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Introduction 

The HP-15C provides several advanced capabilities never before 
combined so conveniently in a handheld calcu lator: 

• Finding the roots of eq uations . 

• Evaluating definite integrals. 

• Calculating with complex numbers. 

• Calculating with matrices. 

The HP-15C Owner's Handbook gives the basic information about 
performing these advanced operations. It also includes numerous 
examples that show how to use these features. The owner's hand­
book is your primary reference for information about the advanced 
functions. 

This HP-15C Advanced Functions Handbook contin ues where the 
owner's handbook leaves off. In this ha ndbook you will find 
information about how the HP-15C performs the advanced computa­
tions and information that explains how to interpret the results 
that you get. 

This handbook also contains numerous programs, or applications. 
These programs serve two purposes. First, they suggest ways of 
using the advanced functions , so that you might use these capa­
bilities more effectively in your own applications . Second, the 
programs cover a wide range of applications-they may be useful 
to you in the form presented in this handbook. 

Note: The discussions of most topics in this handbook 
presume that you already understa nd the basic information 
about using the advanced funct ions and th at you are 
generally familiar with the subject matter being discussed. 
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Section 1 

Using I SOLVE I Effectively 

The 1 SOLVE 1 algorithm provides an effective method for finding a 
root of an equation. This section describes the numerical method 
used by 1 SOLVE 1 and gives practica l informa tion about using 
1 SOLVE 1 in various situations. 

Finding Roots 
In general, no numerical technique can be guaranteed to find a root 
of every equation that has one. Because a finite number of digits 
are used, the calculated function may differ from the theoretical 
fun ction in certa in intervals of x, it may not be possibl e to 
represent the roots exactly, or it may be impossible to distinguish 
between zeros and discontinuities of the function being used . 
Because the function can be sampled a t only a finite number of 
places, it's a lso possible to conclude fa lsely that the equation has 
no roots. 

Despite these inherent limitations on any numerica l method for 
finding roots, an effectiv e method-like tha t used by 1 SOLVE 1-
should s trive to meet each of the following objectives: 

• If a real root exists and can be exactl y represented by the 
calculator, it should be returned. Note that the calculated 
function may underflow (and be set to zero) for some va lues of 
x other than the true roots. 

• If a real root exists, but it can't be exactly represented by the 
calcula tor , the value returned shou ld differ from the true root 
only in the las t significant digit. 

• If no real root exists , a n error message should be displayed . 

The 1 SOLVE 1 algorithm was designed with these objectives in mind. 
It is a lso easy to use and requires little of the calculator's memory. 
And because 1 SOLVE 1 in a program can detect the situation of not 
finding a root, your programs can remain entirely automatic 
regardless of whether 1 SOLVE 1 finds a root. 

6 



Section 1: Using I SOLVE I Effectively 7 

Howl SOLVE ISamples 
The I SOLVE I routine uses only five registers of a llocatable memory 
in the HP-15C. The five registers hold three sample values (a, b, 
a nd c) and two previous function values (f(a) and (b)) while your 
function subroutine calculates (c) . 

The key to the effectiveness ofl SOLVE I is how the next sample value 
c is found. 

Normally, 1 SOLVE 1 uses the secant method to select the next value. 
This method uses the values of a, b , (a ), and (b) to predict a value 
c where (c) might be close to zero. 

fIx) 

--~--------~~~~~--------~----- x 

If c isn 't a root , but (c) is closer to zero than (b), then b is 
relabeled as a, c is relabeled a s b, a nd the prediction process is 
repeated . Provided the graph of (x) is smooth a nd provided the 
initial values of a a nd b are close to a simple root, the secant 
method rapid ly converges to a root. 

However, under certai n conditions the secant method doesn't 
suggest a next value that will bound the search or move the search 
closer to a root, such as finding a sign change or a sma ller function 
magnitude. In such cases, I SOLVE I uses a different approach . 

If the calculated secant is nearl y horizonta l, I SOLVE I modifies the 
secant method to ensure that I c - b I ~ 100 I a - hi. This is especia lly 
important because it a lso reduces the tendancy for the secant 
meth od to go astray when rounding error becomes s ign ificant near 
a root. 
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((x) 
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Ifl SOLVE I has already found values a and b such that f(a) and f(b) 
have opposite signs, it modifies the secant method to ensure that c 
always lies within the interval containing the sign change. This 
guara ntees that the search interval decreases with each iteration , 
eventua lly finding a root. 

((x) 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

--4-------~--~--~~--~~-------x 

Ifl SOLVE I hasn't found a sign ch ange and a sample value c doesn 't 
yield a function value with diminished magnitude, then I SOLVE I fits 
a parabola through the function values at a, b, a nd c.1 SOLVE I finds 
the value d at which the para bola has its maximum or minimum, 
relabels d as a, and then continues th e search using the secant 
method . 
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I SOLVE I abandons the search for a root only when three successive 
parabolic fits yield no decrease in the fu nction magnitude or when 
d = b. Under these conditions, the calculator displays Error 8. 
Because b represen ts the point with the sma llest sampled fu nction 
magnitude, b and ((b) are return ed in the X- and Z-registers, 
respectively . The Y-register contains the value of a or c. With this 
information , you can decide what to do next. You might resume the 
search where it left off, or direct t he search elsewhere, or decide 
that ((b) is negligible so that x = b is a root, or transform the 
equation into another equation easier to solve, or conclude that no 
root exist s. 

Handling Troublesome Situations 
The fo llowing informa tion is useful for working with problems th at 
could yield misleading results. Inaccurate roots are caused by 
calculated function values that differ from the intended function 
values. You can freq uently avoid trouble by knowing how to 
diagnose inaccuracy a nd redu~e it. 

Easy Versus Hard Equations 

The two equations ((x) = 0 a nd ef(x) - 1 = 0 have the same real 
roots , yet one is a lmost a lways much easier to solve numerically 
than the other. For instance, when ((x) c= 6x - x4-1 , the first 
equation is easier. When (( x) = In(6x - x4 ) , the second is easier. The 
difference lies in how the function 's graph behaves, particularly in 
the vicinity of a root. 

f{x) = 6x - X4 - 1 f{x) = exp{6x - X4 - 1) - 1 

--~~~--~-----t-+~x 
o 2 

- 60 
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In genera l, every equa tion is one of a n infinite fa mily of equiva lent 
eq uations with the same real roots . And some of th ose equ a ti ons 
must be easier to solve than others. While I SOLVE I may fail to find a 
root fo r one of those eq ua tions, it may succeed with a nother. 

Inaccurate Equations 

I SOLVE I can 't calcula te a n eq ua tion 's root incorrectly unless the 
fun ction is incorrectly calculated. The a ccuracy of your fun ction 
subroutine affects the accuracy of the root tha t you find. 

You should be aware of conditions that might cause your 
calcul ated function value to di ffer from the theoretical value you 
wan t it to have. I SOLVE I can 't infe r in tended values of your 
function . Frequently , you can minimize calcul a tion error by 
carefully writing your function subroutine. 

Eq uations W ith Several Roots 

The task of fi nding a ll roots of a n eq ua tion becomes more di fficul t 
as the n umber of roots increases. An d a n y roots t ha t cluster closely 
will us ua lly defy attempts at accura te resolu tion . You can use 
defla tion to eliminate roots , a s described in the HP·15C Owner's 
Ha ndbook. 

An eq ua tion with a mul tiple root is characterized by the fun ction 
a nd its first few h igher· order derivatives bei ng zero at the mul tiple 
root. When I SOLVE I finds a double root, the las t h alf of its digits ma y 
be in accura te. For a triple root , two· thirds of the root's digits tend 
to be obscured. A qua druple root tends to lose about three-fourths of 
its digits. 

Using I SOLVE I With Polynomials 
Polynomia ls a re a mong the easies t fun ctions to evaluate. That is 
why they a re traditio na lly used to a pproxima te fun ctions that 
m od el p h ys ica l processes or m or e comp lex m ath em atica l 
functions. 

A polynomia l of degree n can be represented as 

a"x"+ a,, _ lx,, - l + ... + alx + aO 

This fun ction eq ua ls zero at no more th a n n real values of x , called 
zeros of t he polynomi a l. A limit to the number of pos itive zeros of 
th is function can be determin ed by counting the number of times 
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the signs of th e coefficients change as you scan the polynomia l 
from left to right. Similarly , a limit to the number of negative zeros 
can be determined by scanning a new function obtained by 
substituting - x in place of x in the original polynomial. If the 
actual number of real positive or negative zeros is less tha n its 
limit, it will differ by an even number. (These relationships are 
known as Descartes ' Rule of Signs.) 

As an example, consider the third-degree polynomia l function 

(( x) = x3 - 3x2 - 6x + 8 . 

It can h ave no more than three real zeros. It has at most two 
positive rea l zeros (observe the sign changes from the first to 
second and third to fourth terms) a nd at most one negative real 
zero (obtained from (( - x) = - x3 - 3x2 + 6x + 8). 

Polynomial functio ns are usually evaluated most compactly using 
nested multiplication. (This is sometimes referred to as Horner's 
method.) As a n illustration, the function from the previous 
example can be rewritten as 

((x) = [(x - 3)x - 6]x + 8. 

This representation is more easily progra mmed and more 
efficiently executed than the origina l form, especially since I SOLVE I 
fills the stack with the va lue. of x. 

Example: During the winter of '78, Arctic explorer J ean-Claude 
Coulerre, isolated at his froz en camp in the far north , began 
scanning the southern horizon in anticipation of the sun's 
reappearance. Coulerre knew tha t the su n would not be visible to 
him until early March , when it reached a declin ation of 5° 18'S . On 
what day and time in March was the chilly explorer's vigi l 
rewarded? 

The time in March when the sun reached 5° 18'S declination can be 
computed by solvin g the following equation for t : 

where D is the decli nation in degrees, t is the time in days from the 
beginning of the month, and 



12 Section 1: Using 1 SOLVE 1 Effectively 

a 4 = 4.2725 X 10- 8 

a 3 = - 1.9931 X 10- 5 

a 2 = 1.0229 X 10- 3 

al = 3.7680 X 10- 1 

a O = -8.1806 . 

This eq uation is valid for 1 :s;; t < 32, representing March , 1978. 

First convert 5°18'S to decimal degrees (press 5.18 1 CHS 1 w 1 +H I), 
obtaining - 5.3000 (using ffiK] 4 display mode). (Southern latitudes 
are expressed as negative numbers for calculation purposes.) 

The sol ution to Coulerre's problems is the value of t satisfying 

Expressed in the form req uired by 1 SOLVE I, the equation is 

where the last, constant term now incorporates the value of the 
declination. 

Using Horner's method, the function to be set equa l to zero is 

To shorten the subroutin e, store a nd recall the constants using the 
registers corresponding to the exponent of t. 

Keystrokes Display 

[Qill /G Pr Error Clears calculator's 
memory.* 

[±] 0.0000 
wl P/R I 000- Program mode. 

*This step is included here onl y to ensure that sufficient memory is available for the 
exa mples that follow in this handboo k. 
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Keystrokes Display 
ITlI lBl l0 001-42,21,11 
IRCl l4 002- 45 4 

0 003- 20 
I RCl l3 004- 45 3 

G 005- 40 

0 006- 20 
IRCl l 2 007- 45 2 

G 008- 40 

0 009- 20 
IRCl l 1 010- 45 1 

G 011- 40 

0 012- 20 
IRCl lO 013- 45 0 

G 014- 40 
WI RTN I 015- 4332 

In Run mode, key in the fiv e coefficients : 

Keystrokes Display 

wi P/ R I Run mode. 

4.2725 1 EEX 18 1 CHS I 4 .2725 -08 

I STO 14 4 .2725 -08 Coefficient of t4. 

1.9931 1cHS II EEX I 
5 1cHS II sTO l 3 -1 .9931 -05 Coefficientof tl. 

1.0229 1 EEX 13 1 CHS I 1.0229 -:03 

I STO 12 0 .0010 Coefficient of t2. 
37680lEEX I1 1cHS I 3.7680 -01 

I STO 11 0.3768 Coefficient of t. 
2.8806 1 CHS II STO 10 -2.8806 Constant term. 

Because the desired solution should be between 1 a nd 32, key in 
these two values for initi a l estimates. Then use I SOLVE I to find the 
roots. 

Keystrokes 

1 IENTER I 

32 

ITlI SOLVE 10 

[[I] 

Display 

1 .0000 

32 

7.5137 

7 .5137 

Initial estimates. 

Root fo und. 

Same previous estimate. 
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Keystrokes Display 

0.0000 

7 .5137 

Function value. 

Restores stack. 

The day was March 7th. Convert the fractiona l portion of the 
number to decimal h ours and then to h ours, minutes, and seconds. 

Keystrokes 

ITlI FRAC I 

24 0 

ITlI +HMS I 

Display 

0.5137 

12.3293 

12.1945 

Fractional portion of day. 

Decimal h ours. 

Hours, minutes, seconds. 

Explorer Cou lerre sh ould expect to see the sun on March 7th at 
12h 19m 455 (Coordin a ted Universal Time). 

By examining Coulerre's function f( t), you realize that it ca n have 
as many as four real roots-three positive a nd one negative. Try to 
find addition a l positive roots by using I SOLVE I with larger positive 
estimates. 

Keystrokes Display 

1000 I ENTER 111 00 1.100 Two larger, positive 
estimates . 

ITlISOLVE I~ Error 8 No root fou nd. 

[±] 278.4497 Last estimate tried. 

[TI] 276.7942 A previous es timate. 

[TI] 7.8948 Non zero va lue of function. 

W[[!JW[[!J 278.4497 Restores stack to original 
state. 

ITl I SOLVE I~ Error 8 Agai n , no root found. 
[±] 278.4398 Approximately same 

estimate. 
[TI] 278.4497 A previous estimate. 

[TI] 7 .8948 Same function value. 

You have found a positive local minimum rather th a n a root. Now 
try to find the negative root. 
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Keystrokes Display 

1000 I CHS II ENTER I -1.000 .0000 

1100 lcHs i -1.100 Two la rger, negative 
estimates. 

mISOLVE I~ -108.9441 Negative root. 

[Kf] -108.9441 Same previous estimate. 

[Kf] 1.6000 -08 Function value. 

There is no need to search further- you have found a ll possible 
roots. The negative root has no meaning s ince it is outside of the 
range for which the declination a pproximation is valid. The graph 
of the function confirms the results you h ave found. 

f( x l 

----~------~------4-------~------~------x 

- 20 

Solving a System of Equations 
I SOLVE I is designed to find a single variable value th at satisfies a 
single eq ua tion . If a problem involves a system of equations with 
several variables, you may sti ll be able to I SOLVE I to find a solu tion. 

For some systems of equations, expressed as 

fn(Xl, ... , xn) = 0 

it is possible through a lgebraic manipulation to eliminate a ll but 
one variable. That is, you can use the eq uations to derive 
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expressions for a ll but one variable in terms of the remaining 
variable. By using these expressions , you can reduce the problem to 
using I SOLVE I to find the root of a s ingle equation . The values of the 
other variables at the solution can then be calculated using the 
derived expressions. 

This is often useful for solving a complex eq uation for a complex 
root. For such a problem, the complex equa tion can be expressed as 
two real-valued equations-one for the real component and one for 
the imaginary component-with two real variables-representing 
the real and imagina ry pa rts of the complex root. 

For example, the complex equation z + 9 + 8e-z = 0 has no real roots 
z, but it h as in finitely ma ny complex roots z = x + iy. This equation 
can be expressed as two real equations 

x + 9 + 8e-Xcosy = 0 

y - 8e-xsin y = 0 . 

The followin g manipulations ca n be used to eliminate y fro m the 
eq uations. Because the s ign of y doesn 't matter in the equations, 
ass ume y > 0, so that a ny solution (x,y) gives a noth er solution 
(x, - y). Rewrite the second equation as 

x = In (8(si n y) / y), 

which requ ires that sin y > 0 , so that 2n rr < y < (2n + l)rr for 
integer n = 0, 1, .... 

From the first equation 

y = cos-1(- eX(x + 9)/ 8) + 2n rr 

= (2n + l)rr - cos-1(ex(x + 9)/ 8) 

for n = 0,1, ... Substitute this expression into the second equation, 

x + In ( (2n + l )rr - cos-
1
(ex(x + 9) / 8) ) = o. 

J 64 - (e-t(x + 9))2 
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You can then use 1 SOLVE 1 to find the root x of this eq uation (for any 
given value of n, the number of the root). Knowing x, you can 
calculate the corresponding value of y. 

A final consideration for this example is to choose the initial 
estimates that would be appropriate. Because the argument of the 
inverse cosine must be between -1 and 1, x must be more negative 
than about -0.1059 (found by trial and error or by using 1 SOLVE I). 
The initial guesses might be near but more negative than this 
value, -0.11 and -0.2 for example. 

(The complex equation used in this example is solved using an 
iterative procedure in the example on page 81. Another method for 
solving a system of nonlinear equations is described on page 122.) 

Finding Local Extremes of a Function 

Using the Derivative 

The traditional way to find local maximums and minimums of a 
function's graph uses the derivative ofthe function. The derivative 
is a function that describes the s lope of the graph. Values of x at 
which the derivative is zero represent potential local extremes of 
the function. (Although less common for well-behaved functions, 
values of x where the derivative is infinite or undefined are also 
possible extremes.) If you can express the derivative of a function 
in closed form, you can use 1 SOLVE 1 to find where the derivative is 
zero-showing where the function may be maximum or minimum. 

Example: For the design of a vertical broadcasting tower, radio 
engineer Ann Tenor wants to find the angle from the tower at 
which the relative field intensity is most negative. The relative 
intensity created by the tower is given by 

E = COS(27Thcos 0) - COS(27Th) 

[1 - cos(27Th)]sin 0 

where E is the relative field intensity, h is the antenna height in 
wavelengths, and 0 is the angle from vertical in radians. The 
height is 0.6 wavelengths for her design. 

The desired angle is one at which the derivative of the intensity 
with respect to 0 is zero. 
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To save program memory space a nd execution time, store the 
following constants in registers a nd recall them as needed: 

TO = 2rrh 

TI = cos(2rrh) 

T2 = 1/ [1 - cos(2rrh)] 

a nd is stored in register Ro, 

and is stored in register R 1, 

a nd is stored in register R2. 

The derivative of the intensity E with respect to the a ngle e is given 
by 

dE [. COS(TOCOS e) - rl ] = T2 rQsm (rocos e) - . . 
de sm e tan e 

Key in a subroutine to calculate the derivative. 

Keystrokes Display 

[]]I P/R I Program mode. 

ITl CLEAR I PRGM I 000-

ITlI LBL la 001-42.21. 0 

Icos l 002- 24 

I RCL la 003- 45 0 

0 004- 20 

lcosl 005- 24 

I RCL 11 006- 45 1 

B 007- 30 

~ 008- 34 

ISIN I 009- 23 

G 010- 10 

~ 011- 34 

ITAN I 012- 25 

G 013- 10 

ICHs l 014- 16 

~ 015- 34 

Icos l 016- 24 

I RCL la 017- 45 0 



Section 1: Using I SOLVE I Effectively 19 

Keystrokes Display 

0 018- 20 

ISINI 019- 23 

IRCl lO 020- 45 0 

0 021- 20 

G 022- 40 

I RCll2 023- 45 2 

0 024- 20 

WIRTN I 025- 4332 

In Radians mode, calculate and store the three constants. 

Keystrokes Display 

wl P/R I Run mode. 

WIRAOI Specifies Radians mode. 

2wGJ0 6.2832 

.601sTO IO 3.7699 Constant roo 

I COS II STO 11 -0.8090 Constant rl' 

ICHs I1 G 1.8090 

~ISTO I2 0.5528 Constant r2' 

The relative field intensity is maximum at an angle of 90° 
(perpendicular to the tower). To find the minimum, use angles 
closer to zero as initial estimates, such as the radian equivalents of 
10° and 60°. 

Keystrokes Display 

1oITlI+RAOI 0.1745 

6oITlI+RAO I 1 .0472 Initial estimates. 

ITlISOlVE lo 0.4899 Angle giving zero slope. 

[IT)[IT) -5 .5279 -10 Slope at specified angle. 

wffi!Jwffi!J 0.4899 Restores the stack. 

WI+OEG I 28.0680 Angle in degrees. 
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The relative field intensity is most negative at an a ngle of 28.0680° 
from vertical. 

dE 

de 
2 

Using an Approximate Slope 

The deriva tive of a function can a lso be approximated numerically. 
If you sample a function at two points relatively close to x (namely 
x + ~ a nd x - ~) , yo u can use the s lope of the secant as an 
approximation to the slope at x: 

s= 

f(xl 

f(x + ~l 

f(x - ~l 

r( x + ~) - r(x - ~) 

2~ 

x - ~ x+~ 
x 
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The accuracy of this approximation depends upon the increment 6. 
and the nature of the function . Smaller values of 6. give better 
approximations to the derivative, but excessively small values can 
cause round-off inaccuracy. A value of x at which the slope is zero 
is potentially a local extreme of the function. 

Example: Solve the previous example without using the eq uation 
for the derivative dE I dO. 

Find the angle at which the derivative (determined numerically) of 
the intensity E is zero. 

In Program mode, key in two subroutines: one to estimate the 
derivative of the intensity and one to evaluate the intensity 
function E. In the following subroutine, the slope is calculated 
between 0 + 0.001 and 0 - 0.001 radians (a range equivalent to 
approximately 0.1 °). 

Keystrokes 

wlP/RI 
[IJ I LBL I [6J 
IEEX I 

IC HS I 
3 

[!] 
IENTER I 

I GSB IffiJ 

IEEXI 

ICHS ! 
3 

B 
IENTERI 

I GSB IffiJ 

B 
2 

IEEXI 

ICHS I 
3 

Display 

000- Program Mode. 

001-42,21,11 

002- 26 
003- 16 
004- 3 Evaluates Eat 0 + 0.001. 

005- 40 

006- 36 
007- 3212 

008- 34 
009- 26 

010- 16 
011- 3 Evaluates Eat 0 - 0.001. 

012- 30 
013- 36 
014- 3212 

015- 30 
016- 2 

017- 26 

018- 16 

019- 3 
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Keystrokes Display 

G 020- 10 

WI RTNI 0 2 1- 4332 

ml lBl loo 022-42.2 1.12 Subroutine for E(()). 

Icosl 023- 24 

IRCl lo 024- 45 0 

0 025- 20 

Icosl 026- 24 

I RCl l1 027- 45 1 

G 028- 30 

[ili] 029- 34 

ISIN I 030- 23 
G 031- 10 

IRCl l2 032- 45 2 

0 033- 20 

WI RTNI 034- 4332 

In th e previous example, the calcu lator was set to Radians mode 
and the three constants were stored in registers Ro, R 1, and R2 . Key 
in the same initia l estimates as before a nd execute I SOLVE I. 
Keystrokes Display 

wl P/R I Run mode. 

10 ml +RAD I 0. 1745 

6o ml +RADI 1 .0472 Initial estimates. 

miSOlVEI0 0 .4899 Angle given zero slope. 

[!ill[!ill 0 .0000 Slope at specified angle. 

w[[I]w[[I] 0 .4899 Restores the stack. 

I ENTER II ENTER Imoo -0.2043 Uses function subroutine 
to calculate minimum 
intensity. 

[ili] 0 .4899 Recalls () value. 

WI +DEG I 28 .0679 Angle in degrees. 

This numerical a pproximation of th e derivative indicates a 
minimum field intensity of -0.2043 a t a n angle of 28.0679°. (This 
angle differs from the previous solution by 0.0001 °.) 

, len v,)lly Ie rt ~ MlJt pr. 
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Using Repeated Estimation 

A third technique is useful when it isn't practical to calculate the 
derivative. It is a slower method because it requires the repeated 
use of the I SOLVE I key. On the other hand , you don't have to find a 
good value for A of the previous method. To find a local extreme of 
the function ((x) , define a new function 

g(x) = ((x) - e 

where e is a number slightly beyond the estimated extreme value of 
((x). If e is properly chosen , g(x) will approa ch zero near the 
extreme of ((x) but will not equal zero. Use I SOLVE I to analyze g(x) 
near the extreme. The desired result is Error 8 . 

• If Error 8 is displayed , the number in the X-register is an x 
value near the extreme. The number in the Z-register tells 
roughly how far e is from the extreme value of ((x). Revise e to 
bring it closer (but not equal) to the extreme value. Then use 
I SOLVE I to examine the revised g(x) near the x value previously 
found . Repeat this procedure until successive x values do not 
differ significantly . 

• If a root of g(x) is found, either the number e is not beyond the 
extreme value of ((x) or else I SOLVE I has found a different 
region where ((x) equals e. Revise e so that it is close to-but 
beyond-the extreme value of ((x) and try I SOLVE I again. It 
may also be possible to modify g(x) in order to eliminate the 
dis tan t root. 

f(x) f(x) 

e 

e 

x x 
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Example: Solve t he previous example without calculating the 
derivative ofthe rela tive fie ld intensity E. 

The subroutine to calculate E and the required consta nts h ave been 
en tered in the previous example. 

In P rogra m mode, key in a subroutine th at subtracts an estimated 
extreme number from the field intensity E. The extreme number 
should be stored in a register so that it can be m a nually ch anged as 
needed. 

Keystrokes Display 

wi P/ R I 000- Progra m mode. 

[IJ ILBL I1 001-42.21 . 1 Begins with la bel. 

I GSB ICID 002- 3212 Calculates E. 
I RCL I9 003- 45 9 

G 004- 30 Subtracts extreme 
estimate. 

wi RTN I 005- 4332 

In Run mode, estimate the minimum intensity value by manua lly 
sampling the function. 

K eystrokes D isplay 

Wi P/R I Run mode. 

1o [IJI +RAOI 0 . '745 
I ENTER I[IJ CID -0.1029 

30 [IJI +RAO I 0.5236 Samples the function at 

I ENTER I[IJCID -0.2028 10°, 30°, 50°, .... 

5o [IJI +RAO I 0 .8727 

I ENTER I[IJCID 0 .0405 
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Based on these samples, try using an extreme estima te of -0.25 and 
initial I SOLVE I estimates (in radians) near 100 and 300. 

Keystrokes Display 

.25 IcHSl l sTO I9 -0.2500 Stores extreme estimate. 

.21 ENTER I 0 .2000 

.6 0 .6 Initial estimates. 

ITlI SOLVE 11 Error 8 No root found. 

[±]I STol4 0.4849 Stores e estimate. 

(]1]1 STo l5 0 .4698 Stores previous e estimate. 

(]1] 0 .0457 Distance from extreme. 

.90 0 .0411 Revises extreme estimate 
ISTO l09 0 .0411 by 90 percent ofthe 

distance. 

I RcLi4 0.4849 Recalls e estimate. 

I ENTER II ENTER IITlOO -0.2043 Calculates intensity E. 
[±] 0 .0000 Recalls other e estimate, 
I RCL l5 0 .4698 keeping first estimate in 

V-register. 

ITlI SOLVE 11 Error 8 No root found . 

[±] 0.4898 e estimate. 

[iliJ 0.4893 Previous e estimate. 

[iliJ 0.4898 Recalls e estimate. 

I ENTER II ENTER IITlOO -0.2043 Calculates intensity E. 
[iliJ 0.4898 Recalls e value. 

[]]I +DEG I 28.0660 Angle in degrees. 

[]]I DEG I 28.0660 Restores Degrees mode. 

The second intera tion produces two e estimates that differ in the 
fourth decim al place. The field intensities E for the two iterations 
are equal to four decimal places. Stopping at this point, a minimum 
field intensity of -0.2043 is indicated at an angle of 28.06600. (This 
angle differs from the previous solutions by about 0.0020. ) 
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Applications 

The following applications illustrate how you can use I SOLVE I to 
simplify a calculation that would normally be difficult-finding an 
interest rate that can't be calcul ated directly. Other applications 
that use the I SOLVE I function are given in sections 3 and 4. 

Annuities and Compound Amounts 

This program solves a variety of financial problems involving 
money, time, and interest. For these problems, you normally know 
the values of three or four of the fo llowing variables and need to 
find the value of another: 

n The number of compounding periods. (For example, a 30 
year loan with monthly payments has n =12 X 30 = 360.) 

The interest rate per compounding period expressed as a 
percent. (To calcul ate i, divide the annual percentage rate 
by the number of compounding periods in a year. That is, 
12% annual interest compounded monthly eq uals 1% 
periodic interest.) 

PV The present value of a series of future cash flows or the 
initial cash flow. 

PMT The periodic payment amount. 

FV The future value. That is, the fina l cash flow (balloon 
payment or remaining balance) or the compounded value 
of a series of prior cash flows. 



Section 1: Using I SOLVE I Effectively 27 

Possible Problems Involving Annuities and 
Compound Amounts 

Allowable Typical Applications 

Combination For Payments For Payments Initial 

of at End at Beginning Procedure 

Variables of Period of Period 

n, i, PV,PMT Direct reduc- Lease. Use 
(Enter any tion loan. Annuity due. ITl CLEAR I REG I 
three and Discounted or set FV to zero. 
calculate the note. 
fourth .) Mortgage. 

n ,i, PV, Direct reduc- Lease with None. 
PMT,FV tion loan residual 
(Enter any with value. 
four and balloon Annuity due. 
calculate the payment. 
fifth.) Discounted 

note. 

n, i, PMT, FV Sinking fund . Periodic Use 
(Enter any savings. ITl CLEAR I REG I 
three and Insurance. or set PV to 
calculate the zero. 
fourth .) 

n , i, PV, FV Compound growth. Use 
(Enter any Savings. ITl CLEAR I REG I 
three and or set PMTto 
calculate the zero. 
fourth.) 

The program accommodates payments that are made at the 
beginning or end of compounding periods. Payments made at the 
end of compounding periods (ordinary annuity) are common in 
direct reduction loans and mortgages. Payments made at the 
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beginning of compounding periods (annuity due) are common in 
leasing. For payments at the end of periods, clear flag O. For 
payments at the beginning of periods, set flag O. If the problem 
involves no payments, the status offlag 0 has no effect. 

This program uses the convention that money paid out is entered 
and displayed as a negative number, and that money received is 
entered and displayed as a positive number. 

A financial problem can usually be represented by a cash flow 
diagram. This is a pictorial representation of the timing and 
direction of financial transactions. The cash flow diagram has a 
horizontal time line that is divided into equal increments that 
correspond to the compounding period-months or years, for 
example. Vertical arrows represent exchanges of money, following 
the convention that an upward arrow (positive) represents money 
received and a downward arrow (negative) represents money paid 
out. (The examples that follow are illustrated using cash flow 
diagrams.) 

Money received 

t t t t 

J 

2 3 4 

Money paid out 

Pressing IT] CLEAR I REG I provides a convenient way to set up the 
calculator for a new problem. However, it isn't necessary to press 
IT] CLEAR I REG I between problems. You need to reenter the values of 
only those variables that change from problem to problem. If a 
variable isn't applicable for a new problem, simply enter zero as its 
value. For example, if PMT is used in one problem but not used in 
the next, simply enter zero for the value of PMT in the second 
problem. 
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The basic eq uation used for the financial calculations is 

PMTA 
PV + [1 - (1 + iIlOOr"] + FV(l + i/ l00rn = 0 

i / l00 

where i ,.. 0 and 

{
I for end-of-period payments 

A = 1 + il 100 for beginning-of-period payments. 

The program h as the following characteristics : 

• ! SOLVE I is used to find i. Because this is an iterative function , 
solving for i takes longer than finding other variables. It is 
possible to define problems which cannot be solved by this 
technique. If! SOLVE I can't find a root, Error 4 is displ ayed . 

• When finding any of the variables listed on the left below, 
certain conditions result in an Error 4 display: 

n 

PV 
PMT 

FV 

PMT = -PViI(100 A) 
(PMT A - FV i/ l00) / (PMT A + PV ill 00) ,;;; 0 
i';;;-100 
I SOLVE I can't find a root 
i';;;-100 
n=O 
i=O 
i ,;;; -100 
i';;;-100 

• If a problem has a specified interest rate of 0, the program 
generates an Error 0 display (or Error 4 when solving for 
PMT). 

• Problems with extremely large (greater than 106 ) or extremely 
small (less than 10-6) values for nand i may give invalid 
results: 

• Interest problems with balloon payments of opposite signs to 
the periodic payments may have more than one mathemati­
cally correct answer (or no answer at a ll ). This program may 
find one of the a nswers but h as no way of finding or 
indicating other possibilities . 

Keystrokes 

W!P/RI 

OJ CLEAR ! PRGM I 

Display 

Program mode. 

000-
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Keystrokes Display 

mILB L I~ 001-42,21 ,11 n routine. 

ISTO l l 002- 44 1 Stores n . 

IR/s l 003- 31 

IGSB l l 004- 32 1 Calculates n. 

wlLSTx l 005- 4336 

IRCL I00 006-45,20, 0 

I RCL I5 007- 45 5 

~ 008- 34 

G 009- 30 Calculates 
FV - 100 PMT A li. 

wl LSTx l 010- 4336 

IRCL IG 3 011-45,40, 3 Calculates 
PV + 100 PMT A l i. 

wlx =o l 012- 4320 Tests 
PMT = - PVi/ ( lOOA ). 

IGTO IO 013- 22 0 
G 014- 10 

ICHSI 015- 16 

Wl TESTI4 016-43,30, 4 Tests x :S;; O. 

IGTOIO 017- 22 0 
w[ill] 018- 4312 

I RCL I6 019- 45 6 

w[ill] 020- 4312 

G 021- 10 

ISTOl l 022- 44 1 

WI RTN I 023- 4332 

ml LBL llID 024-42,21 ,12 i routine. 

ISTO l2 025- 44 2 Stores i . 

IR/s l 026- 31 
[] 027- 48 
2 028- 2 

IENTER I 029- 36 

IEEX I 030- 26 
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Keystrokes Display 

ICHS I 031- 16 

3 032- 3 

W[ill1 033-43. 5. Clears flag 1 for I SOLVE I 
subroutine. 

[Ill SOLVE 13 034-42.10. 3 
IGTO l4 035- 22 4 

IGTO IO 036- 22 0 

[Ill LBL 14 037-42.21. 4 

IEEX I 038- 26 

2 039- 2 

0 040- 20 Calcula tes i. 

ISTO I2 041- 44 2 

WIRTN I 042- 4332 

[Ill LB L![I] 043-42.21 .13 PVroutine. 

ISTO I3 044- 44 3 Stores PY. 

IRls l 045- 31 
IGSB I1 046- 32 1 Calculates PV. 

IGSB I2 047- 32 2 
ICHS I 048- 16 
ISTO l3 049- 44 3 

WI RTN I 050- 4332 
[]J I LBL I [QJ 051-42.21.14 PMTroutine. 
ISTO I4 052- 44 4 Stores PMT. 
IRls l 053- 31 
1 054- Calcul a tes PMT. 
ISTO I4 055- 44 4 
IGSB I1 056- 32 
I RCL! 3 057- 45 3 
IGSB I2 058- 32 2 

~ 059- 34 

G 060- 10 
ICHS I 061- 16 
ISTO I4 062- 44 4 
WI RTN I 063- 4332 
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Keystrokes Display 

[Ill LBL 1m 064-42.21.15 FVroutine. 

ISTO I5 065- 44 5 Stores FV. 

IRl s l 066- 31 

IGSB I1 067- 32 Calcula tes FV. 

IRCL IG 3 068-45,40. 3 

IRCL IG] 7 069-45.10. 7 

ICHS I 070- 16 

ISTO I5 071- 44 5 

[]] I RTN I 072- 4332 

[Il ILBL I1 073-42.21 . 
[]][@ 1 074-43. 4 . Sets fl ag 1 for 

subroutine 3. 

1 075-
IRCLI2 076- 45 2 

[]]oo 077- 4314 Calcula tes il l00. 

[Il l LBL 13 078-42.21 . 3 ISOLVE I 
subroutine. 

ISTO la 079- 44 8 

1 080-

ISTO lo 081 - 44 0 

G 082- 40 
[]]I TESTI4 083-43.30. 4 Tests i ,:;; 100. 

IGTOIO 084- 22 0 

ISTOl6 085- 44 6 

[]][TI] o 086-43. 6 . 0 Tests for end·of-period 
payments . 

ISTO lo 087- 44 0 

I RCLI1 088- 45 

ICHSI 089- 16 

0 090- 14 Calculates (1 + i/ l00rn
. 

ISTO I7 091- 44 7 
1 092-
[ili] 093- 34 

G 094- 30 Calculates 
1 - (1 + iIlOOr". 
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w lx=o l 

IGTOIO 

IRCL I0 0 

IRCL I4 

IRCL IG 8 

o 
w[fl] 1 

WIRTNI 

IRCL IG 3 

[Il l LBL 12 
I RCL l s 

IRCLI0 7 

G 
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Display 

095- 4320 Tests i = 0 or n = O. 

096- 22 0 

097-45,20, 0 

098- 45 4 

099-45,10, 8 

100- 20 

101-43, 6, 1 Tests flag 1 set. 

102- 4332 

103-45,40, 3 I SOLVE I subroutine 
continues . 

104-42,21, 2 

105- 45 S 

106-45,20, 7 Calculates 
FV(l + i / 100r n . 

107- 40 

wi RTN I 108- 43 32 I SOLVE I subroutine ends. 

La bels used: A, B, C, D, E , 0,1,2,3, a nd 4. 

33 

Registers used: Ro (A), RI (n), R2 (i), R3 (PV), R4 (PMT), R5 (FV), 
Rt; , R7 , and Rs· 

To use the program: 

1. Press 8 [Il l DIM I [ill] to reserve Ro through Rs. 

2. Press [Ill USER I to activate User mode. 

3. If necessary, press CD CLEAR I REG I to clear a ll of the financial 
va riables. You don't need to clear the registers if you intend 
to specify all ofth e values. 

4. Set flag 0 according to how payments are to be figured: 

• Press wiIEJ 0 for payments at the end of the period. 

• Press W [§II 0 for payments at the beginning of the 
period. 

5. Enter the known values of the financia l variables: 

• To enter n , key in the value and press 0 . 
• To enter i , key in the value and press []]. 
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• To enter PV, key in the value and press [Il. 

• To enter PMT, key in the value and press [QJ. 

• To enter FV, key in the value and press W. 
6. Calculate the unknown value: 

• To calcula te n, press 0 1 RIS I. 

• To calculate i, press []]I RIS I. 

• To calculate PV, press [Il l RIS I. 

• To calculate PMT, press [QJI RIS I. 

• To calculate FV, press wi RIS I. 
7. To solve another problem, repeat steps 3 through 6 as 

needed. Be sure that any variable not to be used in the 
problem has a value of zero . 

Example: You place $155 in a savings account paying 5"1<1% 
compounded monthly. What sum of money can you withdraw at 
the end of9 years? 

? 
FV 

r--I---I-----l- i ~ 5,:5 ~ 
J 2 3 106 1 07 108 

PV 
-155 

Keystrokes 

mlp/RI 

[IJ CLEAR I REG I 

[IJ[£02 
[IJlusER I 

mCITl o 
9 1ENTER I1200 

Display 

Run mode. 

Clears financial 
variables. 

Activates User mode. 

Ordinary a nnuity . 

