
HEWLETT-PACKARD

HP-41 ADVANTAGE

ADVANCED
SOLUTIONS PAC

Notation
Example

IE+I
W

0 (FX)

ITVMI

I SIZE I 013
ABC

123

KEYSTROKE NOTATION
USED IN THIS MANUAL

Description

A keyboard function . Press I E+ I.
A shifted keyboard function. Press I E+ I (sequentially, not
simultaneously).

A customized function for a particular program. Press
I I:+ I. (Corresponds to key with blue letter "Au.) FX is the
display's menu label for 0 in this example.

A non-keyboard function . To execute it , press I XEQ I
I ALPHA I TVM I ALPHA I. Alternatively, you can assign this
function to a User key and then execute it as a single key.

I XEQ II ALPHA I SIZE I ALPHA I [Q]CD[]]
Alpha-keyboard characters mapped to the blue letters on
the keys. Press I ALPHA I to start and finish.

Shifted Alpha-keyboard characters (mapped as shown on
the back label of the calculator).

rll~ HEWLETT .:a PACKARD

The HP-41 Advantage

Advanced Solutions Pac

July 1985

00041 -90546

ACKNOWLEDGMENTS

The matrix operations in this pac were based on the CCD ROM , written by
W & W Software Products GmbH, 5060 Bergisch Gladbach 2, West
Germany.

The root-finding and numerical-integration routines in this pac were
adapted from those in the HP-15C by Firmware Specialists, Inc., 605 NW
5th Street #2A, Corvallis, Oregon 97330.

The original concept for the content and user interface of this pac was de­
veloped by Chris Bunsen, Corvallis, Oregon.

NOTICE

Hewlett-Packard Company makes no express or implied warranty with re­
gard to the keystroke procedures and program material offered or their
merchantability or their fitness for any particular purpose. The keystroke
procedures and program material are made available solely on an "as is"
basis , and the entire risk as to their quality and performance is with the
user. Should the keystroke procedures or program material prove defec­
tive, the user (and not Hewlett-Packard Company nor any other party) shall
bear the entire cost of all necessary correction and all incidental or con­
sequential damages. Hewlett-Packard Company shall not be liable for any
incidental or consequential damages in connection with or arising out of the
furnishing, use, or performance of the keystroke procedures or program
material.

TABLE OF CONTENTS

Introduction 5

Inserting and Removing Application Modules 7

How to Use This Manual and Pac 11

The Matrix Program 19
Supplies an easy method for creating real or complex matrices.
Operations include inversion , transposition , determinant, and
solving simultaneous equations.

Matrix Functions 30
More than forty-five functions to store and manipulate matrices
and parts of matrices. Includes all capabilities of the Matrix Pro­
gram, matrix arithmetic, and searching for specific elements.

Finding the Roots of an Equation 61
Finds the real roots of an equation ((x) = O.

Polynomial Solutions and Evaluations 71
Finds real and complex roots of a polynomial with real coef­
ficients of degree 2 through 5.

Numerical Integration 79
Calculates the definite integral in the given interval of an equa-
tion ((x) = O.

Differential Equations .. 87
Solves first- and second-order differential equations.

Operations with Complex Numbers 93
Complex arithmetic and other common operations with complex
numbers, including trigonometry, absolute value, inverse, loga­
rithms and natural logs.

Vector Operations 101
Performs common operations with 2- or 3-dimensional vectors:
addition , subtraction , dot product, cross product, distance, an-
gie, norm, and unit vector.

Coordinate Transformations 117
Transforms coordinates in three dimensions, with or without
rotation.

Number Conversions and Boolean Logic 127
Converts among binary, octal , decimal, and hexadecimal num-
bers . Performs Boolean logic, bit testing, and bit rotation.

3

4 Contents

Curve Fitting 133
Collects and fits a set of data points to a straight line, a loga­
rithmic curve, an exponential curve, a power curve, or the best
fit of these curves.

The Time Value of Money 143
Solves financial problems involving time, money, and interest.

Program Index inside back cover

INTRODUCTION

The HP-41 Advantage-the Advanced Solutions Pac-gives you a selec­
tion of programs and functions for solving advanced mathematical and
engineering problems, curve-fitting statistical problems, and simple finan­
cial problems (the time value of money) . It's a broad, powerful solution
set for the technical student or professional.

Many of the routines used internally by this pac have been made accessi­
ble to you for use as subroutines in your own programs.

This manual provides a description of each program or function set with
relevant equations, step-by-step instructions for operation, examples with
the keystrokes needed for the solution, and descriptions of the user-acces­
sible subroutines.

Note: Before plugging in your HP-41 Advantage Pac, turn the
calculator off, and be sure you understand the section "Inserting
and Removing Application Modules".

5

INSERTING AND REMOVING
APPLICATION MODULES

Before inserting an application module for the first time, familiarize your­
self with the following information.

Up to four application modules can be plugged into the ports in the
HP-41. The names of all programs contained in an inserted module are
displayed in catalog 2 (I CATALOG 12).

CAUTION

Always turn the calculator off before inserting or removing any
plug-in accessories . Otherwise, both the calculator and the acces­
sory could be damaged.

To insert a module:

Turn the calculator off!

Remove the port cover. Save it to cover the
port when it is empty.

In an HP-41C insert the application module
into any port after the last memory module.
(HP-41CV's and HP-41CX's don't use memory
modules.) Insert the module with its label
right-side up, as shown. For example, if you
have a memory module in port 1, you can in­
sert an application module into port 2, 3, or 4.
(The port numbers are diagrammed on the up­
per back of the calculator.) Never insert an
application module into a port with a smaller
number than a memory module's port.

7

8 Inserting and Removing Application Modules

Plug in any additional application modules,
also after the last memory module. Cover any
unused ports.

The application module programs are now
ready to use!

To remove a module:

Turn the calculator off! (Failure to do so could
damage both the calculator and the module.)

Grasp the desired module handle and pull it
out as shown.

Cover the empty port with a port cover.

Inserting and Removing Application Modules '9

Any other plug-in accessories (such as the HP 82104A Card Reader or the
HP 82153A Wand) should be plugged in like application modules.

You can leave gaps in the port sequence. For example, you could plug a
memory module into port 1 and an application module into port 4, leav­
ing ports 2 and 3 empty.

HOW TO USE THIS MANUAL AND PAC

What Is in Each Chapter
Each chapter in this manual covers a different program or set of func­
tions. With the exception of the two chapters on matrices, each chapter is
independent of the others.

Starting each chapter is a description of the purpose of its program or
functions. The equations on which the program is based are given and,
if appropriate, references for further information are noted. Where ap­
propriate, the valid range for data values is given. In some cases, the
program will work outside its range of validity, but the result might not
be accurate enough for you.

The Instruction Table
The heart of each chapter is its instructions and instruction table .
This gives you general and step-by-step instructions for using the pro­
gram or functions. It tells you what kinds of data values to key ipto the
calculator, and which keys to press to compute results.

At its head, the instruction table specifies the minimum number of data­
storage registers needed to run the program. (Refer to U Allocating
Registers: below.)

11

12 How to Use This Manual and Pac

Size: 016

Instructions Key In: Display

3. Input your data pairs: y I ENTER I H CU; FIT
Repeat for each pair. x(E](H)

t
This column describes what you need
to do , including what kind of input
(data values) to key in .

This column tells you which key(s) to press to enter
your input or compute a result.

This column shows you what you should see in the calculator's display
after you follow the given instruction. The display most often shows a
result , a prompt for information, or a menu . (The menu interface used
by many programs . in this pac is described in "Using the Menu
Interface" .)

Following the instruction table are remarks about the program-de­
tails of its operation and clarification of certain points.

Each chapter has examples for using its program or functions .

Lastly is programming information for calling the user-accessible
subroutines within the given program for use in programs you might
write .

Allocating Registers (I SIZE I)
The instruction table tells you the minimum number of data-storage
registers required to run a specific program. To allocate these nnn stor­
age registers, use the I SIZE I function (press I XEQ II ALPHA I SIZE I ALPHA I
nnn). For more information on this function, refer to the owner's man­
ual for the HP-41. If you try to run a program but get the message

SIZE > =nnn

you need to set the I SIZE I to (at least) nnn. Then press I RIS I to con­
tinue the program.

How to Use This Manual and Pac 13

Notation for Calculator Keys
As explained in the owner's manual for the HP-41, the HP-41 has both
keyboard and nonkeyboard functions. These two types of functions are in­
voked (executed) in two different ways. Keyboard functions have their
own keys on the keyboard (such as I TAN I and [2]). Nonkeyboard func­
tions- including programs-must have their names (also called Alpha
names) typed into the display after pressing I XEQ 1.*

Notation
Keys to Press

Example

1:£+ I 1:£+ I This is a keyboard function .

IE-I 1:£+ I (Press these sequentially, not simulta-
neously.) This is a shifted keyboard function .

0 (FX) IE+I (~ + is printed on the top surface; A is printed
on the forward face .) This is a "customized" function
for a particular program. FX is what would appear
(for example) in the display above 0 . FX is the
menu label for 0 .

I XEQ I I TVM I I XEQ II ALPHA I TVM I ALPHA I
(The I ALPHA I key toggles the Alpha keyboard on and
off.)
This is a non-keyboard function . It can also be exe-
cuted as a User key. (Refer to the owner's manual
for the HP-41 .)

I XEQ I I SIZE I 013 I XEQ II ALPHA I SIZE I ALPHA I [QJOJ[]]

This pac uses keys in the top two rows as special, redefined functions.
They are represented then as 0 through [;[] , not as I E+ J, etc.

Using the Menu Interface
This pac supplies both new functions and programs for your use. Each
chapter explains what is available. The individual functions operate like
other HP-41 nonkeyboard functions. The programs are more sophisti­
cated and easier to use: they combine several new functions plus a user
interface with prompts and menus that lead you through data input and
the resulting output.

• The other, faster alternative for executing a non keyboard function or program is to assign its
name to a key on the User keyboard . Refer to the owner's manual for the HP-41.

14 How to Use This Manual and Pac

Most important, each program redefines some keys in the top two rows
of the calculator to perform (with a single keystroke) operations defined
in the program. For a program to work as given, you must clear any existing
User-key assignments in the top two rows. To use these redefined keys, the
User keyboard must be active . All of the programs in this pac that pro­
vide this feature automatically activate the User keyboard when they are
started. If you deactivate the User keyboard for any reason, you must
reactivate it (press I USER I) to use the redefined keys. The menus have
labels indicating the identities of those redefined keys. Here is an
example:

The Menu for Polynomial Solutions

F v R r /II E I I

" I 1'4 /1'4

USER

•
CJGJOOGJ
OOOOEB
0

The FX menu label shows you that when you run PLY, the top left key
on the calculator, 0, is redefined to evaluate the polynomial f(x) at x. []J
(identified by the label RT) is redefined to compute the root, and [IJ
(identified by the label NEW) initializes the program to accept a new
polynomial.

How to Use This Manual and Pac 15

The QJ key has special significance. In all menus in this pac, pressing QJ
has the effect of recalling the menu to the display.* You can do this as
often and whenever you like: the menu i~ simply an aid in identifying
keys.

Error Messages. Should you get an error message during a program, it
is handy to press QJ (after remedying the error condition) to display the
menu again. For a definition of error messages, refer to your HP-41
owner's manual. Error messages that can occur with matrix operations are
described in the chapter "Matrix Functions."

If the Calculator Turns Off. If the calculator turns off while you are
working with a program, you will find the display changed when you
turn it back on. The display will show the X-register, without any
prompts or menu that might have been in the display before the calcu­
lator went off. The program is still active, but it is best to re-start it by
pressing QJ to recall the menu.

If "you are running a program that does not have a menu, it might be
necessary to set flag 21 to re-establish proper display of results.

The Program-Execution Indicator
If you are not already familiar with the program-execution indicator ()-),
you soon will be. It appears and moves across the display whenever a
program is actively running. So if you perform an operation from a pro­
gram, the moving indicator shows you that the calculation is in process.

Listing the Contents of the Module
Catalog 2 shows you the names of all programs and subroutines in this
pac (and any other modules plugged in) . Press @ATA@] 2.

Using Progr~ms as Subroutines
You can call the programs (and some subprograms) in this pac as subrou­
tines for your own programs in the HP-41 's memory. Refer to the section
on "Programming Information" at the end of many chapters.

* The QJ key is the same as the I TAN I key. We use the letter designations so as not to confuse
the 'old" ftinction (tangent) with the new one.

16 How to Use This Manual and Pac

Using a Printer
If you have a printer plugged into the HP-41 as you use this pac, set it to
MAN mode for the most readable automatic print-out of your inputs and
results . (Some programs require NORMAL mode.) NORMAL mode lists
all input values and keystrokes you use, as well.

Copying Programs from the Pac
Many of the programs in this pac are copiable using the I COpy I function .
However, it is not necessary to copy a program into main memory in order to
use it. Also, it is not necessary to copy a subroutine in order to gain access
to it for a program of your own.

Using Labels
You should avoid using labels in your own programs that are identical to
labels in this application pac. In case of a label conflict, the label within
program memory has priority over the label within the application pac.
All program labels used in this pac are listed in catalog 2.

Conflicts with Other
Application Modules

Note: Do not have both the HP-41 Advantage Advanced Solu­
tions Pac and the HP-IL Development Module plugged into the
HP-41 at the same time. These two modules share the same
ROM identification numbers, and using them together will cause
problems with the operation of the calculator.

Certain function names used by the HP-41 Advantage are also used by
the HP-41 Math Pac and the HP-41 Real Estate Pac. When using these
functions, you should remove the modules whose functions you do not
want accessed.

Duplicate Functions

Math Pac
All complex-number functions .
All functions in DIFEQ.

Real Estate Pac
N, PY, PMT, FV, and -I

How to Use This Manual and Pac 17

Getting Help
If you have questions regarding the operation of the calculator, be sure to
refer to the owner's manual for the HP-41 for information. If you have
technical problems with this pac that the manual cannot resolve, you can
call or write Hewlett-Packard for technical customer assistance. Refer to
your HP-41 owner's manual for the address and telephone number.

THE MATRIX PROGRAM

The Advantage Pac provides extensive capabilities for creating, storing,
and calculating with real or complex matrices . This functionality is avail­
able to you as either individual functions or as a program with menus and
prompts. This is the case with many of the other subject areas in this pac.
However, unlike the other topics, the topic of matrices is here divided
into two separate chapters because of its size and complexity.

This chapter describes the matrix program, MATRX-the easy, Huser­
friendly" way to use the most common matrix operations on a newly
created matrix. To use MATRX you do not need to know how the calcu­
lator stores and treats matrices in its memory. The next chapter, HThe
Matrix Functions", lists and defines every matrix function in the pac, in­
duding those called l:>y MATRX. Using these functions on their own
requires a more intimate knowledge of how and where the calculator
stores matrices.

What This Program Can Do
Consider the equations

3.8xI + 7.2x2

1.3xI - 0.9x2

16.5

-22.1

for which you must determine the vaues of xl and x2' These equations
can be expressed in matrix form as AX = B, where

_ [3 .8 7.2] _ [Xl] ~ 16.5] A - • , X - , and B
1.3 -0.9 x2 -22 .1

A is the coefficient matrix for the system, B is the column or constant ma­
trix, and X is the solution or result matrix.

For such a matrix system, the MATRX program creates (dimensions) a
square real or complex matrix, A, and a column matrix, B. You can then:

• Enter, change Cedin, or just view elements in A and B.

• Invert A .

• Transpose A if A is real.

19

20 The Matrix Program

• Find the determinant of A if A is real.

• Solve the system of simultaneous equations by finding the solution
to AX = B.

The size of your matrix is limited only by available memory. (Each
real matrix requires one register plus one register for each element.) If
you want to store more than one matrix, you will need to use the
matrix function 1 MATDIM I, described in the next chapter. The MATRX
program does not store or recall matrices; it works with a single
square matrix A and a single column matrix B. When you enter new
elements into A you destroy its old elements.

Instructions
MATRX has two menus to show you which key corresponds to which
function. The initial menu you see is to select a real or complex matrix:

Initial Menu

RL r \/

'- "
\ USER

•
,

Q[JOOO
OOOO~
0

After you make this selection, input the order of the matrix, and press
1 RIS I, you will see the main menu:

The Matrix Program 21

Main Menu

R T TI T] SE .L .LJ •
USER

1-

~ ~ ~
VIEW A TRANSPOSE VIEW B

[J GJ GJ GJ 'GJ
DODDEr)
0

This menu shows you the choice of matrix operations you have in
MATRX. Press QJ to recall this menu to the display at any time. This will
not disturb the program in any way.

To clear the menu at any time, press G. This shows you the contents of
the X-register, but does not end the program. You can perform calcula­
tions, then recall the menu by pressing QJ . (However, you do not need to
clear the program's display before performing calculations.)

• The program starts by asking you for a new matrix. It has you spec­
ify real vs . complex and the order (dimension) of a square matrix
for A.

• The program does not clear previous matrix data, so previous
data-possibly meaningless data-will fill your new matrices A
and B until you enter new values for their elements .

• Each element of a complex matrix has two values (a real part and
an imaginary part) and requires four times as much memory to
store as an element in a real matrix. The prompts for real parts XlI'

X12' etc. are 1:1= ?,1:2= ? , etc. The prompts for complex parts xlI

+ iYlI ' x12 + iY12' etc. are RE.1:1= ?, IM.1:1= ?, RE.1:2= ?,
IM.1:2= ?, etc.

22 The Matrix Program

The next chapter (Matrix FunctionsD) includes a complete discussion un­
der DHow a Matrix Is StoredD of the specific requirements for matrix
storage. You do not need to figure this out in order to use this program,
however, because the program prompts you for the proper memory set­
ting with the message SIZE> =nnn if your memory size is not large
enough. (You would then execute I SIZE Innn to size memory adequately.)

The following table shows the keystrokes to execute matrix operations in
the MATRX program. All of these operations are also available as individ­
ual HP-41 functions, described in the next chapter.

Instruction Table for MATRX

Size: variable'

Instructions Key In: Display

1. Start program MATRX. I XEQ I
I MATRX It RL ex

2. Select a new real (RL) or complex (eX) matrix. 0 (RL) or
[]] (ex) ORDER=?

3. Enter dimension n of your square matrix, A. n I RIS I A I DT B SE

4. Enter the elements of your matrix A. The? 0 1:1=al1? or
prompts you to change the current element, if RE.1:1=al1?
you desire. Enter the value for the current ele- I RIS I 1:2=a12? or
ment, then press I RIS I to access the next IM.1:1=Y11?
element.

I RIS I n:n=ann? or
IM.n:n=Ynn?

I RIS I A I DT B SE

To review and edit the matrix A, just repeat
this process. To leave an entry unchanged,
just press I RIS I.

5. To edit a specific element ai.j' first enter the 0
editor, then specify the element as iii. iii. * iii·iii 0 i:i=ai/ or

RE.i:i=ai,j?

If iii. iii does not exist, the editor ends and
returns to the main menu.

Use I RIS I to proceed to subsequent ele-
ments and finally exit the editor. I RIS I A I DT B SE

The Matrix Program 23

Instruction Table for MATRX (Continued)

Instructions Key In: Display

6. To only view the matrix A: . 0 1:1=a11 or
RE.1:1=a11

I RIS I § 1:2=a12 or
IM.1:1 =Y11

I RIS I § A 1 DT B SE

Note there is no ? prompt. You cannot change
these entries.

7. To enter, edit, and view the column matrix, B,
follow exactly steps 4, 5, or 6, but use [QJ (B)
and [QJ(B). B is automatically correctly
dimensioned to one column by n rows (step
3).

8. To end the editor and return to the menu: QJ A 1 DT B SE

9. Execute a matrix operation:

• Invert A to A - 1. This replaces matrix A. [[] (I) A 1 DT B SE

View A- 1. 0
I RIS I §

• Transpose A (if real) to AT. This replaces . [[] A 1 DT B SE
matrix A. (If you had inverted A, be sure to
re-invert it first. If you had found det(A) or
solved for X, you must invert A twice to re-
store it before transposing it. Refer to
"Remarks" for this section for more
information.)

View AT. . 0
I RIS I §

• Determinant of A (if real), det (A). (If you @J (DT) DET=result
had inverted A, be sure to re-invert it first.) I RIS I § A 1 DT B SE
(This operation replaces A with its LU-de-
composed form. See "Remarks".)

24 The Matrix Program

Instruction Table for MATRX (Continued,

Instructions Key In: Display

• Solve the system of equations described [IJ (SE) A I DT B SE
by AX = B. This finds X, which replaces B.
(It also replaces A with its LU-decomposed
form. See "Remarks".)

View X (replaces B). []] (B)
I RIS I §

• The size of this program depends on the size of the matrices involved. It is (order2 + order
+ 2) for real matrices A and B; [4(order2) + 2(order) + 2) for complex matrices A and B.
However, note that the program will tell you what memory size to set if it is not large
enough.

t To execute a program, press I XEQ II ALPHA I Alpha name I ALPHA I or use a User-defined key.

:j: You can drop leading zeros in the i-part and trailing zeros in the j-part. A zero part defaults
to a 1. For example, 0.000 defaults to 1.001 .

§ If you have a printer attached, the display automatically returns to the main menu after
printing the result(s).

For a list of error messages relevant to matrix operations, see HError
Messages» in the next chapter.

Remarks
Alteration of the Original Matrix. The input matrix A is altered by
the operations finding the inverse, the determinant, the trans rose,
and the solution of the matrix equation. You can re-invert A - and
re-transpose A T to restore the original form of A. However, if you
have calculated the determinant or the solution matrix, then A is in
its LU-decomposed form . To restore A, simply invert it twice. The LU­
decompostion does not interfere with any subsequent MATRX opera­
tion except transposition and editing*. For more information on LU­
decomposition, refer to HLU-Decomposition» in the next chapter
CMatrix Functions») .

• Do not attempt to edit an LU-decomposed matrix unless you intend to change every
element.

The Matrix Program 25

Matrix Storage. The MATRX program stores a matrix A starting in Ro
of main memory; it is named RO. Its column matrix B is stored after it,
and the result matrix X overwrites B. Refer to the chapter HMatrix Func­
tions' for an explanation of how matrices are named and stored, and how
much room they need.

MATRX cannot access any other matrices, with the exception of the previ­
ous RO and its corresponding column matrix.

