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Introdllction 

Le HP-15C est le premier calculateur programmable offrant autant de fonc­
tions scientifiques disponibles à tout moment, où que vous soyez: 

• Calcul de racines d'équations. 

• Calcul d'intégrales finies. 

• Calculs sur nombres complexes. 

• Calcul matriciel. 

Le manuel d1utilisation du HP-15C vous explique comment effectuer toutes 
ces opérations. Il contient de nombreux exemples illustrant l'utilisation de ces 
fonctions. Le manuel d'utilisation du HP-I5C est votre manuel de référence. 
Le présent manuel, manuel des fonctions mathématiques de haut niveau du 
HP-15C, complète le manuel d'utilisation du HP-I5C en décr~vant comment 
sont effectuées les fonctions étendues du calculateur HP-15C et en expliquant 
comment interpréter les résultats. 

Ce manuel contient également de nombreux programmes (applications). Ces 
prOb'l'ammeS ont une double utilité. Premièrement, ils suggèrent des méthodes 
d'utilisation des fonctions étendues pour que vous puissiez mettre en œuvre 
ces fonctions plus efficacement dans vos applications. Deuxièmement, ces 
programmes couvrant une vaste gamme d'applications, vous pouvez les utili­
ser tels quels éventuellement. 

Renlarque: Les explications données ici supposent que vous 
connaissiez déjà les principes généraux d'utilisation des fonc­
tions étendues et que les fonctions mathématiques décrites ici 
vous sont familières. 



. Chapitre 1 

Utilisèltion (le CS=OLVE 1 

L'algorithme 1 SOLVE! offre une méthode très efficace de recherche des racines 
d'une équation. Ce chapitre décrit la méthode numérique utilisée par ISOLVEI 

et donne des conseils pratiques sur l'utilisation de 1 SOLVE 1 dans toute une 
variété de cas. 

Recherche des racines d'une équation 

En général, aucune technique numérique ne garantit dans tous les cas la réso­
lution d'une équation même si elle a des racines. Comme on utilise un nombre 
fini de chiffres, la fonction calculée peut être différente de la fonction théori­
que danR certains intervalles de x ct il peut être imposHible de représenter 
exactement les racines ou de distinguer entre les zéros et les discontinuités de 
la fonction utilisée. La fonction n'étant échantillonnée que sur un nombre fini 
de positions, il est aussi possible de conclure à tort que l'équation n'a pas de 
racines. 

Malgré ces limites inhérentes à toutes les méthodes numériques de recherche 
des racines, une méthode efficace, comme celle de 1 SOLVE!, doit obéir aux prin­
cipes suivants: 

• Si une racine réelle existe et peut être représentée exactement par le cal­
culateur, elle sera calculée. Notez que la fonction calculée peut être en 
dépassement de capacité inférieur (et mise à zéro) pour certaines valeurs 
de x autres que les vraies racines. 

• Si une racine réelle existe mais ne peut être représentée exactement par 
le calculateur, la valeur calculée ne doit être différente de la vraie racine 
que sur le dernier chiffre significatif. 

• Si aucune racine réelle n'existe, un message d'erreur doit être affiché. 

L'algorithme de 1 SOLVE 1 a été conçu pour répondre à ces principes. En outre, il 
est faeile à utiliser et mobilise peu de mémoire. Enfin, comme ISOLVE! dans un 
prObrramme peut détecter les situations de racines introuvables, vos program­
mes conservent leurs automatismes Que ISOLVEI trouve ou non une racine. 
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Échantillonnage pari SOLVE 1 

Le programme 1 SOLVE 1 n'utilise que cinq-registres de mémoire allouable sur le 
HP-15C. Ces cinq registres contiennent trois valeurs d'échantillonnage (a, b, et 
c) et deux valeurs précédentes de la fonction (((a) et {(b)) pendant que le sous­
programme de la fonction calcule {(cl. 

L'efficacité de 1 SOLVE 1 réside dans la façon dont est définie la valeur suivante c 
d'échantillonnage. 

Normalement, ISOLVEI utilise la méthode de la sécante pour choisir la valeur · 
suivante. Cette méthode utilise les valeurs de a, de b, de f(a) et de {(b) pour 
déterminer une valeur de c pour laquelle {( c) est proche de zéro. 

t(x) 

---r----------~~~~--------~----.x 

Si c n'est pas une racine mais si f(c) est plus près de zéro que ((b), alors b est 
changé en a, c est changé en b et le processus de détermination de c recom­

,mence. Lorsque la représentation graphique de f(x) est régulière et si les 
valeurs initiales de a et de b sont proches d'une racine simple, la méthode de la 
sécante converge rapidement vers une racine . 

./ 

Cependant dans certaines conditions, la méthode sécante ne suggère pas de 
valeur suivante capable d'arrêter la recherche ou de la faire aboutir à un~ 
valeur proche d'une racine: c'est le cas d'un changement de signe oq d'une 
amplitude plus petite. Dans ,ce cas, ISOLVE 1 utilise une approche différente. 

Si la sécante calculée est presque horizontale, 1 SOLVE 1 modifie la méthode de 
la sécante pour s'assurer que 1 c - b 1 ~ 100 1 a - b 1. Ce procédé est très impor­
tant car ill'éùuit par ailleurs la tendance de la méthùùe de la sécante à s'ég-arer lors­
que les erreurs d'arronùis deviennent significatives à proximité d'une racine. 
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((x) 

r-K----- .... ,\ 
1 1 \ 
1 1 \ 
1 1 \ 

--~--~~--------------------~,--.. x a b c 

Si ISOLVEI a déjà trouvé des valeurs de a et de b telles que {{a) et {(b) sont de 
sib'1le opposé, elle modifie la méthode de la sécante pour garantir que c se 
trouve toujours dans l'intervalle contenant le changement de signe. Ceci 
garantit que l'intervalle de recherche diminue avec chaque itération, donnant 
toujours une racine lorsqu'elle existe. 

((x) 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

J 

--~------~~~----~--~~-------.x 

Si 1 SOLVE 1 n'a pas rencontré de changement de signe et si un~ valeur' c d'échan­
tillonnage ne donne pas une valeur {(c) d'amplitude réduite, alors ISOLVEl 
ajuHÜ' une para boit· aux valeurs u, b, pt C Ùt' la fonction. rsbÜ.iE-l recherche 
ensuite la valeur d à laquelle la parabole a son maximum ou son minimum, 
transforme d en a, et continul' la recherche par la méthodp de la Héeante. 



i 
! 

1 f 
1 

i , , 

: 1 

l 
! 

1 
,1 
r 
• 1 

l 

Ch<1pitre 1 : Utilisation ue [~Q~~_~J 9 

1 SOLVE 1 n'abandonne la recherche d'une racine que si trois ajustements para­
boliques successifs ne donnent aucune diminution de l'amplitude de la fonction 
ou si d = b. Dans ces deux cas, le calculateur affiche Errar 8. Comme b repré­
sente le pointde plus petite amplitude de la fonction échantillonnée, b et f(b) 
sont renvoyées respectivement dans les registres X ~t Z. Le registre Y contient 
Roit la valeur ùe a, soit la valeur de c. Avec cette information, vous pouvez déci­
ùer de la suite des opérations. Ou vous recommencez la recherche là où vous 
l'aviez laissée, ou vous orientez différemment la recherche, ou vous décidez 
que f( b) est si proche ùe 0 que x = b est une racine, ou vous transformez l'équa­
tion en une autre équation, ou enfin vous concluez qu'il n'y a pas de racine. 

Situations à problème 

Les explications suivantes sont utiles lorsque vous travaillez sur des problè- ' 
mes pouvant mener à des résultats trompeurs. Des racines imprécises sont 
obtenues lorsque les valeurs de la fonction calculée sont différentes des 
valeurs de la fonction désirée. Vous pouvez la plupart du temps éviter cette dif­
ficulté, si vous savez comment identifier l'imprécision et la réduire. 

Équations faciles et équations difficiles 

Les deux équations f(x) = 0 et e!(x)-l = 0 ont les mêmes racines réelles, mais 
selon les cas, l'une sera toujours plus facile à résoudre numériquement que l'autre. 
Par exemple, lorsque f(x) = 6x - x 4 -1, la première équation est la plus facile. 
Lorsque f(x) === In( 6x - x4

), la seconde est la plus facile~ La différence dépend du 
comportement du graphe de la fon~tion, particulièrement à proximité d'une 
racine. 

f( x) = 6x - X 
4 

- 1 

4 

f(x)=exp(6x-x4 -1)-1 

--~~~--~~--~~-x x 
2 
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En général, toute équation est l'une d'une famille infinie d'équations équiva­
lentes ayant les mêmes racines réelles. Et certaines de ces équations sont plus 
faciles à résoudre que d'autres. Alors que ISOLVEI peut échouer dans sa 
recherche des racines de l'une de ces équations, il peut très bien réussir avec 
une autre. 

Équations imprécises 

ISOLVEI ne calcule jamais une racine incorrecte, sauf si la fonction est calcu­
lée i~correctement. La précision du sous-programme de votre fonction affecte 
la précision de la racine que vous recherchez. 

Vous devez connaître les causes éventuelles des différences entre valeur calcu­
lée de la fonction eL valeur théorique de la fonction. ISOLVEI ne peut pas 
déduire de valeurs théoriques. La plupart du temps, vous devrez minimiser 
les erreurs de calcul en écrivant soigneusement le sous-programme de votre 
fonction. . 

Équations à plusieurs racines 

Plus une équation a de racines, plus la recherche de toutes les racines d'une 
équation est difficile. Et lorsque ces racines ont des valeurs très proches les 
unes des autres~ une résolution précise de l'équation est pratiquement impos­
sible. Vous pouvez utiliser la méthode de la déflation pour éliminer des racines 
(décrite dans le manuel d'utilisation du HP-15C). 

Une équation à plusieurs racines est caractérisée par la fonction et par ses pre­
mières dérivées d'ordre supérieur qui sont égales à zéro à la valeur des racines. 
Lorsque 1 SOLVEI trouve une racine double, la deuxième moitié de ses chiffres 
risque d'être imprécise. Dans le cas d'une racine triple, les deux tiers des chif­
fres de la racine tenden t à perdre leur sens. Une racine quadruple tend à perdre 
environ les trois-quarts de ses chiffres. 

Utilisation de 1 SOLVE 1 avec des polynômes. 
Les polynômes comptent parmi les fonctions les plus faciles à évaluer. C'est 
pourquoi ils sont traditionnellement utilisés pour approcher des fonctions de 
modélisation de processus physiques ou des fonctions mathématiques beau­
coup plus complexes. 

Un polynôme de degré n est de la forme: 

anxn + an _ 1 xn - l + ... + al x + ao 

Cette fonction est égale à zéro pour pas plus de n valèurs réelles de x, appelées 
les '~zéros" du polynôme. Il est possible de déterminer une limite au nombre de 
zéros positifs de cette fonction en comptant le nombre de fois où changent 
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les signes des coefficients en lisant le polynôme de gauche à droite. De même, il 
est possible de déterminer une limite au nombre de zéros négatifs en considé­
rant une nouvelle fonction obtenue par remplacement de x par - x dans le poly­
nôme initial. Si le nombre réel de zéros positifs ou négatifs est inférieur à sa 
limite, cette différence sera un nombre pair. (Ces relations sont appelées la 
règle des signes de Descartes). 

A titre d'exemple, considérons la fonction polynomiale suivante de degré 3: 

f(x) = x3 
- 3x2 

- 6x + 8 

Elle ne peut avoir plus de trois zéros réels. Elle a au plus deux zéros réels posi­
tifs (à cause des changements de signes entre le premier et le deuxième terme 
et entre le troisième et le quatrième terme) et elle a au plus un zéro réel négatif 
(car ft-x) == -x3 

- 3.r + 6x + 8). 

Les fonctions polynomiales sont généralement évaluées de façon plus com­
pact en utilisant des multiplications imbriquées. (On appelle ce procédé la 
méthode d'Horner). Ainsi, la fonction précédente peut être écrite sous la 
forme: 

f(x) = [(x - 3)x - 6]x + 8 

Cette représentation du polynôme est plus facile à programmer et plus rapide 
à exécuter que la forme de départ, puisque 1 SOLVE l, en particulier remplit la 
pile avec la valeur de x. 

Exemple: Durant l'hiver 1978, l'explorateur de l'arctique, Jean-Claude Cou­
lerre, isolé dans le f,'Tand Nord, s'amusa à scruter l'horizon au sud pour attendre 
la réapparition du soleil. Coulerre savait que le soleil ne lui apparaîtrait que 
début mars, lorsqu'il atteindrait une déclinaison de 5° 18' S. A quel jour et à 
quelle heure cet explorateur a-t-il vu le soleil réapparaître? 

La date à laquelle le soleil a atteint une déclinaison de 5° 18' S peut être calcu­
lée en résolvant pour j l'équation suivante: 

où D est la déclinaison exprimée en degrés, "oùj est le nombre de jours à partir 
du début du mois ûème jour) et 



où 
a4 =- 4.2725 X 10-H 

aa ..... - 1.9931 X 10-5 

a2 ..... 1.0229 X 10-3 

al = 3.7680 X 10-1 

au = - 8.1806. 

Cette équation est valide pour 1 :s;;; j < 32, intervalle pour mars 1978. 
Convertissez d'abord 5°18'8 en degrés décimaux (5.18 ICHS 1 iii 1 .... H\), pour 
obtenir - 5.3000 (en utilisant le mode d'affichage 1 FIX 1 4). (Pour mémoire, les 
latitudes sud sont exprimées en nombres négatifs dans les calculs). 
La solution du problème est la valeur de j satisfaisant l'égalité suivante: 

Que l'on peut exprimer sous la forme: 

où le dernier terme (constante) tient compte de la valeur de la déclinaison. 
En utilisant la méthode Horner, la fonction à résoudre est représentée par: 

Pour raccourcir le sous-programme, vous pouvez stocker et rappeler les cons­
tantes à l'aide des registres correspondant aux exposants de j. 

Appuyez sur Afficbage 

IONI/ B Pr Error Efface la mémoire 
du calculateur·. 

EJ 0.0000 
cru 1 P/R 1 000- Mode programme. 

• Cette étape n'est citée ici que pour s'assurer qu'il ya suffisamment de mémoire disponible pour les exemples donnés dans ce manuel. 
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Appuyez sur Affichage 

001-42,21,11 
002- 45 4 
003- 20 
004- 45 3 
005- 40 
006- 20 
007- 45 2 
008- 40 
009- 20 
010- 45 1 
011- 40 
012- 20 
013- 45 0 
014- 40 
015- 4332 

En mode calcul, introduisez les cinq coefficients: 

Appuyez sur Affichage 

@] Ip/RI Mode calcul 
4.2725 IEEXI 8 ICHsl 4.2725 -08 
ISTol4 4.2725 -08 Coefficient de l 
1.9931 ICHS 1 IEExl 
5 ICHSI ISTol 3 -1.9931 -05 Coefficient de l 
1.0229 IEEXI 3 ICHS 1 1.0229 -03 
ISTol2 0.0010 Coefficient de l 
3.7680 IEExl 1 ICHsl 3.7680 -01 
ISTol 1 0.3768 Coefficient de j 
2.8806 ICHS 1 ISTol 0 -2.8806 Constante 

Puisque vous savez que la solution recherchée doit être comprise entre 1 et 32, 
introduisez ces deux valeurs comme estimations initiales. Ensuite, utilisez 
1 SOLVE 1 pour rechercher les racines. 

Appuyez sur 

1 [ffifffi] 
32 
[!J l'-=s-=-:o L:-:-::V~E 1 ~ 

m=-!J 

Affichage 

1.0000 
32 
7.5137 
7.5137 

·Es·timations initiales. 
Racine recherchée 
Même estimation précédente. 
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Appuyez sur 

. Œ!J 
[[J IRtl ~ IRtl 

Affichage 

0.0000 
7.5137 

Valeur de la fonction. 
Restaure la pile. 

Le jour était donc le 7 mars. Convertissez maintenant la partie fractionnaire 
résultat en heures décimales puis en heures, minutes, secondes. 

Appuyez sur 

rn IFRACI 

24 ~ rn r=1"=H--'--'.M~s-:='"11 

Affichage 

0.5137 
12.3293 
12.1945 

Partie fractionnaire du jour. 
Heures décimales. 
Heures, minutes, secondes 

L'explorateur Coulerre a donc vu le soleil le 7 mars à 12 h 19 mn 45 s (temps 
universel). 

En examinant votre fonction fiJl, vous voyez qu'elle peut avoir jusqu'à quatre 
racines réelles - trois positives et une négative. Essayez de trouver d'autres 
racines positives en utilisant 1 SOLVE 1 avec des estimations positives supé­
rieures. 

Appuyez sur 

1000 IENTER 1 1100 

rn 1 SOLVE 1 [!l 
EJ 
Œ!J 
Œ!J 
[9][[f][9][[f] 
ru ISOLVEI ~ 
EJ 
IR+I 

IR+I 

Affichage 

1,100 

Error 8 
278.4497 
276.7942 
7.8948 
278~4497 
Error 8 
278.4398 
278.4497 
7.8948 

Deux estimations positives 
supérieures. 
Aucune racine. 
Dernière estimation. 
Estimation précédente. 
Valeur non-racine. 
Restauration de la pile. 
Aucune racine. 
Estimation peu différente. 
Estimation précédente. 
Même valeur de la fonction. 

Vous avez trouvé un minimum local positif à la place d'une racine. Maintenant, 
essayez de trouver une racine négative. 
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Appuyez sur 

1000 ICHSI IENTERI 
1100 [Ç§] 
Il] ISOLVEI ~ 
[RJ] 
[K!J 
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Affichage 

-1,000.0000 
-1,100 
-108.9441 
-108.9441 

1.6000 -08 

Deux estimations négatives. 
Racine négative. 
Même estimation précédente. 
Valeur de la fonction. 

Il n'est pas néces!::!aire d'aller plus loin: vou!::! avez trouvé toutes le!::! racines po!::!­
sibles. La racine négative a un sens puisqu'elle est en dehors de la plage de 
valeurs pour lesquelles l'approximation de la déclinaison est valide. Le graphe 
de la fonction confirme ces résultats. 

f(x) 

----+---------~--------~----~~----~~----.x 

Résolution d'un système d'équations 

, 1 SOLVE 1 permet de trouver la valeur d'une seule variable satisfaisant à une 
seule équation. Dans le cas d'un système d'équations à plusieurs variables, 
vous pouvez cependant utiliser 1 SOLVE 1 pour rechercher une solution. 

Dans le cas de certains systèmes d'équations, de la forme: 

il est possible d'éliminer toutes les variables sauf une par manipulation algébri­
que. Autrement dit, vous pouvez utiliser les' équations pour dériver des 
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expreRsions pour toutes les variables sauf une en tel'meR de variable restante. 
En utilisant ces expressions, vous pouvez ramener ce problème à la résolution 
d'une équation simple à l'aide de 1 SOLVE 1. Les valeurs des autres variables à la 
solution peuvent. être calculées à l'aiùe des expressions dérivées. 

Ceci est souvent utile pour la résolution d'une équation complexe à racine com­
plexe. Dans un tel problème, l'équation complexe peut être repréHentée sous la 
forme de deux équations réelles -l'une pour la partie réelle, l'autre pour la par­
tie imaginaire - à deux variables réelles (partie réelle et partie imaginaire de la 
racine complexe). 

Par exemple, l'équation complexe z + 9 + 8e-Z 
= 0 n'a paR de raeines z réelles, 

mais a de nombreuses racines complexes de la forme z= x+ iy. Cette équation 
peut être exprimée sous la forme de deux équations réelles: 

x + 9 + 8e-xcos y = 0 

y - Se -x sin y = 0 . 

Les manipulations suivantes peuvent être utilisées pour éliminer y de ces 
équations. Comme le signe dey n'a aucune importance dans ces équations, sup­
posons lluey > 0 pour que toute solution (x,y) donne une autre solution (x, -y). 
Ré-écrire la seconde équation sous la forme: 

x = In(8(sin y)/y), 

qui nécessite sin y > 0, pour que 2nn < y < (2n + l)n avec n entier = 0, 1, ... 

A partir de la première équation 

y = cos-1(-ex (.\" + 9)/8) + 2nrr 

= (2n + l)rr - cos-l(eo'O(x + 9)i8) 

pour n ..... 0, 1, ... , substituez cette expression dans la deuxième équation: 

( 
(2n + 1)rr - cos-1(ex(x + 9)/R) ) _ (.) 

x + ln - . 
J 64 - (e-'"(x + 9»2 
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V~JUS pouvez ensuite utiliser 1 SOLVE 1 pour rechercher la racine x de cette équa­
tion (pour toute valeur donnée de n, le nombre de la racine). Connaissant x, 
vous pouvez calculer la valeur correspondante de y. 

Une remarque finale sur cet exemple concerne le choix de l'estimation appro­
priée. Puisque l'argument du cosinus inverse doit être compris entre -1 et 1, x 
doit être inférieur à - 0.1059 (trouvé par tentatives ou en utilisant ISOLVEI). 
Les estimations initiales pourraient être proches mais inférieures à cette 
valeur: - 0.11 et - 0.2 par exemple. 

(L'équation complexe utilisée dans cet exemple est résolue à l'aide d'une procé­
dure itérative donnée dans l'exemple de la page 81. Une autre méthode de réso­
lution d'un système d'équations non linéaires est décrite page 122). 

Recherche des extrêmes locaux d'une fonction 

Utilisation de la dérivée 

La méthode classique de calcul des maxima et minima locaux d'un ~rraphe uti­
lise la dérivée de la fonction. La dérivée est une fonction qui décrit la pente du 
graphe. Les valeurs de x pour lesquelles la dérivée est égale à zéro représen­
tent des extrêmes locaux possibles pour la fonction. (Bien que moins connues 
pour les fonctions régulières, les valeurs de x où la dérivée est infinie ou indéfi­
nie sont également des extrêmes possibles). Si vous parvenez à exprimer la 
dérivée d'une fonction, vous pouvez utiliser 1 SOLVE 1 pour calculer à quelle 
valeur cette dérivée est nulle pour savoir où la fonction est susceptible de pré­
senter un maximum ou un minimum. 

Exemple: Pour la conception d'une tour d'émission-radio, un ingénieur 
recherche l'angle par rapport à la verticale (tour), pour lequel l'intensité rela­
tive du champ est la plus négative. L'intensité relative créée par la tour est don­
née par la formule suivante: 

cos(2nh cos e) - co:::;(2nh) 
E=---------------------

[1 - cos(2nh)]sin () 

où E est l'intensité relative du champ, h la hauteur de l'antenne en longueurs 
d'onde et () l'angle par rapport à la verticale en radians. La hauteur de l'antenne 
l'st de 0.6 lungueurs d'onde danti cet exemple. 

L'angle désiré est celui auquel la dérivée de l'intensité pour () est égale à zéro. 



Pour réduire l'espace mémoire de programme et le temps d'exécution, stockez 
les constantes suivantes dans des registres pour n'avoir qu'à les rappeler par la 
suite: 

ro - 2nh 

rI - cos(2nh) 

r2 - 1/[1 - cos(2nh)] 

constante stockée dans Ro 

constante stockée dans RI 

constante stockée dans R2 

La dérivée de l'intensité.E calculée pour l'angle (J est donnée par: 

= r2 rosln(rocos 8) -. . 
dE [. cos(rocos 8) - rI ] 
do Sln 0 tan 0 

Enregistrez le sous-programme de calcul de la dérivée. 

Appuyez sur Affichage 

[[J IP/RI Mode programme 
rn CLEAR IPRGMI 000-
fi 1 lBll 0 001-42,21, 0 
Icosl 002- 24 
IRCllO 003- 45 0 

~ 004- 20' 
Icosl 005- 24 
IRCll 1 006- 45 1 

El 007- 30 

~ 008- 34 
ISINI 009- 23 

B 010- 10 

~ 011- 34 
ITANI 012- 25 

B 013- 10 
ICHSI 014- 16 
~ 015- 34 
Icosi 016- 24 
IRCllO 017- 45 0 
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Appuyez sur Affichage 

~ 018- 20 
ISINI 019- 23 
IRCllO 020- 45 0 

~ 021- 20 
[±J 022- 40 
IRCll2 023- 45 2 

~ 024- 20 
~ IRTNI 025- 4332 

En mode Radians, calculez et stockez les trois constantes. 

Appuyez sur Affichage 

[ill 1 P/R 1 Mode calcul. 
1]] IRADI Mode radians. 

2 lli] ~ [8] 6.2832 
.6 ~ ISTOI 0 3.7699 Constante de ro. 

leosi ISTOI 1 -0.8090 Constante de rI' 
ICHS 1 1 [±] 1.8090 
11/xl ISTOI 2 0.5528 Constante de r2' 

Uintensité relative du champ est maximale à 90° (la perpendiculaire à la tour). 
Pour trouver le minimum, utilisez des angles plus proches de zéro comme esti- . 
mations initiales, par exemple les équivalents en r::dians de 10° et 60°. 

Appuyez sur 

10 [!] 1" RAOI 

60 [!] 1" RAD 1 
[!] ISOLVEI 0 
WJJ IRfl 
[[] [[I] [ill 1 Rtl 
[ru I .. OEGI 

Affichage 

0.1745 
1.0472 
0.4899 

-5.5279 -10 
0.4899 
28.0680 

Estimations initiales. 
Angle donnant la pente zéro. 
Pente à l'angle spécifié. 
Restaure la pile. 
Angle en degrés. 
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L'intensité relative du champ est la plus négative à un angle de 28.0680° par 
rapport à la verticale. 

dE 

dO 

2 

~~---+----~~--+-----r---~----~----~--~~O 

Utilisation d'une pente approchée 
La dérivée d'une fonction peut être également calculée numériquement de 
façon approchée. Si vous échantillonnez une fonction sur deux points relative­
ment proches de x (respectivement x + Â et x - Â), vous pouvez utiliser la 
pente de la s'écante comme approximation de la pente en x: 

f(x + ,j.) - f{x - ,j.) 
s= 

f(x) 

t(x + Ll) 

t(x - A) 

~--------------------------------- x x-~ x+A 
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La précision de cette approximation dépend de l'écart Il et de la nature de la 
fonction. De petites valeurs de Il donnent de meilleures approximations de la 
dérivée, mais de trop petites valeurs risquent de provoquer une imprécision 
avec les arrondis. Une valeur de x pour laquelle la pente est égale à zéro est un 
ext,.ème local possible de la fonction. 

Exemple: Résoudre le problème précédent sans utiliser l'équation dE/dO de la 
dérivée. 

Calculez l'angle auquel la dérivée (calculée numériquement) de l'intensité E 
est égale à zéro. 

En mode programme, introduisez deux sous-programmes: l'un pour estimer la 
dérivée de l'intensité, l'autre pour évaluer la fonction E de l'intensité. Dans le 
sous-programme suivant, la pente est calculée entre 0 + 0.001 et 8 - 0.001 
radians (plage correspondant à environ 0.1°). 

Appuyez sur Affichage 

lm IPjRI 000- Mode programme. 

rn ILBLI ~ 001-42,21,11 
IEEXI 002- 26 
ICHSI 003- . 16 
3 004- 3 Calcule E à 0 + 0.001. 

œ 005- 40 
IENTERI 006- 36 
IGSBI [[] 007- 3212 

~ 008- 34 
IEEXI 009- 26 
ICHSI 010- 16 
3 011- 3 Calcule E à 0 - 0.001. 

B 012- 30 
IENTERI 013~ 36 
IGSB 1 [[] 014- 3212 

B 015- 30 
2 016- 2 
IEEXI 017- 26 

·ICHSI 018- 16 
3 019- 3 
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Appuyez sur Affichage 

B 020- 10 
[ru IRTN 1 021- 4332 
rn IlBll [[] 022-42,21,12 Sous-programme pour E( 0). 

ICOSI 023- 24 
IRCllO 024- 45 0 
[8J 025- 20 
Icosi 026- 24 
IRcll 1 027- 45 1 

B 028- 30 

~ 029- 34 
ISINI 030- 23 

El 031- 10 
IRCll2 032- 45 2 
[8J 033- 20 
~ IRTNI 034- 4332 

Dans l'exemple précédent, le calculateur avait été mis en mode radians et les 
trois constantes stockées dans les registres Ro, Rl et R2• Introduisez les mêmes 
estimations initiales que précédemment et exécutez ISOlVEI. 

Appuyez sur Affichage 

[ru IP/RI 
1 0 [!] Ir--.. ---R-A---Ooi O. 1745 
60 [!] l''RAOI 1.0472 
rn 1 SOLVE 1 ~ 0.4899 
IR+I IR+1 0.0000 
@J !KI] [ru !KI] 0.4899 
1 ENTER 1 1 ENTER 1 rn ffiJ -0.2043 

[ru I .. OEGI 
0.4899 
28.0679 

Mode calcul. 

Estimations initiales. 
Angle donné à la pente zéro. 
Pente à l'angle spécifié. 
Restaure la pile. 
Utilise le sous-programme de la 
fonction pour calculer 
l'intensité minimale. 
Rappelle la valeur de O. 

Angle en degrés. 

Cette approximation numérique de la dérivée donne une intensité de champ 
minimale de - 0.2043 à un angle de 28.0679°. (Ce résultat diffère du précédent 
de 0.0001°). 



Utilisation d'une estimation répétée 

Cette troisième technique est utile lorsqu'il n'est pas facile de calculer la déri­
vée. C'est une méthode plus lente car elle nécessite l'utilisation répétitive de 
'SOLVE ,. Par contre, vous n'avez pas besoin de chercher une bonne valeur de Â 

comme dans la méthode précédente. Pour rechercher un extrême local de la 
fonction {(x), définissez une nouvelle fonction. 

g(x) == {(x) - e 

où e est un nombre légèrement supérieur à la valeur extrême estimée de la 
fonction {(x). Si e est correctement choisi, g(x) sera proche de 0 à proximité de 
l'extrême de ((x), mais ne sera pas égale à zéro. Utilisez ISOLVEI pour analyser 
g(x) près de l'extrême. Le résultat désiré est Error 8. 

• Si Error 8 est affiché, le nombre dans le registre X est une valeur de x 
proche de l'extrême. Le nombre contenu dans le registre Z indique gros­
sièrement la différence entre e et la valeur extrême de {(x). Modifiez epour 
le rendre plus proche de la valeur extrême (mais pas égal à celle-ci). Puis 
utilisez 1 SOLVE 1 pour examiner la nouvelle valeur de g(x) près de la valeur 
de x précédemment trouvée. Répétez cette procédure jusqu'à ce que les 
valeurs successives de x ne présentent plus d'écart significatif. 

• Si une racine est trouvée pour g(x), cela signifie soit que le nombre e n'est 
pas supérieur à la valeur extrême de [(x), soit que ISOLVEI a trouvé une 
autre région du graphe où [(x) est égale à e. Modifiez e pour qu'il soit 
proche - mais pas situé au-delà - de la valeur extrême de f(x) et ré-exécu­
tez 1 SOLVE 1. Il peut être également possible de modifier g(x) afin d'élimi­
ner la racine éloignée. 

f(x) f(x) 

e 

x x 
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Exemple: Reprenez l'exemple précédent sans calculer la dérivée de l'intensité 
relative du champ E. 

Le sous-programme de calcul de E et les constantes nécessaires ont été intro­
duitH lors ùe l'exemple précéùent. 

En mnde programme, enregistrez un sous-programme qui soustrait un nombre 
extrême estimé de l'intensité E. Le nombre extrême doit être stocké dans un 
registre afin de pouvoir le modifier manuellement en cas de besoin. 

Appuyez sur Affichage 

[[J Ip/RI 000- Mode programme. 

[!J (!.!îJ 1 001 .... 42,21, 1 Label du sous-programme. 

IGSBI [[] 002- 3212 Calcul de E. 
IRell 9 003- 45 9 
[3 004- 30 SouRtraetion de l'~Rtimati()n 

de l'extrême. 

[ru IRTNI 005- 4332 

En mode calcul, estimez la valeur d'intensité minimale en échantillonnant 
manuellement la fonction. 

Appuyez sur 

@] Ip/Rl 
1 0 rn r--I"-R-A---'O 1 

1 ENTER 1 III [[] 
~ 30 rn I .. RAOI 

1 ENTERI rn [[] 
50 rn 1 .. RAOI 

1 ENTER 1 rn [[] 

Affichage 

0.1745 
-0.1029 

0.5236 
-0.2028 

0.8727 
0.0405 

Mode calcul. 

Échantillonne la fonction 
à 10°, 30°, 50°, ... 

1 
r 
f 
l' ", 
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A partir de ces échantillons, faites un essai en utilisant une estimation de 
- 0.25 pour l'extrême et des estimations initiales pour 1 SOlVEI (en radians) 
proches de 10° et de 30°. 

Appuyez sur Affichage 

.25 ICH$] ISTol 9 -0.2500 

. 2 IENTERI 0.2000 

.6 0.6 
1] [SOlVE] 1 Error8 
8 ISTOI 4 0.4849 
IR+I ISTOI 5 0.4698 

IR+I 0.0457 
. 9~ 0.0411 
ISTol œ 9 0.0411 

Œ9J 4 0.4849 
, ENTER l'ENTER 1 rn [ID -0.2043 
B '0.0000 
'Rell 5 0.4698 

ru [~ 1 Errora 
8 0.4898 
~ 0.4893 
~ 0.4898 
[ERfffi] 'ENTER 1 ru [ID -0.2043 
~ 0.4898 
[ID , .. DEGI 28.0660 
[ID 'DEGI 28.0660 

Stocke l'estimation 
de l'extrême . 

Estimations initiales. 
Aucune racine trouvée. 
Stocke l'estimation de (J. 

Stocke l'estimation précédente 
de o. 
Distance de l'extrême . 
Modifie l'estimation de 
l'extrême 
(de 90 % de la distance). 
Rappelle l'estimation de o. 
Calcule l'intensité E. 
Rappelle d'autres estimations 
de 8 cn gardant la première 
dans le registre Y. 
Aucune racine trouvée. 
Estimation de o. 
Estimation précédente de (J. 

Rappelle l'estimation de 8. 
Calcule l'intensité E. 
Rappelle la valeur de (J. 

Angle en degrés. 
Restaure le mode degrés. 

La seconde itération produit deux estimations de 0 qui ne diffèrent qu'à la qua­
trièrne position décimale. Les intensités Epour les deux itérations, sont égales 
jusqu'à la quatrième position décimale. En s'arrêtant à ce niveau, on obtient 
une intensité de champs minimale de - 0.2043·à un angle de 28.0660°. (Avec un 
écart de 0.002° par rapport aux résultats des méthodes précédentes). 



Applications 

Les applications suivantes illustrent comment vous pouvez utiliser 1 SOLVEI 
pour simplifier un calcul habituellement difficile: la recherche d'un taux d'inté­
rêt qui ne peut être calculé directement. D'autres applications utilisant la fonc­
tion 1 SOLVEI sont décrites aux chapitres 3 et 4. 

Annuités et capitalisation 
Ce programme permet de résoudre de nombreux problèmes financiers dans 
lesquels interviennent les facteurs d'argent, de temps et d'intérêt. Pour ces 
problèmes, vous connaissez généralement la valeur de trois ou quatre des 
vàriables suivantes et vous avez besoin de la valeur d'une autre: 

n Nombre de périodes de composition. (Par exemple, pour un prêt sur 
30 ans avec remboursements mensuels, n - 12 X i300 - i360.) 

t Taux d'intérêt par période, exprimé en pourcentage. (Pour calculer i, 
divisez le taux annuel par le nombre de périodes dans l'année. Autre­
ment dit, un taux annuel d'intérêts composés de 12 % correspond à un 
taux périodique de 1 %). 

PV Valeur actuelle (PRESENT VALUE) d'une série de versements 
futurs ou d'un versement initial. 

PMT Montant du remboursement (PAYMENT) périodique. 

FV Valeur future (FUTURE VALUE). C'est-à-dire le capital acquis (ou 
remboursé) à la fin de l'opération ou la valeur composée d'une série de 
versements antérieurs. 



Combinaisons 
autorisées 

n, i, PV, PMT 
(Introduire 
trois de ces 
valeurs et 
calculer la 
quatrième.) 

-
n, i, PV, PMT, 
FV (Introduire 
quatre de ces 
valeurs et 
calculer la 
cinquième.) 
-------
n, i, PMT, FV 
(Introduire 
trois de ces 
valeurs et 
calculer la 
quatrième.) 

-
n, i, PV, FV 
(Introduire 
trois de ces 
valeurs et 
calculer la 
quatrième.) 
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Types de problèmes d'annuités 
et de capitalisation 

Applications classiques 
--------

Pour rem- Pour rem-
boursements boursements 

en fin en début 
de période de période 

-
Prêt direct. Crédit bail. 
Effets Annuité à 

escomptés. échoir. 
Hypothèques. 

