(ﬁﬁ HEWLETT

PACKARD






HP-28S
Advanced Scientific Calculator

Reference Manual

HEWLETT
(ﬁ,ﬂ] PACKARD
Edition 4 November 1988
Reorder Number 00028-90068



Notice

This manual and any keystroke programs contained herein are pro-
vided “as is” and are subject to change without notice. Hewlett-
Packard Company makes no warranty of any kind with regard to
this manual or the keystroke programs contained herein, includ-
ing, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Hewlett-Packard Co. shall not
be liable for any errors or for incidental or consequential damages in
connection with the furnishing, performance, or use of this manual or
the keystroke programs contained herein.

© Hewlett-Packard Co. 1987. All rights reserved. Reproduction, ad-
aptation, or translation of this manual, including any programs, is

prohibited without prior written permission of Hewlett-Packard Com-
pany, except as allowed under the copyright laws. Hewlett-Packard
Company grants you the right to use any program contained in this
manual in this Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all
rights are reserved. Reproduction, adaptation, or translation of those
programs without prior written permission of Hewlett-Packard Co. is
also prohibited.

Corvallis Division
1000 N.E. Circle Bivd.
Corvaliis, OR 97330, U.S.A.

Printing History

Edition 1 October 1987 Mfg. No. 00028-90069
Edition 2 April 1988 Mfg. No. 00028-90129
Edition 3 June 1988 Mfg. No. 00028-90131

Edition 4 November 1988 Mfg. No. 00028-90148



Welcome to the HP-28S

Congratulations! With the HP-28S you can easily solve complicated
problems, including problems you couldn’t solve on a calculator be-
fore. The HP-28S combines powerful numerical computation with a
new dimension—symbolic computation. You can formulate a problem
symbolically, find a symbolic solution that shows the global behavior
of the problem, and obtain numerical results from the symbolic
solution.

The HP-28S offers the following features:

B Algebraic manipulation. You can expand, collect, or rearrange terms
in an expression, and you can symbolically solve an equation for a
variable.

® Calculus. You can calculate derivatives, indefinite integrals, and
definite integrals.

® Numerical solutions. Using HP Solve on the HP-28S, you can solve
an expression or equation for any variable. You can also solve a
system of linear equations. With multiple data types, you can use
complex numbers, vectors, and matrices as easily as real numbers.

B Plotting. You can plot expressions, equations, and statistical data.

B Unit conversion. You can convert between any equivalent combina-
tions of the 120 built-in units. You can also define your own units.

B Statistics. You can calculate single-sample statistics, paired-sample
statistics, and probabilities.

B Binary number bases. You can calculate with binary, octal, and
hexadecimal numbers and perform bit manipulations.

B Direct entry for algebraic formulas, plus RPN logic for interactive
calculations.

Welcome to the HP-28S 3



The HP-28S Owner’s Manual contains three parts. Part 1, “Funda-
mentals,” demonstrates how to work some simple problems. Part 2,
“Summary of Calculator Features,” builds on part 1 to help you apply
those examples to your own problems. Part 3, “Programming,” de-
scribes programming features and demonstrates them in a series of
programming examples.

The HP-28S Reference Manual (this manual) gives detailed information
about commands. It is a dictionary of menus, describing the concepts
and commands for each menu.

We recommend that you first work through the examples in part 1 of
the Owner’s Manual to get comfortable with the calculator, and then
look at part 2 to gain a broader understanding of the calculator’s op-
eration. When you want to know more about a particular command,
look it up in the Reference Manual. When you want you learn about
programming, read part 3 of the Owner’s Manual.

These manuals show you how to use the HP-28S to do math, but
they don’t teach math. We assume that you're already familiar with
the relevant mathematical principles. For example, to use the calculus
features of the HP-28S effectively, you should know elementary
calculus.

On the other hand, you don’t need to understand all the math topics
in the HP-28S to use those parts of interest to you. For example, you
don’t need to understand calculus to use the statistical capabilities.

4 Welcome to the HP-28S



Contents

10  How To Use This Manual

11 How This Manual is Organized

11 How To Read Stack Diagrams

15 Dictionary

16 ALGEBRA (Algebraic manipulations)

16 Algebraic Objects

21 Functions of Symbolic Arguments

25 Evaluation of Algebraic Objects

27 Symbolic Constants: e, 7, i, MAXR, and MINR
28 COLCT EXPAN SIZE FORM OBSUB EXSUB
33 TAYLR ISOL QUAD SHOW OBGET EXGET
34 ALGEBRA (FORM)

36 FORM Operations

47 FORM Operations Listed by Function

53  Arithmetic

63 ARRAY (Vector and matrix commands)

65 Keyboard Functions

70 -ARRY ARRY- PUT GET PUTI GETI
75 SIZE RDM TRN CON IDN RSD
79 CROSS DOT DET ABS RNRM CNRM
82 R-C C-R RE M CONJ NEG

Contents

5



85 BINARY (Base conversions, bit manipulations)

87 DEC HEX OCT BIN STWS RCWS
89 RL RR RLB RRB R-B B-R
91 SL SR SLB SRB ASR
92 AND OR XOR NOT
96  Calculus
96 Differentiation
100 Integration
106 Taylor Series
110 COMPLEX (Complex numbers)
111 R-C C-R RE M CONJ SIGN
114 R-P P-R ABS NEG ARG
116 Principal Branches and General Solutions
124 Evaluation
127 LIST
128 -LIST LIST- PUT GET PUTI GETI
132 POS SUB  SIZE
133 LOGS (Logarithmic, exponential, and hyperbolic
functions)
133 LOG  ALOG LN EXP LNP1 EXPM
136 SINH ASINH COSH ACOSHTANH ATANH
139 MEMORY
141 MEM MENU ORDER PATH HOME CRDIR
144 VARS  CLUSR
145 MODE (Display, angle, recovery, and radix modes)
145 STD  FIX SCI ENG DEG RAD
150 CMD UNDO LAST ML RDX, PRMD
152 PLOT
152 The Display
153 Mathematical Function Plots
155 Statistical Scatter Plots
155 Interactive Plots
156 Plot Parameters
157 STEQ RCEQ PMIN PMAX INDEP DRAW
160 PPAR RES  AXES CENTR W *H
163 STOZ RCLZ COLZ SCLZ DRWZ
165 CLLCD DGTIZ PIXEL DRAX CLMF PRLCD

6 Contents



168
168
169
169
170
171
174

176
176
177
178
181

183
184
185
186
188
192

193

193
195
198

201
201
204
206
211

213
214
215
218
219
221

PRINT

Print Formats

Faster Printing

Double-Space Printing

Configuring the Printer

PR1 PRST PRVAR PRLCD CR TRAC
PRSTC PRUSR PRMD

Programs

Evaluating Program Objects
Simple and Complex Programs.
Local Variables and Names
User-Defined Functions

PROGRAM BRANCH (Program branch structures)
Tests and Flags

Replacing GOTO

IF IFERR THEN ELSE END

START FOR  NEXT STEP IFT IFTE
DO UNTIL END  WHILE REPEAT END

PROGRAM CONTROL (Program control,
halt, and single-step operations)
Suspended Programs
SST HALT ABORT KILL  WAIT KEY
BEEP CLLCD DISP CLMF ERRN ERRM

PROGRAM TEST (Flags, logical tests)
Keyboard Functions

SF CF FS? FC? FS?C  FC?C
AND OR XOR NOT SAME ==
STOF RCLF TYPE

REAL (Real numbers)

Keyboard Functions

NEG FACT RAND RDZ MAXR MINR
ABS SIGN MANT XPON

P FP FLOOR CEIL RND

MAX MIN MOD %T

Contents 7



224
225

234

236

239
239
241
243

245
246
249
251
254

258
258
262

263
264
264
270
273

273
277
280

283
285
286
287
295
295

8 Contents

SOLVE (Numerical and symbolic solutions)
Interactive Numerical Solving: The Solver
(STEQ, RCEQ, SOLVR, ROOT)
Symbolic Solutions
(ISOL, QUAD, SHOW)
General Solutions

STACK (Stack manipulation)

Keyboard Commands

DUP OVER DUP2 DROP2 ROT  LIST-
ROLLD PICK DUPN DROPN DEPTH -LIST

STAT (Statistics and probability)

Z+ z— NZ CLZ STOZ RCLZ
TOT MEAN SDEV VAR MAXZ MINZ
COLZ CORR COV LR PREDV

UTPC UTPF UTPN UTPT COMB PERM

STORE (Storage arithmetic)
STO+ STO— STO% STO/ SNEG SINV
SCON]

STRING (Character strings)

Keyboard Function

-STR STR- CHR NUM -LCD LCD-

POS SUB  SIZE  DISP

TRIG (Trigonometry, rectangular/polar and
degrees /radians conversion,
Hour/Minute/Second arithmetic)

SIN ASIN COS ACOS TAN  ATAN

P-R R-P R-C C-R ARG

-HMS HMS- HMS+ HMS— D-R R-D

UNITS

Temperature Conversions
Dimensionless Units of Angle
The UNITS Catalog
User-Defined Units

Unit Prefixes



298 Messages

306 User Flags

310 Glossary

323 Operation Index
350 Subject Index

Contents



How To Use This Manual

This manual contains general information about how the HP-285
works and specific information about how each operation works. For
an overview of the manual, look through the Table of Contents. You
can quickly find other types of information as follows.

To Learn About:

Refer to:

A particular operation, command, or
function.

A particular menu.

What a displayed message means.

What an unfamiliar term means.

The Operation Index (page 323). All
operations, commands, and func-
tions are listed alphabetically. Each
entry includes a brief description, a
reference to a menu or topic in the
Dictionary, and a page reference to
the Dictionary. For background in-
formation, refer to the menu or topic
in the Dictionary (listed alphabeti-
cally). For specific information, refer
to the page number.

The Dictionary (page 15). All menus
are listed alphabetically.

Appendix A, “Messages” (page 298).
The Glossary (page 310).

10 How To Use This Manual




How This Manual is Organized

The Dictionary, is the largest portion of the manual. Organized by
menus, it details each individual operation, command, and function.
The action of each command and function is defined in a stack dia-
gram. (Refer to “How To Read Stack Diagrams” later in this section.)

Appendix A, “Messages,” describes status and error messages you
might encounter.

Appendix B, “User Flags,” describes the choices and default setting for
user flags 31 through 64.

The Glossary defines terms used in this manual.

The Operation Index is an alphabetical listing of all operations, com-
mands, and functions in the HP-28S. Each entry includes a brief
description, a reference to the chapter or menu heading in the manual
where you can find background information, and a page reference
where you can find specific information.

How To Read Stack Diagrams

The action of a command is specified by the values and order of its
arguments and results. An argument is an object that is taken from the
stack, on which the command acts. The command then returns a re-
sult to the stack. (A few commands affect modes, variables, flags, or
the display, rather than returning objects.)

How To Use This Manual 11



The description of each command includes a stack diagram, which
provides a tabular listing of the arguments and results of the com-
mand. A typical stack diagram looks like this:

XMPL Example Function

Level 2 Level 1 Level 1

obj4 objs » obj3

This diagram shows:

B The text name (which can appear in the command line) is “XMPL".
B The descriptive name is “Example”.
B XMPL is a function (allowed in algebraic expressions).

B XMPL requires two arguments, obj; and obj,, taken from stack
levels 2 and 1, respectively.

B XMPL returns one result, obj;, to level 1.

The arrow » in the diagram separates the arguments (on the left) from
the results (on the right). It is a shorthand notation for “with the pre-
ceding arguments on the stack, executing XMPL returns the following
results to the stack.”

The arguments and results are listed in various forms that indicate as
much specific information about the objects as possible. Objects of
specific types are shown within their characteristic delimiter symbols.
Words or formulas included with the delimiters provide additional de-
scriptions of the objects. Stack diagrams generally use the following
terms.

12 How To Use This Manual



Terms Used in Stack Diagrams

Term Description

obj Any object.

x ory Real number.

hms Real number in hours-minutes-seconds format.

n Positive integer real number (rounded if non-integer).

flag Real number, zero (false) or non-zero (true).

z Real or complex number.

LX,y3 Complex number in rectangular form.

Lr.f Complex number in polar form.

#n Binary integer.

"'string" Character string.

Carray 1 Real or complex vector or matrix.

Cvector] Real or complex vector.

Cmatrix 1 Real or complex matrix.

CR-array 1 Real vector or matrix.

CC-array ] Complex vector or matrix.

i list ¥ List of objects.

index Real number specifying an element in a list or array; or list
with one real number (or object that evaluates to a number)
specifying an element in a list or vector; or list with two real
numbers (or objects that evaluates to numbers) specifying an
element in a matrix.

{dim* List of one or two real numbers specifying the dimension(s) of
an array.

' name'' Global name or local name.

' global ' Global name.

'local ' Local name.

“program# | Program.

'symb' Expression, equation, or a name treated as an algebraic.

How To Use This Manual 13



The stack diagram for a command may contain more than one “argu-
ment ® result” line, reflecting the various possible combinations of
arguments and results. Where appropriate, results are written in a
form that shows the mathematical combination of the arguments. For
example, the stack diagram for + includes the following entries
(among others).

+ Add Analytic
Level 2 Level 1 Level 1
Z4 Zs » z1t+25
Carray,1 Carray,1 ®» Carray,+array,1
z ‘symb' ®» 'z+symb> !

This diagram shows that:

B Adding two real or complex numbers z; and z, returns a third real
or complex number with the value z;+z,.

® Adding two arrays Carray;1 and Carray,] returns a third array
Carray,+array, 1.

B Adding a real or complex number z and a symbolic object 'symb*
returns a symbolic object 'z+{symb>»'.

14 How To Use This Manual



Dictionary

The Dictionary is organized around the menus in the HP-28S. It also
includes additional topics not related to specific menus:

B Arithmetic

8 Calculus

® Evaluation

B Programs

® UNITS

Not included are menus that don’t contain a fixed set of commands:

B Cursor menu
B Custom menu
B USER menu

B Catalog of commands

Dictionary 15



ALGEBRA

COLCT EXPAN SIZE FORM OoBSUB EXSUB
TAYLR ISOL QUAD SHOW OBGET EXGET

Algebraic Objects

An algebraic object is a procedure that is entered and displayed in
mathematical form. It can contain numbers, variable names, func-
tions, and operators, defined as follows:

Number: A real number or a complex number.

Variable name: Any name, whether or not there is currently a vari-
able associated with the name. We will use the term formal variable to
refer to a name that is not currently associated with a user variable.
When such a name is evaluated, it returns itself.

Function: An HP-28S command that is allowed in an algebraic pro-
cedure. Functions must return exactly one result. If one or more of a
function’s arguments are algebraic objects, the result is algebraic.
Most functions appear as a function name followed by one or more
arguments contained within parentheses; for example, 'SIH (X',

Operator: A function that generally doesn’t require parentheses
around its arguments. The operators NOT, \/, and NEG (which ap-
pears in algebraics as the unary — sign) are prefix operators: their
names appear before their arguments. The operators +, —, %, /, 7,
=, ==, #, <, >, <, =, AND, OR, and XOR are infix operators:
their names appear between their two arguments.

16 Dictionary



...ALGEBRA

Precedence

The precedence of operators determines the order of evaluation when
expressions are entered without parentheses. The operations with
higher precedence are performed first. Expressions are evaluated from
left to right for operators with the same precedence. The following
lists HP-28S algebraic functions in order of precedence, from highest
to lowest:

1. Expressions within parentheses. Expressions within nested pa-
rentheses are evaluated from the inside out.

2. Functions such as SIN, LOG, and FACT, which require argu-
ments in parentheses.

3. Power (*) and square root (\/).

4. Negation (—), multiplication (%), and division (/).

5. Addition (+) and subtraction (—).

6. Relational operators (==, #, <, >, <, =).

7. AND and NOT.

8. OR and XOR.

9. =
Algebraic objects and programs have identical internal structures.
Both types of procedures are sequences of objects that are processed
sequentially when the procedures are evaluated. The algebraic ' = +Y*:
and the program # % % + = are both stored as the same sequence
(the RPN form). Algebraics are “marked” as algebraics so that they

will be displayed as mathematical expressions and to indicate that
they satisfy algebraic syntax rules.

Dictionary 17



...ALGEBRA

Algebraic Syntax and Subexpressions

A procedure obeys algebraic syntax if, when evaluated, it takes no
arguments from the stack and returns exactly one argument to the
stack, and if it can be subdivided completely into a hierarchy of
subexpressions. A subexpression can be a number, a name, or a func-
tion and its arguments. By hierarchy, we mean that each sub-
expression can itself be an argument of a function. For example,
consider the expression:

'1-SINHCK+Y !

The expression contains one number, 1, and two names, & and ¥,
each of which can be considered as a simple subexpression. The ex-
pression also contains three functions, +, —, and SIH, each of which
defines a subexpression along with its arguments. The arguments of +
are ¥ and ¥; ¥+Y is the argument of SIH, and 1 and SIH{X+Y» are
the arguments of —. The hierarchy becomes more obvious if the ex-
pression with its operators is rewritten as ordinary functions (Polish
notation):

—(1, SIN (+(X, Y)))

An object or subexpression within an expression is characterized by
its position and level.

The position of an object is determined by counting from left to right
in the expression. For example, in the expression '1-SIHCH+v ", 1
has position 1, — has position 2, SIH has position 3, and so on.

The position of a subexpression is the position of the object that de-

fines the subexpression. In the same example, 'SIHCX+Y 2" has
position 3, since it is defined by SIH in position 3.

18 Dictionary



-..ALGEBRA

The level of an object within an algebraic expression is the number of
pairs of parentheses surrounding the object when the expression is
written in purely functional form. For example, in the expression ' 1-
SIMcX+Y2>', — has level 0, 1 and SIN have level 1, + has level 2,
and ¥ and ¥ have level 3. Every algebraic expression has exactly one
level O object.

(User-defined functions are an apparent exception to the rule for
determining the levels of a subexpression. In the expression
"FiA,B»', for example, where F is a user-defined function, F, A,
and E are all at level 1; there is no explicit level 0 function. This is
because F and its arguments A and B are all arguments for a special
“invisible” function that provides display and evaluation logic for
user-defined functions.)

If we take the above expression and rewrite it again, by removing the
parentheses, and placing the functions after their arguments, we ob-
tain the RPN form of the expression:

1 ¥ ¥ + SIH -

This defines a program that has algebraic syntax, and is effectively

equivalent to the corresponding algebraic object. Programs, however,
are more flexible than algebraic objects; for example, we could insert a
DUP anywhere in the above program and still have a valid program,
but it would no longer obey algebraic syntax. Since DUP takes one
argument and returns two, it cannot define or be part of an algebraic
subexpression.

Equations

An algebraic equation is an algebraic object containing two expressions
combined with an equals sign (=). Mathematically, the equals sign im-
plies the equality of the two subexpressions on either side of the sign.
In the HP-28S, = is a function of two arguments. It is displayed as an
infix operator, separating the two subexpressions that are its argu-
ments. Internally, an equation is an expression with = as its level 0
object.

Dictionary 19



...ALGEBRA

When an equation is numerically evaluated, = is equivalent to —. This
feature allows expressions and equations to be used interchangeably
as arguments for symbolic and numerical rootfinders. An equation is
equivalent to an expression with = replaced by -, and an expression is
equivalent to the left side of an equation in which the right side is
zero.

When an equation is an argument of a function, the result is also an
equation, where the function has been applied to both sides. Thus

'E=Y' SIHM returns 'SIMCK»=SINCY2 ',

Conventional mathematical usage of the equals sign = is ambiguous.
The equals sign is used to equate two expressions, as in

x + siny = 2z + t. This type of equation is suitable for solving, that
is, adjusting one or more variables to achieve the equality of the two
sides.

The equals sign is also used to assign a value to a variable, as in
x = 2y + z. This equation means that the symbol x is a substitution
for the longer expression 2y + z; it is meaningless to “solve” this
equation.

The ambiguity of the equals sign is compounded by certain computer

languages such as BASIC, where “=" means “replace by,” as in

X =Y + Z. Such notation doesn’t imply a mathematical equation at
all.

In the HP-28S, the equals sign always means equating two expres-
sions, such that solving the equation is equivalent to making the
difference between the two expressions zero. (Assignment is per-
formed by STO, which is strictly a postfix command that takes two
arguments.)

20 Dictionary



-..ALGEBRA

== Equal Analytic
Level 2 Level 1 Level 1
Z4q Zy » ! Z41=2y !
z ‘symb' » 'z=symb'
'symb' z » 'symb=z"
"symbq ! ‘symby,' ® ' symb,=symb,"'

This function combines two arguments, which must be names, expres-
sions, real numbers or complex numbers.

If the HP-28S is in Symbolic Result mode (flag 36 set), the result is an
algebraic equation, with the level 2 argument on the left side of the
equation, and the level 1 argument on the right.

If the HP-28S is in Numerical Result mode (flag 36 clear), the result is
the numerical difference of the two arguments. In effect, = acts as
the — operator in Numerical Result mode.

Functions of Symbolic Arguments

Result Mode

Symbolic Result Mode (flag 36 set). In Symbolic Result mode,
functions return symbolic results if their arguments are symbolic. This
is the default mode. For example:

‘"' SIM  returns PEIMCREY!
'EM2+5' LM returns 'LHCR™2+50 ",
2 '®' + returns P34
2 'HE' + SIH returns "SIHCZ2+Ra ",
'“' 1 2 IFTE returns 'IFTECH, 1,22 ",

Dictionary 21



--.ALGEBRA

Numerical Result Mode (flag 36 clear). In Numerical Result mode,
each function attempts to convert symbolic arguments to data objects.
Once the arguments are converted to numbers, the function is applied
to those arguments, returning a numeric result. The arguments are re-
peatedly evaluated until they become data objects or formal variables.
If the final arguments are formal variables, an Undefined Hame er-
ror occurs.

Automatic Simplification

Certain functions, when evaluated, replace certain arguments or com-
binations of arguments with simpler forms. For example, when
‘1%K' is evalulated, the ¥ function detects that one of its arguments
is a 1, so the expression is replaced by ' X'. Automatic simplification
occurs in the following cases:

Original Expression Simplified Expression
Negation, Inverse, Square
—{—¥2 b
INVCINV R 2 A
SRCLKED ®
SRCRY 2 RA(Y(2D
SQcCin !
Addition and Subtraction
B+X or X+8 ®
»-8a ®
B-¥ -¥
R—¥ 8
Multiplication
X¥8 or B%X a8
®¥l or 1%¥ ®
REC-12 or —1%X -¥
-R¥(-12 or —1%{(-R> ¥
i%i =
—H¥INVCY D —(K-YD
—-REY —{XEKYD
REIMVOY D By

22 Dictionary




...ALGEBRA

Original Expression

Simplified Expression

Division

CTHWCHD

At
Ry
e

Power
17

SIN, COS, TAN
SINCASINCHYD
SIHO=H2

TAHCATAMCx= 2 2
TAH -2
TAH
MAX, MIN, MOD, SIGN

MODCs,
MoaDcMon
SIGHCSIGH

THWCED
-1lori—-1,@2»"
—-1.,@7>

)

—SIHCRE
at

1t
B
-1t

5]

ks

—THHC =
at

* Depends on Symbolic Result mode (flag 36 set) or Numerical Result mode (flag 36 clear).

1 Applies only when the angle mode is radians.

Dictionary 23



...ALGEBRA

Original Expression

Simplified Expression

ALOG, EXP, EXPM, SINH, COSH, TANH
ALOGOLOGCED 2

EXFOLMC=22

EXPMCLMHPL Cxd

SIMHCASIMH

TAHMHCATAMH

IM, RE, CONJ
IMCTIMORY S
IMCRECHY S
IMCCOMJCRY Y
IMEin

RECCONJCH )
RECiD
CONJCCONI (XD
CONJCRECHD )
CONJCIMERD
CONJ (i

Functions of Equations

Functions applied to equations in symbolic

equations as results.

evaluation mode return

If a function of one argument is applied to an equation, the result is
an equation obtained by applying the function separately to the left
and right sides of the argument equation. For example:

'a+2=%"' SIH returns

24 Dictionary

PEIMCE+AZ =S IHCY Y .



...ALGEBRA

If both arguments of a two argument function are equations, the re-
sult is an equation derived by equating the expressions obtained by
applying the function separately with the two left sides of the equa-
tion as arguments, and with the two right sides. For example:

PRAY=Z4T' 'SINCEI=S' + returns 'H+Y+SINCRI=Z4T+5'.

If one argument of a two argument function is a numeric object or an
algebraic expression, and the other is an equation, the former is con-
verted to an identity equation with the original object on both sides.
Then the function acts as in the case where both arguments are equa-
tions. For example:

'R=Y' 32 - returns 'E-3=%-3'.

These properties define the behavior of algebraic objects when they
are evaluated (see the next section) as well as allow you to perform
algebraic calculations in an interactive RPN style, much as you carry
out ordinary numerical calculations.

Evaluation of Algebraic Objects

Evaluation of algebraic objects is a powerful feature of the HP-285
that allows you to consolidate expressions by carrying out explicit nu-
merical calculations, and substitute numbers or expressions for
variables. In order to understand what to expect when you evaluate
an algebraic object remember that an algebraic object is equivalent to
a program, and that evaluating a program means to put each object in
the program on the stack and, if the object is a command or name,
evaluate the object.

To demonstrate what this means, let us suppose that we have defined
variable X to have the value 3 (thatis, 2 '¥' ST0), Y to have the
value 4, and Z to have the value ':+T'.-We will also assume that
Symbolic Result mode (flag 36) is set, so that functions will accept
symbolic arguments.

Dictionary 25



...ALGEBRA

First consider the expression ' +Y'. When we evaluate this expres-
sion ('#+%' EWHAL), we obtain the result 7. Here’s why: Internally,
"¥+7 "' is represented as X Y +. So when '¥+¥"' is evaluated, X, Y,
and + are evaluated in sequence:

1. Since ¥ is a name, evaluating it is equivalent to evaluating the
object stored in the variable =, the number 3. Evaluating X puts
3 in level 1.

2. Similarly, evaluating ¥ puts 4 in level 1, pushing the 3 into
level 2.

3. Now +is evaluated, with the numeric arguments 3 and 4 on the
stack. This drops the 3 and the 4, and returns the numeric
result 7.

Now try evaluating '®+T':

1. Evaluating ® puts 3 in level 1.

2. T is a name not associated with a variable, so it just returns itself
to level 1, pushing the 3 into level 2.

3. This time + has 3 and T as arguments; since T is symbolic, +
returns an algebraic result, '3+T".

Finally, consider evaluating ' +7+2Z'. Internally, this expression is
represented as X Y + Z +. Following the same logic as in the above
examples, evaluation gives the result '7+({¥+T2»'. We can evaluate
this result again and obtain the new result ' 7+¢3+T '. Further eval-
uation makes no additional changes, since T has no value.

The values 7 and 3 obtained are not arguments to the same + oper-
ator in the expression, and hence are not combined. If you want to
combine the 7 and the 3, you can use either the COLCT command for
automatic collection of terms, or the FORM command for more gen-
eral rearrangement of the expression.

26 Dictionary



--.ALGEBRA

Symbolic Constants: e, 7, i, MAXR, and
MINR

There are five built-in algebraic objects that return a numerical repre-
sentation of certain constants. These objects have the special property
that their evaluation is controlled by Constants mode (flag 35) as well
as by the Results mode (flag 36).

B If flag 35 or flag 36 is clear, these objects will evaluate to their
numeric values. For example:
'2%1' EVAL returns <@,2>.

B If flag 35 and flag 36 are both set, these objects will retain their
symbolic form when evaluated. For example:

'2¥i' EVAL returns 'Z¥i‘'.
The following table lists the five objects and their numerical values.

HP-28S Symbolic Constants

Object Name Numerical Value
e 2.71828182846
™ 3.14159265359
i (0.00000000000,1.00000000000)
MAXR 9.99999999999E499
MINR 1.00000000000E-499

Dictionary 27



-..ALGEBRA

The numerical values of = and 1 are the closest approximations of the
constants ¢ and m that can be expressed with 12-digit accuracy. The
numerical value of i is the exact representation of the constant i.
MAXR and MIMR are the largest and smallest non-zero numerical val-
ues that can be represented by the HP-28S.

For greater numerical accuracy, use the expression 'EXF (X' rather
than the expression 'e*x'. The function EXP uses a special algo-
rithm to compute the exponential to greater accuracy.

When the angle mode is radians and flags 35 and 36 are set, trigono-
metric functions of # and .2 are automatically simplified. For
example, evaluating 'SIM:w2 ' gives a result of 0.

COLCT EXPAN SIZE FORM OBSUB EXSUB

These commands alter the form of algebraic expressions, much as you
might if you were dealing with the expressions “on paper”. COLCT,
EXPAN, and FORM are identity operations, that is, they change the
form of an expression without changing its value. OBSUB and EXSUB
allow you to alter the value of an expression by substituting new ob-
jects or subexpressions into the expression.

COLCT Collect Terms Command

Level 1 Level 1

'symby' ® ‘'symb,'

COLCT rewrites an algebraic object so that it is simplified by “collect-
ing” like terms. Specifically, COLCT:

B Evaluates numerical subexpressions. For example:
"1+2+L0GC18@2 " is replaced by 4.

28 Dictionary



-..ALGEBRA

B Collects numerical terms. For example: '1+:+2' is replaced by
CZaN

B Orders factors (arguments of *), and combines like factors. For ex-
ample: ' ®*ZEVEHTHY? is replaced by 'Ho(T+Zr¥y 2.

B Orders summands (arguments of +), and combines like terms dif-
fering only in a numeric coefficient. For example:
"EAHHY+IEH is replaced by ' S#E+Y .

COLCT operates separately on the two sides of an equation, so that
like terms on opposite sides of the equation are not combined.

The ordering (that is, whether X precedes Y) algorithm used by
COLCT was chosen for speed of execution rather than conforming to
any obvious or standard forms. If the precise ordering of terms in a
resulting expression is not what you desire, you can use FORM to
rearrange the order.

EXPAN Expand Products Command

Level 1 Level 1

'symby'  ®  'symb,'

EXPAN rewrites an algebraic object by expanding products and pow-
ers. More specifically, EXPAN:

B Distributes multiplication and division over addition. For example:

'"A¥CB+C) ' expands to 'A¥E+A¥C'; '{E+C1.-A' expands to
'BsRA+CARC.

B Expands powers over sums. For example: 'A*¢E+C»' expands to
TATBEACC!.

B Expands positive integer powers. For example: '%~5' expands to
P
‘¥4x~4' The square of a sum ' (x+¥Y>"2' or 'SR{H+YI ' is ex-
panded to 'HUZ+ZEHET YD

Dictionary 29



--.ALGEBRA

EXPAN does not attempt to carry out all possible expansions of an
expression in a single execution. Instead, EXPAN works down
through the subexpression hierachy, stopping in each branch of the
hierarchy when it finds a subexpression that can be expanded. It first
examines the level 0 subexpression; if that is suitable for expansion, it
is expanded and EXPAN stops. If not, EXPAN examines each of the
level 1 subexpressions. Any of those that are suitable are expanded; in
the remainder, the level 2 subexpressions are examined. This process
continues down through the hierarchy until an expansion halts fur-
ther searching down each branch. For example:

Expand the expression 'A~¢B¥{C~2+D»>".

1. The level 0 operator is the left ~. Since it cannot be expanded,
the level 1 operator * is examined. One of its arguments is a
sum, so the product is distributed yielding:

‘AT CBRCT2+BXD !

2. The level 0 operator is still the left ~, but now its power is a sum,
so the power is expanded over the sum when EXPAN is exe-
cuted again:

"ATCBRCTZ22kA(BRDY !

3. One more expansion is possible. The level 0 operator is now the
middle *. Since it cannot be expanded, the level 1 operators, the
outside *'s, are examined. They cannot be expanded, so the level
2 operators, the outside *’s, are examined. Since they cannot be
expanded, the level 3 operator, the middle #, is examined. Its
power is a positive integer, so the power is expanded:

'"ATCBRCCRCI DXATCBXDY !

30 Dictionary



-..ALGEBRA

SIZE Size Command
Level 1 Level 1
"string" » n
{list ¥ » n
Carrayl = {list ¥
‘symb' ®» n

SIZE returns the number of objects that comprise an algebraic object.

Refer to “ARRAY,” “LIST,” and “STRING” for the use of SIZE with
other object types.

FORM Form Algebraic Expression Command
Level 1 Level 3 Level 2 Level 1
'symby' ®» 'symb, !
'symby' ®» ‘'symb,' n ' symbg '

FORM is an interactive expression editor that enables you to rear-
range an algebraic expression or equation according to standard rules
of mathematics. Its operation is described in the next section, “ALGE-
BRA (FORM).”

Dictionary 31



...ALGEBRA

OBSUB Object Substitute Command
Level 3 Level 2 Level 1 Level 1
'symby ' n iobj ¥ » 'symb,'

OBSUB substitutes a number, name, or function in the specified posi-
tion of an algebraic object. The object is the contents of a list in level
1, the position # is in level 2, and the algebraic object is in level 3. For
example:

'A¥E' 3 ¢ C r OBSUE returns 'A*C'.
You can substitute functions as well as user variables. For example:

'A¥B' 2 { + + OBSUB returns 'A+EBE"'.

EXSUB Expression Substitute Command
Level 3 Level 2 Level 1 Level 1
'symby ' n 'symb,' ®» ‘'symbg'

EXSUB substitutes the algebraic (or name) 'symb, "' for the subexpres-
sion in the nth position of the algebraic 'symb;' and returns the
result expression 'symbs'. The nth subexpression consists of the nth
object in an algebraic object definition plus the arguments, if any, of
the object. For example:

'"CA+BX¥C' 2 'E"F' EXSUE returns 'E“F¥C'.

32 Dictionary



-.ALGEBRA

TAYLR ISOL QUAD SHOW OBGET EXGET

TAYLR is described in “Calculus,” along with d and [. ISOL, QUAD,
and SHOW are described in “SOLV.”

OBGET Object Get Command
Level 2 Level 1 Level 1
'symb' n » {obji

OBGET returns the object in the nth position of the algebraic object
symb in level 2. The object is returned as the only object in a list. For
example:

'"CA+BEXXC' 2 OBGET returns { + ».

If n exceeds the number of objects, OBGET returns the level 0 object.

EXGET Expression Get Command
Level 2 Level 1 Level 1
'symby ! n » 'symb,'

EXGET returns the subexpression in the nth position of the algebraic
symb; in level 2. The nth subexpression consists of the nth object in an
algebraic object definition plus the arguments, if any, of the object.
For example:

"CA+BX¥C' 2 EXGET returns 'A+EBE'.

If n exceeds the number of objects, EXGET returns the level 0
subexpression.

Dictionary 33



ALGEBRA (FORM)

FORM Form Algebraic Expression Command
Level 1 Level 3 Level 2 Level 1
'symby' ®» 'symb,!
‘symby' ® 'symb,' n 'symbg'

FORM is an interactive expression editor that enables you to re-
arrange an algebraic expression or equation according to standard
rules of mathematics. All of FORM’s mathematical operations are
identities; that is, the result expression symb, will have the same value
as the original argument expression symb;, even though the two may
have different forms. For example, with FORM you can rearrange
"A+E' to 'E+A', which changes the form but not the value of the
expression.

A variation of the command EXGET is available while FORM is ac-
tive. It allows you to duplicate a subexpression symbs; contained in
symb;, and return symb; and its position n to the stack.

When FORM is executed, the normal stack display is replaced by a
special display of the algebraic object, along with a menu of FORM
operations at the bottom of the display. The special display initially
starts in line two of the display (second from top), and wraps into line
three if the object is too long to display in a single line. If the object
requires more than two display lines, you will have to move the
FORM cursor through the object to view the remainder.

To exit FORM and continue with other calculator operations, press
[ON]. Alternatively, you can press the EXGET menu key, which also
returns the selected subexpression symb; and its position n to the
stack.

34 Dictionary



-..ALGEBRA (FORM)

The FORM cursor highlights an individual object in the expression
display. (It is not a character cursor like that of the command line.)
The highlighted object appears as white characters against a black

background. The cursor identifies both the selected object, which is

highlighted, and the selected subexpression, which is the subexpression
consisting of the selected object and its arguments, if any.

You can move the cursor to the left or right in the expression by
pressing the [¢1 or r+1 keys in the menu; when the cursor
moves, it moves directly from object to object, skipping any interven-
ing parentheses. The cursor is always in line two of the display. If you
attempt to move the cursor past the right end of line two, the expres-
sion scrolls up one line in the display, and the cursor moves back to
the left end of line two. Similarly, if you try to move the cursor past
the left end of line two, the expression scrolls down one line, and the
cursor moves to the right end of line two.

The expression display differs from the normal stack algebraic object
display by inserting additional parentheses in order to make all oper-
ator precedence explicit. This feature helps you identify the selected
subexpression associated with the selected object as shown by the
cursor. This is important, since all FORM menu operations operate on
the selected subexpression.

While FORM is active, a special set of operations is available as menu
keys. The initial menu contains six operations common to all
subexpressions. Additional menus of operations are available via the
and [(PREV] keys; the contents of the additional menus vary
according to the selected object. Only those operations that apply to
the selected object are shown.

You can reactivate the first six menu keys at any time by pressing

(ENTER].

Dictionary 35



...ALGEBRA (FORM)

FORM Operations

In the following subsections, all of the operations that can appear in
the FORM menus will be described. The descriptions consist primarily
of examples of the “before” and “after” structures of the selected
subexpressions relevant to each operation. Each possible operation is
represented by an example like this:

«01  Distribute to the left.

Before After

CCR+EIRD) CORECY+CBECY D

For simplicity variable names such as A, B, and C will be used, but
each of these can represent a general object or subexpression. The ex-
ample shows that applying ¢n (distribute to the left) to
"CA+EXHC' returns 'AFCHEXC'.

Individual FORM operations appear in the FORM menu when they
are relevant for the selected object. For example, +0 appears in the
menu when + is the selected object, but not when SIN is selected.
Furthermore, if an operation does appear, you will be able to execute
it only if it applies to the selected subexpression. For example, D+
appears when % is the selected object, since distribution is a property
of multiplication. However, the menu key is inactive (it will just beep
if pressed) unless the subexpression is of the form '(R+E»*C' or
"{A-EB»*C', which can be distributed.

36 Dictionary



-..ALGEBRA (FORM)

The initial FORM menu contains the following operations:

Operations Common to All Subexpressions

Operation

Description

COLCT

ExPAN

LEVEL

EAGET

Lel

£=21]

Collects like terms in the selected subexpression. This opera-
tion works the same as the command COLCT except that its
action is restricted to the selected subexpression. The FORM
cursor is repositioned to the beginning of the expression
display.

Expands products and powers in the selected subexpression.
This operation works the same as the command EXPAN ex-
cept that its action is restricted to the current subexpression.
The FORM cursor is repositioned to the beginning of the ex-
pression display.

Displays the level of the selected object or its associated se-
lected subexpression. The level is displayed as long as you
hold down the LEVEL key.

Exits FORM, leaving the current version of the edited expres-
sion in level 3, a copy of the selected subexpression in level
1, and its position in level 2.

Moves the FORM cursor to the previous object (to the left) in
the expression.

Moves the FORM cursor to the next object (to the right) in the
expression.

Dictionary 37



...ALGEBRA (FORM)

Commutation, Association,

and Distribution

_ Commute the arguments of an operator.

Before After
CA+B2 CB+A2
C—CAX+B (B=A2
CA-B2 (—-(B)*A>
CAXE > (BxA>
CIMVCAY%B
CA/B> CINV(BYXAY

~ Associate to the left. The arrow indicates the direction in

which the parentheses will “move.”

Before

After

CA+CB+C
CA+CB-C0 0
CA-CB+C
(A-CB-C>2
CA¥CBHC D
CAXC(B-CO>
(A CBHC Y2
CAHsCBAC2
CACBXECY 2

e e

CCRXBIRC)

38 Dictionary




-..ALGEBRA (FORM)

- Associate to the right. The arrow indicates the direction in

which the parentheses will “move.”

INVCA%ED
INVCA-BD
INV{A“E>
IHVCALOGCA D
INVCEXPCAY

Before After
CCA+BI 40D CA+CB+C )
CCA-B2+C) -

CCA+BX-C CA+C(B-CH>»
C(A-B»=C> CAZCB+C )
CCA¥BIRCH CAXCBHC Y=
CCAABIRCY CAACBACH 2
CCR¥BYCH (AXCB-CH>
CCRABILC) CA-CB¥C 2
CCATBIAC) CARCBXC) D
Distribute prefix operator.

Before After
~(A+B> (-CA=B
-(A¥B>
~CA-B> C—CR» B>
=CLOGCRAY S CINVCRY >
=CLNCA» CINVCA?

CINVCRIZED
CINVCRYRED
CAA-CBD D
ALOGC—CAD D
EXPC—CAY D

Dictionary 39



...ALGEBRA (FORM)

Note that any time an expression is rewritten, the sequence * INV is
collapsed to /. Similarly, +— is replaced by —.

+«0  Distribute to the left. The arrow points to the subexpres-
sion that is distributed.

Before After
CORA+E I RCD CORA¥CHI+CBRCH D
COA-BIRCO CCRAYCI-CB®CH D
CCA+BYCO CCA-sC2#CBACO 2
CCA-BX,C2 (CAsCI=CB-CHD
CCA¥BIACY CCRSCARCBNC D
CCRsBIACD CCAMCHI CBMCDD

D+ Distribute to the right. The arrow points to the sub-
expression that is distributed.

Before After
CAXCB4CHD CCAYBI+CARCH D
CAXCB-C22 CCA¥BI-CRA*XCHD
CA oCB+CD IHVCCIHVCRI B +CTHV ORI HC 2
CH oCB-C20 IHVE CIHVCAP B —CTHYCRXHC 2
CASCB4CH D CORCBIRCATCHD
CHACB-C 2 CCASBAI,CATCY D
LOGEAXE CLOGCAX+LOGCE > 2
LOGUA~E2 CLOGCAY-LOGCE 2
ALOGCA+E CALOGCAX¥ALOGCED 2
ALOGCA-BX CALOGCAY ALOGCE X 2
LNCAXE CLHCAY+LHCB 2 2

40 Dictionary



(Continued)

...ALGEBRA (FORM)

Before

After

LNCA-E
EXPCH+E >
EXPCA-E D

CLHCAI-LHCED
CEXPCRMXEXFCED 2
CERFCRIAEXFCED 2

+M  Merge left factors. This operation merges arguments of +,
—, %, and /, where the arguments have a common factor or a com-
mon single-argument function EXP, ALOG, LN, or LOG. In the case
of common factors, the arrow indicates that the left-hand factors are

common.

After

CCA¥XBI=CRXC)?
CORSBIRCASCH
CORSBIACASCH
CLHCAX+LNCB2
CLHCRI=LMHCB
CLOGCRY+LOGCE 2
CLOGCR»=LOGC(B>?
CEXPCRAMREXPC(B2 2
CEXPCRMEXPCED 2
CALOGCAMXALOGCE 2 2
CALOGCAY AALOGCE 2 2

CAHXCE+CH D
CH¥CE-C22
CA>CE+CH
CAZCB-C)2
LNCAXE
LNCA-BE2
LOGUA¥ED
LOGUA-B2
EXPCH+E
EXPCA-E
ALOGCA+E
ALQGCA-EX

Dictionary 41



...ALGEBRA (FORM)

M+ Merge right factors.This operation merges arguments of
+, —, %, and /, where the arguments have a common factor. The
arrow indicates that the right-hand factors are common.

Before

After

CORFCI+CBHC 2
CCAACIRCBACOD
CCA¥CI-CBRCOD
CORsCI=CBACH2
CCRTCCHIRCBTC D
CCAMCICBNC D

CURA+EXRC

o

CCR4BN O

CCRA-BXxCH
CCA-BAsCO
CCAXBY2C)
CCAsBXACD

Double-Negation and Double-Inversion

DOHEG Double-negate. Negate a subexpression twice.

Before

After

42 Dictionary




-¢a

lent to a double negate oHEG followed by distribution

resulting inner negation.