108.00 Enters n = 9 X 12. 



Section 1: Using 1 SOLVE 1 Effectively 35 

Keyst r okes 

5.75 1 ENTER 112 G[[] 
155 1cHS I(9 

D is play 

0 .48 

-155 .00 

259 .74 

Enters i = 5.75/ 12. 

Enters PV = - 155 (mon ey 
paid out ). 

Calculates FV. 

If you desire a sum of $275, wh at would be th e req uired interest 
rate? 

Keystrokes 

275 W 

[[]I Rl s l 

12 0 

Dis play 

275 .00 

0 .53 

6.39 

Enters FV = 275. 

Calculates i. 

Calculates a nnual interest 
rate. 

Example: You receive $30,000 from the bank as a 30-year, 13% 
mortgage. Wha t mon thly payment must you make to th e bank to 
fully a mortize th e mortgage? 

30,000 
PV 

. 13 
/= -

PMT 
? 

K eystr o k es Dis play 

CD CLEAR 1 REG 1 

30 1 ENTER 112 0~ 360.00 

13 1 ENTER 112 G[[] 1.08 

12 

30000 (9 30,000.00 

@]I Rl s l -331 .86 

l 358 l 359 l 360 ~ 

Clears financia l variables . 

Enters n = 30 X 12. 

E nters i = 13/ 12. 

Enters PV = 30,000. 

Calculates PMT 
(money paid out). 
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Example: You offer a loan of $3,600 that is to be repaid in 36 
monthly payments of $100 with an annual interest rate of 10%. 
What balloon payment amount, to be paid coincident with the 36th 
payment, is required to pay off the loan? 

PV 
-3600 

100 
PMT 

. 10 ,=-
12 

Keystrokes Display 

ill CLEAR I REG I 
36 ~ 36 .00 

lo l ENTER I12 GCID 0 .83 

36001cHSI© -3600.00 

100 [QJ 100.00 

[Ill RIS I 675 .27 

? 
FV 

t t t I 
34 35 36 

Clears financial variables. 

Enters n = 36. 

Enters i = 10/ 12. 

Enters PV = -3600 
(money paid out). 

EntersPMT= 100 
(money received). 

Calculates FV. 

The final payment is $675.27 + $100.00 = $775.27 because the final 
payment and balloon payment are due at end of the last period. 

Example: You're collecting a $50,000 loan at 14% annual interest 
over 360 months. Find the remaining balance after the 24th 
payment and the interest accrued between the 12th and 24th 
payments. 

You can use the program to calcul ate accumulated interest and the 
remaining balance for loans. The accumulated interest is equal to 
the total payments made during that time less the principal 
reduction during that time. The principal reduction is the 
difference between the remaining balances at the start and end of 
the period. 
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First, calculate the payment on the loan. 

Keystrokes Display 

ITl CLEAR I REG I 
3600 360.00 

141ENTERI12GlID 1 .17 

50000 I CHS I~ -50.000 .00 

[Q]I RIS I 592.44 

Clears financial variables. 

Enter n = 360. 

Enters i =14112. 

Enters PV = -50,000. 

Calculates P MT. 

Now calculate the remaining balance at month 24. 

Keystrokes 

240 

[IJIRls l 

Display 

24.00 

49.749.56 

Enters n = 24. 

Calculates FV at 
month 24. 

Store this remaInIng balance, then calculate the remaInIng 
balance at month 12 and the principal reduction between 
payments 12 and 24. 

Keystrokes 

I STO IITl 
120 

[IJIRIS! 

Display 

49.749.56 
12.00 

49.883.48 

49.749 .56 

133 .92 

Enters n = 12. 

Calculates FV at 
month 12. 

Recalls FV at month 24. 

Calculates principal 
reduction. 

The accrued interest is the value of 12 payments less the principal 
reduction. 

Keystrokes 

[RCL!4 

120 

Display 

592 .44 

7.109 .23 

6.975.31 

Recalls PMT. 

Calculates value of 
payments. 

Calculates accrued 
interest. 
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Example: A leasing firm is considering the purchase of a 
minicomputer for $63,000 and wants to achieve a 13% a nnual yield 
by leasing the computer for a 5-year period. At the end of the lease 
the firm expects to sell t he computer for at least $10,000. What 
monthly payment should the firm ch arge in order to achieve a 13% 
yield? (Because the lease paymen ts a re due at the beginning of 
each month , be sure to set fl ag 0 to specify beginning-of-period 
payments.) 

PV 
- 63,000 

Keystrokes 

ill CLEAR 1 REG 1 

5 1ENTER I 12 0~ 

13 1 ENTER 11 2 GJOO 
63000 1 CHS I~ 

1 0000 [[] 

@]I Rls l 

? 
PMT 

2 3 
. 13 ,=-

12 

Display 

60.00 

1.08 

-63,000 .00 

10,000.00 

1 ,300.16 

t t 
58 59 

t 

10,000 
FV 

I 
60 

Clears financial 
variables. 

Specifies beginning-of­
period payments. 

Enters n = 5 X 12. 

Enters i = 13/ 12. 

Enters PV = -63,000. 

E nters FV = 10,000. 
Calcul a tes PMT. 

If the price of the com puter increases to $70,000, what should the 
payments be? 

Keystrokes 

70000 1 CHS I~ 

@]IRls l 

Display 

-70,000 .00 

1.457.73 

Enters PV = -70,000. 

Calcul ates PMT. 
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If the payments were increased to $1,500, what would the yield be? 

Keystrokes Display 

1500 [Q] 1,500.00 Enters PMT = 1500. 

001 RIS 1 1 .18 Calculates i (monthly). 

14.12 

14.12 

Calculates annual yield. 

Deactivates User mode. 

Discounted Cash Flow Analysis 

This program performs two kinds of discounted cash flow analysis: 
net present value (NPV) and internal rate of return (lRR). It 
calculates NPV or IRR for up to 24 groups of cash flows. 

The cash flows are stored in the two-column matrix C. Matrix C 
has one row for each group of cash flows . In each row of C, the first 
element is the cash flow amount; the second element is the number 
of consecutive cash flows having that amount (the number of flows 
in that group.) The first element of C must be the amount of the 
initial investment. The cash flows must occur at equal intervals; if 
no cash flow occurs for severa l time periods, enter 0 for the cash 
flow amount and the number of zero cash flows in that group. 

After all the cash flows have been stored in matrix C, you can enter 
an assumed interest rate and calculate the net present value (NPV) 
of the investment. Alternatively, you can calculate the internal 
rate of return (lRR). The IRR is the interest rate that makes the 
present value of a series of cash flows equal to the initial 
investment. It's the interest rate that makes the NPV equal zero. 
IRR is also called the yield or discounted rate of return. 

The fundamental equation for NPV is 

k -~n, 
"\' ( 1 - (1 + i ll 00)-nj ) L. . L.J CF (1 + i l l00) , <} 

j = 1} i l l00 

k NPV= 

LCFjnj 
j = l 

where L n, is defined as -l. 
/< 1 

fori > -100 
i#O 

for i = 0 
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The program uses the convention that money received is entered 
and displayed as a positive number, and that money paid out is 
entered and displayed as a negative number. 

The program has the following characteristics: 

• The cash flow sequence (including the initial investment) 
must contain both a positive flow and a negative flow. That is , 
there must be at least one sign change. 

• Cash flows with multiple sign changes may have more than 
one solution. This program may find one solution, but it has 
no way of indicating other possibilities. 

• The IRR calculation may take several minutes (5 or more) 
depending of the number of cash flow entries. 

• The program displays Error 4 if it is unable to find a solution 
for IRR or if the yield i.;; -100% in the NPV calculation. 

Keystrokes Display 

wlP/RI Progra m mode. 

[IJ CLEAR 1 PRGM I 000-

[IJ 1 LBL I [6] 001-42,21,11 NPV routine. 

IEEX I 002- 26 
2 003- 2 
G 004- 10 Calculates IRRIlOO. 

IGSBI2 005- 32 2 
IRlsl 006- 31 
[IJ I LBL I[[] 007-42,21,12 IRR routine. 

1 008- 1 
I ENTER I 009- 36 
IEEXI 010- 26 
ICHsl 011- 16 
3 012- 3 
[IJI SOLVE 12 013-42,10, 2 
IGTOll 014- 22 1 
IGTO IO 015- 22 0 Branch for no IRR 

solution. 

[IJILBLil 016-42,21, 1 
IEExl 017- 26 
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Keystrokes Display 

2 018- 2 

0 019- 20 
IRls l 020- 31 
ITlI LBL 12 021-42.21 . 2 Calculates NPV. 

w[ITJo 022-43. 5. 0 
ISTO l2 023- 44 2 
1 024-
ISTOl4 025- 44 4 

G 026- 40 Calculates 1 + IRRI 100. 

Wl TEST I4 027-43.30. 4 Tests IRR ,;;; -100. 

IGTO IO 028- 22 0 Branch for IRR ,;;; -100. 

ISTO l3 029- 44 3 
0 030- 0 
ISTOl5 031- 44 5 
ITliMATRIX l 1 032-42.16. 1 
ITlI LBLi 3 033-42.21 . 3 
w[TI]o 034-43. 6. 0 Tests if a ll flows used. 

IGTO l7 035- 22 7 Branch for a ll flows used. 

IGSB I6 036- 32 6 
I RcLi2 037- 45 2 
wlx=ol 038- 4320 Tests IRR = O. 

IGTOl4 039- 22 4 Branch for IRR = O. 

1 040-
G 041- 40 
IGSB I6 042- 32 6 
ICHSI 043- 16 
[Z] 044- 14 
ISTO l4 045- 44 4 
1 046-
~ 047- 34 
G 048- 30 
IRCL IG 2 049-45.10. 2 
IRCL I03 050-45.20. 3 
IGTO l5 051- 22 5 
ITlI LBL I4 052-42.21. 4 
~ 053- 34 
IGSB I6 054- 32 6 
ITlI LBL 15 055-42.21. 5 
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Keystrokes 

o 
ISTO IG 5 
IRCLI4 
ISTO I0 3 
IGTO l3 
[Ill LBL 16 
[Il l USER II RcLl [IJ 
[Il l USER I 
[]]I RTN I 
[]][gJO 
[]]I RTN I 
[Ill LBL 17 
IRCLI5 
[]] IRTN I 

Display 

056- 20 
057-44.40, 5 
058- 45 4 
059-44,20, 3 
060- 22 3 
061-42,21, 6 Recalls cash flow element. 
062u 4513 

063- 4332 
064-43, 4, 0 Sets flag 0 iflast element. 
065- 4332 
066-42,21, 7 
067- 45 5 Recalls NPV. 
068- 4332 

Labels used: A, B, and 0 through 7. 

Registers used: Ro through R5. 

Matrix used: C. 

To use the discounted cash flow analysis program: 

1. Press 5 [Il l DIM ICillJ to a llocate registers Ro through R5. 

2. Press [Ill USER I to activate User mode (unless it's a lready 
active). 

3. Key in the number of cash flo w groups, then press I ENTER 12 
[Il l DIM I[IJ to dimension matrix C. 

4. Press [Il l MATRIX 11 to set the row and column numbers to 1. 

5. For each cash flow group: 
a. Key in the amount and press I STO I[IJ , then 
b. Key in the n urn ber of occurrences and press I STO I [IJ . 

6. Calculate the desired parameter: 
• To calculate IRR , press [ID. 
• To calculate NPV, enter periodic interest rate i in percent 

and press 0 . Repeat for as many interest rates a s 
needed. 

7. Repeat steps 3 through 6 for other sets of cash flows. 
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Example: An investor pays $80,000 for a duplex that he intends 
to sell after 7 years. He must spend some money the first year for 
repairs. At the end of the seventh year the duplex is sold for 
$91,000. Will he achieve a desired 9% after-tax yield with the 
following after-tax cash flows? 

91,000 

1 7 

-600 

-80,000 

Keystrokes Display 

wlP/RI Run mode. 

ITl[@2 
5 ITlI DIM I[]JI) 5.00 Reserve registers Ro 

through R5. 

61ENTER I2 2 
ITlIDIMI~ 2 .00 
ITlI MATRIX 11 2 .00 
ITlI USER I 2.00 
80000 I CHS II STO I~ -80,000.00 Initial investment. 

1 IsTO I~ 1.00 
600 I CHS II STO I~ -600.00 
1 ISTOI~ 1.00 
6500 1sTO I[IJ 6,500 .00 
1 I sTOI~ 1.00 
80001sTO I~ 8,000.00 
2IsTOI~ 2.00 
75001sTO I~ 7 ,500.00 
2IsTO I~ 2.00 
91000 1 sTO I~ 91,000.00 
1 ISTO I~ 1 .00 
9 9 Enters assumed yield. 

0 -4,108 .06 NPV. 
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Since the NPV is negative, the investment does not achieve the 
desired 9% yield. Calculate the IRR. 

Keystrokes 

lID 
Display 

8.04 IRR (after about 8 
minutes). 

The IRR is less than the desired 9% yield. 

Example: An inves tment of $620,000,000 is expected to have a n 
annual income stream for the next 15 years as shown in the 
diagram. 

100,000,000 

~ ... t j 1 2 10 

t t 
11 

-620,000,000 

What is the expected rate of return? 

Keystrokes 

3 1ENTER I2 

OJ~~ 
OJI MATRIX 11 
620000000 icHS I 
I STO I~ 
1 I sTO I~ 
100000000 1 STO I~ 
10 1 sTO I~ 
5000000 1 sTO I~ 
5 I sTO I~ 

Display 

2 
2.00 
2.00 

-620,000,000 
-620,000,000.0 

1.00 
100,000,000.0 
10.00 
5,000,000.00 
5.00 

5,000,000 

t f t 
12 13 14 

lID 10.06 IRR . 

OJ[lliJ4 10.0649 

t 
15 

OJI USER 1 10.0649 Deactivates User mode. 



Section 2 

WorkingWith[E] 

The HP-15C gives you the ability to perform numerical integration 
using 0 . This section shows you how to use 0 effectively and 
describes techniques that enable you to handle difficult integrals. 

Numerical Integration Using [ill 
A calculator using numerical integration can almost never 
calculate an integral precisely. But the 0 function asks you in a 
convenient way to specify how much error is tolerable. It asks you 
to set the display format according to how many figures are 
accurate in the integrand (x). In effect, you specify the width of a 
ribbon drawn around the graph of (x). The integral estimated by 
o corresponds to the area under some unspecified graph lying 
entirely within the ribhon. Of course, this estimate could vary by as 
much as the area of the ribbon, so 0 estimates this area too. If I is 
the desired integral, then 

1 = ( area urlder a ~raph ) ± ( '/2 area of ) 
drawn m the nbbon the ribbon 

The HP-15C places the first area estimate in the X-register and the 
second-the uncertainty-in the Y-register. 

f(x) 

f(x) 

... 
--+-----~----------------~------x 

a b 

45 
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For example, ((x) might represent a physical effect whose 
magnitude can be determined only to within ± 0.005. Then the 
value calculated as ((x) has an uncertainty of 0.005. A display 
setting of ffi8]2 tells the calculator that decimal digits beyond the 
second can't matter. The calculator need not waste time estimating 
the integral with unwarranted precision. Instead, the calculator 
can more quickly give you a fair idea of the range of values within 
which the integral must lie. 

The Hp·15C doesn't prevent you from declaring that ((x) is far 
more accurate than it really is. You can specify the display setting 
after a careful error analysis, or you can just offer a guess. You 
may leave the display set to 1 5CI14 or ffi8]4 without much further 
thought. You will get an estimate of the integral and its 
uncertainty, enabling you to interpret the result more intelligently 
than if you got the answer with no idea of its accuracy or 
inaccuracy. 

The [flJ algorithm uses a Romberg method for accumulating the 
value of the integral. Several refinements make it more effective. 

Instead of using uniformly spaced samples, which can induce a 
kind of resonance or aliasing that produces misleading results 
when the integrand is periodic, [flJ uses samples that are spaced 
nonuniformly. Their spacing can be demonstrated by substituting, 
say, 

3 1 
x = -u - -u3 

2 2 

into 
1 = f1 ((x)dx = f1 ((~u - 2.u3 ) ~ (1 - u2) du 

-1 -1 2 2 2 

and sampling u uniformly. Besides suppressing resonance, the 
substitution has two more benefits. First, no sample need be drawn 
from either end of the interval of integration (except when the 
interval is so narrow that no other possibilities are available). As a 
result, an integral like 
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(3 . 
), SIn X dx 

o x 

won't be interrupted by division by zero at an endpoint. Second, CZD 
can integrate functions that behave like JiX=(iT, whose slope is 
infinite at an endpoint. Such functions are encountered when 
calculating the area enclosed by a smooth, closed curve. 

Another refinemen t is that CZD uses extended precision, 13 
significant digits , to accumulate the internal sums. This allows 
thousands of samples to be accumulated, if necessary, without 
losing to roundoff any more information than is lost within your 
function subroutine. 

Accuracy of the Function to be Integrated 
The accuracy of an integral calcu lated using CZD depends on the 
accuracy of the function calculated by your subroutine. This 
accuracy, which you specify using the display format, depends 
primarily on th ree considerations: 

• The accuracy of empirical constants in the function. 

• The degree to which the fun ction may accurately describe a 
physical situation. 

• The extent of round·off error in the internal calculations of the 
calculator. 

Functions Related to Physical Situations 

Functions like cos(40 - sin 0) are pure mathematical functions. In 
this context, this means that the functions do not contain any 
empirical constants, and neither the variables nor the limits of 
integration represent actual physical quantities. For such 
functions, you can specify as many digits as you want in the 
display format (up to nine) to achieve the desired degree of 
accuracy in the integral.* All you need to consider is the trade·off 
between the accuracy and calculation time. 

* Provided that (x ) is still calculated accurately, despite round-off error, to the number of 
digits shown in the display. 
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There are additional considerations, however, when you're 
integrating functions relating to an actual physical situation. 
Basically, with such functions you should ask yourself whether the 
accuracy you would like in the integral is justified by the accuracy 
in the function. For example, if the function contains empirical 
constants that are specified to only, say, three significant digits , it 
might not make sense to specify more than three digits in the 
display format. 

Another important consideration-and one which is more subtle 
and therefore more easily overlooked-is that nearly every 
function relating to a physical situation is inherently inaccurate to 
a certain degree, because it is only a mathematical model of a n 
actual process or event. A mathematical model is itself an approxi­
mation that ignores the effects of known or unknown factors which 
are insignificant to the degree that the results are still useful. 

An example of a mathematical model is the normal distribution 
function 

which has been found to be useful in deriving information 
concerning physical measurements on living organisms, product 
dimensions, average temperatures, etc. Such mathematical descrip­
tions typically are either derived from theoretical considerations or 
inferred from experimental data. To be practially useful, they are 
constructed with certain assumptions, such as ignoring the effects 
of relatively insignificant factors . For example, the accuracy of 
results obtained using the normal distribution function as a model 
of the distribution of certain quantities depends on the size of the 
population being studied. And the accuracy of results obtained 
from the equation s = So - 1/ 2gt2, which gives the height of a falling 
body, ignores the variation with altitude of g, the acceleration of 
gravity. 

Thus, mathematical descriptions of the physical world can provide 
results of only limited accuracy. If you calculated an integral with 
an apparent accuracy beyond that with which the model describes 
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the actual behavior of the process or event, you would not be 
justified in using the calcul ated value to the fu ll apparent accuracy. 

Round-Off Error in Internal Calculations 

With any computational device-including the HP-15C-calcu­
lated results must be "rounded off' to a finite number of digits (10 
digits in the HP-15C). Because of this round-off error, calculated 
results-especially results of evaluating a function that contains 
several mathematical operations-may not be accurate to all 10 
digits th at can be displayed . Note that round-off error affects the 
evaluation of any mathematical expression, not just the evaluation 
of a function to be integrated using 0. (Refer to the appendix for 
additional information.) 

If ((x) is a function relating to a physical situation , its inaccuracy 
due to round-off typically is insignificant compared to the 
inaccuracy due to empirical constants, etc. If ((x) is what we have 
called a pure mathematical function, its accuracy is limited only by 
round-off error. Generally, it would require a complicated an alysis 
to determine precisely how many digits of a calculated function 
might be affected by round-off. In practice, its effects are typically 
(and adeq uately) determined through experience rather than 
a nalysis. 

In certain situations, round-off error can cause peculiar results, 
particularly if you should compare the results of calculating 
integrals that are equivalent mathematically but differ by a 
transformation of variables. However, you are unlikely to 
encounter such situations in typical applications. 

Shortening Calculation Time 
The time required for 0 to calculate an integral depends on how 
soon a certain density of sample points is acl.ieved in the region 
where the fun ction is interesting. The calculation of the integral of 
any function will be prolonged if the interval of integration 
includes mostly regions where the function is not interesting. 
Fortunately, if you must calculate such an integral, you can modify 
the problem so that the calcu lation time is reduced. Two such 
techniques are subdividing the interval of integration and 
transformation of variables. 
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Subdividing the Interval of Integration 

In regions where the slope of ((x) is varying appreciably, a high 
density of sample points is necessary to provide an approximation 
that changes insignificantly from one iteration to the next. 
However, in regions where the slope of the function stays nearly 
constant, a high density of sa mple points is not necessary. This is 
because evaluating the function at additional sample points would 
not yield much new information about the function , so it would not 
dramatically affect the disparity between successive approxima­
tions. Consequently, in such regions an approximation of 
comparable accuracy could be achieved with substantially fewer 
sample points: so much of the time spent eva luating the function in 
these regions is wasted. When integrating such functions, you ca n 
save time by using the following procedure: 

1. Divide the interval of integration into subintervals over 
which the function is interesting and subintervals over 
which the function is uninteresting. 

2. Over the subintervals where the function is interesting, 
calculate the integral in the display format corresponding to 
the accuracy you would like overall . 

3. Over the subintervals where the function either is not 
interesting or contributes negligibly to the integral, calculate 
the integral with less accuracy, that is, in a display format 
specifying fewer digits. 

4. To get the integral over the entire interval of integration, add 
together the approximations and their uncertainties from 
the integrals calculated over each subinterval. You can do 
this easily using the I 2 + I key. 

Before subdividing the integration, check whether the calculator 
underflows when evaluating the function around the upper (or 
lower) limit of integration.* Since there is no reason to evaluate the 
function at values of x for which the calculator underflows, in some 
cases the upper limit of integration can be reduced , saving 
considerable calculation time. 

* When th e ca lculation of any quantity would res ul t in a num ber less than 10-99, the 
result is repl aced by zero. This co ndition is known as underflow. 
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Remember that once you have keyed in the subroutine that 
evaluates ((x), you can calculate ((x) for any value of x by keying 
that value into the X-register and pressing I ENTER II ENTER II ENTER I 
I GSB I followed by the label of the subroutine. 

If the calculator underflows at the upper limit of integration, try 
smaller numbers until you get closer to the point where the 
calculator no longer underflows. 

For example, consider the approximation of 

("'xe-Xdx JO . 

Key in a subroutine that evaluates the function ((x) = xe-x. 

Keystrokes 

wl P/ RI 

OJ CLEA R I PRGM I 

OJILBL ll 
ICHS I 

~ 
o 
WIRTN I 

Display 

Program mode. 

000- Clears program memory. 

001-42,21, 1 
002- 16 
003- 12 
004- 2 0 
005 - 4 3 32 

Set the calculator to Run mode and set the display format to Isc113. 
They try several values of x to find where the calculator underflows 
for your function. 

Keystrokes Display 

WIP/RI Run mode. 
OJiscI 13 Sets format to ~3. 
I EEXl 3 03 Keys 1000 into X·register. 

I ENTER II ENTER II ENTER I 1 .000 03 Fills the stack with x . 

IGSBll 0 .000 00 Calculator underflows at 
x = 1000. 

3001 ENTER I 3 .000 0 2 Tries a smaller value of x. 

I ENTER II ENTER I 3 .000 02 
IGSBll 0 .000 0 0 Calculator still 

underflows. 
200iENTER I 2.000 02 Try a smaller value of x. 
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Keystrokes 

I ENTER II ENTER I 
IGsa l1 

225 1ENTER I 
I ENTER II ENTER I 
IGsa l1 

Dis play 

2.000 02 
2 .768 - 8 5 

2 .250 02 
2.250 02 
4 .324 -96 

Calculator doesn't 
underflow at x = 200; try a 
number between 200 and 
250. 

Calculator is close to 
underflow. 

At this point, you can use I SOLVE Ito pinpoint the smallest value of x 
at which the calculator underfl ows. 

Keystrokes Dis play 

(K!J 2 .250 02 Roll down stack until the 
last value tried is in the x-
and Y-registers. 

CDI SOLVE 11 2 .280 02 The minimum value of x 
at which the calculator 
underflows is about 228. 

You've now determined that you need integrate only from 0 to 228. 
Since the integrand is interesting only for values of x less than 10, 
divide the in terval of integration there. The problem has now 
become: 

100 1228 110 J228 
xe-Xdx = xe-Xdx = xe-Xdx + xe-Xdx. 

o 0 0 10 

Keystrokes Dis play 

7 CD I DIM ICillJ 7 .000 00 Allocates statistical 
storage registers. 

CD CLEAR [E) 0 .000 00 Clears statistical storage 
registers. 

o I ENTER I 0 .000 00 Keys in lower limit of 
integration over first 
subinterval. 

10 10 Keys in upper limit of 
integration over first 
subinterval. 
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Keystrokes Display 

[IJCZD 1 9.995 -01 Integral over (0, 10) 
calculated in ISCI13. 

CEl 1.000 00 Sum approximation and 
its uncertainty in registers 
R3 and R5. 

~ 1.841 -04 Uncertainty of 
approximation. 

[!jJJIR+ I 1.000 01 Roll down stack until 
upper limit offirst 
integral appears in X· 
register. 

228 228 Keys upper limit of second 
integral into X-register. 
Upper limit offirst 
integral is lifted into Y-
register, becoming lower 
limit of second integral. 

[IJISCIlo 2. 02 Specifies I SCllo display 
format for a quick 
calculation over (10,228). 
If the uncertainty ofthe 
approximation turns out 
not to be accurate enough, 
you can repeat the 
approximation in a 
display format specifying 
more digits. 

[IJCZD 1 5. -04 Integral over (10, 228) 
calculated in I SCllo. 

[IJlscl13 5.328 -04 Changes display format 
back to I SC113. 

~ 7.568 -05 Checks uncertainty of 
approximation. Since it is 
less than the uncertainty 
ofthe approximation over 
the first subinterval, 
I SCI I 0 yielded a n 
approximation of 
sufficient accuracy. 
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Keystrokes Display 

~ 5 .328 -04 Returns approximation 
and its uncertainty to the 
x- a nd V-registers, 
respectively, before 
summing them in 
statistical storage 
registers. 

I ~ + I 2 .000 00 Sums approximation and 
its uncertainty. 

IRCLII ~ + I 1 .000 00 Integral over total 
interval (0, 228) (recalled 
from R3). 

~ 2 .598 -04 Uncertainty of integral 
(from R5). 

Transformation of Variables 

In many problems where the function cha nges very slowly over 
most of a very wide interval of integration, a suitable transfor­
mation of variables may decrease the time required to calculate the 
in tegral. 

For example, consider again the integral 

Let 

Then 

and 

Substituting, 

x = -31n U 

du 
dx = -3-. 

u 

J, OOxe'Xdx = J :o'~(-3 In U)(U3)(_3dU ) 
o e U 

= 1
1

0 
9u21n u duo 

Key in a subroutine that evaluates the function f(u) = 9u21n U. 



Keystrokes 

Wl P/ RI 

ITJI LBL 13 
w[ill] 
[ili] 
w[ZJ 
o 
9 

o 
WI RTN I 
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Display 

000- Program mode. 

001-42.21. 3 
002- 43 12 
003- 34 
004- 43 11 
005- 20 
006- 9 
007- 20 
008- 4332 

Key in th e limits of integration , then press ITJem 3 to calculate the 
integral. 

Keystrokes Display 

WI P/R I Run mode. 

1 I ENTER I 1 .000 00 Keys in lower limit of 
integration. 

0 0 Keys in upper limit of 
integration. 

ITJem 3 1.000 00 Approximation to 
equivalent integral. 

[ili] 3 .020 -04 Uncertainty of 
approximation. 

The approximation agrees with the value calculated in the 
previous problem for the same integral. 

Evaluating Difficult Integrals 
Certain conditions can prolong the time required to evaluate an 
integral or can ca use inaccurate results. As discussed in the 
HP-15C Owner's Handbook, these conditions are related to the 
nature of the in tegrand over the interva l of integration. 

One class of integrals that a re difficult to calculate is improper 
integra ls. An improper integral is one that involves 00 in at least 
one of the fo llowing ways : 
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• One or both limits of integration are ±oo, such as r: e-

u2 
du = Vrr. 

• The integrand tends to ±oo someplace III the range of 
integration, such as 

• The integrand oscillates infinitely rapidly somewhere in the 
range of integration, such as 

f01 cos (In u) du = 112. 

Equally troublesome are nearly improper integrals, which are 
characterized by 

• The integrand or its first derivative changes wildly within a 
relatively narrow subinterval of the range of integration, or 
oscillates freq uently across that range. 

The HP-15C attempts to deal with certain of the second type of 
improper integral by usually not sampling the integrand at the 
limits of integration. 

Because improper and nearly improper integrals are not 
uncommon in practice, you should recognize them and take 
measures to evaluate them accurately. The following examples 
illustrate techniques that are helpful. 

Consider the integrand 

f 
- J -21n coS(x2) 

(x) - 2 . 
X 

This function loses its accuracy when x becomes small. This is 
caused by rounding cos(x2) to 1, which drops information about 
how small x is . But by using u = cos(x2), you can evaluate the 
integrand as 

f(X) ={~ 
cos-1 U 

ifu = 1 

if u ~ 1. 
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Although the branch for u = 1 adds four steps to your subroutine, 
integration near x = 0 becomes more accurate. 

As a second example, consider the integral 

(l(JX 1) J, --- -- dx o x - 1 In x . 

The derivative ofthe integrand approaches 00 as x approaches 0, as 
shown in the illustration below. By substituting x = u2, the 
function becomes more well behaved, as shown in the second 
illustration. This integral is easily evaluated: 

(1 (2U2 u ) J I ------ - -- du 
o (u + l)( u - 1) In u . 

Don't replace (u + l)(u - 1) by (u2 - 1) beca use as u approaches I, 
the second expression loses to roundoff ha lf of its significant digits 
and introduces to the integrand's graph a spike near u = 1. 

0.1 
0.1 u 

(u + 1 )( u - 1 ) I n( u) 

Ol+-~------~--X '~-------~u 
o . 

As another example, consider a function whose graph has a long 
tail that stretches out many, many times as far as the main " body" 
(where the graph is interesting)-a function like 

.2 
((x) = e-' or g(x) = x 2 + 10-10' 
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Thin tails, like that of ((x) , can be truncated without greatly 
degrading the accuracy or speed of integration. But g(x) has too 
wide a tail to ignore when calculating 

ittg(X) d X 

if t is large. 

For such functions, a substitution like x = a + b tan u works well, 
where a lies within the graph's m ain " body" a nd b is roughly its 
width . Doing this for ((x) from a bove with a = 0 a nd b = 1 gives 

( t (tan-It 
J 0 ((x) dx = J 0 e -tan2u(1 + tan2u )du , 

which is calculated rea dily even with t as large as 1010. Using the 
same substitution with g( x), values near a = 0 and b = 10-5 provide 
good results. 

This example involves subdividing the interval of integration . 
Although a function may have features that look extreme over the 
entire interval of integration , over portions of that interval the 
function may look more well-behaved. Subdividing the interval of 
integration works best when combined with appropriate substitu­
tions. Consider the integral 

foOO dxl (1 + x 64 ) = fo1 d x l (1 + X64 ) + f
1

°O dx l (1 + X64 ) 

= fo1 dxl (1 + X64 ) + f o1 u62du I ( u64 + 1) 

= f o\1 + x 62)dx l (1 + x 64 ) 

= 1 + f o\x62 - x 64 )dx l (1 + x64) 

= 1 + 1/8 f o\1 - uJ 14)u55/8 du l (1 + u8). 

These steps use the substitutions x = 11 u and x = Ul / 8 and some 
a lgebraic manipulation. Although the origina l in tegral is 
improper, the last integra l is easily handled by CZiJ . In fact, by 
separating the constant term from the integral, you obtain (using 
I SC1 18) a n a nswer with 13 significant digits: 
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1.000401708155 ± 1.2 X 10-12. 

A final example drawn from real life involves the electrosta tic field 
about an ellipsoidal probe with principa l semiaxes a, b, and c: 

V = [ " dx 

o (a2 + x)V( a2 + x)(b2 + x)(c2 + x) 

fora= 100, b =2, and c= 1.* 

Transform this improper integral to a proper one by substituting 
x = (a2 - c2)/ (1 - u2) - a2: 

where 

V = p J1 J(1 - u2)/ (u2 + q) du 
r 

p = 2/ (( a2 - c2JJ a2 - b2 ) = 2.00060018 X 10-6 

q = (b2 - 2 )/ ( a2 - b2) = 3.001200480 X 10-3 

r = c/ a = 0.01 . 

However, this integral is nearly improper because q a nd r are both 
so nearly zero. But by using an integral in closed form that 
sufficiently resembles the troublesome part of V, the difficulty can 
be avoided. Try 

J1 1 
W = p du / Ju2+ q = pln(u + J u2+ q )1 

r r 

= pln(( l + ~)/(r + Jr2+ q)) 

= 8.40181880708 X 10-6. 

Then 

V = W + p J \J(1 - u2)/ (u2 + q ) - 11) u2 + q )du 
r 

= pt( W / p _ u
2 

)dU 
r 1 - r ( 1 +~)Ju2 + q . 

* From Stratton, J. A., Electromagnetic Th eory, McGraw-Hill , New York, 1941, 
pp.201 -217. 
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The HP-15C readily handles this integral. Don't worry about 
\/1 - u2 as u approaches 1 because the figures lost to roundoff 
aren't needed. 

Application 
The following program calculates the values of four speci a l 
functions for any argument x: 

1 Joo ? 
Q(x) = 1 - P(x) = - e- t - / 2dt 

2rr x 

2 ( X 
erf(x)= IJI e-

t2
dt 

V rr 0 

2 Joo 
erfc(x) = 1- erf(x) = I e- t2dt 

V rr x 

(normal distribution 
function) 

(complementary normal 
distribution function) 

(error function) 

(coffiplementaryerror 
function) 

The program calculates these functions using the transformation 
u = e- t2 whenever Ixl > 1.6 . 

The function value is returned in the X-register, and the 
uncertainty of the integral is returned in the Y·register. (The 
uncertainty of the function value is approximately the same order 
of magnitude as the number in the Y·register.) The original 
argument is available in register RD. 

The program has the fo ll owing characteristics: 

• The display form at specifies the accuracy of the integrand in 
the same way a s it does for em itself. However, if you specify 
an unnecessarily large number of display digits , the 
calculation will be prolonged . 

• Small function values, such as Q(20), P(-20), and erfc(lO), are 
accurately computed as quickly as moderate values. 
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Keystrokes Display 

mlp/RI Program mode. 

[I CLEAR I PRGM I 000-
[lILBL I0 001-42,21,11 Program for P(x) . 

ISTOI2 002- 44 2 Stores x in R2. 

ICHS I 003- 16 Calculates -x. 

IGTOl2 004- 22 2 Branches to calculate 
P(x) = Q(-x). 

[II LBL I[]] 005-42,21,12 Program for Q(x). 

ISTOl2 006- 44 2 Stores x in R2. 

[lILBL I2 007-42,21, 2 
2 008- 2 
[KJ 009- 11 
B 010- 10 
I GSB I[IJ 011- 3213 Calculates erfc(x I v'z). 
2 012- 2 

B 013- 10 Calculates 
Q(x) = l/z erfc(x l y2). 

I RCL I2 014- 45 2 
ISTOlo 015- 44 0 Stores x in Ro. 

ern 016- 33 
mlRTN I 017- 4332 Returns function value. 

[II LBL I[IJ 018-42,21,13 Program for erfc(x). 

1 019-
IGSBI4 020- 32 4 
m[TI] 1 021-43, 6, Tests flag 1 set. 

IGTOl5 022- 22 5 Branches for flag 1 set. 

1 023- 1 

G 024- 30 Calculates erf(x) - 1 for 
flag 1 clear. 

[lILBLI5 025-42,21, 5 
ICHS I 026- 16 Calculates erfc(x). 

mlRTNI 027- 4332 Returns function value. 

[lILBLI[]] 028-42,21,15 Program for erf( x). 

a 029- 0 
[I I LBL 14 030-42,21, 4 Subroutine for erf(x) or 

erfc(x). 

mcm1 031-43, 5, Clears flag 1. 
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Keystrokes Display 

ISTO 11 032- 44 1 Stores 0 for erf( x), 1 for 
erfc(x). 

~ 033- 34 

ISTO lo 034- 44 0 

WIABS I 035- 4316 Calculates Ix l. 

1 036-
[J 037- 48 
6 038- 6 
WI TEST ls 039-43.30. 8 Tests Ix l > 1.6 . 

IGTO l6 040- 22 6 Branch for Ix l > 1.6 . 

0 041- 0 
IRCl lo 042- 45 0 Recalls x. 

m[EJ o 043-42.20. 0 Integrates e-t2 from 0 to x. 

2 044- 2 

0 045- 20 
ml lBl l3 046-42.21. 3 Subroutine to divide by 

..;;-. 
W@ 047- 4326 
em 048- 11 
G 049- 10 
WI RTN I 050- 4332 
ml lBl l6 051-42.21. 6 Subroutine to integrate 

when Ix l> 1.6 . 

W[@ 1 052-43. 4. 1 Sets flag 1. 

0 053- 0 
IRCl lo 054- 45 0 

w0 055- 4311 
ICHS I 056- 16 
ra 057- 12 

.2 
Calculates e-x . 

m[EJ l 058-42.20. Integrates (- In ur l / 2 from 
o to e-x2

. 

IGSBI3 059- 32 3 Divides integral by ,;;-. 

I RcLi o 060- 45 0 
IENTER I 061- 36 
WIABSI 062- 4316 
G 063- 10 Calculates sign of x . 

0 064- 20 
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Keystrokes Display 

I RCLl l 065- 45 1 Recalls 1 for erfc(x}, 0 for 
erf(x}. 

w lLSTx l 066- 4336 
G 067- 30 
G 068- 40 Adjusts integral for sign 

of x and function. 

IC HS I 069- 16 
WIRTN I 070- 4332 
ITJI LBL 10 071-42,21 , 0 Subroutine to calculate 

- t2 
e . 

w[ZJ 072- 4311 
IC HS I 073- 16 
ra 074- 12 
W[ RTN I 075- 4332 
ITJI LBL[ 1 076-42,21, 1 Subroutine to calculate 

(-ln ur l 12. 

wlx=o l 077- 4320 
WI RTNI 078- 4332 
wlliD 079- 4312 
[cHsl 080- 16 
(K] 081- 11 
[lliJ 082- 15 
WIRTN I 083- 4332 

Labels used: A, B, C, E, 0, 1,2,3,4,5, and 6. 