Prêt direct Crédit bail 
avec rem- avec valeur 
boursement résiduelle. 
libératoire. Annuité à 

Effets à échoir. 
escomptés. _._--_._ .. -._- --' ~ .•. , .. -'-- "~"-'~' .. -' 

Fonds d'amof- Épargne 
tissement. périodique. 

Assurance. 

Capitalisation. 
Épargne. 

Procédure 
initiale 

Utiliser 
rn ICLEARI IREGI 
ou FV=O 

Aucune. 

Utiliser 
ru ICLEARI [[@ 
ou PV=O. 

Utiliser 
ru 1 CLEARI 1 REGI 
ou PMT= O. 

Le programme accepte les remboursements effectués soit en fin (terme échu), 
soit en début (terme à échoir) de période de composition. Les remboursements 
effectués en fin de période (annuité ordi~aire) sont courants pour les prêts 
directs et hypothécaires, alors que les remboursements en début de période 
(annuité d'avance) sont courants en crédit-bail. 
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Pour les remboursements effectués en fin de période, effacez l'indicateur 
binaire 0 (flag 0). Pour les remboursements effectués en début de période, 
armez l'indicateur binaire O. Si le problème ne comporte pas de rembourse­
ments, l'état de cet indicateur est sans effet. 

Ce programme utilise la convention suivante: les sommes d'argent versées 
sont introduites et affichées comme des quantités négatives et les sommes 
d'argent reçues comme des quantités positives. 

Tout problème financier peut être ·ainsi représenté sous forme d'un dia­
gramme de flux (positifs ou négatifs) dans le temps. Ce diagramme est consti­
tué d'une ligne horizontale représentant le temps et divisée en intervalles 
égaux correspondant aux périodes de composition (années ou mois). Les flè-

. ches verticales représentent I{~s mouvements d'argent en obéissant à la con­
: vention suivante: les flèches dirigées vers le haut (positives) représentent l'ar­
gent reçu, les flèches dirigées vers le bas (négatives) représentent l'argent 
versé. Exemple: 

Argent reçu 

2 3 4 

Argent· versé 

La pression de œ CLEAR 1 REGI est une méthode commode de ré-initialiser le 
calculateur pour un nouveau problème. Cependant, il n'est pas nécessaire d'ap­
puyer sur œ CLEAR 1 REGI entre tous les problèmes. Vous ne ré-introduirez 
que les valeurs des variables différentes d'un problème à l'autre. Si une 
variable n'est p~s utilisée dans un nouveau problème, donnez lui simplement la 
valeur O. Par exemple, si PMTest utilisée ùans un problème mais pas ùans le 
suivant, introduisez simplement 0 comme valeur de PMT dans le second pro­
hlt~rn(l. 
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L'équation de base utilisée pour les calculs financiers est: 

PMTA 
PV + [1 - (1 + i/lOOrn

] + FV(1 + i/lOOrn == 0 
illOO 

où i =1= 0 et 

A = \1 pour les remboursements en fin de période. 
I + i/lOO pour les remboursements en début ùe période. 

Le programme présente les caractéristiques suivantes: 

• 1 SOLVEI est utilisée pour trouver i. Comme il s'agit d'une fonction itéra­
tive, le calcul de i estplus long que le calcul des autres variables. Certains 
problèmes peuvent être insolubles pal' cette technique. Si 1 SOLVEI ne 
trouve pas de racine, Error 4 est affiché. 

• Lors du calcul de l'une des cinq variables ci-dessous, certaines conditions 
provoquent l'affichage de Error 4: 

n PMT = - PVi/(lOO A) 

i 
PV 
PMT 

FV 

(PMT A - FVi/lOO)/(PMT A + PVi/lOO) ~ 0 
i~ -100 
1 SOLVEI ne peut trouver de racine 
i ~ -100 
n=O 
i = 0 
i a;;;; -100 
i ~ -100 

• Si un problème a un taux d'intérêt défini égal à 0, le programme génère un 
message d'erreur: Error 0 (ou Error 4 pour Je calcul de PMT). 

• Les problèmes ayant des valeurs de n ou de i extrêmement grandes (supé­
rieures à 106

) ou extrêmement petites (inférieures à 10-6
), risquent de don­

ner des résultats incorrects. 

• Les problèmes d'intérêts avec remboursements libératoires de signe 
opposé aux rempoursements périodiques peuvent avoir mathématique­
ment plus d'une solution (ou pas de solution du tout). Ce programme peut 
très bien trouver l'une des solutions mais il ne donne pas les moyens de 
rechercher ou même d'indiquer d'autres possibilités. 

Appuyez sur 

cru IP/RI 

1] CLEAR 1 PRGM 1 

Affichage 

Mode programme. 
000-



30 CI. itre 1 : Utilisatiun de i ~;OLV_~j 
Appuyez sur Mfichage 

ru Il8l1 ŒJ 001-42,21,11 Programme pour n. 

ISTol 1 002- 44 1 Stocke n. 

IR/si 003- 31 
IGS81 1 004- 32 1 Calcule n. 

~ IlSTxl 005- 4336 

IRCll ~ 0 006-45,20, 0 
IRCll 5 007- 45 5 

~ 008- 34 

G 009- 30 Calcule 
FV - 100 PMT Ali. 

[ID 1 lSTxl 010~ 4336 
IRCll [±J 3 011-45,40, 3 Calcule 

PV + 100 PMT Ali. 

[ID Ix=ol 012- 4320 Teste 
PMT = - PVil(lOO A). 

ÎGTOI 0 013- 22 0 

GJ 014- 10 
ICHsl 015- 16 
~ ITESTI 4 016-43,30, 4 Teste x ~ O.' 

IGTolo 017- 22 0 

~ IlNI 018- 4312 
IRell6 019- 45 6 

~[ffi] 020- 4312 

GJ. 021- 10 
ISTol 1 022~ 44 1 

~ IRTNI 023- 4332 

ru Il8l1 [ID 024-42,21,12 Programme pour i. 

ISTol2 025- 44 2 Stocke i. 

IR/si 026- 31 
[] 027- 48 
2 028- 2 

\I~JMJ 029- 36 
[EERl 030- 26 
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Appuyez sur Affichage 

ICHS! 031- 16 , ;1 

3 032- 3 
!l 
!; 
)1 

[ru [ffJ 1 033-43, 5, 1 Arme l'indicateur 1 pour 
) ~ 

-l, 

(, le sous-programme IsoLvEI. 
\: lI] ISOLVEI 3 034-42,10, 3 

\GTOI4 035- 22 4 
IGTolo 036- 22 0 
fI]ILBL! 4 037 -42,21, 4 
[EExl' 038- 26 
2 039- 2 
[Xl 040- 20 Calcule i. 

r ISTol2 041- 44 2 

f lm 1 RTN 1 042- 4332 
[] ILBLI If] 043-42,21, 13 Programme pour pv. 

r 

ISTol3 044- 44 3 Stocke PV. 
IR/si 045- 31 
IGSBI 1 046- 32 1 Calcule PV: 

r IGSB! 2 047- 32 2 i, 
ICHSI 048- 16 1-

." 
1 

ISTol3 049- 44 3 
lm IRTN 1 050- 4332 
[!] ILBL 1 [QJ 051-42,21,14 Programme pour PMT. 

~ ISTol4 052- 44 4 StockePMT. 
.'~ 

IRIS! 053- 31 
1 1 054- 1 Calcule PMT. t ISTol4 055- 44 4 1 
j 

IGSBI 1 056- 32 1 
[RCI] 3 057- 45 3 
IGSBI2 058- 32 2 
~ 059- 34 
GJ 060- 10 

i: ICHsl 061- 16 
i~ j§IOJ 4 062- 44 4' ! 
" 

ru] IRTN 1 063- 4332 
li 
li 
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Appuyez sur Affichage 

ru IlBll œ 064-42,21, 15 Programme pour Fv. 
ISTOl5 065- 44 5 Stocke Fv. 
[BZ§J. 066~ 31 

[G.~_~J 1 067- 32 1 Cal('ule Pv. 
IRC~] œ 3 068-45,40, 3 

LRGk] r:tJ 7 069-45,10, 7 
ICHsl 070- 16 
ISTOl5 071- 44 5 

cru 1 RTNI 072- 4332 
ru IlBll 1 073-42,21, 1 

cru [@ 1 07·4-43, 4, 1 Arme l'indicateur 1 pour 
le sous-programme 3. 

1 075- 1 

IRCll 2 076- 45 2 
[ill1Jil 077- 4314 Calcule i/100. 

ru IlBll 3 078-42,21, 3 Sous-programme 1 SOlVEI. 

ISTOl8 079- 44 8 
1 080- 1 
ISTolO 081- 44 0 
[±] 082- 40 
cru ITESTI 4 083-43,30, 4 Teste i ~ 100. 

IGTOIO 084- 22 0 
ISTOl6 085- 44 6 
[ill Œ?J 0 086-43,6, 0 Teste si les remboursements 

sont en fin de période. 

ISTolo 087- 44 0 

IRCll 1 088- 45 1 

ICHsl '089- 16 
[ZJ 090- 14 Calcule (1 + i/lOOrn

• 

ISTOI 7 091- 44 7 
1 092- 1 

~ 093- 34 

G 094- 30 Calcule 1 - (1 + i/100rn
• 



1 

! 
1 
1 

, ; 

'1 
/ 

r 
) 
! 
f , 
i 

f 
l 
j 
r-
i 

Appuyez sur 

~ Ix=ol 
@!QJ 0 

[Rf!-J [8J 0 
[RC~J 4 
~9J G 8 
[><] 
IJ!j l!1J 1 

8lJ [RrN] 

1 Rell [±] 3 

œ IlBll 2 
mm 5 
LB:9J [8J 7 
[±] 
cru 1 RTNI 
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Affichage 

095- 43 20 Teste i ..... 0 ou n =- O. 
096- 22 0 
097 -45,20, 0 
098- 45 4 
099-45,10, 8 

100- 20 
101-43, 6, 1 TCHLe la pUt;iLion 

ùe l'indicateur 1. 
102- 4332 
103-45,40, 3 

104-4221 2 
105- 45 5 
106-45,20. 7 
107- 40 
108- 4332 

Le sous-programme 1 SOlVEI 
continue. 

Calcule FV (1 + i/loo)-n. 

Le t;UUt;-programme 1 SOLVEl 

est terminé. 
Labels utilisés: A, B, C, D, E, 0, 1, 2, 3 et 4. 

Registres utilisés / Ro (A), Rl (n), R2 (i), R3 (PV), R-1 (PMT), R5 (FV), R6' R7 et Rs. 

Pour utiliser le programme: 

1. Appuyez sur 8 œ IDIMI ŒIl pour réserver les registres Ro à Rs. 

2. Appuyez sur œ 1 us ER 1 pour valider le mode USER. 

3. Si nécessaire, appuyez sur œ CLEAR 1 REGI pour effacer toutes les 
variables. Vous n'avez pas besoin d'effacer les registres si vous avez l'in­
tention de spécifier toutes les valeurs. 

4. Armez l'indicateur 0 en fonction du type de remboursement: 

• Appuyez sur [ill 1 cFI 0 pour les remboursements en fin de période. 

• Appuyez sur [lli 1 SFI 0 pour les remboursements en début de 
période. 

5. Introduisez les valeurs connues des variables: 

• Pour n, introduisez t;a valeur ct appuyez sur ~. 

., Pour i, introduisez sa valeur ct appuyez sur [ID. 
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• Pour pv, introduisez sa valeur et appuyez sur [Ç]. 
• Pour PMT, introduisez sa valeur et appuyez sur [QJ. 

• Pour FV, introduisez sa valeur et appuyez sur Œ). 

6." Calculez" l'inconnue : 

• Pour calculer n, appuyez sur ŒJ []§J. 

• Pour calculer i, appuyez sur [ID []§J. 

• Pour calculer PY, appuyez sur [9 1 RIS 1. 

• Pour calculer PMT, appuyez sur [Q] []§J. 

• Pour calculer FV, appuyez sur ŒJ []§J. 
7. Pour résoudre un autre problème, répétez les étapes 3 à 6 de la procé­

dure. Vérifiez qu'aucune variable nécessaire au calcul n'a la valeur zéro. 

Exemple 1 : Vous placez 155 FF sur un compte rémunéré par composition men­
suelle à 5,75 % d'intérêt annuel. Quel capital aurez-vous dans 9 ans? 

PV 
-155 

Appuyez sur 

[ID 1 P/RI 

[f] CLEAR 1 REGI 

[f] 1 FIXI 2 

1] 1 USERI 

[ID [g] 0 
9 1 ENTERI 12 [8] ŒJ 

2 

. 5.75 ,=--
12 

3 

Affichage 

108.00 

7 
FV 

106 107 108 

Mode calcul. 
Efface les variables financières. 

Valide le mode USER. 
Annuité ordinaire. 
Introduit n - 9 X 12. 

'! 

, 
. ~ 

; 

, ~ 

1 
i 

'1 

1 
i 

i 
.; 

r 
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Appuyez sur Affichage 

5.751ENTER112 G1 [ID 0.48 
155 1 cHsl [ÇJ -165.00 

269.74 

Introduit i - 5.75/12. 
Introduit PV - - 155 
(argent versé). 
Calcule FV. 

Si vous aviez désiré un capital de 275 FF, à quel taux auriez-vous dO placer 
votre argent? 

Appuyez sur 

275 []] 
[ID 1 R/si 
12 [8] 

Mfichage 

275.00 
0.53 
6.39 

Introduit FV - 275. 
Calcule i. 
Calcule le taux d'intérêt annuel. 

Exemple 2: VOUM prenez une hypothèque de 30.000 FF sur 30 ans à 13 % d'inté­
rêt. Quel sera votre remboursement mensuel? 

30,000 
PV 

Appuyez sur 

ru CLEAR 1 REGI 
30 IENTERI 12 ~ ~ 
1 3 1 ENTER 1 1 2 G 1]] 
30000 [Ç] 
[Q] 1 R/si 

PMT 
? 

. 13 
1=1"2 

Affichage 

360.00 
1.08 
30,000.00 

-331.86 

Efface les variables. 
Introduit n == 30 X 12. 
Introduit i - 13/12. 
Introduit PV - 30,000. 
Calcule PMT (argent versé). 
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Exemple 3 : Vous proposez de prêter 3,600 FF remboursables en 36 mensuali­
tés de 100 FF pour un taux d'intérêt annuel de 100/0. Quel sera le montant du 
paiement libératoire accompagnant la 36e mensualité, pour solder votre 
créance? 

1 

PV 
-3600 

100 
PMT 

. 10 ,=-
12 

Appuyez sur Affichage 
1] CLEAR 1 REGI 

36 ŒJ 36.00 
1 0 [@Rffi 1 2 GJ [ID 0.83 
3600 1 CHS 1 [Ç] -3600.00 

100 [QJ 100.00 

675.27 

t t t 
34 35 36 

? 
FV 

t 
t 

Efface les variables. 
Introduit n = 36. 
Introduit i = 10/12. 
Introduit PV = - 3600 
(argent versé). 
Introduit PMT == 100 
(argent reçu). 
Calcule FV. 

Le remboursement final sera 675.27 + 100 = 775.27 FF (paiement libératoire + 36e mensualité). 

Exemple 4 : Pour un emprunt de 50000 FF remboursable en 360 mensualités 
au taux annuel de 14 %, trouvez le capital restant dû après le 24 e versement et 
les intérêts payés entre les 12e et 24 e versements. 

Vous pouvez utiliser le programme pour calculer les intérêts payés sur un 
groupe d'annuités et le capital restant dû après la dernière annuité du groupe. 
Le montant des intérêts payés entre deux périodes est égal au montant des 
remboursements effectués pendant cet intervalle moins le capital amorti sur 
cet intervalle. Le capital amorti est égal à la différence entre le capital restant 
dû au début de la première période de référence et le capital restant dû à la fin 
de la deuxième période de référence. 
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Tout d'abord, calculez le montant des mensualités: 

Appuyez sur Affichage 

œ CLEAR IREGI 
360 [~ 360.00 
1 4 11&IT!!J 1 2 GJ 1]] 1 . 17 
50000 1 CHS 1 [9 -50,000.00 
[QI 1 R/S 1 592.44 

Efface les variables. 
Introduit n = 360. 
Introduit i == 14/12. 
Introduit PV ...... - 50,000. 
Calcule PMT. 

Maintenant, calculez le capital restant dû à la période 24 : 

Appuyez sur 

24 Œl 
ŒI IR/si 

Affichage 

24.00 
49,749.56 

Introduit n = 24. 
Calcule FV à la période 24. 

Stockez ce résultat, puis calculez le capital restant dû à la période 12 et le capi­
tal amorti entre les périodes 12 et 24 : 

Appuyez sur 

ISTOI [!] 
12 ~ 
l1J ŒZID 
1 RCll [!] 
G 

Affichage 

49,749,56 
12.00 
49,883.48 
49,749.56 
133.92 

Introduit n == 12. 
Calcule FV à la période 12. 
Rappelle FV à la période 24. 
Capital amorti. 

Le montant des intérêts payés est égal à la différence entre le montant de 
12 mensualités et le capital amorti sur ces 12 mensualités: 

Appuyez sur 

IRCll4 

12 ~J 
Ix~Yl G 

Mfichage 

592.44 
7,109.23 
6,975.31 

Rappelle PMT. 
Valeur des 12 mensualités. 
Montant des intérêts payés. 
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Èxemple 5: Une société de crédit-bail envisage l'achat d'un mini-ordinateur d'une valeur de 63,000 FF et désire en tirer un profit annuel oe 13 % en le louant 
à un client pour une période de 5 ans. Au bout de 5 ans, cette société espère 
revendre l'équipement au moins 10,000 FF. Quel devra-être le versement men­
suel du client pour que la société de crédit-bail réalise le profit de 13 % ? (Les 
versements de crédit-bail étant en début de période, n'oubliez pas d'armer l'in­
dicateur ° comme il se doit.) 

10,000 
FV 7 

PMT ... ~~J.J 
2 3 

. 13 
1=-

12 

PV 
-63,000 

Appuyez sur 

œ CLEAR IREGI 
[ru [§f] 0 

Affichage 

5 1 ENTER 1 1 2 [8] Œl 60.00 
13 1 ENTERI 12 [±] 1]] 1.08 
63000 ICHSI [Ç] -63,000.00 
1 0000 œ 10,000.00 
[Q] 1 R/si 1,300.16 

58 59 60 

Efface les variables. 
Spécifie des versements 
en début de période. 
Introduit n -- 5 X 12. 
Introduit i - 13/12. 
Introduit PV === - 63,000. 
Introduit FV === 10,000. 
Calcule PMT. 

!Si l'ordinateur coûte 70,000 FF au montant de l'achat, quels seront les verse­
Iments? 
j 

1. 

!Appuyez sur 

!7 0000 1 CHS 1 [Ç] 
{Q] 1 R/si 

Affichage 

-70,000.00 
1,457.73 

Introduit PV == - 70,000. 
Calcule PMT. 

i 
1 

1 
r 
, J 

1. 

r , .' 
l 
\ 1 
; 

~ . 
1 
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Si les versements étaient portés à 1,500 FF, quel Bera le profit réalisé? 

Appuyez sur 

1500 [QI 
1]] 1 RiSi 

12 ~ 
ru IUSERI 

Affichage 

1,500.00 
1.18 
14.12 
14.12 

Introduit PMT - 1500. 
Calcule i (mensuel). 
Calcule le taux (profit) annuel. 
Invalide le mode USER. 

Analyse de flux de trésorerie escomptés 

Ce programme effectue deux sortes d'analyses: la valeur actuelle nette NPV 
(Net Pl'el:ient Value) et le taux de rentabilité interne IRR (InternaI Rate of 
Return). Il calcule soit NPV, soit IRR pour un maximum de 24 groupes de flux 
de trél:iorerie. 

Les versements sont stockés dans la matrice C à deux colonnes. Chaque rang 
de la matrice C représente chaque groupe de versements: le premier élément 
est le montant du versement, le deuxième élément est le nombre de verse­
ments de ce montant (nombre de flux dans ce groupe). Le premier élément de C 
doit être le montant de l'investissement initial. Les versements doivent être 
faits à intervalles égaux; s'il n'y a pas de versement surplnsieurs périodes, cha­
cun de ces versements aura la valeur zéro et le nombre de 0 représentera le 
nombre de flux dans ce groupe. 

Dès que tous ces flux sont stockés dans la matrice C, vous pouvez introduire un 
taux d'intérêt donné et calculer la valeur actuelle nette (NPV) de l'investisse­
ment. De même, vous pouvez calculer le taux de rentabilité interne (IRR). 
U IRR est le taux d'intérêt pour lequel la valeur actuelle d'une série de flux de 
trésorerie est égale à l'investissement initial. Autrement dit, c'est le taux d'in­
térêt pour lequel NPV - O. Ce taux de rentabilité interne est égal~ment appelé 
rendement ou taux de rendement escompté. 

L'équation de NPVest: 

f, CF
J
( 1- (1:+ i/100rnj

) (1 + i/100) -/~t~our i > -100 
j~ t/100. i=t:- 0 

k 
NVP= 

~CF pour i-O L..J jnj 
j=l 

où L ni est définie comme - 1. 
/<1 
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Le programme utilise la convention de signe suivante: toute somme d'argent 
reçue (introduite ou affichée) est positive, toute somme d'argent versée (intro­
duite ou affichée) est négative. 

Le programme présente les caractéristiques suivantes: 

• La séquence des flux (y compris l'investissement initial) doit contenir des 
flux négatifs et des flux positifs. Autrement dit, il doit y avoir au moins un 
changement de signe. 

• Le flux présentant plusieurs changements de signes peuvent avoir plus 
d'une solution. Ce programme n'en trouve qu'une et ne peut pas indiquer 
les autres possibilités. 

• Le calcul de IRR peut durer plusieurs minutes (5 mn ou plus). Sa 'durée 
dépend du nombre de flux introduits. 

• Le programme affiche Error 4 lorsqu'il ne trouve pas de solution pour 
IRR ou lorsque le rendement i est inférieur ou égal à -100 % dans le calcul 
de NPV. 

Appuyez sur Mfichage 

lm 1 P/R 1 Mode programme. 
ru CLEAR IPRGMI 000-
m ILBLI ŒJ 001 -42,21,11 Programme pour NPV. 
IEEXI 002- 26 
2 003- 2 
GJ 004- 10 Calcule IRR/100. 
IGSBI 2 005- 32 2 
IR/si 006- 31 
m ILBL\ Œl 007-42,21,12 Programme pour IRR. 
1 008- 1 
1 ENTERI 009- 36 
IEEX\ 010- 26 
ICHSI 011- 16 
3 012- 3 
ru ISOLVEI 2 013-42,10, 2 
IGTOI 1 014- 22 1 
IGTOlO 015- 22 0 Branchement si pas de solution 

IRR. 
ru ILBLI 1 016-42,21, 1 
IEExl 017- 26 
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Appuyez sur Affichage 

2 018- 2 
ŒS] 019- 20 
[R/si 020- 31 
ru L~.~LJ 2 021-42,21, 2 Cal('ule NPV. 
[m [TI] 0 022-43, 5, 0 
[[TQ] 2 023- 44 2 
1 024- 1 
ISTol4 025- 44 4 
[±] 026- 40 Calcule 1 + IRR/IOO. 
[m ITESTI 4 027 -43,30, 4 Teste IRR -- - 100. 
IGTolO 028- 22 0 Branchement si IRR -- - 100. 
ISTOl3 029- 44 3 
0 030- 0 
[Sf5] 5 031- 44 5 
1] 1 MATRIXI 1 032-42,16, 1 
ru 1 lBL/ 3 033-42,21, 3 
[ill [B] 0 034-43, 6, 0 Teste si tous les flux 

sont utilisés. 
IGTOl7 035- 22 7 Branchement si tous les flux 

sont utilisés. 
IGSBI6 036- 32 6 
IRCll 2 037- 45 2 
cru Ix=ol 038- 4320 Teste IRR = O. 
IGTol4 039- 22 4 Branchement si IRR == O. 
1 040- 1 
œ 041- 40 
IGSBI 6 042- 32 6 
ICHSI 043- 16 
[Z] 044- 14 
ISTol4 045- 44 4 
1 046- 1 
~ 047- 34 
G 048- 30 
IRCll G 2 049-45,10, 2 
IRCll ~ 3 050-45,20, 3 
IGTOl5 051- 22 5 
1] 1 LBLI 4 052-42,21, 4 
~ 053- 34 
IGSBI 6 054- 32 6 
1] 1 LBLI 5 055-42,21, 5 
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Appuyez sur 

~ 
ISTOI [±] 5 
IRell4 

ISTol ŒJ 3 
IGTol3 
ru -\lBll 6 
ru 1 USERI 1 Rell [Ç] 
ru IUSERI 
cru 1 RTNI 
cru [§l] 0 

ru IRTNI 
œ IlBll 7 
IRell 5 
cru 1 RTNI 

Affichage 

056- 20 
057 -44,40,. 5 
058- 45- 4 
059-44,20, 3 
060- 22 3 
061-42,21, 6 
062u 45 13 

063- 4332 
064-43, 4, 0 

065- 4332 
066-42,21, 7 
067- 45 5 
068- 4332 

Labels utilisés: A, B et 0 à 7. 
Registres utilisés: Ro à R5' 
Matrice utilisée: C. 

Rappelle l'élément flux. 

Arme l'indicateur si c'est 
le dernier élément. 

Rappelle NPV. 

Pour utiliser le programme d'anaJYHe des flux eHcomptés: 
1. Appuyez sur 5 1]] IDIMI [illJ pour allouer les registres Ru à Ro. 
2. Appuy~z sur œ 1 USERI pour valider le mode USER (Hanr A'i] eHt d~ji\. 

validé). 
3. Introduhiez Je nombre de groupes de flux ct appuyez Aur 1 ENTERI 2 

1]] IDIMI [g pour dimensionner la matrice C. 
4. Appuyez Hur ru 1 MATRIXI 1 pour initinliHor loR num('l'OH dl! t'ung ot dt' 

colonne à 1. 
5. Pour chaque groupe de flux: 

a) Introduisez la valeur des flux et appuyez sur 1 STol [9. 
h) Introduisez le nombre de flux dans le groupe et appuyez sur 
ISTol [Ç]. 

6. Calculez le paramètre désiré: 
• Pour calculer IRR, appuyez sur ffiJ. 
• Pour calculer NPV, introduisez le taux d'intérêt périodique i en 

pourcentage et appuyez sur ŒJ. Répétez cette prucéùure pour 
autant de taux d'intérêt que vous le désirez. 

7. Répétez les étapes 3 à 6 de la procédure pour d'autres prohlèmcH de flux. 



Exemple 1: Un investisseur achète 80,000 FF un duplex qu'il a l'intention de 
revendre au bout de 7 ans. Au cours. de la première année, il doit faire des 
dépenses de réparations. A la fin de la septième année, le duplex est vendu 
91,000 FF. Arrivera-t-il au rendement désiré de 9 % après impôts, avec l'histori­
que ci-dessous des flux après impôts? 

