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Notation
Example

(FX)

013

KEYSTROKE NOTATION
USED IN THIS MANUAL

Description

A keyboard function. Press [Z+].

A shifted keyboard function. Press (sequentially, not
simultaneously).

A customized function for a particular program. Press
(z+]. (Corresponds to key with blue letter “A”.) FX is the
display’s menu label for [A]in this example.

A non-keyboard function. To execute it, press

[ALPHA] [ALPHA]. Alternatively, you can assign this
function to a User key and then execute it as a single key.
[XEQ] [ALPHA] (ALPHA] (0](1](3]

Alpha-keyboard characters mapped to the blue letters on
the keys. Press to start and finish.

Shifted Alpha-keyboard characters (mapped as shown on
the back label of the calculator).
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The HP-41 Advantage—the Advanced Solutions Pac—gives you a selec-
tion of programs and functions for solving advanced mathematical and
engineering problems, curve-fitting statistical problems, and simple finan-
cial problems (the time value of money). It's a broad, powerful solution
set for the technical student or professional.

Many of the routines used internally by this pac have been made accessi-
ble to you for use as subroutines in your own programs.

This manual provides a description of each program or function set with
relevant equations, step-by-step instructions for operation, examples with
the keystrokes needed for the solution, and descriptions of the user-acces-
sible subroutines.

. Before plugging in your HP-41 Advantage Pac, turn the
calculator off, and be sure you understand the section “Inserting
and Removing Application Modules”.






Before inserting an application module for the first time, familiarize your-
self with the following information.

Up to four application modules can be plugged into the ports in the
HP-41. The names of all programs contained in an inserted module are
displayed in catalog 2 ( 2).

Always turn the calculator off before inserting or removing any
plug-in accessories. Otherwise, both the calculator and the acces-
sory could be damaged.

To insert a module:

Turn the calculator off!

Remove the port cover. Save it to cover the
port when it is empty.

In an HP-41C, insert the application module
into any port after the last memory module.
(HP-41CV’s and HP-41CX’s don’t use memory
modules.) Insert the module with its label
right-side up, as shown. For example, if you
have a memory module in port 1, you can in-
sert an application module into port 2, 3, or 4.
(The port numbers are diagrammed on the up-
per back of the calculator) Never insert an
application module into a port with a smaller
number than a memory module’s port.
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Plug in any additional application modules,
also after the last memory module. Cover.any
unused ports.

The application module programs are now
ready to use!

To remove a module:

Turn the calculator off! (Failure to do so could
damage both the calculator and the module.)

Grasp the desired module handle and pull it
out as shown.

Cover the empty port with a port cover.



Any other plug-in accessories (such as the HP 82104A Card Reader or the
HP 82153A Wand) should be plugged in like application modules.

You can leave gaps in the port sequence. For example, you could plug a
memory module into port 1 and an application module into port 4, leav-
ing ports 2 and 3 empty.






Each chapter in this manual covers a different program or set of func-
tions. With the exception of the two chapters on matrices, each chapter is
independent of the others.

Starting each chapter is a description of the purpose of its program or
functions. The equations on which the program is based are given and,
if appropriate, references for further information are noted. Where ap-
propriate, the valid range for data values is given. In some cases, the
program will work outside its range of validity, but the result might not
be accurate enough for you.

The Instruction Table

The heart of each chapter is its instructions and instruction table.
This gives you general and step-by-step instructions for using the pro-
gram or functions. It tells you what kinds of data values to key into the
calculator, and which keys to press to compute results.

At its head, the instruction table specifies the minimum number of data-
storage registers needed to run the program. (Refer to “Allocating
Registers,” below.)
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Size: 016

Instructions Key In: Display
3. Input your data pairs: y 2+ CLZ FIT

Repeat for each pair. x[A](2+4)

This column describes what you need
to do, including what kind of input
(data values) to key in.

This column tells you which key(s) to press to enter
your input or compute a result.

This column shows you what you should see in the calculator’s display
after you follow the given instruction. The display most often shows a
result, a prompt for information, or a menu. (The menu interface used
by many programs ‘in this pac is described in “Using the Menu
Interface”.)

Following the instruction table are remarks about the program—de-
tails of its operation and clarification of certain points.

Each chapter has examples for using its program or functions.

Lastly is programming information for calling the user-accessible
subroutines within the given program for use in programs you might
write.

Allocating Registers ( )

The instruction table tells you the minimum number of data-storage
registers required to run a specific program. To allocate these nnn stor-
age registers, use the function (press (XEQ] [ALPHA] (ALPHA]
nnn). For more information on this function, refer to the owner’s man-
ual for the HP-41. If you try to run a program but get the message

SIZE > =nnn

you need to set the to (at least) nnn. Then press to con-
tinue the program.



As explained in the owner’s manual for the HP-41, the HP-41 has both
keyboard and nonkeyboard functions. These two types of functions are in-
voked (executed) in two different ways. Keyboard functions have their
own keys on the keyboard (such as and ). Nonkeyboard func-
tions—including programs—must have their names (also called Alpha
names) typed into the display after pressing [XEQ].*

Notation Keys to Press
Example

‘ This is a keyboard function.

(Press these sequentially, not simulta-
neously.) This is a shifted keyboard function.

‘ (FX) (Z+ is printed on the top surface; A is printed

| on the forward face.) This is a “customized” function
for a particular program. FX is what would appear
(for example) in the display above [A]. FX is the
menu label for [A].

XEQ [XEQ] [ALPHA] [ALPHA]
(The key toggles the Alpha keyboard on and
off.)

This is a non-keyboard function. It can also be exe-
cuted as a User key. (Refer to the owner’s manual
for the HP-41))

XEQ 013 | [(XEQ] [ALPHA] (ALPHA] [0](1](3]

This pac uses keys in the top two rows as special, redefined functions.
They are represented then as [A] through (J], not as [Z+], etc.

This pac supplies both new functions and programs for your use. Each
chapter explains what is available. The individual functions operate like
other HP-41 nonkeyboard functions. The programs are more sophisti-
cated and easier to use: they combine several new functions plus a user
interface with prompts and menus that lead you through data input and
the resulting output.

* The other, faster alternative for executing a nonkeyboard function or program is to assign its
name to a key on the User keyboard. Refer to the owner’s manual for the HP-41.
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Most important, each program redefines some keys in the top two rows
of the calculator to perform (with a single keystroke) operations defined
in the program. For a program to work as given, you must clear any existing
User-key assignments in the top two rows. To use these redefined keys, the
User keyboard must be active. All of the programs in this pac that pro-
vide this feature automatically activate the User keyboard when they are
started. If you deactivate the User keyboard for any reason, you must
reactivate it (press [USER]) to use the redefined keys. The menus have
labels indicating the identities of those redefined keys. Here is an
example:

The Menu for Polynomial Solutions

e n
Fx RT NE W
| user |
A B E
WENU
J

The FX menu label shows you that when you run PLY, the top left key
on the calculator, [A], is redefined to evaluate the polynomial f(x) at x.
(identified by the label RT) is redefined to compute the root, and
(identified by the label NEW) initializes the program to accept a new
polynomial.
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The (J] key has special significance. In all menus in this pac, pressing
has the effect of recalling the menu to the display.* You can do this as
often and whenever you like: the menu is simply an aid in identifying
keys.

Error Messages. Should you get an error message during a program, it
is handy to press (J] (after remedying the error condition) to display the
menu again. For a definition of error messages, refer to your HP-41
owner’s manual. Error messages that can occur with matrix operations are
described in the chapter “Matrix Functions.”

If the Calculator Turns Off. If the calculator turns off while you are
working with a program, you will find the display changed when you
turn it back on. The display will show the X-register, without any
prompts or menu that might have been in the display before the calcu-
lator went off. The program is still active, but it is best to re-start it by
pressing (J] to recall the menu.

If you are running a program that does not have a menu, it might be
necessary to set flag 21 to re-establish proper display of results.

If you are not already familiar with the program-execution indicator (* ),
you soon will be. It appears and moves across the display whenever a
program is actively running. So if you perform an operation from a pro-
gram, the moving indicator shows you that the calculation is in process.

Catalog 2 shows you the names of all programs and subroutines in this
pac (and any other modules plugged in). Press 2.

You can call the programs (and some subprograms) in this pac as subrou-
tines for your own programs in the HP-41’s memory. Refer to the section
on “Programming Information” at the end of many chapters.

* The (U] key is the same as the key. We use the letter designations so as not to confuse
the “old” function (tangent) with the new one.



If you have a printer plugged into the HP-41 as you use this pac, set it to
MAN mode for the most readable automatic print-out of your inputs and
results. (Some programs require NORMAL mode.) NORMAL mode lists
all input values and keystrokes you use, as well.

Many of the programs in this pac are copiable using the function.
However, it is not necessary to copy a program into main memory in order to
use it. Also, it is not necessary to copy a subroutine in order to gain access
to it for a program of your own.

You should avoid using labels in your own programs that are identical to
labels in this application pac. In case of a label conflict, the label within
program memory has priority over the label within the application pac.
All program labels used in this pac are listed in catalog 2.

Do not have both the HP-41 Advantage Advanced Solu-
tions Pac and the HP-IL Development Module plugged into the
HP-41 at the same time. These two modules share the same
ROM identification numbers, and using them together will cause
problems with the operation of the calculator.

Certain function names used by the HP-41 Advantage are also used by
the HP-41 Math Pac and the HP-41 Real Estate Pac. When using these
functions, you should remove the modules whose functions you do not
want accessed.

Duplicate Functions
Math Pac Real Estate Pac

All complex-number functions. N, PV, PMT, FV, and *I
All functions in DIFEQ.



If you have questions regarding the operation of the calculator, be sure to
refer to the owner’s manual for the HP-41 for information. If you have
technical problems with this pac that the manual cannot resolve, you can
call or write Hewlett-Packard for technical customer assistance. Refer to
your HP-41 owner’s manual for the address and telephone number.






THE MATRIX PROGRAM

The Advantage Pac provides extensive capabilities for creating, storing,
and calculating with real or complex matrices. This functionality is avail-
able to you as either individual functions or as a program with menus and
prompts. This is the case with many of the other subject areas in this pac.
However, unlike the other topics, the topic of matrices is here divided
into two separate chapters because of its size and complexity.

This chapter describes the matrix program, MATRX—the easy, “user-
friendly” way to use the most common matrix operations on a newly
created matrix. To use MATRX you do not need to know how the calcu-
lator stores and treats matrices in its memory. The next chapter, “The
Matrix Functions”, lists and defines every matrix function in the pac, in-
cluding those called by MATRX. Using these functions on their own
requires a more intimate knowledge of how and where the calculator
stores matrices.

What This Program Can Do
Consider the equations
3.8x; + 7.2x, = 16.5
1.3y, — 09x, = —22.1

for which you must determine the vaues of x; and x,. These equations
can be expressed in matrix form as AX = B, where

38 7.2 X 16.5
A = , X = , and B =
1.3 -09 X, -22.1

A is the coefficient matrix for the system, B is the column or constant ma-
trix, and X is the solution or result matrix.

For such a matrix system, the MATRX program creates (dimensions) a
square real or complex matrix, A, and a column matrix, B. You can then:

H Enter, change (“edit”), or just view elements in A and B.
E Invert A.

B Transpose A if A is real.
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Find the determinant of A if A is real.

Solve the system of simultaneous equations by finding the solution
to AX = B.

The size of your matrix is limited only by available memory. (Each
real matrix requires one register plus one register for each element.) If
you want to store more than one matrix, you will need to use the
matrix function [MATDIM], described in the next chapter. The MATRX
program does not store or recall matrices; it works with a single
square matrix A and a single column matrix B. When you enter new
elements into A you destroy its old elements.

MATRX has two menus to show you which key corresponds to which
function. The initial menu you see is to select a real or complex matrix:

Initial Menu

a = — D

MENU

After you make this selection, input the order of the matrix, and press
(R/S], you will see the main menu:



( _ N
R I IT B GF
USER | |
A B c D E
MENU
J

This menu shows you the choice of matrix operations you have in
MATRX. Press [J] to recall this menu to the display at any time. This will
not disturb the program in any way.

To clear the menu at any time, press [+]. This shows you the contents of
the X-register, but does not end the program. You can perform calcula-
tions, then recall the menu by pressing (J]. (However, you do not need to
clear the program'’s display before performing calculations.)

¥ The program starts by asking you for a new matrix. It has you spec-
ify real vs. complex and the order (dimension) of a square matrix
for A.

% The program does not clear previous matrix data, so previous
data—possibly meaningless data—will fill your new matrices A
and B until you enter new values for their elements.

® Each element of a complex matrix has two values (a real part and
an imaginary part) and requires four times as much memory to
store as an element in a real matrix. The prompts for real parts x;;,
X1y, etc. are 1:1= 2, 1:2= ?, etc. The prompts for complex parts x;;
+ iy11, X1 + iy, etc. are RE.1:11= 2, IM.1:1= ?, RE.1:2= ?,
IM.1:2= ?, etc.
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The next chapter (“Matrix Functions”) includes a complete discussion un-
der “How a Matrix Is Stored” of the specific requirements for matrix
storage. You do not need to figure this out in order to use this program,
however, because the program prompts you for the proper memory set-
ting with the message SIZE>=nnn if your memory size is not large

The following table shows the keystrokes to execute matrix operations in
the MATRX program. All of these operations are also available as individ-
ual HP-41 functions, described in the next chapter.

Instruction Table for MATRX

Size: variable*
Instructions Key In Display
. Start program MATRX.
(MATRX ]t RL CX
. Select a new real (RL) or complex (CX) matrix. (RL) or
(CX) ORDER=?
. Enter dimension n of your square matrix, A. | n AIDTB SE
4. Enter the elements of your matrix A. The ? 1:1=a4? or
prompts you to change the current element, if RE.1:1=a44?
you desire. Enter the value for the current ele- | [R7S 1:2=a4,? or
ment, then press to access the next IM.1:1=y4?
element. : g
n:n=a,,? or
IM.mn=y,,?
R/S A I DT B SE
To review and edit the matrix A, just repeat
this process. To leave an entry unchanged,
just press (R7S].
. To edit a specific element a; ;, first enter the
editor, then specify the element as jii. jjj. i jjj iyj=a; ;2 or
RE.i:j=a,-’/-?
If iii.jjj does not exist, the editor ends and
returns to the main menu.
Use to proceed to subsequent ele- : :
ments and finally exit the editor. R/S A I DT B SE




(This operation replaces A with its LU-de-
composed form. See “Remarks”.)
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Instruction Table for MATRX (Continued)
Instructions Key In: Display
. To only view the matrix A: 1:1=a,, or
RE.1:1=a,,
§ 1:2=a,, or
IMA:1=y,,
75 § A 1DTBSE
Note there is no ? prompt. You cannot change
these entries.
. To enter, edit, and view the column matrix, B,
follow exactly steps 4, 5, or 6, but use (D] (B)
and (D] (" B). B is automatically correctly
dimensioned to one column by n rows (step
3).
8. To end the editor and return to the menu: A I DT B SE
9. Execute a matrix operation:
® Invert A to A—1. This replaces matrix A. 1] A I DT BSE
View A~
§
Transpose A (if real) to A”. This replaces A I DT B SE
matrix A. (If you had inverted A, be sure to
re-invert it first. If you had found det(A) or
solved for X, you must invert A twice to re-
store it before transposing it. Refer to
“‘Remarks” for this section for more
information.)
View AT.
§
= Determinant of A (if real), det (A). (If you DOT) DET=result
had inverted A, be sure to re-invert it first.) | [(R7S] § A I DT B SE
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Instruction Table for MATRX (Continued)

Instructions Key In: Display

= Solve the system of equations described | (E] (SE) AIDTBSE
by AX = B. This finds X, which replaces B.
(It also replaces A with its LU-decomposed
form. See “Remarks”.)

View X (replaces B). (1B)
(R/S] §

* The size of this program depends on the size of the matrices involved. It is (order? + order
+ 2) for real matrices A and B; [4(order?) + 2(order) + 2] for complex matrices A and B.
However, note that the program will tell you what memory size to set if it is not large
enough.

t To execute a program, press Alpha name or use a User-defined key.

1 You can drop leading zeros in the i-part and trailing zeros in the j-part. A zero part defaults
to a 1. For example, 0.000 defaults to 1.001.

§ If you have a printer attached, the display automatically returns to the main menu after
printing the result(s).

For a list of error messages relevant to matrix operations, see “Error
Messages” in the next chapter.

Alteration of the Original Matrix. The input matrix A is altered by
the operations finding the inverse, the determinant, the transpose,
and the solution of the matrix equation. You can re-invert A~! and
re-transpose AT to restore the original form of A. However, if you
have calculated the determinant or the solution matrix, then A is in
its LU-decomposed form. To restore A, simply invert it twice. The LU-
decompostion does not interfere with any subsequent MATRX opera-
tion except transposition and editing*. For more information on LU-
decomposition, refer to “LU-Decomposition” in the next chapter
(“Matrix Functions”).

*Do not attempt to edit an LU-decomposed matrix unless you intend to change every
element.
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Matrix Storage. The MATRX program stores a matrix A starting in R
of main memory; it is named RO. Its column matrix B is stored after it,
and the result matrix X overwrites B. Refer to the chapter “Matrix Func-
tions” for an explanation of how matrices are named and stored, and how
much room they need.

MATRX cannot access any other matrices, with the exception of the previ-
ous RO and its corresponding column matrix.

Redefined Keys. This program uses local Alpha labels (as explained in
the owner’s manual for the HP-41) assigned to keys (A]-(E], (U], [ [(A],

(B8], and | [D]. These local assignments are overridden by any User-key
assignments you might have made to these same keys, thereby defeating
this program. Therefore be sure to clear any existing User-key assignments of
these keys before using this program, and avoid redefining these keys in the
future.

Given the system of equations at the beginning of this chapter, we have
the matrix equation AX = B, or

38 72| |x 165

1.3 -0.9| | x, -22.1

Find the inverse, determinant, and transpose of A, and then find the so-
lution matrix, X.

Keystrokes Display
4 Sets the display for-
mat used here.

XEQ] [SizE | 008 Optional—sets the
number of storage reg-
isters needed for the
program. This is not
necessary if your allo-
cation is already
SIZE = 008.

(MATR) RL CX Starts the MATRX
program.

(RL) ORDER="? Selects a real matrix.

2 A1 DT B SE Dimensions a 2 X 2

square matrix.
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Keystrokes
A

3.8
7.2
1.3
9 [chs) (R/S)

E I

o||z|[» a:u:u:u:u
SIS SIS
mmwwE mmmmE
¥ % % x 0=

E
S
e
o]
-~

—_

DT)
B)

@a || J|| DD
(] (9)|9)|3)|3)[>] =]
E R

—_

16.5
22.1

(" B)
R/S] *
R/S] *

(SE)

33

Display
1:1 =a11?