Redefined Keys. This program uses local Alpha labels (as explained in
the owner's manual for the HP-41) assigned to keys 0-[IJ, QJ, 0 ,

[]] , and [QJ . These local assignments are overridden by any User-key
assignments you might have made to these same keys, thereby defeating
this program. Therefore be sure to clear any existing User-key assignments of
these keys before using this program, and avoid redefining these keys in the
future .

Examples
Given the system of equations at the beginning of this chapter, we have
the matrix equation AX = B, or

[3.8 7.2] [Xl] r 16.5]
1.3 -0 .9 Xz t22.1

Find the inverse, determinant, and transpose of A, and then find the so­
lution matrix, X.

Keystrokes

I£IKJ 4

I XEO I I SIZE I 008

I XEO I I MA TRX I

o (RL)

21 RIS I

Display

RL ex

ORDER=?

A I DT B SE

Sets the display for­
mat used here.
Optional-sets the
number of storage reg­
isters needed for the
program. This is not
necessary if your allo­
cation is already
SIZE ~ 008 .
Starts the MATRX
program.
Selects a real matrix.
Dimensions a 2 x 2
square matrix .

26 The Matrix Program

Keystrokes Display

[K] 1:1 =a11? Enters the editor for A
and displays (old) ele-
ment all'

3.81 RIS I 1:2=a12? Enters 3.8 for all '

7.2 1 RIS I 2:1 =a21?

1.3 1 RIS I 2:2=a22?

.9 1 CHS II RIS I A 1 DT B SE Enters a22 and returns
main menu.

[K] 1:1 =3.8000 Displays the current
I RIS 1* 1:2=7.2000 contents of A for your
I RIS 1* 2:1 =1.3000 review.
I RIS 1* 2:2= -0.9000
I RIS 1* A 1 DT B SE

[[] (I) A 1 DT B SE Inverts A.
[K] 1:1 =0.0704 Displays the current

I RIS 1* 1:2=0.5634 contents of A, now
I RIS 1* 2:1 =0.1017 A-I.
I RIS 1* 2:2 = - 0.2973
I RIS 1* A 1 DT B SE
[[] (I) A 1 DT B SE Reinverts A - 1 to the

original A.
[[] A 1 DT B SE Transposes A.
[K] 1:1 =3.8000 Displays the current

I RIS 1* 1:2=1.3000 contents of A, now
I RIS 1* 2:1 =7.2000 AT.

I RIS 1* 2:2= -0.9000
I RIS 1* A 1 DT B SE

[[] A 1 DT B SE Retransposes AT to the
original A.

@] (DT) DET= -12.7800 Det(A).
@] (B) 1:1 =b11 ? Enters the editor for B

and displays (old) ele-
ment bll .

16.51 RIS I 2:1 =b21 ? Enters 16.5 for bll .

22.1 I CHS II RIS I A 1 DT B SE Enters b21 and returns
main menu.

@] (. B) 1:1 = 16.5000 Displays the current
I RIS 1* 2:1 = -22.1000 contents of B for your
I RIS 1* A 1 DT B SE review.
[I) (SE) A 1 DT B SE Solves the system

AX = B, placing X in
B.

Keystrokes
. @] (. B)

I RIS 1*
I RIS 1*

Display
1:1 = -11.2887
2:1 =8.2496

A I DT B SE

Find the inverse of this complex matrix:

Keystrokes

IXEOI IsizEI 017

I XEQ I I MA TAX I

[]] (CX)

21 RIS I

o
1 I RIS I
21 RIS I
31 RIS I
41 RIS I

1.0020

31 RIS I

[

1 + 2i 3 + 3i]
4 + 5i 6 + 7i

Display

RL CX

ORDER=?
A I DT B SE

RE.1:1 =811?

IM.1:1 =Y11?

RE.1:2=812?

IM.1:2=Y12?

RE.2:1 =821?

RE.1:2 = 3.0000?

IM.1:2=4.0000?

RE.2:1 =821?

*1 RIS I keystroke not necessary if a printer is attached.

The Matrix Program 27

Displays the solution
matrix (in B).

For one complex ma­
trix A,
22 X 4 + 1 = 17.

Starts the program
over.

Dimensions a 2 x 2
complex matrix.

Oops! Wrong entry for
Y12' Should be 3, not
4.
Moves editor back to
a12'

The imaginary part.
(Wrong value .)
Correct value is en­
tered for Y12 ' Proceed
with data entry.

28 The Matrix Program

Keystrokes Display

41 RIS I IM.2:1 =Y21?

51 RIS I RE.2:2=a22?

61 RIS I IM.2:2 = Y22?

7 I RIS I A 1 DT B SE Enters last element
and returns main
menu.

C[] (I) A 1 DT B SE Inverts A .

0 RE.1:1 = -0.9663 Viewing A - 1.*

2.0020 RE.2:2= -0.2360 Displays a22 + iY22 '*
I RIS I IM.2:2= -0.0225
I RIS I (or QJ) A 1 DT B SE Exits the editor.

• If you have a printer attached, then the viewing operation automatically prints the entire
matrix and redisplays the menu.

THE MATRIX FUNCTIONS

Contents
Setting Up a Matrix 31

Naming a Matrix 32
Dimensioning a Matrix 32
How a Matrix Is Stored 33

Using the Matrix Editors 34
How to Specify a Matrix 36

Default Matrix Parameters 37
Error Messages . 38

Storing and Recalling Individual
Matrix Elements .. 39

Accessing Elements One by One 39
Accessing Elements Sequentially 41

Matrix Functions 42
Matrix Arithmetic 43
Major Matrix Operations 44

Other Matrix Functions (Utilities") 46
Working with Complex Matrices 50

How Complex Elements are Represented 50
Using Functions with Complex Matrices 51

LU-Decomposition 52
Examples 53
Alphabetical Function Table 58

30

The Matrix Functions 31

THE MATRIX FUNCTIONS

This chapter is a companion to the preceding chapter, vThe Matrix Pro­
gram.n This chapter comprehensively covers all matrix functionality
available in this pac for the advanced user.

You can create, manipulate, and store real and complex matrices . The size
and number of matrices is limited only by the amount of memory avail­
able in the calculator. If you have .extended memory (an HP 82180A
Extended Functions/Memory Module or an HP-41CX), you can also store
matrices there .

The matrix operations offered in this pac include inversion, transposition,
finding the determinant, solving a system of equations, and doing matrix
arithmetic. In addition, you can manipulate individual elements in and
between matrices.

Setting Up a Matrix
To create a matrix you must provide its name and dimensions . The func­
tion I MATDIM I uses the name in the Alpha register and the dimensions
mmm.nnn in the X-register to create a matrix.

It does not clear (zero) the elements of a new matrix in main memory, but
retains the existing contents of the previous matrix or registers. It does
clear the elements of a new matrix in extended memory.

You then enter values-numeric or Alpha-into a matrix via the matrix
editor (page 34).

32 The Matrix Functions

Naming a Matrix
The name you give a matrix determines where it will be stored. A matrix
to be stored in main (non-extended) memory must be named

Rxxx,

where xxx is up to three digits. (You can drop leading zeros .) The matrix
will be stored starting in Rxxx. For example, R007 is the same as R7, which
would store this matrix header in R07.

As a shortcut, if you specify matrix R, its name and location will be RO.

A matrix to be stored in extended memory can be named with up to
seven Alpha characters, excepting just the letter ' XU (which is reserved to
name the X-register) and the letter ow followed by up to three digits
(which is reserved to name the main memory arrays). You do not need to
specify a file type; it will automatically be given one unique to matrices .

Use the Alpha register to specify matrix names. When specifying more
than one name (as parameters for certain functions), separate them with
commas.

I MNAME? I returns the name of the current matrix to the Alpha register.

Dimensioning a Matrix
Specify the dimensions of a new matrix as mmm.nnn, where m is the
number of rows and n is the number of columns. You can drop leading
zeros for m and trailing zeros for n.

For a complex matrix, specify mmm.nnn as twice the number of rows and
twice the number of columns. (Refer to °Working with Complex
Matrices:)

[: : :]
mmm.nnn = 2.003

[

l+i

4 + 5i

2 + 3i]
6 + 7i

mmm.nnn = 4.004

A zero part defaults to a 1, so 0 is equivalent to 1.001 , 3 to 3.001, and
.023 to 1.023.

The Matrix Functions 33

I MATDIM I dimensions a new matrix or redimensions an existing one to the
given dimensions.

1 DIM? I returns the dimensions mmm.nnn of the matrix specified in the Al­
pha register to the X-register. (A blank Alpha register specifies the current
matrix.)

How a Matrix Is Stored
The elements of a matrix are stored ~n memory in order from left to right
along each row, from the first row to the last. Each element occupies one
data-storage register. A complex number requires four registers to store its
parts.

Memory Space. A matrix in main memory occupies (m x n) + 1 data­
storage registers, one register being used as a status header. A complex
matrix uses (2m x 2n) + 1 registers, where m is the number of rows in
the complex matrix and n is the number of columns in the complex
matrix.

Note: To successfully dimension a matrix in main memory, the
size of data-storage memory must be large enough to hold it. If it
is not, you will see the message NONEXISTENT when you try
1 MATDIM J. Reallocate more registers to data storage (I SIZE Innn)
and try again.

A matrix in extended memory has a file length of m x n. (2m x 2n for a
complex matrix.) Its file type is unique to matrices. Do not use the func­
tion 1 CLFL I with a matrix in extendeg memory: this destroys part of the
file's header information. Instead, use 1 PURFL I to purge the entire matrix.

Changing Matrix Dimensions. If you redimension a matrix to a dif­
ferent size, then the existing elements are reassigned to new elements
according to the new dimensions. Extra old elements are lost; extra new
elements take on the values already present in the new registers-except
in extended memory, where new elements are set to zero.

34 The Matrix Functions

CAUTION

When I MATDIM I is used to redimension a matrix stored in extended
memory, the position of the matrix pointer is not readjusted . If the
pointer happened to be positioned to an element that is outside
the new bounds of the redimensioned . matrix, it must be
repositioned to be within the new bounds by executing either
I MSIJ l or I MSIJA I with valid indices before the pointer can be used
again.

Existing matrices in extended memory cannot be redimensioned to
completely fill extended memory. The maximum allowable size of a
redimensioned matrix is one register less Ulan the currently avail­
able extended memory. A new matrix can, . however, be
dimensioned to completely fill available extended .memory.

Redimensioning 2 x 3 to 2 x 2

lost
5 6

Redimensioning 2 x 3 to 2x 4

2 3 :] 6 ?

This is what happens each time you dimension a new matrix since the
old elements from the previous current matrix remain until you
change them.

Using the Matrix Editors
There are two matrix editors: I MEDIT I for real matrices and I CMEDIT I for
complex matrices. They are oth~rwise quite similar.

The matrix editors are used for three purposes:

• Entering new values into the elements of a matrix.

• Reviewing and changing CeditingH

) the elements of a matrix, either
in order or by Hrandom accessH of specific elements.

• Viewing (without being able to change) the elements of a matrix
(flag 08 set).

The Matrix Functions 35

When you execute I MEDIT 1 or I CMEDIT I, the editor displays element 1,1 of
the matrix specified in the Alpha register or of the current matrix if the
Alpha register is empty. Pressing IRIS 1 steps the display through the ele­
ments; for a complex matrix, each part of the complex element is shown
separately.

Function Display Function Display

I MEDIT 1 1:1 = 1.0000? I CMEDIT 1 RE.1:1 =1.0000?

IRIS 1 1:2=2.0000? IRIS 1 IM.1:1 = 1.0000?
IRIS 1 RE.1:2 = 2.0000?

IRIS 1 (X -register) IRIS 1 (X -register)

The? at the end of the display line indicates that you can change that
value. In effect, you are being asked whether this is the value you want. If
you want to change the element you see, just enter the new value and
press I RIS I. You do this for a brand new matrix as well as for correcting
or altering a single value.

If you press IRIS 1 without entering a new value, the current value remains
unchanged.

Viewing without Editing. If you set flag 08, the editor will let you
only view the elements, not change them. The display appears without
the? at the end of the line.

1:1 =1.0000

If you have a printer attached while flag 08 is set, it will print out all the
elements of the matrix without pausing.

Directly Accessing Any Element. You can directly access any spe­
cific element while the editor is active (and the User keyboard is also
active). To access the element in the ith row and the jth column, enter
iii.jjj and press 0. (This is as in the MATRX program.) You can drop
leading zeros in iii and trailing zeros in jjj.

For a complex matrix, you can directly access the real part of element i, j.
Then use IRIS 1 to access its imaginary part.

36 The Matrix Functions

Keystrokes

I ALPHA I matrix name I ALPHA I
I XEQ I [ME6!f]
3.0030

I ALPHA I complex-matrix name I ALPHA I
I XEQ I I CMEDIT I
3.0030
I RIS I

Display

1:1 = 1.0000?
3:3 = 6.0000?

RE.1:1 =1.0000?
RE.3:3 = 6.0000?
IM.3:3 = 7.0000?

You can drop leading zeros in the i-part and trailing zeros in the j-part. A
zero part defaults to a 1.

Exiting the Editor. To leave the editor before it has reached the last
element, do either:

• Press CO .
• Try to access a nonexistent element. For instance, in a 4 X 4 matrix,

press 50.

How to Specify a Matrix
Given the matrix multiplication operation AB = C, you know A and
B and are looking for the product matrix, C. In performing this opera­
tion, the calculator must be given the identities of the existing
matrices A and B, and also be told where to put the result matrix, C.
(However, the result matrix can be the same as one of the input matri­
ces.) All given matrices must already exist as named, dimensioned
matrices. Naturally, only A and B must contain valid data .

Some functions use only one input matrix, and some functions auto­
matically use one of the input matrices for output. So the minimum
number of matrices to specify is one, and the maximum is three.

A matrix function checks the Alpha register for the names (that is, the
locations) of the matrices it needs for input and output. Before execut­
ing that function, you should specify all needed parameters on one
line in the Alpha register, separating each with a comma:

Alpha Register input matrix[,input matrixH,result matrix]

The Matrix Functions 37

For instance,

Alpha Register IL--A_,8_,_C ____ --'

I XEQ II M*M I

will multiply the matrices A and B, putting the result in existing matrix
C.

Scalar Operations. Scalar input and output must be in the X-register,
and so this location does not need to be specified unless the function in
question can use either a scalar or a matrix for the same input parameter.
To specify the X-register, use X.

For instance, I MATDIM I requires a scalar input and a matrix name, so you
do not need to specify the X-register. On the other hand, the scalar
arithmentic functions, such as I MAT* I, can use either two matrices or a
scalar and a matrix for input. Therefore, you must specify X if you want
to use it.

The Current Matrix. The current matrix is the last one accessed (used)
by a matrix operation. If the Alpha register is clear and you execute a
matrix function that requires a matrix specification, the current matrix is
used by default . (If there is no current matrix, UNDEF ARRAY results .)

The result matrix of a matrix function becomes the current matrix follow­
ing that operation.

To find out the name of the current matrix, execute I MNAME? I. Its name is
returned into the Alpha register.

Default Matrix Parameters
If you don't specify any or all the matrices that a matrix function needs,
then certain default parameters exist. (Default parameters are those auto­
matically assumed if you don't specify them.) The most common default
you will probably use is the current matrix. If you don't specify a particu­
lar matrix name and the Alpha register is clear, then the default matrix is
the current one.

For matrix operations requiring up to three matrix names in the Alpha
register, the following table gives the conventions to interpret the
parameters.

38 The Matrix Functions

Matrix Specifications

Alpha Register's Matrices Specified
Contents

A,B,C A, B, C

A,B A, B, B

A A, A, A

A"B A, A, B

,A,B current, A, B

,A current, A, A

"A current, current, A

X,A,B X-register, A, B

X,A X-register, A, A

A,X A, X-register, A

A"X A, A, A (ignores X)

X X-register, current, current

(blank) current, current, current

Error Messages
Refer to your HP-41 owner's documentation for error messages you don't
see here.

ALPHA DATA results if the specified matrix contains Alpha data and so
cannot be operated upon. The matrix is unchanged.

DATA ERROR results if the value in the X-, Y-, or Z-register is invalid.

DATA ERROR X results if the value in the X-register is invalid.

DATA ERROR Y results if the value in the Y -register is invalid.

DIM ERROR results if the dimension of the specified matrix is not correct
for the current operation.

END OF ARRAY results if you attempt a function that uses the matrix
pointer and the pointer is beyond its defined bounds.

NAME ERROR results if an invalid matrix name is specified (such as nXH)
or if the number of distinct matrix names is incorrect for a function.

NO ROOM results if there is not enough room to store a matrix in ex­
tended memory.

The Matrix Functions 39

NO X-MEMORY results if you attempt to create a matrix in extended
memory when your calculator has no extended memory (that is, an HP-
41C/CV without an HP 82180A Extended Functions/Memory Module).

NONEXISTENT results if there are not enough storage registers in main
memory to store the matrix. Re-size memory (I SIZE Innn) to a larger figure
t · accommodate the new matrix.

NOT ARRAY FL results if you attempt amatrix operation on an extended­
memory file that is not a matrix file .

NOT CPX results if you try to use 1 CMEDIT I with a real matrix of odd
order.

TRY AGAIN results if you execute 1 MATDIM I with less than two available
registers of program memory. Either resize data-storage memory to fewer
data registers, or use I CLP I to eliminate a program.

UNDEF ARRAY results if you execute a function needing a matrix speci­
fication but the Alpha register does not contain a valid matrix
specification.

Storing and Recalling Individual
Matrix Elements
The matrix editor provides a method of storing and reviewing matrix ele­
ments. For programming, you can use the k>llowing functions to
manipulate individual matrix elements.

A specific element is identified by the value iii.jjj for its location in the ith
row of the jth column. You can drop leading zeros in the i-index and
trailing zeros in the j-index.

Accessing Elements One by One
To store or recall an individual element, you first set or recall the element
(row and column) pointer value iii.jjj, then store or recall the value of the
element from or to the X-register. To go on to another element, you then
either increment the pointer or reset it.

The value of the pointer defines the current element .

40 The Matrix Functions

Setting and Recalling the Pointer

Function Effect

I MSIJA I (set Sets element pointer of specified matrix to iii .jji .
pointer by Alpha) Input: matrix name in Alpha reg .

iii.jji in X-reg .

I MSIJ I (set Sets element pointer of current matrix to iii.jji .
pointer) Input: iii.ijj in X-reg .

I MRlJA] (recall Recalls element pointer of specified matrix to X-reg .
pOinter by Alpha) Input: matrix name in Alpha reg .

Output: iii. jji into X-reg .

I MRIJ I (recall Recalls element pointer of current matrix to X-reg .
pointer) Output: iii.iii into X-reg .

The following functions increment and decrement the element pointer
row wise (iii) or column wise (jjj). If the end of a column is reached (with
the i-index) or the end of a row is reached (with the j-index), then the
index advances to the next larger or smaller column or row and sets flag
09. If the index advances beyond the size of the matrix, both flags 09 and
10 are set. These functions always either set or clear flags 09 and 10. If
the conditions listed above don ' t occur, the flags are cleared every time
the functions are executed.

Incrementing and Decrementing the Pointer

Function Effect

[EJ Increments iii of pointer by one.

[E] Decrements iii by one.

[E) Increments jji of pointer by one.

[E) Decrements jji by one.

Storing and Recalling the Element's Value

Function Effect

I MS I (matrix Stores value from X-reg into current element of cur-
store) rent matrix.

Input: value in X-reg .

[1iliJ (matrix Recalls value in current element of current matrix
recall) into X-reg .

Output: value into X-reg .

The Matrix Functions 41

Accessing Elements Sequentially
The following functions provide a faster, more automated alternative to
adjusting the pointer value to access each element. These combine storing
or recalling values and then incrementing or decrementing the i- or j­
index, so that the pointer is automatically set to the next element.

Storing and Recalling the Element's Value

Function

I MSC+ 1 (matrix
store by column)

I MSR+ 1 (matrix
store by row)

I MRC+ 1 (matrix
recall by column)

I MRR+ 1 (matrix
recall by row)

I MRC- 1 (matrix
recall backwards
by column)

I MRR-I (matrix
recall backwards
by row)

Effect

Stores value from X-reg into current element and
then advances pointer to next element in column .
Input: value in X-reg .

Stores value from X-reg into current element and
then advances pointer to next element in row.
Input: value in X-reg .

Recalls value to X-reg from current element and
then advances pointer to next element in column .
Output: value into X-reg .

Recalls value to X-reg from current element and
then advances pointer to next element in row.
Output: value into X-reg.

Recalls value to X-reg from current element and
then decrements pointer to previous element in
column.
Output: value into X-reg .

Recalls value to X-reg from current element and
then decrements pointer to previous element in row.
Output: value into X-reg.

When the end of a column or row is reached, the pointer's index ad­
vances to the next (or previous) column or row. If the pointer's index is
moved beyond the boundaries of the matrix, it cannot be moved back
using these functions. You must use I MSIJ 1 or I MSIJA I ·

The following sequence of keystrokes will create the matrix ABC (in ex­
tended memory).

ABC [: ::0]

42 The Matrix Functions

Keystrokes

[FIX 14

[ALPHA I ABC [ALPHA I

2.003 [XEO I [MATDIM I

o [MSIJ I

5 [MSR+ I

6 [MSR+ I
7 [MSR+ I

8 [MSR+ I
9 [MSR+ I
10 [MS I
[]G 08

[XEO I [MEDIT I

Display

2.0030

0.0000

5.0000

6.0000
7.0000

8.0000
9.0000
10.0000

1:1 =5.0000
1:2=6.0000
1:3=7.0000
2:1=8.0000
2:2=9.0000
2:3 = 1 0.0000

Matrix Functions

Sets the display for-
mat used here.
Matrix name in ex-
tended memory.
Dimensions matrix
ABC to 2 rows x 3
columns.
Sets element pointer to
1.001.
Enters element and
advances pointer to
next column for next
entry, setting flag 09.

Pointer automatically
moves to the second
row.

This sets the editor to
display only; if you
have a printer at-
tached this is a faster
way to view the matrix
elements.
Now let's look at
ABC. (ABC is still in
the Alpha register.) If
you have no printer
attached, press [RIS I
to view each
successive element.
Exits editor.

This section briefly defines the matrix functions besides the dimension­
ing, storing, and recalling functions discussed above. On page 58 is a
Function Table that lists all matrix functions in this pac.