91,000 

8000 8000 75

t
OO 75r 1 6500 

~~~--~~--~~ 

1 5 6 7 

-600 

-80,000 

Appuyez sur 

illJ 1 PIR 1 

[!] 1 FIX] 2 

Affichage 

5 [] @}M) ffiI) 5.00 
6 [E~X.~~J 2 2 
ru @}M) [9 2.00 
œ 1 ~_~TBEJ 1 2.00 
[] 1 USERI 2.00 
80000 Lç.t~.?J [[tQ] [Ç] -80,000.00 
1 ISTol [9 1.00 
600 ICHsl ISTol [9 -600.00 
1 1 STol [Ç] 1.00 
6500 ISTol [9 6,600.00 
1 [sTol 1:9 1.00 
8000 1 STol [9 8,000.00 
2 ISTol @] 2.00 
75'00 [Sf6] @] 7,500.00 
2 ISTol ~ 2.00 
91000 ISTol [9 91,000.00 
1 1 STol [Ç] 1.00 
9 9 

-4,108.06 

Mode calcul. 

Réserve les registres Ro et R5' 

Investissement initial. 

Introduit le rendement 
·présumé. 
NP V. 
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Puisque NPV (Valeur actuelle nette) est négative, l'investh;semeni n'assure 
pas la rentabilité ùésirée de 9 %. Calculez le taux ùe rentabilité interne (IllR). 

Appuyez sur 

(ID 

Affich"age 

8.04 IRR (au bout de 8 mn). 

Le taux de rentabilité interne est donc inférieur à 9 %. 

Exemple 2 : Il est prévu qu'un investissement de 620,000,000 FF produisent 
les flux de rentrées annuelles suivants au cours des 15 années à venir: 

100,000,000 
5,000,000 

1 2 10 11 12 13 14 15 

1

-_L1 ... 1..LJ ,1 .. _1J. J 

-620,000,000 

Quel taux de rentabilité peut-on espérer? 

Appuyez sur 

3 IENTERI 2 

[]J@lM][9 
ru IMATRlxl 1 
620000000 ICHSI 

ISTol [9 
1 ISTol [9 
1 00000000 1 STO 1 [9 
10 [ST6] [Ç] 
5000000 ISTol [Ç] 
5 ISTol [9 
[ID 
ru IFlxl 4 

ru 1 USERI 

Affichage 

2 
2.00 
2.00 

-620,000,000 
-620,000,000.0 

1.00 
100,000,000.0 
10.00 
5,000,000.00 
5.00 
10.06 
10.0649 
10.0649 

IRR. 

Invalide le mode USER. 
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Chapitre 2 
!- ":J Utilisê:ltioll de :.1 '.1 

Le HP-I5e vou:::; permet les intébl1'ation::; numériques à l'aide de cm. Ce cha­
pitre explique comment utiliser efficacement [l] et décrit des techniques per­
mettant ue traiter ues intégl'ule::; uirfieile~, 

Intégration numérique avec 1 f; 1 

Ji~n général, l'intégration numpriqu(l SUI' eal(,lIlatpur n'est jamais très préeise. 
Mai::; la fonetion U:~ vou::; uemanue d'une fa<;on eommode de spécifier dans 
quelle mesure l'erreur est tolérable, Elle vous demande de définir le format 
tl'affie!Juge en 1'ulleLÏon ue la prél'Ïsion vuulue puur le::; ehHfres de l'expre::;::;Îon 

f(x) ù intégrer, En effet, vou~ spécifiez ainôi la largeur d'une bande à l'aire 
si tuép. HOUS qllP)qllP graphe non :..;p{><'Ï fi(· fi glIJ'I-Ln t ('n tj(~rcmcnt à l'int.6rieur ùe la 
bande. Naturellement, cette estimation risque de varier en proportion avec la 
surface de la bande; c'est pourquoi m estime aussi cette surface. Si on 
appelle 11'intég1'ule désirl~e, 

1 = ( Aire située sous un graPhe) ± ( 112 surface ) 
dCôôiné dam; lu bande de la bande 

Le HP-I5C place l'estimation de la première surface (aire) dans le registre X et 
celle de la seconde (incertaine) dans le l'P}..,rh;tl'C Y. 

f(x) 

--+-----~----------------~------x a b 

45 
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Par exemple, t( x) pourrait représenter une conséquence physique dont l'am­
plitude ne peut être déterminée qu'à + 0.005. La valeur calculée pour t( x) a 
donc une incertitude de 0.005. Un format d'affichage p=Tx] 2 indique au calcula­
teur que les chiffres décimaux situés au-delà de la deuxième position décimale 
n'ont aucune importance. Le calculateur ne doit pas perdre de temps à estimer 
l'intégrale avec une précision non garantie. Il va par contre vous donner une 
idée précise de la plage de valeurs dans laquelle doit être l'intégrale. 

Le HP-15C ne vous empêche pas de déclarer que f( x) est beaucoup plus précise 
qu'elle ne l'est. Vous pouvez soit faire une étude approfondie de l'erreur avant 
de spécifier le format d'affichage soit vous contenter d'une estimation. Vous 
pouvez laisser le format d'affichage à 1 SCI14 ou à 1 FIXl4 pour simplifier. Vous 
obtiendrez une estimation de l'intégrale et de son imprécision, vous permet­
tant d'interpréter le résultat plus intelligemment que si vous aviez eu la 
réponse sans aucune idée de sa précision ou de son imprécision. 

L'algorithme de m utilise la méthode de Romberg pour cumuler la valeur de 
l'intéb'l'ale. Plusieun; raffinements la rendent encore pluH effkaee. 

Au lieu d'utiliser des échantillons régulièrement espacés, qui peuvent apporter 
une sorte de résonnance responsable de résultats trompeurs lorsque l'expres­
sion à intégrer est périodique, [DJ utilise des échantillons espacés irrégulière­
ment. Cet espacement peut-être démontré par substitution par exemple, ùe: 

par 

31 3 x=-u--u 
2 2 

1 =f1 f(x )dx =f1 f (~u - ..!..u3 ) ~ (1 - u2) du 
-1 . -1 2 2 2 

avec un échantillonnage u uniforme. Outre la suppression de la résonnance, la 
substitution offre deux autres avantages. Premièrement, il n'est pas néces­
saire de dessiner un échantillon à l'une ou l'autre extrémité de l'intervalle d'in­
tégration (sauf lorsque l'intervalle est si petit qu'il n'y a pas d'autre possibilité). 
Il en résulte qu'une intégrale telle que: 
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3 f sinx dx 
o x , . 

ne sera pas interrompue par une division par zéro à un point d'extrémité. 
Deuxièmement, WJ peut intégrer des fonctions se comportant comme 
V 1 x - a 1, dont la pente est infinie à un point d'extrémité. De telles fonctions 
existent lorsqu'on calcule l'aire délimitée par une courbe régulière fermée. 

Un autre raffinement est l'utilisation par [fl] de la précision étendue (13 chif­
fres significatifs) pour le cumul des sommes internes. Ceci permet le cumul de 
milliers d'échantillons sans plus de pertes d'arrondis que dans le sous-pro­
gramme de la fonction. 

Précision de la fonction à intégrer 
La précision d'une intégrale calculée par WJ dépend de la précision de la fonc­
tion calculée par votre sous-programme. Cptte Jll'éeision, que vous spécifiez à 
l'aide du format d'affichage, dépend principalement de trois facteurs: 

é La précision de constantes empiriques dans la fonction. 

Il Le degré auquel la fonction peut décrire un phénomène physique avec 
précision. 

• La portée des erreurs d'arrondis dans les calculs internes du calculateur. 

Fonctions relatives à des phénomènes physiques 

Des fonctions comme cos (40 - sin 0) sont des {onctions mathématiques 
pures. Dans ce contexte, cela signifie que les fonctions ne contiennent aucune 
constante empirique et que ni les variables ni les limites de l'intégration ne 
représentent des quantités physiques réelles. Pour de telles fonctions, vous 
pouvez spécifier autant de chiffres que vous le désirez dans le format d'affi­
chage üusqu'à 9) pour atteindre le niveau de précision désiré dâns l'intégrale·. 
Votre seul souci sera le compromis que vous souhaitez entre la précision dési­
rée et la durée du calcul. 

• Pourvu que f( x) soit toujours calculée avec précision, en dépit des erreurs d'arrondis, au nombre de 
('hifrn'H III'étil'nLs il )'affkhag-e. 



Cependant, d'autres facteurs jouent un rôle lorsque vous intégrez des fonc­
tions concernant un phénomène physique réel. Avec de telles fonctions, 
demandez-vous simplement si la précision que vous désirez dans l'intégrale 
est justifiée par la précision de la fonction. Par exemple, si la fonction contient 
des constantes empiriques spécifiées par exemple sur trois chiffres significa­
tifs seulement, cela n'aurait aucun sens de demander plus de trois chiffres dans 
le format d'affichage. 

Une autre considération importante, sans doute plus subtile, est que toute 
fonction relative à un phénomène contient une imprécision" inhérente à sa 
nature jusqu 'à un certain niveau, parce qu'elle n'est qu'un modèle mathémati­
que d'un processus ou d'un événement réel. Un modèle mathématique est lui­
même une approximation qui ignore les effets de facteurs connus ou inconnus 
supposés comme insignifiants au niveau où les résultats sont utiles. 

Un eX0Jn}))e dl' Jnod(!h~ mat.hi~ma t iqllt' {'l'if. la {onet ion C!(' dist.rihution 
normale 

considérée comme très utile pour dériver l'information relative à des mesures 
physiques sur les organismes vivants, les dimensions de produits, les tempéra­
tureR moyennes, etc. De telles descriptions mathématiqu(~R sont Roit dérivées 
de eonsidérations théoriques soit issues de l'expérienee. POUl' être utilbmbles, 
elles ont été construites sur cel'tain('s hYJ)othèses comme celh' pal' exemple de 
l'ib'llOranCe des effets de facteurs relativement insiJ.,'11ifiants. Par exemple, la 
précision des résultats obtenus en utilisant la fonction de distribution normale 
comme modèle de dÏl;tribution de certaines quantités, dépend de la taille de la 
population considérée. Et la préeision des résultats obtenus de l'équation 
s = Su - 112 gt'!. qui donne la hauteur d'un corps en chu te libre, ignore la variation 
de g (accélération ùe la gravité) avec l'altitude. 

Ainsi, leH düHCl"iptions mathématiques du monde physiqtw nü peuvent fournit' 
des résultats que dans certaines limite::l de précision. Si vous avez calculé une 
intébrrale avec une précision apparente supérieure à celle avec laquelle le 
modèle déerit le comportement réel du processus ou de l'événement, vous n'au­
rez pas néce~sairement raison si vous utilisez la valeur calculée dans toute sa 
précision apparente. 
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Erreur d'arrondi dans les calculs internes 

Avec le HP-I5e, comme avec tout système de calcul, les résultats calculés doi­
vent être arronuis à un nombre fini de chiffres (10 sur le HP-15C).A cause de cet 
arrondi, les résultats calculés - particulièrement les résultats d'évaluation 
d'une fonction contenant plusieurs opérations mathématiques - peuvent ne 
pas être exacts sur les 10 chiffres affichés. N'oubliez pas que l'erreur d'arrondi 
affecte l'évaluation de toute expression mathématique, et pas seulement l'éva­
luation d'une fonction à intégTer à l'aide de m. (Consultez l'annexe pour des 
explications supplémentaires.) 

Si t( x) est une fonction décrivant un phénomène physique, son imprécision sur 
les arrondis est insignifiante en comparaison de l'imprécision introduite par 
lps constantes empiriques, etc. Si t( x) eHt une fonction mathématique pure, sa 
l,récision ne uévewJ liue ue l'erreur d'arrullui. (~l'nl'ralement, il faut Vl'océuer à 
une analyse compliquée pour ùéterminer précisément combien de chiffres 
c\'lIl11' t'olld iOIl "Hlt-lIl('l'l'i~qlH'llt d','ln' aIT""1 t'·s PIlI'l't'l'roul' ù'nn'ondi. Rn pruti­
que, ces effets sont déterminés pal' l'expérience plus que par l'analyse. 

Dans certains cas, l'erreur d'arrondi peut provoquer des résultats bizarres, sur­
tout si vous comparez les résultats de calculs d'inté~"rrales qui sont mathémati­
quement équivalentes mais qui diffèrent par une transformation de variables. 
Cependant, il est improbable que vous vous trouviez dans ces cas dans les 
applications classiques. 

Réduction de la durée du calcul 

La durée d'un calcul u'intégnde par [lJ uL'penu uu moment où est réalisée une 
eerlaine ul'llsilé dt' }Joinls U'{~('.halltillonl1ag"t~ dans la rébrion où la fonction est 
int.(~l'eHHalllt'. Le eall'ul de J'intégrait' d'ulH' fOlwt.iun seru pluH longsi l'inter·valle 
d'intéhrration eontient surtout des rt'hrions où la fonction n'est pas intéres­
sante. Heureusement, lorsque vous devez calculer une telle intégrale, vous 
avez la possibilité de modifier le problème pour réduire la durée du calcul. 
Deux de ces techniques sont les suivantes: la subuivision de l'intervalle d'inté­
gTation et la transformation des variables. 
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Subdivision de l'intervalle d'intégration 

Dans les régions où la pente de I( x) varie beaucoup, une haute densité de 
points d'échantillonnage est nécessaire pour fournir une approximation qui 
c:hange de façon insignifiante d'une itération à la suivante. Par contre, dans les 
régions où ]a pente de la fonction eHt à }lPU près <'.onstan lp, une hautf' dpnHit.(~ dp 
lJoint~ d'échantillonnage n'e~t pus nécessaire. Ceci parce que l'évaluatiun de la 
fonction sur d'autres points d'échantillonnage ne donnerait pas beaucoup plus 
de rem;cignetnenis Hur ln fonction, d<me n'llffeetel'ait. pus e(mHid~l'ah]('rnt~nL leH 
disparités entre les approximations successives. Par conséquent, dans ce type 
de région, une approximation de pr~(~iHi()n eomparahlc pourrait ôtre réalisée 
avec beaucoup moins de points d'échantillonnage; donc en bien moins de 
temps. Lorsque vous intégrez ce genre de fonctio~s, vous pouvez gagner ùu 
temps en utilisant la procédure suivante: 

1. Divi~ez l'intervalle d'intégration en sous-intervalles sur lesquels la fonc­
tion est intéressante et en sous-intervalles sur lesquels la fonction n'est 
paH intércHHante. 

2. Sur les Hous-intervalles danslPHqupls la fond,jon eAt intrrPHHuntp, ('aleu­
lez l'intégrale dans le format d'affichage corre~ponùant à la précision 
que vous recherchez. 

3. Sur,les sous-intervalles dans lesquels la fonction n'est pas intéressante 
ou contribue à l'intégrale de fac;on négligeable, calculez l'intégrale avec 
moins de précision, .c' est-à-dire en spécifiant moins de chiffres dans le 
format d'affichage. 

4. Pour obtenir l'intégrale sur la totalité de l'intervalle d'intégration, ajou­
tez les deux approximations précédentes à l'aide de la touche 1 L +1. 

Avant de subdiviser l'intervalle d'intégration, vérifiez si le calculateur passe 
en dépassement de capacité inférieur lorsqu'il évalue la fonction autour de la 
limite supérieure (ou inférieure) de l'intégration·. Puisqu'il n'y a aucune raison 
d'évaluer la fonction à des valeurs de x pour lesquelles le calculateur est en 
dépassement de capacité inférieur, la limite supérieure de l'intégration peut 
être réduite dans certains cas pour réduire la durée du calcul. 

• Lorsqu'un calcul risque de résulter en un nombre inférieur à 1O-!J9, le résultat est remplacé par zéro. 
C'f'Rt ('f' qu' (111 appelle un dépl'issement de capacité inférieur. 

1 
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N'oubliez pas que dès que vous avez introduit le sous-programme d'évaluation 
t( x), vous pouvez calculer t( x) pour toute valeur de x en introduisant cette 
valeur dans le registre X et en appuyant sur 1 ENTER Il ENTER Il ENTER Il GS B 1 

suivi du label du sous-programme. 

Hi Il' l'Hkullltl'lIl' IHlHHl' uu d(\lllU'IHl'IIWllt dl' l'lIJ1lH'jt(· Înf('l'hJUl' il lu lImitl' HU)J('~ 
J'Îeure de l'intégl'ution, üHHuyez de pluH petitH nomlH'üHjUtiqu'à ce que VOUH VOUI:i 
rapprochiez du point où le calculateur ne présente plus de dépassement de 
capacité inférieur. 

Par t!xemple, pour l'approximation ùe 

Jo""xe'Xdx . 

introùuisez un sous-programme 4ui calcule la fonction I(x) = xe ~, 

Appuyez sur 

[ij][~ 
rtl CLEAR L~.Rq!'t1J 
L!J [L~l 
rCH,S] 
~ 
ŒJ 
!Ji] [R't-N'I 

Affichage 

000-
001-42,21, 1 
002- 16 
003- 12 
004- 20 
005- 4332 

Mode programme. 
Efface la mémoire programme. 

Mettez le calculateur en mode calcul et définissez le format d'affichage à 
1 set'] 3, Essayez ensuite plusieurs valeurs de x pour rechercher où le calcula­
teur présente un dépassement de capacité inférieur pour votre fonction. 

Appuyez sur 

@Jlp/RI 
[!] Isell3 
IEEXl3 -

Affichage 

1 

@TER Il ENTER Il ENTER 1 1.000 
IGSBll 0.000 

300 IENTERI 3.000 

3.000 
0.000 
2.000 

Mode programme. 
Met le format à Ise113. 

03 Introduit 1000 dans le 
registre X 

03 Met x dans la pile. 
00 Le calculateur donne un 

résultat nul pour X - 1000. 
02 Nouvelle valeur de x, 

plus petite, 
02 
00 Résultat nul. 
02 Nouvelle valeur de x, 

plus petite. 
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Appuyez sur 

/ ENTER 1 / ENTER 1 

/GSSll 

225/ENTERI 
[ENfER] / ENTER 1 

IGSB] 1 

Affichage 

2.000 
2.768 

2.250 
2.250 
4.324 

02 
-85 

02 
02 

-96 

Le calculateur donne un 
résultat non nul pour x = 200; 
essayez une nouvelle valeur 
comprise entre 200 et 250. 

Le calculateur est proche 
du résultat nul. 

A ce niveau, vous pouvez utiliser L~_Q_~~J pour localiser la plus petite valeurde 
x à laquelle il y' a dépassement de capacité inférieur. 

Appuyez sur 

[!] 1 SOLVEll 
\ 
; 

Affichage 

2.250 

2.280 

02 Descend la pile jusqu'à ce que 
la dernière valeur essayée soit 
dans les rehTÎstl'eS X et Y. 

02 Valeur minimale de x pour 
laquelle il y a dépassement 
inférieur (= 228). 

Vous avez ainsi déterminé que vous ne pouvez intégrer qu'entre 0 et 228. Puis­
que l'expression à intégrer n'est intéressante que pour x < 10, divisez à ce 
niveau l'intervalle d'intégration. Le problème devient le suivant: 

Appuyez sur 

7 !Il 1 DIM 1 []Il 
[!] CLEAR / r+1 

o [ENTER] 

10 

Affichage 

7.000 
0.000 

0.000 

10 

00 Alloue les registres statistiques. 
00 Efface les registres 

statistiques. 
00 Introduit la limite inférieure 

de l'intt~brraLion sur le premier 
sous-intCl'valle. 
Introduit la limite supérieure de 
l'intéhJTation RUt· le premier 
sou s-in tervall e. 
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Appuyez sur Affichage 

[] WJl 9.995 -01 Intégrale sur (0,10) calculée 
en Ise" 3. 

If 
[2: +1 1 .. 000 00 Ajoute l'approximation et son 

incertitude dans les registres 
R3 et R5. 

l'x~YI 1.841 -04 Incertitude de l'approximation. 

[ [!!!J 1 Rtl 1.000 01 Descend la pile jusqu'à ce que 
la limite supérieure de la 

1': 

1[ 
première intégrale apparaisse 
tians le rebTÏstre X. 

t' 228 228 Introduit la limite supérieure 
1 : dl' la ~econde intégrale tians , .... 

le rehristre X. La limite 
supérieure de la première 
intégrale monte dans le 
registre Y, devenant ainsi la 
limite inférieure de la seconde 
intégrale. 

~. l!J [sa] 0 2. 02 Spécifie 1 sell 0 comme format 
d'affichage pour un calcul 

-... 0 rapide sur (10,228). Si 

r- l'incertitude de l'approximation 

[ 
devient trop imprécise, vous 
pouvez répéter l'approximation 
dans un format d'affichage plus 
large. 

Ct] []] 1 5. -04 _ Intégrale sur (10,228) calculée 
en Isel! o. 

'J 

1] [sQJ 3 5.328 -04 Remet le format d'~ffichage en 
1 sel! 3. 

~ 7.568 -05 V érifie l'incertitude de 
l'approximation. 
Puisqu'elle est inférieure à 
l'incertitude de l'approximation 
sur le premier sous-intervalle, 
1 sel 1 0 a donc fourni une 

- approximation de précision 
suffisante. 

ft ri 
l, 
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Appuyez sur Affichage 

~ 5.328 -04 Place l'approximation et son 
incertitude dans les registres 
X et Y respectivement, avant de 
les ajouter dans les registres 
statistiques. 

IL+I 2.000 00 Ajoute l'approximation et 
son incertitude. 

IRCLIII+I 1.000 00 Intégrale sur la totalité de 
l'intervalle (0,228) 
(rappelé de Ra). 

[;y'vJ 2.598 -04 Inecl'lÏlwlc de l'inll!gTale 
(ùe Hr,). 

Transformation de variables 

DaUH UCUUl'oujJ lil' IH'uulèmcH Oll U Ill.' fOllctioll VlLl'it.! tH'lI Hill' la phlH gTitlldl' pUI'­

tie de l'intervalle d'intégl'ution, une tl'un~fOJ'mution ùe vUl'iublt'H uPlu'olH'iéo 
)WHt. rpdllil'p ln dlll'('e du ('aklll li" l'in1.(.J.!I'Il)('. 

Par exemple, reprenons l'intégrale 

Faisons 

Puis 

et 

En substituant 

x == -31n u 
du 

dx=-3-. 
u 

{'xe-Xdx = 1e~:~(-aln U)(u3)(-ad
:) 

= 1)0!)""111" du. 

Introduisez le sous-programme d'évaluation dt· la fon{'tion [(u) - Uu!!lnu. 
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Appuyez sur 

rm IfZ~ 
[!] ITHI] 3 
cm [LN] 
[iliJ 
~~ 
~ 
9 
~ 
cm 1 RTNI 

l,fI...i pl tre 2: U tilisc.lLlon de 1. 1 J 5t 

Affichage 

000-
001-42.21. 3 
002- 43 12 
003- 34 
004- 43 11 
005- 20 
006- 9 
007- 20 
008- 4332 

'.-
Mode programme. 

Introduisez les limites de l'intég'l'ation, et appuyez Bur rn l1il 3 pour culculer 
rinl('H.,."lc', 

Appuyez sur Affichug-c 

[el fpfRl Mode calcul. . 
11ENTERl 1.000 00 1 ntroduit la limite inférieure de 

l'intégration. 
0 0 1 nlroùult la limite supérieure de 

l·irlt(·W·I~t.i()n. 

I.~ WJ3 1.000 00 Approximation à une intéb'Tulc 
Pfluiva1ente. 

(x ~ yl 3.020 -04 lncertitude de l'approximation. 

L'approximation est en accord avec la valeur calculée dans le problème précé­
dent pour la même intégrale. 

Évaluation d'intégrales difficiles 

Certaines conditions peuvent prolunger la ùurée du calcul lors de l'évaluation 
d'une intégrale ou provoquer des résultats imprécis. Ces conditions, décrites 
dans le manuel d'utilisation du HP-15C, sontliées àla nature de l'expression à 
intégrer sur l'intervalle choisi. 

Une eatégorie d'intéhrrales difficiles à évaluer est constituée par les intégrales 
impropres. Une intégrale impropre est une intégrale qui utilise 00 (l'infini) de 
rune ùes fat;uns suivantes: 



• L'une ou lm; ùeux limiteH de l'intég'l'lÜioJ1 HOJÜ ± OQ, pm' t'xomplu: 

J
oo 

.J 
-u~ -e du -.;;-, 

-~ 

• L'expression à intébrrer tend vers + 00 quelque part dans la plage d'inté­
gration, par exemple: 

f \n(u) du = 1. 
() 

• L'expression à intégrer oseille infiniment et rapidement quclfJlw part 
dans la plage d'intégration, par exemple: 

; (1 
\: Jo cos (ln u) du = Ih. 

Certaines intégrales sont tics intégrales presquc improprcs lurslluc: 

• L'expression à intégrer ou sa première dérivée change beaucoup dans un 
suul'5-intervalle relativemelll ('lroil ùe la plagc d'intégl'uLioJl, ou oscille fré­
quemment à travers cette plage. 

Le HP-15C tente de traiter certaines des intégrales impropres du deuxième 
type en n'échantillonnant pas l'expression à intégrer aux limites de l'intébrra­
tion. 

Comme les intégrales impropres (ou presque) ne sont pas courantes en prati­
que, vous pourrez les reconnaître et prendre les mesures nécessaires pour les 
évaluer précisément. Les exemples suivants illustrent quelques techniques 
utiles. 

Considérons l'expression 

J -21n cos(x~) 
f(x) = .. ) . 

x .... 

Cette fonction perd sa précision lorsque x devient petit. Ceci' parce que cos 
(x~) est arrondi à 1, ce qui perd l'information sur la petitesse de x. Mais en utili­
sant u = cos (x2

), vous pouvez ('vailler )'expn'HsÎOl1 cl inLég-rel' eomme : 

f(x) = {~-21n u 
cos-lu 

if u = 1 

if u ::j: 1. 
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Bien que le branehement de )lro~,rl'amme pOUl' u -1 ajoute quatre étapes sup­
plé>menLaÎI'CH à votre t3ous-prog"l'umme,I'Întég-ration près de x - 0 devient plus 
pr(~eh;c, 

Voici un deuxième exemple d'intéhrrale: 

---- -- d4: f l(JX 1) 
o X - 1 ln x --

La ùérivée de cette expression approche l'infini lorsque x s'approche de 0, 
('omml' )(' mont.t'l~ )'illl.lstatlon eÎ-dpsHOllH_ En substituant x = u2, la fonetion sc 
comporte mieux, comme le montre la seconùe illustration. Cette intégrale de 
substitution peut être facilement évaluée: 

fl( 2') ) 
o (u + 1~~ - 1) - 1: u du. 

Ne remplaee:l pas (u + 1) (u -1) par (u:! -1) paree que lorsque u s'approehe de 1, 
la seconde expression perd à l'arrondi la moitié de ses chiffres significatifs et 
introduit un pic dans le graphe près de u = 1. 

0.1 
0.1 u 

In(x) 

O~~------------~~X ~--------------~·U o 

(;omme autre exemple, consid{>rom; une fonetion dont le graphe accuse une 
branche infinie ("'queue") qui s'étale sur une réhrion plusieurs fois plus grande 
que la région occupée par le "corps" principal (où le graphe est intéressant). 
C'est l'exemple des fonctions suivantes: 

,) 

f( x) = e-x- or 
1 

f..!( x) = " to' 
x- t Hr 



Des branches infinies fines, comme celle de I( x) peuvent être tronquées sans 
grand dommage à la précision ou à la rapidité de l'intégration. Mais g( x) a une 
branche infinie trop large pour être ignorée lorsqu'on calcule 

si t est large. 

f tg(i) dx 
-t 

Pour ce type de fonction, une substitution comme x = a + b tan u est 
excellente: a est dans le "corps" principal du graphe et b est une bonne repré­
sentation de sa largeur. En faisant cela pour t( x) ci-dessus avec a = 0 et b = 1, 
on obtient 

f t . ftan-lt 
o f(x) dx = 0 e-tan2u(1 + tan2u)du, 

qui est calculée directement même si t est aussi grand que 1010. En adoptant la 
même substitution avec g( x), les valeurs proches-de a = 0 et b = 105 donnent de 
bons résultats. 

Cet exemple implique la subdivision de l'intervalle d'intégration. Bien qu'une 
fonction puisse avoir des caractéristiques qui paraissent extrêmes sur la tota­
lité de l'intervalle d'intégration, la fonction peut paraître mieux se comporter 
sur certaines portions de cet intervalle. La subdivision de l'intervalle d'intégra­
tion fonctionne encore mieux lorsqu'elle est combinée avec des substitutions 
appropriées. Considérons l'intégrale 

fo
OOdx/(1 + x 64) = fol dx/(1 + X64) + f

l
oodx /(1 + x"4) 

= fol dx/(1 + x 64) + fol é 2du/(U64 + 1) 

= fol (1 + x"2)dx/(1 + x"4) 

= 1 + fo\x62 - x64)dx/(l + x64) 

= 1 + Ils fo\1- v1l4)v55/ 8 dv/(l + Jl). 

Ces étapes opèrent les substitutions x = 1/ u et x = U
ll8 et font quelques mani­

pulations algébriques. Bien que l'intégrale d'origine soit impropre, la dernière 
intégrale est facilement traitée par [Ji] . En fait, en séparant le terme c.onstant 
de l'intégrale, vous obtenez (en utilisant 1 sella) une réponse avec 13 chiffres 
significatifs: 
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(000401708155 ± 1.2 X 10-12• 

Prenons comme dernier exemple le champ électrostatique pour une sond( 
ellipsoïdale dont les demi-axes principaux sont a, b et c. 

v= foc dx 

o (a2 + x)J(a2 + x)( b2 + x)(c2 + x) 

pour a = 100, b = 2 et c = r. 
Transformez cette intégrale impropre en une intégrale correcte en substituan1 
x = (a2 

- c~)/(I- u2) - a2
: 

où 

v= p fI )(1- u2)/(u2 + q) du 
r 

p = 2/« a2 - c2)J a2 - b2 ) = 2.00060018 X 10-6 

q = (b2 - c2)/( a2 - b2) = 3.001200480 X 10-3 

r=c/a=O.Ol. 

Cependant, cette intégrale est presque impropre parce que q et r sont tous 
deux très proches de zéro. Mais en utilisant une intégrale de formulation 
proche ressemblant suffisamment à la partie gênante de V, la difficulté peut 
être levée. Essayez: 

W=pf1du/Ju2+q =pln(u + ,fu2+q )1
1 

r r 

=p In«l + ~)/(r+ v'r2 +q » 

= 8.40181880708 X 10-6 . 

Puis: 

'De Strattom, J.A., Electromagnetic Theory, McGraw-HilI, New York, 1941, p. 201-217. 
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Le HP-15C traite directement cette intégrale. La valeur de fI u2 lorsque u 
!tend vers 1 ne doitpas vous poser de problème puisque les chiffres perdus par 
les arrondis ne sont pas nécessaires. 

:6.ppl ication 
; ... e programme suivant calcule les valeurs de quatre fonctions spéciales pour 
~out argument x: 

1 fX 2. 
P(x) = - e- t /2dt 

21T -00 

1 foo 2. 
Q(x) = 1- P(x) = - e- t /2dt 

2rr x 

2 fX <) 

erf(x) = r e-t-dt 
v 1T 0 

f
oo 

2 2 
erfc(x) = 1 - erf(x) = C e- t dt 

v rr x 

(fonction de distribution 
normale) 

(fonction complémentaire' 
de distribution normale) 

(fonction d'erreur) 

(fonction complémentaire 
d'erreur) 

:eprogrammecalcule ces fonctions en utilisant la transfo~ation u = e- t2 pour 
:1>.1.6. 

il valeur de la fonction est renvoyée dans le registre X et l'incertitude de l'in­
igrale est renvoyée dans le registre Y. (L'incertitude de la valeur de la fonc-
1 m est à peu près du même ordre de grandeur que le nombre contenu dans le 
tistre Y.) L'argument d'origine est dans le rebTÏHtrc Ru. 

L~ programme présente les caractéristiques suivantes: 
1 

~. Le format d'affi,chage spécifie la précision de l'expression à intégrer de la 
même façon qu'il le fait pour [TI]. Cependant, si vous spécifiez un nombre 
inutilement long de chiffres à afficher, le calcul sera prolongé. 

:. Des petites valeurs de fonctions, comme Q(20), P(20) et erfc(lO) sont cal­
culées très précisément aussi rapidement que de ... valeurs moyennes. 

r 
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Appuyez sur Affichage 

@JIP/RI Mode programme. 
[!J CLEAR 1 PRGM 1 000-

ITII LBLI ~ 001-42,21,11 Probrramme pour P(x}. 

ISTol2 002- 44 2 Stocke x dans R2• 

ICHSI 003- 16 Calcule - x. 

IGTOl2 004- 22 2 Branchement pour calculer 
P(x) = Q( -x). 

[!J 1 LBLI ~ 005-42,21,12 Programme pour Q(x}. 

ISTOl2 006- 44 2 Stocke x dans R2• 

[!J ~g 2 007 -42,21, 2 
2 008- 2 

~ 009- 11 

G 010- 10 
IGSBI@] 011- 3213 Calcule erfc(x/-I2). 
2 012- 2 

G 013- 10 Calcule Q(x) =- 1/2. 
erfc (x/-I2). 

1 RcLj2 014- 45 2 
Cs-ra] 0 015- 44 0 Stocke x dans Ro. 
IR+I 016- 33 
@J IRTNI 017- 4332 Valeur de la fonction. 
[!J 1 LBLIIIJ 018-42,21,13 Programme pour erfc(x}. 

1 019- 1 
IGSBl4 020- 32 4 
@J ŒIl 1 021-43, 6, 1 Teste l'indicateur 1. 
IGTOl5 022- 22 5 Branchement pour indicateur 1 

armé. 
1 023- 1 

G 024- 30 Calcule erf(x} - 1 pour 
indicateur 1 désarmé. 

[!] ~g 5 025-42,21, 5 
[tHs] 026- 16 Calcule erfc (x). 
@] [RiN] 027- 4332· Valeur de la fonction. 
[!] [Ü3T] I!] 028-42,21,15 Programme pour erf(x). 
0 029- a 
[!] 1 LBLJ4 030-42,21, 4 Sous-programme pour erf(x) 

ou erfc(x). 

ŒJ~1 031-43, 5, 1 Efface l'indicateur 1. 
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Appuyez sur Affichage 

ISTol1 032- 44 1 Stocke 0 pour erf{x) 
et 1 pour erfc{x). 

~ 033- 34 

~910 034- 44 0 
~J [!\ss] 035- 4316 Calcule lx 1 • 

1 036- 1 

l:J 037- 48 
6 038- S 
!J!] 1 TEs"(ja 039-43,30, 8 TCHlc Ixl > Lü. 
[Gra] 6 040- 22 6 Branchement pour Ixl > 1.6. 
0 041- 0 
IRCllO 042- ' 45 0 Rappelle x. 

rn[fl]O 043-42,20, 0 Intègre e,·t2 de 0 à x. 

2 044- 2 
~ 045- 20 
rn IlBll3 046-42,21, 3 Sous-programme pour diviser 

par rn. 
[]][ill 047- 4326 
IÈI 048- 11 

G 049- 10 
[ID 1 RTNI 050- 4332 
1] IlBll6 051-42,21, 6 Sous-programme pour intégrer 

quand Ixl > 1.6. 
[]] rnI] 1 052-43, 4, 1 Arme l'indicateur 1. 
0 053- 0 
IRCllO 054- 45 0 
@]~ 055- 4311 
ICHsl 056- 16 

0 057- 12 Calcule e-x2
• 

[!] WJ 1 058-42,20, 1 Intègre (-lnutl/ 2 

de 0 à e-x2
• 

IGSBI3 059- 32 3 Divise l'intégrale par ft 
IRellO 060- 45 0 
1 ENTERI 061- 36 
l]] CABS] 062- 4316 

B 063- 10 Calcule le signe de x. 

Œ1 064- 20 
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Appuyez sur 

[FfcI]1 

Affichage 

065- 45 1 

4336 
JO 

Rappelle 1 pour erfc(x}, 
o pour erf(x). 

066-
067-
068- 40 Ajuste l'intégrale pour le signe 

de x et la fonction. 

rCHSl 
19J L~I~J 
l!J lf-~fJ 0 

[IDlZJ 
[ëHsl 
ca 
@J IRTNI 

rn IlBlll 

I]J lx = 01 
!]] [RTNI 

cru~ 
L~~~J 
~ 
Il/xl 
[]J 1 RTNI 

069- 16 
070- 4332 
071-42,21, 0 

072- 4311 
073- 16 
074- 12 
075- 4332 
076-42,21, 1 

077- 4320 
078- 4332 
079- 4312 
080- 16 
081- 11 
082- 15 
083- 4332 

Labels utilisés: A, B, C, E, 0, 1, 2, 3, 4, 5 et 6. 

Registres utilisés: Ro (x), RI' R2• 

Indicateur utilisé: 1. 

Pour utiliser ce programme: 

1. Introduire l'argument x à l'affichage. 

2. Évaluer la fonction désirée: 

Sous-programme pour calculer 
:l e'. 

Sous-programme pour calculer 
(-lnut1/ 2• 

• Appuyez sur [!] [!I pour évaluer P(x). 

• Appuyez sur [!] [!] pour évaluer Q(x). 

• Appuyez sur [!] ŒJ pour évaluer erf(x) .. 

... Appuyez sur [!J [9 pour évaluer erfc(x). 
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Exemple 1: Calculez Q(20), P(1.234) et erf(O.5) dans le format d'affichage 