1:2=a,,?
2:1=ay¢?
2:2=2a,,?
A I DT B SE

1:1=3.8000
1:2=7.2000
2:1=1.3000
2:2=—0.9000
A1 DT B SE
A1 DT B SE
1:1=0.0704
1:2=0.5634
2:1=0.1017
2:2=-0.2973
A1 DT B SE

A1 DT B SE

A1 DT B SE
1:1=3.8000
1:2=1.3000
2:1=7.2000
2:2=-0.9000
A I DT B SE

A I DT B SE

DET=—12.7800

1:1=b11?
2:1=by,?

A I DT B SE
1:1=16.5000
2:1=-22.1000
A I DT B SE
A I DT B SE

Enters the editor for A
and displays (old) ele-
ment 4qq.

Enters 3.8 for aq;.

Enters a,, and returns
main menu.

Displays the current
contents of A for your
review.

Inverts A.

Displays the current
contents of A, now
AL

Reinverts A~! to the
original A.
Transposes A.
Displays the current

contents of A, now
AT,

Retransposes AT to the
original A.

Det(A).

Enters the editor for B
and displays (old) ele-

ment bqq.
Enters 16.5 for bq;.

Enters b,; and returns
main menu.

Displays the current
contents of B for your
review.

Solves the system

AX = B, placing X in
B.



Keystrokes
(o] (11 B)

*

*

Display

1:1=-—11.2887

2:1=8.2496
A1 DT B SE

Find the inverse of this complex matrix:

Keystrokes

SIzE] 017

[MATRX]

(CX)
2

1 [R/s)
2 [R/s]
3 [R/s]
4 [R/s])

1.002
R/S

3 [R/s]

1+2i 3+3i
4+5 6+7i

Display

RL CX

ORDER="?
A I DT B SE

RE.1:1=a44?
IM.1:1=y,?
RE.1:2=a4,?
IM.1:2=y,?
RE.2:1=a5,?

RE.1:2=3.0000?

IM.1:2=4.0000?

RE.2:1= anq ?

*[R/8] keystroke not necessary if a printer is attached.
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Displays the solution
matrix (in B).

For one complex ma-
trix A,
22x4+1=17.
Starts the program
over.

Dimensions a 2 X 2
complex matrix.

Oops! Wrong entry for
Y12 Should be 3, not
4.

Moves editor back to
aiy.

The imaginary part.
(Wrong value.)

Correct value is en-
tered for y;,. Proceed
with data entry.
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Keystrokes

4 [R/8]
5 (R/8]
6 (R/S]
7 (Rs8)

@
2.002
R/S

(or (1))

*If you have a printer attached, then the viewing operation automatically prints the entire

matrix and redisplays the menu.

Display
IM.2:1=y,,?
RE.2:2=a,,?
IM.2:2=y,,?
A1 DT B SE

A1 DT B SE
RE.1:1=—0.9663
RE.2:2=—0.2360
IM.2:2= —0.0225

A I DT B SE

Enters last element
and returns main
menu.

Inverts A.
Viewing A 1%
Displays ap; + iyp,.*

Exits the editor.
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THE MATRIX FUNCTIONS

This chapter is a companion to the preceding chapter, “The Matrix Pro-
gram.” This chapter comprehensively covers all matrix functionality
available in this pac for the advanced user.

You can create, manipulate, and store real and complex matrices. The size
and number of matrices is limited only by the amount of memory avail-
able in the calculator. If you have extended memory (an HP 82180A
Extended Functions/Memory Module or an HP-41CX), you can also store
matrices there.

The matrix operations offered in this pac include inversion, transposition,
finding the determinant, solving a system of equations, and doing matrix
arithmetic. In addition, you can manipulate individual elements in and
between matrices.

Setting Up a Matrix

To create a matrix you must provide its name and dimensions. The func-
tion [MATDIM | uses the name in the Alpha register and the dimensions
mmm.nnn in the X-register to create a matrix.

a4y A A1

Ay Ap Ao
a;;

aml amZ amn

It does not clear (zero) the elements of a new matrix in main memory, but
retains the existing contents of the previous matrix or registers. It does
clear the elements of a new matrix in extended memory.

You then enter values—numeric or Alpha—into a matrix via the matrix
editor (page 34).



Naming a Matrix

The name you give a matrix determines where it will be stored. A matrix
to be stored in main (non-extended) memory must be named

Rxxx,

where xxx is up to three digits. (You can drop leading zeros.) The matrix
will be stored starting in R,,,. For example, R007 is the same as R7, which
would store this matrix header in Ry;.

As a shortcut, if you specify matrix R, its name and location will be R0.

A matrix to be stored in extended memory can be named with up to
seven Alpha characters, excepting just the letter “X” (which is reserved to
name the X-register) and the letter “R” followed by up to three digits
(which is reserved to name the main memory arrays). You do not need to
specify a file type; it will automatically be given one unique to matrices.

Use the Alpha register to specify matrix names. When specifying more
than one name (as parameters for certain functions), separate them with
commas.

returns the name of the current matrix to the Alpha register.

Dimensioning a Matrix

Specify the dimensions of a new matrix as mmm.nnn, where m is the
number of rows and 7 is the number of columns. You can drop leading
zeros for m and trailing zeros for n.

For a complex matrix, specify mmm.nnn as twice the number of rows and
twice the number of columns. (Refer to “Working with Complex
Matrices.”)

1 2 3 1+1 24 3i
4 5 6 445 6+7i
mmm.nnn = 2.003 mmm.nnn = 4.004

A zero part defaults to a 1, so 0 is equivalent to 1.001, 3 to 3.001, and
.023 to 1.023.



dimensions a new matrix or redimensions an existing one to the
given dimensions.

| returns the dimensions mmm.nnn of the matrix specified in the Al-
pha register to the X-register. (A blank Alpha register specifies the current
matrix.)

How a Matrix Is Stored

The elements of a matrix are stored in memory in order from left to right
along each row, from the first row to the last. Each element occupies one
data-storage register. A complex number requires four registers to store its
parts.

Memory Space. A matrix in main memory occupies (m X n) + 1 data-
storage registers, one register being used as a status header. A complex
matrix uses (2m X 2n) + 1 registers, where m is the number of rows in
the complex matrix and n is the number of columns in the complex
matrix.

Note: To successfully dimension a matrix in main memory, the
size of data-storage memory must be large enough to hold it. If it
is not, you will see the message NONEXISTENT when you try

. Reallocate more registers to data storage ( nnn)
and try again.

A matrix in extended memory has a file length of m X n. (2m X 2n for a
complex matrix.) Its file type is unique to matrices. Do not use the func-
tion with a matrix in extended memory: this destroys part of the
file’s header information. Instead, use to purge the entire matrix.

Changing Matrix Dimensions. If you redimension a matrix to a dif-
ferent size, then the existing elements are reassigned to new elements
according to the new dimensions. Extra old elements are lost; extra new
elements take on the values already present in the new registers—except
in extended memory, where new elements are set to zero.



When [ MATDIM | is used to redimension a matrix stored in extended
memory, the position of the matrix pointer is not readjusted. If the
pointer happened to be positioned to an element that is outside
the new bounds of the redimensioned. matrix, it must be
reposmoned to be within the new bounds by executing either
MSIJ ] or (1 | with valid indices before the pointer can be used
agaln.

Existing matrices in extended memory cannot be redimensioned to
completely fill extended memory. The maximum allowable size of a
redimensioned matrix is one register less than the currently avail-
able extended memory. A new matrix can, however, be
dimensioned to completely fill available extended-memory.

Redimensioning 2x3 to 2x2

This is what happens each time you dimension a new matrix since the
old elements from the previous current matrix remain until you
change them.

There are two matrix editors: [ MEDIT | for real matrices and | for
complex matrices. They are otherwise quite similar.

The matrix editors are used for three purposes:
Entering new values into the elements of a matrix.

Reviewing and changing (“editing”) the elements of a matrix, either
in order or by “random access” of specific elements.

Viewing (without being able to change) the elements of a matrix
(flag 08 set).
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When you execute [ MEDIT | or [ CMEDIT |, the editor displays element 1,1 of
the matrix specified in the Alpha register or of the current matrix if the
Alpha register is empty. Pressing steps the display through the ele-
ments; for a complex matrix, each part of the complex element is shown

separately.
Function Display Function Display
(MEDIT 1:1=1.0000? (CMEDIT] RE.1:1=1.0000?
R/S 1:2=2.0000? IM.1:1=1.0000?
R/S RE.1:2=2.0000?
R/S (X-register) R/S (X-register)

The ? at the end of the display line indicates that you can change that
value. In effect, you are being asked whether this is the value you want. If
you want to change the element you see, just enter the new value and
press [R/S]. You do this for a brand new matrix as well as for correcting
or altering a single value.

If you press without entering a new value, the current value remains
unchanged.
Viewing without Editing. If you set flag 08, the editor will let you

only view the elements, not change them. The display appears without
the ? at the end of the line.

1:1=1.0000

If you have a printer attached while flag 08 is set, it will print out all the
elements of the matrix without pausing.

Directly Accessing Any Element. You can directly access any spe-

cific element while the editor is active (and the User keyboard is also
active). To access the element in the ith row and the jth column, enter

leading zeros in iii and trailing zeros in jjj.

For a complex matrix, you can directly access the real part of element i, j.
Then use to access its imaginary part.



Keystrokes Display
ALPHA | matrix name [ ALPHA

XEQ] | 1:1=1.0000?
3.003 3:3=6.00007?
complex-matrix name

XEQ ] | CMEDI RE.1:1=1.00007?
3.003 RE.3:3=6.0000?

R/S IM.3:3=7.00007?

You can drop leading zeros in the i-part and trailing zeros in the j-part. A
zero part defaults to a 1.

Exiting the Editor. To leave the editor before it has reached the last
element, do either:

Press [J].
Try to access a nonexistent element. For instance, in a 4 X 4 matrix,

press 5 [A].

Given the matrix multiplication operation AB = C, you know A and
B and are looking for the product matrix, C. In performing this opera-
tion, the calculator must be given the identities of the existing
matrices A and B, and also be told where to put the result matrix, C.
(However, the result matrix can be the same as one of the input matri-
ces.) All given matrices must already exist as named, dimensioned
matrices. Naturally, only A and B must contain valid data.

Some functions use only one input matrix, and some functions auto-
matically use one of the input matrices for output. So the minimum
number of matrices to specify is one, and the maximum is three.

A matrix function checks the Alpha register for the names (that is, the
locations) of the matrices it needs for input and output. Before execut-
ing that function, you should specify all needed parameters on one
line in the Alpha register, separating each with a comma:

Alpha Register | input matrix[,input matrix][,result matrix]



For instance,
Alpha Register | A,B,C

XEQ

will multiply the matrices A and B, putting the result in existing matrix
C.

Scalar Operations. Scalar input and output must be in the X-register,
and so this location does not need to be specified unless the function in
question can use either a scalar or a matrix for the same input parameter.
To specify the X-register, use X.

For instance, [MATDIM | requires a scalar input and a matrix name, so you
do not need to specify the X-register. On the other hand, the scalar
arithmentic functions, such as [MAT# |, can use either two matrices or a
scalar and a matrix for input. Therefore, you must specify X if you want
to use it.

The Current Matrix. The current matrix is the last one accessed (used)
by a matrix operation. If the Alpha register is clear and you execute a
matrix function that requires a matrix specification, the current matrix is
used by default. (If there is no current matrix, UNDEF ARRAY results.)

The result matrix of a matrix function becomes the current matrix follow-
ing that operation.

To find out the name of the current matrix, execute [ MNAME? |. Its name is
returned into the Alpha register.

Default Matrix Parameters

If you don’t specify any or all the matrices that a matrix function needs,
then certain default parameters exist. (Default parameters are those auto-
matically assumed if you don’t specify them.) The most common default
you will probably use is the current matrix. If you don’t specify a particu-
lar matrix name and the Alpha register is clear, then the default matrix is
the current one.

For matrix operations requiring up to three matrix names in the Alpha
register, the following table gives the conventions to interpret the
parameters.



Matrix Specifications

| Alpha Register’s Matrices Specified

Contents
| A,B,C A B, C
| AB | A, B, B
A LA A A
| A,B | A,A, B
| ,A,B current, A, B
A | current, A, A
HA current, current, A
| X,AB X-register, A, B
X,A X-register, A, A
AX A, X-register, A
A, X A, A, A (ignores X)
X X-register, current, current
(blank) current, current, current

Error Messages

Refer to your HP-41 owner’s documentation for error messages you don't
see here.

ALPHA DATA results if the specified matrix contains Alpha data and so
cannot be operated upon. The matrix is unchanged.

DATA ERROR results if the value in the X-, Y-, or Z-register is invalid.
DATA ERROR X results if the value in the X-register is invalid.
DATA ERROR Y results if the value in the Y-register is invalid.

DIM ERROR results if the dimension of the specified matrix is not correct
for the current operation.

END OF ARRAY results if you attempt a function that uses the matrix
pointer and the pointer is beyond its defined bounds.

NAME ERROR results if an invalid matrix name is specified (such as “X")
or if the number of distinct matrix names is incorrect for a function.

NO ROOM results if there is not enough room to store a matrix in ex-
tended memory.



NO X-MEMORY results if you attempt to create a matrix in extended
memory when your calculator has no extended memory (that is, an HP-
41C/CV without an HP 82180A Extended Functions/Memory Module).

NONEXISTENT results if there are not enough storage registers in main
memory to store the matrix. Re-size memory ([ SIZE |nnn) to a larger figure
{ > accommodate the new matrix.

NOT ARRAY FL results if you attempt a matrix operation on an extended-
memory file that is not a matrix file.

NOT CPX results if you try to use IEDIT | with a real matrix of odd
order.

TRY AGAIN results if you execute | )IM | with less than two available
registers of program memory. Either resize data-storage memory to fewer
data registers, or use [CLP | to eliminate a program.

UNDEF ARRAY results if you execute a function needing a matrix speci-
fication but the Alpha register does not contain a valid matrix
specification.

The matrix editor provides a method of storing and reviewing matrix ele-
ments. For programming, you can use the following functions to
manipulate individual matrix elements.

row of the jth column. You can drop leading zeros in the i-index and
trailing zeros in the j-index.

Accessing Elements One by One

To store or recall an individual element, you first set or recall the element

element from or to the X-register. To go on to another element, you then
either increment the pointer or reset it.

The value of the pointer defines the current element.



Setting and Recalling the Pointer

Function

(set |
pointer by Alpha)

; (set
pointer)

JA | (recall
pointer by Alpha)

(recall
pointer)

Effect

Input: matrix name in Alpha reg.
iii.jjj in X-reg.
Input: Jjii.jj in X-reg.
Recalls element pointer of specified matrix to X-reg.
Input: matrix name in Alpha reg.
Output: jii.jjj into X-reg.
Recalls element pointer of current matrix to X-reg. '

| Output: jii.jjj into X-reg.

The following functions increment and decrement the element pointer
rowwise (iii) or columnwise (jjj). If the end of a column is reached (with
the i-index) or the end of a row is reached (with the j-index), then the
index advances to the next larger or smaller column or row and sets flag
09. If the index advances beyond the size of the matrix, both flags 09 and
10 are set. These functions always either set or clear flags 09 and 10. If

the conditions listed

above don’t occur, the flags are cleared every time

the functions are executed.

Incrementing and Decrementing the Pointer

Function

" Effect

| Increments iii of pointer by one.

Decrements iii by one.

| Increments jjj of pointer by one.

Storing
Function

[MS | (matrix
| store)

| (MA] (matrix
| recall)

: Decrements jjj by one.

and Recalling the Element’s Value

Effect )

Stores value from X-reg into current element of cur-

| rent matrix.

Input: value in X-reg.

| Recalls value in current element of current matrix
| into X-reg.

| Output: value into X-reg.



Accessing Elements Sequentially

The following functions provide a faster, more automated alternative to
adjusting the pointer value to access each element. These combine storing
or recalling values and then incrementing or decrementing the i- or j-
index, so that the pointer is automatically set to the next element.

Storing and Recalling the Element’s Value

Function Effect

Stores value from X-reg into current element and
then advances pointer to next element in column.
Input: value in X-reg.

‘ | (matrix
store by column)

Stores value from X-reg into current element and
then advances pointer to next element in row.
Input: value in X-reg.

\ v ] (matrix
store by row)

Recalls value to X-reg from current element and
then advances pointer to next element in column.
Output: value into X-reg.

] | (matrix
| recall by column)

| (MRR+ | (matrix | Recalls value to X-reg from current element and

recall by row)

then advances pointer to next element in row.

| Output: value into X-reg.

| (MRC—] (matrix Recalls value to X-reg from current element and
| recall backwards | then decrements pointer to previous element in
| by column) column.
| Output: value into X-reg.
[MRR-] (matrix | Recalls value to X-reg from current element and
| recall backwards | then decrements pointer to previous element in row. |
| by row)

| Output: value into X-reg.

When the end of a column or row is reached, the pointer’s index ad-
vances to the next (or previous) column or row. If the pointer’s index is
moved beyond the boundaries of the matrix, it cannot be moved back
using these functions. You must use [ MSIiJ] or ||

The following sequence of keystrokes will create the matrix ABC (in ex-
tended memory).

5 6 7
9 10



Keystrokes
4

(ALPHA] [ALPHA]

2.003

08

XEQ

Display

2.0030

0.0000

5.0000

6.0000
7.0000

8.0000

9.0000
10.0000

1:1=5.0000
1:2=6.0000
1:3=7.0000
2:1=8.0000
2:2=9.0000
2:3=10.0000

Sets the display for-
mat used here.
Matrix name in ex-
tended memory.

Dimensions matrix
ABC to 2 rows X 3
columns.

Sets element pointer to
1.001.

Enters element and
advances pointer to
next column for next
entry, setting flag 09.

Pointer automatically
moves to the second
TOW.

This sets the editor to
display only; if you
have a printer at-
tached this is a faster
way to view the matrix
elements.

Now let’s look at
ABC. (ABC is still in
the Alpha register.) If
you have no printer
attached, press
to view each
successive element.

Exits editor.

This section briefly defines the matrix functions besides the dimension-
ing, storing, and recalling functions discussed above. On page 58 is a
Function Table that lists all matrix functions in this pac.



Note that most of these functions are not meaningful for matrices con-
taining Alpha data and that many of these functions are not meaningful
for complex matrices. In any case, a complex matrix appears as a real
matrix to all functions except [CMEDIT |. Refer to “Working with Complex
Matrices” for more information on using these functions with complex
matrices.

Matrix Arithmetic

The matrix-arithmetic functions provided are scalar addition, subtraction,
multiplication, and division, as well as true matrix multiplication. The sca-
lar arithmetic functions can use two matrices as operands, or one scalar
and one matrix. When using two matrices, the matrices do not have to be
of the same dimension, but the total number of elements in each must be
the same. This also applies to the result matrix. (Note that the i-j notation
in the table below assumes that the dimensions of the matrices are the
same. If this is not the case, the i-j notation does not apply.)

Matrix multiplication, on the other hand, calculates each new element by
summing the products of the first matrix’s row elements by the second’s
column elements. The number of columns in the first matrix must equal
the number of rows in the second matrix. The result matrix must have the
same number of rows as the first matrix and the same number of columns
as the second matrix.

If there is a scalar operand, it must be in the X-register, and X must be
specified in the Alpha register.

