
Advanced Scientific
Calculator

Owner's Manual

HP-28S
rli~ HEWLETT
~~ PACKARD

HP-28S
Advanced Scientific Calculator

Owner's Manual

FliiiW HEWLETT
~~ PACKARD

Edition 4 November 1988
Reorder Number 00028-90066

Notice

For warranty and regulatory information for this calculator, see pages 291
and 295.

This manual and any examples contained herein are provided "as is" and
are subject to change without notice. Hewlett-Packard Company makes
no warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for a
particular purpose. Hewlett-Packard Co. shall not be liable for any
errors or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual or the keystroke programs
contained herein.

© Hewlett-Packard Co. 1988. All rights reserved. Reproduction, adapta­
tion, or translation of this manual is prohibited without prior written per­
mission of Hewlett-Packard Company, except as allowed under the copy­
right laws.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Co. is also
prohibited.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1
Edition 2
Edition 3
Edition 4

November 1987
April 1988
June 1988

November 1988

Mfg. No. 00028-90067
Mfg. No. 00028-90128
Mfg. No. 00028-90130
Mfg. No. 00028-90147

Welcome to the HP-28S

Congratulations! With the HP-28S you can easily solve complicated
problems, including problems you couldn't solve on a calculator be­
fore . The HP-28S combines powerful numerical computation with a
new dimension-symbolic computation . You can formulate a problem
symbolically, find a symbolic solution that shows the global behavior
of the problem, and obtain numerical results from the symbolic solu­
tion.

The HP-28S offers the following features:

• Algebraic manipulation. You can expand, collect, or rearrange terms
in an expression, and you can symbolically solve an equation for a
variable.

• Calculus. You can calculate derivatives, indefinite integrals, and
definite integrals.

• Numerical solutions. Using HP Solve on the HP-28S, you can solve
an expression or equation for any variable. You can also solve a
system of linear equations. With multiple data types, you can use
complex numbers, vectors, and matrices as easily as real numbers.

• Plotting. You can plot expressions, equations, and statistical data.

• Unit conversion. You can convert between any equivalent combina­
tions of the 120 built-in units. You can also define your own units.

• Statistics. You can calculate single-sample statistics, paired-sample
statistics, and probabilities.

• Binary number bases. You can calculate with binary, octal, and
hexadecimal numbers and perform bit manipulations.

• Direct entry for algebraic formulas, plus RPN logic for interactive
calcula tions.

Welcome to the HP·28S 3

The HP-28S Owner's Manual (this manual) contains three parts. Part 1,
"Fundamentals," demonstrates how to work some simple problems.
Part 2, "Summary of Calculator Features," builds on part 1 to help
you apply those examples to your own problems. Part 3, "Program­
ming," describes programming features and demonstrates them in a
series of programming examples.

The HP-28S Reference Manual gives detailed information about com­
mands. It is a dictionary of menus, describing the concepts and
commands for each menu.

We recommend that you first work through the examples in part 1 of
the Owner's Manual to get comfortable with the calculator, and then
look at part 2 to gain a broader understanding of the calculator's op­
eration. When you want to know more about a particular command,

. look it up in the Reference Manual. When you want to learn about
programming, read part 3 of the Owner's Manual.

These manuals show you how to use the HP-28S to do math, but
they don't teach math. We assume that you're already familiar with
the relevant mathematical principles. For example, to use the calculus
features of the HP-28S effectively, you should know elementary
calculus.

On the other hand, you don't need to understand all the math topics
in the HP-28S to use those parts of interest to you. For example, you
don't need to understand calculus to use the statistical capabilities.

4 Welcome to the HP·28S

Contents

15 How To Use This Manual
15 What's in This Manual
16 For More Information

Part 1: Fundamentals

1

2

18
18
18
19
20
20
21
21
25
25
31

34
36
36
37
39
40
41
41

Getting Started
Preliminaries

Opening and Closing the Case
Locating the Battery Door and Printer Port
Turning the HP-28S On and Off
Clearing All Memory (Memory Reset)
Adjusting the Display Contrast

Keyboard Calculations
An Overview of the Calculator

Major Features and Concepts
The Catalog of Commands

Doing Arithmetic
Entering and Displaying Numbers

Changing the Decimal Point
Selecting Number Display Mode
Keying In Numbers

One-Number Functions
Two-Number Functions

Addition and Subtraction
41 Multiplication and Division
42 Powers and Roots
43 Percentages

Contents 5

43 Swapping Levels 1 and 2
44 Clearing Objects From the Stack
45 Chain Calculations
47 If You Execute the Wrong Function

3 48 Using Variables
48 Introduction to Variables
49 Creating a Numerical Variable
50 Recalling a Numerical Variable
50 Evaluating a Numerical Variable
51 Changing the Value of a Variable
52 Purging a Variable
52 Changing the Name of a Variable
54 Creating a Program Variable
56 Recalling a Program Variable
56 Evaluating a Program Variable
57 Quoted and Unquoted Names

4 58 Repeating Calculations
58 Creating an Expression
60 Creating a Directory
63 Using the Solver To Repeat a Calculation
66 Using a Different Set of Values
68 Using a Different Expression
71 Returning to HOME
72 Summary

5 73 Real-Number Functions
73 Trigonometric Functions
73 Selecting Angle Mode
74 Using 7r

76 Converting Angular Measure
77 Logarithmic, Exponential, and Hyperbolic

Functions
78 Other Real Functions
79 Defining New Functions

6 Contents

6 82 Complex-Number Functions
82 Using Complex Numbers
84 Using Polar Coordinates
86 A User Function for Polar Addition

7 89 Plotting
91 Printing a Plot
91 Changing the Scale of the Plot
93 Translating the Plot
94 Redefining the Corners of the Plot
97 Plotting Equations

8 98 The Solver
98 Finding a Zero of an Expression

100 Finding a Minimum or Maximum
103 Time Value of Money

9 107 Symbolic Solutions
107 Finding the Zeros of a Quadratic Expression
109 Isolating a Variable
110 Expanding and Collecting
112 Using FORM

10 117 Calculus
117 Differentiating an Expression
118 Step-by-Step Differentiation
120 Complete Differentiation
120 Integrating an Expression
121 Symbolic Integration of Polynomials
122 Numerical Integration of Expressions

Contents 7

11 124 Vectors and Matrices
124 Vectors
124 Keying In a Vector
125 Multiplying and Dividing a Vector by a Number
125 Adding and Subtracting Vectors
126 Finding the Cross Product
126 Finding the Dot Product
126 Matrices
127 Keying In a Matrix
127 Viewing a Large Matrix
128 Inverting a Matrix
128 Finding the Determinant
128 Multiplying Two Arrays
128 Multiplying Two Matrices
129 Multiplying a Matrix and a Vector
130 Solving a System of Linear Equations

12 131 Statistics
132 Entering Data
133 Editing Data
134 Single-Sample Statistics
134 Finding the Mean
135 Finding the Standard Deviation
135 Finding the Variance
135 Paired-Sample Statistics
136 Specifying a Pair of Columns
136 Finding the Correlation
136 Finding the Covariance
137 Finding the Linear Regression
137 Finding Predicted Values

13 138 Binary Arithmetic
138 Selecting the Wordsize
139 Selecting the Base
139 Entering Binary Integers
140 Calculating With Binary Integers

8 Contents

14

15

141
141
143
144
146
147

149
149
150
151
152
152

Unit Conversion
The UNITS Catalog
Converting Units
Converting Unit Strings
Checking for the Correct Units
User Functions for Unit Conversion

Printing
Printing the Display
Printing a Running Record
Printing Level 1
Printing the Stack
Printing a Variable

Part 2: Summary of Calculator Features

16

17

154
155
155
156
156
157
158
159
160
161
161
162
163

164

Objects
Real Numbers
Complex Numbers
Binary Integers
Strings
Arrays
Lists
Names
Programs
Algebraics

Expressions
Equations
Symbolic Constants

Operations, Commands, and Functions

Contents 9

18 166 The Command Line
166 The Cursor Menu
168 Some Entry Keys
169 Object Delimiters and Separators
169 Entry Modes
171 Exceptions
171 Manual Selection of Entry Modes
172 How the Cursor Indicates Modes
173 Executing the Command Line
173 Editing Existing Objects
174 Recovering Command Lines
175 The Command Line as a String

19 176 The Stack
176 Review of Stack Concepts
177 Viewing the Stack
177 Manipulating the Stack
179 Local Variables
179 Recovering the Last Arguments
180 Restoring the Stack
181 The Stack as a List

20 182 Memory
182 User Memory
182 Global Variables
183 Directories
187 Recovery Features
188 Low Memory
190 Maximizing Performance

21 192 Menus
193 Menus of Commands
194 Menus of Operations
194 Menus of Variables
195 Custom Menus

10 Contents

22 196 Catalog of Commands
197 Finding a Command
197 Checking Command Use

23 198 Evaluation
199 Data-Class Objects
199 Name-Class Objects
200 Evaluation of Local Names
200 Evaluation of Global Names
201 Procedure-Class Objects
201 Evaluation of Programs
202 Evaluation of Algebraics
203 Evaluation of Functions

24 205 Modes
205 General Modes
207 Entry and Display Modes
210 Recovery Modes
211 Mathematical Exceptions
212 Printing Modes

25 215 System Operations
216 Printing the Display
216 Contrast Control
216 Clearing Operations
216 Attention
217 System Halt
217 Memory Reset

Contents 11

218 Test Operations
218 Repeating Test
219 Keyboard Test

Part 3: Programming

26 222 Program Structures
222 Local-Variable Structure
223 Conditional Structures
226 IF . . . THEN ... ELSE .. . END
226 IFTE (1£-Then-Else-End Function)
227 IF . . . THEN ... END
227 1FT (If-Then-End Command)
227 Error Traps
228 Definite Loop Structures
228 START ... NEXT
229 FOR counter ... NEXT
230 ... increment STEP
231 Indefinite Loop Structures
231 DO ... UNTIL ... END
232 WHILE ... REPEAT ... END
233 Nested Program Structures

27 234 Interactive Programs
234 Asking for Input
235 Asking for a Choice
235 A More Complicated Example

28 240 Programming Examples
241 Box Functions
241 BOXS (Surface of a Box)
244 BOXS Without Local Variables
245 BOXR (Ratio of Surface to Volume of a Box)
246 Fibonacci Numbers
247 FIBI (Fibonacci Numbers, Recursive Version)
248 FIB2 (Fibonacci Numbers, Loop Version)
249 Comparison of FIBI and FIB2
250 Single-Step Execution

12 Contents

253 Expanding and Collecting Completely
253 MULTI (Multiple Execution)
255 EXCO (Expand and Collect Completely)
257 Displaying a Binary Integer
257 PAD (Pad With Leading Spaces)
258 PRESERVE (Save and Restore Previous Status)
259 BDISP (Binary Display)
262 Summary Statistics
263 SUMS (Summary Statistics Matrix)
265 ~GET (Get an Element of ~COV)
266 ~X2 (Sum of Squares of x)
266 ~Y2 (Sum of Squares of y)
267 ~XY (Sum of Products of x and y)
270 Median of Statistics Data
270 SORT (Sort a List)
272 LMED (Median of a List)
273 MEDIAN (Median of Statistics Data)
275 Changing Directories
276 UP (Move to a Parent Directory)
277 DOWN (Move to a Subdirectory)

Contents 13

Appendixes & Indexes

A

B

c
D

282
282
286
289
289
289
291
293
295

296

302

306

Assistance, Batteries, and Service
Answers to Common Questions
Batteries
Calculator Maintenance
Environmental Limits
Determining If the Calculator Requires Service
Limited One-Year Warranty
If the Calculator Requires Service
Regulatory Information

Notes for RPN Calculator Users

Notes for Algebraic Calculator Users

Menu Map

327 Key Index

332 Subject Index

14 Contents

How To Use This Manual

If you have the time and inclination, you can read this manual from
front to back, working every example. If not, we recommend the fol­
lowing approach for getting started.

1. Read the first five chapters in part 1, "Fundamentals," to get
comfortable with the calculator.

2. There are two appendixes that compare the HP-28S with other
styles of calculators .

• If you're familiar with other Hewlett-Packard calculators that
use RPN, read appendix B, "Notes for RPN Calculator Users,"
on page 296 .

• If you're familiar with calculators that use a form of algebraic
entry, read appendix C, "Notes for Algebraic Calculator Us­
ers," on page 302.

3. If you're interested in a topic covered later in part 1, you can
skip ahead and try the examples in that chapter.

What's in This Manual

Part 1, "Fundamentals," demonstrates how to work some simple prob­
lems. While solving these problems you'll learn the basics about HP-
285 operations, object types, and menus.

Part 2, "Summary of Calculator Features," builds on part 1. It provides
more detail about how to use the calculator, including options and
features not discussed in part 1. Using part 2, you can extend the
examples in part 1 to solve your own problems.

How to Use This Manual 1 5

Part 3, "Programming," describes the programming features of the
HP-28S. The last chapter, "Programming Examples," contains a series
of short programs that demonstrate programming techniques.

For More Information

As you work the examples in this manual, you may have questions
about the features demonstrated or mentioned in the examples. Both
this manual and the Reference Manual contain additional
information.

• If you have problems, see "Answers to Common Questions" on
page 282 .

• For a brief description of what each key does, see "Key Index" on
page 327.

• For a brief description of the commands in each menu, see appen­
dix D, "Menu Map," on page 306.

• For detailed information about a menu, look in the Reference Man­
ual. All menus (plus some additional topics) appear in alphabetical
order. The contents of the dictionary are listed on the back cover of
the Reference Manual.

• For detailed information about a particular command, look in the
"Operation Index" at the back of the Reference Manual. There
you'll find a reference to a dictionary entry (usually a menu) and a
page reference to the particular command.

16 How To Use This Manual

Part 1
Fundamentals

Page 18 1: Getting Started

34 2: Doing Arithmetic

48 3: Using Variables

58 4: Repeating Calculations

73 5: Real-Number Functions

82 6: Complex-Number Functions

89 7: Plotting

98 8: The Solver

107 9: Symbolic Solutions

117 10: Calculus

124 11: Vectors and Matrices

131 12: Statistics

138 13: Binary Arithmetic

141 14: Unit Conversions

149 15: Printing

1
Getting Started

This chapter first describes the calculator's basic features, then dem­
onstrates a simple calculation. Next, an annotated illustration of the
keyboard highlights the major features of the keyboard and display.
Last, you'll learn about the catalog of commands, which is a handy
guide to commands and how to use them.

Preliminaries

This section describes the calculator's basic features.

Opening and Closing the Case

The calculator forms its own case, opening and closing like a book. To
open the calculator, hold it with the hinge away from you and open it
with your thumbs.

18 1: Getting Started

To close the calculator, fold the two sides together and press until you
hear a click.

You can fold back the left-hand side of the calculator until it is back­
to-back with the right-hand keyboard. This is handy for field work­
when you want to hold the calculator in one hand and operate it with
the other-or to save space on a desk.

Locating the Battery Door and Printer Port

With the calculator open, note the location of the battery door and the
printer port.