ISCI13. 

Appuyez sur Affichage 

[ID 1 P/RI Mode calcul. 

[!] 1 sctl3 Format d'affichage. 

20 [!] ffi] 2.754 -89 Q(20). 

1.234 [!] [!] 8.914 -01 P(1.234). 

.5 [!] ŒJ 5.205 -01 erf(O.5). 

Exemple 2: Pour une variable aléatoire X normalement distribuée, ayant 
une moyenne de 2.151 et un écart type de 1.085, calculQz la probabilité 
Pr[2 < X~ 3]. 

Pr[2<X~3]=Pr[2-2.151 < X-p. ~ 3-2.151J " L 1.085 a 1.085 

=p(3-2.151 )_p(2-2.151) 
1.085 1.085 

Appuyez sur Affichage 

21ENTERI 2.000 00 
2.151 Cl -1.510 -01 
1.085 [!] -1.392 -01 
[!][!] 4.447 -01 Calcule Pr[X ~ 2]. 

ISTol3 4.447 -01 Stocke le résultat. 
3rENTE-R] 3.000 00 
2.151 G 8.490 -01 
1.085[] 7.825 -01 
[]~ 7.830 -01 Calcule Pr[X ~ 3]. 
LRCLj3 4.447 -01 Rappelle Pd X -.::: ~I. 

G 3.384 -01 Calcule Pr[2 < X ~ 3]. 

[!] 1 FIXl4 0.3384 
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Chapitre 3 

CalCllls en IVlode C()mplexe 

Certains problèmes importants concernant ùes données réelles sont très sou­
vent résolus par des calculs simples utilisant les nombres complexes. Ce cha­
pitre donne des explications précieuses sur les calculs en mode complexe et 
illustre par de nombreux exemples la résolution de problèmes sur des nombres 
complexes. 

Utilisation du Mode Complexe-
Le mode complexe dans le HP-I5C vous permet d'évaluer simplement des 
expressions de nombres complexes. Généralement, dans le mode complexe, les 
expressions mathématiques sont introùuites de la même façon que dans le 
mode "réel" normal. Par exemple, considérons un programme qui évalue le 
polynôme P(x) = anxn+ ... + a1x + au pOUl' la valeur x du registre X. En validant 
le mode complexe, ce même probrramme peut évaluer P(z) où z est complexe. 
De même, d'autres expressions comme la fonction Gammar(x) dans l'exemple 
suivant, peuvent être évaluées pour des arguments complexes dans le mode 
complexe. -

Exemple 1: Écrire un programme évaluant le calcul d'approximation parfrac-­
tions succesl:iivel:i: 

In(l'(x» = (x -Ij;!)ln x - x + au +_U_l _ 

x+~ 

x+~ 

x+ ... 
pour les six premières valeurs de a: 

au ::- Il:! J n(2rr) 

aJ = 1/12 
u;l = 11:W 
aa = 5~31210 
(l_1 = 1 H!ï/:171 
a;) = l.Ol15~aOm·~ 
an = 1.51747~3649. 

65 
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Puisque cette approximation est valide à la fois pour les an:)ruments réels et 
pour les ar)."ruments complexes lorsque Re(z) > 0, ce prohTramme fait une 
approximation de ln(r(z)) en mode l'omplexe (pour Izl Huflïl'Hlmmpnt larg'ü). 
Quand ,Izi > 4 (et Re(z}> 0), l'approximation eomportp. pnviron~) ou 10 ehiffl'eH 
exacts. 

Introùuh~ez le prugramme Huivunt: 

Appuyez sur Affichage 

I]J Ip/RI Mode programme. 
\] CLEAR 1 PRGM 1 000-

'\] IlBll ~ 001-42,21,11 
6 002- 6 
ISTol [J 003- 4425 Stocke le compteur dans le 

registre ù'!nùex, 
[tli] 004- 34 
[~T',ftIRJ 006~ 36 
[ËNtEA] 006- 36 
I.ENf-tRj 007- 36 Rpmplit. la pill' av('(' z. 
[RCL] 6 008- 45 6 H.appelle an. 
\]llBlll 009-42,21, 1 Boucle pour la fraction 

continue. 
[±] 010- 40 
[RCq [ill] 011- 4524 Rappelle ai' 
[tli] 012- 34 Restaure z. 
G 013- 10 
\] 1 DSEI [] 014-42, 5,25 Diminue le compteur. 
1 GT6] 1 015- 22 1 
IRellO 016- 45 0 Rappelle au. 
[±] 017- 40 
[tli]. 018- 34 Restaure z. 
G 019- 30 
cm IlSTxl 020- 4336 Rappelle z. 
l]Jefm 021- 4312 Calcule ln(z). 
cru 1 lSTil 022- 4336 Rappelle z. 
[J 023- 48 
5 024- 5 
G 025- 30 Calcule z-1/2. 



Appuyez sur 

[8] 
l±J 
[-- -l' -- -j _~ L nI~_ 

Clldpitre ]: Calt:uls en M6èfe-C ,plexe 67-

Affichage 

026- 20 
027 - 40 Calcule ln(r(z)). 
028- 4332 

Hlodw ICH cOIl:;lUl1tl~M dUIlM leH l'egiHll'CH Uu !.l ){ti l!lll'CMpecLunL l'unlrc ùéLcr· 

minô plU' lüul'Ii illJiceli. 

Appuyez sur 

[ru Ip/RI 
2[ru ~ [8J 
[ru ~2G 
ISTolO 
12[1/x]lsToI1 
30 li/xl [5fO] 2 

53rENfË.~l210G 
lSlOJ3 

195 [ENTE_~] 371 [+J 
~QJ4 

1.011523068[5TOJ 5 
1.5174736491sTo16 

Affichage 

6.2832 
0.9189 
0.9189 
0.0833 
0.0333 
0.2524 
0.2524 
0.5256 
0.5256 
1.0115 
1.5175 

Mode calcul. 

Stocke ao. 
Stocke al' 

Stocke a2' 

Stucke a4' 

Stocke a5• 

Stocke a6• 

Utilisez ce programme pour calculer ln(r( 4.2)), puis comparez le résultat avec 
In(3.2!) caleulé avec la fonction ~. Calculez aussi In(r(l + 5i). 

Appuyez sur Affichage 

4.2 [!] [!] 2.0486 Calcule' ln(r( 4.2». 

[!J 1 FIXl9 2.048555637 - Affiche 10 chiffres. 

3.21] ~ 7.756689536 Caleule 
(3.2)! = r(3.2 + 1). 

l]] 1 LNI 2.048555637 Calcule In(3.2!). 

11 ENTERI 1.000000000 Introduit la partie réelle 
ùe 1 + 5i. 

?m [] 1.000000000 Forme le nombre complexe 
l + Gi. 
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Appuyez sur 

ŒŒl 
CDIRe~lml 

Affichage 

-6.130324145 Partie réelle de In(r(1 + 5i)). 
3.815898575 Partie imaginaire de 

In(r(1 + 5i)). 
3.8159 . 

Le résultat complexe est calculé sans plus d'efforts qu'il ne faut pour intro­
duire la partie imaginaire de l'argument z. (Le résultat In(r(1 + 5i)) comporte 
10 chiffres exacts dans chacune de ses composantes.) 

Modes trigonométriques 
Bien que l'indicateur du mode trigonométrique reste affiché en mode com­
plexe, les fonctions complexes sont toujours calculées en radians. L'indica­
teur ne précise le mode (Degrés, Radians ou Grades) que pour les deux conver­
sions complexes: 1 .. pl et 1 .. RI. 
Si vous désirez évaluer re i9 où () est en degrés, 0 ne peut pas être utilisée 
directement parce que () doit être en radians. Si vous tentez une conversion de 
degrés en radians, vous perdez un peu de précision surtout pour des valeurs 
comme 1800 pour lesquelles la mesure n en radians ne peut pas être représen­
tée exactement avec 10 chiffres. 

Cependant, en mode complexe la fonction 1 .. RI calcule re iIJ pour () avec préci­
sion dans n'importe quelle unité (indiquée par l'indicateur). Introduisez sim­
plement r et 0 dans le registre X complexe sous la forme r + iO, puis exécutez 
1 .. RI pour calculer la valeur complexe: 

rei9 = r cos (J + ir sin (J. 

(Le programme figurant sous le titre "Calcul des nièmes racines d'un nombre 
complexe" à la fin de ce chapitre, utilise cette fonction.) 

Définitions des fonctions mathématiques 
La liste suivante définit le fonctionnement du HP-15C en mode complexe. Dans 
ces définitions) un nombre complexe est noté sous la forme z = x + iy (forme 
rectangulaire) ou z = re i9 (forme polaire). On rencontre également la forme 
Izl= y'~+ y. 
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Opérations arithmétiques 

(a + ib) ± (e + id) = (a ± e) + i( b ± d) 

(a + ib)(e +id) = (ae - bd) + i(ad + be) 

r=zxz 

Fonctions à une valeur 

II z = xllzl 2 - iy/lzl2 

zl -7- z2 = zl X 1/z2 

eZ = eX(cos y + i sin y) 

lOz=ezlnlO 

1. . 
sin z = -. (eU - e-U) 

. 21 
cos Z = 1/2( eiz + e-iz ) 

tan z = sin zlcos z 

sinh z = 1/2( eZ - e-Z) 

cosh z = 1/2( ~ + e-Z) 

tanh z = sinh z 1 cosh z 

Fonctions à plusieurs valeurs 

En général, l'inverse d'une fonction [(z) - représenté par f-l(Z) - comporte plus 
d'une valeur pour tout argument z. Par exemple, cos-1(z) a un nombre infini de 
valeurs pour chaque argument. Mais le HP-15C calcule seulement la valeur 
principale, qui figure dans la partie de la plage de valeurs définie comme 
branche principale de fl(Z). Dans les explications ci-dessous, la fonction 
inverse à une valeur (réduite à sa branche principale) est représentée en lettres 
majuscules - par exemple, COS-1(z) - pour la distinguer de la fonction inverse à 
plusieurs valeurs - cos-1(z). 

Considérons par exemple, les nièmes racines d'un nombre complexe z. Repré­
sentons z sous forme polaire: z = re i (9 +2k1rl pour -Tl < (}:E;; Tl et k = 0, ± 1, ± 2 ... 
Ensuite, si n est un entier positif, 

Seuls k = 0, 1, ... , n - 1 sont nécessaires puisque ei2k1C/n répète ses valeurs par 
cycles de n. L'équation définit les nièmes racines de z, et rI nei9/n avec - Tl< (J 

~ Tl est la branche principale de il n. (Un progTamme de la page 78 calcule les 
nièmes racines de z) . 
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Les illustrations suivantes montrent les branches principales des relations 
inverses. Le graphique de gauche de chaque illustration représente le domaine 
tronqué de la fonction inverse. Le graphique de droite montre, dans les deux 
cas, la plage de la branche principale. 

Pour certaines relations inverses, la définition de la branche principale ne fait 
pas consensus. Les branches principales utilisées par le HP-15e ont été soi­
gneusement choisies. Tout d'abord, elles sont analytiques dans les régions où 
les arguments des fonctions inverses (évaluées en mode réel) sont définis. 
Autrement dit, le troncage est effectué là où la fonction inverse correspon­
dante est indéfinie. Ensuite, la plupart des symétries importantes sont préser­
vées. Par exemple, SIN-1(-z) === - SIN-1(z) pour tout z. 
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LeR brancheR prineipales deR quaÜ'P oprnicrs hrraphps ilhlstl'{>s d-dPSHllS, Ront 
obtenues à partir des équations correspondantes, mais n'utilisent pas néces­
sairement les branches principales de In(z) et de -IZ. 
Les fonctions inverses restantes peuvent être déterminées à partir des illus­
trations précédentes et des équations suivantes: 

LOG(z) = LN(z)/LN(10) 

SINH-1(z) = - iSIN-1(iz) 

TANH-1(z) = - l"TAN-1(iz) 

Pour déterminer toutes les valeurs d'une relation inverse, utilisez les expres­
sions suivantes pour dériver ces valeurs à partir de la valeur principale calcu­
lée par le HP-15C. Dans ces expressions, k = 0, ± 1, + 2, ... 

ZY2 = +-li 
In(z} = LN(z) + i2krc 

sin-1(z) = (- l)kSIN-1(z) + kn 

cos-1(z) = + COS-1(z) + 2kn 

tan-1(z) = TAN-1(z) + kn 

sinh-1(z) = (- 1)kSINH-1(z) + ikn 

cosh-1(z) = + COSH-1(z) + i2kn 

tanh-I(z) = TANH-1(z) + ikn 
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Utilisation de 1 SOLVE 1 et de [2!] en mode complexe 

Les fonctions 1 SOLVE 1 et [il] utilisent des algorithmes qui échantillonnent 
votre fonction à des valeurs ùe l'axe des réels. En mode complexe, les fonctions 
[s]JYEJ et CZB ne fonctionnent qu'avec la pile réelle, même si le sous-pro­
g-ramme de votre fonetion est HlISt."l·pt.ib!p de comporter plusieurs calculs sur 
nombres complexes. 

Par exemple, [saTI/E] ne va pas rechercher les racines d'une fonction com­
plexe, mais va échantillonner la fonctiun sur l'axe des réels et rechercher le 
z('ru <1(' la par'Ut' ré't'Ile dp la font'tion. Dl' la 1ll(\IlU' rl:l~()n, cm calcule l'intégrale 
de la partie réelle de la fonction SUI' un intervalle de l'axe des réels. Ces opéra­
tions sont utiles dans de nombrcwws applieations comme le calcul d'intégrales 
de contour et de potentiels complexes. (Reportez-vous au paragraphe "Appli-
eatiom;" à la fin de ce chapitre. . 

Précision en mode complexe 

Les nombres complexes ayant à la fois des composantes réelles et des compo­
santes imaginaires, la précü;iun des calculti en mude complexe prend une autre 
dimension que celle des calculs en mode réel. 

Avec des nombres réels, une approximation X est proche de x si la différence 
relative E(X,x) = I(X - x)/ x 1 est petite. Ceci est lié directement au nombre de 
chiffres significatifs exacts de l'approximation X. Autrement dit, si E(X,x) < 
5 X 10-n, il ya au moins n chiffres significatifs. Pour les nombres complexes, 
définissez E(Z,z) = I(Z - z)/ zl. Cependant ceci n'est pas directement lié au 
nombre de chiffres exacts dans chaque composante de Z. 

Par exemple, si E(X, x) etE( Y,y) sont toutes deux petites, E(Z,z) doit être égale­
ment petite pour z = x + iy. Autrement dit, si E(X,x) < set E(Y,y) < s, alors 
E(Z,z) < s. Mais si nous considérons z = 1010 + i et Z= 1010, la composante ima­
ginaire de Z est loin d'être précise et pourtant E(Z,z) < 10-10

• Même si les com­
posantes imaginaires de z et de Z sont absolument différentes, z et Z peuvent 
être extrêmement proches. 

Il existe une interprétation géométrique simple de l'erreur relative en mode 
eomplexe. Toute approximation Z de z satisfait E(Z,z) < s (où s est un nombre 
réel positif) si et seulement si Z se trouve dans le cercle de rayon s Izl centré en 
z dans le plan complexe . 
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Pour obtenir des approximations à composantes précises, il ne faut pas se con­
tenter d'erreurs relatives suffisamment petites. Par exemple, dans le pro­
blème suivant, les calculs sont effeetués avec quatre chiffres si~rnifieatifs. Ce 
problème illustre les limites imposées par une précision finie dans un calcul 
complexe. 

et 

Zl == Zl == 37.1 + 37.3i 
Z2 == Z2 = 37.5 + 37.3i 

,Zl X Z2 
.., 37.10 X 37.50 - 37.30 X 37.30) + i(37.10 X 37.30 + 37.30 X 37.50) 
== (1391 - 1391) + i(1384. + 1399.) 
a::: 0 + i(2783.) 

Zl z2==-0.04 + 2782,58iestla vraie valeur. Même si Zl et Z2 n'ont pas d'erreur, 
la partie réelle de leur produit en quatre chiffres n'a pas de décimales significa­
tives correctes, bien que l'erreur relative du produit complexe soit inférieure à 
2 X 10-4• 

Cet exemple illustre que la multiplication en mode complexe ne propage pas 
ses erreurs en fonction de ses composantes. Mais même si la multiplication de 
nombres complexes a pour résultat des composantes exactes, les erreurs d'ar­
rondi d'un calcul en chaîne risque de produire rapidement des composantes 
sans précision. D'un autre côté, l'erreur relative (correspondant à la précision 
du calcul), grossit très lentement. 
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Par exemple, avec la précision précédente de quatre chiffres: 

alors 

z} = (1 + 1/3000) + i 
ZI == 1.003 + i 
Z2 = Z2 = 1 + i 

ZI X Z2 = (l.003 + i) X (1 + i) 
= 0.003 + 2.003i 
== 3.000 X 10-3 + 2.003i 

La valeur correcte à quatre chiffres est 3.333 X 10-3 + 2.003i. Dans cet 
exemple, ZI et Z;l sont précis dans chacune de leurs composantes et le calcul 
est exact. Mais le produit est imprécis: la composante réelle n'a qu'un seul 
chiffre significatif. Une erreur d'arrondi résulte en une composante imprécise 
bien que l'erreur complexe relative du produit reste petite. 

Pour le HP:-15C, les résultats d'une opération complexe sont conçus pour être 
précis parce que l'erreur complexe relative E (Z, z) reste petite. Généralement, 
E (Z, z) < 6 X 10-10• 

Comme nous l'avons vu précédemment, cette erreur relative petite ne garantit 
pas 10 chiffres précis dans chaque composante. Parce que l'erreur est relative 
à la grandeur Iz 1 et que celle-ci n'est pas très différente de la valeur de la plus 
grande composante de z, la composante la plus petite peut avoir moins de chif­
fres précis. Il existe une méthode rapide pour voir quels chiffres sont générale­
ment précis. Exprimez chaque composante en utilisant l'exposant le plus 
grand. Sous cette forme, les 10 premiers chiffres environ de chaque compo­
sante sont précis. Par exemple, si 

Z = 1.234567890 X 10-10 + i (2.222222222 X 10-3
), 

mettez Z sous la forme: 

0.0000001234567890 X 10-3 + i (2.222222222 X 10-3
). 

Les chiffres précis sont: 

0.000000123 X 10-3 + i (2.222222222 X 10-3
). 
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Applications 

Grâce à son mode complexe, le HP-I5C vous permet de résouùre des problèmes 
sortant du domaine des nombres réels. Dans les pages suivantes, plusieurs pro­
grammes illustrent l'utilité des calculs sur les nombres complexes avec le HP­
I5C. 

Stockagb et rappel de nombres complexes à l'aide d'une matrice 

Ce programme utilise la pile et la matrice C pour stocker et rappeler des nom­
bres complexes. Il présente les caractéristiques suivantes: 

• Si vous spécifiez un index supérieur aux dimensions de la matrice, le cal­
culateur affiche Erreur 3 et la pile est prête pour une nouvelle tentative. 

• Si le calculateur n'est pas en mode complexe, le programme valide le mode 
complexe et la partie imaginaire du nombre est mise à zéro. 

• Lorsque vous stockez un nombre complexe, l'index est perdu, la pile des­
cend et le registre T est copié dans le registre Z. 

• Le programme de stockage utilise la touche [Q] (au-dessus de la touche 
1 STol ). Le programme de rappel utilise la touche œ (au-dessus de la 
touche [ReJ]). 

Appuyez sur Affichage 

@JIP/RI Mode programme. 

[!] CLEAR 1 PRGM 1 000-
[!] IlBll [QJ 001-42,21, 14 Programme de stockage 

[!] IMATRlxll 002-42,16, 1 Ro ..... Rl == 1. 
ISTolO 003- 44 0 Ro-k. 
[[!] 004- 33 
0 005- 0 Introduit 0 dans les registres X 

réels et imaginaires. 

Œ1 006- 40 Fait descendre la pile avec 
a + ib dans le registre X. 

ru IUSERllsTOI [f] 707u 4413 Stocke a et incrémente les 
indices (mode USER). 

ru IUSERI 
mlRe~lml 008- 4230 
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Appuyez sur Affichage 

[Sf5] [9 009- 4413 . Stocke b (pas en mode USER 
ici). 

1] 1 Re ~ lm 1 010- 4230 Restaure a + ib dans les 
registres X. 

@1 [~!m 011- 4332 
[] ILBLI œ 012-42,21,15 Programme de rappel. 

[§IQ] 0 013- 44 0 Ru=k. 
1]] 1 CLxl 014- 4335 Invalide la pile. 
2 015- 2 
ISTOl1 016- 44 1 Ri = 2. 

IR+I 017- 33 
0 018- 0 
[±J 019- 40 Prépare la pile à une nouvelle 

tentative en cas de Erreur 3. 

L~f!J [9 020- 4513 Rappelle b (partie imaginaire). 

UJ CR e iïffi) 021- 42~0 

1] IOSEI1 022-42, 5, 1 Décrémente RI à 1. 

1]] ICLxl 023- 4335 Invalide la pile et efface 
les registres X réels. 

IRCll [9 024- 4513 Rappelle a (partie réelle). 

@] IRTNI 025- 4332 

Exemple: stockez 2 + 3 i et 7 + 4 i dans les éléments 1 et 2 en utilisant le pro-
o gramme précédent. Rappelez-les puis ajoutez-les. Dimensionnez la matrice C 
à 5 X 2 pour qu'elle puh:lse contenir jusqu'à 5 nombres complexes. 

Après avoir introduit le programme précédent, 

Appuyez sur 

@JQ2BJ 
51ENTERI2 

[]~[9 
21ENTERI3 [!J m 
1 rD [QJ 

Affichage 

2 
2.0000 
2.0000 
2.0000 

Moue calcul. 
Spécifie 5 rangs et 2 colonnes. 
Dimensionne la matrice C. 
Introduit 2 + 3i. 
Stocke le nombre dans C en 
utilisant l'index 1. 
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Appuyer sur 

71 ENTER\41] rn 
2[!l [QJ 

1 [!l []] 
21] œ 
[±] 
1] r-I R-e-~-I m--'! 

Affichage 

7.0000 
7.0000 

2.0000 
7.0000 
9.0000 
7.0000 

Introduit 7 + 4i. 
Stocke le nombre dans C en 
utilisant l'index 2. 
Rappelle le premier nombre. 
Rappelle le deuxième nombre. 
Partie réelle de la somme. 
Partie imaginaire de la somme. 

Calcul des nièmes racines d'un nombre complexe 

Ce programme calcule les nièmes racines d'un nombre complexe. Ces racines 
sont Zk pour k =- 0, 1, 2, ... , n -1. Vous pouvez aussi utiliser le programme pour 
calculer zl/r, où r n'est pas nécessairement entier. Le programme fonctionne 
de la même façon sauf qu'il peut y avoir un nombl'e infini de racines Zk pour 
k - 0, ± 1, ± 2, ... 

Appuyez sur Affichage 

cru 1 P/R! Mode programme. 
[!l CLEAR 1 PRGM\ 000-
1] ILBLI ~ 001-42,21,11 
~ 002- 34 Place n dam:i le registre X, 

Z dans les registres Y. 
II/xl 003- 15 Calcule 1/ n. 
g' 'LST.I] 004- 4336 Extrait n. 

i R +. 005- 33 
[]J ~8 006-43, 4, 8 Active le mode complexe. 

~ 007- 14 Calcule zlIn. 

ISTol2 008- 44 2 Stocke la partie réelle de Zo 

dans R2• 

1] 1 Re ~ lm! 009- 4230 
ISTol3 010- 44 3 Stocke la partie imaginair~ 

de Zo dans R3' 
3 011- 3 
6 012- 6 
0 013- 0 
cru IRtl 014- 4333 

'B 015- 10 Calcule 360/ n. 
ISTol4 016- 44 4 Stocke 360/ n dans R4' 
0 017- 0 
ISTol [TI 018- 4425 Stocke 0 dans le registre d'index. 
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Appuyez sur Affichage 

[!] 1 lBll 0 019-42,21,. 0 
IRCll.4 020- 45 4 Rappelle 360/ n. 
1 RCll [8J rn 021-45,20,25 Calcule 360 k/n en utilisant 

le registre d'index. 
ml Re ~ Iml 022- 4230 
@] [CTi] 023- 4335 
1 024- 1 Place 1 + i (k 360/ n) dans 

le rc!:,ristre X. 
@] 1 DEGI 025- 43 7 Mode degrés. 
[!] 1 ... RI 026- 42 1 Calcule eik360/n. 

IRCll2 027- 45 2 Rappelle la partie réelle de ZO0 

IRCll3 028- 45 3 Rappelle la partie imaginaire de 
Zo° 

[!Jill 029- 4225 Reconstitue Zo0 

[8J 030- 20 Calcule zoeik360/ n, racine 
numéro k. 

1 RCll ill 031- 4525 Rappelle le nombre k. 

~ 032...; 34 Place Zk dans les registres X 
et k dans le re~stre Y. 

1 033- 1 
[srQ] [±] ru .034-44,40,25 Incrémente le nombre k dans le 

registre d'index. 
IRtl 035- 33 Restaure Zk et k dans les 

registres X et Y. 
IR/si 036- 31 Arrête l'exécution. 
IGTolO 037- 22 0 Lance le calcul de la racine 

. suivante (branchement). 

Labels utilisés: A et O. 

Registres utilisés: R2' Rs, R4 et registre d'index. 

Pour utiliser ce programme: 

1. Introduire l'ordre n dans le registre Y et le nombre complexe Z dans les 
registres X. 

2. Appuyez sur [!] ~ pour calculer la racine principale, Zo, qui est placée 
dans les registres X (réel et imaginaire). Appuyez sur [!] [Jill en mainte­
nant ces touches enfoncées pour visualiser la partie imaginaire. 
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3. Pour calculer des racines Zk de numéro supérieur: 

• Appuyez sur 1 R/S 1 pour calculer chacune des racines successives. 
Chaque racine Zk est placée dans les registres X complexes et son 
numéro k est placé dans le registre Y. Entre ces calculs de racines, 
vous pouvez effectuer d'autres calculs sans affecter le déroulement 
du programme (à condition que R~, R:\! Rot et le rChristre d'index ne 
soient pas modifiés). 

• Stockez le numéro k de la racine dans le registre d'index (en utilisant 
1 STO 1 ITJ, puis 1 R/S 1 pour calculer Zk)' La racine complexe et son 
numéro sont placés respectivement dans les registres X et Y. (En 
appuyant à nouveau sur 1 R/sl, vous pouvez continuer à calculer des 
racines de rang supérieur.) 

Exemple: Utilisez le programme précédent pour calculcl' (1)1 11110. Caleulez ZU,ZJ 

et Z5U pour cette expression. 

Appuyez sur Affichage 

[]] [P/R 1 Mode calcul. 
1001 ENTERI1 1 Introduit n = 100 et Z = 1 

(purement réel). 
[!]~ 1.0000 Calcule Zo (partie réelle). 
[!] [ill] (maintenu) 0.0000 Partie imahrinaire de Zn. 

[R/S] 0.9980 Calcule Zt (partie réelle). 
ru Lill] ( maintenu) 0.0628 Partie imahrinaire de Zt. 

5018"1"oJ [] 50.0000 Stocke le numéro de la racine 
dans le registre d'index. 

IR/si -1.0000 Calcule Z;;o (partie réelle). 
ru [ill] (hold) 0.0000 Partie imaginaire de Z;;o. 

Résolution d1une équation pour ses racines complexes 

Une méthode classique de résolution numérique de l'équation f(z} = 0 est l'ité­
ration de Newton. Cette méthode commence par une approximation Zo d'une 
racine et calcule répétitivement: 

Zk + 1 = Zk - f (zJ/f'(zJ 

jusqu'à ce que Zk converge. 

L'exemple suivant montre comment 1 SOLVE 1 peut être utilisée avec l'itération 
de Newton pour estimer des racineH complexes. 
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(Une technique différente, n'utilisant pas le mode complexe, est indiquée page 
16.). 

Exemple: La réponse d'un système contrôlé automatiquement aux petites 
perturbations transitoires a été modélisée par l'équation différentielle com­
portant un terme ùe retard: 

d . 
- w(t) + 9 w(t) + 8 w(t - 1) -= o. 
dt 

Dans quelle mesure ce système est-il stable? Autrement dit, avec quelle rapi­
dité les solutions de cette équation décroissent-elles? 

Toute solution w(t) peut être exprimée sous la forme de la somme suivante: 

w(t) =~ c{z)ezt 

k 

où les coefficients constants c(z) sont choisis pour chaque racine z de l'équa­
tion caractéristique associée à l'équation différentielle comportant un terme 
de retard: 

z+ 9 + 8e~Z = 0 

Chaque racine z = x + iy donne à w(t) une composante ezt = ext (cos(yt) + i sin 
(yt)) dont le taux de décroissance est plus rapide lorsque x (partie réelle de z) 
est plus négatif. La réponse à ce problème entraîne donc le calcul de toute.~ lp!,: 

racines z de l'équation caractéristique. Or, cette équation ayant un numbre 
infini de racines, dont aucune n'est réelle, le calcul de toutes ces racines risque 
d'être une tâche extrêmement lonbJUc. 

. Cependant, on sait que les racines z peuvent être approchées pour de grands 
entiers npar z~ A(n) =-In((2n+ 1/2) ni8) + i(2n+ 1/2) npour n= 0, 1,2 ... 
Plus n est grand, meilleure est l'approximation. C'est pourquoi, vous ne devez 
calculer que les quelques racines mal approchées par A(n), c'est-à-dire les raci­
nes pour lesquelles Izl n'est pas très grande. 

En cas d'utilisation de l'itération de Newton, que doit être f{z) pour ce pro­
blème '! La fonction évidente f(z) = z + 9 + 8 e-z n'est pas un bon choix parce 
que l'exponentielle croît rapidement pour de grandes valeurs négatives de 
Re(z). Ceci ralentirait considérablement la convergence sauf si la première 
pstimation tentée se trouvait très proche d'une racine. En outre, cette fonction 
f(z) s'annule une infinité de fois si bien qu'il est difficile de déterminer quand 
toutes les racines désirées ont été calculées. Par contre, en ré-écrivant cette 
équation sous la forme: 

eZ = - 8/ (z + 9) 

i.. et en utilisant les logarithmes, vous obtiendrez une équation équivalente. 
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Z === In(- 8/(z + 9}) + i2nn pour n =- 0, 1, 2, ... 

Cette équation n'a que deux racines complexes z conjuguées pour chaque 
entier n. Utilisez donc la fonction équivalente 

f(z) - z - In(- 8/(z + 9)) + i2nn pour n:co:: 0, 1, 2, ... 

et appliquez l'itération de Newton 

zk+ 1 == Zk - (Zk -ln (- 8/(Zk + 9)) + i2nn)/(1 + 1/(Zk + 9)) 

Comme première estimation d'essai, choisissez Zo égale à A(n), l'approxima­
tion donnée précédemment. Un peu de manipulation algébrique utilisant le fait 
que ln(± i) == ± in/2, mène à la formule suivante: 

Zk + 1 -= A(n) + (Zk ...: A(n)) + (Zk + 9) In(iIm(A(n))/(zk + 9)))/(Zk + 10) 

Dans le program;me ci-dessous, Re(A(n)) est stocké dans Ro et Im(A(n)) dans 
RI. Remarquez que seule l'une des deux racines conjuguées est calculée pour 
chaque n. 

Appuyez s~r Affichage 

I]J IP/RI Mode programme. 
rn CLEAR 1 PRGM 1 000-
[!] IlBl-j ~ 001-42,21,11 Programme pour A(n). 

~ [Ç!J 8 002-43, 5, 8 Spécifie le mode réel. 
IENTERI 003- 36 
œ 004- 40 
[] 005- 48 
5 006- 5 
[±] 007- 40 
~~ 008-4326 
[8] 009- 20 CaJeulc (2n + 1/2)n. 
IENTERI 010- 36 

·lsTol1 011- 44 1 
8 012- 8 
G 013- 10 
~[ill] 014- 4312 
ICHsl 015- 16 Calcule 

- ln((2n + 1/2)n/8). 

[SJQ] 0 016- 44 0 
~ 017- 34 
[!][J 018- 4225 Reconstitue le nombre 

complexe A(n). 
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Appuyez sur Affichage 

058- 43 16 Calcule leZ + 8/(z + 9} 1. 
059- 4332 

Labels utilisés: A, B et C. 

Registres utilisés: Ru et Rl' 

Exécutez maintenant le programm~. Pour chaque racine, appuyez sur [ê] jus­
qu'à ce que la partie réelle affichée ne change plus. (Vous pourriez aussi bien 
vérifier que la partie imaginaire ne change plus.) 

Appuyez sur Affichage 

@] P'/A] Mode calcul. 

!] [QSERI Active le mode USER. 
O~ 1.6279 Affiche 

Re(A(O)) - Re {zu}. 

rnJ -0.1487 lh~(z 1). 

[}!] -0.1497 Re(z0· 

~ -0.1497 Re(z). 

ru [NI (hold) 2.8319 Im(z). 
[9 1.0000 -10 Calcule le ré~:;idu. 

ru -0.1497 Restaure z dans le registre X. 

En répétant la même procédure pour n-l à 5, vous obtiendrez les résultats ci­
dessous (seule figure une des deux racines). 

n A(n) Racine z/( Résiduelle 

0 1.6279 + il.5708 -0.1497 + i2.8319 1 X 10-10 

1 0.0184 + i7.8540 ~0.4198 + i8.6361 6 X 10-10 

2 -0.5694 + i14.1372 -0.7430 + i14.6504 2 X 10-9 

3 -0.9371 + i20.4204 -1.0236 + i20.7868 5 X 10-10 

4 -1.2054 + i26.7035 -1.2553 + i26.9830 9 X 10-10 

5 -1.4167 + i32.9867 -1.4486 + i33.21 03 2 X 10-9 
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Lorsque n croît, la première estimation A(n) s'approche de la racine z désirée. 
(Dès que vous avez terminé, appuyez sur [] 1 USERI pour invalider le mode 
USER). 

Puisque toutes les racines ont une partie réelle négative, le système est stable, 
mais la plage de stabilité (la plus petite en grandeur parmi les différentes par­
ties réelles, c'est-à-dire: - 0.1497) est suffisamment petite pour être surveillée 
attentivement lorsque le système doit supporter beaucoup de bruits de ligne. 

Intégrales de contour . 

Vous pouvez utiliser /J1l pour évaluer l'intégrale de contour Je AZ)dZ, où C 
est une courbe dans le plan complexe. 

'l'out d'abord, paramétrez la courbe C par z(t) - x(t) + iy(t) pour t] <: t <: t2• 

Posez G(t) - f(z(t))z'(t). Puis: 

I,{(z)dZ = f t'2 G( t)dt 
~ II 

= l t'2, He( G( t)dt + il t.} lnl( G(t»dt. 
t 1 t 1 

Ces intégrales sont justement celles que ILl (~value en mode complexe. Puis­
que G(t) est une fonction complexe d'une variable réelle t, [fl] va échantillon­
ner G(t) sur l'intervallc t l -- t-- t2 etintégrcr Rc( G(t)) - résultat renvoyé dans le 
registre X réel par votre fonction. Pour la partie imaginaire, intégrez une fonc­
tion qui évalue G(t) et utilise 1 Re ~ lm 1 pour placer lm( G(t)) dans le registre X 
réel. 

Le programme général figurant ci-dessous évalue l'intégrale complexe 

1= Lb{(Z)dZ 

suivant une ligne droite allant de a à b, où a et b sont des nombres complexes. 
Le programme suppose que le sous-programme de calcul de votre fonction 
complexe a le label "B", qu'il évalue la fonction complexe f(z) et que les limites 
d'intégration a et b sont respectivement dans les registres Y et X. Les compo­
santes complexes de l'intégrale 1 et l'incertitude b.I sont renvoyées dans les 
registres X et Y. . 

Appuyez sur 

cru IP/RI 

!] CLEAR 1 PRGM 1 

Affichage 

Mode programme. 
000-
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Appuyez sur '':Affichage 

[!] ILBLI ~ 001-42,21,11 

~ 002- 34 

B 003- 30 Calcule b - a. 

ISTOl4 004-, 44 4 Stocke Re( b - a) dans R4' 

[!] 1 Re ~ lm 1 005- 4230 
ISTOl5 006- 44 5 Stocke Im(b - a) dans R5' 

@] ILSTxl 007- 4336 Rappelle a. 

ISTOl6 008- 44 6 Stocke Re(a) dans Rs. 

m 1Re ~Iml 009- 4230 
ISTOl7 010- 44 7 Stocke Im(a) dans R7' 

0 011- 0 
IENTERI 012- 36 
1 013- 1 

m 1]]0 014-42,20, 0 Calcule Im(l) et Im(dl). 

ISTOl2 015- ' 44 2 Stocke Im(l) dans R2• 

IR+I 016- 33 
ISTol3 017- 44 3 Stocke Im(dl) dans R3' 

IR+I 018- 33 
[!] [fl] 1 019-42,20, 1 Calcule Re(l) et Re (dl). 

,IRCLI2 020- 45 2 Rappelle Im(l). 
. [!] ru 021- 4225 Reconstitue 1 complexe. 

~ 022- 34 
IRCLI3 ,023- 45 3 Rappelle Im(dl). 

mm 024- 4225 Reconstitue 111 complexe. 

~ 025- 34 Restaure 1 dans le registre X. 

[ru IRTNl 026- 4332 
rn ILBLl 0 027 -42,21, 0 Sous-programme de calcul 

de lm (f(z)z'(t)). 

IGSBl1 028- 32 1 Calcule f(z)z'(t). 

rn 1 Re ~ lm 1 029- 4230 Échange les parties 
réelle et imaginaire. 

illJ 1 RTN 1 030- 4332 
rn ILBLI1 031-42,21, 1 Sous-programme de calcul 

de f(z)z'(t). 
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Appuyez sur Affichage 

IRCll4 032- 45 4 
IRCll5 033- 45 5 
mm 034- 4225 Reconstitue le nombre 

complexe b - a. 
[8] 035- 20 Calcule (b -:- a) t. 

IRCll6 036- 45 6 
IRCll7 037- 45 7 
mm 038- 4225 Reconstitue le nombre 

complexe a. 
[±] 039- 40 Calcule a + (b - a)t. 
[<fsl3] ~ 040- 3212 Calcule f(a +(b - a)t). 
IRCll4 041- 45 4 
IRCll5 042- 45 5 
rnm 043- 4225 Reconstitue le nombre 

complexe z~t) - b - a. 