...ALGEBRA (FORM)

303

Double-negate and distribute. This operation is equiva-
of the

Before

After

CH+E
CA-B2
(—CA>=B>
CAXE

- CAMEED
C—CAXBD
CACE:
LOGYUH?»
LOGLIHW (A2
LHCH?
LNSCIMWCHD 2

~Ci—CARM-EB2
=C—-CAX+B?
=CA+BE2
-t-CAM¥ED
-CA¥E?
-{AsB2
sC-CAX-B)
=CLOGCINYE
=tLOGCA2

=CLHCAX

PR
LU

=CLMCIHWCRY 22

DINY Double-invert. Invert a subexpression twice.

Before

After

IHVCINWYCRD

2
A

Dictionary

43



...ALGEBRA (FORM)

1,¢> Double-invert and distribute. This operation is equivalent
to double inversion piny followed by distribution s¢> of the re-

sulting inner INV:

Before

After

CR%E

8 P =
CHABE
CAA—-CB
ALQGCH2
ALOGC—CH> 2

IHVCIHMCRY ~B 2
INVCINMCADRED
INVCR™—-CE2
INVCASE
INVCALOGC-CR> 22
INVCALOGERA > 2

EXPLAD INVEEXFPE—CRY 20
EXPC—CAD D IHUCEXFPEA Y
Identities

~ *¥1  Multiply by 1.

Before After
A Ax1
~_ Divide by 1.
Before After
A A~ 1

44 Dictionary




...ALGEBRA (FORM)

~1 Raise to the power 1.

Before After

+i-1 Add 1 and subtract 1.

Before After

Rearrangement of Exponentials

Lx¥ Replace log-of-power with product-of-log.

Before After

LOGEA™EX CLOGCRY%E
LHCA™EX CLHCRAY%E S

L¢2 Replace product-of-log with log-of-power.

Before After

CLOGCAY%BE LOGCA™E
CLHCAX%E LNCA™E

Dictionary 45



...ALGEBRA (FORM)

E~ Replace power-product with power-of-power.

Before

After

ALOGCAXE
ALOGCH-E2
EXPLH¥E?
EAPCH-ED

CALOGCA»~E2
CALOGCAXATHVCE X 2
CEXPCAI2BD
CEXPCAYATIHVCED 2

_E<7 Replace power-of-power with power-product.

Before

After

CALOGCA2 2B
CALOGCAX~IHWCE? 2
CEXPCRM2ED
CESPCRXAINVCE2 2

ALOGCAXE 2
ALOGCA-E2
EXPCH¥E
EXPLRSED

Adding Fractions

AF Combine over a common denominator.

Before

After

CH+CBAC2 2
CERSBX 40D
CCASBX#CC 020
CA=C(B~C22
CCAABX=C2
CCAsBY=CC-D>2

COCRECY B L0
COR+CBRCI 2 BED
COCA¥0Y+CBRC 2 (EXDI D
CCCARFCY-BILCO
CUA-CBFECI 2 ED
COCARDY-CBHECI 2 CBRDI 2

46 Dictionary




...ALGEBRA (FORM)

If the denominator is already common between two fractions, use
M+

FORM Operations Listed by Function

The following tables show which operations will appear in the FORM
menu when a given function is the selected object. The form of the
original subexpression and the result is shown for each operation.

The operations ¢l 7

1 ,and +i-1 are available for all functions and variables. These
common operations don’t appear in the tables. If only the common
operations are available for a function, no table appears for that func-
tion. (Only the common operations are available for \/ and SQ; to use
other operations, substitute ".5 and "2.)

Addition (+)

Operation Before After
%3 CA+BD (B+A 2
C—CA2+ED CB-A>
A CA+CB+CH (CA+B2+CH
CH+CB-Cox2 CCA+BX-C2
A= CCR+B 402 CA+CB+CH 2
CCA-BX+C2 CA=(B-C2>2
M CCRARBI+CARCH D CAXCB+CH 2
CLMCAX+LHCBY 2
CLOGCA+LOGCEY 2
M3 CCAKCI+(BHCH 2
CCAACI+CBACD 2
=t CA+B
-{AX+E
- 6E CA+CB-CH 2 C(CA¥CI+B2.C
CCAABI#CCA00 2 CCCAYDY +CBXCI 22 CB¥D 22
(CA-BX+C2 (CA+CBXCH 2,

Dictionary 47



...ALGEBRA (FORM)

Subtraction (—)

CLHCAI=LHIBD
(LOGCAX-LAGCE
CCRFCI-CBRC
CCAACI=CBACD
CA-B2

C(—C{AX=B>
(A=C(B~C)2
CCAsBI-C2
CCAsBI-CCADM2

Operation Before After

& {A-EB2 (—(BX+A>
CA-CB+C22 (CA-B»-C2
CA-CB-C22> (CA-B»+C>
CCA+BX-C2 4 B-Ca2
({A-B>»-C> ( B+C»2
CCAYBI-CA%CH CAXCB-CH>

~B2

CCA-BXxCo
CCA-BX.CO
={—CR>+B>
-tA+E>

CCCRA¥CI-BYCO
CCA-CBXCx B2
CCCADY—-CBRC 2, CBXDD

Multiplication (k)

Operation

Before

After

s

{A%E
CINYCAIEED
CARKCERC) D
CARCE-CH D

CCAXBORCH
(CA-BY%CO

CCA+BIRCH
CCA-BX%Co

CRRCB+CY Y
CA%CB-CO )

(BsA

CCR¥EXRCO
CCAFBILCO

CA¥CBXCY)
CAZCBACHD

CCAXBI+CAXCH D
CCAYBI=CAXCH

48 Dictionary




-..ALGEBRA (FORM)

(Continued)

Operation Before After

€M CCATBIRCATC YD
CALOGCAX®¥ALOGC(E 2>
CEXPCRAIXEXP (B>

M CCAMCHRCB™CH 2

0 CA%B?
C—CAXXE>

12465 CA%B CINMCAD ~BD
CINVCAX%B (A-B>

L¢a CLOGCA»%B LOGCA™E
CLHCAXRB > LNCA™E?

Division (/)

Operation Before After
3 CA/E2 CIHVMOB Y%A
€A CAACBHC) CCAABYCH

(A CB-C20 CCASBIRC)
Ar CARXCB-CH)
‘ CA-CBXC
€0 CCRA+BXACH CCASCHY+CBACHD
CCA-BY,CH CCAACHI-(B-CH2
D (A CB+C INVCCINV ORI ERE D

CAACB-C2)

CCASBIZCACH D
Y/ALOGCR Y 2
CEXPCRAMEXFCEBD 2

+OINMCRX KT D
INVCCINVCRA2ED
—CIHMOAYHC Y 2

Dictionary

49



...ALGEBRA (FORM)

(Continued)

Operation

Before

After

M=
—~¢y

L2

1,0

CORSCH CBCD

CAZED
C-{AI/BY

CLHCR2 B2
CLOGCRY /B2

CA/EY

CCRAB2Z2CH

—i{—-(Ry- B>
-{A-B>

LNCASTNVEED
LOGCA“THV(ED Y
INVCTHY CAYEED

Power (")

Operation

Before

After

€A
A
<0

D+

1.¢3

CAMCBHCH 2

CCRTEIACY

CACB+CD)
(A~CE-C))

CARED

CA%-(B))
(ALOGCAIAED
CALOGCAIATHYIED )
CEXPCRYZB)
CEXPCAIAINVCED D

CCRATBISCD
CHECEBXC2

CCA™MBI-CA™CD

INVCARS— (B
IHVCR™E

ALOGCA%ED
ALOGEAED
EXPCA¥E D
EXPCA-E D

50 Dictionary




Negation (—)

-.ALGEBRA (FORM)

Operation

Before

After

*C)

-(H+E>
~{A-B}
-CA¥E?
-{A~-B)
~CLOGCAY 2
—CLHCAY

C-CRX-EB2
C-CAX+BED
C—CAMRED
C—CRM.B2
LOGCINWCR 2
LNCIHMCRD 2

inverse (INV)

Operation

Before

After

(D

INVCAFE 2
IHVCASE2
INVCA™E 2
INVCALOGOA Y 2
INVCEXFPCRY 2

CIMWCRY B
CIMVCR2%BE
CAS—CEBX2
ALOGC—CH
EXPC—CH 2

Logarithm (LOG)

Operation

Before

After

D=+

=¢2

L%

LOGCR¥E
LOGCA-BEX
LOGCH?
LOGUIMWCRY 2
LOGCA™EX
LOGCRSIHWCE D

CLOGCR+LOGCE > 2
CLOGECRAY-LOGCE Y 2
~CLOGCTIHVCRY 3
=CLOGCA2

Dictionary

51



...ALGEBRA (FORM)

Antilogarithm (ALOG)

Operation Before After
D+ ALOGCH+E CALOGCAXRXALOGCE Y 2
ALOGCA-B CALOGCA» - ALOGCED 2
1.0 ALOGCH2 IMVCALOGC—CH 2 2
ALOGL—CH> INVCALOGCRY 2
E: ALOGCA¥E» CALOGCARISE
ALOGCA-EBE2 CALOGCARXINVCB»

Natural Logarithm (LN)

Operation Before After
D=+ LNCHEER » CLHCA»+LHCB» 2
LNCA-B CLHCAM=LHCB» 2
=¢) LNCA? —CLHCIHVYCAX 2 2
LNCUIMWCR Y —CLHEAX
L% LNCA™IHWCB 2 » CLHCAX B

Exponential (EXP)

Operation Before ‘After
D=+ EXPCA+E CESPCAYRERFPCED )
EXPCA-E» CEXPCRY EXPCB 2
1.6 EXPCAD I EXPC—CR> 22
EAPC—CH» 2 JOCEHXPCRDY D
B EXPCREE» CEXPCAISED
EAPCH B CESPCAISINVCED 2

52 Dictionary




Arithmetic

This section describes the arithmetic functions +, —, >, /.~ INV,
SQ, and NEG. These functions apply to several object types. They're
described here for all appropriate object types; they're described in
other sections, such as “ARRAY” and “COMPLEX,” only as they apply
to that particular object type.

+ Add Analytic
Level 2 Level 1 Level 1
Z4 Z5 » Z1+2o
Carray1 Carray,1 w» Carray,tarray,1
z 'symb' ®» 'z+isymbi!
'symb ' z » 'symb+z'
"symbq! 'symb,' ®» 'symbq+ tsymby 2"
i listy ¥ {list,»  ® i listqlisty ¥
i list ¥ obj » 4 list obj ¥
obj i list ¥ » i obj list ¥
"'string4 " "string,"  » "' string4string, "
# ny no » # nytny
ny #n, » # nyt+ny
# ny # n, » # nytny

+ returns the sum of its arguments, where the nature of the sum is
determined by the type of arguments. If the arguments are:

Two real numbers. The sum is the ordinary real sum of the
arguments.

A real number u and a complex number (x, y). The result is the
complex number (x + u, y) obtained by treating the real number as a
complex number with zero imaginary part.

Dictionary 53



.Arithmetic

Two complex numbers (x4, y4) and (x5, ¥5). The result is the com-
plex sum (x; + xp, y; + Ys).

A number and an algebraic. The result is an algebraic representing
the symbolic sum.

Two algebraics. The result is an algebraic representing the symbolic
sum.

Two lists. The result is a list obtained by concatenating the objects in
the list in level 1 to the end of the list of objects in level 2.

A list and a non-list object. The result is a list obtained by treating
the non-list object as a one-element list and concatenating the two
lists.

Two strings. The result is a string obtained by concatenating the
characters in the string in level 1 to the end of the string in level 2.

Two arrays. The result is the array sum, where each element is the
real or complex sum of the corresponding elements of the argument
arrays. The two arrays must have the same dimensions.

A binary integer and a real number. The result is a binary integer
that is the sum of the two arguments, truncated to the current
wordsize. The real number is converted to a binary integer before the
addition.

Two binary integers. The result is a binary integer that is sum of
the two arguments, truncated to the current wordsize.

54 Dictionary



.Arithmetic

- Subtract Analytic

Level 2 Level 1 Level 1
z4 z, » z1—2p

Carray;J Carray,1 ®» Carray,—array, 1
z ‘symb' ®» 'z-symb'
'symb' z » 'symb-z'

i‘ symb4 ' ‘symby,' ® ' symb{—symb,'
# ny no » # ny—ny
nq # ny » # ny—ny
# ny # n, » # ny—ny

— returns the difference of its arguments, where the nature of the
difference is determined by the type of arguments. The object in level
1 is subtracted from the object in level 2. If the arguments are:

Two real numbers. The result is the ordinary real difference of the
arguments.

A real number u and a complex number (x, y). The result is the
complex number (x — u, y) or (u — x, —y) obtained by treating the
real number as a complex number with zero imaginary part.

Two complex numbers (x4, y,) and (x5, y5). The result is the com-
plex difference (x; — xp, y; — y»).

A number and an algebraic. The result is an algebraic representing
the symbolic difference.

Two algebraics. The result is an algebraic representing the symbolic
difference.

Dictionary 55



.Arithmetic

Two arrays. The result is the array difference, where each element is
the real or complex difference of the corresponding elements of the
argument arrays. The two arrays must have the same dimensions.

A binary integer and a real number. The result is a binary integer
that is the sum of the number in level 2 plus the twos complement of
the number in level 1. The real number is converted to a binary inte-
ger before the subtraction.

Two binary integers. The result is a binary integer that is the sum
of the number in level 2 plus the twos complement of the number in

level 1.
* Multiply Analytic
Level 2 Level 1 Level 1
Z4 Zy » Z4Zop
Cmatrix 1 Carrayd = C matrix X array 1
z Carrayd » Czxarray ]
Carray 1 z » Carrayxz1
z ‘symb' ®» 'z isymb: '
'symb' z » 'isymbiz!
'symbq ' 'symbo,'  ® ' symb¥symby'
# ny no » # nqyno
ny # n, » # nqny
# ny # no » # ning
56 Dictionary



.Arithmetic

% returns the product of its arguments, where the nature of the prod-
uct is determined by the type of arguments. If the arguments are:

Two real numbers. The result is the ordinary real product of the
arguments.

A real number u and a complex number (x, y). The result is the
complex number (xu, yu) obtained by treating the real number as a
complex number with zero imaginary part.

Two complex numbers (x4, y4) and (x3, ¥2). The result is the com-
plex product (X1X, — Y1¥2, X1Y2 + X2¥1)-

A number and an algebraic. The result is an algebraic representing
the symbolic product.

Two algebraics. The result is an algebraic representing the symbolic
product.

A number and an array. The result is the product obtained by
muliplying each element of the array by the number.

A matrix and an array. The result is the matrix product of the argu-
ments. The array in level 1 must have the same number of rows
(elements, if a vector) as the number of columns of the matrix in
level 2.

A binary integer and a real number. The result is a binary integer
that is the product of the two arguments, truncated to the current
wordsize. The real number is converted to a binary integer before the
multiplication.

Dictionary 57



.Arithmetic

Two binary integers. The result is a binary integer that is the prod-
uct of the two arguments, truncated to the current wordsize.

) Divide Analytic

Level 2 Level 1 Level 1

Z 7 » 24/z3
Carray ] Cmatrix1 » Carray x matrix 11
Carray 1 z » Carray/z1

z 'symb' ®» 'zsisymby !
'symb ' z » tisymbr.sz!
'symby" ‘symby,'  ® ' symb.<symby '

# ny ny » # nq/ny

nq # n, » # nq/ny

# ny # ny » # nq/ny

/ ([3]) returns the quotient (the object in level 2 divided by the object
in level 1) of its arguments, where the nature of the quotient is deter-
mined by the type of arguments. If the arguments are:

Two real numbers. The result is the ordinary real quotient of the
arguments.

A real number u in level 2 and a complex number (x, y) in
level 1. The result is the complex number

(ux/(* + y?), —uy/(x* + y?)

obtained by treating the real number as a complex number with zero
imaginary part.

A complex number (x, y) in level 2 and a real number u in
level 1. The result is the complex number (x/u, y/u) obtained by
treating the real number as a complex number with zero imaginary
part.

58 Dictionary



«Arithmetic

A complex number (x4, y;) in level 2, and a complex number
(x2; y2) in level 1. The result is the complex quotient

(1% + 11y)/03 + 13), (1x2 — 12)/(@3 + vd).

A number and an algebraic. The result is an algebraic representing
the symbolic quotient.

Two algebraics. The result is an algebraic representing the symbolic
quotient.

An array and a matrix. The result is the matrix product of the in-
verse of the matrix in level 1 with the array in level 2. The array in
level 2 must have the same number of rows (elements, if a vector) as
the number of columns of the matrix in level 1.

An array and a number. The result is a new array, with each new
element the quotient of the corresponding old element and the
number.

A binary integer and a real number. The result is a binary integer
that is the integer part of the quotient of the two arguments. The real
number is converted to a binary integer before the division. A divisor
of 0 returns # 0.

Two binary integers. The result is a binary integer that is the inte-
ger part of the quotient of the two arguments. A divisor of zero
returns # 0.

Dictionary 59



.Arithmetic

Power Analytic
Level 2 Level 1 Level 1
z Z5 » 2,2
z 'symb' w» 'z isymby !
'symb' z » 'isymbxz!
'symb4! 'symby,' ® ' symbq ™ (symbo) '

~ returns the value of the object in level 2 raised to the power given
by the object in level 1. Any combination of real number, complex
number, and algebraic arguments may be used. If either argument is

complex, ” returns a complex result.
INV Inverse Analytic
Level 1 Level 1
z » 1)z
Cmatrix]1 » Cmatrix—11
‘symb' ®» "IHV Csymby !

INV (B(i/x)) returns the inverse (reciprocal) of its argument.

For a complex argument (x, y), the inverse is the complex number

/(2 + YD), —y/(&* + y?).

Array arguments must be square matrices.

60 Dictionary



.Arithmetic

vV Square Root Analytic
Level 1 Level 1
z » Vz
'symb' w» "[isymb !

V' (@3%)) returns the (positive) square root of its argument. For a
complex number (x;, yq), the square root is the complex number

(¥ ¥2) = (Vr cos 6/2, \r sin 0/2)
where

r = abs (xy, y1), 0 = arg (x1, yy).
If (x4, y1) = (0, 0), then the square root is (0, 0).

Refer to “Principal Branches and General Solutions” in “COMPLEX.”

SQ Square Analytic
Level 1 Level 1
z 'Y z2
Cmatrix1 » L matrix x matrix 1
‘symb' ®» "SRsymbs !

SQ (@) returns the square of its argument.
For a complex argument (x, y), the square is the complex number
(@ — % 2xy).

Array arguments must be square matrices.

Dictionary 61



.Arithmetic

NEG Negate Analytic
Level 1 Level 1
z » 72
Carrayl = C —array ]
‘symb' ®» '—isymb '

NEG returns the negative of its argument.

For an array, the negative is an array composed of the negative of
each element in the array. The key can be used to execute NEG
if no command line is present. If a command line is present, acts
on the command line.

Menu keys for NEG are found in the REAL and ARRAY menus.

62 Dictionary



ARRAY

-ARRY ARRY- PUT GET PUTI GETI
SIZE RDM TRN CON IDN RSD
CROSS DOT DET ABS RNRM CNRM
R-C C-R RE IM CONJ NEG

Arrays are ordered collections of real or complex numbers that satisfy
various mathematical rules. In the HP-28S, one-dimensional arrays
are called vectors; two-dimensional arrays are called matrices. We will
use the term “array” to refer collectively to vectors and matrices.

Although vectors are entered and displayed as a row of numbers, the
HP-28S treats vectors, for the purposes of matrix multiplication and
computations of matrix norms, as n X 1 matrices.

An array can contain either real numbers or complex numbers. We
will use the terms real array (real vector or real matrix) and complex
array when describing properties of arrays that are specific to real

numbers or complex numbers.

Arrays are entered and displayed in the following formats:

vector | L number number ... 1

matrix | CC number number ... 1
L number number ... 1
L number number ... 11

where number represents a real number or a complex number.

Dictionary 63



...ARRAY

When you enter an array you can mix real and complex numbers. If
any one number in an array is complex, the resulting array will be
complex.

You can include any number of newlines anywhere in the entry, or
you can enter the entire array in a single command line.

When entering matrices, you can omit the delimiter J that ends each
row. The [ that starts each row is required. If additional objects fol-
low the array in the command line, you must end the array with 11
before starting the new object.

The term row order refers to a sequential ordering of the elements of
an array, starting with the first element (first row, first column), then:
from left to right along each row; from the top row to the bottom row
(for matrices).

The STORE menu contains commands that allow you to perform ar-
ray operations using the name of a variable that contains an array,
rather than requiring the array itself to be on the stack. In these cases,
the result of an operation is stored in the variable, replacing its origi-
nal contents. This method requires less memory than operations on
the stack, and hence can allow you to deal with larger arrays.

Array operations that may be time-consuming for large arrays can be
interrupted via the key. If you press during such an opera-
tion, the HP-28S will halt execution of the array command and clear
the array arguments from the stack. You can recover the original ar-
guments by using UNDO or LAST.

In addition to the functions present in the ARRAY and STACK
menus, the keyboard functions described in the next section accept
arrays as arguments.

64 Dictionary



-..ARRAY

Keyboard Functions

Complete stack diagrams for these functions appear in “Arithmetic.”

+ Add Analytic

Level 2 Level 1 Level 1

Carray,1 Carray,1 =» Carray,+array,1

+ returns the array sum of two array arguments. The two arguments
must have the same dimensions. The sum of a real array and a com-
plex array is a complex array, where each element x of the real array is
treated as a complex element (x, 0).

e Subtract Analytic
Level 2 Level 1 Level 1
Carray,1 Carray,1 =» Carray,—array,1

— returns the array difference of two array arguments. The two argu-
ments must have the same dimensions. The difference between a real
array and a complex array is a complex array, where each element x of
the real array is treated as a complex element (x, 0).

Dictionary 65



...ARRAY

% Multiply Analytic
Level 2 Level 1 Level 1
z Carrayl » Czxarray]
Carray ] z » Czxarrayl
Cmatrix 1 Carrayl » Cmatrix x array 1

% returns the product of its arguments, where the nature of the prod-
uct is determined by the type of arguments. If the arguments are:

An array and a number. The product is the matrix product of the
number (real or complex number) and the array, obtained by multi-
plying each element of the array by the scalar.

Two arrays. The product is the matrix product of the two arrays. The
array in level 2 must be a matrix (that is, it can not be a vector). Level
1 can contain either a matrix or a vector. The number of rows in the
array in level 1 must equal the number of columns in the matrix in
level 2.

The product of a real array and a complex array is a complex array.
Each element x of the real array is treated as a complex element (x,0).

| Divide Analytic

Level 2 Level 1 Level 1

Cmatrix B1 Cmatrix A1 » [matrix X1
Cvector B1 Cmatrix A1 » Lvector X1

/ (%)) applied to array arguments solves the system of equations
AX = B for X. That is, / computes X = A~ !B. / uses 16-digit internal
computation precision to provide a more accurate result than obtained
by applying INV to A and multiplying the result by B.

66 Dictionary



-..ARRAY

A must be a square matrix, and B can be either a matrix or a vector. If
B is a matrix, it must have the same number of rows as A. If B is a
vector, it must have the same number of elements as the number of
columns of A.

If flag 59 (Infinite Result) is clear, the HP-28S will arrive at a solution
even if the coefficient array is singular (A has no proper inverse). This
feature allows you to solve under-determined and over-determined
systems of equations.

For an under-determined system (containing more variables than
equations), the coefficient array will have fewer rows than columns.
To find a solution:

1. Append enough rows of zeros to the bottom of your coefficient
array to make it square.

2. Append corresponding rows of zeros to the constant array.

You can now use these arrays with / to find a solution to the original
system.

For an over-determined system (containing more equations than vari-
ables), the coefficient array will have fewer columns than rows. To
find a solution:

1. Append enough columns of zeros on the right of your coefficient
array to make it square.

2. Add enough zeros on the bottom of your constant array to en-
sure conformability.

You can now use these arrays with / to find a solution to the original
system. Only those elements in the result array that correspond to
your original variables will be meaningful.

For both under-determined and over-determined systems, the coef-
ficient array is singular, so you should check the results returned by /
to see if they satisfy the original equation.

Dictionary 67



...ARRAY

Improving the Accuracy of System Solutions

Because of rounding errors during calculation, a numerically calcu-
lated solution Z is not in general the solution to the original system
AX = B, but rather the solution to the perturbed system (A + AA)
Z = B + AB. The perturbations AA and AB satisfy [[AA| < ¢[|A] and
|AB| < €||B]|, where ¢ is a small number and ||A| is the norm of A, a
measure of its size analogous to the length of a vector. In many cases
AA and AB will amount to less than one in the 12th digit of each
element of A and B. >

For a calculated solution Z, the residual is R = B — AZ. Then

IR < €|A] [Z]]. So the expected residual for a calculated solution is
small. Nevertheless, the error Z — X may not be small if A is ill-condi-
tioned, that is, if |Z — X| < €[|A| A7 Z].

A rule-of-thumb for the accuracy of the computed solution is

(number of correct digits)
> (number of digits carried) — log (|A[ [|A™'])) — log 10n

where 1 is the dimension of A. For the HP-28S, which carries 12 ac-
curate digits,

(number of correct digits) = 11 — log (|| A] ||A'1|l) — log n.

In many applications, this accuracy may be adequate. When addi-
tional accuracy is desired, the computed solution Z can usually be
improved by iterative refinement (also known as residual corrections).
Iterative refinement involves calculating a solution to a system of
equations, then improving its accuracy using the residual associated
with the solution to modify that solution.

68 Dictionary



...ARRAY

To use iterative refinement, first calculate a solution Z to the original
system AX = B. Then Z is treated as an approximation to X, in error
by E = X — Z. Then E satisifies the linear system

AE = AX — AZ = R,

where R is the residual for Z. The next step is to calculate the residual
and then solve AE = R for E. The calculated solution, denoted by F,
is treated as an approximation to E and is added to Z to obtain a new
approximation to X.

For F + Z to be a better approximation to X than is Z, the residual
= B — AZ must be calculated to extended precision. The function
RSD does this (see the description of RSD below for details of its use).

The refinement process can be repeated, but most of the improvement
occurs in the first refinement. The / function does not attempt to per-
form a residual refinement because of the memory required to
maintain multiple copies of the original arrays. Here is an example of
a user program that solves a matrix equation, including one refine-
ment using RSD:

+ BEA % EBEA.~-EBEA3FICK RESD A » + 3 @
The program takes two array arguments B and A from the stack, the

same as /, and returns the result array Z, which will be an improved
approximation to the solution X over that provided by / itself.

INV Inverse Analytic

Level 1 Level 1

Cmatrix1 = C matrix =11

INV (BB(1/x)) returns the matrix inverse of its argument. The argu-
ment must be a square matrix, either real or complex.

Dictionary 69



...ARRAY

SQ Square Analytic

Level 1 Level 1

Cmatrix;1  »  Cmatrix, ]

SQ (BB(x?)) returns the matrix product of a square matrix with itself.

NEG Negate Analytic

Level 1 Level 1

Carrayd o L[ —arrayl

Pressing when no command line is present executes the function
NEG. For an array, each element of the result is the negative of the
corresponding element of the argument array.

To enter the NEG function in the command line, use
fourth row of the ARRAY menu).

- (on the

-ARRY ARRY- PUT GET PUTI GETI

This group of commands allows you to recall or alter individual ele-
ments of an array.

70 Dictionary



-.ARRAY

—ARRY Stack to Array Command
Level nm+1 Level2 = Level 1 — Level 1
XqeeXp n — [vector]
XqoeXpy {n} — [vector]
Xq4---Xpm {n m} — [matrix]

— ARRY takes a list (or, for vectors, a number) representing the size of
the result array from level 1:

Vectors. If level 1 contains an integer  or a list consisting of a single
integer n, n numbers are taken from the stack, and an n element vector is
returned.

Matrices. If the list contains two integers n and m, nm numbers are
removed from the stack and returned as the elements of an 1 X m
matrix.

The elements of the result array should be entered into the stack in
row order, with x;; (or x;) in level nm + 1 (or n + 1), and x,, (or X,)
in level 2. If one or more of the elements is a complex number, the
result array will be complex.

ARRY- Array to Stack Command
Level 1 Level n+1 ... Level2 Level 1
Cvector] w X1 oo Xp {n}
Cmatrix1 » X11 «- Xpm {nm}

ARRY~- takes an array from the stack, and returns its elements to the
stack as individual real or complex numbers. ARRY~ also returns a
list representing the size of the array to level 1. The elements are
placed on the stack in row order:

Dictionary 71




...ARRAY

Vectors. If the argument is an n-element vector, the first element is
returned to level n 4+ 1, and the nth element to level 2. Level 1 will
contain the list { n }.

Matrices. If the argument is an n X m matrix, element x,,, is re-
turned to level 2, and element x;; to level (nm + 1).

PUT Put Element Command
Level 3 Level 2 Level 1 Level 1
Carray,1 index X » Carray,1
' global ! index X »
CC-array41 index z » CC-array,1
' global ! index z »
ilisty ¥ index obj » ilisty ¥
' global ! index obj »

PUT replaces an object in the specified position in an array or list.
This section describes its use with arrays; see “LIST” for its use with
lists.

PUT takes three arguments from the stack:

B From level 3, an array or the name of an array.

B From level 2, a one-element list (specifying position in a vector), a
two-element list (specifying row and column in a matrix), or a real
number (specifying an element in row order in a vector or a
matrix).

B From level 1, the number to be put in the array. If this number is
complex, the array must also be complex.

If the argument in level 3 is an array, PUT returns the altered array to
the stack. If the argument in level 3 is a name, PUT alters the array
variable and returns nothing to the stack.

72 Dictionary



-..ARRAY

GET Get Element Command
Level 2 Level 1 Level 1
Carray 1 index » z
' name ' index » z
i list ¥ index » obj
' name* index » obj

GET gets an object from the specified position in an array or list. This
section describes its use with arrays; see “LIST” for its use with lists.

GET takes two arguments from the stack:

B From level 2, an array or the name of an array.

B From level 1, a one-element list (specifying position in a vector), a
two-element list (specifying row and column in a matrix), or a real

number (specifying an element in row order in a vector or a

matrix).

GET returns the specified object to the stack.

PUTI Put and Increment Index Command

Level 3 Level 2 Level 1 Level 2 Level 1
Carray1 index4 X » Larray,] indexo

" global ! index X »  'global' index,
CC-array 1 index z » [C-array,1] indexo

' global ! index4 z ®»  'global' indexo
{listq x index4 obj » sty ¥ indexo

' global ! index4 obj »  'global' indexo

Dictionary

73



...ARRAY

PUTI replaces an object in the specified position in an array, returning
the array (or name) and the next position. You can then put an object
in the next position simply by putting the object on the stack and
executing PUTI again.

You can specify the position by a one-element list (specifying position
in a vector), by a two-element list (specifying row and column in a
matrix), or by a real number (specifying an element in row order in a
vector or a matrix).

Generally, after putting an object in position n (in row order), PUTI
returns 1 + 1 as the next position and clears flag 46. However, when
n is the last position in the list, PUTI returns 1 as the next position
and sets flag 46. (If you're using lists rather than row-order numbers
to specify position, the next position is { 1 } or { 1, 1 }.)

The following example uses PUTI and flag 46 to put the contents of a
variable X in an array, from the initially specified position (not shown)
to the last position.

.00 s PUTI UNWTIL 48 FS% EHMD. ..

GETI Get and Increment Index Command
Level 2 Level 1 Level 3 Level 2 Level 1
Carray 1 index » [Carrayl] indexy z
' name' index »  'name' indexo z
1 list ¥ index » i list ¥ indexo obj
' name ' index » ' name ' indexy obj

GETI gets an object from the specified position in an array, also re-
turning the array (or name) and the next position. You can then get
the object in the next position simply by removing the object from
level 1 and executing GETI again.

74 Dictionary



...ARRAY

Generally, after getting an object from position 7 (in row order), GETI
returns 7 + 1 as the next position and clears flag 46. However, when
n is the last position in the list, GETI returns 1 as the next position
and sets flag 46. (If you're using lists rather than row-order numbers
to specify position, the next position is { 1 } or { 1, 1 }.)

The following example uses GETI and flag 46 to add array elements,
from the initially specified position (not shown) to the last position, to
a variable .

...00 GETI '¥' S5TO+ UNTIL 4& FS? END...

SIZE RDM TRN CON IDN RSD

SIZE Size Command
Level 1 Level 1
“string" n
{list ¥ » n
Carrayd ®» {list ¥
'symb' » n

SIZE returns an object representing the size, or dimensions, of a list,
array, string, or algebraic argument. For an array, SIZE returns a list
containing one or two integers:

B If the original object is a vector, the list will contain a single integer
representing the number of elements in the vector.

B If the object is a matrix, the list will contain two integers represent-
ing the dimensions of the matrix. The first integer is the number of
rows in the matrix; the second is the number of columns.

Refer to sections “STRING,” “LIST,” and “ALGEBRA” for the use of
SIZE with other object types.

Dictionary 75



...ARRAY

RDM Redimension Command
Level 2 Level 1 Level 1
Carray,1 {dim* ®» Larray,]
' global ' idim ¥ »

RDM rearranges the elements of the array array; taken from level 2
(or contained in a variable name), and returns array,, which has the
dimensions specified in the list of one or two integers taken from level
1. If the array in level 2 is specified by name, array, replaces array; as
the contents of the variable. If the list contains a single integer 1, ar-
ray, will be an n-element vector. If the list has the form {n m}, array,
will be an n X m matrix.

Elements taken from array; preserve the same row order in array,. If
array, is dimensioned to contain fewer elements than array;, excess
elements from array; at the end of the row order are discarded. If
array, is dimensioned to contain more elements than array;, the addi-
tional elements in array, at the end of the row order are filled with
zeros ((0, 0) if array; is complex).

TRN Transpose Command
Level 1 Level 1
Cmatrix;1 = C matrix, 1
‘global' ®»

TRN returns the (conjugate) transpose of its argument. That is, an
n X m matrix A in level 1 (or contained in name) is replaced by an
m X n matrix A!, where

Al — { A;; for real matrices,
! CONJ (A;) for complex matrices.

If the matrix is specified by name, A’ replaces A in name.

76 Dictionary



-..ARRAY

CON Constant Array Command
Level 2 Level 1 Level 1
{dim ¥ z » Carray 1
Carray, 1 X » Carray,1
CC-array, 1 z » CC-array, 1
' global ! z »

CON produces a constant array—an array with all elements having
the same value. The constant value is the real or complex number

taken from level 1. The result array is either a new array, or an exist-
ing array with its elements replaced by the constant value, according
to the object in level 2.

Creating a new array. If level 2 contains a list of one or two inte-
gers, a new array is returned to the stack. If the list contains a single
integer 1, the result is a constant vector with n elements. If the list has
the form {n m}, the result is a constant matrix with n rows and m
columns.

Replacing the elements of an existing array. If level 2 contains a
name, that name must identify a user variable containing an array. In
this case, the elements of the array are replaced by the constant taken
from level 1. If the constant is a complex number, the original array
must be complex.

If level 2 contains an array, an array of the same dimensions is re-
turned, with each element equal to the constant value. If the constant
is a complex number, the original array must be complex.

Dictionary 77



...ARRAY

IDN Identity Matrix Command
Level 1 Level 1
n » C R-identity matrix 1
Cmatrix1 » Cidentity matrix 1
'global' ®»

IDN produces an identity matrix—a square matrix with its diagonal
elements equal to 1, and its off-diagonal elements 0. The result matrix
is either a new matrix, or an existing square matrix with its elements
replaced by those of the identity matrix, according to the argument in
level 1.

Creating a new matrix. If the argument is a real number, a new real
identity matrix is returned to the stack, with its number of rows and
number of columns equal to the argument.

Replacing the elements of an existing matrix. If the argument is
a name, that name must identify a user variable containing a square
matrix. In this case, the elements of the matrix are replaced by those
of the identity matrix (complex if the original matrix is complex).

If the argument is a square matrix, an identity matrix of the same
dimensions is returned. If the original matrix is complex, the returned
identity matrix will also be complex, with diagonal values (1,0).

RSD Residual Command
Level 3 Level 2 Level 1 Level 1
Carray B1 L[matrix A1l LCarray Z1 » Carray B—AZ1]

78 Dictionary



-..ARRAY

RSD computes the residual B — AZ of three arrays B, A, and Z. RSD is
typically used for computing a correction to Z, where Z has been ob-
tained as an approximation to the solution X to the system of
equations AX = B. Refer to “Improving the Accuracy of System Solu-
tions”, earlier in this section, for a description of the use of RSD with
systems of equations.

A, B, and Z are restricted as follows:

B A must be a matrix.

B The number of columns of A must equal the number of elements of
Z if Z is a vector, or the number of rows of Z if Z is a matrix.

® The number of rows of A must equal the number of elements of B
if B is a vector, or the number of rows of B if B is a matrix.

® B and Z must both be vectors or both be matrices.

B B and Z must have the same number of columns, if they are
matrices.

CROSS DOT DET ABS RNRM CNRM

CROSS Cross Product Command
Level 2 Level 1 Level 1
Cvector A1l LCvector B1 » Cvector A x B]

CROSS returns the cross product € = A x B of the vectors Lay a , a31
and Cb; b, b3, where

€1 = ayby — azb,
C2 a3b1 - a1b3
c3 = aib, — axby

I

Dictionary 79



...ARRAY

The arguments must be two- or three-element vectors. A two-element
argument Cdy d, ] is converted to a three-element argument Cd; d, 01.

DOT Dot Product Command
Level 2 Level 1 Level 1
Carray A1 CLCarray B1 » X

DOT returns the “dot” product A-B of two arrays A and B, computed
as the sum of the products of the corresponding elements of the two
arrays. For example: L1 2 31 C4 5 &1 DOT returns 1 X 4 +

2 X5+ 3 X6, or 32

Some authorities define the dot product of two complex arrays as the
sum of the products of the conjugated elements of one array with

their corresponding elements from the other array. The HP-28S uses
the ordinary products without conjugation. However, if you prefer the
alternate definition, you can apply CON]J to one or both arrays before
using DOT.

DET Determinant Command
Level 1 Level 1
Cmatrix1 = determinant

DET returns the determinant of its argument, which must be a square
matrix.

80 Dictionary



-..ARRAY

ABS Absolute Value Function
Level 1 Level 1
z » 4
Carrayl » |array||
'symb' » '"ABS Csymb !

ABS returns the absolute value of its argument. In the case of an ar-
ray, ABS returns the Frobenius (Euclidean) norm of the array, defined
as the square root of the sum of the squares of the absolute values of
all of the elements.

Refer to “REAL,” “COMPLEX,” and “ALGEBRA” for the use of ABS
with other object types.

RNRM Row Norm Command
Level 1 Level 1
Carrayd =» row norm

RNRM returns the row norm (infinity norm) of its argument. The row
norm is the maximum value (over all rows) of the sums of the abso-
lute values of all elements in a row. For a vector, the row norm is the
largest absolute value of any of the elements.

CNRM Column Norm Command
Level 1 Level 1
Carrayl » column norm

CNRM returns the column norm (one-norm) of its argument. The col-
umn norm is the maximum value (over all columns) of the sums of
the absolute values of all elements in a column. For a vector, the col-
umn norm is the sum of the absolute values of the elements.

Dictionary 81



-..ARRAY

R-C C-R RE M CONJ NEG
R-C Real-to-Complex Command
Level 2 Level 1 Level 1
X y » (x,y»

CR-arrayy1 LCR-array,1 » LCC-array]

R-+C combines two real numbers, or two real arrays, into a single
complex number, or complex array, respectively. The object in level 2
is taken as the real part of the result; the object in level 1 is taken as
the imaginary part.

For array arguments, the elements of the complex result array are
complex numbers, the real and imaginary parts of which are the cor-
responding elements of the argument arrays in level 2 and level 1,
respectively. The arrays must have the same dimensions.

C-R Complex-to-Real Command
Level 1 Level 2 Level 1
X,y » X y

CC-array]l w» LCR-array;1 [CR-array,]

C-R returns to level 2 and level 1 the real and imaginary parts, re-
spectively, of a complex number or complex array.

82 Dictionary



-..ARRAY

The real or imaginary part of a complex array is a real array, of the
same dimensions, the elements of which are the real or imaginary
parts of the corresponding elements of the complex array.

RE Real Part Function
Level 1 Level 1
X » X
X,y » X
CR-arrayl » CR-array 1
CC-arrayl » CR-array 1
'symb' ®» 'RE<symb> '

RE returns the real part of its argument. If the argument is an array,
RE returns a real array, the elements of which are equal to the real
parts of the corresponding elements of the argument array.

iM Imaginary Part Function
Level 1 Level 1
X » 0
x.y» » y
CR-arrayl = C zero R-array 1
CC-arrayl » CR-array 1
'symb' » 'IMCsymba !

IM returns the imaginary part of its argument. If the argument is an
array, IM returns a real array, the elements of which are equal to the
imaginary parts of the corresponding elements of the argument array.
If the argument array is real, all of the elements of the result array
will be zero.

Dictionary 83



...ARRAY

CONJ Conjugate Analytic
Level 1 Level 1
X » X
X, y3 » X, —y2
CR-array]l w» CR-array 1
CC-array;1 » CC-array, 1
‘symb' ®» 'COMJdCsymba !

CON]J returns the complex conjugate of a complex number or complex
array. The imaginary part of a complex number, or of each element of
a complex array, is negated. For real numbers or arrays, the conjugate
is identical to the original argument.

NEG Negate Analytic

Level 1 Level 1

Carrayd ®» [ —arrayl

For an array, each element of the result array is the negative of the
corresponding element of the argument array.

When no command line is present, pressing executes the func-
tion NEG. A complete stack diagram for NEG appears in
“Arithmetic”.

84 Dictionary



BINARY

DEC HEX oCT BIN STWS RCWS
RL RR RLB RRB R-B B-R
SL SR SLB SRB ASR

AND OR XOR NOT

Binary integers are unsigned integer numbers that are represented in-
ternally in the HP-28S as binary numbers of length 1 to 64 bits. Such
numbers must be entered, and are displayed, as a string of digits pre-
ceded by the delimiter #.

The display of binary integers is controlled by the current integer
base, which can be binary (base 2), octal (base 8), decimal (base 10), or
hexadecimal (base 16). Binary integers are displayed with a base
marker b, o, d, or h, indicating the current base. If you change the
current base using one of the menu keys BIN , ©0CT , DEC , or

HEX , the internal representation of a binary integer on the stack is
not changed, but the digits shown in the display will change to reflect
the number’s representation in the new base.

You can enter a binary integer in any base if you also enter the base
marker; you can enter one in the current base by omitting the base
marker.

In binary base, only the digits 0 and 1 are allowed; in octal, the digits

0-7; in decimal, the digits 0-9; and in hexadecimal, the digits 0-9 and
the letters A-F. The default base is decimal.

Dictionary 85



-..BINARY

The stack display of binary integers is also affected by the current
wordsize, which you can set in the range 1 to 64 bits with the com-
mand STWS. When a binary integer is displayed on the stack, the
display shows only the least significant bits, up to the wordsize, even
if the number has not been truncated. If you reduce the wordsize, the
display will alter to show fewer bits, but if you subsequently increase
the wordsize, the hidden bits will be displayed.

The primary purpose of the wordsize is to control the results returned
by commands. Commands that take binary integer arguments trun-
cate those arguments to the number of (least significant) bits specified
by the current wordsize, and they return results with that number of
bits. The default wordsize is 64 bits.

The current base and wordsize are encoded in user flags 37 through
44. Flags 37-42 are the binary representation of the current wordsize
minus 1 (flag 42 is the most significant bit). Flags 43 and 44 determine
the current base:

Flag 43 | Flag 44 Base
0 0 Decimal
0 1 Binary
1 0 Octal
1 1 Hexadecimal

In addition to the BINARY menu commands described in the next
sections, the arithmetic functions +, —, %, and / can be used with
pairs of binary integers, or combinations of real integers and binary
integers, as described in “Arithmetic.”

86 Dictionary



-..BINARY

DEC HEX oCT BIN STWS RCWS

DEC Decimal Mode Command

»

DEC sets decimal mode for binary integer operations. Binary integers
may contain the digits 0 through 9, and will be displayed in base 10.

DEC clears user flags 43 and 44.

HEX Hexadecimal Mode Command

»

HEX sets hexadecimal mode for binary integer operations. Binary inte-
gers may contain the digits 0 through 9, and A (ten) through F
(fifteen), and will be displayed in base 16.