;+--~ Printer port

~~~-----.....;- Battery door 

The HP-28S is powered by three N-cell alkaline batteries. Batteries 
are included with the calculator. If the batteries are not already in­
stalled, follow the instructions that start on page 286. 

1: Getting Started 19 



When you use the HP-28S with a printer, the calculator sends in­
formation to the printer via an infra-red signal. This signal is emitted 
from the printer port and received by the printer. Printer operations 
are described in chapter 15. 

Turning the HP-28S On and Off 

Press I ON I to turn on the calculator. The HP-28S has Continuous Mem­
ory, so all data in the calculator, including the contents of the display, 
are unchanged from the last time you used the calculator. 

While the calculator is on, ION I acts as the ATTN (attention) key, as 
printed in white below the key. Pressing ION I clears any text you've 
typed in and stops programs. 

Press .1 OFF I to turn off the calculator. ("Press .1 OFF I" means "press 
the shift key . , then press the key with OFF printed above it.") 

If the calculator is inactive for about 10 minutes, it automatically turns 
off to conserve energy. Press I ON I to turn it on again. 

Clearing All Memory (Memory Reset) 

You can restore the calculator to its initial state by resetting memory. 
All information in the calculator is lost. Any modes you've changed 
(number display format, angle mode, and so on) are restored to their 
default settings. 

To reset memory: 

1. Press and hold I ON I. 
2. Press and hold ~ (in the upper-left corner of the right-hand 

keyboard). 

3. Press and release [E] (in the upper-right corner of the right-hand 
keyboard). 

4. Release II NS I. 
5. Release I ON I. 

20 1: Getting Started 



The calculator beeps and displays t1ernot- y Los t. The message auto­
matically disappears when you press a key. 

If you begin to reset memory but change your mind, continue holding 
down ION I while you press I DEL I (in the top row, next to [ill§J), and 
then release ION I. Pressing I DEL 1 cancels the reset sequence. 

Adjusting the Display Contrast 

You can adjust the contrast of the display to compensate for various 
viewing angles and light intensities. 

To adjust the contrast: 

1. Press and hold I ON I. 
2. Press [B one or more times to darken the display, or press G 

one or more times to lighten the display. 

3. Release I ON I. 

Keyboard Calculations 

Try the following calculation. 

(15 + 23) x sin 30° 

The basic steps are the same as using paper and pencil. First you'll 
calculate 15 + 23, which produces an intermediate result. Next you'll 
calculate sin 30°, which produces the other intermediate result. Fi­
nally, you'll combine the intermediate results for the answer. 

If you make a mistake while keying in a number, you can: 

• Press [!] to erase the last digit you keyed in. 

• Press I ON 1 to erase all the digits you keyed in. 

1: Getting Started 21 



Start with a clean sheet of paper. .1 CLEAR I 

Ii 
The display shows the stack, which is your work area. Currently the 
stack is empty. 

Press [IJ [[) to write 15 in the command line. 

15 

Note that the stack moves up to make room for the command line, so 
only three stack levels are displayed. 

Put 15 on the stack. 

I ENTER I 

The number goes in stack level 1, as indicated by 1 : at the left. Note 
that the command line disappears, so four stack levels are displayed 
again. 

Press m w to write 23 in the command line. 

23 

Put 23 in level 1. 

I ENTER I 4: 
3: 
2: 
1 : 

The number 15, which was in level 1, is lifted to level 2. 

22 1: Getting Started 

15 
23 



Add 15 and 23. 

o 
Ii 

The numbers 15 and 23 are removed from the stack, and their sum, 
38, is returned to level 1. You'll leave this intermediate result on the 
stack while you calculate the second intermediate result. 

To calculate sin 30° you'll use the TRIG (trigonometry) menu. 

I TRIG I If~ 
38
1 

Bl3lDil3BB1mallllCllllllil3 

The bottom line of the display shows six commands in the TRIG 
menu. The six menu labels (CSIN] through mJAEl) define the six 
menu keys (the keys immediately below the display). 

Press []] []] to write 30 in the command line. 

30 

Put 30 in level 1. 

I ENTER I 

The previous result, 15 + 23 = 38, is lifted to level 2. 

Calculate sin 30°. 

1: Getting Started 23 



The number 30 is removed from level 1, and its sine, .5, is returned to 
level 1. The previous result, 38, remains in level 2. 

Calculate 38 x .5. 

The numbers 38 and .5 are removed from levels 1 and 2, and their 
product, 19, is returned to level 1. 

This completes the calculation: 

(15 + 23) x sin 30° = 19. 

To summarize, here's a general procedure for the calculation you just 
completed. 

1. Key a number into the command line. 

2. Press I ENTER I to put a number on the stack. 

3. Press the key to execute the command. (If the command doesn't 
appear on the keyboard, select the menu that contains the com­
mand, and press the menu key below the appropriate menu label.) 

The previous example demonstrated that all calculations occur on the 
stack. To highlight this idea, you pressed I ENTER I to put every number 
on the stack. In practice, you need to press I ENTER I only to separate two 
numbers keyed in sequentially-in the example, to separate 15 and 23. 
Try repeating the example, omitting the second and third I ENTER Is. 

24 1: Getting Started 



The style of calculation illustrated above, in which you enter numbers 
onto the stack before you perform mathematical functions, is called 
RPN (Reverse Polish Notation), postfix notation, or stack logic. Nearly 
all HP-28S commands, not just calculations, use stack logic. This sys­
tem uses two simple rules: 

• The inputs required by a function, called the arguments to the func­
tion, must be on the stack before the function is executed . 

• The results of a function are returned to the stack, where they are 
available as arguments to the next function. 

You can also calculate by entering an expression in algebraic form, as 
it might appear written in a book. In the next chapter you'll perform 
the same calculation as above, using an algebraic expression. 

An Overview of the Calculator 

This section points out some major features of the calculator, includ­
ing a catalog of commands that lists and describes each command. 

Major Features and Concepts 

The illustrations on pages 26 and 27 show the calculator keyboard 
and display, with important features identified. The numbers in the 
following descriptions correspond to the numbers in the illustrations. 

1: Getting Started 25 



2 

Object Type Symbol Example 

Data 

Real Number 1.23456E-25 
Complex Number (123.45,678.90) 
Binary Integer # # 123AB 
Siring "RESULT" 

Vector [ ] [1.23 4.56 7.89] 
Matrix [[ ]] [[1 .23 4.56] 

[6.54 3.21]] 
List 11·23 "ABC" # 45 } 

~ 
I ~ c::::::::JLI '.::,CA:..:.:L:..:C,--' ___ -' 

~ ({DUP + SWAP )) 

L..:..:.:=c.::.:.: __ ~~ 'X + Z · y ~ Z · 

AfliRAY _RY COW\.X .TII .... UST REA\. 

II! II! !! 1m I! II 
STACK 

II! 
___ VMOCRAM ___ 

CONTIIl IAAHeH 

II! II! 
~ ~ .. E 

II II !! II! B 
< > 1 

II! II II 
NEWLINE ;< 

II 

3 4 5 

1. Object types and formats 4. Lowercase 
2. Menu selection (shifted) 5. Entry mode 

6 

3 

3. Object delimiters 6. Command and unit listings 
(shifted) 

26 1: Getting Started 



, 

F/iifW HEWLETT 
IIo!l:AII PACKARD 

2BS 
ADVANCED 

SCIENTIFIC CALCULA TOR 

} 19 
: ---+I-~III,..j:~lr ilo ~ a , ... , = "" :8 

IJ IIElImI:lDaIiHiBECllIiR13 J,~r .. t-:--- 18 

IQ g Q g Q g l li+-.. - 17 

I MODE LOGS OI.OT CUSTOM P'" V, I /1/ 
9 --i--~"~ !II I! • !! II §JI : ....... 1---- 16 

I I r I SWAP III 
1 0 I II " VISIT COMMAND B ..... ..-:-:---- 1 5 

11 ----:.--:-.. ~I !! (~ 1 
RCl PURGE l' d/d x 

e 0~Qd~ 14 
+ NUM CONT % % CH IX 

!I ~~~8 
12 __ ---:-_~~ e (~AR ~ Q rN~ERr Qd 

ATTN ....... -------.... 

, 
13 

7. Annunciators 13. Number entry 
8. Command line 14. Arithmetic 
9. Shift key 15. Backspace 

10. Enter command line 16. Menu selection, next menu row 
11 . Delimiter for symbolic objects 
12. Power on and off; clear com­

mand line; stop program 

17. Menu keys 
18. Menu labels 
19. Stack levels 

1: Getting Started 27 



1. Object types and formats. This table shows the correct delimit­
ers and examples for the 10 basic types of object. An "object" is any of 
the individual items you work with on the calculator. The 10 basic 
object types are: 

• Real numbers, such as 5 or -4.3 X 1015 . 

• Complex numbers, which are a pair of real numbers representing a 
complex number x + iy or a point in a plane. 

• Binary integers, which are unsigned integers used in computer 
science. 

• Strings, which contain arbitrary sequences of characters. 

• Vectors, which are one-dimensional arrays used in linear algebra. 

• Matrices, which are two-dimensional arrays used in linear algebra. 

• Lists, which contain arbitrary sequences of objects. 

• Names, which enable you to name and store other objects and to 
perform symbolic calculations. 

• Programs, which enable you to create your own commands. 

• Algebraics, which represent mathematical expressions and 
equations. 

2. Menu selection (shifted). Use the menu selection keys to assign 
commands to the menu keys. For example, press .1 ARRAY 1 to select 
the ARRAY menu. To select a different menu, press another menu 
selection key. 

There are additional menu selection keys on the right-hand keyboard 
(see item 16). 

3. Object delimiters. These symbols identify the different object 
types (see item 1). For example, 0 identifies binary integers, while 0 
and .0 identify programs. 

Real numbers require no delimiters. Symbolic objects (names and 
algebraics) require the CJ delimiter, located on the right-hand key­
board (see item 11). 

4. Lowercase. Press [1gJ to key in lowercase letters. Lowercase 
mode continues until you press [1gJ a second time, press 1 ENTER I to 
process the command line, or press ION I to clear the command line. 

28 1: Getting Started 



5. Entry mode. The command line has three entry modes, each 
suited to entering certain types of objects . Entry modes change auto­
matically as you key in objects, but sometimes you want manual 
control; the @J key enables you to select the entry mode you want. 

6. Command and unit listings (shifted). Press .1 CATALOG I for a 
listing of all HP-28S commands and their required arguments (page 
31). Press .1 UN ITS I for a listing of the units recognized in unit conver­
sion (page 141). 

7. Annunciators. The annunciators indicate the status of the calcu­
lator. When an annunciator is visible, it indicates the following: 

Annunciator Meaning 

0 Suspended program. 

~ Shift key . was pressed. 

a Alpha entry mode. 

«e» Busy, not ready for input. 

c:::l Low battery. 

(211") Radians mode. 

Q Sending data to printer. 

8. Command line. The text you key in goes in the command line. 

9. Shift key. Press the colored shift key . to execute a command 
printed in color above a key. 

10. Enter command line. Press 1 ENTER I to process the text in the 
command line. 

11. Delimiter for symbolic objects. Delimiters are punctuation 
that identify types of objects; symbolic objects are names and 
algebraics. To key in a symbolic object, press U at the beginning and 
(when necessary) the end of the object. 

1: Getting Started 29 



Real numbers require no delimiters. The delimiters for other object 
types are on the left-hand keyboard (see items 1 and 3). 

12. Power on and off; clear command line; stop program. To 
turn on the calculator, press 1 ON I; to turn it off, press .1 OFF 1 . (OFF is 
printed on the keyboard above 1 ON I. uPress .1 OFF I" means press the 
shift key . and then press 1 ON I.) 

While the calculator is on, 1 ON 1 also acts as the ATTN (attention) key 
to clear text in the command line or stop a running program. (ATTN 
is printed on the keyboard below 1 ON I.) 

13. Number entry. To key in numbers, use the digit keys [QJ through 
[n 1 CHS 1 (change sign), and 1 EEX 1 (enter exponent). Assuming you want 
to use the period as the decimal point (page 36), use [J to separate the 
integer part from the fractional part. Number entry is described on 
page 39. 

14. Arithmetic. The arithmetic functions are described in U One­
Number Functions" on page 40 and uTwo-Number Functions" on 
page 41. 

15. Backspace. Press [!] to erase the last character you typed in. 

16. Menu selection, next menu row. Use the menu selection keys 
to assign commands to the menu keys. For example, press 1 TRIG 1 to 
select the TRIG menu. To select a different menu, press another menu 
selection key. 

When no menu labels are visible, the cursor menu is active. The opera­
tions in the cursor menu (OE:[] through IE) are printed in white 
above the menu keys. When menu labels are visible, press ~ to se­
lect the cursor menu. To restore the previous menu, press ~ a 
second time. 

A menu can contain more than one row, with up to six commands in 
each row. Press 1 NEXT 1 to display the next row of the current menu. 
Press .1 PREV 1 to display the previous row. 

30 1: Getting Started 



There are additional menu selection keys on the left-hand keyboard 
(see item 2). For an alphabetical listing of all menus, including a brief 
description of the commands in each menu, refer to appendix D, 
HMenu Map." 

17. Menu keys. The menu keys are defined by the menu labels. If 
no labels are visible, these keys execute the cursor menu operations 
labeled in white above the keys. 

18. Menu labels. The menu labels show the current definitions of 
the menu keys. 

19. Stack levels. The stack shows the objects you're currently 
working with. Each numbered stack level (level 1, level 2, and so on) 
holds one object. 

The Catalog of Commands 

The HP-28S contains a catalog of all commands, listed alphabetically. 
For each command the catalog shows its usage-that is, the argu­
ments required by the command. For a complete description of any 
command listed in the catalog, refer to HOperation Index" in the back 
of the Reference Manual. 

Start the catalog . 

• 1 CATALOG I 

The first command is ABORT. 

Normal calculator operation is suspended while the catalog is active. 
The NEXT and PREV operations move the catalog to other com­
mands. The USE operation displays the arguments required by the 
current command. The FETCH and QU I T operations terminate the 
catalog, restoring normal calculator operation. 

Try pressing NEXT and PRE V to move through the catalog. You can 
hold down the keys for repeated moves. 

1: Getting Started 31 



You can move to the first catalog entry for a particular letter by press­
ing the letter key. Try "r . 
IT] 

The first 'T' command is the TAN function . If you press a symbol 
(non-letter) key on the left-hand keyboard, the catalog moves to the 
first catalog entry for that symbol. Try "~" . 

• W I IimBJiiiiiiilDDU_iiiiiiill!lDllliiiiiiilBmJiiiiiiiBWIiiiill 

The first " ~" command is the ~ + command. If you press a symbol 
key on the left-hand keyboard, and no commands begin with that 
symbol, the catalog moves to +, the first non-alphabetical command. 

rn ImBJlImIII_1IIIilIII1m!Cl1iiIII1I1 

Check the usage for +. 
IJSE 

This shows that you can add two real numbers. Check the next 
combination. 

NEXT !~?e:t'\umber-
1: Complex Number-CImIDD ___ BWI 

This shows that you can add real and complex numbers. Check the 
next combination. 

NEXT ~~ex Number-
1: Real Number-CImIDD ___ BWI 

This shows that the real and complex numbers can be in either order. 

32 1: Getting Started 



Check the 14 remaining combinations. The last combination looks 
like this. 

When you're done checking combinations, return to the main catalog. 

QUIT 

You can now move to another catalog entry and check its combina­
tions of arguments. When you're done with the catalog, return to 
normal calculator operation. 

QUIT 

Alternatively, you can exit the catalog by pressing FETCH, which also 
writes the name of the current command in the command line. 

1: Getting Started 33 



2 
Doing Arithmetic 

There are two ways to do arithmetic on the HP-28S. You can do 
arithmetic using the stack, as you did in the previous chapter, or you 
can enter an expression representing the calculation. In the previous 
chapter you calculated: 

(15 + 23) x sin 30° 

Here's how to make the same calculation using an expression. 

Clear the stack and select the TRIG menu . 

• 1 CLEAR II TRIG I 

Start the expression. 

CJ 

The cursor changes, indicating Algebraic Entry mode. You'll see the ef­
fects of this entry mode as you key in the expression. 

Key in the first part of the expression. 
IT] 15 [B 23 .rr r::::2:-::-: -----------, 

w 1: 

34 2: Doing Arithmetic 

'(15+23)13 
IImImmiBalllmillllliCll1:iIllCl 



Because of Algebraic Entry mode, pressing ~ wrote the character + in 
the command line rather than executing the command. 

Continue the expression. 

o SIN 2: 
1 : 
'(15+23)*SIN(~ 
El:JImrnBBllllIDilllllll31lmC1 

Because of Algebraic Entry mode, pressing 0 wrote :t: in the com­
mand line, and pressing SIN wrote~; I t-l ( in the command line, 
rather than executing the commands. 

Complete the expression and put it on the stack. 
~----------------------~ 30 I ENTER I 3: 
2: 
1: '(15+23)*SIN(30), 
El:JImrnBBllllIDilllllll31lmC1 

The closing parenthesis ) and the closing delimiter I are added for 
you. 

Evaluate the expression. 

IEVALI 

The expression is removed from the stack, and the result, 19, is re­
turned to level 1. 

This completes the calculation: 

(15 + 23) x sin 30° = 19. 

To perform a calculation that's already written as an expression, such 
as in a textbook, it's easier to key in the expression and evaluate it. 
Alternatively, to see the intermediate results of your calculation, or to 
perform an on-going calculation, it's easier to calculate on the stack. 
The results are the same. 

The relationship between stack calculations and expressions is demon­
strated in chapter 4, "Repeating Calculations." In that chapter you 
calculate on the stack, using names instead of numbers, to produce an 
expression . 

2: Doing Arithmetic 35 



Entering and Displaying Numbers 

There are modes that affect how numbers are displayed. To demon­
strate the choices, put the number 213 on the stack. 

Put 2 on the stack. 

2 I ENTER I 

Divide by 3. 

3G 3: 
2: 19 
1: .666666666667 
IlirnllmimlKmlI'I'J:IiBECllIiIllI3 

The result, 213, is returned to level 1. This result is the decimal ap­
proximation to 2/3 , as displayed by the default choices for decimal 
point and number display mode. The next section describes other 
choices. 

Changing the Decimal Point 

In the United States a period is used to separate the integer part of a 
number from the fractional part. In this role the period is called a 
decimal point; the general term for this numerical punctuation is a 
radix mark. 

Many other countries use a comma as the radix mark. You can select 
the comma as follows. 

Select the MODE menu . 

• 1 MODE I 3: 
2: 19 
1: .666666666667 
liiDoa"lmDIm!t1m. 

36 2: Doing Arithmetic 



The first row of the MODE menu appears. Display the second row of 
the MODE menu. 

I NEXT) 3: 
2: 19 
1: .666666666667 
IGIDmmiI:IlDmllIDDmlD!mI 

Select the comma as the radix mark. 

RDX, 3: 
2: 19 
1: ,666666666667 
IGIDmmiI:IlDmllIDlEIIlD!ml 

The decimal points are replaced by comma radix marks, and a square 
appears in the menu label RDX, to indicate that RDX, mode is 
turned on. 

Turn off RDX, mode to restore decimal points. 

RDX, 3: 
2: 19 
1: .666666666667 
IGIDmmiI:IlDmllIDDmlD!mI 

Selecting Number Display Mode 

You can choose how many decimal places are displayed. 

Return to the first row of the MODE menu. 

3: 
2: 19 
1: .666666666667 
IiIDIIDII_maGElIEI:. 

You can move from the last row in a menu to the first row by pressing 
I NEXT ). Since the MODE menu has only two rows, pressing I NEXT) cy­
cled back to the first row. 

The menu shows four basic choices for number display mode: STD 
(standard), FIX (fixed), SCI (scientific), and ENG (engineering). The 
label for STD currently includes a square, indicating that STD is the 
current choice. In STD mode the number of decimal places depends 

2: Doing Arithmetic 37 



on the value. For an integer, no decimal places are shown; for the 
example displayed above, the maximum of 12 decimal places are 
shown. 

The other display formats show a given number of decimal places­
from 0 through II-regardless of the number being displayed. We'll 
demonstrate each of the other display formats with two decimal 
places. Only the displays of the numbers are rounded-internally, the 
numbers are unchanged. 

Display 213 rounded to two decimal places. 
~----------------------~ 2 FIX 3: 
2: 19.00 
1: 0.67 
IliDDlII3 .. maommli 

Display 213 as a mantissa and an exponent, with the mantissa rounded 
to two decimal places. 

2 SCI 3: 
2: 1. 90E1 
1: 6.67E-1 
IliDIIiDI ImlIma om mil 

The value of the number is the product of the mantissa and 10 raised 
to the power of the exponent. The mantissa is always between 1 and 
9.99999999999. 

Display 213 as a mantissa and an exponent, with the mantissa rounded 
to two decimal places and the exponent a multiple of 3. 

2 ENG 3: 
2: 19.0E0 
1: 667.E-3 
IliDIIiDI .. mmommli 

Return to standard number display mode. 
~----------------------~ sro 3: 
2: 19 
1: .666666666667 
IiiiDIIiDI .. maommli 

38 2: Doing Arithmetic 



Keying In Numbers 

You can enter numbers as a mantissa and an exponent, where the 
value of the number is the product of the mantissa and 10 raised to 
the power of the exponent. The mantissa or the exponent or both can 
be negative. 

For example, key in the number -4.2 x 10 - 12. 

First key in the digits for the mantissa. 
=---------------------~= 4.2 2: 19 
1: .666666666667 
4.20 
mDDBllIImI rna omllliEll 

If you make a mistake, press ~ to erase the mistake and then key in 
the correct digits. 

Next make the mantissa negative. 

I CHS I 2: 19 
1: .666666666667 
-4.20 
mDDBllllmlrnaomllliEll 

"CHS" stands for "change sign"-pressing I CHS I a second time would 
make the mantissa positive again. 

Now begin the exponent. 

I EEX I 2: 19 
1: .666666666667 
-4.2EO 
mDDBllllmlrnaomllliEll 

"EEX" stands for "enter exponent." The E in the command line marks 
the number's exponent. If you press I EEX I by mistake for a number 
without an exponent, you can erase the E by pressing~, just as you 
would erase an incorrect digit. 

Key in the digits for the exponent. 

12 2: 
1 : 

19 
.666666666667 

-4.2E120 
mDDBllllmlrnaomllliEll 

2: Doing Arithmetic 39 



Make the exponent negative. 

iCHSi 

Put the number on the stack. 

i ENTER I 

2: 19 
1: .666666666667 
-4.2E-12D 
1iE:llliBlRHlIrnHIGmlDinll 

3: 19 
2: .666666666667 
1: -4.2E-12 
1iE:llliBlRHlIrnHIGmlDinll 

Don't forget to use I CHS I to key in negative numbers. For example, if 
this manual shows the keystrokes -4 0, you'll need to press 0 
ICHSI0· 

One-Number Functions 

Functions that act on a single number-for example, negating a num­
ber or taking a square root-are called one-number functions. All act 
on the number in level 1. There are four one-number functions on the 
keyboard: 

• Press i CHS I to negate the number. 

• Press .~ to take the inverse (reciprocal) of the number. 

• Press .CKJ to take the square root of the number. 

• Press .[EJ to square the number. 

If you're keying in a number, it's not necessary to press i ENTER I before 
executing the one-number function-pressing the function key auto­
matically performs ENTER for you. For example, you can calculate 1fs 
as follows: 

8 .~ 3: .666666666667 
2: -4.2E-12 
1: . 125 
1iE:llliBlRHlIrnHIGmlDinll 

40 2: Doing Arithmetic 



Two-Number Functions 

Functions that act on two numbers-such as addition-are called 
two-number functions. All act on the numbers in levels 1 and 2. 

When you're keying in both arguments to the function, as when you 
divided 2 by 3 on page 36, you must press I ENTER I to separate the two 
arguments. When one or both arguments are already on the stack 
from previous calculations, you don't need to press I ENTER I. 

Addition and Subtraction 
Calculate 36 + 17. 

36 I ENTER 1 

170 

The result is 53. 

3: -4.2E-12 
2: .125 
1: 53 
1iffitI1DlIII1IiIDI1!:Dl1Im" 

For addition the order of the numbers doesn' t matter. However, the 
order is important for subtraction. Next calculate 91 - 27. 

91 I ENTER 1 3: . 125 
2: 53 

27 G 1: 64 

The result is 64 . 

Multiplication and Division 
Calculate 13 x 6. 

13lENTERI 

60 

The result is 78 . 

1iffitI1DlIII1IiIDI1!:Dl1Im" 

3: 53 
2: 64 
1: 78 
1iffitI1DlIII1IiIDI1!:Dl1Im" 

2: Doing Arithmetic 41 



For multiplication the order of the numbers doesn't matter. However, 
the order is important for division. Next calculate 182/14. 

1 82 I ENTER I 3: 64 
14 '+' 2: 78 

l2...J 1: 13 
I!ilIIDBlHllmaomm. 

The result is 13. 

Powers and Roots 
The order of the numbers is important for both powers and roots. 
Calculate 53. 

5 I ENTER I 
3 .~ 

The result is 125. 

3: 78 
2: 13 
1: 125 
I!ilIIDBlHllmaomm. 

To calculate V'2401 , first put 2401 on the stack. 

2401 I ENTER I 3: 13 
2: 125 
1: 2401 
I!ilIIDBlHllmaomm. 

Now raise 2401 to the 1f4 power. 

4 .[lliJ .~ 3: 13 
2: 125 
1: 7 
I!ilIIDBlHllmaomm. 

The result is 7. 

42 2: Doing Arithmetic 



Percentages 
Calculate 40% of 85. 

85 1 ENTER 1 

40 .00 

The result is 34. 

3: 125 
2: 7 
1: 34 
IiiDIiBI_maGmmIII 

For HpercentH the order of the numbers doesn't matter. However, the 
order is important for Hpercent change.H Calculate the percent change 
from 60 to 75. 

60 1 ENTER 1 

75 .I%CH 1 

3: 7 
2: 34 
1: 25 
IiiDIiBI_maGmmIII 

The result is +25, meaning that 75 is 25% more than 60. 

Swapping Levels 1 and 2 

For all the functions where the order of the numbers is important­
subtraction, division, powers, roots, and percent change-you can 
switch the order of the numbers by pressing .1 SWAP I. For example, 
you currently have 25 on the stack; suppose you want to calculate 
30 - 25. 

Key in 30. 

30 

Swap the order of 25 and 30 . 

• 'swAPI 

2: 34 
1: 25 
300 
IiiDIiBI_maGmmIII 

3: 34 
2: 30 
1: 25 
IiiDIiBI_maGmmIII 

Note that pressing 1 SWAP 1 performed ENTER for you. 

2: Doing Arithmetic 43 



Subtract 25 from 30. 

3: 7 
2: 34 
1: 5 
IiiDlDIIlllDlmaGmm. 

The result is 5. 

Clearing Objects From the Stack 

As you worked these examples, you accumulated quite a few numbers 
on the stack. The stack grows without limit as you put more objects 
on the stack, and those objects remain until you use them in an oper­
ation or until you clear them. 

You can clear objects one at a time or all at once. 

Clear the number in level 1. 

3: 125 
2: 7 
1: 34 
IiiDlDIIlllDlmaGmm. 

Objects in higher levels move down one level each. 

Clear all objects from the stack. 
., CLEAR I 

It's a good idea to clear the stack whenever you start a problem. As 
you work on the problem you'll know that all objects on the stack are 
relevant to the current problem, not left over from the previous 
problem. 

44 2: Doing Arithmetic 



Chain Calculations 

When you perform complicated calculations, the stack acts as tempo­
rary storage to hold intermediate results. This temporary storage acts 
automatically. For example, suppose you want to calculate the total 
resistance of the following circuit: 

The formula for total resistance in this circuit is: 

If R1, R2, and R3 have resistances of 8, 6, and 3 ohms respectively, 
calculate the following: 

Calculate as follows: 

Put 8 on the stack. 

8 [ENTER I 

8 + 1 1 
+ 

1 

6 3 

You'll leave 8 on the stack until it's time to add it to the rest of the 
calculation. 

2: Doing Arithmetic 45 



Put 1J6 on the stack. 

6.OEJ 

Put % on the stack. 

3.OEJ 

Add the reciprocals of 6 and 3. 

[B 

Take the reciprocal of the sum . 

• OEJ 

Complete the calculation of Rtotal' 

[B 

The result is 10 ohms. 

46 2: Doing Arithmetic 

3: 
2: 8 
1: .166666666667 
IiE3l1iB11lm11rnHGmIlmllll 

3: 8 
2: .166666666667 
1: .333333333333 
IiE3l1iB11lm11rnHGmIlmllll 



If You Execute the Wrong Function 

The HP-28S includes recovery features to help you UbacktrackH when 
you mistakenly execute a function. The following steps reverse the 
effects of a function, whether a one-number or two-number function. 

1. Press ., UNDO I to recover the previous contents of the stack. 

2. If a number was in the command line when you made the mis­
take, press ., COMMAND I to recover the previous contents of the 
command line. 

3. Continue the calculation. 

2: Doing Arithmetic 47 



3 
Using Variables 

Variables enable you to refer to objects by name. You create a vari­
able by associating a name object with any other object. The name 
object defines the name of the variable; the other object defines the 
contents of the variable. You can then use the variable's name to refer 
to the variable's contents. 

Variables are stored in user memory, a part of the calculator's memory 
distinct from the stack. The stack is designed for temporary storage of 
the objects you're currently working with, such as the numbers you're 
using in a calculation. User memory is designed for long-term storage 
of variables, such as numbers that you use repeatedly. 

In this chapter you'll create a numerical variable, which may be a fa ­
miliar concept to you; you'll also create a program variable, which is 
probably an unfamiliar concept. In the HP-28S, a program has no in­
trinsic name-it is simply another object type. You name the program 
by storing it in a variable, just as you would a number, and you can 
then execute the program by name. 

The steps to create, recall, evaluate, change, rename, or purge a vari­
able are identical for all variables, regardless of their contents. This 
uniformity makes the HP-28S both easy to use and powerful, because 
there are fewer special rules and because it is more flexible. 

Introduction to Variables 

The simplest variables are numerical variables. This section shows 
how to create, recall, and evaluate a numerical variable. 

48 3: Using Variables 



Creating a Numerical Variable 

Suppose you repeatedly use a volume measurement of 133 in your 
calculations. Create a variable named VOL (for "volume") as follows: 

Clear the stack and select the USER menu. 

., CLEAR I [ USER I 

IL-----I 
The USER menu shows your variables. It's blank because you haven't 
created any variables yet. 

Put the number in level 1. 

133 [ENTER I 

Put the name I VOL I in level 1. 

~ VOL [ ENTER I 

1

3

: 1 
2: 
1: 133 ------
3: 
2: 133 
1: 'VOL' ------

Note that the closing I is added for you. The number 133 is lifted to 
level 2. (In practice you don't need to press [ ENTER I, but it's included 
here for clarity.) 

Create the variable VOL. 

IL _____ I 
The number and the name are removed from the stack, creating a 
variable named VOL with a value of 133. Note that VOL now appears 
in the USER menu. 

3: Using Variables 49 



Recalling a Numerical Variable 

Now that you've created the variable VOL, return its value to the 
stack. 

Put the name VOL on the stack, taking advantage of the USER menu. 

~ VOL I ENTER I 3: 

Recall the contents of VOL. 

.IRCL) 

2: 
1: I VOL I ElIJII ____ _ 

3: 
2: 
1: 133 ElIJII ____ _ 

This is the number you stored in VOL. 

If you're accustomed to a calculator with storage registers, recalling is 
a familiar process. On the HP-28S, variables are recalled infrequently; 
more often they are evaluated. 

Evaluating a Numerical Variable 

For numerical variables, "evaluating" has the same meaning as "recall­
ing" -evaluating a numerical variable returns the number to the stack. 
You'll see that evaluation is easier. (When you create a program vari­
able later in this chapter, you'll see that evaluating and recalling can 
have quite different effects.) 

Return the value of VOL to the stack by evaluation. 

VOL 3: 
2: 133 
1: 133 ElIJII ____ _ 

You can also evaluate VOL by typing in its name without quotes. 

VOL I ENTER) 3: 133 
2: 133 
1: 133 ElIJII ____ _ 

50 3: Using Variables 



Changing the Value of a Variable 

You can change the value of a variable by using the same procedure 
as when you created the variable. The new value replaces the old 
value. 

Now change the value of the variable VOL to 15I. 

Write the new value in the command line. 

151 2: 133 
1: 133 
1510 11ZiIJIII ____ _ 

Note that the cursor appears as an empty box. The cursor will change 
in the next step. 

Write the variable's name in the command line. 

~ VOL 2: 133 
1: 133 
151' VOLE! 11ZiIJIII ____ _ 

The cursor changed when you pressed ~ to indicate the new entry 
mode-how the calculator responds when you press keys. 

Initially the command line was in immediate execution mode, suitable 
for keyboard calculations. When you pressed ~, which indicates a 
name or an expression, the command line changed to algebraic entry 
mode, suitable for entering names and expressions: 

• Pressing a function key such as GJ writes the character + rather 
than executing the command . 

• Pressing a USER menu key writes the variable's name rather than 
evaluating the variable. 

Now store the new value in the variable. 

3: 133 
2: 133 
1: 133 11ZiIJIII ____ _ 

3: Using Variables 51 



Check the new value. 

VOL 3: 133 
2: 133 
1: 151 mJI ____ _ 

Purging a Variable 

When you finish with the variable VOL, purge it from user memory. 

Write the variable name in the command line. 

~ VOL 2: 133 
1: 151 
'VOL(:;j mJI ____ _ 

(The quote ~ is necessary to avoid evaluating the variable.) 

Purge the variable VOL from user memory. 
~--------------------~~ .1 PURGE I 3: 133 
2: 133 
1: 151 ------

Note that the label for VOL disappears from the USER menu. 

Changing the Name of a Variable 

You can effectively change the name of a variable by creating a new 
variable with the same value and purging the original variable. 

In this section you'll first go through the steps required to rename a 
variable, then write a program that contains the same steps, and fi­
nally store the program in a variable and execute it by name. 

52 3: Using Variables 



In preparation, create a variable so you have something to rename-a 
variable A with value 10. 

Put the value 10 on the stack. 

10 1 ENTER 1 

Create the variable A. 

CJ A 1 STO I 

3: 133 
2: 151 
1: 10 ------
3: 133 
2: 133 
1: 151 -------

Note that A appears in the USER menu. 

Suppose you want to rename A to B. Put the old name on the stack. 

CJ A 1 ENTER I 3: 133 
2: 151 

Put the new name on the stack. 

CJ B 1 ENTER I 

1: 'A' -------
3: 151 
2: 'A' 
1: 'B' ------­This completes the preparation: the variable exists, the old name is on 

the stack, and the new name is on the stack. The old and new names 
are the arguments to the program-the program will assume they're 
on the stack in this order. The steps that follow are those that will be 
in the program. 

The steps include three common stack-manipulation commands, 
OVER, ROT, and SWAP. You'll see how they work as you execute the 
steps. 

Copy the old name to level 1. (Use the OVER command in the STACK 
menu.) .1 STACK l OVER 

3: Using Variables 53 



Recall the contents of the variable . 

• IRCLI 3: 'A' 
2: '8' 
1: 1121 
DDll!m1ImIDlmHDDlIDW 

Move the old name to level 1. (Use the ROT command, for "rotate".) 

ROT 3: '8' 
2: 1121 
1: 'A' 
DDll!m1ImIDlmHDDlIDW 

Purge the old variable. (By purging the old variable before creating 
the new one, you avoid making an extra copy of the value.) .1 PURGE 1 3: 151 

2: '8' 
1: 1121 
DDll!m1ImIDlmHDDlIDW 

Put the contents and the new name in the correct order . 

• , SWAP 1 

Create the new variable. 

, sTol 

3: 151 
2: 1121 
1: '8' 
DDll!m1ImIDlmHDDlIDW 

3: 133 
2: 133 
1: 151 
DDll!m1ImIDlmHDDlIDW 

Now you can create a program that automates these steps. 

Creating a Program Variable 

First you'll key in the program, and then you'll store it in a variable. 

54 3: Using Variables 



Begin the program with the program delimiter. 
GO ~2~:--------~1~3~3 

1: 151 
«I 
DDlIlWBD!II':I!D!i1H1IiDI1!1Bl 

Note that the cursor changed form and the a annunciator appeared, 
both indicating alpha entry mode. Pressing the key for any pro­
grammable operation writes the operation's name in the command 
line. Only non-programmable operations, such as pressing [!] to erase 
a character, are executed. 

Now key in the steps you executed before. 
~--------------------~~ OVER .[BQg 2: 151 

ROT .1 PURGE 1 1: « OVER RCL ROT PURGE 
. . SWAP STO » 

.~ 1 STO I DDlIlWBD!II':I!D!i1H1IiDI1!1Bl 
1 ENTER I 

Note that the closing delimiter » was added for you. 

Store the program in a variable RENAME. 
CJ RENAME 1 STO I ~3"-: ---------1:-:3:-:'13 

2: 133 

Check the USER menu. 

1 USER I 

1: 151 
DDlIlWBD!II':I!D!i1H1IiDI1!1Bl 

3: 133 
2: 133 
1: 151 m.rnI _____ _ 

Note that RENAME (in abbreviated form) appears in the USER menu. 

Now you're ready to execute RENAME. You'll do it first in a round­
about method, by using RCL, and then in a normal method, by using 
the USER menu. The difference in the methods highlights the differ­
ence between recalling and evaluating a program variable. 

3: Using Variables 55 



Recalling a Program Variable 

For this example, rename the variable B to C. 

Put the old name and the new name on the stack. 

CJ B 1 ENTER I 

CJ c 1 ENTER I 

Recall the program RENAME. 

CJ RENA .1 RCL I 

3: 151 
2: '8' 
1: 'C' om _____ _ 

2: 'C' 
1: « OVER RCL ROT PURGE 

SWAP STO » om _____ _ 

For any variable, RCL simply returns the contents of the variable to 
the stack. 

Evaluating a Program Variable 

To execute a program on the stack you must explicitly evaluate it. 

3: 133 
2: 133 
1: 151 .. om ___ _ 

The USER menu shows that B was renamed to C. 

It wasn't necessary to recall the program to the stack for execution, 
but it demonstrated how RCL works for programs and how EVAL 
causes programs to execute. Next you'll see the easy way to execute 
your program. 

This time you'll rename C to D. Put the old name and the new name 
on the stack. 

CJ c 1 ENTER I 

CJ D 1 ENTER I 

3: 151 
2: 'C' 
1: 'D' .. om ___ _ 

56 3: Using Variables 



Rename C to D. 

RENA 3: 133 
2: 133 
1: 151 .. 1EriI ___ _ 

The USER menu shows that C was renamed to D. You executed the 
program simply by pressing one key in the USER menu. 

Quoted and Unquoted Names 

In the examples above you used variable names in two ways, quoted 
and unquoted. The quotes 0 are important: they distinguish the name 
of a variable from the contents of a variable. Here's a summary of the 
purposes of quoted and unquoted names . 

• Use a quoted name to represent the name itself. The quotes prevent 
evaluation of the name, so it goes on the stack and can be an argu­
ment to a command. In this chapter you used quoted names as 
arguments to STO, RCL, PURGE, and the program RENAME . 

• Use an unquoted name to evaluate the variable with that name. 
The unquoted name doesn't go on the stack-instead, the object 
stored in the variable is handled according to its type: numerical 
variables are returned to the stack, and programs are executed. 
You'll see what happens with other variable types later in this 
manual. 

If you type in an unquoted name that isn't associated with a variable, 
the quoted form of the name goes on the stack. 

3: Using Variables 57 



4 
Repeating Calculations 

In this chapter you'll create an expression containing numerical vari­
ables and then use a calculator feature called the Solver to evaluate 
the expression for various values of the numerical variables. 

In chapter 2 you made a calculation by keying in an expression that 
contained numbers and then evaluating the expression. In this chapter 
you'll create an expression by calculating on the stack, using names as 
symbolic arguments. You'll use the Solver to assign values to the vari­
ables and evaluate the expression. Each time you evaluate the 
expression, the calculation is made with the current values of the vari­
ables. If you change the value of one or more variables, you can 
simply evaluate the expression again to recalculate with the new 
values. 

In chapter 3 you created numerical variables and a program variable. 
In this chapter you'll create expression variables and name variables. 
(Remember, any object can be stored in a variable.) You'll also learn 
about directories, which are sets of variables. 

Creating an Expression 

We'll repeat the resistance calculation from "Chain Calculations" in 
chapter 2, only this time we'll use names, rather than numbers, as 
arguments. Recall that the formula for the circuit is: 

1 
Rlolal = R1 + -1---1-

+ 

58 4: Repeating Calculations 



Clear the stack and select the cursor menu. 

., CLEAR I 

Iii 
If a menu is displayed, press ~ to select the cursor menu. 

Put the name 'P l' on the stack. 

~ R1 I ENTER I 

Iii 'R! ,I 
Note that the closing , is added for you. You'll leave Rl on the stack 
until it's time to add it to the rest of the calculation. 

Put the reciprocal of R2 on the stack. 
~ R2 I ENTER I.DEl r:;4~:-----------' 

3: 
2: 
1 : 

, R1' 
, INV(R2) , 

Put the reciprocal of R3 on the stack. 
~ R3 I ENTER I.DEl r:;4~:-----------' 

3: 'R1' 

Add the reciprocals of R2 and R3. 

GJ 

Take the reciprocal of the sum . 

• DEl 

, r, 

2: 'INV(R2)' 
1: ' INV(R3) , 

4: 
3: 
2: 
1 : 

3: 

, R1' 
'INV(R2)+INV(R3), 

2: 'R1' 
1: 'INV( INV(R2)+ I NV( R3) 

) , 

4: Repeating Calculations 59 



Add Rl and the reciprocal. 

GJ 3 
2 
1 'Rl+INV(INV(R2)+INV( 

R3))' 

The resulting expression represents Rtotal' 

You could key in this expression directly, taking care to add parenthe­
ses where necessary. Every expression is equivalent to a stack 
calculation, so you can choose the method that is easier for you. 

Later in this chapter you'll store this expression in a variable, but first 
create a directory to group together the examples in this chapter. 

Creating a Directory 

A directory is a set of variables. Right now you're working in the 
HOME directory-a built-in directory that exists even after MEMORY 
RESET. In this chapter you'll create a subdirectory within HOME, and 
then subdirectories within that subdirectory. 

Here are some concepts about directories that you'll use in this 
chapter. 

• Only one directory can be the current directory; only its variables 
appear in the USER menu. 

• If a directory A contains a directory B, then A is called the parent 
directory of B, and B is called a subdirectory of A. 

• If you start at the current directory and find its parent directory, 
and then the next parent directory, and so on, you always return to 
HOME. This sequence of directories (in the reverse order) is called 
the current path. 

You can check the current path by executing the command PATH. 

Select the MEMORY menu . 

• 1 MEMORY 1 2: 

60 4: Repeating Calculations 

1: 'Rl +INV( INV(R2)+ INV( 
R3)) , 

GImlIIml!Im:rntmIllcmml~ 



Check the current path. 

PATH 3: 
2: 'R1+INV(!NV(R2)+INV ... 
1: { HOME ) 
ImDlmmltDmllimlCllllJ]ltDm 

The list that PATH returns always begins with HOME and ends with 
the current directory. HOME is the starting point for all paths and, 
since you haven't created any other directories yet, HOME is also the 
current directory. 

To group together all your electrical engineering problems, create a 
subdirectory named EE. 

DEE CROIR 

Switch to the EE directory. 

EE I ENTER I 

Check the current path again. 

PATH 

3: 
2: 'R1 + INV( INV(R2)+ I NV ... 
1: { HOME ) 
ImDlmmltDmllimlCllllJ]ltDm 

3: 
2: 'R1 + INV(!NV(R2)+ I NV ... 
1: { HOME) 
ImDlmmltDmllimlCllllJ]ltDm 

3: 'R1+INV(!NV(R2)+INV ... 
2: { HOME ) 
1: { HOME EE ) 
ImDlmmltDmllimlCllllJ]ltDm 

Now the current directory is EE. To see one effect of switching to the 
EE directory, display the USER menu. 
I USER I =3-: ---'-', R=-:-l +-:I::":"N"""V"""('"=I"""N"""V""'( R=-2=-),-+-:I::":"N.,.,..V.,....-, ... 

2: { HOME ) 
1: { HOME EE ) ------

Note that the RENAME program (created in the last chapter) doesn't 
appear. Only variables in the current directory (EE) appear in the USER 
menu; RENAME is in the HOME directory. 

However, you could still execute RENAME by typing its name, be­
cause any variable whose directory is on the current path (HOME EE) 
can be found by name. 

4: Repeating Calculations 61 



This is one of the benefits of directories: If you put general-purpose 
programs such as RENAME in the HOME directory, you can always exe­
cute them but they don't clutter up the USER menu. 

Now you can work in the new directory EE. 

Drop the two path lists from the stack. 
IDROpllDROpl ~2~:--------------------~ 

1: I Rl + INV<INV(R2H INV( 
R3» I ------

Store the expression in a variable named EQI (equation 1). You'll see 
the reason for this name later. 

CJ EQ1 I STO I I!L _____ I 
The variable EQI appears in the USER menu. 

Let's assume that you'll use this expression for a variety of problems, 
each of which you want to treat independently. To do so, you can put 
the values for each problem in a subdirectory for that problem. 

Create a subdirectory SPI (series-parallel 1) for the first problem. 

CRDIR I ENTER I 2: 
CJ SP1 I ENTER I 13. I 

~DU ___ _ 

The name of the new subdirectory appears in the USER menu. Press 
the menu key to switch to SPl. 

SPl 

The USER menu is empty again because the current directory (SPl) is 
empty. 

62 4: Repeating Calculations 



Check the current path. 

PATH I ENTER I 3: 
2: 
1: { HOME EE SP1 ) ------

You can find any variable in the HOME or EE directories by name, 
because those directories are on the current path (HOME EE SPI), but 
the USER menu shows only the variables in the current directory 
(SPI). 

Now you're ready to use the Solver with the expression EQ1. 

Using the Solver To Repeat a Calculation 
There are three basic steps to using the Solver with an expression. 

1. Store the expression (or the name of the expression) in a variable 
named EQ (equation) . The Solver requires a variable by this 
name. 

2. Use the Solver menu to assign values to the variables. 

3. Use the Solver to evaluate the expression. 

4. Repeat steps 2 and 3 for other values. 

Here are the steps for the present example. 

Step 1. Store the name EQI in a variable EQ. 

This step may surprise you-why store a name in a variable? Why not 
store the expression itself in EQ? The simplest reason is that the name 
EQI is shorter and easier to remember than the entire expression. 
Also, you'll see later that this makes it easy to switch back and forth 
between different equations. 

Put the name EQI on the stack. 

o EQ1 I ENTER I 3: 
2: { HOME EE SP1 ) 
1: 'EQ1' ------

If you forgot the quote 0, you got the expression itself on the stack; 
in this case press I DROP I to drop the expression and try again. 

4: Repeating Calculations 63 



Select the SOLVE menu. 

I sOlvl 3: 
2: { HOME EE SP1 } 
1: 'EQ1' 
Dmll!mlmlmlBl!lE!I!IiEIDlIllD 

Use STEQ (Store Equation) to store the name EQI in the variable EQ. 

STEQ 3: 
2: 
1: { HOME EE SP1 } 
Dmll!mlmlmlBl!lE!I!IiEIDlIllD 

Step 2: Assign values to the variables. 

Display the Solver menu. 

SOLVR 3: 
2: 
1: { HOME EE SP1 } 
UDOL][li]£]ffiJc:::Jc:::J 

The variables in the current equation appear in the Solver menu. (If 
the equation contains more than six variables, pressing I NEXT I displays 
additional rows of variables.) 

This menu looks different from the USER menu because it works dif­
ferently: the Solver menu stores values in variables rather than 
evaluating variables. 

Now you can assign values to the variables Rl, R2, and R3. First store 
the number 8 in the variable Rl. 

~f'I.: 
1: { HOME EE SP1 } 
UDOL][li]£]ffiJc:::Jc:::J 

Pressing [~E[J is equivalent to putting I R 1 I on the stack and press­
ing I STO I. Note that the top line of the display shows the variable 
name and the value. 

Store the number 6 in the variable R2. 

6 L:::XI:J 1I~[fi!raiii ••• -iiiiiiiiiiiiiiiiiiiiiii1 

64 4: Repeating Calculations 

1: { HOME EE SP1 } 
UDOL][li]£]ffiJc:::Jc:::J 



Store the number 3 in the variable R3. 

3iR3 ! 

Step 3: Evaluate the expression. 

~rl. 
1: { HOME EE SP1 } 
CB:DUD[li]fHffi)c:=Jc:=J 

The menu label !E~'PR=i means Pexpression equalsH -pressing it evalu­
ates the expression. 

Irr;sl! ( HOAE EE SP I JI 
CB:DUD[li]fHffi)c:=Jc:=J 

The value (10) is returned to level I, and it appears in inverse charac­
ters in the top line of the display. 

Step 4: Repeat steps 2 and 3 for other values. For example, what if 
R3 is 12? 

Store the number 12 in the variable R3. 

12 !-'-R3-! Irr-" ( HOAE EE SP\~I 
CB:DUD[li]fHffi)c:=Jc:=J 

Evaluate the expression for the current values of its variables. 

Irr;a" 111 
CB:DUD[li]fHffi)c:=Jc:=J 

The new value (12) is returned to level I, and it appears in inverse 
characters in the top line of the display. 

4: Repeating Calculations 65 



Using a Different Set of Values 

Suppose you want to work on a different problem, with different val­
ues of Rl, R2, and R3, and later return to the values now assigned. 
You could reenter all the values each time you switch problems, but 
this section shows you an easier way. There are three steps: 

1. Create a new directory for the new values. 

2. Define the same expression to be EQ. 

3. Use the Solver as before to assign values and evaluate the 
expression. 

This process shows another benefit of directories: Within a directory, 
only one variable can exist with a particular name; but any number of 
directories can contain a variable with a particular name. 

Step 1: Create a new directory. 

Since the new directory is an alternative to SPl , call it SP2 and create 
it within the same parent directory (namely EE). This will be the first 
Hbranch" within your directory structure-two subdirectories (SPI and 
SP2) within the same parent directory (EE). 

To create a subdirectory within EE, you must make EE the current 
directory. (Any subdirectory you created now would be within SPl.) 

Switch to the EE directory. 

EE 1 ENTER I No Current Equation 
2: 10 
1: 12 
IiImImmI~maE!lmElIillil!l 

The calculator beeps, displays t'lo Cw- t- en ~ Equ.::. ~ i con , and acti­
vates the SOLVE menu. This occurs because there is no current 
equation 'EQ' in the EE directory. 

Create a directory SP2. 

o SP2 
.1 MEMORY I CRO I R 

3: { HOME EE SPl } 
2: 10 
1: 12 
GImlllmI,gl1:lm1lm:I:lcmmllSmll 

66 4: Repeating Calculations 



Switch to the SP2 directory. 

SP2 I ENTER I 

Check the current path. 

PATH 

3: { HOME EE SP1 ) 
2: 10 
1: 12 
ImDllml!lmDlIIllIICllIDIDm 

3: 10 
2: 12 
1: { HOME EE SP2 ) 
ImDllml!lmDlIIllIICllIDIDm 

Note that HOME and EE are in the current path, as they were when 
SPI was the current directory, but SPI doesn' t appear now. As a re­
sult, you can still find the variables in HOME (such as RENAME) and 
in EE (such as EQI), but not the variables in SPI (EQ, R1, R2, and 
R3); now you can create new variables R1, R2, and R3. 

Step 2: Define the same expression to be EQ. 

As before, use STEQ to store the name EQI in the variable EQ. 

~ EQ1 I SOLV I STEQ 3: 10 
2: 12 
1: { HOME EE SP2 ) 
I!il1ii!IIDmlSlmDil!l!llllI!mIllI!ill!lD 

Step 3: Use the Solver as before to assign values and evaluate the 
expression. Suppose the values for the new problem are 

RI = 11, 

Select the Solver menu. 

SOLVR 

Assign the values. 

11 I F.: 1 ! 
21 ! F.:2 I 
7 [ R3 ] 

R2 = 21, R3 = 7 

3: 10 
2: 12 
1: { HOME EE SP2 ) 
CiDUL1CliJEXffiIc::Jc::J 

~ru- 12 
1: { HOME EE SP2 ) 
CiDUL1CliJEXffiIc::Jc::J 

4: Repeating Calculations 67 



Evaluate the expression. 

ffi:::PR;-! !~ii:a~ UOME EE SP2 ) 
1: 16.25 
[li][liJCiD~c::::Jc::::J 

To return to the previous problem, you would execute EE (to switch to 
the EE directory), execute SPI (to switch to the SPI directory), and 
press I SOLV I SOLI)R (to activate the Solver menu); all the variable val­
ues would be the same as when you left SPI. 

Using a Different Expression 

Now that you have two sets of values to use with the expression EQI, 
try creating a second expression EQ2 that you can use with either set 
of values. There are two basic steps: 

1. Switch to the EE directory, create the new expression, and store 
the new expression in a variable EQ2. 

2. Switch to the SPI or SP2 directory, change the value of EQ from 
'EQI ' to 'EQ2', and use the Solver to evaluate the expression. 

Step 1: Switch to the EE directory, create the new expression, and 
store the new expression in a variable EQ2. 

Switch to the EE directory. 

EE I ENTER I No Current E~uation 
2: { HOME EE SP2 ) 
1: 16.25 
I!imIImMl!imIl1ill1IIl!I.mmlillllD 

Create the new expression. In this example, EQ2 will be an edited 
copy of the expression EQI. 

68 4: Repeating Calculations 



Return the expression stored in EQI to the stack. 
~~--------------~~~~ 

1 USER 1 EQl 2: 16.25 
1 : ' R 1 + I NV ( I NV (R2) + I NV ( 

R3» , EDlmalMJl __ _ 

Return the expression to the command line . 

• IEDITI 

The expression in level 1 appears in inverse characters to warn you 
that it will be replaced by the contents of the command line. The 
alpha annunciator a appears, indicating that alpha entry mode is 
active. 

Now edit the expression to represent the formula: 

1 

Move the cursor to the lower row of the command line. (The opera­
tions for moving the cursor are on the cursor menu-the labels printed 
in white just above the menu keys.) 

[Y] =111=,1(-='1(=""=1 
The cursor menu is active whenever the command line exists and no 
menu is displayed. You can turn the cursor menu on and off by press­
ing GE) . Pressing .1 EDIT I automatically turns on the cursor menu. 

Move the cursor just past the term for R3 . 
[EJ[EJ[EJ ====-==-========:1 

4: Repeating Calculations 69 



Select Insert mode. 

[ill[] 

The shape of the cursor changes to an arrow, indicating that text will 
be inserted to the left of the character at the cursor position. 
(Pressing [ill[] a second time returns to replace mode, where text re­
places the character at the cursor position.) 

Key in the second term for R3. 

[B .o:EJ CD R3 

Replace the expression in level 1 by the edited expression in the com­
mand line. 

I ENTER I 2: 16.25 
1: I R1+ INV( INV(R2)+INV( 

R3)+ INV(R3» I 1liDl1limD!m __ _ 

Store the new expression in a variable EQ2. 
~------------------~ o EQ2 I STO I 3: 12 
2: { HOME EE SP2 ) 
1: 16.25 mDllliDlllimD!m __ 

Step 2: Switch to the SPI or SP2 directory, change the definition of 
EQ from EQI to EQ2, and use the Solver to evaluate the expression. 

For this example, use the values in SPI with the new expression. 

Switch to the SPI directory. 

SPl 3: 12 
2: { HOME EE SP2 ) 
1: 16.25 1IDI .. III:..mI __ 

70 4: Repeating Calculations 



Change the definition of EQ from EQI to EQ2. 
~ EQ2 1 SOLV 1 STEQ .-::3-:---------....,.1"='2 

2: { HOME EE SP2 } 
1: 16.25 
Hmlmmlmlml1imJllBmmIilDlD 

Evaluate the expression EQ2 with the values from SPI. 

SOLVR !"EXPR.=! 1·:MIilJSI I f; 16. 11 
. [li][i[][li]i]ffiJ[::::J[::::J. 

To evaluate EQ2 with the values from SP2, you could execute EE (to 
switch directories back to EE) and then repeat step 2 above, substitut­
ing SP2 for SPI. 

Returning to HOME 

Assuming you're done for now with your electrical engineering prob­
lems, you can return to the HOME directory. Since HOME is a built-in 
directory, its name is included in the MEMORY menu. 

Switch to the HOME directory. .1 MEMORY I HOME 

Check the USER menu. 

1 USER I 

3: { HOME EE SP2 } 
2: 16.25 
1: 11 
GJmlm:mtllEDmIlICmmlI:!m1I 

3: { HOME EE SP2 } 
2: 16.25 
1: 11 .:BIII .. m:JlI __ _ 

The menu label EE is the only sign of everything you created in 
this chapter-EQI, EQ2, the subdirectories SPI and SP2, and all the 
variables in them. This is a major advantage of directories: Viewed 
from its parent directory, an entire directory-its variables and its own 
subdirectories-appear simply as the name of the directory. 

4: Repeating Calculations 71 



Summary 

Here's the overall strategy you've followed in this chapter. 

• Create a directory for each set of related problems. 

• Store each expression needed for the problems in a variable. 

• Create a subdirectory for the specific values in each problem. 

• Use the Solver with any combination of expression and values. 

72 4: Repeating Calculations 



5 
Real-Number Functions 

This chapter introduces the TRIG, LOGS, and REAL menus. The 
TRIG menu contains trigonometric functions and commands dealing 
with angular measurement. The LOGS menu contains logarithmic, ex­
ponential, and hyperbolic functions. The REAL menu contains 
additional commands for real numbers. 

All commands in these menus are described briefly in appendix D, 
"Menu Map." For complete descriptions, refer to "TRIG," "LOGS,n or 
"REAL" in the Reference Manual. 

Trigonometric Functions 

This section shows how to select the current angle mode, calculate 
with 7r, and convert angular measure. 

Selecting Angle Mode 

The calculator can interpret angular arguments and results as degrees 
(11360 of a circle) or as radians (1127r of a circle). The default choice is 
Degrees angle mode. For the examples in this section, switch to Radi­
ans angle mode. 

Clear the stack and select the MODE menu . 

• 1 CLEAR I .1 MODE I 

5: Real-Number Functions 73 



The two right-most menu labels, DEG (degrees) and RAD (radians), 
represent your choices of angle mode. Note that the DEG label 
shows a small square, indicating that the current angle mode is 
Degrees. 

Select Radians angle mode. 

RAD 

The Radians annunciator (211") appears and the menu labels change. 
(Most illustrations in this manual don't show the annunciators. To lo­
cate the (21r) annunciator, see the illustration on page 27.) 

Display the first row of the TRIG menu. 

(TRIG( If~ I 
I!iI3millaamHD3IIlIllI:J 

These are one-number functions, acting on the number in level 1. For 
real numbers, the angle mode affects how SIN (sine), COS (cosine), 
and TAN (tangent) interpret their arguments, and how AS IN (arc sine), 
ACOS (arc cosine), and ATAN (arc tangent) express their results. 

You'll use the SIN function in the discussion of 7r that comes next. 

Using 7r 

The transcendental number 7r can't be represented exactly in a finite 
decimal form. In general, the calculator's 12-digit approximation 
(3 .14159265359) yields results accurate to 12 digits, which is suffi­
cient for most applications. 

The HP-28S also offers a symbolic constant 'IT that represents 7r ex­
actly. In radians angle mode, the functions SIN, COS, and TAN 
recognize the symbolic constant 'IT and produce an exact result. The 
functions SIN and COS also recognize 'IT / 2. 

74 5: Real-Number Functions 



For other functions, the symbolic constant IT produces an expression 
containing IT . If you force a real-number result, the calculator uses the 
12-digit approximation. 

To demonstrate the difference between 3.14159265359 and IT, calcu­
late the sine of each. 

Put I IT I in level 1. 

.GJ 1 ENTER I 

Although this object looks like a name, it's actually an expression 
with a single term, the symbolic constant 1r. 

Force a real-number result using .... NUM (to number) .1 +NUM I 3: 
2: 
1: 3.14159265359 
RJ3mJ:1lDiBmaDI3lIlrnl3 

The 12-digit approximation to 71' (3.14159265359) is returned to level 
1. 

Calculate the sine of the approximation to 71'. 

SIN ~3~:----------------------~ 

2: 
1: -2. 06761537357E-13 
RJ3mJ:1lDiBmaDI3lIlrnl3 

The result (-2.06761537357 x 10 - 13) isn' t exactly 0 because the ar­
gument (3.14159265359) isn't exactly 71' . 

Now calculate the sine of 71'. 

3: 
2: -2.06761537357E-13 
1: 0 
RJ3mJ:1lDiBmaDI3lIlrnl3 

The SIN function recognizes the symbolic constant 71' and returns the 
exact result (0) . 

5: Real·Number Functions 75 



Converting Angular Measure 

The TRIG menu contains commands that convert an angle from one 
system of measurement to another. These commands are on the third 
row of the TRIG menu. Take a quick look at the second row before 
continuing to the third. 

Display the second row of the TRIG menu. 
I NEXT I ""3:-:------------. 

2: -2. 06761537357E-13 
1: 0 
DaDlllDaBDIIllD_ 

These commands deal with complex numbers and are duplicated in 
the COMPLEX menu. Complex numbers are described in the next 
chapter. 

Display the third row of the TRIG menu. 
~----------------------~ I NEXT I 3: 
2: -2. 06761537357E-13 
1: 0 
mmlCJDDCImlCIDIIGDlIDllII 

You'll use the commands HMS- and D-R to convert an angle ex­
pressed in degrees, minutes, and seconds to an angle expressed in 
radians. 

The four HMS (hours-minutes-seconds) commands enable you to calcu­
late with numbers whose fractional parts are expressed as minutes 
and seconds. Such numbers must have the following special format, 
called the HMS format: 

h.MMSSs 

where h represents hours (or degrees), MM represents minutes, SS 
represents seconds, and s represents decimal fraction of seconds. MM 
and SS each represent two digits; hand s each represent any number 
of digits. 

The commands -HMS (decimal-to-HMS) and HMS- (HMS-to-decimal) 
convert a real number between the normal decimal format and the 
special HMS format. The commands HMS+ (HMS plus) and HMS­
(HMS minus) add and subtract numbers in HMS format, with the re­
sult also in HMS format. 

76 5: Real-Number Functions 



For example, convert 141° 26' IS" to decimal degrees. 

Enter the number in HMS format. 

141.2615 2: -2.06761537357E-13 
1: 0 
141. 26150 
a:rmmm:lmmllllDilm:llDa 

Convert the number from HMS format to decimal degrees. 

HMS~ 3: -2. 06761537357E-13 
2: 0 
1: 141.4375 
a:rmmm:lmmllllDilm:llDa 

The other two functions on this menu row, D-R (degrees-to-radians) 
and R-D (radians-to-degrees) convert a real number between degrees 
angular measure and radians angular measure. 

Convert the number in level 1 from degrees to radians. 

D~R 3: -2.06761537357E-13 
2: 0 
1: 2.46855006079 
a:rmmm:lmmllllDilm:llDa 

Altogether, you've calculated: 

141 ° 26' IS" = 141.4375° 2.46855006079 radians 

Logarithmic, Exponential, and Hyperbolic 
Functions 

The LOGS menu contains logarithmic and exponential functions, both 
common and natural, and hyperbolic functions. For a detailed de­
scription of these functions, refer to "LOGS" in the Reference Manual. 

Display the first row of the LOGS menu . 
• 1 LOGS I r:::3~: ----;:2~.~0-:::"'6 7~6~1:-::5:-:::3~7~35=7=-=E=--~1-=3 

2: 0 
1: 2.46855006079 
DaI'il!!Bm:.DlllmIlJlmD 

5: Real-Number Functions 77 



The functions LOG (common logarithm) and ALOG (common antiloga­
rithm) compute logarithms and exponentials to base 10. The functions 
LN (natural logarithm) and EXP (natural exponential) calculate loga­
rithms and exponentials to base e. (e is a transcendental number 
approximately equal to 2.71828182846.) 

For an argument x, the function LNP1 (In plus 1) computes In (x + 1), 
and the function EXPM (exp minus 1) computes (exp x) - 1. For argu­
ments close to 0, each of these functions provides greater accuracy 
than the corresponding sequence of functions . (An example using 
LNP1 appears in "Time Value of Money" on page 103.) 

Display the second row of the LOGS menu. 
~----~-=~~~~~~~= 

1 NEXT I 3: -2. 06761537357E-13 
2: 0 
1: 2.46855006079 
m:IlIlm:mBmlcm:Jm::cJ1MiCm 

These are the hyperbolic functions and their inverses: SINH (hyper­
bolic sine) and ASINH (inverse hyperbolic sine), COSH (hyperbolic 
cosine) and ACOSH (inverse hyperbolic cosine), and TANH (hyperbolic 
tangent) and ATANH (inverse hyperbolic tangent). These functions are 
derived from eX, the natural exponential function. All are one-number 
functions that act on the number in level 1. 

Other Real Functions 

The REAL menu contains functions that apply primarily to real 
numbers. 

Select the REAL menu . 

• 1 REALI 3: -2.06761537357E-13 
2: 0 
1: 2.46855006079 
EIBDllDmmIIEBllmI1I11IIm1 

The function NEG (negate) returns -x for an argument x. The func­
tion FACT (factorial) returns n! for a positive integer n or the gamma 
function f(x + 1) for a non-integer argument x. The command 
RAND (random number) returns a random number calculated from a 
seed specified by RDZ (randomize) . 

78 5: Real-Number Functions 



The functions MAXR (maximum real) and MINR (minimum real) return 
symbolic constants for the largest and smallest positive real numbers 
representable on the HP-28S. (To force a numerical result for a sym­
bolic constant, see DUsing 7['D on page 74.) 

This section shows you how to use the function NEG. For conve­
nience, you can execute NEG by pressing I CHS I (change sign) if no 
command line is present. To enter the NEG command in the com­
mand line-for example, when you're keying in a program-press 

NEG or [ill [IJ @] . 

Now negate the number in level 1 twice, once by pressing I CHS I and 
once by pressing NEG . 

Negate the number in level 1. 

ICHSI 3: -2. 06761537357E-13 
2: 0 
1: -2.46855006079 
EIDIlllDI!lCIJDaGrnll1lm:m1J 

Negate the number a second time. 

NEG 3: -2.06761537357E-13 
2: 0 
1: 2.46855006079 
EIDIlllDI!lCIJDaGrnll1lm:m1J 

Defining New Functions 

You can create program variables that work like the built-in func­
tions-you can even use them in expressions. Such program variables, 
called user functions, must fulfill two requirements: 

• They must explicitly indicate their arguments . 

• They must return exactly one result. 

5: Real-Number Functions 79 



For example, you can define a function COT for the cotangent func­
tion, where cot x = l/tan x. 

Begin the program. 

o 

Indicate the argument. 

• G [1QJ x [1QJ 

2: 0 
1: 2.46855006079 
«I 
E1DDlJDDlCIIIUHmmIIGmUI 

2: 0 
1: 2.46855006079 
« ~ xl 
E1DDlJDDlCIIIUHmmIIGmUI 

The right arrow indicates that the following name represents a local 
variable, which will exist only within this program. 

It's useful to follow some convention to distinguish your local vari­
ables from your ordinary or HglobalH variables. This manual uses 
lower-case letters to distinguish local variables. (Pressing [1QJ once 
switches to lower case; pressing [1QJ a second time switches back to 
upper case.) 

Define the function. 

O .[J"E] CO TAN CO I LC I x 

Enter the program. 

I ENTER I 

2: 0 
1: 2.46855006079 
« ~ x' INV (TAN(xl 
E1DDlJDDlCIIIUHmmIIGmUI 

2: 2.46855006079 
1: « ~ x 'INV(TAN(x»' 

» 
E1DDlJDDlCIIIUHmmIIGmUI 

The closing parentheses and delimiters are added for you. 

80 5: Real-Number Functions 



This program means: take an argument from the stack (in RPN syn­
tax) or from the expression (in algebraic syntax) and call it x; then 
evaluate the expression l/tan x, using the local definition of x. 

Store the program in a variable COT. 
CJ COT \ STO I r:3~: -----=2,-. =1067:7~6:-:1-=5=3=73=5=7==E:---:-1=3 

2: 10 
1: 2.46855101061079 
ICIHIEilDiCEllEalElB1lmma 

Now you can use COT in either RPN or algebraic syntax, just like the 
built-in trigonometric functions. 

Calculate cot 45° using RPN. 

.IMODEI DEG 

45 \ USER I COT 

3: 10 
2: 2.46855101061079 
1: 1 m:JIm. .. IEJlI __ 

Calculate cot - 45° using algebraic syntax. 
CJ COT [] -45\ ENTER I r::3,-:-----:2:-.--:4-=6-=8=5=51O-=-1O=-6"..,1O=-=7=9 

2: 1 

Evaluate the expression. 

IEVALI 

1: 'COT(-45)' m:JIm. .. IEJlI __ 

3: 2.46855101061079 
2: 1 
1: -1 m:JIm. .. IEJlI __ 

5: Real-Number Functions 81 



Complex-Number 
Functions 

6 

The HP-28S includes an object type that represents complex numbers. 
For example, the complex number z = 3 + 4i is represented by the 
object 0:: 3 , 4 ::0 . Because each complex number is a single object, you 
can calculate with complex numbers as easily as real numbers. 

The pair of real numbers in a complex number can represent the co­
ordinates of a point in a plane. For example, the HP-28S uses 
complex numbers to represent plotting coordinates. The second sec­
tion in this chapter describes two coordinate systems, rectangular and 
polar, and shows how to convert a point from one system to the 
other. 

Using Complex Numbers 

Most functions that work with real numbers work the same way with 
complex numbers. For example, you do arithmetic with complex num­
bers just as you do real numbers-put the numbers on the stack and 
execute the function . Try calculating the following: 

«9 + 2i) + (-4 + 3i)) x (6 + i) 

Clear the stack and enter 9 + 2i . 

• 1 CLEAR I 
[] 9 Q 2 Ir::E""'N=TE=R"1 

82 6: Complex-Number Functions 



Add -4 + 3i. (Remember to press 0 @H[] to enter -4.) 

rn - 4 [J 3 GJ 3: 
2: 

Multiply by 6 + i. 

rn6[J10 

1: (5,5) DIII .... ~ __ 

3: 
2: 
1: (25,35) DIII .... ~ __ 

Sometimes a real-number argument can produce a complex-number 
result. 

Calculate ~. 

-4 .lKl 

Calculate arcsin 2. 

2 1 TRIG 1 ASIN 

3: 
2: (25~35) 
1: (~,2) DIII .... ~ __ 

I~ (1.57079632679~ (~,2) 
-1.31695789692) 

I!mIImmJ"EmI!IIIIllI3IEm13 

Functions specifically for complex numbers are in the COMPLEX 
menu. 

Select the COMPLEX menu . 

• 1 COMPLX 1 2: (0,2) 
1: (1.57079632679 ~ 

-1.31695789692) 
DiDlIBW.alDilImllIiE3 

All commands in the COMPLEX menu are described briefly in appen­
dix D, "Menu Map." For complete descriptions, refer to uCOMPLEX" 
in the Reference Manual. 

• R .... C (real-to-complex) converts two real numbers x and y to one 
complex number (x, y). 

• C .... R (complex-to-real) converts one complex number (x, y) to two 
real numbers x and y. 

• RE (real part) returns x for a complex argument (x, y). 

6: Complex-Number Functions 83 



• 1M (imaginary part) returns y for a complex argument (x, y). 

• CON] (conjugate) returns (x, -y) for a complex argument (x, y). 

• SIGN returns (x/yx2 + y2, Y /yx2 + y2) for a complex argument 
(x, y). 

Display the next row of the COMPLEX menu. 
r------------------~~~ I NEXT I 2: (0,2) 
1: (1.57079632679~ 

-1.31695789692) 
BDI Dalila CIBIEIB_ 

These functions (except NEG) relate to complex numbers in polar 
coordinates. 

Using Polar Coordinates 

A point in a plane can be described by two different coordinate sys­
tems. The illustration below shows one point described two ways, in 
rectangular notation (x, y) and in polar notation (r, 0) . 

x 

\ 
y {} 

84 6: Complex-Number Functions 



• R-P (rectangular-to-polar) converts a complex number in rectangu­
lar notation (x, y) to polar notation (r, 0). 

• P-R (polar-to-rectangular) converts a complex number in polar no-
tation (r, 0) to rectangular notation (x, y). 

• ABS (absolute value) returns r for a complex argument (x, y). 

• NEG returns (-x, -y) for a complex argument (x, y). 

• ARG returns 0 for a complex argument (x, y). 

Note that only P-R interprets a complex number as polar coordinates; 
all other functions-arithmetic, trigonometric, logarithmic, hyperbolic, 
and so on-interpret a complex number as rectangular coordinates. 
Remember this important rule: Any complex number in polar coordi­
nates must be converted to rectangular coordinates before you can use it 
in a calculation. 

As an example of arithmetic with polar coordinates, suppose you 
travel 2 miles at a bearing of 36°, then 3 miles at a bearing of 65°. 
What is the resulting distance and bearing, calculated to two decimal 
places? 

Select Degrees angle mode and FIX 2 number display. .1 MODEl DEG 2 FIX 3: (25.'21'211.35.'21'21) 
2: (el.el~,2.elel) 
1: (1.57,-1.32) 
BiIIDlII::::I"l1:DIom~ 

Enter the first distance and bearing. 
CO 2 Q 36 '-::2-: -----:(:-:::el~. -=-elel=-,~2~.-:=el~el~) 

1: (1.57,-1.32) 

Convert to rectangular coordinates . 

• 1 COMPLX I I NEXT I P+R 

(2,360 
BiIIDlII::::I"l1:DIom~ 

3: ('21.'21'21,2.'21'21) 
2: (1.57 -1.32) 
1: (1. 62,1. 18) 
BlllIIDIEIBEIDI:lID_ 

Enter the second distance and bearing. 
CO 3 Q 65 =2-: ------:'(...,-1-:.5=7=-1.--...,-1-:.3=2:::7"1) 

1 : ( 1. 6<:::, 1. 18) 
(3,650 
BIll IIDIEIB EIDI:lID_ 

6: Complex-Number Functionns 85 



Convert to rectangular coordinates. 

P~R 3: (1.57~-1.32) 
2: (1. 6<::,1. 18) 
1: (1.27,2.72) 
GDlDaImBEIBI£IB_ 

Add the rectangular coordinates. 

[B 3: (0.00,2.00) 
2: (1.57 -1.32) 
1: (2.89,3.89) 
GDlDaImBEIBI£IB_ 

Convert to polar coordinates. 

R~P 3: (0.00,2.00) 
2: (1.57,-1.32) 
1: (4.85,53.46) 
GDlDaImBEIBI£IB_ 

The resulting distance is 4.85 miles, and the resulting bearing is 
53.46°. 

A User Function for Polar Addition 

Here's a simple program PSUM (polar sum) to automate the process 
you did manually in the previous section. 

Begin the program. 

o 2: (1.57,-1.32) 
1: (4.85,53.46) 
«I 
GDlDaImBEIBI£IB_ 

Indicate the arguments. (Use a space to separate the two arguments.) 

• G I LC I x I SPACE I y 2: ( 1. 57, - 1. 32) 
1: (4.85,53.46) 
« ~ x yl 
GDlDaImBEIBI£IB_ 

The right arrow indicates that the following names are local variables, 
which will exist only within this program. 

86 6: Complex-Number Functions 



Define the function. 

~ R~P rn P~R rn x .rn G 
P~R rn y I ENTER I 

2: (4.85~53.46) 
1: « ~ x y 'R~P(~~R(x)+ 

P~R(y»1 » 
GDlIIDIElBEIBIEID_ 

The closing parentheses and delimiters are added for you. 

This program means: take two arguments from the stack (in RPN syn­
tax) or from the expression (in algebraic syntax) and call them x and y; 
then calculate the polar coordinates of the sum of the rectangular co­
ordinates of x and y. 

Store the program in a variable PSUM. 

~ PSUM I STO I r.::3:-:": ----~(-;::;et:-. ::;:'21::;:'21-:, 2;::::-.'et:::::et~) 
2: (1.57,-1.32) 
1: (4.85,53.46) 
GDlIIDIElBEIBIEID_ 

Now use PSUM to repeat the previous calculation, once in RPN syn­
tax and once in algebraic syntax. 

Enter the first distance and bearing. 

rn 2 Q 36 I ENTER I '-3-: ----'(-:-1-. =5=7-, --1~.'3:::::2:-:-1) 
2: (4.85,53.46) 
1: (2.'21'21,36.'21'21) 
GDlIIDIElBEIBIEID_ 

Enter the second distance and bearing. 

rn 3 Q 65 2: (4.85,53.46) 
1: (2.'21'21,36.'21'21) 

Execute PSUM. 

I USER I ~PSUM 

(3,650 
GDlIIDIElBEIBIEID_ 

3: (1.57,-1.32) 
2: (4.85,53.46) 
1: (4.85,53.46) 
IlimDDmm. .. m:IlI_ 

6: Complex-Number Functions 87 



The result matches the previous answer. 

Now try algebraic syntax. 

CJ PSUM CD CD 2 0 36 .[D O CD 3 2: 
1 : o 65[ ENTER I 

(4.85,53.46) 
'PSUM«2,36),(3,65» , 

1Iil!ID1KDI1IBI .. mmI_ 
The outer parentheses and the center comma define the arguments to 
PSUM; the other parentheses and commas are part of complex-num­
ber syntax. Don't forget that you need two sets of parentheses when 
using a complex number as an argument in algebraic syntax. 

Evaluate the expression. 

[EVALI 3: (4.85,53.46) 
2: (4.85,53.46) 
1: (4.85,53.46) 
1Iil!ID1KDI1IBI .. mmI_ 

88 6: Complex-Number Functions 



7 
Plotting 

This chapter introduces plotting on the HP-28S. Plotting is helpful in 
itself, giving a visual understanding of how an expression or equation 
behaves. In addition, plotting makes it easy to estimate the roots, 
maxima, or minima of an expression. The next chapter, uThe Solver, U 

shows how to use the Solver to turn estimates into precise numbers. 

In this chapter you'll learn how to use some of the commands in the 
PLOT menu. All commands in the PLOT menu are described briefly 
in appendix D, uMenu Map. N For complete descriptions, refer to 
uPLOr in the Reference Manual. 

For the first example you'll plot sin x in Radians angle mode, but first 
there are preliminaries to make sure your display will match the 
illustrations. 

Plotting uses a variable named PPAR to store a list of plotting param­
eters. Purge any existing PPAR to ensure that the next plot uses the 
default plotting parameters. 

Clear the stack and select the PLOT menu . 

• 1 CLEAR 1 .1 PLOT 1 

Display the second row of the PLOT menu. 

INEXTI ~I~~~-----------------'I 
.IDll1IDBIilllBImmKfDlm:.. 

7: Plotting 89 



Purge any existing PPAR. 

~ PPAR ., PURGE 1 

Select Radians angle mode and STD number display mode . 

• , MODE 1 RAO sro I': 1 
. IiiDDBII_EaDBmD. 

Now enter the expression. 

~ 1 TRIG 1 SIN X 1 ENTER 1 3: 
2: 
1: 'SIN(X)' 
I!imIIIlm3DB1Il1!£l11E131m:cJ 

Store the expression as the current equation-a normal variable with 
the special name EQ. (This is the same convention you followed with 
the Solver in chapter 4.) 

.1 PLOT 1 STEQ 

Pressing STEQ is equivalent to pressing ~ EQ 1 STO I. 

Plot the expression. 

DRAW 

Wait for the «e» annunciator to disappear, indicating that the plot is 
complete. 

The horizontal line is the axis for the independent variable (x in this 
example), and the vertical line is the axis for the dependent variable 
(the value of the expression sin x). The ticks on both axes mark inter­
vals of length 1. 

90 7: Plotting 



Printing a Plot 

If you have an HP 82240A printer, you can print an image of the plot 
you just made as follows . 

1. Position the printer according to the instructions in the printer 
manual. 

2. Press and hold 1 ON I. 

3. Press m (the key with uPRINr written above it) . 

4. Release 1 ON I. 

These keystrokes are the keyboard equivalent of the command 
PRLCD (print LCD, found on the first row of the PRINT menu). You 
can use these keystrokes to print the display at practically any time, 
without disturbing calculator operation. 

If you write a program to plot an expression and print the result, use 
the following sequence of commands: 

. . . CLLCD DRAW PRLCD . . . 

Returning to the present example, now restore the normal display of 
the stack. 

Changing the Scale of the Plot 

In general, plotting an expression doesn' t produce such tidy results 
the first time. When you're plotting an unfamiliar expression you may 
need to adjust the plotting region-defined by the plotting param­
eters- to show the relevant characteristics of the expression. 

7: Plotting 91 



If you know beforehand the region that you want to plot, you can 
directly change the plotting parameters in PPAR. (PPAR is described 
in detail in "PLOT" in the Reference Manual.) More often you need to 
experiment to find the desired plotting region. This manual shows 
you how to use commands in the PLOT menu to "home in" on the 
desired plot. 

For the second example, you'll plot the expression x3 - x2 - X + 3. 

Put the expression in level 1. 

OX.~ 3GX.~ 2GX[B3 
I ENTER I 

Store the expression as the current equation. 

STEQ I""L-~-mml--IBmI--ImIIII--mIm--ImD---'1 

Plot the expression. 

DRAW 

"""I"'" I 
The horizontal line is the axis for x, and the vertical line is the axis for 
the value of the expression x3 - x2 - X + 3. 

This plot shows a zero of the expression-a value of X for which the 
value of the expression is zero. The zero is located where the graph of 
the expression crosses the X axis . In the next chapter we'll use the 
Solver to find a precise number for this zero. 

To show more of the graph, expand the vertical scale and plot again. 

Restore the normal display of the stack. 
~----------------------. 

@ill 1

3
: I 

MmmmllBmllmllllmImlmD 

92 7: Plotting 



Expand the height by a scaling factor of 2, using the *H (times 
height) operation on the next menu row. 

I NEXT I 2 *H r:1~"-~------------'1 

. DIlUIllDlllilIIBtmmmDIlDlll. 

Plot again with the new plot parameters . 

• 1 PREV I DRAWl ... -,-,-,-,-,-..... -.~-:::---. ,-,-,-,-, ..., 

The ticks on the horizontal axis still mark off intervals of length 1, 
but now the tick marks on the vertical axis mark off intervals of 
length 2. 

Next you'll translate the plot, moving the interesting part to the center 
of the display. 

Translating the Plot 

After each plot the calculator leaves cross hairs in the center of the 
display. (You can't see the cross hairs when the axes are in the center 
of the display.) You can use the cross hairs to digitize any point on the 
display, returning the coordinates of the point to the stack. We'll digi­
tize the point we want to be the center of the next plot and use it to 
adjust the plotting parameters. 

Move the cross hairs to the indicated position . 
.------~~-----..., [B (press four times) ~. 

[1J (press nine times) , , , , ' .... :+' I I I I 

Digitize the point. 

[ill[] , , , , 'i'=" , , , , 

7: Plotting 93 



Return to the stack display. 

@ill 

The coordinates of the digitized point, represented by a complex 
number, are in level 1. 

Redefine the center of the plot, using CENTR on the next menu row. 

INEXTI CENTR I~~ I 
. DDIDDlImID IrnmIlDll l1:l3I. 

The coordinates are taken from the stack and used to adjust the plot 
parameters. Unlike *H , CENTR doesn' t change the scale. 

Try another plot. .1 PREV 1 DRAW 

I, , , , ,:t:', , , , , ,I 
Now zoom in on an interesting part of the plot. You could use *H 

again, using a fractional scaling factor. (For example, a scaling factor of 
.5 would return the vertical scale to its original value.) But there's a 
more flexible way to zoom in on a plot. 

Redefining the Corners of the Plot 

This time you'll digitize two points, one for the lower-left corner of 
the new plot and one for the upper-right corner, to zoom in on the 
plot. 

Move the cross hairs to the desired lower-left corner. 

I"" -<t:"", ,I 

94 7: Plotting 



Digitize the point. 

DE§] 

Move the cross hairs to the desired upper-right corner. 

Digitize the point. 

DE§] 

Return to the stack display. 

IONI 

I"" ,d~~"" ,I 

I .... ,~~", ,I 

3: 
2: (-1.5,1.2) 
1: (2.1,3.6) 
HmlmMlllmlDElBlmImWlID 

The coordinates of the lower-left corner, represented by a complex 
number, are in level 2. The coordinates of the upper-right corner are 
in level 1. (Your coordinates may differ slightly from the illustration.) 

Redefine the upper-right corner of the plot, using PMAX (plot 
maxima). 

PMAX 3: 
2: 
1: (-1.5,1.2) 
HmlmMlllmlDElBlmImWlID 

The coordinates are taken from the stack and used to adjust the plot­
ting parameters. 

Redefine the lower-left corner of the plot, using PMIN (plot minima). 

PMIN 11L_mH3Dm1~mml 

7: Plotting 95 



Try another plot. 

DRAW 

Since you changed the height and width of the plot, both the vertical 
and horizontal scales are changed. 

The plot shows two extrema in the expression's graph-a local maxi­
mum and a local minimum. In the next chapter you'll use the Solver 
to find a precise value for the minimum. To avoid repeating all these 
steps to generate our current plotting parameters, store the current 
value of PPAR in a variable with a different name. To recreate this 
plot in the next chapter, you'll restore PPAR to its current value. 

Return to the stack display. 

IONI 

Put the current contents of PPAR on the stack. 

I NEXT I PPAR 1: { (-1.5 t 1.2) 
(2.1,3.b) X 1 (0,0) 
) 

m:I1IIlDBl'.lHIBtmmlmm~ 

For information about the plotting parameters and for details about 
plotting in general, see uPLOr in the Reference Manual. 

Create a variable PPARI that contains the current plotting 
parameters. 

~ PPAR 1 I STO I 

Now you're ready to use the Solver to find precise numbers for the 
zero and local minimum of the expression. 

96 7: Plotting 



Plotting Equations 

The examples in this chapter were both expressions, but the same 
rules and techniques work for plotting equations. When the variable 
EQ contains an equation, DRAW plots each side of the equation as an 
expression. You can find a root of the equation by finding where the 
two graphs cross, because that is where the two sides of the equation 
have equal values. 

7: Plotting 97 



8 
The Solver 

This chapter describes how to find a zero and a minimum of the ex­
pression you plotted in the previous chapter. Work through the steps 
in the previous chapter if you haven't done so already, because you'll 
need some of the results from that chapter. 

For a complete description of the Solver, refer to "SOLVE" in the Ref­
erence Manual. 

Finding a Zero of an Expression 

The following example assumes that the expression x3 - x2 - X + 3 
is still the current equation and that you've created the variable 
PPARl, as described in the previous chapter. You'll plot the expres­
sion again, digitize an estimate for a zero of the expression, and then 
use the Solver to find a more accurate value for the zero. 

Before starting these examples, clear the stack, select Radians angle 
mode, and select FIX 2 number display mode . 

• 1 CLEAR I 11":'3-: ------------.1 .1 MODE i RAD t: 
2 F I X Rr.n:m:::IlRBlrnHEBmD 

Purge the existing PPAR to ensure that the next plot uses the default 
plotting parameters . 

• 1 PLOT II NEXT I 1
3: 1 

CJ PPAR .1 PURGE I t: 
~m.mBtmmlmllllllll 

98 8: The Solver 



Now plot the expression . 

• 1 PREV I DRAW 

This plot shows a zero of the expression-a value of X for which the 
value of the expression is zero. The zero is located where the graph of 
the expression crosses the horizontal axis. 

Move the cross hairs to the approximate intersection of the graph and 
the horizontal axis. (Use m, [Yj,~, and [E) to move the cross hairs.) 

" • "j. I · "" I 

Digitize this estimate for the zero. 

~ 

You'll use this point as an estimate for finding the exact zero of the 
expression. (In case the expression has more than one root, the esti­
mate indicates which one you want.) 

Return to the stack display. 

IONI 

The coordinates of the digitized point, represented by a complex 
number, are in level 1. (Your coordinates may differ slightly from the 
illustration.) 

Select the Solver menu. 

I SOLV I SOLVR 3: 
2: 
1 : ( - 1. 7121, 12I( 121121) 
DD~c::::::Jc::::::J c::::::J 

8: The Solver 99 



The Solver menu shows all the variables in the current equation (only 
X in this example). 

Store the digitized estimate in variable X. 

l[jbij!~ iiii]lliliUii~ic:::::Ji§iJmlijc:::::Jii!i!iTt!i§)ic:::::Jiii'=iiill 

Although the digitized point contained two coordinates, the Solver 
will use only the first coordinate as an estimate. 

Now solve for X. 

~--f9n Reversal 
1: -1.36 
[IJi]lliIc:::::Jc:::::Jc:::::Jc:::::J 

The message :=; i gn Rever s.31 indicates that the Solver found an 
approximate solution, correct to 12 digits . If the Solver found an exact 
solution, it would display the message Zer .:t . These messages, called 
qualifying messages, are discussed in uSOLVEH in the Reference 
Manual. 

Return to the normal stack display. 

[oNI 3: 
2: 
1: -1. 36 
[IJi]lliIc:::::Jc:::::Jc:::::Jc:::::J 

Finding a Minimum or Maximum 

To find the zero of an expression, the Solver samples points on the 
graph, starting with your estimate, and tries to find points closer to 
the x-axis. If your estimate is quite close to a positive local minimum or 
a negative local maximum, there are no points nearby that are closer to 
the x-axis. In this case, the Solver finds that extremum (minimum or 
maximum) rather than a zero. (Generally the Solver won't Uget stuck" 
at an extremum unless your estimate forces it there.) !' 

100 8: The Solver 



Look at the graph you made in the last chapter, on page 96. It shows 
that the expression has a positive local minimum and a positive local 
maximum. The Solver can find the minimum, because locally it's the 
point closest to the x-axis; but the Solver can't find the maximum, 
because locally it's the point farthest from the x-axis. 

In this section you'll plot the expression, using the plotting parameters 
stored in the variable PPARl, then digitize three points to estimate 
the minimum, and then use the Solver to find a more accurate 
minimum. 

Return the list stored in PPARI to the stack. 

1 USER 1 PPARl 1: { (-1.50 t 1.20) 
(2.10,3.00) X 1.00 
(0.00,0.00) ) 

... DDlmlllmmllmIlDlDl 

Restore the variable PPAR to the values stored in PPARl. 

[] PPAR 1 STO 1 

Plot the expression. .1 PLOT 1 If RAW 

3: 
2: 
1: -1. 36 
... DDlmlllmmllmIlDlDl 

I/~I 
Move the cross hairs to the approximate minimum. 

Digitize the point. 

[JE[] 

8: The Solver 101 



Move the cross hairs just to the left of the minimum. 

I,/~~--~/ I 
Digitize the point. 

~ 

I/~I 
Move the cross hairs just to the right of the minimum and digitize the 
point. 

~ 

Return to the stack display. 

IONI 3: (0.99,1.97) 
2: (0.86,2.05) 
1 : ( 1. 15, 2. 05) 
IimImmlom:::JlDIlIHImImlDllD 

The three points are in levels 1, 2, and 3. (Your points may differ 
slightly from the illustration.) 

Now combine the three estimates in a list. By doing so, you can han­
dle the three estimates as a single object. This is a typical use for 
lists-combining several objects into one. 