[8] 044- 20 Calcule f(z)z~t). 
[]] 1 RTNI 045- 4332 

Labels utilisés: A, 0 et 1. 

Registres utilisés: R2' Ra, R4, R5' R6 et R7' . ',--, 
, -~ 

Pour utiliser ce programme: 

1. Introduisez le sous-programme de calcul de votre fonction, avec le labf 
"B" en mémoire programme. 

2. Appuyez sur 7 [!J 1 DIM IlIill pour réserver les registres Ro à R7' (Votr 
sous-programme peut nécessiter des registres supplémentaires.) 

3. Définissez le format d'affichage pour Œ1. 
4. Introduire les deux valeurs complexes définissant les extrémités de 1 

droite le long de laquelle votre fonction sera intégrée. La limite inférieur 
doit être dans les registres Y, la limite supérieure dans les registres X. 

5. Appuyez sur rn ~ pour calculer l'intégrale complexe de la droite. L. 
valeur de l'intégrale est dans les registres X; la valeur de l'incertitud 
est dans les registres Y. 

Comme deux intégrales sont évaluées, le programme va mettre plus lon~ 
temps que pour une intégrale réelle, bien que le programme [il] n'ait pas à ut: 
liser le même nombre de points d'échantillonnage pour les deux intégrale~ 
L'intégrale la plus facile utilisera moins de calculs que la plus difficile. 
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Exemple: Faites une approximation des intégrales 

1 = (00 cos x dx 
1 JI x + II x 

et Joo sin x 
1'2= dx. 

1 x + II x 

Ces expressions décroissent très lentement lorsque x tend vers l'infini. Elles 
nécessitent donc un large intervalle d'intégration et un temps d'exécution 
assez long. Vous pouvez réduire la durée de ce calcul en faisant passer le con­
tour d'intégration de l'axe des réels au plan des complexes. Selon la théorie des 
variables complexes, ces intégrales peuvent être combinées sous la forme: 

i
l + joo eiz 

Il + iI'2 = dz. 
1 z + II z· 

Cette expression, lorsqu'elle est évaluée le long de la droite de coordonnées 
x = 1 et y ~ 0, décroît rapidement lorsque y augmente, comme e-Y• 

Pour utiliser le programme précédent pour le calcul des deux intégrales en 
même temps, écrivez un sous-programme évaluant: 

f(z) 
z + l/z 

Appuyez sur Affichage 

[!] 1 LBLI [ID 046-42,21 ,12 
l1/xl 047- 15 
[ID 1 LSTxl 048- 4336 
[±] 049- 40 Calcule z + 1/ z. 
[ID 1 LSTxl 050- 4336 
1 051- 1 
rn 1 Re ~ Iml 052- 4230 Reconstitue 0 + i. 
[8J 053- 20 

0 054- 12 Calcule eiz
• 

~ 055- 34 

G 056- 10 Calcule f(z). 

~ IRTNI 057- 4332 

Faites une approximation de l'intégrale complexe en intégrant la fonction de 
1 + Oi à 1 + 6i, en format d'affichage [§Q] 2 pour obtenir trois chiffres signifi­
catifs. (L'intégrale n'affecte pas les trois premiers chiffres au-delà de 1 + 6i.) 
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Appuyez sur Affichage 

@] Ip/RI Mode calcul. 
[!] IscI/2 Spécifie le format 1 SC112. 
1 IENTERI 1.00 00 Introduit la première limite, 

1 + Oi, de l'intégration. 
1 IENTERI6 6 
m[] 1.00 00 Introduit la seconde limite, 

1 + 6i, de l'intégration. 

m~ -3.24 -01 Calcule l et affiche Re(l) == Il 
(au bout de 9 minutes environ). m ffiI] (maintenue) 3.82 -01 Affiche Im(l) == 12• 

~ 7.87 -04 Affiche Re(.1l) ... IlIl • m ffiI] (maintenue) 1.23 -03 Affiche Im(.1l) =- 1l/2• m IFlxl4 0.0008. 

Ce résultat 1 est calculé beaucoup plus rapidement que si Il et 12 étaient calcu­
lées directement le long de l'axe des réels. 

Potentiels complexes 

La projection est utile dans des applications associées à une fonction complexe 
potentielle. Les explications suivantes concernent un problème d'écoulement 
de t1uide, mais il aurait pu aussi bien s'abrir de problèmes d'électricité statique 
ou de flux de chaleur. 

Considérons la fonction potentielle P(z). L'équation Im(P(z)) =- c définit une 
famille de courbes appelées les lignes de courant du flux. C'est-à-dire, pour 
toute valeur de c, toute les valeurs de z qui satisfont l'équation sont dans une 
ligne de flux correspondant à cette valeur de c. Pour calculer des points Zk sur 
cette lib'ile de courant, spécifiez des valeurs pour Xk et utilisez ensuite 1 SOLVE 1 

pour trouver les valeurs correspondantes de Yk utilisant l'équation: 

Si les valeurs Xk ne sont pas trop écartées, vous pouvez utiliserYk_l comme esti­
mation initiale de Yk. De cette façon, vous pouvez travailler sur la ligne de cou­
rant et calculer les points complexes Zk = Xk + iYk. En utilisant une procédure 
identique, vous pouvez définir les courbes équipotentielles données par 
Re(P(z}) =- c. 
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Le programme ci-dessous permet de calculer les valeurs de Yk à partir de 
valeurs de Xk régulièrement espacées. Vous devez prévoir un sous-prOb'Tamme 
labellé "B" qui place Im(P(z)) dans le registre X réel. Le programme utilise les 
entrées suivantes: valeur h du pas. le nombre n de points sur l'axe des réels et 
Zo - Xo + iyo, point initial de la ligne de courant. Vous devez introduire n, h et Zo 

dans les registres Z, y et X avant d'exécuter le programme. 

Le programme calcule let:; valeurt:; ue Zif ct let:; t;tockc clant; une matrice A t;OUt; la 
forme all l - Xk_1 et ak2 - Yk-I pour k == 1, 2, ... , n. 

Appuyez sur Affichage 

@] P;,7R] Moue pl'Ob'Tumme. 

[!I CLEAR 1 PRGM 1 000-
[J.] Lhê1J ~ 001-42,21,11 
IR+I 002- 33 
ISTol4 003- 44 4 Stocke h dans R,j' 

IR+I 004- 33 
2 005- 2 
œIDIMI~ . 006-42,23,11 Dimensionne la matrice A 

à nX 2. 

@] ICLxl 007- 4335 
ISTollMATRlxl Œ1 008-44, 16, 11 Met tous les éléments de A 

à zéro. 
1 STol [TI 009- 4425 Stocke zéro dans le registre 

d'index. 
œ IMATRlxl1 010-42,16, 1 Définit Ro - RI - 1. 
[]] IR tl 011- 4333 Rappelle Zo dans les registresX. 
ISTol2 012- 44 2 Stocke Xo dans R2• 

[!] IUSERllsTOI Œ1 013u 4411 Définit Cltl - Xo· 
rnlUSERI 
mlRe~lml 014- 4230 
ISTol3 015- 44 3 Stocke Yo dans Ra. 
œ IUSERllsTOI ~ '016u 4411 Définit a12 - Yo. 
rn IUSERI 
IGTol1 017- 22 .1 Branchement si la matrice A 

n'est pas pleine (n > 1). 
[!] 1 LBLJ 0 018-42,21, 0 

1 R C L 1 L~.~!,~.125J (A] 019-45,16,11 Rappelle le label de la 
matrice A. 



Appuyez sur 

@][RrN] 
[fl [[aTI1 
l!J [A~Iffi] 
l'Cl-Se] [!!J 

[S10] 6 
[] [Dil] 2 

1 
[STOJ GJ [TI 

ll3Gh] 4 
IRCll rn 
[8J 
IRcLl2 

GJ 
ISTol6 
~3 
IENTERI 

[!] 1 SOlVEI 3 
IGTOl4 

1 

ISTol B rn 
4 
ISTOI G4 
ISTol [8J rn 
IGTol2 

[!] IlBl14· 
IRcLl6 
[!] 1 PSEI 
[!] [US-ER] 1 STOJ ~ 
[!] rUS'ER] 

,"1" 
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Affichage 

020- 4332,. 
021-42,21, 1 
022- 4230 
023- 3212 

024- 44 6 
026-42.21, 2 
026- 1 
027 -44,40.26 

028- 45 4 
029- 4525 
030- 20 
031- 45 2 
032- 40 
033- 44 6 
034- 45 3 
035- 36 

036-42,10, 3 
037- 22 4 

038- 1 

H.estaure ZO0 

Calcule Im(P(zo)) (ou Re(p(zo)) 
11UUJ' lu CUU1'UO uqulpotuntiollu), 

Stocke c dans Rô' 
Buuclo ùo l'ochorcho ùe y~, 

Incrémente le compteur k ùan~ 
le registre d'index. 
Rappelle h, 
Rappelle le compteur k. 
Calcule kh. 
Rappelle Xo. 

Calcule x" = Xo + kh. 
Stocke Xk dans Rs. 
Rappelle Yk-l de Ra· 
Duplique Yk-l pour une seconde 
estimation. 
Recherche Yko 

Branchement à une racine Yk 
possible. 
Commence à réduire la valeur 

, du pas. 
039-44,30,25 Décrémente le compteur k. 
040- 4 ,.' 
041-44,10, 4; Réduit h d'un facteur 4. 

042-44,20,25 . Multiplie le compteur par 4. 
043- 22 2 Boucle arrière pour chercher 

044-42;21, 4 
045- 45 6 
046- 4231 
047u 4411 

Yk à nouveau. 
Continue à chercher Yk-

Mfiche Xk-

Définit al + 1,1 -. x .. 
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Appuyez sur Affichage 

LfttJ 048- 33 
[!] (PSEI 049- 4231 Affiche y,.. 
[SIo.J 3 '050-·. 44 3 Stocke y" dans Ra. 
UJ lus~ l'STol ~ 051u' 4411 Définit ak+ 1. 2 - y". 
m [USER 1 

[.GTb]2 052- 22 2 Branchement pour k +'1 < n 
(A n'est pas pleine). 

[GrQlO 053- 22 0 Branchem'ent pour k + 1 - n 
(A est pleine). 

L!J 1 LBLI3 054-42,21, 3 Sous-programme de la fonction 
pour [SOLVE] . 

lliç!-J 6 055- 45 6 Rappelle Xk. 

~ 066- 34 Hct:!taure l'ct:!LÎmuLÎon en 
cours pour Yk' 

[!Jill 067- 4225 Crée l'estimation 
Zk = Xk +';'Yk' 

IGSBI [ID 058- 3212 Calcule Im(P(zk)) (ou Re(P{zk)) 
pour des courues 
équipotentielles). 

IRCLl5 ·059- 45 5 Rappelle c. 

G 060- 30 Calcule Im(p(zk)) - c. 
[]] 1 RTNI 061- 4332 

Labels utilisés: A, B, '0, 1, 2, 3 et 4. 

Registres utilisés: Ro, Rb R2(xo}, Ra(yo}, R4(h}, R5{c}, R6(xk) et registre d'index 
(k). . 

Matrice utilisée:' A. 

Une caractéristique spéciale de ce programme est que si une valeur Xk se 
trouve au-delà du domaine de la ligne de courant (si bien qu'il n'yapas de racine 
à trouver pour 1 SOLVE 1 ), la valeur du pas est diminuée pour que x k approche de 
la limite où la ligne de courant revient. Cette caractéristique est utile pour la 
détermination de la nature de la ligne de courant lorsque Yk n'est pas une fonc­
tion monadique de Xk. Si h est suffisamment petite, les valeurs de Zk se trouve­
ront sur une branche de la ligne de courant et approcheront la' limite. (Le 
deuxième ex'emple ci-dessous illustre cette particularité.) 
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Pour utilisor cc programme: ',,:, "l".} 

1. Introduisez votre ~;ous-programme HOUS lu label "B" dans lu mémoire 
programme. Il doit m~ttr~ Im(P(z)) dans le registre X réel si vous call!u­
lez des lignes de courant ou bien Re(P(z)) si vous calculez 'des courbes 
équipotentielles. 

2. Appuyez sur 6 rn IOIMI [illJ pour réserver les registres Ru à RI: (et le 
registre d'index). (Votre sous-programme peut nécessiter des registres 
supplémentaires.) 

3. Introduisez les valeurs de n et de h dans les registres X et Y en appuyant 
: .. ; ,sur ", 1 ENTER l, h 1 ENTER 1. ' 

l ' 
t 

4. Introduisez la valeur complexe de Zu - Xo + iyo dans les registres X en 
appuyant sur Xo 1 ENTER 1 Yo [!] II]. 

5. Appuyez ~u .. rn ŒJ pOUl' ufficht!l'lcH vulcurH succossivct:l ùe X'k l~LYk pOUl' 

k = 1, ... , n et finalement le label de la matrice A. Les valeurs pour k = 0, ... , 
n sont stockées dans la matrice A. " 

6. . Si vous désirez, rappele~ ,~~s ~aleurs ~e la matrice A. 

Exemple: Calculez la ligne de courant ~u potentiel P(z) -II z + z passant par le 
point z - - 2 + 0, li. '. - , " " 

'rout d'abord, introduisez le sous-programme "B" pour calculer Im(P(z)). 

Appuyez sur Affichage 

III 1 LBLI [ID 062 .... 42,Z1,12 ' 
1 ENTER 1 063- 36 Duplique z. 

l1/xl.',: ",' 064~ ; 15 
[±] '" ,065- , 40 ' Calcule II z + z. 

I]JIRe~lml 066- 4230 Place Im(P(z)) dans 
le registre X. 

lm IRTNI 067- 4332 

Détermine la ligne de 'courant en utilisantzo--2+ O.li, valeur du pas: h-O.5 
et nombre de points: '" - 9. ' 

Appuyez sur 

rruœzm 
91ENTERI 

• 5IENTERI 

Affichage 

9.0000 
0.5000 

Mo'de calcul. 
Introduit n. 
Introduit h . 



Appuyc~ t;ur 

2 [C'HS\ [ENtER] 

"'W fi 
rn~ 

Afllchugc 

-2.0000 
-2.0000 
-1.6000 

InLl'Olluit Zo0 

Xl' 

0.1343 YI' 

2.0000 
0.1000 
A 9 
A 9 

Y9" 
2 Label de la matrice A. 
2 Désactive le mode complexe. 

La matrice A contient les valeurs suivantes de Xk et de Yk' 

Xk Yk 

-2.0 0.1000 
-1.5 0.1343 
-1.0 0.4484 
-0.5 0.9161 
0.0 1.0382 
0.5 0.9161 
1.0 .0.4484 
1.5 . 0.1343 
2.0 0.1000 

Les courbes equiponentielles de courant et de vitesse sont illustrées ci-des­
sous. La ligne de courant dérivée est représentée par la courbe en gras. 

~. 

----~-----+~--~---+~----~----x 
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Excmpl,,: PUUl' le même puLtmtle1 que celui ùe l'exemple précéùent, p(z) -li z 
+ z, culculoz lu courbe équipotentielle de VÎteHHe purtant vers la guuche à par­
tir du point z = 2 + i .. 
Tout d'ubord, modifiez le sous-progl'llmme UB" pour qu'il donno Rû(P(z)) (on 
enlevant l'instruction L~~.\lmJ de "B"). ~sRay~z n- 6 ct h-- O.fi. (R(lmarfJUez 
que h est négative, ce qui spécifie que XII sera situé à gauche de xo)' 

Bien que les séquences des touches ne soient pas détaillées ici, les résultats cal­
culés et stockés dans la matrice A sont donnés ci-dessous. 

Xk Yk 

2.0000 1.0000 
1.8750 0.2362 
1.8672 0.1342 
1.8652 0.0941 
1.8647 0.0811 
1.8646 0.0775 

LflH t·(·HUlt.l1iH montr(mt ln nnturc., d(~ III ht'nndw Hup6ril!uro ùc.du CUUl'lw (~uurlw 

en pointillés gras du graphe précédent). Notez que la valeur h du pus est auto­
matiquement diminuée pour suivre la courbe - pour éviter un arrêt en cas 
d'erreur -lorsqu'aucune valeur J' n'est trouvée pour :x < 1.86. 
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Opérations' matricielles 

L'algèbre matricielle est un outil très puissant. Elle permet de formuler et de 
résoudre de nombreux problèmes complexes, simplifiant des calculs compli­
qués. Ce chapitre traite des opérations matricielles effectuées par le HP-15C 
ainsi que l'utilisation du calcul matriciel dans diverses applications. 

Il contient aussi un résumé de certains résultats de l'algèbre linéaire mais ce 
l}'est qu'un rappel, il existe de nombreux ouvrages de référence. 

Décomposition en matrices triangulaires 
Le HP-I5C peut" résoudre des systèmes d'équations linéaires, inverser des 
matrices et ~alculer des déterminants. Pour effectuer tous ces calculs, le HP­
I5C utilise une décomposition en matrices triangulaires. 

Cette décomposition consiste à trouver deux matrices L et U telles que A = 
LV. L est une matrice triangulaire inférieuret dont les éléments de la diago­
nale sont égaux à 1 et dont les éléments situés sous la diagonale sont compris 
entre - 1 et + 1. V est une matrice triangulaire supérieuret. Par exemple: 

A= [~ :] = [~ ~ [~ _.~ = LU. 

t Une matrice triangulaire inférieure est une matrice dont tous les éléments situés au-dessus de la 
ùiagllnale Hunt nuIs. Une matrice triangulaire supérieure est une matrice pont les éléments situés au­
tlessous de la diagonale sont nuls. 

96 
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Certaines matrices ;ne peuvent pas être déc~mposées ainsi. Par exemple, 

quelles que soient les matrices Let U. Cependant, après avoir effectué une per­
mutation sur les rangs, on peut toujours trouver une décomposition. Il existe 
une matrice P telle que la matrice obtenue après permutation soit égale au pro­
duit PA. Après décomposition, on doit donc avoir PA = LU. Reprenons 
l'exemple précédent': ' , 

PA= ~ [~ ~ = [~ ~J = [~ ~ G ~J =LU. 

La permutation des rangs peut aussi supprimer les' erreurs d'arrondi qui ris-
quent de se produire lors de la décomposition. ' , 

• 1 ., .: ... 

Pour effectuer la décomposition, le HP-15C utilise la méthode Doolittle avec 
une grande précision arithmétique. Le résultat de la décomposition est stocké 
sous la forme: 

Il est inutile de stocker les éléments de la diagonale de L, puisqu'ils sont tous 
égaux à 1. Les permutations sont aussi mises en mémoire dans cette matrice 
de manière codée et qui nous est invisible. La décomposition es.t indiquée dans 
le traitement et son label contient deux tirets à l'affichage. 

Lors du calcul du déterminant ou de la résolution d'un système d'équations, la 
décomposition LU est automatiquement sauvegardée. Il est parfois utile de se 
servir de la forme décomposée de la matrice dans certains calcull:i; il ne faut 
donc pas perdre l'information concernant la permutation: ne modifiez pas la 
matrice dans laquelle sont stockés les éléments de la décomposition. 
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. Pour calculer le déterminant de la matrice A, le HP-15C utilise l'équation A=- palLU afin de pouvoir faire des permutations de rangs. Le déterminant est 
nJofH égoul ù (-IY que multiplle le proùuit ùes éléments ùe la ùiagonale de U ; r 
représente le nombre de permutations. Le HP-15e calcule ce produit avec son signe, aprèH dôcomposition de la matrice. 

Il est beaucoup plus facile d'inverser une matrice triangulaire qu'une matrice 
quelconque. Donc pour inverser la matrice A, le calculateur utilise la relation: 

Il faut donc tout d'abord qu'il décompose la matrice A, qu'il inverse L et U, qu'il 
calcule le produit U-1L -1 puis qu'il échange les colonnes du résultat. Ces opéra­
tions s'effectuent sur la matrice résultat. Si A est déjà sous forme décomposée, 
la phase de décomposition est supprimée. Grâce à cette méthode, le HP-15C 
peut inverser une matrice sans utiliser de registre intermédiaire. 

Résoudre un système d'équations de la forme AX = B est beaucoup plus facile 
dans le cas où A est une matrice triangulaire que dans le cas général. En utili­
sant la relation PA = LU, le problème devient LUX = PB pour X. Les lignes de la 
matrice B vont donc subir les mêmes permutations que celles de la matrice A. 
Le calculateur commence par résoudre l'équation LY = PB pour Y (résolution 
en descepdant), puis l'équation UX = y pour X (résolution en remontant). La 
décomposition est toujours sauvegardée afin de pouvoir changer B sans intro­
duire à nouveau les coefficients du système. 

La décomposition en matrices triangulaires est une étape très commode pour 
le calcul de déterminants, l'inversion de matrices ou la résolution de systèmes 
linéaires. Elle peut être aussi utilisée à la place de la matrice initiale dans d'au­
tres calculs. 

Matrices mal conditionnées 
et nombre de conditionnement 
Afin de pouyoir évaluer les erreurs dans les calculs matriciels, il faut définir 
une distance entre deux matrices. 
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L'une des dikltances possiblos entre les matrices A et B est la norme de leur dif­
férence not.ée IIA-BlI. Cette norme est aUHHi utiJiHée. pour calculer 10 nombre 
de conditionnement d'une matrice qui indique l'erreur relative dans un calcul, 
comparée à l'erreur relative sur la matrice. 

Le HP-15C offre 3 normes. La norme Frobenius d'une matrice A est notée 
IIAIIF; c'est la racine carrée de la somme des carrés des éléments de la matrice. 
Cette norme est l'analogue de la norme euclidienne pour les vecteurs. 

La seconde est la norme rang. Pour une matrice A de m X n, la norme rang est 
la plus grande somme des valeurs absolues des éléments d'une même ligne, elle 
est notée lIA/IR: 

La norme colonne est notée IIA/I c, et se calcule selon la formule liAI! c = IIAT IIR' 
La norme colonne est égale à la plus grande somme des valeurs absolues des 
éléments d'une colonne. 

Prenons par exemple les matrices: 

Alors 

et 

A=[:'::] et B=[:::} 
~J . [-1 0 A-B= 

: . 0 0 

IIA-BIlF = yTI ~ 3.3 (norme Frobenius) . 
IIA-BlIR = 3 (norme rang) et 
IIA-BII c = 4 (norme colonne). 

Dans toute la suite, nous utiliserons la norme rang, mais des résultats similai­
res sont obtenus avec les autres normes. 

Le nombre de conditionnement d'une matrice A est égal à 

K(A) = 1 lAI 1 lIA -111. 

Donc 1 <K (A) < quelle que soit la norme. 

~. 
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èe numbre est très utile pour évaluer les erreurs dans les calculs. La matrice A 
est dite mal conditionnée si K(A) est très grand. 

Si des erreurs d'arrondi existent, elles risquent de se répercuter dans toute la 
sulte des calculs. Supposons pàr exemple que X et B sont des vecteurs non nuls 
tels que AX = B. Si A contient une erreur âA et si nous calculons B + âB = (A + 
LlA)X, alors: 

(II~BII II/BII) 
(II~AII 1 /lAII) ~ K(A), 

a vec une égalité possible pour certaines valeurs de âA. Cela permet de majorer 
l'erreur sur A qui risque de se répercuter dans les calculs. 

Grâce au nombre de conditionnement, il est possible d'évaluer l'erreur sur la 
solution d'un système par rapport à l'erreur sur les données en mémoire. 
Reprenons l'exemple précédent: X et B sont des vecteurs non nuls satisfaisant 
.1'équatio~ AX = B. S'il existe des erreurs dans la matrice B (erreurs d'arrondi 
par exemple), les erreurs étant représentées par flB, l'équation devient A(X + 
flX) = B + flB et alors 

(lI~xlI II/XII) 
(II~BII IIIBII) ~K(A), 

et l'égalité est possible pour certaines valeurs de flB. 

Si il existe une erreur flA sur la matrice A, l'équation s'écrit (A + flA) (X + flX) 
= B, si on note d(A, flA) = K (A) 11âA/1/ 1 lAI 1 < 1, alors 

(11~x/I / /lxll) . 
(11.1AII 1 /lAII) ~ K(A)/(l- d(A,.lA». 

Si A -1 + Z est la matrice inverse de A + flA 
alors 

(IIZI! / liA-III) 
(II.:lAII 1 Il Ali > ~K(A)/(1- d(A,~A». 

Il existe encore des valeurs de flA qui provoquent l;égalité. 

Toutes les relations indiquées ci-dessus prouvent bien que l'erreur sur le résul­
tat est facile à évaluer par rapport à l'erreur relative sur la matrice A à l'aide du 
nomhre K(A). Pour chaque inégalité il existe des matrices pour lesquelles 
l'égalité est réalisée. Plus le nombre de conditionnement est grand, plus 
l'erreur sur le résultat risque d'être élevée. 



Des erreurs sur les données.,.., parfois trè~ petites en valeur relative - peuvent 
induire des solutions pour un système mal conditionné, très ,différentes de cel­
les du système d'origine. De mêm~, l'inverse d'une matrice malçonditionnée 
comportant des perturbations peut être assez différente: de l'inverse de la 
matrice d'origine. Cette différence est majorée par K(A), elle ne peut donc être 
élevée que si K(A) est grand. , 

Dans le cas d'une matrice non singulière A, plus K(A) est grand plus la matrice 
A est proche, au sens de la norme, d'une matrice singulière. 

11 K(A) = min (11A-sll/IIAID 

et 

où le minimum est pris sur toutes les matrices S singulières. Donc, si K(A) est 
grand où si lIA-III est grand, , alors la distance relative entre A et la matrice sin­
gulière S la plus proche est très petite. 

Prenons par exemple: 

A=,[11 l' ] 
.9999999999 . 

alors 

...• -1 _ [-9,999,999,999 10
10J A - . 

, . ,1010 -1010 

et lIA-III = 2 X 1010. Si il existe une erreur sur A notée dA telle que IIdAiI 
= 5 X 10-11 et telle que A + dA soit une matrice singulière.' Si " 

IIdAiI = 5 X 10-11 et 

. M= [ ~-::~~~::J' 
, , . ' '. [1' .99999999995J 
A+~A= . 
, " . l, .99999999995 

A + dA est une matrice singulière. 
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La figure ci-dessous illustre parfaitement cette idée. La matrice A et la matrice 
, S sont placées dans l'espace des matrices, par rapport à une surface représen­

tant les matrices singulières. Les distances sont mesurées grâce à la norme. 
Autour de A se trouvent des matrices pratiquement semblables à A (par 
exemple, celles dont l'arrondi est le même). Cette zone a pour rayon IIôAlI. La 
distance entre la matrice A et la matrice singulière S la plus proche est li/lA -11/. 

Dans le schéma de gauche, IIdAlI < lillA-III. Si IIôAlI« lillA-III (ouK(A) IIôAlII 
1 \AI 1 < < 1), 'alors 

la variation relative sur A -1 = Ilvariation sur A-III 1 lIA-III 
~ (/\dAl/111AI1 )K(A) 
= IIôAlI/(11 lIA-III) 
= (rayon de la zone sphérique)1 

(distance à la surface) 

Dans le schéma de droite, IIôAlI> II lIA-III, il existe ainsi une matrice singulière 
qui ne peut pas être distinguée de la matrice A, il n'est donc pas possible de cal­
culer l'inverse de A. 



Précision des solutions numé~iques 
des systèmes linéaires 
Nous venons de voir que les imprécisions sur les données sont répercutées sur 
les solutions des systèmes d'équations linéaires et l'inversion des matrices. 
Mais même quand les données sont exactes, des imprécisions sont introduites 
par le calcul numérique des solutions et des inversions. 

Prenons l'exemple de la résolution du système AX = B. La solution théorique 
est X, mais à cause des erreurs d'arrondi, la solution calculée Z est plutôt la 
solution du système (A + ÂA}Z = B. ÂA est telle que 1~A1I.;;; e IIAII où e est un 
nombre très petit. Dans la plupart des cas, ÂA n'affecte que le 10e chiffre des 
éléments de A. 

La matrice résiduelle R = B - AZ est telle que IIRJI ..; e 11AI111ZI1. Elle est donc 
faible en général. Cependant, si A est une matrice mal conditionnée, l'erreur 
Z- X risque d'être élevée. . 

IIZ-XlI -- e 11AI111A -11111Z11 = e K(A) IIZII 

Voici une règle simple permettant d'évaluer la précision" de la solution 
calculée: 

(
nombre de chiffres) ( nombre de ) -1 (IIAIIIIA-III) -1 (10 ) 
décimaux corrects ~ chiffres traités og og n 

n représentant la dimension de la matrice A. Dans le cas du HP-15e, le nombre 
de chiffres précis traités est égal à 10. 

(nombre de chiffres corrects) ;;a 9 ~ log <11AI111A -111) ~ log (n). 

Dans la plupart des applications, cette précision suffit. Si vous avez besoin 
d'une précision supplémentaire, vous pouvez améliorer la solution Z à l'aide de 
calculs itératifs (appelés aussi correction des résidus). 

Par le calcul itératif, une solution est calculée puis sa précision est déterminée 
à l'aide de la résiduelle et cette solution est modifiée. 

Pour utiliser cette méthode, commencez par calculer une solution Z du sys­
tème AX = B. Z est ensuite considéré comme une valeur approchée de X telle 
que E = X - Z, E vérifie le système AE = AX - AZ = R, où R est la résiduelle 
de Z. 
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Il faut ensl.. __ J calculer la résiduelle et résoudre l'équation Al. R. La solution 
calculée, appelée F, est alors considérée comme une valeur approchée de 
E = X - Z, elle s'ajoute à Z et une nouvelle approximation de X est obtenue F+ 
Z=(X-Z)+Z=X. ',' .. '. 

Pour que la précision de F+ Z soit meilleure que celle de Z, il faut calculer R = B 
- AZ avec une excellente précision. C'est ce que fait la fonction IMATRlxl6 du 
HP-I5C. La matrice A sert à calculer Z et F; la décomposition faite pour le 
calcul de Z est utilisée aussi pour F - ce qui réduit le temps de l'exécution. Le 
processus décrit ci-dessus peut être utilisé de nouveau, mais en pratique on 
constate qu'une excellente précision s'obtient dès le premier calcul. . 

(Vous trouverez à la fin de ce chapitre un exemple de program~e pour effec­
tuer une étape du calcul itératif.) 

Simplification d'équations difficiles 
Un système d'équations du type EX = B est très difficile à résoudre numérique­
ment dans le cas où E est une matrice mal conditionnée (presque singulière). 
De plus, le calcul itératif risque de ne pas' donner des résultats satisfaisants 
dans ce cas. Cependant il existe des cas où un simple petit effort suffit à simpli­
fier un problème difficile. La mise à l'échelle et le préconditionnement du pro­
blème sont deux méthodes de simplification du traitement.· 

Mise à l'échelle 

Un problème mal mis à l'échelle peut conduire à des opérations erronées 
comme par exemple l'inversion de matrices mal conditionnées ou la résolution 
de systèmes d'équations à l'aide de matrice mal conditionnées. Cela peut facile­
ment être évité. 

Prenons l'exemple d'une matrice E obtenue à partir d'une matrice A telle que E 
= LAR où L et R sont des matrices diagonales dont les éléments sont des puis­
sances entières de 10. On dit que E est dérivée deA par mise à l'échelle.L.metà 
l'échelle des lignes de A et R les colonnes. E-1 = R-1 A -IL -\ il est donc possible 
d'obtenir E- 1 soit à l'aide de A -t, soit en inversant E. 
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Prenons un bn.emple : 

A- .', 1 . l' 1 ; 
, . _ [,~,x 10-

4
°,. 1: 2J.··· 

.. . 2. 1 -1 .• 

Le HP-15C est capable de calculer A- I
' avec une précision de 10 chiffres 

Si. 

alors 

'. ! 

,' .. ' 

-2 .' 3 

3 ::,0,4 

;..1·· ,2 

-1] , 
2 . 

-1 ' . 

,:L=R~ .0· .10-20 

Co' " ~, .: [1 O~O , 0 
lO~w] ,':" il'; ", '0' ·0' 

" j', ',' "-

, .' ~ 1 ~ , ;..... 

, , j 

E est donc très proche d'une matrice singulière S 

. [3 l' 2]' : , S= 1 0 0 ' ,,', 

:'!' 2 0'0 l 

11E-S11/ 11E1I' = 1/3 X' 10:'40. Donc K(S) ;;.: 3 X 10'40, OI) .peutdo~c vérifier que 
l'inverse calculée E-l~ , 

,. [-6.67 X 10-
Il

, 1 ' 10-
10 J 

E-l = ~ ",:: 0.8569; 8.569 X 109 ;"4.284 X 109 

, 0;07155' -4.284 X 109 2.142 X 109 
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est très différent de la valeur vraie 

[

-2 X 10-40 

E-1 = 3 . 

-1 

3 

-4 X 1040 

2 X 1040 

-1 ] 
2 X 1040 • 

-1040 

En multipliant la matrice inverse calculée par la matrice E d'origine, on se rend 
bien compte que le calcul est inexact. 

C'est parce que la mise à l'échelle de E n'est pas judicieuse. Une matrice bien 
mise à l'échelle comme A doit avoir des lignes et des colonnes comparables en 
norme et ceci doit être vrai pour la matrice inverse. C'est bien vérifié dans le 
cas de E, mais pour E-1 on voit que les normes de la première ligne et de la pre­
mière colonne sont très petites comparées à celles des autres. Il faut donc 
mettre les lignes et colonnes à l'échelle avant d'inverser la matrice. Cela signi­
fie qu'il faut choisir les matrices diagonales L et R de telle sorte que LER et 
(LERrl = R-1E- IL -1 soit assez bien mises à l'échelle. 

En général on ne peut pas prévoir la valeur exacte de E-1
• Il faut donc examiner 

la matrice E et la matrice calculée E-1 pour se rendre compte si le choix des 
matrices L et R est bon. Dans ce cas, la matrice calculée E-1 indique que le 
choix n'est pas très bon et nous incite à prendre 

10-5 0 0 

L=R= 0 105 0 

0 0 105 

Ce qui donne: 

[ax 10-
10 1 10~OO J . LER= 1 10-30 

2 10-30 -10-30 

qui n'est toujours pas excellent mais qui est néanmoins meilleur. La matrice 
inverse calculée est égale à 

[

-2 X 10-30 

(LERrl = 3 -4 X 1030 2 X 1030 

-1 2 X 1030 -1030 

3 -1 
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Ce résultat est juste jusqu'au loe chiffre, bien que vous ne puissiez pas le voir 
immédiatement. On peut le vérifier en utilisant la relation: 

(LERr1(LER) = (LER)(LERrl = 1 (matrice identité) 

égalité vérifiée jusqu'au loe chiffre. 

On peut alors calculer E-1 

)' " . [-2 X 10-40 3 -1 J 
E-1 = R(LERrlL = ,3 -4 X 1040 2 X 1040 , 

-1 2 X 1040 -1040 

avec une précision de 10 chiffres. 

Si il est difficile de vérifier la précision sur (LERt l
, vous pouvez utiliser la 

méthode de mise à l'échelle en prenant LER comme matrice E et de nouvelles 
matrices de mise à l'échelle. 

Cette méthode de mise à l'échelle sert aussi à résoudre des équations matriciel­
les du type EX = B. Il est possible de remplacer le système EX = B par (LER)Y 
= LB à résoudre pour Y. Les matrices L et R doivent être choisies pour que la 
matrice LER soit correctement à l'échelle. On calcule ensuite X grâce à la rela­
tion X = RY. 

Préconditionnement 

Le pré conditionnement est aussi une méthode pour transformer des systè­
mes difficiles EX = B en problèmes plus simples, AX =- D ayant la même solu­
tion X. 

Prenons l'exemple d'une matrice E mal conditionnée (presque singulière). 
Vous vous en rendrez facilement compte en calculant E-1 et en remarquant 
que lillE-III est beaucoup plus petit que IIEI! (ouen remarquant que K(E) est très 
grand). On constate alors que tout vecteur ligne UT possède la propriété sui­
vante: llu ~I / lIu 1E-I II est très petit devant 11E1i. En effet llu 1E-I II n'est pas beau­
coup plus petite que llu ~111E-llI, et IlE-III est grande. Prenons un vecteur ligne UT 

et calculons vT = au 1E-1
, le scalaire a est choisi de telle sorte que le vecteur 

ligne r T obtenu en arrondissant chaque élément de vT à un entier compris entre 