HEX sets user flags 43 and 44.

OCT Octal Mode Command

»

OCT sets octal mode for binary integer operations. Binary integers
may contain the digits 0 through 7, and will be displayed in base 8.

OCT sets user flag 43 and clears flag 44.

Dictionary 87



...BINARY

BIN Binary Mode Command

»

BIN sets binary mode for binary integer operations. Binary integers
may contain the digits 0 and 1, and will be displayed in base 2.

BIN clears user flag 43, and sets flag 44.

STWS Store Wordsize Command
Level 1
n »

STWS sets the argument n as the current binary integer wordsize,
where n should be a real integer in the range 1 through 64. If n > 64,
then a wordsize of 64 is set; if n < 1, the wordsize will be 1. User
flags 37-42 represent the binary representation of n — 1 (flag 42 is
the most significant bit).

RCWS Recall Wordsize Command
Level 1
» n

RCWS returns a real integer n equal to the current wordsize, in the
range 1 through 64. User flags 37-42 represent the binary representa-
tion of n — 1.

88 Dictionary



...BINARY

RL RR RLB RRB R-B B-R

The commands RL and RR rotate binary integers (set to the current
wordsize) to the left or right by one bit. The commands RLB and RRB
are equivalent to RL or RR repeated eight times. R-B and B-R con-
vert real numbers to or from binary integers.

RL Rotate Left Command

Level 1 Level 1

RL performs a 1 bit left rotate on a binary integer number # n;. The
leftmost bit of # n; becomes the rightmost bit of the result # n,.

RR Rotate Right Command
Level 1 Level 1
# n1 » # n2

RR performs a 1 bit right rotate on a binary integer number # 1. The
rightmost bit of # n; becomes the leftmost bit of the result # n,.

RLB Rotate Left Byte Command
Level 1 Level 1
# nq » # no

RLB performs a 1 byte left rotate on a binary integer number # n;.
The leftmost byte of # n; becomes the rightmost byte of the result
# ny.

Dictionary 89



...BINARY

RRB Rotate Right Byte Command

Level 1 Level 1

RRB performs a 1 byte right rotate on a binary integer number # ;.
The rightmost byte of # n; becomes the leftmost byte of the result
# ny.

R-B Real to Binary Command
Level 1 Level 1
n » #n

R—B converts a real integer n, 0 < n < 1.84467440737E19, to its bi-
nary integer equivalent # n. If n < 0, the result is # 0. If
n > 1.84467440737E19, the result is # FFFFFFFFFFFFFFFF (hex).

B-R Binary to Real Command
Level 1 Level 1
#n » n

B-R converts a binary integer # n to its real number equivalent n. If
#n > # 1000000000000 (decimal), only the 12 most significant deci-
mal digits are preserved in the mantissa of the result.

90 Dictonary



...BINARY

SL SR SLB SRB ASR

The commands SL and SR shift binary integers (set to the current
wordsize) to the left or right by one bit. The commands RLB and RRB
are equivalent to RL or RR repeated eight times.

SL Shift Left Command

Level 1 Level 1

SL performs a 1 bit left shift on a binary integer. The high bit of ny is
lost. The low bit of n, is set to zero. SL is equivalent to binary multi-
plication by two (with truncation to the current wordsize).

SR Shift Right Command

Level 1 Level 1

SR performs a 1 bit right shift on a binary integer. The low bit of n; is
lost. The high bit of n, is set to zero. SR is equivalent to binary divi-
sion by two.

SLB Shift Left Byte Command
Level 1 Level 1
# ny » # 02

SLB performs a 1 byte left shift on a binary integer. SLB is equivalent
to multiplication by # 100 (hexadecimal) (truncated to the current
wordsize).

Dictionary 91



-..BINARY

SRB Shift Right Byte Command

Level 1 Level 1

SRB performs a 1 byte right shift on a binary integer. SRB is equiva-
lent to binary division by # 100 (hexadecimal).

ASR Arithmetic Shift Right Command

Level 1 Level 1

ASR performs a 1 bit arithmetic right shift on a binary integer.
In an arithmetic shift, the most significant bit retains its value, and a
shift right is performed on the remaining (wordsize—1) bits.

AND OR XOR NOT

The functions AND, OR, XOR, and NOT can be applied to binary
integers, strings, or flags (real numbers or algebraics). This section de-
scribes their use with binary integers and strings; see “PROGRAM

TEST” for their use with flags.

These functions treat binary integers and strings as sequences of bits
(0’s and 1’s).

B A binary integers is treated as a sequence of length n, where n is

the current wordsize. The bits correspond to the 0’s and 1’s in the
binary integer’s representation in base 2.

92 Dictionary



-..BINARY

B A string is treated as a sequence of length 81, where n is the num-
ber of characters in the string. Each set of eight bits corresponds to
the binary representation of one character code. For AND, OR, and
XOR, the two string arguments must be the same length.

AND And Function
Level 2 Level 1 Level 1
# ny # no » # n3
"string4 " "string," ®  "stringg"

AND returns the logical AND of two arguments. Each bit in the result
is determined by the corresponding bits (bit; and bit,) in the two ar-
guments, according to the following table:

bit, bit, | bit; AND bit,
0 0 0
0 1 0
1 0 0
1 1 1
OR Or Function
Level 2 Level 1 Level 1
# n1 # n2 » # n3
"' string4 " "string," ®  “stringz"

OR returns the logical OR of two arguments. Each bit in the result is
determined by the corresponding bits in the two arguments, accord-
ing to the following table:

Dictionary 93



-..BINARY

bit 4 bit, | bit; OR bit,
0 0 0
0 1 1
1 0 1
1 1 1
XOR Exclusive Or Function
Level 2 Level 1 Level 1
# n1 # n2 » # n3
"'string4 " "string,"  ®  “stringz"

XOR returns the logical XOR (exclusive OR) of two arguments. Each
bit in the result is determined by the corresponding bits in the two
arguments, according to the following table:

bit, | bit, | bit, XOR bit,

0
1
0
1

o = = O

94 Dictionary



...BINARY

NOT Not Function

Level 1 Level 1

# ny » # ny

string 4 »  string,

NOT returns the ones complement of its argument. Each bit in the
result is the complement of the corresponding bit in its argument.

bit | NOT bit
0 1
1 0

Dictionary 95



Calculus

The HP-28S is capable of symbolic differentiation of any algebraic
expression (within the constraints of available memory), and of nu-
merical integration of any (algebraic syntax) procedure. In addition,
the calculator can perform symbolic integration of polynomial expres-
sions. For more general expressions, the [ command can automatically
perform a Taylor series approximation to the expression, then sym-
bolically integrate the resulting polynomial.

Differentiation

i) Differentiate Analytic
Level 2 Level 1 Level 1
'symb4 ' ‘global' ®» ‘'symb,'

0 (B(d/dx]) computes the derivative of an algebraic expression symb,
with respect to a specified variable name. (Name cannot be a local
name.) The form of the result expression symb, depends upon
whether 9 is executed as part of an algebraic expression, or as a
“stand-alone” object.

Step-wise Differentiation in Algebraics

The derivative function 9 is represented in algebraic expressions with
a special syntax:

' anamei<symby ',

where name is the variable of differentiation and symb is the expres-
sion to be differentiated.

96 Dictionary



.Calculus

For example, 'aX¢SINCY>> ' represents the derivative of SINCY >
with respect to ®¥. When the overall expression is evaluated, the dif-
ferentiation is carried forward one “step”—the result is the derivative
of the argument expression, multiplied by a new subexpression repre-
senting the derivative of its argument. An example should make this
clear. Consider differentiating SIN{Y> with respect to ¥ in radians
mode, where ¥ has the value '¥"~2"':

'AaRC(SINCY 22" EVAL returns 'COSCY > kaXx(yd'.

We see that this is a strict application of the chain rule of differentia-
tion. This description of the behavior of 9, along with the general
properties of EVAL, is sufficient for understanding the results of sub-
sequent evaluations of the expression:

EVAL returns 'COSCR~22¥(ak(KIk2ERK (2-122",

EVAL returns 'COSCX~22% (24X ",

Fully Evaluated Differentiation
When 9 is executed as an individual object—that is, in a sequence
'sumb' 'name' 2,

rather than as part of an algebraic expression, the expression is auto-
matically evaluated repeatedly until it contains no derivatives. As part
of this process, if the variable of differentiation name has a value, the
final form of the expression will have that value substituted every-
where for the variable name.

To compare this behavior of 9 with the step-wise differentiation de-
scribed in the preceding section, consider again the example
expression 'SIH¢Y> ', where ¥ has the value '®"~2':

'SINCY 2 'R & returns 'COSCHE™ZXR(2RRI "

Dictionary 97



.Calculus

All of the steps of the differentiation have been carried out in a single
operation.

The function d determines whether to perform the automatic repeated
evaluation according to the form of the level 1 argument that specifies
the variable of differentiation. If that argument is a name, the full
differentiation is performed. When the level 1 argument is an alge-
braic expression containing only a name, only one step of the
differentiation is carried out. Normally, algebraics containing only a
single name are automatically converted to name objects. The special
syntax of 9 allows this exception to be used as a signal for full or step-
wise differentiation.

Differentiation of User-Defined Functions
When 9 is applied to a user-defined function:

1. The expression consisting of the function name and its argu-
ments within parentheses is replaced by the expression that
defines the function.

2. The arguments from the original expression are substituted for
the local names within the function definition.

3. The new expression is differentiated.
For example: Define F (a, b) = 2a + b:
« * a b '2¥at+b' » 'F' STO

Then differentiate 'F (%, X~2> ' with respect to ¥. The differentia-
tion automatically proceeds as follows:

1. 'F(H,%~2>" is replaced by 'Zka+b'.

2. ¥ is substituted for a, and '¥~2"' for b. The expression is now
'2ERERN2.

98 Dictionary



.Calculus

3. The new expression is differentiated.

B If we evaluated 'aX(F(X,%"~2>>"' the result is
'AX(2RK) +aK (K N2y .

B If we executed 'F¢¥, (X~2>>' '¥' 9, the differentiation is
carried through to the final result '2+2%¥X"'.

User-Defined Derivatives

If 9 is applied to an HP-28S function for which a built-in derivative is
not available, d returns a formal derivative—a new function whose
name is “der” followed by the original function name. For example,
the HP-28S definition of % does not include a derivative. If you dif-
ferentiate '% (¥, Y ' one step with respect to Z, you obtain

‘derx(X,Y,d2(X),a2CY))!

Each argument to the % function results in two arguments to the
der% function. In this example, the ¥ argument results in ¥ and
aZ(¥> arguments, and the Y argument results in ¥ and aZ<{¥ >
arguments.

You can further differentiate by creating a user-defined function to
represent the derivative. Here is a derivative for %:

€ + x y dx dy '{x¥dy+yddxr-108' ¥ 'der¥' STO.

With this definition you can obtain a correct derivative for the %
function. For example:

'EOX,2¥K) ! "K' a COLCT returns '.84%X'.

Similarly, if d is applied to a formal user function (a name followed by
arguments in parentheses, for which no user-defined function exists
in user memory), d returns a formal derivative whose name is “der”
followed by the original user function name. For example, differenti-
ating a formal user function 'f(x1,x2,x3>"' with respect to x
returns

‘derfixl,x2,x3,0x(x1),ax(x2),dax(x32)"'

Dictionary 99



.Calculus

Integration
i Integrate Command
Level 3 Level 2 Level 1 Level 2 Level 1
'symb' ' global ! degree » "integral '
X {global a b+ accuracy ® integral error
‘symb'  +{global a b} accuracy ®  integral error
#program#* % global a b* accuracy ®  integral error
“programz fabik accuracy ®  integral error

[ returns either a polynomial expression representing a symbolic in-
definite integral, or two real numbers for a definite numerical integral.
The nature of the result is determined by the arguments. In general, [
requires three arguments. Level 3 contains the object to be integrated;
the level 2 object determines the form of the integration; the level 1
object specifies the accuracy of the integration.

Symbolic Integration

[ includes a limited symbolic integration capability. It can return an
exact (indefinite) integral of an expression that is a polynomial in the
variable of integration. It can also return an approximate integral by
using a Taylor series approximation to convert the integrand to a
polynomial, then integrating the polynomial.

100 Dictionary



..Calculus

To obtain a symbolic integral, the stack arguments must be:

3: Integrand (name or algebraic)
2: Variable of integration (global name)

1: Degree of polynomial (real integer)

The degree of polynomial specifies the order of the Taylor series ap-
proximation (or the order of the integrand if it is already a
polynomial).

Numerical Integration
To obtain a numerical integral, you must specify:

B The integrand.
B The variable of integration.
B The numerical limits of integration.

B The accuracy of the integrand, or effectively, the acceptable error in
the result of the integration.

Using an Explicit Variable of Integration. A numerical integration,
in which the variable of integration is named with a name object that
(usually) appears in the definition of the object used as the integrand,
is called explicit variable integration. In the next section, implicit vari-
able integration will described, in which the variable of integration
does not have to be named.

Dictionary 101



.Calculus

For explicit variable integration, you must enter the relevant objects as
follows:

3: Integrand
2: Variable of integration and limits

1: Accuracy

The integrand is an object representing the mathematical expression
to be integrated. It can be:

. B A real number, representing a constant integrand. In this case, the
value of the integral will just be:

number (upper limit — lower limit).
B An algebraic expression.

B A program. The program must satisfy algebraic syntax—that is,
take no arguments from the stack, and return a real number.

The variable of integration and the limits of integration must be in-
cluded in a list in level 2 of the form:

{ name lower-limit upper-limit %,

where name is a global name, and where each limit is a real number
or an object that evaluates to a number.

The accuracy is a real number that specifies the error tolerance of the
integration, which is taken to be the relative error in the evaluation of
the integrand (the accuracy determines the spacing of the points, in
the domain of the integration variable, at which the integrand is sam-
pled for the approximation of the integral).

The accuracy is specified as a fractional error, that is,

true value — computed value
computed value

accuracy =

102 Dictionary



.Calculus

where value is the value of the integrand at any point in the integra-
tion interval. Even if your integrand is accurate to or near 12
significant digits, you may wish to use a larger accuracy value to re-
duce integration time, since the smaller the accuracy value, the more
points that must be sampled.

The accuracy of the integrand depends primarily on three
considerations:

B The accuracy of empirical constants in the expression.

B The degree to which the expression may accurately describe a
physical situation.

B The extent of round-off error in the internal evaluation of the
expression.

Expressions like cos (x — sin x) are purely mathematical expressions,
containing no empirical constants. The only constraint on the accu-
racy then, is the round-off errors which may accumulate due to the
finite (12-digit) accuracy of the numerical evaluation of the expres-
sion. You can, of course, specify an accuracy for integration of such
expressions larger than the simple round-off error, in order to reduce
computation time.

When the integrand relates to an actual physical situation, there are
additional considerations. In these cases, you must ask yourself
whether the accuracy you would like in the computed integral is justi-
fied by the accuracy of the integrand. For example, if the integrand
contains empirical constants that are accurate to only 3 digits, it may
not make sense to specify an accuracy smaller than 1E-3.

Furthermore, nearly every function relating to a physical situation is
inherently inaccurate because it is only a mathematical model of an
actual process or event. The model is typically an approximation that
ignores the effects of factors judged to be insignificant in comparison
with the factors in the model.

Dictionary 103



..Calculus

To illustrate numerical integration, we will compute

flz exp x dx

to an accuracy of .00001. The stack should be configured as follows
for [:

3: ‘EXP(X)
20 X 1 2}
1: .00001

Numerical integration returns two numbers to the stack. The value of
the integral is returned to level 2. The error returned to level 1 is an
upper limit to the fractional error of the computation, where normally

error = accuracy [ lintegrand|

If the error is a negative number, it indicates that a convergence of the
approximation was not achieved, and the level 2 result is the last com-
puted approximation.

For the integral of 'EXF X' in the example, [ returns a value
4.67077 to level 2, and the error 4.7E-5 to level 1.

Using an Implicit Variable of Integration. The use of an explicit
variable of integration allows you to enter the integrand as an ordi-
nary algebraic expression. However, it is also possible to enter the
integrand in RPN form, which can appreciably reduce the time re-
quired to compute the integral by eliminating repeated evaluation of
the variable name. In this method, an implicit variable of integration
is being used. The stack should be configured like this:

104 Dictionary



.Calculus

3: Integrand (program)

2: Limits of integration (list)

1: Accuracy (real number)

The integrand must be a program that takes one real number from the
stack, and returns one real number. [ evaluates the program at each of
the sample points between the limits of integration. For each evalua-
tion [ places the sample value on the stack. The program takes that
value, and returns the value of the integrand at that point.

The limits of integration must be entered as a list of two real numbers,
in the format {lower-limit upper-limit}. The accuracy specifies the frac-
tional error in the computation, as described in the preceding section.

For example to evaluate the integral:

2
fI exp (x) dx

to an accuracy of .00001, you should execute [ with the stack as
follows:

3: « EXP »
22701 2
1: .00001

This returns the same value 4.67077 and accuracy 4.7E-5 as the exam-
ple in the preceding section, where we used an explicit variable of
integration.

Dictionary 105



.Calculus

Taylor Series

TAYLR Taylor Series Command
Level 3 Level 2 Level 1 Level 1
'symb, " ' global * n » 'symb,'

TAYLR (in the ALGEBRA menu) computes a Taylor series approxima-
tion of the algebraic symby, to the nth order in the variable name. The
approximation is evaluated at the point name = 0 (sometimes called a
MacLaurin series). The Taylor approximation of f(x) at x = 0 is de-
fined as:

n xi ai
Z l_' (? f(x)>‘x=0

i=0

Translating the Point of Evaluation

If you're using TAYLR simply to put a polynomial in power form, the
point of evaluation makes no difference because the result is exact.
However, if you're using TAYLR to approximate a mathematical func-
tion, you may need to translate the point of evaluation away from
zero.

For example, if you're interested in the behavior of a function in a
particular region, its TAYLR approximation will be more useful if you
translate the point of evaluation to that region. Also, if the function
has no derivative at zero, its TAYLR approximation will be meaning-
less unless you translate the point of evaluation away from zero.

106 Dictionary



.Calculus

||:l Executing TAYLR can return a meaningless result if the
i expression is not differentiable at zero. For example, if
Note you clear flag 59 (to prevent Infinite Result er-

rors) and execute:

'R "K' 2 TAYLR

you will obtain the result 'S.E429%X-1.25E499%X~2"'. The coef-
ficient of ¥ is aX<X~.5», which equals .5 % X~ - .5 and
evaluates to 5.E499 for x = 0.

Although TAYLR always evaluates the function and its derivatives at
zero, you can effectively translate the point of evaluation away from
zero by changing variables in the expression. For example, suppose
the function is an expression in X, and you want the TAYLR approxi-
mation at X = 2. To translate the point of evaluation by changing

variables:
1. Store 'Y +2' in 'XK'.
2. Evaluate the original function to change the variable from X
toY.
3. Find the Taylor approximation at Y = 0.
4. Purge X (if it still exists as a variable).
5. Store '®-2' in '¥'.
6. Evaluate the new function to change the variable from Y to X.
7. Purge Y.

Dictionary 107



.Calculus

Approximations of Rational Functions

A rational function is the quotient of two polynomials. If the denomi-
nator evenly divides the numerator, the rational function is equivalent
to a polynomial. For example:

¥ 4+ 2x> — 5x — 6
¥ —x =2

=x 4+ 3

If your expression is such a rational function, you can convert it to the
equivalent polynomial form by using TAYLR. However, if the denomi-
nator doesn't evenly divide the numerator—that is, if there is a

remainder—the rational function is not a polynomial. For example:

¥ 4+ 2 —5x —2 4
?—x—2 )

There is no equivalent polynomial form for such a rational function,
but you can use TAYLR to calculate a polynomial that is accurate for
small x (close to zero). You can translate the region of greatest accu-
racy away from x = 0, and you can choose the accuracy of the
approximation. For the example above, the first-degree TAYLR ap-
proximation at x = 0 is 2x + 1.

Polynomial Long Division. Another useful approximation to a ratio-
nal function is the quotient polynomial resulting from long division.
Consider the righthand side of the equation above as a polynomial
plus a remainder. The polynomial is a good approximation to the ra-
tional function when the remainder is small—that is, when x is large.
Note the difference between the quotient polynomial (x + 3) and the
TAYLR approximation of the same degree (2x + 1).

The steps below show you how to perform polynomial long division
on the HP-28S. The general process is the same as doing long division
for numbers.

108 Dictionary



1.

2.
3.

..Calculus

Create expressions for the numerator and denominator, with
both in power form.

Store the denominator in a variable named ‘D’ (for “divisor”).

Store an initial value of zero in a variable named ‘Q" (for
“quotient”).

With the numerator on the stack, proceed with the steps below. The
numerator is the initial value for the dividend. Each time you repeat
steps 4 through 8, you'll add a term to Q and reduce the dividend.

4.
5.

6.
7.
8.

Put D on the stack (in level 1).

Divide the highest-order term of the dividend (in level 2) by the
highest-order term of the divisor (in level 1). You can calculate
the result by inspection and key it in, or you can key in an
expression

"dividend-term . divisor-term'
and then put it in power form.

For example, if the dividend is x> + 2x* — 5x — 2 and the divi-
sor is x2 — x — 2, the result is x; if the dividend is 3x® + x> — 7
and the divisor is 2x2 4+ 8x + 9, the result is 1.5x.

The result is one term of the quotient polynomial.
Make a copy of the quotient term, and add this copy to Q.
Multiply the quotient term and the divisor.

Subtract the result from the dividend. The result is the new
dividend.

If the new dividend’s degree is greater than or equal to the divisor’s
degree, repeat steps 4 through 8.

When the new dividend’s degree is less than the divisor's degree,
stop. The polynomial quotient is stored in Q, and the remainder
equals the final dividend divided by the divisor.

Dictionary 109



COMPLEX

R-C C-R RE M CONJ SIGN
R-P P-R ABS NEG ARG

The COMPLEX menu (fj(COMPLX]) contains commands specific to
complex numbers.

Complex number objects in the HP-28S are ordered pairs of numbers
that are represented as two real numbers enclosed within parentheses
and separated by the non-radix character, for example,
(1.224,5.678>. A complex number object (x, y) can represent:

B A complex number z in rectangular notation, where x is the real
part of z, and y is the imaginary part.

B A complex number z in polar notation, where x is the absolute
value of z, and y is the polar angle.

B The coordinates of a point in two dimensions, in rectangular co-
ordinates, where x is the abscissa or horizontal coordinate, and y is
the ordinate or vertical coordinate.

B The coordinates of a point in two dimensions, in polar coordinates,
where x is the radial coordinate, and y is the polar angle.

If you are not familiar with complex number analysis, you may prefer
to consider complex number objects as two-dimensional vectors or

point coordinates. Most of the complex number commands return re-
sults that are meaningful in ordinary two-dimensional geometry as
well as for complex numbers.

With the exception of the P=R (polar-to-rectangular) command, all
HP-28S commands that deal with values of complex number objects
assume that their arguments are expressed in rectangular notation.

Similarly, all commands that return complex number results, except
R-P (rectangular-to-polar), express their results in rectangular form.

110 Dictionary



-.«COMPLEX

In addition to the commands described in the following sections, cer-
tain commands in other menus accept complex number arguments:

B Arithmetic functions +, —, %, /, INV, \/, SQ, ~.

B Trigonometric functions SIN, ASIN, COS, ACOS, TAN, ATAN.

B Hyperbolic functions SINH, ASINH, COSH, ACOSH, TANH,
ATANH.

B Logarithmic functions EXP, LN, LOG, ALOG.

R-C C-R RE M CONJ SIGN

The commands R-C, C»R, RE, IM, and CON]J also appear in the
fourth row of the ARRAY menu. For their use with array arguments,
refer to page 82.

R-C Real to Complex Command
Level 2 Level 1 Level 1
X y »  ix,y2

CR-array;1 LCR-array,] » LC-array]

R-+C combines two real numbers x and y into a complex number. x is
the real part, and y the imaginary part of the result. x and y may also
be considered as the horizontal and vertical coordinates, respectively,
of the point (x, y) in a two-dimensional space.

Dictionary 111



-..COMPLEX

C-R Complex to Real Command
Level 1 Level 2 Level 1
iX,y»  ®» X y

CC-array]l ®» LCR-array;1 LCR-array,]

C—R separates a complex number (or coordinate pair) into its compo-
nents, returning the real part (or horizontal coordinate) to level 2, and
the imaginary part (or vertical coordinate) to level 1.

RE Real Part Function
Level 1 Level 1
(X, )3 » X
‘symb' w» '"RECsymb !
Carray;1 » Carray,1

RE returns the real part x of its complex number argument (x, y).
x may also be considered as the horizontal or abscissa coordinate of
the point (x, v).

iM Imaginary Part Function
Level 1 Level 1
(x.y>  » y
‘symb' @ 'IMcsymb !
Carray;1 = Carray,1

IM returns the imaginary part y of its complex number argument
(x, y). y may also be considered as the vertical or ordinate coordinate
of the point (x, ).

112 Dictionary



-..COMPLEX

CONJ Conjugate Analytic
Level 1 Level 1
X » X
LX,yr @ OX, =y
CR-arrayl » CR-array 1
CC-array;1 » CC-array, 1
'symb' ®» 'COMJdCsymbs !

CON]J returns the complex conjugate of a complex number. The imag-
inary part of a complex number is negated.

SIGN Sign Function
Level 1 Level 1
Z4 » Zy
‘symb' w  'SIGHCsymbi'

For a complex number argument (x;, y;), SIGN returns the unit vector
in the direction of (xq, y;):

2 ) = (V2 + vy NG + )

Dictionary 113



-..COMPLEX

R-P P-R ABS NEG ARG

R-P Rectangular to Polar Function
Level 1 Level 1
X » ‘ ix,0%
X,y » Cr,g2
‘symb' ®» 'R+P {symb>"’

R-P converts a complex number in rectangular notation (x, y) to polar
notation (7, ), where

r = abs (x, y), 0 = arg (x, y).

P-R Polar to Rectangular Function
Level 1 Level 1
ir,0 » CX,y3
'symb' w» 'FP+Risymb !

P=R converts a complex number in polar notation (r, §) to rectangular
notation (x, y), where

X =1rcos 8, y =rsin 6.

ABS Absolute Value Function
Level 1 Level 1
z » 1zI
Carrayl = |array||
‘symb' » 'AES csymb !

114 Dictionary



--.COMPLEX

ABS returns the absolute value of its argument. For a complex argu-
ment (x, y), the absolute value is \/(x* + y?) .

NEG Negate Analytic
Level 1 Level 1
z » -z
‘symb' ®» '—(symbx»'
Carrayd =» C —array 1

NEG returns the negative of its argument. When no command line is
present, pressing executes NEG. A complete stack diagram for
NEG appears in “Arithmetic.”

ARG Argument Function
Level 1 Level 1
z » 0
'symb' » '"ARGCsymb '

ARG returns the polar angle § of a complex number (x, y) where

arc tan y/x for x = 0,
0 = § arc tan y/x + w sign y tor x < 0, radians mode,

arc tan y/x + 180 sign y for x < 0, degrees mode.

The current angle mode determines whether 6 is expressed as degrees
or radians.

Dictionary 115



-..COMPLEX

Principal Branches and General Solutions

In general the inverse of a function is a relation—for any argument
the inverse has more than one value. For example, consider cos7 1z
for each z there are infinitely many w’s such that cos w = z. For rela-
tions such as cos™! the HP-28S defines functions such as ACOS.
These functions return a principal value, which lies in the part of the
range defined as the principal branch.

The principal branches used in the HP-28S are analytic in the regions
where their real-valued counterparts are defined—that is, the branch
cut occurs where the real-valued inverse is undefined. The principal
branches also preserve most of the important symmetries, such as
ASIN(—2z) = —ASIN(2).

The illustrations below show the principal branches for \/, LN, ASIN,
ACOS, ATAN, ACOSH. The graphs of the domains show where the
cuts occur: the solid color or black lines are on one side of the cut,
and the shaded color or black regions are on the other side. The
graphs of the principal branches show where each side of the cut is
mapped under the function. Additional dotted lines in the domain
graphs and the principal branch graphs help you visualize the
function.

Also included are the general solutions returned by ISOL (assuming
flag 34, Principal Value, is clear, and radians angle mode is selected).
Each general solution is an expression that represent the multiple val-
ues of the inverse relations.

The functions LOG, ~, ASINH, and ATANH are closely related to the
illustrated functions. You can determine principal values for LOG, *,
ASINH, and ATANH by extension from the illustrations. Also given
are the general solutions for these functions.

116 Dictionary



-..COMPLEX

Principal Branch for \/Z

Domain: £ = (x,y2

\

\
\

77T,

— 0 =

General Solution: 'SHIWI=2"

=

' IS0OL returns ‘=142,

Dictionary 117



-.COMPLEX

Principal Branch for LN(2)

Domain: & = ix,y>

— - —L - ~
/ ’ h AN

/ \

/ L \
.’ f/ 0 \\‘, \l
L //' ll

\ -
\\ \ | //

Principal Value: | = <u,v> = LNix,y>

i

| !
! |
‘ |
‘ |
| o |
I |
I |
| |

IHTTHITHITHT I

—lIT

General Solution: 'EXF (="' 'W' IS0L returns
'LHOZ 2 +2%0%idnl ',

118 Dictionary



-..COMPLEX

Principal Branch for LOG(Z)

You can determine the principal branch for LOG from the illustrations
for LN (on the previous page) and the relationship log (z) =
In (z)/In (10).

General Solution: 'ALOG{MW>»=Z"' 'W' IS0L returns
'LOGCZ) +2%nkidnl A2, 3825385832533

Principal Branch for U"Z

You can determine the principal branch for complex powers from the
illustrations for LN (on the previous page) and the relationship
u* = exp (In (u) 2).

Principal Branch for ASINH (2)

You can determine the principal branch for ASINH from the illustra-
tions for ASIN (on the following page) and the relationship
asinh z = —i asin iz.

General Solution: 'SIHH{M»=2"' 'W' IS0L returns
'"ASIHHCZ» +2%kn¥idnl

Principal Branch for ATANH (2)

You can determine the principal branch for ATANH from the illustra-
tions for ATAN (on page 122) and the relationship
atanh z = —i atan iz.

General Solution: 'TAHMHCW»=2"' 'W' I50L returns
"ATAHHCZ »+okidknl’

Dictionary 119



-..COMPLEX

Principal Branch for ASIN(Z)

Domain: & = 0x,y>
-~ - - - -
~ -
~ 7
N 7
AN s
\ /
\ /
\ /
NN //7/1111/4
Y/
/ \
/ \
Vs X
/ AN
e N
pd ~
-~ ~ ~
Principal Value: | = tu,v: = ASIHIx,y>
[ l N
| I~
NS
| X
' N
>~
I N
| N
>
[ RN
N \ k]
2 § | | 2
>~
>~ | |
>~
Q: | |
>~
N [
=~
N :
General Solution: 'SIHCH»=Z" 'W' IZ0L returns

"ASIHCZ 2 F0-12"nl+0knl .

120 Dictionary



-..COMPLEX

Principal Branch for ACOS (Z)

Domain: £ = ix,y?

Principal Value: 4 = <u,v}) = ACOS<x,y?

|
%

General Solution: 'COSCW»=2" 'H'

's1FACOSCZ 42k nEnl

/1111171711771

|
R g

IS0L returns

Dictionary

121



-..COMPLEX

Principal Branch for ATAN(Z)

Domain: £ = ix,y?

Principal Value: Il = tu,v: = ATAHIx,y>»

|
|
!
1

e

ANAVANMANNNY ©

SE

|

|

| o

4'
.\\\\\\\\\\\\‘\\

General Solution: 'TAH{MW»=Z" 'l' IS0L returns
'"ATAHCZ » +adnl!’

122 Dictionary



-..COMPLEX

Principal Branch for ACOSH (2Z)

Domain: 2 = x,y:

s i S G
e

ey
R et

Principal Value: | = Cu,v: = ACOSHX,y2

N K

R/ /1111

|
T

General Solution: 'COSHCW»=Z"' 'W' IS0L returns
'S1¥ACOSHOZ »+2¥nf¥idnt!’

Dictionary 123



Evaluation

Evaluation occurs in all aspects of calculator use, but most evaluation
occurs automatically. This section describes commands for explicitly
evaluating an object on the stack.

For information about the result of evaluating a particular type of ob-
ject, see chapter 23, “Evaluation,” in the Owner’s Manual.

Keyboard Commands

EVAL Evaluate Object Command

Level 1

obj »

EVAL evaluates the object in level 1. The result of evaluation, includ-
ing any results returned to the stack, depends on the evaluated object.

The evaluation of functions is affected by the current Result mode
(see page 21). In Numerical Result mode, EVAL and -NUM have the
same effect.

-NUM Evaluate to Number Command
Level 1 Level 1
obj » z

~NUM evaluates the object in level 1, temporarily selecting Numeri-
cal Result mode (see page 21) to ensure that functions return
numerical results. The current Result mode is restored when -NUM is
completed.

124 Dictionary



.EValuation

Automatic Evaluation of Programs and
Algebraics
The following commands take programs or algebraics as arguments,
evaluating those arguments in the course of execution.

ad COLCT ISOL

I DRAW EVAL

TAYLR ROOT (and Solver) —-NUM
If you execute one of these commands and then execute LAST, LAST

returns the arguments to commands in the evaluated program or alge-
braic, not the arguments to the original command.

Automatic Evaluation of Arguments in a List

The following commands can automatically evaluate the contents of a
list and use the results as arguments.

B GET, GETI, PUT, and PUTI accept a list specifying the index. Eval-
uating the contents of the list must produce one or two real
numbers.

B - ARRY accepts a list specifying the dimensions. Evaluating the
contents of the list must produce one or two real numbers.

B ROOT (or the Solver) accepts a list specifying the initial guess.
Evaluating the contents of the list must produce one, two, or three
real numbers.

B [ accepts a list specifying the variable of integration (optionally)
and the limits of integration. Evaluating the last two objects in the
list must produce two real numbers.

Dictionary 125



.Evaluation

Evaluation of System Objects

SYSEVAL Evaluate System Object Command
Level 1
#n »

SYSEVAL is intended solely for use by Hewlett-Packard in application pro-
gramming. General use of SYSEVAL can corrupt memory or cause
memory loss. Use SYSEVAL only as specified by Hewlett-Packard
applications.

SYSEVAL evaluates the system object at the absolute address # n. You
can display the version number and copyright message of your
HP-28S by executing # 18d SYSEWVAL.

126 Dictionary



LIST

-LIST LIST- PUT GET PUTI GETI
POS SUB SIZE

A list is an ordered collection of arbitary objects, that is itself an ob-
ject and hence can be entered into the stack or stored in a variable.
The objects in the list are called elements, and are numbered from left
to right starting with element 1 at the left. The commands in the LIST
menu enable you to create and alter lists, and to access the objects
contained in lists.

In addition to the LIST menu commands, you can also use the key-
board function 4+ to combine two lists.

+ Add Analytic
Level 2 Level 1 Level 1
{ listq ¥ {listor ® i listy listo ¥
{list ¥ obj » i list obj ¥
obj {list ¥ » { obj list

The + function concatenates two lists, or one list and an object
treated as a single-element list.

A complete stack diagram for + is given in the “Arithmetic” section.

Dictionary 127



-LIST

-LIST LIST- PUT GET PUTI GETI

-LIST Stack to List Command
Level n+1 ... Level2 Level 1 Level 1
objy ... obj, n » {obj; ... obj,*

—~LIST takes an integer number 1 from level 1, plus #n additional ob-
jects from levels 2 through n + 1, and returns a list containing the n
objects.

-LIST is also available in the STACK menu.

LIST- List to Stack Command
Level 1 Level n+1 ... Level2 Level 1
{obj; ... o0bj,* » objy ... obj, n

LIST— takes a list of n objects from the stack, and returns the objects
comprising the list into separate stack levels 2 through n + 1. The
number 1 is returned to level 1.

LIST— is also available in the STACK menu.

128 Dictionary



-.LIST

PUT Put Element Command

Level 3 Level 2 Level 1 Level 1

Carray, 1 index X » Carray,]

' global ! index X »

CC-array41 index z » [C-array,]

' global ' index z »

<listy ¥ index obj » sty k

" global ! index obj »

PUT replaces an object in the specified position in an array or list.
This section describes its use with lists; see “ARRAY” for its use with
arrays.

PUT takes three arguments from the stack:

B From level 3, a list or the name of a list.

B From level 2, a real number (by itself or in a list) specifying a posi-
tion in the list.

B From level 1, the object to be put in the list.
If the argument in level 3 is a list, PUT returns the altered list to the

stack. If the argument in level 3 is a name, PUT alters the list variable
and returns nothing to the stack.

GET Get Element Command
Level 2 Level 1 Level 1
Carray ] index » z
' name ' index » z
i list ¥ index » obj
' name' index » obj

Dictionary 129



-.LIST

GET gets an object from the specified position in an array or list. This
section describes its use with lists; see “ARRAY” for its use with
arrays.

GET takes two arguments from the stack:

B From level 2, a list or the name of a list.

B From level 1, a real number (by itself or in a list) specifying the
position in the list.

GET returns the specified object to the stack.

PUTI Put and Increment Index Command
Level 3 Level 2 Level 1 Level 2 Level 1
Carray,1 index4 X » [array,] indexo
' global ! index X » 'global' indexo

CC-array,1 index z » [ C-array,] indexo
' global ' index4 z » ‘'global' indexo
ilisty ¥ index4 obj »  {listy} indexo
' global ' index obj » 'global' indexo

Like PUT, PUTI replaces an object in the specified position in a list. In
addition, PUTI returns the list (or name) and the next position. You
can then put an object in the next position simply by putting the ob-
ject on the stack and executing PUTI again.

Generally, after putting an object in position n, PUTI returns n + 1 as
the next position and clears flag 46. However, when 7 is the last posi-
tion in the list, PUTI returns 1 as the next position and sets flag 46.

130 Dictionary



-.LIST

The following example uses PUTI and flag 46 to put the contents of a
variable ¥ in a list, from the initially specified position (not shown) to
the last position.

...00 x PUTI UNTIL 4& FS%? END...

GETI Get and Increment Index Command
Level 2 Level 1 Level 3 Level 2 Level 1
Carray 1 index ®» [array] indexo z
' name'' index4 ®»  'name' indexo z
{list ¥ index4 » {list ¥ indexo obj
' name ' index4 »  ‘'name' indexo obj

Like GET, GETI gets an object from the specified position in a list. In
addition, GETI returns the list (or name) and the next position. You
can then get the object in the next position simply by removing the
last-gotten object from level 1 and executing GETI again.

Generally, after getting an object from position n, GETI returns n + 1
as the next position and clears flag 46. However, when n is the last
position in the list, GETI returns 1 as the next position and sets flag
46.

The following example uses GETI and flag 46 to add list elements,
from the initially specified position (not shown) to the last position, to
a variable .

D0 GETI '®' STO+ UNTIL 48 FS? END...

Dictionary 131



-.LIST

POS suB SIZE

POS Position Command
Level 2 Level 1 Level 1
"' string4 " "stringo" n
1 list obj » n

POS returns the position of obj within ¢ [ist ;. If there is no match for
obj, POS returns 0.

SUB Subset Command
Level 3 Level 2 Level 1 Level 1
"' stringq " nq no »  "string,"
i /ist1 K ny no » i ”Stz ¥

SUB returns a list containing elements n; through n, of the original
list. If n, < ny, SUB returns an empty list.

SIZE Size Command
Level 1 Level 1
"string"  ®» n
i list ¥ » n
Carrayl » i list ¥
‘symb' » n

SIZE returns a number n that is the number of elements in the list.

132 Dictionary



LOGS

LOG ALOG LN EXP LNP1 EXPM
SINH ASINH COSH ACOSH TANH ATANH

The LOGS menu contains exponential, logarithmic, and hyperbolic
functions. All of these functions accept real and algebraic arguments;
all except LNP1 and EXPM accept complex arguments.

LOG ALOG LN EXP LNP1 EXPM
LOG Common Logarithm Analytic
Level 1 Level 1
z » log z
'symb' ®» 'LOGCsymby !

LOG returns the common logarithm (base 10) of its argument.

An Infinite Result exception results if the argument is 0 or
(0, 0).

ALOG Common Antilogarithm Analytic
Level 1 Level 1
z » 102
‘symb' ®» 'ALOG{symb» '

ALOG returns the common antilogarithm (base 10) of its argument—
that is, 10 raised to the power given by the argument.

Dictionary 133



-.LOGS

For complex arguments:
alog (x, y) = expcx cos cy + i exp cx sin cy,

where ¢ = In 10. (Computation is performed in radians mode).

LN Natural Logarithm Analytic
Level 1 Level 1
z » Inz
‘symb' ®» 'LH{symb: "'

LN returns the natural logarithm (base e) of its argument.

An Infinite Result exception results if the argument is 0 or
(0, 0).

EXP Exponential Analytic
Level 1 Level 1
z » exp z
‘symb' 'EXP Csymb: !

EXP returns the exponential, or natural antilogarithm (base e) of its
argument—that is, e raised to the power given by the argument. EXP
returns a more accurate result than =, since EXP uses a special algo-
rithm to compute the exponential.

For complex arguments:
exp (X, y) = expx cos y + i expx sin .

(Computation is performed in radians mode).

134 Dictionary



-.LOGS

LNP1 Natural Log of 1+x Analytic
Level 1 Level 1
X » In (1+x)
'symb' @  'LMP1{symb>'

LNP1 returns In(1 + x), where x is the real-valued argument. LNP1 is
primarily useful for determining the natural logarithm of numbers
close to 1. LNP1 provides a more accurate result for In(1 + x), for x
close to zero, than can be obtained using LN.

Arguments less than 1 cause an Undefined Result error.

EXPM Exponential Minus 1 Analytic
Level 1 Level 1
X » exp (x)—1
‘symb' w» '"EXPMIsymby

EXPM returns e* — 1, where x is the real-valued argument. EXPM is
primarily useful for determining the exponential of numbers close to
0. EXPM provides a more accurate result for e* — 1, for x close to 0,
than can be obtained using EXP.

Dictionary 135



-..LOGS

SINH ASINH COSH ACOSH TANH ATANH
These are the hyperbolic functions and their inverses.
SINH Hyperbolic Sine Analytic
Level 1 Level 1
z » sinh z
‘symb' ®» 'SIHHCsymb» '
SINH returns the hyperbolic sine of its argument.
ASINH Inverse Hyperbolic Sine Analytic
Level 1 Level 1
z » asinh z

'symb' ® 'ASIHH(symb3 '

ASINH returns the inverse hyperbolic sine of its argument. For real
arguments |x| > 1, ASINH returns the complex result for the argu-

ment (x, 0).

136 Dictionary



...LOGS

COSH Hyperbolic cosine Analytic
Level 1 Level 1
z » cosh z
‘symb' » '"COSHCsymb» !

COSH returns the hyperbolic cosine of its argument.

ACOSH Inverse Hyperbolic Cosine Analytic
Level 1 Level 1
z » acosh z

'symb' ®» "ACOSHCsymb !

ACOSH returns the inverse hyperbolic cosine of its argument. For
real arguments Ix| < 1, ACOSH returns the complex result obtained
for the argument (x, 0).

TANH Hyperbolic Tangent Analytic
Level 1 Level 1
z » tanh z
‘symb' ®» 'TAMH Csymbx '

TANH returns the hyperbolic tangent of its argument.

Dictionary 137



-.LOGS

ATANH Inverse Hyperbolic Tangent Analytic
Level 1 Level 1
z » atanh z

‘symb' w» "ATAMH Csymb2 '

ATANH returns the inverse hyperbolic tangent of its argument. For
real arguments Ix| > 1, ATANH returns the complex result obtained
for the argument (x, 0).

For a real argument x = *£1, an Infinite Reszult exception oc-

curs. If flag 59 is clear, the sign of the result (MAXR) is that of the
argument.

138 Dictionary



MEMORY

MEM MENU ORDER PATH HOME CRDIR
VARS CLUSR

The MEMORY menu contains commands that relate to variables, di-
rectories, and user memory in general.

Keyboard Commands

STO Store Command
Level 2 Level 1
obj ' global ! »
obj ' local ' »
obj ' global Cindex> ' ®»

STO stores an object in a global variable, in a local variable, or as an
element in a list variable or array variable.