Registers used: Ro (x), Rj, R2. 

F lag used: 1. 

To use this program: 

1. Enter the argument x into the display. 

2. Evaluate the desired function: 

• Press ITJ0 to evaluate P(x) . 

• Press ITJ[]] to evaluate Q(x}. 

• Press ITJ[I] to evaluate erf(x}. 

• PressITJ~toevaluateerfc(x}. 
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Example: Calculate Q(20) , P(1.234) , and erf(0.5) in I SCI I 3 display 
format. 

Keystrokes Display 

[[II P/R I Run mode. 

ITl~3 Specifies format. 

20 ITl[ID 2.754 -89 Q(20). 

1.234ITl0 8.914 -01 P(1.234). 

.5 ITlw 5 .205 -01 erf(0.5). 

Example: For a Normally distributed random variable X with 
mean 2.1 51 and standa rd deviation 1.085, calculate the probability 
Pr [2 < X ~ 3l . 

Pr[2 < X ~3l =Pr[2 - 2.151 < X - J.l ~ 3 - 2.151 J L 1.085 a 1.085 

= p(3 - 2.151 ) _ p(2 - 2.151) 
1.085 1.085 

Keystrokes Display 

21ENTER I 2.000 00 
2.151 G -1.510 -01 
1.085G -1 .392 -01 

ITl0 4.447 -01 Calculates Pr[X ~ 2]. 

ISTO l3 4.447 -01 Stores value. 

3 l ENTER I 3.000 00 
2.151 G 8 .490 -01 
1.085G 7.825 -01 

ITl0 7 .830 -01 Calculates Pr[X ~ 3]. 

IRCL l3 4 .447 -01 Recalls Pr[X ~ 2]. 

G 3 .384 -01 Calculates Pr[2 < X ~ 3]. 

ITl[ill]4 0.3384 
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Calculating in Complex Mode 

Physically important problems involving real data are often solved 
by performing relatively simple calculations using complex 
numbers. This section gives important insights into complex 
computation and shows several examples of solving problems 
involving complex numbers. 

Using Complex Mode 
Complex mode in the HP-15C enables you to evaluate complex­
valued expressions simply. Generally, in Complex mode a 
mathematical expression is entered in the same manner as in the 
normal "real" mode. For example, consider a program that 
evaluates the polynomial P(x) = a"x" + ... + ajx + ao for the value x 
in the X-register. By activating Complex mode, this same program 
can evaluate P(z), where z is complex. Similarly, other expressions, 
such as the Gamma function rex) in the next example, can be 
evaluated for complex arguments in Complex mode. 

Example: Write a program that evaluates the continued-fraction 
approximation 

In(r(x)) = (x - '/2)ln x - x + a o + ~ 
x +~ 

x +~ 

x + ... 

for the first six values of a: 

ao = '/2 In(2rr) 
a 1 = 1/12 
a 2 = 1/30 
a 3 = 531210 
a4 = 195/ 371 
a 5 = 1.011523068 
a6 = 1.517473649. 

65 
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Because this approximation is valid for both real arguments and 
complex arguments with Re(z) > 0, this program approximates 
In(r( z)) in Complex mode (for sufficiently large Izl). When Izl > 4 
(and Re(z) > 0), the approximation has about 9 or 10 accurate 
digits. 

Enter the following program. 

Keystrokes Display 

WI P/R I Program mode. 

[IJ CLEAR I PRGM I 000-
[IJl lBl l~ 001-42.21.11 
6 002- 6 
I STO I[] 003- 4425 Stores counter in Index 

register. 

~ 004- 34 
I ENTER I 005- 36 
I ENTER I 006- 36 
IENTER I 007- 36 Fills stack with z. 

I RcLi6 008- 45 6 Recalls a6' 

[IJl lBl l l 009-42.21. 1 Loop for continued 
fraction. 

G 010- 40 
I RcLi [ill] 011- 4524 Recalls ai' 

~ 012- 34 Restores z. 

G 013- 10 
[IJI DSE I[] 014-42. 5.25 Decrements counter. 

IGTOl l 015- 22 1 
IRCl lo 016- 45 0 Recalls ao. 

G 017- 40 
~ 018- 34 Restores z. 

G 019- 30 
WllsTx l 020- 4336 Recalls z . 

w[ffiJ 021- 4312 Ca lculates In(z ). 

WllSTx l 022- 4336 Recalls z . 
[J 023- 48 
5 024- 5 

G 025- 30 Calculates z - '/2. 
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Keystrokes Display 

0 026- 20 

G 027- 40 Calculates In(r(z)). 
W[RTN[ 028- 4332 

Store the constants in registers Ro through R6 in order according to 
their subscripts. 

Keystrokes Display 

W [P/R[ Run mode. 

2w~0 6.2832 
W[hill2G 0.9189 
[STO[O 0 .9189 Stores ao. 

12 DEl [ STO [ 1 0 .0833 Stores al ' 

30 DEl [ STO [ 2 0.0333 Stores a2' 

53 [ENTER [210 G 0.2524 
[STO I3 0.2524 Stores a 3' 

1951ENTERI371 G 0 .5256 
ISTO I4 0.5256 Stores a4' 

1.0115230681 STO 15 1.0115 Stores a5' 

1.5174736491 STO 16 1 .5175 Stores a6' 

Use this program to calculate In(r(4.2)), then compare it with 
In(3.2!) calculated with the [ill function. Also calculate In(r(l + 5i)). 

Keystrokes Display 

4.2m0 2.0486 Calculates In(r(4.2)). 
m[IiK)9 2.048555637 Displays 10 digits. 
3.2 m[ill 7 .756689536 Calculates 

(3.2)! = r(3.2 + 1). 

w[hill 2.048555637 Calculates In(3.2!). 
1 [ENTERI 1.000000000 Enters real part of 1 + 5i . 

5m[j] 1 .000000000 Forms complex number 
1 + 5i . 
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Keystrokes Display 

-6.130324145 Real part of In(r(l + 5i)). 

3.815898575 Imaginary part of 
In(r(l + 5i)). 

3.8159 

The complex result is calculated with no more effort than that 
needed to enter the imaginary part of the argument z. (The result 
In(r(l + 5i)) has 10 correct digits in each component.) 

Trigonometric Modes 
Although the trignometric mode annunciator remains lit in 
Complex mode, complex functions are always computed using 
radian measure. The annunciator indicates the mode (Degrees, 
Radians, or Grads) for only the two complex conversions: ~ and 
I+R I. 

If you want to evaluate re iO where e is in degrees, ~ can't be used 
directly because e must be in radians. If you attempt to convert 
from degrees to radi a ns, there is a slight loss of accuracy, 
especially a t va lues like 1800 for which the radian measure 7T can't 
be represented exactly with 10 digits. 

However, in Complex mode the I +R I function computes reiO 

accurately for e in any measure (indicated by the annunciator). 
Simply enter rand e into the complex X-registers in the form r + ie , 
then execute I +R Ito calculate the complex value 

re iO = r cos e + ir sin e. 
(The program listed under Calculating the nth Roots of a Complex 
Number at the end ofthis section uses this function.) 

Definitions of Math Functions 
The lists that follow define the operation of the HP-15C in Complex 
mode. In these definitions, a complex number is denoted by 
z = x + iy (rectangular form) or z = re iO (polar form). Also 
Izl = Jx2 + y 2. 
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Arithmetic Operat ions 

(a + ibj±(c+ id) =(a ± c) + i(b ± d) 

(a + ib)( c +id) = (ac - bd) + i( ad + bc) 

z2= z X z 

1/z = x / lzl2 - iy/ lzl2 

ZI 7 z2 = zl X 1/z2 

Single-Valued Functions 

e Z = eX(cos y + i sin y) 

10z = e l ln 10 

1 . . 
sin z = 2i(e"- e-Il ) 

cos z = 1/2(eiz + e- il ) 

tan z = sin z / cos z 

sinh z = 1/2( eZ 
- e-' ) 

cosh z = 1/2( e' + e-' ) 

tanh z = sinh z / cosh z 

Multivalued Functions 

In general, the inverse of a function f(z)-denoted by f-l(z)-has 
more than one value for any argument z. For example, cos-1(z) has 
infinitely many values for each argument. But the HP-15C 
calculates the single principal value, which lies in the part of the 
range defined as the principal branch of [1(z). In the discussion 
that fo llows, the single-valued inverse function (restricted to the 
principal branch) is denoted by uppercase letters- such as 
COS-l(Z)-to distinguish it from the multi valued inverse-cos-1(z). 

For example, consider the nth roots of a complex n umber z. Write z 
in polar form as z = rei (O + 2krr) for -rr < e ,,;; rr and k = 0, ±1, ±2, .... 
Then if n is a positive integer, 

Only k = 0,1, ... , n - 1 are necessary since ei2krrl n repeats its values 
in cycles of n. The equation defines the nth roots of z, and rl / neiOl n 

with -rr < e,,;; rr is the principal branch of zl l n. (A program listed on 
page 78 computes the nth roots of z .) 
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The illustrations that follow show the principal branches of the 
inverse relations. The left-hand graph in each figure represents the 
cut domain of the inverse function ; the right-hand graph shows the 
ra nge of the principal branch. 

For some inverse relations, the definitions of the principal 
branches are not universally agreed upon. The principal branches 
used by the HP-15C were carefully chosen. First, they are analytic 
in the regions where the arguments of the real-valued inverse 
functions are defined. That is , the bra nch cut occurs where its 
corresponding real-valued inverse function is undefined. Second, 
most of the important symmetries are preserved. For example, 
SIW1( -z) = -SIW1(z) for all z . 
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The principal branches in the last four graphs above are obtained 
from the equations shown, but don 't necessarily use the principal 
branches ofln(z) and ..JZ. 
The remaining inverse functions may be determined from the 
illustrations above a nd the following equations : 

LOG(z) = LN(z) / LN(lO) 

SINW1(z) = -i SIN-1(iz) 

TANH-l(z) = -i TAWl(iz) 

w' = e' LN(w) . 

To determine all values of an inverse relation, use the following 
expressions to derive these values from the principal value 
calculated by the HP·15C. In these expressions, k= 0, ± I, ±2, .... 

z'/' = ±..JZ 
In(z) = LN(z) + i2krr 

sin-1(z) = (-I )k SIN-1(z) +krr 

cos-1(z) = ±COS-l(z) + 2krr 

tan-1(z) = TAW1(z ) + krr 

sinh-1(z) = (-1)" SINW1(z) + ikrr 

cosh-1(z) = ± COSWl(z) + i2krr 

tanh-1(z) = TANW1(z) + ik rr 
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Using I SOLVE I and em in Complex Mode 
The [SOLVE [ and em functions use algorithms that sample your 
function at values along the real axis. In Complex mode, the 
[SOLVE I and em functions operate with only the real stack, even 
though your function subroutine may have complex computations 
in it. 

For example, [ SOLVE I will not search for the roots of a complex 
function, but rather will sample the function on the real axis and 
search for a zero ofthe function's real part. Similarly, em computes 
the integral of the function's real part along an interval on the real 
axis. These operations are useful in various applications, such as 
calculating contour integrals and complex potentials. (Refer to 
Applications at the end of this section.) 

Accuracy in Complex Mode 
Because complex numbers have both real components and 
imaginary components, the accuracy of complex calculations takes 
on another dimension compared to real-valued calculations. 

When dealing with real numbers, an approximation X is close to x 
if the relative difference E(X,x) = I(X - x) / xl is small. This relates 
directly to the number of correct significant digits of the 
approximation X. That is, if E(X,x) < 5 X lO-n , then there are at 
least n significant digits. For complex numbers, define E(Z,z) = 
I(Z - z) / zl. This does not relate directly to the number of correct 
digits in each component of Z , however. 

For example, if E(X,x) and E( Y,y) are both small, then for z = 
x + iy, E(Z,z) must also be small. That is, if E(X,x) < sand 
E( Y,y) < s, then E(Z,z) < s. But consider z = 1010 + i and Z = 1010. 
The imaginary component of Z is far from accurate, and yet 
E(Z,z) < 10-1°. Even though the imaginary components of z and Z 
are completely different, in a relative sense z and Z are extremely 
close. 

There is a simple, geometric interpretation of the complex relative 
error. Any approximation Z of z satisfies E(Z,z) < s (where s is a 
positive real number) if and only if Z lies inside the circle of radius 
slzl centered at z in the complex plane. 
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To require approxima tions with accurate components is to demand 
more than keeping relative errors small. For example, consider this 
problem in which the calculations are done with four significant 
digits. It illustrates the limitations imposed on a complex 
calcula tion by finite accuracy. 

and 

ZI X Z 2 

ZI = ZI = 37. 1 + 37.3i 

Z2 = Z 2 = 37.5 + 37.3i 

= (37.10 X 37.50 - 37.30 X 37.30)+ i(37.10 X 37.30 +37.30 X 37.50) 

= (1391. - 1391.) + i(1384. + 1399.) 

= 0 + i(2783.) 

The true value z 1z2 = -0.04 + 2782.58i. Even though ZI and Z 2 have 
no error, the real part of their four-digit product has no correct 
significant decima ls, a lthough the relative error of the co mplex 
product is less than 2 X 10-4 

The example illustrates t hat complex multiplication doesn 't 
propogate its errors componentwise. But even if complex 
multiplication produced accurate components, the rounding errors 
of a chain computation could quickly produce inaccurate 
com ponents . On the other hand, the relative error, which 
corresponds to the precision of the calcu lation , grows only slowly. 
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For example, using four-digit accuracy as before 

then 

Zl = (1 + 11300) + i 
Zl = 1.003 + i 
Z2 =Z2 = 1 + i 

Zl X Z2 = (1.003 + i) X (1 + i) 
= 0.003 + 2.003i 

= 3.000 X 10-3 + 2.003i 

The correct four-digit value is 3.333 X 10-3 + 2.003i. In this 
example, Zl and Z2 are accurate in each component and the 
arithmetic is exact. But the product is inaccurate-that is, the real 
component has only one significant digit. One rounding error 
causes an inaccurate component, although the complex relative 
error ofthe product remains small. 

For the HP-15C the results of any complex operation are designed 
to be accurate in the sense that the complex relative error E(Z,z) is 
kept small. Generally, E(Z,z) < 6 X lO- lO. 

As shown earlier, this small relative error doesn't guarantee 10 
accurate digits in each component. Because the error is relative to 
the size Izl, and because this is not greatly different from the size of 
the largest component of z , the smalier component can have fewer 
accurate digits. There is a quick way for you to see which digits are 
generally accurate. Express each component using the largest 
exponent. In this form , approximately the first 10 digits of each 
component are accurate. For example, if 

Z = 1.234567890 X 10-10 + i(2 .222222222 X 10-3), 

then think of Z as 

0.0000001234567890 X 10-3 + i(2.222222222 X 10-3). 

The accurate digits are 

0.000000123 X 10-3 + i(2.222222222 X 10-3). 
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Applications 
The capability of the HP-15C to work with complex numbers 
enables you to solve problems that extend beyond the realm of 
rea l-valued numbers . On the fo llowing pages are several programs 
that illustra te the usefulness of complex calculations-and the 
HP-15C. 

Storing and Recalling Complex Numbers Using a Matrix 

This program uses the stack and matrix C to store and recall 
complex numbers. It has the following characteristics: 

• If you specify an index greater than the matrix's dimensions, 
the calculator displays Error 3 and the stack is ready for 
another try. 

• If the calculator isn 't in Complex mode, the program activates 
Complex mode and the imaginary part of the number is set to 
zero. 

• When you store a complex number, the index is lost, the stack 
drops, and the T-register is duplicated in the Z-register. 

• The " Store" progra m uses t he [QJ key, which is above the I STO I 
key. The "Recall" program uses the []] key, which is above the 
IRc Llkey . 

Keystrokes Display 

[]:l lp/R I Program mode. 

ITl CLEAR I PRGM I 000-
ITlI LBL I[QJ 001-42.21 .14 "Store" program. 

ITli MATRlx I1 002-42.16. 1 Sets Ro = R1 = l. 
ISTO lo 003- 44 0 Ro=k. 
[TIJ 004- 33 
0 005- 0 Enters 0 in real (and 

imaginary) X-registers. 

G 006- 40 Drops stack and has 
a + ib in X-register. 

ITlI USER II STO I~ 007u 4413 Stores a a nd increments 
ITlIUS ER I indices (User mode). 

ITlI Re~lm l 008- 4230 
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K eystrokes D is play 

ISTO I[IJ 009- 4413 Stores b (no User mode 
h er e). 

ITlI R e ~ l m l 010- 4230 Restor es a + ib in 
X-registers. 

WI RTN I 011- 4332 
ITl ILBL I[IJ 012-42.21.15 "Recall" progr a m. 

ISTO IO 013- 44 0 Ro= k. 
W ICLx l 014- 4335 Disables stack. 

2 015- 2 
ISTO ll 016- 44 1 Sets R J = 2. 

[[f] 017- 33 
0 018- 0 

G 019- 40 Sets stack for an other try 
if Erro r 3 occurs n ext . 

1 RCL I[IJ 020- 4513 Recalls b (ima gina ry 
part ). 

ITl IR e ~ l m l 021- 4230 
ITl IDSE ll 022-42. 5 . 1 Decrements to R l = 1. 

W ICLx l 023- 4335 Disables stack and clear s 
rea l X-register. 

1 RCLI[IJ 024- 4513 Recalls a (real pa r t) . 

W IRTN I 025- 4332 

Exa mple : Store 2 + 3i a n d 7 + 4i in elements 1 a nd 2 using the 
previous program. Th en recall a n d add th em. Dimens ion m atrix C 
to 5 X 2 so tha t it can stor e up to 5 com plex numbers. 

After en tering the preceding program: 

K eystrokes Display 

W IP/R I 

5 1ENTER I2 2 

ITl IDIM lw 2 .0000 

2 1 ENTER 13 ITl ITl 2 .0000 

1 ITl[QJ 2 .0000 

Run mode. 

S pecifies 5 rows and 2 
columns. 

Dimen sions matrix C. 
Enters 2 + 3i. 
Stores n umber in C using 
index 1. 
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Keystrokes Display 

7 I ENTER 14 [Il OJ 7 .0000 Enters 7 + 4i. 

2 [Il[QJ 7 .0000 Stores number in C using 
index 2. 

1 [Il[I] 2 .0000 Recalls first number. 
2 [Il[I] 7 .0000 Recalls second number. 

G 9 .0000 Real part of sum. 

[Ill Re ~ 1m I 7 .0000 Imaginary part of sum. 

Calculating the nth Roots of a Complex Number 

This program calculates the nth roots of a complex number. The 
roots are zk for k = 0, 1,2, ... , n - 1. You can a lso use the program to 
calculate z 1I r, where r isn 't necessarily an integer. The program 
operates the same way except that there may be infinitely many 
roots zk for k = 0, ± 1, ± 2, .... 

Keystrokes Display 

wl P/R I 

000-[Il CLEAR I PRGM I 
[Il I LBL I [6J 001-42,21,11 
~ 

~ 
wl LSTx l 

[[f] 
wlms 
[ZJ 
ISTOl2 

[IlI R e~ lm l 
ISTO l3 

3 
6 
o 
w[ff] 
G 
ISTOl4 

o 
I STO IOJ 

002-

003-
004-
005-
006- 43, 

007-
008-
009-
010-

011-
012-
013-
014-
015-
016-
017-
018-

34 

15 
4336 

33 
4, 8 

14 

44 2 
4230 
44 3 

3 
6 
0 

4333 
10 

44 4 

0 
4425 

Program mode. 

Places n in X-register, Z in 
Y-registers. 

Calculates lin. 

Retrieves n. 

Activiates Complex mode. 
Calculates zl / n. 

Stores rea l part of Zo in R2. 

Stores imaginary part of 
Zo in R3· 

Calculates 3601 n. 

Stores 360l n in R4. 

Stores 0 in Index register. 
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Keystrokes Display 

[IJILBLIO 019-42,21 , 0 
IRCLI4 020- 45 4 Recalls 3601 n. 

IRCL I00J 021-45,20,25 Calculates 360k I n using 
Index register. 

[IJIRe~lml 022- 4230 
w lCLx l 023- 4335 
1 024- Places 1 +i(k360In)in 

the X-register. 

WIDEGI 025- 43 7 Sets Degrees mode. 

[IJI+RI 026- 42 1 Calculates eik 360l n. 

IRCL I2 027- 45 2 Recalls real part of 20' 

IRCLI3 028- 45 3 Recalls imaginary part 
of 20' 

[IJOJ 029- 4225 Forms complex zoo 

0 030- 20 Calculates zoeik 360 l n, root 
numberk. 

I RCL IOJ 031- 4525 Recalls number k. 

~ 032- 34 Places Zk in X-registers, k 
in Y-register. 

1 033-
ISTO IGOJ 034-44,40,25 Increments number kin 

Index register. 

ern 035- 33 Restores Zk and k to X-
and Y-registers. 

IRlsl 036- 31 Halts execution. 

IGTOIO 037- 22 0 Branch for next root. 

Labels used: A and O. 

Registers used: R2, R3, R4, and Index register. 

To use this program: 

1. Enter the order n into the Y-register and the complex number 
2 into the X-registers. 

2. Press [IJ0 to calculate the principal root, Zo, which is placed 
in the real and imaginary X-registers. (Press and hold [IJ [ill] 
to view the imaginary part.) 
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3. To calculate higher number roots Zk: 

• Press I R/S I to calculate each successive higher-number 
root. Each root zk is placed in t he complex X-registers and 
its number k is placed in the Y-register. Between root 
calculations, you can perform other calculations without 
disturbing this program (if R2, R3, R4, and the Index 
register aren't changed). 

• Store the number of the root k in the Index register (using 
I STO I[]), then press I R/S I to calculate zk. The complex root 
and its number are placed in the X- and Y-registers, 
respectively . (By pressing I R/S I again , you can continue 
calculating higher-number roots .) 

Example: Use the previous progra m to compute (l)l / lOO. Calculate 
zo, Z!, a nd Z50 for this expression. 

Keystrokes Display 

[]::ll p/R I Run mode. 

100 I ENTER 11 Enters n = 100 and Z = 1 
(purely real). 

ITl~ 1.0000 Calculates Zo (real part). 

ITl[ill] (hold) 0 .0000 Imaginary part of zoo 

IR/s l 0.9980 Calculates Z! (real part). 

ITl[ill] (hold) 0 .0628 Ima ginary part of Z l. 

50l sTO I[] 50.0000 Stores root n um ber in 
Index register. 

IR/sl -1.0000 Calculates z 50 (real part). 

ITl[ill] (hold) 0 .0000 Imaginary part of z 50. 

Solving an Equation for Its Complex Roots 

A common method for solving the complex equation f (z) = 0 
numerically is Newton's iteration. This method starts with an 
approximation Zo to a root a nd repeatedly calculates 

until Zk converges. 

The following example shows how I SOLVE I can be used with 
Newton 's iteration to estimate complex roots. (A different 
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technique that doesn't use Complex mode is mentioned on page 16.) 

Example: The response of an automatically controlled system to 
small transient perturbations has been modeled by the differential­
delay equation 

d 
diw(t) + 9 w(t) + 8 w(t -1) = 0. 

How stable is this system? In other words, how rapidly do solutions 
of this equation decay? 

Every solution w(t) is known to be expressible as a sum 

w(t) = Lc(z)ezt 

k 

involving constant coefficients c(z) chosen for each root z of the 
differential-delay equation's associated characteristic equation : 

z + 9 + 8e-z = 0. 

Every root z = x + iy contributes to w(t) a component ezt = 
ext(cos(yt) + i sin(yt)) whose rate of decay is faster as x, the real 
part of z, is more negative. Therefore, the answer to the question 
entails the calculation of a ll the roots z of the characteristic 
equation. Since that equation has infinitely many roots , none of 
them real, the calculation of all roots could be a large task. 

However, the roots z are known to be approximated for large 
integers n by z = A(n) = -In((2n + 1/~ )IT/8) ± i(2n + Ii2) IT for 
n = 0, 1, 2, .... The bigger is n , the better is the approximation. 
Therefore you need calculate only the few roots not well 
approximated by A( n)-the roots withlzl not very big. 

When using Newton's iteration, what should ((z) be for this 
problem? The obvious function ((z) = z + 9 + 8e-z isn't a good 
choice because the exponential grows rapidly for larger negative 
values of Re(z). This would slow convergence considerably unless 
the first guess Zo were extremely close to a root. In addition, this 
((z) vanishes infinitely often, so it's difficult to determine when all 
desired roots have been calculated. But by rewriting this equation 
as 

eZ = -8 / (z + 9) 

and taking logarithms, you obtain an equivalent equation 
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Z = In(-8/ (z + 9)) ± i2nrr for n = 0, 1, 2, ... 

This equation has only two complex conjugate roots Z for each 
integer n . Therefore use the equivalent function 

((z) = z - In(-8 / (z + 9)) ± i2nrr 

and apply Newton's iteration 

for n = 0, 1,2, .... 

zk + I = Zk - (zk - In(-8 / (z k + 9)) ± i2nrr) / (1 + lI( Zk + 9)). 

As a first guess, choose Zo as A (n) , the approximation given earlier. 
A bit of algebraic rearrangement using the fact that In(±i) = ±i rrl2 
leads to this formula: 

Zk + I = A(n) + ((zk - A(n)) + (zk + 9)ln(iIm(A(n)) / (zk + 9))) / (Zk + 10). 

In the program below, Re(A(n)) is stored in Ro and Im(A(n)) is 
stored in R I . Note that only one of each conjugate pair of roots is 
calculated for each n. 

Keystrokes Display 

wlP/R I Program mode. 

[IJ CLEAR I PRGM I 000-
[IJILBLI0 001-42.21.11 Program for A(n). 

w[ill8 002-43. 5. 8 Specifies real arithmetic. 
IENTER I 003- 36 
G 004- 40 
0 005- 48 
5 006- 5 

G 007- 40 
WG] 008- 4326 
0 009- 20 Calculates (2n + 1/2)rr. 

I ENTER I 010- 36 
ISTO l1 011- 44 1 
8 012- 8 
G 013- 10 
wCill] 014- 4312 
ICHS I 015- 16 Calculates 

-In((2n + 1/2)rr/ 8). 

ISTOlo 016- 44 0 
~ 017- 34 
[IJ[j] 018- 4225 Forms complex A(n). 



Sect ion 3: Calcu lat ing in Comp lex Mode 83 

Keystrokes Display 
WIRTN I 019- 4332 
[IJ I LBL I lID 020-42,21 ,12 Program for Zk + l ' 

IENTERI 021- 36 
I ENTER I 022- 36 
I RCLll 023- 45 1 
[IJIRe~lm l 024- 4230 Creates ilm(A(n)). 

[iliJ 025- 34 
9 026- 9 

G 027- 40 
G 028- 10 
wlLSTx l 029- 4336 
[iliJ 030- 34 
w[ill] 031- 4312 
0 032- 20 
[iliJ 033- 34 
I RCLll 034- 45 1 
[IJIRe~lml 035- 4230 
IRCL IGo 036-45,40, 0 
G 037- 30 
wlLSTx l 038- 4336 
IR+I 039- 33 
G 040- 40 
[iliJ 041- 34 

042- 1 
0 043- 0 
G 044- 40 
G 045- 10 
G 046- 40 
WIRTN I 047- 4332 
[IJI LBLI[IJ 048-42,21,13 Program for residual, 

Ie' + 8/ (z + 9)1· 
IENTER I 049- 36 
ca 050- 12 
9 051- 9 
w l LSTx l 052- 4336 
G 053- 40 
8 054- 8 
[iliJ 055- 34 
G 056- 10 
G 057- 40 
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Display Keystrokes 

WIABS I 
WI RTNI 

058- 43 16 Calculates Ie' + 8 / (z + 9)1. 

059- 4332 

Labels used: A, B, a nd C. 

Registers used: Ra and R I . 

Now run the program. For each root, press [ID until the displayed 
real part doesn't change. (You might also check that the imaginary 
part doesn 't change.) 

Keystrokes Display 

WlP/R I Run mode. 

ITJ I USER I Activ ates User mode. 

0 0 1 .6279 Displays 
Re(A(O)) = Re(zo). 

[ID -0.1487 Re(zj) . 

[ID -0 .1497 Re(z2)' 

[ID -0.1497 Re( z). 

ITJilllJ (ho ld) 2.8319 Im(z). 

[g 1.0000 -10 Calculates residua l. 

~ -0.1497 Restores z to X-register. 

By repea ting the same process for n = 1 through 5, you will obtain 
the results listed below. (O nly one of each pair of complex roots is 
listed .) 

n A(n) Root zk Residual 

0 1.6279 + i1 .5708 - 0.1497 + i2.83 19 1 X 10-10 

0.0184 + i7.8540 - 0.4198 + i 8 .636 1 6 X 10-10 

2 - 0.5694 + i14 .1372 - 0.7430 + i14.6504 2 X 10-9 

3 - 0.9371 + i20.4204 - 1.0236 + i20.7868 5 X 10-10 

4 - 1.2054 + i26.7035 -1.2553 + i26.9830 9 X 10-10 

5 - 1.4167 + i32.9867 - 1.4486 + i33.21 03 2 X 10-9 
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As n increases, the first guess A (n) comes ever closer to the desired 
root z. (When you're finis hed, press m [ USER I to deactivate User 
mode.) 

Since a ll roots have negative real parts, t h e system is stable, but 
the margin of stability (the smallest in magnitude a mong the real 
parts, namely -0.1497) is small enough to cause concern if the 
system must withstand much noise. 

Contour Integrals 

You can use 0to evaluate the contour integral! c((Z)dZ, where C is a 
curve in the complex plane. 

First parameterize the curve C by z(t) = x(t) + iy(t) for t\ ~ t ~ t2. 
Let G( t) = ((z( t))z ' ( t). Then 

Jc((Z)dZ = f 12 G(t)dt 
t1 

= f t2Re(G(t))dt + if \m(G(t)) dt. 
t 1 11 

These integrals are precisely the type that 0 evalua tes in Complex 
mode. Since G( t) is a complex function of a real variable t, em will 
sample G( t) on the interval t\ ~ t ~ t2 and integrate Re( G( t))-the 
value that your function returns to the real X-register. For the 
imaginary part, integrate a function that evaluates G(t ) and uses 
[ Re ~ 1m I to place 1m (G( t )) into t he real X·register. 

The general-purpose program listed below evaluates the complex 
integral 

a long the straight line from a to b, where a a nd b are complex 
numbers. The program assumes that your complex function sub­
routine is labeled "B" and evaluates th e co mplex function ( (z), and 
that the limits a and b are in the complex y. a nd X-registers, 
respectively. The complex components of the integral I and the 
un certainty .::J are returned in the X- and Y-registers . 

Keystrokes Display 

w[ P/R I Program mode. 

m CLEAR [ PRGM I 000-
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Keystrokes Display 

IIlI LBL I~ 001 - 42,2 1, 1 1 
~ 002- 34 

G 003- 30 Calculates b - a . 

ISTO I4 004- 44 4 Stores Re( b - a) in R4. 

IIlI R e ~lm l 005- 4230 
ISTO l5 006- 44 5 Stores Im( b - a) in R5 . 

WI LSTxl 007- 4336 Recalls a. 

ISTO l6 008- 44 6 Stores Re(a) in R;;. 
IIlI R e ~l m l 009- 4230 
ISTO l7 010- 44 7 Stores Im( a) in R7. 

0 011- 0 
IENTER I 012- 36 
1 013- 1 
[D[ZiJ o 014-42,20, 0 Calculates Im(l) a n d 

Im(M). 

ISTO l2 015- 44 2 Stores Im(l) in R2 · 

(IT] 016- 33 
ISTO l3 017- 44 3 Stores Im(M) in R3. 

(IT] 018- 33 
III [ZiJ 1 019- 42,20, Calculates Re(l) and 

Re(M). 

IRCLI2 020- 45 2 Recalls Im(l). 

IIlOJ 021- 4225 Forms complex I. 

~ 022- 34 
IRCLI3 023- 45 3 Recalls Im(~I). 

IIlOJ 024- 4225 Forms complex ~I. 

~ 025- 34 Restores I to X-register. 

WI RTN I 026- 4332 
IIlI LBLI 0 027-42,21 , 0 Subroutine for 

Im(f(z)z'(t)). 

IGSBl l 028- 32 Calculates f(z )z'( t). 

IIlI Re~lm l 029- 4230 Swaps complex 
components. 

WIRTNI 030- 4332 
IIlILBLI l 031-42,21 , 1 Subroutine to calculate 

f(z)z'(t). 
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Keystrokes Display 

IRCL I4 032- 45 4 
IRCL I5 033- 45 5 
m[IJ 034- 4225 Forms complex b - a. 

0 035- 20 Calculates (b - alt. 

IRCL I6 036- 45 6 
IRCL I7 037- 45 7 

m[IJ 038- 4225 Forms complex a . 

G 039- 40 Calculates a + (b - a) t. 

I GSB I[[] 040- 3212 Calculates ((a + (b - a)t). 

IRCLI4 041- 45 4 
I RCLI5 042- 45 5 
m[IJ 043- 4225 Forms complex 

z'(t) = b - a . 

0 044- 20 Calculates ((z)z'( t) . 

W IRTNI 045- 4332 

Labels used: A, 0, and 1. 

Registers used: R2, R3, R4, R5, R6, and R7. 

To use this program: 

1. Enter your function subroutine labeled "B" into program 
memory. 

2. Press 7 m I DIM I [j]j] to reserve registers Ro through R7. (Your 
subroutine may require additional registers.) 

3. Set the display format for em . 
4. Enter the two complex points that define the ends of the 

straight line that your function will be integrated along. The 
lower limit should be in the Y-registers; the upper limit 
should be in the X-registers. 

5. Press m [6J to calculate the complex line integral. The value 
of the integral is in the X-registers; the value of the 
uncertainty is in the Y·registers. 

Because two integrals are being evaluated, the program will 
usually take longer than a real integral, although the em routine 
doesn't have to use the same number of sample points for both 
integrals. The easier integral will use less calculations than the 
more difficult one. 
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Example: Approximate the integrals 

I[ = J,oo cos x dx and 
1 x + 1/x 

J,OO SIn x 
12 = dx. 

1 x + 1/x 

These integrands decay very s lowly as x approaches infinity and 
therefore require a long interval of integration and a long 
execution time. You can expedite this calculation by deforming the 
path of integration from the real axis into the complex plane. 
According to complex variable theory, these integrals can be 
combined as 

J,
l +ioo eiz 

I[ + iI2 = dz. 
1 z + 1/z 

This complex integrand, evaluated a long the line x = 1 and y ;;, 0, 
decays rapidly as y increases-like e-Y 

To use the previous program to calculate both integrals at the same 
time, write a subroutine to evaluate 

(z) = 
eiz 

z + 1/z 

Keystrokes Display 

[DI LBL I[ID 046-42.21.12 
[lli] 047- 15 
wi LSTx l 048- 4336 
G 049- 40 Calculates z + 1/ z. 

wl LSTx l 050- 4336 
1 051-
[D I R e~lm l 052- 4230 Forms 0 + i. 

0 053- 20 
ca 054- 12 Calculates r/z . 

~ 055- 34 
G 056- 10 Calculates (z). 

W IRTN I 057- 4332 

Approximate the complex integral by integrating the function 
from 1 + Oi to 1 + 6i using a []Q] 2 display format to obtain three 
significant digits. (The integral beyond 1 + 6 i doesn 't affect the 
first three digits.) 
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Keystrokes Display 

WlP/RI Run mode. 

ITliscI12 Specifies ~ 2 format. 

1 I ENTER I 1.00 00 Enters first limit of 
integration, 1 + Oi. 

1 IENTER I6 6 

ITlm 1 .00 00 Enters second limit of 
integration, 1 + 6i. 

ITl0 -3.24 -01 Calculates I and displays 
Re(1) = I) (after about 
9 minutes). 

ITlffiIJ (hold) 3 .82 -01 Displays Im(1) = lz. 
~ 7.87 -04 Displays Re( t1I) = t1Ij • 

ITlffiIJ(hold) 1.23 -03 Displays Im(t1I) = t1I2. 

ITl[lli]4 0.0008 

This result I is calculated much more quickly than if 11 and 12 were 
calculated directly along the real axis. 

Complex Potentials 

Conformal mapping is useful in applications associated with a 
complex potential function . The discussion that follows deals with 
the problem of fluid flow , a lthough problems in electrostatics and 
heat flow are analagous . 

Consider the potential function P(z). The equation Im(P(z)) = c 
defines a family of curves that are called streamlines of the flow. That 
is, for any value of c, a ll values of z that satisfy the equation lie on a 
streamline corresponding to that value of c. To calculate some points 
zk on the streamline, specify some values for Xk and then use I SOLVE I to 
find the corresponding values of Yk using the equation 

If the Xk values are not too far apart, you can use Yk _ ) as an initial 
estimate for Yk. In this way, you can work along the streamline and 
calcula te the complex points Zk = Xk + iYk' Using a similar 
procedure, you can define the equipotential lines , which are given 
by Re(P(z)) = c. 
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The program listed below is set up to compute the values of Yk from 
evenly spaced va lues of Xk. You must provide a subroutine labeled 
"B" that places Im(P(z)) in the real X-register. The program uses 
inputs that specify the step size h, the number of points n along the 
real axis, and Zo = Xo + iyo, the initial point on the streamline. You 
must enter n , h, and Zo into the Z·, Y·, and X-registers before 
running the program. 

The program computes the values of Zk and stores them in matrix 
A in the form a k I = Xk -I and a k2 = Yk _ I for k = 1, 2, ... , n. 

Keystrokes Display 

wlP/R I Program mode. 

ITl CLEAR I PRGM I 000-
ITlILBLI~ 001-42,21,11 
[HJ 002- 33 
ISTO I4 003- 44 4 Stores h in R". 

IR+ I 004- 33 
2 005- 2 
ITlID I MI~ 006-42,23,11 Dimensions matrix A to 

be n X 2. 

W ICLx l 007- 4335 
I STO II MATR lxl~ 008-44,16,11 Makes all elements of A 

be zero. 

I STO I[IJ 009- 4425 Stores zero in Index 
register. 

ITlI MATR IX I 1 010-42,16, 1 Sets Ro = RI = l. 
w[]1J 011- 4333 Recalls Zo to X-registers. 

ISTo l2 012- 44 2 Stores Xo in R2. 

ITl I USER II STO I~ 013u 4411 Sets al l = x o· 

ITlIUSER I 
ITlIRe~lm l 014- 4230 
ISTOl3 015- 44 3 Stores Yo in R3. 

ITlI USER ll sTO I~ 016u 4411 Sets al2 = Yo· 

ITlIUSER I 
IGTOl l 017- 22 Bra nches if matrix A not 

full (n > 1). 

ITl ILBLio 018-42,21, 0 
I RCL II MATR lx l~ 019-45,16,11 Recalls descriptor of 

ma trix A. 
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Keystrokes Display 

[]]IRTNI 020- 4332 
[IlILBL l l 021-42.21. 1 
[IlIRe~lm l 022- 4230 Restores zoo 

I GSB II]] 023- 3212 Calculates Im(P(z o» 
(or Re(P(zo» for 
equipotentia l line.) 