~~~~-==-~~~------~ .1 LIST I 3 ~LIST 1: { (0.99,1.97) 
(0.86,2.05)

Select the Solver menu.

I SOLV I SOLVR

(1. 15, 2. 05))
a!mI!!mIll!illImDlIDiIJEIm

1: { (0. 99, 1. 97)
(0.86,2.05)
(1.15..t.b...,05))

[J[JiXffi)L-.Jc::::::Jc::::::Jc::::::J

The Solver menu shows all the variables in the current equation (only
X in this example).

102 8: The Solver

Store the list of points in the variable X.

DC] ~~~:~i.iiiiljj'liw.!!i!ilt'!illiiii"iiii~iiii"'~M~:::]"
1: -1.36
[J[J~c::Jc::Jc::Jc::J

The list of points is taken from the stack and stored in the variable X
as initial estimates.

Solve for X .

• DC]

The message Ex t r emum indicates that the Solver found an extreme
point of the expression.

Return to the normal stack display.
IONI ~3~:------------------~

Calculate the extreme value.

IE xPR=1

The minimum value is 2.

Time Value of Money

2: -1. 36
1: 1. 121121
[J[J~c::Jc::Jc::Jc::J

!~ii;amrr i . 00
1: 2.121121
[J[J~c::Jc::Jc::Jc::J

This section shows how to use the Solver with time value of money
(TVM) calculations. For n number of periods, i% interest per period,
$pmt payment, $pv present value, and $tv future value, the formula
for TVM is:

(1 - sppv) x pmt x (1 DO/i) + pv = - tv x sppv

8: The Solver 103

where

sppv (single payment present value) = (1 + i/100) - n

= exp(-n x In (1 + i/100)).

This formula assumes that payments are made at the end of each
period.

Here are the major steps you'll perform:

1. Key in the expression for sppv and store it in a variable SPPV.

2. Key in the equation and store it in a variable TVM.

3. Make TVM the current equation.

4. Use the Solver to calculate any of the five variables n, i, pmt, pv,
or tv, for given values of the other four variables.

Before starting, clear the stack and select FIX 2 number display mode .

• 1 CLEAR 1 13: I .1 MODE 12 FIx f:
~1iEI_malGBlmm:I

Step 1: Key in the expression for sppv and store it in a variable SPPV.

Key in the expression for sppv.

O .ILOGsl 1~LG N 0 LNPl

I 0 100 1 ENTER I
2:
1: I EXP(-N*LNP1 (1/100»

I

1I!:!:a~m:.DlllmromIDI

This expression takes advantage of the greater accuracy of LNP1 to
calculate In (1 + iI100).

Create the variable SPPV and check the USER menu.

o SPPV 1 sTol
1 USER I

104 8: The Solver

Step 2: Key in the equation and store it in a variable TVM.

Key in the equation for TVM.

o CD 1 8 SPPV .OJ 0 PMT 0
100 [±] I GJ PV 08 FV 0 SPPV

[ENTER I

Create the variable TVM.

o TVM [sTol

2:
1: '(1-SPPV>*PMT*100/1+

PV=-FV*SPPV'
mD ... lIIlI1IlDmlmlllli!lD

The USER menu shows a new label for TVM.

Step 3: Make TVM the current equation.

Key in the name TVM.

o TVM 2:
1 :
'TVMI3
IlUImD ... 1IIlI1I1Dm1mll

Store the name TVM in the variable EQ.

[SOLV I STEQ

Step 4: Use the Solver to calculate any of the five variables n, i, pmt,
pv, or tv, for given values of the other four variables.

Select the Solver menu.

SOLVR

All the variables in TVM and SPPV appear in the menu. (The vari­
ables in SPPV appear because the current equation, TVM, contains
SPPY.)

Given values N = 30, x 12, I = 11.5 / 12, PMT = - 630, and FV =

0; calculate PY. (PMT has a negative value because money paid out is
a negative number, while money received is a positive number.)

8: The Solver 105

First assign the value to N .

30 I ENTER I 1 2 0

Assign the value to I.

11 .5 I ENTER I 12 G ::::=:1=:]

Assign the value to PMT.

- 630 i=:IjII]

Assign the value to FY.

o ::::J'J]

Now solve for PY.

I'!- I DDCDIT8IJ[EJc::£IJi:tffiI

,;wmm1JKO!!
ero

1: 63617.64
DDCDIT8IJ[EJc::£IJi:tffiI

The message Zet" Co indicates that the returned value exactly satisfies
the current equation.

106 8: The Solver

9
Symbolic Solutions

This chapter describes two methods for finding symbolic solutions.
There is a simple method for solving a quadratic expression by cal­
culating the linear expression that represents both zeros. There is also
a more versatile method that provides a symbolic solution for a vari­
able in more general equations.

Each method works with both expressions and equations. The zero of
an expression f(x) is the same as the root of the equation f(x) = 0, and
the root of the equation f(x) = g(x) is the same as the zero of the
expression f(x) - g(x).

Finding the Zeros of a Quadratic Expression

You can find both zeros of a quadratic expression without plotting or
making estimates. The following example solves x2 - 6x + 8.

Before starting the example, clear the stack and select STD number
display mode .

• 1 CLEAR I 1
3: 1

.1 MODE I STD~liBImJlmaDBmltI

Put the expression on the stack.

~ X .~ 2 G 6 0 X G 8 I ENTER I 3:
2:
1 : I W'2- 6*X+8 I
IiiEtlliBlmJlmaDBmltI

9: Symbolic Solutions 107

Put the name X on the stack, indicating the variable for which you're
solving.

o XI r: E=-=-N=TE=R=->I

Calculate the zeros, using QUAD (quadratic) in the SOLVE menu.

I SOLV I QUAD

This expression represents both solutions to the quadratic expression.
The variable sl represents an arbitrary sign, either + 1 or -1, and
each value of s 1 corresponds to a zero of the expression.

Store the expression as the current equation.

STEQ\ r:::L~~--Im!1--mIm--IKDII--E!I!llm--Iil1'IlD-"""\

Display the Solver menu.

SOLVR

sl is the only variable in the current equation.

First make sl a positive sign.

1 L 31 J
I~- I
HoW3c::Jc::Jc::Jc::J

Return one of the solutions to level 1.

\,r"a 4\
o:DW3c::Jc::Jc::Jc::J

108 9: Symbolic Solutions

Now make sl a negative sign.

-1 [=~T-i

\"" \ tIDlXili.lc::Jc::Jc::Jd

Return the second solution to level 1.

I'r~a II
0IJlXili.lc::Jc::Jc::Jc::J

The two roots of x2 - 6x + 8 are x 4 and x 2.

Isolating a Variable

The HP-28S can isolate a single occurrence of a variable in an equa­
tion, returning an expression representing the symbolic solution of
the equation. In other words, if x is the variable for which the equa­
tion is solved, and a, b, and c are the other variables in the equation,
isolating x produces an expression in a, b, and c such that the equa­
tion is satisfied when x has the value of the expression.

For the first example, isolate x in the equation

a(x + 3) - b = c.

This example is simple because there is only one occurrence of x. Later
examples show how to manipulate the equation to produce a single
occurrence of x.

Clear the stack .

• 1 CLEAR 1

Put the equation on the stack.

~ A 0 CD X [IJ 3 .CD El B 0 c
1 ENTER I

9: Symbolic Solutions 109

Specify the variable you want to isolate.
~----------------------~ CJ X 2:
1: 'A*(X+3)-B=C'
'X§
CDnffilc::Jc::Jc::Jc::J

Isolate x, using ISOL (isolate) in the SOLVE menu.

ISOLVI ISOL

The expression returned represents a symbolic solution of the equa­
tion for x-that is, the equation

is satisfied when x

a(x + 3) - b - c

(c + b)/a - 3.

Expanding and Collecting

If x occurs more than once, you must manipulate the equation to
eliminate all but one occurrence of x. The next example shows how to
isolate x in the equation

2(a + x) = 3(b - x) + c.

The strategy for this example is to expand the equation, subtract one
side's x-term from both sides, collect the equation to cancel the x-term
on one side and produce a single x:::term on the other side, and then
isolate.

Put the equation on the stack.

CJ 20UJAG X.OJ 030UJ B
G X .OJ G C 1 ENTER 1

Select the ALGEBRA menu .

• 1 ALGBRA I

110 9: Symbolic Solutions

3:
2: '(C+B)/A-3'
1: '2HA+X)=3HB-X)+C'
BmIl1H!11s:l1!lU1lBl!1l:!1!IiE1mmD

In this example you'll use EXPAN (expand) and COLCT (collect) to
manipulate the equation. In the next example you'll use FORM (form
algebraic expression) to manipulate an equation. All commands in the
ALGEBRA menu are described briefly in appendix D, "Menu Map."
For complete descriptions, refer to "ALGEBRA" in the Reference Man­
ual. In addition, FORM, a powerful algebraic editor, has its own
section "ALGEBRA (FORM)" in the Reference Manual.

Expand both sides of the equation.

EXPAN

To subtract the left side's x-term (2x) from both sides of the equation,
first put the left side's x-term on the stack.
~ 2 0 X I ENTER I r.::3:-::-:-----:-' (:;-::C~+:-;:B::-::)-/:-:;:A~--:::;3:7'1'

2: '2*A+2*X=3*B-3*X+C'

Then subtract 2x from both sides.

Collect the equation.

COLCT

1: '2*X'
~1m'i'Cl1Dm1iml1!lli!l)1BIm

Each side is collected independently, and the x-terms cancel on the
left side.

Now you can isolate x in the equation. Specify the variable you want
to isolate.

~X

9: Symbolic Solutions 111

Isolate x. The command ISOL appears in the second row of the AL­
GEBRA menu as well as the SOLVE menu.

I NEXT I ISOL

The expression returned represents a symbolic solution of the equa­
tion for x-that is, the equation

2(a + x) = 3(b - x) + c

is satisfied when x = (3b + c - 2a)jS .

Using FORM

If there are multiple occurrences of x, and if any occurrence has a
symbolic coefficient, the command COLCT won't combine the coef­
ficients . The next example isolates x in the equation

a(x + b) + 2x = c,

where x occurs more than once and has a symbolic coefficient a. The
strategy is to expand the equation, use FORM to collect coefficients of
x, and then isolate x.

Put the equation on the stack.

['] A 0 CO X 0 B .OJ 020 X 0
c I ENTER I

Expand the equation.

I NEXT I EXPHH

Now use FORM to collect the coefficients of x.

FORM

112 9: Symbolic Solutions

Normal calculator operation is suspended while FORM is active. The
FORM display shows the equation with all sub expressions delimited
by parentheses. You'll use FORM to manipulate subexpressions
within the equation.

The goal is to combine (A * >::) and (2 *)<) in a single term
((A +2) *)<). There are three steps required, shown below as you
might write them on paper. The current form of the equation is:

(ax + ab) + 2x = c

The first step is to commute ax and ab, giving:

(ab + ax) + 2x = c

The second step is to associate ax and 2x, giving:

ab + (ax + 2x) = c

The third step is to merge ax and 2x, giving:

ab + (a + 2) x = c

Step 1: Commute ax and abo

Move the cursor (the inverse character or characters) to +.

[?] [?]

The position of the cursor determines which subexpression you're act­
ing on. Here you want to act on the subexpression ((A * >::) + (A * B))
to commute the arguments to +.

9: Symbolic Solutions 113

Display the first row of manipulations for +.
I NEXT I ~----------------------~

The manipulations that appear when you press I NEXT I are specific to
the function or variable indicated by the cursor; these manipulations
are specific to +.
Commute the arguments to +, using -.!.! ~ (commute).

Return to the main FORM menu.

I ENTER I

Step 2: Associate ax and 2x.

Move the cursor to the second +

C+J

Here you want to act on the subexpression

« (At8)+(At X»+(2tX»

to associate the terms (At:>() and (2tX) in a single subexpression.
Display the first row of manipulations for + .
I NEXT I ~----------------------~

These are the same manipulations as before because the cursor again
indicated an additive subexpression.

114 9: Symbolic Solutions

Associate the terms (At)..;) and (2lX) in the subexpression
((A no + (2 t X)), using A-t (associate right).

A-t

Return to the main FORM menu.

I ENTER I

Step 3: Merge ax and 2x.

Move the cursor to the second +.

Here you want to act on the subexpression ((At)O +(2t)0) to com­
bine the coefficients of :x:.

Display the first row of manipulations for +.
I NEXT I ~--------------------~

Combine the coefficients of >(, using M-t (merge right).

«(A*B)+«A+2);X»=C)

1!lIIII1IDIm..am::..:m

This accomplishes the goal of combining (Al>D and (2lX) in a sin­
gle term «A+2)l)";).

Exit FORM and return the modified equation to the stack.

I ON I 3:' (C+B)/A-3'
2: '(3*B+C-2*A)/5'
1: 'A*B+(A+2)*X=C'
I8:!lDIImmIIIBJIDmlIXIIi!I1Imm

9: Symbolic Solutions 115

Now that x occurs only once in the equation, you can isolate x.

Specify the variable you want to isolate.

C]x

Isolate x.

I NEXT I ISOL

The expression returned represents a symbolic solution of the equa­
tion for x-that is, the equation

a(x + b) + 2x = c

is satisfied when x (c - ab)j(a + 2).

116 9: Symbolic Solutions

10
Calculus

You can symbolically differentiate any expression for which a sensible
derivative exists. Integration is more restricted: you can compute a def­
inite numerical integral for any expression, but an exact symbolic
integral only for a polynomial.

This chapter contains simple examples of finding derivatives, indefi­
nite integrals, and definite integrals for expressions. For more
information about doing calculus on the HP-28S, refer to "Calculus"
in the Reference Manual.

Differentiating an Expression

You can differentiate an expression step-by-step, observing how the
calculator applies the rules of differentiation, or you can differentiate
an expression all at once. The final results are identical. In this section
you'll differentiate an expression twice, first step-by-step and then all
at once.

10: Calculus 117

Step-by-Step Differentiation

To differentiate step-by-step, key in the derivative as a expression. For
this example, calculate:

d
- tan (x2 + 1)
dx

Before starting the example, clear the stack, select Radians angle
mode, and select STD number display mode .

• [CLEAR I 11":'3-: -----------.1
.[MODE I RAO 1:

STO IiE3ID11 .. malDBomtI

Purge the variable X (if it exists).

~ X .[PURGE I

Now start the expression for the derivative, beginning with the vari­
able of differentiation.

~ .[d/dxl X CD

Next, key in the expression to be differentiated.
[TRIG I TAN X .~ 2 [!] 1 [ENTER I r:=3~:------------'

2:
1: 'oX(TAN(XA 2+1»,
R13Ir:m:JDBmiBECIIIlmI3

This expression represents the derivative, with respect to x, of
tan (x2 + 1).

Evaluate the expression once.

[EVALI

The result reflects the chain rule of differentiation:

118 10: Calculus

-.!L tan (x2 + 1)
dx

d tan (x2 + 1) x -.!L (x2 + 1)
d(x2 + 1) dx

The derivative of the tangent function has been evaluated. Next you'll
evaluate the derivative of x2 + 1.

Evaluate the expression a second time.

The result reflects the derivative of a sum:

-.!L (x2 + 1) = -.!L x2 + -.!L 1
dx dx dx

The derivative of 1 is 0, so that term disappears. Next you'll evaluate
the derivative of x2.

Evaluate the expression a third time.
~----------------------, IEVALI 2:
1: '(1 +SQ<TAN(X"2+i» H

(oX(X)*2*X"(2-1»,
Rl3mmBBmmlEI3EmC1

The result again reflects the chain rule:

-.!L x2 = -.!L (X)2 X -.!L x
dx dx dx

The derivative of x2 has been evaluated. Finally, evaluate the deriva­
tive of x itself.

Evaluate the expression a fourth time.
~----------------------, IEVALI 2:
1: '(1 +SQ<TAN(X"2+i»)*

(2*X) ,
Rl3mmBBmmlEI3EmC1

Here is the fully evaluated derivative.

10: Calculus 119

Complete Differentiation

To differentiate an expression all at once, perform differentiation as a
stack operation. Again, suppose you want to find:

.-!L tan (x2 + 1)
dx

Put the expression to be differentiated on the stack.

• [CLEAR I 3:
2: ~ TAN X .~ 2 CB 1 [ENTER I 1: 'TAN(X"2+1) ,
I!iI:JImmBBliImIlIllCII1lmCI

Specify the variable of differentiation.
~ X [ENTER I r.:3:"::----------..,

2: 'TAN(XA 2+1),

Differentiate the expression .

• [d/dxl

1: 'X'
I!iI:JImmBBliImIlIllCII1lmCI

The fully evaluated derivative is returned to level 1.

Integrating an Expression

The HP-28S calculates the indefinite integral of an expression by sym­
bolic integration, which returns an expression as a result. This method
returns an exact result only for polynomial expressions. (For other ex­
pressions, the HP-28S integrates a Taylor series approximation to the
expression. See "Calculus" in the Reference Manual for details.) The
first example below demonstrates symbolic integration.

In contrast, definite integrals are calculated by numerical integration,
which returns numerical results. This method works for any expres­
sion that is "well-behaved" in the mathematical sense. The second
example below demonstrates numerical integration.

120 10: Calculus

Symbolic Integration of Polynomials

In this example you'll symbolically integrate the polynomial

8x3 + 9x2 + 2x + 5.

Clear the stack .

• 1 CLEAR I

Put the polynomial on the stack.

~80X .~3[B90X .~ 2
[B 2 0 X [B 5 1 ENTER I

Specify the variable of integration.

~ X 1 ENTER I

Specify the degree of the polynomial.
3 1 ENTER I r.::3-=:---;'-:::8::-:*:-;-X-;-;A:-::3::-+:-::9~*::-;X7A;:-;2~+-:-:2~*::-;X:-:-+~5;::-;"11

2: I X I
1: 3
IIEIIm13DB1~EI:llIiRl3

Integrate the polynomial. .rn
Wait for the «e)) annunciator to disappear, indicating that integration
is completed. The integral is returned to level 1.

10: Calculus 121

Numerical Integration of Expressions

In this example you'll find a numerical value for the integral

1
~ exp (x 3 + 2x 2

- X + 4)dx

Clear the stack .

• 1 CLEAR I

Put the expression on the stack.

eJ IILOGSI X lEI 3 [±J 2
~ X lEI 2 El X [±J 4 ffi!illffi

Key in the variable and limits of integration. You'll enter them as ob­
jects within a list object. (This is a typical use of a list-combining
several objects so you can handle them as a single object.)

rn X 1 SPACE I 0 1 SPACE I 1 1 ENTER I 3:
2: 'EXP(XA 3+2*XA 2-X+4),
1: { X 0 1)
IIliBl:im'Elm:JIl:!DlmIIIlmD

X is the variable of integration, 0 and 1 the limits of integration.

Next key in the accuracy you require.

If the expression included constants derived from empirical data,
specify the accuracy of the constants. For example, if the constants are
accurate to three decimal places, specify an accuracy of .001.