- 100 et 100, ne soit pas très différent de vT

• 

Le vecteur-ligne rT possède des éléments entiers tous inférieurs à loo.I~1EI1 
est donc petite comparée à IIr~lllElI. Et c'est ce que nous recherchons. 
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Supposons que le kième élément de rT soit l'un des plus grands. Remplaçons 
alors le kième rang de Epar rr:E et le kième rang de B par r1JJ. Si aucun arrondi 
n'a été fait dans l'évaluation des nouveaux rangs, la nouvelle matrice A doit 
être mieux conditionnée que la matrice E, mais le système a toujours la même 
solution X. ' 

Ce processus est très efficace dans le cas où E et A sont à la bonne échelle, 
c'est-à-dire lor:.-;que tous les rangs de E et de A ont à peu près la même norme. 
Cela se réalise en multipliant les rangs des systèmes d'équations EX = B et 
AX = JJ par les puil:il:iancel:i cunvellaLlel:i de 10. ~i A ne diffère lJUl:i UHl:ieZ tl'une 
matrice sinbrulière, bien qu'elle soit bien mise à l'échelle, reprenez le processus 
de I?ré('onditionnement. 

Afin de mieux comprendre, prenons l'exemple du système EX = B dans lequel 

x y y y y 1 

Y x Y y Y 0 

/1;,: • E= y'y x y JI ,B= 0 

y y y x y 0 

y y y y x 0 

x = 8000.00002 et y = -1999.99998. Si vous essayez de résoudre directement 
ce système, voilà les solutions que vous donnera le HP-15C . 

.. ,>: 
2014.6 1 1 1 1 1 

2014.6 :"5 :' 1 1 1 1 '1 ", ~' 

X::;::; 2014.6 et E-1 = 2014.6 1 1 1 1 1 

2014.6 1 1 1 1 1 

2014.6 1 1 1 1 1 
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puis 

1.00146 

0.00146 

EX= 0.00146 

0.00146 

0.00147 

En faiHant un test (utilhmnt IMATRIX 17), vous découvrez que 1/ liE-III = 
9.9 X 10-5

, ce qui est très petit devant IIEI! = 1.6 X 10" (c'est-à-dire que le nombre 
calculé est très grand: 11E1l11E-11I = 1.6 X 108

). 

Choisissons un vecteur ligne quelconque UT - (1, 1, 1, 1, 1) et calculons 
u 7'E-1 = 10,073 (1, 1, 1, 1, 1). 

Si a = 10-4 
, " , 

vT = au ïE-l = 1.0073 (1, 1, 1, 1, 1) 
rT = (1, 1, 1, 1, 1) 
1~1E1I = 5 X 10-4 

I~~IIIE" = 8 X 104
• 

Comme nous nous y attendions, IIrïEII est petite devant 1~~IIIEIi. 

Remplaçons le premier rang de Epar 

107,rïE .... (1000, 1000, 1000, 1000, 1000) 

et le premier rang de B par 107r"B -107
, on obtient alors une nouvelle équa­

tion matricielle AX = D, dans laquelle 

1000 :1000 '1000 1000 1000 107 

Y X Y Y Y 0 

A= y y x y y et D= 0 
y y y x y 0 

y y y y x 0 
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r1E a été mis à l'échelle 107 et ainsi toutes les lignes deE etdeAontdesnormes 
comparables. En se servant du nouveau système, le HP-15C calcul.e la solution 

2000.000080 107 

1999.999980 -10-5 

X= 1999.999980 , avecAX= -9 X 10-6 

1999.999980 0 

1999.999980 0 

Cette solution est différente de la solution trouvé.e précédemment, elle a une 
précision de 10 chiffres. 

Il arrive parf9is que leH élémentH d'une matrice prcHque Hingulière E soient cal­
culés avec des arrondis, dans ce cas la matrice E-1 n'est pas exacte même si ses 
éléments sont calculés sans erreurs arithmétiques. Le préconditionnement 
n'est valable dans ce cas que si le rang modifié de la matrice A est obtenu avec 
une grande précision. En d'autres termes, on peut dire qu'il ne faut transfor­
mer une formule à l'aide de la méthode de préconditionnement que si l'on est 
sûr de pouvoir en tirer des avantages. 

Méthode des moindres carrés 
Les opérations matricielles sont fréquemment utilisées dans des calculs de 
moindres carrés. Dans ce type de calculs, on rencontre souvent une matrice X 
de n X p contenant des données et un vecteur y à n éléments pour lesquels il 
faut trouver un vecteur b àp éléments tel que l'expression suivante soit mini­
male: 

n 

11Ii1} = ~ r~ 
i = 1 

où r = y - Xb est appelé vecteur résiduel. 

Équations normales 

.Ilril} = (y - Xb)T(y - Xb) = yTy - 2b7XTy + b7X7Xb. 

La résolution de cette équation est équivalente à la recherche de la solution b 
d'équations normales: 
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x7Xb= XTy. 

Mais les équations normales sont sujettes aux erreurs d'arrondi. (La factorisa­
tion orthogonale, expliquée page 113 est en effet très sensible aux erreurs 
d'arrondi.) 

Un problème comprenant un calcul de moindres carrés pondérés est en fait la 
généralisation d'un problème de calcul de moindres carrés. Il s'agit de minimi­
ser l'expression 

n 
Irw~l~ = ~ w~r7 

i=l 

dans laquelle West une matrice diagonale n X n, dont tous les éléments diago­
naux Wl, W 2I .. " w" sont positifs. 

':' Irw~l} = (y - Xb)1W1W(y - Xb) 

toute solution b est aussi une solution des équations normales pondérées: 

Ce sont en fait les équations normales dans lesquelles X et y sont remplacées 
par WX et Wy. Elles sont donc très sensibles aux erreurs d'arrondi. 

Dans un problème de calcul de moindres carrés avec des contraintes linéai­
res, il faut trouver b tel que l'équation suivante soit minimisée: 

Iltil~= Ilv-xbll~ 

Cd = d : {~ ciA = di pour i = 1,2, .... m } . 
} = l ,,-

avec: 

Cela revient en fait à résoudre les équations normales augmentées 

dans lesquelles 1 est un vecteur de Lagrange faisant partie de la solution mais 
qui n'est pas utilisé par la suite. Les équations augmentées sont, elles aussi, 
très sensibles aux erreurs d'arrondi. Il est possible d'inclure des pondérations 
en remplaçant X et y par WX et Wy. 
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Afin de bien prouver que les équations normales ne sont pas très fiables pour la 
résolution des problèmes de moindres carrés prenons un exemple numérique: 

Alors 

et 

100,000. -100,000. 0.1 

0.1 0.1 0.1 x= et y= 
0.2 0.0 0.1 

0.0 0.2 0.1 

" l' [10,000,000,000.05 -9.999.999,999.99J 
X x= 

-9,999,999,999.99 10,000,000,000.05 

x T y = [10,000.03J . 
-9,999.97 

Cependant en arrondissant à 10 chiffres 

XTX=. , 
[ 

1010- -101OJ 
-1010 1010 

ce qui donne le même résultat que si les éléments de X étaient arrondis au 
5e chiffre du plus grand élément: 

100,000 -100,000 

° 0 x= o 0 

o 0 

Le HP-15C résout alors l'équation X7Xb = XTy (en perturbant légèrement la' 
matrice singulière comme indiqué page 118) et donne 

b = [0.060001J 
0.060000 
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avec 

X y-X Xb= . TT' [o.03~ 
0.03 

Cependant la soluti,on correcte de la méthode des moindres carrés est 

b '= [0.5000005J 
0.4999995 

bien que les deux solutions satisfassent également aux équations normales. 

Le~ équation~ normales ne doivent être utili~ée~ que 'quand les éléments de X 
sont des entiers relativement faibles (disons entre - 3000 et 3000) ou quand on 
sait qu'aucune perturbation sur une colonne Xj de X, inférieure à 11x;1 110\ ne 
risque de rendre deux colonnes linéairement dépendantes. 

Factorisation orthogonale 

La méthode de factorisation orthogonale ci-dessous permet de résoudre les 
problèmes de moindres carrés; elle est moins sensible aux erreurs d'arrondi 
que la méthode des équations normales. Il faut l'utiliser quand la méthode des 
équations normales n'est pas satisfaisante. 

Toute matrice n X P, X, peut se mettre sous la forme X = Q1U où Q est une 
matrice n X n orthogonale caractérisée par Q T = Q-t et U une matrice triangu­
laire supérieure n X p. La propriété essentielle d'une matrice orthogonale est 
qu'elle préserve la longueur 

I~~I} = (Qr)7'(Qr) 

= rTQTQr 

= rTr 

=Ittil~. 

Si r = y - Xb, il a la même longueur que 

Qr = Qy - QXb = Qy - Ub. 
\, 
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La matrice triangulaire supérieure U et le produit Qy peuvent se mettre sous la 
forme: 

, [û] (p rangs) 
U = 0 (n-p rangs) 

et 

Alors 

II~I~· = I~~I~· 

= I~Y- u~l~ 

= Ilg - Ûbll} + IIfl!} 
-- IIfll~ 

(p rangs) 

(n-p rangs) 

avec égalité quand g - Ûb = O. En d'autres termes, la solution d'un problème 
ùe rnoindrOH curréH est UUNHI ~mluti(Hl ùe Ûb - g; lu vuleur' minimule ùe lu 
somme des carrés est alors égale à Il fll~. C'est la base de tous les programmes 
numériques de" calcul des moindres carrés. 

On peut résoudre un problème de calcul de moindres carrés en deux étapes: 

1. ~ffectuez une factorisation orthogonale de la matrice augmentée 
n X (p + 1): 

dans laquelle Q T = Q-l et mettez la matrice triangulaire supérieure sous 
la forme 

A 

U g (p rangs) 

V = 0 Q (1 rangs) 

o 0 (n - p rangs) 

• L(1 colonne) 
L-(p colonnes) 

Il ne faut conserver que les (p + 1) rangs (et colonnes) de V. (Q est diffé­
rente de l'exemple précédent puisqu'ici elle comprend aussi la factorisa­
tion de y). 

... .. 
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i 
i .. 
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r .. 
t 

1 
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2. Résolvez le système ci-dessous pourb: 

(si q = 0, remplacez-le par un nombre très petit comme 10-99
). Dans la 

matrice solution, - 1 apparaît automatiquement sans calcul. 

Si il n'y a aucune erreur d'arrondi, q = ± IIY-XbII F ; cela peut être légère­
ment différent si Iq 1 est très petite, mettons inférieure à Ilvil/lOu. Si vous 
désire~ une meilleure approximation de IIY - Xbll .. -, calcule~-la à partir de 
X, de y et de la solution calculée b. 

Dans le cas d'un calcul pondéré de moindres carrés, remplacez simplement X et 
y par WX et Wy où West une matrice diagonale formée des coefficients de pon­
dération. 

Pour un calcul de moindres carrés avec contraintes linéaires il faut admettre 
que les contraintes t;ont négligeablet;. Il est aussi impot;t;ible tl'obtenir par 
calcul numérique une solution parfaitement exacte à cause des erreurs d'ar­
rondi. Il faut déterminer la tolérance t telle que les contraintes sont négligea­
bles quand IICb - dli < t. En général t> 1Id11/101O permet une précision de 10 
chiffres, dans certaint; cas une tolérance plus brrande est nécessaire. 

Quand t est choisie, sélectionnez le coefficient de pondération w vérifiant w> 
Ilvii / t. Pour plus de simplicité, choisissez pour w une puissance de 10 supérieure 
à Ilvii / t. Alors w I~b - dli > Ilvii sauf si I~b - dli < t. ' 

Il se peut cependant que les contraintes ne soient pas satisfaisantes pour une 
des deux raisons suivantes: 

• Il- n'existe pas de b tel que IlCb ~ dli < t, 
• Les dernières colonnes de C sont linéairement dépendantes. 

Dans le premier cas, il faut déterminer si une solution existe pour les contrain­
tes seules. Quand [wC wdJ est factorisé sous la forme Q[U gJ, résolvez en b le 
.système suivant: . 

en utilisant un nombre q très petit et non nul. Si la solution calculée b satisfait 
Cb ~ d alors les contraintes ne sont pas négligeables. 
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'Le second cas est beaucoup plus rare et peut être évité. Il se présente quand au 
moins un des éléments diagonaux de U est beaucoup plus petit que le plus 
grand des éléments qui se trouvent au-dessus dans la même colonne, où U pro­
vient de la factorisation orthogonale wC = QU. 

Afin d'éviter cette situation, il faut réordonner les colonnes de wC et de X ainsi 
que les éléments (rangs) de b. Le nouvel ordre est facile à trouver si l'élément 
perturbateur de U est aussi beaucoup plus petit que la plupart des éléments de 
son rang. Il suffit alors d'échanger les colonnes correspondantes dans les don­
nées originales et de refactoriser les équations de contraintes pondérées. 
Répétez cette procédure si nécessaire. 

Prenons l'exemple suivant dans lequel la factorisation wC donne: 

[

1.0 

U= 0 

o 

2.0 0.5 -1.5 

0.02 0.5 3.0 

o 2.5 1.5 

0.3

J 
0.1 , 

-1.2 

Le second élément diagonal est très inférieur à 2.0 qui se trouve juste au-des­
sus. Cela indique que la première et la deuxième colonne des contraintes d'ori­
gine sont pratiquement dépendantes. Cet élément est également très inférieur 
à 3.0 qui se trouve dans la même ligne. La seconde et la quatrième colonne des 
données d'origine doivent être échangées et il faut refaire la factorisation. 

Il est bon de toujours vérifier si les contraintes sont négligeables. Le test sur 
les éléments diagonaux de U peut se faire en même temps. 

Pour finir, il suffit d'utiliser U et g comme k premiers rangs puis d'ajouter les 
rangs convenables de X et y. (Reportez-vous à la page 140.) Résolvez enfin le 
problème de moindres carrés sans contraintes en transformant 

Si la solution calculée b satisfait IlCb - dll < t alors elle minimise aussi l'expres~ 
sionllY - Xbll avec la contrainte Cb ~ d. 
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Matrices singulières et presque singulières 
Une matrice est dite singulière si et seulement si son déterminant est nul. Le 
déterminant d'une matrice est égal à. (- Ifque multiplie le produit des élé­
ments diagonaux de U, dans lequel U est la matrice triangulaire supérieure de 
la décomposition LU; et r le nombre de permutations sur les rangs avant la 
décomposition. Donc une matrice est singulière si un des éléments diagonaux 
au moins de U est nul, sinon elle n'est pas singulière. 

Cependant, puisque le HP-15C utilise un nombre fini de chiffres pour ses cal­
culs, certaines matrices singulières et presque singulières ne peuvent pas être 
distinguées. Considérons par exemple la matrice 

[3 3l [1 ol[3 3J 
B= 1 IJ = '1:, IJ 0 0 =LU, 

est singulière. Si une utilise une précision de 10 chiffres, la matrice est décom­
posée sous la forme. ' 

qui n'est pas une matrice singulière. La matrice singulière B ne peut pas se dis­
tingÙer de la matrice non singulière 

, [ 3 3,1.J ... D = .9999999999 

puisque leurs décompositions LU sont identiquès. " 

D'autre part la matrice 



118 r>llapi lre 4: Opérations matricielle::.; 

n'est pas singulière. En utilisant une précision de 10 chiffres la matrice A se 
décompose sous la forme 

[ 

"1 
LU= 

.3333333333 

Ce qui indiquerait que la matrice A est singulière. La matrice non singulière A 
ne peut pas être distinguée de la matrice singulière 

puisqu'il~ ont la même décomposition LU. 

En vous servant de votre HP-15C pour inverser une matrice ou pour résoudre 
un système d'équations, vous vous rendrez compte que des matrices singuliè­
res et des matrices presque singulières ont la même décomposition LU. C'est 
pour cela que le HP-15C s'assure toujours que le résultat des calculs n'ajamais 
de pivot nul. Si c'est nécessaire, il modifie le pivot d'une quantité inférieure à 
l'erreur d'arrondi. Ceci est très important dans certaines applications comme 
le calcul des vecteurs propres à l'aide de la méthode d'itération inverse (voir 
page 155). 

Les erreurs d'arrondi et les modifications intentionnelles permettent le calcul 
d'une décomposition ne comportant aucun pivot nul et correspondant à une 
matrice non singulière A + ÂA identique ou légèrement différente de la 
matrice A de départ. En général, à moins que tous les éléments d'une même 
colonne de A ne soient inférieurs à 10-89 en valeur absolue, la norme colonne 
IlaAiIc est négligeable devant \lAlic. 

Le HP-15C calcule le déterminant d'une matrice carrée comme étant le produit 
ùes pivots calculés (éventuellement modifiés). Le déterminant calculé est celui 
de la matrice A + ÂA décomposée dans la forme LU. Il n'est nul que si la valeur 
absolue est inférieure à lO-!l!' (d{'passcmpnt de l~apadté infill,jpur'c), 
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Applications 
Voici quelques programmes illustrant l'utilisation du calcul matriciel pour h 
résolution de problèmes complexes. 

Construction de la matrice identité 

Ce programme est destiné à la création d'une matrice identité In dans, unE 
matrice dont le label se trouve dans le registre d'index. Ce programme SUppOSE 
que la matrice est déjà dimensionnée n X n. Pour exécuter le programme utili 
sez IGSB 18. La matrice finale contient des 1 sur la diagonale et des 0 partou1 
ailleurs. 

Appuyer sur Affichage 

@Jlp/RI Mode programme. 
[J CLEAR 1 PRGM 1 000-
m IlBlla 001-4'2,21, 8 
[J IMATRlxI1. 002-42,16, 1 Initialise i = j = 1. 
m IlBll9 003-42,21, 9 
IRCllQ 004- 45 0 
IRCll1 005- 45 1 
[ru ITESTI6 006-43,30, 6 Teste i.,.. j. 
[lli IClxl 007- 4335 
~ ITESTI5 008-43,30, 5 Teste i = j. 
IEEXI 009- 26 Initialise l'élément à 1 si i = j. 
rn IUSERllsTOI ffiI] 010u 4424 Saute le pas suivant pour 
mlUSERI le dernier élément. 
IGTOl9 011- 22 9 
[[] IRTNI 012- 4332 
[[] IP/RI Mode calcul. 

.' ,. 

Labels utilisés: 8 et 9. 

Registres utilisés: Ro, Rt, et registre d'index . 

Correction de la solution par une itération 

Le programme ci-dessous permet de résouùre en X le système AX'" B, puis de 
faire un calcul itératif à un niveau pour améliorer la précision de la solution. Ce 
programme utilise quatre matrices: 
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Matrice 
. A B C D 

Entrée Matrice Matrice 
du de second 

système membre 

Sortie Matrice Solution Solution Décomposition 
du système corrigée non-corrigée I"U de A 

Appuyez Hur Affichage 

[ill [rln] M lido J Il'()),fl'lll1 Il 1 \t '. 

m CLEAR [fRGM] 000-
m [iJ.f[JA 001-42,21,11 
IRCLllMATRlxl ~ 002-45,16,11 
[stOl [MATRIX] [QJ 003-44, 16, 14 Stocke lu muLl'Îce ÙU HystèllW 

dans D. 
IRCLllMATRlxl [ID 004-45,16,12 
IRCLllMATRlxl [Q] 005-45,16,14 
fI] IRESULTI @] 006-42,26,13 

G 007- 10 . Calcule la solution C 
non-eorrigéf!. 

rn IRESULTI [!] 008-42,26,12 

m lMAtBIK16 009-42,,16, 6 c;alcu le la méltl'k(~ t'ôHÎ(hwlle n. 
IRCLllMATRlxl [Q] 010-45,16,1.4 

B 011- 10 Calcule la correction B. 
IRCLllMATRlxl [ÇJ 012-45,16,13 
[±] 013- 40 Calcule la solution corrigée B. 

cru IRTNI 014- 4332 
[[] Ip/RI Mode calcul. 

Labels utilisés: A. 
Matrices utilisées: A, B, C et D. 

Pour utiliser ce programme: 
1. Dimensionnez la matrice A selon la matrice du système puis stockez les 

coefficients dans A. 
2. Dimensionnez la matrice B selon la matrice de second membre puis 

stockez ces éléments dans B. 
3. Appuyez sur IGSB 1 ~ pour calculer la solution corrigée qui se trouve 

par la suite dans B. 
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Exemple: En utilisant le programme de correction par la résiduelle, calculez 
l'invert:;e de la matrice A. 

A= [-:: 
-8 

Théoriquement = 

[-~Y/:.J -~V:3 -:J~ J 
A-I-~. H fi/:.! GI/:.! . 

M/:~ ~/a 9 

POlll' dét(~rminer l'inverse pur calcul, il suffit de résoudre AX = B où B est la 
matrice identité 3 X 3. 

Entrez tout d'abord le programme ci-dessus et, de retour en mude calcul, 
entrez les coefficients de la matrice A (matrice du système) et de la matrice B 
(mntl'Îl~o idontité). Appuyoz sur IGSB 1 ŒJ pmu exécuter le programme. 

Rappelez les éléments de la solution non-eorrigée C: 

[

-9.H6()G(jf).RR 1 -2.HHfl6fiH72fl· 

C = 8.000000167 2.500000046 

2.666666728 . 0.6666666836 

-:32.00000071 J 
25.50000055 

9.000000203 

Cette solution est correcte jusqu'au septième chiffre. Cette précision vérifie 
bien l'équation indiquée page 103. 

(nombre de chiffres corrects) ;;;. 9 - log' (1\AlIIICID - log (3) ~ 4.8. 

Rappelez en8uile les éléments de la solution corrigée, matrice B: 

[

-9.666666667 -2.666666667 

B = 8.000000000 2.500000000 

2.666666667 0.6666666667 

-32.00000000 J 
25.50000000 

9.000000000 

Après une itération de correction, la précision est de 10 chiffres. 
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Résolution d'un système d'équations non linéaires 

Considérons un système de p équations non linéaires à p inconnues de la 
forme: 

.pUt;OllH 

rXI 

l
X2 

x = . 1 f(x) = 

xp 

dans lequel 

fi (x) 

f2(x) 
. et F(x) = 

F11(X) ... F1,,(x) 

F~H(X) ... F2,p(x) 

a 
Fij(x) = .ax.!i(X) pour i,j= 1,2, ... ,p. 

1 

Le système peut alors se mettre sous la forme f(x) = O. Dans la méthode de 
Newton, il faut déterminer une solution initiale x(O) de l'équation ((x) = 0 et cal­
culer 

X(k + 1) = x(k) - (F(x(k)n-1f(x(k» 

jusqu'à ce que 'X(k+ 1) converge. 

for k = 0,1,2, ... 

Le programme ci-dessous effectue une itération de la méthode de Newton. Il 
effectue le calcul sous la forme 

X(k + 1) = x(k) - d(k), 

dans laquelle d(k) est la solution du système linéaire p X p. 

F(x(k»d(k) = f(x(k». 

Ce programme affiche pour chaque itération la longueur euclidienne de f(X(k)) 
et la correction d(k). 

Exemple: Prenons une variable y ayant une distribution normale, d'écart-type 
m et de variance v2 inconnus. Construisons un test sans biais de l'hypothèse v2 

= v~ sachant qu'il est possible que v2 =F v~ pour une valeur v~ particulière. 

Pour un échantillon aléatoire de y constitué de Yb Y2' ... , Y nt un test sans biais 
rejette cette hypothèse si: . 
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où 
Il IL 

Sn =' L(Yi - y)2 et 
i:;., 1 

_ 1 '" Y = -.L...JYi ,. 
ni~ 1 

pour certaine~ constantes Xl et %2' 

~H la taille du tesL esL a (0 < a < 1), vous puuve:l trouver Xl et X2 tm l'étlulvantl~ 
système d'équations fl(X) = f2(X) = 0, où 

Ici, X2 > Xl > 0, a et n sont connus (n > 1), et m = (n - 1)/2 - 1. 

Une bonne valeur initiale de (Xl' X2) est: 

(0) - 2 t (0) - 2 
Xl - Xn -1, 0/2 e X 2 - Xn - 1, 1- 0/2 

où X~, p est le pième pourcent de la distribution du chi-carré avec d degrés de 
liberté. 

Pour cet exemple, 

Introduisez le programme suivant: 

Appuyez sur Affichage 

[[] 1 P/R 1 , Mode programme. 
III CLEAR 1 PRGM 1 000-
IIIl LBL lIA] 001-42,21,11 
2 002- 2 
IENTERI 003-. 36 
1II10lMI [9 004-42,23,13 Dimensionne à 2 X 2 

la matrice F. 
1 005- 1 
ru 1 OIM 1 rnJ 006-42,23,12 Dimensionne à 2 X 1 

la matrice f. 
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. Appuyez sur Affichage 

IGSBI [ID 007- 3212 Calcule f et F. 

IRcLllMATRlxl ~ 008"':'45,16,11 
IRcLllMATRlxl [[] 009-45, 16, 12 
IRClllMATRlxl @] 010-45~ 16, 13 
rn 1 RESUlTI [Q] 011-42,26,14 

G 012- 10 Calcule d(k). 

œ IRESULTI ~ 013-42,26,11 

B 014- 30 Calcule 
X(k + 1) = X(k) - d(d). 

[[] IlSTxl 015- 4336 
rn IMATRlxl8 016-42,16, 8 Calcule IId(k)11 F. 

IRCLllMATRlxl [[] 017-45,16,12 
œ IMATRlxl8 018-42,16, 8 Calcule IIf(x(k))11 F. 

[[] IRTN 1 019- 4332 
œ ILBll [ID 020-42,21, 12 Programme de calcul de f 

et de F. 

rn IMATRlxll 021-42,16, 1 
rn IUSERIIRCLI ~ 022u 45 11 
œ IUSERI 
ISTOl4 023- 44 4 Stocke X\k) dans R4. 
œ lusERllRcll ~ 024u 45 11 Saute la ligne suivante pour 
[IIUSERI le dernier élément. 

ISTOl5 025- 44 5 Stocke xt) dans R5. 
ISTOl5 026- 44 5 

B 027- 30 Calcule Xl - X2. 

IRCll5 028- 45 5 
IRCll84 029-45,10, 4 
[[] ILN 1 030- 4312 Calcule ln (X2/ Xl). 

IRCLI2 031- 45 2 
1 032- 1 

B 033- 30 
[8J 034- 20 Calcule (n - 1) ln (X2/ Xl). 

[±J 035- 40 Calcule fI. 
ISTol [[] 036- 4412 Stocke fI dans B. 
1 037- 1 
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Appuyez sur Affichage 

IncLl2 038- 45 2 
1 039- 1 

a 040- 30 
IRell E/4 041-45,10, 4 Calcule (n -1)1 Xl. 

a 042- 30 Calcule Fu. 
m IUSERllsTOI19 043u 4413 Stocke Fu dans C. 
m IUSERI 
IRCLl2 044- 45 2 
1 045- 1 

a 046- 30 
IRCll E15 047-45,10, 5 Calcule (n - 1)/ X2' 

1 048- 1 
El- 049- 30 Calcule F12' 
m IUSERllsTOI [f] 050u' 4413 Stocke F12 dans C. 
[!] IUSERI 
IRCll4 051- 45 4 
IRcll5 052- 45 5 
mŒJ[fJ 053-42,20, 13 Calcule l'intégrale. 
IRCll3 054- 45 3 
1 055- 1 

El 056- 30 
2 057- 2 

0 058- 20 Calcule 2( a - 1), 
IRCll2 059- 45 2 
3 060- 3 

El 061- 30 
2 062- 2 

B 063- 10 Calcule m. 
m@] 064- 42 0 Calcule r(m + 1). 

0 065- 20 

El 066- 40 Calcule 12. 
ISTol [[J 067- 4412 Stocke 12 dans B, 
IRCll4 068- 45 4 
IGSBI [fJ 069- 3213 
ICHSI 070- 16 Calcule F21' 
m IUSERllslOI [fJ 071u 4413 Stocke F21 dans C. 
(!] IUSERI 
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Appuyez sur Affichage 

IRCll5 072- 45 5 
IGSBI[f] 073- 3213 Calcule F22• 

rn 1 USER IlsTO 1 [f] 074u 4413 Stocke F22 dans C. 

rn IUSERI 
~ IRTNI 075- 4332 Saute cette ligne. 

[ru IRTNI 076- 4332 
rn 1 LBLI [f] 077-42,21,13 Programme d'évaluation de 

l'expression à intégrer. 

2 078- 2 

El 079- 10 
ICHsl 080- 16 

0 081- 12 Calcule e-%/2. 

@] IlsTxl 082- 4336 
ICHsl 083- 16 
IRCll2 084- 45 2 
3 085- 3 

El 086- 30 
2 087- '2 

El 088- 10 Calcule m. 

~ 089- 14 
[8] 090- 20 Calcule (x/2)me -x/2. 

@] I·RTNI 091- 4332 

Labels utilisés: A, B et C .. 

Registres utilisés: Ro (rang), RI (colonne), R2 (n), Rs (a), R4 (XI(k» et R5 (X2(k». 

Matrices utilisées: A(x(k+l», B(f(X(k»), C(F(X(k»), et D(d(k». 

Exécutez maintenant le programme. Par exemple, choisissez les valeurs n = Il 
et a = 0.05. Les valeurs initiales suggérées sont Xl (0) = 3.25 et x2(O) = 20.5. N'ou-
bliez pas que le format d'affichage affecte l'incertitude du calcul ùe l'intégrale. 

Appuyez sur 

[ru IP/RI 
5 [II DIM 1 [ill] 
111sTol2 

Affichage 

5.0000 
11.0000 

Mode calcul. 
Réserve Ro à R5. 
Stocke n dans R2• 
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.051sT013 0.0600 .. Stocke a dans Rs. : , 
21ENTERI1 1 
rn IOIMI ~ 1.0000 Dimensionne A à 2 X 1. m IUSER 1 1.0000 Active le mode USER. 
rn IMATRlxl1 1.0000 
3.251sTO 1 IK1 3.2500 Stocke x~O} de la distribution 

du chi -carré. 
20.51sTol ~ 20.50000 Stocke x~O) de la distribution 

du chi-carré. 
II11scI14 2.0500 01 Définit le format d'affichage. 
~ 1.1677 00 Affiche la norme de f(x(O}). 
IRf' 1.0980 00 Affiche la norme de 

la correction d(O). 

IRCll [!) 3.5519 00 Rappelle x\l). 
IRCll ~ 2.1556 01 Rappelle xkl). 

En répétant les quatre derniers pas de programmes, vous allez obtenir les 
résultats suivants: 

k 1~(X(k»)IIF IId(k)IIF X\k+ 1) X~k+ 1) 

3.2500 20.500 
0 1.168 . 1.098 3.5519 21.556 
1 1.105 X 10-1 1.740 X 10-1 . . 3.5169 21.726 
2 1.918X 10-3 2.853 X 10-3 3.5162 21.729 
3 6.021 X 10-7 9.542 X 10-7 3.5162 21.729 

En réalité, vous n'aurez sans doute pas besoin de cette précision pour la plu­
part de vos problèmes. Ici, la troisième itération est suffisamment précise pour 
construire le test statistique. (Appuyez sur ml FIX 14 pour ré-initialiser le for­
mat d'affichage et sur [!] IUSER 1 pour désactiver le mode USER. 
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Résolution d'un grand système d'équations complexes 

Exemple: Trouvez la tension de sortie d'une fréquence radian de w = 15 X 103 

radl seconde pour le réseau de filtres illustré ci-dessous. 

v = ]0 volts 
RI = 100 ohms 
R'/, = 106 ohms 
R3 = 1011 ohms 

L = ] 0-2 h(·t1J·Y 
Cl = 25 X lO-M farad 
C',! = 2fi X ] O-li farad 

Décrivez le circuit à l'aide de boucle ùe courant: 

(RI+iwL-ilwCI) (ilwCI) 0 0 
(i/wCI) (R2+iwL-i/cuC1) (-R2) 0 

0 (-R2) (R2-il wC2+iwL) (-iwL) 
, 

0 0 (-iwL) (Ra+ituL-i/wC'I.) 

II V 

1'1. 0 

1:1 0 

14 0 

résolvez ce système complexe pour lit 1'/., l:i et 14' Alors, ~J = (Ra) (l.\). Comme ce 
système est trop grand pour une résolution par la méthode standard, la 
méthode suivante (décrite dans le manuel d'utilisation) est utilisée. Tout 
d'abord, introduisez la matrice du système dans la matrice A sous forme com­
plexe et calculez son inver.se. Remarquez que wL -= 150, que II wCI = 800/3 et 
que 1/ wC2 = 8/3. 

Appuyez sur 

[[]Ip/RI 
[!]CLEAR IPRGMI 

Affichage 

000-
Mode programme. 

Efface la mémoire programme. 
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Appuyez sur Affichage 

[m Ip/RI Mode calcul. 
o [!] 1 DIM 1 [ill] 0.0000 Dimen:::;ionne la mémoire pour 

une matrice maximale. 
[!] IMATRlxlO 0.0000 Dimensionne toutes les 

matrices à 0 x O. 

41ENTERIB 8 
[!] [OlMI ~ 8.0000 Dimen:::;ionne la matrice A 

à 4 X 8. 
I.!J 1 MATRTxl1 8.0000 
[!JIUSER 1 8.0000 Active l~ mode USER. 
100 [[fO] ~ 100.0000 t>lockc Re(au)' 
150 [ËNfËR] 150.0000 
800 [E~.ffË-R] 3 El 266.6667 

El ISTOI!KI -116.6667 Stocke Im(all)' 

150lENTERI 150.0000 
8I ENTERI3E] 2.6667 

B ISTOI!KI 147.3333 Stocke Im( a44)' 
IRClllMATRlxl [!] A 4 8 
[!JI py,xl A 8 

~ 

Transforme AC en AP
• 4 

[!] IMATRlxl2 A 8 8 Transforme AP en A. 
ISTOIIRESULTI A 8 8 
[!] Il/xl A 8 8 Calcule l'inverse de A 

dans A. 

Supprimez la deuxième moitié des rangs de A pour avoir de la place pour 
stocker la matrice de second membre B. -

Appuyez sur 

41ENTERIB 
[!] 1 DIM 1 !KI 

41ENTERI2 
ru IDIMII!] 

Affichage 

8 
1 8.0000 

2 
2.0000 

Redimensionne la matrice A 
à 4 x 8. 

Dimensionne la matrice B 
à 4 x 2. 
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Appuyez sur Affichage 

fi IMATRlxll 2.0000 
10/STOII]] 10.0000 Stocke Re( V). (Les autres 

éléments sont O.) 
l , IRCLllMATRlxl [KJ A 4 8 

IRCll/MATRlxl ~ b 4 2 

m~ b 8 1 Transforme BC en BP
• 

[J IMATRlxl.2 b 8 2 Transforme BP en B. 
m IRESULTI ~ b 8 2 
[8] C 4 2 Calcule la solution dans C. 
m IMATRlxl4 C 2 4 Calcule la transposée. 

œ IMATRlxl2 C 2 8 Transforme C en ë. 
1 IENTERI8 8 
m IDIMI @] 8.0000 Redimensionne la matrice C 

à 1 X 8. 

IRCq IRESUlTI C 1 8 
m IMATRI~14 c 8 1 Calcule la transposée. 

[i]~ C 4 2 Transforme cP en Cc. 

La matrice C contient les valeurs désirées de Il! 12, la et 14 sous forme rectangu-
laire. Leurs formes polaires sont faciles à calculer. 

Appuyez -sur Affichage 

m /MATRIXll c 4 2 Réinitialise Ro et RI' 

rn Isc" 4 C 4 2 
IRCLI @] 1.9950 -04 Rappelle Re(lt). 

IRCLI @] 4.0964 -03 Rappelle Im(lt). 

~Wl+pl 4.1013 -03 Affiche 111 1. 

~ 8.7212 01 Affiche Arg (Il) en degrés. 

IRCll @] -1.4489 -03 
IRCLI @] -3.5633 -02 

~WI+PI 3.5662 -02 Affiche 112 1. 

~ -9.2328 01 
IÂCLI @] -1.4541 -03 
IRCLI @] -3.5633 -02 

~wl·pl 3.5662 -02 Affiche lIaI. 



Appuyez sur 

[ili] 
IRCll @] 
IRCll [ÇJ 
[ili]wl+p \ 

[ili] 
[ili]1 EEX 15 ŒJ 
[j IFlxl4 
[jIUSERI 
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Affichage 

-9;2337 01 
5.3446 -05 

-2.2599 -06 
5.34~4 -05 Affiche 11,,1. 

, -2.4212 00 
5.3494 00 Calcule 1 Vo 1 - (Ra) 1141. 
5.3494 
5.3494 Désactive le mode USER. 

La tension de sortie est 5.3494 L -2.4212°. 

Moindres carrés par les équations normales 

Le problème des moindres carrés sans contraintes est connu, en statistiques, 
sous le nom de régression linéaire multiple. Il utilise le modèle linéaire 

p 

y = ~ bjxj + r. 
j=l 

Ici, b], ... , bp sont les paramètres inconnus, Xlt ... , xp sont les variables indépen­
dantes (ou "explicatives"), y est la variable dépendante (ou "de réponse") et r 
est l'erreur aléatoire ayant attendu la valeur E(r) = 0, variance 0

2
• 

Pour n observations de y et de x, X 2, ... , xP' ce problème peut être exprimé sous la 
forme: 

y=Xb+r 

où y est un vecteur de n éléments, X une matrice n X p et r un vecteur de n élé­
ments composé des erreurs aléatoires inconnues statisfaisant à E(r) = 0 et à 
Cov(r) = E(rrT

) = o2In. 

Si le modèle est correct et si xrx a une inverse, la solution calculée 
b = (X7Xt lXT y pour les moindres carrés a les propriétés suivantes: 

• E(b) = b, si bien que b est une estimation de b. 

• Cov(b) = E((b - b)T(b - b)) = 02(Xrxt1
, matrice covariance de l'estima­

tion b. 
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• E(r) =- 0, où r = y - Xb est le vecteur des résiduels . 

• E (IIY- Xbll~) = (n - p)cI; si bien que â2=-lIrll~/(n - p) est une estimation b 
de 0

2
• Vous pouvez estimer Cov(b) en remplaçant 0

2 par â2
• 