The Matrix Functions 43

Note that most of these functions are not meaningful for matrices con­
taining Alpha data and that many of these functions are not meaningful
for complex matrices. In any case, a complex matrix appears as a real
matrix to all functions except I CMEDIT I. Refer to ' Working with Complex
Matrices" for more information on using these functions with complex
matrices.

Matrix Arithmetic
The matrix-arithmetic functions provided are scalar addition, subtraction,
multiplication, and division, as well as true matrix multiplication. The sca­
lar arithmetic functions can use two matrices as operands, or one scalar
and one matrix. When using two matrices, the matrices do not have to be
of the same dimension, but the total number of elements in each must be
the same. This also applies to the result matrix. (Note that the i-j notation
in the table below assumes that the dimensions of the matrices are the
same. If this is not the case, the i-j notation does not apply.)

Matrix multiplication, on the other hand, calculates each new element by
summing the products of the first matrix's row elements by the second's
column elements. The number of columns in the first matrix must equai
the number of rows in the second matrix. The result matrix must have the
same number of rows as the first matrix and the same number of columns
as the second matrix.

If there is a scalar operand, it must be in the X-register, and X must be
specified in the Alpha register.

Function Effect

Scalar Arithmetic

1 MAT + 1 (matrix Adds a scalar or matrix element to each element.
add) Input: matrix name A or X,matrix name B or X,

result-matrix name C in Alpha reg.
Output: Cij = aij + x or

Cij = x + bij or
Cij = aij + bij for all i, j in C.

I MAT-I (matrix Subtracts a scalar or matrix element from each
subtract) element.

Input: matrix name A or X,matrix name B or X,
result-matrix name C in Alpha reg.
Output: Cij = aij - x or

Cij = x - bij or
cij = aij - bij for all i, j in C.

44 The Matrix Functions

Function

I MAT* I (scalar
matrix-multiply)

I MAT/I (matrix
divide)

I M*M I (matrix
multiplication)

Effect

Multiplies a scalar or matrix element by each
element.
Input: matrix name A or X,matrix name B or X,
result-matrix name C in Alpha reg .
Output: cil = aij x x or

cil = x + bil or
cil = ail x bil for all i, j in C.

Divides a scalar or matrix element into each
element.
Input: matrix name A or X,matrix name B or X,
result-matrix name C in Alpha reg .
Output: cij = aij -7- x or

Cij = x -7- bil or
Cil = ail -7- bil for all i, j in C.

Nonscalar Arithmetic

Calculates each new element i, j by multiplying the
ith row in A by the jth column in B.
Input: matrix name A,matrix name B,result-matrix
name C in Alpha reg. , where C must be different
from A and B.

p

Output: Cii = L aik x bki , where A has p col­
k ~ 1

umns and B has prows.

Major Matrix Operations
The major matrix operations are: inversion, finding the determinant,
transposition, and solving a system of linear equations.

A system of linear equations

allxl + a12x 2 b1

a21x l + a22x 2 b2

can be represented by the matrix equation AX = B, where

The Matrix Functions 45

A is the coefficient matrix, B is the constant or column matrix, and X is the
solution matrix. (The B matrix is overwritten by the X matrix when solving
this system.)

Function

1 MDET 1

(determinant)

1 MINV 1 (inverse)

1 MSYS 1 (system
of equations)

ITRNPsl
(transpose)

Effect

Finds the determinant of the given rea l square
matrix .
Input: matrix name in Alpha reg .
Output: determinant into X-reg (Replaces matrix
with LU-decom posed form)

Inverts and replaces the given square matrix.
Input: matrix name in Alpha reg .
Output: Replaces matrix with its inverse.

Solves a system of linear equations.
Input: matrix name A,matrix name B in Alpha reg .
Output: solution matrix X replaces B in the system
defined by the matrix equation AX = B. (Replaces A
with its LU-decomposed form .)

Transposes and replaces the given real matrix.
Input: matrix name in Alpha reg .
Output: Replaces matrix with its transpose.

Note: You cannot transpose or change any element of a matri x A

that has had its determinant found or has had its solution matri x
found because 1 MDET 1 and 1 MSYS 1 transform the input matrix A
into its LU-decomposed form. (Refer to °LU-Decomposition" for
more information.) However, you can retrieve the original form
of A from its decomposed form by inverting it twice (execute
1 MINV 1 twice) . The LU-decomposition does not interfere with the
calculations for 1 MINV I, 1 MSYS I, or 1 MDET I.

46 The Matrix Functions

Other Matrix Functions ("Utilities")
The remaining matrix functions, also called utilities, are those for copying
and exchanging parts of matrices, and miscellaneous, extra arithmetic
functions: finding sums, norms, maxima, and minima, and matrix
reduction.

Moving and Exchanging Matrix Sections

Function Effect

I c<>c 1 (ex- Exchanges columns k and I in a matrix.
change columns) Input: matrix name in Alpha reg.

kkk.1II in X-reg.

I R<>R 1 (ex- Exchanges rows k and I in a matrix.
change rows) Input: matrix name in Alpha reg.

kkk.1II in X-reg.

I MMOVE 1 (matrix Copies the submatrix defined by pointers in source
move) matrix to the area defined by one pointer in target

matrix.
Input: source-matrix name A ,target-matrix name 8 in

Alpha reg.
in X-reg: iii.iii for A's initial element;
in V-reg: iii.iii for A's final element;
in Z-reg: iii.iii for 8's initial element.

I MSWAP 1 (matrix Exchanges the submatrix defined by pointers in a
swap) source matrix with the area defined by one pointer

in a target matrix.
Input: matrix name A,matrix name 8 in Alpha reg.

in X-reg: iii.iii for A's initial element;
in V-reg: iii.iii for A's final element;
in Z-reg: iii.iii for 8's initial element.

When executing I MMOVE 1 and I MSWAP I, if A and B are the same matrix
and the source submatrix overlaps the target sub matrix, the elements are
processed in the following order: reverse column order (last to first) and
reverse element order (last to first) within each column.

iii.jjj(X)

o
iii.jjj(Y)

Source matrix (A)

I MMOVE I

•

. .-
I MSWAP I

The Matrix Functions 47

iii.jjj(Z)

D
Target matrix (8)

When an input of the form iii.jjj is expected in the X-register, a zero value
for either the i-part or the j-part is interpreted as 1. (Zero alone equals
1.001.) This is true for the iii.jjj-values that I MMOVE I and I MSWAP I expect
in the X- and Z-registers, but not for the pointer value in the Y-register.

For the Y -register input, a zero value for the i-part is interpreted as m, the
last row, while a zero value for the j-part is interpreted as n, the last
column. For example, in a 4 x 5 matrix,

Y-Register Pointer Value
0.000 4.005
3.000 3.005
0.003 4.003

This convention facilitates easy copying (or exchanging) of entire matrices
because simply by clearing the stack (I CLST I) or entering three zeros you
specify the elements 1.001 (X) and mmm. nnn (Y) for the first matrix and
element 1.001 (Z) for the second matrix, thus defining two entire
matrices.

The following instructions would copy the matrix RO of unspecified di­
mensions to a new matrix R30:

I ALPHA I R I ALPHA I

~IDIM?I
I ALP HA I R "I A:7L-=PH:7A"1

~IMATDIMI
I ALPHA I R ,R I ALPHA I

I XEQ I @:§I)
I XEQ I I MMOVE I

48 The Matrix Functions

Miscellaneous Arithmetic Functions

Function Effect

Maxima and Minima

[MAX I (maximum) Finds maximum element in matrix . Sets element
pointer to it.

[MIN I (minimum)

I MAXAB I (maxi­
mum absolute
value)

I CMAXAB I
(column 's maxi­
mum absolute
value)

[RMAXAB I (row 's
maximum abso­
lute value)

[CNRM I (column
norm)

[FNRM I
(Frobenius norm)

I RNRM I (row
norm)

Input: matrix name in Alpha reg .
Output: maximum value into X-reg .

Finds minimum element in matrix . Sets element
pointer to it.
Input: matrix name in Alpha reg .
Output: minimum value into X-reg .

Finds maximum absolute value in matrix. Sets ele­
ment pointer to it.
Input: matrix name in Alpha reg.
Output: maximum absolute value into X-reg .

Finds maximum absolute value in kth column . Sets
element pointer to it.
Input: matrix name in Alpha reg .

kkk in X-reg.
Output: maximum absolute value into X-reg .

Finds maximum absolute value in kth row. Sets ele­
ment pOinter to it.
Input: matrix name in Alpha reg .

kkk in X-reg .
Output: maximum absolute value into X-reg .

Norms

Finds the largest sum of the absolute values of the
elements in each column of matrix . Sets element
pointer to first element of column with largest sum.
Input: matrix name in Alpha reg.
Output: column norm into X-reg .

Finds the square root of the sum of the squares of
all elements in matrix.
Input: matrix name in Alpha reg.
Output: Frobenius norm into X-reg .

Finds the largest sum of the absolute values of the
elements in each row of matrix. Sets element
pointer to first element of row with largest sum.
Input: matrix name in Alpha reg .
Output: row norm into X-reg.

The Matrix Functions 49

Miscellaneous Arithmetic Functions (Continued)

Function

[SUMAS I (sum of
absolute values)

[CSUM I (column
sum)

Effect

Sums
Sums all elements in matrix.
Input: matrix name in Alpha reg .
Output: sum in X-reg.

Sums absolute values of all elements in matrix.
Input: matrix name in Alpha reg .
Output: sum of absolute values in X-reg .

Finds the sum of each column and stores them in
result vector.
Input: matrix name,result-matrix name in Alpha reg .

Number of elements in result matrix must
equal number of columns in input matrix.

[RSUM I (row sum) Finds the sum of each row and stores sums in re­
sult vector.

[YC+C I (Y times
column plus
column)

[PIV I (pivot)

[R>R? I (compare
rows)

Input: matrix name,result-matrix name in Alpha reg .
Number of elements in result matrix must
equal number of rows in input matrix.

Other

Multiplies each element in column k of matrix by
value in Y -reg. and adds it to corresponding element
in column I , thereby changing the elements in col­
umn I . That is, converts ail to ail + Y x aik.
Input: matrix name in Alpha reg .

kkk.III in X-reg .
y in V-reg .

Finds the pivot value in column k ; that is, the maxi­
mum absolute value of an element on or below the
diagonal.
Input: matrix name in Alpha reg.

kkk in X-reg.
Output: pivot value in X-reg .; pointer set to pivot
element.

Compares elements in rows k and I. If (and only if)
the first non-equal element in k is greater than its
corresponding element in I , then the comparison is
positive for the "do if true" rule of programming .
Input: matrix name in Alpha reg .

kkk.III in X-reg .
Output:YES if first non-equal element in row k is

greater than element in row I. NO in all other
cases.

50 The Matrix Functions

Miscellaneous Arithmetic Functions (Continued)

Function Effect

I AlP I (Alpha re- Appends the integer part of the number in the
call of integer X-register to the contents of the Alpha register. For
part) x < 0, I AlP 1 appends the absolute value.

I MP 1 (Alpha recall Appends a matrix prompt rrr .ccc = to the contents
of matrix prompt) of the Alpha register.

Working with Complex Matrices
When working with complex matrices it is most important to remember
that, in the calculator, a complex matrix is simply a real matrix with four
times as many elements. Only the MATRX program and the complex-ma­
trix editor (I CMEDIT I) "recognize" a matrix as complex and treat its
elements accordingly. All other functions treat the real and imaginary
parts of the complex elements as separate real elements.

How Complex Elements are Represented
In its internal representation a complex matrix has twice as many col­
umns and twice as many rows as it "normally" would.

The complex number 100 + 200i is stored as

[100 -200]
200 100

The 2 x 1 complex matrix

1 -2

[:
+ 2'] 2 1

is stored as
4i 3 4

-4 3

There is one important exception to this scheme: for the column matrix (a
vector) in a system of simultaneous equations.

Solving Complex Simultaneous Equations. The easiest way to
work with complex matrices is to use the MATRX program. It automati­
cally dimensions input and output complex matrices. However, t MSYS J
can solve more complicated systems of equations than MATRX can.

The Matrix Functions 51

In addition, a complex result-matrix from the MATRX program cannot be
used for many complex-matrix operations outside of MATRX. This is be­
cause MATRX will dimension a complex column matrix differently than
2m x 2. Instead, it uses the dimensions 2m x 1, in which the real and
imaginary parts of a number become successive elements in a single
column.

This form has the advantage of saving memory and speeding up opera­
tions. The complex-matrix editor and 1 MSYS 1 can also use this 2m x 1
form, though they do not require it. This means you can use 1 MSYS I on a
matrix system from MATRX.

You can convert an existing 2m x 2 complex column matrix to the
2m x 1 form by transposing it, redimensioning it to 1 x 2m, then re­
transposing it. There is no easy way back.

Accessing Complex Elements. If you use the complex-matrix editor
(I CMEDIT I or the editor in the MATRX program), you can access complex
elements as if they were actual complex numbers. Otherwise (such as
when you use pointer-setting functions), you must access complex ele­
ments as real elements stored according to the 2m x 2n scheme given
above.

Storage Space in Memory. Since the dimensions required for a com­
plex matrix are four times greater than the actual number of complex
elements (an m x n complex matrix being dimensioned as 2m x 2n), re­
alize that the number of registers a compl~x matrix occupies in memory is
correspondingly four times greater than a real matrix with the same num­
ber of elements. In other words, think of a complex matrix's storage size
in terms of its 1 MATDIM I or 1 DIM? I dimensions, not its number of complex
elements.

Using Functions with Complex Matrices
Most matrix functions do not operate meaningfully on complex matrices:
since they don't recognize the different parts of a complex number as a
single number, the results returned are not what you would expect for
complex entries.

Valid Complex Operations. Certain matrix functions work equally
well with real and complex functions. These are:

I MSYS I Solving simultaneous equatiOl'ls
I MINV I Matrix inverse
I MAH I Matrix add
I MAT-I Matrix subtract
I MAT* I Matrix scalar multiply, but only by a real scalar in X-reg.
I M*M I Matrix multiplication

Both the input and result matrices must be complex.

52 The Matrix Functions

LU-Decomposition
The lower-upper (LU) decomposition is an unrecognizably altered form of a
matrix, often containing Alpha data . This transformation properly occurs
in the process of finding the:

• Solution to a system of equations (I MSYS I; SE in the MATRX
program).

• Determinant (I MDET I; DT in MATRX program).

• Inverse (I MINV I; I in MATRX program).

The first two of these operations convert the input matrix to its LU­
decomposed form and leave it there, whereas inversion leaves the
matrix in its inverted form. When you use functions that produce an
LU-decomposed form, there are several things that you need to be
aware of:

• You cannot edit an LU-decomposed matrix unless you edit every
element (refer to "Editing and Viewing an LU-Decomposed Matrix,"
below for more details) .

• You cannot perform any operation that will modify the matrix
(other than I MINV I) because the LU status of the matrix will be
cleared and it will become unrecognizable. Operations that have
this effect are: I R< >R I, lQQOQj, ~, I MSR+ I, I Msc-I , I MSC+ I,

I MMOVE I (intramatrix), I MSWAP I, and I TRNPS l-
• Care must be exercised when viewing an LU-decomposed matrix.

Certain operations can alter elements without your knowledge (re­
fer to "Editing and Viewing an LU-Decomposed Matrix," below, for
more details).

• LU-decomposition destroys the original form of the matrix. So if
you perform I MSYS I or I MDET I and then try to look at your input
matrix (A in the MATRX program), you will find only the altered, de­
composed form.

• You cannot calculate the transpose (I TRNPS I; [[] in MATRX pro-
gram) of a matrix in LU-decomposed form. LU-decomposition does
not hinder the correct calculation of the inverse, determinant, or solution
matrix, since these operations require the LU-decomposition
anyway.

The Matrix Functions 53

Reversing the LU-Decomposition. To restore a matrix to its original
form from its decomposed form, simply invert it twice (in effect: find the
inverse and then re-invert to the original). Naturally, for this to work the
matrix must be invertible (non-singular). The result can differ slightly
from the original due to rounding-off during operations.

Editing and Viewing an LU-Decomposed Matrix. LV-decomposed
matrices are stored in a different form than normal matrices:

• Certain elements contain alpha data.

• The matrix status register is modified to indicate that the matrix is
in LV form.

Editing any element of the matrix will clear the LV-flag in the status
register, which makes the matrix unrecognizable to the program. Be­
cause of this, if you edit one element, you must edit them all if you
wish to use the matrix again. Note that the matrix will no longer be in
LV-decomposed form after this action.

You can view the contents of an LV-decomposed matrix by doing one
of the following:

• From the main menu press . 0 (View A) to view individual ele­
ments without modifying them.

• Set flag 08 before executing 1 MEDIT 1 or I CMEDIT I. This allows you to
view the elements without modifying them.

Examples
Find the determinant of the inverse of the transpose of the matrix
below.

l: ~ ~:] 2 3 -1

The size of data-storage memory must be at least 10 registers (I SIZE 1
010).

54 The Matrix Functions

Keystrokes Display

0RJ 4 Sets the display for-
mat used here.

I SIZE 1010
I ALPHA I RO I ALPHA I Names matrix RO to be

stored in main mem-
ory from Roo-R1O'

3.003 I XEO I I MATDIM I 3.0030 Dimensions RO to
3 x 3.

[0 08 Sets editor to allow
editing.

I XEO I I MEDIT I 1:1= ? The matrix editor
prompts you for new
elements, showing you
old elements or the
previous contents of
the registers.

6 1 RIS I 1:2= ?

31 RIS I 1:3= ?

2 1 CHS I I RI S I 2:1= ?

1 I RIS I 2:2= ?

41 RIS I 2:3= ?

3 I CHS I I RIS I 3:1= ?

21 RIS I 3:2= ?

31 RIS I 3:3= ?

1 I CHS II RIS I Exits editor.

I XEO I I TRNPS I RO is transposed.

I XEQ I [MINV I RO (which was trans-
posed) is inverted.

I XEQ I [MDET I 0.0400 The determinant of
the inverse of the
transpose of the origi-
nal matrix.

Note that if you had wanted to find the transpose of the original matrix
after having found its determinant, you would have needed to invert the
matrix twice to change the LU-decomposed form back to the original
matrix.

The Matrix Functions 55

Find the currents I] and 12 in the electrical circuit shown below. The im­
pedances of the components are indicated in complex form.

3) Zc = -30;

ZL = 200;

This system can be represented by the complex matrix equation

or

[

10 + 200i

-200i
- 200i] [II] [5]

(200 - 30)i 12 = 0

A X = B.

The size of data-storage memory must be set to at least 26 registers
(I SIZE I 026) to accommodate two complex matrices .

Keystrokes
I ALPHA I R C"CI A:7L~PH:7A;o1
4.004 I MATDIM I

I CMEDIT I

10 I RIS I 200 I RIS I
o I RIS I 200 I CHS II RIS I
o I RIS I 200 I CHS II RIS I
0~170~
I ALPHA I R 7 I ALPHA I
4.002 1 MATDIM I

I CMEDITI

5 I RIS I 0 I RIS I
o I RIS I 0 I RIS I

Display

4.0040

RE.1:1 = ?

RE.1:2= ?
RE.2:1= ?
RE.2:2= ?
-170.0000

4.0020

RE.1:1 =
RE.2:1=
0.0000

?

?

Dimensions the com­
plex coefficient matrix
RO to 4 x 4 for its 2
rows and 2 columns. It
needs 17 registers.
Complex-matrix editor.
Loads the real and
imaginary parts of ele­
ments into RO, the
co; fficient matrix (A).
Dimensions the col­
umn matrix R17 to
4 x 2 for 2 complex
rows and 1 complex
column. It needs 9
registers.
Complex-matrix editor.
Loads the real and
imaginary parts of ele­
ments into R17, the
column matrix (B).

56 The Matrix Functions

Keystrokes

I ALPHA I R,R 17 1 ALPHA I
I XEQ II MSYS I

[]I) 08

I ALPHA I R 17 I ALPHA I
I XEQ II CMEDIT I
I RIS I
I RIS I
I RIS I

The solution is

Display

0.0000

RE.1:1 =0.0372
IM.1:1 =0.1311
RE.2:1 =0.0437
IM.2:1 =0.1543

Calculates the solution
matrix (X) and loads it
into R17.

Sets editor for view­
only operation.
Displays the complex
results for II and 12,
which are in R17. If
you have a printer at­
tached and set flag 08
before executing
I CMEDIT I, all elements
will be printed out
au toma tically.

[
II] = [0 .0372 + 0.1311i]

12 0.0437 + 0.1543i

This last example asks you to solve a set of two simultaneous equations
with two unknown variables . This requires the use of I MSYS I.
Silas Farmer has the following record of sales of cabbage and broccoli for
three different weeks. He knows the total weight of produce sold each
week, the total price received each week, and the price per pound of each
crop. Determine the weights of cabbage and broccoli he sold each week.

Week 1 Week 2 Week 3

Total Weight 274 233 331
(kg)

Total Value $120.32 $112.96 $151.36

The price of cabbage is $0 .24/kg and the price of broccoli is $0.86/kg.

The following set of linear equations describes the two unknowns (the
weights of cabbage and broccoli) for all three weeks, where the first row
of the constant matrix represents the weights of cabbage for the three
weeks and the second row represents the weights of broccoli . Since the
constant matrix is not a column matrix, you must use I MSYS I and not the
SE function in the MATRX program.

The Matrix Functions 57

[
1 1] [d ll d12 d13] [274 233 331]
0.24 0.86 d21 dn d23 = 120.32 112.96 151.36

The size of data-storage memory must be set to at least 12 registers
(I SIZE I 012) to accommodate these two real matrices.

Keystrokes
I ALPHA I R l"A-:-L=PH"7"A"1

2.002 I XEO II MATDIM I

I ALPHA I R 5 I ALPHA I
2.003 I XEO II MATDIM I

[QJ 08

274 I RIS I 233 I RIS I
331 I RIS I 120.32 I RIS I
112.96 IRIS 1151.36 I RIS I
I ALPHA I R I ALPHA I
I XEO II MEDIT I
1 I RIS I 1 I RIS I
.24 ffiZ[J .86 ffiZ[J
I ALPHA I R ,R 5 I ALPHA I

[ill 08

I ALPHA I R 5 I ALPHA I
I XEO IIJI:'i@ill
I RIS I
I RIS I
I RIS I
I RIS I
I RIS I
I RIS I

Display

2.0020

2.0030

1:1 =

1:3=
2:2=
3.0010

1:1 =
2:1=
3.0010

?