122 10: Calculus

In this example you 're integrating an expression without empirical
constants, so you could specify 12-digit accuracy. However, the itera­
tive process of numerical integration takes longer for greater accuracy,
so here you'll specify an accuracy of .00001.

~~~~~~~~~~~~~ 

1E - 51 ENTER I 3: I EXP(X"3+2*X"2-X+4) I 

2: { X 0 1 } 
1: .00001 
DaEIDm3lDlllmIIIlmD 

Find the integral. 

.CD 3: 
2: 103.117678153 
1: 1.03086911923E-3 
DaEIDm3lDlllmIIIlmD 

The estimated integral is returned to level 2, and an error bound is 
returned to level 1. 

The value of the integral is 103.118 ± .001. Note that the error bound 
returned is approximately the product of the estimated integral and 
the accuracy you specified. 

10: Calculus 123 



11 
Vectors and Matrices 

The HP-28S deals with two types of arrays: vectors, which are one­
dimensional arrays, and matrices, which are two-dimensional arrays. 
You can enter vectors and matrices as individual objects, called array 
objects, and calculate with them as easily as with numbers. 

This chapter shows basic array calculations using real arrays-vectors 
and matrices whose elements are real numbers. You can also calculate 
with arrays whose elements are complex numbers. 

All commands in the ARRAY menu are described briefly in appendix 
D, uMenu Map." For complete descriptions, refer to U ARRAY" in the 
Reference Manual. 

Vectors 

This section demonstrates vector arithmetic, the cross product, and 
the dot product. 

Keying In a Vector· 

Before beginning these examples, clear the stack and select STD num­
ber display mode . 

• 1 CLEAR I 13: I .1 MODE I [ STO::J t: 
~1ImI_mal:mll!llD 

124 11: Vectors and Matrices 



Key in the vector [2 3 4]. You can use either spaces or the non-radix 
mark (the comma if you have selected the period as the radix mark) to 
separate 2 from 3 and 3 from 4. 

m 2,3,4 I ENTER I 3: 
2: 
1 : [ 234 ] 
IiiDIliBBi:.rnDlDBDlID 

Multiplying and Dividing a Vector by a Number 
Multiply the vector by 15. 

150· 3: 
2: 
1: [ 30 45 60 ] 
IiiDIliBBi:.rnDlDBDlID 

For multiplication, the order of the arguments makes no difference, 
just as it makes no difference when you multiply two numbers. How­
ever, for division, the vector must be in level 2 and the number in 
level 1. 

Divide the vector by 5. 

50 3: 
2: 
1: [ 6 9 12 ] 
IiiDIliBBi:.rnDlDBDlID 

Adding and Subtracting Vectors 

You can add and subtract vectors just as you add and subtract num­
bers, provided that the vectors have the same number of elements. 
For subtraction, the order of the arguments is important, just as it's 
important when you subtract one number from another. 

For this example, subtract the vector [-10 20 30]. 
m - 10,20,30 B =3-: ----------, 

2: 
1: [ 16 -11 -18 ] 
IiiDIliBBi:.rnDlDBDlID 

11: Vectors and Matrices 125 



Finding the Cross Product 

Find the cross product of the vector in level 1 with the vector 
[2 - 2 1]. (The cross product is defined only for two- and three­
element vectors.) 

Key in the vector. 

CO 2, - 2,1 2: 
1: [ 16 -11 -18 ] 
[2, -2,10 
1m:1I1lIIII!iDIImIIEDIMIDI 

Calculate the cross product, using CROSS in the third row of the AR­
RAY menu . 

• 1 ARRAY II NEXT II NEXT I CROSS 

Finding the Dot Product 

3: 
2: 
1: [ -47 -52 -10 ] 
£DmGlllDmEIBmImmmD 

Find the dot product of the vector in level 1 with the vector [5 7 2]. 
(The two vectors must have the same number of elements.) 

Key in the vector. 

CO 5,7,2 

Calculate the dot product. 

DOT 

Matrices 

2: 
1 : [ - 47 - 52 - 10 ] 
[5,7,20 
£DmGlllDmEIBmImmmD 

This section describes how to invert a matrix and how to find the 
determinant of a matrix. Both of these calculations are restricted to 
square matrices-those with the same number of rows as columns. 

126 11: Vectors and Matrices 



The calculations you performed on vectors also apply to matrices 
(with the exception of the dot and cross products). You can multiply 
or divide a matrix by a number, and you can add or subtract two 
matrices (provided that the matrices have the same dimensions) . 

Keying In a Matrix 

Key in the following matrix: 

Start the matrix. 

Enter each row of the matrix like a separate vector. 

[IJ 1,2,3 
[IJ 1,3,3 
[IJ 1,2,4 r::1 E=:CN:::::TE;::-;:R"I 

Viewing a Large Matrix 

1: [[ 1 2 3 ] 
[ 133 ] 
[ 1 2 4 ]] 

I81IiJ!iIIiIa.DDlllIBmImmmD 

When a matrix has many elements or non-integer elements, you may 
not see the entire matrix at once. To view a large matrix, use .1 EDIT I 
(if the matrix is in level 1) or .1 VISIT I to return the matrix to the com­
mand line. You can then use the cursor menu keys to display any part 
of the matrix. For details, refer to "Editing Existing Objects" in chapter 
18. 

11: Vectors and Matrices 127 



Inverting a Matrix 

Because the matrix in level 1 is square, you can find its inverse. 

.[IE] 

Finding the Determinant 

1: [[ 6 -2 -3 ] 
[ -1 1 121 ] 
[ -1 121 1 ]] 

tBimDlillDmllIBmImmIm 

Because the matrix in level 1 is square, you can find its determinant. 

DET 3: 
2: -619 
1: 1 
tBimDlillDmllIBmImmIm 

Multiplying Two Arrays 

You can use the 0 function to multiply two matrices or a matrix and 
a vector. (Use CROSS or DOT to multiply two vectors, as described 
above.) 

Multiplying Two Matrices 

The order of the arguments is important when multiplying two matri­
ces. The number of columns in the matrix in level 2 must equal the 
number of rows in the matrix in level 1. For example, you can calcu­
late the following matrix product. 

128 11: Vectors and Matrices 



To calculate this matrix product: 

Enter the first matrix. 

OJ OJ 2,2 
OJ 4,1 
OJ 2,3 "I E""'N=TE=R'--'I 

Key in the second matrix. 

OJ OJ 2,2,1,4 
OJ 3,4,2,1 

Multiply the matrices. 

o 

1: [[ 2 2 ] 
[ 4 1 ] 
[ 2 3 ]] 

ImBI~DDllIlIBImmDmmD 

1: [[ 2 2 ] 
[ 4 1 ] 

[[2,2,1,4[3,4,2,10 
ImBI~DDllIlIBImmDmmD 

1: [[ 10 12 6 10 ] 
[ 11 12 6 17 ] 
[ 13 16 8 11 ]] 

ImBI~DDllIlIBImmDmmD 

Multiplying a Matrix and a Vector 

The order of the arguments is important when multiplying a matrix 
and a vector. The matrix must be in level 2, and the vector must be in 
level 1. The number of columns in the matrix must equal the number 
of elements in the vector. 

For the next example, multiply the matrix currently in level 1 by the 
vector [ 3 1 1 2]. 

Key in the vector. 

OJ 3,1,1,2 

Multiply the matrix and vector. 

o 

1: [[ 10 12 6 10 ] 
[ 11 12 6 17 ] 

[3,1,1,20 
ImBI~DDllIlIBImmDmmD 

3: -619 
2: 1 
1: [ 68 85 85 ] 
ImBI~DDllIlIBImmDmmD 

11: Vectors and Matrices 129 



Solving a System of Linear Equations 

To solve a system of n linear equations with n variables, use an n­
element constant vector, an n x n coefficient matrix, and division ([I)). 
The constant vector contains the constant values of the equations. The 
coefficient matrix contains the coefficients of the variables. 

The next example shows how to solve a system of three linearly inde­
pendent equations in three variables. Suppose the equations are 

3x + y + 2z 13 
x + y 8z -1 

- x + 2y + 5z 13 

Enter the constant vector. 

OJ 13, -1,13 I ENTER I 

Key in the coefficient matrix. 

OJ OJ 3,1,2 
OJ 1,1 ,-8 
OJ - 1,2,5 

Solve the system of equations. 

[I) 

3: 1 
2: [ 68 85 85 ] 
1: [ 13 -1 13 ] 
t!miBmJlDDlEIamImmIm 

2: [ 68 85 85 ] 
1: [ 13 -1 13 ] 
[[3,1,2[1,1,-8[-1,2,50 
t!miBmJlDDlEIamImmIm 

3: 1 
2: [ 68 85 85 ] 
1: [ 2 5 1 ] 
t!miBmJlDDlEIamImmIm 

The values in the solution vector are the values of the variables that 
satisfy the equations: 

x = 2, Y = 5, Z = 1 

To solve under-determined, over-determined, or near-singular sys­
tems of equations, refer to "ARRAY" in the Reference Manual. 

130 11: Vectors and Matrices 



12 
Statistics 

This chapter describes how to enter statistical data and how to calcu­
late single-sample and paired-sample statistics, using commands in 
the STAT menu. All commands in the STAT menu are described 
briefly in appendix D, HMenu Map. H For complete descriptions, refer 
to HSTAT" in the Reference Manual. 

The following table lists the consumer price index change (CPI), the 
producer price index change (PPI), and the unemployment rate (UR), 
all in percentages, for the United States over a 5-year period. Enter 
these data and calculate statistics from them. 

Data for Statistical Example 

Year CPI PPI UR 

1975 9.1 9.2 8.5 

1976 5.8 4.6 7.7 

1977 6.5 6.1 7.0 

1978 7.6 7.8 6.0 

1979 11 .5 19.3 5.8 

12: Statistics 131 



Entering Data 

Statistical data are stored in a statistics matrix named ~DAT -an ordi­
nary matrix with a special name. Each row of the matrix contains one 
data point, which in this example comprises the values of CPJ, PPJ, 
and UR for one year. 

Before you start, clear the stack and select FIX 2 number display 
mode . 

• 1 CLEAR I .1 MODE 12 FIX 

Clear any previous statistical data, using CL~ (clear statistics) in the 
STAT menu. (Any existing ~DAT is purged.) .1 STAT I ell: I r::;,:-:-~-----------'I 

..... O'lID1IIlii!HmH. 

Key in the data point for 1975. 

rn 9.1,9.2,8.5 

Store this data point in ~DAT. 

I+ 

2: 
1 : 
[9.1,9.2,8.50 
.... 0. IID1IIIii!H mH 

A new matrix named ~DAT is automatically created. The data point 
for 1975 is the first row of ~DAT. 

Enter the data point for 1976. 

rn 5.8,4.6,7.7 H 

The data point for 1976 is added to ~DAT, forming the second row of 
the statistics matrix. 

132 12: Statistics 



Enter the data point for 1977. 

ITJ 6.5,6.1,7 I+ 

The data point for 1977 is added to ~DAT, forming the third row of 
the statistics matrix. 

Editing Data 

If you make a mistake while keying in data, and you realize your mis­
take before pressing I+ ,you can simply edit the command line. 
But suppose you believe that you made a mistake entering the data 
point for 1976. You can return data points to the stack, edit those that 
contain mistakes, and restore the data points to ~DAT. 

Remove the data point for 1977 (the last row in ~DAT) and return it 
to the stack. 

3: 
2: 
1: [6.50 6.10 7.00 ] 
.... ~BBlliiHmH 

Remove the data point for 1976 (the last row in ~DAT) and return it 
to the stack. 

3: 
2: [6.50 6.10 7.00 ] 
1: [5.80 4.60 7.70 ] 
.... ~BBlliiHmH 

If you find you did make a mistake in this data point, press ., EDIT I to 
return the data point to the command line, edit the data point, and 
press I ENTER I to put the corrected data point back on the stack. (Refer 
to "Editing Existing Objects" in chapter 18.) 

Return the corrected data point for 1976 to ~DAT. 

I+ 3: 
2: 
1: [6.50 6.10 7.00 ] 
.... ~BBlliiHmH 

12: Statistics 133 



Return the data point for 1977 to ~DAT. 

}; + '1 r::::L-~ -"--IEBII--BH--Iil!H--I!!B--'1 

Now enter the rest of the data (for 1978 and 1979) and check that 
you entered all five data points. 

CD 7.6,7.8,6 };+ 

CD 11.5,19.3,5.8 }; + 

tU 

Single-Sample Statistics 

In this section you'll find the mean, standard deviation, and variance 
of CPI, PPI, and UR. The data for CPI are contained in the first col­
umn of ~DAT, the data for PPI in the second column, and the data 
for UR in the third column. 

Display the second row of the STAT menu. 

IN EXT I I ~~;------------~I 
1: 5.00 
~lmlI:ImDEalGIllIBIJm8 

Here are the commands for mean, standard deviation, and variance. 

Finding the Mean 
Calculate the mean. 

t1EAN 3: 
2: 5.00 
1: [8.10 9.40 7.00 ] 
~lmlI:ImDEalGIllIBIJm8 

The mean for CPI is 8.1, for PPI is 9.4, and for UR is 7. 

134 12: Statistics 



Finding the Standard Deviation 
Calculate the standard deviation. 

SDEV 3: 5.00 
2: [8.10 9.40 7.00 ] 
1: [2.27 5.80 1.14 ] 
DDllllmmDDJlmmllmBl 

The sample standard deviation for CPI is 2.27, for PPI is 5.8, and for 
UR is 1.14. 

Finding the Variance 
Calculate the variance. 

VAR 3: [8.10 9.40 7.00 ] 
2: [2.27 5.80 1.14 ] 
1: [5.17 33.64 1.30 ] 
DDllllmmDDJlmmllmBl 

The sample variance for CPI is 5 .17, for PPI is 33.64, and for UR is 
1.3. 

Paired-Sample Statistics 

In this section you'll find the correlation and covariance of CPI and 
PPI, then use a linear regression model to predict values of PPI from 
values of CPI. 

Display the third row of the STAT menu. 
~--~~~~~~~=-~-= I NEXT I 3: [8. 10 9. 40 7. 00 ] 
2: [2.27 5.80 1.14 ] 
1: [5.17 33.64 1.30 ] 
mHmD ..... IDm_ 

Here are the commands for correlation, covariance, linear regression, 
and predicted value. 

12: Statistics 135 



Specifying a Pair of Columns 

Before performing paired-sample statistics, specify which columns of 
the statistics matrix ~DAT contain the independent and dependent 
data. In this example you want CPI (in column 1) to be the indepen­
dent data and PPI (in column 2) to be the dependent data. 

Specify columns 1 and 2 as the independent and dependent data. 

1,2 COL}; 3: [8.10 9.40 7.00 ] 
2: [2.27 5.80 1.14 ] 
1: [5.17 33.64 1.30 ] 
mBmmIIBmIlDlIDDI_ 

The numbers 1 and 2 are stored in a list named ~PAR, which is an 
ordinary list with a special name. The commands that perform 
paired-sample statistics refer to ~PAR. 

If you don't specify the columns containing the independent and de­
pendent data, the calculator uses columns 1 and 2. In this example 
you didn't need to specify the columns, but remember to execute 

COL}; if your independent and dependent data aren't contained in 
columns 1 and 2. 

Finding the Correlation 
Calculate the correlation. 

CORR 3: [2.27 5.80 1.14 ] 
2: [5.17 33.64 1.30 ] 
1: 0.96 
mBmmIIBmIlDlIDDI_ 

The correlation of CPI and PPI is 0.96. 

Finding the Covariance 
Calculate the sample covariance. 

CO\} 3: [5.17 33.64 1.30 ] 
2: 0.96 
1: 12.65 
mBmmIIBmIlDlIDDI_ 

The sample covariance of CPI and PPI is 12.65. 

136 12: Statistics 



Finding the Linear Regression 
Calculate the straight line that best fits the data for CPI and PPI. 

LR 3: 12.65 
2: -10.43 
1: 2.45 
mHmm .... IJm1I_ 

The line's intercept is -10.43, and its slope is 2.45. The intercept and 
slope are also stored in the list };PAR. 

Finding Predicted Values 

Suppose you want to find the predicted values for PPI when CPI has 
values of 6 and 7. The predicted value can be calculated from the 
slope and intercept stored in };PAR. 

Predict the value for PPI when CPI has value 6. 

6 PREDV 3: -10.43 
2: 2.45 
1: 4.26 
mHmm .... IJm1I_ 

The predicted value is 4.26. 

Predict the value for PPI when CPI has value 7. 

7 PREDV 3: 2.45 
2: 4.26 
1: 6.71 
mHmm .... IJm1I_ 

The predicted value is 6.71. 

12: Statistics 137 



13 
Binary Arithmetic 

This chapter describes how to perform arithmetic with binary inte­
gers. Each binary integer contains from 1 to 64 bits and represents an 
unsigned binary number. For ease in entering binary numbers and 
reading the results, you can choose decimal, hexadecimal, octal or bi­
nary base. However, this choice doesn't affect the internal 
representation of binary integers, and commands act on binary inte­
gers bit-by-bit. 

All commands in the BINARY menu are described briefly in appendix 
D, uMenu Map." For complete descriptions, refer to uBINARY" in the 
Reference Manual. 

Selecting the Wordsize 

The current wordsize affects the length of binary integers returned by 
commands and the display of binary integers on the stack. The 
wordsize can range from 1 through 64 bits, with a default wordsize of 
64 bits. Suppose you want a wordsize of 16. 

Before you start the example, clear the stack and display the BINARY 
menu . 

• 1 CLEAR 1 .1 BINARY I 

138 13: Binary Arithmetic 



Specify a wordsize of 16 bits. 

16 STWS 

Now if you key in a binary integer longer than 16 bits, only the 16 
least significant bits are displayed. 

Selecting the Base 

The current base affects how binary integers are displayed on the 
stack. The choices for the base are decimal, hexadecimal, octal, and 
binary, with a default choice of decimal base. 

Suppose you want hexadecimal base. 

HEX I r::;L:-:-~ -ma--.. --IlEll--Il!imll--IImiII----,1 

The label for HEX now includes a small square, indicating that the 
current base is HEX. 

Entering Binary Integers 
Enter the address 24FF16. 

o 24FF I ENTER I 3: 
2: 
1: # 24FFh 
IDBlma"lIEIIll!imlllImiII 

The lowercase HhH is a base marker, indicating that the current base is 
HEX. When you enter a number, you don't need to key in the base 
marker unless the number is not in the current base. 

Check how this binary integer is represented in other bases. You don't 
need to change the binary integer, only the current mode. 

13: Binary Arithmetic 139 



Change to DEC base. 

DEC 

Change to OCT base. 

OCT 

Change to BIN base. 

'M,J;UN",J 

Return to HEX base. 

HEX 

3: 
2: 
1: # 9471d 
DDITIB .. lEllliDBmm 

3: 
2: 
1: # 223770 
EalTIBllI:iI:IlEllliDBmm 

3: 
2: 
1: # 10010011111111b 
EaITIB .. m:aliDBmm 

3: 
2: 
1: # 24FFh 
EaIllD .. lEllliDBmm 

Calculating With Binary Integers 

Calculate the address 1F016 less than the given address. 

1I11FO G 3: 
2: 
1: # 230Fh 
EaIllD .. lEllliDBmm 

The difference is returned to level 1, just as for other numbers. 

You can mix binary integers and real numbers in your calculations. A 
normal real integer (entered without the # delimiter) is interpreted in 
base 10 regardless of the current binary integer base. 

For example, calculate the address 2710 less than the given address. 

27 G 3: 
2: 
1: # 22F4h 
EaIllD .. lEllliDBmm 

The difference, expressed as a binary integer, is returned to level 1. 

140 13: Binary Arithmetic 



14 
Unit Conversion 

This chapter contains examples of unit conversion-converting the 
numerical value of a physical measurement from one system of units 
to another. For detailed information, refer to "UNITS" in the Refer­
ence Manual. 

The UNITS Catalog 

The UNITS catalog lists alphabetically all units built into the HP-28S. 
You'll use it to check the spelling and definition of units. 

First clear the stack and select STD number display mode . 

• 1 CLEAR 1 .1 MODE 1 STO I~! I 
.1imtI1iB .. malDBlIiID. 

Start the UNITS catalog. 

.1 UNITS 1 1M Ii I 
CImmD __ lBmIr!I!HI 

The first unit is "are", abbreviated "a". This is a unit of area equivalent 
to 100 meter2. 

Try scanning forward and backward through the catalog by holding 
down the NEXT and PREV menu keys (not the permanent keys on 
the keyboard) . 

14: Unit Conversion 141 



You can move to the first unit that begins with a particular letter by 
pressing that letter key. 

rn 

The entry for "second" shows that the correct abbreviation is "s" and 
the value is 1 second. "Second" is defined in terms of itself because it 
is a fundamental unit. 

Be sure to use the abbreviations exactly as they appear in the UNITS 
catalog. For example, the HP-28S recognizes lower-case "s" as sec­
onds, but not upper-case "S". 

Next check the entry for "day. " 

[[] 

This entry shows that the correct abbreviation is "d" and the value is 
86,400 seconds. 

Next look for the "foot" unit. 

~ i?ia:1! 
AA2*sA4/kg*mA2 CImlIm!II __ 1imII1SI!IiJ 

The catalog shows the entry for "farad." Move forward seven entries. 

NEXT NEXT 
NEXT NEXT 

NEXT 
NEXT 

NEXT I~(d 61._ I ~048 
m CImlIm!II __ 1imII1SI!IiJ 

The catalog shows the entry for "international foot." There are two 
versions of "foot" in the catalog; the next unit is "survey foot ." 

You can write the abbreviation for "international foot" to the com­
mand line. 

FETCH 

142 14: Unit Conversion 



The normal display returns, and the command line shows the unit 
abbreviation. 

The examples in this chapter show you how to key in units directly, 
but you can use ., UNITS I and FETCH if you prefer. 

Clear the command line. 

Converting Units 

First convert 15°C to degrees Fahrenheit. 

Put the numerical value on the stack. 

15 'ENTER I 

Enter the unit abbreviation for "degrees Celsius." 
~----------------------~ .~ C , ENTER I 3: 
2: 15 
1: I DC I 

IiilDIIiBI_mHDDmD 

The unit abbreviation is converted to a name. 

Enter the unit abbreviation for "degrees Fahrenheit." 
.~ F , ENTER I r::3-:------------,1c=5 

2: I DC I 

1: I DF I 

IiilDIIiBI_mHDDmD 

The unit abbreviation is converted to a name. 

Convert the numerical value from the old unit to the new unit. 

., CONVERT I 

14: Unit Conversion 143 



The result shows that 15°C converts to 59 oF. 

For the next example, convert 40 inches to millimeters. This time 
you'll let .1 CONVERT 1 automatically execute ENTER for you. 

Clear the stack and enter the numerical value . 

• 1 CLEAR I 
40 1 ENTER I 

Enter the unit for Uinches." 

[1QJ in 1 ENTER I 3: 
2: 40 
1: ' in' 
IiEtlIIiBII_rnaDBD:ID 

Key in the unit for Umillimeter" and convert units. 

You won't find "millimeter" in the UNITS catalog. It's considered a 
prefixed unit-the unit "m" (for meter) prefixed by Urn" (for milli, or 
one-thousandth). Similarly, "km" is a prefixed unit for kilometer, and 
"ms" is a prefixed unit for millisecond. A complete list of prefixes ap­
pears in "UNITS" in the Reference Manual. 

=-----------------------~ [1QJ mm .1 CONVERT I 3: 
2: 1016 
1: 'MM' 
IiEtlIIiBII_rnaDBD:ID 

The result shows that 40 inches converts to 1016 millimeters. 

Converting Unit Strings 

Strings are objects that contain characters. You can use unit strings to 
define more complicated units than those used so far. 

A unit string can represent a unit raised to a power, such as "ftA2", or 
the product of units, such as Uft*lb", or any combination of unit pow­
ers and products. 

144 14: Unit Conversion 



A unit string can also represent a quotient of units, such as "m/sec". 
However, the / symbol can't appear more than once. Be sure to group 
all direct units before the / symbol and all inverse units after the / 
symbol. For example, "feet per second per second" is represented by 
"ft/sI\2". 

For the next example, convert 1 mile per hour to feet per second. 

Clear the stack and enter the numerical value . 

• [ CLEAR) 

1 ) ENTER) 

Enter the unit for "miles per hour." 
~----------------------~ [1QJ mph [ ENTER) 3: 
2: 1 
1: 'MPh' 
1iiD1IiBI_ImHEBu::ntI 

Key in the unit for "feet per second." 

There is no built-in unit for "feet per second," so you'll use a unit 
string . 

• c:::J [1QJ ft 0 s 2: 
1: 

1 
'Mph' 

"ft / 51 
1iiD1IiBI_ImHEBu::ntI 

Alpha entry mode was activated (as indicated by the form of the 
cursor) when you began keying in the string. In alpha mode all com­
mands are written to the command line, so you'll need to press 
[ ENTER) to complete the string. 

[ENTER) 3: 1 
2: 'MPh' 
1: "ft / 5" 
1iiD1IiBI_ImHEBu::ntI 

Convert the numerical value from the old units to the new units. 

., CONVERT) 3: 
2: 1.46666666667 
1: "ft / 5" 
1iiD1IiBI_ImHEBu::ntI 

The result shows that 1 mile per hour converts to 1.46666666667 feet 
per second. 

14: Unit Conversion 145 



Next convert 10 cubic feet to gallons. 

Clear the stack and enter the numerical value . 

• , CLEAR' 

10 'ENTER I 

Enter the unit string for ucubic feet. H 

~----------------------~ • fHl l LC 1ft • rAl 3 'ENTER I 3: 
LJ L.J 2: 113 

1: "ft A 3" 
I!ilDIIiBIlllDlmBlDBo:m:II 

Key in the unit for uus gallonH and convert. 
~~--------------------~ [ill gal .1 CONVERT I 3: 
2: 74.813519481352 
1: 'gal' 
I!ilDIIiBIlllDlmBlDBo:m:II 

The result shows that 10 cubic feet converts to 74.8051948052 
gallons. 

Checking for the Correct Units 

Using incorrect units can lead to un~xpected numerical results or to an 
I ncons i s t en t Un its error. The solution in either case is to check 
the UNITS catalog or the uUNITS H section of the Reference Manual. 

Unexpected numerical results can occur if you use a unit with the cor­
rect dimensions but an incorrect numerical value. For example, if you 
convert one acre to uftA 2H 

, the result is greater than 43,560. This oc­
curs because there are two ufooC units, uW (international foot) and 
UftUSH (survey foot). Converting one acre to UftUSAY returns exactly 
43,560. 

An I ncons i s t en t Un its error occurs if you use a unit with in­
correct dimensions. For example, this occurs if you use ulbH (pound) as 
a unit of force. The correct unit for force is ulbfH (pound-force). 

146 14: Unit Conversion 



User Functions for Unit Conversion 

If you perform particular unit conversions often, you can write user 
functions for those conversions. In this section you'll write user func­
tions O-G and G-O that convert between ounces and grams; since 
they're user functions, you can use them in either RPN or algebraic 
syntax. 

Recall that user functions must fulfill two requirements: 

• They must explicitly indicate their arguments . 

• They must return exactly one result. 

First write O-G. 

Begin the program and indicate the argument. 
8] .G [J]J x =2-: -----:7=-4-;-.-:::8c=0=5~1 9=:-4~8~0:-=5=2 

1: 'gal' 
« -t xl 
1iiD1IilIII1RBI~DBma 

The right arrow indicates that the following name is a local variable, 
which will exist only within this program. 

Define the conversion. 

8] x ['] oz ['] ['] 9 ['] .1 CONVERT 1 

1 DROP i" 1 E'NTER 1 

2: 'gal' 
1: « -t x « x 'oz' , 9 , 

CONVERT DROP » » 
1iiD1IilIII1RBI~DBma 

The closing delimiters are added for you. 

This program means: take an argument from the stack (in RPN syn­
tax) or from the expression (in algebraic syntax) and call it x; convert x 
from ounces to grams; and drop the gram unit from the stack. 

Store the program in a variable O-G. 
['] 0 .G G 1 STO 1 '-3:":"": ------------, 

2: 74.8051948052 
1: 'gal' 
1iiD1IilIII1RBI~DBma 

14: Unit Conversion 147 



Now write G-O. 

Begin the program and indicate the argument. 
GQ .G [ LC I x 1-:=2:-=-: -----:7=-4::-.-:;:8~0;5~1 9=-4::-::8:::::0:-=5=2 

Define the conversion. 

GQ x ~ 9 ~ ~ oz ~ .[ CONVERT I 
[ DROP I [ ENTER I 

1: 'gal' 
« "* xl 
IiIDlliBlllmllmBllmEIIDlID 

2: 'gal' 
1: « "* x « x '9' , oz ' 

CONVERT DROP » » 
IiIDlliBlllmllmBllmEIIDlID 

This program means: take an argument from the stack (in RPN syn­
tax) or from the expression (in algebraic syntax) and call it x; convert x 
from grams to ounces; and drop the ounce unit from the stack. 

Store the program in a variable G-O. 
~ G .G 0 [STO I =3-: -----------, 

2: 74.8051948052 
1 : 'gal' 
IiIDlliBlllmllmBllmEIIDlID 

To test the conversions, check how may grams are in 1 ounce, and 
then convert that result back to ounces. The result should be 1 again. 

Convert 1 ounce to grams. 

1 [USER I O-.G 3: 74.8051948052 
2: 'gal' 
1: 28.349523125 
mamalRmlBm .... 

There are about 28 grams in 1 ounce. Now convert this result back to 
ounces. 

3: 74.8051948052 
2: 'gal' 
1: 1 
mamalRmlBm .... 

The conversions are inverses, as they should be. 

148 14: Unit Conversion 



15 
Printing 

This chapter describes some basic commands for using your HP-28S 
with an HP 82240A printer. Refer to the printer manual for instruc­
tions about how to position the printer relative to the HP-28S and 
how to turn on the printer. 

All commands in the PRINT menu are described briefly in appendix 
D, "Menu Map." For complete descriptions, refer to "PRINT" in the 
Reference Manual. 

Printing the Display 

You can print an image of the display as follows. 

1. Press and hold 1 ON I. 

2. Press [I] (the key with "PRINT" written above it) . 

3. Release 1 ON I. 

These keystrokes are the keyboard equivalent of the command 
PRLCD (print LCD, found on the first row of the PRINT menu). You 
can use these keystrokes to print the display at practically any time, 
without disturbing calculator operation. 

If you want a program to print the display, simply include the com­
mand PRLCD, found in the PRINT menu. 

Clear the stack and display the PRINT menu . 

• 1 CLEAR 1 Ir:~-~ -----------.1 .1 PRINT 1 1: 
.u:.IDillIlmlImDEIllIlm 

15: Printing 149 



• PRI (print 1) prints the object in level 1. 

• PRST (print stack) prints all objects on the stack. 

• PRVAR (print variable) prints the name and contents of a variable. 

• PRLCD (print LCD) prints the display. 

• CR (carriage right) prints a blank line. 

• TRAC (trace on/off) turns Trace printing mode on and off. 

Printing a Running Record 
To print a running record of your calculations, turn on Trace printing 
mode. 

TRAC 

A square appears in the TRAC menu label to indicate that Trace 
printing mode is turned on. 

Now see what happens when you add two numbers-for example, 44 
and 72. First put 44 on the stack. 

44 I ENTER I 

The input and level 1 result are printed. 

Now add 72. 

72GJ 

44 ENTER 
1: 44 

72 + 
1: 116 

Again the input and level 1 result are printed. 

Turn off Trace printing mode. 

TRAC 3: 

150 15: Printing 

2: 
1: 116 
m:.IDillIlmDIDmElllIlllItl 



Printing Level 1 
Rather than printing all results using Trace printing mode, you can 
selectively print results using PR1. 

PRl 

116 

The result remains in level 1, unchanged. 

You can print a message by putting a string in level 1. To print the 
message "OK", first put the string on the stack . 
• ~ OK I ENTER I r:;:3~:-------------' 

2: 116 
1: "OK" 
DDlIDilImmlIImD .. 1iD 

Now print the message. 

PRl 

01< 

Only the contents of the string are printed, not the quotation marks. 

15: Printing 151 



Printing the Stack 
You can print all objects on the stack by using PRST. 

PRST 

2: 116 
1: "OK" 

The contents of the stack are unchanged. 

Printing a Variable 

You can print the name and contents of a variable without recalling 
the variable to the stack. To demonstrate, store the string "OK" in a 
variable named "A", then print variable A. 

Create the variable A with value "OK". 

Print the name and value of the variable. 

~ A PRVAR 

A 
"OK" 

The name of the variable is dropped from the stack. 

152 15: Printing 



Part 2 
Summary of Calculator 
Features 

Page 154 16: Objects 

164 17: Operations, Commands, and Functions 

166 18: The Command Line 

176 19: The Stack 

182 20: Memory 

192 21: Menus 

196 22: Catalog of Commands 

198 23: Evaluation 

205 24: Modes 

215 25: System Operations 



16 
Objects 

Part 1 of this manual contains examples of the 10 basic object types in 
the HP-28S. Objects are the basic entities in the calculator-the enti­
ties you create to formulate problems and manipulate to find 
solutions. 

The purpose of most object types is to save you work by providing 
specific data types. For example, imagine using real numbers to repre­
sent arrays, somehow keeping track of each element in each array and 
writing programs to do arithmetic with these arrays. It's simpler to 
enter the numbers in an array object, which you can manipulate as a 
single entity, and to perform calculations by using the normal 
arithmetic functions . 

However, the reason for multiple object types is broader than just 
multiple data types. The symbolic and programmable features of the 
calculator are based on symbolic objects (names and algebraics) and 
program objects. These objects are not just data; they can be evalu­
ated to produce a result. (Evaluation of objects is discussed in chapter 
23 .) 

By basing multiple data types, symbolic operations, and programming 
on the simple concept of object types, the HP-28S minimizes the rules 
you need to remember. Objects are keyed into the command line, put 
on the stack, or stored in variables in exactly the same way, regardless 
of object type. 

This chapter summarizes what you learned about each object type, 
gives more detailed information, and suggests additional uses. 

154 16: Objects 



Real Numbers 

Real numbers represent numbers greater than _10500 and less than 
10500 . They are stored internally as a mantissa between 1 and 
9.99999999999, a sign (positive or negative) for the mantissa, an expo­
nent between 0 and 499, and a sign for the exponent. 

In Hours-Minutes-Seconds Format. You can use the commands 
HMS+ and HMS- to add and subtract numbers expressed as hours, 
minutes, and seconds (or degrees, minutes, and seconds). For any 
computation other than addition or subtraction, first use HMS .... to 
convert the numbers from HMS format to decimal degree format. (See 
"TRIG" in the Reference Manual for details.) 

Complex Numbers 

Complex-number objects are ordered pairs of real numbers that repre­
sent the real part and the imaginary part of a complex number or the 
coordinates of a point in a plane. 

Rectangular and Polar Coordinates. In chapters 7 and 8 you used 
complex numbers for plotting and digitizing; each complex number 
represented rectangular coordinates-that is, distances along per­
pendicular axes. 

Chapter 6 described polar coordinates-a radial distance and an an­
gle-and used the commands R .... P and P .... R to convert between polar 
and rectangular coordinates. You can use polar coordinates to key in 
coordinates and to display results, but you must use rectangular co­
ordinates for calculations. The user function PSUM, described on 
page 86, adds points in polar coordinates by converting them, adding 
them, and reconverting them. 

In Algebraic Objects. When you key in a complex number in an 
algebraic object, you may need two pairs of parentheses, as in the 
expression 1:=; I t·j 0:: 0:: 0 ., 1 ;. ;. I . The outer pair of parentheses are re-
quired by the function S I ~j 0:: ;., while the inner pair are delimiters 
for complex numbers. 

16: Objects 155 



Binary Integers 

Binary integers represent a sequence of bits. The length of the se­
quence, from 1 to 64 bits, depends on the current wordsize. The 
current binary integer base determines how binary integers are dis­
played but has no effect on their internal representation. 

Large Integers. Using binary integers in decimal base mode, you 
can express a 19-digit positive integer exactly; this is 7 digits more 
than you can express exactly using real numbers. 

Programming Example. The programs in HDisplaying a Binary Inte­
ger,H on page 257, work together to display a binary integer in all four 
bases. 

Preserving Status. The command RCLF (recall flags) returns a bi­
nary integer representing the status of all 64 user flags; the command 
STOF (store flags) sets the user flags according to a binary-integer ar­
gument. These commands are demonstrated in HPRESERVE (Save and 
Restore Previous Status)", one of the programs in HDisplaying a Binary 
IntegerH described above. 

Strings 

A string comprises a sequence of characters. Part 1 showed the fol­
lowing uses for strings . 

• In chapter 14, HUnit Conversion,H you used strings to represent a 
combination of unit products and powers . 

• In chapter 15, HPrinting," you entered a message as a string in order 
to print it. You can also display messages by using the command 
DISP; it is described in chapter 27, "Interactive Programs." 

Most often a string represents text, but each character can also repre­
sent a numerical value from 0 through 255. The commands CHR 
(character) and NUM (character number) convert between characters 
and their numerical values. 

156 16: Objects 



Non-Keyboard Characters. You can display characters that don' t 
appear on the HP-28S keyboard by entering a numerical value and 
executing CHR. There are also non-displayable characters that you 
can print; for a list of all characters, see "STRING" in the Reference 
Manual. 

Graphics Strings. The command LCD- (LCD to string) returns a 
graphics string that represents the current displayed image; the com­
mand -LCD (string to LCD) displays the image represented by a 
graphics-string argument. For details about these commands, see the 
Reference Manual. 

String Manipulations. The programs in "Displaying a Binary Inte­
ger", on page 257, show how to convert an object to string form, 
count the number of characters, and join two strings. 

Arrays 

Arrays can be one-dimensional (called vectors) or two-dimensional 
(called matrices), and they can comprise real or complex numbers. 
Chapter 11, "Vectors and Matrices," shows the basic calculations with 
arrays. Part 1 included the following additional uses for arrays . 

• Chapter 11 shows how to solve a system of n linear equations in n 
unknowns by using a an n-element constant vector and an n x n 
coefficient matrix. For details about this process and its accuracy, 
see "ARRAY" in the Reference Manual. 

• In chapter 12, "Statistics," the statistics data you entered was stored 
in the current statistics matrix ~DAT. 

In Algebraic Syntax. If an array is stored in a variable, you can re­
fer to elements in the array by using the variable name as a function. 
For example, you could represent the sum of the third and fifth ele­
ments of a vector V as I V ( 3 ) Hi ( 5) I • 

Array Manipulations. The programs in "Summary Statistics" on 
page 262, and "Median of Statistics Data," on page 270, demonstrate a 
variety of array manipulations. 

16: Objects 157 



Lists 

Lists are sequences of objects; they are the most general method of 
combining several objects into one. Part 1 showed the following uses 
for lists. 

• In chapter 4, "Repeating a Calculation," the command PATH re­
turned a list of directory names, from the HOME directory to the 
current directory. 

• In chapter 7, "Plotting," the list variable PPAR contained param­
eters used by DRAW. 

• In chapter 8, "The Solver," you gave a list containing three digitized 
points as an estimate. 

• In chapter 10, "Calculus," you specified the variable of integration 
and the lower and upper limits of integration by combining them in 
a list. 

• In chapter 12, HStatistics,H the list variable 2;PAR contained param­
eters for paired-sample statistics. 

In Algebraic Syntax. If a list is stored in a variable, you can refer to 
elements in the list by using the variable name as a function. For ex­
ample, you could represent the sum of the third and fifth elements of 
a list L as I L ( 3 ) +L ( 5) I • 

Lists and the Stack. The program MEDIAN, on page 273, shows 
how to put the elements of a list on the stack and combine objects on 
the stack into a list. 

Sorting a List. The program SORT, on page 270, shows how to sort 
the elements in a list. 

Extracting Elements From a List. The program LMED, on page 
272, shows how to extract elements from a list. 

158 16: Objects 



Names 

Names are a sequence of characters used to name other objects. They 
can contain up to 127 characters, although practical considerations 
suggest that names be no longer than five or six characters. 

The legal characters available on the keyboard are letters, digits, and 
the characters? :::: 11' .;. .P '. The first character can't be a digit. The 
following characters cannot be included in names. 

• Characters that separate objects: delimiters (# [ ] " 
( ::0 <;: ;~ ) , space, period, or comma. 

• Algebraic operator symbols (+ - :t. / A ·f 

.f ) 

The calculator determines whether a name is global or local when the 
command line is processed: if the name is used by a program struc­
ture to create a local variable, the name is local within that program 
structure; otherwise, the name is global. 

Local Names. In part 1 you wrote user functions that created local 
variables. This manual used lowercase letters for the local names to 
help you distinguish them from global names. It's important to re­
member that it was the command - that made the names local, not 
the lowercase letters. If you name a local variable e or i, your local 
definition supersedes the built-in definition. 

Global Names. All the other names in part 1 were global. Examples 
include: 

• Names for global variables (numerical variables used for plotting or 
the Solver; all variables in the USER menu) . 

• Names for directories. 

• Names used symbolically, without reference to specific values 
(symbolic arithmetic, symbolic solutions, and calculus). 

Names of commands, including e, i, and 1T, can't be used as global 
names. In addition, the following names are reserved for specific uses. 

16: Objects 159 



• EQ refers to the current equation used by the Solver and PLOT 
commands. 

• 4PAR refers to a list of parameters used by statistics commands. 

• PPAR refers to a list of parameters used by plot commands. 

• 4DAT refers to the current statistical array. 

• s1, s2, and so on, are created by ISOL and QUAD to represent arbi­
trary signs obtained in symbolic solutions. 

• n1, n2, and so on, are created by ISOL to represent arbitrary inte­
gers obtained in symbolic solutions. 

• Names beginning with "der" refer to user-defined derivatives. 

You can use any of these names for your own purposes, but remem­
ber that certain commands use these names as implicit arguments. 

Programs 

Programs are sequences of objects and commands. Each program is 
essentially a command line made into an object; when you surround 
the contents of the command line by program delimiters, you indicate 
that you want to save the contents for later execution. 

Special program commands appear in the PROGRAM BRANCH, 
PROGRAM CONTROL, and PROGRAM TEST menus. These menus 
are described in the Reference Manual, along with the general topic 
"Programs." 

You wrote five programs in part 1: 

• In chapter 3 you wrote a program for renaming variables, and you 
stored it in the variable RENAME. 

• In chapter 5 you wrote a program for the cotangent function, and 
you stored it in the variable COT. 

• In chapter 6 you wrote a program for adding polar coordinates, and 
you stored it in the variable PSUM. 

• In chapter 14 you wrote programs for converting between ounces 
and grams, and you stored them in the variables O-+G and G-+O. 

160 16: Objects 



User Functions. The programs COT, PSUM, O .... G, and G .... O are 
user functions-they begin with the command .... and one or more 
names, which together define one or more local variables, followed by 
one expression or program. When the user function is stored in a vari­
able, you can use the name of the variable in algebraics as you would 
use a built-in function. 

Program Structures. The command .... followed by names and an 
expression or program is called a local-variable structure, which is one 
type of program structure. There are also program structures for 
branching (such as IF ... THEN ... ELSE ... END) and looping (such 
as DO . .. UNTIL . . . END). See chapter 26, HProgram Structures," for 
descriptions. Also, chapter 28, HProgramming Examples," contains 20 
programs that demonstrate every program structure, along with a va­
riety of programming techniques. 

Unnamed Programs. Programs don't need to be stored in variables 
to be useful; for examples, see HExpanding and Collecting Com­
pletely," on page 253, and HDisplaying a Binary Integer," on page 257. 

Aigebraics 

Algebraics comprise one or more functions and the functions' argu­
ments; the arguments can be numbers, names, or subexpressions. 
Algebraics are written and displayed in algebraic syntax, a form simi­
lar to written mathematical notation. There are two types of 
algebraics, expressions and equations. 

Expressions 

In part 1 you used expressions in three different ways: as data, as 
functions, and as implicit equations. 

Expressions As Data. When you calculate with expressions, such as 
adding two expressions, squaring an expression, or differentiating an 
expression, the result is another expression. In these cases the expres­
sions act as data to be manipulated, independent of any values 
assigned to the variables. 

16: Objects 161 



Expressions as Functions. In chapter 4 you created the expression 
RTOT and, using the Solver, assigned values to the variables and then 
evaluated RTOT to calculate the desired result. In this case the 
expression acted as a function which, given the input values, 
produced a result. 

Expressions as Implicit Equations. In chapter 8 you used the 
Solver to find the numerical zero of an expression-that is, the 
numerical value of the independent variable for which the expression 
has value O. In chapter 9 you used QUAD to find a symbolic zero­
that is, an expression which, substituted for the independent variable, 
would give the original expression the value O. 

In both cases the expression f(x) acts like the equation f(x) = 0, 
because the zero of the expression is the same as the root of the 
equation. 

Equations 

Equations comprise two expressions related by an equals sign (=). In 
mathematics there are two uses for the equals sign: 

• To indicate a proposition, such as "x2 = 4" or "x2 + y2 = 1." Here 
the equation holds only for some values of the variables . 

• To indicate an identity or definition, such as "sin 2x = 2 sin x cos x" 
or "y = 3x2 + 2x + 5." Here the equation holds for all values of 
the variables. 

On the HP-28S, equations are used for propositions only; to make a 
definition such as "y = 3x2 + 2x + 5," the expression 
'3l>::·····2+2l>::+5' is stored in a variable named '"I'. 

In "Time Value of Money" on page 103, both TVM and SPPV are 
expressed mathematically as equations. The TVM equation, which 
holds only for certain values of its variables, is entered as an equation; 
but SPPY, whose value is defined by the value of its variables, is 
created as a variable. 

162 16: Objects 



Equations as Data. When you calculate with equations, such as 
adding two equations, or squaring an equation, or differentiating an 
equation, the result is another equation. Each side of the equation is 
treated independently-each side is an expression treated as data. The 
equation maintains its propositional nature, where it holds for only 
some values of its variables. 

Solving Equations. When you solve an equation numerically, as 
you did in "Time Value of Money," you find the value of the 
independent variable that satisfies the equality. Similarly, when you 
solve an equation symbolically, as you did in "Isolating a Variable" on 
page 109, you find an expression which, substituted for the 
independent variable, would satisfy the equation. 

Symbolic Constants 

Algebraics can include the following symbolic constants. These look 
like names but are actually functions . 

• MINR (minimum real) represents the smal'lest positive real number. 
Its numerical value is 1.00000000000E-499. 

• MAXR (maximum real) represents the largest positive real number. 
Its numerical value is 9.99999999999E499. 

• e represents the base of natural logarithms. Its numerical value on 
the HP-28S is 2.71828182846. 

• 1f represents the ratio of circumference to diameter of a circle. Its 
numerical value on the HP-28S is 3.14159265359. 

• i represents the imaginary number ~. Its numerical value is 
(0, 1). 

In Numerical Constants mode or Numerical Result mode, evaluation 
of symbolic constants returns their numerical values; otherwise, 
evaluation returns their symbolic form. (Constants mode and Result 
mode are described in chapter 24.) 

16: Objects 163 



Operations, Commands, 
and Functions 

17 

Each procedure built into the HP-28S can be classified as an opera­
tion, a command, a function, or an analytic function. 

• An operation is any procedure built into the calculator. 

• A command is a programmable operation. 

• A function is a command allowed in algebraics. 

• An analytic function is a function for which the HP-28S provides a 
derivative and inverse. 

Built-in procedures are usually characterized by their highest capabil­
ity. For example, SWAP and IP are both commands, but we 
characterize SWAP as a command and IP as a function. The following 
table shows examples of each type. 

Operations 

Commands 

Non-Programmable 
Operations RPN Functions 

Commands 
Non-Analytic Analytic 

[ill§] SWAP ASS ASIN 
, NEXT I DROP a EXP 
.'EDITI LAST IP INV 
., VIEW+ I RCL MAX LN 
, ENTER I PURGE OR NEG 
'EEX I f %CH SIN 
.'COMMAND I STO R-D SINH 
., UNDO I EVAL R-P sa 
., CONTI CLEAR XPON + 
,oNI CONVERT *" = 

164 17: Operations, Commands, and Functions 



The Operation Index in the back of the Reference Manual identifies 
each built-in procedure as an operation, a command, a function, or an 
analytic function . As a rough guide, here are general comments about 
each type. 

• Most non-programmable operations can be executed only by press­
ing a key. However, there are programmable equivalents for some 
operations: for example, the I TRIG I operation (to select the TRIG 
menu) can be effected in a program by executing 21 MEt·W, and 
the RAD operation (to select Radians angle mode) can be effected 
by executing 60 FS. 

• Most RPN commands involve manipulating the stack or altering 
user memory rather than calculating mathematical values. 

• Most non-analytic functions are mathematical calculations without 
inverses-that is, they return some characteristic of the arguments, 
but the arguments can't be reconstructed from the result. Examples 
include integer part and fractional part, absolute value and sign. 

• In mathematics, a function of complex variables is analytic if it can 
be expressed as a power series at every point in its domain; in this 
case it has an inverse and a derivative. The HP-28S makes a few 
exceptions to this definition. For example, no derivative is given for 
the command :';, although one would be possible; a derivative is 
given for the function ABS, although the function is non-analytic at 
the point 0 + Oi. 

Every built-in procedure is available on a key, either on the keyboard 
or in a menu. When you press a key, the exact result depends on the 
type of procedure and the entry mode, as discussed in the next 
chapter. 

17: Operations, Commands, and Functions 165 



18 
The Command Line 

The command line holds any number of characters representing ob­
jects in text form. It appears at the bottom of the display (immediately 
above the menu labels, if present) when you begin to key in an object 
or when you use .1 EDIT l or .1 VISIT 1 to edit the contents of an exist­
ing object. 

The command line can hold more than one row of text. If you enter 
more than 23 characters into one row, characters scroll off the display 
to the left. An ellipsis ( ... ) appears in the leftmost character position 
to indicate the undisplayed characters. If you try to move the cursor 
past the left end of the display, the leftmost characters scroll back into 
the display, and characters scroll off the display to the right. An ellip­
sis then appears at the right end of the display. When the command 
line contains multiple rows of text, all rows scroll left and right 
together. 

The Cursor Menu 

The cursor menu is a special menu of editing operations. It is active 
whenever the command line is present and no menu labels are visi­
ble. The cursor menu contains both shifted and unshifted keys. The 