ISTO l5 024- 44 5 Stores c in R5. 

[Il ILBL I2 025-42.21. 2 Loop for finding Yk' 

1 026- 1 
[@]G[] 027-44.40.25 Increments counter kin 

Index register. 

IRCL I4 028- 45 4 Recalls h . 

I RCL I[] 029- 4525 Recalls counter k. 

0 030- 20 Calculates kh. 

I RcLi2 031- 45 2 Recalls Xo. 

G 032- 40 Calculates x" = Xo + kh. 

ISTOI6 033- 44 6 Stores Xk in R6. 

I RCL I3 034- 45 3 Recalls Yk - ] fro m R3· 

IENTER I 035- 36 Duplicates Yk _ ] for 
second estimate. 

[Ill SOLVE 13 036-42.10. 3 Searches for Y/i. 

IGTO l4 037- 22 4 Branches for valid Y k root. 

038- Starts decreasing step 
size. 

ISTO IG[] 039-44.30.25 Decrements counter k. 
4 040- 4 
ISTO IG 4 041-44.10. 4 Reduces h by factor of 4. 

ISTO I0[] 042-44.20.25 Multiplies counter by 4. 
IGTO l2 043- 22 2 Loops back to find Yk 

again. 
[Il ILBLI4 044-42.21. 4 Continues finding Yk. 

I RCL I6 045- 45 6 
[Ill pSE I 046- 4231 Displays Xk ' 

[Ill USER II STO 10 047u 4411 Setsak+ ], ] =xk' 

[Ill USER 1 
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Keystrokes Display 

[[IJ 048- 33 
[Ill pSE I 049- 4231 Displays y". 
ISTo l3 050- 44 3 Stores y" in R3. 

[Ill USER II STO I~ 051u 4411 Sets a,, + 1.2 = y". 
[Ill USER I 
IGTo l2 052- 22 2 Branch for k + 1 < n 

(A isn't full). 

IGTO IO 053- 22 0 Branch for k + 1 = n 
(A is full). 

[Il l LBLj 3 054-42.21. 3 Function subroutin e for 
ISOLVEI. 

I RCL I6 055- 45 6 Recalls x". 

[iW 056- 34 Restores current es tima te 
for y". 

[IlOJ 057- 4225 Creates estimate 
z" = x" + iy". 

I GSB I[ID 058- 3212 Calcul a tes Im(P( zl,)) (or 
Re(P (zk)) for 
eq uipotenti a l lines). 

IRCL I5 059- 45 5 Recall s c. 

G 060- 30 Calcul ates Im(P (zk)) - c. 

WI RTN I 061- 4332 

Labels used : A, B, 0, 1,2, 3, and 4. 

Registers used: Ro, R1, R2 (xo), R3 (Yo), R4 (h) , R5 (c), R6 (x,,) , and 
Index register (k) . 

Matrix used: A. 

One special fea ture of this program is that if a n Xk value lies 
beyond the doma in of the streamline (so that there is no root for 
I SOLVE I to find ), then the step size is decreased so that Xk 

a pproaches the boundary where the streamline turns back. This 
feature is useful for determining the nature of th e s treamline when 
Yk isn 't a s ingle-valued function of X k . If h is sma ll enough , the 
values of Zk will lie on one branch of the streamline a nd approach 
th e boundary . (The second exa mple below illustrates this feature.) 
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To use this program: 

1. Enter your subroutine labeled " B" into program memory. It 
should place into the real X-register Im(P(z)) when 
calculating streamlines or Re(P(z)) when calculating 
equipotentia l lines. 

2. Press 6 m I DIM I [ill] to reserve registers Ro through R6 (and the 
Index register). (Your subroutine may require additional 
registers.) 

3. Enter the va lues of nand h into the Z- and Y-registers by 
pressing n I ENTER I h I ENTER I. 

4. Enter the complex va lue of Zo = Xo + iyo into the X-registers 
by pressing Xo I ENTER Iyo mill· 

5. Press m [6J to display the successive values of Xk and Yk for 
k = 1, ... , n a nd finally the descriptor of matrix A. The values 
for k = 0, ... , n are stored in matrix A. 

6. If desired, recall values from matrix A. 

Example: Calculate the streamline of the potential P(z) = 11 z + z 
passing through z = - 2 + 0.1 i . 

First, enter subroutine "B" to compute Im(P (z)). 

Keystrokes Display 

ml LBL I[ID 062-42,21,12 
I ENTER I 063- 36 Duplicates z. 

[lli] 064- 15 

G 065- 40 Calculates 11 z + z. 

ml Re~lm l 066- 4230 Places Im(P(z)) in X-
register. 

WI RTNI 067- 4332 

Determine the streamline using Zo = - 2 + 0.1 i , step size h = 0.5, and 
number of points n = 9. 

Keystrokes Display 

WIP/RI Run mode. 
9 1ENTER I 9 .0000 En ters n. 

.51 ENTER I 0.5000 Enters h. 
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Keystrokes 

21 CHS II ENTER I 
.1 [DCO 
[DC6l 

D isp lay 

-2 .0000 
-2 .0000 

-1 .5000 

Enters zo. 

Xl· 

0.1343 YI. 

2 .0000 Xg. 

0 .1000 

A 9 

A 9 

2 

2 

Yg· 

Descriptor for matrix A. 

Deactivates Complex 
mode. 

Matrix A contains th e fo llowing values of Xk a n d y,,: 

Xk Yk 

-2 .0 0 .1000 
- 1.5 0 .1343 
- 1.0 0.4484 
- 0 .5 0 .9161 

0 .0 1.0382 
0 .5 0 .9161 
1.0 0.4484 
1.5 0 .1343 
2 .0 0. 1000 

The streamline and velocity equipotential lines are illustrated 
below. Th e derived streamline corresponds to the heavier solid line. 

Re(P( z )) = c 
I 

- --I-_ lm(P( z)) = c 

~===t~~~--t---t+--~~==- x 

/ 
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Example: For the same potential as the previous example, 
P(z) = liz + z, compute the velocity equipotential line starting at 
z = 2 + i and proceeding to the left. 

First change subroutine "B" so that it returns Re(P(z ))-that is, 
remove the I Re ~ 1m I instruction from "B" . Try n = 6 and h = -0.5. 
(Notice that h is negative, which specifies that Xk will be to the left 
ofxo·) 

Although the keystrokes are not listed here, the results that would 
be calculated and stored in matrix A are shown below. 

Xk Yk 

2.0000 1.0000 
1.8750 0.2362 
1.8672 0.1342 
1.8652 0.0941 
1.8647 0.0811 
1.8646 0.0775 

The results show the nature of the top branch of the curve (the 
heavier dashed line in the graph for the previous example). Note 
that the step size h is automatically decreased in order to follow the 
curve-rather than stop with an error-when no y-value is found 
for x < 1.86. 



Section 4 

U sing Matrix Operations 

Matrix algebra is a powerful tool. It allows you to more easily 
formulate and solve many complicated problems, simplifying 
otherwise intricate computations . In this section you will find 
information about how the HP-15C performs certain matrix 
operations and about using matrix operations in your applications. 

Several results from numerical linear a lgebra theory are 
summarized in this section. This materia l is not meant to be self­
contained. You may want to consult a reference for more complete 
presentations. * 

Understanding the LU Decomposition 
The HP-15C ca n solve systems oflinear equations, invert matrices, 
and calculate determinants. In performing these calculations, the 
HP-15C transforms a square matrix into a computationally 
convenient form called the L U decomposition of the matrix. 

The L U decomposition procedure factors a square matrix A into 
the matrix product LV. L is a lower-triangular matrixt with l's on 
its diagonal and with subdiagonal elements (those below the 
diagonal) between - 1 and + 1, inclusive. U is an upper-triangular 
matrix.t For example: 

A ~ [: ~ [: ~ [ : .. ~ ~ LV 

* Two such references are 
Atkin s on , Kendall E., An Introdu ction to Numerical Analysis, Wiley, 1978. 
Kahan, W. "Numerical Lin ear Algebra," Canadian Ma thematical Bulletin , Volume 9, 
1966, pp. 756-80 1. 

t A lower-trian gul ar matrix has O's fo r all elements above its diagonal. An upper­
tri angul ar matrix has O's for a ll elements below its diagonal. 

96 
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Some matrices can't be factored into the L U form. For example, 

A~ [: ~ #LU 

for any pair of lower- and upper-triangular matrices Land V. 
However, if rows are interchanged in the matrix to be factored, an 
LU decomposition can always be constructed. Row interchanges in 
the matrix A can be represented by the matrix product P A for some 
square matrix P. Allowing for row interchanges, the LU 
decomposition can be represented by the equation P A = LV. So for 
the above example, 

P A ~ [: :J [: ~ [: ~ [: ~ [: :J ~ LV. 

Row interchanges can also reduce rounding errors that can occur 
during the calculation of the decomposition. 

The HP-15C uses the Doolittle method with extended-precision 
arithmetic to construct the L U decomposition. It generates the 
decomposition entirely within the result matrix. The L U 
decomposition is stored in the form 

It is not necessary to save the diagonal elements ofL since they are 
always equal to 1. The row interchanges are also recorded in the 
same matrix in a coded form not visible to you. The decomposition 
is flagged in the process, and its descriptor includes two dashes 
when displayed. 

When you calculate a determinant or solve a system of equations, 
the L U decomposition is automatically saved. It may be useful to 
use the decomposed form of a matrix as input to a subsequent 
calculation. If so, it is essential that you not destroy the 
information about row interchanges stored in the matrix; don't 
modify the matrix in which the decomposition is stored. 
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To calculate the determinant of a matrix, A for example, the 
HP-15C uses the equation A = p -1 LV, which allows for row 
interchanges. The determinant is then just (-1)' times the product 
of the diagonal elements of V, where r is the number of row 
interchanges. The HP-15C calculates this product with the correct 
sign after decomposing the matrix. If the matrix is already 
decomposed, the calculator just computes the signed product. 

It's easier to invert an upper- or lower-triangular matrix than a 
general square matrix. The HP-15C calculates the inverse of a 
matrix, A for example, using the relationship 

It does this by first decomposing matrix A, inverting both L and V, 
calculating their product V-1L-l, and then interchanging the 
columns of the result. This is all done within the result matrix­
which could be A itself. If A is already in decomposed form, the 
decomposition step is skipped. Using this method, the HP-15C can 
invert a matrix without using additional storage registers. 

Solving a system of equations, such as solving AX = B for X , is 
easier with an upper- or lower-triangular system matrix A than 
with a general square matrix A. Using PA = LV, the equivalent 
problem is solving LVX = PB for X . The rows of Bare 
interchanged in the same way that the rows of the matrix A were 
during decomposition. The Hp·15C solves LY = PB for Y (forward 
substitution) and then VX = Y for X (backward substitution). The 
LU form is preserved so that you can find the solutions for several 
matrices B without reentering the system matrix. 

The LU decomposition is an important intermediate step for 
calculating determinants, inverting matrices, and solving linear 
systems. The LU decomposition can be used in lieu of the original 
matrix as input to these calculations. 

III-Conditioned Matrices 
and the Condition Number 
In order to discuss errors in matrix calculations, it's useful to define 
a measure of distance between two matrices . One measure of the 

c" 111 r up chi" Muf PC 
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distance between matrices A and B is the norm of their difference, 
denoted IIA - BII. The norm can a lso be used to define the condition 
number of a matrix, which indicates how the relative error of a 
calculation compares to the relative error of the matrix itself. 

The Hp·15C provides three norms. The Frobenius norm of a matrix 
A , denoted IIAIIF' is the square root of the sum of the squares of the 
matrix elements. This is the matrix analog of the Euclidean length 
ofa vector. 

Another norm provided by the HP·15C is the row norm. The row 
norm of an m X n matrix A is the largest row sum of absolute 
values and is denoted IIAIIR: 

n 

IIAIIR = max LlaJ 
1 ~ /~mj = l 

The column norm of the matrix is denoted II Aile and can be 
computed by IIAlie = IIATIIR. The column norm is the largest column 
sum of absolute values. 

For example, consider the matrices 

Then 

and 

A ~ [: : :J and B ~ [: : :J 
[

-1 0 1J A - B = 
003 

IIA - BIIF = v'll = 3.3 (Frobenius norm), 

IIA - BIIR = 3 (row norm), and 

IIA - Bile = 4 (column norm). 

The remainder of this discussion assumes that the row norm is 
used. Similar results are obtained if any of the other norms is used 
instead. 

The condition number of a square matrix A is defined as 

K(A) = IIAIIIIK111 . 

Then 1 ~ K(A) < 00 using any norm. The condition number is 
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useful for measuring errors in calculations. A matrix is said to be 
ill-conditioned if K(A) is very large. 

If rounding or other errors are present in matrix elements, these 
errors will propagate through subsequent matrix calculations. 
They can be magnified significantly. For example, suppose that X 
and B are nonzero vectors satisfying AX = B for some square 
matrix A. Suppose A is perturbed by AA and we compute B + AB = 
(A + AA)X. Then 

(1 IABII / IIBII) 
(IIAAII / IIAII) ~ K(A), 

with equality for some perturbation AA. This measures how much 
the relative uncertainty in A can be magnified when propagated 
into the product. 

The condition number also measures how much larger in norm the 
relative uncertainty ofthe solution to a system can be compared to 
that of the stored data. Suppose again that X and B are nonzero 
vectors satisfying AX = B for some matrix A. Suppose now that 
matrix B is perturbed (by rounding errors, for example) by an 
amount AB. Let X + AX satisfy A(X + AX) = B + AB. Then 

(1IAXII / IIXII) 
dIABII / IIBII) ~ K(A), 

with equality for some perturbation AB. 

Suppose instead that matrix A is perturbed by AA. Let X + AX 
satisfy (A + AA)(X + AX) = B. If d(A,AA) = K(A)IiAAII I IIAII < 1, 
then 

(1IAxll / llxli) 
(IIAAII I IIAIi) ~K(A) / (1-d(A,AA». 

Similarly, if A-I + Z is the inverse ofthe perturbed matrix A + AA, 
then 

Moreover, certain perturbations AA cause the inequalities to 
become equalities. 

All ofthe preceding relationships show how the relative error of the 
result is related to the relative error of matrix A via the condition 
number K(A). For each inequality, there are matrices for which 
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equality is true. A large condition number makes possible a 
relatively large error in the result. 

Errors in the data-sometimes very small relative errors-can 
cause the solution of an ill-conditioned system to be quite different 
from the solution of the original system. In the same way, the 
inverse of a perturbed ill-conditioned matrix can be quite different 
from the inverse of the unperturbed matrix. But both differences 
are bounded by the condition number; they can be relatively large 
only if the condition number K(A) is large. 

Also, a large condition number K(A) of a nonsingluar matrix A 
indicates that the matrix A is relatively close, in norm, to a 
singular matrix. That is. 

11 K(A) = min(IIA - slI / IIAII) 

and 

where the minimum is taken over all singular matrices S. That is, 
if K(A) is large, then the relative difference between A and the 
closest singular matrix S is small. If the norm of A -1 is large, the 
difference between A and the closest singular matrix S is small. 

For example, let 

Then 

A = [~ .9999;99999 ] 

A-I = [-9,999,999,999 
1010 

and IIKIII = 2 X lO lD. Therefore, there should exist a perturbation 
t.A with IIt.AII = 5 X 10-11 that makes A + t.A singular. Indeed, if 

M~[: 
with IIt.AII = 5 X 10-11 , then 

A+AA~ [: 

-5 X lO-
11J 

5 X 10-11 

.99999999995J 

.99999999995 
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and A + D-A is singular. 

The figures below illustrate these ideas. In each figure matrix A 
and matrix S are shown relative to the "surface" of singular 
matrices and within the space of all matrices. Distance is measured 
using the norm. Around every matrix A is a region of matrices that 
are practically indistinguishable from A (for example, those within 
rounding errors of A). The radius of this region is liD-Ali. The 
distance from a nonsingular matrix A to the nearest singular 
matrix S is lI11K111. 

In the left diagram, li D-Ai l < li liA-III. If liD-Ali « 1/ 11KIII (or 
K(A)IID-AII / IIAII « 1), then 

relative variation in A-I = IIchange in K III / IIA-Ill 

= (IiD-AII / IIAII )K(A) 

= IID-AII / (lIIIA-III) 

= (radius of sphere) / (distance to surface) 

In the right diagram, liD-Ail > lil iA-I II . In this case, there exists a 
singular matrix that is indistinguishable from A, a nd it may not 
even be reasonable to try to compute the inverse of A . 
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The Accuracy of Numerical Solutions 
to Linear Systems 
The preceding discussion dealt with how uncertainties in the data 
are reflected in the solutions of systems of linear equations and in 
matrix inverses. But even when data is exact, uncertainties are 
introduced in numerically calculated solutions and inverses. 

Consider solving the linear system AX = B for the theoretical 
solution X. Because of rounding errors during the calculations, the 
calculated solution Z is in general not the solution to the original 
system AX = B, but rather the solution to the perturbed system 
(A + LlA)Z = B . The perturbation LlA satisfies IILlAII ,,;; f IIAII, where 
f is usually a very small number. In many cases, LlA will amount to 
less than one in the 10th digit of each element of A . 

For a calculated solution Z, the residual is R = B - AZ. Then 
IIRII ,,;; f IIAllllzll . So the expected residual for a calculated solution is 
small. But although the residual R is usua lly small, the error Z - X 
may not be small if A is ill-conditioned: 

A useful rule-of-thumb for the accuracy of the computed solution is 

( numberofc.o~rect) ;;;, ( .n~mber ~f ) -log(IIAIIIIA-111) - log(10n) 
deClma l dIgIts dIgIts carned 

where n is the dimension of A. For the HP-15C, which carries 10 
accurate digits, 

(number of correct decimal digits) ;;;' 9 - log(IIAIIIIK111) - log(n). 

In ma ny applications, this accuracy may be a dequate. When 
additional accuracy is desired, the computed solution Z can usually 
be improved by iterative refinement (also known as residual 
correction ). 

Iterative refinement involves calculating a solution to a system of 
equations, then improving its accuracy using the residual 
associated with the solution to modify that solution. 

To use iterative refinement, first calculate a solution Z to the 
original system AX = B. Z is then treated as an approximation to 
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X, in error by E = X - Z. Then E satisfies the linear system AE = 
AX - AZ = R, where R is the residual for Z. The next step is to 
calculate the residual and then to solve AE = R for E. The 
calculated solution, denoted by F , is treated as an approximation to 
E = X - Z and is added to Z to obtain a new approximation to X: 
F + Z = (X - Z) + Z = X. 

In · order for F + Z to be a better approximation to X than is Z, the 
residual R = B - AZ must be calculated to extended precision . The 
HP-15C's I MATRI X 16 operation does this. The system matrix A is 
used for finding both solutions, Z and F . The LU decomposition 
formed while calculating Z can be used for calculating F , thereby 
shortening the execution time. The refinement process can be 
repeated, but most of the improvement occurs in the first 
refinement. 

(Refer to Applications at the end of this section for a program that 
performs one iteration of refinement.) 

Making Difficult Equat ions Easier 
A system of equations EX = B is difficult to numerically solve 
accurately if E is ill-conditioned (nearly singular). Even iterative 
refinement can fail to improve the calculated solution when E is 
sufficiently ill-conditioned. However, instances arise in practice when 
a modest extra effort suffices to change difficult equations into others 
with the same solution, but which are easier to solve. Scaling and 
preconditioning are two processes to do this. 

Scaling 

Bad scaling is a common cause of poor results from attempts to 
n umerically invert ill·conditioned matrices or to solve systems of 
equations with ill·conditioned system matrices. But it is a cause 
that you can easily diagnose and cure. 

Suppose a matrix E is obtained from a matrix A by E = LAR, 
where Land R are scaling diagonal matrices whose diagonal 
elements are all integer powers of 10. Then E is said to be obtained 
from A by scaling. L scales the rows of A , and R scales the 
columns. Presumably E -1 = R -1 A-I L - 1 can be obtained either from 
A -1 by scaling or from E by inverting. 
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For example, let matrix A be 

A = [3 X ~0-40 1 ~l . 
2 1 -lJ 

The HP-15C correctly calculates A -I to 10-digit accuracy as 

Now let 

so that 

A-I = [-: -! -~]. 
-1 2-1 

[

1020 

L=R= ~ 

o 
10-20 

10-40 

10-40 

o 

10~40] . 
_10-40 

E is very near a singular matrix 

and liE - 811 / IIEII = 113 X 10-40. This means that K(8) ;;;' 3 X 1040, so 
it's not surprising that the calculated E - 1 

[

- 6.67 X 10-11 

E- 1 = 0.8569 

0.07155 

1 10-
10 J 

8.569 X 109 -4.284 X 109 

-4.284 X 109 2.142 X 109 
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is far from the true value 

[

-2 X 10-40 

E -1 = 3 

-1 

3 

-4 X 1040 

2 X 1040 

-1 J 2 X 1040 . 

_1040 

Multiplying the calculated inverse and the original matrix verifies 
that the calculated inverse is poor. 

The trouble is that E is badly scaled. A well-scaled ma trix, like A , 
has all its rows and columns comparable in norm and the same 
must hold true for its inverse. The rows and columns ofE are about 
as comparable in norm as those of A , but the first row and column 
of E-1 are small in norm compared with the others. Therefore, to 
achieve better numerical results, the rows and columns ofE should 
be scaled before the matrix is inverted. This means that the 
diagonal matrices Land R discussed earlier should be chosen to 
make LER and (LERr' = R- ' E -1L-1 not so badly scaled. 

In general, you can 't know the true inverse of matrix E in advance. 
So the detection of bad scaling in E and the choice of scaling 
matrices Land R must be based on E and the calculated E-1. The 
calculated E-1 shows poor scaling and might suggest trying 

[0 ' 0 0] L = R = ~ 105 o . 
0 105 

Using these scaling matrices, 

[3X 10'" 102~ ] LER = 1 10-30 

2 10-30 _10-30 

which is still poorly scaled, but not so poorly that the HP-15C can 't 
cope. The calculated inverse is 

[

-2 X 10-
30 

3 -1 J 
(LERr1 = 3 -4 X 1030 2 X 1030 

-1 2 X 1030 _1030 
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This result is correct to 10 digits, although you wouldn't be 
expected to know this. This result is verifiably correct in the sense 
that using the calculated inverse, 

(LERrl(LER) = (LER)(LERrl = I (the identity matrix) 

to 10 digits. 

Then E-1 is calculated as 

[

-2 X 10-40 

E-1 = R(LERrIL = 3 -4 X 1040 

-1 2 X 1040 

3 
-1 ] 

2 X 1040 , 

_1040 

which is correct to 10 digits. 

If (LERrl is verifiably poor, you can repeat the scaling, using 
LER in place of E and using new scaling matrices suggested by 
LER and the calculated (LERrl. 

You can also apply scaling to solving a system of equations, for 
example EX = B, where E is poorly scaled. When solving for X, 
replace the system EX = B by a system (LER)Y = LB to be solved 
for Y . The diagonal scaling matrices L and R are chosen as before 
to make the matrix LER well-scaled. After you calculate Y from 
the new system, calculate the desired solution as X = RY. 

Preconditioning 

Preconditioning is another method by which you can replace a 
difficult system, EX = B, by an easier one, AX = D, with the same 
solution X . 

Suppose that E is ill-conditioned (nearly singular). You can detect 
this by calculating the inverse E -I a nd observing that 1I11E-111 is 
very small compared to IIEII (or equivalently by a large condition 
number K(E)) . Then almost every row vector u T will have the 
property that Ilu Til / IluTE-III is also very small compared with IIEII, 
where E -I is the calculated inverse. This is because most row 
vectors u T will have Ilu TE-11I not much smaller than Ilu 7lIIIE-11I, and 
liE-III will be large. Choose such a row vector u T and calculate 
v T = au TE-I. Choose the scalar a so that the row vector r T, 

obtained by rounding every element of v T to an integer between 
-100 and 100, does not differ much from v T. Then rT is a row vector 
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with integer elements with magnitudes less than 100.llrTEII will be 
small compared with IlrTIIIIEIl-the smaller the better. 

Next, choose the kth element of r T having one of the largest 
magnitudes. Replace the kth row ofE by r1E and the kth row of B 
by r TB . Provided that no roundoff h as occurred during the 
evalua tion of these new rows, the new system matrix A should be 
better conditioned (farth er from singular) than E was, but the 
system will still have the same solution X as before. 

This process works best when E a nd A are both scaled so that 
every row of E and of A have roughly the same norm as every 
other. You can do this by multiplying the rows of the systems of 
equations EX = B a nd AX = D by suitable powers of 10. If A is not 
far enough from singular, though well scaled, repeat the 
preconditioning process. 

As an illustration of the preconditioning process, consider the 
system EX = B, where 

x y y y y 1 

y x y y y 0 

E= y y x y y , B = 0 

y y y x y 0 

y y y y x 0 

and x = 8000.00002 and y = -1999.99998. If you a ttempt to solve 
this system directly, the HP-1 5C calculates the solution X and the 
inverse E- 1 to be 

2014.6 1 

2014.6 1 

X "", 2014.6 a nd E -1 "'" 2014.6 1 1 1 

2014.6 1 1 

2014.6 
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Substituting, you find 

1.00146 

0.00146 

EX = 0.00146 

0.00146 

0.00147 

Upon checking (using I MATRIX I 7), you find that 1I11E-11I = 
9.9 X 10-5, which is very small compared with IIEII = 1.6 X 104 (or 
that the calculated condition number is large-II Ell liE-I II = 
1.6 X 108). 

Choose any row vector u T = (1,1,1,1,1) and calculate 

u TE- 1 = 10,073 (1,1, 1, 1, 1). 

Using a = 10-4, 

v T = auTE-1 = 1.0073 (1,1,1,1,1) 

rT = (1, 1, 1, 1, 1) 

IlrTEl1 = 5 X 10-4 

Ilr TllllEl1 = 8 X 104
. 

As expected, IlrTEl1 is small compared with IlrTIIIIEII. 

N ow replace the first row of E by 

107r TE = (1000,1000,1000,1000,1000) 

and the first row of B by 107rTB = 107. This gives a new system 
equation AX = D, where 

A= 

1000 1000 1000 1000 1000 

y 

y 

y 

y 

x 

y 

y 

y 

y 

x 

y 

y 

y 

y 

x 

y 

y 

y 

y 

x 

107 

o 
andD= 0 

o 
o 
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Note that rTE was scaled by 107 so that each row of E and A has 
roughly the same norm as every other. Using this new system, the 
HP-15C calculates the solution 

2000.000080 107 

1999.999980 -10-5 

X= 1999.999980 , with AX = -9 X 10-6 

1999.999980 0 

1999.999980 0 

This solution differs from the earlier solution and is correct to 10 
digits. 

Sometimes the elements of a nearly singular matrix E are 
calculated using a formula to which roundoff contributes so much 
error that the calculated inverse E- 1 must be wrong even when it is 
calculated using exact arithmetic. Preconditioning is valuable in 
this case only if it is applied to the formula in such a way that the 
modified row of A is calculated accurately. In other words, you 
must change the formula exactly into a new and better formula by 
the preconditioning process if you are to gain any benefit. 

Least-Squares Calculations 
Matrix operations are frequently used in least·squares calcula­
tions. The typical least-squares problem involves an n X p matrix 
X of observed data and a vector y of n observations from which you 
must find a vector b with p coefficients that minimizes 

n 

IlrII ~ = I>r 
i = 1 

where r = y - Xb is the residual vector. 

Normal Equations 

From the expression above, 

Solving the least-squares problem is equivalent to finding a 
solution b to the normal equations 
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However, the normal equations are very sensitive to rounding 
errors. (Orthogonal factorization , discussed on page 113, is 
relatively insensitive to rounding errors.) 

The weighted least-squares problem is a generalization of the 
ordinary least-squares problem. In it you seek to minimize 

n 

IIWrllJ = Lwrrr 
i = 1 

where W is a diagonal n X n matrix with positive diagon a l 
elements WI, w2, ... , wit" 

Then 

IIWrllJ = (y - Xb)TWTW(y - Xb) 
and any solution b a lso satisfies the weighted normal equations 

XTWTWXb = XTWTWy . 

These are the normal equations with X and y replaced by WX and 
Wy. Consequentially, these equations are sensitive to rounding 
errors also. 

The linearly constrained least-squares problem in volves finding b 
such that it minimizes 

IlrllJ = Ily - XbllJ 
subject to the constraints 

Cb = d ( ± Cijbj = di fori = 1, 2, .. . , m) . 
; = 1 

This is equivalent to finding a solution b to the augmented normal 
equations 

where 1, a vector of Lagrange multipliers , is part of the solution but 
isn 't used further. Again, the a ugmented eq uations are very 
sensitive to rounding errors. Note a lso that weights can also be 
included by replacing X and y with WX and Wy. 
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As an example of how the normal equations can be numerically 
unsatisfactory for solving least-squares problems, consider the 
system defined by 

Then 

a nd 

[

100,000, _100,000.] [ 0.1] 
0.1 0.1 0.1 

X= and y = . 
Q2 0.0 Q1 

0.0 0.2 0.1 

XTX = [ 10,000,000,000.05 -9,999,999,999.99J 

-9,999,999,999.99 10,000,000,000.05 

XT Y = [ 1O'000.03J . 
- 9,999.97 

However, when rounded to 10 digits , 

XTX = 
[ 

101 0 

- 1010 

which is the same as what would be calcula ted if X were rounded to 
five significant digits relative to the largest element: 

x{TO -lOr] 
The HP-15C solves XTXb = XT y (perturbing the singular matrix 
as described on page 118) a nd gets 

b = [0.060001J 
0.060000 
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with 

XTy - XTXb= . 
[

0.03] 
0.03 

However, the correct least-squares solution is 

b = [0.5000005J 
0.4999995 

despite the fact that the calculated solution a nd the exact solution 
satisfy the computed normal equations equally well. 

The normal equations should be used only when the elements of X 
are all small integers (say between -3000 and 3000) or when you 
know that no perturbations in the columns Xj of X of as much as 
IIxjll / l04 could ma ke those columns linearly dependent. 

Orthogonal Factorization 

The following orthogonal factorization method solves the least­
squares problem and is less sensitive to rounding errors than the 
normal equation method. You might use this method when the 
normal eq uations aren 't appropriate. 

Any n X p matrix X can be factored as X = QTV, where Q is an 
n X n orthogonal matrix characterized by QT = Q-l a nd V is an 
n X p upper-triangular matrix. The essential property of 
orthogonal matrices is that they preserve length in the sense that 

IIQrll J = (Qr)T(Qr) 

= r TQ1'Qr 

= rTr 

= IlrII },. 

Therefore, ifr = y - Xb, it has the same length as 

Qr = Qy - QXb = Qy - Vb. 
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The upper-tria ngular matrix U and the product Qy can be written 
as 

Then 

[
U] (P rows) 

U= 0 (n-prows) [
gJ (P rows) 

a nd Qy = . 
f (n - prows) 

IIrllJ = IIQrllJ 
=IIQy - UbllJ 
=llg - vbllJ +llfllJ 
;, Ilfll l 

with equa lity when g - Vb = O. In other words, the solution to the 
ordinary least-squares problem is a ny solution to Vb = g and the 
minimal sum of squares is IlfliJ. This is the basis of a ll numerically 
sound least-squares programs. 

You can solve the unconstrained least-squares problem in two 
steps: 

1. Perform th e orthogonal factorization of the augmented 
n X (p + 1) matrix 

where Q T = Q-I, and retain only the upper-triangular factor 
V, which you can then partition as 

[

V gJ (p rows) 
V = 0 q (1 row) 

o 0 (n - p - 1 rows) 

• L (l column) 
L-(p columns) 

Only the first p + 1 rows (and columns) of V need to be 
retained. (Note th at Q here is not the same as th at mentioned 
earlier, since this Q must a lso transform y .) 
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2. Solve the following system for b: 

(If q = 0, replace it by any small nonzero number, say 10-99.) 

The - 1 in the solution matrix automatically appears; it 
requires no additional calculations. 

In the absence of rounding errors, q = ±lly - xbll F ; this may 
be inaccurate iflql is too small , say smaller than Ily111l06. If 
you desire a more accurate estimate of Ily - xbll F , you can 
calculate it directly from X, y, and the computed solution b. 

For the weighted least-squares problem, replace X and y by WX 
and Wy, where W is the diagonal matrix containing the weights. 

For the linearly constrained least-squares problem, you must 
recognize that constraints may be inconsistent. In addition, they 
can't always be satisfied exactly by a calculated solution because 
of rounding errors. Therefore, you must specify a tolerance t such 
that the constraints are said to be satisfied when Ilcb - dll < t. 
Certainly t > IIdll / 1010 for 10-digit computation, and in some cases 
a much larger tolerance must be used. 

Having chosen t, select a weight factor w that satisfies w > Ilyll / t. 
For convenience, choose w to be a power of 10 somewhat bigger 
than Ilyll l t. Then wliCb - dll > Ilyll unless IICb - dll < t. 
However, the constraint may fail to be satisfied for one of two 
reasons: 

• No b exists for which IICb - dll < t. 
• The leading columns of C are nearly linearly dependent. 

Ch eck for the first situation by determining whether a solution 
exists for the constraints alone. When [w C wd] has been factored 
to Q[U g], solve this system for b 

(krows) [u 
(p + 1 - k rows) 0 

g ] [bJ [0 J(P rows) 
diag(q) -1 - -q (1 row) 

using any small nonzero number q. If the computed solution b 
satisfies Cb = d, then the constraints are not inconsistent. 
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The second situation is rarely encountered and can be avoided. It 
shows itself by causing at least one of the diagonal elements of U 
to be much smaller than the largest element above it in the same 
column, where U is from the orthogonal factorization wC = QU. 

To avoid this situation, reorder the columns of wC and X and 
similarly reorder the elements (rows) of b. The reordering can be 
chosen easily if the troublesome diagonal element of U is also 
much smaller than some subsequent element in its row. Just swap 
the corresponding columns in the original data and refactor the 
weighted constraint equations. Repeat this procedure if necessary. 

For example, ifthe factorization of wC gives 

_ [1.0 2.0 0.5 -1.5 
U - 0 0.02 0.5 3.0 

o 0 2.5 1.5 

0.3J 
0.1 

-1.2 

then the second diagonal element is much smaller than the value 
2.0 above it. This indicates that the first and second columns in the 
original constraints are nearly dependent. The diagonal element is 
also much smaller than the subsequent value 3.0 in its row. Then 
the second and fourth columns should be swapped in the original 
data and the factorization repeated. 

It is always prudent to check for consistent constraints. The test for 
small diagonal elements of U can be done at the same time. 

Finally, using U and g as the first k rows, add rows corresponding 
to X and y. (Refer to Least-Squares Using Successive Rows on 
page 140 for additional information.) Then solve the unconstrained 
least-squares problem with 

[WC] [Wd] X+ X and y+ y . 

Provided the calculated solution b satisfies IICb - dll < t, that 
solution will a lso minimize Ily - xbll subject to the constraint 
Cb=d. 
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Singular and Nearly Singular Matrices 
A matrix is singular if and only if its determinant is zero. The 
dete!"minant of a matrix is equal to (- 1)' times the product of the 
diagonal elements of U, where U is the upper-diagonal matrix of 
the matrix 's LU decomposition and r is the number of row 
interch anges in the decomposition. Then, theoretically, a matrix is 
singular if at least one of the diagon al elements of U , the pivots, is 
zero; otherwise it is nonsingular. 

However, because the HP-15C performs calculations with only a 
finite number of digits , some singular and nearly singular matrices 
can't be distinguished in this way. For example, consider the 
matrix 

which is singular. Using 10-digit accuracy, this matrix is 
decomposed as 

[ 

1 
LU = 

.3333333333 

which is nonsingular. The singul ar matrix B can 't be distin­
guished from the nonsingular matrix 

[ 

3 
D-

.9999999999 :] 
since they both have identical calculated L U decompositions. 

On the other hand, the matrix 
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is nonsingular. Using lO-digit accuracy, matrix A is decomposed 
as 

This would incorrectly indicate that matrix A is singular. The 
nonsingular matrix A can't be distinguished from the singular 
matrix 

c ~ [.9999:99999 .9999:99999 ] 

since they both have identical calculated L U decompositions. 

When you use the HP-15C to calculate an inverse or to solve a 
system of equations, you should understand that some singular 
and nearly singular matrices have the same calculated LU 
decomposition. For this reason, the HP-15C always calculates a 
result by ensuring that all decomposed matrices never have zero 
pivots. It does this by perturbing the pivots, if necessary, by an 
amount that is usually smaller than the rounding error in the 
calculations. This enables you to invert matrices and solve systems 
of equations without being interrupted by zero pivots. This is very 
important in applications such as calculating eigenvectors using 
the method of inverse iteration (refer to page 155). 

The effect of rounding errors and possible intentional perturba­
tions is to cause the calculated decomposition to have all nonzero 
pivots and to correspond to a nonsingular matrix A + ~A usually 
identical to or negligibly different from the original matrix A. 
Specifically, unless every element in some column of A has 
absolute value less than 10-89, the column sum norm I I~Al l e will be 
negligible (to 10 significant digits) compared with IIAlle. 

The HP-15C calculates the determinant of a square matrix as the 
signed product of the (possibly perturbed) calculated pivots. The 
calculated determinant is the determinant of the matrix A + ~A 
represented by the L U decomposition. It can be zero only if the 
product's magnitude becomes smaller than 10-99 (underflow). 
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Applications 
The following programs illustrate how you can use matrix 
operations to solve many types of advanced problems. 

Constructing an Identity Matrix 

This program creates an identity matrix In in the matrix whose 
descriptor is in the Index register. The program assumes that the 
matrix is already dimensioned to n X n. Execute the program using 
I GSB 18. The final matrix will have l's for a ll diagonal elements and 
O's for all other elements. 

Keystrokes Display 

[]]IP/RI Program mode. 

CD CLEAR I PRGM I 000-
CDI l Bll8 001-42,21, 8 
CDI MATRIX I 1 002-42,16, 1 Sets i = j = 1. 

CDIlBl l9 003-42,21, 9 
IRCl la 004- 45 0 
I RCl 11 005- 45 1 
[]]ITESTI6 006-43,30, 6 Tests i# j. 

[]]IClxl 007- 4335 
[]]ITESTI5 008-43,30, 5 Tests i = j. 
IEEXI 009- 26 Sets element to 1 if i = j. 
CDI USER ICSY6][ill] 010u 4424 Skips next step at last 
CDL®fID element. 
IGTOl9 011- 22 9 
[]]IRTNI 012- 4332 
[]]IP/RI Run mode. 

Labels used: 8 and 9. 

Registers used: Ro, R 1, and Index register. 