Function Effect

Scalar Arithmetic

| [MAT+] (matrix Adds a scalar or matrix element to each element.
add) Input: matrix name A or X,matrix name B or X,
result-matrix name C in Alpha reg.
Output: ¢; = a; + x or "
Cj = X + by or
C,‘/ =3 a,'l' + b,/ for all /, [ in C.

| [MAT=] (matrix Subtracts a scalar or matrix element from each
Subtract) element.
| Input: matrix name A or X,matrix name B or X,
result-matrix name C in Alpha reg.
Output: ¢; = a; — x or
Cij = X — b’/ or

cj = a; — by for alli, jin C.



Function

(scalar
matrix-multiply)

(matrix
divide)

1] (matrix
multiplication)

Effect

Multiplies a scalar or matrix element by each
element.
Input: matrix name A or X,matrix name B or X,
result-matrix name C in Alpha reg.
Output: ¢; = a; X x or

C,'/' X + b,/ or

C,'I' = a,-]- X b’l for all i, j in C.

Divides a scalar or matrix element into each
element.

| Input: matrix name A or X,matrix name B or X,

result-matrix name C in Alpha reg.
Output: ¢; = a; + x or

Cjj X <+ by or

cj = a; + by foralli,jinC.

Nonscalar Arithmetic

Calculates each new element i, j by multiplying the
ith row in A by the jth column in B.
Input: matrix name A,matrix name B,result-matrix
name C in Alpha reg., where C must be different
from A and B.

P
Output: c; = >, a, X by, where A has p col-

k=1
umns and B has p rows.

Major Matrix Operations

The major matrix operations are: inversion, finding the determinant,
transposition, and solving a system of linear equations.

A system of linear equations

apxy + apx; = by

ax1Xy + axpx, = by

can be represented by the matrix equation AX = B, where

a1 A1 Xq by

, X = , and B =

a1 Ap X b,



A is the coefficient matrix, B is the constant or column matrix, and X is the
solution matrix. (The B matrix is overwritten by the X matrix when solving

this system.)

Function

(determinant)

(inverse)

(system
of equations)

(transpose)

Effect

Finds the determinant of the given real square
matrix.

Input: matrix name in Alpha reg.

Output: determinant into X-reg. (Replaces matrix
with LU-decomposed form).

Inverts and replaces the given square matrix.
Input: matrix name in Alpha reg.
Output: Replaces matrix with its inverse.

Solves a system of linear equations.

Input: matrix name A,matrix name B in Alpha reg.
Output: solution matrix X replaces B in the system
defined by the matrix equation AX = B. (Replaces A
with its LU-decomposed form.)

Transposes and replaces the given real matrix.
Input: matrix name in Alpha reg.
Output: Replaces matrix with its transpose.

You cannot transpose or change any element of a matrix A
that has had its determinant found or has had its solution matrix

found because

and transform the input matrix A

into its LU-decomposed form. (Refer to “LU-Decomposition” for
more information.) However, you can retrieve the original form
of A from its decomposed form by inverting it fwice (execute

twice). The LU-decomposition does not interfere with the

calculations for

’ , Or



The remaining matrix functions, also called utilities, are those for copying
and exchanging parts of matrices, and miscellaneous, extra arithmetic
functions: finding sums, norms, maxima, and minima, and matrix
reduction.

Moving and Exchanging Matrix Sections
Function Effect

| (ex- Exchanges columns k and / in a matrix.
change columns) | Input: matrix name in Alpha reg.
Kkk 1l in X-reg.

(ex- | Exchanges rows k and / in a matrix.
change rows) Input: matrix name in Alpha reg.
kkk.lll in X-reg.

E | (matrix Copies the submatrix defined by pointers in source
move) matrix to the area defined by one pointer in target
matrix.
Input: source-matrix name A,target-matrix name B in
Alpha reg.

(matrix Exchanges the submatrix defined by pointers in a

swap) source matrix with the area defined by one pointer
in a target matrix.

| Input: matrix name A,matrix name B in Alpha reg.

When executing and , if A and B are the same matrix
and the source submatrix overlaps the target submatrix, the elements are
processed in the following order: reverse column order (last to first) and
reverse element order (last to first) within each column.



Source matrix (A) Target matrix (B)

When an input of the form iii.jjj is expected in the X-register, a zero value
for either the i-part or the j-part is interpreted as 1. (Zero alone equals
1.001.) This is true for the iii.jjj-values that [MMOVE | and [ MSWAP | expect
in the X- and Z-registers, but not for the pointer value in the Y-register.

For the Y-register input, a zero value for the i-part is interpreted as m, the
last row, while a zero value for the j-part is interpreted as n, the last
column. For example, in a 4 X 5 matrix,

Y-Register Pointer Value

0.000 4.005
3.000 3.005
0.003 4.003

This convention facilitates easy copying (or exchanging) of entire matrices
because simply by clearing the stack ([CLST]) or entering three zeros you
specify the elements 1.001 (X) and mmm.nnn (Y) for the first matrix and
element 1.001 (Z) for the second matrix, thus defining two entire




Miscellaneous Arithmetic Functions

Function

(maximum)

(minimum)

(maxi-
mum absolute
value)

(column’s maxi-
mum absolute
value)

(row’s
maximum abso-
lute value)

(column
norm)

(Frobenius norm)

(row
norm)

Effect

Maxima and Minima

Finds maximum element in matrix. Sets element
pointer to it.

Input: matrix name in Alpha reg.

Output: maximum value into X-reg.

Finds minimum element in matrix. Sets element
pointer to it.

Input: matrix name in Alpha reg.

Output: minimum value into X-reg.

Finds maximum absolute value in matrix. Sets ele-
ment pointer to it.

Input: matrix name in Alpha reg.

Output: maximum absolute value into X-reg.

Finds maximum absolute value in kth column. Sets
element pointer to it.
Input: matrix name in Alpha reg.
kkk in X-reg.
Output: maximum absolute value into X-reg.

Finds maximum absolute value in kth row. Sets ele-
ment pointer to it.
Input: matrix name in Alpha reg.
kkk in X-reg.
Output: maximum absolute value into X-reg.

Norms

Finds the largest sum of the absolute values of the
elements in each column of matrix. Sets element
pointer to first element of column with largest sum.
Input: matrix name in Alpha reg.

Output: column norm into X-reg.

Finds the square root of the sum of the squares of
all elements in matrix.

Input: matrix name in Alpha reg.

Output: Frobenius norm into X-reg.

Finds the largest sum of the absolute values of the
elements in each row of matrix. Sets element
pointer to first element of row with largest sum.
Input: matrix name in Alpha reg.

Output: row norm into X-reg.



Miscellaneous Arithmetic Functions (Continued)

Function

(sum of
absolute values)

(column
sum)

(row sum)

(Y times
column plus
column)

(oivot)

(compare
rows)

Effect

Sums
Sums all elements in matrix.
Input: matrix name in Alpha reg.
Output: sum in X-reg.

Sums absolute values of all elements in matrix.
Input: matrix name in Alpha reg.
Output: sum of absolute values in X-reg.

Finds the sum of each column and stores them in

result vector.

Input: matrix name,result-matrix name in Alpha reg.
Number of elements in result matrix must
equal number of columns in input matrix.

Finds the sum of each row and stores sums in re-

sult vector.

Input: matrix name,result-matrix name in Alpha reg.
Number of elements in result matrix must
equal number of rows in input matrix.

Other

Multiplies each element in column k of matrix by
value in Y-reg. and adds it to corresponding element
in column /, thereby changing the elements in col-
umn /. That is, converts a; to a; + y X a.
Input: matrix name in Alpha reg.

kkk 1l in X-reg.

y in Y-reg.
Finds the pivot value in column k; that is, the maxi-
mum absolute value of an element on or below the
diagonal.
Input: matrix name in Alpha reg.

kkk in X-reg.
Output: pivot value in X-reg.; pointer set to pivot
element.

Compares elements in rows k and /. If (and only if)
the first non-equal element in k is greater than its
corresponding element in /, then the comparison is
positive for the “do if true” rule of programming.
Input: matrix name in Alpha reg.
kkk.Ill in X-reg.
Output:YES if first non-equal element in row k is
greater than element in row /. NO in all other
cases.



Miscellaneous Arithmetic Functions (Continued)

Function Effect

(Alpha re- Appends the integer part of the number in the
call of integer X-register to the contents of the Alpha register. For
| part) x <0, appends the absolute value.

' | (Alpha recall | Appends a matrix prompt rrr.ccc= to the contents
of matrix prompt) | of the Alpha register.

When working with complex matrices it is most important to remember
that, in the calculator, a complex matrix is simply a real matrix with four
times as many elements. Only the MATRX program and the complex-ma-
trix editor ([CMEDIT]) “recognize” a matrix as complex and treat its
elements accordingly. All other functions treat the real and imaginary
parts of the complex elements as separate real elements.

How Complex Elements are Represented

In its internal representation a complex matrix has twice as many col-
umns and twice as many rows as it “normally” would.

The complex number 100 + 200i is stored as

100 -200
200 100
The 2 X 1 complex matrix
1 -2
1+ 2i 2 1
is stored as
3 — 4i
-4 3

There is one important exception to this scheme: for the column matrix (a
vector) in a system of simultaneous equations.

Solving Complex Simultaneous Equations. The easiest way to
work with complex matrices is to use the MATRX program. It automati-
cally dimensions input and output complex matrices. However, |
can solve more complicated systems of equations than MATRX can.
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In addition, a complex result-matrix from the MATRX program cannot be
used for many complex-matrix operations outside of MATRX. This is be-
cause MATRX will dimension a complex column matrix differently than
2m X 2. Instead, it uses the dimensions 2m X 1, in which the real and
imaginary parts of a number become successive elements in a single
column.

This form has the advantage of saving memory and speeding up opera-
tions. The complex-matrix editor and [MSYS] can also use this 2m X 1
form, though they do not require it. This means you can use [MSYS] on a
matrix system from MATRX.

You can convert an existing 2m X 2 complex column matrix to the
2m X 1 form by transposing it, redimensioning it to 1 X 2m, then re-
transposing it. There is no easy way back.

Accessing Complex Elements. If you use the complex-matrix editor
elements as if they were actual complex numbers. Otherwise (such as
when you use pointer-setting functions), you must access complex ele-
ments as real elements stored according to the 2m X 2n scheme given
above.

Storage Space in Memory. Since the dimensions required for a com-
plex matrix are four times greater than the actual number of complex
elements (an m X n complex matrix being dimensioned as 2m X 2n), re-
alize that the number of registers a complex matrix occupies in memory is
correspondingly four times greater than a real matrix with the same num-
ber of elements. In other words, think of a complex matrix’s storage size
in terms of its [MATDIM | or [DIM? | dimensions, not its number of complex
elements.

Using Functions with Complex Matrices

Most matrix functions do not operate meaningfully on complex matrices:
since they don’t recognize the different parts of a complex number as a
single number, the results returned are not what you would expect for
complex entries.

Valid Complex Operations. Certain matrix functions work equally
well with real and complex functions. These are:

[MSYS] Solving simultaneous equatiohs
[MINV] Matrix inverse

[MAT+] Matrix add

(MAT-] Matrix subtract

(MATx ] Matrix scalar multiply, but only by a real scalar in X-reg.
MM | Matrix multiplication

Both the input and result matrices must be complex.



The lower-upper (LU) decomposition is an unrecognizably altered form of a
matrix, often containing Alpha data. This transformation properly occurs
in the process of finding the:

Solution to a system of equations ( ; SE in the MATRX
program).

Determinant (/! ; DT in MATRX program).

Inverse ( ; Iin MATRX program).

The first two of these operations convert the input matrix to its LU-
decomposed form and leave it there, whereas inversion leaves the
matrix in its inverted form. When you use functions that produce an
LU-decomposed form, there are several things that you need to be
aware of:

You cannot edit an LU-decomposed matrix unless you edit every
element (refer to “Editing and Viewing an LU-Decomposed Matrix,”
below for more details).

You cannot perform any operation that will modify the matrix

(other than ) because the LU status of the matrix will be

cleared and it will become unrecognizable. Operations that have

this effect are: ], , , ~ , , ,
(intramatrix), VAP |, and |

Care must be exercised when viewing an LU-decomposed matrix.
Certain operations can alter elements without your knowledge (re-
fer to “Editing and Viewing an LU-Decomposed Matrix,” below, for
more details).

LU-decomposition destroys the original form of the matrix. So if
you perform or and then try to look at your input
matrix (A in the MATRX program), you will find only the altered, de-
composed form.

You cannot calculate the transpose ( ; in MATRX pro-
gram) of a matrix in LU-decomposed form. LU-decomposition does
not hinder the correct calculation of the inverse, determinant, or solution
matrix, since these operations require the LU-decomposition
anyway.



Reversing the LU-Decomposition. To restore a matrix to its original
form from its decomposed form, simply invert it twice (in effect: find the
inverse and then re-invert to the original). Naturally, for this to work the
matrix must be invertible (non-singular). The result can differ slightly
from the original due to rounding-off during operations.

Editing and Viewing an LU-Decomposed Matrix. LU-decomposed
matrices are stored in a different form than normal matrices:

Certain elements contain alpha data.

The matrix status register is modified to indicate that the matrix is
in LU form.

Editing any element of the matrix will clear the LU-flag in the status
register, which makes the matrix unrecognizable to the program. Be-
cause of this, if you edit one element, you must edit them all if you
wish to use the matrix again. Note that the matrix will no longer be in
LU-decomposed form after this action.

You can view the contents of an LU-decomposed matrix by doing one
of the following:

From the main menu press (View A) to view individual ele-
ments without modifying them.

Set flag 08 before executing or . This allows you to
view the elements without modifying them.

Find the determinant of the inverse of the transpose of the matrix
below.

6 3 -2
1 4 -3
2 3 -1

The size of data-storage memory must be at least 10 registers (
010).



Keystrokes
4

[s1zE] 010
[ALPHA]

[ALPHA]

3.003 [XEq) [

08

XEQ MED

6 (/8]
3 (rz8]
2 [cHs] (Rss]
1 (B8]
4 [R/8]
3 [cHs] (Rss]
2 [R/s]
3 (R/8]
1 [chs] [R/sS]
XEQ
XEQ

Display

3.0030

1:1=

1:2=
1:3=

2:2=
3:1=

3:2=
3:3=

0.0400

NN W) ) W) W) ) W)

Sets the display for-
mat used here.

Names matrix R0 to be
stored in main mem-
ory from Ryp—Rq.

Dimensions RO to

3 x 3.

Sets editor to allow
editing.

The matrix editor
prompts you for new
elements, showing you
old elements or the
previous contents of
the registers.

Exits editor.

RO is transposed.

RO (which was trans-
posed) is inverted.
The determinant of
the inverse of the
transpose of the origi-
nal matrix.

Note that if you had wanted to find the transpose of the original matrix
after having found its determinant, you would have needed to invert the
matrix twice to change the LU-decomposed form back to the original

matrix.



Find the currents I; and I, in the electrical circuit shown below. The im-
pedances of the components are indicated in complex form.

ZR=10

E=5 I ") == zo =-30i

This system can be represented by the complex matrix equation

10 + 200: —200i || L 5
—200i (200 — 30)i || I, 0
or
A X = B.
The size of data-storage memory must be set to at least 26 registers
([(s1zE] 026) to accommodate two complex matrices.
Keystrokes Display
[ALPHA] R [ALPHA] Dimensions the com-
4.004 [VATDIM | 4.0040 plex coefficient matrix
RO to 4 X 4 for its 2
rows and 2 columns. It
needs 17 registers.
(CMEDI RE.1:1= ? Complex-matrix editor.
10 200 RE.1:2= ? Loads the real and
0 [R/S] 200 [CcHS] (R/S] RE.2:1= 2 imaginary parts of ele-
0 (R/S] 200 [cHsS] [(R/S] RE.2:2= ? ments into RO, the
0 170 —170.0000 coefficient matrix (A).
ALPHA | R ALPHA Dimensions the col-
4.002 [ MATDIM | 4.0020 umn matrix R17 to
4 x 2 for 2 complex
rows and 1 complex
column. It needs 9
registers.
RE.1:1= ? Complex-matrix editor.
RE.2:1= ? Loads the real and
0.0000 imaginary parts of ele-

ments into R17, the
column matrix (B).



Keystrokes Display

(ALPHA] (ALPHA) 0.0000 Calculates the solution

XEQ matrix (X) and loads it
into R17.

08 Sets editor for view-

only operation.

[ALPHA] [ALPHA] Displays the complex

RE.1:1=0.0372 results for I; and I,

R/S IM.1:1=0.1311 which are in R17. If

RE.2:1=0.0437 you have a printer at-

o)
N
w

IM.2:1=0.1543 tached and set flag 08
before executing
, all elements
will be printed out
automatically.

The solution is

I 0.0372 + 0.1311:

I, 0.0437 + 0.1543i

This last example asks you to solve a set of two simultaneous equations
with two unknown variables. This requires the use of

Silas Farmer has the following record of sales of cabbage and broccoli for
three different weeks. He knows the total weight of produce sold each
week, the total price received each week, and the price per pound of each
crop. Determine the weights of cabbage and broccoli he sold each week.

Week 1 | Week 2 | Week 3

Total Weight 274 233 331
(kg)
Total Value $120.32 | $112.96 @ $151.36

The price of cabbage is $0.24 /kg and the price of broccoli is $0.86/kg.

The following set of linear equations describes the two unknowns (the
weights of cabbage and broccoli) for all three weeks, where the first row
of the constant matrix represents the weights of cabbage for the three
weeks and the second row represents the weights of broccoli. Since the
constant matrix is not a column matrix, you must use and not the
SE function in the MATRX program.



11 dy
024 0.86]dy

dy, dy 274

dy, dys 120.32

233 331
11296 151.36

The size of data-storage memory must be set to at least 12 registers

( 012) to accommodate these two real matrices.

Keystrokes Display

(ALPHA] R [ALPHA] Dimensions the coef-

2.002 2.0020 ficient matrix RO to
2 X 2.

(ALPHA] (ALPHA] Dimensions the con-

2.003 2.0030 stant matrix R5 to
2 X 3.

08 Set editor to allow
editing.

XEQ 11— ? Calls the matrix editor
for the current matrix,
which is R5.

274 233 1:3= ? Loads RS5, the constant

331 120.32 2:2= ? matrix.

112.96 151.36 3.0010

[ALPHA] R [ALPHA]

XEQ 1 = Editor for RO.

1 1 2:1= Loads RO, the coef-

.24 .86 3.0010 ficient matrix.

[ALPHA] [ALPHA] Specifies the input ma-
trices (coefficient,
constant). The solution
will go into RS5.

XEQ Calculates the solution
matrix.

08 Sets editor for view-
only operation.

(ALPHA ] (ALPHA] Displays the results in

1:1=186.0000 the solution matrix.

1:2=141.0000

1:3=215.0000

2:1=88.0000

2:2=92.0000

R/S 2:3=116.0000

R/S 3.0010



The solution is

Week 1 | Week 2 | Week 3

Cabbage 186 141 215
(kg)
Broccoli (kg) 88 92 116

Unless otherwise indicated, each function operates on the matrix (or matri-
ces) named in the Alpha register. When the Alpha register is clear, the
function operates on the current matrix.