In a Global Variable. If name is a global name, obj is stored in a
variable of that name in the current directory. If no variable of that
name exists in the current directory, a new variable is created; if a
variable of that name exists, its contents are replaced by obj.

In a Local Variable. Local variables are created only by the pro-
gram-structure commands —~ and FOR. A program that creates a local
variable can use STO to change the contents of that variable.

Dictionary 139



...MEMORY

An Element in a List Variable or Array Variable. When a list or
array is stored in a variable, you can replace an element by using the
variable name as a user function and the index to the list or array as
an argument. For example, "A(3)" acts as the “name” of the third ele-
ment in a list or vector A; you could store a value of 5 there by
executing

5 'AC3Y' STO

Similarly, "A(3, 5)" acts as the “name” of the element in the third row
and fifth column of a matrix A.

RCL Recali Command

Level 1 Level 1

'name' ®» obj

RCL returns the contents of the specified variable. The object re-
turned is not evaluated. RCL searches the entire current path, starting
with the current directory.

PURGE Purge Command
Level 1
'global' ®»
globals * »

PURGE deletes one or more variables and empty directories from the
current directory. You must purge the contents of a directory before
you can purge the directory itself.

140 Dictionary



-..MEMORY

MEM MENU ORDER PATH HOME CRDIR

MEM Memory Available Command
Level 1
» X

MEM returns the number of bytes of currently unused memory. This
number is only a rough indicator of usable available memory, since
recovery features (COMMAND, UNDO, LAST) consume or release
varying amounts of memory with each operation.

MENU Create Custom Menu Command
Level 1
names and commands »
ST names ¥ »
n B

MENU creates a custom menu specified by a list of names, or it dis-
plays a standard menu specified by a real number.

Custom User Menu. You can combine built-in commands and your
own variables in one custom user menu. For example, after creating
user functions CSC (cosecant), SEC (secant), and COT (cotangent), you
could combine them in a menu with SIN, COS, and TAN by
executing:

-
0

—
=
[
o
[}
Ly
[}
[y}
[iy]
m
[}

. TAM COT » MEHU

Dictionary 141



-.MEMORY

Custom Input Menu. You can create a custom menu that automati-
cally stores values in variables. The first element in the list must be
STO; the other elements must be names. (You can’t include names of
built-in commands.) For example, you could make an input menu for
the variables A, B, and C by executing

{ STO AR B C } MEHU

Then executing 10 A 120" E 130 _c_|stores 10, 20, and 30
in variables A, B, and C.

Standard Menu. You can programmatically select a standard menu
by using MENU with a numerical argument. The menus are num-
bered in the order in which they appear on the keyboard.

Number | Standard Menu | Number Standard Menu
1 ARRAY 13 PROGRAM CONTROL
2 BINARY 14 PROGRAM BRANCH
3 COMPLEX 15 PROGRAM TEST
4 STRING 16 MODE
5 LIST 17 LOGS
6 REAL 18 PLOT
7 STACK 19 CUSTOM
8 STORE 20 Cursor
9 MEMORY 21 TRIG

10 ALGEBRA 22 SOLVE
11 STAT 23 USER
12 PRINT 24 Solver

142 Dictionary



-.MEMORY

ORDER Order USER Menu Command

Level 1

{ names } ®»

ORDER rearranges the current directory so that variables appear in
the USER menu in the same order as specified in the list. Variables
not specified in the list remain in their previous order, appearing after
the reordered variables.

If the list includes the name of a large directory, there may be insuffi-
cient memory to execute ORDER. In this case, execute System Halt

([OW@)) and try again.

PATH Current Path Command

Level 1

» { HOME directory-names *

PATH returns a list containing the sequence of directory names that
identifies the path to the current directory. The first directory is al-
ways HOME, and the last directory is always the current directory
(which may also be HOME).

HOME Switch to HOME Directory Command

»

HOME makes the HOME directory the current directory.

Dictionary 143



...MEMORY

CRDIR Create Directory Command
Level 1
'name' ®»

CRDIR creates a subdirectory in the current directory, giving the new
directory the specified name. Executing CRDIR doesn’t change the
current directory; you must evaluate the name of the new
subdirectory to make it the current directory.

VARS CLUSR

VARS Variables Command

Level 1

» { names

VARS returns a list of all variables and subdirectories in the current
directory.

CLUSR Clear User Variables Command

CLUSR purges all variables and empty subdirectories in the current
directory.

Pressing cLUSR always writes the command name to the command
line, even in immediate or algebraic entry mode, to help prevent acci-
dental execution. To then execute CLUSR, press [ENTER].

144 Dictionary



MODE

STD FIX SCI ENG DEG RAD
CMD UNDO LAST ML RDX, PRMD

The MODE menu contains menu keys that control various calculator
modes: number display mode, angle mode, recovery modes, radix
mode, and multi-line display mode.

The menu key labels in this menu also act as annunciators: a small
box in a menu label indicates that the mode is selected.

In immediate entry mode, all MODE commands except FIX, SCI, and
ENG (which require arguments) execute without performing ENTER,
leaving the command line unchanged.

STD FIX SCi ENG DEG RAD

These functions set the number display mode and the angle mode.

The number display functions STD, FIX, SCI, and ENG control the
display format of floating-point numbers, as they appear in stack dis-
plays of all types of objects. In the algebraics, non-integer floating-
point numbers are displayed in the current format and integers are
always displayed in STD format.

Dictionary 145



-..MODE

The current display mode is encoded in flags 49 and 50. Executing
any of the display functions alters the states of these flags; conversely,
setting and clearing these flags will affect the display mode. The cor-
respondence is as follows:

Mode Flag 49 | Flag 50
Standard 0 0
Fix 1 0
Scientific 0 1
Engineering 1 1

Flags 53-56 encode (in binary) the number of decimal digits, from 0
through 11. Flag 56 is the most significant bit.

STD Standard Command

»

STD sets the number display mode to standard format. Standard for-
mat (ANSI Minimal BASIC Standard X3]2) produces the following
results when displaying or printing a number:

B Numbers that can be represented exactly as integers with 12 or
fewer digits are displayed without a radix or exponent. Zero is dis-
played as @&.

® Numbers that can be represented exactly with 12 or fewer digits,
but not as integers, are displayed with a radix but no exponent.
Leading zeroes to the left of the radix and trailing zeroes in the
fractional part are omitted.

146 Dictionary



-..MODE

B All other numbers are displayed in the following format:
(sign) mantissa E (sign) exponent

where the value of the mantissa is in the range 1 < x < 10, and
the exponent is represented by one to three digits. Trailing zeroes in
the mantissa and leading zeroes in the exponent are omitted.

The following table provides examples of numbers displayed in stan-
dard format:

. Representable
Number Displayed As With 12 Digits?
1011 106000008000 Yes (integer)
1012 1.E12 No
1012 . 000000000861 Yes
1.2x10—1 . 000BBBOBRB12 Yes
1.23x10-11 | 1.23E-11 No
12.345 12,345 Yes
FiIX Fix Command
Level 1
n »

FIX sets the number display mode to fixed format, and uses a real
number argument to set the number of fraction digits to be displayed
in the range 0 through 11. The rounded value of the argument is
used. If this value is greater than 11, 11 is used; if less than 0, 0 is
used.

Dictionary 147



-..MODE

In fixed format, displayed or printed numbers appear as
(sign) mantissa

The mantissa appears rounded to n places to the right of the decimal,
where 7 is the specified number of digits. While fixed format is active,
the HP-28S automatically displays a value in scientific format in ei-
ther of these two cases:

B [f the number of digits to be displayed exceeds 12.

B [f a non-zero value rounded to n places past the decimal point
would be displayed as zero in fixed format.

SCI Scientific Command

Level 1

n »

SCI sets the number display mode to scientific format, and uses a real
number argument to set the number of significant digits to be dis-
played in the range 0 through 11. The rounded value of the actual
argument is used. If this value is greater than 11, 11 is used; if less
than 0, 0 is used.

In scientific format, numbers are displayed or printed in scientific no-
tation to n + 1 significant digits, where n is the specified number of
digits (the argument for SCI). A value appears as

Czign? mantissa E (zign) exponent

where 1 < mantissa < 10.

148 Dictionary



...MODE

ENG Engineering Command

Level 1

n »

ENG sets the number display mode to engineering format, and uses a
real number argument to set the number of significant digits to be
displayed, in the range 0 through 11. The rounded value of the argu-
ment is used. If this value is greater than 11, 11 is used; if less than
0, 0 is used.

In engineering format, a displayed or printed number appears as

{zign? mantissa E (sign? sexponent

where 1 < mantissa < 1000, and the exponent is a multiple of 3. The
number of significant digits displayed is one greater than the argu-
ment specified. If a displayed value has an exponent of —499, it is
displayed in scientific format.

DEG Degrees Command

»

DEG (degrees) sets the current angle mode to degrees. In degrees
mode:

Real-number arguments. Functions that take real-valued angles as
arguments interpret those angles as being expressed in degrees. (Com-
plex arguments for SIN, COS and TAN are always assumed to be in
radians.)

Dictionary 149



-..MODE

Real-number results. Functions that give real-valued angles as re-
sults return those angles expressed in degrees: ASIN, ACOS, ATAN,
ARG, and R-P. (Complex results returned by ASIN or ACOS for ar-
guments outside of the domain x < 1 are always expressed in
radians.)

Executing DEG turns off the (27) annunciator and clears user flag 60.

RAD Radians Command

»

RAD (radians) sets the current angle mode to radians. In radians
mode:

Real-number arguments. Functions that take real-valued angles as
arguments interpret those angles as being expressed in radians. (Com-
plex arguments for SIN, COS and TAN are always assumed to be in
radians.)

Real-number results. Functions that give real-valued angles as re-
sults return those angles expressed in radians: ASIN, ACOS, ATAN,
ARG, and R-P. (Complex results returned by ASIN or ACOS for ar-
guments outside of the domain x < 1 are always expressed in
radians.)

Executing RAD turns on the (27) annunciator, and sets user flag 60.

CMD UNDO LAST ML RDX, PRMD

The operations cMp , unpo , LAST , ML , and RDX, enable
and disable the following modes. When one of these menu labels
shows a small square, the corresponding mode is enabled.

150 Dictionary



-..MODE

Mode Effect When Mode is Enabled

CHMDs= Command lines are saved. You can recover previous command
lines by pressing @[ COMMAND].

UHDD = The stack is saved each time you press [ENTER]. You can re-
cover the previous stack by pressing [ UNDO] (to “undo”
changes to the stack).

LAST= Arguments are saved. You can recover the arguments to the last
command by pressing l( LAST]. To select this mode pro-
grammatically, set flag 31.

ML= The object in level 1 is displayed in “multi-line” format. To select
this mode programmaticaly, set flag 45.

RD¥, = The radix mark is defined to be the comma—that is, the comma
is used as the decimal point. To select this mode programmati-
cally, set flag 48.

PRMD Print Modes Command
»

PRMD displays and prints a listing of current HP-28S modes. The
listing shows the states of the number display mode, multiline mode,
the angle mode, the binary integer base, and the radix mode, and

whether the UNDO, COMMAND, and LAST features are enabled or
disabled. A typical listing looks like this:

Format STD Base DEC
DEGREES Radix .
Undo OH Command ON
Last OH Multiline ON

Dictionary 151



PLOT

STEQ RCEQ PMIN PMAX INDEP DRAW
PPAR RES AXES CENTR *W *H
STOZ RCLZ COLZ SCLZ> DRWZ

CLLCD DGTIZ PIXEL DRAX CLMF PRLCD

The commands in the PLOT menu give you the capability of creating
special displays that supersede the normal stack and menu display.
You. can plot mathematical functions, make scatter plots of statistical
data, and digitize information from plots.

The Display

The HP-28S liquid-crystal display (LCD) is an array of 32 rows of 137
pixels (dots), which is organized as four rows of 23 character spaces. A
character space is six pixels wide by eight pixels high, with the excep-
tion of the rightmost character space in each row, which is five pixels
wide. Normally, display characters are five pixels wide, which leaves
a blank column of pixels between characters.

For graphical data displays, the display is treated as a grid of

32 X 137 dots, or pixels. A pixel is specified by its coordinates, a com-
plex number representing an ordered pair of coordinates (x, y), where
x is the horizontal coordinate and y is the vertical coordinate. (We will
use the letters x and y to represent the horizontal and vertical direc-
tions during this discussion, but you can use any variable names you
choose for plotting on the HP-28S.)

152 Dictionary



-.PLOT

The scaling of coordinates to pixels is established by the coordinates
of the corner points P,,,, and P,,;,, which you set with the commands
PMAX and PMIN, respectively. P, is the upper-rightmost pixel in
the display; its coordinates are (X,uv Vimax): Pmin Xmins Ymin) 1S the
lower-leftmost pixel. The default coordinates of these points are
P = (6.8,1.6) and P,;, = (—6.8, —1.5). The coordinates of the
center of a particular pixel are

X = My Wy + Xy
y = ny wy + Ymin

where n, is the horizontal pixel number and #, is the vertical pixel
number (P,,;, has n, = 0 and n, = 0; Py,;, has n, = 136, n, = 31). w,

and w, are the horizontal and vertical pixel widths:

Wy = (xmux _xmin)/136-

wy, = Ymax —Ymin)/31.

The pixel with n, = 68 and n, = 15 is defined as the center pixel.
With the default values for P,,,, and P,,;,, the center pixel has coordi-
nates (0, 0).

Mathematical Function Plots

A mathematical function plot is a plot of the values of a procedure
stored in the variable EQ (the same used by the Solver), as a function
of a specified independent variable. The procedure is fully evaluated
for each of 137/r values of the independent variable from x,,;, to
XyawWhere 1 is the resolution of the plot. A dot (pixel) is added to the
graph for each coordinate pair (independent-variable-value, procedure-
value), as long as the procedure value is within the plot range between
Ymin and y,,,.. The plot also includes axes with tick marks every 10
pixels.

Dictionary 153



-.PLOT

The actual plot is produced by the command DRAW. If you execute
DRAW directly by pressing the menu key DrAW , you will be able to
use the cursor keys to digitize data from the plot.

A function plot will produce one or two plotted curves, according to
the definition of the EQ procedure:

B [f EQ contains an algebraic expression without an equals sign,
DRAW will plot a single curve corresponding to the value of the
expression for each value of the independent variable within the
plot range.

B [f EQ contains an algebraic equation, DRAW will plot two curves,
one for each side of the equation. Note that the intersections of the
two curves occur at the values of the independent variable that are
the roots of the equation, that can be found by the Solver.

B [f EQ contains a program, it will be treated as an algebraic expres-
sion and plotted as a single curve. This presumes that the program
obeys the syntax of an algebraic expression: it must take no argu-
ments from the stack, and return exactly one object to the stack.

The general procedure for obtaining a function plot is summarized
below. For details, refer to the descriptions of the individual
commands.

1. Store the procedure to be plotted in EQ, using STEQ.
2. Select the independent variable with INDEP.

3. Select the plot ranges, using PMIN, PMAX, CENTR, *H, and
XW.

4. Specify the intersection of the axes, using AXES.
5. Select the plot resolution with RES.
6. Execute DRAW.

Any of steps 1-5 can be omitted, in which case the current values are
used.

154 Dictionary



IIIPLOT

Statistical Scatter Plots

A statistical scatter plot is a plot of individual points taken from the
current statistics array stored in variable ZDAT. You may specify any
column of coordinate values from the array to correspond to the hori-
zontal coordinate, and any other column for the vertical coordinate.
One point is then plotted for each data point in the matrix.

The general procedure for obtaining a scatter plot is summarized be-
low. For details, refer to the descriptions of the individual commands.

1. Store the statistical data to be plotted in ZDAT, using STOZ.

2. Select the horizontal and vertical coordinate columns with
COLZ.

3. Select the plot ranges, using SCLY for automatic scaling, or
PMIN, PMAX, CENTR, *H, and *W.
4. Specify the intersection of the axes, using AXES.

5. Execute DRWZ.

Any of the steps 1-4 can be omitted, in which case the current values
are used.

Interactive Plots

If you execute DRAW or DRWZ by pressing the corresponding menu
key, the HP-28S enters an interactive plot mode that allows you to
digitize information from the plot while viewing it. When you start an
interactive plot:

1. The display is cleared.

2. Either DRAW or DRWZ is executed to produce the appropriate
plot. (If you press before the plotting is finished, plotting of
points halts, and the interactive mode begins).

Dictionary 155



-.PLOT

3. A cursor in the form of a small cross (+) appears at the center of
the display. (If the axes are drawn through the center, the cursor
will not be visible until you move it.)

4. The menu keys are activated:
| returns the coordinates as a complex number (x, y).

= returns a string representing the current display. This ac-
tion is equivalent to the LCD— command (page 269).

B The four rightmost menu keys move the cursor up, down, left
or right by one pixel, or by several pixels if you hold down the
key, or to the edge of the display if you first press [@.

B [« ] displays the coordinates in line 4 while you hold down
the key.

You can digitize several points by moving the cursor and pressing [INS],
moving the cursor again and pressing again, and so on. As al-
ways, you can print the display by pressing at the same time.
To terminate interactive plot mode, press [ON].

To activate interactive plot mode from a program, follow the DRAW
or DRWZ command by DGTIZ (digitize). After plotting, the program
will halt while you digitize; when you press the program will
continue.

Plot Parameters

The scaling factors necessary for converting a coordinate pair to a dis-
play position, and vice-versa, are stored as a list of objects in the
variable PPAR. We will refer to them collectively as the plot param-
eters. They are:

156 Dictionary



--.PLOT

Parameter Description

Ppin A complex number representing the coordinates of the lower
leftmost pixel. Set by PMIN, CENTR, *H, %W, and SCLZ.

I max A complex number representing the coordinates of the upper

rightmost pixel. Set by PMAX, CENTR, *H, *W, and SCLZ.

Independent | The global name corresponding to the horizontal axis in a
variable mathematical function plot. Set by INDEP.

Resolution A real positive integer representing the spacing of plotted
points in a function plot. Set by RES.

A complex number representing the coordinates of the inter-
section of the plot axes. Set by AXES.

Pax es

STEQ RCEQ PMIN PMAX [INDEP DRAW

This set of commands allows you to select a procedure for a function
plot, set the primary plot parameters, and plot the procedure.

STEQ Store Equation Command
Level 1
obj L4

STEQ takes an object from the stack, and stores it in the variable EQ
(“EQuation”). It is equivalent to 'E@' STO.

EQ is used to hold a procedure (the current equation) used as an im-
plicit argument by the Solver and by DRAW, so STEQ’s argument
should normally be a procedure.

Dictionary 157



IIIPLOT

RCEQ Recall Equation Command
Level 1
» obj

RCEQ returns the contents of the variable EQ in the current directory.
To recall a variable EQ from a parent directory (when EQ doesn’t exist
in the current directory), execute 'ER' RCL.

PMIN Plot Minima Command
Level 1
(X, y» ®»

PMIN sets the coordinates of the lower leftmost pixel in the display to
be the point (x, y). The complex number (x, y) is stored as the first
item in the list contained in the variable PPAR.

PMAX Plot Maxima Command
Level 1
GLyr o

PMAX sets the coordinates of the upper-rightmost pixel in the display
to be the point (x, y). The complex number (x, y) is stored as the sec-
ond item in the list contained in the variable PPAR.

158 Dictionary



-.PLOT

INDEP Independent Command
Level 1
'global' ®»

INDEP takes a name from the stack, and stores it as the independent
variable name, the third item in the list contained in the variable
PPAR. For subsequent executions of DRAW, the name will be used as
the independent variable corresponding to the horizontal axis (ab-
scissa) of the plot.

DRAW Draw Command

DRAW produces mathematical function plots on the HP-28S display.
If you execute DRAW by pressing the DrRAM menu key, an interactive
plot is produced, as described in “Interactive Plots” on page 155.

DRAW automatically executes DRAX to draw axes, then plots one or
two curves representing the value(s) of the current equation at each of
137 /r values of the independent variable. The current equation is the
procedure stored in the variable EQ.

If EQ contains an algebraic equation, the two sides of the equation are
plotted separately, yielding two curves. If the current equation is an
algebraic expression or a program, one curve is plotted.

The resolution r determines the number of plotted points. r = 1
means a point is plotted for every column of display pixels; r = 2
means every other column; and so on. r is set by the RES command.
The default value of r is 1; larger values of r may be used to reduce
plotting time.

Dictionary 159



-..PLOT

DRAW checks the current equation to see if it contains at least one
reference, direct or indirect, to the independent variable. If the inde-
pendent variable was never selected, the first variable in the current
equation is used (and stored in PPAR). If the independent variable is
not referenced in the current equation, the message

namey; Mot In Equation
U=sing name,

is displayed momentarily before the display is cleared and before the
actual plot begins. Here name; is the current independent variable de-
fined in PPAR, and name, is the first variable found in the current
equation. If the current equation contains no variables, the second line
of the warning message is replaced by Con=stant Equation. (The
independent variable name in PPAR will then be constant.)

PPAR RES AXES CENTR *xW *H

These commands provide alternate ways of setting plot parameters.

PPAR Recall Plot Parameters Operation
Level 1
» i plot parameters *

Pressing PPAR is a convenient way for you to examine the current
plot parameters.

PPAR is a variable containing a list of the plot parameters, in the form

{ (xmin/ ymin) (xmm(/ ymux) independent resolution (xaxis' yaxis)}

Pressing PPAR returns the list to the stack. The contents of the list are
described in “Plot Parameters” on page 156.

160 Dictionary



-.PLOT

RES Resolution Command

Level 1

n -

RES sets the resolution of mathematical function plots (DRAW) to the
value n. n is stored as the fourth item in the list contained in the
variable PPAR. n determines the number of plotted points: n = 1
means a point is plotted for every column of display pixels; n = 2
means every other column; and so on. The default value of n is 1; you
may wish to use larger values of n to reduce plotting time.

AXES Axes Command

Level 1

LX,yr

AXES sets the coordinates of the intersection of the plot axes (drawn
by DRAX, DRAW, or DRWZ), to be the point (x, y). The complex
number (x, y) is stored as the fifth and last item in the list contained
in the variable PPAR. The default coordinates are (0, 0).

CENTR Center Command

Level 1

XLy o®

CENTR adjusts the plot parameters so that the point represented by
the argument (x, y) corresponds to the center pixel (1, = 68, n, = 15)
of the display. The height and width of the plot are not changed. P
and P,,;, are replaced by P, and P,;,’, where:

max

= 1 = 3 — 16, e ;
Xmax x + Y2 (xmax xmm)/ Ymax y + 1% (ymax ymm)

Bl = = S . aa— — 15 = ]
Xmin X /2 (xmax xmm)/ Ymin ¥ /31 (ymax ymm)

Dictionary 161



-.PLOT

*xW Multiply Width Command
Level 1
factor »

%W adjusts x,,;, and ¥, changing the horizontal scale but not the
center:

xmax, - xmin’ = faCtor X (xmax - xmin)

Xmax’ + Xmin’ _ Xmax + Xmin
2 2
*H Multiply Height Command
Level 1
factor »

*H adjusts ,,i; and Y. changing the vertical scale but not the
center:

Ymax — Ymink'h = factor X (Ypax — Ymin)

7
ymax’ + ymin . ymax + ymin

2 2

162 Dictionary



-:PLOT

STOZ RCLZ COL> SCLZ DRWZ

This group of commands allows you to create statistics scatter plots.
See “STAT” for a description of the general statistical capabilities of
the HP-28S.

STOZ Store Sigma Command
Level 1
CR-array]l w»

STOZ takes a real array from the stack and stores it in the variable
2DAT. Executing STOZ is equivalent to executing ' EDAT' =T0. The
stored array becomes the current statistics matrix.

RCL> Recall Sigma Command

Level 1

» obj

RCLZ returns the contents of the variable ZDAT from the current di-
rectory. To recall the statistics matrix ZDAT from a parent directory
(when ZDAT doesn’t exist in the current directory), execute ZDAT.

Dictionary 163



-.PLOT

COoL> Sigma Columns Command
Level 2 Level 1
ny ny »

COLZ takes two real integers, 1 and 71,, and stores them as the first
two items in the list contained in variable ZPAR. The numbers iden-
tify column numbers in the current statistics matrix ZDAT, and are
used by statistics commands that work with pairs of columns. Refer to
“Stat” for details about ZPAR.

n; designates the column corresponding to the independent variable
for LR, or the horizontal coordinate for DRWZX or SCLZ. n, designates
the dependent variable or the vertical coordinate. For CORR and
COV, the order of the two column numbers is unimportant.

If a two-column command is executed when ZPAR does not yet exist,
it is automatically created with default values n; = 1 and n, = 2.

SCLZ Scale Sigma Command

»

SCLZ causes an automatic scaling of the plot parameters in PPAR so
that a subsequent statistics scatter plot exactly fills the display. That
is, the horizontal coordinates of P, and P,,;, are set to be the maxi-
mum and minimum coordinate values, respectively, in the
independent data column of the current statistics matrix. Similarly, the
vertical coordinates of P,,,, and P,;, are set from the dependent data
column. The independent and dependent data column numbers are
those stored in the variable ZPAR.

164 Dictionary



-..PLOT

DRWZ Draw Sigma Command

»

DRWZ automatically executes DRAX to draw axes, then creates a sta-
tistical scatter plot of the points represented by pairs of coordinate
values taken from the independent and dependent columns of the

current statistics matrix ZDAT. If you execute DRWZ by pressing the
prWZ menu key, an interactive plot is produced, as described in “In-
teractive Plots” on page 155.

The independent and dependent columns are specified in the variable
2PAR (default 1 and 2, respectively). DRWZ plots one point for each
data point in the statistics matrix. For each point, the horizontal co-
ordinate is the coordinate value in the independent data column, and
the vertical coordinate is the coordinate value in the dependent data
column.

CLLCD DGTIZ PIXEL DRAX CLMF PRLCD

These commands allow you to create special displays, and to print an
image of the display on the HP-82440A printer.

CLLCD Clear LCD Command

»

CLLCD clears (blanks) the HP-28S display (except the annunciators)
and sets the system message flag.

Dictionary 165



-.PLOT

DGTIZ Digitize Command

»

DGTIZ enables programs to activate the interactive plot mode. Use
DRAW DGTIZ to make a mathematical function plot and then digi-
tize points, or use DRW2 DGTIZ to make a statistical scatter plot and
then digitize points. When you're done digitizing, press to con-
tinue the program.

PIXEL Pixel Command

Level 1

(X,y» ®

PIXEL turns on one pixel at the coordinates represented by the com-
plex number (x, y) and sets the system message flag.

DRAX Draw Axes Command

»

DRAX draws a pair of axes on the display, and sets the system mes-
sage flag. The axes intersect at the point P, specified in the variable
PPAR. Tick marks are placed on the axes at every 10th pixel.

166 Dictionary



IIIPLOT

CLMF Clear Message Flag Command

[ 2

CLMF clears the internal message flag set by CLLCD, DISP, PIXEL,
DRAX, DRAW, and DRWZ. Including CLMF in a program, after the
last occurrence of any of these words, causes the normal stack display
to be restored when the program completes execution.

PRLCD Print LCD Command

»

PRLCD provides a means by which you can print copies of math-
ematical function plots and statistical scatter plots. Since PRLCD will
print only a copy of the current display, you must include PRLCD and
DRAW (or DRWZ) in the same command line. For example:

CLLCD DRAW PRLCD

will clear the LCD, plot the current equation, then print a replica of
the display.

Dictionary 167



PRINT

PR1 PRST PRVAR PRLCD CR TRAC
PRSTC PRUSR PRMD

The HP-28S transmits text and graphics data to the HP 82240A
Printer via an infrared light link. The infrared light-emitting diode is
situated on the top edge of the right-hand HP-28S case. Before print-
ing, check that the printer can receive the infrared beam from the
HP-28S. Refer to the printer manual for more information about
printer operation.

You can use the print commands to print objects, variables, stack lev-
els, plots, and so on. In addition, you can select TRACE mode to
automatically print a continuous record of your calculations.

The & annunciator appears whenever the HP-28S transmits data
from the infrared diode. The calculator can’t determine whether
printing is actually occurring because the transmission is one-way
only. Make sure that TRACE mode is not active unless a printer is
present—otherwise, the frequent infrared transmissions slow down
keyboard operations and decrease battery life.

Print Formats

Multi-line objects can be printed in compact format or multi-line for-
mat. Compact print format is identical to compact display format.
Multi-line printer format is similar to multi-line display format, ex-
cept that the following objects are fully printed:

B Strings and names that are more than 23 characters long are con-
tinued on the next printer line.

168 Dictionary



-:PRINT

B The real and imaginary parts of complex numbers are printed on
separate lines if they don’t fit on the same line.

B Arrays are printed with an index before each element. For example,
the index 1,1: precedes the first element.

In TRACE mode, the print format depends on whether multi-line dis-
play format is enabled or disabled (flag 45 is set or clear). The print
command PRSTC (print stack compact) prints in compact format. All
other print commands print in multi-line format.

Faster Printing

When the printer is battery powered, its speed declines as its batteries
discharge. The HP-28S normally paces data transmission to match the
printer’s speed when its batteries are nearly exhausted.

When your printer is powered by an AC adapter, it can sustain a
higher speed. You can increase the calculator’s data transmission rate
to match the higher speed of the printer by setting flag 52. For subse-
quent battery-powered printing, clear flag 52 to return to slower data
transmission.

Don’t set flag 52 when the printer is battery powered. Although a
printer with fresh batteries can print at the higher rate, it will eventu-
ally slow down enough to lose data sent by the HP-28S. This loss of
data corrupts printed output and can cause the printer to change its
configuration.

Double-Space Printing

You can select double-space printing (one blank line between text
lines) by setting flag 47. To return to normal printing, clear flag 47.

Dictionary 169



--.PRINT

Configuring the Printer

You can set various printer modes by sending escape sequences to the
printer. An escape sequence consists of the escape character (character
27) followed by an additional character. When the printer receives an
escape sequence, it switches into the selected mode. The escape se-
quence itself isn’t printed. The HP 82240A printer recognizes the
following escape sequences.

Printer Mode Escape Sequence
Print Column Graphics | 27 001...166
No Underline* 27 250
Underline 27 251
Single Wide Print* 27 252
Double Wide Print 27 253
Self Test 27 254
Reset 27 255

* Default mode.

You can use CHR and + to create escape sequences and use PR1 to
send them to the printer. For example, you can print Underline as
follows:

27 CHR 251 CHR + "Under"™ + 27 CHR + 258 CHR +
"line" + PR1

170 Dictionary



-.-.PRINT

PR1 PRST PRVAR PRLCD CR TRAC

PR1 Print Level 1 Command

Level 1 Level 1

obj » obj

PR1 prints the contents of level 1 in multi-line printer format. All
objects except strings are printed with their identifying delimiters.
Strings are printed without the leading and trailing " delimiters. If
level 1 is empty, the message CEmpty Stack] is printed.

Printing a Text String

You can print any sequence of characters by creating a string object
that contains the characters, placing the string object in level 1, and
executing PR1. The printer prints the characters and leaves the print
head at the right end of the print line. Subsequent printing begins on
the following line.

Printing a Graphics String

You can print graphics by printing a string object that begins with the
escape character (character 27) and a character whose number 7 is
from 1 through 166. Together, these characters instruct the printer to
interpret the next n characters (n < 166) as graphics codes, with each
character specifying one column of graphics. Refer to the printer man-
ual for details about graphics codes.

The printer prints the graphics and leaves the print head at the right
end of the print line. Subsequent printing begins on the following
line. When you turn on the printer, you must print text or execute CR
before printing graphics.

Dictionary 171



-..PRINT

Accumulating Data in the Printer Buffer

You can print any combination of text, graphics, and objects on a sin-
gle print line by accumulating data in the printer. The printer stores
the data in a part of its memory called a buffer.

Normally, each print command completes data transmission by send-
ing CR (carriage right) to the printer. When the printer receives CR, it
prints the data in its buffer and leaves the print head at the right end
of the print line.

You can prevent the automatic transmission of CR by setting flag 33.
Subsequent print commands send your data to the printer but don’t
send CR. The data accumulates in the printer buffer and is printed
only at your command. When flag 33 is set, observe the following
rules:

B Send CR (character 4) or newline (character 10), or execute the
command CR, when you want the printer to print the data that it
has received.

B Don't send more than 200 characters without causing the printer to
print. Otherwise, the printer buffer fills up and subsequent charac-
ters are lost.

B Allow time for the printer to print a line before sending more data.
The printer requires about 1.8 seconds per line.

B Clear flag 33 when you're done to restore the normal operation of
the print commands.

PRST Print Stack Command
... Level 1 ... Level 1
.. obj » ...o0bj

PRST prints all objects in the stack, starting with the object in the
highest level. Objects are printed in multi-line printer format.

172 Dictionary



-.PRINT

PRVAR Print Variable Command
Level 1
' global ! »
1 globaly global,. .. * »

PRVAR searches the current path for the specified variables and prints
the name and contents of each variable, using multi-line printer
format.

PRLCD Print LCD Command

»

PRLCD prints a pixel-by-pixel image of the current HP-28S display
(excluding the annunciators).

The width of the printed image of an object is narrower using PRLCD
than using a print command such as PR1. The difference results from
the spacing between characters. On the display there is a single blank
column between characters, and PRLCD prints this spacing. Print
commands such as PRI print two blank columns between adjacent
characters.

CR Carriage Right Command

»

CR prints the contents, if any, of the printer buffer.

Dictionary 173



--.PRINT

TRACE Mode

You can print an on-going record of your calculations by selecting
TRACE mode. Each time you execute ENTER, either by pressing
or by pressing an immediate-execute key, the calculator prints
the contents of the command line, the immediate-execute command,
and the resulting contents of level 1.

To enable TRACE mode, press The menu label then shows a
box, indicating that TRACE mode is enabled. You can enable TRACE
mode within a program by setting flag 32.

To disable TRACE mode, press a second time. You can disable
TRACE mode within a program by clearing flag 32.

The print format for the object in level 1 depends on whether multi-
line display format is enabled or disabled (flag 45 is set or clear). If
multi-line display mode is enabled (flag 45 is set), the object is printed
in multi-line printer format. If compact display mode is active (flag 45
is clear), the object is printed in compact format.

PRSTC PRUSR PRMD

PRSTC Print Stack (Compact) Command
... Level 1 ... Level 1
.. obj » ... obj

PRSTC prints all objects in the stack, starting with the object in the
highest level. Objects are printed in compact format.

174 Dictionary



-.PRINT

PRUSR Print User Variables Command

»

PRUSR prints a list of all names of variables in the current directory;
it is equivalent to VARS PR1. The names are printed in the order
they appear in the USER menu. If there are no user variables, PRUSR
prints Ho User Variables.

PRMD Print Modes Command

»

PRMD displays and prints the current selections for number display
mode, binary integer base, angle mode, radix mode, and whether
UNDO, COMMAND, LAST, and multi-line display are enabled or
disabled.

Dictionary 175



Programs

A program is a procedure object delimited by « = characters contain-
ing a series of commands, objects, and program structures, that are
executed in sequence when the program is evaluated. Certain pro-
gram structures, such as those described in “PROGRAM BRANCH" or
those specifying local names, must satisfy specific syntax rules, but
otherwise the contents of a program are much more flexible than that
of algebraic objects, the other type of procedure.

A program, in simplest terms, is a command line for which evaluation
is deferred. Any command line can be made into a program by insert-
ing a # at the beginning of the line; then when is pressed, the
entire command line is put on the stack as a program. The individual
objects in the program are not executed until the program is
evaluated.

By making a command line into a program, you can not only defer
evaluation, you can also repeat execution as many times as desired.
Any number of copies of the program can be made on the stack, us-
ing ordinary stack manipulation commands; or you can store a
program in a variable and then execute it by name—or by pressing
the corresponding menu key in the USER menu. Once a program is
stored in a named variable, it becomes essentially indistinguishable
from a command. (Actually, the commands themselves are just pro-
grams that are entered in ROM instead of RAM.) As you program the
HP-28S, you are extending its programming language.

Evaluating Program Objects

Evaluating a program puts each object in the program on the stack
and, if the object is a command or unquoted name, evaluates the ob-
ject. For example, with the stack:

BI
« DUP IN

=[O0

5155
vV »

176 Dictionary



...Programs

pressing yields:

=0

3. 868
A.123

DUP was evaluated, copying 8.000 into level 2, then INV was evalu-
ated, replacing the 8.000 in level 1 with its inverse.

Simple and Complex Programs.

The simplest kind of program is just a single sequence of objects,
which are sequentially executed without halting or looping. For exam-
ple, the program « 5 #% 2 + » multiplies a number in level 1 by 5
and adds 2.

If this were an operation you performed frequently, you could store
the program in a variable, then execute the program as many times as
you want by pressing the USER menu key assigned to the variable.

You can add complexity to a program in one or more of the following
ways:

Conditionals. By using the IF...THEN...END or IF... THEN...
ELSE...END branch structures (or the equivalent commands IFT and
IFTE), programs can make decisions based upon computed results,
then select execution options accordingly.

Loops. You can cause repeated execution of a program or portion of
a program, a definite or indefinite number of times, by using the pro-
gram loops FOR...NEXT, START.. NEXT, DO.. .UNTIL...END, and
WHILE. . REPEAT .. .END.

Error Traps. By using the IFERR... THEN...END or IFERR...
THEN.. ELSE.. END conditional, you can make a program deal with
expected or unexpected errors.

Dictionary 177



..Programs

Halts. The HALT command allows you to suspend program execu-
tion at predetermined points for user input or other purposes, then

resume with @[CONT] or

Programs Within Programs. Just as you can postpone evaluation of
a command line by enclosing it with « *, you can create program
objects within other programs by enclosing a program sequence
within « ». When the “inner” program is encountered during execu-
tion of the “outer” program, it is placed on the stack rather than
evaluated. It can be subsequently evaluated with EVAL or any other
command that takes a program as an argument.

As you add length and complexity to a program, it can grow beyond a
size that is conveniently readable on the HP-28S display or too big to
enter. For this reason, and to promote orderly programming practices,
it is recommended that you break up long programs into multiple
short programs. For example, the program « A E C D #* can be re-
written as # AE CD *, where AB is the program « A E #, and CD
is the program « C O =,

The process of writing a large program as a series of small programs
makes it straightforward to “debug” the large program. Each second-
ary program can be tested independently of the others, to insure that
it takes the correct number and type of arguments from the stack, and
returns the correct results to the stack. Then it is simple to link the
secondary programs together by creating a main program consisting
of the unquoted names of the secondary programs.

Local Variables and Names

A local variable is the combination of an object and a local name,
which are stored together in a portion of memory temporarily re-
served for use only during execution of a procedure. When a
procedure completes execution, any local variables associated with
that procedure are purged automatically.

178 Dictionary



..Programs

Local names are objects used to name local variables. They are subject
to the same naming restrictions as ordinary names. You can use local
variables, within their defining procedures, almost interchangeably
with ordinary names. However, there are several important
differences:

B When local names are evaluated, they return the object stored in
the associated local variables, unevaluated. They do not automati-
cally evaluate names or programs stored in their local variables, as
ordinary names do.

B You cannot use a quoted local name as an argument for [ ViSiT] or
for any of the following commands: CON, IDN, PRVAR, PURGE,
PUT, PUTI, RDM, SCONJ, SINV, SNEG, STO+, STO-, STO%,
STO/, TAYLR, or TRN.

B Local variables will not appear in the Solver variables menu.

If you have an ordinary variable with the same name as a local vari-
able, any use of the common name within the local variable proce-
dure will refer only to the local variable, and leave the ordinary
variable unchanged. Similarly, if a local variable structure is nested
within another, the local names of the first (outer) structure can be
used within the second (inner).

It is possible for local names to remain on the stack or within proce-
dures and lists even after their associated local variables have been
purged. For example, 1 + = « 'x' » leaves the local name
'x' on the stack. If you attempt to evaluate the local name, or use it
as an argument for STO, RCL, or PURGE, the error

Undefined Local Mame will be reported.

To minimize any confusion that might arise between names and local
names, it is recommended that you adopt a special naming conven-
tion for local names. One such convention used in this manual is to
use lower-case letters to name local variables (which can never appear
in menu key labels), and upper-case for ordinary variables.

Dictionary 179



...Programs

Creating Local Variables

Local variables are created by using program structures. This section
describes two local variable structures, which are the primary means of
creating local variables. There are also two program branch structures,
FOR...NEXT and FOR...STEP, which define definite loops in which
the loop index is a local variable. These program branch structures are
described in “PROGRAM BRANCH.”

The local variable structures have the form:
+ name; name,...¥ program
+ name; name,...' algebraic '

The - command begins a local variable structure. (The + character is
B(U] on the left-hand keyboard. Here - is a command in itself, so it
is followed by a space.) The names specify the local names for which
local variables are created. The program or algebraic is called the de-
fining procedure of the local variable structure. Its initial delimiter, % or
', terminates the sequence of local names.

When - is evaluated, it takes one object from the stack for each of
the local names, and stores each object in a local variable named by
the corresponding name. The objects and local names are matched up
so the order of the names is the same as the order in which the ob-
jects were entered into the stack. For example:

1 23245+ abcde

assigns the number 1 to the local variable a, 2 to b, 3 to ¢, 4 to d, and
5 to e. (Since these are local variables, there is no conflict with the
symbolic constant e.)

Once the local variables are created and their values assigned, the
procedure that follows the name list is evaluated. Within that proce-
dure, you can use the local variable names just like ordinary names
(except for the restrictions listed above). When the procedure has fin-
ished execution, the local variables are purged automatically.

180 Dictionary



.Programs

As an example, suppose you wish to take 3 numbers from the stack,
and multiply the first (level 3) by 4, the second (level 2) by 3, and the
third (level 1) by 2, and add the results. A simple program for this
purpose would be:

£ 2 % SWAF 2 % + SWAP 4 % + =
Using local variables, the program would become:
# +* a b c € a4 F b I K +c 2 F + 0F oE,

The use of local variables has eliminated the SWAP operations. In this
simple case, the use of local variables is of marginal value, but as the
complexity of a program grows, local variables can help you write the
program in a simpler, less error-prone manner than if you try to man-
age everything on the stack.

Our example problem also lends itself to an algebraic form. We can
write our program this way:

# + a b c 'd4ka+3kb+2Hc'

and obtain the same result.

User-Defined Functions

The - command in a special syntax can be used to create new alge-
braic functions. An algebraic function is a command that can be used
within algebraic object definitions. Within those definitions, the func-
tions takes its arguments from a sequence contained within paren-
theses following the function name. The command SIN, for example,
is a typical algebraic function taking one argument. Within an alge-
braic definition, it is used in the form 'SIM¢x»' where the =
represents its argument.

Dictionary 181



...Programs

A user-defined function of n arguments is defined by a program with
the following syntax:

# + namey name, ... name, 'expression'

where name, name, ... name, is a series of n local variable names.
expression is an algebraic expression, containing the local variable
names, that represents the mathematical definition of the function.
No objects can precede the - in the program, and none can follow
" expression* .

As an example, consider the algebraic form of the program defined in
the preceding section:

% * a b c '4¥a+3¥b+2%kc’

It takes three arguments, multiplies them by 4, 3, and 2, respectively,
and sums the products. Because nothing precedes the - nor follows
the algebraic, this program is a user-defined function. Suppose that
we name the user-defined function XYZ by storing the program in
variable XYZ:

¥ % a b c '"d4¥a+3kb+2¥c' » 'HEYZ' STO,

In RPN syntax, we can execute 1 2 3 X¥Z to obtain the result 16
(4 x1+3x2+ 2 X 3). But we can also use algebraic syntax:
"RYZ(1,2,3»' EVAL also returns the result 16. You are not re-
stricted to numerical arguments; any of XYZ'’s three arguments can be
an algebraic. XYZ itself can appear in any other algebraic expression.

182 Dictionary



PROGRAM BRANCH

IF IFERR THEN ELSE END
START FOR NEXT STEP IFT IFTE
DO UNTIL END WHILE REPEAT END

The PROGRAM BRANCH menu (@(BRANCH]) contains commands
for making decisions and loops within a program. These commands
can appear only in certain combinations called program structures.
Program branch structures can be grouped into four types: decision,
error trap, definite loops, and indefinite loops.