One-Step Residual Correction 

The following program solves the system of equations AX = B for 
X, then performs one stage iterative refinement to improve the 
solution. The program uses four matrices: 
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Matrix A B 

Input Syste m Right-Ha nd 
Matrix Matrix 

Output System Corrected 
Matrix Solution 

Keystrokes Dis play 

Wl p/ RI 

ITI CLEAR lpRGM I 000-
ITII LBLIA 001-42,21 ,11 

I RCL II MATR IX 10 002-45,16,11 
I STO II MATRIX I[QJ 003-44,16,14 

I RCL II MATRI X I[ID 004-45,16,12 

I RCL II MATR IX I[QJ 005-45,16,14 

ITI[RESQGJ[9 006-42,26,13 

G 007- 10 

ITII REsuLT I[ID 008-42,26,12 

ITI1 MATRlxI 6 009-42.16. 6 

I RCL II MATRIX I[QJ 010-45.16.14 

G 011- 10 

I RCL II MATR IX 1[9 012-45.16.13 

G 013- 40 

wi RTN I 014- 4332 
wl p/ RI 

Label used: A. 

Matrices used: A, B , C, and D . 

To use t his progra m: 

c 

Uncorrected 
Solution 

D 

LV Form 
of A 

Progra m mode. 

Stores system ma trix 
in D. 

Calculates uncorrected 
solution , C. 

Calcula tes residua l, B . 

Calculates correction, B. 

Calculates refined 
solution , B . 

Run mode. 

1. Dimension matrix A according to the system matrix and 
store those elemen ts in A . 

2. Dimension matrix B according to the right-hand matrix and 
s tore those elemen ts in B. 

3. Press I GSB 10 to calculate the corrected solution in matrix B. 
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Example: Use the residual correction progra m to calculate the 
inverse of matrix A for 

16 72J 
-10 -57 . 

-4 -17 

The theoretical inverse of A is 

[

- 29/ 3 

A -I = 8 

8/ 3 

-8/ 3 - 32 j 
512 51/ 2 . 

2/ 3 9 

Find the inverse by solving AX = B for X , where B is a 3 X 3 
identity matrix. 

First, enter the progra m from above. Then, in Run mode, enter the 
elements into matrix A (the system matrix) a nd m a trix B (the 
right·hand, identity ma trix). Press I GSB I~ to execute the program. 

Recall the elements of the uncorrected solution, matrix C: 

[

- 9.666666881 - 2.666666726 

C = 8.000000167 2.500000046 

2.666666728 0.6666666836 

-32.00000071 J 
25.50000055 

9.000000203 

This solution is correct to seven digits. The accuracy is well within that 
predicted by the equation on page 103. 

(number of correct digits) ;;;' 9 - log(iIAIIII C II ) - log(3) = 4.8. 

Recall the elements of the corrected solution, matrix B: 

[

-9.666666667 -2.666666667 

B = 8.000000000 2.500000000 

2.666666667 0.6666666667 

-32.00000000 J 
25.50000000 

9.000000000 

One iteration of refinement yields 10 correct digits in this case. 
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Solving a System of Nonlinear Equations 

Consider a system of p nonlinear equations in p unknowns: 

fori= 1,2, ... , p 

for which the solution Xl , X2, ... , xp is sought. 

Let 

Xl fl(x ) F11(x) ... F1p(x) 

X2 f 2( X) F 21(x) .. . F 2p (x) 
x = , f(x) = ,andF (x)= 

where 

a 
Fij(x) = -a f i( x) 

Xj 
for i , j = 1,2, ... , p . 

The system of equations can be expressed as f(x) = O. Newton's 
method starts with an initial guess x (O) to a root x off(x ) = 0 and 
calculates 

x (k+ 1) = x (k) - (F(x(k )))-lf(x(k)) 

until x (k + 1) converges. 

for k = 0,1,2, ... 

The program in the following example performs one iteration of 
Newton's method. The computations are performed as 

x (k + I) = x (k) - d (iI ), 

where d (k) is the solution to the p X P linear system 

F(x(k))d(k) = f (x(k )). 

The program displays the Euclidean lengths of f(x(k) ) and the 
correction d (k) at the end of each iteration. 

Example: For the random variable y having a normal distribution 
with unknown mean m and variance v 2, construct an unbiased test 
of the hypothesis that v2 = va versus the a lternative that v 2 '" VB for 
a particular value va. 
For a random sample of y consisting of Y l , Y2, ... , Yn , an unbiased 
test rejects the hypothesis if 

or 
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where 
n 

Sn = L(Yi - y)2 
i = 1 

for some constants x l and X 2' 

and 

n 
_ I,\, 
Y=-L..JYi , 

ni = 1 

If the size of the test is a (0 < a < 1), you can find xl and X2 by 
solving the system of equations (1(X) = (2(X) = 0, where 

J
X2 

h(x) = (wl2)'nexp(-w / 2)dw - 2(1 - a)r(m + 1). 
Xl 

Here x2 > xl > 0, a and n are known (n > 1), and m = (n - 1)/ 2 - 1. 

An initial guess for (Xl,X2) is 

and X~O) = XI~- l , l - a l 2 

where XJ,P is the pth percentile ofthe chi-square distribution with d 
degrees of freedom. 

For this example, 

Enter the following program: 

Keystrokes 

W[P/R[ 

[!J CLEAR [PRGM [ 
[!J [LBL I0 
2 
[ENTER I 
[!J[DIMI~ 

1 
[!J [DIM I[[) 

Display 

000-
001-42,21,11 
002- 2 
003- 36 
004-42,23,13 

005-
006-42,23,12 

Progra m mode. 

Dimensions F matrix to 
2 X 2. 

Dimensions fmatrix to 
2 X !. 
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Keystrokes Display 

1 GSB 100 007- 3212 Calculates f a nd F. 

IRCL II MATRlx I0 008-45, 16 , 11 
I RCL II MATRIX 100 009-45,16,12 
I RCL II MATRIX IlIl 010-45,16,13 
ITlI RESULT I@] 011-42,26,14 

G 012- 10 Calculates d (k) 

ITliRESULT I0 013-42,26,11 

G 014- 30 Calculates 
x (k + I) = x (k) - d (k) 

wlLSTx l 015- 4336 
ITli MATRlx I8 016-42,16, 8 Calculates IId(k )IIF' 

1 RCL II MATRIX 100 017-45,16,12 
ITl I MATRIX 18 018-42,16, 8 Calculates Ilf(x(k))I IF' 

wlRTN I 019- 4332 
ITlI LBL 100 020-42,21,12 Routine to calcula te 

f a nd F . 

ITlI MATRIX 11 021-42,16, 1 

ITlI USER II RCL 10 022u 45 11 
ITl I USER I 
ISTO I4 023- 44 4 Stores x\k) in R4• 

ITlI USER II RCL 10 024u 45 11 Skips next line for last 

ITlI USER I element. 

ISTO I5 025- 44 5 Stores x~k ) in R5. 

ISTO I5 026- 44 5 

G 027- 30 Calculates XI - x2 ' 

1 RCL I5 028- 45 5 

IRCL IG4 029-45,10, 4 
w[ill] 030- 4312 Calculates In(x2/ xI)' 

I RCL I2 031- 45 2 
1 032-

G 033- 30 

0 034- 20 Calculates 
(n - 1) In(x2 / x ,). 

G 035- 40 Calculates fJ . 
ISTo lOO 036- 4412 Stores fl in B. 

037-
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Keystrokes Display 

IRCL I2 038- 45 2 
1 039- 1 

G 040- 30 
IRCL IG 4 041-45,10, 4 Calcula tes (n - 1)lxl ' 

G 042- 30 Calculates F II . 

[Ill USER II STO l[g 043u 4413 Stores FII in C. 

[Ill USER I 
I RCL I2 044- 45 2 
1 045- 1 

G 046- 30 
IRCL IG 5 047-45,10, 5 Calculates (n - 1)1 x2' 

1 048- 1 

G 049- 30 Calculates F 12. 

[Ill USER II STO l[g 050u 4413 Stores FI 2 in C . 

[Il l USER I 
IRCL I4 051- 45 4 
IRCL I5 052- 45 5 
[Ilcm[g 053-42,20,13 Calculates integral. 

I RCL I3 054- 45 3 
1 055- 1 

G 056- 30 
2 057- 2 

0 058- 20 Calcul ates 2(a - 1). 

I RcLi2 059- 45 2 
3 060- 3 

G 061- 30 
2 062- 2 

G 063- 10 Calculates m . 

[Il[ill 064- 42 0 Calculates r(m + 1). 

0 065- 20 
G 066- 40 Calculates ( 2' 

IsTO I[[] 067- 4412 Stores (2 in B . 

IRCL I4 068- 45 4 
IGSBI[g 069- 3213 
ICHsl 070- 16 Calculates F 21 . 

[Il l USER II STO l[g 071u 4413 Stores F 21 in C . 

[Il l USER I 
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Keystrokes Display 

IRcLI5 072- 45 5 
I GSB 1[9 073- 3213 Calculates F 22 . 

[D! USER II STO 1[9 074u 4413 Stores F 22 in C. 

ITJI USER I 
WIRTN I 075- 4332 Skips this line. 

WIRTN I 076- 4332 
ITJI LBL I [9 077-42.21.13 Integrand routine. 

2 078- 2 

G 079- 10 
ICHS I 080- 16 
~ 081- 12 Calculates e-x 12 

wl LSTx l 082- 4336 
ICHsl 083- 16 
IRcL I2 084- 45 2 
3 085- 3 
G 086- 30 
2 087- 2 
G 088- 10 Calculates m . 

(Z) 089- 14 
0 090- 20 Calculates (x / 2)me-x / 2. 

wl RTN I 091- 4332 

Labels used: A, B, and C. 

Registers used: Ro (row), RI (column), R2 (n), R3 (a), R4 (XI(k») , and 
R5 (X2( k»). 

Matrices used: A (x(k + I»), B (f(x(k»)), C (F(x(k »)), and D (d(k »). 

Now run the program. For example, choose the values n = 11 and 
a = 0.05 . The suggested initia l guesses are x I (0) = 3.25 and X2(0) = 
20.5 . Remember that the display format affects t he uncertainty of 
the integral calculation. 

Keystrokes 

wlp/RI 
5 ITJI DIM IffiiJ 
11 1sTO I2 

Display 

5.0000 
11 .0000 

Run mode. 

Reserves Ro through R5· 

Stores n in R2. 
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Keystrokes Display 

. 051sT0 13 0.0500 Stores a in R3 . 

21 ENTER 11 
[IJ 1 DIM 1[6] 1.0000 Dimensions A to 2 X L 

[IJI USER I 1.0000 Activates User mode. 

[IJI MATRIX 11 1.0000 
3.25 1 STO 1[6] 3.2500 Stores x iO) from chi-square 

distribution. 

20.51 STO 1[6] 20.5000 Stores x~O) from chi-square 
distribution. 

[IJlscl 14 2.0500 01 Sets display format. 

[6] 1 .1677 00 Displays norm off(x(O)). 

ffiIJ 1.0980 00 Displays norm of 
correction d (O). 

1 RCL 1[6] 3 .5519 00 Recalls xl!) . 

1 RcLi[6] 2 .1556 01 Recalls x~!) 

By repeating the last four steps, you will obtain these results: 

k Ilf(x(k))IIF lJd< k)IIF x (k+ I) 
1 

Xkk+ l) 

3.2500 20.500 

0 1.168 1.098 3.5519 21.556 

1.105X lO- 1 1.740X 10- 1 3.5169 21.726 

2 1.918X 10-3 2.853 X 10-3 3.5162 21. 729 

3 6.021 X 10-7 9.542X 10-7 3.5162 21.729 

This accuracy is sufficient for constructing the statistical test. 
(Press [IJ ITIRl 4 to reset the display format and [IJ 1 USER I to 
deactivate User mode.) 
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Solving a Large System of Complex Equations 

Example: Find the output voltage at a radian frequency of 
w = 15 X 103 rad / s for the filter network shown below. 

L L 

V= 10 volts 
Rl = 100 ohms 
R2 = 106 oh ms 
R3 = 105 ohms 

L = 10-2 henry 
C I = 25 X 10-8 farad 
C2 = 25 X 10-6 farad 

Describe the circuit using loop currents: 

Solve this complex system for 11,12, 13, and h Then Va = (R3)(l4)' 

Because this system is too large to solve using the standard method 
for a system of complex eq uations, this a lternate method (described 
in t he owner's handbook) is used. First, enter the system matrix 
into matrix A in complex form and calculate its inverse. Note that 
wL = 150, l/wC1 = 800/ 3, and l/wC2 = 8/ 3. 

Keystr ok es 

~I p/R I 

[D CLEAR I PRGM I 

Display 

000-

Program mode. 
Clears program memory. 
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Keystrokes Display 

Wi P/ R I Run mode. 

o ITJI DIM I [ill] 0 .0000 Provides maximum 
matrix memory. 

ITJ IMATRlx lO 0 .0000 Dimensions all matrices 
to 0 X o. 

41 ENTER I8 8 

ITJ IDIM I~ 8.0000 Dimensions matrix A to 
4 X S. 

ITJ I MATRIX 11 8 .0000 

ITJ I USER I 8 .0000 Activates User mode. 

100 1sTO I~ 100.0000 Stores Re(a ll ). 

150 1 ENTER I 150.0000 

800 l ENTER I3 G 266 .6667 

Bl sTO I~ -116.6667 Stores Im(all). 

150 I ENTER I 150.0000 
8 1 ENTER 13 G 2 .6667 

B l sTO I~ 147.3333 Stores Im( a44). 

I R C L I I MATRlx l~ A 4 8 

ITJ~ A 8 4 Transforms A Cto A p . 

ITJI MATRlxl2 A 8 8 Transforms A P to A. 
ISTO IIRESULT I A 8 8 

ITJCl:El A 8 8 Calculates inverse 
ofAinA. 

Delete the second h a lf of the rows of A to provide space to store the 
right-hand matrix B. 

Keystrokes 

4 1 ENTER 18 

ITJIDIM I~ 

41 ENTER 12 

ITJI DIM 100 

Display 

8 
8 .0000 

2 
2.0000 

Redimensions matrix A to 
4 X S. 

Dimensions matrix B to 
4 X 2. 
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Keystrokes 

illi MATRlx I 1 

10 I STO I[[] 

IRCLII MATRIXl0 
I RCL II MATRIX I[[] 

ill~ 
ill I MATRIX 12 

ill I RESULT I~ 
o 
illlr.:M7 A""T""R""'lx"'1 4 

ill I MATRIX 12 

1 I ENTER Is 
ill I D I M I~ 

[EIJ I RESULT I 
ill I MATRIX 14 

m~ 

Display 

2.0000 

10 .0000 

A 4 8 
b 4 2 

Stores Re( V). (Other 
elements are 0.) 

b 8 Transforms B C to B P. 

b 8 2 Transforms B P to B. 
' b 8 2 
C 4 2 Calcula tes solution in C. 

C 2 4 Calcula tes transpose. 

C 2 8 Transforms C to C. 
8 
8 .0000 Redimensions matrix C to 

1 X 8. 

C 1 8 
C 8 Calcula tes transpose. 

C 4 2 Tran sforms cP to CC. 

Matrix C contains t he desired values of II , 12, fa, a n d 14 In 

recta ngular form. Their phasor forms are easy to com pute: 

Keystrokes 

ill I MATRIX 11 

ill I SCI 14 
I R C L I~ 

I R CL I~ 

~ml±EJ 

Display 

C 4 2 

C 4 2 
1 .9950 -04 

4 .0964 -03 

4 .1013 -03 

Resets Ro and R I . 

Recalls Re(ll)' 

Recalls Im(ll)' 

Displays 1111. 
8 .7212 01 Displays Arg(ll) in 

degrees . 

-1 .4489 -03 
-3.5633 -02 

3.5662 -02 Displays 1121. 
-9 .2328 01 
-1 .4541 -03 
-3 .5633 -02 

3 .5662 -02 Displays 1131. 
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Keystrokes Display 

Ix~YI -9.2337 01 
I RCL I[IJ 5.3446 -05 
I RC L I[IJ -2.2599 -06 
~[]]L±El 5.3494 -05 Displays 1141 . 
~ -2.4212 00 
~IEEXI50 5.3494 00 Calculates 1 vol = (R3)1 141. 
CD[£JKJ4 5.3494 
CDI USER I 5.3494 Deactivates User mode. 

The output voltage is 5.3494 L -2.4212°. 

Least-Squares Using Normal Equations 

The unconstrained least-squares problem is known in statistical 
literature as multiple linear regression. It uses the linear model 

p 

y = 2..:bj xj + r. 
j=l 

Here, bj, ... , bp are the unknown parameters, Xl, ... , Xp are the 
independent (or explanatory) variables, y is the dependent (or 
response) variable, and r is the random error having expected 
value E(r) = 0, variance a2. 

After making n observations of y and Xl> X2, . .. , xp ' this problem can 
be expressed as 

y = Xb+r 

where y is an n-vector, X is an n X p matrix, and r is an n-vector 
consisting of the unknown random errors satisfying E(r) = 0 and 
Cov(r) = E(rrT) = a2In-

If the model is correct and XTX has an inverse, then the calculated 
least-squares solution b = (XTXrIXTy has the following 
properties: 

• E(b) = b, so that b is an unbiased estimator ofb . 

• Cov(b) = E((b - b)T(b - b)) = a 2(XTXrl, the covariance matrix 
of the estimator b. 
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• E(r) = 0, where r = y - Xb is the vector of residuals . 

• E(lIy - Xbll~) = (n - p)a2, so that ;;.2 = Ilrll~/(n - p)}s an 
unbiased estimator for a2 . You can estimate Cov(b) by 
replacing a2 by ;;'2. 

The total sum of sq uares IIYII ~ can be partitioned according to 

IIYII ~ = yTy 

= (y - Xb + Xb)T(y - Xb + Xb) 
= (y - Xbf(y - Xb) - 2b T XT(y - Xb) + (Xb)T(Xb) 

= Ily - Xbll~ + IIXbll~ 
_ ( Residual ) + ( Regression ) 
- Sum of Squares Sum of Squares 

When the model is correct, 

and 

E(lly - Xbll~/( n - p)) = a2 

for b '" O. When the simpler model y = r is correct, both of these 
expectations equal a 2 

You can test the hypothesis that the simpler model is correct 
(against the alternative that the original model is correct) by 
calculating the F ratio 

F will tend to be larger when the original model is true (b '" 0) tha n 
when the simpler model is true (b = 0). You reject the hypothesis 
when F is sufficiently large. 

If the random errors have a normal distribution, the F ratio has a 
central F distribution with p and (n - p) degrees of freedom if 
b = 0 , and a non central distribution ifb '" O. A statistical test of the 
hypothesis (with probability a of incorrectly rejecting the 
hypothesis) is to reject the hypothesis if the F ratio is larger than 
the 100a percentile of the central F distribution with p a nd ( n - p) 
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degrees of freedom; otherwise, accept the hypothesis. 

The following program fits the linear model to a set of n data points 
Xi!, Xi2, ... , Xip' Yi by the method ofleast-squares. The parameters bl> 
b2, . . . , bp are estimated by the solution G to the normal equations 
X7'Xb = X7' y. The program also estimates 0

2 and the parameter 
covariance matrix Cov(b). The regression and residual sums of 
squares (Reg SS a nd Res SS) a nd the residuals are also calculated. 

The program requires two matrices: 

Matrix A: n X p with row i (xi!, x i2, ... , Xip ) 
for i = 1, 2, ... , n. 

Matrix B: n X 1 with element i (y;) for i = 1, 2, ... , n. 

The program output is : 

Matrix A: unch anged. 
Matrix B: n X 1 containing the residuals from the fit 

(Y i - b 1 xi! - .. . - bpXip) for i = 1, 2, ... , n, where b i is the 
estimate for bi. 

Matrix C: p X P covariance matrix of the parameter 
estimates. 

Matrix D: p X 1 containing the parameter estimates b1, .. • , 

bp . 

T-register: contains an estimate of 0 2 . 

Y-register: conta in s the regression s um of sq uares 
(RegSS). 

X-register: contains the residua l sum of squares (Res SS). 

The analysis of variance (ANOV A) table below partitions the total 
sum of squares (Tot SS) into the regression a nd the residual sums 
of squares. You can use the table to calculate the F ratio. 

ANOVATable 

Source 
Degrees of Sumof Mean 
Freedom Squares Square F Ratio 

Regression RegSS 
(RegSS) (RegMS) 

p 
p (ResMS) 

Residual n - p ResSS 
(ResSS) 

(n - p) 

Total n TotSS 
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The program calculates the regression sum of squares unadjusted 
for the mean because a constant term may not be in the model. To 
include a constant term, include in the model a variable th at is 
identically equal to one. The corresponding parameter is then the 
constant term. 

To calculate the mean·adjusted regression sum of squares for a 
model containing a constant term, first use the program to fit the 
model and to find the unadjusted regression sum of squares . Then 
fit the simpler model y = b1 + r by dropping all variables but the 
one identically equal to one (b" for example) and find the 
regression sum of squares for this model, (Reg SS) c. The mean­
adjusted regression sum of squares (R eg SS) A = Reg SS -
(Reg SS) c. Then the ANOVA table becomes: 

ANOVA Table 

Source Degrees of Sumof Mean F Ratio 
Freedom Squares Square 

Regression I p - l (RegSS)A (RegSS)A (Reg MS)A 
Constant (p - l) (ResMS) 

Constant (RegSS)c (ResSS)c 

Residual n - p ResSS 
(ResSS) 

(n-p) 

Total n TotSS 

You can then use the F ratio to test whether the full model fits data 
significantly better than the simpler model y = b1 + r. 
You may want to perform a series of regressions, dropping 
independent variables between each. To do this, order the variables 
in the reverse order that they will be dropped from the model. They 
can be dropped by transposing the matrix A, redimensioning A to 
have fewer rows, and then transposing A once again. 

You will need the original dependent variable data for each 
regression. If there is not enough room to store the original data in 
matrix E, you can compute it from the output of the regression fit. 
A subroutine has been included to do this. 
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This program has the following characteristics: 

• If the entire program is keyed into program memory, the sizes 
of nand p are required to satisfy n ;;;, p and (n + p )(p + 1) ~ 56. 
That is , 

if pis 1 2 3 4 

then n max is 27 16 11 7 

This assumes that only data storage registers Ro and Rl are 
allocated. If subroutine "B" is omitted , then n ;;;, p and 
(n + p)(p + 1) ~ 58. That is, 

if pis 1 2 3 4 

then n max is 28 17 11 7 

• Even though subroutine "B" uses the residual function with 
its extended precision, the computed dependent variable data 
may not exactly agree with the original data. The agreement 
will usually be close enough for statistical estimation and 
tests. If more accuracy is desired, the original data can be 
reentered into matrix B. 

Keystrokes Display 

WlP/RI Program mode. 

ITl CLEAR I PRGM I 000-
ITliLBLI0 001-42,21,11 Program to fit model. 

I RcLiI MATRIX 100 002-45,16,12 
ITlI MATRIX 18 003-42,16, 8 
w[ZJ 004- 4311 Calculates Tot SS. 
I RCL II MATRIX 10 005-45,16,11 

I ENTER I 006- 36 
ITlI RESULT I [I] 007-42,26,13 
ITlI MATRIX i 5 008-42,16, 5 Calculates C = A TA. 

wlLSTx l 009- 4336 
I RCL II MATRIX 100 010-45,16,12 
ITl [RISQLTJ@] 011-42,26,14 

ITlI MATRIX 15 012-42,16, 5 Calculates D = A TB. 

~ 013- 34 
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Keystrokes 

IRCL II MATRlx I0 
~ 
[Ill RESULT I lID 
[Ill MATRIX 16 

[IlIMATRlxla 
[QJ(Z] 
IRCLiloIMI0 
G 
G 
I ENTER I 
IENTERI 
[Bill ;:::1 M7-:A-=TR=IX~1 [I] 
[Ill RESULT I [I] 

G 

[QJIRtl 
[Bill 1;:::M;:"'A-=TR=lx~1 lID 
[IlIMATRlxla 
[QJ(Z] 
G 
[QJILSTxl 
[QJI RTN I 
[Il l LBL I lID 

IRCLIIMATRlxl0 
I RCL II MATRIX I[QJ 
~ 
[Ill RESULT I lID 
[Ill MATRIX 16 
I RCL II MATRIX I[QJ 
ICHS I 
[QJI RTN I 

Display 

014- 10 Calculates parameters in 
D. 

015-45.16.11 
016- 34 
017-42.26.12 
018-42.16. 6 Calcul ates r esiduals offit 

inB. 

019-42.16. 8 
020- 43 11 Calculates Res SS. 

021-45.23.11 
022- 30 
023- 10 Calculates 0 2 estimate. 

024- 36 
025- 36 
026-45.16.13 
027-42.26.13 

028- 10 Calculates covariance 

029- 4333 
030-45.16.12 
031-42.16. 8 
032- 43 11 

matrix in C. 

033- 30 Calculates Reg SS . 
034- 43 36 Returns Res SS. 
035- 4332 
036-42.21 .12 Subroutine to reconstruct 

dependent variable data. 

037-45.16.11 
038-45.16.14 
039- 16 
040-42.26.12 
041-42.16. 6 Calculates B = B + AD. 

042-45.16.14 
043- 16 
044- 4332 

Labels used: A and B. 
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Registers used: Ro and R J • 

Matrices used: A , B , C , and D . 

To use this program: 

1. Press 1 [Ill DIM I [ill] to reserve registers Ro and R I . 

2. Dimension matrix A a ccording to the number of observa­
tions n and the number of parameters p by pressing n I ENTER] 
P [Ill DIM 10· 

3. Dimension matrix B according to the number of observa-
tions n (and one column) by pressing n I ENTER 11 [Ill DIM I~ . 

4. Press[Il IMATRIX I1 tosetregistersRoandR I . 

5. Press [Ill USER I to activate User mode. 

6. For each observation, store the values of the p variables in a 
row of matrix A. Repeat this for the n observations. 

7. Store the values of the dependent variable in matrix B. 

8. Press 0 to calculate and display the Res SS . The Y-register 
contains the Reg SS and the T-register contains the 0 2 

estimate. 

9. Press I RCL I@]to observe each of the p parameter estimates. 

10. If desired, press ~ to recalculate the dependent variable 
data in matrix B. 

Example: Compare two regression models of the annual change in 
the consumer price index (CPI) using the annual change in the 
producer price index (PPI) and the unemployment rate (UR): 

and 

where y , X2, and X 3 represent CPl, PPl, and UR (all as percentages). 
Use the following data from the U.S.: 
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Year CPI PPI UR 

1969 5.4 3.9 3.5 
1970 5.9 3.7 4.9 
1971 4 .3 3.3 5.9 
1972 3.3 4.5 5.6 
1973 6.2 13.1 4.9 
1974 11 .0 18.9 5.6 
1975 9.1 9.2 8.5 
1976 5.8 4 .6 7.7 
1977 6.5 6.1 7.0 
1978 7.6 7.8 6.0 
1979 11.5 19.3 5.8 

Keystrokes Display 

[]]I P/R I Run mode. 

ITJI MATRIX I 0 
11 1 ENTER 13 3 
ITJI DIM 10 3.0000 Dimensions A as 

11 X 3. 
11 I ENTER 11 
ITJI DIM II]] 1.0000 Dimensions B as 11 X l. 

ITJI MATRIX 11 1.0000 
ITJI USER I 1 .0000 
1 1sTO l0 1.0000 Enters independent 

variable data. 

39 1sTO I0 3 .9000 
35 1sTO l0 3 .5000 

1 ISTO I0 1.0000 
19.3 1sT0 10 19.3000 
5.8 1sT0 10 5.8000 
5.4 1 STO II]] 5.4000 Enters dependent variable 

data. 

5.9 1 STO II]] 5 .9000 

11.5 1 STO II]] 11.5000 
0ITJ0RJ 9 13.51217504 Res SS for full model. 

ern 587.9878252 Reg SS for fu ll model. 
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Keystrokes Display 

[[U[[U 1 .689021880 0 2 estimate. 

[RCLI @J 1.245864326 b1 estimate. 

[RCLI@J 0.379758235 b2 estimate. 

IRCLI@J 0.413552218 b3 estimate. 

[[] d 3 Recalculates dependent 
data. 

[RCLII MATRIXI0 A 11 3 
ITl[ MATRIXI4 A 3 11 
2 [ENTER l l l 11 
ITli DIM I0 11 .00000000 Drops last column of A. 

[RCL II MATRIX 10 A 2 11 
ITl[ MATRlxI4 A 11 2 New A matrix. 

0 16.78680552 Res SS for reduced model. 

[[U 584.7131947 Reg SS for reduced model. 

[[U[[U 1 .865200613 0 2 estimate. 
[RCLI@J 3.701730745 b1 estimate. 

[RCLI@J 0.380094935 b2 estimate. 
[[] d 2 Recalculates dependent 

data. 

[RCLII MATRIXI0 A 11 2 
ITli MATRlxI4 A 2 11 
1 I ENTER 111 11 
ITl[ DIM I0 11.00000000 Drops next column of A. 

IRCL il MATRlxI0 A 1 11 
ITli MATRlxI4 A 11 New A matrix. 

0 68.08545454 Res SS. 
[R+I 533.4145457 Reg SS for constant. 
[[U[[U 6 .808545454 0 2 estimate. 
IRCLI@J 6.963636364 b1 estimate. 

ITlI USERI 6.963636364 Deactivates User mode. 

ITl[lliJ4 6.9636 

The Reg SS for the PPI variable adjusted for the constant term is 
(Reg SS for reduced model) - (Reg SS for constant) = 

51.29864900. 
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The Reg SS for the UR variable adjusted for the PPI variable and 
the constant term is 

(Reg SS for full model) - (Reg SS for reduced model) = 
3.274630500. 

Now construct the following ANOV A table: 

Source 
Degrees of Sum of Mean 

F Ratio 
Freedom Squares Square 

UR I PPI, Constant 3.2746305 3.2746305 1.939 

PPII Constant 51.2986490 51.2986490 30.37 

Constant 533.4145457 533.4145457 315.8 

Residual (full 
model) 8 13.5121750 1.68902188 

Total 11 601.5000002 

The F ratio for the unemployment rate, adjusted for the producer 
price index change and the constant is not statistically significant 
at the 10-percent significance level (0' = 0.1). Including the 
unemployment rate in the model does not significantly improve the 
CPI fit . 

However, the F ratio for the producer price index adjusted for the 
constant is significant at the O.l-percent level (0' = 0.001). Including 
the PPI in the model does improve the CPI fit. 

Least-Squares Using Successive Rows 

This program uses orthogonal factorization to solve the least­
squares problem. That is, it finds the parameters b1, •. • , bp that 
minimize the sum of squares IlrIIJ = (y - Xb)T(y - Xb) given the 
model data 
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x = [::: ::: :::l and Y = [~:l' 
~nl X n 2 ~np ~n 

The program does this for successively increasing values of n, 
although the solution b = b ( n ) is meaningful only when n;' p. 

It is possible to factor the augmented n X (p + 1) matrix [X y] into 
QTV, where Q is an orthogonal matrix, 

(prows) 

(1 row), 

(n - p - 1rows) 

and U is an upper-triangular matrix. If this factorization results 
from including n rows rm = (x m I , Xm2' ... , x mp' Y m ) for m = 1, 2, ... , n 
in [X y], consider how to advance to n + 1 rows by appending row 
rn + 1 to[X y]: 

The zero rows of V are discarded. 

Multiply the (p + 2) X (p + 1) matrix 

A = r~ :] 
rn + 1 

(p rows) 

(1 row) 

(1 row) 
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by a product of elementary orthogonal matrices, each differing 
from the identity matrix Ip + 2 in only two rows and two columns. 
For k = 1,2, ... , p + 1 in turn, the kth orthogonal matrix acts on the 
kth and last rows to delete the kth element of the last row to alter 
subsequent elements in the last row. The kth orthogonal matrix 
has the form 

o 

1 
c 8 

o 

-8 c 

where c = cos(O), 8 = sin(O), and 0 = tan-I(ap + 2.k1 akk)' After p + 1 
such factors have been applied to matrix A, it will look like 

[
u* g*] (p rows) 

A * = 0 q* (1 row) 

o 0 (1 row) 

where U* is also an upper-triangular matrix. You can obtain the 
solution b(n + I) to the augmented system of p + 1 rows by solving 

g*] [b(n+I)] = [0 ]. 
q* -1 -q* 

By replacing the last row of A * by rn + 2 and repeating the factoriza­
tion , you can continue including additional rows of data in the 
system. You can add rows indefinitely without increasing the 
required storage space. 

The program below begins with n = 0 and A = O. You enter the 
rows rm successively for m = 1, 2, ... , p - 1 in turn. You then obtain 
the current solution b after entering each subsequent row. 
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You can also solve weighted least-squares problems and linearly 
constrained least-squares problems using this program. Make the 
necessary substitutions described under Orthogonal Factorization 
earlier in this section. 

Keystrokes Display 

wlP/RI Program mode. 

I] CLEAR I PRGM I 000-
1]1 LBL ICE] 001-42,21,11 Program to input new 

row. 

ISTOl2 002- 44 2 Stores weight in R2. 

1 003-
ISTO l l 004- 44 Stores I = 1 in R I . 

I]ILBLI4 005-42.21, 4 
I RCL II DIM ICE] 006-45.23.11 
~ 007- 34 
ISTOlo 008- 44 0 Stores k = p + 2 in RD. 
I]ILBLI5 009-42.21. 5 
I RCLll 010- 45 1 
IRlsl 011- 31 
IRCL I2 012- 45 2 
0 013- 20 
1]1 USER II STO ICE] 014u 4411 
1]1 USER I 
IGTO l5 015- 22 5 
IGTO l4 016- 22 4 
1]1 LBL I[[) 017-42.21,12 Program to update 

matrix A. 
I RCL II DIM ICE] 018-45,23.11 Recalls dimensions p + 2 

andp + l. 
~ 019- 34 
ISTol2 020- 44 2 Stores p + 2 in R2. 

1]1 MATRIX ! 1 021-42.16. Sets k = I = l. 
I][LBLll 022-42,21 . 1 Branch to update ith row. 
W[Q]O 023-43. 5. 0 
[RCL]2 024- 45 2 
[RcLi a 025- 45 0 
[RCL lwCE] 026-45.43.11 Recalls a p + 2,k ' 

[ RCL ICE] 027- 4511 Recalls akk . 
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Key strokes Display 

CIli TEST 12 028-43.30. 2 Tests a kk < O. 

CIl (gJo 029-43. 4 . 0 Sets fl ag 0 for negative 
diagonal elemen t. 

CIlI ABS I 030- 4316 
CIl~ 031- 43 1 Calcul ates e. 
CIllcLx l 032- 4335 
1 033-
CDI +R I 034- 42 Calcula tes x = cos e a nd 

y = sin e. 
CIl [TIJo 035-43. 6. 0 
ICHs l 036- 16 Sets x = e a nd y = s. 

CDITl 037- 4225 Formss + ie. 

ern 038- 33 
CDI LBL 12 039-42.21 . 2 Subroutine to rota te row k. 

CIlcrn 040- 4333 
IRCL I0 041- 4511 Recalls akl' 

I RCL I2 042- 45 2 
IRCLll 043- 45 1 
IRCL ICIl0 044-45.43.11 Recalls ap + 2. I' 

CDITl 045- 4225 Forms a kl - iap + 2,1' 

0 046- 20 
IRCL I2 047- 45 2 
I RcLil 048- 45 1 
ISTO lCIl0 049-44.43.11 Stores new akl ' 

CDI Re~lm l 050- 4230 
CDI USER II STO 10 051u 4411 Stores new ap + 2,1, 

CD luSER I increments Ro a nd RI· 
I RCL l l 052- 45 1 Recalls 1 (column ). 

IRCL lo 053- 45 0 Recalls k (row). 
CIlIx-;;;; yl 054- 4310 Tests k:;;; I. 
IGTO l2 055- 22 2 Loops back unti l column 

reset to 1. 

CIlcm s 056- 43. 5. 8 Turns off Complex mode. 

ISTO ll 057- 44 Stores k in RI (I). 

IRCL I2 058- 45 2 
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Keystrokes Display 

[[]Ix:;;;;;y! 059- 4310 Tests p + 2 :;;;;;; k. 

[[]IRTN I 060- 4332 Returns at last row. 

IGTOll 061- 22 1 Loops back until last row. 

ITlllBll[Il 062-42,21,13 Program to calculate 
current solution. 

IRCli i oIMI0 063-45,23,11 
IENTERI 064- 36 
ITlIDlMI0 065-42,23,11 Eliminates last row of A. 

ISTO lo 066- 44 0 Stores p + 1 in RD. 

ISTOll 067- 44 1 Stores p + 1 in RI . 

1 068-
ITlIOIM 1[Il 069-42,23,13 Dimensions matrix e to 

(p + 1) Xl. 

0 070- 0 
I STO II MATRIX 1[Il 071-44,16,13 Sets matrix e to O. 

IEEXI 072- 26 
9 073- 9 
9 074- 9 
ICHS I 075- 16 Forms 10-99 

IRCll0 076- 45 11 Recalls q = ap + I ,p + I ' 

[[] Ix=o l 077- 4320 Tests q = O. 

Dill 078- 33 Uses 10-99 if q = O. 

ICHS I 079- 16 
IRCl lO 080- 45 0 
1 081- 1 
ISTOI[[][Il 082-44.43,13 Sets cp + 1,1 = -q. 

I RCl II MATRIX 1[Il 083-45,16,13 
IRClIIMATRlxI0 084-45,16,11 
ITlIRESUlT I[Il 085-42,26,13 
G 086- 10 Stores A-Ie in e. 
IRCl lo 087- 45 0 
1 088-
G 089- 40 
IRCl lo 090- 45 0 
ITl i OIM I0 091-42,23,11 Dimensions matrix A as 

(p + 2) X (p + 1). 

092-
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Keystrokes 

[]TI]0 
[IJI MATRlx I 1 

[]]IRTN I 

Display 

093- 30 
094-
095-42,23 ,13 

096- 45 11 

097-42,16, 1 

098- 4332 

Dimensions matrix C as 
pX1. 

Recalls q. 

Sets k = I '" 1. 

Labels used: A, B, C, and 1 through 5. 

Registers used: Ro, R) , and R2 (p + 2 and w). 

Matrices used: A (working matrix) a nd C (parameter estimates). 

Flags used: 0 and 8. 

With this progra m stored, the HP-15C h as enough memory to work 
with up to p = 4 para meters . If programs "A" and "C" are deleted, 
you can work with p = 5 parameters. In either case, there is no limit 
to the number of rows that you can enter. 

To use this program: 

1. Press 2 [IJI DIM I [ill] to reserve registers Ro through R2. 

2. Press [IJI USER I to activate User mode. 

3. Enter (p + 2) and (p + 1) into the stack, then press [IJI DIM 10 
to dimension matrix A. The dimensions depend on the 
number of parameters that you use, denoted by p. 

4. Press 0 I STO II MATRIX 10 to initialize ma trix A. 

5. Enter the weight Wk of the current row, then press 0 . The 
display shou ld show 1.0000 to indicate that the program is 
ready for the first row element. (For ordinary least-sq uares 
problems, use Wk = 1 for each row.) 

6. Enter the elements of the row m of ma trix A by pressing X m ) 

I RIS I Xm 2 I RIS I ... X mp I RIS I Ym I RIS [. After each element is 
entered, the display should show the number of the next 
element to be entered. (If you make a mistake while entering 
the elements, go back a nd repeat steps 5 a nd 6 for that row. 