Function Name

> (p- 50)
(p- 46)
(p. 48)
(p. 34)
(p- 48)
(p- 49)

(p- 33)
(p. 48)

Matrix Functions
Description

Appends integer part of x to Alpha reg.
Exchanges columns k and /.

Returns maximum absolute value in kth column.
Invokes the complex-matrix editor.

Returns the column norm.

| Finds sums of columns and puts them in a row

matrix.
Returns the mmm.nnn dimension.
Returns the Frobenius norm.

| Increments row part of pointer.

Decrements row part of pointer.

Increments column part of pointer.

Decrements column part of pointer.

True multiplication (non-scalar) of two matrices.
Adds scalar or matrix to a matrix.

Subtracts scalar or matrix from a matrix.
Multiplies scalar or matrix by a matrix elementwise.
Divides scalar or matrix into a matrix elementwise.
Dimensions matrix to mmm.nnn.

Returns maximum element.



MR

Function Name

XAB | (p. 48)
(p- 45)
| (p. 34)
AN (p. 48)
| (p. 45)
| (p. 46)
MN (p- 37)
| (p- 50)
(p. 40)
(p- 41)
(p. 41)
| (p. 40)
IJA ] (p. 40)
| (p. 41)
| (p. 41)

| (U] (p. 40)
| (MSC+] (p. 41)
( !4, | (p 40)

2] (p. 40)
5] (p. 41)

| [MSWAP | (p. 46)
| (MSYS] (p. 45)

1V | (p. 49)

(p- 46)
R>R7]| (p. 49)

5] (p. 48)
(p- 48)

| (RSUM) (p. 49)

| (5] (p. 49)

Matrix Functions (Continued)
Description

Returns maximum absolute value of an element.
Returns determinant.

Invokes the real-matrix editor.

Returns minimum element.

Inverts the matrix in place.

Copies source matrix or submatrix to target matrix.
Returns name of current matrix to Alpha reg.
Appends a matrix prompt rrr:ccc= to Alpha reg.
Recalls current element.

Recalls sequential elements by column.

| Recalls sequential elements backwards by column.

| Recalls sequential elements by row.

Recalls sequential elements backwards by row.
Stores current element.
Stores current element by column.

Stores current element by row.
Exchanges two matrices or submatrices.
Solves a system of simultaneous equations.

| Returns a column’s maximum absolute value that is
| on or below the diagonal.

| Exchanges rows k and /.

Tests elementwise whether row k is greater than
row /.

Returns maximum absolute value in-kth row.

Returns the row norm.

Finds sums of rows and puts them in a column

| matrix.

| Returns sum of all elements.



Matrix Functions (Continued)
Function Name Description

(p. 49) Returns sum of absolute values of all elements.
(p. 45) Transposes the matrix in place.

(p. 49) Multiplies each element in column k by y-value and
adds product to element in column /, replacing the
latter.



The SOLVE program finds the roots of an equation of the form

fx) =0,
where x represents a real root.*
f(x)
A
ROOT
> X
Executing the SOLVE program ( ) employs an advanced numerical

technique to find the real roots of a wide range of equations. You supply
the equation for the function (in a program) and two initial estimates, and
SOLVE does the rest.

SOLVE normally uses the secant method to iteratively find and test x-
values as potential roots. It takes the program several seconds to several
minutes to do this and produce a result.

* Note that any equation with one variable can be expressed in this form. For example,
flx) = a is equivalent to f(x) — a = 0, and f(x) = g(x) is equivalent to f(x) — g(x) = 0.
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f(x)

If ¢ isn’t a root, but f(c) is closer to zero than f(b), then b is relabeled as g,
c is relabeled as b, and the prediction process is repeated. Provided the
graph of f(x) is smooth and provided the initial values of a and b are close
to a simple root, the secant method rapidly converges to a root.

If the calculated secant is nearly horizontal, then SOLVE modifies the se-
cant method to ensure that Ic — bl < 100 la — bl. (This is especially
important because it also reduces the tendency for the secant method to
go astray when rounding error becomes significant near a root.)

If SOLVE has already found values a and b such that f(a) and f(b) have
opposite signs, it modifies the secant method to ensure that ¢ always lies
within the interval containing the sign change. This guarantees that the
search interval decreases with each iteration, eventually finding a root.

If this does not yield a root, SOLVE fits a parabola through the function
values at 4, b, and ¢, and finds the value d at the parabola’s maximum or
minimum. The search continues using the secant method, replacing a
with d.

If three successive parabolic fits yield no root or d = b, the calculator dis-
plays NO. In the X- and Z-registers remain b and f(b), respectively, with a
or ¢ in the Y-register. At this point you could: resume the search where it
left off, direct the search elsewhere, decide that f(b) is negligible so that
x = b is a root, transform the equation into another equation easier to
solve, or conclude that no root exists.



In calculating roots, SOLVE repeatedly calls up and executes a program
that you write for evaluating f(x). You must also provide SOLVE with two
initial estimates for x, providing a range for it to begin its search for the
root.

Realistic estimates greatly facilitate the speedy and accurate determination
of a root. If the variable x has a limited range in which it is meaningful
and realistic as a solution, it is reasonable to choose initial estimates
within this range. (Negative roots, for instance, are often unrealistic for
physical problems.)

SOLVE requires thirteen unused program registers. If enough spare
program registers are not available, SOLVE will not run and the er-
ror NO ROOM results. Execute ()0 in Program mode to see
how many program registers are available.

Before running SOLVE you must have a program (stored in pro-
gram memory or a plug-in module) that evaluates your function f(x)
at zero. This program must be named with a global label.* SOLVE
then iteratively calls your program to calculate successively more
accurate estimates of x. Your program can take advantage of the
fact that SOLVE fills the stack with its current estimate of x each
time it calls your program.

® You then enter two initial estimates for the root, 2 and b, into the X-
and Y-registers.

¥ Lastly put the name of your program (that evaluates the function)
into the Alpha register and then execute [

*This program should not include the functions (PASN], [PSIZE], [AK], any card-reader
(HP 82104A) functions, or any other function that aIters the configuration of the
calculator’s memory, key assignments, or timer alarms.



When the program stops and the calculator displays a number, the con-
tents of the stack are:

Z = the value of the function at x = root (this value should be zero).*

Y = the previous estimate of the root (should be close to the resulting
root).

X = the root (this is what is shown in the display).

If the function that you are analyzing equals zero at more than one value
of x, SOLVE stops when it finds any one of these values. To find addi-
tional values, key in different initial estimates and execute again.

Instruction Table for SOLVE

Instructions Key In: Display

1. Switch to Program mode and pack memory
preparatory to entering a new program. (The Ba 00 REG nnn
display will show you the number of available
program registers.)

2. Key in a global, Alpha label as program name

for the program describing f(x) for f(x) = 0. global label 01 LBLT/abel
3. Key in the lines of the program and end the | :

program with a instruction.
4. Check that program memory is large enough B8] 00 REG nnn

to run SOLVE (nnn=>13).* Then switch out of
Program mode.

5. Put the name of your program from step 2 global

into the Alpha register. label
6. Enter the range for the initial search for x: a a
b b

*If the contents of the Z-register are not zero, then the X-register does not contain the exact
root. Instead, the contents of X and Y are close estimates of the root, bracketing a change in
the sign of the function’s value.



Instruction Table for SOLVE (Continued)

Instructions Key In: Display

7. Execute : t X
The program runs up to several minutes and
then returns the resulting root. If no root is
found, the display is NO.

8. To search for another root, repeat steps 6 and
7.

*If nnn is not =13, then use to allocate more memory to program registers, or else
delete programs. Refer to the HP-41 owner’'s manual for instructions.

t To execute a program, press Alpha name or use a User-defined key.

Pressing aborts the SOLVE program.

Find the roots of the equation f(x) = x> — 3x — 10 = 0.

First write a program called TEST to define the function. Then, before
executing , put the name of this program into the Alpha regis-
ter and enter your initial estimates for the root.

Using Horner’s method you can rewrite f(x) so that it is more effi-
ciently programmable: f(x) = (x — 3)x — 10. (Note that you could also
find this root algebraically.) Since the SOLVE program fills the stack
with the current estimate of x before calling TEST, TEST can obtain x
from the stack when TEST runs.

Keystrokes Display
4 : Sets the display for-
mat used here.

B 00 REG nnn Program mode; ready
to enter a program to
evaluate
(x — 3)x — 10.

ALPHA Global Alpha label

01 LBLTTEST “TEST".

3 02 3_



Keystrokes

=]
10

=]

0 (ENTER+] 10

XEQ

Display
03 —
04 *
05 10_
06 —
07 RTN

00 REG nnn

TEST_

10—

5.0000

(x—=3)

(x — 3)x

(x — 3 — 10

End of program defin-
ing f(x).

Number of available
program registers
(should be =13).
Exits Program mode.
Puts “TEST” (your
program’s name) into
the Alpha register.
This is the necessary
first step to running
SOLVE.

Enters initial estimates
of zero and ten. Now
you're ready to execute

Runs the SOLVE pro-
gram; finds a root of
x = 5.0000 (in about
12 seconds).

Check that 5.0000 is indeed a root of f(x) = 0 by checking the Z-register.
Then check for a second root (which is common in quadratic equations)
by specifying new initial estimates of 0 and —10 to look for a negative

root.

Keystrokes

O (ENTER# ] 10 [CHS

XEQ

Display
0.0000

—-10_

—2.0000
0.0000

Displays first the Y-
register, then the Z-
register. Since f(5) = 0,
5 is a good root.
New initial estimates
to look for a second
root.

Second root.

This root is also good.



Here is a problem whose root cannot be found algebraically. If champion
ridget hurler Chuck Fahr throws a ridget with an upward velocity of 50
meters/second, then how long does it take for it to reach the ground
again? Solve for t in the equation

h = 5000 (1 — e~*/20) — 200¢
Assume h in meters and ¢ in seconds. Naturally we are only interested in
a positive root, t.

As in the previous example, the program you write to define the function
can take advantage of the fact that the stack is filled with the current
estimate of x before calling your program.

Keystrokes Display
G 00 REG nnn
(ALPHA] (ALPHA] 01 LBLTHIGH Names this program
“HIGH” with a global
label.
20 02 —20_
(=] 03 / —t/20
04 EtX
05 CHS —e~t/20
1 06 1_
07 + 1—e~t/20
5000 08 5000_
09 * 5000 (1—e—t/20)
10 X<>Y
200 11 200_—
12 * 200t
=) 13 -

14 RTN We now have the full
equation so the pro-
gram is done:
5000(1 — e~*/20)
—200¢t

B! 00 REG nnn Is nnn=13?

Exits Program mode.

ALPHA ALPHA Puts your program’s
name into the Alpha
register.

5 6 6_ Example of initial esti-
mates for f.

XEQ 9.2843 The root t = 9.2843
seconds.

0.0000 Shows that

h(9.2843) = 0.



It is possible that an equation has no real roots. In this case, the calculator
displays NO instead of a numeric result. This would happen, for example,
if you tried to solve the equation

Ixl= —1,

which has no solution since the absolute value function is never negative. -
There are three general types of errors that stop SOLVE from running:

If repeated iterations seeking a root produce a constant nonzero
value for the specified function, the calculator displays NO.

If numerous samples indicate that the magnitude of the function ap-
pears to have a nonzero minimum value in the area being searched,
the calculator displays NO.

If an improper argument is used in a mathematical operation as
part of your program, the calculator displays DATA ERROR.

You can incorporate SOLVE as part of a larger program you create. Be
sure that your program provides initial estimates in the X- and Y-reg-
isters just before it executes . Remember also that SOLVE will
look in the Alpha register for the name of the program that calculates
your function.

If the execution of SOLVE in your program produces a root, then your
program will proceed to its next line. If no root results, the next pro-
gram line will be skipped. (This is the “do if true” rule of HP-41
programming.) Knowing this, you can write your program to handle
the case of SOLVE not finding a root, such as by choosing new initial
estimates or changing a function parameter.

SOLVE uses one of the six pending subroutine returns that the calcu-
lator has, leaving five returns for a program that calls SOLVE.

Note that SOLVE cannot be used recursively (calling itself). If it does,
the program stops and displays RECURSION. You can use SOLVE with
INTEG, the integration program.



“Using SOLVE Effectively,” HP-15C Advanced Functions Handbook,
Hewlett-Packard Co., 1982.

Kahan, W.M., “Personal Calculator Has Key to Solve Any Equation
f(x)=0,” Hewlett-Packard Journal, 30:12, December 1979.






The PLY program can be used to find the roots of a polynomial with real
coefficients of degree 2 through 5, or to evaluate an equation of degree 2
through 20.

The polynomial equation can be represented as:
ax" + a,_x" 1+ .+ ax + ap =0,

where n = 2, 3, 4, or 5.

Polynomials can also be evaluated for arbitrary values of x. This is useful
for plotting polynomials and using data correlations based on
polynomials.

When the program is started, the user must specify the degree (1) of the
polynomial. The calculator then prompts the user for the coefficients a,,

.5 a1, ag. Zero must be input for those coefficients that are equal to 0.
Registers 00 through 05 are used to store the coefficients. (Registers 00
through 20 are used for coefficients when evaluating a polynomial of de-
gree up to 20.)

In finding the roots the first step of the routine is to divide all
coeffiecients by 4, to produce an equation of the form x" + a/,_x"~1 +
... + ay’ = 0. The divisor is retained in register a, for use in evaluating
the polynomial for arbitrary values of x.

The routines for third and fifth degree equations use an iterative process
to find one real root of the equation. This routine requires that the con-
stant term 4y not be zero for these equations. (If a5 = 0, then zero is a
real root. The equation can be reduced by one order by factoring out x.)
After one root is found, synthetic division is performed to reduce the
original equation to a second or fourth degree equation.

To solve a fourth degree equation, it is first necessary to solve the cubic
equation

]/3 + b2y2 + bly + bo =0,
where by = —a,

bl = asza; — 4a0
2 2
ap (4{12 — 4aj ) — ar”.

S
I
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Let yy be the largest real root of the above cubic.

Then, the fourth degree equation is reduced to two quadratic equations:
2+ A+ Cx+ B+D) =0

¥ +A—-—QCx+ B—-—D)=0

as Yo

where A=—2—,B=—§-,D=\ﬂ32—u0,c=\/A2—a2+y0

Roots of the fourth degree equation are found by solving the two qua-
dratic equations.

A quadratic equation x2 + a;x + a5 = 0 is solved by the formula

If D = a’/4 — ay > 0, the roots are real; if D < 0, the roots are com-
plex, being u + iv = —(a,/2) + i\/—D .
A real root is displayed as a single number. Complex roots always occur

in pairs of the form u + iv, and are labeled in the output.

Long execution times can be expected for equations of degree 3, 4, or 5,
as these use an iterative routine once or more.

Once you have entered your variables, this menu shows you which key
corresponds to which function in PLY. Press to recall this menu to
the display at any time. This will not disturb the program in any way.



(- \ T )
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To clear the menu at any time, press [«]. This shows you the contents of
the X-register, but does not end the program. You can perform calcula-
tions, then continue the program by pressing [R/S]. (However, you do
not need to clear the program’s display before performing calculations.)

Instruction Table for PLY

Size: 023
Instructions Key In: Display
1. Start the PLY program. XEQ * DEGREE="?
2. Key in the degree of the polynomial n an=?
(n = 2,3,4,5 for root finding; up to 20 if eval-
uating only).
3. Input coefficient a,, of the polynomial. (Coef- | aj, ain —1)=?
ficients = 0 must also be entered.) Repeat : :
until display asks for ag. a4 a0="?
4. Input coefficient ag. ag FX RT  NEW
5. To evaluate the polynomial for x, use FX. You | x (FX) F<X>=f(x)
can repeat this step for new values of x. t FX RT  NEW




Instruction Table for PLY (Continued)

Instructions Key In: Display
6. To find the roots of the polynomial, use RT (RT) ROOT=root 1
and then to display successive roots. ROOT=root 2
U=u-value
V=v-value
U=u-value
V=—v-value
(R7s) t FX RT NEW
7. To work out a new polynomial, choose NEW (NEW) DEGREE=?
((E)) and return to step 2.

* To execute a program, press ALPHA ] Alpha name [ALPHA ] or use a User-defined key.

T This keystroke is unnecessary if you have a printer attached because the printer automati-
cally prints the results and then displays the menu.

Note: This program can calculate incorrect roots due to
rounding off of intermediate results. Incorrect roots normally
occur only for real roots. To check the calculated root, rerun
PLY to evaluate a polynomial (step 5). Input the root x that
you want to check. If the result is a very small number close
to zero, then the root is correct.

If you set flag 06 (= 06) just before step 6, then the roots found in
step 6 will be stored as they are found, starting in R,4 and in the
order real, imaginary. (Real roots store a zero imaginary part.)

This program uses local Alpha labels (as explained in the owner’s
manual for the HP-41) assigned to keys (A], (8], (E], and (J]. These
local assignments are overridden by any User-key assignments you
might have made to these same keys, thereby defeating this program.
Therefore be sure to clear any existing User-key assignments of these keys
before using this program, and avoid redefining these keys in the
future.

Find the roots of x> — x* — 101x® + 101x2 + 100x — 100 = 0.



Keystrokes
4

XEQ 023

X

m
o

(R/S]
/5

101 R/S
101
100 (R/S]
100 [cHs] (R/S]
(RT)

R/S
S

—_ -,
ii
N

0
NSNS

||
N
[

S

Display

DEGREE="?
a5="?

a4d="?

a3="?

a2="?

al="?

a0="?

FX RT NEW
ROOT=10.0000
ROOT=1.0000
ROOT=1.0000
ROOT=—1.0000

ROOT=-10.0000

Solve 4x* — 8x3 — 13x2 — 10x + 22 = 0.

Keystrokes
[_E_] (NEW)

4

4

8
13
10
22

(RT)

R/S

R/S

R/S

Display
FX RT NEW

DEGREE="?

ad="?

a3="?

a2="?

al=?

a0="2?

FX RT NEW

U=-—1.0000

V=1.0000
=—1.0000

V=-1.0000

ROOT=3.1180

ROOT=0.8820

Sets the display for-
mat used here.

Optional—sets the
number of storage reg-
isters needed for the
program. This is not
necessary if your allo-
cation is already SIZE
> 023.

Root 1.
Root 2.
Root 3.
Root 4.
Root 5.

Displays the menu
(optional step).
Prompts for a new
polynomial (after the
one in Example 1.)

Displays the menu.

Roots 1 and 2 are
—1.00 = 1.00i.

Root 3.
Root 4.



Evaluate the following polynomial at x = 2.5 and x = —5.

foo = x° + 5x* — 322 — 7x + 11

Keystrokes Display

FX RT  NEW Displays the menu
(optional step).

(NEW) DEGREE="? Prompts for a new
polynomial.

5 a5="7?

1 ad="?

5 a3=?

0 a2="2

3 al=?

7 [cHs] a0="?