?
?

?

?

1:1 =186.0000
1:2=141.0000
1:3=215.0000
2:1 =88.0000
2:2=92.0000
2:3=116.0000
3.0010

Dimensions the coef­
ficient matrix RO to
2 x 2.

Dimensions the con­
stant matrix R5 to
2 x 3.

Set editor to allow
editing.
Calls the matrix editor
for the current matrix,
which is R5.

Loads R5, the constant
matrix.

Editor for RO.

Loads RO, the coef­
ficient matrix.

Specifies the input ma­
trices (coefficient,
constant). The solution
will go into R5.

Calculates the solution
matrix .

Sets editor for view­
only operation.
Displays the results in
the solution matrix.

58 The Matrix Functions

The solution is

Week 1 Week 2 Week 3

Cabbage 186 141 215
(kg)

Broccoli (kg) 88 92 116

Alphabetical Function Table
Unless otherwise indicated, each function operates on the matrix (or matri­
ces) named in the Alpha register. When the Alpha register is clear, the
function operates on the current matrix.

Matrix Functions

Function Name Description

I AlP) (p. 50) Appends integer part of x to Alpha reg.

~(p.46) Exchanges columns k and I.

I CMAXAB) (p. 48) Returns maximum absolute value in kth column.

I CMEDIT) (p. 34) Invokes the complex-matrix editor.

I CNRM) (p. 48) Returns the column norm.

I CSUM) (p. 49) Finds sums of columns and puts them in a row
matrix .

I DIM?) (p. 33) Returns the mmm.nnn dimension.

I FNRM) (p. 48) Returns the Frobenius norm.

[E] (p. 40) Increments row part of pointer.

[EJ (p. 40) Decrements row part of pointer.

[EJ (p. 40) Increments column part of pointer.

CEl (p. 40) Decrements column part of pointer.

I M.M) (p. 44) True multiplication (non-scalar) of two matrices.

I MAT+) (p. 43) Adds scalar or matrix to a matrix.

I MAT-) (p. 43) Subtracts scalar or matrix from a matrix.

I MAT.) (p. 44) Multiplies scalar or matrix by a matrix elementwise.

I MATI) (p. 44) Divides scalar or matrix into a matrix elementwise.

I MATDIM) (p. 31) Dimensions matrix to mmm.nnn.

I MAX) (p. 48) Returns maximum element.

"r C Ollynql t) ';101 H C,

The Matrix Functions 59

Matrix Functions (Continued)

Function Name Description

I MAXAB I (p. 48) Returns maximum absolute value of an element.

I MDET I (p. 4S) Returns determinant.

I MEDIT I (p. 34) Invokes the real-matrix editor.

I MIN I (p. 48) Returns minimum element.

I MINV I (p. 4S) Inverts the matrix in place.

I MMOVE I (p. 46) Copies source matrix or submatrix to target matrix.

I MNAME? I (p. 37) Returns name of current matrix to Alpha reg.

I MP I (p. SO) Appends a matrix prompt rrr:ccc= to Alpha reg.

[1§J (p. 40) Recalls current element.

I MRC+ I (p. 41) Recalls sequential elements by column.

I MRC-I (p. 41) Recalls sequential elements backwards by column.

I MRIJ I (p. 40) Recalls pointer iii.jji of current matrix.

I MRIJA I (p. 40) Recalls pointer iii.jji .

I MRR+ I (p. 41) Recalls sequential elements by row.

I MRR-I (p. 41) Recalls sequential elements backwards by row.

I MS I (p. 40) Stores current element.

I MSC+ I (p. 41) Stores current element by column.

I MSIJ I (p. 40) Sets pointer of current matrix to iii.jji.

I MSIJA I (p. 40) Sets pointer to iii.jji.

I MSR+ I (p. 41) Stores current element by row.

I MSWAP I (p. 46) Exchanges two matrices or submatrices.

I MSYS I (p. 4S) Solves a system of simultaneous equations.

I PIV I (p. 49) Returns a column's maximum absolute value that is
on or below the diagonal.

I R<>R I (p. 46) Exchanges rows k and I.

I R>R? I (p. 49) Tests elementwise whether row k is greater than
row I.

I RMAXAB I (p. 48) Returns maximum absolute value in · kth row.

I RNRM I (p. 48) Returns the row norm.

I RSUM I (p. 49) Finds sums of rows and puts them in a column
matrix.

I SUM I (p. 49) Returns sum of all elements.

60 The Matrix Functions

Matrix Functions (Continued)

Function Name Description

I SUMAB I (p. 49) Returns sum of absolute values of all elements .

I TRNPS I (p. 45) Transposes the matrix in place.

I Yc+c I (p. 49) Multiplies each element in column k by y-value and
adds product to element in column I, replacing the
latter.

FINDING THE ROOTS
OF AN EQUATION

The SOLVE program finds the roots of an equation of the form

f(x) = 0,

where x represents a real root .*

((x)

~~--------~----~x

Executing the SOLVE program ([SOLVE I) employs an advanced numerical
technique to find the real roots of a wide range of equations. You supply
the equation for the function (in a program) and two initial estimates, and
SOLVE does the rest.

Method
SOLVE normally uses the secant method to iteratively find and test x­
values as potential roots. It takes the program several seconds to several
minutes to do this and produce a result .

• Note that any equation with one variable can be expressed in this form. For example,
[(x) = a is equivalent to [(x) - a = 0, and [(x) = g(x) is equivalent to [(x) - g(x) = 0.

61

62 Finding the Roots of an Equation

f(x)

---r--------~~~~~--------~--~x
c b a

If e isn't a root, but f(e) is closer to zero than f(b) , then b is relabeled as a,
e is relabeled as b, and the prediction process is r(:peated. Provided the
graph of f(x) is smooth and provided the initial values of a and b are close
to a simple root, the secant method rapidly converges to a root.

If the calculated secant is nearly horizontal, then SOLVE modifies the se­
cant method to ensure that Ie - bl ~ 100 la - bl. (This is especially
important because it also reduces the tendency for the secant method to
go astray when rounding error becomes significant near a root.)

If SOLVE has already found values a and b such that f(a) and f(b) have
opposite signs, it modifies the secant method to ensure that e always lies
within the interval containing the sign change. This guarantees that the
search interval decreases with each iteration, eventually finding a root.

If this does not yield a root, SOLVE fits a parabola through the function
values at a, b, and e, and finds the value d at the parabola's maximum or
minimum. The search continues using the secant method, replacing a
with d.

If three successive parabolic fits yield no root or d = b, the calculator dis­
plays NO. In the X- and Z-registers remain band f(b), respectively, with a
or e in the Y -register. At this point you could: resume the search where it
left off, direct the search elsewhere, decide that f(b) is negligible so that
x = b is a root, transform the equation into another equation easier to
solve, or conclude that no root exists.

Finding the Roots of an Equation 63

Instructions
In calculating roots, SOLVE repeatedly calls up and executes a program
that you write for evaluating f(x). You must also provide SOLVE with two
initial estimates for x, providing a range for it to begin its search for the
root.

Realistic estimates greatly facilitate the speedy and accurate determination
of a root. If the variable x has a limited range in which it is meaningful
and realistic as a solution, it is reasonable to choose initial estimates
within this range. (Negative roots, for instance, are often unrealistic for
physical problems.)

• SOLVE requires thirteen unused program registers. If enough spare
program registers are not available, SOLVE will not run and the er­
ror NO ROOM results . Execute @TillOO in Program mode to see
how many program registers are available.

• Before running SOLVE you must have a program (stored in pro­
gram memory or a plug-in module) that evaluates your function f(x)
at zero. This program must be named with a global label. * SOLVE
then iteratively calls your program to calculate successively more
accurate estimates of x. Your program can take advantage of the
fact that SOLVE fills the stack with its current estimate of x each
time it calls your program.

• You then enter two initial estimates for the root, a and b, into the x­
and Y -registers.

• Lastly put the name of your program (that evaluates the function)
into the Alpha register and then execute 1 SOLVE I.

• This program should not include the functions I PASN I, I PSIZE I. em, any card-reader
(HP 82104A) functions, or any other function that alters the configuration of the
calculator's memory, key assignments, or timer alarms.

64 Finding the Roots of an Equation

When the program stops and the calculator displays a number, the con­
tents of the stack are:

Z = the value of the function at x = root (this value should be zero).*
Y = the previous estimate of the root (should be close to the resulting

root) .
X = the root (this is what is shown in the display) .

If the function that you are analyzing equals zero at more than one value
of x, SOLVE stops when it finds anyone of these values. To find addi­
tional values, key in different initial estimates and execute I SOLVE I again .

Instruction Table for SOLVE

Instructions Key In: Display

1. Switch to Program mode and pack memory I PRGM I
preparatory to entering a new program. (The L!iTQJoo 00 REG nnn
display will show you the number of available
program registers.)

2. Key in a global , Alpha label as program name I LBL I
for the program describing f(x) for f(x) = O. global label 01 LBL T/abel

3. Key in the lines of the program and end the
program with a I RTN I instruction. I RTN I

4. Check that program memory is large enough I GTO 100 00 REG nnn
to run SOLVE (nnn ~ 13).' Then switch out of I PRGM I
Program mode.

5. Put the name of your program from step 2 I ALPHA I global
into the Alpha register. label I ALPHA I

6. Enter the range for the initial search for x: a I ENTERt I a
b b

* If the contents of the Z-register are 110 / zero, then the X-register does not contain the exact
root. Instead, the contents of X and Yare close estimates of the root, bracketing a change in
the sign of the func tion's value.

Finding the Roots of an Equation 65

Instruction Table for SOLVE (Continued)

Instructions Key In: Display

7. Execute I SOLVE I. I SOLVE ,t x
The program runs up to several minutes and
then returns the resulting root. If no root is
found , the display is NO.

B. To search for another root, repeat steps 6 and
7 .

• If nnn is not ;3 13, then use I SIZE I to allocate more memory to program registers, or else
delete programs. Refer to the HP-41 owner's manual for instructions.

t To execute a program , press I XEO II ALPHA I Alpha name I ALPHA I or use a User-defined key.

Remarks
Pressing I RIS I aborts the SOLVE program.

Examples
Find the roots of the equation f(x) = x2 - 3x - 10 = O.

First write a program called TEST to define the function. Then, before
executing I SOLVE I, put the name of this program into the Alpha regis­
ter and enter your initial estimates for the root.

Using Horner's method you can rewrite f(x) so that it is more effi­
ciently programmable: f(x) = (x - 3)x - 10. (Note that you could also
find this root algebraically.) Since the SOLVE program fills the stack
with the current estimate of x before calling TEST, TEST can obtain x
from the stack when TEST runs.

Keystrokes
I FIX'I 4

ITill I ALPHA I TEST

L6!J'EEJ
3

Display

00 REG nnn

01 LBLTTEST
02 3_

Sets the display for­
mat used here.
Program mode; ready
to enter a program to
evaluate
(x - 3)x - 10.
Global Alpha label
"TEST" .

66 Finding the Roots of an Equation

Keystrokes

G
o
10

G

I ALPHA I TEST
I ALPHA I

o I ENTER. 110

Display
03
04 *

05 10_
06
07 RTN

00 REG nnn

TEST_

(x - 3)

(x - 3)x

(x - 3)x - 10
End of program defin­
ing f(x) .
Number of available
program registers
(should be ;;;' 13).

Exits Program mode.
Puts uTEST" (your
program's name) into
the Alpha register.
This is the necessary
first step to running
SOLVE.

Enters initial estimates
of zero and ten . Now
you're ready to execute
I SOLVE I

I XEO I I SOLVE I 5.0000 Runs the SOLVE pro­
gram; finds a root of
x = 5.0000 (in about
12 seconds).

Check that 5.0000 is indeed a root of f(x) = 0 by checking the Z-register.
Then check for a second root (which is common in quadratic equations)
by specifying new initial estimates of 0 and -10 to look for a negative
root.

Keystrokes

[]IJ []IJ

o I ENTER. I 1 0 I CHS I

I XEO II SOLVE I
[]IJ []IJ

Display
0.0000

-2.0000
0.0000

Displays first the Y­
register, then the Z­
register. Since f(5) = 0,
5 is a good root.
New initial estimates
to look for a second
root.
Second root.
This root is also good .

Finding the Roots of an Equation 67

Here is a problem whose root cannot be found algebraically. If champion
ridget hurler Chuck Fahr throws a ridget with an upward velocity of 50
meters/second, then how long does it take for it to reach the ground
again? Solve for t in the equation

h = 5000 (1 - e- t/ 20) - 200t

Assume h in meters and t in seconds. Naturally we are only interested in
a positive root, t.

As in the previous example, the program you write to define the function
can take advantage of the fact that the stack is filled with the current
estimate of x before calling your program.

Keystrokes

IpRGMI DO
I ALPHA I HIGH I ALPHA I

20lcHSI

G

ICHSI
1

G
5000

0
~
200

0
G

DO
~
I ALPHA I HIGH I ALPHA I

5 I ENTERt I 6

I XEQ II SOLVE I

Display

00 REG nnn
01 LBLTHIGH

02 -20_

03 /
04 EtX
05 CHS
06 1_

07 +
08 5000_

09 *

10 X<> Y
11 200_

12 *
13
14 RTN

00 REG nnn

9.2843

0.0000

Names this program
"HIGH" with a global
label.

-t/20

_e - t/ 20

1-e- t/ 20

5000 (1- e- t/ 20)

200t

We now have the full
equation so the pro­
gram is done:
5000(1 - e- t/ 20)

-200t

Is nnn~13?
Exits Program mode.
Puts your program's
name into the Alpha
register.
Example of initial esti­
mates for t.
The root t = 9.2843
seconds.
Shows that
h(9 .2843) = O.

68 F d· ... g the Roots of an Equation

When No Root Is Found
It is possible that an equation has no real roots. In this case, the calculator
displays NO instead of a numeric result. This would happen, for example,
if you tried to solve the equation

Ixl = -1,

which has no solution since the absolute value function is never negative.

There are three general types of errors that stop SOLVE from running:

If repeated iterations seeking a root produce a constant nonzero
value for the specified function, the calculator displays NO.

If numerous samples indicate that the magnitude of the function ap­
pears to have a nonzero minimum value in the area being searched,
the calculator displays NO.

If an improper argument is used in a mathematical operation as
part of your program, the calculator displays DATA ERROR.

r min I formatio
You can incorporate SOLVE as part of a larger program you create. Be
sure that your program provides initial estimates in the X- and Y -reg­
isters just before it executes ~. Remember also that SOLVE will
look in the Alpha register for the name of the program that calculates
your function .

If the execution of SOLVE in your program produces a root, then your
program will proceed to its next line. If no root results, the next pro­
gram line will be skipped. (This is the "do if true" rule of HP-41
programming.) Knowing this, you can write your program to handle
the case of SOLVE not finding a root, such as by choosing new initial
estimates or changing a function parameter.

SOLVE uses one of the six pending subroutine returns that the calcu­
lator has, leaving five returns for a program that calls SOLVE.

Note that SOLVE cannot be used recursively (calling itself) . If it does,
the program stops and displays RECURSION. You can use SOLVE with
INTEG, the integration program.

"" nClnC] the Roots of ar Equation 69

References
"Using SOLVE Effectively: HP-15C Advanced Functions Handbook,
Hewlett-Packard Co., 1982.

Kahan, W.M., "Personal Calculator Has Key to Solve Any Equation
f(x)=O : Hewlett-Packard Journal , 30:12, December 1979.

POLYNOMIAL SOLUTIONS
AND EVALUATIONS

The PLY program can be used to find the roots of a polynomial with real
coefficients of degree 2 through 5, or to evaluate an equation of degree 2
through 20.

The polynomial equation can be represented as:

where n = 2, 3, 4, or 5.

Polynomials can also be evaluated for arbitrary values of x. This is useful
for plotting polynomials and using data correlations based on
polynomials.

When the program is started, the user must specify the degree (n) of the
polynomial. The calculator then prompts the user for the coefficients an'
... , aI' ao· Zero must be input for those coefficients that are equal to O.
Registers 00 through 05 are used to store the coefficients. (Registers 00
through 20 are used for coefficients when evaluating a polynomial of de­
gree up to 20.)

Equations
In finding the roots the first step of the routine is to divide all
coeffiecients by an to produce an equation of the form xn + a'n _ IXn - 1 +
.. . + ao' = O. The divisor is retained in register an for use in evaluating
the polynomial for arbitrary values of x.

The routines for third and fifth degree equations use an iterative process
to find one real root of the equation. This routine requires that the con­
stant term ao not be zero for these equations. (If ao = 0, then zero is a
real root. The equation can be reduced by one order by factoring out x.)

After one root is found, synthetic division is performed to reduce the
original equation to a second or fourth degree equation.

To solve a fourth degree equation, it is first necessary to solve the cubic
equation

-a2
a3al - 4ao
ao (4a2 - a32)

71

72 Polynomial Solutions and Evaluations

Let Yo be the largest real root of the above cubic.

Then, the fourth degree equation is reduced to two quadratic equations:

X2 + (A + C)x + (B + D) 0

x2 + (A - C)x + (B - D) 0

where A = ~ B = Yo D = YB2 - a C = YA 2 - a + y
2' 2' 0' 2 0

Roots of the fourth degree equation are found by solving the two qua­
dratic equations.

A quadratic equation x2 + alx + ao = 0 is solved by the formula

~l ± V al
2

- ao·

If D = aN4 - ao > 0, the roots are real; if D < 0, the roots are com­
plex, being u ± iv = -(a1/2) ± i Y-D .
A real root is displayed as a single number. Complex roots always occur
in pairs of the form u ± iv, and are labeled in the output.

Long execution times can be expected for equations of degree 3, 4, or 5,
as these use an iterative routine once or more.

Instructions
Once you have entered your variables, this menu shows you which key
corresponds to which function in PLY. Press Q] to recall this menu to
the display at any time. This will not disturb the program in any way.

Polynomial Solutions and Evaluations 73

FX RT
\ USER I

"' E" ,.,. \" ".,.

CJGJOOGJ
OOOOEB
o

To clear the menu at any time, press G . This shows you the contents of
the X-register, but does not end the program. You can perform calcula­
tions, then continue the program by pressing 1 RIS I. (However, you do
not need to clear the program's display before performing calculations.)

Instruction Table for PLY

Size: 023

Instructions Key In: Display

1. Start the PLY program. 1 XEQ I PLY I ' DEGREE=?

2. Key in the degree of the polynomial n 1 RIS I an=?
(n = 2,3,4,5 for root finding; up to 20 if eval-
uating only).

3. Input coefficient 8n of the polynomial. (Coef- 8n I RIS I a(n - 1)=?
ficients = 0 must also be entered.) Repeat
until display asks for 80. 81 aO=?

4. Input coefficient 80. 80 1 RIS I FX RT NEW

5. To evaluate the polynomial for x, use FX. You x0 (FX) F< X> =f(x)
can repeat this step for new values of x. I RIS I t FX RT NEW

74 Polynomial Solutions and Evaluations

Instruction Table for PLY (Continued)

Instructions Key In: Display

6. To find the roots of the polynomial, use RT [[) (RT) ROOT=root 1
and then I RIS I to display successive roots. I RIS I ROOT=root 2

I RIS I U=u-value
I RIS I V=v-value
I RIS I U=u-value
I RIS I V=-v-value

I RIS It FX RT NEW

7. To work out a new polynomial, choose NEW [Il (NEW) DEGREE=?
([Il) and return to step 2 .

• To execute a program, press I XEQ II ALPHA I Alpha name I ALPHA I or use a User-defined key.

t This keystroke is unnecessary if you have a printer attached because the printer automati-
cally prints the results and then displays the menu.

Note: This program can calculate incorrect roots due to
rounding off of intermediate results. Incorrect roots normally
occur only for real roots. To check the calculated root, rerun
PLY to evaluate a polynomial (step 5). Input the root x that
you want to check. If the result is a very small number close
to zero, then the root is correct.

Remarks
If you set flag 06 (06) just before step 6, then the roots found in
step 6 will be stored as they are found, starting in R24 and in the
order real, imaginary. (Real roots store a zero imaginary part.)

This program uses local Alpha labels (as explained in the owner's
manual for the HP-41) assigned to keys 0, [[j, W, and 0. These
local assignments are overridden by any User-key assignments you
might have made to these same keys, thereby defeating this program.
Therefore be sure to clear any existing User-key assignments of these keys
before using this program, and avoid redefining these keys in the
future.

Examples
Find the roots of x5 - x4 - 101x3 + 10lx2 + 100x - 100 O.

Keystrokes
4

I XEO I I SIZE I 023

I XEO I I PLY I
51 RIS I
1 I RIS I
1 I CHS II RIS I
101 I CHS II RIS I
101 I RIS I
100 I RIS I
100 I CHS II RIS I
[[) (RT)

I RIS I
I RIS I
I RIS I
I RIS I

Polynomial Solutions and Evaluations 75

Display

DEGREE=?

a5=?
a4=?
a3=?
a2=?
a1=?
aO=?
FX RT NEW

Sets the display for­
ma t used here.

Optional-sets the
number of storage reg­
isters needed for the
program. This is not
necessary if your allo­
cation is already SIZE
~ 023.

ROOT=10.0000 Root 1.
ROOT=1.0000 Root 2.
ROOT=1.0000 Root 3.
ROOT=-1.0000 Root 4.
ROOT = -10.0000 Root 5.

Solve 4x4 - 8x3 - 13x2 - lOx + 22 = O.

Keystrokes Display

QJ FX RT NEW Displays the menu
(optional step).

[IJ (NEW) DEGREE=? Prompts for a new
polynomial (after the
one in Example 1.)

41 RIS I a4=?
41 RIS I a3=?
8 I CHS II RIS I a2=?
13 I CHS II RIS I a1=?
10 I CHS II RIS I aO=?
22 I RIS I FX RT NEW Displays the menu.
[[) (RT) U= -1.0000
I RIS I V=1.0000 Roots 1 and 2 are
I RIS I U= -1.0000 -1.00 ± 1.00i.
I RIS I V= -1.0000
I RIS I ROOT=3.1180 Root 3.
I RIS I ROOT=0.8820 Root 4.

76 Polynomial Solutions and Evaluations

Evaluate the following polynomial at x = 2.5 and x = -5.

