linearly constrained, 111, 115-116, 143
weighted, 111 , 115, 143

Level 0,178
Level 1, 179-183, 190, 194
LevellC,183
Level 2, 184-211

Level 00, 179
Line search, 161
Linear model, 131

Index 217

Linear regression, multiple, 131. See also Least-squares
Linear system, a ccuracy of numerical solution, 103-104
Linearly constrained least-squares, Ill, 115-116, 143
Lower-triangular matrix, 96
LU decomposition, 96-98, 117,118

descriptor, 97
Lunar phases, 186

M

Mapping, contour, 89
Mathematical functions, complex, 68-72
Mathematical functions , pure, 47-49
Mathematical model, 48
Matrix elements, errors in, 100-101
Matrix inversion, backward error analysis, 200-204
Matrix operations, 76-78, 96-171

error levels, 178, 179, 192
Maximum offunction, 17-25, 160
Mean-adjusted regression sum of squares, 134
Minimum offunction, 17-25, 160
Model, linear, 131
Model, mathematical, 48
Monotonicity, 180, 186
Multiple linear regression, 131. See also Least-squares
Multiple root, 10
Multivalued fun ctions. complex, 69-72
N

Nearly singula r matrix, 107, 117-118, 201,204
Net present value, 39-44

equation , 39
Network, filter, 128-131
Newton's iteration method, 80-82,122
Noise, input and output, 187-192
Nonlinear equations, solving system, 122-128
Nonsingula r matrix, 101-102, 117
Norm, 99,106,200
Normal distribution, 122-123, 132
Normal distribution function , 48, 60-64

complementary, 60-64

218 Index

Normal equations, 110-113, 131-140
augmented,111
weighted, III

NPV, 39-44
equation, 39

nth roots of complex number, 69,78-80
Number of correct digits, 103, 121
Numerical calculations, accuracy, 172-211
Numerical integration, 45-64
Numerical solutions to linear system, accuracy, 103-104
Numerically finding roots, 6, 6-44

o
Optimization, 160-171
Ordinary annuity, 27
Orthogonal factorization, 113-116, 140-148
Orthogonal matrix, 113, 141, 142, 149
Output noise, 188-192
Overflow, 179

p

Payment, 26-39
Pennies, 173, 180-183
Phases, lunar, 186
Physical situations, 47-49
Pi, 173, 184-186
Pivots, 118
Polar form, 68
Polynomials, 10-15
Potential function, complex, 89-95
Precision, extended, 47,104,208
Preconditioning a system, 107-110
Present value, 26-44
Principal branch, 69-72
Principal value, 69-72

Q
Quadratic equation, roots, 191,205-211
Quadratic surface, 149, 153-154

R
Radians, used in Complex mode, 68
Rate of return, 39-44

Recalling complex numbers, 76-78
Rectangular form, 68
Refinement, iterative, 103-104, 119-121

Index 219

Regression, multiple linear, 131. See also Least-squares
Regression sum of squares, 132-140

mean-adjusted, 134
Relative error, 173, 182, 183

complex, 73-75
Relative uncertainty of matrix, 100
Repeated estimation, 23-25
Residual, 103-104, 1l0, 132,201
Residual correction, 103-104, 119-121
Residual sum of squares, 132-140
Resonance, 46
Return, rate of, 39-44
Romberg method, 46
Roots

complex, 16-17
equations with several, 10
inaccurate, 9-10
multiple, 10
not found, 9, 29, 92
numerically finding, 6, 6-44
of complex number, 69, 78-80
of equation, complex, 80-85
of quadratic equation, 191,205-211

Round-off error, 47,49. See also Rounding error
Rounding error, Ill, ll3, 118, 172-211
Row interchange, 97, ll7
Row norm, 99, 200

S
Saddle-point, 162
Samples, 0, 46-47, 50, 56, 73
Samples, I SOLVE I, 7-9, 73
Scaling a matrix, 104-107,204
Scaling a system, 107
Secant method, 7
Sign change, 8
Sign symmetry, 180, 185
Single-valued functions, complex, 69
Singular matrix, 101-102, 117-118, 201