7. Press []] to update the factorization to include the row 
entered in the previous two steps. 
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8. Option ally, press [Ij []] 0 to calculate a nd display the 
residua l sum of sq uares q2 and to calculate the current 
solution h . Then press I RCL l[Ijp times to display bl> b2 , ... , bp 

in turn. 

9. Repeat steps 5 through 8 for each additional row. 

Example : Use this program and the CPl data from the previous 
example to fit the model 

Y = bl + b 2x 2 + b 3X3 + r, 
where Y, X2, a nd X3 represent the CPl, PPl , a nd UR (all as 
precentages). 

This problem involves p = 3 parameters, so matrix A should be 
5 X 4. The rows of matrix A are (1, x m 2, x m3, Ym) for m = 1,2, ... , 11 . 
Each row has weight Wm = 1. 

Keystrok es D isplay 

[]]I p/ RI Run mode. 

2 [IJ I DIM I [ill] 2 .0000 Reserves Ro th rough R2. 

[IJ I USER I 2 .0000 Activates User mode. 

[IJI MATRIX 10 2 .0000 Clears matrix memory. 
5 1ENTER I4 4 
[IJI DIM 10 4 .0000 Dimensions matrix A to 

5 X 4. 

o I STO II MATRIX 10 0 .0000 Stores zero in all elements. 

1 0 1.0000 Enters weight for row 1. 

1 1 R/S I 2 .0000 EntersxII' 
3.9I R/sl 3 .0000 Enters x1 2' 

3.5 IR/sl 4.0000 Enters x13' 

5.41 R/ S I 1.0000 Enters YI' 

lID 5.0000 Updates factorization. 

10 1.0000 Enters weight for row 11. 
1 1R/sl 2 .0000 Enters Xll ,l' 

19.3 IR/sl 3 .0000 Enters Xll ,2' 

5.81 R/sl 4 .0000 Enters xll ,3' 

11 .5I R/s l 1 .0000 Enters YII ' 
lID 5 .0000 Updates factorization. 
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Keystrokes Display 

[9 3 .6759 Calculates current 
estimates and q. 

ITllIlKl9 3.675891055 
w[ZJ 13.51217505 Calculates residual sum of 

squares q2. 

1 RCL 1[9 1.245864306 Displays b\IP 

1 RCL 1[9 0 .379758235 Displays bkll ) 

1 RCL 1[9 0.413552221 Displays bhll ). 

These estimates agree (to within 3 in the ninth significant digit) 
with the results of the preceding example, which uses the normal 
equations. In addition, you can include additional data and update 
the parameter estimates. For example, add this data from 1968: 
CPI = 4.2, PPI = 2.5, and UR = 3.6 . 

Keystrokes Display 

10 1.000000000 Enters row weight for new 
row. 

1 1 RIS 1 2 .000000000 Enters X12,1' 
2.51 RIS 1 3 .000000000 Enters XI2,2' 

36 1 RIS 1 4 .000000000 Enters xI2,3' 

4.2 1 RIS 1 1.000000000 Enters Y12' 
[]] 5.000000000 Updates factorization. 

[9 3.700256908 
w[ZJ 13.69190119 Calculates residual sum of 

squares. 

1 RcLI [9 1.581596327 Displays b\12). 

1 RcLI [9 0.373826487 Displays bkI2). 

1 RCL 1[9 0.370971848 Displays bhl2) 

ITllIlKl4 0 .3710 
ITlIUSER I 0 .3710 Deactivates User mode. 

Eigenvalues of a Symmetric Real Matrix 

The eigenvalues of a square matrix A are the roots Aj of its 
characteristic equation 

det(A - AI) = o. 
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When A is real and symmetric (A = AT) its eigenvalues Aj are all 
real and possess orthogonal eigenvectors qj. Then 

Aqj = Ajqj 

and 

The eigenvectors (q l,q2, ... ) constitute the columns of an orthogonal 
matrix Q which satisfies. 

QT AQ = diag (A),A2' ... ) 

and 

QT = Q-l. 

An orthogonal change of variables x = Qz, which is equivalent to 
rotating the coordinate axes, changes the equation of a family of 
quadratic surfaces (x TAx = constant) into the form 

k 

zT(QT AQ)z = I>jz7 = constant. 
j 

With the equation in this form , you can recognize what kind of 
surfaces these are (ellipsoids, hyperboloids, paraboloids, cones, 
cylinders, planes) because the surface's semi-axes lie along the new 
coordinate axes. 

The program below starts with a given matrix A that is assumed to 
be symmetric (if it isn't, it is replaced by (A + A T) / 2, which is 
symmetric). 

Given a symmetric matrix A, the program constructs a skew­
symmetric matrix (that is, one for which B = -BT) using the 
formula 

if i ¥- j and aij ¥- 0 

if i = j or aU = o. 

Then Q = 2(1 + B)-1 - 1 must be an orthogonal matrix whose 
columns approximate the eigenvalues of A; the smaller are a ll the 
elements of B, the better the approximation. Therefore QT AQ must 
be more nearly diagonal than A but with the same eigenvalues. If 
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QT AQ is not close enough to diagonal, it is used in place of A above 
for a repetition of the process. 

In this way, successive orthogonal transformations QJ> Q 2, Q 3, ... 
are applied to A to produce a sequence At , A 2, A 3, ... , where 

with each successive Aj more nearly diagonal than the one before. 

Th is process normally leads to skew matrices whose elements are 
a ll small and Aj rapidly converging to a diagonal matrix A. 
However, if some of the eigenvalues of matrix A are very close but 
far from the others, convergence is slow; fortunately, th is situation 
is rare. 

The program stops after each iteration to display 

l/Z L loff-diagonal elements of A) / IIAjIlF 
j 

which measures how nearly diagonal is A j . If this measure is not 
negligible, you can press I RIS I to calculate Aj + 1; if it is negligible, 
then the diagonal elements of Aj approximate the eigenvalues of A. 
The program needs only one iteration for 1 X 1 and 2 X 2 matrices, 
and rarely more than six for 3 X 3 matrices. For 4 X 4 matrices the 
program takes slightly longer and uses all available memory; 
usually 6 or 7 iterations are sufficient, but if some eigenvalues are 
very close to each other and relatively far from the rest, then 10 to 
16 iterations may be needed. 

Keystrok es Display 

ml p/ RI Program mode. 

[IJ CLEAR I PRGM I 000-
[IJ ILBL I(K] 001-42.21.11 
I RCL II MATRI X I(K] 002-45.16.1 1 
I STO II MATRIX I~ 003- 44.16.12 Dimensions B. 

I STO II MATRIX I [I) 004- 44.1 6 .1 3 Dimensions C. 

[IJ I MATRIX 14 005- 42.16. 4 Transposes A. 

I R CLII MATRlxl~ 006-45 .16.12 
I STO II RESULT I 007- 4426 
G 008- 40 
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Keystrokes Display 

2 009- 2 

G 010- 10 
[STO [[ MATRIX i~ 011-44,16,11 Calculates 

A = (A + A T) / 2. 

ITl[MATRIX [8 012-42,16, 8 Calculates IIAIIF' 
[ sTo l 2 013- 44 2 Stores IIAllFin R2· 

w[cLxl 014- 4335 
i STO I3 015- 44 3 Initializes off-diagonal 

sum. 

[STO II MATRIX I~ 016-44,16,13 Sets C = O. 

ITliMATRIXI1 017-42,16, 1 Sets Ro = RJ = l. 
ITlI LBL I 0 018-42,21, 0 Routine to construct Q. 
[ RcLio 019- 45 0 
I RCL I 1 020- 45 
Wl TEST I5 021-43,30, 5 Tests row = column. 

IGTo l 3 022- 22 3 

Wl TEST I7 023-43,30, 7 Tests column > row. 

IGTO l l 024- 22 
[ill 025- 34 
IRCLlw[[] 026-45,43,12 
ICHS I 027- 16 
ITlI USER I[ STO I[[] 028u 4412 Sets bij = -bji. 

ITlI USER I 
IGTO IO 029- 22 0 
ITl I LBL 11 030-42,21, 1 Routine for column > row. 

[ RCL IW~ 031-45,43,11 
WIABS I 032- 4316 Calculates 1 aij I· 
ISTO IG3 033-44,40, 3 Accumulates off-diagonal 

sum. 

WILSTx l 034- 4336 
I ENTER I 035- 36 
G 036- 40 Calculates 2aij' 

I RcLio 037- 45 0 
IENTER I 038- 36 
IRCLlW~ 039-45,43,11 Recalls a ii ' 

IRCLll 040- 45 1 
IENTER I 041- 36 
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Key strokes Display 

IRCL lw0 042-45.43.11 Recalls a jj. 

G 043- 30 Calculates aii - ajj. 

W lTEST I3 044-43.30. 3 Tests x ;" 0. 

IGTo l2 045- 22 2 
ICHs l 046- 16 Keeps angle of rota tion 

between -900 a nd 900
• 

~ 047- 34 
ICHs l 048- 16 

~ 049- 34 
ITl iLBL I2 050-42.21 . 2 

W~ 051- 43 1 Calcula tes angle of 
rota tion. 

w lcLx l 052- 4335 
4 053- 4 

G 054- 10 
ITAN I 055- 25 Calculates bij . 

ITl I USER II STO I lID 056u 4412 
ITlI USER I 
IGTO IO 057- 22 0 
ITl I LBL 13 058-42.21. 3 Routine for row = column . 

1 059-
ISTo l[9 060- 4413 Sets Gii = l. 
ITl I USER II STO I lID 061u 4412 Sets bii = l. 
ITlI USER I 
IGTO IO 062- 22 0 
I RCL I3 063- 45 3 
IRCLIG 2 064-45.10. 2 Calculates off·dia gonal 

ra tio. 

IRl sl 065- 31 Displays ratio. 

2 066- 2 
I RCL II MATRIX I lID 067-45.16.12 

G 068- 10 
I RCL II MATRIX 1[9 069-45.16.13 
G 070- 30 Calcula tes 

B = 2(1 + skewf ' - I. 

IRCL II MATRlxI0 071-45.16.11 
ITl [RESULf] [9 072-42.26.13 
ITl I MATRIX 15 073-42.16. 5 Calculates C = B TA . 
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I RCL II MATRIX IOO 
[IlIRESULTI~ 

o 
IGTOI~ 
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Display 

074-45,16,12 
075-42,26,11 
076- 20 Calculates A = BT AB. 

077- 2211 

Labels used: A, 0, 1, 2, and 3. 

Registers used: Ro, RI , R2 (off-diagonal sum), and R3 (1IAjII F ). 

Matrices used: A (A), B (Q), and C. 

To use the program: 

1. Press 4 [Ill DIM I [ill] to reserve registers Ro through R4. 

2. Press [Ill USER Ito activate User mode. 

3. Dimension and enter the elements of matrix A using [Ill DIM I 
~ and I STO I ~. The dimensions can be up to 4 X 4, provided 
that there is sufficient memory available for matrices Band 
C having the same dimensions also. 

4. Press ~ to calculate and display the off-diagonal ratio. 

5. Press I RIS I repeatedly until the displayed ratio is negligible, 
say less than 10-8. 

6. Press I RCL I ~repeatedly to observe the elements of matrix A. 
The diagonal elements are the eigenvalues. 

Example: What quadratic surface is described by the equation 
below? 

Keystrokes 

[]]I P/R I 
4 [Il I DIM I [ill] 
[Ill USER I 

= 2XjX2 + 4XIX3 + 2x~ + 6X2X3 + 4x~ 

=7 

Display 

4.0000 

4.0000 

Run mode. 

Allocates memory. 

Activates User mode. 
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Keystro k es D is p lay 

3 [ENTER 1[Il[ DIM 10 3 .0000 Dimensions A to 3 X 3. 

[Il[ MATRIX 11 3.0000 Sets Ro and Rl to l. 

0 i sTo l0 0 .0000 Entersall' 

1 [sTo l0 1 .0000 Enters a1 2' 

3 1sTO I0 3.0000 Enters a 32' 

4[STOI0 4.0000 Enters a 33' 

0 0 .8660 Calculates ratio- too 
large. 

IRIsl 0.2304 Again , too large. 

IRIsl 0.1039 Again , too large. 

[RISI 0.0060 Again , too large. 

[RIS I 3.0463 -05 Again, too large. 

[RISI 5.8257 - 10 Negligible ratio. 

[RCLI0 -0 .8730 Recalls all = AI' 

[RCLI0 -9 .0006 - 10 Recalls a12. 

[RCLI0 - 2 .0637 -09 Recalls a1 3' 

[RCLI0 - 9 .0006 - 10 Recalls a 2l' 

[RCLI0 9 .3429 -11 Recalls a22 = A2' 

[RCLI0 1.0725 -09 Recalls a 23' 

IRCLI0 - 2 .0637 -09 Recalls a31' 

IRCLI0 1.0725 - 09 Recalls a 32' 

IRCLI0 6 .8730 Recalls a 33 = A3' 
[Il[ USER I 6 .8730 Deactivates User mode. 

In the new coordinate system the equation of the quadratic surface 
is approximately 

-O.8730zY + Oz~ + 6.8730z~ = 7. 

This is the equation of a hyperbolic cylinder. 

Eigenvectors of a Symmetric Real Matrix 

As discussed in the previous application, a real symmetric matrix 
A has real eigenvalues A], A2, ... and corresponding orthogonal 
eigenvectors q ], Q2, .. . . 
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This program uses inverse itera tion to calculate an eigenvector q k 
that corresponds to the eigenvalue Ak such that IlqkllR = 1. The 
technique uses an initial vector z(O) to calculate subsequent vectors 
w(n ) and z ( n) repeatedly from the equations 

(A - AI)w(n + 1) = z (n) 

z(n + 1) = sw(n + 1) I llw(n + 1)IIR 

where s denotes the sign of the first component of w ( n + 1) having 
the largest absolute value. The iterations continue until z(n) 

converges. That vector is an eigenvector qk corresponding to the 
eigenvalue Ak' 
The value used for Ak need not be exa ct; the calculated eigenvector 
is determined accurately in spite of small inaccuracies in Ak ' 
Furthermore, don't be concerned about having too accurate an 
approximation to Ak; the Hp·15C can calculate the eigenvector 
even when A - AkI is very ill-conditioned. 

This technique requires that vector z(O) have a nonzero component 
along the unknown eigenvector q k. Because there are no other 
restrictions on z(O) , the program uses random components for z(O) 
At the end of each iteration, the program displays Ilz(n + 1) - z(n) IIR 
to show the rate of convergence. 

This program can accommodate a matrix A that isn't symmetric 
but has a diagonal Jorda n canonical form-that is, there exists 
some nonsingular matrix P such that p -1 AP = diag(A I ,A2,"') ' 

Keystrokes 

[]] IP/R I 
[Il CLEAR I PRGM I 
[Il l lBLi[IJ 
ISTO I2 
I R Cl II"7"M'""'"A=TR=lx""'l ~ 
I STO II MATRIX I[]] 
I RcLi I DIM I~ 
ISTO lo 
[Il I lBLi 4 
IRcl lO 
ISTO l l 
I RcLi[]] 

Display 

000-
001-42.21.13 
002- 44 2 

003-45.16.11 
004-44.16.12 

005-45.23.11 
006- 44 0 
007-42.21. 4 
008- 45 0 
009- 44 
010- 4512 

Program mode. 

Stores eigenvalue in R2. 

Stores A in B. 
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Keystrokes Display 

IRCL IG 2 011-45.30. 2 
ISTO I[[J 012- 4412 Modifies diagonal 

elements of B . 

(IlI OSE IO 013-42. 5. 0 
IGTO l4 014- 22 4 
I RCL ll oIM I~ 015-45.23.11 
1 016- 1 
(IlI OIM leg 017-42.23.13 Dimensions C to n X l. 

(IlI MATRlx l l 018-42.16. 1 
(IlI LBL I5 019-42.21. 5 
(IlI RAN# 1 020- 4236 
(Il l USER II STO leg 021u 4413 Stores random 
(Ill USER I components in C. 
IGTO I5 022- 22 5 
(IlI LBL l s 023-42.21. 6 Routine for iterating z (n) 

and w (n) . 

I RCL II MATRIX leg 024-45.16.13 
I STO II MATRIX I@] 025-44.16.14 Stores z ( n ) in D. 

ISTO II RESULT I 026- 4426 
I RCL II MATRIX I[[J 027-45.16.12 
G 028- 10 Calculates w (n + I ) in C. 

IENTER I 029- 36 
(Ill MATRIX 17 030-42. 16. 7 
G 031- 10 Calculates ± z (n + I) in C. 

(Il l MATRIX I 1 032-42.16. 1 
(Il ILBL I7 033-42.21 . 7 Routine to find sign of 

largest element. 

(Ill USER II RCL leg 034u 4513 
(Ill USER I 
IENTER I 035- 36 (This line skipped for last 

element.) 

WIABSI 036- 4316 
1 037- 1 
WI TEST IS 038-43.30. 6 Tests lajl ¥- l. 

IGTOl 7 039- 22 7 
I RCL II MATRIX leg 040-45.16.13 
wl LSTx l 041- 4336 Recalls extreme aj. 

G 042- 10 Calculates z (1l + I ) in C . 



Keystrokes 

I RCL II MATRIX I@] 
I STO II RESULT I 
G 

CDIMATRlxI7 

CDIMATRlxl1 
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Display 

043-45,16,14 
044- 4426 
045- 30 Calculates z(n + 1) - z(n) 

inDo 

046-42,16, 7 Calculates 
Ilz(n + 1) - z(n)IIR' 

047-42,16, Sets Ro = Rl = 1 for 
viewingC. 

048-

049-

31 Displays convergence 
parameter. 

22 6 

Labels used: C, 4, 5, 6, and 7. 

Registers used: Ro, Rj, and R2 (eigenvalue). 

Matrices used: A (original matrix), B (A - AI), C (z(n + 1»), and 
D (z(n + 1) - z(n »). 

To use this program: 

1. Press 2 CDI DIM I [ill] to reserve registers Ro, R1, and R2. 

2. Press CDI USER I to activate User mode. 

3. Dimension and enter the elements into matrix A using CD 
I DIM 1~ , CDIMATRIX l l, andISTOI~. 

4. Key in the eigenvalue and press ~ . The display shows the 
correction parameter Ilz(l) - z(O)IIR' 

5. Press I RIS I repeatedly until the correction parameter is 
negligibly small. 

6. Press I RCL I ~ repeatedly to view the components of q k, the 
eigen vector. 

Example: For matrix A of the previous example, 

calculate the eigenvectors ql, q 2, and Q 3' 
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Keystrokes Display 

W[ P/R [ Run mode. 

2 m[ DIM IffiD 2 .0000 Reserves registers Ro 
through R2. 

m[USER I 2 .0000 Activates User mode. 

3 1 ENTE R Im[ DIM 10 3 .0000 Dimensions m atrix A to 
3 X 3. 

ml MATRIX l l 3 .0000 

0 [sTo 10 0 .0000 Enters elements of A . 

1 [sTo l0 1 .0000 

4 1sTo l0 4 .0000 
.8730 1 CHS I -0 .8730 Enters Al = - 0.8730 

(approximation). 

[IJ 0 .8982 Ilz(l) - z(O)II. * 

[RIS I 0 .000 1 Ilz(2) - z(l) II. * 

[RIS I 2.4000 -09 Il z(3) - z(2)11. * 

[RIS I 1. 0000 -10 Ilz(4) - z(3) 11 .* 

IRls l 0 .0000 Ilz(5) - z(4)11. * 

I RCL I[IJ 1 .0000 } [RCL I[IJ 0 .2254 Eigenvector for >'1' 

[RCL I[IJ -0.5492 
0 [IJ 0 .8485 Uses A2 = 0 

(approximation). 

IRls l 0 .0000 
I RCL I[IJ - 0 .5000 } [RCL I[IJ 1 .0000 Eigenvector for A2. 

[RCL I[IJ -0 .5000 
6.8730 [IJ 0 .73 7 1 Uses A3 = 6.8730 

(approximation). 

IRls l 1 .9372 - 06 
IRls l 1 .0000 - 10 
IRlsl 0 .0000 

* The correctio n norms will vary, depending upon the current random number seed. 



Keystrokes 

IRCll~ 
IRCll~ 

I RCll~ 
ITl IUSER I 
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Display 

0.3923 
0.6961 

1 .0000 
1.0000 

} Eigenv~tn"",', 
Deactivates User mode. 

If matrix A is no larger than 3 X 3, this program can be included 
with the previous eigenvalue program. Since the eigenvalue 
program modifies matrix A , the original eigenvalues must be 
saved and the original matrix reentered in matrix A before 
running the eigenvector program. The following program can be 
added to store the calculated eigenvalues in matrix E. 

Keystrokes 

ITl llBll[IJ 
I RCl II DIM 1[6] 
ISTOla 
1 
ITlI DIM I[IJ 
ITlllBl lS 
IRCl la 
IENTERI 
I RcLlw[6] 
IRClla 
1 
®:Q]w[IJ 
ITlIDsEla 
@IQ]s 
ITlIMATRIX l l 
WIRTNI 
WIP/R I 

Labels used: E and 8. 

Display 

127-42,21,15 
128-45,23,11 
129- 44 0 
130- 1 
131-42,23,15 

132-42,21, 8 
133- 45 0 
134- 36 
135-45.43,11 

136- 45 0 
137-
138-44.43,15 

139-42, 5, 0 
140- 22 8 
141-42,16, 1 

142- 4332 

Registers used: no additional registers. 

Dimensions E to n X 1. 

Recalls diagonal element. 

Stores aii in ei. 

Resets Ro = R j = 1. 

Run mode. 

Matrices used: A (from previous program) and E (eigenvalues). 

To use the combined eigenvalue, eigenvalue storage, and 
eigenvec.tor programs for an A matrix up to 3 X 3: 

1. Execute the eigenvalue program as described earlier. 
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2. Press [IJto store the eigenvalues. 

3. Enter again the elements of the original matrix into A. 

4. Recall the desired eigen val ue from matrix E using I RCL I [IJ. 

5. Execute the eigenvector program as described above. 

6. Repeat steps 4 and 5 for each eigenvalue. 

Optimization 

Optimization describes a class of problems in which the object is to 
find the minimum or maximum value of a specified function . 
Often, the interest is focused on the behavior of the function in a 
particular region. 

The following program uses the method of steepest descent to 
determine local minimums or maximums for a real-valued function 
of two or more variables. This method is an iterative procedure that 
uses the gradient of the function to determine successive sample 
points. Four input parameters control the sampling plan. 

For the function 

(x) = (Xl, X 2, ... , xn) 

the gradient of (, V' (, is defined by 

V' (x) = 

The critical points of (x) are the solutions to \I (x) = O. A critical 
point may be a local minimum, a local maximum, or a point that is 
neither. 

The gradient of (x) evaluated at a point x gives the direction of 
steepest ascent-that is, the way in which x should be changed in 
order to cause the most rapid increase in (x). The negative 
gradient gives the direction of steepest descent. The direction 
vector is 

s = {-V'f(X) 
V'(x) 

for finding a minimum 

for finding a maximum. 
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Once the direction is determined from the gradient, the program 
looks for the optimum distance to move from Xj in the direction 
indicated by sj-the distance that gives the greatest improvement 
inf(x) toward a minimum or maximum. 

To do this, the program finds the optimum value tj by calculating 
the slope of the function 

at increasing values of t until the slope changes sign. This 
procedure is called "bounding search" since the program tries to 
bound the desired value t j within an interval. When the program 
finds a change of sign, it then reduces the interval by halving it 
j + 1 times to find the best t value near t = O. This procedure is 
called "interval reduction"-it yields more accurate values for tj as 
Xj converges toward the desired solution. (These two processes are 
collectively called "line search.") The new value ofx is then 

The program uses four parameters that define how it proceeds 
toward the desired solution. Although no method of line search can 
guarantee success for finding a n optimum value of t , the first two 
parameters give you considerable flexibility in specifying how the 
program samples t. 

d Determines the initial step Ul for the bounding search. The 
first value of t tried is 

d 

(j + l)llsj llF 
This corresponds to a distance of 

d 
II(Xj + UlSj) - xjIlF=-. - , 

J + 1 

which shows that d and the iteration number define how close 
to the last x value the program starts the bounding search. 

a Determines the values U2, U3, ... of subsequent steps in the 
bounding search. These values of t are defined by 

Ui + I = aui' 
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Essentially, a is an expansion factor that is normally greater 
than 1, producing an increasing sequence of values of t. 

e Determines the acceptable tolerance on the size of the 
gradient. The iterative process stops when 

N Determines the maximum number of iterations that the 
program will attempt in each of two procedures: the bounding 
search and the overall optimization procedure. That is, the 
program halts if the bounding search finds no change of sign 
within N iterations. Also, th e program halts if the norm of the 
gradient is still too large at X N . Each ofthese situations results 
in an Error 1 display. (They can be distinguished by pressing 
~.) You can continue running the program if you desire. 

The program requires that you enter a subroutine that evaluates 
((x) and \I((x). This subroutine must be labeled " E" , use the vector 
x stored in matrix A , return the gradient in matrix E , and place 
((x ) in the X-register. 

In addition, the program requires an initi a l estimate Xo of the 
desired critical point. This vector must be stored in matrix A. 

The program has the following characteristics: 

• The progra m searches for any point x where \' ((x) = O. 
Nothing prevents convergence to a saddle-point, for example. 
In genera l, you must use other means to determine the nature 
of the critical point that is found. (Also, this program does not 
address the problem of locating a maximum or minimum on 
the boundary of the domain of (( x).) 

• You may a djust the convergence parameters after starting the 
program. In many cases, this dramatically reduces the time 
necessary for convergence. Here are some helpful hints: 

• If the program consistently enters the interval reduction 
phase after samplin g on ly one point U I, the initial step size 
may be too large. Try reducing the magnitude of d to 
produce a more efficient search. 

• If the results of the bounding search look promising (that 
is, the s lopes are decreasing in magnitude), but then begin 
to increase in magnitude, the search may have skipped 
past a critical point. Try reducing a to produce more close 
sampling; you may have to increase N also. 
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• You can replace I RIS I at line 102 with I PSE I or perhaps delete it 
entirely if you have no interest in the intermediate results. 

• For a function of n variables, the program req uires 4n + 1 
registers devoted to matrices. 

Keystrokes Display 

I]]I P/R I Program mode. 

l] CLEAR I PRGM I 000-
l]I LBL I8 001-42.21. 8 Routine to swap A and C 

usingE. 

I RCL II MATRIX I[IJ 002-45.16.13 
I STO II MATRIX 1m 003-44.16.15 
IRCLIIMATR lxlCK] 004-45.16.11 
I STO II MATRIX I[IJ 005-44.16.13 
I RCL II MATRIX 1m 006-45.16.15 
ISTO II MATRlxlCK] 007-44.16.11 
I]] IRTN I 008- 4332 
l]ILBLI7 009-42.21. 7 Line search routine. 

IRCL I4 010- 45 4 
IRCLi S 6 011-45.10. 6 
ISTO l8 012- 44 8 Stores d l (j + 1) in RB. 

I GSB 1m 013- 3215 
I RCL II MATRIX 1m 014-45.16.15 
I STO II MATRIX I[QJ 015-44.16.14 
lEilll MATRIX I[QJ 016-45.16.14 
I]] [£I] 0 017-43. 6 . 0 
ICHs l 018- 16 For minimum, changes 

sign of gradient. 

l]IMATRlxI8 019-42.16. 8 Calculates IIVf(x) ll. 

I]] lx =o l 020- 4320 
I]]I RTN I 021- 4332 Exits ifll\f(x)11 = o. 
[lliJ 022- 15 
IRCL I0 8 023-45.20. 8 Calculates U I' 

ISTO I. 1 024- 44 .1 Stores U I in R I . 

0 025- 0 
ISTO 10 026- 44 .0 
I RCL I5 027- 45 5 
ISTOl7 028- 44 7 Stores counter in R7. 
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Keystrokes Display 

ITl[ LSL I6 029-42.21. 6 Bounding search begins. 

[RCL 11 030- 45 .1 
IGSSl3 031- 32 3 
ITlI PSE I 032- 4231 Shows slope. 

w[TI] o 033-43. 6. 0 
ICHSI 034- 16 
Wl TEST l4 035-43.30. 4 Tests for slope cha nge. 

IGTO l5 036- 22 5 Branch to interval 
reduction. 

[Gss la 037- 32 a Restores original matrix 
toA. 

IRCL l 1 038- 45 .1 
ISTo [.O 039- 44 .0 Stores Ui in R o. 
IRCL l2 040- 45 2 
ISTO I0· 1 041-44.20 . . 1 Stores ui + I in R I · 

ITlI DSE 17 042-42. 5. 7 Decrements counter. 

IGTO l6 043- 22 6 Branch to continue. 

I RCL II MATR IX I~ 044-45.16.11 
W [ASS I 045- 4316 Displays Error 1 with A in 

X-register. 

IGTO l6 046- 22 6 Branch for continuation. 

ITl [LSL I5 047-42.21. 5 Interval reduction routine. 

I RCL l6 048- 45 6 
ISTO l7 049- 44 7 Stores j + 1 in R7. 

ITll LSL l4 050-42.21. 4 
IGSS la 051- 32 8 Restores original matrix 

to A. 

IRCL I O 052- 45 .0 
IRCLlG1 053-45,40 .. 1 
2 054- 2 

G 055- 10 
[STo ia 056- 44 8 Calculates midpoint of 

interval. 

[GSS I3 057- 32 3 Calculates slope. 

w[TI] o 058-43. 6. 0 
ICHS I 059- 16 Changes sign for 

minimum. 



Keystrokes 

1 
I STO I[) 

(H] 
WI TEST ll 
ITl IDSE I[) 
IRCll8 
I STO I [ill] 

ITliDSEI7 
IGTOl4 
WIRTNI 

ITl I lBll3 
I R cLi Ir:-Mc;-";A=TR=lx"'l@J 
ITlI RESULT ICfJ 
o 
I RCl II MATRIX 1[6] 
G 
IGSB I8 

I GSB I [I] 
ISTOI9 
I R Cl I '-I M7":A=TR=IX"'1 [I] 
I RCl II MATRIX I@J 
ITl~[]] 
ITliMATRlx I5 
1 
I ENTER I 
[@W[]] 
WIRTN I 

ITlllBll[6] 
o 
ISTO l6 
ITlIlBll2 
1 
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Display 

060-
061-
062- 44 25 Stores interval register 

number. 
063- 33 
064-43.30. 1 
065-42. 5.25 
066- 45 8 
067- 4424 

068-42. 5. 7 

069- 22 4 
070- 4332 

Stores midpoint in Ro or 
R j . 

Decrements counter. 

Exits when counter is 
zero. 

071-42.21. 3 Routine to calculate slope. 

072-45.16.14 
073-42.26.13 
074- 20 
075-45.16.11 
076- 40 Calculates point Xj + tSj. 

077- 32 8 Swaps original matrix 
and new point. 

078- 32 15 Calculates \1{(x) in E. 

079- 44 9 Stores {(x) in Rg. 

080-45.16.15 
081-45.16.14 
082-42.26.12 
083-42.16. 5 Calculates slope as (\1f)Ts. 
084- 1 
085- 36 
086-45.43.12 
087- 4332 

088-42.21.11 

089- 0 
090- 44 6 
091-42.21. 2 
092-

Exits with slope in 
X-register. 

Main routine. 
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Keystrokes Display 

ISTO IG 6 093-44.40, 6 Stores} + 1 in R6. 

ITl iSCI l3 094-42, 8 , 3 
IGSB I7 095- 32 7 Branches to line search . 

I RCL I6 096- 45 6 
ITl0Kl o 097-42, 7, 0 
ITll pSE I 098- 4231 P a uses with } + 1 in 

display. 

ITlI MATRIX 11 099-42,16, Sets Ro = Rl = 1 for 
viewing. 

ITli SCI l3 100-42, 8, 3 
IRCL I9 101- 45 9 Recalls ( (x ). 

IRls l 102- 31 Stops progra m. 

I RCLI3 103- 45 3 Recalls e. 

I RCL II MATRIX 1m 104-45,16,15 
ITlI MATRlx la 105-42,16, 8 Calcula tes II ,((x )ll· 
Wl x';;; yl 106- 4310 Tests II 'V(( x )ll ,,;; e. 
IGTO I[]] 107- 2212 Branch for showing 

solution . 

ITll pSE I 108- 4231 Shows II 'V(( x )ll. 
I RCLI5 109- 45 5 
IRCLI6 110- 45 6 
WI TEST la 111-43,30, 8 Tests (j + 1) < N. 
IGTO l2 112- 22 2 Branch to continue 

iterating. 

I RCL II MATRIX I[IJ 113-45,16,13 

w lABs l 114- 4316 Displays Error 1 with C in 
X-register. 

IGTO l2 115- 22 2 Branch for con tinuing. 

ITlI LBLI[]] 116-42,21,12 Routine to show solution . 

W[@ 9 117-43, 4 , 9 Sets blink fl ag. 

IRl sl 118- 31 Stops with II ,((Xj + 1)11 in 
display. 

IGTO I[]] 119- 2212 Looping branch. 

Labels used: A, B, a nd 2 through 8. 

Registers used: R2 through Rg, R o, R 1, a nd Index register. 
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Matrices used: A, B, C, D, and E. 

Your subroutine, labeled "E", may use any labels and registers not 
listed above, plus the Index register, matrix B, and matrix E 
(which should contain your calculated gradient). 

To use the program: 

1. Enter your subroutine into program memory. 

2. Press 11 CD! DIM '[ill] to reserve registers Ro through HI' (Your 
subroutine may require additional registers.) 

3. Set flag 0 if you 're seeking a local minimum; clear flag 0 if 
you 're seeking a local maximum. 

4. Dimension matrix A to n X 1, where n is the number of 
variables. 

5. Store the required data in memory: 

• Store the initial estimate Xo in matrix A. 

• Store a in R2. 

• Store e in R3. 

• Store d in R4• 

• Store N in R5. 

6. Press ' GSB , [EJ to view the slopes during the iteration 
procedure. 

• View the iteration number and the value of (x). 

• If Error 1 appears, press ~ to clear the message. Then 
either go back to step 5 and possibly revise parameters as 
needed, or press ~ , RIS , to provide one more bounding 
search iteration or one more optimization iteration. (If the 
descriptor of matrix A was in the display when the error 
occurred, the number of bounding search iterations 
exceeded N; if the descriptor of matrix C was in the 
display, the number of optimization iterations exceeded 
N.) 

7. Press 'RIS , to view the norm of the gradient and to start the 
next iteration. 

• If the display flashes the norm of the gradient, press ~ 
and then recall the values ofx in matrix A. 
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• If the iteration number and value of ((x) are displayed, 
repeat this step as often as necessary to obtain the 
solution or go back to step 5 a nd revise parameters as 
needed. 

Example: Use the optimization program to find the dimensions of 
the box of largest volume with the sum of the length and girth 
(perimeter of cross section) equaling 100 centimeters. 

For this problem 

1+ (2h + 2w) = 100 

v=whl 

v(w,h) = wh(100 - 2h - 2w) 

= 100wh - 2wh2 - 2hw2 

V'v(w ,h) - . _ [2h(50 - h - 2W)] 
2w(50 - w - 2h) 

The solution should satisfy w + h < 50, w > 0, and h > O. 

First, enter a subroutine to calculate the gradient and the volume. 

Keystrokes Display 

[IlI LBLlw 120-42.21.15 Function subroutine. 

IRCLIIDIM I0 121-45.23.11 
[IlI DIMlw 122-42.23.15 
[Ill MATRIX 11 123-42.16. 1 
[Ill USER II RCL 10 124u 45 11 
[Ill USER I 
IST0I.2 125- 44 .2 Stores w in R 2. 

ISTolw 126- 4415 Stores w in e2' 

IRCLI0 127- 45 11 
ISTol.3 128- 44 .3 Stores h in R 3. 

[Ill MATRIX 11 129-42.16. 1 
ISTolw 130- 4415 Stores h in e l' 

G 131- 40 
5 132- 5 
0 133- 0 

G 134- 30 



Keystrokes 

ICHS I 
2 
o 
[Il~2 

ISTO l0 3 
I RCLI.2 
I RCL I Ir:-M~A-=TR=lx:-:-11 [[] 
[Ill RESULT I[[] 
o 
I RCLi. 3 
IRCL IG·3 
G 

1 RCLI. 2 
IRCLI0 3 
WIRTNI 
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Display 

16 
2 

135-
136-
137- 20 Calcul ates 

1= 2(50 - h - w). 

138-42, 4, .2 Stores I in R 2. 

139-44,20,.3 Stores wh in R 3. 

140- 45.2 
141-45,16,15 
142-42,26,15 
143- 20 
144- 45.3 
145-45.40, .3 
146- 30 Replaces ei with 

147- 45 .2 

lei - 2wh, the gradient 
elements. 

148-45,20, .3 Calculates Iwh . 

149- 4332 

Now enter the necessary information and run the program. 

Keystrokes Display 

WI P/R I Run mode. 
13 [Il l DIM 1 [ill] 13.0000 Reserves Ro through R 3. 

wcmO 13.0000 Finds local maximum. 

[Ill USER 1 13.0000 Activates User mode. 

[Il l MATRIX 1 1 13.0000 
21 ENTER 11 Enters dimensions for 

matrix A . 

[IlI DIM I0 1.0000 Dimensions matrix A to 
2 X L 

15 1sTO I0 15.0000 
ISTO I0 15.0000 Stores initia l esti mate: 

I = w = 15. 
31sTOl 2 3 .0000 Stores a = 3. 
0.11sT0 13 0 .1000 Stores e = 0.1 . 
0.05 1sTo 14 0 .0500 Stores d = 0.05 . 
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Keystrokes 

41sTo l5 
~ 

Display 

4.0000 

4 .415 

4.243 

3 .718 

2 .045 

Error 1 
A 

Stores N = 4. 

04 Slope at Ul ' 
04 Slope at u 2' 

04 Slope at u 3' 

04 Slope at u4' 

2 Bounding search failed. 

Since the results so far look promising (the derivatives are 
decreasing in magnitude), allow five additional samples in this 
bounding search and set N = 8 for a ll subsequent iterations . 

Keystrokes 

51sTo l7 
81sTo l5 
IR/s l 

IR/s l 
[±] 

ITJ0RJ4 
I RCL I~ 

I RCLI~ 

Display 

5 .000 

8 .000 

-3 .849 

1 . 

9 .253 

3 .480 

1.121 

9 .431 

4 .126 

-1.139 

2. 
9 .259 

5.479 

-6 .127 

3 . 

9.259 

7.726 

7.726 

0 .0773 
16.6661 

16.6661 

00 Sets counter to 5. 

00 Sets Nto 8. 

04 Slope at U5 (sign change). 

j + l. 
03 Volume at this iteration. 

01 Gradient. 

03 Slope atul' 
02 Slope at u 2' 

02 Slope at u 3' 

03 Slope at U4 (sign change) . 

j + l. 
03 Volume at this iteration. 

-01 Gradient. 

-01 Slope at Ul (sign change). 

j + l. 
03 Volume a t th is iteration. 

-02 Gradient less than e. 

-02 Stops blinking. 