11 FX RT  NEW

2.5 (FX) F<X>=267.7188

5 (cHs] (r/S] F<X>=-29.0000

The subroutine RTS can be used in your own programs. It finds the real
and complex roots of a polynomial of degree 2 to 5.

Minimum Size to Run RTS: SIZE 023, unless flag 6 is set. If the roots
are to be stored, then the number of data-storage registers needed is 24
+ 2(degree).



Flags Used: 00, 03, 05, 06, 21

Subroutine: RTS

Initial Registers Final Registers Flags to Initialize
Roo = ag Roo = aofas SF 00
Ro1 = a4 Ro1 = a4/as CF 03
Roo = ao Roo = asfas CF 05
Roz = a3 Ros = asfas SF 06 to save roots
Ros = a4 Ros = asfas CF 06 to not save roots
Ros = a5 Ros = as SF 21 to stop when display-
ing results
Roe- - -Roq = scratch CF 21 to not stop when dis-

playing results

Roo = degree of equation | Ro, = degree of equation

Rog = pointer

If flag 06 is set:
Ro4, Rog = root 1
Rog, Roz = root 2
Rog, Rog = root 3
R3o, Rg1 = root 4

R32, R33 = root 5

Comments. To use RTS, load the coefficients in Ryp~Rgs, the degree
in Ry,, set flag 06 to store the roots, clear flags 03 and 05, and set flag
00. If roots are stored they are stored with real and imaginary parts; a
real root has a zero imaginary part.






The INTEG program finds the definite integral, I, of a function f(x) within
the interval bounded by a and b. This is expressed mathematically and
graphically as

I= fa ? {0 dx.
f(x)

Executing the INTEG program ( ) employs an advanced numerical
technique to find the definite integral of a function. You supply the equa-
tion for the function (in a program) and the interval of integration, and
INTEG does the rest.

The algorithm for INTEG uses a Romberg method for accumulating the
value of an integral. The algorithm evaluates f(x) at many values of x
between the limits of integration. It takes the program from several sec-
onds to several minutes to do this and produce a result.

Several refinements make the algorithm more effective. For instance, in-
stead of using uniformly spaced samples, which can induce a kind of
resonance producing misleading results when the integrand is periodic,
INTEG uses samples that are spaced nonuniformly. Another refinement is
that INTEG uses extended precision (13 significant digits) to accumulate
the internal sums. This allows thousands of samples to be accurately ac-
cumulated, if necessary.
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A calculator using numerical integration can almost never calculate an in-
tegral precisely. However, there is a convenient way for you to specify
how much error is tolerable. You can set the display format according to
how many figures are accurate in the integrand f(x). A setting of 2
tells the calculator that decimal digits beyond the second one can’t matter,
so the calculator need not waste time estimating the integral with unwar-
ranted precision. Refer to the heading, “Accuracy of INTEG.”

In calculating integrals, INTEG repeatedly executes a program that you
write for evaluating f(x). You must also provide INTEG with two limits for
x, providing an interval of integration.

INTEG requires 32 unused program registers. If enough spare pro-
gram registers are not available, INTEG will not run and the error
NO ROOM results. Execute (1J(J in Program mode to see how
many program registers are available.

Before running INTEG you must have a program (stored in program
memory or a plug-in module) that evaluates your function f(x). This
program must be named with a global label.* Your program can take
advantage of the fact that INTEG fills the stack with its current esti-
mate of x each time it calls your program.

You then enter the two limits, 2 and b, into the X- and Y-registers.

Lastly put the name of your program (that evaluates the function)
into the Alpha register and then execute

When the program stops and the calculator displays the integral, the
contents of the stack are:

T = the lower limit of the integration, a.

Z = the upper limit of the integration, b.

Y = the uncertainty of the approximation of the integral.

X = the approximation of the integral (this is what is shown in the
display).

*This program should not include the functions 5 7 , any card-reader
(HP 82104A) functions, or any other function that alters the configuration of the
calculator’s memory, key assignments, or timer alarms.



Instruction Table for INTEG

Instructions Key In: Display

1. Switch to Program mode and pack memory

preparatory to entering a new program. BB 00 REG nnn
2. Key in a global, Alpha label as program name

for the program describing f(x). global label 01 LBLT/abel
3. Key in the lines of the program and end the | :

program with a instruction.
4. Check that program memory is large enough B 00 REG nnn

to run INTEG (nnn>32).* Then switch out of
Program mode.

5. Put the name of your program from step 2 global

into the Alpha register. label

6. Enter the limits for the initial search for the | a a
integral: b b

7. Set the display format to determine the accu- nor
racy of the result. n or

n

8. Execute . t integral
The program runs up to several minutes and
then returns the resulting integral.

9. To repeat this calculation using a different nor b
level of accuracy, set a new display format, nor integral
roll down the stack to retrieve the original up- n
per and lower limits, and re-execute .

* If nnn is not =32, then use to allocate more memory to program registers, or else

delete programs. Refer to the HP-41 owner’s manual for instructions.

1 To execute a program, press ALPHA | Alpha name | ALPHA | or use a User-defined key.

Pressing aborts the INTEG program.



The Bessel function of the first kind of order 0 can be expressed as
Jox) = 1/m fo cos(x sin 6)df.

Find

Jo(1) = 1/7 J;W cos(sin 0)df.

First write a program to define the integrand. Make sure the calculator is
set to Radians mode to calculate these trigonometric functions. Then, be-
fore executing , put the name of your program into the Alpha
register and enter the limits of integration. Once you've found the inte-

gral, don’t forget to multiply it by 1/.

Keystrokes Display
4
BB 00 REG nnn
[ALPHA) (ALPHA] 01 LBLTJO1
SIN 02 SIN
COoS 03 COS
04 RTN
B! 00 REG nnn
Jo1
0 3.1416
3.1416

Sets the display for-
mat used here.
Program mode; ready
to enter a program to
evaluate cos(sin 6).
Global Alpha label
“Jo1”.

sin 0.

cos(sin 6).

End of program de-
fining f(x).

Number of available
program registers; is
nnn=32?

Exits Program mode.
Puts “J01” (your
program’s name) into
the Alpha register.
This is the necessary

first step to running
INTEG.

Enters integration
limits of zero and .
Sets Radians mode.
Now you're ready to
execute



Keystrokes Display

XEQ 2.4040 Runs INTEG and re-
turns the integral (in
about 25 seconds). To
complete the equa-
tion, don’t forget to
multiply by the con-
stant outside the
integral.

3.1416

) 0.7652 Jo(1).

Since the calculator cannot compute the value of an integral exactly, it
approximates it. The accuracy of this approximation depends on the accu-
racy of the integrand’s function itself as calculated by your program.*
This is affected by round-off error in the calculator and the accuracy of
empirical constants.

To specify the accuracy of the function, set the display format ( n,

n, or n) so that n is no greater than the number of decimal
digits that you consider accurate in the function’s values. If you set n
smaller, the calculator will compute the integral more quickly, but it will
also presume that the function is accurate to no more than the number of
digits shown in the display format.}

At the same time that the INTEG program returns the resulting integral to
the X-register (the display), it returns the uncertainty of that approxima-
tion to the Y-register.t To view this uncertainty value, press [xsy].

If the uncertainty of an approximation is greater than what you choose to
tolerate, you can decrease it by specifying more digits in the display for-
mat and rerunning INTEG.

* While integrals of functions with certain characteristics such as spikes or rapid oscillations
might be calculated inaccurately, these functions are rare.

t and determine an uncertainty in the function that is proportional to the
function’s magnitude, while determines an uncertainty that is independent of the
function’s magnitude.

1 No algorithm for numerical integration can compute the exact difference between its ap-
proximation and the actual integral. But this algorithm estimates an upper bound on this
difference, which is returned as the uncertainty of the approximation.



To rerun INTEG for the same problem but with a different display format,
you do not need to re-enter the limits of integration (if you have not
made any calculations subsequent to finding the integral). Since they end
up in the T- and Z-registers (as shown under “Instructions”), just press

to retrieve them, then execute again.
With the display format set to 2, calculate the integral in the expres-

sion for Jo(1) in example 1. Check the uncertainty of this result. Then
calculate a result accurate to four decimal places instead of only two, and
check its uncertainty. (Make sure that Radians mode is still set by check-
ing for the RAD annunciator, which should be on.) You will have to re-
enter the limits of integration for the first computation only.

Keystrokes Display
2 Sets scientific nota-
tion; two decimal
places of accuracy.
0 3.14 00 Enters the lower (0)
and upper limits ().
XEQ 2.40 00 The integral, accurate
to two decimal
places.
xsy 1.57 —03 The uncertainty of
the integral.
4 1.5708 —-03 Sets four decimal
places of accuracy.
3.1416 00 Roll down stack until
upper limit appears.
XEQ 2.4039 00 Integral accurate to
four decimal places.
xsy 1.5708 —05 Uncertainty (much
smaller).

You can incorporate INTEG as part of a larger program you create. Be sure
that your program provides upper and lower limits in the X- and Y-regis-
ters just before it executes . Remember also that INTEG will look
in the Alpha register for the name of the program that calculates your
function.



INTEG uses one of the six pending subroutine returns that the calculator
has, leaving five returns for a program that calls INTEG.

Note that INTEG cannot be used recursively (calling itself). If it is, the
program stops and displays RECURSION. You can use INTEG with
SOLVE. A routine that combines INTEG and SOLVE requires 32 available
program registers to operate.

“Working with (55],” HP-15C Advanced Functions Handbook, Hewlett-
Packard Co., 1982.

Kahan, WM., “Handheld Calculator Evaluates Integrals,” Hewlett-Packard
Journal, 31:8, August 1980.






The DIFEQ program solves first- and second-order differential equations
by the fourth-order Runge-Kutta method. A first-order equation is of the
form y’ = f(x, y), with initial values xy, yo; a second-order equation is of
the form y” = f(x, y, ¥’), with initial values x(, yo, v’

In either case, the function f(x) may be keyed into program memory using
any global label (maximum of six characters), and should assume that x
and y are in the X- and Y-registers respectively; y” will be in the Z-register
for second-order equations. The DIFEQ program uses registers 00 through
07. The remaining registers are available for defining the function.

The solution is a numerical solution which calculates y; for x; = xq + ih
(i=1,2,3,...), where h is an increment specified by the user. The value
for h can be changed at any time during program execution by storing
h/2 in Register 01. This allows solution of the equation arbitrarily close to
a pole (y - *o0).

First order:
1
Yier = ¥ T 6 (cy + 2¢;, + 2¢5 + ¢y)

where

o

1 = hf (xi, v;)

(e}
[S]

~h<+h +CI>
f |\ x; zfyi 2

¢, = hf (; + h y; + ¢3)
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Second order:

, 1
Yigr = Y T h yi+?(kl+k2+k3)

7/ / 1
YVign =y + o (ky + 2k, + 2ky + ky)

where

ky = hf (x;, yi, i)

_ 13 o h ﬁ)
k, hf<xi+2/yi+2yi+8kl'yi+2
" h

Ly By f+ﬁ>
2'y1 2% 82']/1 2

k, = hf <x,~ +

k, = hf <xi+h,yi+hy;+%k3,y{+k3)

When you are inputting values for a second-order solution, the values for
xg and yy must be input before the value of y,’. All values must be input,
including values of zero.

Note that a value for h, the step size, that is too large can generate incor-
rect results.*

*You can check a result by working backward from the result to the initial condition using
—h. If you don’t get the correct initial value, then rerun DIFEQ with a smaller h.



Instruction Table for DIFEQ

Size: 008
Instructions Key In: Display
1. Prepare to load function f(x, y, y'). e
2. Switch to Program mode.
3. Load function under desired global, Alpha la- function
bel. Add label
4. Exit Program mode.
5. Start the program. XEQ * | NAME?
6. Key in function label (from step 3). function label
R/S ORDER=?
7. Key in order of the differential equation (1 or | order STEP SIZE="?
2).
8. Key in step size (h). h X0="?
9. Input initial value for x. X0 Y0="?
10. Input initial value for y. Yo X4 (first-order
equation)
or
Y0.=? (second-
order equation)
11. For a second-order equation, key in initial Yo' X4
value of y’.
12. Output successive values of x and y. 2]
X2
Y2
etc.

* To execute a program, press ALPHA ] Alpha name [ALPHA ] or use a User-defined key.




Using the function label FX, solve numerically the first-order differential
equation

, _ sinx + tan”! (y/x)
y —In (V¥ + %)
where xy = y, = 1. Let h = 0.5. The angular mode must be set to Radi-

ans, and three additional storage registers are necessary to define the
function.

Keystrokes Display
4 Sets the display for-
mat used here.

XEQ 011 Optional—sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE = 011.

an
[ALPHA ) [ALPHA]

08

09

xs$y

10

08

09

10

=

(]

(xEQ] |

T
s
[©)
<
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o
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2| 2| =] |2

NINIENINEES

o) o] |3 |©
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R

o)

0
NN IS
0| | |[»

R

o)
NN
w| |»

Display

NAME?
ORDER=?

STEP SIZE=?

X0=2

Y0=2

1.5000 %
2.0553 Vi
2.0000 %3
2.7780 s
2.5000 X3
3.2781 Y3
etc.

Using the function label DIF, solve the second-order equation

(1 — x2)y// + xy/ = x,

where xp = yp = yy’ = 0 and h = 0.1.

Rewrite the equation as

,_ X1 —-y)  xy — 1)
1 — %2 ¥ —1

Keystrokes
ae)

[ALPHA ]

(sTo] 08
1]
(ReL] 08

1E00E

x #F 1

Display
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®
<
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\\\\\
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Display
NAME?
ORDER="?
STEP SIZE="?
X0="?
Y0="?
Y0.=?
0.1000
0.0002
0.2000
0.0013
0.3000
0.0046
0.4000
0.0109
etc.

X1
Y1
X
Y2
X3
Y3
Xy

Ya



This collection of operations provides the ability to do chained calcula-
tions involving complex numbers in rectangular form. The four
operations of complex arithmetic (+, —, X, +) are provided, as well as
several of the most used functions of complex variables z and w (zl, 1/z,
z", Z1/", €%, In z, sin z, cos z, tan z, a% log,z, z!/%, and z¥). Functions and
operations can be mixed in the course of a calculation to allow evaluation
of expressions such as z3/(z; + zp), €%, 1z; + z,| + 1z, — z;, etc., where
2y, Z,, and z; are complex numbers of the form x + iy.

For repeated use of these operations, the user can reassign the individual
programs to selected keys of the calculator and create an appropriate
overlay. One reasonable set of reassignments might include:

N

Dlim
2

The logic system for these functions is a variation on the regular memory
stack for the HP-41. Instead of holding four real numbers, this stack
holds two complex numbers. Let the bottom register of the complex stack
be ¢ and the top register 7. These are analogous to the X- and T-registers
in the calculator’s own four-register stack.* A complex number z is input
to the £-register by the keystrokes z, z,. Upon input of a second
complex number w ([ENTER* ] w, (ENTER#* ] w,), z is lifted into 7 and w is
placed in £. The previous contents of 7 are lost.

* Each register of the complex stack must actually hold two real numbers—the real part and
the imaginary part of its complex contents. Thus, it takes two of the calculator registers to
represent one register in the complex stack. In this discussion, we will treat the two registers
containing a complex number as though they were one register.
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Memory Stacks

T| ¢ iz
T4}z

Z| z z,

Y iw,
y E Ly ] "

X[ x Wy
Regular stack Complex stack

Functions operate on the &-register, and the result (except for Izl, which
returns a real number) is left in £. Arithmetic operations involve both the
&- and 7-registers; the result of the operation is left in £.

These functions use registers 00 through 04.

Let

=%+ iy, =rne% k=12
z=1x+ iy = re’
Let the result in each case be u + iv.
Zp Tz, = (0 + x) + iy T y2)
Z =2 = (4 — %) + iy — ¥2)

2,2, = 1@ T8
r,.
1 —
Zl/zz = — pllth — 6
]
Izl = \x + y?
X .
1/z = ? =] _rJZL
2 = rneine

A<o ) 360k>
L, 380k
2 = pl/ne \" "/lk=01,..n—1

(All n roots will be output, k = 0, 1, ..., n—1.)
e‘ = ¢" (cos y + isin y), where y is in radians
Inz = Inr + i6, where z # 0

a> = ¢™ where a > 0 and real



log,z = ;Lz , where ¢ > 0 and real, z # 0
na

¥ = e

Zl/w — elnz/w

winz

, where z # 0, w is complex

, where z # 0, w is complex and w # 0

sinz = sinx coshy + icosx sinhy, angles in radians

cosz = cosx coshy — isinx sinhy, angles

sin 2x + isinh2y

in radians

tanz = , angles in radians
cos 2x + cosh2y
Typical Input and Output
Wy
~ — 7] Complex Function -
WX
z, v imaginary part
" u real part
Input Result
(z, or w and 2) (u + iv)

Instruction Table for Complex Arithmetic Functions

Size: 005

Instructions

Key In:

Display

Complex Arithmetic Functions

1. Key in the first complex number (z, + iz)). | z,

z, (ENTERY)

2. Key in the second complex number (w, + wy

iwy).

3. Select one of four operations:

Wy




Instruction Table for Complex Arithmetic Functions

(Continued)
Instructions Key In: Display
Addition U=u-value
V=v-value
Subtraction XEQ U=u-value
V=v-value
Multiplication U=u-value
V=v-value
Division U=u-value
R/S V=v-value
4. The result of the operation remains in
the stack; return to step 2 for further
arithmetic.
Complex Functions with One Complex
Number
1. Key in the complex number (z, + iz). | z, z,
ZX ZX
2. Select one of these operations:
(sin 2) U=u-value
V=v-value
(cos 2) U=u-value
V=v-value
(tan 2) U=u-value
V=v-value
(magnitude, 1zI) R=magnitude
(1/2) U=u-value
V=v-value
(€9 U=u-value
V=v-value
(In z) U=u-value
V=v-value
(2", where n is an integer) n n
XEQ U=u-value
V=v-value
Z'm ENTER®] N n
Note that n roots (u + iv) will be found. U=u-value
R/S V=v-value




Instruction Table for Complex Arithmetic Functions

(Continued)
Instructions Key In: Display
s} (@, where a is real) ENTER®] @ a
) U=u-value
V=v-value
(logaz, where a is real) a a
LC U=u-value
R/S V=v-value
Complex Functions with Two Complex Numbers
1. Key in the first complex number (z, + iz,). | z, z,
2 2z
2. Key in the second complex number (w, + wy, wy,
iwy). Wy Wy
3. Select one of these operations:
(%) XEQ U=u-value
V=v-value
| (211w U=u-value
R/S V=v-value

When flag 04 is set, the individual complex operations (which are ac-
tually programs) can be accessed as subroutines in your own
programs. Complex results are returned to the X- (real part) and Y-
(imaginary part) registers.

Evaluate the expression
21

z,+ 2,7

where z; = 23 + 13i,z, = —2 + i,z3 = 4 — 31

Suggestion: since the program can remember only two numbers at a
time, perform the calculation as

zy X [1/(z, + z3)]



Keystrokes
4

XEQ 005

m

2 (i) [Ewrees)
3 [CHS 4
13 23
R/S

Display

1.0000
—2.0000

4_
U=2.0000

V=-—2.0000

U=0.2500

V=0.2500
23_
U=2.5000

V=9.0000

Find the three cube roots of 8.