unshifted keys are labeled in white above the corresponding menu 
keys, as illustrated. 

166 18: The Command Line 



, 
INS DEL • ,. .. • 

gggggg 

If you press and hold an unshifted cursor menu key (except c::ill[)), the 
operation is repeated until you release the key. 

Key Description 

c::ill[) Switch between Replace mode and Insert mode. In Replace 
mode, new characters replace existing characters. In Insert 
mode, new characters are inserted between existing 
characters. 

I DEL I Delete the character at the cursor position. 

~ Move the cursor up one line. 

[Y] Move the cursor down one line. 

[3J Move the cursor left one space. 

[E Move the cursor right one space. 

The shifted cursor menu keys (except for .c::ill[) ) are equivalent to 
repetitions of the unshifted operations. 

18: The Command Line 167 



Key 

.[ill[] 
• IDELI 

.C!J 
• C!J 
• [3] 

• lE 

Description 

Delete all characters to the left of the cursor . 

Delete the character at the cursor position and all characters 
to the righ t. 

Move the cursor to the top row of the command line . 

Move the cursor to the bottom row of the command line . 

Move the cursor to the left end of the command line . 

Move the cursor to the right end of the command line. 

Some Entry Keys 

The following keys are useful when you're entering objects in the 
command line. 

Key Description 

Cursor Menu On/Off. When the Cursor menu is not ac­
tive: selects the Cursor menu. When the Cursor menu is 
active: selects the previous menu. 

I CHS I Change Sign. When the cursor is positioned at a num­
ber: changes the sign of the number. When the cursor is 
not positioned at a number: writes a minus sign. (If no 
command line is present: executes the command NEG.) 

I EEX I Enter Exponent. When the cursor is positioned at a 
number without an exponent: writes the character E after 
the number. When the cursor is positioned at a number 
with an exponent: positions the cursor after the E. If the 
cursor is not positioned at a number: writes 1 E. 

[!] Backspace. Deletes the character to the left of the 
cursor, moving the cursor (and any characters to the 
right) one space to the left. If you press and hold [!], the 
action is repeated until you release the key. 

[ill Lower-Case Letters. Switches between Upper-case and 
Lower-case modes. When the command line is created, 
Upper-case mode is active-lEJ through [II write A 

through Z. In Lower-case mode, lEJ through [II write -3 

through z . 

168 18: The Command Line 



.1 MENUS) Menu Lock. Turns Menu Lock on and off. When Menu 
Lock is on, the shifted and unshifted "positions" are 
switched for the top three rows of the lefthand keyboard 
(letter keys 0 through []]). You don't need to press . 
before 1 ARRAY) through 1 UNITS ), but you need to press . 
before the letters A through R. 

ION) Attention. Cancels the command line. 

Object Delimiters and Separators 

To enter more than one object or command into the same command 
line, you must separate them by one of the following: 

• An object delimiter: ( ) [ ] -:: } # " I ·K :s·. 

• A space or newline. Pressing .1 NEWLINE) inserts a "newline" char­
acter (line-feed) into the command line at the cursor position. 
Newline characters are equivalent to spaces when the command 
line is executed. 

• A comma (assuming you haven't selected the comma to act as the 
decimal point). 

Entry Modes 

To make object entry easier, there are three entry modes-Immediate, 
Algebraic, and Alpha-for entering different types of objects. Remem­
ber the distinctions made in the previous chapter, "Operations, 
Commands, and Functions": 

• Operations are not programmable. 

• Commands can appear in programs but not in algebraics. 

• Functions (analytic and non-analytic) and names can appear in pro­
grams or algebraics. 

18: The Command Line 169 



The calculator recognizes these distinctions as you enter objects in the 
command line. Pressing an operation key (such as 1 ENTER I) always 
causes execution of the operation. The current entry mode primarily 
affects what happens when you press a command key (such as 1 STO I), 
a function key (such as G), or a USER menu key. 

Immediate Entry Mode. This mode is for entering numbers, lists, 
and arrays. In Immediate entry mode: 

• Pressing a command key executes the command line and then exe­
cutes the command. 

• Pressing a function key executes the command line and then exe­
cutes the function. 

• Pressing a USER menu key executes the command line and then 
evaluates the corresponding name. 

Algebraic Entry Mode. This mode is for entering names and 
algebraics. If you begin the command line by pressing c::::J, Algebraic 
entry mode is automatically activated. In this mode: 

• Pressing a command key executes the command line and then exe­
cutes the command. 

• Pressing a function key writes the function's name in the command 
line. If the function takes its arguments in parentheses, the opening 
parenthesis is included. 

• Pressing a USER menu key writes the corresponding name in the 
command line. 

Alpha Entry Mode. This mode is for entering strings and programs. 
Pressing .~ or OD automatically activates Alpha entry mode and 
turns on the a annunciator. In this mode: 

• Pressing a command key writes the command's name in the com­
mand line. 

• Pressing a function key writes the function 's name in the command 
line. 

• Pressing a USER menu key writes the corresponding name in the 
command line. 

170 18: The Command Line 



If the cursor is positioned at the end of the command line, or if Insert 
mode is active, spaces are included as needed to keep successive com­
mands separate. 

Exceptions 

To enable you to select a mode while using the command line in Im­
mediate or Algebraic entry mode, the following command keys 
execute their command without disturbing the command line. 

• STD , DEG , and RAD in the MODE menu. 

• DEC , HEX , OCT ,and BIN in the BINARY menu. 

Since the following commands make sense only in a program, press­
ing one of these keys always writes the command's name in the 
command line. 

• HALT in the PROGRAM CONTROL menu. 

• All keys in the PROGRAM BRANCH menu. 

To help prevent the accidental loss of variables, pressing ClUSR (in 
the MEMORY menu) always writes CLUSR in the command line. You 
must then press I ENTER I to execute the command. 

Manual Selection of Entry Modes 

The calculator automatically switches between Immediate and Alge­
braic entry modes each time you press ~ to begin or end a name or 
algebraic. It also switches to Alpha entry mode when you press .c::J 
or 0 . You can manually select the entry mode by pressing the ~ 
key. Doing so switches the entry mode in the cycle illustrated below. 

I Immediate I ------ I Alpha ------;.~ I Algebraic 

1 I .. 
Manual Selection of Entry Modes 

18: The Command Line 171 



Thus you can switch to any entry mode by pressing ~ once or twice. 
Here are some examples of using the ~ key. 

• Suppose you want to write a program that you'll execute only once 
or twice. Press ~ to select Alpha entry mode; key in the program 
without program delimiters; press 1 ENTER 1 to execute the program; 
press .1 COMMAND 1 to return the program to the command line; 
press 1 ENTER 1 to execute the program again. 

• Suppose you want to purge several variables at once. Press rn to 
start a list; press ~ to select Alpha entry mode; press the USER 
menu keys for the variables to be purged; press 1 ENTER 1 to put the 
list on the stack; press .1 PURGE I. 

• Suppose you're keying in a program, and you want to use the char­
acter - in a name. Since Alpha entry mode is active, pressing .8 
would write the command H _H surrounded by spaces. Press ~ to 
select Algebraic entry mode; press .8; press ~ ~ to return to 
Alpha entry mode. 

How the Cursor Indicates Modes 

The appearance of the cursor indicates the current entry mode and 
the current choice of Insert or Replace mode. The following table 
shows the six possible combinations of entry mode and Insert or Re­
place mode. 

Insert mode Replace mode 

Immediate entry mode ·:-,1 D 

Algebraic entry mode .;; § 

Alpha entry mode • I 

172 18: The Command Line 



Executing the Command Line 

When you press I ENTER I (or a key that performs ENTER in the current 
entry mode), the calculator does the following: 

1. The busy annunciator «e») is turned on. 

2. If UNDO is enabled, a copy of the current stack is saved. 

3. The text string in the command line is searched for object delim­
iters and separators, then broken into the corresponding 
substrings. 

4. Each substring of text is tested against syntax rules to identify its 
object type. 

5. If COMMAND is enabled, a copy of the command line is saved 
in the command stack. 

6. The command line is executed. 

7. The busy annunciator «e») is turned off. 

If a substring fails the syntax tests in step 4, steps 5 and 6 are not 
performed. Instead, S,;!n t ax Er r ot- is displayed, and the incorrect 
text is highlighted in inverse characters, followed by the cursor. If the 
error resulted from incomplete syntax, the cursor is positioned at the 
end of the line. 

Editing Existing Objects 

You can return an existing object to the command line, view it or edit 
it using command-line operations, and replace the original object with 
the modified object if desired. 

Key Description 

., ED IT I Edit Level 1. Returns the object in level 1 to the 
command line. 

n ., VISIT I Edit Level n. Returns the object in level n to the 
command line. 

'name' ., VISIT I Edit a Variable. Returns the contents of the speci­
fied variable to the command line. 

18: The Command Line 173 



The cursor menu and Alpha entry mode are activated. The original 
object, if visible, is highlighted to remind you that you are editing that 
object and that the original copy is still preserved. 

When you're done viewing or editing the object, you can: 

• Press 1 ON 1 to cancel the edit, clear the command line, and leave the 
original object unchanged . 

• Press 1 ENTER 1 (or a key that performs ENTER) to replace the original 
object. 

If the cursor menu is still active when you complete the editing, the 
previous menu is restored. 

Recovering Command Lines 

The HP-28S saves the contents of the last four command lines you 
executed. Pressing .1 COMMAND 1 once returns the most recently exe­
cuted command line (replacing the current command line if it exists); 
pressing .1 COMMAND 1 a second time returns the next oldest command 
line; and so on. If you press .1 COMMAND 1 more than four times, the 
sequence starts over with the most recent command line. 

Some uses for .1 COMMAND 1 appear in "If You Execute the Wrong 
Function" on page 47 and "Manual Selection of Entry Modes" on page 
171. 

You can disable this feature by pressing CMD in the MODE menu. 
The box disappears from the menu label, indicating that command 
lines won't be saved. To enable this feature again, press CMD a sec­
ond time. 

174 18: The Command Line 



The Command Line as a String 

The text that you key into the command line is equivalent to the con­
tents of a string object-that is, a sequence of characters. You can 
programmatically execute a command line by entering the text in a 
string and executing STR ... (string-to-objects) . This technique is useful 
for storing programs in text form, which is more compact than object 
form. Also, any local names that exist when STR ... is executed will be 
recognized in the command line. 

18: The Command Line 175 



19 
The Stack 

This chapter reviews what you've learned about the stack and de­
scribes commands for manipulating objects on the stack. Also briefly 
described is the use of local variables to simplify stack manipulations. 

Review of Stack Concepts 

The stack is a sequence of numbered levels, each holding one object. 
The objects you key into the command line are put on the stack when 
you execute ENTER. The first object in the command line is the first 
object put on the stack. Each object is put in levell, lifting other ob­
jects to the next higher stack level. The stack can grow indefinitely 
(within the limits of calculator memory), so you don' t need to think 
about how many objects are on the stack before entering more 
objects. 

In general, a command removes input objects (called arguments) from 
the stack and replaces them with output objects (called results) to the 
stack. For example, the function + removes two arguments from levels 
1 and 2, replacing them with their sum in level 1. 

The arguments must be present on the stack before the command is 
executed. This type of logic, where the command comes after the ar­
guments, is called stack logic, postfix logic, or RPN, for Reverse Polish 
Notation, in honor of the Polish logician Jan Lukasiewicz (1878-1956). 

The results of a command are available as arguments for the next 
command. If you're not ready to use the results yet, simply leave 
them on the stack-they'll be available when you're ready for them. 

176 19: The Stack 



Objects leave the stack from level I, and the objects remaining on the 
stack each drop to a lower level. It's best to drop an object or store it 
in a variable when you don't need it on the stack; this makes it easier 
to keep track of the stack objects you do need. Similarly, it's best to 
clear the entire stack when you begin a problem, so you'll know that 
the objects on the stack are pertinent. 

Viewing the Stack 

Normally you see only the first few objects on the stack. If the object 
in level 1 is large, you see only the first part of it. The operations .1 VIEWt 1 and .1 VIEW. 1 enable you to view the first part of any object 
on the stack and all of the object in level 1. 

These operations move the "window" through which you see the 
stack. The size of this window can range from one to four display 
lines, depending on the presence of a menu, the command line, or 
both. 

Key Description .1 VIEWt I Moves the window up (toward higher stack levels) . 

• 1 VIEW. I Moves the window down (toward the end of the object in 
level 1). 

Viewing has no effect on the contents of the stack, the command line, 
or the action of commands. 

Manipulating the Stack 

In part 1 you used some basic commands for manipulating the stack: 
CLEAR (to clear the stack), DROP (to drop the object in level I), and 
SWAP (to switch the order of the objects in levels 1 and 2). This sec­
tion briefly describes all commands for moving, copying, and 
dropping stack objects; for details, see "STACK" in Reference Manual. 

19: The Stack 177 



Moving Stack Objects. These commands rearrange the objects on 
the stack; the number of objects doesn' t change. Commands preceded 
by "n" require a real-number argument. 

Command Description 

SWAP Moves the object in level 2 to level 1. 

ROT Moves the object in level 3 to level 1. 

n ROLL Moves the object in level n to level 1. 

n ROLLD Moves the object in level 1 to level n. 

The command names ROT (rotate), ROLL, and ROLLD (roll down) are 
descriptive of the motion of objects as a block. ROT moves the object 
in level 3 to level 1, rotating a block of thr~e objects; ROLL and 
ROLLD roll blocks of n objects. 

Copying Stack Objects. These commands return a copy of one or 
more stack objects. Copying only one object returns the copy to level 
1 and lifts the other objects on the stack (including the original object) 
to a higher level. When you copy more than one object, they're copied 
as a block in a similar manner. Commands preceded by "n" require a 
real-number argument. 

Command Description 

DUP Copy the object in level 1. (When no command line is 
present, you can execute DUP by pressing I ENTER I.) 

OVER Copy the object in level 2. 

n PICK Copy the object in level n. 

DUP2 Copy the objects in levels 1 and 2. 

n DUPN Copy the objects in levels 1 through n. 

178 19: The Stack 



Dropping Stack Objects. These commands drop one or more ob­
jects from the stack. The objects remaining on the stack are dropped 
to a lower level. Commands preceded by "n" require a real-number 
argument. 

Command Description 

DROP Drop the object in level 1. 

DROP2 Drop the objects in levels 1 and 2. 

n DROPN Drop the objects in levels 1 through n. 

CLEAR Drop all objects. 

Local Variables 

In part 1 you wrote a few user functions-programs that define local 
variables and use them in a single expression or program. User func­
tions can be included in algebraics, just like built-in functions . 

The use of local variables reduces the need for stack manipulations. 
When you create local variables, their values are removed from the 
stack. You can then refer to them by name instead of finding them on 
the stack. 

Local variables have applications in addition to user functions. Al­
most all of the programming examples in chapter 28 use local 
variables. Of particular interest are "Box Functions" on page 241, 
"MULTI (Multiple Execution)" on page 253, "PRESERVE (Save and 
Restore Previous Status)" on page 258, and "SORT (Sort a List)" on 
page 270. 

Recovering the Last Arguments 

The HP-28S saves the arguments to the last command executed. De­
pending on the command, one, two, or three objects may be saved. (If 
a command takes no arguments, the previous saved arguments are 
preserved.) The command LAST returns the saved arguments, each to 
the stack level it occupied originally. 

19: The Stack 179 



If you need exactly the same arguments for two or more commands in 
sequence, you can execute LAST to return copies of the arguments to 
the stack for the next command. If the commands don't require ex­
actly the same arguments, or if the commands aren't in sequence, it's 
easier to use local variables. 

You can disable LAST (that is, the saving of arguments) by pressing 
LAST in the MODE menu. The box disappears from the menu label, 

indicating that arguments won't be saved. This practice is not gener­
ally recommended, since the calculator uses the saved arguments for 
recovery when an error occurs. However, if a command or program 
fails because of insufficient memory, you can attempt execution with 
LAST disabled. When you're done, be sure to enable LAST again by 
pressing LAST a second time. 

Restoring the Stack 

Each time you press I ENTER I (or a key that performs ENTER) the 
HP-28S first saves a copy of the stack and then performs the specified 
actions. If you're dissatisfied with the results, you can restore the 
saved stack by pressing .1 UNDO I. Note that UNDO affects only the 
stack-it doesn't undo changes to user flags or user variables. For an 
example using .1 UNDO I, see "If You Execute the Wrong Function" on 
page 47. 

You can disable this feature by pressing UNDO in the MODE menu. 
The box disappears from the menu label, indicating that the stack 
won't be saved. To enable this feature again, press UNDO a second 
time. 

180 19: The Stack 



The Stack as a List 

The contents of the stack are equivalent to the contents of a list-that 
is, a sequence of objects. You can put all of the objects on the stack 
into a single list by executing DEPTH ~LIST. The command DEPTH 
returns the number of objects on the stack, and the command ~ LIST 
(stack to list) combines the specified number of objects into a list. 

More often, a list is "opened" onto the stack by the command LIST~ 
(list to stack). After the elements are manipulated on the stack, they 
may be recombined into a list by the command ~ LIST. For examples 
of these commands, see "MEDIAN (Median of Statistics Data)" on 
page 273. 

19: The Stack 181 



20 
Memory 

Memory is used for a variety of purposes in the HP-28S, including 
the command line, the stack, user memory, recovery features, and the 
operating system. The command line and the stack are described in 
chapters 18 and 19. This chapter primarily discusses user memory, 
including directories; it also discusses low-memory conditions and its 
effects on recovery features and the operating system. 

User Memory 

User memory can contain variables, and it can contain directories to 
organize the variables. 

Global Variables 

A variable is the combination of a name object and any other object. 
The name object represents the name of the variable; the other object 
is the value or contents of the variable. 

Global variables are those that are stored in user memory. There are 
also local variables, which are created by program structures and exist 
only during execution of the program structures. Local variables are 
primarily a substitute for stack manipulations and are described in 
chapter 19, "The Stack." In the present chapter, the term "variables" 
indicates global variables. 

The contents of a variable can be any type of object. In part 1 you 
created numerical variables, program variables, algebraic variables, list 
variables, and array variables. You even created name variables, 
where the contents of the variable was the name of another variable. 

182 20: Memory 



You used the following commands to create, recall, and purge vari­
ables. These commands treat all variables alike, regardless of their 
contents. 

Command Description 

STO Creates a variable with the specified value and name. 

RCL Recalls the contents of the specified variable. 

PURGE Deletes one or more specified variables. 

Directories 

In chapter 4, uRepeating a Calculation,u you used the Solver to calcu­
late the total resistance of two series-parallel circuits, with two sets of 
resistor values that could be applied to either circuit. Here is a review 
of the concepts you learned. 

There are two primary motivations for creating directories . 

• To group together the variables for a particular application or topic. 
You created the directory EE for your electrical engineering prob­
lems so that, when you're working on these problems, you can 
focus on the relevant variables . Equally important, when you're 
working on other problems, the electrical engineering variables are 
all hidden within the EE directory . 

• To keep separate sets of variables that use the same names. You cre­
ated directories SPI and SP2 (series-parallel-l and series-parallel-2) 
within EE to hold different values of the variables Rl, R2, and R3 . 
You can switch from one set of values to the other simply by 
switching directories. 

Creating a Directory. To create a directory you enter a name and 
execute CRDIR (create directory) . The name of the directory appears in 
the USER menu. The new directory is called a subdirectory, and the 
directory that contains it is called its parent directory. 

20: Memory 183 



The Current Directory. Initially, the only directory that exists is the 
built-in directory HOME. After creating other directories, you can 
choose which is the current directory-that is, which set of variables 
appears in the USER menu. 

To choose the current directory you evaluate its name-for example, 
if you've just created a directory, you make it the current directory by 
pressing the appropriate key in the USER menu. 

Almost all commands that use variables work only in the current di­
rectory, since the purpose of multiple directories is to control which 
variables are available. You can alter a variable only if it's in the cur­
rent directory. 

The following commands in the MEMORY menu act on the current 
directory. 

Command Description 

VARS Returns a list of names of all variables and directories in 
the current directory. 

ORDER 

CLUSR 

Reorders variables and directories in the current direc­
tory as specified by a list. 

Purges all variables and empty directories in the current 
directory. 

The Current Path. You can check where you are in the directory 
structure by executing the command PATH. It returns a list specifying 
the sequence of directories from the HOME directory to the current 
directory. 

In some cases the calculator searches not only the current directory, 
but the entire current path. The search begins in the current directory; 
if the variable isn't found, the search continues in the parent direc­
tory; and this process continues back to the HOME directory. 

This occurs in the evaluation of names-after all, you could never re­
turn to a parent directory if you couldn't successfully evaluate its 
name. Evaluation of names occurs when you key in an unquoted 
name, when you plot or use the Solver, when you evaluate algebraics 
on the stack, and so on. 

184 20: Memory 



Other commands that search the current path are RCL and PRVAR 
(print variables) . Note that none of the actions that search the current 
path can alter the variable. 

Since the HOME directory is always on the current path, the calcu­
lator can always find variables in the HOME directory. You might 
choose to limit the contents of the HOME directory to subdirectories 
and those variables you want always available. 

Directory Structure. The diagrams below show the directory struc­
ture you created in chapter 4. In the first diagram, HOME is the 
current directory; in the second, EE; and in the third, SP2. Each dia­
gram uses the following symbols. 

Symbols Used in the Directory Diagrams 

name Name of a directory. 

name A name in the current directory. These names appear in the 
USER menu. The corresponding variables can be altered. 

The current path. 

A name on the current path. These names can be found only 
by evaluation, RCL, and PRVARS. The corresponding vari­
ables can't be altered. 

20: Memory 185 



HOME 
I ... I I 

COT EE 0 RENAME 

I 
I 

I 
E02 SP2 SP1 E01 

I 
I 

I 
I 

R3 R2 R1 EO R3 R2 R1 EO 

Current Directory is HOME 

HOME 

... I I 
COT EE 0 RENAME 

I I 
I 

I 
E02 SP2 SP1 E01 

I 
I 

I 
I 

R3 R2 R1 EO R3 R2 R1 EO 

Current Directory is EE 

HOME 

... I I 
I I 

COT EE o RENAME 

I I 
I 

I 
E02 SP2 SP1 E01 

I I 

R3 R2 R1 EO R3 R2 R1 EO 

Current Directory is SP2. 

186 20: Memory 



Purging a Directory. You can purge an empty directory just as you 
would a variable: switch to the directory that contains the directory to 
be purged, put the directory's name on the stack, and execute 
PURGE. 

If the directory to be purged contains variables or subdirectories, you 
must purge the variables or subdirectories before you can purge the 
directory. Here's a general procedure. 

1. Switch to the directory to be purged. 

2. Execute CLUSR to clear the directory. 

3. Switch to the parent directory. 

4. Purge the directory. 

If a t·j 0:' n - E m p t '01 D i t- e c t co t- '01 error occurs in step 2, the directory 
contains a subdirectory that isn' t empty. In this case you must per­
form steps 1, 2, and 3 to clear the subdirectory. You can then 
continue with step 2 through 4 to purge the directory. 

Moving Up and Down the Directory Structure. Chapter 28 in­
cludes programs for moving up the directory structure (switching to a 
parent directory) or moving down (switching to a subdirectory). See 
"Changing Directories" on page 275 . 

Recovery Features 

The HP-28S automatically saves copies of command lines, arguments, 
and the stack. These copies enable you to recover from a mistake-to 
go back to where you were before the mistake. You can then redo a 
calculation without starting over from the beginning. The copies of 
command lines and arguments are also handy for repeating 
calculations. 

These copies can consume a significant amount of memory. For each 
of these recovery features-command lines, the stack, and argu­
ments-you can choose whether to enable or disable the feature. The 
operations to enable or disable the recovery features appear in the 
MODE menu. 

20: Memory 187 



Generally it's best to leave these features enabled. If very little mem­
ory is available and large objects have been saved by the recovery 
features, you can safely regain some memory by disabling and re-en­
abling each feature, thereby clearing the stored objects. 

Low Memory 

The HP-28S contains 32 Kbytes of user memory, of which about 400 
bytes are reserved for system use. Virtually every HP-28S operation 
requires some memory use-even interpreting the command line. The 
amount of memory used by some algebra commands (COLCT, 
EXPAN, TAYLR) increases rapidly as their arguments become more 
complicated. Try to leave at least a few thousand bytes of memory 
free for dynamic system use. 

You can check the amount of available memory by executing MEM, 
found in the MEMORY menu. 

Because the HP-28S operating system shares memory with user ob­
jects, you can fill memory so full of user objects that normal calculator 
operation becomes difficult or impossible. The HP-28S provides a se­
ries of low memory warnings and responses, listed below in order of 
increasing severity. 

Insufficient Memory. If there isn't enough memory available for a 
command to execute, an Ins II f fie i en t Me m 0 r y error occurs. If 
LAST is enabled, the original arguments are restored to the stack. If 
LAST is disabled, the arguments are lost. 

No Room for UNDO. If there isn't enough memory available to save 
a copy of the stack, a NoR 0 0 m f 0 t- UN D 0 error occurs. The UNDO 
feature is automatically disabled; to reenable UNDO, press l.uHoo in 
the MODE menu. 

No Room to ENTER. If there isn't enough memory available to pro­
cess the command line, the calculator clears the command line and 
displays t'lo Room to ENTER. A copy of the unsuccessful com­
mand line is saved in the command stack if the command stack is 
enabled. 

188 20: Memory 



If you're attempting to edit an existing object, using EDIT or VISIT, 
and a copy of the unsuccessful command line is saved in the com­
mand stack, purge the original copy of the object, press .1 COMMAND I 
to recover the command line containing the edited object, and press 
1 ENTER I to enter the edited version. 

Low Memory! If fewer than 128 bytes of free memory remain, 
Lo',! ~lemot- y! flashes once in the top line of the display. This mes­
sage will flash at every keystroke until additional memory is available. 
Clear unneeded objects from memory before continuing your 
calculations. 

No Room To Show Stack. It is sometimes possible for the HP-28S 
to complete all pending operations, and not have enough free mem­
ory left for the normal stack display. In this case, the calculator 
displays t·lo F.:oom t CI ShCI(.! Stack in the top line of the display. 
Those lines of the display that would normally display stack objects, 
now show those objects only by type, for example, Rea 1 Numbet-, 
A 1·::)el:n-.3 i c, and so on. 

The amount of memory required to display a stack object varies with 
the object type-algebraics usually require the most memory. Clear 
one or more objects from memory, or store a stack object as a variable 
so that it does not have to be displayed. 

Out of Memory. In the extreme case of low memory, there is insuffi­
cient memory for the calculator to do anything-display the stack, 
show menu labels, build a command line, and so on. In this situation, 
you must clear some memory before continuing. A special 
Out 0 f t'l e m 0 t- Y procedure is activated, which will create a display: 

Out of Memot""y 
PUt""ge? 
Command Stack EB.:IlII ___ _ 

20: Memory 189 



The calculator will sequentially prompt you to clear: 

1. The COMMAND stack (if enabled). 

2. The UNDO stack (if enabled). 

3. LAST Arguments (if enabled). 

4. The custom menu (if any). 

5. The stack. 

6. Each variable in the HOME directory. 

For each item that you want to purge, press the YES menu key; for 
those that you want to keep, press NO 

After pressing YES at least once, you can try to terminate the 
I) II t 0 f t'l e m 0 t- Y procedure by pressing I ON I. If sufficient memory is 
available, the calculator returns to the normal display; otherwise, the 
calculator beeps and continues through the purge sequence. After cy­
cling once through the choices, the I) u t 0 f t'l e m 0 t- Y procedure 
attempts to return to normal operation. If there still is not enough free 
memory, the procedure starts over with the sequence of choices to 
purge. 

If you press YES for an empty directory, it is purged. If you press 
YES for a directory that contains variables, the variables in that di­

rectory are displayed. 

Maximizing Performance 

From time to time the calculator does Hhousekeepingn to make better 
use of memory. Generally this process is noticeable only as short 
pauses during plotting, for example; however, when memory is al­
most full and the stack contains hundreds of objects, the calculator 
may respond slowly to even simple operations such as selecting a 
menu. 

This section contains tips for maximizing speed (by reducing the 
amount of housekeeping required) and maximizing available memory 
(by increasing the effectiveness of housekeeping). 

190 20: Memory 



To Maximize Speed: 

• Don't put more than a few hundred objects on the stack. 

• Don't leave large lists (more than a few hundred objects) on the 
stack; store them in user memory. 

To Maximize Available Memory: 

II 
Note 

The following procedure clears the stack, recovery data 
(COMMAND, UNDO, LAST), the current custom menu 
(CUSTOM), and any suspended programs. 

1. Purge unwanted variables and directories from user memory. 

2. Store in user memory any objects on the stack that you want to 
keep. 

3. Perform a System Halt (ION 1m). 

The current directory is now HOME. 

To Minimize Memory Usage for Array Calculations: Store arrays 
in variables and refer to them by name; avoid using them on the 
stack. Here's a comprehensive strategy for doing so. 

1. Plan in advance how many variables you'll need, including in­
termediate results. 

2. Create small arrays of the correct type (real or complex, vector or 
matrix), store them in variables, and then use RDM to adjust 
their sizes. 

3. Perform calculations using the storage arithmetic commands in 
the STORE menu. 

4. To act on individual elements, use GET, GEn, PUT, pun with 
the variable's name, or use algebraic syntax such as 

I A (5 .. 6) I E~!AL and I B (3) I :3TO; don't return the entire ar­
ray to the stack. 

20: Memory 191 



21 
Menus 

Every operation, command, and function on the HP-28S is available 
on the keyboard or in a menu. When you select a menu, six menu 
labels appear in the bottom line of the display. These labels constitute 
one menu row, which indicates the current definitions of the six menu 
keys at the top of the keyboard. (The Cursor menu is an exception; its 
definitions are printed in white above the menu keys.) 

In addition to the keys that select specific menus (such as .1 ARRAY I or 
1 TRIG I), the following keys control menu operations. 

Key Description 

GEJ Cursor Menu On/Off. When the Cursor menu is not ac­
tive: selects the Cursor menu. When the Cursor menu is 
active: selects the previous menu . 

• 1 CUSTOM I Last Custom Menu. Displays the Custom menu last 
created by the MENU command. 

1 NEXT I Next Menu Row. Displays the next row of menu labels. 
If the last row is displayed, displays the first row . 

• 1 PREV I Previous Menu Row. Displays the previous row of 
menu labels. If the first row is displayed, displays the 
last row. .1 MENUS I Menu Lock. Turns Menu Lock on and off. When Menu 
Lock is on, the shifted and unshifted Upositions" are 
switched for the top three rows of the lefthand key­
board (letter keys 0 through [[]). When Menu Lock is 
on, pressing 0 selects the ARRAY menu and pressing 
.0 writes the letter A. 

192 21: Menus 



Menus of Commands 

The following menus contain keys for built-in operations, most of 
which are programmable commands. For a brief description of the 
commands in each menu, see appendix D, "Menu Map." The Refer­
ence Manual covers these menus in alphabetical order and describes 
them in detail. 

The action of the keys in these menus depends on the entry mode, 
described on page 169. 

Menu 

ALGEBRA 

ARRAY 

BINARY 

COMPLEX 

LIST 

LOGS 

MEMORY 

MODE 

PLOT 

PRINT 

PROGRAM 
BRANCH 

PROGRAM 
CONTROL 

PROGRAM 
TEST 

REAL 

SOLVE 

Description 

Algebra commands. 

Vector and matrix commands. 

Integer arithmetic, base conversions, bit 
manipulations. 

Complex-number commands. 

List commands. 

Logarithmic, exponential, hyperbolic functions . 

User memory, directories. 

Display, angle, recovery modes. 

Plotting commands. 

Printing commands. 

Program branch structures. 

Program control, halt, and single-step operations. 

Flags, logical tests. 

Real number commands. 

Numerical and symbolic solution commands, the 
Solver. 

21: Menus 193 



Menu 

STACK 

STAT 

STORE 

STRING 

TRIG 

Description 

Stack manipulation. 

Statistics and probability commands. 

Storage arithmetic. 

Character strings. 

Trigonometric functions, coordinate and angle 
conversions. 

Menus of Operations 

The following menus offer non-programmable operations. 

Menu 

Cursor 

CATALOG 

UNITS 

Description 

For editing the command line. Described in chapter 
18 . 

Catalog of commands, including USAGE submenu. 
Described in chapter 22. 

Units available for conversion. Described in chapter 
14. 

Menus of Variables 

Menu 

Solver 

USER 

Description 

Stores values and solves for variables in the current 
equation. Distinctive appearance (black letters against 
white menu label) indicates its distinctive action . 

Displays variables and subdirectories in current direc­
tory. The action of the keys depends on the entry 
mode, described on page 169. 

194 21: Menus 



Custom Menus 

The command MENU can create a custom menu from a list of names 
and commands. The custom menu can be similar to the Solver menu 
or the USER menu . 

• If the first element in the list is the command STO, followed by a 
sequence of names, MENU creates a Custom Input menu. This 
menu looks and acts like the Solver menu: pressing a menu key 
take a value from the stack and stores it in the corresponding vari­
able. For an example, see chapter 27, "Interactive Programs." 

• If the list contains a sequence of names and commands (the first 
element being different from STO), MENU creates a Custom User 
menu . This menu acts like a hybrid of the USER menu and a com­
mand menu. For an example, see "Changing Directories" on page 
275 . 

21: Menus 195 



22 
Catalog of Commands 

In chapter 1 you used the catalog of commands to check the correct 
spelling of a few commands and to check various combinations of 
arguments for the function +. This chapter reviews the operations 
available in the catalog, including the USAGE menu that shows cor­
rect combinations of arguments. 

Pressing ., CATALOG 1 displays the command ABORT, which is the first 
command alphabetically, and the CATALOG menu. 

Key 

QUIT ' 

Description 

Advances the catalog to the next command. If you press 
and hold this key, the catalog advances repeatedly until 
you release the key. 

Move the catalog back to the previous command. If you 
press and hold this key, the catalog moves back repeatedly 
until you release the key. 

Activates the USAGE menu display (see below) showing 
the stack arguments used by the command. 

Exits the catalog and writes the command's name in the 
command line. 

Exits the catalog, leaving the command line unchanged. 

You can exit the catalog and clear any current command line by press­
ing 'ON I. 

196 22: Catalog of Commands 



Finding a Command 

You can use the keys on the left-hand keyboard to move the catalog 
to a specific character. 

• Pressing a letter key on the left-hand keyboard moves the catalog 
to the first command that starts with that letter. If there are no 
commands starting with that letter, the catalog moves to the last 
command starting with the previous letter. 

• Pressing a non-letter character key (such as .[IJ) moves the cata­
log to the first command that starts with that character. If there are 
no commands starting with that character, the catalog moves to +, 
the first command that starts with a non-letter character. 

• Pressing .1 MENUS 1 moves the catalog to -STR, the last entry in the 
catalog. 

Checking Command Usage 

You can check the correct stack argument types for the command cur­
rently displayed by the catalog. Pressing USE activates a second 
level of the catalog, called the USAGE menu, that shows all combina­
tions of arguments for the command. If the command accepts more 
than one combination of arguments, the following menu keys appear. 
(If the command accepts only one combination of arguments, the la­
bels HEXT and PREV don't appear.) 

Key 

Hj:XT 

PREV 

Description 

Displays the next combination of arguments. 

Displays the previous combination of arguments. 

Returns to the main catalog, with the current command 
displayed. You can then move through the catalog to other 
commands, or exit by pressingQ~IT again. 

You can exit both USAGE and the main catalog, and clear any current 
command line, by pressing 1 ON I. 

22: Catalog of Commands 197 



23 
Evaluation 

All calculator operations, from simple keyboard calculations to com­
plicated programs, involve evaluation. Some examples: 

• When you key one or more objects into the command line and 
press I ENTER ), the command line is translated into a program, 
which is then evaluated. 

• When you press a key on the USER menu in Immediate entry 
mode, the corresponding name is evaluated. 

• When you perform step-by-step differentiation, you press I EVAL) to 
evaluate the expression in level 1. 

• When you use the Solver to find numerical solutions, the procedure 
stored in the variable EQ is repeatedly evaluated. 

It's easiest to understand calculator operations in terms of delaying 
evaluation and causing evaluation. Although the term Udelaying eval­
uationU is new, the process is familiar: whenever you enter a quoted 
name or an algebraic, the object's delimiters indicate that you want to 
delay evaluation of the object-that you want the object to go on the 
stack. 

Delayed evaluation is the basis for programming on any computing 
device, since otherwise a program would execute as soon as you 
wrote it. The HP-28S extends the concept in a uniform way to allow 
symbolic operations-you can use names and algebraics as data for 
symbolic calculations. For example, you choose when, if ever, you 
want to evaluate an expression. You can differentiate it, symbolically 
solve it, make substitutions for variables in it, and so on. Of course, 
you can also calculate its numerical value. 

198 23: Evaluation 



This chapter describes what happens when you evaluate the various 
types of objects. As a general introduction, consider the following ob­
ject classes. 

• Data-class objects. This class comprises real numbers, complex num­
bers, binary integers, strings, arrays, and lists . The HvalueH of a data 
object is exactly what it contains. 

• Name-class objects. This class comprises global names and local 
names. The Hvaluen of a name is generally the contents of a 
variable. 

• Procedure-class objects. This class comprises algebraics and pro­
grams. The HvalueH of a procedure is the result of whatever process 
it defines. 

In a rough way, these classes define what happens when you evalu­
ate an object: it returns itself, or the contents of a variable, or the 
result of a process. It's not quite that simple, though, and more details 
are provided below for each object class. 

Data-Class Objects 

This is the simplest class of objects. Evaluating any data-class object 
returns the same object. 

Note that lists are all-purpose data objects, since they can contain any 
object type. Consider a list of names: the names are protected from 
evaluation by the list, and they can't be evaluated until they're re­
moved from the list. 

Name-Class Objects 

Generally, the HvalueH of a name is the contents of a variable. Evalua­
tion of local names is simple and is described first, followed by 
evaluation of global names. 

23: Evaluation 199 



Evaluation of Local Names 

As described in chapter 19, the use of local variables simplifies stack 
manipulations. The purpose of local variables is (1) to remove the 
variable's contents from the stack so it's out of the way and (2) to 
return a copy of the variable's contents whenever you need it. Conse­
quently, evaluating a local name always returns the contents of the 
corresponding local variable to the stack. 

Evaluation of Global Names 

In general, evaluating a global name causes evaluation of the contents 
of the corresponding global variable. In other words, evaluating a 
global name has the same effect as evaluating the object it represents. 

There are two exceptions to the general rule: 

• If no variable exists with the specified name, the name is returned 
to the stack. An undefined name used as a variable is called a for­
mal variable . 

• If the contents of the specified variable is an algebraic, the algebraic 
is not evaluated. The calculator avoids evaluation of these objects so 
you can continue symbolic calculations. If you do want evaluation, 
execute the command EVAL with the algebraic in level 1. (To eval­
uate an algebraic repeatedly until it produces a numerical result, 
execute -NUM.) 

If the variable contains a data-class object, evaluating the variable's 
name is equivalent to simply recalling the variable's contents. How­
ever, evaluating a variable's name can lead to a long chain of 
evaluations. For example, if a variable contains a name, and that 
name is the name of a second variable, and the second variable con­
tains a name, and that name is the name of a third variable, then 
evaluating the name of the first variable ultimately causes evaluation 
of contents of the third variable. 

200 23: Evaluation 



II 
Note 

Do not create a variable whose value is its own name, 
such as a variable named X that contains the name 'X'. 
Evaluating such a variable causes an endless loop. To 
halt an endless loop, you must perform a system halt 
( I ON 1 [!]), which also clears the stack. 

Similarly, do not create variables that reference one another in a circu­
lar definition. Evaluating a variable included in a circular definition 
also causes an endless loop. 

Procedure-Class Objects 

Generally, the uvalueu of a procedure is the result of whatever process 
it defines. Programs are the most general procedure-class objects, so 
they're described first, followed by algebraics. 

Evaluation of Programs 

A program is a sequence of objects and commands. This manual uses 
the terms uevaluate a program U and uexecute a programU inter­
changably. In general, evaluating a program takes the program's 
contents in order, putting each object on the stack and executing each 
command. There are two additional points to remember: 

• Unquoted names are evaluated, while quoted names go on the 
stack. Names are quoted expressly to delay evaluation, as discussed 
on page 57 . 

• Program structures are executed according to their own rules. In 
part 1 you wrote several user functions, which contain a loeal ­
variable structure. Program structures are described in chapter 26. 

23: Evaluation 201 



The rules for evaluating names and evaluating programs lead to one 
of the fundamental ideas in programming the HP-28S. For this dis­
cussion, "program" means a program stored in a variable, and "name 
of a program" means the name of the variable that contains a 
program. 

The fundamental idea is called structured programming. It means that a 
complicated task is broken into subtasks, and a program is written for 
each subtask. The main program can now be relatively simple, reflect­
ing the overall logic of the task. It can execute each subtask simply by 
including the unquoted name of the program for that subtask. If a 
subtask is executed more than once, the un quoted name can be in­
cluded more than once. If other main programs use the same subtask, 
they can execute the subtask in the same way. 

Structured programming is demonstrated in "Expanding and Collect­
ing Completely" on page 253, "Displaying a Binary Integer" on page 
257, and "Median of Statistics Data" on page 270 . 

Evaluation of Aigebraics 

Each algebraic is equivalent to a program that contains only unquoted 
names and functions . Evaluating an algebraic produces the same re­
sult as evaluating the corresponding program: unquoted names are 
evaluated, and functions are executed. This topic is also discussed in 
"Evaluation of Algebraic Objects" in the Reference Manual. 

The result of evaluating a name depends on the existence of a vari­
able with that name, as described in "Evaluation of Global Names" 
above. Some examples: 

• If a name refers to a user function, you can use the user function's 
name like a built-in function . Evaluation of the algebraic causes 
execution of the user function. The arguments to the user function, 
enclosed in parentheses and following the user function's name, are 
part of the algebraic. 

202 23: Evaluation 



• If a name refers to a program that takes no arguments from the 
stack and returns exactly one result, you can use the program's 
name to refer (indirectly) to the result. Evaluation of the algebraic 
causes execution of the program, so in effect the program's name is 
replaced by the result. For examples, see ~Summary Statistics" on 
page 262. 

• If a name refers to a second algebraic, evaluation of the first alge­
braic doesn't cause evaluation of the second algebraic. Instead, the 
second algebraic effectively replaces its name in the first algebraic. 

A special case among functions is the function ~=", which distin­
guishes equations from expressions. Depending on the Result mode 
(Symbolic or Numerical), executing = returns an equation or a nu­
merical result. 

• In Symbolic Result mode, evaluating an equation produces a new 
equation. The new left-hand expression is the result of evaluating 
the original left-hand expression. The new right-hand expression is 
the result of evaluating the original right-hand expression. 

• In Numerical Result mode, evaluating an equation produces the nu­
merical difference between the original left-hand expression (nu­
merically evaluated) and the original right-hand expression 
(numerically evaluated). 

The next section describes Result modes in more detail. 

Evaluation of Functions 

When a function is evaluated, its action depends on the current Result 