Keystrokes

Q]

[IJ (NEW)

5 I RIS I
1 I RIS I
5 I RIS I
o I RIS I
3 I CHS II RIS I
7 I CHS II RIS I
11 I RIS I
2.50 (FX)

5 Lf:®J I RIS I

f(x) = xS + 5x4 - 3x2 - 7x + 11

Display

FX RT NEW

DEGREE=?

a5=?
a4=?
a3=?
a2=?
a1=?
aO=?
FX RT NEW

F < X> =267.7188
F < X> = -29.0000

Displays the menu
(optional step).
Prompts for a new
polynomial.

Programming Information
The subroutine RTS can be used in your own programs. It finds the real
and complex roots of a polynomial of degree 2 to 5.

Minimum Size to Run RTS: SIZE 023, unless flag 6 is set. If the roots
are to be stored, then the number of data-storage registers needed is 24
+ 2(degree).

PC)lynol"'lal So;utiors and Evaluations 77

Flags Used: 00, 03, 05, 06, 21

Subroutine: RTS
r---

Initial Registers Final Registers Flags to In itialize

Roo = ao Roo = ao/as SF 00

R01 = a1 R01 = a1/aS CF 03

R02 = a2 R02 = a2/aS CF 05

R03 = a3 R03 = a3/aS SF 06 to save r oats

R04 = a4 R04 = a4/aS CF 06 to not s ave roots

Ros = as Ros = as SF 21 to stop w hen display-
ing results

R06 ' . . R21 = scratch CF 21 to not sto p when dis-
playing results

R22 = degree of equation R22 = degree of equation

R23 = pointer

If flag 06 is set:

R24• R2S = root 1

R26• R27 = root 2

R2S• R29 = root 3

R30. R31 = root 4

R32. R33 = root 5

Comments. To use RTS, load the coefficients in Roo- Ro5' the degree
in R22, set flag 06 to store the roots, clear flags 03 and 05, and set flag
00. If roots are stored they are stored with real and imaginary parts; a
real root has a zero imaginary part.

NUMERICAL INTEGRATION

The INTEG program finds the definite integral, I, of a function f(x) within
the interval bounded by a and b. This is expressed mathematically and
graphically as

I = t f(x) dx .
a

'(x)

a b

Executing the INTEG program (I INTEG J) employs an advanced numerical
technique to find the definite integral of a function . You supply the equa­
tion for the function (in a program) and the interval of integration, and
INTEG does the rest.

Method
The algorithm for INTEG uses a Romberg method for accumulating the
value of an integral. The algorithm evaluates f(x) at many values of x
between the limits of integration. It takes the program from several sec­
onds to several minutes to do this and produce a result.

Several refinements make the algorithm more effective. For instance, in­
stead of using uniformly spaced samples, which can induce a kind of
resonance producing misleading results when the integrand is periodic,
INTEG uses samples that are spaced nonuniformly. Another refinement is
that INTEG uses extended precision (13 significant digits) to accumulate
the internal sums. This allows thousands of samples to be accurately ac­
cumulated, if necessary.

79

80 Numerical Integration

A calculator using numerical integra tion can almost never calculate an in­
tegral precisely. However, there is a convenient way for you to specify
how much error is tolerable. You can set the display format according to
how many figures are accurate in the integrand f(x). A setting of 2
tells the calculator that decimal digits beyond the second one can't matter,
so the calculator need not waste time estimating the integral with unwar­
ranted precision. Refer to the heading, "Accuracy of INTEG."

Instructions
In calculating integrals, INTEG repeatedly executes a program that you
write for evaluating f(x) . You must also provide INTEG with two limits for
x, providing an interval of integration.

• INTEG requires 32 unused program registers. If enough spare pro­
gram registers are not available, INTEG will not run and the error
NO ROOM results . Execute ~ DO in Program mode to see how
many program registers are available.

• Before running INTEG you must have a program (stored in program
memory or a plug-in module) that evaluates your function f(x). This
program must be named with a global label. * Your program can take
advantage of the fact that INTEG fills the stack with its current esti­
mate of x each time it calls your program.

• You then enter the two limits, a and b, into the X- and Y-registers .

• Lastly put the name of your program (that evaluates the function)
into the Alpha register and then execute 1 INTEG I.

When the program stops and the calculator displays the integral, the
contents of the stack are:

T the lower limit of the integration, a.
Z the upper limit of the integration, b.
Y the uncertainty of the approximation of the integral.
X the approximation of the integral (this is what is shown in the

display).

• This p rogram should not include the functions I PA.jN I, I PSIZE I, @:' , any ca rd -reader
(HP 82104A) functions, or any other function that alters the configuration of the
calculator's memory, key assignments, or timer alarms.

Numerical Integration 81

Instruction Table for INTEG

Instructions Key In: Display

1. Switch to Program mode and pack memory I PRGM I
preparatory to entering a new program. I GTO 11][1 00 REG nnn

2. Key in a global, Alpha label as program name I LBL I
for the program describing ((x). global label 01 LBL T/abel

3. Key in the lines of the program and end the
program with a I RTN I instruction. I RTN I

4. Check that program memory is large enough I GTO 1[11] 00 REG nnn
to run INTEG (nnn ;;' 32).' Then switch out of I PRGM I
Program mode.

5. Put the name of your program from step 2 I ALPHA I global
into the Alpha register. label I ALPHA I

6. Enter the limits for the initial search for the a [ENTERt I a
integral: b b

7. Set the display format to determine the accu- 0KJ n or
racy of the result. [SCI In or

[ENGl n

8. Execute I INTEG I. I INTEG t integral
The program runs up to several minutes and
then returns the resulting integral.

9. To repeat this calculation using a different 0KJ n or b
level of accuracy, set a new display format, IscIl n or integral
roll down the stack to retrieve the original up- [ENGl n
per and lower limits, and re-execute [INTEG I. ffi±J[]I)

I INTEG

• If nnn is not ;. 32, then use I SIZE; to allocate more memory to program registers , or else
delete programs. Refer to the HP-41 owner's manual for instructions.

t To execute a program, press I XED II ALPHA I Alpha name I ALPHA I or use a User-defined key.

Remarks
Pressing I RIS I aborts the INTEG program.

82 Numerical Integration

Example 1
The Bessel function of the first kind of order 0 can be expressed as

1o(x) = 1/11" {r cos(x sin O)dO.

Find

10(1) = 1/11" fa" cos(sin O)dO .

First write a program to define the integrand. Make sure the calculator is
set to Radians mode to calculate these trigonometric functions . Then, be­
fore executing 1 INTEG I, put the name of your program into the Alpha
register and enter the limits of integration. Once you've found the inte­
gral, don't forget to multiply it by 1/11".

Keystrokes

ffi8J 4

ITffi-] 1 ALPHA 1 J01 1 ALPHA 1

1 GTO 100

~
1 ALPHA 1 J01
1 ALPHA 1

o 1 ENTERt 1 GiJ

Display

00 REG nnn

01 LBLTJ01

02 SIN

03 COS
04 RTN

00 REG nnn

J01

3.1416

3.1416

Sets the display for­
mat used here .
Program mode; ready
to enter a program to
evaluate cos(sin 0) .

Global Alpha label
"JOIn .

sin O.

cos(sin 0).

End of program de­
fining f(x).

Number of available
program registers; is
nnn~32?

Exits Program mode.
Puts "JOI n (your
program's name) into
the Alpha register.
This is the necessary
first step to running
INTEG.

Enters integration
limits of zero and 11".

Sets Radians mode.
Now you're ready to
execute 1 INTEG I·

Keystrokes

I XEQ I I INTEG I
Display

2.4040

3.1416
0.7652

Accuracy of INTEG

Numerical Integration 83

Runs INTEG and re­
turns the integral (in
about 25 seconds). To
complete the equa­
tion, don't forget to
multiply by the con­
stant outside the
integral.

10(1)·

Since the calculator cannot compute the value of an integral exactly, it
approximates it. The accuracy of this approximation depends on the accu­
racy of the integrand's function itself as calculated by your program.*
This is affected by round-off error in the calculator and the accuracy of
empirical constants.

To specify the accuracy of the function, set the display format ([£IX] n,
I SCI In, or [ENGl n) so that n is no greater than the number of decimal
digits that you consider accurate in the function 's values. If you set n
smaller, the calculator will compute the integral more quickly, but it will
also presume that the function is accurate to no more than the number of
digits shown in the display format,f

At the same time that the INTEG program returns the resulting integral to
the X-register (the display), it returns the uncertainty of that approxima­
tion to the Y -register.:j: To view this uncertainty value, press ~.

If the uncertainty of an approximation is greater than what you choose to
tolerate, you can decrease it by specifying more digits in the display for­
mat and rerunning INTEG .

• While integrals of functions with certain characteristics such as spikes or rapid oscillations
might be calculated inaccurately, these functions are rare.

t I SCI I and I ENG I determine an uncertainty in the function that is proportional to the
function's magnitude, while [£ill determines an uncertainty that is independent of the
function's magnitude.

:I: No algorithm for numerical integration can compute the exact difference between its ap­
proximation and the actual integral. But this algorithm estimates an upper bound on this
difference, which is returned as the uncertainty of the approxima tion.

84 Numerical Integration

To rerun INTEG for the same problem but with a different display format,
you do not need to re-enter the limits of integration (if you have not
made any calculations subsequent to finding the integral). Since they end
up in the T - and Z-registers (as shown under "Instructions"), just press
[]I] []I] to retrieve them, then execute I INTEG I again.

Example 2
With the display format set to I SCI 12, calculate the integral in the expres­
sion for 10(1) in example 1. Check the uncertainty of this result. Then
calculate a result accurate to four decimal places instead of only two, and
check its uncertainty. (Make sure that Radians mode is still set by check­
ing for the RAD annunciator, which should be on.) You will have to re­
enter the limits of integration for the first computation only.

Keystrokes Display

ISCII 2 Sets scientific nota-
tion; two decimal
places of accuracy.

o I ENTERt 10 3.14 00 Enters the lower (0)
and upper limits (7r).

IXEQ I IIEBl 2.40 00 The integral, accurate
to two decimal
places.

I x~y I 1.57 -03 The uncertainty of
the integral.

IscI1 4 1.5708 -03 Sets four decimal
places of accuracy.

[]I] []I] 3.1416 00 Roll down stack until
upper limit appears.

I XEQ I N ~C3l 2.4039 00 Integral accurate to
four decimal places.

~ 1.5708 -05 Uncertainty (much
smaller).

Programming Information
You can incorporate INTEG as part of a larger program you create. Be sure
that your program provides upper and lower limits in the X- and Y -regis­
ters just before it executes [INTEG]. Remember also that INTEG will look
in the Alpha register for the name of the program that calculates your
function .

Numerical Integration 85

INTEG uses one of the six pending subroutine returns that the calculator
has, leaving five returns for a program that calls INTEG .

Note that INTEG cannot be used recursively (calling itself). If it is, the
program stops and displays RECURSION. You can use INTEG with
SOLVE. A routine that combines INTEG and SOLVE requires 32 available
program registers to operate.

References
"Working with [ill," HP-15C Advanced Functions Handbook, Hewlett­
Packard Co., 1982.

Kahan, WM., "Handheld Calculator Evaluates Integrals: Hewlett-Packard
Journal, 31 :8, August 1980.

DIFFERENTIAL EQUATIONS

The DIFEQ program solves first- and second-order differential equations
by the fourth-order Runge-Kutta method. A first-order equation is of the
form y' = [(x, y), with initial values xo, Yo; a second-order equation is of
the form y" = [(x, y, y'), with initial values xo, Yo, Yo'.

In either case, the function [(x) may be keyed into program memory using
any global label (maximum of six characters), and should assume that x
and yare in the X- and Y-registers respectively; y' will be in the Z-register
for second-order equations. The DIFEQ program uses registers 00 through
07. The remaining registers are available for defining the function .

The solution is a numerical solution which calculates Yi for Xi = Xo + ih
(i = 1, 2, 3, ...), where h is an increment specified by the user. The value
for h can be changed at any time during program execution by storing
h/2 in Register 01. This allows solution of the equation arbitrarily close to
a pole (y -+ ±oo).

Equations
First order:

where

87

88 Differential Equations

Second order:

where

kj hi (Xi' Yi' yi)

k2 hi (Xi
h +l!.., + h k ' kj) + 2'Yi +-2 Yi 8 j'Yi 2

k3 hi (Xi
h + h , + ~ k2' y[

k2)
+ 2'Yi 2 Yi +-

2

k4 hi (Xi + h, Yi + hy[+ ~ k3' y[+ k3)

Instructions
When you are inputting values for a second-order solution, the values for
Xo and Yo must be input before the value of Yo'. All values must be input,
including values of zero.

Note that a value for h, the step size, that is too large can generate incor­
rect results. *

• You can check a result by working backward from the result to the initial condition using
- h. If you don' t get the correct initial value, then rerun DIFEQ with a smaller h.

Differential Equations 89

Instruction Table for DIFEQ

Size: 008

Instructions Key In: Display

1. Prepare to load function fIx , y, y'). I GTO 100
2. Switch to Program mode. I PRGM I
3. Load function under desired global, Alpha la- I LBL I function

bel. Add I RTN I label

I RTN I
4. Exit Program mode. I PRGM I
5. Start the program. I XEQ II DIFEQ I' NAME?

6. Key in function label (from step 3). function label
I RIS I ORDER=?

7. Key in order of the differential equation (1 or order I RIS I STEP SIZE=?
2).

8. Key in step size (h) . h I RIS I XO=?

9. Input initial value for x. Xo I RIS I YO=?

10. Input initial value for y. Yo I RIS I x 1 (first-order
equation)

or
YO.=? (second-
order equation)

11. For a second-order equation, key in initial Yo' I RIS I x1
value of y'.

12. Output successive values of x and y. I RIS I Y1
I RIS I x2
I RIS I Y2

etc .

• To execute a program, press I XEQ II ALPHA I Alpha name I ALPHA I or use a User-defined key.

90 Differential Equations

Examples
Using the function label FX, solve numerically the first-order differential
equation

y' = sin x + tan- I (y/x)

y - In (V x2 + i)
where Xo = Yo = 1. Let h = 0.5. The angular mode must be set to Radi­
ans, and three additional storage registers are necessary to define the
function.

Keystrokes

I FIX 14

I XEQ II SIZE I 011

I PRGM I

I GTO 100
I LBL I I ALPHA I FX I ALPHA I
I XEQ I I RAD I

I STO 108

I x~y I
I STO 109

I x~y I
I R+pl

[ill]
I STO 110
[]I]
IRCLI08

I SIN I
GJ
IRCLI09

I RCL 110

El
[B
I XEQ I I DEG I
I RTN I
I PRGM I

Display
Sets the display for­
mat used here.
Optional-sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE ~ OIl.

Differential Equations

Keystrokes Display

I XEQ I I DIFEQ I NAME?

FX I RIS I ORDER=?

1 I RIS I STEP SIZE=?

.51 RIS I XO=?

1 I RIS I YO=?

1 I RIS I 1.5000 Xl

I RIS I 2.0553 Yl
I RIS I 2.0000 Xz

I RIS I 2.7780 Y2
I RIS I 2.5000 x3

I RIS I 3.2781 Y3
etc.

Using the function label DIF, solve the second-order equation

(1 - x2)y" + xy' = x,

where Xo = Yo = Yo' = 0 and h = 0.1.

Rewrite the equation as

x(l - y')
y" =

1 - X2

X(y' - 1)

X2 - 1

Keystrokes Display

I PRGM I
I GTO E][J
I LBL I I ALPHA I DIF I ALPHA I

I STO 108
[]I] []I]
18
IRCLI08

o
I LASTx I

2J
18G
CRT[]
I PRGM I

X * 1

91

92 Differential Equations

Keystrokes Display

I XEO I [DIFEO I NAME?

DIF I RIS I ORDER=?

2 I RIS I STEP SIZE=?

.1 I RIS I XO=?

o I RIS I YO=?

o I RIS I YO.=?

o I RIS I 0.1000 x l

I RIS I 0.0002 YI

I RIS I 0.2000 x2

I RIS I 0.0013 Y2

I RIS I 0.3000 x3

I RIS I 0.0046 Y3

I RIS I 0.4000 x4

I RIS I 0.0109 Y4
etc.

OPERATIONS
WITH COMPLEX NUMBERS

This collection of operations provides the ability to do chained calcula­
tions involving complex numbers in rectangular form . The four
operations of complex arithmetic (+ , -, x, -;-) are provided, as well as
several of the most used functions of complex variables z and w (I zl, l /z,
zn, zl/n, eZ, In z, sin z, cos z, tan z, aZ, logaz, zl/w, and ZW). Functions and
operations can be mixed in the course of a calculation to allow evaluation
of expressions such as z3/(zl + z2), eZJz2

, IZ1 + z21 + IZ2 - 23 1, etc ., where
21' Z2' and Z3 are complex numbers of the form x + iy.

For repeated use of these operations, the user can reassign the individual
programs to selected keys of the calculator and create an appropriate
overlay. One reasonable set of reassignments might include:

I ASN I I SINZ II SIN I
I ASN I I LNZ I [ill]
I ASN I [QJ [B
IAsNI lEJ G
I ASN I I CINV 1l::IEJ

The logic system for these functions is a variation on the regular memory
stack for the HP-41. Instead of holding four real numbers, this stack
holds two complex numbers. Let the bottom register of the complex stack
be ~ and the top register T. These are analogous to the X- and T-registers
in the calculator's own four-register stack.* A complex number 2 is input
to the ~-register by the keystrokes Zy I ENTER. 12x. Upon input of a second
complex number w (i ENTER. I Wy I ENTER. I wx)' 2 is lifted into T and w is
placed in f The previous contents of T are lost.

* Each register of the complex stack must actually hold two real numbers-the real part and
the imaginary part of its complex contents. Thus, it takes two of the calculator registers to
represent one register in the complex stack. In this discussion, we will treat the two registers
containing a complex number as though they were one register.

93

94 Operations with Complex Numbers

T
1-----1

Z Z
1-----1

Y y
1-----1

X x

Memory Stacks

7 _ i~ _} Z

Zx

Regular stack Complex stack

Functions operate on the ~-register, and the result (except for Izl, which
returns a real number) is left in ~. Arithmetic operations involve both the
~- and T-registers; the result of the operation is left in ~.

These functions use registers 00 through 04 .

Equations
Let

Zk = xk + iYk = riBj k = 1, 2

Z = x + iy = reiB

Let the result in each case be u + iv .

(XI + x2) + i(yl + Y2)

(XI - x2) + i(YI - Y2)

ZI Z2 = r
l
r

2
ei(B1 + B2)

ZdZ2 = 2 ei(Bl - B2)

r2

Izi = VX2 + l
l /z = ~ - i-'::L r r

zn = rneinB

Z
l/n = rl/ne i (~ + 3:0k), k = 0 ,1, ... , n-l

(All n roots will be output, k = 0, 1, ... , n -1.)

eZ
= eX (cos Y + isin Y), where Y is in radians

lnz = lnr + if), where z =1= 0

aZ
= ez1na

, where a > 0 and real

logaz =

Operations with Complex Numbers

lnz
-- , where a > 0 and real, z ¥= 0
Ina

ZW = ew1nz
, where z ¥= 0, w is complex

Zl/w = e1nz/ w, where z ¥= 0, w is complex and w ¥= 0

sinz = sinx coshy + icosx sinhy, angles in radians

cosz = cosx coshy - isinx sinhy, angles in radians

sin 2x + isinh2y I · d · tanz = , ang es In ra lans
cos 2x + cosh2y

Instructions
Typical Input and Output

~y-
Complex Function

Wx

~ - -

95

v imaginary part
f-- - -

Input
(z, or wand z)

u real part

Result
(u + iv)

Instruction Table for Complex Arithmetic Functions

Size: 005

Instructions Key In: Display

Complex Arithmetic Functions

1. Key in the first complex number (zx + izy). Zy I ENTERt I Zy
Zx I ENTERt I Zx

2. Key in the second complex number (wx + Wy I ENTERt I Wy
iWy). Wx Wx

3. Select one of four operations:

96 Operations with Complex Numbers

Instruction Table for Complex Arithmetic Functions
(Continued)

Instructions Key In: Display

• Addition IXEOI [0 U=u-value
I RIS I V=v-value

• Subtraction I XEO I @=:J U=u-value
I RIS I V=v-value

• Multiplication IXEO I _< U=u-value
I RIS I V=v-value

• Division I XEOI @B U=u-value
I RIS I V=v-value

4. The result of the operation remains in
the stack; return to step 2 for further
arithmetic.

Complex Functions with One Complex
Number

1. Key in the complex number (zx + iZy). Zy I ENTERt I Zy
Zx Zx

2. Select one of these operations:

• I SINZ I (sin z) I XEQ I I SINZ I U=u-value
I RIS I V=v-value

• I cosz I (cos z) I XEQ I I cosz I U=u-value
I RIS I V=v-value

• I TANZ I (tan z) I XEQ I I T ANZ I U=u-value
I RIS I V=v-value

• I MAGZ I (magnitude, Izl) I XEQ I I MAGZ I R=magnitude

• I CINV I (1/z) I XEQ I I CINV I U=u-value
I RIS I V=v-value

• I etZ I (eZ
) I XEQ I I etZ I U=u-value

I RIS I V=v-value

• [INt] (In z) I XEQ I I LNZ I U=u-value
I RIS I V=v-value

• I ZtN I (zn , where n is an integer) I ENTERt I n n
I XEO I I ZtN I U=u-value
I RIS I V=v-value

• IZt1/NI (z1/n) I ENTERt In n

Note that n roots (u + iv) will be found. I XEO I I Z t 1 IN I U=u-value
I RIS I V=v-value

Operations with Complex Numbers 97

Instruction Table for Complex Arithmetic Functions
(Continued)

Instructions Key In: Display

• I atZ I (aZ
, where a is real) I ENTERt I a a

IXEQI~ U=u-value
I RIS I V=v-value

• I LOGZ I (Iogaz, where a is real) I ENTERt I a a
I XEQ I I LOGZ I U=u-value
I RIS I V=v-value

Complex Functions with Two Complex Numbers

1. Key in the first complex number (zx + iZy). Zy I ENTERt I Zy
Zx I ENTERt I Zx

2. Key in the second complex number (wx + Wy I ENTERt I Wy
iwy). Wx Wx

3. Select one of these operations:

• I ZtW I (ZW) I XEQ I I ZtW I U=u-value
I RIS I V=v-value

• I Ztl/W I (zl /w) I XEQ I I Ztl/W I U=u-value
I RIS I V=v-value

Remarks
When flag 04 is set, the individual complex operations (which are ac­
tually programs) can be accessed as subroutines in your own
programs. Complex results are returned to the X- (real part) and Y­
(imaginary part) registers.