Keystrokes

0 (ENTER+]
8 [ENTER+] 3

XEQ
R/S
R
R
R/S
R/S

NN

Display
0.0000

3
U=2.0000
V=0.0000
U=-1.0000
V=1.7321
U=-1.0000
V=-1.7321

Sets the display for-
mat used here.
Optional—sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE = 005.

Real part (zp + z3).

Imaginary part (z, +
Z3).
1/(z2 + 23)

21/(zp + z3)



-2
Evaluate ¢ °, where z

A
®
<
(7]
-
]
-]
x
[1]
(7}

ENTER#
ENTER4 ] 2

X

—_

9]

x| |3 x| |2
m| (N m| N |m
2= 3}

[}

3 [ENTER+] 2

XEQ
R/S

1 + i).

Display
1.0000
2

U=0.0000
V=2.0000
U=0.0000
V=-0.5000
U=0.8776
=—0.4794

Display

2
U=9.1545
V=-4.1689






The VC program simulates a “Vector Calculator” superimposed on your
normal calculator. It redefines the functions in the top two rows of keys
to these vector operations: addition, subtraction, distance, dot product,
cross product, angle between vectors, norm, and unit vector. This pac also
offers these operations to you as regular functions (without the Vector
Calculator) that you can execute like any other HP-41 (nonkeyboard)
function. Their Alpha names are given under “Summary of Vector
Operations”.

The vector operations operate on three-dimensional vectors described in
rectangular coordinates. That is, every vector has three components, V,, V,,
and V,. For a two-dimensional vector, z must be equal to zero.

A complement to VC is the Coordinate Transformations program, TR.
This means you can carry out vector operations and transformations on
the same data, since you can access either program from the other one.
The use of coordinate transformations is covered in the next chapter, “Co-
ordinate Transformations”.

The Vector Stack

1| X Vs Z4

2| X2 Yoo 25

<l <l

The Vector Calculator (program VC) creates a vector stack that works in
concert with the regular RPN stack (X-, Y-, Z-, and T-registers). When
you enter the three components of a vector in the order V,, V,, V,, they
occupy the regular stack like so:

The RPN Stack

T T

y4 v, (ENTERt] V, (ENTER®] V, Z| V,
Y Y y
X X| v,
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How do the two stacks relate to each other? Basically, the “bottom” level
of the vector stack (V,) is stored in registers X, Y, and Z of the stack,
while the “upper” level of the vector stack (V) is stored in data storage
registers Rpy, Rpp, and Rps;. You can imagine the registers shared in a
three-dimensional stack like so:

The vector stack is two vector-levels high, so it accomodates two vectors.
Note, however, that each level contains three components: the x-, y-, and
z-components for each vector.

The diagram on the next page shows you what happens in vector entry
and vector-stack movement from the point-of-view of the vector stack
and from the point-of-view of the RPN and vector stacks together.

When you enter two vectors (as you would prior to executing a typical
vector operation), the first one you key in becomes V; and the second one
you key in becomes V,. A “vector entry” (the function , Or pressing
in the Vector Calculator) copies the bottom vector (V,) into the top
vector (V;). Then, when you key in the next vector, it overwrites the copy
in the bottom vector (V,), leaving the first vector in V; and the second
vector in V.



Vector-Stack Lift

1. Enter vector’s 2. Vector enter: 3. Enter second
components: vector’s
components:
Vector 2 Vil X4, ¥ys 24 Vil X1, Y1, 24
S Vol X4 V40 Z4 \AARSSNZIRS AR
v, (or v,
Input v, v, in Vector v, v,
Calculator)
R01 R02 R03 F{01 ROZ ROS
v v
Vector
and RPN * * f
Stacks
v, v, v,
XY Z X Y Z X Y z

All two-vector operations with a vector result place the resulting vector in
both V; and V,. This facilitates chained (subsequent) vector calculations.
A vector-recall copies V, to V; then puts the recalled vector into V,.

Starting VC (invoking the vector calculator) does not clear the vector
stack, so you can still work with previously stored vectors.

Be sure to give each vector three dimensions. If it has only two
dimensions, then enter a zero for V,.

Enter the vector’s dimensions as rectangular coordinates. If you have
polar coordinates (magnitude and angle) for a two-dimensional
vector, convert them using the function (polar to rectangular).

For those operations involving angles, the units will match the cur-
rent angular mode setting (Degrees, Radians, or Grads).

The view function (| [E]) is very useful for reviewing the compo-
nents of V, in the stack.

V1 refers to the “top” vector; the one in Ry, Ry, and Rys. V; refers to
the “bottom” vector; the one in X, Y, and Z.
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This menu will show you which key corresponds to which function in
VC. Press [J] to recall this menu to the display at any time.

To clear the menu at any time, press [+]. This shows you the contents of
the X-register, but does not end the program. You can perform calcula-
tions, then recall the menu by pressing (J]. (However, you do not need to
clear the program’s display before performing calculations.)

The Vector Calculator provides two methods for entering a vector into the
vector stack. The vector-enter function ([VE]) is analogous to the
key. A shortcut method of vector entry is the key. When-
ever you enter the vector components from the keyboard when the menu
was the last thing displayed before keying in the three components,
pressing will perform the same function as [ VE |.

The following table shows the keystrokes to execute vector operations on
the Vector Calculator (program VC). For a definition of each operation,
refer to the “Summary of Vector Operations” following the Instruction
Table.



Vector Operatio

Instruction Table for VC

Size: 004
Instructions Key In: Display
1. Start the program for the Vector Calculator, | [XEQ ¥ DP CP A MUV

2.

3.

Enter the three components of your first
vector (V4). Separate two vectors with a
‘vector enter” after the first set of coordi-
nates: execute [ ve | or—only if the menu
was the last thing displayed before you en-
tered the first component—press (R/S].

Key in the second vector (V5). Do not press
(R7s].

. Display the main menu (optional).

5. Execute a vector operation:

= Dot Product, V4 - Vs

= Cross Product, V4 X Vp

1 Angle between V4 and V,

= Norm (magnitude) of Vo
(This also puts the unit vector of V5 in Y,
Z,T)

Unit Vector of Vo
(This also puts the norm in the T-
register.)

= Vector Add, V¢ + Vo

Vector Subtract, V4 — Vo

w Coordinate Transformations—refer to
the “Coordinate Transformations” chap-

ter for instructions.
retrieves the Vector Calculator.

= Distance between V4 and V,

2y (ENTERY)
y; (ENTERT)
Xy [(A7S)

25
yo [ENTER®

X2

(OP)

(CP)
(B8]t
(Rzs]t

(&)
() (M)

(uv)
(s8]t
(BR8]t

(RSt
(Rss]t

(RSt
(Rzs]t

(0]

Z4

A
DPCP A MUV

Z2
Yo
X2
DP CP A MUV

DOT=result

X=x result
Y=y result
Z=z result

A =result

M=result

X=x result
Y=y result
Z=2z result

X=x result
Y=y result
2=z result

X=x result
Y=y result
2=z result
Z0,Y0,X0 ?
DP CP A MUV

d=result




Instruction Table for VC (Continued)

Instructions Key In: Display

6. Restore the main menu after or between op- (or (R7S)) DP CP A MUV
erations (optional).

7. To view the components of Vs, the vector in X=x-coordinate
the stack: (rR7s)t Y =y-coordinate
(r7S]t Z=z-coordinate

8. To exchange V4 and V5 (the vector compo- DP CP A MUV

nents in Rpy, Rgo, and Rpg switch with
those in X, Y, and 2):

9. To store V,'s components as vector-register | n DP CP A MUV
nin Rs, 44, Rayy0 and Ry, 5 (n > O):

10. To recall the contents of vector-register n n X=x-coordinate
into Vo (X, Y, and Z), pushing V5 into V4: (R7s]t Y =y-coordinate
(r7s)t Z=z-coordinate

* To execute a program, press ALPHA | Alpha name [ALPHA ] or use a User-defined key.

1 If you have a printer attached, the dispiay automatically returns to the main menu after
printing the result(s).

You can eliminate the display of results on the Vector Calculator by
setting flag 04. This lets you perform successive calculations more
quickly by not having to step through the display of the results. You
can still view the results when you want by pressing [ |(E].

This program uses local Alpha labels (as explained in the owner’s
manual for the HP-41) assigned to keys [A]-(F], (H)-(J], and

(A)-[(E]. These local assignments are overridden by any User-key
assignments you might have made to these same keys, thereby defeat-
ing this program. Therefore be sure to clear any existing User-key
assignments of these keys before using this program, and avoid redefin-
ing these keys in the future.



The vector operations are accessible in two different ways:

By using the Vector Calculator and its redefined keys, as explained
above.

By directly executing a vector function using its Alpha name, like
any other HP-41 nonkeyboard function.

V; refers to the first (or “top”) vector: the one in Ry, Rpp, and Ry;. V,
refers to the second (or “bottom”) vector: the one in X, Y, and Z.

The operations perform the same calculations regardless of how they are
executed. These characteristics are given in the table below, along with
their Alpha names and descriptions.* You can also execute these opera-
tions by Alpha name from inside the Vector Calculator, though it is
usually more convenient to use the Vector Calculator’s redefined keys.

When using vector operations without the Vector Calculator—that is,
when using their Alpha names (as given below)—it is best if USER is not
on (User keyboard inactive). This avoids conflicts between User-key as-
signments made by the Vector Calculator and Normal keyboard functions

(such as [xsy])).

Table of Vector Operations

Function Effect
(cross Vy X V,. Returns the three-dimensional product
product) into V, (in X, Y, Z). A copy goes into V4. Rg is not
preserved.
Vector Calculator also uses (CP).
(dot V4 ¢ V,. Returns the scalar product into the X-regis-
product) ter. (V, is destroyed; V4 unaffected.)

Vector Calculator also uses (DP).

(coordinate Calls up the Coordinate Transformations program,
transformations) TR. Refer to the next chapter.
Vector Calculator also uses | [C].

* The vector-viewing operation is available only in the Vector Calculator, as is the norm oper-
ation. However, the norm is also returned as part of the unit-vector operation.



Table of Vector Operations (Continued)

Function

| (unit vector)

v+ | (vector
addition)*

| (vector
Ssubtraction)*

Effect

| Converts V, (in X, Y, Z) into its unit vector, and re-

turns the norm to the T-register. (V; is unaffected.)
Vector Calculator also uses (UV).

Note: the unit vector of (0,0,0) is (0,0,1) with a norm
of zero.

| Vi + V,. Returns the sum into both V4 and V.
| Vector Calculator also uses | [A].

: Vi — V,. Returns the difference into both V4 and

Vy.

| Vector Calculator also uses | [B].

[V« (vector sca-

lar multiplication) |

| [VA ] (vector ‘
angle)

| V, » a. Multiplies V5 (in Y, Z, T) by a in X-register,

and returns result to X, Y, and Z.
Returns the angle into the X-register. The angle is

| expressed in the current angular setting. V{ and V,

| are not preserved; the unit vector of V, ends up in
| Vq.
| Vector Calculator also uses (A)-

(vector
distance)

Note: the vector (0,0,0) is assumed to have the
same direction as (0,0,1).

Returns the scalar distance between V; and V, into

| the X-register. Also returns the difference vector (V4

— Vo) into V4. V5 is not preserved.

| Vector Calculator also uses | [D].

/E | (vector
enter)

| Analogous to [ENTER#*]. Used to separate the entry

of two vectors (V4, then V5) prior to executing an

| operation. (Vector entry copies the first vector from
| X, Y, Z into Ryq, Rga, Rgs.)

| [VR] (vector
recall)

In the Vector Calculator you can press in-
stead, but only if the menu was just displayed.

| With n (n>0)t in the X-register, copies V, to V,
| then recalls a three-dimensional vector from vector-

register n into V, (X, Y, and Z) from storage

| registers Ra, 11, Ra,y0, and Rg, 3. Analogous to
| [RCL]. (The previous V; is lifted into V, overwriting

Vi)

| Vector Calculator also uses [T].



Table of Vector Operations (Continued)

Function | Effect
/S | (vector With n (n>0)t in the X-register, copies and stores
| store) | Vo (now in Y, Z, and T) as vector-register n in stor-

age registers Rg, 4, R340, and Rg, 3. Analogous
| to [STO]J. (V, is unaffected.)
Vector Calculator also uses [H].
‘ (vector V; exchanges values with V,. Coordinates x4, yq,
| exchange) and z; move from Ryq, Rgo, and Rz into the X-, Y-,
5 and Z-registers, while x5, y», and z, move from X,
‘ Y, and Z into R01, R02, and Ros.
Vector Calculator also uses (E29))

* Remember that + and — are shifted Alpha characters.

I t1fn = 0 then and both copy V, to V4, the same as . Do not use n < 5 if you
plan to store vectors for use with the TR program (| [C]).

Find the area of the triangle determined by the vectors V| = (—3,—2,2)
and V, = (—2,2,3). Recall that the area of the parallelogram determined
by V; and V, equals the norm of V; X V,.

(-2,2,3) (0,00

(-3,-2,2)
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Display

DP CP A M UV

2.0000

—2.0000

DP CP A M UV
3.0000

2.0000

—2

DP CP A M UV

=—10.0000
Y=5.0000
Z=-—10.0000

DP CP A M UV
M=15.0000

7.5000

Sets the display for-
mat used here.
Optional—sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE = 004.

Starts the Vector Cal-
culator. (You could
also use the opera-
tions directly,
without the Vector
Calculator.)

Enter z;, then yq,
then key in x;, end-
ing with vector entry.
Enter z,, then y,,
then x,.

Retrieves the vector
menu (optional).

Result is (—10, 5,
—10).

Ready to find norm.
Norm (magnitude),
which equals the
area of the
parallelogram.

This is the area of
the triangle, which is
half that of the
parallelogram.

Resolve the following three loads along a 175-degree line. Use the dot
product on the sum of the three loads to do so. You will first need to
convert the polar coordinates to rectangular coordinates. Remember to set

z = 0.



170 LB A 143°

175°— _ _ _

—_—

Ly

185 LB A 62°

100 LB A 261°

Save the results for the polar coordinates of Ly and the 175°-line so that
you can re-use them to find the resolution (dot product) when Lj is dou-
bled. This example stores those results in vector-registers 1 and 2.

This solution uses Alpha (manual) execution of the vector operations, but
you can use the Vector Calculator, as in the above example. Make sure
that the User keyboard is not active.

Keystrokes
XEQ 010

XEQ *

0 (ENTER+]

62 [ENTER*]

185

*If the USER annunciator is on, press to turn it off.

Display

0.0000

62.0000

86.8522

Optional—sets the
number of storage
registers needed for
this example (includ-
ing vector storage).
This is not necessary
if your allocation is
already SIZE = 010.
Make sure the calcu-
lator is in Degrees
mode.

Enters zero for the z-
coordinate (in
preparation for the
vector operations af-
ter the coordinates
are transformed).

To convert L to rect-
angular coordinates,
first enter 0, then key
in r.

x-coordinate for L;.



Keystrokes

xsy |*

x5y

XEQ

0 (ENTER*]

143 (ENTER+]
170

XEQ

0
261
100

1 [xeq)

XEQ

0 (ENTER+]

175 [ENTER*]
>

2 [xeq]

Display
163.3453

86.8522

86.8522

0.0000
143.0000
—135.7680

—48.9158

0.0000
261.0000
—15.6434

—15.6434

—64.5592

0.0000
175.0000
—0.9962

—0.9962

y-coordinate for L;.
This step is op-
tional—it lets you
view .

Restores x to X and y
to Y—only necessary
if you switched them
(in the last step).

No menu; displays
previous result.

Displays x,. L, is con-
verted to rectangular
coordinates.

x-coordinate of resul-
tant vector (in both
Vl and VZ)

x3. Ly is converted to
rectangular
coordinates.

Stores Lj in vector-
register 1 (in Ry, Rs,
Re).

x-coordinate of resul-
tant vector of (L;+
L2+L3) in both V]
and Vz.

x-coordinate of the
175°-line.

Stores 175°-line in
vector-register 2 (in
R;, Rg, Rg).

* Note that when USER is on, you cannot use within the Vector Calculator to exchange X
and Y because this key is redefined in the Vector Calculator to exchange V; and V. Use

instead.



Keystrokes Display

XEQ 78.8586 The dot product is
the resolution of the
resultant L vector
along the 175°-line.

XEQ —64.5592 Returns the resultant
summed vector
(Li+Ly+Lg) to V, (X,

Y, Z)
1 —15.6434 Recalls Lj.
XEQ —80.2027 Adds Lj to the previ-

ous sum (in effect
doubling Ls).

2 —0.9962 Recalls the 175°-line.
XEQ 85.8342 Finds the new dot

product for the reso-
lution of the new
sum along the 175°-
line.

The following subroutines in VC can be used in your own programs.
They are three-dimensional vector operations for one or two vectors.

Minimum Size to Run: SIZE 004, not including vector-store and vec-

tor-recall.
Subroutines
Subroutine Name Initial Registers Final Registers

CROSS (cross product) X-register = Vo, X = (Vq x Vo),
Y-register = Vy, Y = (Vg x Vg,
Z-register = Vo, Z=(Vy x Vy),

Rgo = scratch

Ro1 = Vix Rot = (V4 x Vo),
Ro2 = Vay Roa = (V4 x Vo),
Roz = V12 Roz = (V4 x Vo),

DP (dot product) X-register = Vo, X=Vy- -V
Y-register = Vy,
Z-register = Vo,
Ro1 = Vix Ro1 = Vix
Ro2 = Vay Ro2 = V4y
Roz = V12 Ros = Vi



Subroutines (Continued)

Subroutine Name Initial Registers Final Registers
V+ (vector add) X-register = Vo, X = Vi + Vo
Y-register = V5, Y =V + Vg
Z-register = Vyp, 2=V, + Vo,
Ro1 = Vix Ro1 = Vix + Vo,
Ro2 = Vyy Roz = Vi + Vyy,
03 = Viz Rog = Viz + Vo,
V— (vector subtract) X-register = Vo, = Viy = Vo
Y-register = Vs, =Vyy = Vy,
Z-register = VQZ = V1z 27
Ro1 = Vix Ro1 = Vix — Vo
Ro2 = Vyy Roz = Vyy — Vpy
Ros = V12 Rog = Viz = Vo,
V+ (vector scalar multiply) X=a X=V,+a
Y=V, Y=V, +a
Z=V Z=V..a
T=V,
VA (vector angle) X-register = Vo, X = small angle between V4
Y-register = Vo, and V,
Z-register = Vo,
Ro1 = Vix Roq = unit vector Vo,
R02 = V1y R02 = unit vector sz
R03 = V1z R03 = unit vector sz
VD (vector distance) X-register = Vo, X = distance between V4
Y-register = V2y and V5
Z-register = Vo,
Ro1 = Vax Ro1 = Vix — Vo
Ro2 = Vyy Roz2 = Vqy — Vyy,
03 = Viz Roz = Viz = Va2,
VE (vector enter) X-register = V, X-register = V,
Y-register = V, Y-register = V,
Z-register = \/: Z-register = \/z
201 = 5x
02 =
Ros = \/z
VR (vector recall) X=n X = Rap41
= Y = Ranea
= = R3n+3
TV,
201 = \éx
02 =
Ros = Vz/



Subroutine Name

VS (vector store)

VXY (vector exchange)

UV (unit vector)

Comments. Vector operations work on one or two vectors
stored in the stack (X-, Y-, and Z-registers), another in Ry;, Ryy, and
Rps. For a two-vector operation, V; is considered to be in Ry;-Rj3 and
V, is considered to be the vector in the stack. The vectors’ compo-
nents are stored in order; that is, V,, V,, and V, into X, Y, and Z or

Subroutines (Continued)

Initial Registers

—AN <X
Il 1

=]
—

X-register = Vo,
Y-register = Vy,
Z-register = Vs,
Ro1 = Vix
Ro2 = Vyy
Ros = V1,

Il

I
N

N < X<
Il

into Ry, Rgp, and Ry3, respectively.