mode, which can be Symbolic or Numerical. These modes are also 
described in the next chapter, ~Modes." 

Symbolic Result Mode. This is the default case, where a function 
accepts symbolic arguments and returns symbolic results. The action 
of functions in Symbolic Result mode is evident when you calculate 
with names and expressions to create larger expressions. 

23: Evaluation 203 



Numerical Result Mode. This alternative is used in plotting and by 
the Solver. Its purpose is to ensure a numerical result from the func­
tion. In this mode, functions repeatedly evaluate symbolic arguments, 
accepting only numerical arguments and returning numerical results . 

You can force evaluation of an object until it returns a numerical re­
sult by executing -NUM (to number); in chapter 5 you did this to 
return a numerical value for 7f . 

Note 

In Numerical Result mode, do not evaluate a variable 
whose value includes its own name, such as a variable 
named X that contains the expression 'X + Y . Evaluating 
such a variable causes an endless loop. To halt an end­

less loop, you must perform a system halt (I ON I~), which also clears 
the stack. 

Similarly, do not create variables that reference one another in a cir­
cular definition. Evaluating a variable included in a circular definition 
also causes an endless loop. 

204 23: Evaluation 



24 
Modes 

You can affect the results of many operations by selecting a mode. 
Some modes, such as angle mode (Degrees or Radians), can be se­
lected by pressing a menu key. The mode's menu label includes a 
small square when the mode is selected. For example, the menu label 
for Radians angle mode appears as RAD. when that mode is 
selected. 

Most modes, such as Beeper mode (on or off), can be selected by set­
ting or clearing a user flag, using the commands SF (set flag) and C F 

(clear flag). For example, flag 51 controls Beeper mode, so you can 
turn the beeper off by executing 51 SF . 

This chapter describes how the modes affect calculator operation and 
lists the associated menu labels and flags. Also shown are annunci­
ators that appear when a mode is selected. For each mode, the 
selection listed first is the default selection, active following Memory 
Lost. 

General Modes 

These modes affect computations and the beeper. 

Angle Mode 

This mode determines whether real numbers represent angular mea­
sure in degrees or in radians. This affects arguments to trigonometric 
functions and the results from inverse trigonometric functions. 

24: Modes 205 



Degrees Mode ( t:!lEj:~ , Flag 60 Clear). Real numbers represent 
angular measure in degrees. 

Radians Mode ( [R~ft[iJ , Flag 60 Set, (211',». Real numbers repre­
sent angular measure in radians. 

Beeper Mode 

This mode controls whether the calculator makes sounds when an er­
ror occurs or BEEP is executed. 

Beeper On (Flag 51 Clear). The calculator makes sounds. 

Beeper Off (Flag 51 Set). The calculator is silent. 

Principal Value 

A solution returned by ISOL or QUAD generally requires arbitrary 
signs (+ lor-I) and integers (0, 1, 2, ... ) to represent all possible 
solutions. This mode determines whether arbitrary signs and integers 
are included in solutions generated by ISOL or QUAD. 

Principal Value Off (Flag 34 Clear). Solutions returned by ISOL 
and QUAD include variables s1, s2, ... , for arbitrary signs and n1, 
n2, .. . , for arbitrary integers. 

Principal Value On (Flag 34 Set). ISOL and QUAD take arbitrary 
signs to be + 1 and arbitrary integers to be O. 

Constants Mode 

This mode affects whether evaluation of a symbolic constant (t?, i, 
~1 I t·1R, t'lR::'::R, or rr) returns its numerical value. In Numerical Results 
mode (flag 36 clear), evaluation of a symbolic constant returns its nu­
merical value regardless of Constants Mode. 

Symbolic Constants (Flag 35 Set). Evaluation of a symbolic con­
stant returns its symbolic form. 

206 24: Modes 



Numerical Constants (Flag 35 Clear). Evaluation of a symbolic 
constant returns its numerical value. 

Results Mode 

The current Result mode affects the result of evaluating a function 
when its arguments are symbolic. 

Symbolic Results (Flag 36 Set). Given symbolic arguments, func­
tions return symbolic results . 

Numerical Results (Flag 36 Clear). Functions always return nu­
merical results . To do so, functions evaluate symbolic arguments 
repeatedly to determine their numerical values. Evaluation of a sym­
bolic constant returns its numerical value regardless of Constants 
Mode. 

Entry and Display Modes 

These modes affect how objects are entered and displayed. 

Entry Mode 

The current entry mode affects the result when you press a command, 
function, or User menu key. The entry mode automatically changes 
when you press c::::J, .c:::J , or 0; you can also change it manually by 
pressing [£J . The appearance of the cursor indicates the current entry 
mode. For details, see chapter 18, uThe Command Line.'" 

Immediate Entry (Open Cursor). The command line is executed 
when you press a command, function, or User menu key. 

Algebraic Entry (Partly Filled Cursor). The command line is exe­
cuted when you press a command key. 

Alpha Entry (Solid Cursor, a). The command line is executed only 
when you press I ENTER I. 

24: Modes 207 



Replace or Insert Mode 

Pressing [If§] in the cursor menu switches between Replace and Insert 
modes. The appearance of the cursor indicates Replace or Insert 
mode. 

Replace Mode (Box Cursor). New characters replace existing 
characters. 

Insert Mode (Arrow Cursor). New characters are inserted between 
existing characters. 

Uppercase or Lowercase 

Pressing ITill switches between Uppercase and Lowercase modes. 

Uppercase Mode. Pressing a letter key writes an uppercase letter in 
the command line. 

Lowercase Mode. Pressing a letter key writes a lowercase letter in 
the command line. 

Level 1 Display 

Many objects are too large to show on a single display line. You can 
choose to use more than one line to display the object in level I, if 
needed, or to use only one line regardless of the object's size. This 
choice affects the printed output in Trace mode. 

~ .......... , Flag 45 Set). Objects in level 1 are displayed on 
more than one line if needed. 

ML Off (_ ......... _ , Flag 45 Clear). Objects in level 1 are displayed on 
only one line. 

208 24: Modes 



Decimal Point Mode 

The comma and the period share the roles of radix mark (to distin­
guish the integer part of a number from the fractional part) and 
separator (to distinguish objects in the command line; the space is al­
ways a separator). You can assign these roles to the comma and 
period in either order. 

RDX, Off ( ROX J ,Flag 48 Clear). The period is the radix mark 
(decimal point), and the comma is a separator. 

RDX, On ( R!:fr: .J • , Flag 48 Set). 
The comma is the radix mark, and the period is a separator. 

Number Format 

These modes determine the number of decimal places displayed for 
real numbers. The commands FIX, SCI, and ENG require a real-num­
ber argument n. The current number format mode also affects the 
command RND (round) . 

STD Format ( sro,;] ). Real numbers are displayed with a decimal 
point or an exponent only if necessary. 

FIX Format (FfI X.). Real numbers are displayed with n decimal 
places. An exponent is displayed only if necessary. 

SCI Format ( "' SCI.). Real numbers are displayed as a mantissa, 
which is less than 10 and contains n decimal places, and an exponent. 

ENG Format ( ENG.). Real numbers are displayed as a mantissa, 
which contains n + 1 digits, and an exponent that is a multiple of 3. 

Integer Base 

You can choose the base used for entering and displaying binary inte­
gers. The choice of base doesn't affect the internal structure of binary 
integers, which are always treated as a sequence of bits. 

24: Modes 209 



DEC Base ( DEC. ). Binary integers entered without base markers 
are interpreted in base 10. All binary integers are displayed in base 10 
and show a "d" base marker. 

HEX Base ( HEX· ). Binary integers entered without base markers 
are interpreted in base 16. All binary integers are displayed in base 16 
and show an "h" base marker. 

OCT Base ( OCT· ). Binary integers entered without base markers 
are interpreted in base 8. All binary integers are displayed in base 8 
and show a " 0 " base marker. 

BIN Base ( BIN. ). Binary integers entered without base markers 
are interpreted in base 2. All binary integers are displayed in base 2 
and show a "b" base marker. 

Binary Integer Word size 

The current word size can range from 1 bit through 64 bits. It controls 
how binary integers are displayed; also, binary integers are truncated 
to the current wordsize when used as arguments or returned as re­
sults. To set the wordsize to n, execute n ~=;H1S (store wordsize). 

Recovery Modes 

The recovery modes determine whether copies are made of command 
lines, of the stack, and of arguments to commands. These copies can 
help you to recover if you make a mistake. 

CMD Mode 

This mode determines whether a copy of the command line is saved 
when you press 1 ENTER 1 (or a key that performs ENTER). 

CMD On ( CMD. ). Command lines are saved for recovery by .1 COMMAND I. 

210 24: Modes 



CMD Off ( CMD ). Command lines are not saved. 

UNDO Mode 

This mode determines whether a copy of the stack is saved when you 
press 1 ENTER 1 (or a key that performs ENTER). 

UNDO On ( UNDO- ). The stack is saved for recovery by .1 UNDO I. 

LAST Mode 

This mode determines whether copies of arguments are saved when a 
command is executed. 

LAST On (Flag 31 Set, LAST - ). Arguments are saved for recovery 
by LAST or in case of error. 

LAST Off (Flag 31 Clear, LA~fT ). Arguments are not saved. If an 
error occurs, the arguments to the last command are not returned to 
the stack. 

Mathematical Exceptions 

Certain errors that can arise during ordinary real number calculations 
are called mathematical exceptions. An exception can act as an ordinary 
error and halt the calculation, or it can supply a default result and 
allow the calculation to proceed. 

Infinite Result Action 

An Infinite Result exception occurs when a calculation returns an infi­
nite result. Examples include evaluation of 'L t·~ ( 0) " 'T A t·~ ( 90) , 

(in Degrees angle mode), or ')<_-,-0' . 

Infinite Result Error On (Flag 59 Set). Infinite Result exceptions 
are errors. 

24: Modes 211 



Infinite Result Error Off (Flag 59 Clear). Infinite Result exceptions 
return ±9 .99999999999E499 and set the Infinite Result indicator (flag 
64). 

Overflow Action 

An Overflow exception occurs when a calculation would return a fi­
nite result whose absolute value is greater than the largest machine­
representable number. Examples include the evaluation of 

I 9E499 +9E499 I , I E)<P (500~3) I , or I FACT (2~3~3(1) I. 

Overflow Error Off (Flag 58 Clear). Overflow exceptions return 
±9.99999999999E499 and set the Overflow indicator (flag 63). 

Overflow Error On (Flag 58 Set). Overflow exceptions are errors. 

Underflow Action 

Underflow exceptions occur when a calculation returns a finite result 
whose absolute value is smaller than the smallest machine­
representable number. Examples include the evaluation of 

I 1 E - 4 9 9 ..... 2 I or I E ::-:; P ( - 5 0 (H3) I • 

Underflow Error Off (Flag 57 Clear). Underflow exceptions return 
the default result O. They set the Underflow+ indicator (flag 62) or 
the Underflow - indicator (flag 61), depending on the sign of the ac­
tual result. 

Underflow Error On (Flag 57 Set). Underflow exceptions are errors. 
They return the error message t·l e'3 ·;j t i ve Un d e r- flo l,.1 or 
Pos it i \Ie Under- f 1 0 1 .. .1, depending on the sign of the actual result. 

Printing Modes 

The following modes give you greater flexibility in printing. 

212 24: Modes 



Trace Printing 

You can automatically print a record of your calculations. 

Trace Printing Off ( TRAC ,Flag 32 Clear). No automatic printing 
occurs. 

Trace Printing On ( TRAC III , Flag 32 Set). Each time the command 
line is executed, the calculator prints the contents of the command 
line, the operation that caused execution, and the result in level 1. 

Auto CR Mode 

Generally you want to send data to the printer and print the data 
with a single command. In other cases, such as printing graphics, you 
want to accumulate data in the printer without printing. This mode 
determines whether print commands automatically cause printing. 

Auto CR (Flag 33 Clear). Print commands send Carriage Right at 
the end of transmission, causing the data to be printed. 

Accumulate Print Data (Flag 33 Set). Print commands send data 
without Carriage Right, causing the data to accumulate in the printer 
buffer. 

Print Speed 

The calculator can' t sense when the printer is ready for more data, so 
it computes the rate at which data can safely be transmitted. This 
mode determines whether the computation is made for a printer 
powered by batteries or one that is powered by an adaptor. 

Normal Print Speed (Flag 52 Clear). The calculator sends data at a 
rate suitable for battery-powered printing. 

Faster Print Speed (Flag 52 Set). The calculator sends data at a 
rate suitable for adaptor-powered printing. 

24: Modes 213 



Print Spacing 

This mode determines whether blank lines are automatically printed. 

Single-Space Printing (Flag 47 Clear). No blank lines are printed 
automatically. 

Double-Space Printing (Flag 47 Set). One blank line is automati­
cally printed between every two text lines. 

214 24: Modes 



25 
System Operations 

This chapter describes special key combinations that interrupt normal 
HP-28S operation. These system operations include printing the dis­
play, adjusting display contrast, halting programs, resetting memory, 
and performing diagnostic tests . 

All system operations begin by pressing the I ON I key. You can cancel 
any system operation by pressing I DEL I before you release ION I. 

The table below shows the keystrokes for system operations, followed 
by a description of each. 

System Operations 

Name 

Print Display 

Contrast Control 

Attention 

System Halt 

Memory Reset 

Repeating Test 

Keyboard Test 

Cancel System Operation 

Sr llll,Orv' 

Keystrokes 

ION 1m 
I ON 10 or I ON IG 

IONI 

IONlm 

I ON 1[ill[][E] 

IONI~ 

ION II NEXT I 

ION II DEL I 

25: System Operations 215 



Printing the Display 

To print the current display image: 

1. Press and hold I ON I. 
2. Press OJ (the key with uPRINr above it). 

3. Release I ON I. 

Contrast Control 

To change the display contrast: 

1. Press and hold I ON I. 
2. Press [B to increase the contrast or press G to decrease the con­

trast. As long as you hold down ION I, you can press [B or G 
repeatedly or continuously to find the best contrast. 

3. Release I ON I. 

Clearing Operations 

There are three clearing operations, given below in order of increasing 
severity. 

Attention 

To return to the normal stack display, execute Attention by pressing 
ION I. In some cases you may need to press ION I twice. Attention has 
following effects: 

• Clears the command line. 

• Cancels all command or procedure execution. 

• Exits special operations such as FORM, PLOT, and catalogs. 

• Restarts normal keyboard operation. 

216 25: System Operations 



System Halt 

To halt a program that doesn' t respond to ION I, execute System Halt 
as follows: 

1. Press and hold I ON I. 
2. Press [!] . 

3. Release I ON I. 

System Halt has the following effects: 

• All the effects of Attention. 

• Clears all suspended programs and local variables. 

• Clears the stack. 

• Clears items saved for recovery (CMD, UNDO, LAST). 

• Clears the custom menu. 

• Selects HOME as the current directory. 

• Activates the cursor menu. 

• Selects Trace Printing Off mode. 

Memory Reset 

To reset all memory: 

1. Press and hold I ON I. 
2. Press and hold c::ill§J and [£J . 

3. Release c::ill§J and [£J . 

4. Release I ON I. 

Memory Reset has the following effects: 

• All the effects of Attention and System Halt. 

• Purges all user variables and directories. 

• Resets all user flags to their default values. 

• Beeps and displays Meroor y Los t in display line 1. 

25: System Operations 217 



Test Operations 

There are two system operations for testing the calculator. The first is 
a repeating test of the electronics, which runs without assistance. The 
second is a keyboard test, which requires you to press all the keys in a 
specified sequence. Both tests perform a System Halt. 

Repeating Test 

To perform the repeating test: 

1. Start the test. 

a. Press and hold I ON I. 
b. Press~. 

c. Release I ON I. 
2. The display shows horizontal and vertical lines, a blank display, 

a random pattern, and then it briefly displays the result of the 
test before starting over. 

• The message 0 K - 2 ::: ::; indicates that the calculator passed the 
test. 

• A message such as 1 FA I L indicates that the calculator failed 
the test. The number indicates the nature of the failure. 

If you interrupt the test by pressing a key, the test returns a 
failure message because it didn't expect any keystrokes. Such a 
failure message doesn 't indicate a problem with the calculator. 

3. Exit the test by performing a System Halt. 

a. Press and hold I ON I. 
b. Press~. 

c. Release @ill. 

218 25: System Operations 



Keyboard Test 

To perform the keyboard test: 

1. Start the test. 

a. Press and hold @ill . 

b. Press I NEXT I. 
c. Release 1 ON I. 

2. The calculator displays KEYBOARD TEST . 

a. Test the first row of the lefthand keyboard by pressing 0 
[[) [ill []J [I] IT]. 

b. Test the second through sixth rows of the lefthand key­
board in the same way. 

c. Test the first row of the righthand keyboard by pressing 
[ill'[] I DEL 1 [!] [!] ~ [E . 

d. Test the second through seventh rows of the righthand 
keyboard in the same way. (Press the I ON 1 key in the correct 
order-it won't interrupt the test.) 

3. If you've pressed the keys in the correct order and the keyboard 
is working properly, the calculator displays cw - 2 :::: S. A message 
such as 1 FA I L indicates that you didn't follow the correct or­
der or the calculator failed the test. The number indicates the 
nature of the failure . 

4. Press ION I. 

25: System Operations 219 





Part 3 
Programming 

Page 222 26: Program Structures 

234 27: Interactive Programs 

240 28: Programming Examples 



26 
Program Structures 
Many programs are equivalent to a series of immediate-execute key­
board computations. Objects go on the stack and commands are 
executed, producing the desired result. These programs are simply a 
record of the objects and commands, written in the same order as you 
would execute them from the keyboard. However, there are features 
you can use in programs that go beyond simple keystrokes. 

For example, in part 1 you wrote programs that created local vari­
ables. The special command -t, followed by one or more names, 
followed by a procedure, is called a local-variable structure. You can't 
execute the command -t from the keyboard; it must appear in the 
same program as the names and procedure that constitute the entire 
program structure. 

This chapter first reviews the local-variable structure. It then describes 
additional program structures that conduct tests and modify program 
execution based on the result. All commands for these program struc­
tures appear in the PROGRAM BRANCH menu. Be sure to read the 
first example in "Conditional Structures" on page 223, which intro­
duces concepts used in the remainder of the chapter. 

Local-Variable Structure 

In part 1 you wrote several user functions, which are the most impor­
tant application of the local-variable structure. There are two 
requirements for user functions. They must: 

• Explicitly indicate their arguments . 

• Return exactly one result. 

222 26: Program Structures 



For example, the user function COT (from chapter 5) was written: 

Here the local-variable structure stores one argument in a local vari­
able ::< (satisfying the first requirement) and evaluates the expression 

I I ~jI.}';: TAt·l';: >:::;. :;. I (satisfying the second requirement). The user func­
tion O-+G (from chapter 14) included a program rather than an 
expression but, since the program returned exactly one result, O-+G 
also satisfied the second requirement. 

These requirements apply only to user functions. More generally, local 
variables are used as a substitute for stack manipulations. The follow­
ing example returns the sum and difference of two numbers. Since it 
returns two results, it can't be a user function. -

« ~ x y « x y + x y - » » 

For more examples, see the programs in chapter 28. They use local­
variable structures more often to avoid stack manipulations than to 
create user functions . 

Conditional Structures 

Conditional structures enable a program to test a specified condition 
and make a decision based on the result of the test. This section first 
gives an example of a conditional structure. It uses that example to 
discuss program structures in general, and then it describes other 
types of conditional structures. 

Suppose you're writing a program that uses the variable x, and you 
want to calculate (sin x)jx. A problem arises because the quotient is 
undefined when x = O. The following example returns (sin x)jx if 
x =1= 0, or returns 1 if x = O. 

IF X 0 ~ THEN X SIN X / ELSE 1 END 

26: Program Structures 223 



Here's how this structure works when you execute the program: 

1. The IF command simply marks the start of the structure. It can 
be anywhere before the THEN command. 

2. X is evaluated. 

3. The number 0 goes on the stack. 

4. The command ~ takes the value of X and the number 0 as 
arguments. 

• If the arguments are Hnot equar, ~ returns 1. 

• If the arguments are not Hnot equar, ~ returns o. 
5. The command THEN takes 1 or 0 as its argument. 

• If its argument is 1, THEN evaluates the program up to ELSE 
(namely::·:: ::; I t·l >( /) . 

• If its argument is 0, THEN evaluates the program from ELSE 
to END (namely 1). 

6. Program execution continues after the END command. 

Before continuing with specifics about conditional structures, here's 
some general information about program structures. 

Program-Structure Commands. The commands IF, THEN, ELSE, 
and END are examples of program-structure commands. The order and 
meaning of these commands are similar to their use in English. You 
can't use program-structure commands as flexibly as other commands; 
they work only in the combinations described in this chapter. 

Test Functions and Commands. The function ~ is called a test 
function . Given two numbers, ~ returns 1 or 0, indicating whether the 
test is true or false. Other test functions are <, £', ::':,>, and ==. (Re­
member that = is used for equations, not to test equality.) Given 
symbolic arguments, test functions return a symbolic result. 

There are also test commands that always return 1 or O. For example, 
the test command SAME is similar to ==, but it simply tests whether 
the two objects are identical. Additional test commands are available 
for working with flags (described next). For more information about 
test functions and commands, see HPROGRAM TEST" in the Refer­
ence Manual. 

224 26: Program Structures 



Flags. The numbers 1 and 0 that are returned by test commands are 
called stack flags. Because they represent the truth or falsity of the 
test, 1 is called a true flag, and 0 is called a false flag. 

The term Uflag" also refers to the built-in user flags . They are num­
bered 1 through 64; flags 31 through 64 have specific meanings to the 
calculator, while flags 1 through 30 can represent any true/false dis­
tinction you wish. You can effectively store a stack flag in a user flag, 
since both represent a truth value. For example, the sequence 

IF A B < THEN 12 SF ELSE 12 CF END 

sets flag 12 if A < B, or it clears flag 12 if A ~ B. You can later test 
whether flag 12 is set by the sequence 

IF 12 FS? THEN 

which returns the same truth value as the original test A B <. The 
advantage to this technique is that the truth value of the original test 
is preserved, even if the values of A and B have changed. The com­
mands for changing and testing user flags appear in uPROGRAM 
TEST" in the Reference Manual. For the remainder of this chapter, 
Uflag" refers to a stack flag. 

Clauses. The objects and commands between two program-structure 
commands are called a clause. Each clause is handled as a single en­
tity by the program structure. A clause is labeled by its logical role or 
by the command that precedes it. In the first example: 

• The clause between IF and THEN (>( 0 "') is called the test clause 
or IF clause. 

• The clause between THEN and ELSE (X SIN X /) is called the 
true clause or THEN clause. 

• The clause between ELSE and END (1) is called the false clause or 
ELSE clause. 

26: Program Structures 225 



The clauses in the example represent simple numerical calculations, 
but you can include any sequence of objects and commands. In effect, 
a clause is like a subprogram within the program. If you write a sepa­
rate program that contains the clause and store this program in a 
variable, you can use the variable's name as the entire clause. In this 
case a simple-looking structure like 

IF A THEN B ELSE C END 

can represent a complicated decision process with two possible com­
plicated results, depending on the contents of A, B, and C. 

IF ... THEN ... ELSE ... END 

Using the terminology just defined, the evaluation of this conditional 
structure can be described as follows: The IF clause is evaluated and 
returns a flag. If the flag is true, the THEN clause is evaluated; if the 
flag is false, the ELSE clause is evaluated. 

For another example of this structure, see "FIB2 (Fibonacci Numbers, 
Loop Version)" on page 248. 

IFTE (If-Then-Else-End Function) 

The first example in this chapter can be written in algebraic syntax by 
using the function IFTE: 

I IFTE(X.e0,SIN(X) / X, 1) I 

This form is handy for symbolic calculations. If you execute the pro­
gram-structure version while X is undefined, this algebraic form is the 
result. The arguments to IFTE must be representable in algebraic syn­
tax; to include RPN commands in the conditional, you must use the 
program-structure form. 

The IFTE function is used in "FIBI (Fibonacci Numbers, Recursive 
Version)" on page 247. 

226 26: Program Structures 



IF ... THEN ... END 

If an ELSE clause isn' t required-that is, if the choices are to do 
something or do nothing-you can omit ELSE from the program 
structure. The following example ensures that the object in level 1 is 
greater than the object in level 2 by swapping them if necessary. 

IF DUP2 ~ THEN SWAP END 

Note the use of DUP2 to make copies of the objects. The copies are 
then consumed by the comparison ~ . For another example of IF . . . 
THEN ... END, see HSORT (Sort a List)" on page 270. 

1FT (If-Then-End Command) 

You could write the previous example by using the command 1FT in­
stead of the program structure: 

DUP2 ~ « SWAP» 1FT 

The sequence D U P 2 ~ leaves a flag on the stack, the program 
.:;:: S ~'l A P ::,. goes on the stack, and the command 1FT takes the flag 
and the program as arguments. If the flag is true, 1FT evaluates the 
program; if the flag is false, 1FT drops the program. The result is iden­
tical to the program-structure form. 

Error Traps 

In some cases you can predict that an error might occur during pro­
gram execution. Normally an error cancels program execution; but if 
you trap the offending command by enclosing it in a special program 
structure, the program can continue execution when the error occurs. 

Remember the problem with (sin x)/x-it causes an Infinite Result er­
ror when x = o. Another method for defining (sin 0)/0 = 1 would 
be: 

IFERR X SIN X / THEN DROP2 1 END 

26: Program Structures 227 



This means: Evaluate the IFERR clause (::< S I ~l ::.:: /) . If an error oc­
curs, evaluate the THEN clause (D R (I P 2 1 ). 

This example includes the command DROP2 to drop the two zeros 
that caused the error. Note that this assumes that LAST is enabled. If 
LAST is disabled, the zeros aren't present and the DROP2 command 
is inappropriate. Be sure to consider the state of LAST when using 
error traps. 

Another example of I FEF.:F.: . . . THEt·l . . . Et~D appears in HBDISP (Bi­
nary Display)" on page 259 . Also, you can include an ELSE clause to 
be evaluated only if an error doesn't occur, using the form 

I FERF.: ... THE~l ... ELSE . . . EtW 

Definite Loop Structures 

Loop structures contain a loop clause that is repeatedly evaluated. In a 
definite loop structure, the program specifies in advance how many 
times to evaluate the loop clause. Another type of program structure, 
called an indefinite loop structure, uses a test clause to determine 
whether to repeat evaluation of the loop clause. This section describes 
definite loop structures; indefinite loop structures are described on 
page 231 . 

START ... NEXT 

The following example sounds a tone four times. 

1 4 START 440 .1 BEEP NEXT 

This structure works as follows: 

1. The command START takes the values 1 and 4 from the stack 
and creates a counter. The counter will be used to keep track of 
how many times to repeat the loop. The value 1 specifies the 
initial value of the counter, and the value 4 specifies its final 
value. 

228 26: Program Structures 



2. The loop clause 44~) ,1 BEEP is executed. 

3. The command NEXT adds 1 to the counter. 

4. The current counter value is compared with the final counter 
value . 

• If the current counter value doesn't exceed the final counter 
value, steps (2), (3), and (4) are repeated . 

• If the current counter value exceeds the final counter value, 
the definite loop structure is completed, and program execu­
tion continues after the NEXT command. 

In this example, steps (2), (3), and (4) are repeated four times. The 
loop counter is first incremented from 1 to 2, then to 3, then to 4, and 
then to 5. At this point it exceeds the final value 4, so the definite 
loop structure ends. Note that step (1) is performed before any tests 
are made, so the loop clause is always evaluated at least once. For 
another example of START ... NEXT, see HFIB2 (Fibonacci Numbers, 
Loop Version)" on page 248. 

FOR counter ... NEXT 

In many cases it's handy to use the current value of the counter as a 
variable in the loop clause. To do so, replace START by FOR name. 
The counter becomes a local variable with the specified name. As be­
fore, this manual follows the convention of writing local names in 
lowercase letters to help you distinguish them from global names. The 
following example puts the first five square integers on the stack. 

1 5 FOR x x SQ NEXT 

The sequence FOr:: x is executed only once. The sequence}( Sf! is 
the loop clause, which is executed repeatedly. 

26: Program Structures 229 



The examples so far have specified an initial counter value of 1, but 
any integer is acceptable. Since you're using the counter as a variable, 
set the initial and final counter values to the desired initial and final 
variable values. The following example puts the third through ninth 
square integers on the stack. 

3 9 FOR x x SQ NEXT 

For another example, see HBDISP (Binary Display)" on page 259 . 

... increment STEP 

The command NEXT always increments the counter by 1. To specify 
a different increment, replace NEXT by n STEP, where n is the desired 
increment. STEP is commonly used following FOR counter, as demon­
strated in the examples below, but it can also be used following 
START. The following example puts the odd square integers from 12 
through 52 on the stack. 

5 FOR x x SQ 2 STEP 

The loop clause ::< SQ 2 is executed three times. The command STEP 
first increments the counter from 1 to 3, then to 5, and then to 7. At 
this point the current value of the counter exceeds the final value 5, 
so the definite loop structure ends. 

The examples so far have used ascending values of the counter. For 
descending values of the counter, you can specify a negative incre­
ment. The following example puts the odd square integers from 52 
through 12 on the stack. 

5 1 FOR x x SQ -2 STEP 

The sequence -2 ::;TEP decrements the counter from 5 to 3, then 1, 
and then -1. At this point the current value of the counter is less 
than the final value 1, so the definite loop structure ends. 

The program HSORT (Sort a List)" on page 270 uses -1 STEP to dec­
rement the counter by one. In this case STEP alters the value of the 
counter by 1, as does NEXT, but the counter decreases rather than 
increases. 

230 26: Program Structures 



Indefinite Loop Structures 

If you can't specify in advance how many times to repeat a loop, you 
can write an indefinite loop structure that contains both a loop clause 
and a test clause. The clauses are executed alternatingly, with the re­
sult of the test clause determining whether to continue. 

This section describes two types of indefinite loop structure. The first, 
DO ... UNTIL ... END, executes the loop clause before the test clause. 
Consequently, the loop clause is always executed at least once. The 
second type, WHILE . . . REPEAT ... END, executes the test clause 
first. Consequently, in some cases the loop clause is never executed. 

DO ... UNTIL ... END 

The following example evaluates an object repeatedly until evaluation 
doesn't change the object. Since evaluation must occur at least once 
before the first test can be made, this example uses DO ... UNTIL . . . 
END. 

00 OUP EVAL UNTIL OUP ROT SAME END 

This structure works as follows: 

1. The loop clause 0 U P n.' A L is executed, leaving the object and 
the evaluated result on the stack. 

2. The test clause OUP F.:OT SAt'lE is evaluated, leaving the evalu­
ated result and a flag on the stack. The flag indicates whether 
the object and the evaluated result are the same. 

3. The flag is taken from the stack. Its value determines whether 
the loop structure is repeated . 

• If the flag is false, steps (1), (2), and (3) are repeated . 

• If the flag is true, the loop structure ends. 

26: Program Structures 231 



Suppose that you want to completely evaluate I A +8 I, where A con­
tains I P +G! I and P contains 2. The first evaluation of the loop clause 
returns I A +8 I and I P +G! +8 I • These expressions are not the same, so 
the loop clause is evaluated a second time, returning I P +G! +8 I and 

I 2 +G! +8 I • These expressions are not the same, so the loop clause is 
evaluated a third time, returning '2 +G! +8 I and '2 +0 +8 I • These ex­
pressions are the same, so the loop structure ends. 

The effect of this example is similar to the effect of .... NUM, except 
.... NUM causes an error if a name is undefined. For a more versatile 
version of this example, see "MULTI (Multiple Execution)" on page 
253. 

WHILE ... REPEAT ... END 

The following example takes any number of vectors from the stack 
and adds them to the current statistics matrix. Since it needs to test 
whether the object in level 1 is a vector before attempting to add it, 
this example uses WHILE ... REPEAT ... END. 

WHILE OUP TYPE 3 == REPEAT I+ END 

This structure works as follows: 

1. The test clause OUP TYPE 3 == is evaluated, leaving a flag on 
the stack. The flag indicates whether the object in level 2 is a 
real vector. 

2. The flag is taken from the stack. Its value determines whether 
the loop clause is executed. 

• If the flag is true, the loop clause I + is executed, adding the 
vector to the current statistics matrix, and steps (1) and (2) are 
repeated. 

• If the flag is false, the loop structure ends. 

Note that WHILE . . . REPEAT . . . END ends when the flag is false, 
but DO . . . UNTIL ... END ends when the flag is true. If you need to 
change the truth value of a test clause, add NOT as the last com­
mand: WHILE ... NOT REPEAT or UNTIL . .. NOT END. 

For another example of WHILE . . . REPEAT . .. END, see "PAD (Pad 
With Leading Spaces)" on page 257. 

232 26: Program Structures 



Nested Program Structures 

Since a clause in a program structure is like a subprogram, the clause 
itself can contain a program structure. The structure inside the clause 
is called the inner structure, and the structure that contains the clause 
is called the outer structure. The program "SORT (Sort a List)" on page 
270 demonstrates nested definite loops. 

There is no limit to the levels of nesting, except perhaps your ability 
to understand the logic. In some cases it's easier to store the inner 
structures in programs and use their names as clauses in the outer 
structures. 

26: Program Structures 233 



27 
Interactive Programs 

Some programs require direction from the user- that is, from you 
when you're running the program. When the user must supply values 
for variables, a program can ask for input. When the user must 
choose among several alternatives, a program can ask for a choice. 

This chapter demonstrates how a program can ask for input or a 
choice, using the following commands from the PROGRAM CON­
TROL menu. 

Command Description 

HALT Suspend program execution. 

s WAIT Suspend program execution for s seconds. 

KEY Return a key string if a key was pressed. 

f s BEEP Sound a tone of frequency f for s seconds. 

CLLCD Clear the display. 

n DISP Display an object in line n of the display. 

CLMF Restore the normal display when the program completes 
execution. 

Asking for Input 

The following sequence creates a custom input menu for variables A, 
B, and C, sounds a tone to alert the user, and halts for input. 

. . . -:: STO ABC ::- t'lHW 44[1 . 1 BEEP HALT . .. 

234 27: Interactive Programs 



The displayed menu shows the labels i A i, I E: I, and 1--(:- ], 
which resemble labels in the Solver menu. After entering a value on 
the stack, the user can simply press one of these keys to store the 
value in the corresponding variable. After entering the values, the 
user must press .1 caNT I to continue program execution. 

Asking for a Choice 

For complex tasks it's best to write a series of small programs, each 
performing a small task. In some cases the user has several options 
for performing one of the tasks. One approach is to write alternative 
programs to perform that task. 

Assume that one task is completed, and the user must choose among 
the programs HOP, SKIP, and JUMP for the next task. The following 
sequence creates a custom user menu for programs HOP, SKIP, and 
JUMP, sounds a tone to alert the user, and ends program execution . 

. .. { HOP :=;K I P .JUt1P } t1HW 440 . 1 BEEP ~" 

The displayed menu shows the labels HOP , SK I P ,and "'U~lP , 

which resemble labels in the User menu. When the user presses one 
of the menu keys, the next task is performed. That task may end with 
a similar sequence, offering the user a different set of options; and so 
on throughout the entire complex task. 

A More Complicated Example 

The example below displays a message, waits until the user presses a 
key, and checks that the key is defined (that is, represents one of the 
choices). If the key is defined, the corresponding action is performed; 
if the key isn't defined, an error message is displayed and the process 
starts over. 

This example uses program structures described in the previous chap­
ter. There is an "outer" DO . . . UNTIL . . . END structure that repeats 
until the user presses a defined key. The outer DO clause contains an 
"inner" DO ... UNTIL . . . END structure that repeats until the user 
presses a key. The outer UNTIL clause contains a conditional that 

27: Interactive Programs 235 



displays an error message if the key is undefined. In the listing below, 
the indentation marks the outer structure, the clauses, the inner struc­
tures, and their clauses . 

Sequence 

"Apple" "Banana" 
"Chet- ri=,ll 

DO 

CLLCD 

11 Pr €os::. -'" 

D I ::;p 

" [A J f 0 t- A pp lfe " 

2 DISP 

" [8J fot- Banana " 

3 D I :;P 

4 DI':;P 

DO UtH I L KE\' HlD 

UtHIL 

Comments 

This list contains the possible out­
comes. It remains on the stack until 
the following DO . . . UNTIL . . . END 
structure returns 1, 2, or 3, indicating 
the user's choice. 

Begin the outer loop clause. This 
clause displays option messages, 
which tell the user what the choices 
are, and gets a response from the user. 

Clear the display. 

The option message for line 1. 

Display the message. 

The option message for line 2. 

Display the message. 

The option message for line 3. 

Display the message. 

The option message for line 4. 

Display the message. 

This inner indefinite loop repeats until 
the user presses a key. The command 
KEY returns [1 if no key was pressed, 
or a string (representing the key) and 
1 if a key was pressed. When the loop 
ends, the string is left on the stack. 

Begin the outer test clause. This clause 
checks whether the key pressed was a 
defined key. 

236 27: Interactive Progral\1s 



IIAII 118 11 II ell ::-

IF DUP 

THEt·j 1 

ELSE 

CLLCD "Bad key" 
1 DE;P 

440 .1 BEEP 

1 l·lA IT 

Et·j[I 

Et·j[I 

GET 

This list contains the defined keys. 
There is a one-to-one correspondence 
between the defined keys and the pos­
sible outcomes. 

Match the key string to the list of de­
fined keys. POS (position) returns 1 if 
the key string is "A", 2 if the key 
string is "B", ::3 if the key string is 
"C", or ° if no match occurs. 

Make a copy of the position to use as 
a flag. If the position is 1, 2, or ::3, exe­
cute the THEN clause. If the position 
is 0, execute the ELSE clause. 

The key was defined, so put a true 
flag on the stack. 

The key was undefined, so display an 
error message and beep. 

Display an error message. 

Sound a tone. 

Wait 1 second. 

End the IF .. . THEN ... ELSE . . . 
END structure. If the key was defined, 
the position and a true flag are on the 
stack. If the key was undefined, only 
the position (which is also a false flag) 
is on the stack. 

End the outer indefinite loop. If the 
key was defined, the loop ends with 
the position on the stack. If the key 
was undefined, the loop clause is 
repeated. 

Given the list of possible outcomes 
and a position, get the correponding 
outcome. 

27: Interactive Programs 237 



E'.}AL 

CU1F 

Evaluate the outcome. In this example, EVAL 
has no effect because the outcome is a string. In 
a more realistic example, the outcome might be 
a program (possibly stored in a variable), so 
EVAL would be needed. 

Enable the normal stack display. 

When this sequence is executed, the user sees the option messages. 

Pr-ess 
[A] for- Apple 
[B] for- Banana 
[C] for- Cher-r-y 

If the user presses a key other than 0, ~, or @], a beep sounds and 
the error message appears for 1 second. 

key 

Then the option messages reappear. When the user presses 0,~, or 
@], the string" App 1 e", "Banana", or "Chet- r '::I" is returned to 
level 1. 

By modifying the list of possible outcomes, the option messages, and 
the list of defined keys, you can make this sequence more significant 
than putting a string on .the stack. More generally, by using local vari­
ables and putting this sequence inside a local-variable structure, you 
can make the following program. 

238 27: Interactive Programs 



« ~ kews ml m2 m3 m4 

":': DO CLLCD 
m.l DI:=;P 

m2 .-, 
'" D I ::;p 

m3 3 DISP 

m4 4 DISP 

DO UtHIL KE'r' Et-lD 

UNTIL kews SWAP POS 
IF DUP 
THEt·j 1 

EL~;E CLLCD "Bad k e l,,!" 1 D I SP 

440 ,1 BEEP 1 WAIT 

Et'j[I 
Et-jp 

GET Et.."A~ CU1F 

If you store this program in a variable named KEY?, you could per­
form the example above by executing 

{ IIApple ll "Banana ll IIChetW rl~1I 

ItAIl IIBII IIC II 

IIPress" 

" [AJ fot- Apple" 

" [BJ for Banana" 
" [CJ for Chert-I,,!" 
KE'r",? 

27: Interactive Programs 239 



28 
Programming Examples 

This chapter contains 20 programs for your HP-28S. These programs 
are useful and, more importantly, they demonstrate a variety of pro­
gramming techniques. For each program you'll find the following 
information. 

• Stack Diagram. A stack diagram is a two-column table showing 
"Arguments" and "Results". "Arguments" shows what must be on 
the stack before the program is executed; "Results" shows what the 
program leaves on the stack. 

The stack diagram doesn't show everything; a program that 
changes user memory or displays objects might have no effect on 
the stack. 

• Techniques. This is the most interesting part. When you understand 
how a technique is used in this chapter, you can use it in your own 
programs. 

• Required Programs. Some programs call others as subroutines. You 
can enter the required programs and the calling program in any 
order, but you must enter all of them before executing the calling 
program. 

• Program and Comments. This chapter formats the program listing 
to show a program's structure and process. You don't need to fol­
low the format of the listing when you enter a program. However, 
be sure to key in spaces where they appear in the listing or be­
tween objects appearing on separate lines. 

You can key in a program character by character, or you can use 
the menus to key it in command by command. It makes no differ­
ence as long as the result matches the listing. 

240 28: Programming Examples 



When you key in the program you can omit all closing parentheses 
and delimiters that appear at the very end of the program; when you 
press I ENTER I the closing parentheses and delimiters are added for 
you. 

• Example. The examples assume STD display format. To select STD 
display format, press STD I ENTER I or use the MODE menu. 

The most important technique demonstrated in this chapter is struc­
tured programming: small programs used to build other programs. The 
following programs are used in other programs. 

• BOXS is used in BOXR. 

• MULTI is used in EXCO. 

• PAD and PRESERVE are used in BDISP. 

• ~GET is used in ~X2, ~Y2, and ~Xy. 

• SORT and LMED are used in MEDIAN. 

Box Functions 

This section contains two programs: 

• BOXS calculates the total surface area of a box. 

• BOXR uses BOXS to calculate the ratio of surface to volume for a 
box. 

BOXS (Surface of a Box) 

Given the height, width, and length of a box, calculate the total area 
of its six sides. 

Arguments Results 

3: height 3: 

2: width 2: 

1 : length 1 : area 

28: Programming Examples 241 



Techniques: 

• Local-variable structure. Local variables allow you to assign names 
to arguments without conflicting with global variables. Like global 
variables, local variables are convenient because you can use argu­
ments any number of times without tracking their positions on the 
stack; unlike global variables, local variables disappear when the 
program structure that creates them is done. 

A local-variable structure has three parts. 

1. A command named ".;. ". When you key in this command, re­
member to put spaces before and after it. (Like any command, 
.;. is spelled using normal characters and is recognized only 
when it's set off by spaces. Don't confuse this one-character 
command with delimiters like # or ':;::.) 

2. One or more names. 

3. A procedure (expression, equation, or program) that includes 
the names. This procedure is called the defining procedure. 

When a local-variable structure is evaluated, a local variable is cre­
ated for each name. The values for the local variables are taken 
from the stack. The defining procedure is then evaluated, substitut­
ing the values of the local variables. 

To appreciate the power of local variables, compare the version of 
BOXS given below with the version that appears on page 244 . 

• User function . This type of program works in either RPN or alge­
braic syntax. A user function is a program that consists solely of a 
local-variable structure and returns exactly one result. 

Program 

.;. h 1 .. .1 

Comments 
Begin the program. 
Create local variables for height, 
width, and length. By conven­
tion, lower-case letters are used. 
The values are taken from the 
stack (in RPN) or from the argu­
ments to the user function (in 
algebraic syntax). 

242 28: Programming Examples 



Program 
'2*(h*w+h*1+w*1)' 

::::" 

I ENTER I 
~ BOXS I STO I 

Comments 
The defining expression for the 
surface area. Evaluating the user 
function causes evaluation of this 
expression, returning the area to 
the stack. 
End the program. 
Put the program on the stack. 
Store the program as BOXS. 

Example. One of the advantages of user functions is that they work 
in either RPN or algebraic syntax. Calculate the surface of a box 12 
inches high, 16 inches wide, and 24 inches long; make the calculation 
first in RPN and then in algebraic syntax. 

For the RPN version, first enter the height and width. 

IUSERj 3: 
2: 12 

12 I ENTER j 1 : 16 
16 I ENTER j D!miII ____ _ 

Then key in the length and execute BOXS. 

24 BOXS 3: 
2: 
1: 1728 D!miII ____ _ 

The surface area is 1728 square inches. 

Now try the algebraic version. 

~ BOXS CD 12,16,24 I EVAL j 3: 
2: 1728 
1: 1728 D!miII ____ _ 

Again, the surface area is 1728. 

28: Programming Examples 243 



BOXS Without Local Variables 

The following program uses only stack operations to calculate the sur­
face of a box. Compare this program with BOXS. 

Arguments Results 

3: height 3: 

2: width 2: 

1 : length 1 : area 

Program Comments 
. :::: Begin the program . 

DUP2 :t Calculate wl. 
F~OT Move w to level 1. 
4 PICK Copy h to level 1. 
:t Calculate who 
+ Calculate wi + who 
F:OT F:OT Move h and I to levels 2 and 1. 
:t Calculate hl. 
+ Calculate wi + wh + hl. 
2 :t Calculate 2(wl + wh + hi). 

::::. End the program. 

Because this version of BOXS isn't a user function, it can't be used in 
algebraic syntax. 

244 28: Programming Examples 



BOXR (Ratio of Surface to Volume of a Box) 

Given the height, width, and length of a box, calculate the ratio of its 
surface to its volume. 

Arguments Results 

3: height 3: 

2: width 2: 

1 : length 1 : area/ volume 

Techniques: 

• Nested user functions. BOXR is a user function whose defining ex­