La somme totale des carrés IIYII~ peut être découpée selon 

I~I~ = yTy. 

= (y - Xh,+ Xh)T(y -:- Xh +. Xb) 

= (y - Xh)T{y...:... Xh) - 2h1XT(y - Xh) + (Xh)T{Xh) 

= IIY - Xbll~ + l\Xbll~ 

= (somme ~e~ carrés) + ( Somme ~es ca.rrés) .' 
des re~ldus de la regresslOn 

Quand le modèle est vrai, 

et 

. pour b =f o. Lorsque le modèle simplifié y = r est vrai, ces deux valeurs atten-
dues sont égales à 0 2• ' . 

Vous pouvez tester l'hypothèse que le modèle simplifié est vrai (contre l'hypo­
thèse que le modèle d'origine est vrai) en calculant le ratio F: 

. F= Ily - Xhll}/(n,:- p) . 

F va tendre à être plus grand lorsque le modèle d'origine est vrai (b -F 0) que 
lorsque.lè modèle simplifié est vrai (b = 0). Rejetez l'hypothèse lorsque Fest 
suffisamment grand. 

Si les erreurs aléatoires ont une distribution normale, le ratio F a une distribu­
tion F centrée avec pet (n - p) degrés de liberté si b = 0 et une distribution non 
centrée si b -F O. Un test statistique de l'hypothèse (avec une probabilité a de 
rejet incorrect de l'hypothèse) est de rejeter l'hypothèse si le ratio F est supé­
rieur au 100 aième de la distribution centrée F avec p et (n - p) degrés de 
liberté; sInon, acceptez l'hypothèse. 
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Le programme suivant ajuste le modèle linéaire à un ensemble de n points de 
données XilJ Xi2' ••• , Xip, Yi par la méthod~ des moindres carrés. Les paramètres 
bv b2, ... , bp sont estimés par la solution b aux équations norI!lales X7Xb = XTy. 
Le programme estime aussi 0 2 et la matrice·covariance Cov(b) des paramètres. 
La somme des carrés de la régression et des résidus (Reg SS et Res SS) et les 
résidus sont également calculés. 

Le programme a besoin de deux matrices: 

Matrice A: n X p à rangs i (XiI' Xi2' ... , Xip) 

pour i = 1, 2, ... , n. 
Matrice B: n X 1 à éléments i(yJ pour i = 1, 2, ... , n. 

Le programme a pour résultats: 

Matrice A: inchangée. 

Matrice B: n X l contenant les résidus de l'ajustement 
(Yi - h1Xil - ... - hpXiP) pour i = 1, 2, ... , n où hi est la valeur estimée 
de bi' 

Matrice C: matrice covariance p X p des valeurs estimées des para-
mètres. 

Matrice D : pX 1 contenant les valeurs estimées hl! ... , hp des paramètres. 

Registre T: contient une valeur estimée de 0
2
., .. 

Registre Y: contient la somme des carrés de la régression (Reg SS). 

Registre X: contient la somme des carrés des résidus (Res SS). 

Le tableau d'analyse de la variance figurant ci-dessous, découpe la somme 
totale des carrés (Tot SS) en somme de régression et somme de résidus. Vous 
pouvez utiliser ce tableau pour calculer le ratio F. 

Tableau d'analyse de la variance 

Source 
Degrés de Somme des Carré Ratio F 

liberté carrés moyen 

Régression p RegSS 
(Reg SS). (Reg MS) 

p (Res MS) 

Résidu n -p ResSS 
(Res SS) 

(n -pl 
Totai n TotSS 
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Le proiramme calcule la somme des carrés de la régression non-ajustée pour 
la moyenne parce qu'il ne doit pas y ·avoir de constante dans le modèle. Pour 
inclure une constante, introduisez dans le modèle une variable qui est identi­
quement égale à un. Le paramètre correspondant est alors la constante. 

Pour calculer la somme des carrés de la régression ajustée à la moyenne pour 
un modèle avec constante, utilisez d'abord le programme pour ajuster le 
modèle et pour trouver la tiOmme deH carréH de la régTcHsion non ujuHtéc. 
Ensuite, ajustez le modèle simplifié y = b} + ren éliminant.toutes les variables 
sauf celle qui est identiquement égale à un (blJ par exemple) et calculez la 
somme des carrés de la régression pour ce modèle: (Règ SS)c. La somme des 
carrés de la régression ajustée à la moyenne (Reg SS)A est égale à: Reg SS­
(Reg SS)c. Le tableau d'analYHc dc'la variance devient donc: 

Tableau d'analyse de la variance 

Source 
Degr~s de Somme Carré 

Ratio F 
liberté des carrés moyen 

R~gression 1 p -1 (Reg SS)A 
(Reg SS)A (Reg MS)A 

Constante (p -1) (Res MS) 

Constante 1 (Reg SS)c (Res SS)c 

Résidu Res,SS 
(Res SS) 

n -p 
(n - p) 

Tot81 n TotSS 

v ous pouvez ensuite utiliser le ratio F pour tester si la totalité du modèle 
s'a.juste b~aucoup mieux aux points que le modèle simplifié y = b1 + r. 
Vous souhaiterez peut-être effectuer une série de régressions, en éliminant les 
variables indépendantes entre chaque régression. Pour cela, classez les varia­
bles dans l'ordre inverse de leur élimination dans le modèle. Elles peuvent être 
éliminées par transposition de la matrice A, redimensionnement de A avec 

, réduction du nombre de rangs puis seconde transposition de A. 

Vous aurez besoin des valeurs des variables dépendantes originelles pour cha­
que régression. S'il n'y a pas assez de place pour stocker les données d'origine 
dans la matrice E, vous pouvez faire le calcul à partir du résultat de la régres­
sion. Un sous-programme a été ajouté dans ce but. 
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Ce programme a les caractéristiques suivantes: 

• Si la totalité du programme est introduite dans la mémoire programme, 
les tailles de n etp doivent satisfaire n;;;' pet (n+ p) (p+ 1) -- 56, c'est-à­
dire que: 

si pest 1 2 3 4 
.0-

a lors nmax est: 27 16 11 7 

Ceci suppose que seuls les registres de stockage Ro et RI ont été alloués. Si 
le sous-programme "B" n'est pas introduit, alors n -- pet (n + p)(P + 1) 
-- 58, c'est-à-dire que: 

si pest 1 2 3 4 

alors nmax est: 28 17 11 7 

• Même si le sous-programme "B" utilise la fonction résiduelle avec sa préci­
sion étendue, les valeurs calculées de la variable dépendante peuvent ne 
pas correspondre exactement aux données d'origine. La correspondante 
sera cependant habituellement suffisante pour une estimation et des 
tests statistiques. Si vous désirez une meilleure précision, vous pouvez 
réintroduire les données d'origine dans la matrice B. 

Appuyez sur Affichage 

[ru IP/RI Mode programme. 
III CLEAR 1 PRGM 1 000-
illlLBLI ~ 001-42,21,11 Programme d'ajustement 

du modèle. 
IRCLllMATRlxl [[J 002-45,16,12 
rn 1 MATRIX 18 003-42,16, 8 
[ill~ 004- 43 11 Calcule Tot SS. 
IRCLllMATRlxl ~ 005-45,16,11 
IENTER 1 006- 36 
illlRESULTI @] 007 -42,26,13 
IIliMATRlx l5 008-42, 16, 5 Calcule C = AT A. 
[lli 1 LSTxl 009- 4336 
IRCLllMATRlxl [[1 010-45,16,12 
m IRESULTI [Q] 011-42,26,14 
m IMATRlx l5 012-42,16, 5 Calcule D = A 1'Jl. 
~ 013- 34 
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Appuyez sur 

.G. 
IRCLllMATRlxl1KJ 

~ 
" rn 1 RESULTI [[] 

[!] IMATRlxl6 

m IMATRlxI8. 

[ill[!:] 
IRCLllolMI ~ 

B 
G 
IENTERI 

L~N!EÂj 
rfftClI MATFtiX] ~ 
ml RESULTI @J 
G 

@J [[Il . 
1 RCL 1 ,.-,c-I M-O--A=JR~IX"""'I ~ 

rn IMATRlxl8 

[ill~ 
B 
[]] 1 LSTxl ' 

[[] IRTNI 

rn 1 LBLI [!] 

IRCLllMATRlxl ~ 
IRCLllMATRlxl [QJ 
ICHSI 
ml .--R -ES-U l---'T 1 [[] 

rn IMATRlxl6 

. IRCLllMATijlxl [QJ 
ICHSI. 

[ru IRTNI 

Labels utilisés: A et B. 

Affichage 

014- 10 
015-45,16,11 
016- 34 
017-42,26,12 
018-42,16, 6 

019-42,16, 8 

Calcule les paramètres dans D. 

Calcule les résidus de 
l'ajustement danH n. 

020- 43 11 Calcule Res SS. 
021-45,23,11 
022- 30 
023- 10 Calcule la valeur e::;timée de cr. 
024~ 36 
025- 36 
026-45,16,13 
027 -42,26, 13 
028- 10 Calcùle la matrice cuvariunce 

029- 4333 
030-45,16,12 
031-42,16, 8 
032- 4311 
033- 30 
034- 4336 
035- 4332 
036-42,21, 12 

037-45,16,11 
038-45,16,14 
039- 16 
040-42,26,12 
041-42,16, 6 
042-45,16,14 
043- 16 
044- 4332 

dans C. 

Calcule Reg SS. 
Donne Res SS. 

Sous-programme de 
reconstitution des valeurs 
de la variable dépendante. 

Calcule n - B + AD. 
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Registres utilisés: Ru et RI' 

; . 

Mutrices utilisées: A, n, C et D. 

Pour utiliser ce programme: 

1. Appuyez sur 1 [!] 1 DIM 1 [I[] pour réserver les registres Ro et Rt. 

2. Dimensionnez la matrice A en fonction du nombre n d'observations et 
du nombre p de paramètres en appuyant sur n 1 ENTER Ip [!] 1 DIM 1 ~. 

3. Dimensionnez la matrice B en fonction du nombre n d'observations (et 
une colonne) en appuyant sur n 1 ENTER Il [!] 1 DIM II!!. 

4. Appuyez sur illl MATRIX Il pour initialiser les registres Ro et Rl' 

l). ApPÜYl'Z Hur rn 1 USER 1 puur uetivOl' Il! m()d(~ USER. 

6. Pour chaque observation, stockez les valeurs des variables p dans un 
rang de la matrice A. Répétez cela pour les n observations. 

7. Stockez les valeurs de la variable dépendante dans la matrice B. 

8. Appuyez sur ~ pour calculer et afficher Res SS. Le registré Y contient 
Reg SS et le rCbristre T contient la valeur estimée de cr. 

9. Appuyez sur 1 Rell [QJ pour observer chacune des valeurs estimées des 
paramètres p. 

10. Si vous le désirez, appuyez sur I!! pour recalculer les données de la 
variable dépendante dans la matrice B. 

Exemple: Comparez deux modèles de régression sur la variation annuelle de 
l'indice des prix à la consommation (IPC) en utilisant!a variation annuelle de 
l'indice des prix à la production (lPP) et le taux de chômage (TC): 

où y, X2 et Xa représentent respectivement IPC, IPP et TC (tous sous forme de 
pourcentages). Utilisez les données suivantes: 
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Année IPC IPP TC 

1969 5.4 3.9 3.5 
1970 5.9 3.7 4.9 
1971 4.3 3.3 5.9 
1972 3.3 4.5 5.6 
1973 6.2 13.1 . 4.9 
1974 11.0 18.9 5.6 
1975 9.1 9.2 8.5 
1976 5.8 4.6 7.7 
1977 6.5 6.1 7.0 
1978 7.6 7.8 6.0 
1979 11.5 19.3 5.8 

Appuyez sur Affichage 

[illip/RI Mode calcul. 
rn 1 MATRIX 10 
l11ENTERI3 3 
rnIDIMI[KI 3.0000 Dimensionne A à 11 X 3. 

'11IENTERll 1 
rn IDIMI ~ 1.0000 Dimensionne B à 11 X 1. 
rn IMATRlxll 1.0000 
rniusERI 1.0000 
liSTai [KI 1.0000 Introduit les données 

de la variable indépendante. ,. 
3.91sTol ~ ; 3.9000 1 

i 

1 

3.51sTol ~ 3.5000 

1 

liSTai [KI 1.0000 
1 

Il 
19.31sTol ~ 19.3000 
5.81sTol ~ 5.8000 

'j 
1 5.41sTol ~ 5.4000 Introduit les données 1 
i de la variable dépendante. Il 
il 5.91sTol ~ 5.9000 
:1 . 
~ 11.51sTol ~ 11.5000 ) 

lKl rn 1 FIXI'9 13.51217504 Res SS pour tout le modèle. 

IR+I 587.9878252 Reg SS pour tout le modèle. 



Appuyez sur 

IRfllRfl 
IRCll[Q] 
IRCll [QI 
IRCll [QI 
~ 

IRClllMATRlxl ~ 
rn IMATRlxl4 
21ENTERIll 
rn IOIMI ~ 

IRClllMATRlxl ~ 
rn IMATRlxl4 

~ 
ffiJJ 
ffiJJ IR fi 
IRCll [QI 
IRCll [Q] 
[[] 

IRClllMATRlxl ~ 
rn IMATRlxl4 
llENTERlll 
rn IOIMI ~ 

IRClllMATRlxl ~ 
rn IMATRlxl4 

~ 
ffiJJ 
IRfllRfl 
IRCll [QJ 
rnlUSERI 
rn IFlxl4 
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Affichage 

1.689021880 
. 1.245864326 . 
0.379758235 
0.413552218 
d3 1 

A 11 3 
A 3 11 
11 
11.00000000 

A 2 11 
A 11 2 
16.78680552 
584.7131947 
1.865200613 
3.701730745 
0.380094935 
d 2 1 

A 11 2 
A 2 11 
11 
11.00000000 

A 1 11 
A 11 1 
68.08545454 
533.4145457 
6.808545454 
6.963636364 
6.963636364 
6.9636 

0
2 estimée. 

. b l estimée . 
b2 estimée. 
b3 estimée. 
Recalcule les données 
dépendantes. 

Élimine la dernière colonne 
deA. 

Nouvelle matrice A. 
Res SS pour le modèle réduit. 
Reg SS pour le modèle réduit. 
ri' estimée. 
b l estimée. 
b2 estimée. 
Recalcule les données' 
dépendantes. 

Abandonne la colonne suivante 
deA. 

Nouvelle matrice A. 
Res SS. 
Reg SS pour la constante. 
ri' estimée. 
b1 estimée. 
Désactive le mode USER. 

Reg SS pour la variable IPP ajustée pour le terme constant est: 
(Reg SS pout le modèle réduit) - (Reg SS pour la constante) -

51.29864900. 



·140.hapitre 4: Opérations matricielles 
\ 

Reg SS pour la variable TC ajustée pour la variable IPP et le terme constant 
est: 

(Reg SS pour le modèle complet) - (Reg SS pour le modèle réduit) 
= 3.274630500. 

Établissez maintenant le tableau d'analyse de la variance suivant: 

Source 
Degrés Somme Carré 

RatioF 
de liberté des carrés moyen 

-_.--,.-

TCIIPP, Constante 1 3.2746305 3.2746305 1.939 

IPPIConstante 1 51.2986490 51.2986490 30.37 

Constante 1 533.4145457 533.4145457 315.8 

Résidu 
(modèle complet) 8 13.5121750 1.68902188 

Total 11 601.5000002 

Le ratio F pour le taux de chômage, ajusté pour la variation de l'indice des prix 
à la production et la constante, n'est pas très significatif statistiquement par­
lant au seuil significatif de 10 % (a = 0.1). L'introduction du taux de chômage 
dans le modèle n'améliore pas de façon sibrnificative l'Hjustement de IPC. 

Cependant, le ratio F pour l'indice des prix à la pruductiun ajusté pour la cons­
tante, est significàtif au seuil de 0.1 % (a = 0.001). L'introduction de IPP dans le 
modèle n'améliore ~as de façon oignificative l'ajuotement de IPC. 

Moindres carrés par les rangs successifs 

Ce programme utilise la factorisation orthogonale pour résoudre le problème 
des moindres carrés. C'est-à-dire qu'il cherche les paramètres bl! ... , bp minimi­
sant la somme des carrés Ilrll~ = (y- Xb)T(y- Xb), les données du modèle étant 
données. 
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xlI XI2 Xl p YI 

X= X~n X22 X2p 
et Y2 y= 

Xnl Xn 2 Xnp Yn 

Le programme traite les valeurs croissantes successives de n, bien que la solu­
tion b = b(n) n'ait un sens que pOUl' n;;' p. 

Il est possible de mettre en facteur la matrice lX yJ de dimensions n X (p + 1) 
aimii augmontéo dans QTy, où Q PHl une IlWll'Îee ort.hogonale). 

[

û gJ' (p rangs) 
V = 0 q (1 rang) 

o 0 (n '-:- p - 1 rangs) 

et Û est une matrice triangulaire supérieure, Si cette factorisation résulte 
de l'introduction de n rangs rm = (Xml' Xm~' "" Xmp, Ym) pour m = 1, Z, .... ' n dans 
[X y], considérez comment avancer à n + 1 rang en ajoutant le rang rn + 1 à 
[X y]: 

[X y] [Q11 

0] [ V ] 
rot! = 0 1 r,,+I' 

Les rangs zéro de V sont supprimés. 

Multipliez la matrice (p + 2) X (p + 1) 

... 
U g (p rangs) 

A = 0 q (1 rang) 

r n + 1 (1 rang) 
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parun produit de matrices orthogonales élémentaires, chacune d'elle différant 
de la matrice identité Ip + 2 dans seulement deux rangs et deux colonnes. Pour 
-k = 1, 2, ... , p + 1 successivement, la kième matrice orthogonale agit sur les 
kièmes et derniers rangs pour supprimer le kième élément du dernier rang 
pour modifier les éléments suivants de ce dernier rang. La kième matrice 
orthogonale est de la forme 

1 

0 

1 
c 8 

1 

0 
1 

-8 C 

où c = cos(O), 8 = sin(O), et O=tan-1 (ap+2,Jakk).Après quep+ 1 de ces facteurs 
aient été appliqués à la matrice A, celle-ci devient: 

[ 
U* g*] (p rangs) 

A* = 0 q* (1 rang) 

... 0 0 (1 rang) 

où U· est également une matrice triangulaire supérieure. Vous pouvez obtenir 
la solution b(n + 1) au systèfpe de p + 1 rangs incrémenté en résolvant: 

[
u* g*J [b<n+l>] = [ 0 J. 
o q* -1 -q* 

En remplaçant le dernier rang de A· par rn+ 2 et en répétant la factorisation, 
vous pouvez continuer à ajouter des rangs de données dans le système. Vous 
pouvez ajouter indéfiniment des rangs sans augmenter l'espace de stockage 
nécessaire. 

Le programme suivant commence avec n = 0 et A = O. Vous introduisez les 
rangs f m au fur et à me~ure pour m = 1, 2, ... ,p-1 respectivement. Vous obtenez 
alors la solution b pour chaque introduction de nouveau rang. 
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Vous pouvez également résoudre des problèmes de moindres carrés pondérés 
ainsi que des problèmes de moindres carrés avec des contraintes linéaires à 
l'aide de ce programme. Il vous suffit de procéder aux substitutions nécessai­
res décrites dans le paragraphe "Factorisation orthogonale", plus haut dans ce 
chapitre. 

Appuyez sur 

[ru Ip/R 1 

[!] CLEAR 1 PRGM 1 

[!] IlBll ~ 

ISTOl2 
1 
ISToll 
[!] IlBll4 
IRClllDIMI ~ 

~ 
ISTOIO 
[!] IlBll5 
IRClll 
IR/si 
IRCll2 
[8J 
[!] IUSERllsTOI ~ 
[!] IUSER 1 

IGTOl5 
IGTOl4 
[!] IlBll [[] 

IRClllolMI ~ 

~ 
ISTOl2 
[!] 1 MATRIX Il 
[!] IlBlll 

@] [fI] 0 
IRCll2 
IRCll2 
IRCll [ru ~ 
IRCll ~ 

Affichage 

000-
001-42,21,11 

002- 44 2 
003- 1 
004- 44 1 
005-42,21, 4 
006-45,23,11 
007- 34 
008- 44 0 
009-42,21, .5 
010- 45 1 
011- 31 
012- 45 2 
013- 20 
014u 4411 

015- 22 5 
016- 22 4 
017-42,21,12 

018-45,23,11 

019- 34 
020- 44 2 
021-42,16, 1 
022-42,21, 1 

023-42, 5, 0 
024- 45 2 
025- 45 0 
026-45,43,11 
027- 45 11 

Mode programme. 

Programme d'introduction 
d'un nouveau rang. 
Stocke la pondération dans R2• 

Stocke 1 == 1 dans RI. 

Stocke k = p + 2 dans Ro. 

Programme de mise à jour 
de la matrice A. 
Rappelle les dimensions p + 2 
etp+ 1. 

Stocke p + 2 dans R2• 

Stocke k =- l = 1. 
Branchement à la mise à jour 
du iième rang. 

Rappelle ap + 2, k· 

Rappelle au. 
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Appuyez sur Affichage 

[illITESTI2 028-43,30, 2 Teste akk < O. 

[ru [§I] 0 029-43, 4. 0 Arme l'indicateur 0 pour un 
élément diagonal négatif. 

[ruIABS 1 030- 4316 
[g] 1 .. pI 031- 43 1 Calcule (). 

[ru 1 Clx 1 032- 4335 
1 033- 1 
[!] I .. RI 034- 42 1 C~lcule x = cos () et y = sin (). 

[ru [IT] 0 035-43, 6, 0 
ICHSI 036- 16 . Définit x = c et y = s. 
[!][] 037- 4225 Forme s + ic. 

IR+I 038- 33 
[!] [LBTJ2 039-42,21, 2 Sous-programme de rotation 

du rang k. 

[illffiI] 040- 4333 
IRCll ~ 041- 45 11 Rappelle akl' 

IRcll2 042- 45 2 
IRCll1 043- 45 1 

IRcll [ill ~ 044-45,43,11 Rappelle cip + 2,l' 

illOO 045- 4225 Forme akl - iap + 2, l' 

[8J 046- 20 
[RClI2 047- 45 2 
LB_Çg 1 048- 45 1 
ISTol @] ~ 049-44,43,11 Stocke le nouveau akl' 

ITlIRe~lml 050- 4230 
illluSERllsTol ~ 051u 4411 Stocke le nouveau a p + 2, l et 
[!] IUSER 1 inerémente Ru et RI' 
IRCll1 052- 45 1 Rappelle l (eolonne). 

[Rclla ,053- 45 0 Rappelle k (rang). 

@]Ix--=yl 054- 4310 'l'este k ~ l. 

IGTOl2 055- 22 2 Boucle arrière jusqu'à ce que 
la colonne soit remise à 1. 

[ill @Il 8 056-43, 5, 8 Désactive le mode eomplexe. 

ISTol1 057- 44 1 Stocke k dans RI (l). 
IRCLI2 058- 45 2 
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Appuyez sur Affichage 

[[Jlx.;;;yl 059- 4310 Teste p + 2 ~ k. 
[[J IRTNI 060- 4332 Retourne au dernier rang. 
IGTol1 061- 22 1 Boucle arrière jusqu'au 

dernier rang. 
rn 1 lBll [9 062-42,21,13 Programme de calcul de la 

solution courante. 
IRClllDIMI ~ 063-45,23,11 
IENTERI 064- 36 
rn IDIMI ~ 065-42,23, 11 Élimine le dernier rang de A. 
ISTolO 066- 44 0 Stocke p + 1 dans Ro. 
ISTOl1 067- 44 1 Stocke p + 1 dans RI. 
1 068- 1 
rnIDIMI@] 069-42,23,13 Dimensionne la matrice C 

à (p + 1) X 1. 
a 070- 0 
ISTOllMATRlxl [9 071-44, 16, 13 Définit la matrice C à O. 
IEEXI 072- 26 
9 073- 9 
9 074- 9 
ICHsl 075- 16 Forme 10-99• 

IRcll ~ 076- 45 11 Rappelle q = ap + 1, p + 1.. 

ŒJlx=ol 077- 4320 Teste q = o. 
IRfl 078- 33 Utilise 10-99 si q = O. 
ICHsl 079- 16 
Lf!~.~J a 080- 45 0 
1 081- 1 
ISTol @] @] 082-44,43,13 . Définit cp + 1,1 = - q. 
IRClllMATRlxl [9 083-45,16,13 
IRClllMATRlxl ~ 084-45,16,11 
rn [RESUlTI @] 085-42,26,13 

El 086- 10 Stocke A-lC dans C. 
IRcllO 087- 45 0 
1 088- 1 
[±] 089- 40 
IRclla 090- 45 0 
rn IDIMI ~ 091-42,23, 11 Dimensionne la matrice A 

à (p + 2) X (p + 1). 
1 092- 1 
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Appuyez sur 

B 
1 
[f] 1 DIM 1 [Ç] 

IRCll ŒJ 
[!J 1 MATRIX] 1 
lru/RTNI 

Affichage 

093- 30 
0~4- 1 
095-42,23,13 

096- 4511 
097 -42, 16, 1 
098- 4332 

Labels utilisés: A, B, C et 1 à 5. 

Registres utilisés: Ro, Ri et R2 (p + 2 et w). 

DimenHionne la matrice C 
àp X 1. 
Rappelle q~ 
Définit k = l =: 1. 

Matrices utilisées: A (matrices de travail) et C (valeurs estimées des paramè­
tres). 

Indicateurs utilisés: 0 et 8. 

Après le stockage de ce pro~rramme, le HP-I5e dispose de t:mrnsamment de 
mémoire pour travailler avec jUHqu'à p = 4 paramètres. Si les programmes "A" 
et "C" sont supprimés, vous pouvez travailler avecp = 5 paramètres. Dans l'un 
et l'autre cas, il n'y a aucune limite au nombre de rangs que vous pouvez intro­
duire. 

Pour utiliser ce programme: 

i , 1. Appuyez sur 2 [!] 1 DIM 1 [ill] pour réserver les registres Ru à R2• 

i i' , ,J 
1 • 

J 

~ : 

1 

j 
l 
j . 

2. Appuyez sur ru 1 USER 1 pour activer le mode USER. 

3. Introduisez (p + 2) et (p + 1) dans la pile, puis appuyez sur [!] 1 DIM 1 [KI 
pour dimensionner la matrice A. Ces dimensions dépendent du nombre p 
de paramètres que vous utilisez. 

4. Appuyez sur 0 ISTOllMATRlxl ~ pour initialiser la matrice A. 

5. Introduisez la pondération Wk du rang courant et appuyez sur [KI. L'Af­
fichage doit afficher 1.0000 pour indiquer que le programme est prêt 
pour le premier élément du rang. (Pour les problèmes classiques de 
moindres carrés, utilisez W k = 1 pour chaque rang.) 

6. Introduisez les éléments du rang m de la matrice A en appuyant sur Xml 

1 RIS 1 X m2 1 RIS 1 ... xmp 1 RIS 1 Ym 1 RIS 1. Après chaque élément nouvelle­
ment introduit, l'affichage doit afficher l'indice du prochain élément à 
introduire. (Si vous faites une faute en introduisant les éléments, reve­
nez en arrière et répétez les étapes 5 et 6 pour le rang considéré.) 

7. Appuyez sur [ID pour mettre àjour la factorisation pour ajouter le rang 
introduit lors des deux étapes précédentes. 
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8. Éventuellement, appuyez sur [f] cru IZJ pour calculer et afficher la 
somme des carrés des résidus q2 et pour calculer la solution b courante. 
Appuyez ensuite p fois sur 1 Rell [f] pour afficher blt b2, ... , bp successi­
vement. 

U. Hépétez les ùtupes ri il M puur Chu4ue nu uv eau rang. 

Exemple: Utilisez ce programme et les données IPC (indice des prix à ia con­
sommation) de l'exemple précédent pour ajuster le modèle 

y = b 1 + b2X2 + baxa + r, 
où y, X2 et Xa représentent respectivement IPC, IPP et TC (tous en pourcen­
tages). 

Ce problème mettant en œuvre p = 3 paramètres, la matrice A doit être une 
matrice 5 X 4. Les rangs de la matrice A sont (1, X m2, X m3,Ym) pour m = 1, 2, ... , Il. 
Chaque rang est pondéré à Wm = 1. 

AI)I)UYCZ !!fur Afflchugc 

[illl P/R 1 Mode calcul. 
2 m [OïM] [ill] 2.0000 Héserve les registres Ro à R2• 

rn IUSER/ 2.0000 Active le mode USER. 
[Il [MAfRIX] 0 2.0000 Efface la mémoire matrice. 
5IENTER/4 4 
[Il IOIMI ~ 4.0000 Dimensionne la matrice A à 

5 X 4. 
o ISTOllMATRlxl [K] 0.0000 Stocke zéro dans tous les 

éléments. 
l~ 1.0000 Introduit la pondération du 

rang 1. 
llRISI 2.0000 Introduit Xll' 

3.9IRISI 3.0000 Introduit X12' 

3.5IRISI 4.0000 Introduit X13" . 

5.4IRISI 1.0000 Introduit YI' 

[ID 5.0000 Met à jour la factorisation. 

l~ 1.0000 Introduit la pondération du 
rang Il. 

1 IRIS 1 2.0000 Introduit XU,I' 

19.31RISI 3.0000 Introduit XU,2. 

5.SIRIS 1 4.0000 In troduit xl1,a. 

11.51RIsl 1.0000 Introduit Yu. 
[ID 5.0000 Met à jour la factorisation. 
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Appuyez sur Affichage 

[fJ 3.6759 Calcule les valeurs estimées 
courantes et q. 

rn IFIXl9 3.675891055 

lru~ 13.51217505 Calcule la somme des carrés 
des résidus q2. 

IRCll [f] 1.245864306 Affiche b\l1). 

. 1 RCll [f] 0.379758235 Affiche b~l1). 

dRCll [f] 0.413552221 Affiche b~ll). 

Ces valeurs estimées concordent (sur 3 des neuf chiffres significatifs) avec les 
résultats de l'exemple précédent qui utilise l'équation normale. En outre, vous 
pouvez ajouter des données supplémentaires et mettre àjour les valeurs esti­
mées des paramètres. Par exemple, ajoutez les données suivantes pour l'année 
1968: IPC = 4.2, IPP = 2.5 et TC = 3.6. 

Appuyez sur AFfichage 

l~ 1.000000000 Introduit la pondération de 
rang pour les nouveaux rangs. 

1 IR/si 2.000000000 Introduit X 12,1' 

.2.5IR/S 1 3.000000000 Introduit X 12,2' 

3.6IR/sl 4.000000000 Introduit X 12,3' 

4.2IR/sl 1.000000000 Introduit Yi2' 

[[] 5.000000000 . Met à jour la factorisation. 

[f] 3.700256908 
@][ZJ 13.69190119 Calcule la somme des· carrés 

des résidus. 

IRell [fJ 1.581596327 Affiche b\12). 

IRCll [f] 0.373826487 Affiche bk12J
• 

IRCll [ÇJ 0.370971848 Affiche b\il~). 

ru IFIX\4 0.3710 
illluSERI 0.3710 Invalide le mode USER 

Valeurs propres d'une matrice réelle symétrique 

Les valeurs propres ù'une matrice carrée A Hont lm; raeineH Àj de Hon équation 
caractéristique 

det(A - ÀI) = O. 
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Quand A est réelle et symétrique (A = AT), ses valeurs propres Àj sont toutes 
réelles et possèdent des vecteurs propres qj orthogonaux. Alors: 

Aqj = Àjqj 

et 

T {o ifj ~ k 
q'q -

J k - 1 ifj= k. 

Les vecteurs propres (ql, q2' ... ) constituent les colonnes d'une matrice orthogo­
nale Q qui satisfait: 

et 

QT = Q-l. 

Une variation orthogonale des variables x = Qz, qui est équivalent à une rota­
tion des axes, fait varier l'équation d'une famille d'aires quadratiques (xTAx = 
constante) de la forme: ' 

k 

zT(QTAQ)z = LÀjz] = constante. 
j 

Avec l'équation sous cette forme, vous pouvez reconnaître de quelles sortes 
d'aires il s'agit (ellipsoïdes, hyperboloïdes, paraboloïdes, cones, cylindres,. 
plans) puisque les demi-axes de l'aire se trouvent le long des nouveaux axes de 
coordonnées. 

Le programme ci-dessous commence avec une matrice A donnée qui est suppo­
sés symétrique (si elle 'ne l'est pas, elle est remplacée par (A + A 1)/2 qui, elle, 
est symétrique). 

Étant donnée une matrice symétrique A, le programme cunstruit une matrice 
anti-symétrique (c'est-à-dire, pour laquelle B = - B1) en utilisant la formule: 

b,,' ={tan(!4tan-1(2a/(a ii - a j))) si i:F jet aij:F 0 
Il o si i = j ou aij = O. 

Ensuite, Q = 2 (1 + Bt1
- 1 doit être une matrice orthogonale dont les ·colonnes 

8urll unc bonne approximation UC8 valcur8 propret; ue A; plu8 80nt petit8 tous 
les éléments de B, meilleure est l'approximation. QT AQ doit donc être proche 
d'une matrice diagonale que A mais avec les mêmes valeurs propres. 
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Si QT AQ n'est pas suffisamment proche de la diagonale, elle est utilisée à la 
place de A précédente pour répéter le processus. 

De cette fa<.;on, des transformations orthogonales successives Qh Q2, Q;j, ... sont 
effectuées sur A pour produire une suite Ait A2' A;j, ... , où: 

avec chaque Aj successive plus diagonale que celle qui la précède. 

Ce processus aboutit normalement à des matrices anti-symétriques dont les 
éléments sont tous petits, A; convergeant rapidement vers une matrice diago­
nale A. Cependant, si certaines valeurs propres d'une matrice A sont très pro­
ches les unes des autres mais très écartées des autres valeurs, la convergeance 
est lente; heureusement cette situation est rare. 

Le programme s'arrête après chaque itération pour afficher 

112 2:1 éléments hors diagonale de Aj 1 /IIAjIIF 
. j 

qui mesu!'e la façon dont Aj est diagonale. Si cette mesure n'est pas négli­
geable, vous pouvez appuyer sur 1 RIS 1 pour calculer Aj + 1; si elle est négli­
geable, alors les éléments diagonaux de Aj sont proches des valeurs propres de 
A. Le programme n'a besoin que d'une itération pour des matrices 1 X 1 ou 
2 X 2 et rarement plus de six pour des matrices 3 X 3. Pour les matrices 4 X 4, le 
programme prend légèrement plus de temps et utilise toute la mémoire dispo­
nib le; 6 ou 7 itérations sont généralement suffisantes, mais si certaines 
valeurs propres sont très proches les unes des autres mais relativement loin 
des autres valeurs, il faudra vraisemblablement entre 10 et 16 itérations. 

Appuyez sur 

ill] 1 PjR 1 

rn CLEAR 1 PRGM 1 

[!J ILBLIIKl 

I.RCLIIMATRlxllKl 

ISTOllMATRlxl [[1 
ISTOllMATRlxl ~ 
rn IMATRlxl4 

IRCLllMATRlxl [[1 
ISTOIIRESULTI 

[±] 

Affichage 

000-
001-42,21,11 
002-45,16,11 
003-44,16,12 
004-44,16, 13 
005-42,16, 4 
006-45,16,12 
007- 44 26 
008- 40 

Mode programme. 

Dimensionne B. 
Dimensionne C. 
Transpose A. 
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Appuyez sur Affichage 

2 009- 2 
G 010- 10 
ISTOIIMATRIXI ~ 011-44,16,11 Calcule A - (A + A 7)/2. 
rn IMATRlxl8 012-42,16, 8 Calcule IIAlIF. 
ISTol2 013- 44 2 Stocke IIAlIF dans R2• 

[m IClxl 014- 4335 
ISTol3 015- 44 3 . Initialise la somme des 

éléments hors-diagonale. 
ISTollMATRlxl [f] 016-44, 1 6, 13 Définit C == o. 
rn IMATRlxl1 017-42,16, 1 Définit Ro == RI -1. 
[!) 1 lBll a 018-42,21, 0 Programme de 

construction de Q. 

IRclla 019- 45 0 
IRCll1 020- 45 1 
[[] ITESTI5 021-43,30, 5 Teste rang = colonne. 
IGTOl3 022- 22 3 
Iill ITESTI7 023-43,30, 7 Teste colonne> rang. 
IGTol1 024- 22 1 

~ 025- 34 
1 RCl 1 [lli [!] 026-45,43,12 
ICHSI 027- 16 
[!) IUSERllsTOl1!] 028u 4412 Définit bij = - bji• 

rn [ITsffi] 
IGTola 029- 22 0 
[!] IlBll1 030-42,21, 1 Programme pour colonne 

> rang. 
IRCll ~ ~ 031-45,43, 11 
r:ru IABS 1 032- 4316 Calcule lajj 1. 

ISTol[±] 3 033-44,40, 3 Cumule la somme hors 
diagonale. 

[m IlSTxl 034- 4336 
IENTERI 035- 36 
[±] 036- 40 Calcule 2ajj. 

IRclla 037- 45 0 
IENTER 1 038- 36 
IRCll @] ~ 039-45,43,11 Rappelle au. 

IRell1 040- 45 1 
IENTERI 041- 36 
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Appuyez sur Affichage 

IRCLI[ru ~ 042-45,43,11 Rappelle ajj' 

B 043-:- 30 Calcule aji - ajj' 

[ru ITESTl3 044-43,30, 3 Teste x ;;;. o. 
[ëff6] 2 045- 22 2 
ICHsl 046- 16 Garde l'angle de rotation 

compris entre - 90° et 90°. 

~ 047- 34 
ICHS! 048- 16 

~ 049- 34 
rn ILBLI2 050-42,21, 2 
~I .. pl 051- 43 '1 Calcule l'angle de rotation. 

[ijJ ICLxl 052- 4335 
4 053- 4 

0 054- 10 
[fAN] 055- 25 Calcule bjj• 

rn IUSERllsTOl1ID 056u 4412 
ml USER] 
IGTOla 057- 22 0 
rn IlBll3 058-42,21, 3 Programme pour r'llng 

= colonne. 
1 059- 1 
ISTol [f] 060- 4413 Définit Cij = 1. 
[Il IUSERllsTOI [[] 061u 4412 Définit bu = 1. 
rn IUSERI 
IGTolO 062- 22 0 
IRCLI3 063- 45 3 
IRCll02 064-45,10, 2 Calcule le ratio des éléments 

hors diagonale. 
IR/si 065- 31 Affiche cc ratio. 
2 066- 2 
IRCLllMATRlxl1ID 067-45,16,12 

G 068- 10 
IRClllMATRlxl [fJ 069-45,16,13 

B 070- 30 Calcule 
B = 2(1 + antisymétriquet1 

- I. 
IRCLllMATRlxl ~ 071-45,16,11 
[!} 1 RESULTI [f] 072-42,26,13 
illiMATRlx l5 073-42,16, 5 Calcule C = BTA. 



Appuyez sur 

IRClllMATRlxl [ID 
[!] [fffsuiJ] ~ 
[8J 
IGIO] lKl 
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Affichage 

074-45,16,12 
075-42,26,11 
076- 20 Calcule A .... BT AB. 
077- 22 11 

Labels utilisés: A, 0, 1, 2 et 3. 
Registres utilisés: Ro, Rit R2 (somme hors diagonale) et Ra (IIA)IF)' 
Matrices utilisées: A(A), B(Q) et C. 

Pour utiliser ce prOl:,Tfamme: 

1. ApPlIyez HUI' 4 ru LQl&il [illJ pOlll' ,.6HerV(~)· lm; l'egi~tl'et; Ru à H4• 
2. Appuyez sur [J 1 USER 1 pOUl' HeUver )(' moue USEH. 
3. Dimensionne et introduit les éléments de la matrice A en utilisant œ IOIMIIAJ et ISTol ~.Lm;dimensi()nspeuventullerjusqu'à4X 4,du 

moment qu'il y a suffisamment de mémoire disponible pour les matrices 
B et C ayant également les mêmes dimensions. 

4. AjJpuyez sur ~ pour calculer et afficher le ratio hors diagonale. 
5. Appuyez plusieurs fois sur l!!Z?J jusqu'à ce quele ratio affiché soit négli­

geable c'cHt-à-ùire inférieur à lO··M. 
6. Appuyez plusieurs fois sur IRCll !Al pour obtenir les éléments de la 