Final Registers

X-register = V4
Y-register =
Z-register
Ro1 = Vo
Roz = Vay

Viy
V1z

03 = Vo

nit vector x
nit vector y
nit vector z

. One is






The TR program performs three-dimensional translation of coordinates,
with or without rotation. This program uses parts of the VC program for
vector operations. You can access TR either directly or from VC. (VC and
the Vector Calculator are discussed in the preceding chapter, “Vector
Operations”.)

The program prompts you for the coordinates of the origin of the new
system (xg, Yo, Zp), the angle of rotation of this system relative to the origi-
nal system, and the axis about which the rotation is performed. You can
then enter points in the original system (x, y, z) that you want trans-
formed to the new system (¥, i/, ), or enter points in the new system
(x",y/, Z') that you want transformed to the original system (x, y, z). For a
two-dimensional case, enter z; as zero.

A Two-Dimensional Rotation about the Axis (0, O, 1)

ORIGINAL SYSTEM

S 0,0

After specifying the new origin (x, y, z), you specify the rotation angle.
For a three-dimensional system with a non-zero angle of rotation, you
also specify its rotation vector (a, b, c). The rotation vector defines the axis
about which the rotation is to be done; it can have any non-zero
magnitude.



P=[(P—T) njn(l—cost) + (P — T)cosf + [(P— T) x n]sind

P=[(P - n)n(l — cos) + P'cost + (P’ x n)sin(—6)] + T

where

= new system coordinates

= old system coordinates

= origin of new system

unit rotation vector (4, b, c)
= rotation angle

S 2ol

Two-dimensional transformations are handled as a special case of three-
dimensional transformations with (a, b, c) set to (0, 0, 1).

You can start TR either directly ((XEQ] ) or from the Vector Calculator
(" (€)) in VC. The Vector Calculator is covered in the “Vector Opera-
tions” chapter.

Enter coordinates as rectangular coordinates and specify angles according
to the current setting (Degrees, Radians, or Grads mode).

For two dimensions, input zero for the z-value.

For pure translation, input zero for the rotation angle.

For pure rotation, input zeros for xg, ¥y, and zg.

The sign of the rotation angle is determined by the right-hand rule
and the direction of the rotation vector. For two dimensions,
counter-clockwise rotation is considered positive.

You can switch into and out of the Vector Calculator by pressing

(C]. (“C” for Calculator and Coordinate transformations). You can
then perform vector operations upon vector coordinates in the stack
and in storage registers. (Refer to “Remarks” for the storage loca-
tions of the vector coordinates.)

The view function (. [(E]) is very useful for reviewing the coordi-
nates of the point in the stack.
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USER
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MENU

Once you have entered your variables, this menu shows you which key
corresponds to which function in TR. To restore this menu to the display
at any time, press (J] if the USER annunciator is on. (If it is not on, press
to turn it on.) Or, if the calculator is displaying results, you can
press until the menu appears. This will not disturb the program in

any way.

To clear the menu at any time, press [+]. This shows you the contents of
the X-register, but does not end the program. You can perform calcula-
tions, then continue the program by pressing (J]. (However, you do not

need to clear the program’s display before performing calculations.)

Instruction Table for TR

Size: 017
Instructions Key In: Display
1. Start program TR. The menu items in the dis- | [XEQ * 20,Y0,X0 ?
play indicate the locations of functions in the
top row of keys.
2. Enter the origin for the new system. 2y Zy
Yo Yo
Xg (R/S ROTA?
3. Input the rotation angle of the new system: | § [R/S] c,b,a ?




Instruction Table for TR (Continued)

Instructions Key In: Display
4. For a three-dimensional system: Input the ro- | ¢ c
tation vector’'s coordinates. b b
For a two-dimensional system: just press a tN tO0  NEW
R/S].
5. To transform the coordinates of a point from | z z
the original system to the new system (tN), | y y
enter the three coordinates of that point and | x (tN) X=x
select tN. (For two dimensions, set z=0.) (Rr7sIt Y=y
(R/S]T Z=7
(R/S]t tN 10 NEW
6. To transform the coordinates of a point from | z’ b4
the new system to the original system (t0), | y’ y
enter the three coordinates of that point and | x’ (t0) X=x
select 0. (For two dimensions, set z=0.) (R7s)t Y=y
(R/s]T Z=1z
(R/S)t tN 10 NEW
7. To view the coordinates of the point in the () X=x-coordinate
stack: t Y =y-coordinate
(r/s]t Z=z-coordinate
(r7s]t tN t0  NEW
8. To transform another set of coordinates, go
back to step 5 or 6.
9. To set up a new transformed system, select | (E] (NEW) Z0,Y0,X0 ?
NEW and then return to step 2.
10. To use vector operations, switch to the Vector DP CP A MUV
Calculator. All the functions described in the | (USER must be
“Vector Operations” chapter are then available | on)
to you.
11. To return to the TR program from VC: Z0,Y0,X0 ?
12. To transform a vector result V5 from VC, by-
pass the initial prompts and call up the main
menu (assuming a transformed system is al-
ready defined): tN t0  NEW

* To execute a program, press ALPHA ] Alpha name [ ALPHA ] or use a User-defined key.

t This keystroke is unnecessary if you have a printer attached because the printer automati-
cally prints the results and then displays the selection menu.




This program uses local Alpha labels (as explained in the owner’s manual
for the HP—41) assigned to keys [(A], (B], (E], = [C]J, and (J]. These local
assignments are overridden by any User-key assignments you might have
made to these same keys, thereby defeating this program. Therefore be
sure to clear any existing User-key assignments of these keys before using this
program, and avoid redefining these keys in the future.

However, these local Alpha labels are active only while the USER annun-
ciator is on. This allows you to use the arithmetic functions in the top two
rows while the USER annunciator is off. (As long as USER is on, the keys
mentioned above are redefined and will not execute their Normal
functions.)

Data Storage. The vector or point you want to transform is stored in
Ros, Rps, Rgg, which is vector-storage register 1 (initially from the X-, Y-,
and Z-registers). The rotation vector is stored in Ry, Rog, Rgg, which is
vector-storage register 2. The origin of the new system is stored in Ry,
Ry1, Ry, which is vector-storage register 3. The rotation angle is stored in
Ry¢, while Ry3, Ry4, and Ry5 are used for scratch.

If you will be using vector storage operations ( ) , and the Vector
Calculator) along with TR, keep in mind that TR uses Ry—R; when it is
initialized ([XEQ] )- This means you should not store vectors in vector
registers 1 through 5 (if you plan to use TR in your vector calculations).

Flags. Flag 01 is used to indicate whether the transformation is to be
made to the new system or to the original system. When flag 1 is set, the
transformation is to the new system.

Flag 05 is set when the system is rotated.



The coordinate systems (x, y) and (¥, y’) are shown below.

Ay

Pi(=9,7)

Py (—5, —4)

7, —4)

\
6 = 27°

P, (2.7, —3.6)

Convert the points Py, P,, and P3 to equivalent coordinates in the (x’, y)
system. Convert the point P,” to equivalent coordinates in the (x, y)

system.
Keystrokes Display
4
XEQ 017
XEQ Z0,Y0,X0 ?
0 0.0000
4 —4.0000
7 ROTA?

Sets the display for-
mat used here.
Optional—sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE = 017.

Prompts for zy, ¥,
and x; of new
system.

Enters zero for z.

Prompts for angle of
rotation.



E

z

TER4 ] 7 [ENTER* |

HS (tN)

© O
i

R
R

NI N

R/S

i

ENTER% ] 4

ENTER#

(tN)

mI

N
w

R
R/S
R/S

0 (ENTER# ] 8 [ENTER% ]
(tN)
R/S

D

R/S

Display
c,b,a ?

tN tO NEW

7.0000
X=—9.2622

Y=17.0649
Z=0.0000
tN 1O NEW

—4.0000
X=—10.6921

Y=>5.4479
Z=0.0000
tN tO NEW

8.0000
X=4.5569

Y=11.1461
Z=0.0000
tN 1O NEW

—3.6000
X=11.0401

Y=-5.9818
Z=0.0000

Prompts for the rota-
tion vector. Skip this
for a two-dimen-
sional system.

Prompts for P;.
xq’

Y
2l
Ready for P,. This
step is optional—it
brings up the main
menu.

4

’

x,” from P,.

Y2
9]

’
’

Brings back the menu
for your review.

x3’ from Pj.

’

Y3

23/

Brings back the menu
for your review.

x4 from P,

Ya
24

A three-dimensional coordinate system is translated to (2.45, 4.00, 4.25).

axis. In the original system, a point had the coordinates (3.9, 2.1, 7.0).
What are the coordinates of the point in the translated, rotated sytem?



Keystrokes Display

tN 1O NEW Retrieves menu (if
USER is on).

(NEW) Z0,Y0,X0 ? Prompts for a new
system.

4.25 [ENTER* ] 4 ([ENTERt] 4.0000

2.45 ROTA?

62.5 c,b,a ?

1 —1.0000

1 —1.0000

0 tN 1O NEW Ready for P.

7 (ENTER# ) 2.1 [(ENTER* ] 2.1000

3.9 (A] (tN) X=3.5861 x

R/S Y=0.2609 y

R/S Z=0.5891 z/

In the translated, rotated system above, a point has the coordinate
(1,1, 1). What are the corresponding coordinates in the original system?

Keystrokes Display

R/S tN 1O NEW Retrieves main menu.
Optional step.

1 [ENTER# ] 1 [ENTER* ] 1.0000

1 (t0) X=2.9117 X

Y=4.3728 y

R/S Z=5.8772 z

The subroutine CT can be used in your own programs. It performs co-
ordinate transformations (rotations and translations) in three dimensions.
It takes the x-, y-, and z-values from the stack (X-, Y-, and Z-registers)
and transforms them to another system, or from the new system to the
original system.



Minimum Size to Run CT: SIZE 017.

Flags Used: 01, 05.

Initial Registers

X-register = x-coordinate

Y-register = y-coordinate

Z-register = z-coordinate

Ro7 = a (N, the unit ro-
tation vector)

Rog = b (Ny)

Rog =¢ (N)

Ryg = Ty, the translation
vector

R11 = Ty

Ri2 =T,

R4g = rotation angle

Subroutine: CT
Final Registers

X-register = transformed x-
coordinate

Y-register = transformed y-
coordinate
Z-register = transformed z-
coordinate

Rog = (1 — cosO)(N - P)

Rg1 = contents of X-
register

Rgo = contents of Y-
register

Rosz = contents of Z-
register

R04 = PX (Or PX - TX |f
flag 01 set)

Ros = Py (or Py S Ty if
flag 01 set)

Rog = P, (or P, — T, if
flag 01 set)

Ro7 = a (N, the unit ro-
tation vector)

Rog = b (Ny)

Rog = ¢ (N)

Rig = Ty, the translation
vector

R11 = Ty

Rig =T,

R4e = rotation angle

Flags to Initialize

SF 01 to transform to the
new system

CF 01 to transform to the
original system
SF 05 to
coordinates

CF 05 to not rotate the
coordinates

rotate the

Comments. To use CT, load the translation vector (T), the unit rotation
vector (N), and the rotation angle, set flag 01 to go to the new system or
clear flag 01 to go to the original system. Set flag 05 to rotate the vector’s
coordinates (P). The result is returned to the X-, Y-, and Z-registers and in
RO]’ Roz, and R03.






This pac includes several functions for calculating and manipulating bi-
nary, octal, and hexadecimal numbers. There are six functions for number
conversion, four Boolean functions, and two bit-manipulating functions.
All functions use a word length of 32 bits.

Six functions are provided for converting numbers between decimal val-
ues and the equivalent binary, octal, and hexadecimal values. The figure
below illustrates the action of these six functions.

Binary Decimal Octal
Number Number Number
Hexadec-
imal
Number

Valid Input Range for Data

The binary input for must be 0’s and 1’s; ten digits
maximum.
The decimal input for must be an integer from 0 through

1,023. Non-integers are truncated. The absolute value is used.

The octal input for must be digits from 0 through 7; ten
digits maximum.
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The decimal input for must be an integer from 0 through
1,073,741,823. Non-integers are truncated. The absolute value is
used.

The hexadecimal input for must be digits from 0 through 9
and “letters” A through F; eight digits maximum.

The decimal input for must be an integer from 0 through
4,294,967,295. Non-integers are truncated. The absolute value is
used.

Instructions

The “VIEW” functions convert the display of the (decimal) value in
the X-register. (The stack continues to hold the decimal version.)
Press [«] to display the X-register again.

The current format determines the number of digits displayed
between commas of the non-decimal number.

The “IN” functions are prefix functions: first you execute the func-
tion, then you key in your value. Press to see the result.

To abort an “IN” function press [ALPHA ] [ALPHA].

An “IN” function executed in a program will halt that running
program.

Number Conversion Functions

Function Effect

(binary to = Converts a binary input to a decimal value in the X-
decimal) register.
1. Execute . The display shows _ B.
2. Input a binary number.

3. Press for result.
(deci- Temporarily displays the binary equivalent of the
mal to binary) decimal value in the X-register.
1. Input decimal value to convert.
2. Execute .
3. Displays result B.
4. Press to see X-register again.



Number Conversion Functions (Continued)

Function

(octal to
decimal)

(deci-
mal to octal)

(hexa-
decimal to
decimal)

(deci-
mal to
hexadecimal)

Effect

Converts an octal input to a decimal value in the X-
register.

1. Execute . The display shows _ O.

2. Input an octal number.

3. Press [ENTER+# | for result.

Temporarily displays the octal equivalent of the dec-
imal value in the X-register.

1. Input decimal value to convert.

2. Execute .

3. Displays result O.

4. Press to see X-register again.
Converts a hexadecimal input to a decimal value in
the X-register.

1. Execute . The display shows _. H.

2. Input a hexadecimal number.

3. Press for result.
Temporarily displays the hexadecimal equivalent of
the decimal value in the X-register.

1. Input decimal value to convert.

2. Execute .

3. Displays result H.

4. Press to see X-register again.

Included in this group of functions are Boolean logic, bit checking, and

bit rotation.

Valid Input Range for Data

These functions operate on decimal numbers in the range zero through
4,294,967,295 (32-bit, unsigned integers). Non-integers are truncated. For
negative values, the absolute value is used.

Instructions

The result of a Boolean operation is returned to the X-register. The origi-
nal value of the X-register is saved in the LAST X register except for

, which does not affect LAST X or the stack. All other two-param-
eter functions drop the stack.



Function

(test bit)

(rotate Y
by X)

Boolean Functions

Effect

Calculates the logical AND of x and y.
Calculates the logical inclusive OR of x and y.
Calculates the logical exclusive OR of x and y.
Takes the one’s complement of IxI.

Tests the bit in the Y-register specified by the value
in the X-register. If the bit is one, the calculator dis-
plays YES; if the bit is zero, the calculator displays
NO. In a program, is a conditional function

following the “do if true” rule: a one bit causes the
next program step to be executed, while a zero bit
causes the next program step to be skipped.

Rotates the value in the Y-register to the right by
the number of bits specified in the X-register. Rotat-
ing right (32—x) bits is equivalent to rotating left x
bits.

What are the binary, octal, and hexadecimal equivalents of 65;,? Set
4 so that commas separate every four digits.

Keystrokes
4

XEQ
XEQ
XEQ

Display
Sets the display for-
mat used here.

65_

100,0001 B Binary.

101 O Octal.

41 H Hexadecimal.



What is the octal result of rotating FA407,4 six bits to the right, adding

1001005, and then ANDing the result with 25;4?

Keystrokes
XEQ
FA407

Display

— H

FA407_ H
1,025,031.000

6_
469,778,064.0

__ B
10,0100_ B
469,778,100.0

25_
16.0000

20 O

Decimal equivalent of
FA407 6.

Rotates value right six
bits.

Adds binary entry to
previous value.

ANDs 25 with previ-
ous result.

Octal result.






The CFIT program collects and fits statistical data (x; y;) to one of the
following four chosen curves or to the curve of best fit. The curve of best
fit is considered to be the one with the highest coefficient of determina-
tion, r2, for the data.

Straight line (linear regression), y = a + bx
Exponential curve, y = aet® (where a > 0)
Logarithmic curve, y = a + b(Inx)

Power curve, y = ax? (where a > 0)

The program solves for a, b, 72, and y, the linear estimate (a predicted
value for y).

The regression coefficients a and b are found by solving the following
linear equations, where n is the total number of data pairs.

An + bEXI = EY,
AZX; + b2(X;)? = 2(YiX))

Definitions of Regression Variables

Regression = A X; Y;
Linear a X; Vi
Exponential  Ina | x; Iny;
Logarithmic | a Inx; |y
Power Ina  Inx; Iny;

The coefficient of determination is

AZY; + bE(XY) — L Y’
2 n

1

S(Y)? — = 3y
n
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Linear Regression Exponential Curve Fit

y y
y = a + bx y = aed
X
Logarithmic Curve Fit Power Curve Fit
y y
y=a+binx y = axP
X

Program CFIT evaluates the given data by the least-squares method, us-
ing either the original equation (straight line and logarithmic curve) or the
transformed equations (exponential curve and power curve).

All data values (x;, y;) must be positive and non-zero, otherwise DATA
ERROR results.



As the difference between x-values and y-values becomes small, the accu-
racy of the regression coefficients decreases.

Note also that inaccurate results can be generated if one variable is much
larger than the other or changes much more rapidly than the other does.
(This occurs when the calculator would have to maintain more than ten
significant digits for accuracy, which it can’t.) If your data values are like
this, you should apply scaling methods to maintain the accuracy of the
results. Scaling methods are described in many statistics texts.

A DATA ERROR will result if you try to fit a curve containing only one
data point, or if you use negative or zero data.

The CFIT program starts with its home menu, 2+ CLZ FIT. This is
for entering your statistical data: £+ to enter (y first, then x), | =+
to delete, and CLX to clear old statistical data. FIT brings up the
curves menu.