pression uses BOXS in its calculation. In turn, BOXR could be used 
to define other user functions. 

Recall that BOXS was defined using h, w, and 1 as local variables, 
and note below that BOXS takes x, y, and z as arguments in the 
definition for BOXR. It makes no difference if the local variables in 
the two definitions match, or if they don't match, because each set 
of local variables is independent of the other. However, it's essential 
that local variables be consistent within a single definition. 

Program Comments 

I BO ~< S( ::< .. '::I ., z) 

. / 0:: x l':llz ) , 
::;:. 

I ENTER I 
[] BOXR ISTOI 

Begin the program. 
Create local variables for height, 
width, and length. This program 
uses x, y, and z, rather than h, w, 
and 1. 
Begin the defining expression 
with the user function BOXS. 
Divide by the volume of the box . 
End the program. 

Put the program on the stack. 
Store the program as BOXR. 

28: Programming Examples 245 



Example. Calculate the ratio of surface to volume for a box 9 inches 
high, 18 inches wide, and 21 inches long; make the calculation first in 
RPN and then in algebraic syntax. 

For the RPN version, first enter the height and width. 

~ 3: 
9 I ENTER I 2: 9 . . 1: 18 18 I ENTER I 1IiIIIlII1IilB ___ _ 

Then key in the length and execute BOXR. 

21 BOXR 

The ratio is .428571428571. 

Now try the algebraic version. 

c:J BOXR [D9,18,21 I EVALI 

Again, the ratio is .428571428571. 

Fibonacci Numbers 

3: 
2: 
1: .428571428571 1IiIIIlII1IilB ___ _ 

3: 
2: .428571428571 
1: .428571428571 1IiIIIlII1IilB ___ _ 

Given an integer n, calculate the nth Fibonacci number Fw where 

This section includes two programs, each demonstrating an approach 
to this problem . 

• FIBI is a user function that is defined recursively-its defining ex­
pression contains its own name. FIBI is short, easy to understand, 
and can be used with symbolic arguments . 

• FIB2 is a user function defined with a program. It executes faster 
than FIBl, but cannot be used with symbolic arguments. 

246 28: Programming Examples 



FIB1 (Fibonacci Numbers, Recursive Version) 

Arguments Results 

1: n 

Techniques: 

• IFTE (If-Then-Else function). The defining expression for FIB1 con­
tains the conditional function IFTE, which can be used in either 
RPN or algebraic syntax. (FIB2 uses the program structure IF .. . 
THEN ... ELSE ... END.) 

• Recursion. The defining expression for FIB1 is written in terms of 
FIBl, just as Fn is defined in terms of Fn _ 1 and Fn - 2' 

Program 

IFTE(n,fl .. 
n .. 

FIB1(n-l)+FIB1(n-2» 

I ENTER I 
~ FIB1 I 5TO I 

Comments 
Begin the program. 
Define a local variable. 
Begin the defining expression. 
Ifn~l, 

Then Fn = n; 

Else Fn = Fn - 1 + Fn - 2' 

End the defining expression. 
End the program. 

Put the program on the stack. 
Store the program as FIB 1. 

Example. Calculate F6 using RPN syntax and FlO using algebraic 
syntax. 

First calculate F6 using RPN. 

~US~~;1 IL_DDH __ ....:I 
Next calculate FlO using algebraic syntax. 

~ FIB 1 OJ 10 I EVAL II r:~'-~----------5---'~1 
.1iIDI11ilD1IlRDI ___ . 

28: Programming Examples 247 



FIB2 (Fibonacci Numbers, Loop Version) 

Arguments Results 

1: n 

Techniques: 

• IF . . . THEN . . . ELSE . .. END. FIB2 uses the program-structure 
form of the conditional. (FIBI uses IFTE.) 

• START . . . NEXT (definite loop). To calculate Fw FIB2 starts with Fo 
and F} and repeats a loop to calculate successive F/s. 

Program 

. :::: 

IF n 1 ,:; 
THEt·l n 

EL:::;E 
I} 1 

2 n 

:::;TAF.:T 

DUP 

F.:OT 

+ 

t·lE>::T 
:::;I~AP Df::OP 

nm 

[ENTER I 
o FIB2 [STO I 

Comments 

Begin the program. 
Create a local variable. 
Begin the defining program . 
If n ~ 1, 
Then Fn = n; 

Begin ELSE clause. 
Put Fo and F} on the stack. 

From 2 to n, 
Do the following loop: 
Make a copy of the latest F (ini­
tially F}). 

Move the previous F (initially Fo) 
to level 1. 
Calculate the next F (initially F2)' 

Repeat the loop. 
Drop Fn - }. 
End ELSE clause. 
End the defining program. 
End the program. 
Put the program on the stack. 
Store the program as FIB2. 

248 28: Programming Examples 



Example. Calculate F6 and FlO. Note that FIB2 is faster than FIBl. 

Calculate F6. 

I USER I 
6 FIB2 * 

Calculate FlO. 

10 F I B2 

3: 
2: 
1: 8 I1lHImDmmtma __ 

3: 
2: 8 
1: 55 I1lHImDmmllma __ 

Comparison of FIB1 and FIB2 

FIB! calculates intermediate values Fi more than once, while FIB2 cal­
culates each intermediate Fi only once. Consequently, FIB2 is faster. 

The difference in speed increases with the size of n because the time 
required for FIB! grows exponentially with n, while the time required 
for FIB2 grows only linearly with n. 

The diagram below shows the beginning steps of FIB! calculating FlO. 
Note the number of intermediate calculations: ! in the first row, 2 in 
the second row, 4 in the third row, and 8 in the fourth row. 

28: Programming Examples 249 



Single-Step Execution 

It's easier to understand how a program works if you execute it step 
by step, seeing the effect on the stack of each step. Doing this can 
help you "debug" your own programs or help you understand pro­
grams written by others. 

This section shows you how to execute FIB2 step by step, but you can 
apply these rules to any program. The general rules are: 

1. Use VISIT to insert the command HALT in the program. Place 
HALT where you want to begin single-step execution. (You'll see 
how the position of HALT within FIB2 affects execution.) 

2. Execute the program. When the HALT command is executed, the 
program stops (indicated by the "stopsign" annunciator). 

3. Select the PROGRAM CONTROL menu. 

4. Press SST once to see the next program step displayed and 
then executed. 

You can now: 

• Keep pressing SST to display and execute sequential steps. 

• Press .1 CONT I to continue normal execution. 

• Press KILL to abandon further program execution. 

5. When you want the program to run normally again, use VISIT to 
remove HALT from the program. 

250 28: Programming Examples 



For the first example, insert HALT as the first command in FIB2. 

Clear the stack and select the USER menu . 

• 1 CLEAR I 

1 USER I 

Use VISIT to return FIB2 to the command line. 

CJ FIB2 .IVISITI II ~ n 

IF n 1 ~ 
L-__ T~H~E~N~n~ ________ ~ 

Insert the HALT command. 

[EJ [JB§J .1 CONTRL I HAL T 

Store the edited version of FIB2. 

1 ENTER I 

« HALT .~ n 
« 

IF n 1 ~ 
_llIiIDl:IIimmmllmIIIlIDII 

Calculate Fl . At first, nothing happens except that the 0 annunciator 
appears. 

1 USER I 

1 FI82 

Select the PROGRAM CONTROL menu and execute SST (single-step). 
Watch the top line of the display to see the first step displayed before 
it's executed . 

• 1 CONTRLI 

SST 

Note that.;. n constitutes one step; UstepU is a logical unit rather than 
simply the next object in the program. 

28: Programming Examples 251 



Look at the general rules at the beginning of this section. Now you 
can choose one of the three alternatives described in step 4. 

For this example, press SST repeatedly until the 0 annunciator dis­
appears, indicating that FIB2 is completed. (These single-steps not 
shown here.) 

The calculation for Fl executes only the THEN clause in FIB2. 
For the second example, execute 3 FIB 2 and single-step through 
the calculation for F3. This executes the ELSE clause, including the 
START ... NEXT loop. You'll see that, for n = 3, the START . . . 
NEXT loop is executed twice. 

For the third example, suppose you want to single-step the START ... 
NEXT loop as a whole-seeing the stack before each iteration of the 
loop, but not single-stepping all the steps in FIB2 or in the loop itself. 
To do so, move the HALT command inside the loop. Then FIB2 won't 
halt until it reaches the loop, and you can use ., CONT I (continue) to 
execute the loop one iteration at a time. 

Use VISIT to return FIB2 to the command line. 

I USER I • HALT '* n 
[] FIB2 .'vlsITI « IF n 1 £:. 

THEN n 

Use the cursor menu keys to delete HALT. Then insert HALT as 
shown (following the START command). 

Store the edited version of FIB2. 

[ENTER I 

IF n 1 £:. 
THEN n 
ELSE 0 1 2 n 

START HALT .DUP R ... 

Start the calculation for F3. FIB2 will halt before performing the loop. 

3 FIB2 3: 
2: 0 
1: 1 1iIf:l1iIIl1EHII1IlIB __ 

252 28: Programming Examples 



Continue execution of the loop. FIB2 will halt before performing the 
loop a second time . 

• 1 CONTI 

Continue execution of the loop. Because this is the last iteration of the 
loop, FIB2 will execute to completion. 

~~--------------------~ .1 CaNT I 3: 
2: 
1: 2 D1.IIIIilDIIlIII1IDiIB __ 

When you're done experimenting with FIB2, don't forget to use VISIT 
to remove the HALT command. 

Expanding and Collecting Completely 

This section contains two programs: 

• MULTI repeats a program until the program has no effect. 

• EXCO uses MULTI to expand and collect completely. 

MULTI (Multiple Execution) 

Given an object and a program that acts on the object, apply the pro­
gram to the object repeatedly until the object is unchanged. 

Arguments Results 

2: object .: .. 
'- . 

1 : .:~: program ::::- 1 : resulting object 

28: Programming Examples 253 



Techniques: 

• DO ... UNTIL . . . END (indefinite loop) . The DO clause contains 
the steps to be repeated; the UNTIL clause contains the test that 
determines whether to repeat both clauses again (if false) or to exit 
(if true). 

• Programs as arguments. Although programs are commonly named 
and then executed by calling their names, programs can also be put 
on the stack and used as arguments to other programs. 

• Evaluation of local variables. The program argument to be executed 
repeatedly is stored in a local variable. It's handy to store an object 
in a local variable when you don' t know beforehand how many 
copies you'll need. 

MULTI demonstrates one of the differences between global and lo­
cal variables: if a global variable contains a name or program, the 
contents of the variable are evaluated when the name is evaluated; 
but the contents of a local variable are always simply recalled. Con­
sequently, MULTI uses the local name to put the program argu­
ment on the stack and then executes an explicit EVAL command to 
evaluate the program. 

Program 

. :::: 

DO 
DUP 
F' E',.IAL 

UtHIL 
DUP 

ROT 
SAt'lE 

Comments 
Begin the program. 
Create a local variable p that con­
tains the program argument. 
Begin the defining program . 
Begin the DO clause. 
Make a copy of the object. 
Apply the program to the object, 
returning a n?w version. (The 
EVAL command is necessary to 
execute the program because lo­
cal variables always return their 
contents to the stack 
unevaluated. ) 
Begin the UNTIL clause. 
Make a copy of the new version 
of the object. 
Move the old version to level 1. 
Test whether the old version and 
the new version are the same. 

254 28: Programming Examples 



Program 

HW 

I ENTER I 
CJ MULTI I STO I 

Comments 
End the UNTIL clause. 
End the defining program. 
End the program. 

Put the program on the stack. 
Store the program as MULTI. 

Example. MULTI is demonstrated in the next program. 

EXCO (Expand and Collect Completely) 

Given an algebraic object, execute EXPAN repeatedly until the alge­
braic doesn't change, then execute COLCT repeatedly until the 
algebraic doesn't change. In some cases the result will be a number. 

Arguments Results 

1 : I algebraic I 1 : I algebraic I 

1 : I algebraic I 1 : z 

Techniques: 

• Structured programming. EXCO calls the program MULTI twice. 
Even if you don't use MULTI anywhere else, the efficiency of re­
peating all the commands in MULTI by simply including its name a 
second time justifies writing MULTI as a separate program. 

Required Programs: 

• MULTI (page 253) repeatedly executes the programs that EXCO 
provides as arguments. 

28: Programming Examples 255 



Program 
-=::. 

::::. 

.:;:: E::<PAt·j :" 

t'lUL r I 

.:;:: COLCr » 
t'lUL r I 

I ENTER I 
~ Exeo ISTOI 

Comments 
Begin the program. 
Put EXPAN on the stack. 
Execute EXPAN until the alge­
braic object doesn't change. 
Put COLCT on the stack. 
Execute COLCT until the alge­
braic object doesn't change. 
End the program. 

Put the program on the stack. 
Store the program as EXCO. 

Example. Expand and collect completely the expression 

3x (4y + z) + (8x - 5zf. 

Enter the expression. 

I USER I 
~30X0 
rn 4 0 Y G z . rn G 
rn 8 0 X G 5 0 Z . rn . 6 2 
I ENTER I 

Expand and collect completely. 

EXCO 

Expressions with many products of sums or with powers can take 
many iterations of EXPAN to expand completely, resulting in a long 
execution time for EXCO. 

256 28: Programming Examples 



Displaying a Binary Integer 

This section contains three programs: 

• PAD is a utility program that converts an object to a string for 
right-justified display. 

• PRESERVE is a utility program for use in programs that change the 
calculator's status (angle mode, binary base, and so on). 

• BDISP displays a binary integer in HEX, DEC, OCT and BIN bases. 
It calls PAD to show the displayed numbers right-justified, and it 
calls PRESERVE to preserve the binary base. 

PAD (Pad With Leading Spaces) 

Convert an object to a string and, if the string contains fewer than 23 
characters, add spaces to the beginning. 

When a short string is displayed by using DISP, it appears left-justi­
fied: its first character appears at the left end of the display. The 
position of the last character is determined by the length of the string. 

By adding spaces to the beginning of a short string, PAD moves the 
position of the last character to the right. When the string is 23 char­
acters long, it appears right-justified: its last character appears at the 
right end of the display. 

PAD has no effect on strings that are longer than 22 characters. 

Arguments Results 

1 : object 1 : " object" 

Techniques: 

• WHILE . .. REPEAT . . . END (indefinite loop). The WHILE clause 
contains a test that determines whether to execute the REPEAT 
clause and test again (if true) or to skip the REPEAT clause and exit 
(if false) . 

28: Programming Examples 257 



• String operations. PAD demonstrates how to convert an object to 
string form, count the number of characters, and concatenate two 
strings. 

Program 
« 

» 

-+STR 

WHILE 
DUP SIZE 23 < 

REPEAT 
" " SWAP + 

END 

I ENTER I 

~ PAD ISTOI 

Comments 
Begin the program. 
Make sure the object is in string 
form. (Strings are unaffected by 
this command.) 
Begin WHILE clause. 
Does the string contain fewer 
than 23 characters? 
Begin REPEAT clause. 
Add a leading space. 
End REPEAT clause. 
End the program. 

Put the program on the stack. 
Store the program as PAD. 

Example. PAD is demonstrated in the program BDISP. 

PRESERVE (Save and Restore Previous Status) 

Given a program on the stack, store the current status, execute the 
program, and then restore the previous status. 

Arguments Results 

1 : « program » 1 : (result of program) 

Techniques: 

• RCLF and STOF. PRESERVE uses RCLF (recall flags) to record the 
current status of the calculator in a binary integer and STOF (store 
flags) to restore the status from that binary integer. 

258 28: Programming Examples 



• Local-variable structure. PRESERVE creates a local variable just to 
remove the object from the stack briefly; its defining program does 
little except evaluate the program argument on the stack. 

Program 
. :~: 

RCLF 

-t f 

E',,tAL 
f STOF 

I ENTER I 
~ PRESERVE I 8TO I 

Comments 
Begin the program . 
Recall a 64-bit binary integer 
representing the status of all 64 
user flags . 
Store the binary integer in a local 
variable f. 
Begin the defining program. 
Execute the program argument. 
Restore the status of all 64 user 
flags. 
End the defining program. 
End the program. 

Put the program on the stack. 
Store the program as PRESERVE. 

Example. PRESERVE is demonstrated in the program BDISP. 

BDISP (Binary Display) 

Display a number in HEX, DEC, OCT, and BIN bases. 

Arguments Results 

1 : # n 1 : # n 

1 : n 1 : n 

Techniques: 

• IFERR . . . THEN ... END (error trap) . To accomodate real numbers, 
BDISP includes the command R -t B (real-to-binary). However, this 
command causes an error if the argument is already a binary 
integer. 

28: Programming Examples 259 



To maintain execution if an error occurs, the R.;.-B command is 
placed inside an IFERR clause. Because no action is required when 
an error occurs, the THEN clause contains no commands. 

• Enabling LAST. In case an error occurs, LAST must be enabled to 
return the argument to the stack. BDISP sets flag 31 to pro­
grammatically enable the LAST recovery feature . 

• FOR .. . NEXT loop (definite loop with counter). BDISP executes a 
loop from 1 to 4, each time displaying n in a different base on a 
different line. 

The loop counter (named j in this program) is a local variable. It's 
created by the FOR . .. NEXT program structure (rather than by a .;.­
command) and it's automatically incremented by NEXT. 

• Subprograms. BDISP demonstrates three uses for subprograms. 

1. BDISP contains a main subprogram and a call to PRESERVE. 
The main subprogram goes on the stack and is evaluated by 
PRESERVE. 

2. When BDISP creates a local variable for n, the defining pro­
gram is a subprogram. 

3. There are four subprograms that HcustomizeH the action of the 
loop. Each subprogram contains a command to change the bi­
nary base, and each iteration of the loop executes one of these 
subprograms. 

Required Programs: 

• PAD (page 257) expands a string to 23 characters so that DISP 
shows it right-justified. 

• PRESERVE (page 258) stores the current status, executes the main 
subprograms and restores the status. 

260 28: Programming Examples 



Program Comments 
-:;:: Begin the program. 

-:::: Begin the main subprogram. 
DUP Make a copy of n. 
31 SF Set flag 31 to enable LAST. 
IFERR Begin error trap. 
I':~B Convert n to a binary integer. 

THHl If an error occur ed, 
Et·W Do nothing (no commands in 

THEN clause). 
~ n Create a local variable n. 
« Begin the defining program. 

CllCD Clear the display. 
« BIN ::;, .. Subprogram for BIN. 
. ~:: OCT );1 • Subprogram for OCT. 
« DEC ):--- Subprogram for DEC. 
-:::: HEX » Subprogram for HEX. 

4 First and last counter values. 
FOR j Start loop with counter j. 

n,tAl Evaluate one of the base subpro-
grams (initially the one for HEX). 

n ~STR Make a string showing n in the 
current base. 

PAD Pad the string to 23 characters. 
j DISP Display the string in the jth line. 

t~EXT Increment j and repeat the loop. 
);=- End the defining program. 

~":) End the main subprogram. 
PRESERVE Store the current status, execute 

the main subprogram, and re-
store the status. 

::~. End the program. 

I ENTER I Put the program on the stack. 
~ BDISP I STO I Store the program as BDISP. 

28: Programming Examples 261 



Example. Switch to DEC base, display # 100 in all bases, and check 
that BDISP restored the base to DEC. 

Clear the stack and select the BINARY menu . 

• 1 CLEAR I .1 BINARY I 

Make sure the current base is DEC and key in # 100. 

DEC 
o 100 I ENTER I 

Execute BDISP. (Don't switch menus, since you'll want to see the BI­
NARY menu in the next step.) 

BDISP I ENTER I # 64h 
# 11313d 
# 1440 

# 11131311313b 

Return to the normal stack display and check the current base. 

ION I 8: 
2: 
1: # 11313d 
DmllIBlmJIDrnllimlrnml 

Although the main subprogram left the calculator in BIN base, PRE­
SERVE restored DEC base. 

To check that BDISP also works for real numbers, try 144. 

I USER I # 913h 
# 144d 
# 22130 

# 11313113131313b 
144 BDISP 

Summary Statistics 

For paired-sample statistics it's often useful to calculate the sum of 
the squares (~x2 and ~y2) and the sum of the products (~xy) of the 
two variables. This section contains five programs: 

262 28: Programming Examples 



• SUMS creates a variable ~COV that contains the covariance matrix 
for the current statistics matrix ~DAT. 

• ~GET extracts a number from the specified position in ~COv. 

• ~X2 uses ~GET to extract ~x2 from ~COv. 

• ~Y2 uses ~GET to extract ~y2 from ~COv. 

• ~XY uses ~GET to extract ~xy from ~COv. 

If ~DAT contains n columns, ~COV is an n x n matrix. The pro­
grams ~X2, ~Y2, and ~XY refer to ~PAR (statistics parameters) to 
determine which columns contain the x data (called C1) and the y 
data (called C2). 

Techniques: 

• Matrix operations. These programs demonstrate how to transpose a 
matrix, how to multiply two matrices, and how to extract one ele­
ment from a matrix. 

• Programs usable in algebraic objects. Because ~X2, ~Y2, and ~XY 
conform to algebraic syntax (no arguments from the stack, one re­
sult put on the stack), you can use their names like ordinary 
variables in an expression or equation. 

• ~PAR convention. Several paired-sample statistics commands use a 
variable named ~PAR to specify a pair of columns in ~DAT. ~PAR 
contains a list with four numbers, the first two specifying columns. 
(The other two numbers are the slope and intercept from linear re­
gression.) 

SUMS ensures that ~PAR exists by executing 0 PREDV DROP; the 
command PREDV (predicted value) creates ~PAR with default val­
ues if ~PAR doesn't already exist, and DROP removes the 
predicted value computed for O. 

~X2, ~Y2, and ~XY use the values stored in ~PAR to determine 
which element to extract from ~COv. 

SUMS (Summary Statistics Matrix) 

Create a variable ~COV that contains the covariance matrix of the 
statistics matrix ~DAT. 

28: Programming Examples 263 



As an example, if ~DAT is the n x 2 matrix 

X2 Y2 

XII YII 

then ~COV will contain the covariance matrix 

1 : 

Program 
":.=:: 

F.:CU: 

DUP 

TF.:t~ 

SI·jAP l 

I ENTER I 

Arguments 

CJ SUMS I STO I 

Results 

1 : 

Comments 
Begin the program. 
Recall the contents of the n x m 
statistics matrix ~DAT. 
Make a copy. 
Transpose the matrix. The result 
is an m x n matrix. 
Multiply the matrices to produce 
the m x m covariance matrix. 
(Without swapping the matrices, 
the product would be an n x n 
matrix.) 
Store the covariance matrix in a 
variable ~COv. 
Make sure ~PAR exists. 
End the program. 

Put the program on the stack. 
Store the program as SUMS. 

264 28: Programming Examples 



~GET (Get an Element of ~COV) 

Given p and q, each indicating either the first or second position in 
~PAR, extract the rs element from ~COv, where rand s are the cor­
responding first or second elements in ~PAR. 

~GET is called by ~X2, ~Y2, and ~XY with the following arguments. 

• For ~X2, P 

• For ~Y2, p 

• For ~XY, p 

1 and q 

2 and q 

1 and q 

Arguments 

2: 1 or 2 

1 : 1 or 2 

Program 
·K 

ICOI,} 

IPAF.: 

DUP 
5 ROLL 
GET 
S~,jAP 

4 F.:OLL 
GET 
.-, ,*LE:T e. 

GET 
::;:. 

I ENTER I 

~ ~GET ISTOI 

1. 

2. 

2. 

Results 

2: 

1 : rs element of ~COV 

Comments 
Begin the program. 
Put the covariance matrix on the 
stack. 
Put the list of statistics param-
eters on the stack. 
Make a copy. 
Move p to level 1. 
Get r, the pth element in ~PAR. 
Move ~PAR to level 1. 
Move q to level 1. 
Get s, the qth element in ~PAR. 
Put { r, s } on the stack. 
Get the rs element from ~COv. 
End the program. 

Put the program on the stack. 
Store the program as ~GET. 

28: Programming Examples 265 



2;X2 (Sum of Squares of x) 

Calculate ~x2, where the x's are the elements of C1 (the column speci­
fied by the first parameter in ~PAR) . 

Arguments 

Program 

1 1 

::i:GET 
::::. 

I ENTER I 
~ ~X21 STO I 

Results 

Comments 
Begin the program. 
Specify C1 twice. 
Extract ~x2. 
End the program. 
Put the program on the stack. 
Store the program as ~X2 . 

2;Y2 (Sum of Squares of V) 

Calculate ~y2, where the y's are the elements of C2 (the column speci­
fied by the second parameter in ~PAR). 

Arguments 

Program 

2 2 

::i:GET 

I ENTER I 
~ ~Y21 STO I 

Results 

1: ~y2 

Comments 
Begin the program. 
Specify C2 twice. 
Extract ~y2 . 
End the program. 
Put the program on the stack. 
Store the program as ~Y2. 

266 28: Programming Examples 



~Xy (Sum of Products of x and V) 

Calculate '1:.xy, where the x's and y's are corresponding elements of C1 
and C2 (the columns specified by the first and second parameters in 
'1:.PAR). 

Arguments 

Program 
« 

1 2 

:GET 
::::-

I ENTER I 
~ ~Xy ISTOI 

Results 

1: ~xy 

Comments 
Begin the program. 
Specify C1 and C2. 

Extract '1:.xy. 
End the program. 

Put the program on the stack. 
Store the program as '1:.Xy. 

Example. Calculate '1:.X2, '1:.Y2, and '1:.XY for the following statistics 
data: 

18 12 

4 7 

3 2 

11 1 

31 48 

20 17 

28: Programming Examples 267 



The general steps are as follows . 

1. Enter the statistical data. 

2. Execute SUMS to create the covariance matrix ~COv. 

3. Execute ~X2, ~Y2, and ~Xy. 

4. If ~DAT contains more than two columns (that is, if each data 
point contains more than two variables): 

a. Execute COL~ to specify new values for C1 and C2. The 
values are stored in ~PAR. 

b. Execute ~X2, ~Y2, and ~Xy. 

Now try the example given above. 

Clear the stack, select the STAT menu, and clear ~DAT. 
_, CLEAR! 

_'STAT! 
f LI ! 

Enter the data and then check that you entered all six data points. 

CD 18,12 I~: I CD 4,7 1: 6 
CD 3,2.u. .. ICBIIEHllilHmH 
CD 11,1 
CD 31,48 
CD 20,17 I+ 

~ NI 

Drop the number of data points. 

'DROP! 

268 28: Programming Examples 



Create the covariance matrix ~COv. 

I USER I 
SUMS 

Calculate ~x2. 

};X2 

Calculate ~y2. 

};Y2 

Calculate ~xy. 

};XY 

3: 
2: 1831 
1: 2791 
1BElII1m'I1BlII16DI~1Hf:II 

3: 1831 
2: 2791 
1: 2089 
1BElII1m'I1BlII16DI~1Hf:II 

If the statistics matrix had more than two columns, you could specify 
new values for C1 and C2. For practice, specify C1 = 1 and C2 = 2 
(the current values). 

The command COL~ is available in the STAT menu, but here it's eas­
ier to spell out the command name and stay in the USER menu. 

1 I ENTER I 3: 1831 
2 COL~ I ENTER IT; ~~;H 

1BElII1m'I1BlII16DI~1Hf:II 

You could now execute ~X2, ~Y2, and ~XY for the new pair of col­
umns C1 and C2. 

Don't forget to execute SUMS again whenever you add or delete data 
from the statistics matrix ~DAT. 

28: Programming Examples 269 



Median of Statistics Data 

This section contains three programs: 

• SORT orders the elements of a list. 

• LMED calculates the median of a sorted list. 

• MEDIAN uses SORT and LMED to calculate the median of the cur­
rent statistics data. 

SORT (Sort a List) 

Sort a list into ascending order. 

Arguments Results 

1 : { list } 1 : { sorted list } 

Techniques: 

• Bubble sort. Starting with the first and second numbers in the list, 
SORT compares adjacent numbers and moves the larger number 
toward the end of the list. This process is done once to move the 
largest number to the last position in list, then again to move the 
next largest to the next-to-last position, and so on. 

• Nested definite loops. The outer loop controls the stopping position 
each time the process is done; the inner loop runs from 1 to the 
stopping position each time the process is done. 

• Nested local-variable structures. SORT contains two local-variable 
structures, the second inside the defining program of the first. This 
nesting is done for convenience; it's easier to create the first local 
variable as soon as its value is computed, thereby removing its 
value from the stack, rather than computing both values and creat­
ing both local variables at once. 

270 28: Programming Examples 



• FOR . . . STEP and FOR ... NEXT (definite loops). SORT uses two 
counters: - 1 STEP decrements the counter for the outer loop each 
iteration; NEXT increments the counter for the inner loop by 1 each 
iteration. 

Program 
. :;:: 

DUP SIZE 1 - 1 

FOR j 

j 

FOR k 

k GETI ~ n1 

-=::: 

GETI ~ n2 

. :;:: 

D r;w P 
IF n1 n2 :::-

THEt·j 
k n2 PUTI 

n1 PUT 

HW 
::::. 

:~:. 

t·jEi-::T 

-1 STEP 

::::. 

[ENTER I 
~ SORT [STO I 

Comments 
Begin the program . 
From the next-to-last position to 
the first position, 
Begin the outer loop with counter 
j . 
From the first position to the jth 
position, 
Begin the inner loop with counter 
k. 
Get the kth number in the list 
and store it in a local variable nl' 

Begin outer defining program. 
Get the next number in the list 
and store it in a local variable n 2' 

Begin inner defining program . 
Drop the counter. 
If the two numbers are in the 
wrong order, 
Then do the following: 
Put the second one back in the 
kth position. 
Put the kth one back in the next 
position. 
End of THEN clause. 
End inner defining program. 
End outer defining program. 
Increment k and repeat the inner 
loop. 
Decrement j and repeat the outer 
loop. 
End the program. 

Put the program on the stack. 
Store the program as SORT. 

28: Programming Examples 271 



Example. 

Sort the list { 8, 3, 1, 2, 5 }. 

I USER I 
OJ 8,3,1,2,5 SORT 

LMED (Median of a List) 

Given a sorted list, calculate the median. If the list contains an odd 
number of elements, the median is the value of the center element. If 
the list contains an even number of elements, the median is the aver­
age value of the elements just above and below the center. 

Arguments Results 

1 : -:: sorted list }- 1 : median of sorted list 

Techniques: 

• FLOOR and CEIL. For an integer, FLOOR and CEIL both return 
that integer; for a non-integer, FLOOR and CEIL return successive 
integers that bracket the non-integer. 

Program 

DUP ::;;JZE 

1 + 2 ..... 

-t F' 

. ~:: 

DUP 

F' FLOOR 

::;!·lAP 

F' CEIL 

GET 

GET 

Comments 

Begin the program. 
The size of the list. 
The center position in the list 
(fractional for even-sized lists). 
Store the center position in local 
variable p. 
Begin the defining program . 
Make a copy of the list. 
Get the number at or below the 
center position. 
Move the list to level 1. 
Get the number at or above the 
center position. 

272 28: Programming Examples 



Program 
+ 2 ..... 

I ENTER I 
[J LMED I 8TO I 

Example. 

Comments 
The average of the two numbers 
at or near the center position. 
End the defining program. 
End the program. 

Put the program on the stack. 
Store the program as LMED. 

Calculate the median of the list you sorted using SORT. 

I ~!::I I'l 31 
.mIDmDImlIlIHjDIBDIBIm. 

LMED is called by MEDIAN. 

MEDIAN (Median of Statistics Data) 

Return a vector representing the medians of the columns of the statis-. 
tics data. 

Arguments Results 

1 : 1: [ x, x2 ... xm ] 

Techniques: 

• Arrays, lists, and stack elements. MEDIAN extracts a column of 
data from 2:DAT in vector form. To convert the vector to a list, 
MEDIAN puts the vector elements on the stack and then combines 
them into a list. From this list the median is calculated using SORT 
and LMED. 

The median for the mth column is calculated first, and the median 
for the first column is calculated last, so as each median is calcu­
lated, it is moved to the stack level above the previously calculated 
medians. 

28: Programming Examples 273 



After all medians are calculated and positioned correctly on the 
stack, they're combined into a vector. 

• FOR . .. NEXT (definite loop with counter). MEDIAN uses a loop to 
calculate the median of each column. Because the medians are cal­
culated in reverse order (last column first), the counter is used to 
reverse the order of the medians. 

Required Programs: 

• SORT (page 270) arranges a list in ascending order. 

• LMED (page 272) calculates the median of a sorted list. 

Program 
« 

RCU: 

DUP SIZE 

LI ST-t DROP 

-t n m 

« 
I :WAT I TRN 

1 m 
FOR j 

~-

ARRY-t DROP 

n -tLI ST 
SORT 
LMED 

Comments 
Begin the program. 
Put a copy of the current statis­
tics matrix ~DAT on the stack for 
safekeeping. 
Put the list { n m } on the stack, 
where n is the number of rows in 
~DAT and m is the number of 
columns. 
Put nand m on the stack. Drop 
the list size. 
Create local variables for nand 
m. 
Begin the defining program. 
Transpose ~DAT. Now n is the 
number of columns in ~DAT and 
m is the number of rows. 
The first and last rows. 
For each row, do the following: 
Extract the last row in ~DAT. Ini­
tially this is the mth row, which 
corresponds to the mth column in 
the original ~DAT. 
Put the row elements on the 
stack. Drop the index list { n }, 
since n is already stored in a local 
variable. 
Make an n-element list. 
Sort the list. 
Calculate the median of the list. 

274 28: Programming Examples 



Program 

:S> 

..i ROLLD 

~~E~H 

m 1 ""LIST 
""ARWi 

S~'IAP 

STO: 

I ENTER I 
~ MEDIAN I STO I 

Comments 
Move the median to the proper 
stack level. 
Increment j and repeat the loop. 
Make the list { m }. 
Combine all the medians into an 
m-element vector. 
End the defining program. 
Move the orginal ~DAT to level 
l. 
Restore ~DAT to its previous 
value. 
End the program. 

Put the program on the stack. 
Store the program as MEDIAN. 

Example. Calculate the median of the data on page 268 . (This exam­
ple assumes you've keyed in the data.) There are two columns of data, 
so MEDIAN will return a two-element vector. 

Calculate the median. 

I USER I 
NED! 

3: 
2: 
1: [ 14.5 9.5 ] 
m::amml!JIDllililDlmlllmI 

The medians are 14.5 for the first column and 9.5 for the second 
column. 

Changing Directories 

This section contains two programs: 

• UP gives you a menu of parent directories. 

• DOWN gives you a menu of subdirectories. 

These programs have no utility for those who always remember their 
entire directory structure and know exactly where they are at all 
times. For those who occasionally become confused, these programs 
are helpful. 

28: Programming Examples 275 



UP (Move to a Parent Directory) 

Create a menu that contains the names of the parent directory, its 
parent directory, and so on, back to the HOME directory. 

Arguments Results 

1 : 1 : 

Techniques: 

• List of parent directories. UP uses PATH to return the names of the 
current directory and all parent directories. 

• Subset of a list. UP uses SUB to remove the name of the current 
directory from the PATH list. 

• Custom menu. UP uses MENU to create a custom menu of parent 
directories from the modified PATH list. 

Program 

PATH 

1 
OI,}E~: SIZE 1 -

SUB 

t'1Et'lU 

I ENTER I 
o UP iSTOI 

Comments 
Begin the program. 
Put the path list on the stack. 
Put 1 on the stack. 
Put size - 1 on the stack. 
Create a subset of the PATH list 
that includes all names but the 
last name (the current directory). 
Create a menu of parent 
directories. 
End the program. 

Put the program on the stack. 
Store the program as UP. 

276 28: Programming Examples 



Example. From the HOME directory, create a hierarchy of 
subdirectories Dl, D2, and D3; then use UP to move from D3 to Dl. 

Clear the stack and move to the HOME directory. 
~~--------------------~ .1 CLEAR I 13: I .1 MEMORY I HOMEr; 
. DImllm:ml!l!mllllncmmltDm. 

Create a subdirectory Dl and move to it. 

~ D1 CROIRI r::::3:-::-:-----------,� 
D1 1 ENTER I r= 

~lm:ml!l!mllllncmmltDm 
Repeat the process for subdirectories D2 and D3. 

D2 1 ENTER I 1= 
~ D2 CROIR_ I r;::3:-::-:-----------,1 
~ D3 . CRO I RHlm:ml!l!mllllncmmltDm 
D31 ENTER I 

Display the menu of parent directories. 

UP 1 ENTER I Ir:~-~------------,I 
.cmmI .... ___ . 

Move to the Dl directory. 

01 

DOWN (Move to a Subdirectory) 

Create a menu that contains the names of all subdirectories of the 
current directory. 

Arguments Results 

1 : 1 : 

28: Programming Examples 277 



Techniques: 

• List of variables. DOWN uses VARS to return the list of variables 
and subdirectories in the current directory. 

• Error trap. To check whether a name in the VARS list is a directory, 
DOWN uses the name as an argument to RCL; since directories 
can't be recalled to the stack, an error occurs if the name is a direc­
tory name, and the name is added to the list of directory names. 

Program 

VRRS 

v SIZE 
FOR .j 

v .j GET 
I FERR RCL DF!:OP 

THnl + 

~lD::r 

ME~W 

I ENTER I 

~ DOWN ISTOI 

Comments 
Begin the program. 
Put on the stack a list of the 
names of all variables and 
subdirectories. 
Store the VARS list in a local 
variable v. 
Begin the defining program. 
Put the list of directory names on 
the stack (initally empty). 
Put 1 and size of v on the stack. 
For each name in v, do the 
following: 
Get the name. 
Attempt to recall the contents of 
a variable with that name; if suc­
cessful, drop the contents. 
If RCL caused an error, the name 
must be a directory name, so add 
the name to the list of directory 
names. 
End of the THEN clause and the 
program structure. 
Repeat for next name in v. 
Create a custom menu for the di­
rectory names. 
End the defining program. 
End the program. 

Put the program on the stack. 

Store the program as DOWN. 

278 28: Programming Examples 



Example. In the previous example (page 277) you created a hierar­
chy of subdirectories D1, D2, and D3, and completed the example 
with D1 the current directory. For this example, move to D2 and then 
D3. 

Display the menu of subdirectories. 

DOWN I ENTER I r::13,..,.:------------.1 
~-----

Move down to D2. 

02 

Display the menu of subdirectories. 

1li..-----1 
~~----------~ 

DOWN I ENTER I 13 : I 

~----~ 
Move down to D3. 

03 IlL _____ 1 

28: Programming Examples 279 





Appendixes & Indexes 

Page 282 A: Assistance, Batteries, and Service 

296 B: Notes for HP RPN Calculator Users 

302 C: Notes for Algebraic Calculator Users 

306 D: Menu Map 

327 Key Index 

332 Subject Index 



Assistance, Batteries, and 
Service 

A 

This appendix contains information to help you when you have prob­
lems with your calculator. If you have problems understanding how 
to use the calculator, and you can't find an appropriate topic in the 
Table of Contents (page 5) or the Subject Index (page 332), see" An­
swers to Common QuestionsD below. If you don't find an answer to 
your question, you can contact our Calculator Support department, 
using the address or phone number listed on the inside back cover. 

If you need to replace the batteries, see page 286. If your calculator 
doesn't seem to work properly, see "Determining If the Calculator Re­
quires ServiceD on page 289. If the calculator does require service, see 
"Limited One-Year WarrantyD on page 291 and "If the Calculator Re­
quires ServiceD on page 293. 

Answers to Common Questions 

Q: The calculator doesn't turn on when I press ION I. What is wrong? 
A: There may be a simple problem that you can solve immediately, or 
the calculator may require service. See HDetermining If the Calculator 
Requires Service" on page 289. 

Q: How can I verify that the calculator is operating properly? 
A: Perform the repeating test, as described on page 290. 

Q: How do I clear everything from the calculator's memory? 
A: Press and hold 1 ON I[JE§J[B, then release, as described in "Clearing 
All Memory (Memory Reset)" on page 20 . 

282 A: Assistance, Batteries, and Service 



Q: What do three dots ( . . . ) mean at the right end of a display line? 
A: The three dots, called an ellipsis, indicate that the displayed object 
is too long to display on one line. 

Q: How do I display all of an object? 
A: Use .1 EDIT 1 or .1 VISIT 1 to return the object to the command line, 
as described in "Editing Exisiting Objects" on page 173. You can then 
use the cursor keys to display any part of the object. To cancel the 
edit, press 1 ON I. 

Q: What does "object" mean? 
A: "Object" is a general term for almost everything you work with. 
Numbers, expressions, arrays, programs, and so on, are all types of 
objects. See "Major Features and Concepts" on page 25 for a brief 
description of object types, or see chapter 16, "Objects," for a detailed 
discussion of object types. 

Q: The calculator beeps and displays Bad Ar gum en t hlpe. What is 
wrong? 
A: The objects on the stack aren't the correct type for the command 
you're attempting. For example, executing 1 STO 1 without a name in 
level 1 causes this error. Use CATALOG to check the correct argu­
ments for the command, as described in "The Catalog of Commands" 
on page 31. 

Q: The calculator beeps and displays Too Fe(~ ArglJments. What is 
wrong? 
A: There are fewer objects on the stack than required by the com­
mand you're attempting. For example, executing GJ with only one 
number on the stack causes this error. Use CATALOG to check the 
correct arguments for the command, as described in "The Catalog of 
Commands" on page 31 . 

Q: The calculator beeps and displays an error message different from the 
two listed above. How do I find out what's wrong? 
A: See appendix A, "Messages, H in the Reference Manual. 

Q: How do I turn off the beeper? 
A: Type 5 1 SF 1 ENTER I. This sets flag 51, which disables the beeper. 

Q: How can I print a copy of the display? 
A: Press and hold ION I, press [g, and release ION I. 

A: Assistance, Batteries, and Service 283 



Q: The keys from 0 to [[) don't work. What is wrong? 
A: You accidentally selected Menu Lock, so the keys from 0 to [[) 
select menus unless you press • first. To turn off Menu Lock, press .1 MENUS) . 

Q: I can't find some variables that I used earlier. Where did they go? 
A: You may have been using the variables in a different directory. If 
you can't remember which directory you were using, you'll need to 
check all the directories. 

Q: How can I determine how much memory is left? 
A: Execute t'lEt1 1 ENTER) to return the number of bytes available in 
memory. 

Q: Why did the cursor change its appearance? 
A: The cursor indicates the current entry mode. The entry modes are 
Immediate (empty cursor), Algebraic (partly filled cursor), or Alpha 
(filled cursor). The shape of the cursor indicates Replace mode (box 
cursor) or Insert mode (arrow cursor). See uHow the Cursor Indicates 
Modes" on page 172. 

Q: I keyed in a name (or pressed a USER menu key), but the name didn't 
go on the stack. Why not? 
A: You entered an unquoted name, which refers to the contents of a 
variable. To put a name on the stack, press ~ first. (See "Quoted and 
Unquoted Names" on page 57.) 

Q: When I calculate the cube root of - 27, why isn't the result - 3? 
A: Every number has three cube roots, two of which are complex 
numbers. The HP-28S returns one of the three roots, called the princi­
pal value. For positive real arguments the principal value is the real 
root; for negative real arguments the principal value is one of the 
complex roots. To calculate the real bth root of a real number a, key in 
the following program. 

Press ~ RROOT 1 STO) to store the program in a variable RROOT (real 
root). You can then find the real cube root of - 27 by typing 27 1 CHS ) 

1 ENTER) 3 1 ENTER) RROOT 1 ENTER ). 

284 A: Assistance, Batteries, and Service 



Q: The calculator is slower than usual, and the 0 annunciator is blink­
ing. What is happening? 
A: The calculator is in Trace printing mode. Press ., PRINT 1 TRAC to 
turn off Trace printing mode. 

Q: The printer prints several lines quickly, then slows down. Why? 
A: The calculator quickly transmits a certain amount of data to the 
printer, then slows its transmission rate to make sure the printer can 
keep up. 

Q: How can I speed up printing? 
A: If your printer is plugged into an adaptor, the calculator can safely 
send data at a faster rate. To select faster printing, type 52 SF 
1 ENTER I. This sets flag 52, which controls the printing speed. When 
the printer isn' t plugged into an adaptor, type 52 CF I ENTER 1 to clear 
flag 52 and return to normal printing speed. 

Q: The printer drops characters or prints • characters. What is wrong? 
A: The distance or angle between the printer and the calculator may 
be too large, or there may be an obstruction blocking the transmis­
sion. See the printer manual for details about positioning the printer 
and calculator. 

Q: What is the difference between STO and STORE? 
A: The STO command assigns a specified value to a variable. The 
STORE menu contains commands that perform storage arithmetic, us­
ing the value of a variable as an argument and assigning the resulting 
value to the variable. 

Q: I expected a symbolic result, but I got a numerical result. Why? 
A: There are values assigned to one or more variables. Purge the con­
tents of the variables (see HPurging a Variable" on page 52) and then 
try again. 

Q: When I press DRAW , the display clears, the «e» annunciator blinks 
and then stops, but I don't see any points plotted on the display. Why not? 
A: The calculated values are outside the current plot range. See 
Thanging the Scale of the Plot" on page 91. 

A: Assistance, Batteries, and Service 285 



Q: I evaluated a variable or an expression, and now the calculator doesn't 
respond. Pressing I ON 1 has no effect. What happened? 
A: You defined a variable in terms of itself, creating a circular defini­
tion, and now the calculator is executing an uendless loop." To 
terminate the loop, perform a System Halt as follows: 

1. Press and hold I ON I. 
2. Press m. 
3. Release I ON I. 

Then redefine the variable to remove the circular definition. 

If you don't find an answer to your question, you can contact our 
Calculator Technical Support department, using the address or phone 
number listed on the inside back cover. 

Batteries 

The HP-28S is powered by three alkaline batteries. A fresh set of bat­
teries typically will provide approximately six months to one year of 
use. However, expected battery life depends on how the calculator is 
used. 

Use only fresh N-cell alkaline batteries. Do not use rechargeable 
batteries. 

Low Power Indicator 

When the low battery annunciator (c:::::l) comes on, the HP-28S can 
continue operating for at least 10 hours. If the calculator is turned off 
when the annunciator first comes on, Continuous Memory will be 
preserved for approximately one month. 

286 A: Assistance; Batteries, and Service 



Installing Batteries 

If you have just purchased the HP-28S and are installing the batteries 
for the first time, you can take as long as you'd like to complete these 
procedures. 

However, if you are replacing batteries, you should keep in mind that 
there is a time limit for completing these procedures if you want to 
preserve the information you have stored inside the calculator (Con­
tinuous Memory). Once the battery compartment is open, you must 
replace the batteries and close the compartment within one minute to 
prevent loss of Continuous Memory. Therefore, you should have the 
new batteries readily at hand before opening the battery compart­
ment. Also, you must make sure the calculator is off during the entire 
process of changing batteries. 

To install batteries: 

1. Have three fresh N -cell batteries readily at hand. 

2. Open the calculator to expose the keyboard and display. If you 
are replacing batteries, make sure the calculator is off. Do not 
press ION I until the entire procedure for changing batteries is com­
pleted. Changing batteries with the calculator on could erase the 
contents of Continuous Memory. 

3. Hold the calculator with the battery compartment door facing 
up. To remove the battery compartment door, slide it towards 
the back of the calculator (away from the product label). 

A: Assistance, Batteries, and Service 287 



4. Tip the calculator to remove the old batteries. 

5. Insert three new batteries. Orient the batteries as shown on the 
diagram on the back of the calculator. Be certain to observe the 
polarities (+ and -) as shown. 

6. Press the batteries into the compartment using the portion of the 
battery door that extends beyond the metal contact plate. Press 
down until the contact plate is lined up with the grooves on the 
calculator case. 

7. Slide the contact plate into the grooves. If necessary, use your 
finger to push the batteries into the compartment so that the 
door can slide over them. Slide the door until it latches into 
place. 

288 A: Assistance, Batteries, and Service 



Calculator Maintenance 

To clean the display, use a cloth slightly moistened with water. Avoid 
getting the calculator wet. 

Do not lubricate the hinge. 

Environmental Limits 

In order to maintain product reliability, you should observe the fol­
lowing temperature and humidity limits of the HP-28S: 

• Operating temperature: 0° to 45°C (32° to 113°F). 

• Storage temperature: -20° to 65°C (-4° to 149°F). 

• Operating and storage humidity: 90% relative humidity at 40°C 
(104°F) maximum. 

Determining If the Calculator Requires 
Service 

Use these guidelines to determine whether the calculator is function­
ing properly. If the calculator does require service, see "Limited One­
Year Warranty" on page 291 and "If the Calculator Requires Service" 
on page 293 . 

If nothing appears in the display when you press I ON I: 

1. Check the display contrast. 

a. Press and hold @ill. 

b. Press G several times. 

c. Release I ON I. 
d. If the display remains blank, press ION 1 and repeat steps a, 

b, and c. 

A: Assistance, Batteries, and Service 289 



2. Change the batteries, as described on page 286 . 

3. If steps 1 and 2 don't restore the calculator, it requires service. 
See ULimited One-Year Warranty" on page 291 and uIf the Cal­
culator Requires Service" on page 293. 

If the display is visible, but nothing happens when you press 
keys: 

1. Perform a System Halt. 

a. Press and hold 1 ON I. 

b. Press [!J. 

c. Release 1 ON I. 

2. If the calculator is still unresponsive, perform a Memory Reset. 

a. Press and hold 1 ON I. 

b. Press and hold [JE[) and [E]. 

c. Release [JE[) and [E] . 

d. Release 1 ON I. 

3. If steps 1 and 2 fail to restore the calculator, it requires service. 
See "Limited One-Year Warranty" on page 291 and uIf the Cal­
culator Requires Service" on page 293. 

The Repeating Test 

If the calculator works, but you think it's not working 
properly: 

1. If you have a printer, turn it on. During the test the calculator 
prints numbers that are helpful if the calculator requires service. 

2. Start the repeating test. 

a. Press and hold 1 ON I. 

b. Press~. 

c. Release @ill . 

290 A: Assistance, Batteries, and Service 



The repeating test proceeds automatically. (If the test doesn't 
proceed, you probably pressed ION I[Y] by mistake. This starts a 