In the following, a clause is any program sequence.

1.

2.

Decision structures.

B [F test-clause THEN true-clause END. If test-clause is true, then
execute true-clause. (IFT is a single-command form of this
structure.)

® IF test-clause THEN true-clause ELSE else-clause END. If test-
clause is true, execute true-clause; otherwise, execute else-
clause. (IFTE is a single-command form of this structure.)

Error trapping structures.

B [FERR trap-clause THEN error-clause END. If an error occurs
during execution of trap-clause, then execute error-clause.

® JFERR frap-clause THEN error-clause ELSE normal-clause END.
If an error occurs during execution of trap-clause, then execute
error-clause; otherwise, execute normal-clause.

Definite loop structures.

W start finish START loop-clause NEXT. Execute loop-clause once
for each value of a loop counter incremented by one from
start through finish.

B start finish START loop-clause step STEP. Execute loop-clause
once for each value of a loop counter incremented by step
from start through finish.

Dictionary 183



...PROGRAM BRANCH

B start finish FOR name loop-clause NEXT. Execute loop-clause
once for each value of a local variable name, used as a loop
counter, incremented by ones from start through finish.

B start finish FOR name loop-clause step STEP. Execute loop-
clause once for each value of a local variable name, used as a
loop counter, incremented by step from start through finish.

4. Indefinite loop structures.

® DO loop-clause UNTIL test-clause END. Execute loop-clause re-
peatedly until test-clause is true.

® WHILE test-clause REPEAT loop-clause END. While test-clause
is true, execute loop-clause repeatedly.

These structures are described later in this section, following two introductory
topics.

Tests and Flags

All program structures (except definite loops) make a branching deci-
sion based upon the evaluation of a test clause. A test clause is any
program sequence that returns a flag when evaluated. A flag is an
ordinary real number that nominally has the value 0 or 1. If the flag
has value 0, we say that it is “false” or “clear”; for any other value, we
say that the flag is “true” or “set”.

All program branch decisions are made by testing a flag taken from
the stack. For example, in an IF test-clause THEN true-clause END

structure, if evaluation of test-clause leaves a non-zero (real) result,
true-clause will be evaluated. If test-clause leaves 0 in level 1, execu-
tion will skip past END.

A test command is one that explicitly returns a flag with a value 0 or
1. For example, the command < tests two real numbers (or binary
integers, or strings) to see if the number in level 2 is less than the
number in level 1. If so, < returns the flag 1; otherwise, it returns 0.
The other test commands are >, <, =, ==, %, FS?, FC?, FS?C, and
FC?C, all of which are described in “PROGRAM TEST.”

184 Dictionary



...PROGRAM BRANCH

Replacing GOTO

Programmers accustomed to other calculator programming languages,
such as the RPN language of other HP calculators, or BASIC, may
note the absence of a simple GOTO instruction in the HP-28S lan-
guage. GOTO’s are commonly used to branch depending on a test
and to minimize program size by reusing program steps. We'll look at
how GOTQO’s are used in HP-41 RPN and BASIC, and show how to
obtain equivalent results with the HP-28S.

B Using GOTO instructions to branch depending on a test. For exam-
ple, the programs below execute the sequence ABC DEF if the
number in the X register or variable is positive, or execute the se-
quence GHI JKL otherwise.

HP-41 RPN BASIC

01 X>07? 10 IF X>0 THEN GOTO 50
02 GTO 01 20 GHI

03 GHI 30 JKL

04 JKL 40 GOTO 70

05 GTO 02 50 ABC
06 LBL 01 60 DEF
07 ABC :

08 DEF
09 LBL 02

Here is an HP-28S equivalent:
IF 8 » THEWN AEC DEF ELSE GHI JEL EHD

B Using a GOTO instruction to minimize program size by reusing
program steps. Both programs below contain a sequence MNO
PQR STU that is common to two branches of the program.

Dictionary 185



...PROGRAM BRANCH

HP-41 RPN BASIC

01 ABC 10 ABC

02 DEF 20 DEF

03 GTO 01 30 GOTO 200
10 GHI 100 GHI

11 JKL 110 JKL

12 GTO 01 120 GOTO 200
20 LBL 01 200 MNO

21 MNO 210 PQR

22 PQR 220 STU

23 STU :

In the HP-28S, the common sequence MNO PQR STU...would be
stored as a separate program:

MHO FPRRE STU - 'COMMON' STO

Then each branch of the program would execute COMMON:

. AREC DEF COMMOM .. GHI JEL COMMOH

The advantage of HP-28S programming is that any program has only
one entrance and one exit. This makes it simple to write programs and
test them independently. When you combine the programs into a
main program, you need to test only that the programs work together
as you intended.

IF IFERR THEN ELSE END

These commands can be combined in a variety of decision structures
and error trapping structures.

186 Dictionary



...PROGRAM BRANCH

IF test-clause THEN true-clause END. The command THEN takes a
flag from the stack. If the flag is true (non-zero), the true-clause is
evaluated, after which execution continues after END. If the number
is false (0), execution skips past END and continues. (Note that only
THEN actually uses the flag—the position of the IF is arbitrary as
long as it precedes THEN. test-clause IF THEN will work the same as
IF test-clause THEN). For example:

IF ¥ @8 > THEN "Fositiwe" END
returns the string "Fositiwve" if X contains a positive real number.

IF test-clause THEN true-clause ELSE false-clause END. The command
THEN takes a flag from the stack. If the flag is true (non-zero), the
true-clause is evaluated, after which execution continues after END. If
the flag is false (0), the false-clause is evaluated, after which execution
continues after END. (Note that only THEN actually uses the flag—
the position of the IF is arbitrary as long as it precedes THEN. test-
clause IF THEN will work the same as IF test-clause THEN). For
example:

IF ® 8 = THEHN "Positive" ELSE "Negatiwe" END

returns the string "Fositive" if X contains a non-negative real
number, or "Hegatiwve" if X contains a negative real number.

IFERR trap-clause THEN error-clause END. This structure evaluates
error-clause if an error occurs during execution of trap-clause.

When trap-clause is evaluated, successive elements of the clause are
executed normally unless an error occurs. In that case, execution
jumps to error-clause. The remainder of trap-clause is discarded. For
example:

IFERR WHILE 1 REFEAT + EMD THEW "OK" 1 DISF EHND

sums all numbers on the stack. The + function is executed repeatedly
until an error occurs, indicating that the stack is empty (or a mis-
matched object type has been encountered). The error-clause then
displays 0.

Dictionary 187



-..PROGRAM BRANCH

When you write error clauses, keep in mind that the state of the stack
after an error may depend on whether LAST is enabled. If LAST is
enabled, commands that error will return their arguments to the stack;
otherwise the arguments are dropped.

IFERR trap-clause THEN error-clause ELSE normal-clause END. This
structure enables you to specify an error-clause to be evaluated if an
error occurs during execution of a trap-clause, and also a normal-clause
for execution if no error occurs.

When trap-clause is evaluated, successive elements of the clause are
executed normally unless an error occurs.

B If an error occurs, the remainder of the trap-clause is discarded and
the error-clause is evaluated.

B If no error occurs, evaluation of the trap-clause is followed by eval-
uation of the normal-clause.

In either case execution continues past END.

START FOR NEXT STEP IFT IFTE

start finish START loop-clause NEXT. The START command takes two
real numbers, start and finish, from the stack and stores them as the
starting and ending values for a loop counter. Then a sequence of
objects loop-clause is evaluated. The NEXT command increments the
loop counter by 1; if the loop counter is less than or equal to finish,
loop-clause is evaluated again. This continues until the loop counter
exceeds finish, whereupon execution continues following NEXT. For
example:

1 18 START XYZ HERT

evaluates XYZ 10 times.

188 Dictionary



...PROGRAM BRANCH

start finish START Icop-clause increment STEP. This structure is sim-
ilar to START .. .NEXT, except that STEP increments the loop counter
by a variable amount, whereas NEXT always increments by 1.

START takes two real numbers, start and finish, from the stack and
stores them as the starting and ending values for a loop counter. Then
a sequence of objects loop-clause is evaluated. STEP increments the
loop counter by the real number increment taken from level 1.

If step is positive and the loop counter is less than or equal to finish,
loop-clause is evaluated again. This continues until the loop counter
exceeds finish, whereupon execution continues following STEP.

If step is negative and the loop counter is greater than or equal to
finish, loop-clause is evaluated again. This continues until the loop

counter is less than finish, whereupon execution continues following
STEP. For example:

18 1 =THE

eal
—
Il
|
M

STEF
evaluates XYZ five times.

start finish FOR name loop-clause NEXT. This structure is a definite
loop in which the loop counter name is a local variable that can be
evaluated within the loop. (The name following FOR should be en-
tered without quotes.) In sequence:

1. FOR takes two real numbers start and finish from the stack. It
creates a local variable name, and stores start as the initial value
of name.

2. The sequence of objects loop-clause is evaluated. If name is eval-
uated within the sequence, it returns the current value of the
loop counter.

3. NEXT increments the loop counter by 1. If its value then exceeds
finish, execution continues with the object following NEXT, and
the local variable name is purged. Otherwise, steps 2 and 3 are
repeated.

Dictionary 189



...PROGRAM BRANCH

For example:

1 5 FOE = = S0 HEXT

places the squares of the integers 1 through 5 on the stack.

start finish FOR name loop-clause increment STEP. This structure is a
definite loop in which the loop counter name is a local variable that
can be evaluated within the loop. (The name following FOR should
be entered without quotes.) It is similar to FOR..NEXT, except that
the loop counter is incremented by a variable amount. In sequence:

1.

FOR takes two real numbers start and finish from the stack. It
creates a local variable name, and stores start as the initial value
of name.

The sequence of objects loop-clause is evaluated. If name is eval-
uated within the sequence, it returns the current value of the
loop counter.

STEP takes the real number increment from the stack and incre-
ments the loop counter by increment. If the loop counter then is
greater than finish (for increment > 0) or less than finish (for in-
crement < 0), execution continues with the object following
STEP, and the local variable name is purged. Otherwise, steps 2
and 3 are repeated.

For example:

1 11 FOR = = S@& 2 STEFPR

places the squares of the integers 1, 3, 5, 7, 9, and 11 on the stack.

190

Dictionary



...PROGRAM BRANCH

IFT If-Then Command

Level 2 Level 1

flag obj »

IFT is a single-command form of IF.. . THEN.. END. IFT takes a flag
from level 2, and an arbitrary object from level 1. If the flag is true
(non-zero), the object is evaluated; if the flag is false (0), the object is
discarded. For example:

® B8 > "Positive" IFT

leaves "Positive" in level 1 if X contains a positive real number.

IFTE If-Then-Else Function

Level 3 Level 2 Level 1

flag true-obj false-obj  ®»

IFTE is a single-command form of IF... THEN...ELSE.. END. IFTE
takes a flag from level 3, and two arbitrary objects from levels 1 and
2. If the flag is true (non-zero), false-object is discarded, and true-ob-
ject is evaluated. If the flag is false (0), true-object is discarded and
false-object is evaluated. For example:

“ Bz "Positiwve" "MHegatiwe" IFTE

leaves "Fositive" on the stack if X contains a non-negative real
number, or "MHegatiwve" if X contains a negative real number.

IFTE is also acceptable in algebraic expressions, with the following
syntax:

' IF TE (test-expression , true-expression , false-expression '

Dictionary 191



...PROGRAM BRANCH

When an algebraic containing IFTE is evaluated, its first argument

test-expression is evaluated as a flag. If it returns a non-zero real num-
ber, true-expression is evaluated. If it returns zero, false-expression is
evaluated. For example:

"IFTECR=8,SINCRI A ¥, 10!

is an expression that returns the value of sin(x)/x, even for x = 0,
which would normally cause an Infinite Result error

DO UNTIL END WHILE REPEAT END

DO /oop-clause UNTIL test-clause END. This structure repeatedly eval-
uates a loop-clause and a test-clause, until the flag returned by test-
clause is true (non-zero). For example:

00 @ IMCw W - UMTIL @881 < EHND.

Here INCX is a sample program that increments the variable X by a
small amount. This routine will execute INCX repeatedly, until the
resulting change in X is less than .0001.

WHILE test-clause REPEAT /oop-clause END. This structure repeatedly
evaluates a fest-clause and a loop-clause, as long as the flag returned
by test-clause is true (non-zero). When the test-clause returns a false
flag, the loop-clause is skipped, and execution resumes following
END. The test-clause returns a real number, which REPEAT tests as a
flag. For example:

WHILE STRIMG "F" FOS REPEAT REMOWEFR EHMD.

Here REMOVERP is a sample program that removes a character F from
a string stored in the variable STRING. The sequence repeats until no
more F’s remain in the string.

192 Dictionary



PROGRAM CONTROL

SST HALT ABORT KILL WAIT KEY
BEEP CLLCD DISP CLMF ERRN ERRM

The PROGRAM CONTROL menu (@[CONTRL]) contains commands
for interrupting program execution and for interactions during pro-
gram execution.

Suspended Programs

Evaluating a program normally executes the objects contained in the
program’s definition continuously up to the end of the program. The
commands in the PROGRAM CONTROL menu allow programs to
pause or halt execution at points other than the end of the program:

Command Description

HALT Suspends program execution, for continuation later.

ABORT Stops program execution, which then cannot be resumed.

KILL Stops program execution, and also clears all other suspended
programs.

WAIT Pauses program execution, which resumes automatically af-
ter a specified time.

A suspended program is a program that is halted during execution, in
such a way that the program can be continued (execution resumed) at
the point which it stopped. While a program is suspended, you can
perform any HP-28S operation (except system halt, memory reset,
and the KILL command)—enter data, view results, execute other pro-
grams, and so on—then continue the program.

Dictionary 193



...PROGRAM CONTROL

The O annunciator indicates that one or more programs are
suspended.

The command HALT causes a program to suspend at the location of
the HALT in the program. To resume program execution you can:

B Press [ CONT] (continue) to resume continuous execution at the
next object in the program after the HALT. You can use HALT in
conjunction with [{CONT]in a program when you want to stop the
program for user input, then continue.

B Press (single-step—in the PROGRAM CONTROL menu) to
execute the next object in the program after the HALT. Repeated
use of ' continues program execution, one step at a time. This
is a powerful program debugging tool, since you can view the stack
or any other calculator state after each step in a program.

If you do not choose either of these options, the program will remain
suspended indefinitely, unless you execute KILL or a system halt,
which clear all suspended programs.

You can “nest” suspended programs—that is, you can execute a pro-
gram that contains a HALT while another program is already
suspended. If you continue ([{CONT]) the second program, execution
will halt again when it has finished. Then you can press [[CONT]
again to resume execution of the first program.

While a program is suspended, the stack save and recovery associated
with UNDO are “local” to the program. If you alter the stack, resume
program execution, and then execute UNDO when the program is
completed, the stack is restored to its state before you executed the
program.

194 Dictionary



-..PROGRAM CONTROL

SST HALT ABORT KILL WAIT KEY

Single Step

SST executes the “next step” in a suspended program. “Next step,” in
this context, means the object or command that follows, in the order
of program execution, the most recently evaluated object or command.

When you press the program step about to be executed is dis-
played briefly, in inverse video, then it is executed. After each step,
the stack and menu key labels are displayed in the normal fashion.
Between steps, you can perform calculator operations without affect-
ing the suspended program. Of course, if you alter the stack, you
should insure that it contains the appropriate objects before resuming
program execution.

For any of the program loops defined with FOR...NEXT,

START.. .NEXT, DO...UNTIL.. .END, or WHILE.. REPEAT.. END,
the initial command (FOR, START, DO, or WHILE) is displayed only
as a step the first time through the loop. On successive iterations,

each loop will start with the first object or command after the initial
loop command.

If an error occurs when you single-step an object, the single-step does
not advance. This allows you to correct the source of the error, then
repeat the single-step.

Pressing = 88T when an IFERR is the next step executes the entire
IFERR...THEN...END or IFERR...THEN...ELSE.. .END structure as
one step. To step through a clause of the structure, include HALT in-
side the clause.

Similarly, pressing $sT when - is displayed executes the entire -+
namey name, ... name, structure as one step. If the local names are
followed by an algebraic, the algebraic is immediately evaluated in
that same step.

Dictionary 195



...PROGRAM CONTROL

HALT Halt Program Command

»

HALT causes a program to suspend execution at the location of the
HALT command in the program. HALT:

1. Turns on the @ annunciator.

2. Assigns memory for a temporary saved stack, if UNDO is
enabled.

3. Returns calculator control to the keyboard, for normal
operations.

Programs resumed with [[CONTJor ssT will continue with the ob-
ject next in the program after the HALT command.

ABORT Abort Program Command

»

ABORT stops execution of a program, at the location of the ABORT
command in the program’s definition. Execution of the program can-
not be resumed.

KILL Kill Suspended Programs Command

»

KILL aborts the current program, and also all other currently sus-
pended programs. None of the programs can be resumed.

196 Dictionary



-..PROGRAM CONTROL

WAIT Wait Command

Level 1

X »

WAIT pauses program execution for x seconds.

KEY Key Command

Level 2 Level 1

» 0

»  string" 1

KEY returns a string representing the oldest key currently held in the
key buffer, and removes that key from the key buffer. If the key
buffer is empty, KEY returns a false flag (0). If the key buffer cur-
rently holds one or more keys, KEY removes the oldest key from the
buffer, and returns a true flag (1) in level 1 plus a string in level 2.
The string “names” the key removed from the buffer.

The HP-28S key buffer can hold up to 15 keys that have been
pressed but not yet processed. When KEY removes a key from the
buffer it is converted to a readable string. The string contains the
character(s) on the key top, except for:

Key String Key String
INS "IHS (%] "CURSOR"
“DEL" (¢] "BACK"
@ | uee "
(v] "OOMH ml
Kl "LEFT"
] "RIGHT"

Dictionary 197



...PROGRAM CONTROL

The key retains its role as the key and interrupts the cur-
rent program.

The action of KEY can be illustrated by the following program:
« DO UNTIL KEY END "Y¥" SAME =,

When this program is executed, pressing [Y] returns 1 (true) to level 1,
and pressing any other key returns 0 (false).

BEEP CLLCD DISP CLMF ERRN ERRM

BEEP Beep Command

Level 2 Level 1

frequency duration ~ ®

BEEP causes a tone to sound at the specified frequency and duration.
Frequency is expressed in Hertz (rounded to an integer). Duration is
expressed in seconds.

The frequency of the tone is subject to the resolution of the built-in
tone generator. The maximum frequency is approximately 4400 Hz;
the maximum duration is 1048.575 seconds (# FFFFF msec). Argu-

ments greater than these maximum values will default to the maxima.

Setting flag 51 disables the beeper, so that executing BEEP will pro-
duce no sound.

198 Dictionary



-..PROGRAM CONTROL

CLLCD Clear LCD Command

»

CLLCD clears (blanks) the LCD display (except the annunciators), and
sets the system message flag to suppress the normal stack and menu
display.

DISP Display Command

Level 2 Level 1

obj n »

DISP displays obj in the nth line of the display, where 1 is a real
integer. n = 1 indicates the top line of the display; n = 4 is the bot-
tom line. DISP sets the system message flag to suppress the normal
stack display.

An object is displayed by DISP in the same form as would be used if
the object were in level 1 in the multi-line display format, except for
strings, which are displayed without the surrounding " delimiters to
facilitate the display of messages. If the object display requires more
than one display line, the display starts in line 1, and continues down
the display either to the end of the object or the bottom of the
display.

CLMF Clear Message Flag Command

»

CLMF clears the internal message flag set by CLLCD, DISP, PIXEL,
DRAX, DRAW, and DRWZ. Including CLMF in a program, after the
last occurrence of any of these words, causes the normal stack display
to be restored when the program completes execution.

Dictionary 199



...PROGRAM CONTROL

ERRN Error Number Command
Level 1
» #n

ERRN returns a binary integer equal to the error number of the most
recent calculator error. A table of HP-28S errors, error messages, and
error numbers is given in Appendix A.

ERRM Error Message Command

Level 1

» "error-message "

ERRM returns a string containing the error message of the most recent
calculator error. A table of HP-28S errors, error messages, and error
numbers is given in Appendix A.

200 Dictionary



PROGRAM TEST

SF CF FS? FC? FS?C FC?C
AND OR XOR NOT SAME ==
STOF RCLF TYPE

The PROGRAM TEST menu (@(TEST]) contains commands for
changing and testing flags and for logical calculations.

Test commands return a flag as the result of a comparison between
two arguments, or of a user-flag test. The comparison operators #,
<, >, <, and > are present on the left-hand keyboard as characters.
The remaining test commands FS?, FC?, FS?C, FC?C, SAME, and = =
are present in the TEST menu. In addition, the TEST menu contains
the logical operations AND, OR, XOR, and NOT, that allow you to
combine flag values. Note that the = function is not a comparison
operator; it defines an equation. Both == and SAME test the equal-
ity of objects.

Keyboard Functions

7+ Not Equal Function
Level 2 Level 1 Level 1
obj objo » flag
z 'symb' ®» 'z#symb'
'symb' z » 'symb#z'
'symb, ' ‘symby,' ® ' symbq#symby '

# takes two objects from levels 1 and 2, and:

B If either object is not an algebraic or a name, returns a false flag (0)
if the two objects are the same type and have the same value, or a
true flag (1) otherwise. Lists and programs are considered to have
the same values if the objects they contain are identical.

Dictionary 201



...PROGRAM TEST

B [f one object is an algebraic or a name, and the other is a number, a
name, or an algebraic, # returns a symbolic comparison expression
of the form 'symbi#symb,', where symb; represents the object
from level 2, and symb, represents the object from level 1. The re-
sult expression can be evaluated with EVAL or »NUM to return a

flag.
< Less Than Function
Level 2 Level 1 Level 1
X y » flag
# ny # n, » flag
"'string4" "string," ®» flag
X ‘symb' ®» 'x<symb'
'symb' X » 'symb<x'
'symb, ' ‘symby,' @ ' symb4 <symb, '
> Greater Than Function
Level 2 Level 1 Level 1
X y » flag
# ny # no » flag
string4 " “string," ® flag
X 'symb' » ' x:symb'!
'symb ' X » 'symbix'
'symb, " ‘symby,' ® ' symb symb, "

202 Dictionary



-..PROGRAM TEST

< Less Than or Equal Function
Level 2 Level 1 Level 1
X y » flag
# ny # no » flag
"string " "string>" ®» flag
X ‘symb' » ' x£symb '
'symb' X » 'symb£x '
'symb4 ' 'symb,' ®» ' symbq£symb,
= Greater Than or Equal Function
Level 2 Level 1 Level 1
X y » flag
# ny # no » flag
"string4" "stringo" flag
X ‘symb' ®» ' x2symb'
'symb ' X » 'symbz=x"'
'symb, ! ‘symby,' ®» ' symb,=symb, '

The following description refers to the four stack diagrams above.

Each of the four commands <, >, <, and = takes two objects from
the stack, applies the logical comparison corresponding to the com-
mand name, and returns a flag according to the results of the
comparison. The logical order of the comparisons is level 2 test level 1,
where test represents any of the four comparisons. For example, if
level 2 contains a real number x, and level 1 contains a real number ¥,
then < returns a true flag (1) if x is less than y, and a false flag (0)
otherwise.

Dictionary 203



...PROGRAM TEST

<, >, <, and =, because they imply an ordering, apply to fewer
object types than #, ==, or SAME:

B For real numbers and binary integers, “less than” means numeri-
cally smaller (1 is less than 2). For real numbers, “less than” also
means “more negative” (—2 is less than —1).

B For strings, “less than” means alphabetically previous (“ABC” is less
than “DEF”; “AAA” is less than “AAB”; “A” is less than “AA”). In
general, characters are ordered according to their character codes.

Note that this means that “B” is less than “a”, since “B” is character
code 66, and “a” is character code 97.

SF CF FS? FC? FS?C FC?C

This group of commands sets, clears, and tests the 64 user flags. In
this context, “to set” means “to make true” or “to assign value 1”7, and
“to clear” means “to make false” or “to assign value 0”.

SF Set Flag Command

Level 1

n »

SF sets the user flag specified by the real integer argument 7, where
1<n<é64

CF Clear Flag Command

Level 1

n »

CF clears the user flag specified by the real integer argument 1, where
1<n<64.

204 Dictionary



-..PROGRAM TEST

FS? Flag Set? Command?

Level 1 Level 1

n » flag

FS? tests the user flag specified by the real integer argument 71, where
I < n < 64. If the user flag is set, FS? returns a true flag (1); other-
wise it returns a false flag (0).

FC? Flag Clear? Command
Level 1 Level 1
n » flag

FC? tests the user flag specified by the real integer argument 1, where
I < n < 64. If the user flag is clear, FC? returns a true flag (1); other-
wise it returns a false flag (0).

FS?C Flag Set? Clear Command
Level 1 Level 1
n » flag

FS?C tests, and then clears, the user flag specified by the real integer
argument 1, where 1 < n < 64. If the user flag is set, FS?C returns a
true flag (1); otherwise it returns a false flag (0).

Dictionary 205



...PROGRAM TEST

FC?C Flag Clear? Clear Command
Level 1 Level 1
n » flag

FC?C tests, and then clears, the user flag specified by the real integer
argument 1, where 1 < n < 64. If the user flag is clear , FC?C returns
a true flag (1); otherwise it returns a false flag (0).

AND OR XOR NOT SAME ==

The commands AND, OR, XOR, and NOT can be applied to flags
(real numbers or algebraics), to binary integers, and to strings. In the
first case, the commands act as logical operators that combine true or
false truth values into result flags. In the other cases, the commands
perform logical combinations of the individual bits of arguments.

The following descriptions apply to the use of the commands with
real number arguments (flags). The “BINARY” section describes their
application to binary integers and strings.

AND, OR, XOR, and NOT are allowed in algebraic objects. AND and
NOT have higher precedence than OR or XOR. AND, OR, and XOR
are displayed within algebraics as infix operators:

'¥ AMD Y' 'S+¥ HOR Z AND ¥
NOT appears as a prefix operator:
"HOT ¥' 'Z+4M0OT <A AHMD EX'

If you enter the commands in this form, be sure to separate the com-
mands from other commands or objects with spaces. You can also
enter these commands into the command line in prefix form:

"AHOCE Yt "AHDCHEORCE, 22, !

206 Dictionary



-..PROGRAM TEST

AND And Function
Level 2 Level 1 Level 1
X y » flag
X 'symb' » 'x AND symb'
'symb' X » 'symb AND x'
'symb, ! ‘symb,' w 'symby; AND symb,'

AND returns a flag that is the logical AND of two flags:

First Argument x | Second Argument y | AND Result
true true true
true false false
false true false
false false false

If either or both of the arguments are algebraics, the result is an alge-
braic of the form 'symb; AND symb,', where symb; and symb,
represent the arguments.

OR Or Function
Level 2 Level 1 Level 1
X y » flag
X ‘symb' » 'x OF symb'
'symb' X » 'symb OF x'
'symby ' 'symb,' ® 'symby OR symby'

Dictionary 207



...PROGRAM TEST

OR returns a flag that is the logical OR of two flags:

First Argument x | Second Argument y | OR Result

true true true
true false true
false true true
false false false

If either or both of the arguments are algebraics, the result is an alge-
braic of the form 'symb; OR symb,', where symb; and symb,
represent the arguments.

XOR Exclusive Or Function
Level 2 Level 1 Level 1
X y » flag
X ‘symb' » 'x ®0OF symb'
'symb' X » 'symb HOR x'
'symby " 'symb,' ® 'symby ®OFR symb,'

XOR returns a flag that is the logical exclusive OR (XOR) of two flags:

First Argument x | Second Argument y | XOR Result
true true false
true false true
false true true
false false false

208 Dictionary



...PROGRAM TEST

If either or both of the arguments are algebraics, the result is an alge-
braic of the form 'symb; ®0R symb,', where symb; and symb,
represent the arguments.

NOT Not Function
Level 1 Level 1
X » flag
'symb' ®» 'HOT symb'

NOT returns a flag that is the logical inverse of a flag:

Argument x | NOT Result

true false

false true

If the argument is an algebraic, the result is an algebraic of the form
"MOT sumb', where symb represents the argument.

SAME Same Command

Level 2 Level 1 Level 1

obj, objo » flag

SAME takes two objects of the same type from levels 1 and 2, and
returns a true flag (1) if the two objects are identical, or a false flag (0)
otherwise.

SAME is identical in effect to ==, for all object types except
algebraics and names. == returns a symbolic (algebraic) flag for
these object types.

Dictionary 209



...PROGRAM TEST

SAME returns a (real number) flag for all object types, and is not al-
lowed in algebraic expressions.

== Equal Function
Level 2 Level 1 Level 1
Ob/1 Ob/2 » ﬂag
z ‘symb' ®» 'z==symb'
'symb' z » 'symb==z"
'symb, ' 'symb,' ®» ' symby==symb,"

== takes two objects from levels 1 and 2, and:

B If either object is not an algebraic (or a name), == returns a true
flag (1) if the two objects are the same type and have the same
value, or a false flag (0) otherwise. Lists and programs are consid-
ered to have the same values if the objects they contain are
identical.

B If one object is an algebraic (or a name), and the other is a number
or an algebraic, == returns a symbolic comparison expression of
the form 'symby==symb,"', where symb; represents the object from
level 2, and symb, represents the object from level 1. The result
expression can be evaluated with EVAL or =NUM to return a flag.

The function name == is used for the equality comparison, rather

than =, to distinguish between a logical comparison (==) and an
equation (=).

210 Dictionary



...PROGRAM TEST

STOF RCLF TYPE

STOF Store Flags Command
Level 1
# n »

STOF sets the states of the 64 user flags to match the bits in a binary
integer # n. A bit with value 1 sets the corresponding flag; a bit with
value 0 clears the corresponding flag. The first (least significant) bit of
# n corresponds to flag 1; the 64th (most significant) corresponds to
flag 64. '

If # n contains fewer than 64 bits, the unspecified most significant bits
are taken to have value 0.

RCLF Recall Flags Command
Level 1
» #n

RCLF returns a 64-bit binary integer # n representing the states of the
64 user flags. Flag 1 corresponds to the first (least significant) bit of
the integer; flag 64 is represented by the 64th (most significant) bit.

You can save the states of all user flags, using RCLF, and later restore
those states, using STOF. Remember that the current wordsize must
be 64 bits (the default wordsize) to save and restore all flags. If the
current wordsize is 32, for example, RCLF returns a 32-bit binary inte-
ger; executing STOF with a 32-bit binary integer restores only flags 1
through 32 and clears flags 33 through 64.

Dictionary 211



...PROGRAM TEST

memory reset, RCLF will return the value
"-E §132384d, corresponding to the default settings

TYPE Type Command

Level 1 Level 1

obj » n

The command TYPE returns a real integer representing the type of an
object in level 1. The object types and their type numbers are as
follows:

Object Types and TYPE Numbers

Object TYPE Number
Real number 0
Complex number 1
String 2
Real vector or matrix 3
Complex vector or matrix 4
List 5
Name 6
Local name 7
Program 8
Algebraic 9
Binary integer 10

212 Dictionary



REAL

NEG FACT RAND RDZ MAXR MINR
ABS SIGN MANT XPON

P FP FLOOR CEIL RND
MAX MIN MOD %T

An HP-28S real number object is a floating-point decimal number
consisting of a 12-digit mantissa, and a 3-digit exponent in the range
—499 to +499. Real numbers are entered and displayed as a string of
numeric characters, with no delimiters and no intervening spaces.

u n

Numeric characters include the digits 0 through 9, +, —, a radix (*.

or “,” according to the current radix mode), and the letter E to indicate
the start of the exponent field. The general real number format is

(sign) mantissa E (sign) exponent
When you enter a real number, the format is as follows:

B The mantissa sign can be a +, a —, or omitted (implying +).

B The mantissa can be any number of digits, with one radix mark
anywhere in the sequence. If you enter more than 12 digits, the
mantissa is rounded to 12 digits. (Half-way cases are rounded up in
magnitude.) Leading zeros are ignored if they are followed by non-
zero mantissa digits.

B An exponent is optional; if you include an exponent, it must be
separated from the mantissa by an “E”.
B The exponent sign can be a +, a —, or omitted (implying +).

B The exponent must contain three or fewer digits, and fall in the
range 0 to 499. Leading zeros before the exponent are ignored.

Real numbers are displayed according to the current real number dis-
play mode. In general, the display may not show all of the significant
digits of a number, but the full 12-digit precision of a number is al-
ways preserved in the stored version of the number.

Dictionary 213



-.REAL

The REAL menu contains functions that operate upon real number
(and real-valued algebraic) arguments, or enter special real numbers
into the stack. In addition to the menu functions, % and %CH are
provided on the keyboard.

Keyboard Functions

% Percent Function
Level 2 Level 1 Level 1
X y » xy/100
X ‘symb' ® 'EOX,symby !
‘symb' X » 'Edisymb,x»!
'symb4 ' 'symby' ®  'Xisymby,symby '

% takes two real-valued arguments x and y, and returns x percent of
y—that is, xy/100.

%CH Percent Change Function
Level 2 Level 1 Level 1
X y » 100(y —x)/x
X ‘symb' » "HCHOXx,symby !
'symb' X » 'XCHisymb, x !
‘symb, " ‘symby'  ® 'XCHOsymby, symby '

%CH computes the (percent) increase over the real-valued argument x
in level 2 that is represented by the argument y in level 1. That is,
%CH returns 100(y — x)/x.

214 Dictionary



...REAL

™ T Analytic
Level 1
» 3.14159265359
. ] .n. 1

7 returns the symbolic constant 'w' or the numerical value
3.14159265359, the closest machine-representable approximation to
w. For information on symbolic constants, see page 27.

e -} Analytic
Level 1
» 2.71828182846
1 e ]

e returns the symbolic constant 'e' or the numerical value
2.71828182846, the closest machine-representable approximation to e,
the base of natural logarithms. For information on symbolic constants,
see page 27.

NEG FACT RAND RDZ MAXR MINR

NEG Negate Analytic
Level 1 Level 1
z » 4
‘symb' ® '-symb'

NEG returns the negative of its argument. When no command line is
present, pressing executes NEG. A complete stack diagram for
NEG appears in “Arithmetic.”

Dictionary 215



-..REAL

FACT Factorial (Gamma) Function
Level 1 Level 1
n » n!
X » ['(x+1)
‘symb' ®» 'FACT Csymb '

FACT returns the factorial n! of a positive integer argument n. For
non-integer arguments x, FACT(x) = [ (x + 1), defined for x > —1 as

Tx+1) = fome*ftx dt

and defined for other values of x by analytic continuation. For

x = 253.1190554375 or x a negative integer, FACT causes an
Ower f low exception; for x < —254.1082426465, FACT causes an
Urnder f 1ow exception.

RAND Random Number Command
Level 1
» X

RAND returns the next real number in a pseudo-random number se-
quence, and updates the random number seed.

The HP-28S uses a linear congruous method and a seed value to gen-
erate a random number x, which always lies in the range 0 < x < 1.
Each succeeding execution of RAND returns a value computed from a
seed based upon the previous RAND value. You can change the seed
by using RDZ.

216 Dictionary



...REAL

RD2Z Randomize Command

Level 1

X »

RDZ takes a real number as a seed for the RAND command. If the
argument is 0, a random value based upon the system clock will be

used as the seed. After memory reset, the seed value is
.529199358633.

MAXR Maximum Real Analytic

Level 1

» 9.99999999999E499
» 'MAXE’

MAXR returns the symbolic constant 'MAXR ' or the numerical value
9.99999999999E499, the largest machine-representable number. For
information on symbolic constants, see page 27.

MINR Minimum Real Analytic

Level 1

»  1.00000000000E-499
» "MIME'

MINR returns the symbolic constant 'MIHR' or the numerical value
1E—499, the smallest positive machine-representable number. For in-
formation on symbolic constants, see page 27.

Dictionary 217



...REAL

ABS SIGN MANT XPON

ABS Absolute Value Function
Level 1 Level 1
z » 1zl
Carrayl = larray||
'symb' ®» '"ABS Csymb !

ABS returns the absolute value of its argument. See “ARRAY” and
“COMPLEX” for the use of ABS with other object types. ABS can be
differentiated but not inverted (solved) by the HP-28S.

SIGN Sign Function
Level 1 Level 1
Z4 » 22
'symb' w» '"SIGH{symb> "'

SIGN returns the sign of its argument, defined as +1 for positive real
arguments, —1 for negative real arguments, and 0 for argument 0.
See “COMPLEX” for complex arguments.

218 Dictionary



...REAL

MANT Mantissa Function
Level 1 Level 1
X » y
‘symb' » "MAMNT (symb 3 *

MANT returns the mantissa of its argument. For example,

1.2E34 MAHNT returns 1.2.

XPON Exponent Function
Level 1 Level 1
X » n
‘symb' » 'WPOMCsymby !

XPON returns the exponent of its argument. For example,

1.2E34 XPOHN returns 24.

iP FP FLOOR CEIL RND
P Integer Part Function
Level 1 Level 1
X » n
‘symb' w» "IPCsymbx '

IP returns the integer part of its argument. The result has the same
sign as the argument.

Dictionary 219



...REAL

FP Fractional Part Function
Level 1 Level 1
X » y
‘symb' ®» 'FFisymb:!

FP returns the fractional part of its argument. The result has the same
sign as the argument.

FLOOR Floor Function

Level 1 Level 1

X » n

'symb' » 'FLOOR Csymbx !

FLOOR returns the greatest integer less than or equal to its argument.
If the argument is an integer, that value is returned.

CEIL Ceiling Function
Level 1 Level 1
X » n
‘symb' ® 'CEILCsymbx!

CEIL returns the smallest integer greater than or equal to its argu-
ment. If the argument is an integer, that value is returned.

220 Dictionary



-..REAL

RND Round Function
Level 1 Level 1
Z4 » Zy
Carray;1 = Carray,1
‘symb' ®» 'REHOCsymb !

RND rounds a real number, or each real number in a complex number
or array, according to the current display mode:

B In STD display mode, no rounding occurs.

B In n FIX display mode, the number is rounded to n decimal places.

® In n SCI or n ENG display mode, the number is rounded to n + 1
significant digits.

Numbers greater than or equal to 9.5E499 are not rounded.

MAX MIN MOD %T

MAX Maximum Function
Level 2 Level 1 Level 1
X y » max(x,y)
X ‘symb' ®» "MAX Cx,symbx !
'symb' X » 'MAX Csymb, x2'
'symby' 'symbo,' ® 'MAXsymbq,symby» !

MAX returns the greater (more positive) of its two arguments.

Dictionary 221



-..REAL

MIN Minimum Function
Level 2 Level 1 Level 1
X y » min(x,y)
X 'symb' w» '"MINCXx,symbx '
'symb' X » 'MINCsymb,x»'
'symbq ' 'symb,' ® 'MIMsymby,symbyr’

MIN returns the lesser (more negative) of its two arguments.

MOD Modulo Function
Level 2 Level 1 Level 1
X y » x mod y
X 'symb' » 'MODCx,symba !
'symb' X » ‘MOD<symb, x» '
'symb, ' ‘symb,' ® 'MOD symby,symby !

MOD applied to real-valued arguments x and y returns a remainder

defined by

xmod y = x — y floor (x/y)

Mod (x, y) is periodic in x with period y. Mod (x, y) lies in the interval
[0, y) for y > 0 and in (y, 0] for y < 0.

222 Dictionary



...REAL

%T Percent of Total Function
Level 2 Level 1 Level 1
X y » 100y/x
X ‘symb' ®» 'ETCx,symb> !
'symb ' X » '%T(symb, x>
'symb, ' ‘symby,' ® '%TC(symby,symby}'

%T computes the (percent) fraction of the real-valued argument x in
level 2 that is represented by the argument y in level 1. That is, %T
returns 100y/x.

Dictionary 223



SOLVE

STEQ RCEQ SOLVR ISOL QUAD SHOW
ROOT

The SOLVE menu ([SOLV]) contains commands that enable you to
find the solutions of algebraic expressions and equations. By solution,
we mean a mathematical root of an expression—that is, a value of one
variable contained in the expression, for which the expression has the
value zero. For an equation, this means that both sides of the equa-
tion have the same numerical value.

The command ROOT is a sophisticated numerical root-finder that can
determine a numerical root for any mathematically reasonable expres-
sion. You can use ROOT as an ordinary command, or you can invoke
the root-finder through the soLwr key. soLvr activates an interactive
version of the root-finder called the Solver. The Solver provides a
menu for data input and for selecting a “solve” variable, and returns
labeled results with messages to help you interpret the results.

It is also possible to solve many expressions symbolically, that is, to
return symbolic rather than numerical values for the roots of an ex-
pression. The command ISOL (isolate) finds a symbolic solution by
isolating the first occurrence of a specified variable within an expres-
sion. QUAD returns the symbolic solution of a quadratic equation.

In many cases, a symbolic result is preferable to a numerical result.
The functional form of the symbolic result gives much more informa-
tion about the behavior of the system represented by a mathematical
expression than can a single number. Also, a symbolic solution can
contain all of the multiple roots of an expression. Even if you are only
interested in numerical results, solving an expression symbolically be-
fore using s0LYR can result in a significant time savings in obtaining
the numerical roots.

224 Dictionary



--.SOLVE

Interactive Numerical Solving: The Solver

The Solver is an interactive operation that automates the process of
storing values into the variables of an equation, and then solving for
any one of the variables. The general procedure for using the Solver is
as follows:

1. Use STEQ (“Store Equation”) to select a current equation.
2. Press soLWR to activate the Solver variables menu.

3. Use the variables menu keys to store values for the equation
variables, including a “first guess” for the value of the unknown
variable.

4. Solve the equation for an unknown, by pressing the shift key
(@) then the menu key corresponding to the unknown variable.

Each of these steps is described in detail in the following sections.

The Current Equation

The current equation is defined as the procedure that is currently
stored in the user variable EQ. The term current equation (and the
name EQ) is chosen to reflect the typical use of the procedure; how-
ever, the procedure can be an algebraic equation or expression, or a
program. A program used with the Solver must be equivalent to an
algebraic; that is, it must not take arguments from the stack, and
should return one result to the stack.

You can think of the current equation as an “implicit” argument for
soLYR (it is also the argument for DRAW). An implicit argument
saves you from having to place a procedure on the stack every time
you use soL¥rR or DRAW.

Dictionary 225



--.SOLVE

For the purpose of solving (root-finding) equations and expressions,
you can consider an expression as the left side of an equation with its
right side 0. Alternatively, you can interpret an equation as an expres-
sion by treating the = sign as equivalent to — (subtract).

Described next are STEQ and RCEQ, which are commands for storing
and recalling the contents of EQ.

STEQ Store Equation Command
Level 1
obj »

STEQ takes an object from the stack, and stores it in the variable EQ
(“EQuation”). EQ is used to hold the current equation used by the
Solver and plot applications, so STEQ’s argument should normally be
a procedure.

RCEQ Recall Equation Command
Level 1
» obj

RCEQ returns the contents of the variable EQ from the current direc-
tory. To recall a variable EQ from a parent directory (when EQ doesn’t
exist in the current directory), execute 'E' RCL.

226 Dictionary



--.SOLVE

Activating the Variables Menu

Pressing soLYR activates the Solver variables menu derived from the
current equation. The variables menu contains:

B A menu key label for each independent variable in the current
equation. If there are more than six independent variables, you can
use the and @(PREV] keys to activate each group of (up to)
six keys.

B One or two menu keys for evaluating the current equation. If EQ
contains an algebraic expression or a program, the key
provided for evaluating the expression or program. If EQ contains
an algebraic equation, {LEFT= and | ET=_{ allow you to evaluate
separately the left and right sides of the equation.

How The Variables Menu Is Configured. An independent variable
named in the current equation is either a formal variable, or a variable
that contains a data object, usually a real number. A variable contain-
ing a procedure will not appear in the variables menu. Rather, the
names appearing in that procedure are taken as possible independent
variables; those that contain data objects are added to the variables
menu. The process continues until all independent variables are iden-
tified in the menu. The variables menu is continuously updated, so
that if you store a procedure into any of the variables in the menu,
that variable will be replaced in the menu by the new independent
variables contained in the procedure.