Recalls h from a l ' 

Recalls w from a 2' 
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Keystrokes Display 

[DIUSERI 16.6661 
[DIMATRlxIO 16.6661 Deallocates matrix 

memory. 

The desired box size is 16.6661 X 16.6661 X 33.3355 centimeters. (An 
alternate method of solving this problem would be to solve the 
linear system represented by 'V v (w, h) = 0.) 



Appendix 

Accuracy of 
Numerical Calculations 

Misconceptions About Errors 
Error is not sin, nor is it always a mistake. Numerical error is 
merely the difference between what you wish to calculate and what 
you get. The difference matters only if it is too big. Usually it is 
negligible; but sometimes error is distressingly big, hard to 
explain , and harder to correct. This appendix focuses on errors , 
especially those that might be large-however rare. Here are some 
examples. 

Example 1: A Broken Calculator. Since (};)2 = x whenever 
x ;;;' 0, we expect also 

((x) = ((. .. (( J J ... V yx)2)2 ... )2)2 
-...-- -,,--

50 50 
roots squares 

should equal x too. 

A program of 100 steps can evaluate the expression ((x) for any 
positive x. When x = 10 the Hp·15C calculates 1 instead. The error 
10 - 1 = 9 appears enormous considering that only 100 arithmetic 
operations were performed, each one presumably correct to 10 
digits. What the program actually delivers instead of ((x) = x turns 
out to be 

((x) = { 0 
for x ;;;' 1 

forO ~ x < l , 

which seems very wrong. Should this calculator be repaired? 

172 
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Example 2: Many Pennies. A corporation retains Susan as a 
scientific and engineering consultant at a fee of one penny per 
second for her thoughts, paid every second of every day for a year. 
Rather than distract her with the sounds of pennies dropping, the 
corporation proposes to deposit them for her into a bank account in 
which interest accrues at the rate of 11 '4 percent per annum 
compounded every second. At year's end these pennies will 
accumulate to a sum 

(l + il n)"- 1 
total = (payment) X ---'-=--'-'-"'-'--------'=­

il n 

where payment = $0.01 = one penny per second, 

i = 0.1125 = 11.25 percent per annum interest rate, 

n = 60 X 60 X 24 X 365 = number of seconds in a year. 

Using her HP-15C, Susan r eckons that the total will be 
$376,877.67. But at year's end the bank account is found to hold 
$333,783.35 . Is Susan entitled to the $43,094.32 difference? 

In both examples the discrepancies are caused by rounding errors 
that could have been avoided. This appendix explains how. 

The war against error begins with a salvo against wishful 
thinking, which might confuse what we want with what we get. To 
avoid confusion, the true and calculated results must be given 
different names even though their difference may be so small that 
the distinction seems pedantic. 

Example 3: Pi. The constant IT = 3.1415926535897932384626433 .... 
Pressing the GJ key on the HP-1 5C delivers a different value 

GJ = 3.141592654 

which agrees with IT to 10 significant digits . But GJ ,,0 IT, so we 
should not be surprised when, in Radians mode, the calculator 
doesn't produce sin GJ = O. 

Suppose we wish to calculate x but we get X instead. (This 
convention is used throughout this appendix.) The error is x - X. 
The absolute error is I x - XI . The relative error is usually reckoned 
(x - X) l xfor x ,,0 0. 
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Example 4: A Bridge Too Short. The lengths in meters of three 
sections of a cantilever bridge are designed to be 

x = 333.76 y = 195.07 z = 333.76. 

The measured lengths turn out to be respectively 

X= 333.69 y = 195.00 Z = 333.72 . 

The discrepancy in total length is 

d = (x + y + z) - ( X + y + Z ) = 862.59 - 862.41 = 0.18. 

Ed, the engineer, compares the discrepancy d with the total length 
(x + y + z) and considers the relative discrepancy 

d/ (x + y + z) = 0.0002 = 2 parts in 10,000 

to be tolerably sma ll. But Rhonda, the riveter, considers the 
a bsolute discrepa ncy I dl = 0.18 meters (about 7 inches) much too 
large for her liking; some powerful stretching will be needed to line 
up the bridge girders before she can rivet them together. Both see 
the same discrepancy d, but what looks neglibible to one person 
can seem awfully big to another. 

Whether large or small, errors must have sources which, if 
understood, usually permit us to compensate for the errors or to 
circumvent them altogether. To understand the distortions in the 
girders of a bridge, we should lea rn about structural engineering 
a nd the theory of elasticity. To understand the errors introduced by 
the very act of computation, we should learn how our calculating 
instruments work a nd what are their limita tions. These are details 
most of us want not to know, especially since a well-designed 
calculator's rounding errors are always nearly minima l and 
therefore appear insignificant when they are introduced. But when 
on rare occasions they conspire to send a computation awry, they 
must be reclassified as "significant" after all. 
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Example 1 Explained. Here ((x) = s(r(x» , where 

r(x) = J,,; ... ..JVX- x (I;,50) 

-.-

and 

50 
roots 

s( r) = ((. .. (( r)2)2 ... )2)2 = r (250
). -..-

50 
squares 

The exponents are 1/250 = 8.8818 X 10- 16 and 250 = 1.1259 X 1015. 

Now, x must lie between 10-99 and 9.999 ... X 1099 since no positive 
numbers outside that range can be keyed into the calculator. Since 
r is an increasing function, r(x) lies between 

r(10-99) = 0.9999999999997975 ... 

and 

r (10100) = 1.0000000000002045 .... 

This suggests that R (x), the calculated value of r(x ), would be 1 for 
all valid calculator arguments x . In fact, because of roundoff, 

{ 

0.9999999999 
R(x) = 

1.000000000 

for O< x < 1 

for 1 ,,;; x ,,;; 9.999999999 X 1099. 

If 0 < x < 1, then x ,,;; 0.9999999999 in a 10-digit calculator. We 
would then rightly expect that Vx";; ";0.9999999999, which is 
0.999999999949999999998 ... , which rounds to 0.9999999999 again. 
Therefore, if [KJ is pressed arbitrarily often starting with x < 1, the 
result cannot exceed 0.9999999999. This explains why we obtain 
R(x) = 0.9999999999 for 0 <x < 1 above. When R(x) is squared 50 
times to produce F(x) = S(R(x)), the result is clearly 1 for x ;;;: 1, but 
whyisF(x) = o for 0 ";; x < I? Whenx < 1, 

s( R (x»";; s(0.9999999999) = (1 _10- 1°)2
50 = 6.14 X 10-48898 
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This value is so small that the calculated value F(x) = S(R(x» 
underflows to O. So the HP-15C isn't broken; it is doing the best that 
can be done with 10 significant digits of precision and 2 exponent 
digits. 

We have explained example 1 using no more information about the 
HP-15C than that it performs each arithmetic operation QD and [ZJ 
fully as accurately as is possible within the limitations of 10 
significant digits and 2 exponent digits. The rest of the information 
we needed was mathematical knowledge about the functions (, r, 
and s. For instance, the value r(10 100) above was evaluated as 

r(lOloo) = (10100)<'/,50) 

= exp (In (10100)1250) 

= exp (100 (In 10)/ 25°) 

= exp (2.045 X 10-13) 

= 1 + (2.045 X 10-13) + 1/2(2.045 X 10-13)2 + ... 

by using the series exp (z) = 1 + z + 1/2Z 2 + 1/6 Z 3 + ... . 
Similarly, the binomial theorem was used for 

J O.9999999999 = (l-lO-l o) '/, 

These mathematical facts lie well beyond the kind of knowledge 
that might have been considered adequate to cope with a 
calculation containing only a handful of multiplications and 
square roots. In this respect, example 1 illustrates an unhappy 
truism: Errors make computation very much harder to analyze. 
That is why a well-designed calculator, like the HP-15C, will 
introduce errors of its own as sparingly as is possible at a tolerable 
cost. Much more error than that would turn an already difficult 
task into something hopeless. 

Example 1 should lay two common misconceptions to rest: 

• Rounding errors can overwhelm a computation only if vast 
numbers of them accumulate. 

• A few rounding errors can overwhelm a computation only if 
accompanied by massive cancellation. 
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Regarding the first misconception, example 1 would behave in the 
same perverse way if it suffered only one rounding error, the one 
that produces R(x) = lor 0.9999999999, in error by less than one 
unit in its last (10th) significant digit. 

Regarding the second misconception, cancellation is what happens 
when two nearly equal numbers are subtracted. For example, 
calculating 

c( x ) = (1 - cos x) I x 2 

in Radians mode for small values of x is hazardous because of 
cancellation. Using x = 1.2 X 10-5 and rounding results to 10 digits, 

cos x = 0.9999999999 

and 

1 - cos x = 0.0000000001 

with cancellation leaving maybe one significant digit In the 
numerator. Also 

Then 

C(x) = 0.6944 . 

This calculated value is wrong because 0 ~ c(x) < 1/2 for all x ~ O. To 
avoid numerical cancellation, exploit the trigonometric identity 
cos x = 1 - 2 sin2(xl2) to cancel the 1 exactly and obtain a better 
formula 

c(x) = ~ (sin (x12) )2. 
2 x l2 

When this latter expression is evaluated (in Radians mode) at 
x = 1.2 X 10-5, the computed result C(x) = 0.5 is correct to 10 
significant digits. This example, while explaining the meaning of 
the word "cancellation," suggests that it is always a bad thing. 
That is another misconception to be dispatched later. For the 
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present, recall that example 1 contains no subtraction, therefore no 
cancellation, a nd is still devastated by its rounding error. In this 
respect example 1 is counterintuitive, a little bit scary. Nowhere in 
it can we find one or two arithmetic operations to blame for the 
catastrophe; no small rearrangement will set everything right as 
happened for c(x). Alas, example 1 is not an isolated example. As 
computers and calculators grow in power, so do instances of 
insidious error growth become more common. 

To help you recognize error growth and cope with it is the ultimate 
goal of this appendix. We shall start with the simplest kinds of 
errors and work our way up gradually to the subtle errors that can 
afflict the sophisticated computations possible on the HP-15C. 

A Hierarchy of Errors 
Some errors are easier to explain and to tolerate than others. 
Therefore, the functions delivered by single keystrokes on the 
HP-15C have been categorized, for the purposes of easier 
exposition, according to how difficult their errors are to estimate. 
The estimates should be regarded as goals set by the calculator's 
designers rather than as specifications that guarantee some stated 
level of accuracy. On the other hand, the designers believe they can 
prove mathematically that their accuracy goals have been 
achieved, and extensive testing has produced no indication so far 
that they might be mistaken. 

level 0: No Error 
Functions which should map small integers (smaller than 1010) to 
small integers do so exactly, without error, as you might expect. 

Examples: 

V4=2 -23 = - 8 

log (109) = 9 

320 = 3,486,784,401 

6! =720 

cos-I(O) = 90 (in Degrees mode) 

ABS(4,684,660 + 4,684,659i) = 6,625,109 (in Complex mode) 

Also exact for real argments are t ASS I, t FRAC I, lilliI, t RND I, and 
comparisons (such as I x.;;;;yl). But the matrix functions 0, G,~, 
t MATRIX 16, and I MATRIX 19 (determinant) are exceptions (refer to 
page 192). 
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Level 00: Overflow/Underflow 
Results which would lie closer to zero than 10-99 underflow quietly 
to zero. Any result that would lie beyond the overflow thresholds 
±9.999999999 X 1099 is replaced by the nearest threshold, and then 
flag 9 is set and the display blinks. (Pressing [Q0 [Q0 or [QJ 9 or [±] 
will clear flag 9 and stop the blinking.) Most functions that result 
in more than one component can tolerate overflow/ underflow in 
one component without contaminating the other; examples are 
I +R I, I +p I, complex arithmetic, and most matrix operations. The 
exceptions are matrix inversion (~ and 0), IMATRlx I9 
(determinant), and Q;]J. 

Level 1: Correctly Rounded, or Nearly So 
Operations that deliver "correctly rounded" results whose error 
cannot exceed 1/2 unit in their last (10th) significant digit include 
the real algebraic operations 0 , [J, 0,0, [Z), [K), ~, and [ill, 
the complex and matrix operations G and [J, matrix by scalar 
operations 0 and o (excluding division by a matrix), andl +H.MS I. 
These results are the best that 10 significant digits can represent, 
as are familiar constants GJ , 1 [ZJ , 2 [ill], 10 [ill], 1 I +RAD I, and 
many more. Operations that can suffer a slightly larger error, but 
still significantly smaller than one unit in the 10th significant digit 
ofthe result, include 1c.%I, I+HI, I+RADI, I+DEGI,~, and~; 
[ill], I LOG I,~, andl TANH I for real arguments; I +pl, ~,I COS·' I, 
I TAN"I, ISINH"I, I COSH"I, and I TANH" I for real and complex 
arguments; ~, [K), and ~ for complex arguments; matrix 
norms I MATRIX 17 and I MATRIX 18; and finally I SIN I, I COS I, and I TAN I 
for real arguments in Degrees and Grads modes (but not in 
Radians mode-refer to Level 2, page 184). 

A function that grows to 00 or decays to 0 exponentially fast as its 
argument approaches ±oo may suffer an error larger than one unit 
in its 10th significant digit, but only if its magnitude is smaller 
than 10- 20 or larger than 1020; and though the relative error gets 
worse as the result gets more extreme (small or large), the error 
stays below three units in the last (10th) significant digit. The 
reason for this error is explained later. Functions so affected are 
[ZJ, [ZJ , [ill (for noninteger x), I SINH I, and I COSH I for real 
arguments. The worst case known is 320l , which is calculated as 
7.968419664 X 1095. The last digit 4 should be 6 instead, as is the 
case for 7.2933.5, calculated as 7.968419666 X 1028. 
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The foregoing s ta tem ents a bout errors can be summa rized for a ll 
fun ctions in Levell in a way th at will prove conven ient later: 

Attempts to calculate a function f in Level 1 produce 
instead a computed va lue F = (1 + f)f whose relative error 
f, though unknown , is very small : 

If I < { 5 X 10-10 if Fis correctly rounded 

1 X 10-9 fo r a ll other functions F in Level l. 

This simple cha racterization of a ll the functio ns in Level l fai ls to 
convey many other important properties they a ll possess, 
properties like 

• Exa ct integer values: mentioned in Level O. 

• Sign symmetry: si n h (- x) = - sinh(x), cosh (- x) = cosh(x), 
In( lIx) = - In(x ) (if llx is computed exactly). 

• Monotonicity: if f (x) ~ f(y), then computed F(x) ~ F(y). 

These additiona l properties have powerful implica tions; for 
insta n ce, TAN(20 0) = T A N(200 0) = TAN(2 ,000 0) = ... = 
TAN(2 X 1099 0) = 0.3639702343 correctly. But t he simple character­
ization conveys most of what is worth knowing, and that can be 
worth money. 

Example 2 Explained. Susan tried to calcul ate 

where 

(l +iln)"- l 
tota l = payment X --'-"-'--'-'-'-----'-=­

il n 

payment = $0.01 , 

i = 0.1125, a nd 

n = 60 X 60 X 24 X 365 = 31,536,000. 

She calcula ted $376,877.67 on her HP-15C, but the bank's total was 
$333,783.35, a nd this latter total agrees with the results calculated 
on good, modern fin a ncia l calculators like the HP-12C, HP-37E , 
HP-38E / 38C, a nd HP-92. Where did Susan's calculation go awry? 
No severe cancella tion , no vast accumulation of errors; just one 
rounding error that grew insidiously caused the damage: 
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i l n = 0.000000003567351598 

1 + i l n = 1.000000004 

when rounded to 10 significant digits. There is the rounding error 
that hurts. Subsequently attempting to calculate (1 + i l n)n , Susan 
must get instead (1.000000004)31,536,000 = 1.134445516, which is 
wrong in its second decimal place. 

How can the correct value be calculated? Only by not throwing 
away so many digits of i l n. Observe that 

(1 + iln)n = en In(l + ifni, 

so we might try to calculate the logarithm in some way that does 
not discard those precious digits. An easy way to do so on the 
HP-15C does exist. 

To calculate ,,(x) = In(1 + x) accurately for a ll x > - 1, even if I xl is 
very small: 

1. Calculate u = 1 + x rounded. 

2. Then 

{

X 
,,(x) = 

In(u)x l (u - 1) 

ifu = 1 

ifu~ 1. 

The following program calculates ,,(x) = In (1 + x). 

Keystrokes Display 

wi P/R I 
ITl CLEAR I PRGM I 000-

ITliLBLI0 001-42.21.11 Assumes x is in X-register. 

IENTERI 002- 36 
IENTER I 003- 36 
IEEXI 004- 26 Places 1 in X-register. 

G 005- 40 Calculates u = 1 + x 
rounded. 

w[ill) 006- 4312 Calculates In(u) (zero for 
u = 1). 

~ 007- 34 Restores x to X-register. 

wlLSTx l 008- 4336 Recalls u. 
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Keystrokes Display 

IEEXI 009- 26 Places 1 in X-register. 

Wl TEST I6 010-43,30, 6 Tests u 'i' 1. 

G 011- 30 Calculates u - 1 when 
u'i' 1. 

G 012- 10 Calculates x l (u - 1) or 
I l l. 

0 013- 20 Calculates A(X). 

WIRTNI 014- 4332 

WlP/RI 
The calculated value of u, correctly rounded by the HP-15C, is 
u = (1 + ,) (1 + x), where 1,1 < 5 X 10-10. If u = 1, then 

I xl = 111(1 + ,) - 11 :;;; 5 X 10-10 

too, in which case the Taylor series A(X) = x (1 - 1/2X + '/a x2 - ... ) 
tells us that the correctly rounded value of A(X) must be just x. 
Otherwise, we shall calculate x A( u - 1) / ( u - 1) fairly accurately 
instead of A(X). But A(x)l x = 1 - 1/2 X + 1/3 X 2 - ... varies very slowly, 
so slowly that the absolute error A(x) l x - A(U - 1)/ (u - 1) is no 
worse than the absolute error x - (u - 1) = -,(1 + x), and if x :;;; 1, 
this error is negligible relative to A(x) l x . When x> 1, then u - 1 is 
so nearly x that the error is negligible again; A(X) is correct to nine 
significant digits. 

As usual in error analyses, the explanation is far longer than the 
simple procedure being explained and obscures an important fact: 
the errors in In( u) and u - 1 were ignored during the explanation 
because we knew they would be negligible. This knowledge, and 
hence the simple procedure, is invalid on some other calculators 
and big computers! Machines do exist which calculate In( u) and/ or 
1 - u with small absolute error, but large relative error when u is 
near 1; on those machines the foregoing calculations must be 
wrong or much more complicated, often both . (Refer to the 
discussion under Level 2 for more about this .) 

Back to Susan's sum. By using the foregoing simple procedure to 
calculate A(il n) = In(1 + i l n) = 3.567351591 X 10-9, she obtains a 
better value: 

(1 + i l n)n = en )'(i/ ,,) = 1.119072257 

,C I C r I, \i1c HI , 
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from which the correct total follows. 

To understand the error in 3201 , note that this is calculated as 
e2011n(3) = e220.82l... . To keep the final relative error below one unit in 
the 10th significant digit, 201In(3) would have to be calculated 
with an absolute error rather smaller than 10-10, which would 
entail carrying at least 14 significant digits for that intermediate 
value. The calculator does carry 13 significant digits for certain 
intermediate calculations of its own, but a 14th digit would cost 
more than it's worth. 

Level 1 C: Complex Level 1 
Most complex arithmetic functions cannot guarantee 9 or 10 
correct significant digits in each of a result's real and imaginary 
parts separately, although the result will conform to the summary 
statement about functions in Level 1 provided f, F, and fare 
interpreted as complex numbers. In other words, every complex 
function f in Level 1C will produce a calculated complex value 
F = (1 + f)f whose small complex relative error f must satisfy 
If I < 10-9. The complex functions in Level1C are 0, G, 12], [!]], 
I LOG I, ~,I COS·' I, I TAN" 1,lsINH" I, I COSH" I, and I TANH" I· Therefore, 
a function like A(Z) = In(l + z) can be calculated accurately for all Z 
by the same program as given above and with the same 
explanation. 

To understand why a complex result's real and imaginary parts 
might not individually be correct to 9 or 10 significant digits , 
consider 0, for example: (a + ib) X (c + id) = (ac - bd) + i(ad + bc) 
ideally. Try this with a = c = 9.999999998 , b = 9.999999999, and 
d = 9.999999997; the exact value of the product's real part (ac - bd) 
should then be 

(9.999999998)2 - (9.999999999) (9.999999997) 

= 99.999999980000000004 - 99.999999980000000003 

= 10-18 

which requires that at least 20 significant digits be carried during 
the intermediate calculation. The HP-15C carries 13 significant 
digits for internal intermediate results, and therefore obtains 0 
instead of 10-18 for the real part, but this error is negligible 
compared to the imaginary part 199.9999999 . 
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Level 2: Correctly Rounded for Possibly 
Perturbed Input 

Trigonometric Functions of Real Radian Angles 

Recall example 3, which noted that the calculator's GJ key delivers 
an approximation to rr correct to 10 significant digits but still 
slightly different from rr, so 0 = sin(rr) o;e sin (GJ) for which the 
calculator deli vers 

I SIN I(GJ) = -4.100000000 X 10-1°. 
This computed value is not quite the same as the true value 

sin (GJ) = -4.10206761537356 ... X 10-10. 

Whether the discrepancy looks small (absolute error less than 2.1 
X 10- 13) or relatively large (wrong in the fourth significant digit) for 
a 10-significant-digit calculator, the discrepancy deserves to be 
understood because it foreshadows other errors that look, at first 
sight, much more serious. 

Consider 

1014 rr = 314159265358979.3238462643 .. . 

with sin (10 14 rr) = 0 and 

1014 X GJ = 314159265400000 

with I SIN 1(1014 GJ) = 0.7990550814, although the true 

sin (10 14 GJ) = -0 .78387 .. .. 

The wrong sign is an error too serious to ignore; it seems to suggest 
a defect in the calculator. To understand the error in trigonometric 
functions we must pay attention to small differences among rr and 
two approximations to rr: 

true rr = 3.1415926535897932384626433 ... 
key GJ = 3.141592654 (matches rr to 10 digits) 
internal p = 3.141592653590 (matches rr to 13 digits) 

Then all is explained by the following formula for the calculated 
value: [IDill(x) = sin(xrrl p) to within ± 0.6 units in its last (10th) 
significant digit. 

More generally, if trig(x) is any of the functions sin(x), cos(x), or 
tan(x) , evaluated in real Radians mode, the HP-15C produces 
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I TRIG I(x) = trig(x 1TI p) 

to within ±0.6 units in its 10th significant digit. 

This formula has importa nt practical implications: 

• Since 1TI p = 1 - 2.0676 ... X 10-131 p = 0.9999999999999342 ... , 
the value produced by I TRIG I(x) differs from trig(x) by no more 
than can be attributed to two perturbations: one in the 10th 
significant digit of the output trig(x) , and one in the 13th 
significant digit of the input x . 

If x has been calculated and rounded to 10 significant digits, 
the error inherited in its 10th significant digit is probably 
orders of magnitude bigger than 1 TRIG I's second perturbation 
in x's 13th significant digit, so this second perturbation can be 
ignored unless x is regarded as known or calculated exactly. 

• Every trigonometric identity that does not explicitly involve 1T 

is satisfied to within roundoff in the 10th significant digit of 
the calculated values in the identity. For instance, 

sin2(x) + cos2(x) = 1, so (I SIN I(x »2 + (I COS l(x»2 = 1 

sin(x) / cos(x) = tan(x), so [§I0(x) /1 COS I(x) = ITAN I(x) 

with each calculated result correct to nine significant digits 
for all x. Note that I COS I(x) vanishes for no value of x 
representable exactly with just 10 significant digits. And if 2x 
can be calculated exactly given x, 

sin(2x) = 2sin(x)cos(x), so I SIN 1(2x) = 2 [§I0(x) 1 COS I(x) 

to nine significant digits. Try the last identity for x = 52174 
radians on the HP-15C: 

1 SIN 1(2x) = -0.00001100815000, 

2[§I0(x) 1 COS I(x) = -0.00001100815000 . 

Note the close agreement even though for this x, sin(2x) = 
2sin(x )cos(x) = -0.0000110150176 ... disagrees with [§I0(2x) in 
its fourth significant digit. The same identities are satisfied by 
1 TRIG I(x) values as by trig(x) va lues even though 1 TRIG I(x) and 
trig(x) may disagree. 

• Despite the two kinds of errors in 1 TRIG I, its computed values 
preserve familiar relationships wherever possible: 

• Sign symmetry: 1 COS I(-x ) = 1 COS I(x) 
1 SIN I(-x) = -[§I0(x) 
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• Monotonicity: if trig(x) ;;, trig(y), 
then I TRIG I(x) ;;' I TRIG I(y) 
(provided I x - yl < 3) 

• Limiting inequalities: [§I0( x) / x ';;; 1 for all x"# 0 
ITAN l(x)lx;;' 1 for 0 <I x l < rr / 2 

-1 ,;;; [§I0(x) andICOSI(x) ';;; 1 
for all x 

What do these properties imply for engineering calculations? You 
don 't have to remember them! 

In general, engineering calculations will not be affected by the 
difference between p and rr, because the consequences of that 
difference in the formula defining I TRIG I(x) above are swamped by 
the difference between @ and rr and by ordinary unavoidable 
roundoff in x or in trig(x). For engineering purposes, the ratio rr / p 
= 0.9999999999999342 ... could be replaced by 1 without visible 
effect upon the behavior of! TRIG I. 

Example 5: Lunar Phases. If the distance between our Earth 
and its moon were known accurately, we could calculate the phase 
difference between radar signals transmitted to and reflected from 
the moon. In this calculation the phase shift introduced by p "# rr 

has less effect than changing the distance between Earth and 
moon by as little as the thickness of this page. Moreover, the 
calculation of the strength , direction , and rate of change of 
radiated signals near the moon or reflected signals near the Earth, 
calculations that depend upon the trigonometric identities' 
continuing validity, are unaffected by the fact that p"# rr; they rely 
instea d upon the fact that p is a constant (independent of x in the 
formula for I TRIG I(x)), and that constant is very near rr. 

The HP·15C 's keyboard functions that involve p are the 
trigonometric functions [§I0, I cos I, and I TAN I for real and complex 
arguments; hyperbolic functions ISINH I, ICOSH I, a nd ITANH I for 
complex arguments; complex operations ~, ~, and [ZJ; and 
real and complex I +R I. 
It all seems like much ado about very little. After a blizzard of 
formulas and examples , we conclude that the error caused by p"# rr 
is negligible for engineering purposes, so we need not ha ve 
bothered to know about it. That is the burden that conscientious 
error analysts must bear; if they merely took for granted that small 
errors are negligible, they might be wrong. 
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Backward Error Analysis 

Until the late 1950's, most computer experts inclined to paranoia in 
their assessments of the damage done to numerical computations 
by rounding errors. To justify their paranoia, they could cite 
published error analyses like the one from which a famous scientist 
concluded that matrices as large as 40 X 40 were almost certainly 
impossible to invert numerically in the face of roundoff. However, 
by the mid 1960's matrices as large as 100 X 100 were being 
inverted routinely, and nowadays equations with hundreds of 
thousands of unknowns are being solved during geodetic 
calculations worldwide. How can we reconcile these accomplish­
ments with the fact that that famous scientist's mathematical 
analysis was quite correct? 

We understand better now than then why different formulas to 
calculate the same result might differ utterly in their degradation 
by rounding errors. For instance, we understand why the normal 
equations belonging to certain least-squares problems can be 
solved only in arithmetic carrying extravagantly high precision; 
this is what that famous scientist actually proved. We also know 
new procedures (one is presented on page 140) that can solve the 
same least-squares problems without carrying much more 
precision than suffices to represent the data. The new and better 
numerical procedures are not obvious, and might never have been 
found but for new and better techniques of error analysis by which 
we have learned to distinguish formulas that are hypersensitive to 
rounding errors from formulas that aren't. One of the new (in 1957) 
techniques is now called "backward error analysis," and you have 
already seen it in action twice: first , it explained why the procedure 
that calculates ;"(x) is accurate enough to dispel the inaccuracy in 
example 2; next, it explained why the calculator's I TRIG I functions 
very nearly satisfy the same identities as are satisfied by trig 
functions even for huge radian arguments x at which I TRIG J( x) and 
trig(x) can be very different. The following paragraphs explain 
backward error analysis itself in general terms. 

Consider some system F intended to transform an input x into an 
output y = ((x) . For instance, F could be a signal amplifier, a filter, 
a transducer, a control system, a refinery, a country's economy, a 
computer program, or a calculator. The input and output need not 
be numbers; they could be sets of numbers or matrices or anything 
else quantitative. Were the input x to be contaminated by noise Ax, 
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then in consequence the output y + Lly = ((x + Llx) would generally 
be contaminated by noise Lly = ((x + Llx) - ((x). 

Llx 

x-C!::]-y=f(X) 
I 

x-<±>-0--y = f(x + Llx) 

No Noise Noisy Input 

Some transformations (are stable in the presence of input noise; 
they keep Lly relatively small as long as Llx is relatively small. 
Other transformations (may be unstable in the presence of noise 
because certain relatively small input noises Llx cause relatively 
huge perturbations Lly in the output. In general, the input noise Llx 
will be colored in some way by the intended transformation (on the 
way from input to output noise Lly, and no diminution in Lly is 
possible without either diminishing Llx or changing f. Having 
accepted ( as a specification for performance or as a goal for 
design, we must acquiesce to the way (colors noise at its input. 

The real system F differs from the intended ( because of noise or 
other discrepancies inside F. Before we can appraise the 
consequences of that internal noise we must find a way to 
represent it, a notation. The simplest way is to write 

F(x) = (( + (jf)(x) 

where the perturbation (j(represents the internal noise in F. 

x--r--I--~ ~--y=F(x) 

I FI L ________ ...J 

One Small Output Perturbation (Level 1) 

We hope the noise term (j(is negligible compared with f. When that 
hope is fulfilled, we classify F in Level 1 for the purposes of 
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exposition; this means that the noise internal to F can be explained 
as one small addition of to the intended output f . 

For example. F(x) = [hill(x) is classified in Levell because the 
dozens of small errors committed by the HP-15C during its 
calculation of F(x) = (f + of)(x) amounts to a perturbation of (x) 
smaller than 0.6 in the last (10th) significant digit of the desired 
outputf(x) = In(x) . But F(x) = ~(x) is not in Levell for radian x 
because F(x) can differ too much from f(x) = sin(x); for instance 
F(1014 G]) = 0.799 ... is opposite in sign from f(1014G]) = - 0.784 .... 
so the equation F(x) = (f + of)(x) can be true only if of is sometimes 
rather bigger than f. which looks bad. 

Real systems more often resemble I SIN I than [hill . Noise in most real 
systems can accumulate occasionally to swamp the desired output. 
at least for some inputs. and yet such systems do not necessarily 
deserve condemnation. Many a real system F operates reliably 
because its internal noise. though sometimes large. never causes 
appreciably more harm than might be caused by some tolerably 
small perturbation ox to the input signal x. Such systems can be 
represented as 

F(x) = (f + of)(x + ox) 

where of is always small compared with fand ox is always smaller 
than or comparable with the noise t.x expected to contaminate x. 
The two noise terms of and ox are hypothetical noises introduced to 
explain diverse noise sources actually distributed throughout F. 
Some of the noise appears as a tolerably small perturbation ox to 
the input-hence the term "backward error analysis. " Such a 
system F. whose noise can be accounted for by two tolerably small 
perturbations. is therefore classified into Level 2 for purposes of 
exposition. 

r---------------I 

'~~: 
: [ + ~Y=F(X) 
I F I L _______________ ~ 

Small Input and Output Perturbations (Level 2) 
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No difference will be perceived at first between Levell and Level 2 
by readers accustomed to linear systems and small signals because 
such systems' errors can be referred indiscriminately to output or 
input. However, other more general systems that are digital or 
nonlinear do not admit arbitrary reattribution of output noise to 
input noise nor vice-versa. 

For example, can all the error in I cos I be attributed, merely by 
writing I cos I (x) = cos(x + ox), to an input perturbation ox small 
compared with the inputx? Not when x is very small. For instance, 
when x approaches 10-5 radians, then cos(x) falls very near 
0.99999999995 and must then round to either 1 = cos(O) or 
0.9999999999 = cos(1.4l4 ... X 10-5). Therefore I cos I(x) = cos(x + ox) 
is true only if ox is allowed to be relatively large, nearly as large as 
x when x is very small. If we wish to explain the error in I cos I by 
using only relatively small perturbations, we need at least two of 
them: one a perturbation ox = (-6.58 .. . X 1O-14 )X smaller than 
roundoff in the input; and another in the output comparable with 
roundoff there, so that I cos I(x) = (cos + ocos)(x + ox) for some 
unknown locosl ~ (6 X 1O-10)lcosl. 

Like I cos I, every system F in Level 2 is characterized by just two 
small tolerances-call them f and '1-that sum up all you have to 
know about that system's internal noise. The tolerance f constrains 
a hypothetical output noise, I ofl ~ flfl, and '1 constrains a 
hypothetical input noise, I oxl ~ '11 x l , that might appear in a simple 
formula like 

F(x) = (f + of)(x + ox) 

The goal of backward error analysis is to ascertain that all the 
internal noise of F really can be encompassed by so simple a 
formula with satisfactorily small tolerances f and '1. At its best, 
backward error analysis confirms that the realized value F(x) 
scarcely differs from the ideal value f(x + ox) that would have been 
produced by an input x + ox scarcely different from the actual 
input x, and gives the word "scarcely" a quantitative meaning (f 
and '1). But, backward error analysis succeeds only for systems F 
designed very carefully to ensure that every internal noise source is 
equivalent at worst to a tolerably small input or output 
perturbation. First attempts at system design, especially programs 
to perform numerical computations, often suffer from internal 
noise in a more complicated and disagreeable way illustrated by 
the following example. 
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Example 6: The Smaller Root of a Quadratic. The two roots x 
and y ofthe quadratic equation c - 2bz + az2 = 0 are real whenever 
d = b2 - ac is nonnegative. Then the root y of smaller magnitude 
can be regarded as a function y = f(a,b,c) of the quadratic's 
coefficients 

_ {(b - Vd sgn(b)) / a 
f(a,b,c) -

(c / b) / 2 

if a'" 0 

otherwise. 

Were this formula translated directly in a program F(a, b, c) 
intended to calculate f(a, b, c), then whenever ac is so small 
compared with b 2 that the computed value of d rounds to b 2, that 
program could deliver F = 0 even though f ,., O. So dras tic a n error 
cannot be explained by backward error analysis beca use no 
relatively small perturbations to each coefficient a, b, and c could 
drive c to zero, as would be necessary to change the smaller root y 

into O. On the other h and, the algebraically equivalent formula 

_ { c / ( b + Vd sgn( b)) if divisor is nonzero 
f(a ,b,c) - o otherwise 

translates into a much more accurate program F whose errors do 
no more damage than would a perturbation in the last (10th) 
significant digit of c. Such a program will be listed later (page 205) 
and must be used in those instances, common in engineering, when 
the smaller root y is needed accurately despite the fact that the 
quadratic's other unwanted root is relatively large. 

Almost all the functions built into the HP-15C have been designed 
so that backward error analysis will account for their errors 
satisfactorily. The exceptions are 1 SOLVE I, em, and the statistics 
keys [i] , 11]] , and [iD which can malfunction in certain 
pathological cases. Otherwise, every calculator function F 
intended to produce f(x) produces instead a value F(x) no farther 
from f(x) than iffirst x had been perturbed to x + ox with loxl ~ '7lxl, 
then f(x + ox) were perturbed to (f + of)(x + ox) with lorl ~ flfl. The 
tolerances '7 and f vary a little from function to function ; roughly 
speaking, 

'7 = 0 and f < 10-9 for a ll functions in Levell , 

'7 < 10-12 a nd f < 6 X 10-10 for other real and complex functions. 
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For matrix operations, the magnitudes loxl.lxl, lofl, and If I must be 
replaced by matrix norms lIoxll, IIxll, Ilorll, and Ilfll respectively, 
which are explained in section 4 and evaluated using I MATRIX 17 or 
I MATRIX 18. Then all matrix functions not in Levell fall into Level 2 
with roughly 

for matrix operations (other than 
determinant I MATRIX Is, G, and [lliJ) 

for determinant I MATRIX l s, 11/xl, 
and G with a matrix divisor 

where n is the largest dimension of any matrix involved in the 
operation. 

The implications of successful backward error analysis look simple 
only when the input data x comes contaminated by unavoidable 
and uncorrelated noise LlX, as is often the case. Then when we wish 
to calculate f(x), the best we could hope to get is f(x + LlX), but we 
actually get F(x + LlX) = (f + of)(x + LlX + ox), where loti ~ <If I and 
loxl~rylxl· 

What we get is scarcely worse than the best we could hope for 
provided the tolerances < and ry are small enough, particularly if 
ILlxl is likely to be at least roughly as big as rylxl. Of course, the best 
we could hope for may be very bad, especially if f possesses a 
singularity closer to x than the tolerances upon x's perturbations 
LlX and ox. 

Backward Error Analysis Versus Singularities 

The word "singularity" refers to both a special value of the 
argument x and to the way f(x) misbehaves as x approaches that 
special value. Most commonly, f(x) or its first derivative ('(x) may 
become infinite or violently oscillatory as x approaches the 
singularity. Sometimes the singularities of Inlfl are called 
singularities of f, thereby including the zeros of f among its 
singularities; this makes sense when the relative accuracy of a 
computation of f is at issue, as we shall see. For our purposes the 
meaning of "singularity" can be left a little vague. 

What we usually want to do with singularities is avoid or 
neutralize them. For instance, the function 

c(x)= { 
(l-cosx) l x2 ifx#O 

112 otherwise 
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has no singularity at x = 0 even though its constituents 1 - cos x 
and x 2 (actually, their logarithms) do behave singularly as x 
approaches O. The constituent singularities cause trouble for the 
program that calculates c(x). Most of the trouble is neutralized by 
the choice of a better formula 

{~ (Sin (X / 2))2 
c(x) = 2 xl2 

112 

ifx / 2#0 

otherwise. 

Now the singularity can be avoided entirely by testing whether 
x / 2 = 0 in the program that calculates c(x). 

Backward error analysis complicates singularities in a way that is 
easiest to illustrate with the function A(X) = In(1 + x) that solved 
the savings problem in example 2. The procedure used there 
calculated u = 1 + x (rounded) = 1 + x + t.x. Then 

if u= 1 
A(X) = {x 

In( u) x / ( u - 1) otherwise. 

This procedure exploits the fact that A(X)/ x has a removable 
singularity at x = 0, which means that A( x)/ x varies continuously 
and approaches 1 as x approaches O. Therefore, A(X)/ x is relatively 
closely approximated by A(X + t.x) / (x + t.x) when It.xl < 10-9, and 
hence 

A(X) = X(A(X)/ x) = X(A(X + t.x) / (x + t.x)) = x(ln(u)/ (u - 1)), 

all calculated accurately because Chill is in Level 1. What might 
happen if Chill were in Level 2 instead? 