220 Index

Singularity and backward error analysis, 192-194
Skew-symmetric matrix, 149
Slope, 20-22
Smaller root of quadratic equation, 191 , 205-211
Solutions to linear system, accuracy, 103-104
1 SOLVE 1,6-44

algorithm, 6-9, 73
in Complex mode, 73

Solving a system of equations, 15-17, 98, 100-101 , 118, 122-128
Solving a system of nonlinear equations, 122-128
Solving equation for complex roots , 80-85
Solving large system of complex equations, 128-131
Steepest descent, 160
Storing complex numbers, 76-78
Streamline, 89-94
Subdividing interval of integration, 50-54, 58
Subinterval, 50-54
Successive rows, 140-148
Sum of squares, 132, 140
Symmetric matrix, 148-149
System of complex equations, solving large, 128-131
System of equations, ill-conditioned, 104-110
System of equations, solving, 15-17, 98, 100-101 , 122-128
System of nonlinear equations, solving, 122-128

T
Tail offunction, 57-58
T aylor series, 182
Total sum of squares, 132-140
Tra nsformation of variables, 54-55
Tri angle, angle in, 194-199
Trigonometric functions, 184-186
Trigonometric modes, 68

U
Unbiased test, 122-123
Uncertainty for @), 45-46
Uncertainty of matrix, 100
Unconstrained least-squares. See Least-squares
Underflow, 50-51,118, 179
Upper-triangular matrix, 96,113-114,141

v
Variables, transforming, 54-55

W

Weighted least-squares, 111, 115, 143
Weighted normal equations, III

Y

Yield,39

Z
Zero of polynomial, 10

Index 221

FliOW HEWLETT
~r... PACKARD

Corvallis Division
1000 N .E. Circle Blvd. , Corvallis, OR 97330, U.S.A.

00015-90011 Printed in U.S.A. 8 / 82

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	page0002
	page0003
	page0004
	page0005
	page0006
	page0007
	page0008
	page0009
	page0010
	page0011
	page0012
	page0013
	page0014
	page0015
	page0016
	page0017
	page0018
	page0019
	page0020
	page0021
	page0022
	page0023
	page0024
	page0025
	page0026
	page0027
	page0028
	page0029
	page0030
	page0031
	page0032
	page0033
	page0034
	page0035
	page0036
	page0037
	page0038
	page0039
	page0040
	page0041
	page0042
	page0043
	page0044
	page0045
	page0046
	page0047
	page0048
	page0049
	page0050
	page0051
	page0052
	page0053
	page0054
	page0055
	page0056
	page0057
	page0058
	page0059
	page0060
	page0061
	page0062
	page0063
	page0064
	page0065
	page0066
	page0067
	page0068
	page0069
	page0070
	page0071
	page0072
	page0073
	page0074
	page0075
	page0076
	page0077
	page0078
	page0079
	page0080
	page0081
	page0082
	page0083
	page0084
	page0085
	page0086
	page0087
	page0088
	page0089
	page0090
	page0091
	page0092
	page0093
	page0094
	page0095
	page0096
	page0097
	page0098
	page0099
	page0100
	page0101
	page0102
	page0103
	page0104
	page0105
	page0106
	page0107
	page0108
	page0109
	page0110
	page0111
	page0112
	page0113
	page0114
	page0115
	page0116
	page0117
	page0118
	page0119
	page0120
	page0121
	page0122
	page0123
	page0124
	page0125
	page0126
	page0127
	page0128
	page0129
	page0130
	page0131
	page0132
	page0133
	page0134
	page0135
	page0136
	page0137
	page0138
	page0139
	page0140
	page0141
	page0142
	page0143
	page0144
	page0145
	page0146
	page0147
	page0148
	page0149
	page0150
	page0151
	page0152
	page0153
	page0154
	page0155
	page0156
	page0157
	page0158
	page0159
	page0160
	page0161
	page0162
	page0163
	page0164
	page0165
	page0166
	page0167
	page0168
	page0169
	page0170
	page0171
	page0172
	page0173
	page0174
	page0175
	page0176
	page0177
	page0178
	page0179
	page0180
	page0181
	page0182
	page0183
	page0184
	page0185
	page0186
	page0187
	page0188
	page0189
	page0190
	page0191
	page0192
	page0193
	page0194
	page0195
	page0196
	page0197
	page0198
	page0199
	page0200
	page0201
	page0202
	page0203
	page0204
	page0205
	page0206
	page0207
	page0208
	page0209
	page0210
	page0211
	page0212
	page0213
	page0214
	page0215
	page0216
	page0217
	page0218
	page0219
	page0220
	page0221
	page0222
	page0223
	page0224
	page0225