For example, if the current equation is 'A+E=C", the variables menu:

A i B i C HILEFT= RT= |

results if A, B, and C do not contain procedures. But if we store
'0+E"' in C, the menu will become

Ao B i D i E JILEFT= RT= |

(If a current equation variable itself contains an equation, the latter
equation is treated as an expression by replacing the = with a —, for
the purpose of defining the variable.)

Dictionary 227



-..SOLVE

Storing Values into the Independent Variables

"miame ' 5TO. That is, [rame | takes an object from the stack and

stores it as the value of the variable name.

To confirm input, {rzme] also displays name: object in display line 1,
where object is the object taken from the stack. The message will dis-
appear at the next key press.

At any time, you can review the contents of a variable by pressing [*]
= ~ and then @(RcL], @(VisSIT), or [(EVAL].

Choosing Initial Guesses

In general, algebraic expressions and procedures can have more than
one root. For example, the expression (x — 3) (x — 2) has roots at

x = 3 and x = 2. The root that the root-finder returns depends on the
starting point for its search, called the initial guess.

You should always supply an initial guess for the root-finder. The

guess is one of the required arguments for the command ROOT. For
the Solver, the current value of the unknown variable is taken as the
initial guess. If the unknown variable has no value, the Solver will
assign it an initial guess value 0 when you solve for it, but there is no
guarantee that this default initial guess will yield the root you desire.

You can speed up the root-finding, or guide the root-finder to a par-
ticular root, by making an appropriate initial guess. The guess can be
any of following objects:

® A number, or a list containing one number. This number is con-
verted to two initial guesses, as described next, by duplicating it
and perturbing one copy slightly.

228 Dictionary



-.SOLVE

B A list containing two numbers. The two numbers identify a region
in which the search will begin. If the two numbers surround an
odd number of roots (signified by their procedure values having
opposite signs), then the root-finder can usually find a root be-
tween the numbers quite rapidly. If the procedure values at the two
numbers do not differ in sign, then the root-finder must search for
a region where a root lies. Selecting numbers as near a root as pos-
sible will tend to speed up this search.

B A list containing three numbers. In this case the first number
should represent your best guess for the root of interest. The other
two numbers should surround the best guess, and define a region
in which the search should begin. The list of three numbers re-
turned when you interrupt the root-finder with the key
corresponds to the current guess in this format.

Any of the numbers described above can be complex; in that case
only the real parts are used.

The best way to choose an initial guess is to plot the current equation.
The plot gives you an idea of the global behavior of the equation and
lets you see the roots. For an equation, the roots are the values of the
independent (horizontal) variable for which the two curves represent-
ing the equation intersect; for an expression (or a program), the roots
are the points at which the curve intersects the horizontal axis (verti-
cal coordinate = 0). If you use the interactive plotter ( oraM ), you
can move the cursor to the desired root, and digitize one or more
points. Then you can use the point coordinate(s) as the initial
guess(es) for the solver.

Dictionary 229



-.SOLVE

Solving for the Unknown Variable.

To solve the current equation for an “unknown” variable name, press

merical root-finder, to determine a value of the unknown variable
that is a root of the current equation (that is, makes the current equa-
tion have the value zero). While the root-finder is executing, the
message

Solwving for name

is displayed in display line 1. When execution is completed, the result
is returned to the stack, and display line 1 shows

name: result
(until you press a key). Line 2 gives a message that qualifies the result.
While the Solver root-finder is executing, you can:

B Press to stop the root-finder iteration and return to the normal
stack display. When the root-finder is halted in this manner, it dis-
plays its current best value for the root to the unknown variable,
and returns a list containing current best value plus two additional
real numbers specifying the search region. If you wish to restart the
root-finder, you can just press the unknown variable menu key to
store the list into the variable, then the shifted menu key. By using
the list as a guess, you can restart the root-finder at the same point
where it was interrupted.

B Press any other key to display the intermediate results of the root-
finder as it seeks a root. Lines 2 and 3 of the display will show two
current guesses used by the root-finder, plus the signs of the value
of the current equation evaluated at the guesses. If the current
equation is undefined at a guess point, the sign is shown as 7.

230 Dictionary



--.SOLVE

The intermediate results are the points where the root-finder is sam-
pling the procedure values. The root-finder first searches the domain
of the procedure for two points where the procedure values have op-
posite signs; during this stage, the search region may grow. Once it
finds a sign reversal, the root-finder tries to narrow the search region
to a point where the procedure value is zero. By watching whether
the search region is growing or shrinking, you can track the root-
finder’s progress.

Interpreting Results

The HP-28S root-finder seeks a real root of a specified procedure,
starting with the first guess that you have supplied. In most cases, the
root-finder returns a result. The command ROOT just returns the re-
sult to the stack. The Solver returns the result to the stack, displays a
labeled result in line 1 of the display, and shows a qualifying message
in line 2. The qualifying message provides a rough guide to the nature
of the root found:

Message Meaning
Zero The Solver found a point where the procedure value is
zero.
Sian The Solver found two points where the procedure values
Eever=al have opposite signs, but it can’t find an intermediate

point where the procedure value is zero because (a) the
two points are neighbors or (b) the procedure is not real-
valued between the two points. The Solver returns the
point where the procedure value is closer to zero. If the
procedure is a continuous real function, this point is the
calculator’s best approximation to an actual root.

Extremumn The Solver found a point where the procedure value ap-
proximates a local minimum (for positive values) or
maximum (for negative values), or it stopped searching
at the point +£9.99999999999E499 because there are no
larger machine-representable numbers.

Dictionary 231



--.SOLVE

After you have obtained a result using the Solver or ROOT, you
should evaluate the procedure for which the result was obtained, in
order to interpret the results. (If you are using the Variables menu,

7 for an equatron) There are two possrblhtles the value of the
procedure at the value of the unknown variable returned by the root-
finder is close to zero; or it is not close to zero. It is up to you to
decide how close is close enough to consider the value a root.

The best way to understand the nature of a root is to plot the proce-
dure in the neighborhood of the root. The plot will show you whether
the root is a proper root, or a discontinuity, much more clearly than
any qualifying message that the Solver can return.

During its search for a root, the root-finder may evaluate the proce-
dure at values of the unknown variable that cause mathematical
exceptions. No error is generated, but the appropriate mathematical
exception user flags will be set.

Errors

In two cases the root-finder will fail, indicating the problem with an
error message:

Error Message Meaning
Ead One or both initial guesses lie outside of the domain of
Guessies) the procedure. That is, the procedure returns an error

when evaluated at the guess points.

Constant? The procedure returns the same value at every point
sampled by the root-finder.

232 Dictionary



--.SOLVE

ROOT Root-Finder Command
Level 3 Level 2 Level 1 Level 1
“programz " global ! guess » root
“programs ' global ! i{guesses i ®» root
'symb' ' global ! guess » root
'symb' ' global ! {guesses: ®» root

ROOT takes a procedure, a name, and either a single guess (a real
number or a complex number) or a list of one, two, or three guesses,
and returns a real number root. Root is a value of the variable name
that is returned by the HP-28S numerical root-finder. Where the
mathematical behavior of the procedure is appropriate, root is a math-
ematical root—a value of the variable for which the procedure has a
numerical value zero. Refer to “Interpreting Results” for more in-
formation on interpreting the results of the root-finder.

The single guess, or the list of guesses, are guesses of the value of the
root that you must supply to indicate to the root-finder the region in
which the search for a root is to begin. “Choosing Initial Guesses”
explains how to choose initial guesses.

If you interrupt ROOT by pressing the key, the procedure is re-
turned to level 3, the name to level 2, and a list containing three

intermediate values of the unknown variable to level 1. The current
best value for the root is stored in the unknown variable. The list is
suitable for use as a first guess if you wish to restart the root-finder.

Dictionary 233



--.SOLVE

Symbolic Solutions

ISOL Isolate Command

Level 2 Level 1 Level 1

'symby ' 'global' ®» ‘'symb,'

ISOL returns an expression symb, that represents the rearrangement
of its argument algebraic symb, to “isolate” the first occurrence of vari-
able name. If the variable occurs only once in the definition of symb;,
then symb, is a symbolic root (solution) of symb;. If name appears
more than once, then symb, is effectively the right side of an equation
obtained by rearranging and solving symb; to isolate the first occur-
rence of name on the left side of the equation. (If symb; is an
expression, consider it as the left side of an equation symb; = 0.)

If name appears in the argument of a function within symb,, that
function must be an analytic function—the HP-28S must be able to
compute the inverse of the function. Thus ISOL cannot solve

IP(X) = 0 for X, since IP has no inverse. Commands for which the
HP-28S can compute an algebraic inverse are identified as analytic
functions in this manual.

234 Dictionary



--.SOLVE

QUAD Quadratic Form Command
Level 2 Level 1 Level 1
'symby ! ‘global' ®» ‘'symb,'

QUAD solves an algebraic symb, for the variable name, and returns an
expression symb, representing the solution. QUAD computes the sec-
ond-degree Taylor series approximation of symb; to convert it to a
quadratic form (this will be exact, if symb; is already a second order
polynomial in name).

QUAD evaluates symb, before returning it to the stack. If you want a
symbolic solution, you should purge any variables that you want to
remain in the solution as formal variables.

SHOW Show Variable Command
Level 2 Level 1 Level 1
'symby ! "global' ®» ‘'symb,'

SHOW returns symb,, which is equivalent to symb;, except that all
implicit references to a variable name are made explicit. For example,
if we define

then
"AF¥E' 'Y' SHOMW returns 'AECY+E 2!

'"A¥E' 'H' SHOMW returns 'CHE+12FE'.

Dictionary 235



= SOLVE

General Solutions

HP-28S functions are functions in the strict mathematical sense, that
is, they always return exactly one result when evaluated. This means,
for example, that \/Z always returns +2, not —2 or +2. For other
functions, such as ASIN, a principal value is returned, according to
common mathematical conventions.

This implies, however, that pairs of functions such as \/ and SQ, or
SIN and ASIN, do not necessarily represent the general inverse rela-
tion implied by their names. Consider the equation x2 = 2. If we take
the square root of both sides, we obtain the “solutions”

x=+ﬁandx=—\/?.

The HP-28S equation '®=I2' cannot represent correctly both solu-
tions—the \/ function always returns the positive square root. Similarly,
if we solve sin x = .5 for x, there are an infinite number of solutions
x = 30° + 360n°, where n is any integer. Applying the ASIN function to
.5 will only return the single result 30°.

The principal value flag, user flag 34, determines the nature of solutions
returned by ISOL and QUAD. If the flag is set, all arbitrary signs and
integers are chosen automatically to represent principal values. If the flag
is clear, solutions are returned in their full generality.

236 Dictionary



--.SOLVE

General Solution Mode

When the HP-28S is in general solution mode, signified by flag 34
clear, the commands QUAD and ISOL solve expressions in their full
generality by introducing, where appropriate, special user variables
representing arbitrary signs and arbitrary integers. You can select val-
ues for these variables in the usual way by storing the desired values
into the corresponding variables, then evaluating the expression.
QUAD and ISOL introduce variables in this manner:

B When a command returns a result containing one or more arbitrary
signs, the first such sign is represented by a variable =1, the second
by =2, and so on. Example:

'RSZ4D%E 44 'Y QUAD returns ' C-53+s1%30 .20

The =1 represents the conventional + symbol. You can choose ei-
ther root by storing +1 or —1 into =1, then executing EVAL.

B If ISOL returns a result containing one or more arbitrary integers,
the first is represented by a variable n1, the next by n2, and so on.
Example:

'Rod=yt tHY IS0L returns 'ERPOZ2XwRidnlo40EKYS, 250
The exponential represents the arbitrary complex sign of the result;
there are four unique values, corresponding to nl = 0, 1, 2, and 3.

You can choose one of these values by storing the appropriate
number into nl, then evaluating the expression.

An alternate keyboard method of substituting for the arbitrary vari-
ables in an ISOL or QUAD result expression is to EDIT the expression
and make the arbitrary variables into temporary variables for which
you supply values. For example, to choose the negative root in the
above QUAD example, press @[EDIT] to copy the result expression to
the command line, then press

(NS] -1 + s1 [ENTER].

This makes =1 into a local variable, assigns it the value —1, and then
evaluates the expression. This method has the advantage that it
avoids creating “permanent” variables in user memory corresponding
to the arbitrary variables.

Dictionary 237



--.SOLVE

Principal Value Mode

If you set flag 34, QUAD and ISOL will return “principal” values for
their solutions. That is:

B Arbitrary signs are chosen to be positive. This applies both to the
ordinary =+, and to the more general complex “sign” exp (2mni/x)
that arises from inverting expressions of the form y*. In the latter
case, the arbitrary integer n is chosen to be 0.

B Arbitrary integers are chosen to be 0. Thus
"SINCHI=Y' '®' ISOL returns 'ASIMCYY ',

which always lies in the range 0 through 180 degrees.

You should understand that these choices of “principal” values serve
primarily to simplify the result expressions. Mathematically, they are
no better or worse than any other roots of an expression. If you desire
symbolic results that can subsequently be evaluated for purposes
other than simple visual inspection, you should work with flag 34
clear, so that the results are completely general.

238 Dictionary



STACK

DUP OVER DUP2 DROP2 ROT LIST-
ROLLD PICK DUPN DROPN DEPTH -LIST

This menu provides commands to manipulate the contents of the
stack. The most frequently used of these commands are provided on
the keyboard; the remainder are available as menu keys in the STACK
menu.

The keyboard commands are [DROP], [(SwAP], [@(RoOLL ], @[ AST] and

M(cLEAR].

Keyboard Commands

DROP Drop Command

Level 1

obj »

DROP removes the first object from the stack. The remaining items
on the stack drop one level.

You can recover the dropped object by executing LAST if it is enabled.

SWAP Swap Command

Level 2 Level 1 Level 2 Level 1

0bj4 objo » objo obj

SWAP switches the order of the first two objects on the stack.

Dictionary 239



-.STACK

ROLL Roli Command
Level n+1 ... Level 2 Level 1 Leveln ... Level 2 Level 1
objy ... obj, n » obj> ... obj, obj

ROLL takes an integer n from the stack and “rolls” the first n objects
remaining on the stack. For example, 4 ROLL moves the object in
level 4 to level 1.

LAST Last Arguments Command
Level 3 Level 2 Level 1
» obj
» obj, obj,
» obj, obj, objs

LAST returns copies of the arguments to the most recently executed
command. The objects return to the same stack levels that they origi-
nally occupied. Commands that take no arguments leave the current
saved arguments unchanged.

Note that when LAST follows a command that evaluates procedures
(0, [, TAYLR, COLCT, DRAW, ROOT, ISOL, EVAL, or =NUM), the
last arguments saved are from the procedure, not from the original
command.

CLEAR Clear Command

Level n ... Level 1

objy ...obj, »

CLEAR removes all objects from the stack.

240 Dictionary



..STACK

If UNDO is enabled, you can recover the stack that has been lost due
to an inadvertent CLEAR by pressing @[(UNDO] immediately after the
CLEAR.

DUP OVER DUP2 DROP2 ROT LIST-

DUP Duplicate Command

Level 1 Level 2 Level 1

obj » obj obj

DUP returns a copy of the object in level 1. Pressing when no
command line is present executes DUP.

OVER Over Command
Level 2 Level 1 Level 3 Level 2 Level 1
0bj1 0b/2 » 0bj1 Ob/2 Ob/1

OVER returns a copy of the object in-level 2.

DUP2 Duplicate Two Objects Command
Level 2 Level 1 Level 4 Level 3 Level2 Level 1
obj4 objo » obj objo obj objs

DUP?2 returns copies of the first two objects on the stack.

Dictionary 241



-.STACK

DROP2 Drop Command

Level 2 Level 1

Ob] 1 Ob] 2 »

DROP2 removes the first two objects from the stack. The two objects
are saved in LAST arguments. They can be recovered with LAST if it
is enabled.

ROT Rotate Command
Level 3 Level 2 Level 1 Level 3 Level 2 Level 1
obj objo objs » objo objs obj,

ROT rotates the first three objects on the stack, bringing the third ob-
ject to level 1. ROT is equivalent to 3 ROLL.

LIST- List to Stack Command
Level 1 Level n+1 ... Level 2 Level 1
{objy ... obj,k » objy ...obj, n

LIST— takes a list of n objects from the stack, and returns the objects
comprising the list into separate stack levels 2 through n+1. The
number 7 is returned to level 1.

242 Dictionary



--.STACK

ROLLD PICK DUPN DROPN DEPTH -LIST

ROLLD Roll Down Command
Level n+1 ... Level 2 Level 1 Level n Level n—1 ... Level 1
objy ... obj, n » obj, objy ...o0bj, 1

ROLLD takes an integer n from the stack and “rolls down” the first n
objects remaining on the stack. For example, 4 ROLLD moves the ob-
ject in level 1 to level 4.

PICK Pick Command
Level n+1 ... Level 2 Level 1 Level n+1 ... Level 2 Level 1
obj;  ...obj, n » objy ...obj, obj

PICK takes an integer n from the stack and returns a copy of obj; (the
nth remaining object). For example, 4 FICE returns a copy of the
object in level 4.

DUPN Duplicate n Objects Command
Levein+1.. Level2 Level1 Level2n.. Levelin+1 Leveln... Level1
obj, ... obj4 n » obj, ... obj4 obj, ... obj,

DUPN takes an integer number n from the stack, and returns copies
of the first remaining n objects on the stack (the objects in levels 2
through n + 1 while 7 is on the stack).

Dictionary 243



-.STACK

DROPN Drop n Objects Command
Level n+1 ... Level 2 Level 1
objy ... obj, n »

DROPN removes the first n + 1 objects from the stack (the first n
excluding the number 7 itself). The number # is saved in LAST argu-
ments, for recovery by LAST. You can use J[UNDO] to recover the
dropped objects that remain.

DEPTH Depth Command

Level 1

» n

DEPTH returns a real number n representing the number of objects
present on the stack (before DEPTH was executed).

-LIST Stack to List Command
Level n+1 ... Level 2 Level 1 Level 1
objy ...obj, n » {objy ...obj,

-LIST takes an integer number n from level 1, plus n additional ob-
jects from levels 2 through n + 1, and returns a list containing the n
objects.

Executing DEFTH +LIST combines the entire contents of the stack
into a list, which you can, for example, store in a variable for later
recovery.

244 Dictionary



STAT

Z+ Z— N2 CLZ STOZ RCLZ
TOT MEAN SDEV VAR MAXZ MINZ
COLZ CORR cov LR PRDEV
UTPC UTPF UTPN UTPT COMB PERM

HP-28S statistics commands deal with statistical data collected in an
n X m matrix called the current statistics matrix. The current statistics
matrix is defined to be a matrix stored in the variable ZDAT.

The current statistics matrix ZDAT is created automatically, if it does
not already exist, when you begin entry of statistical data points with
the command Z+. A data point is a vector of m coordinate values (real
numbers), and is stored as one row in the statistics matrix. The first
data point entered sets the m dimension (number of columns) of the
statistics matrix. The n dimension (number of rows) is the number of
data points that have been entered as illustrated below:.

Coordinate Number
Data Point
1 2 m
1 X1 X12 Xim
2 Xaq X2 Xom
n Xn1 Xn2 Xnm

Certain statistics commands combine data from two specified columns
of the statistics matrix. User variable ZPAR contains a list of four real
numbers, the first two of which identify the two columns. You select
the columns with the command COLZ. The last two numbers in the
list are the slope and intercept computed from the most recent execu-
tion of the linear regression command LR.

Dictionary 245



] IsTAT

Because ZDAT and ZPAR are ordinary variables, you can use ordi-
nary commands to recall, view, or alter their contents, in addition to
the specific statistics commands that deal with the variables.

The commands SDEV (standard deviation), VAR (variance), and COV
(covariance) calculate sample statistics using data that represent a sam-
ple of the population. These commands are described in detail below.
If the data represent the entire population, you can calculate the popu-
lation statistics as follows.

1. Execute MEAN to return a data point representing the mean
data.

2. Execute 2+ to add the mean data point to the data.

3. Execute SDEV, VAR, or COV. The result is the statistics for the

population.
4. Execute Z— DROP to remove the mean data point from the
data.
Z+ 2- NZ CLZ STOZ RCL2

These commands allow you to select a statistics matrix, and to add
data to or delete data from the matrix.

2+ Sigma Plus Command
Level 1
X
Cxqxo ... xp 1 »
EI:X11 X12 900 X1m]
: »
Cx,1 Xpo oo Xppp 13

2+ adds one or more data points to the current statistics matrix
ZDAT.

246 Dictionary



-.STAT

For a statistics matrix with m columns, you can enter the argument for
2+ in several ways:

Entering one data point with a single coordinate value. The ar-
gument for 2+ is a real number.

Entering one data point with multiple coordinate values. The
argument for =+ is a vector of m real coordinate values.

Entering several data points. The argument for Z+ is a matrix of
n rows of m real coordinate values.

In each case, the coordinate values are added as new rows to the cur-
rent statistics matrix stored in TDAT. If ZDAT does not exist, Z+
creates it as an n X m matrix stored in the variable ZDAT. If ZDAT
does exist, an error occurs if it does not contain a real matrix, or if the
number of coordinate values in each data point entered with 2+
doesn’t match the number of columns in ZDAT.

- Sigma Minus Command

Level 1

» [X1 X2 ...Xm:]

> — returns a vector of m real numbers, or one number if m = 1,
corresponding to the coordinate values in the last data point entered
by =+ into the statistics matrix ZDAT. The last row of the statistics
matrix is deleted.

The vector returned by Z— can be edited or replaced, then restored
to the statistics matrix by Z+.

Dictionary 247



IIISTAT

N2 Sigma N Command

Level 1

» n

NZ returns the number of data points entered in the statistics matrix
stored in ZDAT. The number of points is equal to the number of rows
of the matrix.

CLZ Clear Sigma Command

CLZ clears the statistics matrix by purging the ZDAT variable.

STOZ Store Sigma Command
Level 1
obj »

STOZ takes an object from the stack and stores it in the variable
ZDAT.

RCLZ> Recall Sigma Command
Level 1
» obj

RCLZ returns the contents of the variable ZDAT from the current di-
rectory. To recall the statistics matrix ZDAT from a parent directory
(when ZDAT doesn’t exist in the current directory), execute ZOAT.

248 Dictionary



IIIsTAT

TOT MEAN SDEV VAR MAXZ MINZ

These commands compute elementary statistics for the data in each
column of the current statistics matrix.

TOT Total Command
Level 1
» X
» CxqXo ... xp 1

TOT computes the sum of each of the m columns of coordinate values
in the statistics matrix ZDAT. The sums are returned as a vector of m
real numbers, or as a single real number if m = 1.

MEAN Mean Command
Level 1
» X
» CxyXxo ... xp3d

MEAN computes the mean of each of the m columns of coordinate
values in the statistics matrix ZDAT, and returns the mean as a vector
of m real numbers, or as a single real number if m = 1. The mean is
computed from the formula

n

mean = > x,/n

i=1

where x; is the ith coordinate value in a column, and # is the number
of data points.

Dictionary 249



-.STAT

SDEV Standard Deviation Command
Level 1
X
» Cxyxo ... X3

SDEV computes the sample standard deviation of each of the m
columns of coordinate values in the current statistics matrix. The
standard deviations are returned as a vector of m real numbers, or as
a single real number if m = 1. The standard deviations are computed
from the formula

13 _ =2
\/n—li;(Xi X)

where x; is the ith coordinate value in a column, X is the mean of the
data in this column, and 7 is the number of data points.

VAR Variance Command
Level 1
» X
» CxqXp ... Xpd

VAR computes the sample variance of the coordinate values in each of
the m columns of the current statistics matrix. The variance is re-
turned as a vector of m real numbers, or as a single real number if
m = 1. The variance is computed from the formula

D E P 0%

n—1 ;=

where x; is the ith coordinate value in a column, X is the mean of the
data in this column, and 7 is the number of data points.

250 Dictionary



-.STAT

MAXZ> Maximum Sigma Command
Level 1
» X
» Cxqyxo ... xp1

MAXZ finds the maximum coordinate value in each of the m columns
of the current statistics matrix. The maxima are returned as a vector
of m real numbers, or as a single real number if m = 1.

MIN> Minimum Sigma Command

Level 1

X

» Cxyxo ... X3

MINZ finds the minimum coordinate value in each of the m columns
of the current statistics matrix. The minima are returned as a vector of
m real numbers, or as a single real number if m = 1.

COLZ CORR cov LR PREDV

COL> Sigma Columns Command

Level 2 Level 1

ny ny »

Dictionary 251



. STAT

COLZ takes two column numbers, n; and n,, from the stack and
stores them as the first two objects in the list contained in the variable
ZPAR. The numbers identify column numbers in the current statistics
matrix ZDAT, and are used by statistics commands that work with
pairs of columns. 11, designates the column corresponding to the inde-
pendent variable for LR, or the horizontal coordinate for DRWZ or
SCLZ. n, designates the dependent variable or the vertical coordinate.
For CORR and COV, the order of the two column numbers is
unimportant.

If any of the two-column commands is executed when ZPAR does
not yet exist, it is automatically created with default values n; = 1
and n, = 2.

CORR Correlation Command

Level 1

» correlation

CORR returns the correlation of two columns of coordinate values in
the current statistics matrix. The columns are specified by the first two
elements of ZPAR (default 1 and 2). The correlation is computed from
the formula

n

Z (xin1 - xnl) (xinz - 'Ynz)
1

i=

n

\/En: (xin1 = J_cnl)z Z (xinZ - xnz)z
i=1

i=1

where x;, is the ith coordinate value in column 1y, X;,, is the ith co-
ordinate value in the column n,, 3‘6,11 is the mean of the data in column
ny, X, is the mean of the data in column #n, and 7 is the number of
data points.

252 Dictionary



--.STAT

CcCov Covariance Command

Level 1

®» covariance

COV returns the sample covariance of the coordinate values in two
columns of the current statistics matrix. The columns are specified by
the first two elements in ZPAR (default 1 and 2). The covariance is
computed from the formula

Z (xzn1 - xnl) (xin2 - xnz)

n—li:

where x;, is the ith coordinate value in column ny, x;,, is ith coordi-
nate value in the column 1,, X, is the mean of the data in column 7y,

,,2 is the mean of the data in column n,, and # is the number of data
points.

LR Linear Regression Command
Level 2 Level 1
®»  intercept slope

LR computes the linear regression of a dependent data column on an
independent data column, where the columns of data exist in the cur-
rent statistics matrix. The columns of independent and dependent

data are specified by the first two elements in ZPAR (default 1 and 2).

The intercept and slope of the regression line are returned to levels 2
and 1 of the stack, respectively. LR also stores these regression coef-
ficients as the third (intercept) and fourth (slope) items in the list in
the variable ZPAR.

Dictionary 253



- STAT

PREDV Predicted Value Command
Level 1 Level 1
X » predicted value

PREDV computes a predicted value from a real number argument x,
using the linear regression coefficients most recently computed with
LR and stored in the variable ZPAR:

predicted value = (x X slope) + intercept.

The regression coefficients intercept and slope are stored by LR as the
third and fourth items, respectively, in the variable ZPAR. if you exe-
cute PREDV without having previously executed LR, a default value
of zero is used for both coefficients, so that PREDV will always return
zero.

UTPC UTPF UTPN UTPT COMB PERM

The HP-28S provides four upper-tail probability commands, which
you can use to determine the statistical significance of test statistics.
The upper-tail probability function of a random variable X is the
probability that X is greater than a number x, and is equal to 1 — F(x),
where F(x) is the distribution function of X.

The inverses of distribution functions are useful for constructing con-
fidence intervals. The argument of an inverse upper-tail probability
function is a value from 0 through 1; when the argument is expressed
as a percent, the inverse function values are called percentiles. For
example, the 90th percentile of a distribution is the number x for
which the probability that the random variable X is greater than x is
100% — 90% = 10%.

254 Dictionary



--.STAT

You can use the Solver to obtain the inverses of the upper-tail prob-
ability functions. Suppose you wish to determine a percentile of the
normal distribution. Let

P = percentile/100
M = mean of the distribution
V = variance
X = random variable

UTPN (described below) returns the upper-tail probability for normal
distribution. To solve the equation

1 — P = utpn M, V, X),
for X, create the program
1 F - MV & UTPH - =,

and store it as the current equation by pressing [(SOLV] sTem . Then
press soLwR to produce the Solver menu:

Now compute the 95th percentile:

95 FTI
yields the result X = 1.6449.

Dictionary 255



IIIsTAT

UTPC Upper Chi-Square Distribution Command
Level 2 Level 1 Level 1
n X » utpe(n, x)

UTPC returns the probability utpc(n, x) that a chi-square random
variable is greater than x, where n is the number of degrees of free-
dom of the distribution. n must be a positive integer.

UTPF Upper Snedecor’s F Distribution Command
Level 3 Level 2 Level 1 Level 1
nq no X » utpf(nq, no, X)

UTPF returns the probability utpf (1, 115, x) that a Snedecor’s F ran-
dom variable is greater than x, where #n; and 1, are the numerator and
denominator degrees of freedom of the F distribution. n; and n, must
be positive integers.

UTPN Upper Normal Distribution Command
Level 3 Level 2 Level 1 Level 1
m v X » utpn(m, v, X)

UTPN returns the probability utpn(m, v, x) that a normal random
variable is greater than x, where m and v are the mean and variance,
respectively, of the normal distribution. v must be a non-negative
number.

256 Dictionary



. STAT

UTPT Upper Student’s t Distribution Command
Level 2 Level 1 Level 1
n X » utpt(n, x)

UTPT returns the probability utpt(n, x) that a Student’s ¢t random
variable is greater than x, where n is the number of degrees of free-
dom of the distribution. n must be a positive integer.

COMB Combinations Command
Level 2 Level 1 Level 1
n m » Co, m

COMB returns the number of combinations of n items taken m at a
time:

n!

C [ R A
T m (n — m)

The arguments n and m must be less than 1012,

PERM Permutations Command
Level 2 Level 1 Level 1
n m » Pn, m

PERM returns the number of permutations of n items taken m at a
time:

nt

Pr,m = (n — mj

The arguments n and m must be less than 1012,

Dictionary 257



STORE

STO+ STO-— STO* STO/ SNEG SINV
SCONJ

The STORE menu contains storage arithmetic commands which allow
you to perform addition, subtraction, multiplication, division, inver-
sion, negation, and conjugation on real and complex numbers and
arrays that are stored in variables, without recalling the variable con-
tents to the stack. Besides minimizing keystrokes in many cases, the
STORE commands provide an “in-place” method of altering the con-
tents of an array, which requires less memory than manipulating the
array while it is on the stack.

Storage arithmetic is restricted to variables in the current directory—
you cannot use storage arithmetic for variables in other directories or
for local variables.

STO+ STO-—  STOx STO/ SNEG SINV

STO+ Store Plus Command
Level 2 Level 1
z ' global ! »
' global ! z »
Carray 1 ' global ' »
' global! Carray 1 »

STO+ adds a number or array to the contents of the variable. The
variable name and the number or array can be in either order on the
stack.

258 Dictionary



--.STORE

The object on the stack and the object in the variable must be suitable
for addition to each other—you can add any combination of real and
complex numbers, or any combination of conformable real and com-
plex arrays.

STO-— Store Minus Command

Level 2 Level 1

z ' global !
' global * z
Carray 1 ' global !

$ 5 3

' global ! Carray 1

STO— computes the difference of two numbers or arrays. One object
is taken from the stack, and the other is the contents of a variable
specified by a name on the stack. The resulting difference is stored as
the new value of the variable.

The result depends on the order of the arguments:

B [f name is in level 1, the difference
(value in level 2) — (value in name)
becomes the new value of name.
B If name is in level 2, the difference
(value in name) — (value in level 1)
becomes the new value in name.
The object on the stack and the object in the variable must be suitable
for subtraction with each other—you can subtract any combination of

real and complex numbers, or any combination of conformable real
and complex arrays.

Dictionary 259



--.STORE

STOx Store Times Command

Level 2 Level 1

z ' global ! »
" global ' z »
Carray 1 ' global ! »
' global ' Carray 1 »

STO>* multiplies the contents of a variable by a number or array.
When multiplying two numbers or a number and an array, the vari-
able name and the other object can be in either order on the stack.
When multiplying two arrays, the result depends on the order of the
arguments:

B |f name is in level 1, the product
(array in level 2) X (array in name)

becomes the new value of name.

B If name is in level 2, the product
(array in name) X (array in level 1)

becomes the new value in name.

The arrays must be conformable for multiplication.

260 Dictionary



--.STORE

STO/ Store Divide Command
Level 2 Level 1
z " global ! »
" global ! z »
Carray 1 ' global ! »
' global ! Carray 1 »

STO/ computes the quotient of two numbers or arrays. One object is
taken from the stack, and the other is the contents of a variable speci-
fied by a name. The resulting quotient is stored as the new value of
the variable.

The result depends on the order of the arguments:

B If name is in level 1, the quotient
(value in level 2)/(value in name)
becomes the new value of name.
B If name is in level 2, the quotient
(value in name)/(value in level 1)
becomes the new value in name.
The object on the stack and the object in the variable must be suitable
for division with each other. In particular, if both objects are arrays,

the divisor (level 1) must be a square matrix, and the dividend (level
2) must have the same number of columns as the divisor.

Dictionary 261



--.STORE

SNEG Store Negate Command
Level 1
' global ' »

SNEG negates the contents of the variable named on the stack; the
result replaces the original contents of the variable. The variable may
contain a real number, a complex number, or an array.

SINV Store Invert Command

Level 1

' global ! »

SINV computes the inverse of the contents of the variable named on
the stack; the result replaces the original contents of the variable. The
variable may contain a real number, a complex number, or a square
matrix.

SCONJ

SCONJ Store Conjugate Command
Level 1
' global ' »

SCONJ conjugates the contents of the variable named on the stack;
the result replaces the original contents of the variable. The variable
may contain a real number, a complex number, or an array.

262 Dictionary



STRING

-STR STR~ CHR NUM -LCD LCD-
POS suB SIZE DISP

A string object consists of a sequence of characters delimited by dou-
ble-quote marks " at either end. Any HP-28S character can be
included in a string, including the object delimiters ¢, », L, 1, ¢, }, #,
", ', #, and «. Characters not directly available on the keyboard can
be entered by means of the CHR command.

Although you can include " characters within a string (using CHR
and +), you will not be able to EDIT a string containing a " in the
usual way. This is because ENTER attempts to match pairs of "’s in
the command line—extra "’s within a string will cause the string to
be broken into two or more strings that will contain no "’s.

Strings are used primarily for display purposes—prompting, labeling
results, and so on. The commands included in the STRING menu pro-
vide simple string and character operations. However, the commands
—+STR and STR—~ add an important application for strings—they can
convert any object, or sequence of objects, to and from a character-
string form. In many cases, the string form requires less memory than
the normal form of an object. You can store objects in variables as
strings and convert them to the normal form only when you need
them. See the descriptions of -STR and STR- below for more
information.

Dictionary 263



--.STRING

Keyboard Function

+ Add Analytic

Level 2 Level 1 Level 1

"string " 'string,"  » ""stringy string,"

+ concatenates the characters in the string in level 1 to the characters
in the string in level 2, producing a string result.

-STR STR-~ CHR NUM -LCD LCD-

-STR Object to String Command
Level 1 Level 1
obj »  "string"

-STR converts an arbitrary object to a string form. The string is es-
sentially the same as the display form of the object that you would
obtain when the object is in level 1, and multi-line display mode is
active:

B The result string includes the entire object, even if the displayed
form of the object is too large to fit in the display.

B [f the object is displayed in two or more lines, the result string will
contain newline characters (character 10) at the end of each line.
The newlines are displayed as the default character =.

264 Dictionary



--.STRING

B Numbers are converted to strings according to the current number
display mode (STD, FIX, SCI, or ENG) or binary integer base (DEC,
BIN, OCT, or HEX) and wordsize. The full-precision internal form
of the number is not necessarily represented in the result string.
You can insure that =STR preserves the full precision of a number
by selecting STD mode or a wordsize of 64 bits, or both, prior to
executing -STR.

B If the object is already a string, =STR returns the string.

You can use +STR to create special displays to label program output
or provide prompts for input. For example, the sequence

"Fesult = " SHWAF *5TR + 1 DISF

displays Re=ult = object in line 1 of the display, where object is a
string form of an object taken from level 1.

STR- String to Objects Command
Level 1
"string"  ®»

STR- is a command form of ENTER. The characters in the string ar-
gument are parsed and evaluated as contents of the command line.
The string may define a single object, or it may be a series of objects
that will be evaluated just like a program.

STR-+ can also be used to restore objects that were converted to
strings by »STR back to their original form. The combination =STR
STR~ leaves objects unchanged except that =STR converts numbers
to strings according to the current number display format and binary
integer base and wordsize. STR- will reproduce a number only to the
precision represented in the string form.

Dictionary 265



--.STRING

CHR Character Command
Level 1 Level 1
n »  'string"

CHR returns a one-character string containing the HP-28S character
corresponding to the character code n taken from level 1. The default
character = is used for all character codes that are not part of the
normal HP-28S display character set.

Character code 0 is used for special purposes in the command line.
You can include this character in strings by using CHR, but attempt-
ing to edit a string containing this character causes the

Can't Edit CHEC@X error.

NUM Character Number Command
Level 1 Level 1
"string" n

NUM returns the character code of the first character in a string.

The following table shows the relation between character codes (re-
sults of NUM, arguments to CHR) and characters (results of CHR,
arguments to NUM). For character codes 0 through 147, the table

shows the characters as displayed in a string. For character codes 148
through 255, the table shows the characters as printed by the HP

82240A printer; these characters are displayed on the HP-28S as the
default character =.

266 Dictionary



Character Codes (0-127)

--.STRING

NUM CHR | NUM CHR | NUM CHR | NUM CHR
g 32 64 %
1. 33 65 R 97  a
2 . 34 J 66 B 93 b
3 . 35 67 © 9 ¢
4 = %6 0§ 63 D 188 d
5 . 37z 59 E 181 e
6 = cINY 78 F 192
7. 39 716 183 g
g . 48 < 72 H 184
3 . 41 731 185 i
1 = 42 % 4 186
1= 43+ 73K 187k
12 . 44, e L 188 1
13 = 45 - oo 189 m
14 = 45 3 N 118 n
15 = 47 s 730 111 o
16 = 43 @ ag P 112 p
17 . 49 1 R 113 g
13 = 58 2 82 R 14 r
19 » 51 2 83 S 115 s
s 52 4 34T 116
21 53 5 8 U 117w
22 . 54 6 3 ¥ 113 v
23 = 55 7 IO 113w
24 = 56 8 88 X 128 x
25 - 57 9 = 121y
26 = 58 B 2 122 z
27 59 ; 2 123 ¢
28 . 69 < EEE 124 |
29 . 61 = EE T 125 3
3! . 62 > 94 " 126~
31 . 63 7 ECT 127 %

Dictionary 267



---STRING

Character Codes (128-255)

NUM CHR | NUM CHR | NUM CHR | NUM CHR
123 l6d 4 192 a 224 A
{za = 161 A 193 @ 225 &
128« 62 A 194 3 226 &
131 I IL-ER 135 5 227 b
132 164 ¢ 195 34 228 4
123 = 185 E 197 & 229 b
124 » 1RB t 198 5 228 t
135 1 167 i 199 4 231 s}
126 a 163 288 3 232 b
127 £ 189 291 & 233 3
123 3 178 282 5 224
129 =2 171 283 0 235 &
148 « vz - 284 3 236
141 3 172 o 283 B 237 4
142« 174 4 286 5 238 @
143 T 175 £ 287 0 239 g
144 L 176 - 283 A 248 P
145 s 177 9 239 i 241 p
145 x ive g 218 @ 242
147 3 173 211 i 243
142 F 138 212 4 244 1
149 i 151 = 213 i 245 ¥
158, 132 R 214 ¥ 246 -
151 2 183 & 215 =2 247 %
152 3 134 i 215 A 243 %
153 1 185 £ 217 i 245 2
154 K 136 4 213 0 258 2
1855 S 187 £ 219 ¢ 251 «
158 L 138 ¥ 228 £ 252 8
157 g 189 ¢ 221 1 253 »
152 k 198§ 222 B 254 *
159 n 131 & 223 A 255

268 Dictionary



.STRING

-LCD String to LCD Command
Level 1
"string"

-LCD takes a string from the stack and, interpreting each character as
a graphics code, displays the graphics string. The process is equivalent
to the following steps:

1. Each character in the string is converted to an eight-bit binary
number equal to its character code.

2. Each binary integer is converted to an eight-high column of
pixels, where ones represent black pixels and zeros represent
white pixels. The leading digit in the binary integer corresponds
to the lowest pixel in the column.

3. Each column of pixels is displayed, starting at the upper-left cor-
ner of the display.

A string of 548 characters covers the entire display: the first 137 char-
acters cover line 1 (the top line), the next 137 characters cover line 2,
and so on.

LCD- LCD to String Command
Level 1
»  "string"

LCD~ returns a 548-character string that represents the current dis-
play. You can later recreate the current display by returning the string
to level 1 and executing =LCD.

Dictionary 269



--.STRING

You can use the logical functions AND, OR, XOR, and NOT to com-
bine and modify such strings before executing -LCD. Strings are
treated as binary numbers, eight bits for each character in the string.
The logical functions have the following effects:

B OR returns the union of two strings. Displayed, this is the
superpositioning of the two images.

B AND returns the intersection of two strings. Displayed, this is the
shared pixels of the two images.

@ XOR returns the symmetric difference of two strings. Displayed,
this is the superpositioning of the two images less the shared pixels
of the two images.

B NOT returns the inverse of a string. Displayed, this is the inverse of
the original image.

POS suB SIZE DISP

POS Position Command
Level 2 Level 1 Level 1
"'string4 " 'string," n
i list ¥ obj » n

POS returns the position of string, within string; or the position of obj
within {[ist ». If there is no match for string, or obj, POS returns 0.

For strings, POS searches for a substring within string; that matches
string,, returning the position of the first character of the matching
substring.

270 Dictionary



--.STRING

SUB Subset Command
Level 3 Level 2 Level 1 Level 1
"' string4 " ny ny »  'string,"
{ listq ¥ n4 no » {listy ¥

SUB takes a string and two integer numbers 1 and n, from the stack,
and returns a new string containing the characters in positions 1,
through n, of the original string. If n, < n;, SUB returns an empty
string.

Arguments less than 1 are converted to 1; arguments greater than the
size of the string are converted to the string size.

Refer to “LIST” for the use of SUB with lists.

SIZE Size Command
Level 1 Level 1
"string" ®» n
Carrayd » {list ¥
ilist ¥ » n
'symb' ®» n

SIZE returns a number n that is the number of characters in a string.

Refer to “ALGEBRA”, “ARRAY” and “LIST” for the use of SIZE with
other object types.

Dictionary 271



--.STRING

DISP Display Command

Level 2 Level 1

obj n »

DISP displays obj in the nth line of the display, where 7 is a real
integer. n = 1 indicates the top line of the display; n = 4 indicates
the bottom line. DISP sets the system message flag to suppress the
normal stack display.

Strings are displayed without the surrounding " delimiters. Other ob-
jects are displayed in the same form as they are in level 1 in multi-
line display mode. If the object display requires more than one
display line, the display starts in line n and continues down the dis-
play, either to the end of the object or the bottom of the display.

272 Dictionary



TRIG

SIN ASIN (o0 1 ACOS TAN ATAN
P-R R-P R-C C-R ARG
-HMS HMS-~ HMS + HMS — D-R R-D

The TRIG (trigonometry) menu contains commands related to angular
measurement and trigonometry: circular functions, polar/rectangular
conversions, degrees/radians conversions, and calculations with val-
ues expressed in degrees-minutes-seconds or hours-minutes-seconds
form.

SIN ASIN COsS ACOS TAN ATAN

These are the circular functions and their inverses. SIN, COS and
TAN interpret real arguments according to the current angle mode
(DEG or RAD), returning real results. ACOS, ASIN, and ATAN ex-
press real results according to the current angle mode.

All six functions accept complex arguments, producing complex re-
sults. For ACOS and ASIN, real arguments with absolute value
greater than 1 also produce complex results. Complex numbers are
interpreted and expressed in radians.

ASIN, ACOS, and ATAN return the principal values of the inverse
relations, as described in “COMPLEX.”