The curves menu, L EX LOG P B, offers you a choice of curves to
which to fit your data: Linear, EXponential, LOGarithmic, Power,
and Best fit. The best fit picks the curve that best fits your data.

Once you've picked the curve to fit, pressing displays
successive regression variables. Pressing [J] brings back the home
menu.

Home Menu

T+ CLE FIT)

USER

MENU

This menu will show you which key corresponds to which function in
CFIT. Press (J] to recall this menu to the display at any time. This will
not disturb the program in any way.



Curves Menu

L Ex LOLG P H

l MENU
J

To clear the menu at any time, press (+]. This shows you the contents of
the X-register, but does not end the program. You can perform calcula-
tions, then recall the home menu by pressing [J]. (However, you do not
need to clear the program’s display before performing calculations.)

Instruction Table for CFIT

Size: 018
Instructions Key In: Display

1. Start program CFIT. The menu items in the XEQ * 2+ CLZ FIT

display indicate the locations of functions in

the top row of keys.
2. Clear old statistical data. (This is not neces- (CLZ) 2+ CLZ FIT

sary if you've just executed , which

automatically clears old data, too.)
3. Input your data pairs. y y

Repeat for each pair. X (Z+)t | 2+ CLZ FIT
4. To see how many data pairs you have entered n

so far, clear the display (optional). 2+ CLZ FIT




Instruction Table for CFIT (Continued)

Instructions Key In: Display
5. To correct any data pair, first re-enter that pair | yy Y
to delete it. Xk 2+ CLI FIT
(=)
Then enter the correct pair. (Step 3.)
6. Display the curves menu. (FIT) LEXLOGPB
7. Select the curve you want to fit. (L) LIN
(EX) EXP
(LOG) LOG
@ P POW
(E] (B) (the “best fit" of
the above)
8. Find the values for a, (R/S]% a= result
for b, (R7s]% b= result
for r2, (R7s)t Rt2= result
9. Find the linear estimate, y. (R75)1 X=?
Repeat as desired. X Y =result
(R/s]t X=?
10. To start over (recall the home menu): 2+ CLZ FIT

* To execute a program, press ALPHA ] Alpha name or use a User-defined key.

1 With a printer attached this step can give you a print-out of the values you just entered.
Refer to your printer’'s owner’s manual for instructions.

1 This keystroke is unnecessary if you have a printer attached because the printer automati-
cally prints the results and then displays the selection menu.

This program uses local Alpha labels (as explained in the owner’s
manual for the HP-41) assigned to keys [A]-[E], | [[A], and [J]. These
local assignments are overridden by any User-key assignments you
might have made to these same keys, thereby defeating this program.
Therefore be sure to clear any existing User-key assignments of these keys
before using this program, and avoid redefining these keys in the
future.



The CFIT program changes the location of the statistical
registers. If you want to access information in the statistical regis-
ters after using this program, you must re-establish these registers
in a known location using the function (refer to the
HP-41 owner’s manual). This is true even if you just want to
have the statistical registers in their default locations, R;;—Ry¢. To
access statistical information stored by this program, refer to
“Programming Information” at the end of this chapter.

Fit a straight line to the following set of data and compute y for x = 37
and x = 35.

x | 40.5 386 379 36.2 35.1 34.6

Y I 104.5 102 100 97.5 95.5 94

Keystrokes Display
4 Sets the display for-
mat used here.

XEQ 018 Optional—sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE = 018.

XEQ Z+ CLZ FIT Starting the program
also clears old statis-
tical data.

104.5 40.5 40.5_ Enter first data pair, y

(=+) Z+ CLZ FIT first.

102 38.6 38.6_ Second pair.

=+) >t Cl> FIT

100 37.9 37.9._ And so on.

+) >+ CLS FIT

97.5 36.2 36.2_

C+) ¥+ CL: FIT

95.5 35.2 352 Oops! Wrong entry

Z+) 2+ CL: FIT for x.

95.5 35.2 35.2_ Delete incorrect pair.

(=) >t Cl- FIT



Keystrokes

95.5 35.1
Al (Z4)

94 34.6
Al (Z4)

FIT)

L)

A

B &

R/
R/
R/
R/

l

w
N
2]
s
N
w

R/
/S

ia
()
i

/
R/S

R/S

Display
351
Z+ CLZ2 FIT

34.6_
>+ CL> FIT

LEXLOGPB
LIN

a=233.5271
b= 1.7601
R12=0.9909
X=?

Y=98.6526
X=?
Y=95.1323
X=?
LEXLOGPB

2+ CLY FIT

Enter correct pair.

The curves menu.

Selects the linear
curve.

Asks for x-value for
which you’d like to
estimate y.

y.

Returns the curves
menu, ready to fit an-
other curve to the
data.

Returns the home
menu, ready to start
a new problem.

Enter the following set of data and find the best curve to fit it. Then
compute y for x = 1.5 and x = 2.

X

1.31 195 2.58

3.14

y l 2.16

Keystrokes
R/S

(CLZ)

2.16 [ENTER®) .72
(Z+)
1.61 (ENTER®) 1.31
(Z+)
1.16 [(ENTER® ] 1.95
(z+)

1.61 1.16 0.85

Display
Z+ CLZ FIT

Z+ CLZ FIT

g2
2+ CLZ FIT
1.31_
Z+ CL2 FIT
1.95_
Z+ CLZ FIT

0.5

Make sure the home
menu is displayed.

Clears data from first
example.

Enters first data pair.



Keystrokes

.85 2.58
Al (Z4)

5 3.14
Al (Z4)

E] (FIT)
E] (B)

—_

—_

0

)
NSNS
0| »

o)
[}

R

" 2|

EU) w
— |0
% N
w

)
N
[}

)
N
w

Display
2.58_
2+ CLZ FIT

3.14_
Z+ CLZ FIT

L EXLOG P B

LOG The best curve to fit
is a logarithmic one.

a= 1.8515
b=—1.1021
Rt2=0.9893
X=?
Y=1.4046
X=?
Y=1.0875
X=?
LEXLOGPB

The subroutines AZ, D2, FIT, and BFIT can be used in your own pro-

grams.

AZ adds the data pair in the X- and Y-registers to a statistical regis-
ter set to obtain summary statistics.

DZ deletes the data pair in the X- and Y-registers from the statistical

register set.

FIT fits a curve of type 1 through 4 to statistical data stored by the
program CFIT or subroutines AZ and DZ.

BFIT finds the best-fit curve of type 1 through 4 to statistical data
stored by the program CFIT or subroutines AZ and DZ2.

Minimum Size to Run: SIZE 018

Flags Used: BFIT and FIT use 01, 02, 03, 04, 06, 07.
AZ and DX do not use any flags.



Subroutines: A> and D>

Initial Registers Final Registers Flags to Initialize

Y-register: y-value
X-register: x-value

Ros =10 Roq = Z(yInx)
Ros =0 Ros = Z(xiny)
Ros = 0 Ros = 2y
Ro7 =0 Ro7 = 2y?
Rog =0 Rog = 2x
Rog = 0 Rog = 2x2
Rio=0 R1o = Z(xy)
Ry1 =0 Ri1=n
Ri2=0 Rq2 = Z(ny)
Ri3=0 Ryg = 2(ny)?
Rys =0 Rys = 3(inx)
Ry =0 Rqs = Z(Inx)2
Rig =0 Rig = Z(Inx)(ny)
Ry7=0 Ry7 =n, and temporarily
Zy

Subroutine: FIT

Initial Registers Final Registers Flags to Initialize
X-register = CF 01
1 = linear
2 = exponential
3 = logarithmic
4 = power
R00:1,2, 3, or4 CF 02
Roy =a CF 03
R02 =b CF 04
Rog = r?

Ro4-R17: all statistical registers are the same as above in
AZ.



Comments. After loading the statistical registers using A% and DZ, put
the number of the curve to fit (1, 2, 3, 4) in the X-register and execute
FIT. FIT sets flag 07 and sets a flag (01-04) that matches the curve type. It
stores a, b, and 72 in Ry;, Ryy, and Rgs.

Subroutine: BFIT

Initial Registers Final Registers Flags to Initialize
Roo=1,2,3,0r4 CF 01
Ro1 = a CF 02
Roa = b CF 03
Roz = r? CF 04
Rg4-R47: all statistical registers are the same as above in
AZ and FIT.

Comments. After loading the statistical registers using AZ and DZ,
execute BFIT and it will find the best fit of a linear, exponential, log,
or power curve. BFIT sets flag 01 (linear curve), 02 (exponential
curve), 03 (logarithmic curve), or 04 (power curve), stores the cor-
respondin ber in R d st b, and r? in Ry, R

p g curve number in Ryg, and stores a, b, and r* in Ry, Ry,
and R03.



The TVM program solves different problems involving time, money, and
interest—the compound-interest functions. The following variables can
be inputs or results.

N The number of compounding periods or payments. (For a 30-year
loan with monthly payments, N = 12 X 30 = 360.)
I The periodic interest rate as a percent. (For other than annual

compounding, this represents the annual percentage rate divided
by the number of compounding periods per year. For instance, 9%
annually compounded monthly equals 9 + 12 = 0.75%.)

PV The present value. (This can also be an initial cash flow or a dis-
counted value of a series of future cash flows.) Always occurs at
the beginning of the first period.

PMT The periodic payment.

FV The future value. (This can also be a final cash flow or a com-
pounded value of a series of cash flows.) Always occurs at the end
of the Nth period.

You can specify the timing of the payments to be either at the end of the
compounding period (End mode) or at the beginning of the period (Begin
mode). Begin mode sets flag 00. Ending payments are common in mort-
gages and direct-reduction loans; beginning payments are common in
leasing.

— ._N
0=PV+(1+ip)PMT[1 LI
1

] + FV @1+ iV

where i is the periodic interest rate as a fraction (i = 1/100),
p = 1 in Begin mode or 0 in End mode.

Use a cash-flow diagram to determine what your cash-flow inputs are and
whether to specify them as positive or negative.

The cash-flow diagram is just a time-line divided into time periods. Cash
flows (transactions) are indicated by vertical arrows: an upward arrow is
positive for cash received, while a downward arrow is negative for cash paid
out.
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For example, this six—pefiod time line shows a $20 cash outflow initially
and a $50 cash inflow at the end of the fourth period. (Begin mode can-
not be used in calculating PV or FV.)

(+) +$50
Cash
Inflow

(—)
Cash
Outflow  —$20

This five-period time line shows a $1,000 cash outflow initially and a
$100 inflow at the end of each period, ending with an additional $1,000
inflow at the end of the fifth period.

$1,000
(+)
Cash
Inflow $100  $100 $100  $100 $100
1 2 3 4 5
(—)
Cash

Outflow —$1,000



The program TVM will solve for any one of the variables N, I, PV,
PMT, or FV given the other three or four, which must include either
N or I. The order of entry is unimportant.*

You should clear the financial data (! [E]) before beginning a com-
pletely new calculation; otherwise, previous data that is not
overwritten will be used (i.e., for the fourth, unused variable). Run-
ning the program anew also clears the financial data.

Remember to specify cash inflows (arrow up) as positive values and
cash outflows (arrow down) as negative values. The results are also
given as positive or negative, indicating inflow or outflow.

Check that the payment mode is what you want. If you see the flag
00 annunciator (a small 0 below the main display line), then Begin
mode is set. If not, End mode is set. To change the mode, press

(D] (a toggle). The display will then show what you have just set:
BEGIN MODE or END MODE. The default is End mode (flag 00 clear).

Remember that the interest rate must be consistent with the num-
ber of compounding periods. (An annual percentage rate is
appropriate only if the number of compounding periods also equals
the number of years.)

You might want to set the display format for two decimal places

(Fx)2).

*If you use only four variables, then the fifth must equal zero. All variables are set to zero
when you first run TVM or clear the financial data (. (E]), so you do not have to enter a
zero in these cases.



[ Y T Vs M T Vs
N I PYPMTFV]
USER
L A | B C D E
MENU|
J

This menu will show you which key corresponds to which function in
TVM. Press (J] to recall this menu to the display at any time. This will not

disturb the program in any way.

To clear the menu at any time, press [«]. This shows you the contents of
the X-register, but does not end the program. You can perform calcula-
tions, then recall the main menu by pressing [J]. (However, you do not
need to clear the program'’s display or recall the menu before performing

calculations.)

Instruction Table for TVM

unless N is what you need to find. Step 3bis a
shortcut if you need to figure the number of
months from a given number of years.

Size: 010
Instructions Key In: Display

1. Start the TVM program. The menu items in XEQ ¥ N, I, PV,PMT,FV
the display indicate the locations of keys in
the top row for N, I, PV, PMT, and FV.

2. Check payment mode by looking for the 0 an- (D] (toggles | END MODE or
nunciator. (0 means Begin mode; no 0 means | between BEGIN MODE
End mode.) Change the mode if necessary. modes)

or N, I, PVPMTFV
3a. Input the number of compounding periods, N, | N (N) N= Nt




Instruction Table for TVM (Continued)

Instructions

Key In:

Display

3b.

4a.

4b.

10.

11.

Alternative to 3a: If you're working with
monthly payments or monthly compounding
periods for a known number of years, this
step automatically figures and inputs N (as 12
X years). Input the number of years, n.

Input the periodic interest rate, I, unless I is
what you need to find. Step 4b is a shortcut if
you need to figure a monthly interest rate from
a given annual interest rate.

Alternative to 4a: If you're working with
monthly compounding periods and a known
annual interest rate, this step automatically
figures and inputs I (as annual percentage
rate + 12). Input the annual percentage rate,
APR.

. Input the present value, PV, unless PV is what

you need to find or is not a relevant variable.

. Input the amount of payment, PMT, unless

PMT is what you need to find or is not a rele-
vant variable.

. Input the future value, FV, unless FV is what

you need to find or is not a relevant variable.

. Now find the remaining variable by pressing

its key.

. To review (recall) any variable’s value at any

time:

To restore the main menu (N, I, PV,PMT,FV)
at any time (without affecting your inputs and
calculations):

Clear old financial data before starting a new
problem.

n

Ie] M

APR

PV (PV)

PMT
(©] (PMT)
FV(E] (FV)

or
or

N= 12 x n

I=1

I=APR + 12

PV=input

PMT =input

FV=input

N= result or
I=result or
PV=result or
PMT=result or
FV=result

value
N, I, PV,PMT,FV

N, I, PV,PMT,FV

* To execute a program, press ALPHA ] Alpha name or use a User-defined key.

T If you have a printer attached, the display automatically returns to the main menu
(N, I, PV,PMT,FV) after printing the most recent input.




This program uses local Alpha labels (as explained in the owner’s manual
for the HP-41) assigned to keys [A]-[E], their shifted counterparts (except

(¢]), and [J]. These local assignments are overridden by any User-key
assignments you might have made to these same keys, thereby defeating
this program. Therefore be sure to clear any existing User-key assignments of
these keys before using this program, and avoid redefining these keys in the
future.

The financial variable keys will only store a value if you enter it from the
keyboard. If, for example, you recall a value from a register then press a
variable key, the program will calculate that variable instead of storing
the recalled value. To store a value that was placed in the X-register by
some other means than actually keying it in, press before pressing
the variable key.

A borrower can afford a $650.00 monthly payment on a 30-year, 14 4%
mortgage. How much can he borrow? The first payment is made one
month after the money is loaned. (This requires End mode.)

Cash Flows, Example 1

+7 [ 14.25%
PV 12

N=30x12
112|345 ... 356/357 358 359 360

PMT
—$650 —$650



Keystrokes Display

2
XEQ 010
XEQ N, I, PV,PMTFV
30 (A] N=360.00
R/S N, I, PV,PMT,FV
14.25 I=1.19
R/S N, I, PV,PMTFV
650 (b] (PMT) PMT=—-650.00
R/S N, I, PV,PMTFV
(PV) PV=53955.92

Sets the display for-
mat used here.
Optional—sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE = 010.

Starts program. This
also clears old finan-
cial data. End mode
is automatically set.
Total number of
periods.

Restores menu
(optional).

Monthly interest rate.
Restores menu
(optional).

Monthly payment.
Restores menu
(optional).

Maximum loan
amount.

If the required mortgage is only $53,500, what is the monthly payment?
(Change the PV, leave all other variables as they are, and solve for PMT.)

Keystrokes Display

R/S N, I, PV,PMT,FV
53500 (PV) PV=53500.00
R/S N, I, PV,PMTFV
(o] (PMT) PMT = —644.51

Restores menu
(optional).

Given loan amount.
Restores menu
(optional).

Monthly payment.

Notice that when you press a key [A]-[E] after keying in a value, the
calculator stores that value in the indicated variable. However, when you
press [A]-(E] without first keying in a value, the calculator computes a

value for the indicated variable.



How much money must be set aside in a savings account each quarter in
order to accumulate $4,000 in 3 years? The account earns 11% interest,
compounded quarterly, and deposits begin immediately.

PMT

Keystrokes

(E]

(o]

R/S

3 4
(N)

11 43
M

4000 (FV)
@ (PMT)

Cash Flows, Example 2

11%
==
4 5 10
Display

N, I, PV,PMT,FV

BEGIN MODE

N, I, PV,PMT,FV
12.00
N=12.00
2.75
1=2.75
FV=4000.00
PMT = —278.22

+$4,000
FV
N=3x 4
11 12
—?

Clears financial data.
(This assumes that
you are still in the
TVM program.)

Sets Begin mode.
(The 0 annunciator
should appear.)

Total number of
deposits.
Quarterly interest
rate.

Goal.

Monthly deposit
required.

The following subroutines in TVM can be used in your own programs.
They find the number of periods, interest, present value, payment, or fu-

ture value when given the other four parameters.

Minimum Size to Run: SIZE 010.

Flags Used: 00, 25.



Subroutine Name | Initial Registers @ Final Registers Flags to

Initialize
N (number of Roo = 1 X-register = N | SF 00 for
periods) Roz = PV Ro1 = N Begin mode
R04 = PMT R02 = I
Ros = FV R03 = PV CF 00 for
Ros = PMT End mode
Ros = FV
*] (interest) Ro1 = N X=1 SF 00 for
Ros = PV Rogr = N Begin mode
R64 = PMT R02 =]
Ros = FV Ros = PV CF 00 for
Ros = PMT End mode
Ros = FV
PV (present value) # Rgy = N X = PV SF 00 for
Ro2 = 1 Rogy = N Begin mode
R04 = PMT R02 =1
Ros = FV Rgz = PV CF 00 for
Ros = PMT End mode
Ros = FV
PMT (payment Ro1 = N X = PMT SF 00 for
value) Rop = 1 Ro1 = N Begin mode
R03 = PV R02 =1
Ros = FV Roz = PV CF 00 for
Ros = PMT End mode
R05 = FV
FV (future value) Ro1 = N X = FV SF 00 for
Roo = I Ro1 = N Begin mode
R03 = PV R02 =]
Ros = PMT Roz = PV CF 00 for
Ros = PMT End mode
R05 = FV

Comments. To use these subroutines, load the four appropriate regis-
ters, set (or clear) flag 00 for Begin (or End) mode, then execute the
desired subroutine. It returns the desired value to the X-register and
stores it in the corresponding register.
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