different test, used at the factory, that requires input from the 
keyboard. Quit this self-test by executing a System Halt, de­
scribed in step 4 below, and then start the correct repeating test.) 

3. Watch for the test message. The test shows horizontal and verti­
cal lines, a blank display, a random pattern, and then it displays 
the result of the test. 

• The message 01<-28S indicates that the calculator passed the 
test . 

• A message such as 1 FA I L indicates that the calculator failed 
the test. The number indicates the nature of the failure. When 
you send the calculator for service, include the failure number 
and printed output (if available). 

If you interrupt the repeating test by pressing a key, the test 
returns a failure message because it didn't expect any key­
strokes. Such a failure message doesn't indicate a problem with 
the calculator. 

4. Halt the test by performing a System Halt. 

a. Press and hold I ON I. 
b. Press []]. 

c. Release I ON I. 
5. If the test returns a failure message, and you didn't cause the fail­

ure by interrupting the test, the calculator requires service. See 
HLimited One-Year Warranty" below and HIf the Calculator Re­
quires Service" on page 293. 

Limited One-Year Warranty 

What Is Covered 

The calculator (except for the batteries, or damage caused by the bat­
teries) is warranted by Hewlett-Packard against defects in materials and 
workmanship for one year from the date of original purchase. If you sell 
your unit or give it as a gift, the warranty is automatically transferred 
to the new owner and remains in effect for the original one-year 

A: Assistance, Batteries, and Service 291 



period. During the warranty period, we will repair or, at our option, 
replace at no charge a product that proves to be defective, provided 
you return the product, shipping prepaid, to a Hewlett-Packard ser­
vice center. (Replacement may be with a newer model of equivalent 
or better functionality.) 

This warranty gives you specific legal rights, and you may also have 
other rights that vary from state to state, province to province, or 
country to country. 

What Is Not Covered 

Batteries, and damage caused by the batteries, are not covered by the 
Hewlett-Packard warranty. Check with the battery manufacturer about 
battery and battery leakage warranties. 

This warranty does not apply if the product has been damaged by 
accident or misuse or as the result of service or modification by other 
than an authorized Hewlett-Packard service center. 

No other express warranty is given. The repair or replacement of a 
product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY 
OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR 
DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, 
or countries do not allow limitations on how long an implied war­
ranty lasts, so the above limitation may not apply to you. IN NO 
EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR 
CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do 
not allow the exclusion or limitation of incidental or consequential 
damages, so the above limitation or exclusion may not apply to you. 

Products are sold on the basis of specifications applicable at the time 
of manufacture. Hewlett-Packard shall have no obligation to modify 
or update products once sold. 

292 A: Assistance, Batteries, and Service 



Consumer Transactions in the United Kingdom 

This warranty shall not apply to consumer transactions and shall not 
affect the statutory rights of a consumer. In relation to such transac­
tions, the rights and obligations of Seller and Buyer shall be 
determined by statute. 

If the Calculator Requires Service 

Hewlett-Packard maintains service centers in many countries. These 
centers will repair a calculator or replace it (with an equivalent or 
newer model), whether it is under warranty or not. There is a charge 
for service after the warranty period. Calculators normally are 
serviced and reshipped within 5 working days of receipt. 

Obtaining Service 

• In the United States: Send the calculator to the Calculator Service 
Center listed on the inside of the back cover. 

• In Europe: Contact your HP sales office or dealer or HP's Euro­
pean headquarters for the location of the nearest service center. Do 
not ship the calculator for service without first contacting a Hewlett­
Packard office. 

Hewlett-Packard S.A. 
150, Route du Nant-d' Avril 
P.O. Box 
CH 1217 Meyrin 2 
Geneva, Switzerland 
Telephone: (022) 82 81 11 

• In other countries: Contact your HP sales office or dealer or write 
to the U.S. Calculator Service Center (listed on the inside of the 
back cover) for the location of other service centers. If local service 
is unavailable, you can ship the calculator to the U.s. Calculator 
Service Center for repair. 

All shipping, reimportation arrangements, and customs costs are 
your responsibility. 

A: Assistance, Batteries, and Service 293 



Service Charge 

There is a standard repair charge for out-of-warranty service. The 
Calculator Service Center (listed on the inside of the back cover) can 
tell you how much this charge is. The full charge is subject to the 
customer's local sales or value-added tax wherever applicable. 

Calculator products damaged by accident or misuse are not covered 
by the fixed service charges. In these cases, charges are individually 
determined based on time and material. 

Shipping Instructions 

If your calculator requires service, ship it to the nearest authorized 
service center or collection point. (You must pay the shipping charges 
for delivery to the service center, whether or not the calculator is un­
der warranty.) Be sure to: 

• Include your return address and description of the problem. 

• Include proof of purchase date if the warranty has not expired. 

• Include a purchase order, check, or credit card number plus expira­
tion date (VISA or MasterCard) to cover the standard repair charge. 

• Ship the calculator in adequate protective packaging to prevent 
damage. Such damage is not covered by the warranty, so we rec­
ommend that you insure the shipment. 

• Pay the shipping charges for delivery to the Hewlett-Packard ser­
vice center, whether or not the calculator is under warranty. 

Warranty on Service 

Service is warranted against defects in materials and workmanship for 
90 days from the date of service. 

294 A: Assistance, Batteries, and Service 



Service Agreements 

In the U.s., a support agreement is available for repair and service. 
Refer to the form that was wrapped with the manual. For additional 
information, contact the Calculator Service Center (see the inside of 
the back cover). 

Regulatory Information 

Radio Frequency Interference 

U.S.A. The HP-28S generates and uses radio frequency energy and 
may interfere with radio and television reception. The calculator com­
plies with the limits for a Class B computing device as specified in 
Subpart J of Part 15 of FCC Rules, which provide reasonable protec­
tion against such interference in a residential installation. In the 
unlikely event that there is interference to radio or television reception 
(which can be determined by turning the HP-28S off and on or by 
removing the batteries), try: 

• Reorienting the receiving antenna . 

• Relocating the calculator with respect to the receiver. 

For more information, consult your dealer, an experienced 
radio/television technician, or the following booklet, prepared by the 
Federal Communications Commission: How to Identify and Resolve Ra­
dio-TV Interference Problems. This booklet is available from the U.S. 
Government Printing Office, Washington, D.C. 20402, Stock Number 
004-000-00345-4 . At the first printing of this manual, the telephone 
number was (202) 783-3238. 

West Germany. The HP-28S and the HP 82240A printer comply 
with VFG 1046/84, VDE 0871B, and similar non-interference 
standards. 

If you use equipment that is not authorized by Hewlett-Packard, that 
system configuration has to comply with the requirements of Para­
graph 2 of the German Federal Gazette, Order (VFG) 1046/84, dated 
December 14, 1984. 

A: Assistance, Batteries, and Service 295 



Notes for HP RPN 
Calculator Users 

B 

Starting with the HP-35 in 1972, Hewlett-Packard has developed a 
series of handheld scientific and business calculators based upon the 
RPN stack interface. Although there are many differences in the ca­
pabilities and applications of these various calculators, they all share a 
common implementation of the basic stack interface, which makes it 
easy for a user accustomed to one calculator to learn to use any of the 
others. 

The HP-28S also uses a stack and RPN logic as the central themes of 
its user interface. However, the four-level stack and fixed register 
structure of the previous calculators is inadequate to support the mul­
tiple object types and symbolic mathematical capability of the HP-
28S. Thus while the HP-28S is a natural evolution of the "original" 
RPN interface, there are sufficient differences between the HP-28S 
and its predecessors to require a little "getting used to" if you are ac­
customed to other RPN calculators. In this appendix, we will highlight 
the major differences. 

The Dynamic Stack 

The most dramatic difference in the basic interface of the HP-28S 
compared with previous HP RPN calculators is the size of the stack. 
The other calculators feature a fixed, four-level stack consisting of the 
X-, Y-, Z- and T-registers, augmented by a single LAST X, or L-regis­
ter. This stack is always "full" -even when you "clear" the stack, all 
you are doing is filling the stack with zeros. 

296 B: Notes for HP RPN Calculator Users 



The HP-28S has no fixed size to its stack. As you enter new objects 
onto the stack, new levels are dynamically created as they are needed. 
When you remove objects from the stack, the stack shrinks, even to 
the point where the stack is empty. Thus the HP-28S can generate a 
Too Fe 1,.1 A r 9 lHfI e n t s error that previous HP RPN calculators could 
not. 

The dynamic versus fixed stack implementation gives rise to the fol­
lowing specific differences between the HP-28S and fixed-stack 
calculators: 

Numbered levels. The indefinite size of the HP-28S stack makes the 
X Y Z T stack level names inappropriate-instead, the levels are num­
bered. Thus level 1 is analogous to the X-register, 2 to Y, 3 to Z, and 4 
to T. The key labels 1jx and x2 were preserved on the HP-28S for the 
sake of familiarity-they make the keys more visible than their actual 
command names INV and SQ, respectively. However, the RPN fix­
ture X < > Y has been renamed SWAP on the HP-28S. 

Stack Manipulation. The HP-28S requires a more general set of 
stack manipulation commands than the fixed-stack calculators. R t and 
R~, for example, are replaced by ROLL and ROLLO, respectively, 
each of which require an additional argument to specify how many 
stack levels to roll. The STACK menu contains several stack manipu­
lation commands that do not exist on the fixed-stack calculators. 

No Automatic Replication of the T·register. On fixed-stack calcu­
lators, the contents of the T -register are duplicated into the Z-register 
whenever the stack HdropsH (that is, when a number is removed from 
the stack). This provides a convenient means for constant multiplica­
tion-you can fill the stack with copies of a constant, then multiply it 
by a series of numbers by entering each number, pressing 0, then 
1 CLx 1 after you have recorded each result. You can't do this on the 
HP-28S-but it is easy to create a program of the form 

« 12345 * » 'MULT' STO 

where 12345 represents a typical constant. Then all you have to do is 
press 1 USER I, enter a number and press MUL T , enter a new number 
and press MUL T again, and so on, to perform constant multiplication. 
You can leave successive results on the stack. 

B: Notes for HP RPN Calculator Users 297 



Stack Memory. A dynamic stack has the advantage that you can use 
as many levels as you need for any calculation, without worrying 
about losing objects Hoff the top" as you enter new ones. This also has 
the disadvantage that you can tie up a significant amount of memory 
with old objects, if you leave them on the stack after you are finished 
with a calculation. With the HP-28S, you should get in the habit of 
discarding unneeded objects from the stack. 

DROP Versus CLX. In fixed-stack calculators, CLX means Hreplace 
the contents of the X-register with 0, and disable stack lift" (see be­
low). Its primary purpose is to throwaway an old number, prior to 
replacing it with a new one-but you can also use it as a means to 
enter 0. On the HP-28S, CLX is replaced by DROP, which does what 
its name implies-it drops the object in level 1 from the stack, and the 
rest of the stack drops down to fill in. No extraneous ° is entered. 
Similarly, CLEAR drops all objects from the stack, instead of replacing 
them with zeros as does its fixed-stack counterpart CLST (CLEAR 
STACK). 

Stack-Lift Disable and ENTER 

Certain commands on fixed-stack calculators (ENTERt , CLX, };+ , 
}; -) exhibit a peculiar feature called stack-lift disable . That is, after 
any of these commands is executed, the next number entered onto the 
stack replaces the current contents of the X-register, rather than push­
ing it into the Y -register. This feature is entirely absent on the HP-
28S. New objects entered onto the stack always push the previous 
stack objects up to higher levels. 

The X-register and ENTER on fixed-stack calculators play dual roles 
that are derived more from the single-line display of the calculators 
than from the stack structure. The X-register acts as an input register 
as well as an ordinary stack register-when you key in a number, the 
digits are created in the X-register, until a non-digit key terminates 
entry. The I ENTERt I key is provided for separating two consecutive 
number entries. But in addition to terminating digit entry, the 
I ENTERt I key also copies the contents of the X-register into Y, and dis­
ables stack lift. 

298 B: Notes for HP RPN Calculator Users 



On the HP-28S each of these dual roles is separated-there is no 
stack lift disable. A command line completely distinct from level 1 
(the "X-register") is used for command entry. ENTER is used only to 
process the contents of the command line-it does not duplicate the 
contents of level 1. Note, however, that the I ENTER I key will execute 
DUP (which copies level 1 into level 2) if no command line is present. 
This feature of I ENTER I is provided partly for the sake of similarity to 
previous calculators. 

Prefix Versus Postfix 

HP-28S commands use a strict postfix syntax. That is, all commands 
using arguments require that those arguments be present on the stack 
before the command is executed. This departs from the convention 
used by previous RPN calculators, in which arguments specifying a 
register number, a flag number, and so on, are not entered on the 
stack but are entered after the command itself-for example, STO 25, 
TONE 1, CF 03, and so on. This latter method has the advantage of 
saving a stack level, but the disadvantage of requiring an inflexible 
format-STO on the HP-41, for example, must always be followed by 
a two-digit register number. 

Similar operations of the HP-28S are closer in style to indirect opera­
tions on the fixed-stack calculators, where you can use an i-register (or 
any register, in the case of the HP-41) to specify the register, flag 
number, and so on, addressed by a command. You can view STO, 
RCL, and so on, on the HP-28S as using level 1 as an i-register. RCL, 
for example, means "recall the contents of the variable ('register') 
named in level 1"_ equivalent to RCL IND X on the HP-41. 

You should be aware also that most HP-28S commands remove their 
arguments from the stack. If you execute, for example, 123 'X' STO, 
the 123 and the 'X' disappear from the stack. Without this behavior, 
the stack would be overloaded with Hold" arguments. If you want to 
keep the 123 on the stack, you should execute 123 DUP 'X' STO. 

B: Notes for HP RPN Calculator Users 299 



Registers Versus Variables 

Fixed-stack calculators can deal efficiently only with real, floating­
point numbers for which the fixed, seven-byte register structure of the 
stack and numbered data register memory is suitable (the HP-41 in­
troduced a primitive alpha data object constrained to the seven-byte 
format) . The HP-28S replaces numbered data registers with named 
variables. Variables, in addition to having a flexible structure so that 
they can accomodate different object types, have names that can help 
you remember their contents more readily than can register numbers. 

If you want to duplicate numbered registers on the HP-28S, you can 
use a vector: 

{ 50 } (1 COt·l 'REG' STO 

creates a vector with 50 elements initialized to 0; 

« 'REG' SWAP GET» 'NRCL' STO 

creates a program NRCL that recalls the nth element from the vector, 
where n is a number in level 1; 

« 'REG' SWAP ROT PUT» 'NSTO' STO 

creates the analogous store program NSTO. 

300 B: Notes for HP RPN Calculator Users 



LASTX Versus LAST 

The LASTX command on fixed-stack calculators returns the contents 
of the LASTX (or L) register, which contains the last value used from 
the X-register. This concept is generalized on the HP-28S to the LAST 
command, which returns the last one, two, or three arguments taken 
from the stack by a command (no command uses more than three 
arguments). Thus 1 2 + LASTX returns 3 and 2 to the stack on a 
fixed-stack calculator, but 1 2 + LAST returns 3, 1, and 2 to the stack 
on the HP-28S. 

Although the HP-28S LAST is more flexible than its LASTX predeces­
sor, you should keep in mind that more HP-28S commands use 
arguments from the stack than their fixed-stack calculator counter­
parts. This means that the LAST arguments are updated more 
frequently, and even such commands as DROP or ROLL will replace 
the LAST arguments. 

Remember also that UNDO can replace the entire stack, which for 
simple error recovery may be preferable to LAST. 

B: Notes for HP RPN Calculator Users 301 



Notes for Algebraic 
Calculator Users 

c 
Many calculators, including the great majority of simple, Dfour-func­
tionD calculators, use variations of the algebraic calculator interface. 
The name derives from the feature that the keystroke sequences used 
for simple calculations closely parallel the way in which the calcula­
tion is specified in algebraic expressions Don paper." That is, to 
evaluate 1 + 2 - 3, you press IT] GJ [IJ G w G· 

This interface works nicely for expressions containing numbers and 
operators-functions like +, -, x, and / that are written in infix 
notation between their arguments. More sophisticated calculators al­
low you to enter parentheses to specify precedence (the order of 
operations). However, the introduction of prefix functions, like SIN, 
LOG, and so on, leads to two different variations: 

• Ordinary algebraic calculators use a combination of styles-infix 
operators remain infix, but prefix functions are entered in a postfiX 
style (like RPN calculators). For example, 1 + SIN(23) is entered as 
IT] GJ [IJ w [§ill] G· This approach has the advantages of being 
able to show intermediate results, and of preserving single-key 
evaluations of prefix functions (that is, without parentheses), but 
the disadvantage of losing the correspondence with ordinary math­
ematical notation that is the primary advantage of the algebraic 
interface. 

302 C: Notes for Algebraic Calculator Users 



• UOirect formula entry" calculators, and BASIC language computers 
that have an immediate-execute mode, allow you to key in an en­
tire expression in its ordinary algebraic form, then compute the 
result when you press a termination key (variously labeled I ENTER I, 
I ENDLINE I, I RETURN I, and so on). This approach has the advantage 
of preserving the correspondence between written expressions and 
keystrokes, but usually the disadvantage of providing no intermedi­
ate results. (The HP-71B CALC mode is an exception.) You have to 
know the full form of an expression before you start to enter it-it 
is difficult to uwork your way through a problem," varying the cal­
culation according to intermediate results. 

Getting Used to the HP-28S 

HP-28S operating logic is based on a mathematical logic known as 
upolish Notation," developed by the Polish logician Jan l:ukasiewicz 
(Wookashye'veech) (1878-1956). Conventional algebraic notation 
places arithmetic operators between the relevant numbers or variables 
when evaluating algebraic expressions. l:ukasiewicz's notation speci­
fies the operators before the variables. A variation of this logic 
specifies the operators after the variables-this is termed uReverse Pol­
ish Notation," or URPN" for short. 

The basic idea of RPN is that you enter numbers or other objects into 
the calculator first, then execute a command that acts on those entries 
(called uarguments") . The Ustack" is just the sequence of objects wait­
ing to be used. Most commands return their results to the stack, 
where they can then be used as arguments for subsequent operations. 

The HP-28S uses an RPN stack interface because it provides the nec­
essary flexibility to support the wide variety of HP-28S mathematical 
capabilities in a uniform manner. All calculator operations, including 
those that can not be expressed as algebraic expressions, are per­
formed in the same manner-arguments from the stack, results to the 
stack. 

C: Notes for Algebraic Calculator Users 303 



Nevertheless, using the RPN stack for simple arithmetic is most likely 
the biggest stumbling block for algebraic calculator users trying to 
learn to use RPN calculators. RPN is very efficient, but it does require 
you mentally to rearrange an expression before you can calculate re­
sults. But the HP-28S's capability of interpreting algebraic expressions 
without translation should make the transition from algebraic calcu­
lator use more straightforward than has been possible on previous 
RPN calculators. The four-line display can also help to take away 
some of the mystery of the stack, by showing you the contents of up 
to four levels at a time. 

For the purpose of evaluating algebraic expressions, the HP-28S is es­
sentially a Udirect formula entry" calculator. That is, to evaluate an 
algebraic expression, all you have to do is precede it with a ~, key in 
the expression in its algebraic form, including infix operators, prefix 
functions, and parentheses, and then press I EVAL I to see the result. 
You can use this method even for simple arithmetic: 

~ OJ [B [I] G w I EVAL I returns O. 

Except for the preceding~, these are the same keystrokes you would 
use on a simple algebraic calculator, where you substitute I EVAL I for 

G· 

" Note 

Don't confuse the HP-28S B key with that found on alge­
braic calculators-on the HP-28S, B is used for the sole 
purpose of creating algebraic equations (described in 
"ALGEBRA" in the Reference Manual). 

304 C: Notes for Algebraic Calculator Users 



When you use the HP-28S as a "direct formula entry calculator," each 
result that you compute is retained on the stack, which takes on the 
role of a "history stack." This allows you to save old results indefi­
nitely for reuse later. It also allows you to break up large calculations 
into smaller ones, keeping each partial result on the stack and then 
combining the results when they are all available. (When carried to 
the extreme, this is the essence of RPN arithmetic). The stack provides 
a much easier-to-use and more powerful history stack than the single 
"result" function available on algebraic or BASIC calculators. 

A key feature of the HP-28S is that you really don't need to concern 
yourself over whether RPN logic is better or worse than algebraic 
logic. You can choose the logic that is best suited for the problem at 
hand, and intermix algebraic expressions with RPN manipulations. 

C: Notes for Algebraic Calculator Users 305 



D 
Menu Map 

This_ appendix shows the commands in each HP-28S menu. The 
menus are listed in alphabetical order, from ALGEBRA to TRIG. For 
detailed information about a menu, refer to the Dictionary in the Ref­
erence Manual. The Dictionary describes all menus, listed in 
alphabetical order. For detailed information about a particular com­
mand, refer to the Operation Index at the back of the Reference 
Manual. The Operation Index lists all commands in alphabetical order 
and gives a page reference to the command's description in the 
Dictionary. 

This appendix doesn't include the menus of the interactive operations 
offered by CATALOG, FORM, the Solver, and UNITS. 

• CATALOG is described in chapter 22 and demonstrated on page 
31. 

• FORM is described in "Using FORM" on page 112. For details, see 
"ALGEBRA (FORM)" in the Reference Manual. 

• The Solver is described in chapter 8, "The Solver,". For details, see 
"SOLVE" in the Reference Manual. 

• UNITS is described in "The UNITS Catalog" on page 141. For de­
tails, see "UNITS" in the Reference Manual. 

For each menu in this appendix, the commands are grouped by rows 
that appear in the display at one time. Pressing 1 NEXT 1 moves to the 
next row, and pressing .1 PREY I moves to the previous row. 

The column labeled "Command" is the name that appears in the dis­
play. The column labeled "Description" is a short description of the 
command or its entire name. The column labeled "Page" refers to an 
example, description, or mention of the command in this manual. For 
commands without page references, see the Operation Index in the 
Reference Manual. 

306 D: Menu Map 



ALGEBRA 

Command I Description I Page 

COLCT Collect terms 111 

EXPAN Expand products 111 

Row 1 SIZE Size 

FORM Form algebraic expression 112 

OBSUB Object substitute 

EXSUB Expression substitute 

I NEXT I 
TAVLR Taylor series 

ISOL Isolate 112 

Row 2 QUAD Quadratic form 

SHOW Show variable 

OBGET Object get 

EXGET Expression get 

D: Menu Map 307 



ARRAY 

Command I Description I Page 

-+ARRY Stack-to-array 275 

ARRY-+ Array-to-stack 274 

Row 1 PUT Put element 

GET Get element 

PUT! Put and increment index 

GETI . Get and increment index 

I NEXT I 
SIZE Size 274 

ROM Redimension 

Row 2 TRN~« Transpose 264 

CON Constant array 

ION Identity matrix 

RSO Residual 

I NEXT I 
CROSS Cross product 126 

DOT Dot product 126 

Row 3 DET Determinant 128 

ASS Absolute value 

RHRM Row norm 

ClI.B..tL. Column norm 

I NEXT I 
R-+C Real-to-complex 

C-+R Complex-to-real 

Row 4 RE 
& 

Real part 

1M Imaginary part 

cot!J Conjugate 

NEG Negate 

308 D: Menu Map 



BINARY 

Command I Description I Page 

DEC Decimal mode 140 

HEX Hexadecimal mode 139 

Row 1 OCT Octal mode 140 

BIN Binary mode 140 

STWS Store wordsize 139 

RCl~S Recall word size 

I NEXT I 
RL Rotate left 

RR Rotate right 

Row 2 RLB Rotate left byte 

RRB Rotate right byte 

R+B Real-to-binary 261 

B+R Binary-to-real 

I NEXT I 
SL Shift left 

SR Shift right 

Row 3 SLB Shift left byte 

SRB Shift right byte 

ASR Arithmetic shift right 

I NEXT I 
AND And 

OR Or 

Row 4 XOR Exclusive or 

NOT Not 

D: Menu Map 309 



COMPLEX 

Command Description Page 

R+C Real-to-complex 83 

Com plex -to-real 83 

Row 1 Real part 83 

Imaginary part 84 

Conjugate 84 

Sign 84 

I NEXT I 
Rectangular -to-polar 86 

Polar-to-rectangular 85 

Row 2 Absolute value 85 

Negate 85 

Argument 85 

310 D: Menu Map 



LIST 

Command Description Page 

+LIST Stack-to-list 181 

LIST+ List -to-stack 181 

Row 1 PUT Put element 271 

Get element 237 

Put and increment index 271 

GETI Get and increment index 271 

[NEXT I 
POS Position 237 

SUB Subset 276 

Row 2 SIZE! Size 271 

-

D: Menu Map 311 



LOGS 

Command I Description I Page 

LOG Common logarithm 78 

ALOG Common antilogarithm 78 

Row 1 LN Natural logarithm 78 

EXP Exponential 78 

LNPl Natural log of 1 + x 78 

EXPM Exponential minus 1 78 

I NEXT I 
SINH Hyperbolic sine 78 

ASINH Inverse hyperbolic sine 78 

Row 2 COSH Hyperbolic cosine 78 

ACOSH Inverse hyperbolic cosine 78 

TANH Hyperbolic tangent 78 

ATANH Inverse hyperbolic tangent 78 

312 D: Menu Map 



MEMORY 

Description Page 

Available memory 188 

Create custom menu 195 

Row 1 Order variables 184 

Current path 67 

Select HOME directory 71 

Create directory 66 

I NEXT I 
Variables in current directory 184 

Clear current directory 184 

Row 2 -

D: Menu Map 313 



MODE 

Command I Description I Page 

STD Standard number display format 38 

FI X Fixed number display format 38 

Row 1 SCI Scientific number display format 38 

ENG Engineering number display format 38 

DEG Degrees angle mode 74 

RAD Radians angle mode 74 

t NEXT I 
CMD Enables or disables COMMAND 210 

UNDO Enables or disables UNDO 211 

Row 2 LAST Enables or disables LAST 211 

ML Enables or disables multi-line 208 

RDX , Enables or disables RDX. 37 

PRMD Prints and displays modes 

314 D: Menu Map 



PLOT 

Command I Description I Page 

STEQ Store equation 90 

RCEQ Recall equation 

Row 1 PMIN Plot minima 95 

PMAX Plot maxima 95 

INDEP Independent 

DRAW Draw 90 

I NEXT I 
PPAR Recall plot parameters 90 

RES Resolution 

Row 2 AXES Axes 

CENTR Center 94 

*101 Multiply width 

*H Multiply height 93 

I NEXT I 
STOl Store sigma 

RCll Recall sigma 

Row 3 COL:l Sigma columns 

SCll Scale sigma 

DRWl Draw sigma 

I NEXT I 
CllCD Clear LCD 

DGTIZ Digitize 

Row 4 PIXEL Pixel 

DRAX Draw axes 

ClMF Clear message flag 

PRLCD Print LCD 

D: Menu Map 315 



PRINT 

Command I Description I Page 

PRl Print level 1 151 

PRST Print stack 152 

Row 1 PRVAR Print variable 152 

PRLCO Print LCD 149 

CR Carriage right 

, TRAC Enable or disable Trace mode 150 

I NEXT I 
PRSTC Print stack (compact) 

PRUSR Print user variables 

Row 2 PRMO Print modes ... 

316 D: Menu Map 



PROGRAM BRANCH 

Command I Description I Page 

IF Begin IF clause 226 

IFERR Begin IF ERROR clause 227 

Row 1 THEN Begin THEN clause 226 

ELSE Begin ELSE clause 226 

END End program structure 226 

I NEXT I 
START Begin definite loop 228 

FOR Begin definite loop 229 

Row 2 NEXT End definite loop 228 

STEP End definite loop 230 

1FT If-Then command 227 

IFTE If-Then-Else function 226 

I NEXT I 
DO Define indefinite loop 231 

UNTI Define indefinite loop 231 

Row 3 END End program structure 231 

WHIL Define indefinite loop 232 

REPEA Define indefinite loop 232 

END End program structure 232 

D: Menu Map 317 



PROGRAM CONTROL 

Description Page 

Single step 250 

Suspend program 234 

Row 1 Abort program 

Abort suspended programs 250 

Pause program 234 

Return key string 234 

I NEXT I 
Beep 234 

Clear LCD 234 

Row 2 Display 234 

Clear message flag 234 

Error number 

[ ERR"] Error message 

318 D: Menu Map 



PROGRAM TEST 

Command I Description I Page 

SF Set flag 205 

CF Clear flag 205 

Row 1 FS? Flag set? 225 

FC? Flag clear? 

FS?C Flag set? Clear 

FC?C Flag clear? Clear 

I NEXT I 
AND And 

OR Or 

Row 2 XOR Exclusive or 

NOT Not 232 

SAME Same 231 

-- Equal 222 

I NEXT I 
STOF Store flags 156 

RCLF Recall flags 156 

Row 3 TYPE Type 232 

D: Menu Map 319 



REAL 

Command I Description I Page 

!:lEG Negate 78 

FlIcT • Factorial (gamma) 78 

Row 1 RAHo Random number 78 

RoZ Randomize 78 

MAXR Maximum real 79 
- - Minimum real 79 MIHR 

I NEXT I 
AB§. Absolute value 

SI~!:I Sign 

Row 2 "MAHfM 

Mantissa 

XPOH Exponent 

I NEXT I 
IP Integer part 

FP Fractional part 

Row 3 FLOOR Floor 272 

CEIL Ceiling 272 

RHO Round 

I NEXT I 
MAX Maximum 

MIH Minimum 
- -

Row 4 MOD Modulo 

%T Percent of total 

320 D: Menu Map 



SOLVE 

Command I Description I Page 

STEQ Store equation 64 

RCEQ Recall equation 

Row 1 SOLVR Solver variables menu 102 

ISOL Isolate 110 

QUAD Quadratic form 108 

SHOW Show variable 

I NEXT I 
ROOT Rootfinder 

Row 2 

D: Menu Map 321 



STACK 

Command I Description I Page 

OUP Duplicate 178 

OVER Over 178 

Row 1 OUP2 Duplicate two objects 178 

OROP2 Drop two objects 179 

ROT Rotate 178 

LIST+ List -to-stack 181 

I NEXT I 
ROLLO Roll down 178 

PICK Pick 178 

Row 2 OUPN Duplicate n objects 178 

OROPN Drop n objects 179 

DEPTH Depth 181 

+LIST Stack-to-list 181 

322 D: Menu Map 



STAT 

Command I Description I Page 

I+ Sigma plus 132 

I- Sigma minus 133 

Row 1 NI Sigma N 134 

CLI Clear sigma 132 

STOI Store sigma 275 

RCLI Recall sigma 264 

I NEXT I 
TOT Total 

MEAN Mean 134 

Row 2 SDEV Standard deviation 135 

VAR Variance 135 

MAXI Maximum sigma 

MINI Minimum sigma 

I NEXT I 
COLI Sigma columns 136 

CaRR Correlation 136 

Row 3 COV Covariance 136 

LR Linear regression 137 

PREDV Predicted value 137 

I NEXT I 
UTPC Upper chi-square distribution 

UTPF Upper Snedecor's f distribution 

Row 4 UTPN Upper normal distribution 

UTPT Upper Student's t distribution 

COMB Combinations 

PERM Permutations 

D: Menu Map 323 



STORE 

Command I Description I Page 

STO+ Store plus 

STO- Store minus 

Row 1 STO* Store times 

STO/ Store divide 

SHEG Store negate 

SIHV Store invert 

I NEXT I 
SCOHJ Store conjugate 

Row 2 

324 D: Menu Map 



STRING 

Command I Description I Page 

-tSTR Object-to-string 258 

STR-t String-to-object 175 

Row 1 CHR Character 156 

HUM Character number 156 

-tLCD String-to-LCD 157 

LCD-t LCD-to-string 157 

I NEXT I 
POS Position 

SUB Subset 

Row 2 SIZE Size 258 

DISP Display 156 

D: Menu Map 325 



TRIG 

Command I Description I Page 

SIN Sine 74 

ASIN Arc sine 74 

Row 1 COS Cosine 74 

ACOS Arc cosine 74 

TAN Tangent 74 

AT AN Arc tangent 74 

I NEXT I 
P-+R Polar-to-rectangular 76 

R-+P Rectangular-to-polar 76 

Row 2 R-+C Real-to-complex 76 

C-+R Com plex -to-real 76 

ARG Argument 76 

I NEXT I 
-+HMS Decimal to hours-minutes-seconds 76 

HMS-+ Hours-minutes-seconds to decimal 76 

Row 3 HMS+ Hours-minutes-seconds plus 76 

HMS- Hours-minutes-seconds minus 76 

O-+R Degrees-to-radians 77 

R-+O Radians-to-degrees 77 

326 D: Menu Map 



Key Index 

This index describes the actions of the keys on the calculator key­
board. First is an alphabetical index of the keys on the left-hand 
keyboard, followed by an alphabetical index of the keys on the right­
hand keyboard. Last is an index of the keys on the cursor menu (the 
white labels above the top row of the right-hand keyboard) . 

This index includes shifted keys such as .1 ARRAY 1 and .1 OFF I. It 
doesn't include character keys such as lEl through CIl and @] through 
[]], which always write a character in the command line. (Other char­
acter keys include delimiters such as ITJ, operators such as 0, and 
symbolic constants such as .GJ . These characters have special mean­
ing to the calculator, but their keys are simply character keys.) If you 
don' t find a key listed in this index, it is a character key. 

For each key, there is a brief description of its action and a page refer­
ence. If the key isn' t mentioned in this manual, or for additional 
information about any key, look in the Operation Index at the back of 
the Reference Manual. 

Key Index 327 



Left-hand Keyboard 

Key Description Page 

.1 ALGBRA 1 Selects the ALGEBRA menu. 110 .1 ARRAY) Selects the ARRAY menu. 124 .1 BINARY) Selects the BINARY menu. 138 .1 BRANCH) Selects the PROGRAM BRANCH menu . 222 .1 CATALOG) Starts the command catalog. 196 .1 COMPLX) Selects the COMPLEX menu. 83 .1 CONTRL) Selects the PROGRAM CONTROL menu . 234 

[ill Switches lower-case mode on or off. 168 .1 LIST) Selects the LIST menu. 102 .1 MENUS) Switches Menu Lock on or off. 192 .1 MEMORY) Selects the MEMORY menu. 182 .1 PRINT) Selects the PRINT menu. 149 .1 REAL) Selects the REAL menu. 78 .1 STACK) Selects the STACK menu. 176 .1 STAT) Selects the STAT menu. 131 .1 STORE) Selects the STORE menu. 191 .1 STRING) Selects the STRING menu. 156 .1 TEST) Selects the PROGRAM TEST menu. 225 .1 UNITS) Selects the UNITS catalog. 141 

~ Switches entry mode. 171 

328 Key Index 



Right-hand Keyboard 

Key Description Page 

1 ATTN I (ION I) Aborts program execution; clears the command 216 
line; exits catalogs, FORM, plot displays. 

ICHSI Changes the sign of a number in the command 168 
line or executes NEG . 

• [ CLEAR [ Clears the stack. 179 

.[ COMMAND I Moves an entry from the command stack to the 174 
command line . 

• [ CONTI Continues a halted program. 235 

.[ CONVERT I Performs a unit conversion. 143 

.[ CUSTOM I Seclects the last-displayed custom menu. 192 

.[ d/dx I Derivative. 117 

[DROpl Drops one object from the stack. 179 

.[EDITI Copies the object in level 1 to the command line 173 
for editing. 

[EEX I Enters exponent in command line. 168 

1 ENTER I Parses and evaluates the command line. 173 

[EVALI Evaluates an object. 118 

.[ LAST I Returns last arguments. 179 

.[ LOGS I Selects the LOGS menu. 77 

.[ MODE I Selects the MODE menu . 36 

[NEXT I Displays the next row of menu labels. 192 

@ill ([ ATTN I) Turns the calculator on; aborts program execu- 216 
tion ; clears the command line; exits catalogs, 
FORM, plot displays . 

• [OFFI Turns the calculator off . 20 

• [ PLOT I Selects the PLOT menu . 89 

.[ PREV I Displays the previous row of menu labels. 192 

Key Index 329 



Key Description Page 

., PURGE I Purges one or more variables. 183 

.'RCLI Recalls the contents of a variable, unevaluated. 183 

., ROLL I Moves the level n + 1 object to level 1. 178 

,SOLV I Selects the SOLVE menu. 99 

'STO I Stores an object in a variable . 183 

., SWAP I Swaps the objects in levels 1 and 2. 178 

'TRIG I Selects the TRIG menu. 74 

., UNDO I Replaces the stack contents. 180 

'USER I Selects the USER menu. 49 

.'VIEWt I Moves the display window up one line. 177 

., VIEW+ I Moves the display window down one line. 177 

.'vISITI Copies an object to the command line for editing. 173 

~ Delimiter for names and symbolic expressions. 51 

.0 Squares a number or matrix. 40 

.~ Inverse (reciprocal). 40 

G Adds two objects. 41 

G Subtracts two objects. 41 

0 Multiplies two objects. 41 

0 Divides two objects . 42 

• 00 Percent. 43 

.'%CHI Percent change. 43 

.~ Raises a number to a power. 42 

.em Takes the square root. 40 

.OJ Definite or indefinite integral. 120 

• Shift key. 29 

~ Selects cursor menu or restores last menu. 168 

~ Backspace. 168 

., +NUM I Forces a numerical result. 75 

330 Key Index 



Cursor Menu 

The cursor menu is labeled in white above the menu keys (the top 
row of the right-hand keyboard). The cursor menu is active when the 
command line is present and no menu labels are displayed. To select 
the cursor menu when menu labels are displayed, press ~. To re­
store the previous menu, press ~ a second time. 

Key Description Page 

CTI§J Switches between Replace and Insert modes . 167 

• CTI§J Deletes all characters to the left of the cursor. 168 

IOELI Deletes character at cursor . 167 

• IOELI Deletes character at cursor and all characters to 168 
the right. 

m Moves cursor up . 167 

• m Moves cursor up all the way. 168 

[!] Moves cursor down . 167 

• [!] Moves cursor down all the way. 168 

~ Moves cursor left. 167 

.~ Moves cursor left all the way. 168 

[E Moves cursor right. 167 

. [E Moves cursor right all the way. 168 

Key Index 331 



Subject Index 

Page numbers in bold type indicate primary references; page numbers 
in regular type indicate secondary references. 

A 
Algebraic calculators, 302-305 
Algebraic entry mode, 34, 51 , 

170-172 
Algebraic objects, 161-163 

evaluating, 202- 203 
Alpha entry mode, 55, 170-172 
Analytic function, 164-165 
Angle mode, 73, 205-206 
Annunciators, 27, 29 
Arguments 

defined, 25 
order of, 41, 43 
usage, 197 

Array elements, 272 
Arrays 

in algebraic syntax, 157 
defined, 124 
minimal memory usage, 191 

Associating terms, 114-115 
Attention, 216 
Auto CR mode, 213 
Automatic off, 20 
Available memory, 188 

332 Subject Index 

B 
Backspace, 27, 30 
Backtrack, 47 
Base for binary integers, 139 
Base marker, 139 
Batteries, 286-288 
Battery door, location, 19 
BDISP program, 259-262 
Beeper mode, 206 
Binary integer word size, 210 
Binary integers, 156 
BOXR program, 245-246 
BOXS program, 241- 244 
Bubble sort, 270 

c 
Cancel system operation, 215 
Case, opening and closing, 18 
Catalog 

of commands, 196-197 
of units, 141-143 

Chain calcuations, 45 
Chain rule, 118-119 
Change sign, 39 
Changing 

directories, 275-279 
a variable, 51 

Classes of objects, 199 
Clause, 225- 226 



Clearing 
all memory, 20 
the stack, 44 
statistical data, 132 

Closing the case, 18 
Collecting an algebraic, 111, 256 
Comma, 169 
Commands, 164-165 

catalog of, 26, 29, 31-33 
Command line, 22, 166 

recovering, 174 
Commuting terms, 113-114 
Complex numbers, 82, 155 
Conditional structures, 223-228 
Constants mode, 206-207 
Continuous Memory, 20 
Contrast, display, 21, 216 
Copying stack objects, 178 
Corners of a plot, 94 
Correcting errors, 47 
Correlation, 136 
COT program, 80-81 
Cotangent, 80-81 
Counter, 228-230, 260, 271, 274 
Covariance, 136 
Covariance matrix, 263 
Creating 

a directory, 183 
a variable, 49, 54 

Cross product, 126 
Cubic feet conversion, 146 
Current directory, 60, 184 
Current equation, 90 
Current path, 60, 184-185 
Current statistics matrix, 132 
Current status, 258 
Cursor, indicating modes, 172 
Cursor menu, 30, 69, 166-168 
Custom input menu, 234-235 
Custom menus, 192, 195, 276, 277 
Custom user menu, 235 

D 
Darkening the display, 21 
Data point, 132 
Data-class objects, 199 
Debugging programs, 250 
Decimal places, 37 
Decimal point, 36, 209 
Default modes, 205 
Definite loops, 228-230, 248, 260, 

274 
nested, 270-271 

Degrees angle mode, 73 
Degrees-minutes-seconds, 76 
Delaying evaluation, 198 
Delimiters, 26, 28, 169 
Dependent data, 136 
Determinant, 128 
Diagnostics, 218-219 
Differentiation, 117-120 
Digitize, 93, 99 
Directories, 183-187 

benefits, 62, 66, 71, 183 
changing, 275-279 
creating, 60 

Display, printing, 149, 216 
Display contrast, 21 
Dot product, 126 
Dropping stack objects, 179 

E 
Editing, 69, 173 

statistics data, 133 
ENTER, 24, 173 
Enter exponent, 39 
Entry modes, 51, 169-172, 207 
Equality test, 224 
Equations, 162-163 

evaluating, 203 
plotting, 97 
quadratic, 107 
root of, 107 

Subject Index 333 



Error trap, 227-228, 259: 278 
Estimates for Solver, 99, 102 
Evaluating a variable, 50, 56 
Evaluating an expression, using 

Solver, 65 
Evaluation, 198-199 
Exceptions, mathematical, 211-212 
EXCO program, 255-256 
Expanding an algebraic, 111, 256 
Exponent, 38 
Exponential functions, 77-78 
Expressions, 34, 161-162 

evaluating, 202-203 
evaluating using Solver, 65 
from stack calculations, 59-60 
zero of, 92, 98-100, 107 

Extrema of a plot, 96 

F 
Feet per second conversion, 145 
FIB1 program, 247 
FIB2 program, 248-253 
Fibonacci numbers, 246-249 
Financial calculations, 103-106 
Flags, 205, 225, 258 
Foot units, 146 
Force unit, 146 
Formal variable, 200 
Function, 164-165 

evaluating, 203-204 
one-number, 41 
two-number, 41 

G 
Gallon conversion, 146 
Gamma function, 78 
Global names, 159 

evaluating, 200-201 
Global variables, 80, 182-183 
Gram conversion, 147- 148 
Graphics strings, 157 
G .... O program, 148 

334 Subject Index 

H 
HOME directory, 60, 71 
Hours-minutes-seconds, 76 
Housekeeping, 190-191 
HP RPN calculators, 296-301 
HP Solve. See Solver 
Hyperbolic functions, 77-78 

I 
Immediate entry mode, 170-172 
Inch conversion, 144 
Increment for counter, 230 
Indefinite loops, 231-232, 254, 257 
Independent data, 136 
Infinite result, 211-212 
Input menu, custom, 234-235 
Insert mode, 70 
Integer base, 209-210 
Integration, 120-123 
Inverse, 40 
Inverting a matrix, 128 
Isolating a variable, 109-116 

J, K 
KEY? program, 239 
Keyboard, 26-27, 328-330 
Keyboard test, 219 

L 
Last arguments, 179-180 
Levell, printing, 151 
Levels, of the stack, 176 
Lightening the display, 21 
Linear equations, system of, 130 
Linear regression, 137 
Lists, 158, 276 

elements of, 272 
LMED program, 272-273 
Loan calculations, 103-106 
Local names, 159 

evaluating, 200 



Local variables, 80, 86, 147, 179, 
222-223, 242, 259 

evaluation of, 254 
nested, 270 

Logarithmic functions, 77-78 
Loop structures, 228 
Low memory, 188-190 
Lowercase mode, 26, 28 

M 
Maintenance, 289 
Mantissa, 38 
Matrix, defined, 124 
Matrix operations, 263 
Maximum, of a expression, 100 
Mean, 134 
Median, defined, 272 
MEDIAN program, 273-275 
Memory, low, 188-190 
Memory Reset, 20, 217 
Menu keys, 27, 31 
Menu labels, 27, 31 
Menu Lock, 169 
Merging terms, 115 
Message, printing, 151 
Miles per hour conversion, 145 
Millimeter conversion, 144 
Minimum, of a expression, 100 
Modes, 205-214 

indicated by cursor, 172 
Moving stack objects, 178 
MULTI program, 253-255 
Multi-line mode, 208 

N 
Name-class objects, 199-201 
Names, 159-160 

quoted and unquoted, 57 
Negation, 40, 79 
Negative number, 39 
Nested program structures, 233 

definite loops, 270-271 
local variable structures, 270 
user functions, 245 

Newline character, 169 
Number display mode, 37, 209 
Numerical integration, 122-123 
Numerical result mode, 203-204 
Numerical variable, 49 

o 
Object classes, 199 
Object types, 26-29 
Objects, 154 
Off, automatic, 20 
One-number functions, 40 
Opening the case, 18 
Operation, 164-165 
Order of arguments, 41, 43 
Ounce conversion, 147-148 
Overflow, 212 
O .... C program, 147 

p 
PAD program, 257-258 
Parent directory, 60, 183, 275 
Percentages, 43 
Performance, maximizing, 190-191 
Period, 169 
Pi, 74-75 
Plotting, 89-97 
Plotting parameters, 89 
Polar coordinates, 84-88 
Postfix notation, 25 
Powers, 42 
Predicted values, 137 
Prefixed units, 144 
PRESERVE program, 258-259 
Principal value, 206 
Printer port, location, 19 
Printing a plot, 91 
Procedure-class objects, 199, 

201-204 
Program structures, 161 

evaluating, 201 

Subject Index 335 



Programs, 160- 161 
in algebraics, 263 
as arguments, 254 
evaluating, 201-202 

Proposition, 162 
PSUM program, 86-88 
Purging 

a directory, 187 
a variable, 52 

Q 
Quadratic expressions and equations, 

107 
Quoted names, 57 

R 
Radians angle mode, 73 
Radix mark, defined, 36 
Random numbers, 78 
Real numbers, 155 
Recalling a variable, 50, 56 
Reciprocal, 40 
Recovery modes, 210- 211 
Recursion, 246- 247, 249 
RENAME program, 54- 55 
Renaming a variable, 52 
Repea ting test, 218 
Reserved names, 159-160 
Resetting memory, 20 
Restoring the stack, 180 
Results mode, 207 
Root of an equation, 107 
Roots, 42 
RPN, 25 
Running record, printing, 150 

5 
Scale of a plot, 91 
Self-tests, 218- 219 
Separators, 169 
Service, 293-295 
Shift key, 27, 29 

336 Subject Index 

~GET program, 265 
~X2 program, 266 
~XY program, 267 
~Y2 program, 266 
Single-step execution, 250-253 
Solver, 63-64, 98-109 
SORT program, 270-272 
Spacing of printed output, 214 
Speed of printing, 213 
Square, 40 
Square root, 40 
Stack, 176-181 
Stack, 22, 272 

clearing, 44 
printing, 152 

Stack diagram, defined, 240 
Stack flags, 225 
Stack levels, 27, 31 
Stack logic, 25 
Standard deviation, 135 
Statistics parameters, 136, 263 
Status, preserving, 258 
Storing plot parameters, 96 
Strings, 156- 157, 258 
Structured programming, 202, 241 , 

255 
Subdirectory, 60, 183, 275 
Subprograms, 260 
SUMS program, 263- 264 
Symbolic constants, 163 
Symbolic integration, 121 
Symbolic result mode, 203 
System Halt, 217 
System of linear equations, 130 

T 
Taylor series, 120 
Temperature conversion, 143-144 
Test functions and commands, 224 
Time value of money, 103- 106 
Trace printing, 150, 213 
Translating a plot, 93 
Transpose, 264 
Trigonometric functions, 73-77 
Two-number functions, 40 
Types of objects, 26, 28 



u 
Underflow, 212 
Unit catalog, 26, 29 
Unit strings, 144-145 
Unquoted names, 57 
Usage of commands, 197 
User flags, 225 
User functions, 79-81, 161, 202, 242 

nested, 245 
User memory, 48 
User menu, custom, 235 

v 
Variables, 48 

creating, 49, 54 
isolating, 109- 116 
printing, 152 
purging, 52 

Variance, 135 
Vectors, defined, 124 

w 
Warranty, 291 - 293 
Wordsize, 138- 139 

x, Y, Z 
Zero of an expression, 92, 98-100, 

107, 162 

Subject Index 337 





Contacting Hewlett-Packard 

For Information About Using the Calculator_ Ifyau have ques­
tions about how to use the calculator, first check the table of contents, 
the subject index, and "Answers to Common Questions" in appendix A. 
If you can't find an answer in the manual, you can contact the Calcula­
tor Support department: 

Hewlett -Packard 
Calculator Support 

1000 N.E. Circle Blvd. 
Corvallis, OR 97330, U.S.A. 

(503) 757-2004 
8:00 a.m. to 3:00 p.m. Pacific time 

Monday through Friday 

For Service_ If your calculator doesn't seem to work properly, refer 
to appendix A for diagnostic instructions and information on obtaining 
service. If you are in the United States and your calculator requires ser­
vice, mail it to the Calculator Service Center: 

Hewlett -Packard 
Calculator Service Center 

1030 N.E. Circle Blvd. 
Corvallis, OR 97330, U.S.A. 

(503) 757-2002 

If you are outside the United States, refer to appendix A for informa­
tion on locating the nearest service center. 



 
 
 
 
 
 
 
 
 

Scan Copyright © 
The Museum of HP Calculators 

www.hpmuseum.org 
 

Original content used with permission. 
 

Thank you for supporting the Museum of HP 
Calculators by purchasing this Scan! 

 
Please to not make copies of this scan or 
make it available on file sharing services.


	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img251
	img252
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271
	img272
	img273
	img274
	img275
	img276
	img277
	img278
	img279
	img280
	img281
	img282
	img283
	img284
	img285
	img286
	img287
	img288
	img289
	img290
	img291
	img292
	img293
	img294
	img295
	img296
	img297
	img298
	img299
	img300
	img301
	img302
	img303
	img304
	img305
	img306
	img307
	img308
	img309
	img310
	img311
	img312
	img313
	img314
	img315
	img316
	img317
	img318
	img319
	img320
	img321
	img322
	img323
	img324
	img325
	img326
	img327
	img328
	img329
	img330
	img331
	img332
	img333
	img334
	img335
	img336
	img337
	img338
	img339
	img340
	img341