Dictionary 273



--.TRIG

SIN Sine Analytic
Level 1 Level 1
z » sin z
‘symb' ®» 'SIHCsymba !

SIN returns the sine of its argument. For complex arguments,

sin (x + iy) = sin x cosh y + i cos x sinh y.

ASIN Arc sine Analytic
Level 1 Level 1
z » arc sin z
'symb' » '"ASIM{symb> '

ASIN returns the principal value of the angle having a sine equal to
its argument. For real arguments, the range of the result is from —90
to +90 degrees (—w /2 to + /2 radians). For complex arguments, the
complex principal value of the arc sine is returned:

arc sin z = —i In (iz + \1 — 2%)

A real argument x outside of the domain —1 < x <1 is converted to
a complex argument z = x + 0i, and the complex principal value is
returned.

274 Dictionary



- TRIG

COS Cosine Analytic
Level 1 Level 1
V4 » COSs z
'symb' » 'COScsymby !

COS returns the cosine of its argument. For complex arguments,

cos (x + iy) = cos x cosh y — i sin x sinh y

ACOS Arc cosine Analytic
Level 1 Level 1
V4 » arc cos z
‘symb' ®» "ACOS symby '

ACOS returns the principal value of the angle having a cosine equal
to its argument. For real arguments, the range of the result is from 0
to 180 degrees (0 to w radians). For complex arguments, ACOS re-
turns the complex principal value of the arc cosine:

arccosz = —iln(z+ V2 —1)

A real argument x outside of the domain —1 < x < 1 is converted to
a complex argument z = x + 0i, and the complex principal value is
returned.

Dictionary 275



--.TRIG

TAN Tangent Analytic
Level 1 Level 1
z » tan z
'symb ' » 'TAM Csymb !

TAN returns the tangent of its argument. For complex arguments,

sin x cos x + i sinh y cosh y
(sinh y)2 + (cos x)?

tan(x + iy) =

If a real argument is an odd integer multiple of 90, and if DEG angle
mode is set, an Infinite Result exception occurs. If flag 59 is
clear, the sign of the (MAXR) result is that of the argument.

ATAN Arc tangent Analytic
Level 1 Level 1
z » arc tan z
'symb ' » '"ATAM Csymb '

ATAN returns the principal value of the angle having a tangent equal
to its argument. For real arguments, the range of the result is from
—90 to +90 degrees (—n/2 to +m/2 radians). For complex argu-
ments, ATAN returns the complex principal value of the arc tangent:

i i+ z
arctan z = — In |———
z i— 2z

276 Dictionary



-..TRIG

P-R R-P R-C C-R ARG

The functions P—R (polar-to-rectangular), R=P (rectangular-to-polar),
and ARG (argument) deal with complex numbers that represent the
coordinates of points in two dimensions. R—+C (real-to-complex) and
C-=R (complex-to-real) convert pairs of real numbers to and from com-
plex notation.

The functions P»R and R—+P can also act on the first two elements of
a real vector.

P-R Polar to Rectangular Function
Level 1 Level 1
X » ix, B
Cr,fn » UX,yd
Cro...1] = C x y...]
'symb' » 'F+REisymb: '

P—R converts a complex number (r, §) or two-element vector [ 6],
representing polar coordinates, to a complex number (x, y) or two-ele-
ment vector [ x y |, representing rectangular coordinates, where:

x =rcosf, y = rsin 6

The current angle mode determines whether ¢ is interpreted as de-
grees or radians.

If a vector has more than two elements, P=R converts the first two
elements and leaves the remaining elements unchanged. For three-
element vectors, P=R converts a vector [p # z] from cylindrical
coordinates (where p is the distance to the z-axis, and 0 is the angle in
the xy-plane from the x-axis to the projected vector) to the vector
[xyz] in rectangular coordinates.

Dictionary 277



--.TRIG

You can represent a vector in spherical coordinates as [ 7 ¢ 6], where r
is the length of the vector, ¢ is the angle from the z-axis to the vector,
and 6 is the angle in the xy-plane from the x-axis to the projected
vector. To convert a vector from spherical to rectangular coordinates,
execute:

F+R ARRY+ DROP ROT {3} *ARRY FP2E

R-P Rectangular-to-Polar Function
Level 1 Level 1
z » r.f
C xy...]7» Cro...3
‘symb' » 'R+Pisymb !

R-+P converts a complex number (x, y) or two-element vector [xy ],
representing rectangular coordinates, to a complex number (r, ) or
two-element vector [ r 0 ], representing polar coordinates, where:

r=abs (v, y), 0 = arg (x, y)

The current angle mode determines whether § is expressed as degrees
or radians. A real argument x is treated as the complex argument
(x, 0).

If a vector has more than two elements, R-P converts the first two
elements and leaves the remaining elements unchanged. For three-
element vectors, R-P converts a vector [ x y z ] from rectangular
coordinates to a vector [ p f z] in cylindrical coordinates, where p is
the distance to the z-axis, and 6 is the angle in the xy-plane from the
x-axis to the projected vector.

278 Dictionary



- TRIG

You can represent a vector in spherical coordinates as [ r ¢ §], where r
is the length of the vector, ¢ is the angle from the z-axis to the vector,
and 0 is the angle in the xy-plane from the x-axis to the projected
vector. To convert a vector from rectangular to spherical coordinates,
execute:

R+F ARRY=+ DROP ROT ROT {3 2*ARRY R=*P

R-C Real to Complex Command
Level 2 Level 1 Level 1
X y » X,y

R~C combines real numbers x and y into a coordinate pair (x, y).

Refer to “ARRAY” for the use of R+C with arrays.

C-R Complex to Real Command
Level 1 Level 2 Level 1
CxX,y2 » X y

C-R converts a coordinate pair (x, y) into two real numbers x and y.

Refer to “ARRAY” for the use of C-R with arrays.

Dictionary 279



.. TRIG

ARG Argument Function
Level 1 Level 1
z » 0
‘symb' "ARG Csymb ) '

ARG returns the polar angle 6 of a coordinate pair (x, y) where

arc tan y/x for x = 0,
¢ =y arc tan y/x + w signy for x < 0, radians mode,
arc tan y/x + 180 sign y for x < 0, degrees mode.
The current angle mode determines whether § is expressed as degrees

or radians. A real argument x is treated as the complex argument
(x, 0).

~HMS HMS- HMS+ HMS- D-R R-D

The commands -HMS, HMS-, HMS+, and HMS— deal with time
(or angular) quantities expressed by real numbers in HMS (hours-min-
utes-seconds) format.

The HMS format is h.MMSSs, where:

B / is zero or more digits representing the integer part of the number.
B MM are two digits representing the number of minutes.
B SS are two digits representing the number of seconds.

B 5 is zero or more digits representing the decimal fractional part of
seconds.

280 Dictionary



--.TRIG

Here are examples of time (or angular) quantities expressed in HMS
format.

Quantity HMS Format
12h 32m 46s (12° 32’ 467) 12.3246
—6h 00m 13.2s (—6° 00’ 13.2”) | —6.00132
36m (36") 0.36
-HMS Decimal to H-M-S Command
Level 1 Level 1
X » hms

-HMS converts a real number representing decimal hours (or de-
grees) to HMS format.

HMS- H-M-S to Decimal Command
Level 1 Level 1
hms » X

HMS— converts a real number in HMS format to its decimal form.

HMS + Hours-Minutes-Seconds Plus Command
Level 2 Level 1 Level 1
hms, hms, » hms4y + hms,

HMS+ adds two numbers in HMS format, returning the sum in HMS
format.

Dictionary 281



- TRIG

HMS - Hours-Minutes-Seconds Minus Command
Level 2 Level 1 Level 1
hms4 hms, » hmsy — hms,

HMS — subtracts two real numbers in HMS format, returning the dif-
ference in HMS format.

D-R Degrees to Radians Function
Level 1 Level 1
X » (w/180) x
'symb' ® 'O+Rcsymb !

D-R converts a real number expressed in degrees to radians.

R-D Radians to Degrees Function
Level 1 Level 1
X » (180/) x
‘symb' ®» 'R+Dcsymba !

R-D converts a real number expressed in radians to degrees.

282 Dictionary



UNITS

The value of a physical measurement includes units as well as a nu-
merical value. To convert a physical measurement from one system of
units to another, you multiply the numerical value by a conversion
factor, which is the ratio of the new units to the old units. The
HP-28S automates this process through the command CONVERT.
You specify a numerical value, the old units, and the new units, and
then CONVERT computes the appropriate conversion factor and mul-
tiplies the numerical value by the conversion factor.

The HP-28S’s unit conversion system is based upon the International
System of Units (SI). There are 120 units included in the HP-28S's
permanent memory. CONVERT recognizes any multiplicative com-
bination of these units, as well as additional units that you can define.
The UNITS catalog lists the built-in units and their values in terms of
standard base quantities.

The International System specifies seven base quantities: length (me-
ter), mass (kilogram), time (second), electric current (ampere),
thermodynamic temperature (kelvin), luminous intensity (candela),
and amount of substance (mole). In addition, the HP-28S recognizes
one undefined base quantity, which you may specify as part of user-
defined units.

CONVERT Convert Command
Level 3 Level 2 Level 1 Level 2 Level 1
X n Oldll llnew " . y n new "
X "old" ' new ' » y ' new'
X ‘old' "new" » y "new"
X ‘old! 'new' » y "new'

CONVERT multiplies a real number x by a conversion factor, which is
computed from two arguments representing old and new units. The
resulting real number y is returned to level 2, and the new unit string
is returned to level 1.

Dictionary 283



--.UNITS

Generally the old and new units are represented by string objects, as
described below. For convenience in simple conversions, however,
you can use a name object to represent a unit. For example, assuming
you haven't created variables named ‘ft’ or ‘m’, you could convert 320
feet to meters by executing:

328 ft1 m COHVERT.

The unit strings are string objects that represent algebraic expressions
containing unit abbreviations. A unit string may contain:

B Any built-in or user-defined units. Built-in units are represented by
their abbreviations (refer to “The UNITS Catalog”). User units are
represented by their variable names (refer to “User-Defined Units”).

B A unit followed by the ~ symbol, plus a single digit 1-9. For exam-
ple: "m™~2" (meters squared), "a#s"3" (gram-seconds cubed).

B A unit preceded by a prefix representing a multiplicative power of
10. For example: "Hpc" (Megaparsec), "nm" (nanometer). (Refer to
“Unit Prefixes”).

B Two or more units multiplied together, using the % symbol. For ex-
ample: "g¥cm" (gram-centimeters), "ft¥1b" (foot-pounds),
"mikaks" (meter-kilogram-seconds).

B One / symbol to indicate inverse powers of units. If all units in a
unit string have inverse powers, the unit string can start with
"1.-". For example: "m.-=zec" (meters per second), "1.m" (inverse
meters), "g¥cm-s"2%" K" (gram-centimeters per second squared
per degree Kelvin).

B The ' symbol, which is ignored. This allows you to create an alge-
braic expression on the stack and then use -STR to change the
expression to a unit string. However, parentheses are not allowed
in unit strings.

284 Dictionary



--UNITS

The two unit strings must represent a dimensionally consistent unit
conversion. For example, you can convert "1" (liters) to "cm~3" (cu-
bic centimeters), but not to "acre". CONVERT checks that the
powers of each of the eight base quantities (seven SI base quantities
plus one user-defined base quantity) are the same in both unit strings.
(Dimensionality consistency is checked in modulo 256.)

Here are some examples of using CONVERT (numbers shown in STD
format):

Old Old New New New
Value Units Units Value Units
1 "m" R »  3.28083989501 AR &
1 "b¥Mpc" "cmt3" » 3.085678 "emt3"
12345 "kg¥m-ss*2" "dyn" » 1234500 "dyn"

Temperature Conversions

Conversions between the four temperature scales (°K, °C, °F, and °R)
involve additive constants as well as multiplicative factors. If both
unit string arguments contain only a single, unprefixed temperature
unit with no exponent, CONVERT performs an absolute temperature
scale conversion, including the additive constants. For example, to

convert 50 degrees Fahrenheit to degrees Celsius, execute:

56 °"F °"C CONVERT

If either unit string includes a prefix, an exponent, or any unit other
than a temperature unit, CONVERT performs a relative temperature
unit conversion, which ignores the additive constants.

Dictionary 285



«UNITS

Dimensionless Units of Angle

Plane and solid angles are called dimensionless because they involve
no physical dimensions. You can use the following dimensionless units
as constants in your unit strings; however, the calculator can’t check
for dimensional consistency in dimensionless units.

Dlmerln’,:ic:nless Abbreviation Value
Arcmin arcmin /21600 unit circle
Arcsec arcs /1296000 UNit
circle

Degree ° /360 unit circle
Grade grad /a00 unit circle
Radian r /2w unit circle
Steradian sr 1/amw unit sphere

Some photometric units are defined in terms of steradians. These
units include a factor of "ar in their numerical values. Because this
factor is dimensionless, the calculator can’t check for its presence or
absence. Therefore, to convert between photometric units that include
this factor and photometric units that don’t, you should include the
dimensionless unit “sr”. The following table lists photometric units ac-
cording to whether their definition includes steradians.

Bhotometric Units

includes Doesn’t Include
Steradians Steradians
Lumen (Im) Candela (cd)
Lux (Ix) Footlambert (flam)
Phot (ph) Lambert (lam)
Footcandle (fc) | Stilb (sb)

286 Dictionary



-.UNITS

To convert between photometric units in the same column, no “sr”
factor is required. However, to convert between photometric units in
different columns, you must divide the unit in the left column by “sr”
or multiply the unit in the right column by “st”. Be sure to do so, be-
cause the calculator can’t check that your units are consistent. Some
examples of consistent photometric units are:

“Im” is consistent with “cd*sr”
“fc/sr” is consistent with “flam”
“Im/sr*m”2” is consistent with “lam”

The UNITS Catalog

Pressing @§(UNITS] activates the UNITS catalog, which is analogous to
the command catalog obtained with @(CATALOG]. The UNITS catalog
lists each unit included in the HP-28S, along with the abbreviation
recognized by CONVERT and the value of the unit in terms of the SI
base quantities.

When you press @[UNITS], the normal HP-28S display is superceded
by the UNITS display:

P

m~z2
[MERT[FEEY ] [ [FETCH

The top line shows the unit abbreviation of the selected unit, in this
example =, followed by the full name, are. Are is the first unit in
the HP-28S alphabetical unit catalog. The second line shows the
unit’s value in SI base units, which are shown in the third line. Alto-
gether, this display shows that ar e is abbreviated a and has the value
100 meters squared.

Dictionary 287



--.UNITS

The UNITS menu is shown in the bottom line. The menu keys act as
follows:

Menu Key Description

Advance the catalog to the next unit in the catalog.

Move the catalog to the previous unit in the catalog.

Exit the catalog and add the current unit abbreviation to the
command line at the cursor position (start a new command
line if none is present).

Exit the catalog, leaving any current command line
unchanged.

In addition to the operations available in the UNITS menu, you can:

8 Press any letter key to move the catalog to the first unit that starts
with that letter.

B Press any non-letter key on the left-hand keyboard to move the
catalog to “°”, the first non-alphabetic unit.

B Press 1] to move the catalog display to “1”, the last non-alphabeti-
cal unit.

B Press to exit the catalog and clear the command line.

The following table shows all the units in the UNITS catalog, includ-
ing descriptions of the units.

288 Dictionary



HP-28S Units

--.UNITS

Unit Full Name Description Value

a Are Area 100 m"2

A Ampere Electric current 1A

acre Acie Area 4046.87260987 m"2

arcmin | Minute of arc Plane angle 4.62962962963E —5

arcs Second of arc Plane angle 7.71604938272E -7

atm Atmosphere Pressure 101325 Kg/m*s"2

au Astronomical unit Length 149597900000 m

A° Angstrom Length .0000000001 m

b Barn Area 1.E—28 m™2

bar Bar Pressure 100000 Kg/mxs~2

bbl Barrel, oil Volume 158987294928 m"3

Bqg Becquerel Activity 11/s

Btu International Table Btu | Energy 1055.05585262
Kgxm~2/s"2

bu Bushel Volume .03523907 m"3

c Speed of light Velocity 299792458 m/s

C Coulomb Electric charge 1 A%s

cal International Table Energy 4.1868 Kg*xm"2/s"2

calorie

cd Candela Luminous intensity 1 cd

chain Chain Length 20.1168402337 m

Ci Curie Activity 3.7E10 1/s

ct Carat Mass .0002 Kg

cu US cup Volume 2.365882365E —4
m~3

d Day Time 86400 s

dyn Dyne Force .00001 Kg*m/s"2

Dictionary 289



-.UNITS

HP-28S Units (Continued)

Unit Full Name Description Value

erg Erg Energy .0000001
Kg*m~2/s"2

eV Electron volt Energy 1.60219E—19
Kg*m~2/s"2

F Farad Capacitance 1 A"2%s™4/Kg*xm™2

fath Fathom Length 1.82880365761 m

fom Board foot Volume .002359737216 m"3

fc Footcandle Luminance .856564774909

Fdy Faraday Electric charge 96487 Axs

fermi Fermi Length 1.E-156m

flam Footlambert Luminance 3.42625909964
cd/m”2

ft International foot Length 3048 m

ftuS Survey foot Length .304800609601 m

g Gram Mass .001 Kg

ga Standard freefall Acceleration 9.80665 m/s"2

gal US gallon Volume .003785411784 m"3

galC Canadian gallon Volume .00454609 m"3

galUK UK gallon Volume 004546092 m"3

gf Gram-force Force .00980665 Kg*m/s"2

grad Grade Plane angle .0025

grain Grain Mass .00006479891 Kg

Gy Gray Absorbed dose 1 m"2/s"2

h Hour Time 3600 s

H Henry Inductance 1 Kg*xm"2/A*2%s"2

hp Horsepower Power 745.699871582
Kgxm~2/s"3

Hz Hertz Frequency 11/s

290 Dictionary




HP-28S Units (Continued)

-.UNITS

Unit Full Name Description Value

in Inch Length .0254 m

inHg Inches of mercury Pressure 3386.38815789
Kg/m*s"2

inH20 Inches of water Pressure 248.84 Kg/mxks~2

J Joule Energy 1 Kgxm"2/s"2

kip Kilopound-force Force 4448.22161526
Kg*m/s"2

knot Knot Speed 514444444444 m/s

kph Kilometer per hour Speed LTTT77777778 mfs

| Liter Volume .001 m"~3

lam Lambert Luminance 3183.09886184
cd/m"2

Ib Avoirdupois pound Mass .45359237 Kg

Ibf Pound-force Force 4.44822161526
Kg*xm/s"2

Ibt Troy Ib Mass 3732417 Kg

Im Lumen Luminance flux 7.95774715459E -2
cd

Ix Lux llluminance 7.95774715459E—2
cd/m~2

lyr Light year Length 9.46052840488E15 m

m Meter Length im

mho Mho Electric conductance 1 A%2%s"3/Kg*m"2

mi International mile Length 1609.344 m

mil Mil Length .0000254 m

min Minute Time 60 s

miuS US statute mile Length 1609.34721869 m

Dictionary 291




-.UNITS

HP-28S Units (Continued)

Unit Full Name Description Value
mmHg | Millimeter of mercury Pressure 133.322368421
Kg/m*s"2
mol Mole Amount of substance 1 mol
mph Miles per hour Speed 44704 m/s
N Newton Force 1 Kg*m/s™2
nmi Nautical mile Length 1852 m
ohm Ohm Electric resistance 1 Kg*xm"2/A*2%s"3
0z Ounce Mass .028349523125 Kg
ozfl US fluid oz Volume 2.95735295625E -5
m”3
ozt Troy oz Mass .031103475 Kg
ozUK UK fluid oz Volume .000028413075 m"3
P Poise Dynamic viscosity .1 Kg/mxs
Pa Pascal Pressure 1 Kg/mks~2
pc Parsec Length 3.08567818585E16 m
pdl Poundal Force .138254954376
Kgxm/s"2
ph Phot Luminance 795.774715459
cd/m”2
pk Peck Volume .0088097675 m~3
psi Pounds per square Pressure 6894.75729317
inch Kg/m*s"2
pt Pint Volume .000473176473 m"3
qt Quart Volume .000946352946 m"3
r Radian Plane angle 159154943092
R Roentgen Radiation exposure .000258 Axs/Kg
rad Rad Absorbed dose .01 m™2/s"2
rd Rod Length 5.02921005842 m
rem Rem Dose equivalent .01 m"2/s”2
292 Dictionary




HP-28S Units (Continued)

-..UNITS

Unit Full Name Description Value
s Second Time 1s
S Siemens Electric conductance 1 A"2%s"3/Kg*m"2
sb Stilb Luminance 10000 cd/m*2
slug Slug Mass 14.5939029372 Kg
sr Steradian Solid angle 7.95774715459E -2
st Stere Volume 1 m”™3
St Stokes Kinematic viscosity .0001 m"2/s
Sv Sievert Dose equivalant 1 m"2/s"2
t Metric ton Mass 1000 Kg
T Tesla Magnetic flux 1 Kg/A%s”2
tbsp Tablespoon Volume 1.47867647813E—5
m~3
therm EEC therm Energy 105506000
Kg*xm~2/s"2
ton Short ton Mass 907.18474 Kg
tonUK | Long ton Mass 1016.0469088 Kg
torr Torr Pressure 133.322368421
Kg/m*s”~2
tsp Teaspoon Volume 4.92892159375E -6
m”3
Unified atomic mass Mass 1.66057E—27 Kg
\Y Volt Electric potential 1 Kg*m~2/A%s"3
W Watt Power 1 Kg*m~"2/s"3
Wb Weber Magnetic flux 1 Kgkxm"2/A%xs"2
yd International yard Length 9144 m
yr Year Time 31556925.9747 s
° Degree Angle 2.77777777778E-3

Dictionary 293



--.UNITS

HP-28S Units (Continued)

Unit Full Name Description Value

°C Degree Celsius Temperature 1°K

°F Degree Fahrenheit Temperature .555555555556 °K

°K Degree Kelvin Temperature 1°K

°R Degree Rankine Temperature .555555555556 °K
Micron Length .000001 m
User quantity 17?

1 Dimensionless unit 1

Sources: The National Bureau of Standards Special Publication 330,
The International System of Units (SI), Fourth Edition, Washington D.C.,
1981.

The Institute of Electrical and Electronics Engineers, Inc., American
National Standard Metric Practice ANSI/IEEE Std. 268-1982, New York,
1982.

American Society for Testing and Materials, ASTM Standard for Metric
Practice E380-84, Philadelphia, 1984.

Aerospace Industries Association of America, Inc., National Aerospace
Standard, Washington D.C., 1977.

Handbook of Chemistry and Physics, 64th Edition, 1983-1984, CRC Press,
Inc., Boca Raton, FL, 1983.

294 Dictionary



--.UNITS

User-Defined Units

You can create a global variable containing a list that CONVERT will
accept as a user-defined unit in a unit string. The list must contain a
real number and a unit string (similar to the second and third lines in
the UNITS display). For example, suppose you often use weeks as a
unit of time. Executing

7 "d"y 'HWE' STO

allows you to use "WK" in conversions or in creating more compli-
cated user-defined units.

The user defined unit string can contain any element of a conversion
unit string, along with two other special units:

B To define a dimensionless unit, specify a unit string "1".

B To define a new unit not expressible in SI units, specify a unit
string "7 ". CONVERT will check dimensionality for this unit along
with the SI units. For example, to convert money in three curren-
cies, dollars, pounds, and francs, define:

{1 2"y 'DOLLAR' STO
{2,285 "?"r 'POUND" STO
{.4 "2"} 'FRANC' STO
and then convert between any two of these currencies (the values
chosen are just for illustration).

Unit Prefixes
In a unit string you can precede a built-in unit by a prefix indicating a

power of ten. For example, "mm" indicates “millimeter”, or meter X
1073, The table below lists the prefixes recognized by CONVERT.

Dictionary 295



--.UNITS

Unit Prefixes

Prefix | Name | Exponent
E exa +18
P peta +15
T tera +12
G giga +9
M mega +6
k or K | kilo +3
h or H | hecto +2
D deka +1
d deci el
c centi —
m milli —3
n micro —6
n nano =i
p pico —12
f femto Ul
a atto —18

Most prefixes used by the HP-28S correspond with standard SI nota-
tion. The one exception is “deka”, indicating an exponent of +1,
which is “D” in HP-28S notation and “da” in SI notation.

296 Dictionary



--.UNITS

o

Note

You can’t use a prefix with a unit if the resulting com-
bination would match a built-in unit. For example, you
can’t use "min" to indicate milli-inches because "min"
is a built-in unit indicating minutes. Other possible com-

binations that would match built-in units are: "Fa", "cd", "ph",
Ilf‘lan.lll/ "ﬂfl'l]-.", "mF'h”, "F{F’k‘", Il':t"’ "F't", II+'.tII, "EI'J", and

U

Although you can’t use a prefix with a user-defined unit, you can
create a new user-defined unit whose name includes the prefix

character.

Dictionary 297



Messages

This appendix lists all error and status messages given by the HP-28S.
Messages are normally displayed in display line 1 and disappear at
the next keystroke. (Solver qualifying messages are shown in line 2.)

Messages noted as status messages are for your information, and do
not indicate error conditions. Messages noted as math exceptions will
not appear if the corresponding exception error flag is clear.

Messages Listed Alphabetically

Error Number

Message Meaning
Hex Decimal

Bad Argument Type 202 514 A command required a
different object type or
types as arguments.

Bad Argument Value 203 515 An argument value was
out of the range of oper-
ation of a command.

Bad Guess(es) AO1 2561 The guess or guesses
supplied to the Solver or
ROOT caused invalid re-
sults when the current
equation was evaluated.

Can’t Edit CHR(0) 102 258 An attempt was made to
edit a string containing
character 0.

298 A: Messages



Messages Listed Alphabetically (Continued)

Message

Error Number

Hex

Decimal

Meaning

Circular Reference

Command Stack
Disabled

Constant?

Constant Equation

Directory Not Allowed

Extremum

HALT not Allowed

Improper User Function

Inconsistent Units

129

125

A02

Status

12A

Status

121

103

B02

297

293

2562

299

289

259

2818

An attempt was made to
store an object in a vari-
able, using the Solver
menu, when the object
refers to the variable di-
rectly or indirectly.

B (covmAND ] was
pressed while COM-

MAND was disabled.

The current equation re-
turned the same value at
every point sampled by
the root-finder.

The current equation re-
turned the same value for
every point within the
specified range sampled
by DRAW.

The name of an existing
directory was used as an
argument.

The result returned by
the Solver is an extre-
mum rather than a root.

DRAW or the Solver en-
countered a HALT
command in the program
EQ.

An attempt was made to
evaluate an improper
user-defined function.
Refer to “Programs” for
correct syntax.

CONVERT was executed
with unit strings of differ-
ent dimensionality.

A: Messages 299




Messages Listed Alphabetically (Continued)

Message

Error Number

Hex

Decimal

Infinite Result

Insufficient Memory

Insufficient 2 Data

Interrupted

Invalid Dimension

Invalid PPAR

Invalid Unit String

Invalid ZDAT

Invalid ZPAR

LAST Disabled

Low Memory!

305

001

603

Status

501

11E

BO1

601

604

205

Status

773

001

1539

1281

286

2817

1537

1540

517

Math exception. A cal-
culation returned an
infinite result, such as
1/0 or LN(0).

There was not enough
free memory to execute
an operation.

A statistics command
was executed when
2DAT did not contain
enough data points for
the calculation.

The Solver was inter-
rupted by the key.

An array argument had
the wrong dimensionality.

DRAW or DRWZ encoun-
tered an invalid entry in
PPAR.

CONVERT was executed
with an invalid unit string.

A statistics command

was executed with an
invalid object stored in
ZDAT.

2ZPAR is the wrong object
type or contains an
invalid or missing entry in
its list.

LAST was executed with
flag 31 clear.

Indicates fewer than 128
bytes of free memory
remain.

300 A: Messages




Messages Listed Alphabetically (Continued)

Message

Error Number

Hex

Decimal

Meaning

Memory Lost

Negative Underflow

No Current Equation

Nonexistent ZDAT

Non-Empty Directory

Non-real Result

No Room for UNDO

No Room to ENTER

No Room to Show Stack

005

302

104

602

12B

11F

101

105

Status

005

770

260

1538

300

287

257

261

HP-28S memory has
been reset.

Math exception. A cal-
culation returned a
negative, non-zero result
greater than —MINR.

SOLVR or DRAW was
executed with a nonexis-
tent variable EQ.

A statistics command
was executed with a non-
existent variable TDAT.

An attempt was made to
purge a non-empty
directory.

A procedure returned a
result other than a real
number, which was re-
quired for the Solver,
ROOT, DRAW, or |[.

There was not enough
free memory to save a
copy of the stack. UNDO
is automatically disabled.

There was not enough
memory to process the
command line.

There is not enough
memory for the normal
stack display.

A: Messages 301




Messages Listed Alphabetically (Continued)

Message

Error Number

Hex

Decimal

Meaning

name, Not in Equation

Out of Memory

Overflow

Positive Underflow

Power Lost

Sign Reversal

Syntax Error

Too Few Arguments

Status

303

301

Status

106

201

771

769

262

513

DRAW was executed
when the independent
variable name in PPAR
did not exist in the cur-
rent equation. This
message is followed by
either Constant Equa-
tion or Using name,.

You must purge one or
more objects to continue
calculator operation.

Math exception. A cal-
culation returned a result
greater (in absolute
value) than MAXR.

Math exception. A cal-
culation returned a
positive, non-zero result
less than MINR.

Memory may have been
corrupted by low power.

The Solver found an ap-
proximation to an actual
root or a discontinuity in
the procedure values.
(See page 231.)

An object in the com-
mand line was entered in
an invalid form.

A command required
more arguments than
were available on the
stack.

302 A: Messages




Messages Listed Alphabetically (Continued)

Message

Error Number

Hex Decimal

Meaning

Unable to Isolate

Undefined Local Name

Undefined Name

Undefined Result

UNDO Disabled

Using name

Wrong Argument Count

Zero

120 288

003 003

204 516

304 772

124 292

Status

128 296

Status

The specifed name was
either absent or con-
tained in the argument of
a function with no
inverse.

Attempted to evaluate a
local name for which a
corresponding local vari-
able did not exist.

Attempted to recall the
value of an undefined
(formal) variable.

A function was executed
with arguments that lead
to a mathematically un-
defined result, such as
0/0, or LNP1(x) for

X< —1.

B (unDO ] was pressed
while UNDO was

disabled.

DRAW has selected the
independent variable
name.

A user-defined function
was evaluated in an ex-
pression, with the wrong
number of arguments in
parentheses.

The Solver found a value
for the unknown variable
at which the current

equation evaluated to 0.

A: Messages 303



Error Messages Listed by Error Number

Hex | Decimal Message
Errors Resulting From General Operations
001 001 Insufficient Memory

003 003 Undefined Local Name

005 005 Memory Lost

006 006 Power Lost

101 257 No Room for UNDO

102 258 Can’t Edit CHR(0)

103 259 Improper User Function
104 260 No Current Equation

105 261 No Room to ENTER

106 262 Syntax Error

11E 286 Invalid PPAR

11F 287 Non-real Result

120 288 Unable to Isolate

121 289 HALT not Allowed

124 292 UNDO Disabled

125 293 Command Stack Disabled
128 296 Wrong Argument Count
129 297 Circular Reference

12A 299 Directory Not Allowed

12B 300 Non-Empty Directory
Errors Resulting From Stack Operations
201 513 Too Few Arguments

202 514 Bad Argument Type

203 515 Bad Argument Value

204 516 Undefined Name

205 517 LAST Disabled

304 A: Messages



Error Messages Listed by Error Number (Continued)

Hex | Decimal Message

Errors Resulting From Real Number Operations

301 769 Positive Underflow
302 770 Negative Underflow
303 771 Overflow

304 772 Undefined Result
305 773 Infinite Result

Errors Resulting From Array Operations

501 1281 Invalid Dimension

Errors Resulting From Statistics Operations
601 1537 Invalid ZDAT

602 1538 Nonexistent ZDAT

603 1539 Insufficient 2 Data

604 1540 Invalid ZPAR

Errors Resulting From the Root-finder
AO1 2561 Bad Guess(es)

A02 2562 Constant?

Errors Resulting From Unit Conversion
BO1 2817 Invalid Unit String

B02 2818 Inconsistent Units

A: Messages

305



User Flags

There are 64 user flags, numbered 1 through 64. Flags 1 through 30
are available for general use. Flags 31 through 64 have special mean-
ings, as listed below—when you set or clear them you alter the modes
associated with the flags.

Default Settings. For each flag or set of flags listed below, the set-
ting described first is the default setting that occurs at Memory Lost.

Flag Description

31 Last Arguments mode

Set: Last Arguments on. Last arguments are saved for recovery
by LAST or in case of error.

Clear: Last Arguments off.
32 Printer Trace mode
Clear: Printer Trace off.

Set: Printer Trace on. Each time you press an immediate-execute
key, the calculator prints the contents of the command line, the im-
mediate-execute operation, and the result in level 1.

33 Auto CR mode

Clear: Auto CR on. Print commands send Carriage Right at end of
transmission.

Set: Auto CR off. Data from print commands accumulate in
printer buffer.

306 B: User Flags



Flag

Description

34

35

36

37-42

43-44

45

46

Solution mode

Clear: General Solution mode. Solutions returned by ISOL and
QUAD include variables for arbitrary signs and integers.

Set: Principal Value mode. ISOL and QUAD take arbitrary signs to
be 1 and arbitrary integers to be 0.

Constants Mode

Set: Symbolic Constants mode. Evaluating a symbelic constant
returns its symbolic form, unchanged.

Clear: Numerical Constants mode. Evaluating a symbolic constant
returns its numerical value.

Results Mode

Set: Symbolic Results mode. Functions accept symbolic argu-
ments and return symbolic results.

Clear: Numerical Results mode. Functions repeatedly evaluate
symbolic arguments, accepting only numerical arguments and re-
turning only numerical results. Symbolic constants return numerical
values, regardless of flag 35.

Binary integer wordsize

These flags are interpreted as a binary integer 0 < n < 63, flag 42
being the most significant bit; wordsize is n + 1, default value 64.

Binary integer base

43 clear, 44 clear: Decimal base.
43 clear, 44 set: Binary base.

43 set, 44 clear: Octal base.

43 set, 44 set: Hexadecimal base.
Multi-line Display mode

Set:  Multi-line on. Object in level 1 displayed on more than one
line if appropriate.

Clear: Multi-line off.
Index Wraparound indicator

Clear: Last execution of GETI or PUTI didn’t increment index to
first position.

Set: Last execution of GETI or PUTI incremented index to first
position.

B: User Flags 307



Flag Description

47 Double-Space Printing mode
Clear: Double-Space Printing off.
Set: Double-Space Printing on. One blank line printed between
every two text lines.

48 Radix mark
Clear: Period is radix mark, comma is separator.
Set: Comma is radix mark, period is separator.

49-50 | Number format
49 clear, 50 clear: Standard number format.
49 clear, 50 set: Scientific number format.
49 set, 50 clear: Fixed number format.
49 set, 50 set: Engineering number format.

51 Beeper mode
Clear: Beeper on.
Set: Beeper off.

52 Print speed
Clear: Normal print speed.
Set: Faster print speed.

53-56 | Number of decimal digits
These flags interpreted as a binary integer 0 < n < 11, flag 50
being the most significant bit; default value 0.

57 Underfilow action
Clear: Underflow exceptions return 0 and set flag 61 or 62.
Set: Underflow exceptions are errors.

58 Overflow action
Clear: Overflow exceptions return +9.99999999999E499 and set
flag 63.
Set: Overflow exceptions are errors.

308 B: User Flags




Flag

Description

59

60

61

62

63

64

Infinite Result action
Set: Infinite Result exceptions are errors.

Clear: Infinite Result exceptions return +9.99999999999E499
and set flag 64.

Angle mode

Clear: Degrees angle mode.
Set: Radians angle mode.
Underflow — indicator

Clear: No Underflow — exception occurred since this flag last
cleared.

Set: Underflow — exception occurred since this flag last cleared.
Underflow+ indicator

Clear: No Underflow+ exception occurred since this flag last
cleared.

Set: Underflow+ exception occurred since this flag last cleared.
Overflow indicator

Clear: No Overflow exception occurred since this flag last cleared.
Set: Overflow exception occurred since this flag last cleared.
Infinite Result indicator

Clear: No Infinite Result exception occurred since this flag last
cleared.

Set: Infinite Result exception occurred since this flag last cleared.

B: User Flags 309



Glossary

accuracy: For numerical integration, the numerical accuracy of the
integrand, which determines the sampling intervals for computation
of the integral.

algebraic: Short for algebraic object.

algebraic object: A procedure, entered and displayed between '
delimiters, containing numbers, variables, operators, and functions
combined in algebraic syntax to represent a mathematical expression
or equation.

algebraic entry mode: The entry mode in which a key correspond-
ing to a function appends its function name and a left parenthesis (if
applicable) to the command line. Keys corresponding to other com-
mands execute their commands immediately.

algebraic syntax: The restrictions on a procedure, that (1) when
evaluated, it takes no arguments from the stack and returns one re-
sult, and (2) it can be subdivided into a hierarchy of subexpressions.
These conditions are satisfied by all algebraic objects and some
programs.

alpha entry mode: The entry mode in which all keys corresponding
to commands add their command names to the command line.

analytic function: A function that can be differentiated or solved
for its argument.

annunciators: The icons at the top of the LCD display that indicate
the states of certain calculator modes.

310 Glossary



arbitrary integer: A variable n1, n2, and so on, that appears in the
solution of an expression with multiple roots. Different roots are ob-
tained by storing real integers into the variables.

arbitrary sign: A variable s1, s2, and so on, that appears in the solu-
tion of an expression with multiple roots. Different roots are obtained
by storing +1 or —1 into the variables.

argument: An object taken from the stack by an operation as its
input.

array: An object, defined by the [ 1 delimiters, that represents a real
or complex matrix or vector.

associate: To rearrange the order in which two functions are ap-
plied to three arguments, without changing the value of an
expression—for example, (a + b) + c is rearranged to a + (b + ¢).
(In RPN form, a b + ¢ + is rearranged to a b ¢ + +.)

base: The number base in which binary integers are displayed. The
choices are binary (base 2), octal (base 8), decimal (base 10) and hexa-
decimal (base 16).

base unit: One of the seven units that are used as the basis for HP-
28S unit conversions. The base units are the meter (length), kilogram
(mass), second (time), ampere (electric current), kelvin (thermody-
namic temperature), candela (luminous intensity) and mole (amount
of substance).

binary integer: An object identified by the delimiter #, which repre-
sents an integer number with from 1 to 64 binary digits, displayed
according to the current base.

clause: A program sequence between two program structure com-
mands, such as IF test-clause THEN then-clause END.

clear: (1) To empty the stack (CLEAR). (2) To blank the display
(CLLCD). (3) To assign the value 0 to a user flag (CF).

command: Any HP-28S operation that can be included in the defini-
tion of a procedure or included by name in the command line.

Glossary 311



command line: The input string that contains non-immediate-exe-
cute characters, numbers, objects, commands, and so on, that are
entered from the keyboard. ENTER causes the command line string to
be converted to a program and evaluated.

command stack: Up to four previously entered command lines that
are stored for future retrieval by COMMAND.

commute: To interchange the two arguments of a function.

complex array: An array in which the elements are complex
numbers.

complex number: An object delimited by ¢ » symbols, consisting of
two real numbers representing the real and imaginary parts of a com-
plex number.

conformable: For two arrays, having the correct dimensions for an
arithmetic operation.

contents: The object stored in a variable. Also referred to as the
variable’s value.

coordinate pair: A complex number object used to represent the co-
ordinates of a point in two-dimensional space. The real part is the
“horizontal” coordinate, and the imaginary part is the “vertical”
coordinate.

current directory: The directory currently available in the USER
menu. To make a directory the current directory, evaluate its name.
Following Memory Lost or System Halt, the current directory is
HOME. Most commands that accept global names as arguments
search only the current directory. (EVAL, RCL, and PRUSR search the
current path).

current equation: The procedure stored in the variable EQ, used as
an implicit argument by DRAW and by the Solver.

current statistics matrix: The matrix stored in the variable ZDAT,
containing the statistical data accumulated with Z+.

current path: The sequence of directories leading from the HOME
directory to the current directory.

312 Glossary



cursor: A display character that highlights a position on the display.
(1) The command line cursor indicates where the next character will
be entered into the command line. It varies its appearance to indicate
the current entry mode. (2) The FORM cursor is an inverse-video
highlight that identifies the selected subexpression. (3) The

DRAW /DRWZX cursor is a small cross that indicates the position of a
point to be digitized.

data object: An object that, when evaluated, returns itself to the
stack. Includes real and complex numbers, arrays, strings, binary inte-
gers, and lists.

delimiter: A character that defines the beginning or end of the dis-
play or command line form of an object: ', ", #, C, 1, ¢, ¥, (, ¥,
%, Or *.

dependent variable: A variable whose value is computed from the
values of other (independent) variables, rather than being set arbi-
trarily. Refers also to the vertical coordinate in plots.

digit: One of the characters 0-9, and, when referring to hexadecimal
binary integers, one of the characters A-F.

direct formula entry calculator: A calculator in which you perform
numerical calculations by entering a complete formula in ordinary
mathematical form, without obtaining intermediate results.

directory: A named set of global variables. A directory can also con-
tain other directories.

distribute: To apply a function to the arguments of the + operator,
before performing the addition: a X (b + c) distributes to
(a X b) + (a X ¢).

domain: The range of values of an argument over which a function
is defined.

entry mode: The calculator mode that determines whether keys
cause immediate command execution or just enter their command
names into the command line. The entry mode can be immediate
mode, algebraic mode, or alpha mode.

Glossary 313



equation: An algebraic object consisting of two expressions com-
bined by a single equals sign (=).

error: Any execution failure, caused by a mathematical error, argu-
ment mismatch, low memory, and so on, that causes normal
execution to halt with an error message display.

evaluation: The fundamental calculator operation. (1) Evaluation of
a data object returns the data object. (2) Evaluation of a name object
returns the object stored in the associated variable and, if this object is
a name or program, evaluates it. (3) Evaluation of a procedure object
returns each object comprising the procedure and, if an object is a
command or unquoted name, evaluates it.

exception: A special type of mathematical error for which you can
choose, by means of a user flag, whether the calculator returns a de-
fault result or halts with an error message.

execute: To evaluate a procedure object or some portion of a proce-
dure, including HP-28S operations, which are procedure objects
stored in ROM.

exponent: In scientific notation, the power of 10 that is multiplied
by a number between 1 and 10.

expression: An algebraic object that contains no equals sign (=).
factor: Either of the arguments of * (multiply).
false: A flag value represented by the real number 0.

fixed-stack calculator: An RPN calculator with a fixed, (usually)
four-level stack.

flag: A real number used as an indicator to determine a true/false
decision. The number 0 represents false; any other number, usually
+1, represents true.

314 Glossary



formal variable: A variable that is named but does not exist, that is,
has no value.

function: An HP-28S operation that can be included in the definition
of an algebraic object. Various functions may take up to three argu-
ments, but all return one result.

function plot: A plot produced by DRAW, for which the current
equation is evaluated at up to 137 values of a specified (independent)
variable.

global variable: The combination of a name object (the variable
name) and any other object (the variable value) stored together in
user memory.

hierarchy: The structure of a mathematical expression, which can be
organized into a series of levels of subexpressions, each of which can
be the argument of a function.

HOME directory: The default directory; the current directory follow-
ing Memory Lost or System Halt.

HMS format: A real number format in which digits to the left of the
radix mark represent integer hours (or degrees), the first two digits to
the right of the radix represent minutes (arc or time), the next two
digits integer seconds, and any remaining digits fractional seconds.

independent variable: A variable whose value can be set arbitrarily
rather than being computed from the values of the other variables. In
plotting, the horizontal coordinate. In the Solver, a variable that
doesn’t contain a procedure with names in its definition.

infinite result: A mathematical exception resulting from an opera-
tion that would return an infinite result, such as divide by zero.

initial guess: One or more numbers supplied to the root-finder to
specify the region in which a root is to be sought.

intercept: The vertical coordinate value at which the straight line
determined by a linear regression intersects the vertical (dependent
variable) axis.