Examples
Evaluate the expression

where Z1 = 23 + 13i, Z2 = - 2 + i, z3 = 4 - 3i.

Suggestion: since the program can remember only two numbers at a
time, perform the calculation as

ZI x [1/(Z2 + Z3)].

Keystrokes
4

I XEO I 'j, 005

1 I ENTERt I
2 I CHS I I ENTER t I

3 I CHS II ENTERt I 4

I XEO I

I RIS I

IXEOI [w,
I RIS I
13 Ir::E:-:CN=TE=R:-:t'l 23

IXEOI C

I RIS I

Display

1.0000
-2.0000
4_

U=2.0000

V=-2.0000

U=0.2500

V=0.2500
23_
U=2.5000

V=9.0000

Find the three cube roots of 8.

Keystrokes

o I ENTERt I
8 I ENTERt 13
I XEO I

I RIS I

I RIS I

I RIS I

I RIS I

I RIS I

Display

0.0000
3_

U=2.0000
V=O.OOOO
U= -1 .0000
V=1 .7321
U= -1.0000
V= -1.7321

Sets the display for­
mat used here .
Optional-sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE ~ 005 .

Real part (z2 + z3) '

Imaginary part (z2 +
z3) '

1/(z2 + z3)

Operations with Complex Numbers 99

Evaluate ec2
, where z = (1 + i) .

Keystrokes

1 I ENTERt I
1 I ENTERt I 2

I XEQ II ZtN I
I RIS I
I XEQ II CINV I
I RIS I
I XEQ II etZ I
I RIS I

Evaluate sin (2 + 3i).

Keystrokes

3 I ENTERt I 2

I XEQ II SINZ I
I RIS I

Display

1.0000
2_

U=O.OOOO
V=2.0000
U=O.OOOO
V= -0.5000

U=0.8776
V= -0.4794

Display
2_

U=9.1545
V= -4.1689

VECTOR OPERATIONS

The VC program simulates a "Vector Calculator" superimposed on your
normal calculator. It redefines the functions in the top two rows of keys
to these vector operations: addition, subtraction, distance, dot product,
cross product, angle between vectors, norm, and unit vector. This pac also
offers these operations to you as regular functions (without the Vector
Calculator) that you can execute like any other HP-41 (non keyboard)
function . Their Alpha names are given under ·Summary of Vector
Operations".

The vector operations operate on three-dimensional vectors described in
rectangular coordinates. That is, every vector has three components, Vx' Vy'
and Vz. For a two-dimensional vector, z must be equal to zero.

A complement to VC is the Coordinate Transformations program, TR .
This means you can carry out vector operations and transformations on
the same data, since you can access either program from the other one.
The use of coordinate transformations is covered in the next chapter, "Co­
ordinate Transformations".

Method
The Vector Stack

V1 x1' Y1' Z1

V2 x2, Y2' Z2

The Vector Calculator (program VC) creates a vector stack that works in
concert with the regular RPN stack (X-, Y-, Z-, and T-registers). When
you enter the three components of a vector in the order Vz' Vy' Vx' they
occupy the regular stack like so:

The RPN Stack

T T

Z Vz I ENTERt I Vy I ENTERt I Vx Z Vz
y • y Vy

X X Vx

101

102 Vector Operations

How do the two stacks relate to each other? Basically, the "bottom" level
of the vector stack (V 2) is stored in registers X, Y, and Z of the stack,
while the "upper" level of the vector stack (VI) is stored in data storage
registers ROl , R02' and R03 ' You can imagine the registers shared in a
three-dimensional stack like so:

z
y

x

The vector stack is two vector-levels high, so it accomodates two vectors.
Note, however, that each level contains three components: the X- , y-, and
z-components for each vector.

The diagram on the next page shows you what happens in vector entry
and vector-stack movement from the point-of-view of the vector stack
and from the point-of-view of the RPN and vector stacks together.

When you enter two vectors (as you would prior to executing a typical
vector operation), the first one you key in becomes VIand the second one
you key in becomes V2. A "vector entry" (the function ~, or pressing
I RIS I in the Vector Calculator) copies the bottom vector (V2) into the top
vector (VI)' Then, when you key in the next vector, it overwrites the copy
in the bottom vector (V 2), leaving the first vector in VIand the second
vector in V 2'

Vector Operations 103

Vector-Stack Lift

1. Enter vector's 2. Vector enter: 3. Enter second
components: vector's

components:

Vector v'a Vl Xl' Yl' Zl t
Vl Xl' Yl' Zl

Stack
V2 Xl' Yl ' Zl V2 Xl' Yl' Zl V2 X2• Y2' Z2

-
Vz I ENTERt I [2[J (or I RIS I Vz I ENTERt I

Input Vy I ENTERt I Vx in Vector Vy I ENTERt I Vx
Calculator)

ROl R02 R03 ROl R02 R03

vl l Xl I Yl I Zl I vl l Xl I Yl I Zl I
Vector

t t t and RPN
Stacks v2 1 Xl I Yl I Zl I v2 1 Xl I Yl I Zl I V2 1X21Y21Z21

X Y Z X Y Z X Y Z

t t t -
All two-vector operations with a vector result place the resulting vector in
both VI and V2. This facilitates chained (subsequent) vector calculations.
A vector-recall copies V2 to VI then puts the recalled vector into V2.

Instructions
• Starting VC (invoking the vector calculator) does not clear the vector

stack, so you can still work with previously stored vectors.

• Be sure to give each vector three dimensions. If it' has only two
dimensions, then enter a zero for Vz.

• Enter the vector's dimensions as rectangular coordinates. If you have
polar coordinates (magnitude and angle) for a two-dimensional
vector, convert them using the function [P+R I (polar to rectangular).

• For those operations involving angles, the units will match the cur­
rent angular mode setting (Degrees, Radians, or Grads) .

• The view function ([[]) is very useful for reviewing the compo­
nents of V2 in the stack.

• VI refers to the "top" vector; the one in ROI ' Ro2, and Ro3. V2 refers to
the "bottom" vector; the one in X, Y, and Z.

104 Vector Operations

rIl ,p Cp I /\If U II 4.. , I II

USER

1 j j ,
v+ v- TR VD VIEW

[JGJGJGJGJ
[V~Y) o [V:) ~ (M~NU)

0

This menu will show you which key corresponds to which function in
VC. Press 0 to recall this menu to the display at any time.

To clear the menu at any time, press G. This shows you the contents of
the X-register, but does not end the program. You can perform calcula­
tions, then recall the menu by pressing 0 . (However, you do not need to
clear the program's display before performing calculations.)

The Vector Calculator provides two methods for entering a vector into the
vector stack. The vector-enter function (~) is analogous to the
1 ENTER. 1 key. A shortcut method of vector entry is the 1 RIS 1 key. When­
ever you enter the vector components from the keyboard when the menu
was the last thing displayed before keying in the three components,
pressing 1 RIS I will perform the same function as [VE I.
The following table shows the keystrokes to execute vector operations on
the Vector Calculator (program VC). For a definition of each operation,
refer to the "Summary of Vector Operations" following the Instruction
Table.

Vector Operations 105

Instruction Table for VC

Instructions

1. Start the program for the Vector Calculator,
VC.

2. Enter the three components of your first
vector (V l). Separate two vectors with a
"vector enter" after the first set of coordi­
nates: execute ~ or-only if the menu
was the last thing displayed before you en­
tered the first component-press I RIS I.

3. Key in the second vector (V2)' Do not press
I RIS I·

4. Display the main menu (optional).

5. Execute a vector operation:
• Dot Product, Vl . V2

• Cross Product, Vl x V2

• Angle between Vl and V2

• Norm (magnitude) of V2
(This also puts the unit vector of V 2 in Y,
Z, T.)

• Unit Vector of V2
(This also puts the norm in the T­
register.)

• Vector Add, Vl + V2

• Vector Subtract, Vl - V2

• Coordinate Transformations-refer to
the "Coordinate Transformations" chap­
ter for instructions. I USER I @]
retrieves the Vector Calculator.

• Distance between V 1 and V 2

Key In:

Zl I ENTERt I
Yl I ENTERt I
Xl I RIS I

Z2 I ENTERt I
Y2 I ENTERt I
x2

QJ

0 (DP)

[[] (CP)
I RIS It
I RIS It
@] (4)
@] (M)

W (UV)
I RIS It
I RIS It

. 0
I RIS It
I RIS It
. [[]
I RIS It
I RIS It
. @]
I USER I @]

. @]

Size: 004

Display

DP CP 4- M UV

Zl

Yl
DP CP 4- M UV

z2
Y2
x2

DP CP 4- M UV

DOT = result

X=x result
Y=Y result
Z=z result

4 = result

M=result

X=x result
Y=y result
Z=z result

X=X result
Y=y result
Z=Z result

X=X result
Y=y result
Z=Z result

ZO,YO,XO?
DP CP 4 M uv

d=result

106 Vector Operations

Instruction Table for VC (Continued)

Instructions Key In: Display

6. Restore the main menu after or between op- QJ (or I RIS I) DP CP 4. M UV
erations (optional).

7. To view the components of V2, the vector in CIJ X = x-coordinate
the stack: I RIS It Y = y-coordinate

I RIS It Z=z-coordinate

8. To exchange V1 and V2 (the vector compo- [£] DP CP 4. M UV
nents in R01 , R02 , and R03 switch with
those in X, Y, and Z):

9. To store V2 's components as vector-register nOD DP CP 4. M UV
n in R3n + l ' R3n +2, and R3n +3 (n ;;. 0):

10. To recall the contents of vector-register n neD X = x-coordinate
into V 2 (X, Y, and Z), pushing V 2 into V 1 : I RIS It Y = y-coordinate

I RIS It Z=z-coordinate

• To execute a program, press I XEQ II ALPHA I Alpha name I ALPHA I or use a User-defined key.

t If you have a printer attached, the display automatically returns to the main menu after
printing the result(s).

Remarks
You can eliminate the display of results on the Vector Calculator by
setting flag 04. This lets you perform successive calculations more
quickly by not having to step through the display of the results . You
can still view the results when you want by pressing . [IJ.
This program uses local Alpha labels (as explained in the owner's
manual for the HP-41) assigned to keys [Ej-[£], [K]-CIJ, and

[Ej- . [IJ . These local assignments are overridden by any User-key
assignments you might have made to these same keys, thereby defeat­
ing this program. Therefore be sure to clear any existing User-key
assignments of these keys before using this program, and avoid redefin­
ing these keys in the future.

Vector Operations 107

Summary of Vector Operations
The vector operations are accessible in two different ways:

• By using the Vector Calculator and its redefined keys, as explained
above.

• By directly executing a vector function using its Alpha name, like
any other HP-41 nonkeyboard function.

• VI refers to the first (or "topR) vector: the one in ROI ' Ro2, and Ro3 . V2
refers to the second (or "bottom") vector: the one in X, Y, and Z.

The operations perform the same calculations regardless of how they are
executed. These characteristics are given in the table below, along with
their Alpha names and descriptions.* You can also execute these opera­
tions by Alpha name from inside the Vector Calculator, though it is
usually more convenient to use the Vector Calculator's redefined keys.

When using vector operations without the Vector Calculator-that is,
when using their Alpha names (as given below)-it is best if USER is not
on (User keyboard inactive) . This avoids conflicts between User-key as­
signments made by the Vector Calculator and Normal keyboard functions
(such as I x~y I).

Table of Vector Operations

Function Effect

I CROSS I (cross V1 x V2. Returns the three-dimensional product
product) into V2 (in X, Y, Z). A copy goes into V1 . Ro is not

preserved .
Vector Calculator also uses ffiJ (CP).

I DOT I (dot V1 • V2. Returns the scalar product into the X-regis-
product) ter. (V2 is destroyed; V1 unaffected.)

Vector Calculator also uses CEJ (DP).

[TID (coordinate Calls up the Coordinate Transformations program,
transformations) TR. Refer to the next chapter.

Vector Calculator also uses II@] .

* The vector-viewing operation is available only in the Vector Calculator, as is the norm oper­
ation. However, the norm is also returned as part of the unit-vector operation.

108 Vector Operations

Table of Vector Operations (Continued)

Function

~ (unit vector)

~ (vector
addition)*

[B (vector
subtraction)*

~ (vector sca­
lar multiplication)

I v 4. 1 (vector
angle)

I VD 1 (vector
distance)

~ (vector
enter)

~ (vector
recall)

Effect

Converts V2 (in X, Y, Z) into its unit vector, and re­
turns the norm to the T-register. (V1 is unaffected.)
Vector Calculator also uses [I) (UV).
Note: the unit vector of (0 ,0,0) is (0 ,0,1) with a norm
of zero.

V1 + V2. Returns the sum into both V1 and V2.

Vector Calculator also uses 0 .
V1 - V2. Returns the difference into both V1 and
V2·
Vector Calculator also uses 1]] .

V2 • a. Multiplies V2 (in Y, Z, T) by a in X-register,
and returns result to X, Y, and Z.

Returns the angle into the X-register. The angle is
expressed in the current angular setting . V1 and V2
are not preserved ; the unit vector of V2 ends up in
V1·

Vector Calculator also uses [QJ (4).
Note: the vector (0,0,0) is assumed to have the
same direction as (0 ,0,1).

Returns the scalar distance between V1 and V2 into
the X-register. Also returns the difference vector (V1
- V2) i[lto V1· V2 is not preserved .
Vector Calculator also uses []] .

Analogous to I ENTERt I. Used to separate the entry
of two vectors (V 1, then V 2) prior to executing an
operation . (Vector entry copies the first vector from
X, Y, Z into R01 ' R02' R03')
In the Vector Calculator you can press I RIS 1 in­
stead, but only if the menu was just displayed.

With n (n > O)t in the X-register, copies V2 to V1 ,

then recalls a three-dimensional vector from vector­
register n into V2 (X , Y, and Z) from storage
registers R3n+1, R3n +2, and R3n +3. Analogous to
I RCL I. (The previous V2 is lifted into V1 , overwri t ing
Vd
Vector Calculator also uses [IJ .

Vector Operations 109

Table of Vector Operations (Continued)

Function Effect

I VS 1 (vector With n (n > O)t in the X-register, copies and stores
store) V2 (now in Y, Z, and T) as vector-register n in stor-

age registers R 3n +1, R 3n +2, and R 3n +3. Analogous
to I STO I. (V2 is unaffected .)
Vector Calculator also uses []] .

I VXY 1 (vector V1 exchanges values with V2. Coordinates x1 , Y1,
exchange) and z1 move from R 01 ' R 02 ' and R03 into the X- , Y-,

and Z-registers, while x2, Y2, and z2 move from X,
Y, and Z into R 01 ' R 02 , and R 03 '

Vector Calculator also uses [[I (I x~y I) .

• Remember that + and - are shifted Alpha characters.

t If n ~ 0 then [Y[) and [Y[J both copy V 2 to V 1, the same as ~. Do not use n < 5 if you
plan to store vectors for use with the TR program (W)·

Examples
Find the area of the triangle determined by the vectors VI = (- 3, - 2,2)
and V 2 = (- 2,2,3). Recall that the area of the parallelogram determined
by VI and V2 equals the norm of VI x V2.

(0,0,0)

(-3 ,-2,2)

110 Vector Operations

Keystrokes

0RJ 4

I XEQ II SIZE I 004

2 I ENTERt I
2 I CHS II ENTER t I
3 I CHS II RIS I
3 I ENTERt I
2 I ENTERt I
21 CHS I
QJ

[ID (CP)

I RIS I
I RIS I

QJ or I RIS I
[[) (M)

Display

DP CP 4- M UV

2.0000
-2.0000
DP CP 4- M UV
3.0000
2.0000
-2_
DP CP 4- M UV

X= -10.0000
Y=5.0000
Z= -10.0000

DP CP 4- M UV
M=15.0000

7.5000

Sets the display for­
mat used here.
Optional-sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE ~ 004.

Starts the Vector Cal­
culator. (You could
also use the opera­
tions directly,
without the Vector
Calcula tor.)

Enter zl' then Y1 '
then key in Xl' end­
ing with vector entry.

Enter z2' then Y2'
then x2'

Retrieves the vector
menu (optional).

Result is (-10, 5,
- 10).

Ready to find norm.
Norm (magnitude),
which equals the
area of the
parallelogram.
This is the area of
the triangle, which is
half that of the
parallelogram.

Resolve the following three loads along a 175-degree line. Use the dot
product on the sum of the three loads to do so. You will first need to
convert the polar coordinates to rectangular coordinates. Remember to set
z = O.

Vector Operations 111

y

170 LB .4 1430
185 LB .4 620

-------------=~~--------------- x

-r/
100 LB .4 261 0

Save the results for the polar coordinates of L3 and the 175°-line so that
you can re-use them to find the resolution (dot product) when L3 is dou­
bled. This example stores those results in vector-registers 1 and 2.
This solution uses Alpha (manual) execution of the vector operations, but
you can use the Vector Calculator, as in the above example. Make sure
that the User keyboard is not active.

Keystrokes Display

I XEQ I CElli 010

o I ENTER. I 0.0000

62 I ENTER. I 62.0000

185 I P+R I 86.8522

• If the USER annunciator is on, press I USER I to turn it off.

Optional-sets the
number of storage
registers needed for
this example (includ­
ing vector storage).
This is not necessary
if your allocation is
already SIZE ;;;. 010 .

Make sure the calcu­
lator is in Degrees
mode.

Enters zero for the z­
coordinate (in
preparation for the
vector operations af­
ter the coordinates
are transformed).

To convert Ll to rect­
angular coordinates,
first enter 8, then key
in r.
x-coordinate for L1.

112 Vector Operations

Keystrokes Display

I x~y 1* 163.3453 y-coordinate for L1.
This step is op-
tional-it lets you
view y.

~* 86.8522 Restores x to X and y
to Y - only necessary
if you switched them
(in the last step) .

I XEO I [2[) 86.8522 No menu; displays
previous result .

o I ENTERt I 0.0000
143 I ENTERt I 143.0000
170 1p+RI -135.7680 Displays x2' L2 is con-

verted to rectangular
coordinates.

I XEO I I v+ I -48.9158 x-coordinate of resul-
tant vector (in both
V1 and V2).

o I ENTERt I 0.0000
261 I ENTERt I 261.0000
100 ~+R -15.6434 x3' L3 is converted to

rectangular
coord ina tes .

1I XEQI ~ -15.6434 Stores L3 in vector-
register 1 (in R4, Rs,
R6)'

I XEO I [EJ -64.5592 x-coordinate of resul-
tant vector of (Ll +
L2+L3) in both V1
and V2.

o I ENTERt I 0.0000
175 I ENTERt I 175.0000
1 I P+R I -0.9962 x-coordinate of the

175°-line.

21 xEQI ~ -0.9962 Stores 175°-line in
vector-register 2 (in
R7, R8, R9)'

• Note that when USER is on, you cannot use [il] within the Vector Calculator to exchange X
and Y because this key is redefined in the Vector Calculator to exchange VI and V2. Use
[]IJ instead.

Keystrokes

I XEO I@olj

2IXEQI~
IXEOI DOT

Display

78.8586

-64.5592

-15.6434

-80.2027

-0.9962
85.8342

Programming Information

Vector Operations 113

The dot product is
the resolution of the
resultant L vector
along the 175°-line.
Returns the resultant
summed vector
(Ll +L2+L3) to V 2 (X,
Y, Z).

Recalls L3.

Adds L3 to the previ­
ous sum (in effect
doubling L3)'

Recalls the 175°-line.
Finds the new dot
product for the reso­
lution of the new
sum along the 175°­
line.

The following subroutines in VC can be used in your own programs.
They are three-dimensional vector operations for one or two vectors .

Minimum Size to Run: SIZE 004, not including vector-store and vec­
tor-recall.

Subroutines
-

Subroutine Name Initial Registers Final Registers

CROSS (cross product) X-register = V2x X = (V1 x V2)x
V-register = V2y
Z -register = V 2z

Y = (V1 x V2)y
Z = (V1 x V2)z
Roo = scratch

R01 = V1x R01 = (V1 x V2)x
R02 = V1y
R03 = V1z

R02 = (V1 x V2)y
R03 = (V1 x V2)z

DP (dot product) X-register = V2x X = V1 . V2
V-register = V2y
Z-register = V2z
R01 = V1x R01 = V1x
R02 = V1y
R03 = V1z

R02 = V1y
R03 = V1z

114 Vector Operations

Subroutines (Continued)

Subroutine Name Initial Registers Final Registers

V + (vector add) X-register = V 2x X = V1x + V2x
Y -register = V 2y
Z-register = V2z

Y = V1y + V2y
Z = V1z + V2z

R01 = V1x R01 = V1x + V2x
R02 = V1y
R03 = V1z

R02 = V1y + V2y
R03 = V1z + V2z

V - (vector subtract) X-register = V2x X = V1x - V2x
Y -register = V 2y
Z -register = V 2z

Y = V1y - V2y
Z = V1z - V2z

R01 = V1x R01 = V1x - V2x
R02 = V1y
R03 = V1z

R02 = V1y - V2y
R03 = V1z - V2z

V' (vector scalar multiply) X = a X = Vx • a
Y = Vx Y = i oa
Z = V Z = z· a
T = ~ z

VA (vector angle) X-register = V2x X = small angle between V 1
Y -register = V 2y
Z-register = V2z

and V2

R01 = V1x R01 = unit vector V 2x
R02 = V1y
R03 = V1z

R02 = unit vector V2y
R03 = unit vector V 2z

VD (vector distance) X-register = V2x X = distance between V 1
Y -register = V 2y and V2
Z -register = V 2z
R01 = V1x R01 = V1x - V2x
R02 = V1y
R03 = V1z

R02 = V1y - V2y
R03 = V1z - V2z

VE (vector enter) X -register = V x X-register = V x
Y -register = i
Z -register = z

V-register = i
Z-register = z
R01 = Vx

R02 = i
R03 = z

VR (vector reca/~ X = n X = R3n + 1
Y = Vx Y = R3n +2
Z = V Z = R3n +3
T = ~ z

R01 = Vx

R02 = i
R03 = z

Vector Operations 115

Subroutines (Continued)

Subroutine Name Initial Registers I Final Registers

VS (vector store) X = n X = Vx
Y = Vx Y = V
Z = V Z = i
T = i z

z
R3n +1 = Vx

R3n +2 = ~
R3n +3 = Z

VXY (vector exchange) X -register = V 2x X-register = V1x
V-register = V2y
Z -register = V 2z

Y -register = V 1 Y
Z -register = V 1 z

R01 = V1x R01 = V2x
R02 = V1y
R03 = V1z

R02 = V2y
R03 = V2z

UV (unit vector) X = Vx X = unit vector x
Y = V Y = unit vector y
Z = i Z = unit vector z z

T = norm

Comments. Vector operations work on one or two vectors. One is
stored in the stack (X-, Y -, and Z-registers), another in ROI ' R02' and
R03 ' For a two-vector operation, VI is considered to be in ROI-Ro3 and
V 2 is considered to be the vector in the stack. The vectors' compo­
nents are stored in order; that is, Vx' Vy' and Vz into X, Y, and Z or
into ROI ' R02 ' and R03' respectively.