If Chill were in Level 2, then "successful" backward error analysis 
would show that, for arguments u near 1, Chill ( u) = In( u + Ilu) with 
Illul < 10-9. Then the procedure above would produce not 
x(ln(u)/ (u - l)) , but 

x(ln(u + Ilu) / (u - 1)) = XA(X + t.x + Ilu) / (x + t.x) 

X + t.x+llu 
= X(A(X + t.x + Ilu) / (x + t.x + Ilu))----­

x+ t.x 

= X(A(X)/ x)(1 + Ilu /( x + t.x)) 

= A(x)(1 + Ilu / (x + t.x)). 
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When Ix + /lxl is not much bigger than 10-9, the last expression can 
be utterly different from A(X). Therefore, the procedure that solved 
example 2 would fail on machines whose [ill] is not in Level l. 
There are such machines, and on them the procedure does collapse 
for certain otherwise innocuous inputs. Similar failures also occur 
on machines that produce (u + 0' u) - 1 instead of u - 1 because 
their G function lies in Level 2 instead of Level 1. And those 
machines that produce In(u + ou)/ (u + 0' u - 1) instead of 
In( u)/( u - 1), because both [ill] and G lie in Level 2, would be 
doubly vulnerable but for an ill-understood accident that usually 
correlates the two backward errors ou and 0' u in such a way as 
causes only half the significant digits of the computed A, instead of 
all of them, to be wrong. 

Summary to Here 

Now that the complexity injected by backward error analysis into 
singularities has been exposed, the time has come to summarize, to 
simplify, and to consolidate what has been discussed so far. 

• Many numerical procedures produce results too wrong to be 
justified by any satisfactory error analysis, backward or not. 

• Some numerica l procedures produce results only slightly 
worse than would have been obtained by exactly solving a 
problem differing only slightly from the given problem. Such 
procedures, classified in Level 2 for our purposes, are widely 
accepted as satisfactory from the point of view of backward 
error analysis. 

• Procedures in Level 2 can produce results relatively far from 
what would have been obtained had no errors at all been 
committed, but large errors can result only for data relatively 
near a singularity ofthe function being computed. 

• Procedures in Level 1 produce relatively accurate results 
regardless of near approach to a singularity. Such procedures 
are rare, but preferable if only because their results are easier 
to interpret, especially when several variables are involved. 

A simple example illustrates all four points. 

Example 7: The Angle in a Triangle. The cosine law for 
triangles says 

,2 = p 2 + q 2 - 2pq cos e 



Appendix: Accuracy of Numerical Calculations 195 

for the figure shown below. Engineering and scientific calculations 
often require that the angle e be calculated from given values p, q, 
and r for the length of the triangle's sides. This calculation is 
feasible provided 0 < p ,;;; q + r , 0 < q ,;;; p + r, and 0 ,;;; r ';;; p + q, and 
then 

0 ';;; e = cos-I(((p2 + q2) - rZ)/ (2pq)) ';;; 180° ; 

otherwise, no triangle exists with those side lengths, or else e = 0/ 0 
is indeterminate. 

q 

The foregoing formula for e defines a function e = f(p, q , r) and also 
in a natural way, a program F(p,q,r) intended to calculate the 
function . That program is labeled " A" below, with results 
FA (p, q, r) tabulated for certain inputs p , q, and r corresponding to 
sliver-shaped triangles for which the formula suffers badly from 
roundoff. The numerical unreliability ofthis formula is well known 
as is that of the algebraically equivalent but more reliable formula 
e = f(p,q,r) = 2 tan-I) ab / (cs), where s = (p + q + r) / 2, a = s - p, 
b = s - q, and c = s - r. Another program F(p, q, r) based upon this 
better formula is labeled "B" below, with results FB(p,q , r) for 
selected inputs . Apparently F B is not much more reliable than FA­
Most of the poor results could be explained by backward error 
analysis if we assume that the calculations yield F(p,q,r) = 
f(p + op,q + oq,r + or) for unknown but small perturbations 
satisfyiDg lopl < 1O-9 1pl , etc. Even if this explanation were true, it 
would have perplexing and disagreeable consequences, because the 
angles in sliver-shaped triangles can change relatively drastically 
when the sides are perturbed relatively slightly; f(p,q,r) is 
relatively unstable for marginal inputs. 

Actually the preceding explanation is false. No backward error 
analysis could account for the results tabulated for FA and F B 
under case 1 below unless perturbations 0 p, 0 q , and 0 r were 
allowed to corrupt the fifth significant digit of the input, changing 
1 to 1.0001 or 0.9999 . That much is too much noise to tolerate in a 
10-digit calculation. A better program by far is Fe, labeled "c" and 
explained shortly afterwards. 
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The three bottom lines in the table below show results fo r three 
progra ms "A", " B", a nd "e" based upon three different formulas 
F (p ,q , r ) a ll a lgebraically equivalent to 

e = f (p ,q , r ) = cos-1((p 2 + q2 - r2 )/ (2 pq )). 

Disparate Results from Three Programs FA. F8 • Fe 

Case 1 Case 2 Case 3 

p 1. 9.999999996 10. 

q 1. 9.999999994 5.000000001 

r 1.00005 X 10-5 3 X 10-9 15. 

FA O. O. 180. 

F8 5.73072 X 10-4 Error 0 180. 

Fe 5.72986 X 10-4 1.28117 X lO-8 179.9985965 

Case 4 Case 5 Case 6 

p 0.527864055 9.999999996 9.999999999 

q 9.472135941 3 X 10-9 9.999999999 

r 9.999999996 9.999999994 20. 

FA Error 0 48.1 8968509 180. 

F8 Error 0 Error 0 180. 

Fe 180. 48.18968510 Error 0 

Case 7 Case 8 Case 9 

p 1.00002 3.162277662 3.162277662 

q 1.00002 2.3 X 10-9 1.5555 X 10-6 

r 2.00004 3.162277661 3.162277661 

FA Error 0 90. 90. 

F8 180. 70.52877936 89.96318706 

Fe 180. 64.22853822 89.96315156 

To use a progr am, key in p I ENTER I q I ENTER I r, run program "A", 
"B", or "e", a nd wait to see the program 's approximation F to e = f. 
Only progra m "e" is reliable. 
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Display 

000-
001-42.21.11 
002- 4311 
003- 34 
004- 4311 
005- 4336 
006- 4333 
007- 20 
008- 34 
009- 4336 
010- 4311 
011 - 40 
012- 4333 
013- 30 
014- 34 
015- 36 
016- 40 
017- 10 
018- 4324 
019- 4332 
020-42.21.12 
021- 44 1 
022- 36 
023- 4333 
024-44.40. 1 
025- 4333 
026-44.40. 1 
027- 2 
028-44.10. 1 
029- 33 
030-45.30. 1 
031- 34 
032-45.30. 1 
033- 20 
034- 11 
035- 34 
036-45.30. 1 
037-45.20. 1 
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Keystrokes Display 

ICHS I 038- 16 
[K] 039- 11 

W~ 040- 43 1 
[HJ 041- 33 

0 042- 20 
WI RTN I 043- 4332 
[IJ ILBL I[IJ 044-42,21,13 
ISTO lo 045- 44 0 
[HJ 046- 33 
W lx';;;yl 047- 4310 

~ 048- 34 
ISTO l l 049- 44 1 
ISTO IG o 050-44,40, 0 

~ 051- 34 
ISTO IG o 052-44,40, 0 

B 053- 30 
w [MJ 054- 4333 
ISTO IB l 055-44,30, 1 
wi LSTx l 056- 4336 
IENTER I 057- 36 
I RcLiG 1 058-45,40, 1 
[K] 059- 11 
[IJ~ O 060-42, 4 , 0 
[K] 061 - 11 
ISTo l0 0 062-44,20, 0 
wl CLx l 063- 4335 

G 064- 40 
[HJ 065- 33 

G 066- 40 
[IJ~ 1 067-42, 4 , 1 
w[MJ 068- 4333 
wi LSTxl 069- 4336 
Wlx,;;;yl 070- 4310 
IGTO l 9 071 - 22 .9 
[HJ 072- 33 
W lTEST I2 073-43,30, 2 
[K] 074- 11 

~ 075- 34 
IGTO I S 076- 22 .8 
[IJ I LBLi 9 077-42,21, .9 
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Keystrokes Display 

078-43,30, 2 
079- 11 
080- 4333 
081-42,21, .8 
082- 30 
083- 11 
084- 45 1 
085- 11 
086- 20 
087- 45 0 
088- 43 1 
089- 4320 
090- 10 
091- 34 
092- 36 
093- 40 
094- 4332 

The results Fc(p,q,r) are correct to at least nine significant digits . 
They are obtained from a program "C" that is utterly reliable 
though rather longer than the unreliable programs "A" a n d "B". 
The method underlying program "C" is: 

l. 

2. 

3. 

4. 

Ifp <q, then swap them toensurep;:'q. 

Calculate b = (p - q) + r , C = (p - r ) + q, and s = (p + r) + q. 

Calculate 

{

r - (p - q) 

a = q - (p - r) if r > q ;:, 0 

Error 0 otherwise (no triangle exists). 

if q;:' r;:' 0 

Calculate Fc(p,q,r) = 2 tan- l (..;aE / ,J cs). 

This procedure delivers Fc(p,q,r) = () correct to a lmost nine 
significant digits, a result surely easier to use and interpret than 
the results given by the other better-known formulas. But this 
procedure's internal workings are hard to explain; indeed, the 
procedure may malfunction on some calculators and computers. 
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The procedure works impeccably on only certain machines like the 
HP-15C, whose subtraction operation is free from avoidable error 
and therefore enjoys the following property: Whenever y lies 
between x 12 and 2x, the subtraction operation introduces no 
roundoff error into the calculated value of x - y. Consequently, 
whenever cancellation might leave relatively large errors contami­
nating a, b, or c, the pertinent difference (p - q) or (p - r) turns out 
to be free from error, and then cancellation turns out to be 
advantageous! 

Cancellation remains troublesome on those other machines that 
calculate (x + ox) - (y + oy) instead of x - y even though neither 
ox nor oy amounts to as much as one unit in the last significant 
digit carried in x or y respectively. Those machines deliver 
Fc(p,q ,r) = f(p + op, q + oq, r + or) with end-figure perturbations 
op, oq , and or that always seem negligible from the viewpoint of 
backward error analysis, but which can have disconcerting 
consequences. For insta nce, only one of the triples (p,q,r) or 
(p + op, q + oq, r + or), not both , might constitute the edge lengths 
of a feasible triangle, so Fe might produce an error message when 
it shouldn't, or vice-versa, on those machines. 

Backward Error Analysis of Matrix Inversion 

The usual measure of the magnitude of a matrix X is a norm Ilxll 
such as is calculated by eith er I MATRIX 17 or I MATRIX 18; we shall use 
the former norm, the row norm 

Ilxll =maxI: lxij l 
I j 

in what follows. This norm has properties similar to those of the 
length of a vector and also the multiplicative property 

Ilxyll ~ IIXllllyll· 

When the equation Ax = b is solved numerically with a given n X n 
matrix A and column vector b , the calculated solution is a column 
vector c which satisfies nearly the same equation as does x , 
namely 

(A+M)c=b 

with IIMII < 1O-9 n IIAII . 
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Consequently the residual b - Ae = (.sA)e is always relatively 
small; quite often the residual norm lib - Aell is smaller than 
lib - Axil where x is obtained from the true solution x by rounding 
each of its elements to 10 significant digits. Consequently, e can 
differ significantly from x only if A is nearly singular, or 
equivalently only if IIA-III is relatively large compared with 1I1iAII; 

Ilx - ell = IIKI(b - Ae)11 

~ IIKIIIIIMllllell 

~ 1O-9 n Ilell / a(A) 

where a(A) = lIdlAl1 IIKIII) is the reciprocal of the condition 
number and measures how relatively near to A is the nearest 
singular matrix 8, since 

min IIA - 811 = a(A) IIAII. 
det(S)=O 

These relations and some of their consequences are discussed 
extensively in section 4. 

The calculation of A -I is more complicated. Each column of the 
calculated inverse 11/x l(A) is the corresponding column of some 
(A + .sArI, but each column has its own small .sA. Consequently, 
no single small .sA, with II.sAII ~ 10-9 n IIAII, need exist satisfying 

roughly. Usually such a .sA exists, but not always. This does not 
violate the prior assertion that the matrix operations ~ and B 
lie in Level 2; they are covered by the second assertion of the 
summary on page 194. The accuracy of~(A) can be described in 
terms of the inverses of all matrices A + Ll.A so near A that 
IILl.AII ~ 1O-9 nIIAII; the worst among those (A + Ll.Ar l is at least 
about as far from A -I in norm as the calculated ~(A). The figure 
below illustrates the situation. 

O (9]
-

/ 1 (A + Ll.A)- 1 is in here 
A f A - \ . \ . , 

\ / 

X 
A + Ll.A is in here - - ~(A) is in here 
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As A + LlA runs through matrices with II LlAII at least about as large 
as roundoff in IIAII, its inverse (A + LlArl must roam at least about 
as far from A -I as the distance from A -I to the computed ~(A). 
All these excursions are very small unless A is too near a singular 
matrix, in which case the matrix should be preconditioned away 
from near singularity. (Refer to section 4.) 

If among those neighboring matrices A + LlA lurk some that are 
singular, then many (A + LlArl and ~(A) may differ utterly 
from A-I . However, the residual norm will always be relatively 
small: 

-",-11 A--'(A"..,,----+_Ll_A'---r 1_--,-1,::-11 II LlA II -9 -,- ,;;;--,;;; 10 n. 
IIAIIII(A + LlAnl IIAII 

This last inequality remains true when ~(A) replaces 
(A+ LlArl. 

If A is far enough from singularity that all 

then a lso 

This inequality also remains true when ~(A) replaces 
(A + LlArl, and then everything on the right-hand side can be 
calculated, so the error in ~(A) cannot exceed a knowable 
amount. In other words, the radius of the dashed ball in the figure 
above can be calculated. 

The estimates above tend to be pessimistic. However, to show why 
nothing much better is true in general, consider the matrix 

x = [;00002 
-50,000 50,000.03 _45 ] 
50,000 -50,000.03 45 

0 0.00002 -50,000.03 

0 0 52,000 
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and 

X-I = [50'00~ 50.00~.00002 50.00~.03 48.07:.98077... ] . 

o 0 50.000 48.076.95192 ... 

o 0 0 0.00001923076923 .. 

Ideally. p = q = O. but the HP-15C's approximation to X-I. namely 
~(X). has q = 9.643.269231 instead. a relative error 

IIx-1 - ~(X)II 
IIx-1 11 = 0.0964 ... • 

nearly 10 percent. On the other h and. if X + D.X differs from X only 
in its second column where - 50.000 and 50.000 are replaced 
respectively by - 50.000.000002 and 49.999.999998 (altered in the 
11th significant digit) . then (X + D.Xr l differs significantly from 
X-I only insofa r as p = 0 and q = 0 must be replaced by p = 
10.000.00600 ... and q = 9.615.396154 .... Hence. 

the relative error in (X + D.Xr l is nearly twice that in ~(X). Do 
not try to calculate (X + D.Xr l directly. but use instead the formula 

(X - cbTrl = X-I + X-1cbTX-1 / (1 - b 1X-1c) • 

which is valid for any column vector c and row vector b r • and 
specifically for 

, = [;] "nd b' = [0 0000002 0 01. 

Despite that 

IIx-1 - ~(X)II < IIx-1 - (X + D.Xnl • 

it can be shown that no very small end-figure perturbation oX 
exists for which (X + oXrl matches ~(X) to more than five 
significant digits in norm. 
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Of course, none of these horrible things could happen if X were not 
so nearly singular. Because IIxll IIx- l ll > 1010, a change in X 
amounting to less than one unit in the 10th significant digit of Ilxll 
could make X singular; such a change might replace one of the 
diagonal elements 0.00002 of X by zero. Since X is so nearly 
singular, the accuracy of ITZ!J(X) in this case rather exceeds what 
might be expected in general. What makes this example special is 
bad scaling; X was obtained from an unexceptional matrix 

_ 0 5. -5.000003 4.5 X 10-12 

[

2. -5. 5.000003 -4.5 X 10_12
] 

X= 
o 0 2. -5.000003 

o 0 0 5.2 

by multiplying each row and each column by a carefully chosen 
power of 10. Compensatory division of the columns and rows ofthe 
equally unexceptional matrix 

[

0.5 ~5 p q ] 
X-I = 0 0.2 0.5000003 0.4807698077. .. 

o 0 0.5 0.4807695192 .. . 

o 0 0 0.1923076923 .. . 

yielded X-I, with p = q = o. The HP-15C calculates ITZ!J(X) = X-I 
except that q = 0 is replaced by q = 9.6 X 10-11 , a negligible change. 
This illustrates how drastically the perceived quality of computed 
results can be altered by scaling. (Refer to section 4 for more 
information about scaling.) 

Is Backward Error Analysis a Good Idea? 

The only good thing to be said for backward error analysis is that it 
explains internal errors in a way that liberates a system's user 
from having to know about internal details of the system. Given 
two tolerances, one upon the input noise 8x and one upon the 
output noise 8f, the user can analyze the consequences of internal 
nOIse In 

F(x) = ( f + 8f)(x + {)x) 

by studying the noise propagation properties of the ideal system f 
without further reference to the possibly complex internal structure 
ofF. 
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But backward error analysis is no panacea; it may explain errors 
but not excuse them. Because it complicates computations 
involving singularities, we have tried to eliminate the need for it 
wherever we could. If we knew how to eliminate the need for 
backward error analysis from every function built into the 
calculator, and to do so at tolerable cost, we would do that and 
simplify life for everyone. That simplicity would cost too much 
speed and memory for today's technology. The next example will 
illustrate the trade-offs involved. 

Example 6 Continued. The program listed below solves the real 
quadratic equation c - 2 bz + az2 = 0 for real or complex roots. 

To use the program, key the real constants into the stack (c I ENTER I 
b I ENTER I a) and run program " A ". 

The roots x and y will appear in the X- and V-registers. If the roots 
are complex, the C annunciator turns on, indicating that Complex 
mode has been activated. The program uses labels "A" and ".9" 
and the Index register (but none of the other registers 0 to .9); 
therefore, the program may readily be called as a subroutine by 
other programs. The calling programs (after clearing flag 8 if 
necessary) can discover whether roots are real or complex by 
testing flag 8, which gets set only if roots are complex. 

The roots x and yare so ordered that Ixl ~ Iy l except possibly when 
Ix l and Iy l agree to m ore than nine significant digits. The roots are 
as accurate as ifthe coefficient c had first been perturbed in its 10th 
significant digit, the perturbed equation had been solved exactly, 
a nd its roots rounded to 10 significant digits. Consequently, the 
computed roots match the given quadratic's roots to at least five 
significant digits. More generally, if the roots x and y agree to n 
significant digits for some positive n:( 5, then they are correct to at 
least 10 - n significant digits unless overflow or underflow occurs. 

Keystrokes Display 

W IP/R I 
ITlCLEARlpRGMI 000-
ITlILBLI[6J 001-42,21 ,11 
IENTER I 002- 36 
wffiI] 003- 4333 
0 004- 20 
wlLSTx l 005- 4336 
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Keystrokes Display 

~ 006- 34 

wffi!J 007- 4333 
I STO I[] 008- 4425 
w[ZJ 009- 4311 

G 010- 30 
W lTEST I1 011-43.30. 1 
IGTo l 9 012- 22 09 
ICHS I 013- 16 
[KJ 014- 11 
[]~[] 015-42. 4.25 
Wl TEST I2 016-43.30. 2 
IRCLIG[] 017-45.30.25 
Wl TEST I3 018-43.30. 3 
IRCL IG[] 019-45.40.25 
WI TEST lo 020-43.30. 0 

G 021- 10 
wi LSTx l 022- 4336 
wffi!J 023- 4333 

G 024- 10 
WIRTNI 025- 4332 
[]I LBL I 9 026-42.21. 09 
[KJ 027- 11 
I RCL I[] 028- 4525 
wffi!J 029- 4333 
G 030- 10 

~ 031- 34 
wlLSTx l 032- 4336 
G 033- 10 
[f][] 034- 4225 
IENTER I 035- 36 
[f]I Re~lm l 036- 4230 
ICHSI 037- 16 
[f]IRe~ l ml 038- 4230 
WI RTN I 039- 4332 
Wl P/R I 

The method uses d = b2 - aco 

If d < 0, then the roots are a complex conjugate pair 

(b l a) ± iHl ao 
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If d ~ 0, then the roots a re real numbers x a nd y calcula ted by 

s = b + Jd sgn( b) 

x =s / a 

if s'" 0 

if s = o. 

The s calcula tion avoids destructive cancell a tion . 

When a = 0 ,.. b, the la rger root x, which should be 00, encounters 
division by zero (Error 0 ) that can be cleared by pressing []±] three 
times to exhibit the sm aller root y correctly calculated. But when 
all three coefficients vanish, the Error 0 message signa ls th a t both 
roots are arbitrary. 

The results of several cases are summarized below. 

Case 1 Case 2 Case 3 Case4 

c 3 4 1 654,321 

b 2 0 1 654,322 

a 1 1 10-13 654,323 

Roots Real Compl ex Real Real 

3 o ± 2 i 2 X 1013 0 .9999984717 

1 0 .5 0.9999984717 

Case 5 Case 6 

c 46,152,709 12,066,163 

b 735,246 987,644 

a 11,713 80,841 

Roots Rea l Complex 

62.77179203 12.21711755 ± i O.001377461 

62.77179203 
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The last three cases show how severe are the results of perturbing 
the 10th significant digit of any coefficient of any quadratic whose 
roots are nearly coincident. The correct roots for these cases are 

Case 4: 1 and 0.9999969434 

Case 5: 62.77179203 ± i8.5375 X 10-5 

Case 6: 12.21711755 ± iO.001374514 

Despite errors in the fifth significant digit of the results, subroutine 
"A" suffices for almost all engineering and scientific applications 
of quadratic equations. Its results are correct to nine significant 
digits for most data, including c, b , and a representable exactly 
using only five significant digits; and the computed roots are 
correct to at least five significant digits in any case because they 
cannot be appreciably worse than if the data had been entered with 
errors in the 10th significant digit. Nonetheless, some readers will 
feel uneasy about results calculated to 10 significant digits but 
correct to only 5. If only to simplify their understanding of the 
relationship between input data and output results, they might still 
prefer roots correct to nine significant digits in all cases. 

Programs do exist which, while carrying only 10 significant digits 
during arithmetic, will calculate the roots of any quadratic 
correctly to at least nine significant digits regardless of how 
nearly coincident those roots may be. All such programs calculate 
d = b2 - ac by some trick tantamount to carrying 20 significant 
digits whenever b2 and ac nearly cancel, so those programs are a 
lot longer and slower than the simple subroutine "A" provided 
above. Subroutine "B" below, which uses such a trick,* is a very 
short program that guarantees nine correct significant digits on a 
10-digit calculator. It uses labels "B", ".7", and ".8" and registers 
Ro through R9 and the Index register. To use it, key in c I ENTER I b 
I ENTER la, run subroutine "B", and wait for results as before. 

Keystrokes 

@:llp/R I 
ITl CLEAR I PRGM I 
ITlI LBLI[[i 
I STO I[) 
[Bl] 

Display 

000-
001-42,21,12 
002- 4425 
003- 33 

* Program "B" exploits a tricky property of the ~ and [B keys wh ereby certain 
calculations can be carried out to 13 s ign ificant digits before being rounded back to 10. 
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Keys trokes Display 

ISTO lo 004- 44 0 
ISTo la 005- 44 8 

~ 006- 34 
ISTO ll 007- 44 
ISTOl9 008- 44 9 
ITl iscI 12 009-42. 8 . 2 
ITl llBl l·a 010-42.21 .. 8 
ITl CLEAR []] 011- 4232 
I RCl ia 012- 45 8 
ISTO l7 013- 44 7 
I Rc LiGITl 014-45.10.25 
WI RND I 015- 4334 
I RCl lITl 016- 4525 
w [EJ 017- 4349 
IRCl l9 018- 45 9 
ITl [ill7 019-42. 4 . 7 
~ 020- 34 
IRCl la 021- 45 8 
w [EJ 022- 4349 
[IT] 023- 33 
w[EJ 024- 4349 
IRCl l7 025- 45 7 
WI ABS I 026- 4316 
IRCl l9 027- 45 9 
WI ABs l 028- 4316 
Wl x,;;;yl 029- 4310 
I GTO I lID 030- 2212 
IENTER I 031- 36 
w [ff] 032- 4333 
ISTo la 033- 44 8 
IRCll7 034- 45 7 
ISTO l9 035- 44 9 
WI ABs l 036- 4316 
IEEXI 037- 26 
2 038- 2 
0 039- 0 
0 040- 20 
I RCl il 041- 45 1 
wl ABs l 042- 4316 
Wlx';;;yl 043- 4310 
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Keystrokes Display 

[GTol.s 044- 22 .8 
[IJ [ LBL I [[] 045-42,21,12 
[IJffiR] 9 046-42, 7, 9 
[ RCLls 047- 45 8 
w[ZJ 048- 4311 
[sT0 17 049- 44 7 
[ RCL I[j] 050- 4525 
[ RCLI9 051- 45 9 

wCEJ 052- 4349 
[RCLI7 053- 45 7 
W [TESTI2 054-43,30, 2 
[GTOI 7 055- 22 .7 
[KJ 056- 11 
[IJ[ill o 057-42, 4, 0 
WITESTI2 058-43,30, 2 
[RCLIGo 059-45,30, 0 
W[ TEST I3 060-43,30, 3 
[R CLIG o 061-45,40, 0 
[IJ[ill1 062-42, 4, 1 
WI TEST lo 063-43,30, 0 
[RCLIG1 064-45,10, 1 
[ RCLI1 065- 45 1 
[ RCLIG [j] 066-45,10,25 
WI RTN I 067- 4332 
[IJ[ LBL I. 7 068-42,21 , .7 
[cHs l 069- 16 
[KJ 070- 11 
[RCLIG[j] 071-45,1 0 ,25 
[ ENTER I 072- 36 
[cHs l 073- 16 
[RCLIO 074- 45 0 
[ RCL I[j] 075- 4525 

G 076- 10 

~ 077- 34 
[IJ[j] 078- 4225 
[ ENTER I 079- 36 
wffiI] 080- 4333 
[IJ[j] 081- 4225 
W[ RTN I 082- 4332 
w [P/ RI 
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This program's accuracy is phenomenal: better than nine 
significant digits even for the imaginary parts of nearly 
indistinguishable complex roots (as when c = 4,877,163,849 and 
b = 4,877,262,613 and a = 4,877,361,379); if the roots are integers, 
real or complex, and if a = 1, then the roots are calculated exactly 
(as when c = 1,219,332,937 X 10' , b = lll ,ll1.5, and a = 1). But the 
program is costly; it uses more than twice as much memory for 
both program and data as does subroutine "A", and much more 
time, to achieve nine significant digits of accuracy instead of five 
in a few cases that can hardly ever matter-simply because the 
quadratic's coefficients can hardly ever be calculated exactly. If 
any coefficient c, b, or a is uncertain by as much as one unit in its 
lOth significant digit, then subroutine "B" is overkill. Subroutine 
"B" is like Grandmother's expensive chinaware, reserved for 
special occasions, leaving subroutine "A" for everyday use. 
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numbers in regular type indicate secondary references. 

A 
Absolute error, 173, 182 
Accuracy 

in Complex mode, 73-75 
of integrand, 47-49 
of numerical calculations, 172-211 
of solutions to linear system, 103-104 

Aliasing, 46 
Analysis, discounted cash flow , 39-44 
Analysis of variance, 133-140 
Angle in triangle, 194-199 
Annuities, 26-39 
Annuity, ordinary, 27 
Annuity due, 27-28 
Annunciator, C, 205 
Annunciator, trig mode, 68 
ANOV A table, 133,134,140 
Augmented matrix, 141 
Augmented normal equations, 111 
Augmented system, 142 

B 

Backward error analysis, 187-211 
Balloon payment, 27, 29, 36 
Binomial theorem, 176 
Bounding search, 161 , 162 
Branch, principal, 69-72 
Bridge too short, 174 
Broken calculator, 172, 175-176 

C 
Calculation time, [EJ , 49-55 
Calculations, numerical accuracy, 172-211 
Cancellation, 176-178,200, 207 

212 



Cash flow analysis, discounted, 39-44 
Cash flow diagram, 28, 28-44 
Characteristic equation, 148 
Column norm, 99 
Complementary error function, 60-64 
Complementary normal distribution function, 60-64 
Complex components, accurate, 74 
Complex equations, solving large system, 128-131 
Complex math functions, 68-72 
Complex mode, 65-95 

accuracy, 73-75 
ISOLvE land[E),73 

Complex multi valued functions, 69-72 
Complex number, nth roots, 69, 78-80 
Complex number, storing and recalling, 76-78 
Complex potential function, 89-95 
Complex relative error, 183 
Complex roots of equation, 16-17,80-85 
Complex roots of quadratic equation, 205-211 
Complex single-valued functions, 69 
Components, accurate complex, 74 
Compound amounts, 26-39 
Condition number, 98-102,107, 201 
Conformal mapping, 89 
Constrained least-squares, 111, 115-116, 143 
Consumer price index, 137-140, 147-148 
Contour integral, 85-89 
Correctly rounded result, 179-183 

perturbed input, 184-211 
Covariance matrix, 131 
Critical point, 160, 162, 163 

D 
Declination, 11-15 
Decomposition, LU, 96-98, 117, 118 

descriptor, 97 
Deflation, 10 
Degrees offreedom, 132 
Delay equation, 81-85 
Derivative, 10, 17-20, 192 
Descartes' Rule of Signs, 10-11 

Index 213 
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Descriptor of L U decomposition, 97 
Determinant, 97-98,118 
Diagram, cash flow, 28, 28-44 
Discounted cash flow analysis, 39-44 
Discounted rate of return, 39 
Display format, 45-46, 48 
Doolittle method, 97 

E 
Eigenvalue, 148-160 

storage, 159-160 
Eigenvector, 149, 154-160 
Electrostatic field, 59 
Endpoint, [ZiJ sampling at, 46-47,56 
Equations 

complex, solving large system, 128-131 
equivalent, 9-10 
solving inaccurate, 10 
solving nonlinear system, 122-128 
with several roots, 10 

Equipotential line, 89-95 
Equivalent equations, 9-10 
Error 0 , 29,196, 199,207 
Error 1, 162, 167 
Error 4 , 29, 40 
Error 8 , 9, 23 
Error analysis , backward, 187-211 
Error function, 60-64 

complementary, 60-64 
Error, 173 

absolute, 173, 182 
hierarchy, 178 
in matrix elements, 100-101 
misconceptions, 172-178 
relative, 173, 182, 183 

Example 
angle in triangle, 194-199 
annuities, 34-39 
bridge too short, 174 
broken calculator, 172, 175-176 
cash flow, 43-44 
compound amounts, 34-39 
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consumer price index regression, 137-140, 147-148 
contour integral, 88-89 
declination of sun, 11-15 
delay equation, 81-85 
eigenvectors, 157-159 
equipotential line, 95 
field intensity of antenna, 17-25 
filter network, 128-131 
Gamma function , 65-68 
lunar phases, 186 
normal distribution function, 64 
nth roots of complex number, 80 
optimizing box, 168-171 
pennies, 173, 180-183 
pi, 173, 184-186 
quadratic surface, 153-154 
residual correction, 121 
roots of quadratic equation, 191,205-211 
special functions, 64 
storing and recalling complex numbers, 77-78 
streamline, 93-94 
subdividing interval of integration, 51-54 
transformation of variables, 54-55 
unbiased test of hypothesis, 122-128 

Extended precision, 47,104,208 
Extremes of function, 17-25 

F 

Fratio , 132-140 
Factorization, orthogonal, 113-116, 140-148 
Field intensity, 17-25 
Financial equation, 29, 39 
Financial problems, 26-44 
Format, display, 45-46, 48 
Frobenius norm, 99 
Functions, complex, 68-73 
Future value, 26-39 

G 
Gamma function, complex, 65-68 
Gradient, 160, 162 
Grandmother's expensive chinaware, 211 
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H 

Hierarchy of error, 178 
Horner's method, 11, 12 
Hyperbolic cylinder, 153-154 

I 

Identity matrix, 119 
Ill-conditioned matrix, 98-102, 107, 155 
Ill-conditioned system of equations, 104-110 
Improper integral, 55-60 
Inaccurate equations, solving, 10 
Inaccurate roots, 9-10 
Input noise, 187-192 
Integral 

contour, 85-89 
evaluating difficult, 55-60 
improper, 55-60 

Integration, numerical, using[]], 45-64 
Integration in Complex mode, 73 
Interchange, row, 97,117 
Interest rate, 26-44 
Internal rate of return, 39-44 
Interval of integration, subdividing, 50-54, 58 
Interval reduction, 161, 162 
Inverse iteration, 155 
Inverse of function, 69 
Inverse of matrix, 98,101-102, 110,118, 187 

backward error analysis, 200-204 
IRR,39-44 
Iterative refinement, 103-104, 119-121 

J 
Jordon canonical form, 155 

L 

Large system of complex equations, solving, 128-131 
Least-squares, 110-116, 131-148, 187 

linearly constrained, 111, 115-116, 143 
weighted, 111 , 115, 143 

Level 0,178 
Level 1, 179-183, 190, 194 
LevellC,183 
Level 2, 184-211 



Level 00, 179 
Line search, 161 
Linear model, 131 
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Linear regression, multiple, 131. See also Least-squares 
Linear system, a ccuracy of numerical solution, 103-104 
Linearly constrained least-squares, Ill, 115-116, 143 
Lower-triangular matrix, 96 
LU decomposition, 96-98, 117,118 

descriptor, 97 
Lunar phases, 186 

M 

Mapping, contour, 89 
Mathematical functions, complex, 68-72 
Mathematical functions , pure, 47-49 
Mathematical model, 48 
Matrix elements, errors in, 100-101 
Matrix inversion, backward error analysis, 200-204 
Matrix operations, 76-78, 96-171 

error levels, 178, 179, 192 
Maximum offunction, 17-25, 160 
Mean-adjusted regression sum of squares, 134 
Minimum offunction, 17-25, 160 
Model, linear, 131 
Model, mathematical, 48 
Monotonicity, 180, 186 
Multiple linear regression, 131. See also Least-squares 
Multiple root, 10 
Multivalued fun ctions. complex, 69-72 
N 

Nearly singula r matrix, 107, 117-118, 201,204 
Net present value, 39-44 

equation , 39 
Network, filter, 128-131 
Newton's iteration method, 80-82,122 
Noise, input and output, 187-192 
Nonlinear equations, solving system, 122-128 
Nonsingula r matrix, 101-102, 117 
Norm, 99,106,200 
Normal distribution, 122-123, 132 
Normal distribution function , 48, 60-64 

complementary, 60-64 
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Normal equations, 110-113, 131-140 
augmented,111 
weighted, III 

NPV, 39-44 
equation, 39 

nth roots of complex number, 69,78-80 
Number of correct digits, 103, 121 
Numerical calculations, accuracy, 172-211 
Numerical integration, 45-64 
Numerical solutions to linear system, accuracy, 103-104 
Numerically finding roots, 6, 6-44 

o 
Optimization, 160-171 
Ordinary annuity, 27 
Orthogonal factorization, 113-116, 140-148 
Orthogonal matrix, 113, 141, 142, 149 
Output noise, 188-192 
Overflow, 179 

p 

Payment, 26-39 
Pennies, 173, 180-183 
Phases, lunar, 186 
Physical situations, 47-49 
Pi, 173, 184-186 
Pivots, 118 
Polar form, 68 
Polynomials, 10-15 
Potential function, complex, 89-95 
Precision, extended, 47,104,208 
Preconditioning a system, 107-110 
Present value, 26-44 
Principal branch, 69-72 
Principal value, 69-72 

Q 
Quadratic equation, roots, 191,205-211 
Quadratic surface, 149, 153-154 

R 
Radians, used in Complex mode, 68 
Rate of return, 39-44 



Recalling complex numbers, 76-78 
Rectangular form, 68 
Refinement, iterative, 103-104, 119-121 
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Regression, multiple linear, 131. See also Least-squares 
Regression sum of squares, 132-140 

mean-adjusted, 134 
Relative error, 173, 182, 183 

complex, 73-75 
Relative uncertainty of matrix, 100 
Repeated estimation, 23-25 
Residual, 103-104, 1l0, 132,201 
Residual correction, 103-104, 119-121 
Residual sum of squares, 132-140 
Resonance, 46 
Return, rate of, 39-44 
Romberg method, 46 
Roots 

complex, 16-17 
equations with several, 10 
inaccurate, 9-10 
multiple, 10 
not found, 9, 29, 92 
numerically finding, 6, 6-44 
of complex number, 69, 78-80 
of equation, complex, 80-85 
of quadratic equation, 191,205-211 

Round-off error, 47,49. See also Rounding error 
Rounding error, Ill, ll3, 118, 172-211 
Row interchange, 97, ll7 
Row norm, 99, 200 

S 
Saddle-point, 162 
Samples, 0, 46-47, 50, 56, 73 
Samples, I SOLVE I, 7-9, 73 
Scaling a matrix, 104-107,204 
Scaling a system, 107 
Secant method, 7 
Sign change, 8 
Sign symmetry, 180, 185 
Single-valued functions, complex, 69 
Singular matrix, 101-102, 117-118, 201 
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Singularity and backward error analysis, 192-194 
Skew-symmetric matrix, 149 
Slope, 20-22 
Smaller root of quadratic equation, 191 , 205-211 
Solutions to linear system, accuracy, 103-104 
1 SOLVE 1,6-44 

algorithm, 6-9, 73 
in Complex mode, 73 

Solving a system of equations, 15-17, 98, 100-101 , 118, 122-128 
Solving a system of nonlinear equations, 122-128 
Solving equation for complex roots , 80-85 
Solving large system of complex equations, 128-131 
Steepest descent, 160 
Storing complex numbers, 76-78 
Streamline, 89-94 
Subdividing interval of integration, 50-54, 58 
Subinterval, 50-54 
Successive rows, 140-148 
Sum of squares, 132, 140 
Symmetric matrix, 148-149 
System of complex equations, solving large, 128-131 
System of equations, ill-conditioned, 104-110 
System of equations, solving, 15-17, 98, 100-101 , 122-128 
System of nonlinear equations, solving, 122-128 

T 
Tail offunction, 57-58 
T aylor series, 182 
Total sum of squares, 132-140 
Tra nsformation of variables, 54-55 
Tri angle, angle in, 194-199 
Trigonometric functions, 184-186 
Trigonometric modes, 68 

U 
Unbiased test, 122-123 
Uncertainty for @), 45-46 
Uncertainty of matrix, 100 
Unconstrained least-squares. See Least-squares 
Underflow, 50-51,118, 179 
Upper-triangular matrix, 96,113-114,141 



v 
Variables, transforming, 54-55 

W 

Weighted least-squares, 111, 115, 143 
Weighted normal equations, III 

Y 

Yield,39 

Z 
Zero of polynomial, 10 
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