Glossary 315



inverse: (1) The reciprocal of a number or array. (2) A function,
which when applied to a second function, returns the argument of the
second function. Thus SIN is the inverse of ASIN.

iterative refinement: A process of successive approximations to the
solution of systems of equations.

key buffer: A memory location that can hold up to 15 pending key
codes, representing keys that have been pressed but not yet
processed.

level: (1) A position in the stack, capable of containing one object. (2)
The position of a subexpression in an algebraic expression hierarchy.

list: A data object, consisting of a collection of other objects.

local name: A name object that names a local variable. Local names
are a different object type (type 7) from ordinary names (type 6).
Evaluation of a local name returns the contents of the associated local
variable, unevaluated.

local variable: A variable created by the program-structure com-
mands - or FOR. Local variables are automatically purged when the
program structure that created them completes execution.

machine singular: Describes a numerical value that is too large to
be represented by an HP-28S floating-point number.

mantissa: In scientific notation, the number between 1 and 10 that
is multiplied by a power of 10.

matrix: A two-dimensional array.

memory reset: A system clear in which all calculator modes and
memory locations are reset to their default contents, including clearing
the stack, COMMAND stack, UNDO stack, LAST arguments, and
user variable memory.

menu: A collection of operations with common properties that are
assigned, six at a time, to the menu keys.

menu keys: The six unlabeled keys in the top row of the right-hand
keyboard, the operation of which is determined by the active menu
shown in the bottom display line.

316 Glossary



menu selection key: Any key that activates a menu of operations
that can be executed by pressing menu keys.

message flag: An internal flag that determines whether the normal
stack display is shown when all pending execution is complete. The
message flag is set by errors and by commands that produce special
displays.

mode: A calculator state that affects the behavior of one or more op-
erations other than through the explicit arguments of the operation.

name: An object that consists of a character sequence representing a
variable name. (1) Evaluation of a name object returns the object
stored in the associated variable and, if this object is a name or pro-
gram, evaluates it. (2) Evaluation of a local name returns the object
stored in the associated local variable.

non-singular: The opposite of singular.
number: A complex number or a real number.

numeric mode: A mode in which the evaluation of functions causes
repeated evaluation of their arguments until those arguments return
numbers.

numeric object. A real or complex number or array.

object: The basic element of calculator operation. Data objects repre-
sent quantities that have a simple “value;” name objects serve to name
variables that contain other objects; and procedure objects represent
sequences of objects and commands.

operation: Any built-in HP-28S capability a\ailable to the user, in-
cluding non-programmable keystrokes and programmable commands.

operator: A function that is subject to special rules of precedence
when included in an algebraic expression.

overflow: A mathematical exception resulting from a calculation that
returns a result too large to represent with a floating-point number.

Glossary 317



parent directory: When one directory contains another directory,
the first is called the parent directory; the second is called a
subdirectory.

parse: To convert a character string to a program consisting of the
series of objects defined by the string. Usually applied to the action of
ENTER on the command line.

pixel: A single LCD picture element, or dot.

plot parameters: The contents of the list variable PPAR, which de-
termine the position and scaling of a plot and the name of the
independent variable.

Polish Notation: A mathematical notation in which all functions and
operators are written in prefix form. In Polish Notation, “1 plus 2” is
written as “+(1, 2)".

precedence: Rules that determine the order of operator execution in
expressions where the omission of parentheses would otherwise make
the order ambiguous.

principal value: A particular choice among the multiple values of a
mathematical relation or solution, chosen for its uniqueness or sim-
plicity. For example, ASIN (.5) returns 30°, a principal value of the
more general result (—1)" 30° + 180n°, where n is any integer.

procedure: An object of the class that includes programs and
algebraics, where evaluation of the object means to put each object
comprising the procedure on the stack and, if the object is a command
or an unquoted name, evaluate the object.

program: A procedure object defined with RPN logic, identified by
the delintiters « =.

program structure: A set of commands that must follow a specific
sequence within a program. The commands delimit clauses, which
comprise logical units for decision making and branching.

quadratic form: A second-order polynomial in a specified variable.

qualifying message: A message displayed by the Solver to provide
information about the result returned by the Solver.

318 Glossary



radix mark: The punctuation that separates the integer and decimal
fraction parts of a number.

real array: An array object that contains only real number elements.

real integer: A real number used as the argument for a command
that deals with integer values.

real number: An object consisting of a single real floating-point
number, displayed in base 10.

recall: To return the object stored in a variable.

resolution: In a plot, the spacing of the points on the abscissa for
which ordinate values are computed. Resolution 1 is every point, 2 is
every other point, and so on.

results: Objects returned to the stack by commands.

Reverse Polish Notation: A modification of Polish Notation in
which functions follow their arguments: 1 2 + means 1 plus 2. This
mathematical notation corresponds to the calculator interface where
functions take their arguments from a stack and return results to a
stack.

root: A value of a variable for which an expression has the value 0,
or an equation is satisfied—both sides of the equation have the same
value.

row order: A sequential ordering of the elements in an array. Row
order starts with the first element (first row, first column); proceeds
left to right along each row, from the first row to the last row; and
ends with the last element (last row, last column).

RPN: Reverse Polish Notation.

scatter plot: A plot of data points from the statistics matrix, pro-
duced by DRWZ.

scientific notation: The representation of a number as a signed
mantissa (between 1 and 10) and signed exponent (a power of 10).

Glossary 319



selected subexpression: The subexpression that is subject to the
active menu of FORM operations, identified by the inverse video
cursor that highlights the object defining the subexpression.

set: To assign the value true, or non-zero, to a flag.

simplification: To rewrite an algebraic expression in a form that pre-
serves the original value of the expression, but appears simpler.
Simplification may involve combining terms, or partially evaluating
the expression.

single step: To execute one object or structure in a program'’s
definition.

singular: Refers to a mathematical quantity that evaluates to 0 at
some point, or has derivatives that are 0, such that it can’t be evalu-
ated or inverted without returning an infinite result. A singular matrix
has determinant 0, so it can’t be inverted.

slope: The slope of the straight line obtained from a linear
regression.

solution: Equivalent to root.
solve: To find a root of an expression or equation.

solver: The HP-28S system that builds a variables menu from the
definition of the current equation, enabling you to store values for the
variables and solve the equation for any of the variables.

stack: The series of objects that are presented in a “last-in, first-out”
stack, providing a uniform interface for dealing with the arguments
and results of commands.

stack diagram: A tabular summary of the arguments and results of
a command, showing the nature and position of the arguments and
results in the stack.

status message: A message displayed by the calculator to inform
you of some calculator status that is not an error condition.

320 Glossary



storage arithmetic: Performing arithmetic operations on the con-
tents of variables, without recalling the contents to the stack.

string: An object containing a sequence of characters (letters, num-
bers and other symbols), delimited by " marks.

subdirectory: When one directory contains another directory, the
second is called a subdirectory; the first is called the parent directory.

subexpression: A portion of an algebraic expression consisting of a
number, name, or function and its arguments. Any subexpression can
contain other subexpressions as arguments, and can itself be an argu-
ment to another subexpression.

summand: Either of the arguments of + (addition).

suspended program: A program for which execution has been
stopped by HALT, and which may be resumed by ss7 or @[(CONT].

symbolic: Representing a value by name or symbol rather than with
an explicit numerical value.

symbolic constant: Any of the five objects e, i, 7, MAXR, and
MINR, which either evaluates to its numerical value or retains its
symbolic form according to the states of flags 35 and 36.

symbolic mode: The calculator mode in which functions of symbolic
arguments return symbolic results.

system halt: An initialization in which all pending operations are
stopped and the stack is cleared.

test: To make a program branch decision based upon the value of a
flag.

true: A flag value represented by a real number of value other than
0. When a command returns a true flag, it is represented by the num-
ber 1.

underflow: A mathematical exception resulting from a calculation

that returns a non-zero result too small to represent with a floating-
point number.

Glossary 321



unit conversion: A multiplication of a real number by a conversion
factor determined by the values of two unit strings representing “old”
and “new” units for the number.

unit string: A string that represents the physical units associated
with a real number value. A unit string can contain unit names, pow-
ers, products, and one ratio.

unknown: The variable for which the Solver, ROOT, QUAD, or
ISOL attempts to find a numerical or symbolic root.

user flag: A one-bit memory location, the value of which can be set
to 0 or 1, and which can be tested. The HP-28S contains 64 user
flags, numbered from 1 through 64.

user interface: The procedures, keystrokes, displays, and so on,
whereby a user interacts with a calculator.

user memory: The region of memory where user variables are
stored.

value: The numerical, symbolic, or logical content of an object. When
referring to variables, value means the object that is stored in the
variable.

variable: A combination of a name object (the variable name) and
any other object (the variable value) that are stored in memory
together.

variables menu: The menu created by the Solver, where each vari-
able referred to by the current equation is represented by a menu key.

vector: A one-dimensional array.

wordsize: The number of bits to which the results of binary integer
commands are truncated.

322 Glossary



Operation Index

This index contains basic information and references for all operations
in the HP-28S. For each operation this index shows the following:

Name. For operations, the key or menu label associated with the op-
eration. For commands, how the command appears in the command

line.

Description. What the operation does.

Type. This information is given in the following codes.

Code Description

A Analytic Function. Can be solved or differentiated.

F Function. Can be included in algebraic objects or programs.

C Command. Can be included in programs but not algebraics.

(0] Operation. Cannot be included in the command line or in a
procedure.

* The corresponding key or menu key does not perform ENTER in
immediate entry mode.

T The corresponding key or menu key always adds the command
name to the command line.

In. How many objects are required on the stack.

Out. How many objééts are returned to the stack.

Where. Where the command is described in this manual.

Operation Index

323



vee

xapuj uonesado

HP-28S Operation Index

Name Description Type In Out Where

ABORT Aborts program execution. C 0 0 PROGRAM CONTROL 195
ABS Absolute value. F 1 1 ARRAY 79
COMPLEX 114

REAL 218

ACOS Arc cosine. 1 1 TRIG 273
ACOSH Arc hyperbolic cosine. 1 1 LOGS 136
AF Adds fractions. o* ALGEBRA (FORM) 46
B (ALGBRA] Selects the ALGEBRA menu. o* ALGEBRA 16
ALOG Antilogarithm (10 to a power). A 1 1 LOGS 133
AND Logical or binary AND. 2 1 BINARY 92
PROGRAM TEST 206

ARG Argument. F 1 1 COMPLEX 114
TRIG 277

B (ARRAY] Selects the ARRAY menu. o* ARRAY 63
ARRY- Replaces an array with its elements as separate stack | C 1 n+1 | ARRAY 70

objects.

ASIN Arc sine. 1 1 TRIG 273
ASINH Arc hyperbolic sine. 1 1 LOGS 136

id08av



xapuj uonesado

G2

ASR
ATAN
ATANH

(ATTN] ([ON])

AXES
A

BEEP

BIN

@(8INARY]

B(BRANCH ]

B~R

B(cATALOG]

CEIL

CENTR

CF

CHR

CHS

CLEAR

Arithmetic shift right.
Arc tangent.
Arc hyperbolic tangent.

Aborts program execution; clears the command line; ex-
its catalogs, FORM, plot displays.

Sets intersection of axes.
Associates to the right.
Sounds a beep.

Sets binary base.

Selects the BINARY menu.
Selects the PROGRAM BRANCH menu.
Binary-to-real conversion.
Starts the command catalog.
Next greater integer.

Sets center of plot display.
Clears a user flag.

Makes a one-character string.

Changes the sign of a number in the command line or
executes NEG.

Clears the stack.

oa

Ca

O*

Ox

O*

o.

o o

BINARY
TRIG
LOGS

PLOT

ALGEBRA (FORM)
PROGRAM CONTROL
BINARY

BINARY

PROGRAM BRANCH
BINARY

REAL

PLOT

PROGRAM TEST
STRING

Arithmetic

STACK

91
273
136

160
39
198
87
85
183
89

219
160
204
264

62

240

Hv31o



92¢€

xapuj uonesadg

HP-28S Operation Index (Continued)

Name Description Type In Out Where

CLLCD Blanks the display. C 0 0 PLOT 165
PROGRAM CONTROL 198

CLMF Clears the system message flag. C 0 0 PLOT 165
PROGRAM CONTROL 198

CLUSR Clears all user variables. Ct 0 0 MEMORY 144
CLZ Purges the statistics matrix. C 0 0 STAT 246
CHD Enables or disables CMD mode. o~ MODE 150
@ compPLx] Selects the COMPLEX menu. o* COMPLEX 110
CNRM Computes a column norm. 1 1 ARRAY 79
COLCT Collects like terms. C 1 1 ALGEBRA 28
COLET Collects like terms in a subexpression. o ALGEBRA (FORM) 37
coLz Selects statistics matrix columns. C 2 0 PLOT 163
STAT 251

CcOoMB Combinations C 2 1 STAT 254
@ (CovMMAND | | Recovers previous contents of command line (if saved). | O MODE 151
CON Creates a constant matrix. 2 0, 1 | ARRAY 75

a1



xapuj uonesado

Vx4

CONJ

W(conT)
CONVERT

CORR
COS
COSH
cov
CR
CRDIR
CROSS

BCconTRL]

B(cusTom]
C-R

M (o/0x]

DEC
DEG
DEL

Complex conjugate.

Continues a halted program.

Performs a unit conversion.

Correlation coefficient.

Cosine.

Hyperbolic cosine.

Covariance.

Prints a carriage-right.

Creates a directory.

Cross product of two- or three-element vectors.
Selects the PROGRAM CONTROL menu.
Selects the last-displayed custom menu.

Complex-to-real conversion.

Derivative (8 function).
Sets decimal base.
Sets degrees mode.

Deletes character at cursor; returns graphics string
representing current display.

O O o o >» » O O O

©QQ

C*
C*
Ot

o O o N

ARRAY
COMPLEX

PROGRAM CONTROL
UNITS

STAT

TRIG

LOGS

STAT

PRINT

MEMORY

ARRAY

PROGRAM CONTROL

ARRAY
COMPLEX
TRIG

Calculus
BINARY
MODE
PLOT

82
111

194
283
251
273
136
251
171
141

79
193

82
111
277

96
87
145
155

13da



8¢¢€

xapuj uonesadg

HP-28S Operation Index (Continued)

Name Description Type In Out Where
| (=W Deletes character at cursor and all characters to the o
right.

DEPTH Counts the objects on the stack. 0 1 STACK 243
DET Determinant of a matrix. 1 1 ARRAY 79
DGTIZ Activates interactive plot mode 0 0 PLOT 165
OINY Double inverts. (o} ALGEBRA (FORM) 43
DISP Displays an object. C 2 0 PROGRAM CONTROL 198
STRING 270
OHEG Double negates. o ALGEBRA (FORM) 42
DO Part of DO...UNTIL...END. Ct PROGRAM BRANCH 192
DOT Dot product of two vectors. c 2 1 ARRAY 79
DRAW Creates a mathematical function plot. C 0 0 PLOT 157
DRAX Draws axes. C 0 0 PLOT 165
DROP Drops one object from the stack. C 1 0 STACK 239
DROPN Drops n+1 objects from the stack. c n+1 10 STACK 243
DROP2 Drops two objects from the stack. C 2 0 STACK 241

RECD]



xapuj uonesado

62€

DRWZ
DUP
DUPN
DUP2

D-R

W(e0T]

EEX
ELSE
END

ENG

ERRM
ERRN
EVAL

Creates a statistics scatter plot.
Duplicates one object on the stack.
Dupliéates n objects on the stack.
Duplicates two objects on the stack.
Distributes to the right.
Degrees-to-radians conversion.

Symbolic constant e.

Copies the object in level 1 to the command line for
editing.

Enters exponent in command line.
Begins ELSE clause.

Ends program structures.

Sets engineering display format.

Parses and evaluates the command line or executes
DUP.

Returns the last error message.
Returns the last error number.

Evaluates an object.

oi
Ct
Ct

0,1

PLOT

STACK

STACK

STACK

ALGEBRA (FORM)
TRIG

ALGEBRA
REAL

PROGRAM BRANCH
PROGRAM BRANCH

MODE

PROGRAM CONTROL
PROGRAM CONTROL

Evaluation

163
241
243
241

40
280

27
215

186

186
192

145

198
198
124

VA3



0€e

xapuj uonesadQ

HP-28S Operation Index (Continued)

Name Description Type In Out Where

EXGET Gets a subexpression. C 2 1 ALGEBRA 33

EAXGET Gets a subexpression. o* 2 ALGEBRA (FORM) 37

EXP Natural exponential. 1 1 LOGS 133

EXPAN Expands an algebraic. 1 1 ALGEBRA 28

EXPAN Expands a subexpression. o* ALGEBRA (FORM) 37

Natural exponential minus 1. A 1 1 LOGS 133

Evaluates the current equation. 0 1 SOLVE 227

Substitutes a subexpression. C 3 1 ALGEBRA 28

E" Replaces power-of-product with power-of-power. o* ALGEBRA (FORM) 46

E¢o Replaces power-of-power with power-of-product. o* ALGEBRA (FORM) 46

FACT Factorial or gamma function. 1 1 REAL 215

FC? Tests a user flag. 1 1 PROGRAM TEST 204

FC?C Tests and clears a user flag. C 1 1 PROGRAM TEST 204

FETCH Exits CATALOG or UNITS, writes the current command | O* UNITS 287
or unit in the command line.

FIX Sets FIX display format. C 1 0 MODE 145

139X3



xapuj uonjesadQ

lEE

FLOOR
FOR
FORM

FP
FS?
FS?C
GET

GETI

HALT
HEX
HMS +
HMS —
HMS~
HOME

IDN

Next smaller integer.
Begins definite loop.

Changes the form of an algebraic.

Fractional part.
Tests a user flag.
Tests and clears a user flag.

Gets an element from an object.

Gets an element from an object and increments the
index.

Suspends program execution.
Sets hexadecimal base.
Adds in HMS format.
Subtracts in HMS format.
Converts from HMS format.
Selects the HOME directory.
Symbolic constant /.

Creates an identity matrix.

Ct

O O o m

Ct
C*

At

o o = NN D o

"y

0,1

REAL
PROGRAM BRANCH

ALGEBRA
ALGEBRA (FORM)

REAL
PROGRAM TEST
PROGRAM TEST

ARRAY
LIST

ARRAY
LIST

PROGRAM CONTROL
BINARY

TRIG

TRIG

TRIG

MEMORY

ALGEBRA

ARRAY

219
188

28
34

219
204
204

70
128

70
128

195
87
280
280
280
141
27
75




(41

xapuj uonesddg

HP-28S Operation Index (Continued)

Name Description Type In Out Where
IF Begins IF clause. Ct 0 0 PROGRAM BRANCH 186
IFERR Begins IF ERROR clause. Ct 0 0 PROGRAM BRANCH 186
IFT If-then command. C 2 0 PROGRAM BRANCH 188
IFTE If-then-else function. 3 0 PROGRAM BRANCH 188
IM Returns the imaginary part of a number or array. F 1 1 ARRAY 82
COMPLEX 111
INDEP Selects the plot independent variable. C 1 0 PLOT 157
Switches between insert and replace modes; digitizes o* 0 0, 1 PLOT 155
point.
@(Ns) Deletes all characters to the left of the cursor. 0*
INV Inverse (reciprocal). A 1 1 Arithmetic 60
ARRAY 69
IP Integer part. 1 1 REAL 219
ISOL Solves an expression or equation. C 2 1 ALGEBRA 33
SOLVE 234
KEY Returns a key string. 0 1,2 | PROGRAM CONTROL 195
KILL Aborts all suspended programs. 0 0 PROGRAM CONTROL 195

di



Xx3apuj uonesadQ

€€E

LN
LNP1
LOG
@(Locs]
LR

LO

Lk
MANT

Returns last arguments (if saved).

Enables or disables LAST mode.

Switches between upper-case and lower-case modes.

Returns display image as a graphics string.
Evaluates the left side of the current equation.
Displays the level of the selected subexpression.
Selects the LIST menu.

Moves list elements to the stack.

Natural logarithm.

Natural logarithm of (argument+1).
Common (base 10) logarithm.

Selects the LOGS menu.

Computes a linear regression.

Replaces product-of-log with log-of-power.
Replaces log-of-power with product-of-log.

Returns the mantissa of a number.

Or
o*

oi
Ow

n+1

MODE
STACK

MODE

STRING

SOLVE

ALGEBRA (FORM)
LIST

LIST
STACK

LOGS
LOGS
LOGS
LOGS
STAT
ALGEBRA (FORM)
ALGEBRA (FORM)
REAL

151
240

150

264
227

37
127

128
241

133
133
133
133
251

45

45
218

LINVIN



vee

xapuj uonesadQ

HP-28S Operation Index (Continued)

Name Description Type In Out Where
MAX Returns the maximum of two numbers. 2 1 REAL 221
MAXR Symbolic constant maximum real. A 0 1 ALGEBRA 27
REAL 215
MAXZ Finds the maximum coordinate values in the statistics C 0 1 STAT 249
matrix.
MEAN Computes statistical means. C 0 1 STAT 249
MEM Returns available memory. C 0 1 MEMORY 141
MENU Selects the specified built-in or custom menu. C 1 0 MEMORY 141
@ vENUS) Switches shifted action and unshifted action of letter | O
keys [A] through (R].
MIN Returns the minimum of two numbers. 2 1 REAL 221
MINR Symbolic constant minimum real. A 0 1 ALGEBRA 27
REAL 215
MINZ Finds the minimum coordinate values in the statistics C 0 1 STAT 249
matrix.
ML Enables or disables ML mode. 0* MODE 150
MOD Modulo. F 2 1 REAL 221
8 moDE] Selects the MODE menu. o MODE 145

XViK



xapuj uoijesadQ

S€E

Ms
NEG

NEXT
(NEXT)
NEXT
NEXT
NO
NOT

NUM
NZ

OBGET
0BSUB

ocT

(ON] ([ATTN)

Merges right factor.

Negates an argument.

Ends definite loop.
Displays the next row of menu labels.
Advances to next command or unit in a catalog.

Advances to next argument option in USAGE.

Choose not to purge during Out of Memorwud.

Logical or binary NOT.

Returns character code.

Returns the number of data points in the statistics
matrix.

Extracts an object from an algebraic.
Substitutes an object into an algebraic.
Sets octal base.

Turns the calculator on; aborts program execution;
clears the command line; exits catalogs, FORM, plot
displays.

o*

Ct
o*
o
o*
o*

O*

ALGEBRA (FORM)

Arithmetic
ARRAY
COMPLEX
REAL

PROGRAM BRANCH

UNITS

BINARY
PROGRAM TEST

STRING
STAT

ALGEBRA
ALGEBRA
BINARY

42

62
82
114
215

188
57
287

92
206

264
246

33
28
87

(NLLV) NO



9€¢

xapuj uonesadg

HP-28S Operation Index (Continued)

Name Description Type In Out Where
Cancels system halt or memory reset if pressed before | O*
is released.
(ON]J[(OINS][»] | (Memory Reset) Stops program execution, clears local | O
and user variables, clears the stack, resets user flags.
Print LCD. 0* PRINT
Starts keyboard test. 0*
Increases the display contrast. 0*
(oN](=] Decreases the display contrast. o*
(oN](a) (System Halt) Stops program execution, clears local vari- | O*
ables, clears the stack.
(oN](d] Starts continuous system test. o*
@ (oFF) Turns the calculator off. o*
OR Logical or binary OR. F 2 1 BINARY 92
PROGRAM TEST 206
ORDER Rearranges the user menu. C 1 0 MEMORY 141
OVER Duplicates the object in level 2. C 2 3 STACK 241
PATH Returns a list showing the current path. C 0 1 MEMORY 141
PERM Permutations. C 2 1 STAT 254

(33a] (No]



xapuj uonesadg

LEE

PICK
PIXEL
@(rLoT)
PMAX
PMIN
POS

PRMD

PROGRAM
B (BRANCH]
@ (ConTRL]
@ (TEsT)

Duplicates the nth object.

Turns on a display pixel.

Selects the PLOT menu.

Sets the upper-right plot coordinates.
Sets the lower-left plot coordinates.

Finds a substring in a string or an object in a list.

Recalls the plot parameters list in the current directory.

Predicted value.

Displays the previous row of menu labels.

Displays the previous command or unit in a catalog.
Displays the previous argument option in USAGE.
Selects the PRINT menu.

Prints an image of the display.

Prints and displays current modes.

Selects the PROGRAM BRANCH menu.
Selects the PROGRAM CONTROL menu.
Selects the PROGRAM TEST menu.

o
o
o
o

On
O*
O*

n+1

n+1

STACK
PLOT
PLOT
PLOT
PLOT

LIST
STRING

PLOT
STAT

UNITS

PRINT

PLOT
PRINT

MODE
PRINT

PROGRAM BRANCH
PROGRAM CONTROL
PROGRAM TEST

243
165
1562
157
157

132
270

160
251

287

168

165
171

150
174

183
193
201

1S3l



8€¢€

HP-28S Operation Index (Continued)

xapuj uonesado

Name Description Type In Out Where

PRST Prints the stack. C 0 0 PRINT 171
PRSTC Prints the stack in compact format. C 0 0 PRINT 174
PRUSR Prints a list of variables in the current directory. C 0 0 PRINT 174
PRVAR Prints the name and contents of one or more variables. | C 1 0 PRINT 171
PR1 Prints the level 1 object. C 0 0 PRINT 171
PURGE Purges one or more variables. C 1 0 MEMORY 140
PUT Replaces an element in an array or list. C 3 0, 1 | ARRAY 70
LIST 128
PUTI Replaces an element in an array or list, and increment | C 3 2 ARRAY 70
the index. LIST 128
P-R Polar-to-rectangular conversion. F 1 1 COMPLEX 114
TRIG 227
QUAD Solves a quadratic polynomial. C 2 1 ALGEBRA 33
SOLVE 235
Exits CATALOG or UNITS. o* UNITS 287

autr Exits USAGE display. o*

1sdd




xapuj uonesado

6€€

RAD
RAND
RCEQ

RCL
RCLF
RCLZ

RCWS
RDM

RDX,
RDZ
RE

W(REAL)

REPEAT
RES

Sets radians mode.
Returns a random number.

Recalls the current equation.

Recalls the contents of a variable, unevaluated.

Returns a binary integer representing the user flags.

Recalls the current statistics matrix.

Recalls the binary integer wordsize.
Redimensions an array.
Enables or disables RDX, mode.

Sets the random number seed.

Returns the real part of a complex number or array.

Selects the REAL menu.
Part of WHILE. . .REPEAT.. .END.

Sets the plot resolution.

Cr

o*

o*
Ct

MODE
REAL

PLOT
SOLVE

MEMORY
PROGRAM TEST

PLOT
STAT

BINARY
ARRAY
MODE
REAL

ARRAY
COMPLEX

REAL

PROGRAM BRANCH

PLOT

145
215

157
226

140
211

163
246

87
75
150
215

82
111

213
192
160

s34



ove

xapuj uonesado

HP-28S Operation Index (Continued)

Name Description Type In Out Where
RL Rotates left by one bit. c 1 1 BINARY 89
RLB Rotates left by one byte. c 1 1 BINARY 89
RND Rounds according to real number display mode. F 1 1 REAL 219
RNRM Computes the row norm of an array. C 1 1 ARRAY 79
ROLL Moves the level n+1 object to level 1. C n+1 | n STACK 240
ROLLD Moves the level 2 object to level n. C n+1|{n STACK 243
ROOT Finds a numerical root. C 3 1,3 | SOLVE 233
ROT Moves the level 3 object to level 1. C 3 3 STACK 241
RR Rotates right by one bit. C 1 1 BINARY 89
RRB Rotates right by one byte. C 1 1 BINARY 89
RSD Computes a correction to the solution of a system of | C 3 1 ARRAY 75
equations.

RT= Evaluates the right side of the current equation. (0] 0 1 SOLVE 227
R-B Real-to-binary conversion. C 1 1 BINARY 89
R-C Real-to-complex conversion. C 2 1 ARRAY 82

COMPLEX 111
TRIG 279
R-D Radians-to-degrees conversion. F 1 1 TRIG 280

14



xapuj uonesadg

134>

R~P

SAME
SCI
SCLZ

SCONJ
SDEV
SF
SHOW

SIGN

SIN

SINH
SINV
SIZE

Rectangular-to-polar conversion.

Tests two objects for equality.
Sets scientific display format.

Auto-scales the plot parameters according to the statis-
tical data.

Conjugates the contents of a variable.
Computes standard deviations.
Sets a user flag.

Resolves all references to a name implicit in an
algebraic.

Sign of a number.

Sine.
Hyperbolic sine.
Inverts the contents of a variable.

Finds the dimensions of a list, array, string, or algebraic.

O O O O o o

-n

o o > >

COMPLEX
TRIG

PROGRAM TEST
MODE
PLOT

STORE
STAT
PROGRAM TEST

ALGEBRA
SOLVE

COMPLEX
REAL

TRIG
LOGS
STORE

ALGEBRA
ARRAY
LIST
STRING

114
277

206
145
163

262
249
204

33
235

111
218

273
136
258

28
75
132
270

3zZIs



eve

xapuj uones2do

HP-28S Operation Index (Continued)

Name Description Type In Out Where

SL Shifts left by one bit. 1 1 BINARY 91
SLB Shifts left by one byte. 1 1 BINARY 91
SNEG Negates the contents of variable. 1 0 STORE 258
Selects the SOLVE menu. o* SOLVE 224
SOLYR Selects the Solver variables menu. SOLVE 225
sQ Squares a number or matrix. A 1 1 Arithmetic 61

ARRAY 70
SR Shifts right by one bit. 1 1 BINARY 91
SRB Shifts right by one byte. 1 1 BINARY 91
B8 Single-steps a suspended program. PROGRAM CONTROL 195
@ (sTAcK) Selects the STACK menu. o STACK 239
START Begins definite loop. Ct 2 0 PROGRAM BRANCH 188
B (sTAT) Selects the STAT menu. o* STAT 245
STD Sets standard display format. c* MODE 145
STEP Ends definite loop. Ct 1 0 PROGRAM BRANCH 188
STEQ Stores the current equation. C 1 0 PLOT 157

SOLVE 226

s



Xapuj uonezadQ

eve

STO
STOF

B(STORE]
STO%

STO+
STO—
STO/

STOZ

W(sTRING]
STR-

STWS
SuB

SWAP

Stores an object in a variable.

Sets all user flags according to the value of a binary
integer.

Selects the STORE menu.
Storage arithmetic multiply.
Storage arithmetic add.
Storage arithmetic subtract.
Storage arithmetic divide.

Stores the current statistics matrix.

Selects the STRING menu.
Parses and evaluates the commands defined by a string.
Sets the binary integer wordsize.

Extracts a portion of a list or string.

Swaps the objects in levels 1 and 2.

LA T \C N \C T G )

o O o o o

MEMORY
PROGRAM TEST

STORE
STORE
STORE
STORE
STORE

PLOT
STAT

STRING
STRING
BINARY

LIST
STRING

STACK

139
211

258
258
258
258
258

163
246

263
264
87

132
270

239

dVMS



1 44

Xapuj uonesadg

HP-28S Operation Index (Continued)

Name Description Type In Out Where
SYSEVAL Executes a system object. C 1 0 Evaluation 126
TAN Tangent. A 1 1 TRIG 273
TANH Hyperbolic tangent. A 1 1 LOGS 136
TAYLR Computes a Taylor series approximation. C 3 1 ALGEBRA 33
Calculus 106
B(TEsT) Selects the PROGRAM TEST menu. 0* PROGRAM TEST 201
THEN Begins THEN clause. Ct 1 0 PROGRAM BRANCH 186
TOT Sums the coordinate values in the statistics matrix. C 0 1 STAT 249
TRAC Enables or disables printer Trace mode. o* PRINT 171
Selects the TRIG menu. o TRIG 273
TRN Transposes a matrix. 1 0, 1 | ARRAY 75
TYPE Returns the type of an object. C 1 1 PROGRAM TEST 211
@ (unDO ) Recovers previous stack contents (if saved). o* MODE 151
uHoo Enables or disables UNDO mode. o MODE 150
@(uniTs) Selects the units catalog. o* UNITS 287
UNTIL Part of BEGIN...UNTIL...END. Ct PROGRAM BRANCH 192
USE Displays USAGE for current command in CATALOG. o

TVA3SAS



xapuj uonesadg

SvE

(USER]
UTPC

UTPF

UTPN

UTPT

VAR

VARS

B iEw)
BE)
BT

WAIT
WHILE
XOR

XPON
B’

VES

Selects the USER menu.
Upper-tail Chi-Square distribution .
Upper-tail F-distribution.

Upper-tail normal distribution.
Upper-tail t-distribution.

Computes statisical variances.

Returns a list of variables in the current directory.

Moves the display window up one line.

Moves the display window down one line.

Copies an object to the command line for editing.

Pauses program execution.
Begins WHILE. . .REPEAT. . .END.
Logical or binary XOR.

Returns the exponent of a number.

Executes function SQ.

Chooses to purge during Ot of Memorwy.

O O O O O O

O'
O-n

Ct

O*

o O D W W N

- O O o

STAT
STAT
STAT
STAT
STAT
MEMORY

PROGRAM CONTROL
PROGRAM BRANCH

BINARY
PROGRAM TEST

REAL

Arithmetic
ARRAY

254
254
254
254
249
144

195
192

92
206

218

61
70

S3A



9ve

Xxapuj uonesa2dQ

HP-28S Operation Index (Continued)

Name Description Type In Out Where
B Executes function INV. A 1 1 Arithmetic 69
ARRAY 69
1,0 Double invert and distribute. o~ ALGEBRA (FORM) 44
+ Adds two objects. A 2 1 Arithmetic 53
ARRAY 65
LIST 127
STRING 264
Adds and subtracts 1. o* ALGEBRA (FORM) 45
= Subtracts two objects. A 2 1 Arithmetic 55
ARRAY 65
Double negates and distributes. o* ALGEBRA (FORM) 43
X Multiplies two objects. A 2 1 Arithmetic 56
ARRAY 66
*H Adjusts the height of a plot. C 1 0 PLOT 160
W Adjusts the width of a plot. 1 0 PLOT 160
Multiplies by 1. o* ALGEBRA (FORM) 44
/ Divides two objects. A 2 1 Arithmetic 58
ARRAY 66

X[}



xapuj uonesadg

VA 4

71
%
%CH
%T

Divides by 1.

Percent.

Percent change.

Percent of total.

Raises a number to a power.
Raises to the power 1.

Takes the square root.
Executes the function \/.
Definite or indefinite integral.
Derivative.

Less-than comparison.
Less-than-or-equal comparison.
Equals operator.

Equality comparison.

Not-equal comparison.
Greater-than-or-equal comparison.
Greater-than comparison.

Shift key.

Selects cursor menu or restores last menu; displays
coordinates.

oa

O*

Ft
Ft
At

Ft
Ft
Ft
o
o

[ACIENN \C T \C I G ]

N D DD DN NN W

ALGEBRA (FORM)
REAL

REAL

REAL

Arithmetic
ALGEBRA (FORM)
Arithmetic
Arithmetic
Calculus

Calculus
PROGRAM TEST
PROGRAM TEST
ALGEBRA
PROGRAM TEST
PROGRAM TEST
PROGRAM TEST
PROGRAM TEST

PLOT

44
214
214
221

60

45

61

61
100

96
202
203

21
206
201
203
202

155




:3 4

xapuj uonesa2dQ

HP-28S Operation Index (Continued)

Name Description Type In Out Where

(a] Moves cursor up. o*
B Moves cursor up all the way. 0*
(v] Moves cursor down. o*
B Moves cursor down all the way. o*
(€] Moves cursor left. o*
BdJ Moves cursor left all the way. 0*
] Moves cursor right. o*
B Moves cursor right all the way. o*

Leld Moves FORM cursor left. o~ ALGEBRA (FORM) 37

L+1 Moves FORM cursor right. o ALGEBRA (FORM) 37
(€] Backspace. o*
(o] Switches entry mode from Immediate to Alpha; from Al- | O*

pha to Algebraic; or from Algebraic to Immediate.

T Symbolic constant . At 0 1 ALGEBRA 27

REAL 215

4+ Adds a data point to the statistics matrix. 0 STAT 246

z- Deletes the last data point from the statistics matrix. C 0 1 STAT 246




xapuj uonesadg

6v¢e

A
0
s

3

-ARRY
-HMS
-LCD
-LIST

~NUM
-STR
202

Associates to the left.

Distributes to the left.

Merges left factors.

Commutes arguments.

Creates local variables.

Combines numbers into an array.
Converts a number to HMS format.
Displays graphics string.

Combines objects into a list.

Evaluates an object in numerical mode.

Converts an object to a string.

Distributes prefix operator.

o
o
o
o

O O o O

(@]

O*

ALGEBRA (FORM)
ALGEBRA (FORM)
ALGEBRA (FORM)
ALGEBRA (FORM)
Programs

ARRAY

TRIG

STRING

LIST
STACK

Evaluation
STRING
ALGEBRA (FORM)

38
40
41
38
178
70
280
264

128
243

124
264
39




Subject Index

For index entries with multiple references, page numbers in bold type

indicate primary references.

A

Accumulating printer data, 171
Adding fractions, 46

Addition, 53-54

Algebraics, 16-28

Algebraic editor, 31, 34-52
Algebraic syntax, 18

Angle mode, 149-150
Available memory, 141

Base units, 283
Binary integers, 85-86
Branch cuts, 116-123

C

Characters, 266-268
Clearing

the display, 165, 199

the stack, 240

variables, 144
Collecting terms, 28
Combinations, 257 .
Command lines, recovery, 150-151
Comparisons, 201-203
Conditionals, 186-188
Constant array, 77

350 Subject Index

Constants, 27

Continuing a program, 193

Coordinates
in the display, 152-153
rectangular and polar, 110, 114
spherical, 277-279

Correlation, 252

Covariance, 253

Current equation, 157, 225

Current path, 143

Current statistics matrix, 245-248

Custom menu, 141-142

Data points, 245-247

Decimal places, 145-149

Decimal point, 151

Definite loops, 188-190

Degrees Angle mode, 149-150

Degrees-minutes-seconds, 280-282

Digitizing, 156, 166

Dimensionless units, 286

Directories, 144

Display, 165, 167, 173, 199

Display coordinates, 152-153

Display format for numbers,
145-149

Displaying an object, 199

Distribution, statistical, 256-257

Division, 58-59

Double-space printing, 169



Editing, for algebraics, 31, 34-52
Equation, 19
functions applied to, 24
system of, 66—69
Error number and message, 200,
298-305
Error traps, 187-188
Escape sequences, 170
Evaluation
of algebraics, 25
commands for, 124, 126
of programs, 176-177
Exponent, 213, 219

F

Faster printing, 169
Flags, 184, 204-206
Formal variable, 16
Fractions, adding, 46
Functions
in an algebraic, 16
applied to equations, 24
plotting, 153-154
user-defined, 181-182

G

General solutions, 116-123, 236-238

GOTO, replacing, 185-186
Graphics string, 156, 171, 269-270

Halted programs, 193

HOME directory, 143
Hours-minutes-seconds, 280-282
HP Solve. 224-233

Hyperbolic functions, 136-138

In-place arithmetic, 258-262
Indefinite loops, 192

Index, specifying an element, 13
Initial guess, for Solver, 228-229
International System of Units, 283
Inverse, 60

Isolating a variable, 234

J, K, L

Labeling output, 265

Last arguments, 150-151, 240
Level, in an algebraic, 19, 37
Linear regression, 253

Local variables, 178-181

Logical operations, 92-95, 206-209
Loops, 188-190, 192

Mantissa, 213, 219

Marker, for base, 85

Mean, 249

Menu, custom, 141-142
Message, displaying, 199, 265
Message flag, 167
Multiplication, 56-58

Names, local, 178-181
Negation, 62

Number display mode, 145-149
Numerical integration, 101-105
Numerical Result mode, 22

o

Object types, 212
Objects, storing, 139-140
Ones complement, 95
Operator, 16

Output, labeling, 265

Percentage functions, 214, 223
Permutations, 257

Subject Index 351



Pixels, coordinates of, 152-153
Plotting functions, 153-154
Polar coordinates, 110, 114
Population statistics, 246
Powers, 60

Precedence, 17

Principal branches, 116-123
Principal values, 236-238
Probability, upper-tail, 254
Purging variables, 140

Q

Quadratic form, 235

Quadratic form, 235
Radians Angle mode, 150
Radix mark, 151

Random numbers, 216-217
Rational function, 108
Recalling variables, 140
Reciprocal, 60

Recovery, 150-151

Rectangular coordinates, 110, 114

Redimensioning an array, 76
Residual, 68, 78-79
Rounding, 221

Row order, 64

Sample statistics, 246
Scatter plot, 155

Sign, of a complex number, 113

Simplification, 22

Single-step, 194, 195

Solver, 224-233

Spacing, for printing, 169
Spherical coordinates, 277-279
Square, 61

Square root, 61

Stack, recovery, 150-151

352 Subject Index

Stack diagram, 11
Standard deviation, 250
Storage arithmetic, 258-262
Storing objects, 139-140
Substitution, 32
Subtraction, 55-56
Suspended programs, 193
Symbolic constants, 27
Symbolic integration, 100-101
Symbolic Result mode, 21
System of equations, 66—69

T

Taylor series, 106-109
Temperature conversions, 285
Tests, 184

Time quantities, 280-282
Trace mode, 168, 169, 174
Trapping errors, 187-188
Types of objects, 212

Underline, 170

Unit vector, 113
Upper-tail probability, 254
User functions, 181-182

v

Variables
formal, 16
creating, 139-140
local, 178-181
printing, 173, 175
purging, 140
recalling, 140
reordering, 143

Variance, 250

W X, Y, Z

Wide printing, 170
Wordsize, 86, 88



Terms Used in Stack Diagrams

Term Description

obj Any object.

x ory Real number.

hms Real number in hours-minutes-seconds format.

n Positive integer real number (rounded if non-integer).

flag Real number, zero (false) or non-zero (true).

z Real or complex number.

CX,y Complex number in rectangular form.

cr.o6a Complex number in polar form.

#n Binary integer.

"string" Character string.

Carray ] Real or complex vector or matrix.

Cvector Real or complex vector.

Cmatrix 1 Real or complex matrix.

CR-array 1 Real vector or matrix.

CC-array 1 Complex vector or matrix.

ilist} List of objects.

index Real number specifying an element in a list or array; or list
with one real number (or object that evaluates to a number)
specifying an element in a list or vector; or list with two real
numbers (or objects that evaluates to numbers) specifying an
element in a matrix.

idim List of one or two real numbers specifying the dimension(s) of
an array.

"name'! Global name or local name.

' global' Global name.

'local* Local name.

#program# | Program.

'symb' Expression, equation, or a name treated as an algebraic.




Contents

Page 10 How To Use This Manual
15 Dictionary

ALGEBRA PRINT

ALGEBRA (FORM) Programs
Arithmetic PROGRAM BRANCH
ARRAY PROGRAM CONTROL
BINARY PROGRAM TEST
Calculus REAL

COMPLEX SOLVE

Evaluation STACK

MEMORY STAT

LIST STORE

LOGS STRING

MODE TRIG

PLOT UNITS

298 A: Messages
306 B: User Flags

310 Glossary
323 Operation Index
350 Subject Index

[ﬁﬂ HEWLETT

PACKARD

Reorder Number
00028-90068

00028-90148  English
Printed in US.A. 11/88



Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.



	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img251
	img252
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271
	img272
	img273
	img274
	img275
	img276
	img277
	img278
	img279
	img280
	img281
	img282
	img283
	img284
	img285
	img286
	img287
	img288
	img289
	img290
	img291
	img292
	img293
	img294
	img295
	img296
	img297
	img298
	img299
	img300
	img301
	img302
	img303
	img304
	img305
	img306
	img307
	img308
	img309
	img310
	img311
	img312
	img313
	img314
	img315
	img316
	img317
	img318
	img319
	img320
	img321
	img322
	img323
	img324
	img325
	img326
	img327
	img328
	img329
	img330
	img331
	img332
	img333
	img334
	img335
	img336
	img337
	img338
	img339
	img340
	img341
	img342
	img343
	img344
	img345
	img346
	img347
	img348
	img349
	img350
	img351
	img352
	img353
	img354
	img355
	img356
	img357