COORDINATE TRANSFORMATIONS

The TR program performs three-dimensional translation of coordinates,
with or without rotation. This program uses parts of the VC program for
vector operations. You can access TR either directly or from VC. (VC and
the Vector Calculator are discussed in the preceding chapter, "Vector
Operations".)

The program prompts you for the coordinates of the origin of the new
system (xo, Yo, zo), the angle of rotation of this system relative to the origi­
nal system, and the axis about which the rotation is performed. You can
then enter points in the original system (x, y, z) that you want trans­
formed to the new system (x', y', z'), or enter points in the new system
(x',y', z') that you want transformed to the original system (x, y, z). For a
two-dimensional case, enter Zo as zero.

A Two-Dimensional Rotation about the Axis (0, 0, 1)

y

x

ORIGINAL SYSTEM

"'-

NEW SYSTEM

After specifying the new origin (x, y, z), you specify the rotation angle .
For a three-dimensional system with a non-zero angle of rotation, you
also specify its rotation vector (a, b, c). The rotation vector defines the axis
about which the rotation is to be done; it can have any non-zero
magnitude.

117

118 Coordinate Transformations

quations
----" ---->. ----" ----" ----"

P' = [(P - T)· n)n(l - cosll) + (P - T)cosll + [(P - T) x n)sinll

P = [(P' . -;) -; (1 - cosll) + P' cosll + (P' x -;) sin(-II)) + T
where

P' = new system coordinates
P = old system coordinates
T = origin of new system
-; = unit rotation vector (a, b, c)
II = rotation angle

Two-dimensional transformations are handled as a special case of three­
dimensional transformations with (a, b, c) set to (0, 0, 1).

Instructions
You can start TR either directly (I XEQ I C!BJ) or from the Vector Calculator
(@]) in ye. The Vector Calculator is covered in the 'Vector Opera­
tions' chapter.

Enter coordinates as rectangular coordinates and specify angles according
to the current setting (Degrees, Radians, or Grads mode).

• For two dimensions, input zero for the z-value.

• For pure translation, input zero for the rotation angle .

• For pure rotation, input zeros for Xo, Yo, and zoo

• The sign of the rotation angle is determined by the right-hand rule
and the direction of the rotation vector. For two dimensions,
counter-clockwise rotation is considered positive.

• You can switch into and out of the Vector Calculator by pressing
@] . ("C' for Calculator and Coordinate transformations). You can

then perform vector operations upon vector coordinates in the stack
and in storage registers. (Refer to "Remarks" for the storage loca­
tions of the vector coordinates.)

• The view function ([I)) is very useful for reviewing the coordi­
nates of the point in the stack.

Coordinate Transformations 119

'?I ~' '?I 0 N E ~J I '# I

I USER I

+ 1 + :'"
QGJG]oGJ
0000 (M~NU)
0

Once you have entered your variables, this menu shows you which key
corresponds to which function in TR. To restore this menu to the display
at any time, press QJ if the USER annunciator is on. (If it is not on, press
I USER I to turn it on.) Or, if the calculator is displaying results, you can
press I RIS I until the menu appears. This will not disturb the program in
any way.

To clear the menu at any time, press G. This shows you the contents of
the X-register, but does not end the program. You can perform calcula­
tions, then continue the program by pressing QJ. (However, you do not
need to clear the program's display before performing calculations.)

Instruction Table for TR

Size: 017

Instructions Key In: Display

1. Start program TR. The menu items in the dis- 1 XEQ 1 em' ZO,YO,XO?
play indicate the locations of functions in the
top row of keys.

2. Enter the origin for the new system. Zo 1 ENTERt I Zo
Yo [ENTERt I Yo
Xo 1 RIS I ROT4?

3. Input the rotation angle of the new system: 81 RIS I c,b,a ?

120 Coordinate Transformations

Instruction Table for TR (Continued)

Instructions Key In: Display

4. For a three-dimensional system: Input the ro- c I ENTERt I c
tat ion vector's coordinates. b I ENTERt I b
For a two-dimensional system: just press a I RIS I tN to NEW
I RIS I·

5. To transform the coordinates of a point from z I ENTERt I z
the original system to the new system (tN), y I ENTERt I y
enter the three coordinates of that point and x0 (tN) X= x'
select tN. (For two dimensions, set z=O.) I RIS It y= y'

I RIS It Z= z'
I RIS It tN to NEW

6. To transform the coordinates of a point from z' I ENTERt I z'
the new system to the original system (to), y' I ENTERt I y'
enter the three coordinates of that point and x' (]] (to) X= x
select to. (For two dimensions, set z=O.) I RIS It y= y

I RIS It Z= z
I RIS It tN to NEW

7. To view the coordinates of the point in the [[] X=x-coordinate
stack: I RIS It Y = y-coordinate

I RIS It Z=z-coordinate
I RIS It tN to NEW

8. To transform another set of coordinates, go
back to step 5 or 6.

9. To set up a new transformed system, select [[] (NEW) ZO,YO,XO ?
NEW and then return to step 2.

10. To use vector operations, switch to the Vector [TI DP CP 4- M UV
Calculator. All the functions described in the (USER must be
"Vector Operations" chapter are then available on)
to you .

11. To return to the TR program from VC: [TI ZO,YO,XO ?

12. To transform a vector result V2 from VC, by-
pass the initial prompts and call up the main
menu (assuming a transformed system is al-
ready defined): I USER I QJ tN to NEW

• To execute a program, press I XEQ II ALPHA I Alpha name I ALPHA I or use a User-defined key.

t This keystroke is unnecessary if you have a printer attached because the printer automati­
cally prints the results and then displays the selection menu.

Coordinate Transformatior) 121

Remarks
This program uses local Alpha labels (as explained in the owner's manual
for the HP-41) assigned to keys 0, []], W, @], and [IJ. These local
assignments are overridden by any User-key assignments you might have
made to these same keys, thereby defeating this program. Therefore be
sure to clear any existing User-key assignments of these keys before using this
program, and avoid redefining these keys in the future.

However, these local Alpha labels are active only while the USER annun­
ciator is on. This allows you to use the arithmetic functions in the top two
rows while the USER annunciator is off. (As long as USER is on, the keys
mentioned above are redefined and will not execute their Normal
functions .)

Data Storage. The vector or point you want to transform is stored in
R04' R 05, R 06' which is vector-storage register 1 (initially from the X -, y -,
and Z-registers) . The rotation vector is stored in R07' ROB, R09' which is
vector-storage register 2. The origin of the new system is stored in RIO,
Rll , R12, which is vector-storage register 3. The rotation angle is stored in
R 16, while R 13, R 14, and R 15 are used for scratch.

If you will be using vector storage operations (~, [§J, and the Vector
Calculator) along with TR, keep in mind that TR uses Ro-R16 when it is
initialized (I XEQ I lliJ). This means you should not store vectors in vector
registers 1 through 5 (if you plan to use TR in your vector calculations).

Flags. Flag 01 is used to indicate whether the transformation is to be
made to the new system or to the original system. When flag 1 is set, the
transformation is to the new system.

Flag 05 is set when the system is rotated.

122 Coordinate Transformations

Examples
The coordinate systems (x, y) and (x', y') are shown below.

y
•

• P1(-9,7) P3 (6 , 8)

y'

x'

\
P2 (-5, - 4)

•
e = 2YO

~ ____ L
- 3.6)

•

Convert the points PI' P2, and P3 to equivalent coordinates in the (x', y')
system. Convert the point P4' to equivalent coordinates in the (x, y)
system.

Keystrokes

4

I XEQ II SIZE I 017

o I ENTER. I
4 I CHS II ENTER. I
71 RIS I

Display

ZO,YO,XO ?

0.0000

-4.0000
ROT4. ?

Sets the display for­
ma t used here.
Optional-sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE ~ 017.

Prompts for zo, Yo,
and Xo of new
system.
Enters zero for zoo

Prompts for angle of
rotation.

Coordinate Transformations 123

Keystrokes Display

27 I RIS I c,b,a ? Prompts for the rota-
tion vector. Skip this
for a two-dimen-
sional system.

I RIS I tN to NEW Prompts for Pl'

o I ENTERt I 7 I ENTERt I 7.0000
9 I CHS I 0 (tN) X= -9.2622 Xl'

I RIS I Y=17.0649 YI'

I RIS I z=O.OOOO zl'

I RIS I tN to NEW Ready for P2. This
step is optional-it
brings up the main
menu.

o I ENTER t I 4 I CHS I
I ENTERt I -4.0000
51 CHS I 0 (tN) X= -10.6921 x2' from P2·

I RIS I Y=5.4479 Y2'

I RIS I z=o.oooo z2'

[RIS I tN to NEW Brings back the menu
for your review.

o I ENTERt I 8 I ENTERt I 8.0000
60 (tN) X=4.5569 x3' from P3·

I RIS I Y=11.1461 Y3'

I RIS I z=o.oooo z3'

I RIS I tN to NEW Brings back the menu
for your review.

o I ENTERt I 3.6 I CHS I
I ENTERt I -3.6000
2.7 []] (to) X=11.0401 X4 from P4'·

I RIS I Y= -5.9818 Y4

I RIS I z=O.OOOO Z4

A three-dimensional coordinate system is translated to (2.45, 4.00, 4.25) .
After the translation, a 62 .5 degree rotation occurs about the (0, -1, -1)
axis. In the original system, a point had the coordinates (3.9, 2.1, 7.0).
What are the coordinates of the point in the translated, rotated sytem?

124 Coordinate Transformatnns

Keystrokes Display

QJ tN to

m (NEW) ZO,YO,XO

4.25 I ENTERt I 4 I ENTERt I 4.0000
2.451 RIS I ROT4?
62.5 I RIS I c,b,a ?

1 I CHS II ENTER t I -1.0000
1 I CHS II ENTER t I -1.0000
o I RIS I tN to

71 ENTERt 12.1 I ENTERt I 2.1000
3.9 [E] (tN) X=3.5861
I RIS I Y=0.2609
I RIS I Z=0.5891

NEW

?

NEW

Retrieves menu (if
USER is on).
Prompts for a new
system.

Ready for P

x'
y'
z'

In the translated, rotated system above, a point has the coordinate
(1, 1, 1). What are the corresponding coordinates in the original system?

Keystrokes Display

I RIS I tN to NEW Retrieves main menu.
Optional step.

1 I ENTERt 11 I ENTERt 1 1.0000
1[]] (to) X=2.9117 x
I RIS I Y=4.3728 Y
I RIS I Z=5.8772 z

Programming Information
The subroutine CT can be used in your own programs. It performs co­
ordinate transformations (rotations and translations) in three dimensions.
It takes the X-, y-, and z-values from the stack (X-, Y-, and Z-registers)
and transforms them to another system, or from the new system to the
original system.

Coord "1ate Transformat on) 125

Minimum Size to Run CT: SIZE 017.

Flags Used: 01, as .

Initial Registers

X-register = x-coordinate

Y-register = y-coordinate

Z-register = z-coordinate

RO? = a (Nx• the unit ro­
tation vector)

ROB = b (Ny)

Rag = c (Nz)

RlO = Tx. the translation
vector

Rn = Ty

R12 = Tz

R16 = rotation angle

Subroutine: CT

Final Registers

X-register = transformed x­
coordinate

Y -register = transformed y­
coordinate

Z-register = transformed z­
coordinate

Flags to Initialize ~
SF 01 to transform to the
new system

CF 01 to transform to the
original system

SF 05 to rotate the
coordinates

Roo = (1 - cosO)(N . P) CF 05 to not rotate the
coordinates

R01 = contents of x-
register

R02 = contents of Y-
register

R03 = contents of Z-
register

R04 = Px (or Px - Tx if
flag 01 set)

R05 = Py (or Py - Ty if
flag 01 set)

R06 = Pz (or Pz - Tz If
flag 01 set)

RO? = a (Nx• the unit ro­
tation vector)

ROB = b (Ny)

Rag = c (Nz)

RlO = Tx. the translation
vector

Rn = Ty

R12 = Tz

R16 = rotation angle

Comments. To use CT, load the translation vector (T), the unit rotation
vector (N), and the rotation angle, set flag 01 to go to the new system or
clear flag 01 to go to the original system. Set flag as to rotate the vector's
coordinates (P) . The result is returned to the X-, Y -, and Z-registers and in
Raj , R02' and R03'

NUMBER CONVERSIONS
AND BOOLEAN LOGIC

This pac includes several functions for calculating and manipulating bi­
nary, octal, and hexadecimal numbers. There are six functions for number
conversion, four Boolean functions, and two bit-manipulating functions .
All functions use a word length of 32 bits.

Number Conversion Functions
Six functions are provided for converting numbers between decimal val­
ues and the equivalent binary, octal, and hexadecimal values. The figure
below illustrates the action of these six functions.

(BINVIEW)

Binary
..

Number
@ill[)

r _

OCTVIEW)

Decimal
Number ..

CQ~n!D ..
I

"
,

~ ,
~ H. xv w)

Hexadec­
imal

Number

Valid Input Range for Data

Octal
Number

• The binary input for ["i3"[NIN] must be O's and l's; ten digits
maximum.

• The decimal input for [i3IfiviEWJ must be an integer from ° through
1,023. Non-integers are truncated. The absolute value is used.

• The octal input for @:cTiliJ must be digits from ° through 7; ten
digits maximum.

127

128 1IJ"lT'ber Conversion" "nd Bool~an Logic

• The decimal input for T ~ must be an integer from 0 through
1,073,741,823. Non-integers are truncated. The absolute value is
used.

• The hexadecimal input for HEXIill must be digits from 0 through 9
and "letters" A through F; eight digits maximum.

• The decimal input for IEXVIEW] must be an integer from 0 through
4,294,967,295 . Non-integers are truncated. The absolute value is
used.

Instructions
• The "VIEW" functions convert the display of the (decimal) value in

the X-register. (The stack continues to hold the decimal version.)
Press G to display the X-register again.

• The current format determines the number of digits displayed
between commas of the non-decimal number.

• The "IN" functions are prefix functions : first you execute the func­
tion, then you key in your value. Press I ENTER I to see the result.

• To abort an "IN" function press I ALPHA II ALPHA I.
• An "IN" function executed in a program will halt that running

program.

Function

~ I -----' (binary to

I dedma/)

~ (deci-
mal to binary)

Number Conversion Functions

r Effect

Converts a binary input to a decimal value in the X­
register.

1. Execute B N N . The display shows _ B.

2. Input a binary number.

3. Press I ENTER. I for result.

Temporarily displays the binary equivalent of the
decimal value in the X-register.

1. Input decimal value to convert.

2. Execute BINVI:0Z] .

3. Displays result B.

4. Press G to see X-register again .

Number Conversions and Boolean Logic 129

Number Conversion Functions (Continued)

Function Effect

I aCTIN 1 (octal to Converts an octal input to a decimal value in the X-
decimal) register.

1. Execute 1 aCTIN I. The display shows _ O.

2. Input an octal number.

3. Press I ENTERt 1 for result.

I aCTVIEW 1 (dec i- Temporarily displays the octal equivalent of the dec-
mal to octal) imal value in the X-register.

1 . Input decimal value to convert .

2. Execute I aCTVIEW I.

3. Displays result O.

4 . Press G to see X-register again .

I HEXIN 1 (hexa- Converts a hexadecimal input to a decimal value in
decimal to the X-register.
decimal) 1 . Execute 1 HEXIN I. The display shows __ H.

2. Input a hexadecimal number.

3. Press 1 ENTERt 1 for result.

1 HEXVIEW 1 (deci- Temporarily displays the hexadecimal equivalent of

mal to the decimal value in the X-register.

hexadecimal) 1 . Input decimal value to convert.

2. Execute 1 HEXVIEW I.

3. Displays result H.

4. Press G to see X-register again.

Boolean Functions
Included in this group of functions are Boolean logic, bit checking, and
bit rotation.

Valid Input Range for Data
These functions operate on decimal numbers in the range zero through
4,294,967,295 (32-bit, unsigned integers). Non-integers are truncated. For
negative values, the absolute value is used.

Instructions
The result of a Boolean operation is returned to the X-register. The origi­
nal value of the X-register is saved in the LAST X register except for
1 BIT? I, which does not affect LAST X or the stack. All other two-param­
eter functions drop the stack.

130 Number Conversions and Boolean Logic

Function

[AND,

[QF.J

[XORJ

[No '

[BI (test bit)

R(T~ (rotate Y
by X)

L..-_____ _

Boolean Functions

Effect

Calculates the logical AND of x and y.

Calculates the logical inclusive OR of x and y.

Calculates the logical exclusive OR of x and y .

Takes the one's complement of Ixl.

Tests the bit in the Y -register specified by the value
in the X-register. If the bit is one, the calculator dis-
plays YES; if the bit is zero, the calculator displays
NO. In a program, [FT"?J is a conditional function
following the "do if true" rule : a one bit causes the
next program step to be executed, while a zero bit
causes the next program step to be skipped .

Rotates the value in the Y -register to the right by
the number of bits specified in the X-register. Rotat-

E
ing right (32 - x) bits is equivalent to rotating left x
bits.

What are the binary, octal, and hexadecimal equivalents of 651O? Set
[FIX I 4 so that commas separate every four digits.

Keystrokes Display
[ill] 4 Sets the display for-

mat used here.
65 65_
[XEO I r-"VIEW 100,0001 B Binary.
[XEO I ' VIEW, 101 0 Octal.
[XEO I XVIt:.W] 41 H Hexadecimal.

'lJumna• ('r.n ,~ ~'''n<:; and Boolean L0n'"

What is the octal result of rotating FA40716 six bits to the right, adding
1001002, and then ANDing the result with 251O?

Keystrokes

I XEO I ~x ill
FA407
I ENTER+ I

6

I XEO I [BOTX'{]

IXEQI C N
100100

G

25

I XEO I JC

I XEO I ,TVIEW.

Display
_H

FA407_ H
1,025,031.000

6_

469,778,064.0

_B

10,0100_ B
469,778,100.0

25_

16.0000

20 0

Decimal equivalent of
FA40716·

Rotates value right six
bits .

Adds binary entry to
previous value.

ANDs 25 with previ­
ous result.
Octal result.

CURVE FITTING

The CFIT program collects and fits statistical data (xi' Yi) to one of the
following four chosen curves or to the curve of best fit. The curve of best
fit is considered to be the one with the highest coefficient of determina­
tion, ,2, for the data .

• Straight line (linear regression), Y = a + bx

• Exponential curve, Y = aebx (where a > 0)

• Logarithmic curve, Y = a + b(lnx)

• Power curve, Y = axb (where a > 0)

The program solves for a, b, ,2, and y, the linear estimate (a predicted
value for y).

Equations
The regression coefficients a and b are found by solving the following
linear equations, where n is the total number of data pairs.

An + b~Xi = ~Yi

A~Xi + b~(Xi)2 = ~(YiXi)

Definitions of Regression Variables

Regression A Xi Yi

Linear a Xi Yi

Exponential In a Xi In Yi

Logarithmic a In Xi Yi

Power In a In Xi In Yi

The coefficient of determination is

~(Yi - .l (~Yj)2
n

133

134 Curve F- tting

Linear Regression Exponential Curve Fit

y y

y = a + bx y = aebx

x x

Logarithmic Curve Fit Power Curve Fit

y y /
y = a + b In x y = axb

x

/

Ii In ut Range for Data
Program CFIT evaluates the given data by the least-squares method, us­
ing either the original equation (straight line and logarithmic curve) or the
transformed equations (exponential curve and power curve).

All data values (xi, Yi) must be positive and non-zero, otherwise DATA
ERROR results.

x

Curv'-' .,H,n,., 135

As the difference between x-values and y-values becomes small, the accu­
racy of the regression coefficients decreases.

Note also that inaccurate results can be generated if one variable is much
larger than the other or changes much more rapidly than the other does.
(This occurs when the calculator would have to maintain more than ten
significant digits for accuracy, which it can't.) If your data values are like
this, you should apply scaling methods to maintain the accuracy of the
results. Scaling methods are described in many statistics texts.

A DATA ERROR will result if you try to fit a curve containing only one
data point, or if you use negative or zero data .

In ctio s
• The CFIT program starts with its home menu, ~+ CL~ FIT. This is

for entering your statistical data: ~+ to enter (y first, then x), • ~+
to delete, and CL~ to clear old statistical data. FIT brings up the
curves menu.

• The curves menu, L EX LOG P B, offers you a choice of curves to
which to fit your data: Linear, EXponential, LOGarithmic, Power,
and Best fit. The best fit picks the curve that best fits your data.

• Once you've picked the curve to fit, pressing I RIS I displays
successive regression variables. Pressing QJ brings back the home
menu.

Home Menu

\ + [L \ F T T
L L .J. j

USER I I

+ +
:1:-

[JDGJDGJ
DODDEr)
0

This menu will show you which key corresponds to which function in
CFIT. Press QJ to recall this menu to the display at any time. This will
not disturb the program in any way.

136 Curve Fitting

Curves Menu

I
I E \I LOG P B ,- 1\

I USER I I I

~ J
,

J

Q[JGJGJGJ
0000 [MEJNU]

0

To clear the menu at any time, press G . This shows you the contents of
the X-register, but does not end the program. You can perform calcula­
tions, then recall the home menu by pressing Q]. (However, you do not
need to clear the program's display before performing calculations.)

Instruction Table for CFIT

Size: 018

Instructions Key In: Display

1. Start program CFIT. The menu items in the I XEa I I CFIT I' H CU; FIT
display indicate the locations of functions in
the top row of keys.

2. Clear old statistical data. (This is not neces- @] (ClL) H ClL FIT
sary if you 've just executed I CFIT I, which
automatically clears old data, too.)

3. Input your data pairs. y I ENTERt I y
Repeat for each pair. x0 (H)t H ClL FIT

4. To see how many data pairs you have entered G n
so far, clear the display (optional). QJ H ClL FIT

Curve Fitting 137

Instruction Table for CFIT (Continued)

Instructions Key In: Display

5, To correct any data pair, first re-enter that pair Yk I ENTERt I Yk
to delete it. xk Q 0 H CU; FIT

(CEl)
Then enter the correct pair, (Step 3,)

6, Display the curves menu, [IJ (FIT) L EX LOG P 8

7, Select the curve you want to fit. 0 (L) LIN
[]] (EX) EXP
@] (LOG) LOG
[QJ (P) POW
[IJ (8) (the "best fit" of

the above)

8, Find the values for a, I RIS It a= result
for b, I RIS It b= result
for r2, I RIS It R12= result

g, Find the linear estimate, y, I RIS It X=?
Repeat as desired, x I RIS I Y=result

I RIS It X=?

10, To start over (recall the home menu): QJ H CU; FIT

• To execute a program, press I XEQ II ALPHA I Alpha name I ALPHA I or use a User-defined key,

t With a printer attached this step can give you a print-out of the values you just entered ,
Refer to your printer's owner's manual for instructions,

:j: This keystroke is unnecessary if you have a printer attached because the printer automati-
cally prints the results and then displays the selection menu,

Remarks
This program uses local Alpha labels (as explained in the owner's
manual for the HP-41) assigned to keys [IJ-II], [IJ, and GO . These
local assignments are overridden by any User-key assignments you
might have made to these same keys, thereby defeating this program.
Therefore be sure to clear any existing User-key assignments of these keys
before using this program, and avoid redefining these keys in the
future .

138 Curve Fitting

Note' The CFIT program changes the location of the statistical
registers . If you want to access information in the statistical regis­
ters after using this program, you must re-establish these registers
in a known location using the function ~ (refer to the
HP-41 owner's manual). This is true even if you just want to
have the statistical registers in their default locations, Rll-R16. To
access statistical information stored by this program, refer to
"Programming Information" at the end of this chapter.

xamples
Fit a straight line to the following set of data and compute y for x = 37
and x = 35.

x 40.5 38.6

Y 104.5 102

Keystrokes

0K] 4

[XEQI z 018

104.5 [ENTER. I 40.5
o (~+)

102 I ENTER. 1 38 .6
o (~+)

100 I ENTER. 137.9
o (~+)
97 .5 [ENTER. 1 36.2
o (~+)
95.5 [ENTER. 1 35.2
o (~+)

95 .5 [ENTER. I 35.2
o (CEl)

37.9 36.2

100 97.5

Display

~+ CU FIT

40.5_
~+ CL~ FIT
38.6_
~+ CL~ FIT
37.9_
~+ CL~ FIT
36.2_
~+ CL~ FIT
35.2_
~+ CL~ FIT
35.2_
~+ CL~ FIT

35.1 34 .6

95 .5 94

Sets the display for­
mat used here.
Optional-sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE ~ 018.
Starting the program
also clears old statis­
tical data.
Enter first data pair, y
first.
Second pair.

And so on.

Oops! Wrong entry
for x.
Delete incorrect pair.

Keystrokes

95.51 ENTERt 135.1
0 (~+)

94 1 ENTERt 1 34.6
0 (~+)

[IJ (FIT)

0 (L)

1 RIS 1
1 RIS 1
1 RIS 1
1 RIS 1

37 1 RIS 1
1 RIS 1
35 1 RIS 1
1 RIS 1
1 RIS 1

Display
35.1_
~+ CL~ FIT
34.6_
~+ CL~ FIT
L EX LOG P B
LIN

a=33.5271
b= 1.7601
Rt2=0.9909
X=?

Y=98.6526
X=?
Y=95.1323
X=?
L EX LOG P B

~+ CL~ FIT

Curve Fitt g 139

Enter correct pair.

The curves menu.
Selects the linear
curve.

Asks for x-value for
which you'd like to
estimate y.
y.

Returns the curves
menu, ready to fit an­
other curve to the
data .
Returns the home
menu, ready to start
a new problem.

Enter the following set of data and find the best curve to fit it. Then
compute y for x = 1.5 and x = 2.

x 0.72 1.31 1.95 2.58 3.14

Y 2.16 1.61 1.16 0.85 0.5

Keystrokes

1 RIS 1

[ill (CL~)

2.16 1 ENTERt 1 .72
o (~+)

1.61 1 ENTERt 11.31
o (~+)
1 .16 1 ENTER t 1 1.95
o (~+)

Display

~+ CL~ FIT

~+ CU FIT

. 72_
~+ CU FIT
1.3L
~+ CU FIT
1.95_
~+ CL~ FIT

Make sure the home
menu is displayed.
Clears data from first
example.
Enters first data pair .

140 Curve Fitting

Keystrokes

.85 I ENTERt 1 2.58
o (~+)

.51 ENTERt 13.14
o (~+)

[IJ (FIT)

[IJ (8)

IRIS 1

IRIS 1

IRIS 1

IRIS 1

1.5 IRIS 1

IRIS 1

21 RIS 1

IRIS 1

IRIS 1

Display
2.58_
~+ CL~ FIT
3.14_
~+ CL~ FIT
L EX LOG P 8

LOG

a= 1.8515
b= -1.1021
Rt2=0.9893

X=?
Y=1.4046

X=?
Y=1.0875

X=?
L EX LOG P 8

Programming Information

The best curve to fit
is a logarithmic one.

The subroutines A~, D~, FIT, and BFIT can be used in your own pro­
grams.

• A~ adds the data pair in the X- and Y -registers to a statistical regis­
ter set to obtain summary statistics.

• D~ deletes the data pair in the X- and Y-registers from the statistical
register set.

• FIT fits a curve of type 1 through 4 to statistical data stored by the
program CFIT or subroutines A~ and D~ .

• BFIT finds the best-fit curve of type 1 through 4 to statistical data
stored by the program CFIT or subroutines A~ and D~ .

Minimum Size to Aun: SIZE 018

Flags Used: BFIT and FIT use 01, 02, 03, 04, 06, 07.
A~ and D~ do not use any flags .

Curve Fitting 141

Subroutines: A~ and D~

Initial Registers Final Registers Flags to Initialize

Y -register: y-value

X-register: x-value

R04 = 0 R04 = ~(ylnx)

R05 = 0 R05 = ~(xlny)

R06 = 0 R06 = ~y

R07 = 0 R07 = ~y2

ROB = 0 ROB = ~x

ROg = 0 Rag = ~x2

R10 = 0 R10 = ~(xy)

R11 = 0 R11 = n

R12 = 0 R12 = ~(Iny)

R13 = 0 R13 = ~(lny)2

R14 = 0 R14 = ~(Inx)

R15 = 0 R15 = ~(l nx)2

R16 = 0 R16 = ~(l nx)(lny)

R17 = 0 R17 = n, and temporarily
~y

Subroutine: FIT

Initial Registers Final Registers Flags to Initialize

X-register = CF 01
1 = linear
2 = exponential
3 = logarithmic
4 = power

Roo = 1, 2, 3, or 4 CF 02

R01 = a CF 03

R02 = b CF 04

R03 = r2

R04-R17: all statistical registers are the same as above in
A~.

142 Curve Fitting

Comments. After loading the statistical registers using A"J; and D"J;, put
the number of the curve to fit (1, 2, 3, 4) in the X-register and execute
FIT. FIT sets flag 07 and sets a flag (01-04) that matches the curve type. It
stores a, b, and ,2 in R 01 ' R 02 ' and R 03 '

Subroutine: BFIT

Initial Registers -L Final Registers

Roo = 1, 2, 3, or 4

R01 = a

R02 = b

R03 = (2

R04-R17: all statistical registers are the same as above in
A'f, and FIT.

T Flags to Initialize J
r CFO-1--

CF 02

CF 03

CF 04

Comments. After loading the statistical registers using A"J; and D"J;,
execute BFIT and it will find the best fit of a linear, exponential, log,
or power curve. BFIT sets flag 01 (linear curve), 02 (exponential
curve), 03 (logarithmic curve), or 04 (power curve), stores the cor­
responding curve number in Roo, and stores a, b, and ,2 in R01 ' Ro2,

and Ro3 .

THE TIME VALUE OF MONEY

The TVM program solves different problems involving time, money, and
interest-the compound-interest functions. The following variables can
be inputs or results.

N The number of compounding periods or payments. (For a 30-year
loan with monthly payments, N = 12 x 30 = 360.)

I The periodic interest rate as a percent. (For other than annual
compounding, this represents the annual percentage rate divided
by the number of compounding periods per year. For instance, 9%
annually compounded monthly equals 9 -;- 12 = 0.75%.)

PV The present value. (This can also be an initial cash flow or a dis­
counted value of a series of future cash flows.) Always occurs at
the beginning of the first period.

PMT The periodic payment.
FV The future value. (This can also be a final cash flow or a com­

pounded value of a series of cash flows.) Always occurs at the end
of the Nth period.

You can specify the timing of the payments to be either at the end of the
compounding period (End mode) or at the beginning of the period (Begin
mode). Begin mode sets flag 00. Ending payments are common in mort­
gages and direct-reduction loans; beginning payments are common in
leasing.

Equation

o = PV + (1 + ip) PMT [1 - (1 i + i) -N] + FV (1 + i) - N

where i is the periodic interest rate as a fraction (i
p = 1 in Begin mode or 0 in End mode.

1/100),

Use a cash-flow diagram to determine what your cash-flow inputs are and
whether to specify them as positive or negative.

The cash-flow diagram is just a time-line divided into time periods. Cash
flows (transactions) are indicated by vertical arrows: an upward arrow is
positive for cash received, while a downward arrow is negative for cash paid
out.

143

144 The Time Value of Money

For example, this six-period time line shows a $20 cash outflow initially
and a $50 cash inflow at the end of the fourth period. (Begin mode can­
not be used in calculating PV or FV.)

(+) +$50
Cash

J Inflow

j 2 3 4 5 6

(-)
Cash

Outflow -$20

This five-period time line shows a $1,000 cash outflow initially and a
$100 inflow at the end of each period, ending with an additional $1,000
inflow at the end of the fifth period.

(+)
Cash
Inflow $100 $100 $100 $100

(-)
Cash

ULI f' 2 3 4

Outflow -$1,000

$1,000

$100

5

The Time Value of Money 145

Instructions
• The program TVM will solve for anyone of the variables N, I, PV,

PMT, or FV given the other three or four, which must include either
N or 1. The order of entry is unimportant.*

• You should clear the financial data ([IJ) before beginning a com­
pletely new calculation; otherwise, previous data that is not
overwritten will be used (i.e ., for the fourth, unused variable) . Run­
ning the program anew also clears the financial data.

• Remember to specify cash inflows (arrow up) as positive values and
cash outflows (arrow down) as negative values. The results are also
given as positive or negative, indicating inflow or outflow.

• Check that the payment mode is what you want. If you see the flag
00 annunciator (a small 0 below the main display line), then Begin
mode is set. If not, End mode is set. To change the mode, press
. @] (a toggle) . The display will then show what you have just set:
BEGIN MODE or END MODE. The default is End mode (flag 00 clear).

• Remember that the interest rate must be consistent with the num­
ber of compounding periods. (An annual percentage rate is
appropriate only if the number of compounding periods also equals
the number of years.)

• You might want to set the display format for two decimal places
2).

• If you use only four va riables, then the fifth must equal zero. All variables are set to zero
when you first run TVM or clea r the financia l data (W), so you do not have to enter a
zero in these cases.

146 The Time Value of Mon8Y

P '/ pIlAT F '/ '" ". , "
t,1 T
1'4, ..L,

/USER I I I I

Q GJ GJ B[~r GJ
OOOO~
o

This menu will show you which key corresponds to which function in
TVM. Press QJ to recall this menu to the display at any time. This will not
disturb the program in any way.

To clear the menu at any time, press G . This shows you the contents of
the X-register, but does not end the program. You can perform calcula­
tions, then recall the main menu by pressing QJ . (However, you do not
need to clear the program's display or recall the menu before performing
calcula tions.)

Instruction Table for TVM

Size: 010

Instructions Key In: Display

1. Start the TVM program. The menu items in I XEQ II TVM I • N, I, PV,PMT,FV
the display indicate the locations of keys in
the top row for N, I, PV, PMT, and FV.

2. Check payment mode by looking for the 0 an- @] (toggles END MODE or
nunciator. (0 means Begin mode; no 0 means between BEGIN MODE
End mode.) Change the mode if necessary. modes)

I RIS lor QJ N, I, PV,PMT,FV

3a. Input the number of compounding periods, N, N0 (N) N= Nt
unless N is what you need to find. Step 3b is a
shortcut if you need to figure the number of
months from a given number of years.

r C lVrI!J1 t CJ ~, H

The Time Value of Money 147

Instruction Table for TVM (Continued)

Instructions Key In: Display

3b. Alternative to 3a: If you're working with n B 0 N= 12 x n
monthly payments or monthly compounding
periods for a known number of years, this
step automatically figures and inputs N (as 12
x years). Input the number of years, n.

4a. Input the periodic interest rate, I, unless I is II]] (I) 1=1
what you need to find. Step 4b is a shortcut if
you need to figure a monthly interest rate from
a given annual interest rate.

4b. Alternative to 4a: If you 're working with APR I]] I=APR .;- 12
monthly compounding periods and a known
annual interest rate, this step automatically
figures and inputs I (as annual percentage
rate .;- 12). Input the annual percentage rate,
APR.

5. Input the present value, PV, unless PV is what PV@] (PV) PV=input
you need to find or is not a relevant variable.

6. Input the amount of payment, PMT, unless PMT PMT = input
PMT is what you need to find or is not a rele- @] (PMT)
vant variable.

7. Input the future value, FV, unless FV is what FV W (FV) FV=input
you need to find or is not a relevant variable.

S. Now find the remaining variable by pressing 0 or N= result or
its key. I]] or I = result or

@] or PV=result or
@] or PMT=result or
W FV=result

9. To review (recall) any variable's value at any IRcLI0
time: through W value

10. To restore the main menu (N, I, PV,PMT,FV) QJ N, I, PV,PMT,FV
at any time (without affecting your inputs and
calculations):

11 . Clear old financial data before starting a new . w N, I, PV,PMT,FV
problem .

• To execute a program , press I XEQ II ALPHA I Alpha name I ALPHA I or use a User-defined key.

t If you have a printer attached, the display automatically returns to the main menu
(N, I, PV,PMT,FV) after printing the most recent input.

148 The Time Value of Money

Remarks
This program uses local Alpha labels (as explained in the owner's manual
for the HP-41) assigned to keys [EJ - w , their shifted counterparts (except

@]), and Q]. These local assignments are overridden by any User-key
assignments you might have made to these same keys, thereby defeating
this program. Therefore be sure to clear any existing User-key assignments of
these keys before using this program, and avoid redefining these keys in the
future.

The financial variable keys will only store a value if you enter it from the
keyboard. If, for example, you recall a value from a register then press a
variable key, the program will calculate that variable instead of storing
the recalled value. To store a value that was placed in the X-register by
some other means than actually keying it in, press I 5TO I before pressing
the variable key.

Examples
A borrower can afford a $650.00 monthly payment on a 30-year, 14 1/4%

mortgage. How much can he borrow? The first payment is made one
month after the money is loaned. (This requires End mode.)

Cash Flows, Example 1

+?
PV

2 3 4 5

PMT
-$650

1= 14.25%
12

>---t---+---t---t---i N = 30 x 1 2
356357 358 359 360

- $650

Keystrokes

2

I XEQ II SIZE I 010

30 [EJ

I RIS I

14.25 []]
I RIS I

650 I CHS I @] (PMT)

I RIS I

@] (PV)

The Time Value of Money 149

Display

N, I, PV,PMT,FV

N=360.00

N, I, PV,PMT,FV

1=1.19
N, I, PV,PMT,FV

PMT= -650.00
N, I, PV,PMT,FV

PV = 53955.92

Sets the display for­
mat used here.
Optional-sets the
number of storage
registers needed for
the program. This is
not necessary if your
allocation is already
SIZE ;;;. 010.

Starts program. This
also clears old finan­
cial data . End mode
is automatically set.
Total number of
periods.
Restores menu
(optional).
Monthly interest rate.
Restores menu
(optional) .
Monthly payment.
Restores menu
(optional).
Maximum loan
amount.

If the required mortgage is only $53,500, what is the monthly payment?
(Change the pv, leave all other variables as they are, and solve for PMT.)

Keystrokes Display

I RIS I N, I, PV,PMT,FV Restores menu
(optional).

53500 @] (PV) PV = 53500.00 Given loan amount.

I RIS I N, I, PV,PMT,FV Restores menu
(optional).

@] (PMT) PMT= -644.51 Monthly payment.

Notice that when you press a key [EJ-[IJ after keying in a value, the
calculator stores that value in, the indicated variable. However, when you
press [EJ - [IJ without first keyrng in a value, the calculator computes a
value for the indicated variable.

150 The Time Value of Money

How much money must be set aside in a savings account each quarter in
order to accumulate $4,000 in 3 years? The account earns 11% interest,
compounded quarterly, and deposits begin immediately.

Cash Flows, Example 2

I= 11%
4

PMT

j j ' j ' j4[5 ..• 10

-7

Keystrokes

[IJ

[E[]
3 I ENTER t I 4 0
o (N)

11 I ENTER t I 4 0
[[) (I)

4000 [IJ (FV)
[QJ (PMT)

Display

N, I, PV,PMT,FV

BEGIN MODE

N, I, PV,PMT,FV
12.00
N=12.00
2.75
1=2.75
FV=4000.00
PMT= -278.22

Programming Information

11

-7

+$4,000
FV

N=3x4
12

Clears financial data.
(This assumes that
you are still in the
TVM program.)
Sets Begin mode.
(The 0 annunciator
should appear.)

Total number of
deposits.
Quarterly interest
rate.
Goal.
Monthly deposit
required.

The following subroutines in TVM can be used in your own programs.
They find the number of periods, interest, present value, payment, or fu­
ture value when given the other four parameters.

Minimum Size to Run: SIZE 010.

Flags Used: 00, 25.

Subroutine Name

N (number of
periods)

• I (interest)

Initial Registers

R02 = I
R03 = PV
R04 = PMT
R05 = FV

R01 = N
R03 = PV
R04 = PMT
R05 = FV

PV (present value) R01 = N
R02 = I

R04 = PMT
R05 = FV

PMT (payment
value)

FV (future value)

R01 = N
R02 = I
R03 = PV
R05 = FV

R01 = N
R02 = I
R03 = PV
R04 = PMT

The Time Value of Money 151

Final Registers

X-register = N
R01 = N
R02 = I
R03 = PV
R04 = PMT
R05 = FV

X = I
R01 = N
R02 = I
R03 = PV
R04 = PMT
R05 = FV

X = PV
R01 = N
R02 = I

R03 = PV
R04 = PMT
R05 = FV

X = PMT
R01 = N
R02 = I
R03 = PV
R04 = PMT
R05 = FV

X = FV
R01 = N
R02 = I
R03 = PV
R04 = PMT
R05 = FV

Flags to
Initialize

SF 00 for
Begin mode

CF 00 for
End mode

SF 00 for
Begin mode

CF 00 for
End mode

SF 00 for
Begin mode

CF 00 for
End mode

SF 00 for
Begin mode

CF 00 for
End mode

SF 00 for
Begin mode

CF 00 for
End mode

Comments. To use these subroutines, load the four appropriate regis­
ters, set (or clear) flag 00 for Begin (or End) mode, then execute the
desired subroutine. It returns the desired value to the X-register and
stores it in the corresponding register.

PROGRAM INDEX

CFIT 133
Complex Functions 93
DIFEQ 87
INTEG 79
Logic Functions 129, 130
Matrix Functions 30, 58
MATRX 19
Number Conversions 127, 128
PLY 71
SOLVE 61
TR 117
TVM " 143
VC 101

r/"~ HEWLETT
~a PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters
150, Route du Nant·O' Avril

P.O. Box, CH-1217 Meyrin 2
Geneva-Switzerland

Reorder Number
00041-90546

HP-United Kingdom
(Pinewood)

GB-Nine Mile Ride, Wokingham
Berkshire RG11 3LL

Printed in Singapore

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	page0002
	page0003
	page0004
	page0005
	page0006
	page0007
	page0008
	page0009
	page0010
	page0011
	page0012
	page0013
	page0014
	page0015
	page0016
	page0017
	page0018
	page0019
	page0020
	page0021
	page0022
	page0023
	page0024
	page0025
	page0026
	page0027
	page0028
	page0029
	page0030
	page0031
	page0032
	page0033
	page0034
	page0035
	page0036
	page0037
	page0038
	page0039
	page0040
	page0041
	page0042
	page0043
	page0044
	page0045
	page0046
	page0047
	page0048
	page0049
	page0050
	page0051
	page0052
	page0053
	page0054
	page0055
	page0056
	page0057
	page0058
	page0059
	page0060
	page0061
	page0062
	page0063
	page0064
	page0065
	page0066
	page0067
	page0068
	page0069
	page0070
	page0071
	page0072
	page0073
	page0074
	page0075
	page0076
	page0077
	page0078
	page0079
	page0080
	page0081
	page0082
	page0083
	page0084
	page0085
	page0086
	page0087
	page0088
	page0089
	page0090
	page0091
	page0092
	page0092a
	page0092b
	page0093
	page0094
	page0095
	page0096
	page0097
	page0098
	page0099
	page0100
	page0101
	page0102
	page0103
	page0104
	page0105
	page0106
	page0107
	page0108
	page0109
	page0110
	page0111
	page0112
	page0113
	page0114
	page0115
	page0116
	page0117
	page0118
	page0119
	page0120
	page0121
	page0122
	page0123
	page0124
	page0125
	page0126
	page0127
	page0128
	page0129
	page0130
	page0131
	page0132
	page0133
	page0134
	page0135
	page0136
	page0137
	page0138
	page0139
	page0140
	page0141
	page0142
	page0143
	page0144
	page0145
	page0146
	page0147
	page0148
	page0149
	page0150
	page0151
	page0152
	page0153
	page0154
	page0155