matrice A. Les éléments diagonaux sont des valeurs propres. 

Exemple: Quelle aire quadratique est décrite par l'équation ci-dessous? 

Appuyez sur 

[illl PIR 1 
4 rn 1 DIM 1 [ill] 
illluSERI 

2] [Xl] 3 x2 

4 x;J 

2 3 = 2XIX2 + 4x}x;j + 2x2 + 6X2x:3 + 4X3 

=7 

Affichage 

4.0000 
4.0000 

Mode calcul. 
Alloue la mémoire. 
Active le mode USER. 
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Appuyez sur Affichage 

31 ENTER 1 [!JI DIM IlKl 3.0000 Dimensionne la matrice A 
à 3 X 3. 

m IMATRlxl1 3.0000 Définit Ru et RI à l. 

~ OlsTol ~ 0.0000 Introduit au. 

1/STOI ~ 1.0000 Introduit au~. 

:3lsTol ~ 3.0000 Introduit a32' 

41sToi ~ 4.0000 Introduit a33' 

~ 0.8660 Calcule le ratio - il est 
trop grand. 

IR/si 0.2304 2e tentative: trop grand. 

IR/si 0.1039 3e tentative: trop grand. 
IR/si 0.0060 4C tentative: trup grand. 

IB.L~J 3.0463 -05 5e tentative: trop grand. 
rR/S] 5.8257 -10 Itatiu nég-lig-caulc. 

IRcll ~ -0.8730 Rappelle aIl = À1• 

IRCll ~ -9.0006 -10 Rappelle a12' 

IRCll ~ -2.0637 -09 Rappelle a13' 

IRCll ~ -9.0006 -10 Rappelle a21' 

IRCll ~ 9.3429 -11 Rappelle a22 = À2. 

IRCll ~ 1.0725 -09 Rappelle a23' 

IRCll ~ -2.0637 -09 Rappelle a31' 

IRCll~ 1.0725 -09 Rappelle a32' 

IRCll [!] 6.8730 Rappelle a33 = À3' 

[!] IUSERI 6.8730 Désactive le mode USER. 

Dans le nouveau système d'axes, l'équation de l'aire quadratique est approxi­
mativement 

-O.8730zî + O~ + 6.8730zi = 7. 

Il s'agit de l'équation d'un cyclindre hyperbolique. 

Vecteurs propres d'une matrice réelle symétrique 

Comme nous l'avons vu dans l'application précédente, une matrice réelle symé­
trique A a des valeurs propres réelles Àh À2' ... et des vecteurs orthogonaux cor~ 
respondants qb Q2,'" 
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Ce programme utilise l'itération inverse pour calculer un vecteur propre qk cor­
respondant à la valeur propre Xk et tel que IlqJIR = 1. Cette technique utilise un 
vecteur initial z(O) pour calculer par itération les vecteurs wl-n) et z(n) suivants à 
partir des équations 

(A - ÂI)~n + 1) == z(nJ 

z(n + 1) _ swn + 1) / IlWn + Illl
R 

où s indique le signe de la première composante de wn+ 1) ayant la valeur abso­
lue la plus grande. Les itérations continuent jusqu'à ce que z(n) converge. Ce 
vecteur est un vecteur propre qk correspondant à la valeur propre Âk' 
Il n'est pas nécessaire que la valeur utilisée pour Âk soit exacte\}' le vecteur 
propre calculé est déterminé précisément en dépit de petites imprécisions 
dans Âk' Par ailleurs, vous n'êtes pas obligé d'avoir une approximation de Âk 
trop précise; le HP-15C peut calculer le vecteur propre même lorsque A - ÀkI 
est mal conditionnée. 

Cette technique exige que le vecteur zI~) ait une composante non nulle le long 
du vectp.uI' (propre) qk inl~onnu. Pui~qu'il n'y a ImH U'UULl'et; restrictions sur z(O), 
le programme utilise des composantes aléatoires POUt z(O). A la fin de chaque 
itération, le programme affiche I!z(n + 1) - Z(nJ!lR pour montrer la rapidité de la 
convergence. 

Ce programme accepte une matrice A non symétrique à condition qu'elle ait 
une forme canonique de Jordan en diagonale, c'est-à-dire qu'il existe une 
matrice P non singulière telle que P-1AP == diag(Âh Â2' ... ). 

Appuyez sur 

[[J IP/R 1 

III CLEAR 1 PRGM 1 

I!lllBll19 
ISTol2 

IRclllMATRlxl ~ 
ISToIIMATRlxll!J 
IRClllDIMl1!l 
ISTolO 
IIlILBll4 

·IRclIO 
ISTol1 
IRCll[[l 

Affichage 

000-
001-42.21,13 
002- 44 2 

003-45, 16, 11 
004-44. 16, 12 
005-45,23,11 
006- 44 0 
007 -42,21, 4 
008- 45 0 
009- 44 1 
010- 45 12 

Mode programme. 

Stocke les valeur$ propres 
dans R2o; 

Stocke A dans B. 
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Appuyez sur Affichage 

IRCL182 011-45,30, 2 
ISTol [[] 012- 4412 Modifie les éléments diagonaux 

de B. 
1] IOSEIO 013-42, 5, 0 
IGTOl4 014- 22 4 
IRcLllolMI ~ 015-45,23,11 
1 016- 1 
I]loIMI[f] 017-42,23,13 Dimensionne C à n X 1. 
1] IMATRIX Il 018-42,16, 1 
1] /LBLI5 019-42,21, 5 
[!J IRAN #1 020- 4236 
[!J IUSERI ISTol [f] 021u 4413 Stocke les composantes 
ml USER 1 aléatoires dans C. 

IGTOl5 022- 22 5 
[fi ITËfC\6 023-42,21, 6 Programull' d'iLérulion pour 

z(nJ et wl nJ. 

IRCLllMATRlxl [f] 024-45, 16, 13 
ISTollMATRlxl [[l 025-44, 16, 14 Stocke z(nJ dans D. 
ISTol1 RESULTI 026- 4426 
IRcLllMATRlxl [[] 027-45,16,12 

B 028- 10 Calcule wln + 1) dans C. 

IENTER 1 029- 36 
illiMATRlxl7 030-42, 16, 7 

B 031- 10 Calcule + z(n + 1) dans C. 

[!J 1 MATRIX Il 032-42,16, 1 
[!J 1 LBLI7 033-42,21, 7 Programme de recherche 

du !:iigne du plu!:i granu l!lémeni. 
[!J 1 USER 1 [RCLI [f] 034u 4513 
illluSER 1 

[Ë-NTÊR] 035- 36 (Cette ligne e!:iL ~;autée pOUl' 

le dernier élément.) 
. @] IABSI 036-- 4316 
1 037- 1 
lliJ ITESTI6 038-43,30, 6 Teste lIal l\ t: 1. 
IGTel7 039- 22 7 
IRCLllMATRlxl [f] 040-45,16,13 
[[J ILSTxl 041- 4336 Rappelle aj extrême. 

B 042- 10 Calcule z(n + 1) dans C. 
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Appuyez sur 

IRCl!IMATRIXI [Q] 
ISTOllRESUlTI 

B ml r-:-M-A--::-TR---C' xc-11 7 

fi [MATRIXI1 

[RIS] 

IGTol6 

Affichage 

043-45,16,14 
044- 4426 
045- 30 
046-42,16, 7 
047-42,16, 1 

048- 31 

049- 22 6 

Labels utilisés: C, 4, 5, 6 et 7. 

Calcule z(n + 1) - z(n) dans D. 
Calcule IIz(n + 1) - z(nJIIR' 

Définit Ro = RI = 1 pour 
visualiser C. 
Affiche le paramètre de 
convergence. 

Registres utilisés: R(), RI et R2 (valeur propre). 
Mat,.ic~(IH utilis{>us: A (maLl'Ïcl! d'oJ'Ïg-irw), B(A - ':\'1), V(zln+ 0) et D(z(n+ J) - z(n»). 

Pour utiliser ce programme: 

1. Appuyez sur 2 m 1 DIM 1 [ill] pour réserver les registres Ro, RI et R2• 

2. Appuyez sur m 1 USER 1 pour activer le mode USER. 
3. Dimensionne et introduit les éléments dans la inatrice A en utilisant !Il IDIMI~, rn IMATRlxl1 et ISTol [KI. 
4. Appuyez sur la valeur propre et appuyez sur If]. L'affichage montre le 

paramètre de correction IIz(1) - zluJIIR' 

5. Appuyez plusieurs fois sur 1 RIS 1 jusqu'à ce que le paramètre de correc­
tion soit très petit (négligeable). 

G. Appuyez plusieurs fois sur 1 Rell @] pour afficher les différentes com­
posantes de qk, le vecteur propre. 

Exemple: Pour la matrice A de l'exemple précédent 

[
0 1 2J A=.:: 1 2 3 

2 :3 4 

calculez les vecteurs propres qh q2 et qa. 

• 



158 Cl Jitre 4: Operations ITldtnclelles 

Appuyez sur 

[g] Ip/RI 
2 rn 1 OIM 1 [ill] 
[!]~ 

Affichage 

3IENTER! [!] IOIM! ~ 

2.0000 
2.0000 
3.0000 

[!] IMATRlxll 
o L~!'Q] rA] 
1isTOI ~ 

41sToi [!] 
.87301cHSI 

[9 
IR/S! 
IR/si 
IR/si 
IR/51 
\RCLIIf] 
IRell [fJ 
IRCll [9 
0[9 

IR/51 
IRCll [fJ 
IRcll [fJ 
IRCLI [fJ 
6.8730[9 

IR/S! 
IR/Si 
IR/S! 

3.0000 
0.0000 
1.0000 

4.0000 
-0.8730 

0.8982 
0.0001 

2.4000 
1.0000 

0.0000 
1.0000 
0.2254 

-0.5492 

0.8485 

0.0000 
---/ -0.5000 

1.0000 
~0.5000 

0.7371 

1.9372 
1.0000 

0.0000 

-09 
-10 

} 

} 
-06 
-10 

Mode calcul. 

Réserve les registres Ro à R2• 

Active le mode USER. 

Dimensionne la matrice A 
à 3 X 3. 

Introduit les éléments de A. 

Introduit ÂI = - 0.8730 
(approximation). 
1~(1) - z(O)II: 
Ilz(2) - z(l)II: 
Ilz(al - Z( 2lll'-
IIz(4) - z(3)1I: 

Ilz(5) - z(4)ll'-

Vecteur propre pour Âl' 

Utilise Â2 = 0 
(approximation). 

Vecteur propre pour Â2• 

Utilise Âs = 6.8730 
(approximation). 

• Les normes de correction vont varier en fonction de la racine courante des nombres aléatoires. 



Appuyez sur 

IRCll [f] 
IRCll[f] 
IRCll [f] 
[!J IUSER 1 

Chapitre 4: 0 pérations ma .... cielles -----'-5-9--

Affichage 

0.3923 
0.6961 
1.0000 
1.0000 

} Vecteur propre pour l. •. 

Désactive le mode USER. 

Si la matrice A n'est pas plus grande que 3 X 3, ce programme peut être inclus 
dans le prOb'1'amme précédent de calcul des valeurs propres. Puisque le pro­
gramme de calcul des valeurs propres moùifie la matrice A, les valeurs propres 
d'origine doivent êt.re Hallv(~gardp.cH Pt. la maÙ'iee d'origine réintroduite danH la 
matrice A avant l'exécution du proJ.,rramme des vecteurs propres. Le pro­
gramme suivant peut être ajouté pour stocker les valeurs propres calculées 
L1ans la mall'ice E: .. 

Appuyez sur 

[!J 1 lBll ŒJ 
IRClllDIMI ~ 
ISTOIO 
1 
mlD1MIŒJ 
[!J 1 Lalla 
ffifI] a 
IENTERI 
IRCll cru ~ 
IRClla 
1 
ISTOI @] ŒJ 
[!J IDSEI a 
IGTOla 
[!J 1 MATRIX Il 
@] IRTNI 
[[] IPIR 1 

Labels utilisés: E et 8. 

Affichage 

127-42,21,15 
128-45,23, 11 
129- 44 0 
130- 1 
131 -42,23,15 Dimensionne E à n X 1-
132-42,21, 8 
133- 45 0 
134- 36 
135-45,43,11 Rappelle l'élément diagonal.· 
136- 45 0 
137- 1 
138-44,43,15 Stocke aii dans ei' 

139-42, 5, 0 
140- 22 8 
141-42, 16, 1· Redé.finit Ro = Ri = 1. 
142- 4332 

Mode calcul. 

Registres utilisés: pas de registres supplémentaires. 

Matrices utilisées: A (du programme précédent) et E (valeurs propres). 

Pour utiliser les programmes valeurs propres, stockage des valeurs propres et 
vecteurs propres en combinaison sur une matrice 3 X 3 maximum: 

1. Exécutez le programme des valeurs propres comme indiqué précédem­
ment. 
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2. Appuyez sur 1]] pour stocker les valeurs propres. 

3. Réintroduisez les éléments de la matrice d'oribrine dans A. 

4. Rappelez la valeur propre désirée de la matrice E en utilisant 1 Rell ŒJ. 
5. Exécutez le programme de calcul des vecteurs propres comme indiqué 

précédemment. 

6. Répétez les étapes 4· et 5 pour chaque valeur propre. 

Optimisation 

Nous allons décrire ici une catégorie de problèmes dans lesquels le but est de 
trouver la valeur minimale ou maximale d'une fonction considérée. Le plus 
souvent, il s'agit d'éliminer le comportement d'une fonction dans une région 
particulière. 

Le programme suivant utilise la méthode du gradient la plus abrupte pour cal­
cu]nr les minimums ou maximums 10eaux d'unc fonction réellc à deux ou plu­
sieurs variables. Cette méthode est une procédure itérative qui utilise le gra­
dient de la fonction pour déterminer des points d'échantillonnage successifs. 
Quatre paràmètres d'entrée contrôlent le plan d'échantillonnage. 

Pour la fonction 

((x) = f(Xh X2, .•• , xn ) 

le gradient Vf de f est défini par 

v f(x) = 

Les points critiques de {(x) sont les solutions de V {(x) = o. Un point critique 
peut être un minimum local, un maximum local ou ni l'un ni l'autre. 

Le gradient de {(x) évalué à un pointx donne la direction de la croissance la plus 
rapide, c'est-à-dire IR façon dont il faudrait modifier x pour provoquer l'accrois­
sement le plus rapide de {(x). Le gradient négatif donne la direction de la 
décroissance la plus rapide. Le vecteur de direction est: 

s = { - V {(x) pour la recherche d'un minimum 

V {(x) pour la recherche d'un maximum. 
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Dès que la direction est déterminée à partir du gradient, le programme 
recherche la distance optimale d'éloignement de Xj dans la direction indiquée 
par Sj, c'est-à-dire la distance donnant la meilleure amélioration dans f(x) vers 
un minimum ou un maximum. 

Pour cela, le programme recherche la valeur optimale tj en calculant la pente 
de la fonction 

pour des valeurs croissantes de t j4squ'à ce que la pente change de signe. Cette 
proeéùur'c CHt appeléc "rccherche ùe IimiteH" puisque le programme tente de 
délimiter la valeur désiréc tj dans un intervalle. Lorsque le programme trouve 
un changement de signe, il réduit alors l'intervalle en le divisant par j + 1 fois 
pour avoir la meilleure valeur t, près de t = O. Cette procédure est appelée 
"réduction d'intervalle". Elle donne des valeurs pour tj d'autant plus précises 
que Xj converge vers la sulutiun désirée. (Ces ùeux processus font partie de la 
"recherche le long d'une ligne". La nouvelle valeur de x est alors: 

Le programme utilise quatre paramètres qui définissent comment il progresse 
vers la solution désirée. Bien qu'aucune méthode de recherche de ligne ne 
puisse garantir un résultat pour la valeur optimale de t, les deux premiers para­
mètres vous apportent une souplesse considérable dans la façon dont le pro­
!-,Tramme échantillonne t. 

d Détermine la phase initiale Ul de la recherche de limites. La première 
valeur de t essayée est: 

d 
U =--'----

1 U + l)lls)IF 

Ceci correspond à une distance de 

qui montre que d et le nombre d'itérations définissent à quelle distance de 
la dernière valeur x le programme commence sa recherche de limites. 

a Détermine les valeurs U2, U3'" des phases suivantes de la recherche de limi­
tes. Ces valeurs de t sont définies par 
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En fait, a est un facteur d'expansion, normalement supérieur à 1, générant 
une suite croissante de valeurs de t. 

e Détermine la tolérance acceptable sur la taille du gradient. Le processus 
itératif s'arrête lorsque 

IIVf(x)IIF< e. 

N Détermine le nombre maximum d'itérations que le programme va tenter 
dans chacune des deux procédures: la recherche de limites et la procédure 
générale d'optimisation. Autrement dit, le programme s'arrête si· la 
recherche de limites ne trouve aucun changement de signe sur les Nitéra­
tions. Le programme s'arrête également si la norme du gradient est 
encore trop grande à XN' Chacune de ces situations résulte en l'affichage 
de Error 1. (Elles peuvent être identifiées en appuyant sur G). Vous 
pouvez continuer l'exécution du programme si vous le désirez. 

Le programme a besoin d'un sous-programme d'évaluation de {(x) et de V{(x). 
Ce sous-programme doit être appelé "E", doit utiliser le vecteur x stocké uans 
la matrice A, doit retourner le gradient dans la matrice E et doit placer f(x) dans 
le. registre X. 

En outre, le programme demande une estimation initiale Xo du point critique 
désiré. Ce vecteur doit être stocké dans la matrice A. 

Le programme a les caractéristiques suivantes: 

• Le programme recherche tout point x pour lequel Vf(x) = O. Rien n'em-
. pêche la convergence vers un point-selle par exemple. En général, vous 
devez utiliser d'autres moyens pour déterminer la naturè du point critique 
trouvé. (En plus, ce programme ne traite pas le problème de localisation 
d'un maximum ou d'un minimum sur la limite du domaine de f(x)). 

• Vous pouvez ajuster les paramètres de convergence après avoir lancé le 
programme. Dans la plupart des cas, ceci réduit beaucoup le temps néces­
saire à la convergence. Voici quelques suggestions: 

• Si le programme introduit la phase de réduction de l'intervalle après 
l'échantillonnage d'un seul point U 1, la taille du pas initial risque d'être 
trop grande. Essayez de réduire d pour avoir une recherche plus effi­
cace. 

• Si les résultats de la recherche des limites semble prometteurs (c'est-à­
dire si les pentes décroissent), mais commencent ensuite à croître, la 
redH'rehc u. IWUt.-êil'o manqu6 un puint edLique. EHHUYUZ de l'éùuiru u 
pour générer un échantillonnage plus serré. Vous pouvez aussi avoir à 
augmenter N. 



• Vous pouvez remplacer 1 R/S 1 à la ligne 102 par 1 PS El ou même le suppri­
mer si les résultats intermédiaires ne vous intéressent pas. 

• Pour une fonction à n variables, le programme a besoin de 4n + 1 registres 
réservés aux matrices. 

Appuyez sur Affichage 

[ru Ip/RI Mode programme. 
!Il CLEAR 1 PRGM l' 000-
!Il IlBlla 001-42,21, 8 Programme d'échange de 

A et de C à l'aide de E. 
IRClllMATRlxl [ÇJ 002-45,16,13 
ISTOllMATRlxl œ 003-44, 16, 15 
IRClllMATRlxl ~ 004-45,16,11 
ISTOllMATRlxl [ÇJ 005-44,16,13 
1 ReL 1 [KiiAï]TX] ŒJ 006~45, 16, 15 
ISTOllMATRlxl ~ 007-44,16,11 
[illl RTN 1 008- 4332 
!Il IlBll7 009-42,21, 7 Programme de recherche 

le long d'une ligne. 
IRCll4 010- 45 4 
IRCll B6 011-45,10, 6 
\sTola 012- 44 8 Stocke d/U + 1) dans Rs. 
\GSBlœ 013- 3215 
IRClllMATRlxl œ 014-45,16,15 
ISTOllMATRlxl [[J 015-44,16,14 
IRClllMATRlxl [[J 016-45,16,14 
[ru [TI] 0 017-43, 6, 0 
ICHSI 018- 16 Dans le cas d'un minimum, 

change le signe du gradient. 
rn IMATRlxla 019-42,16, 8 Calcule IIVf(x)ll. 
[ru\x=ol 020- 4320 
[[] IRTNI 021- 4332 Sortie si Ilvj{x)!! = o. 
11/xl 022- 15 
IRCll [8J a 023-45,20, 8 Calcule Ut. 

[St6] .1 024- 44 .1 Stocke UI dans RI. 

0 025- 0 
[[TO] .0 026- 44 .0 
IRCLI5 027- 45 5 
ISTOl7 028- 44 7 Rtoeke 1~ compteur dans R7. 
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Appuyez sur . Affichage 

rn IlBll6 029-42,21, 6 Début de la recherche des 
limites 

IRCll·1 030- 45 .1 
IGSBI3 031- 32 3 
[TI IpSEI 032- 4231 Affiche la pente. 

rm ŒI]O 033-43, 6, 0 
LçJj§J 034- 16 
illJ ITESTI4 035-43,30, 4 Teste si changement de pente. 
\GToI5 036- 22 5 Bran('hpment ëI, la l'pdu('tion 

de l'intervalle. 
IGSBI8 037- 32 8 Restaure la matrice d'orhrÎne 

~L A. 
IRCll.1 038- 45 .1 
[SIQ] .0 039- 44 .0 HtfH'k(1 1.1, tlam-l Hu. 
IRcll2 040- 45 2 
ISTol [8].1 041-44,20,. 1 Stocke Uj + 1 dans RI' 
ru [5SË] 7 042-42, 5, 7 Décrémente le compLeur. 
IGTOl6 043- 22 6 Branchementpourcontinue~ 

[RC1lIMATRlxl ~ 044-45,16, 11 
ŒJ IABSI 045- 4316 Affiche Error'1 avec A dans 

le registre X. 

IGTOl6 046- 22 6 Branchement !Jour continuer. 
m IlBll5 047-42,21, 5 Programme de réduction 

ùe l'intervalle. 
lï:fëI] 6 048- 45 6 
[STol 7 049- 44 7 Stocke j + 1 ùans R7' 
[TI ILBLI4 050-42,21, 4 
\GSBI8 051- 32 8 Restaure la matrice d'origine 

àA. 
IRCll.O 052- 45 .0 
IRCll [IJ.1 053-45,40, .1 
2 054- 2 

El 055- 10 
ISTOl8 056- 44 8 Calcule le milieu de l'intervalle. 
IGSBI3 057- 32 3 Calcule la pente. 
@] [f?J 0 058-43, 6, 0 
ICHSI 059- 16 Change le signe dans 

le cas d'un minimum. 



Appuyez sur 

1 
1 
ISTol m 
[[!] 
[ill[I~@ 1 
mIDSE] [J 
[RCL] 8 
[§J~QJ [ill] 

[!J IDSEI7 
IGTOl4 
[ill IRTNI 

[ReJ] [Ni2i.rRTX] [Q] 
[!J [RESULTI ~ 
[8J 
IRCLllMATRlxl ~ 
[±] 
[GSBI8 

IGSBIŒJ 
[sTol 9 
[RCI] fMï\fRIX] ŒJ 
IRClllMATRlxl [QJ 
[!] IRESUlTI ~ 
[!J 1 MATRIX 15 
1 
IENTERI 
IRCll [ill ~ 
Iml RTN 1 

[!] IlBll ~ 
o 
ISTol6 
[!J IlBLI2 
1 

1 
1 

Affichage 

060-
061-
062- 44 25 Stocke le numéro du registre 

ùe l'intervalle. 
063- 33 
064-43,30, 1 
065-42, 5,25 
066- 45 8 
067- 4424 

068-42, 5, 7 
069- 22 4 
070- 4332 

071-4Z,21, 3 

072-45,16,14 
073-42,26,13 
074- 20 
075-45,16,11 
076- 40 
077- 32, 8 

078- 32 15 
079- 44: 9 
080-45,16-,15 
081-45,16,14 
082-42,26,12 
083-42,16, 5 
084- 1 
085- 36 
086-45,43,12 
087- 4332 

088-42,21,11 
089- 0 
090- 44 6 
091-42,21, 2 
092- 1 

Stocke le milieu de l'intervalle 
dans Ru ou RI' 
Décrémente le compteur. 

Sortie quand le compteur 
PH t il 7.éro. 
Programme de calcul de la 
pente. 

Caleule le point xj + tSj' 

f~ehange la matrice d'origine 
et le nouveau point. 
Calcule V{(x) dans E. 
S Locke {(x) dans Ru. 

Calcule la pente comme (Vf) T s. 

Sortie avec la pente dans 
le registre X. 
Programme principal. 
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Appuyez sur Affichage 

ISTol Ga 093-44,40, 6 Stocke j + 1 dans R6' 
[llscl13 094-42, 8,3 
IGSBI7 095- 32·: 7 Branchement à la recherche 

de courbe. 
IRclla 096- 45 6 
li] IFlxla 097-42, 7, 0 
li] IpSEI 098- 4231 Pause avecj + 1 à l'affichage. 
li] IMATRlxl1 099-42,16, 1 Définit Ro = RI = 1 

pour visualisation. 

li] Isc" 3 100-42, 8, 3 
IRcll9 101- 45 9 Rappelle f(x). 

IR/si 102- 31 Arrête le programme. 
IRcll3 103- 45 3 Rappelle e. 

\RClIIMATRIXI œ 104-45,16,15 
li] IMATRlxla 105-42,16, 8 Caleule IIVf(x)lI. 
~~ 106- 4310 'reste lIV'f(xlll EO; e: 
\GTol [ê] 107- 2212 Branchement pour affichage 

de la solution. 
ru IpSEI 108- 4231 Affiche Il Vf(x)lI. 
IRCll5 109- 45 5 
\Rella 110- 45 6 
~ ITEsTla 111-43,30, 8 Teste (j + 1) < N. 
IGTol2 112- 22 2 Branchement pour continuer 

l'itération. 
IRCLI\MATR1XI [fJ 113-45,16,13 
cru IABS 1 114- 4316 Affiche Error 1 avec C dans 

le registre X. 

IGTOl2 115- 22 2 Branchement pour continuer. 

ru \LBLI [[1 116-42,21,12 Programme d'affichage 
de la solution. 

~ ffiI] 9' 117-43, 4, 9 Arme l'indicateur 9. 

IR/SI 118- 31 Arrêt du programme avec 
IIVf(x) + 1)11 à l'affichage. 

IGTOI [[1 119- 2212 Branchement de boucle. 

Labels utilise::;: A, B, et 2 à 8. 

Registres utilisés: R2 à R9t ROt RIt et registre Index. 



Matrices utilisées: A, B, C, D et E. 

Votre sous-programme "E" peut utiliser tous labels et registres non indiqués 
ci-dessus, plus le regis'tre d'index, la matrice B et la matrice E (qui doit contenir ~ 
votre gradient calculé). 

Pour utiliser le programme: 

1. Introduisez votre sous-programme dans la mémoire programme. 

2. Appuyez sur 11 rn 1 DIM 1 ITill pour réserver les registres Ro à RI' (Votre 
sous-programme P2ut nécessiter des registres supplémentaires). 

3. Armez l'indicateur 0 si vous recherchez un minimum local; désarmez 
l'indicateur 0 si vous recherchez un maximum local. 

4. Dimensionnez la matrice A à nX 1, où n est le nombre de variables. 

5. Stockez les données nécessaires en mémoire: 

• Stockez la valeur estimée initiale Xo dans la matrice A. 

• Stockez a dans R2• 

• Stockez e dans R3' 

• Stockez d dans R4' 

• Stockez N dans R5' 

6. Appuyez sur IGsal ~ pour visualiser les pentes au cours de la procé­
dure d'itération. 

• Regardez le numéro de l'itération et la valeur de {(x). 

• Si Error 1 apparaît, appuyez sur G pour effacer le message. Allez 
alors à l'étape 5 en modifiant les paramètres à votre gré ou appuyez 
sur ~ 1 RIS 1 pour obtenir une nouvelle itération de recherche de 
limites ou une nouvelle itération d'optimisation. (Si le label de la 
matrice A était à l'affichage lorsque l'erreur s'est produite, c'est que 
le nombre d'itérations en recherche de limites était supérieur à N; si 
le label de la matrice C était à l'affichage, c'est que le nombre d'itéra­
tions en optimisation était supérieur à N.) 

7. Appuyez sur 1 RIS 1 pour afficher la norme du gradient et pour lancer 
l'itération suivante. 

• Si la norme du gradient clignote à l'affichage, appuyez sur 1 .. 1 puis 
rappelez les valeurs de x dans la matrice A~ 
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• Si le numéro de l'itération et la valeur de f(x) sont affichés, répétez 
cette étape autant qu'il le faut pour obtenir la solution ou retournez à 
l'étape 5 et modifiez les pàramètretl à votre gré. 

Exemple: Utilisez le programme d'optimisation pour trouver les dimensions 
de la boîte offrant le plus bJTand volume poul'une Homme de sa lon.l,rueul' etde sa 
périphérie (périmètre de sa section) égale à 100 cm. 

Pour ce problème 

L+(2h+2w)=100 

v=whl 

v (w, h) = io h (100 - 2 h - 2 w ) 

= 100wh - 2wh'2 - 2hw'2 

\' v(w,h) = , 
[

2h(50 - h - 2W)] 
2 w (50 - w - 2 h ) 

La solution doit satisfaire w + h < 50, w > 0 et h> 0, 

Tout d'abord introduisez un sous-programme pour calculer le gradient et le 
volume. 

Appuyez sur Affichage 

. rn IlBll œ 120-42,21,15 Sous-programme de la fonction. 
IRClllDIMI ~ 121-45,23,11 
rn IDIMI œ 122-42,23,15 
rn IMATRlxl1 123-42,16, 1 
rn IUSERllRCll ~ 124u 45 11 
rnlUSERI 
ISTOI.2 125- 44 .2 Stocke w dans R.2 • 

ISTol ŒJ 126- 4415 Stocke w dans e2• 

IRell ~ 127- 45 11 
l,sTol.3 128- 44 .3 Stocke h dans R.3' 
rn 1 MATRIX Il 129-42,16, 1 
ISTol œ 130- 4415 Stocke h dans el' 

[±] 131- 40 
5 132- 5 
0 133- 0 

El 134- 30 
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Appuyez sur Affichage 

ICHSI 135- 16 
2 136- 2 
[RJ 137- 20 Calcule l = 2 (50 - h - w). 

m~·2 138-42, 4,.2 S Locke 1 dam~ R~. 

ISTOI [RJ.3 139-44,20, .3 Stocke wh dans R.a• 

IRCll·2 140- 45 .2 
IRClllMATRlxl œ 141-45,16,15 
m IRESUlTIŒJ 142-42,26,15 
[RJ 143- 20 
IRCll·3 144- 45 .3 
IRCll[±] .3 145-45,40, .3 

B 146- 30 Remplace ei par lei - 2wh, 
les éléments du gradient. 

[BjaJ .2 147- 45 .2 
IRell [8].3 148-45,20, .3 Calcule lwh. 

lliJl RTN 1 149- 4332 

Introduisez maintenant l'information nécessaire et exécutez le programme. 

Appuyez sur Affichage 

lliJl P/R 1 Mode calcul. 
1 3 rn 1 OIM 1 illII 13.0000 Réserve Ro à R.a• 
lliJ [ff] 0 13.0000 Trouve un maximum local. 
[!] IUSER 1 13.0000 Active le mode USER. 
ru IMATRlxl1 13.0000 
21ENTER Il 1 Introduit les dimensions 

pour la matrice A. 
ru IOIMI ~ 1.0000 Dimensionne la matrice A 

à 2 X 1. 
151sTOI ~ 15.0000 
ISTOI ~ 15.0000 Stocke l'estimation initiale 

1 = w = 15. 
31sTOl2 3.0000 Stocke a=- 3. 
O.1IsTOI3 0.1000 Stocke e - 0.1. 
O.05IsTOI4 0.0500 Stocke d - 0.05. 
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Appuyez sur 

41sTOIs 
~ 

Affichage 

4.0000 
4.415 
4.243 
3.718 
2.045 
Error 1 

Stocke N- 4. 
04 Pente à Ul' 

04 Pen te à U2' 

04 Pente à Us. 
04 ' Pente à U4' 

A 2 1 Recherche de limites sans 
succès. 

Puisque les résultats semblent prometteurs (les dérivées décroissent), ajoutez 
cinq autres échantillons à cette recherche et définissez N - 8 comme nombre 
d'itérations restantes. 

Appuyez sur Affichage 

SlSTOl7 5.000 00 Met le compteur à 5. 
8 [stOl 5 8.000 00 Définit N ;: ~. 
lE[] -3.849 04 Pente à U5 

(changement de signe). 
1. j+ 1. 
9.253 03 Volume à cette itération. 

'.lE[]" 3.480 01 Gradient. 
,: : 1.121 03 Pente à Ul' 

9.431 02 Pente à U2' 

4.126 02 Pente à U3' 

-1.139 03 Pente à U4 

(changement de signe). 
2. ' j+ 1. 
9.259 03 Volume à cette itération. 

IR/si 5.479 -01 Gradient. 
-6.127 -01 Pente à Ul 

(changement de signe). 
3. j+ 1. . 
9.259 03 Volume à cette itération. 

IR/si 7.726 -02 Gradient inférieur à e. 
R 7.726 -02 Arrêt du clignotement. 
!Il IFlxl4 0.0773 
IRCll ~ 16.6661 Rappelle h de al' 

IRClllKl 16.6661' Rappelle w de a2' ! 
~ 



Appuyez sur 

rn~ 
rn IMATRlxl 0 
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Affichage 

16.6661 
16.6661 Désalloue la mémoire 

matricée. 

La Laille optimale de la boîte est 16.6661 X Hi.6661 X 33.3355 cm. (Une autre 
mélhuuc ConsiHle ù résuuure cc pruulème en résulvant le système linéaire 
représenté par Vu(w,h) - O.) 



Annexe 

Précisi()n 
des calculs nunlérÎ{lllCS 

Interprétation des erreurs 
Une erreur est toujours possible. Ce n'est d'ailleurs pas toujours une faute. L'er­
reur numérique représente simplement la différence entre ce que vous souhai­
tiez calculer et ce que vous avez calculé. Cette différence n'est préoccupante 
que si elle est vraiment trop importante. Elle est généralement négligeable; 
mais il arrive que l'erreur soit désespérément grande, difficile à expliqu~r et 
encore plus difficile à corriger. Cette annexe est consacrée aux erreurs, et sur­
tout à celleH qui rh;quent d'être importantes - un cas assez rare. En voici quel­
ques exemples. 

Exemple 1 : Un Calculateur cassé.l'uj~Hlue (-Ix):! ""'" x pOUl' tout x;.. 0, on est en 
droit d'attendre que 

- JJ ~:l:l2 f(x) - « ... « ... V v x» ... » 

----,,-' -v-----
50 50 

racines carrés 

soit aussi égale à x. 

Un programme de 100 pas peut évaluer l'expression {{x) pour tout x positif. 
Lorsque x = 10, le HP-I5C calcule le résultat 1. L'erreur 10 - 1 = 9 semble 
énonne si l'on considère que seulement 100 opérations arithmétiques ont été 
effectuées, chacune d'elle étant présumée correcte sur 10 chiffres. Or le pro­
gramme, au lieu de donner {(x) = x, renvoie: 

f(x)= { ~ pour x~ 1 

pourO~x< l, 

Ce qui est faux. Ce calculateur doit-il être envoyé en réparation? 

172 
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Exemple 2: Beaucoup d'argent. Une société s'attache les services d'une secré­
taire au tarif de 1 centime par secunuc. Cette société vire les honoraires de 
cette secrétaire sur un compte rémunéré à 11.25 % par an, les intérêts étant 
composés par seconde. A la fin de l'année, tous ces fi"'anCS accumulés vont pré­
HPnt.f'1' 1(' tot.al Huivant: 

(l + i/nt - 1 
Total = (versement) X ---. ---

lIn 

où versement = 0.01 F = 1 centime par seconde, 
i = 0.1125 = 11.25% d'intérêt annuel, 
n = 60 X 60 X 24 X 365 = nombre de secondes 
(p{:t'Ïodes Je ('.olllJ)()sition) dans l'ail Il l'l'. 

Utilisant son HP-15C, cette secrétaire trouve un total de 376,877.67 FF. Mais à 
la fin du l'année son cumplu pl'éSelllu un cl'éJil de :133, 7~:1.35 ~"~'. Le consultant 
peut-elle disposer de ce supplément (différence) de 43,094.32 FF. 

Dans ces deux exemples, les différences ~mnt dues à des erreurs d'arrondi qui 
auraient pu être évitées. Nous muntrerons comment. 

La guerre cuntre les erreurs commence avec une réserve à l'encontre des bon­
nes intentions qui risquent de nous faire confunùre ce que nous voulons et ce 
que nous obtenons. Pour éviter toute confusion, les résultats vrais et les résul­
tats calculés doivènt être affectés de noms différents même si leur différence 
est si petite que cela semble exagéré. 

Exemple 3: Pi. La constante 11: = 3.1415926535897932384626433 ... En 
appuyant sur la touche ~ du HP-15C vous obtenez une valeur différente: 

~ = 3.141592654 

qui correspond à n sur 10 chiffres significatifs. Mais ~ 1= n, aussi ne soyez pas 
surpris si, en mode Radians, le calclllaü~lIr ne donne pas sin [!] = O. 

Supposons que nous calculons x, mais obtenons X. (Convention utilisée systé­
matiqu{~ment dans ectte annexe.) L'erreur ('st. x-X. L'erreur absolue est 
1 x - XI. L'erreur relative est (x - X)/ x pour x #= O. 
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Exemple 4: Un pont trop court. Les longueurs (en mètres) des trois sections 
d'un pont en encorbellement (pont cantilever) doivent être: 

·x =333.76 y = 195.07 z = 333.76. 

Les longueurs mesurées sont en fait: 

X=333.69 y= 195.00 

La différence totale est: 

d = (x + y + z) - (X + Y + Z) = 862.59 - 862.41 = 0.18. 

L'ingénieur retlpommble du pont compare la différence à la lonbrueur totalè 
(x + y + z) et considère que cette différence relative: 

d/(x + y + z) = 0.0002 = 2 dix millièmes 

est négligeable. Mais le riveur, lui, trouve la différence absolue 1 dl = 
0.18 mètres beaucoup trop grande cl son goût. Il faudra "al1()ng(~r" la strueture 
du pont pour pouvoir poser les rivets. 'l'ous deux considèrent la même diffé­
rence d, mais celle-ci est négligeable pour l'un alon; qu'elle est inacceptable 
pour l'autre. 

Qu'elletl tloient grandes ou petitetlles erreurs sont de deux origines qui, tli elles 
sont comprises, permettent en général de les compenser ou de les tourner. 
Pour comprendre les distorsions dans l'ossature d'un pont, il faut connaître la 
mécanique des structures, et la théorie de l'élaHticité. Pour comprendre les 
erreurs introduites par le calcul. il ~mffit de eonnaître son outil de ealcul et ses 
limitations. Ce sont des détails que la plupart d'entre vous désirent connaître, 
spécialement si les erreurs d'arrondi d'un calculateur bien conçu sont toujours 
minimales et app~raissent ainsi comme insignifiantetllortlqu'elletl tlont intro­
duites. Mais lorsque, à de rares occasions, ces erreurs s'accumulent au niveau 
del:i calculs, ellt~l:i doivent être considérées malgré tout cumme "imvortantes". 
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Exemple 1: Explication. Ici f(x) = s(r(x)), où 

et 

r(x) = J.J ... vv-x= x('l~50) 
'--..,,-" 

50 

racines 

s( r) = « ... «r)2)2 ... )2f~ = r(250). 

'-v-" 
50 

carrés 

Les exposants sont ~ 50 = 8.8818 X 10-Hi et 25U = 1.1259 X 1015
• Maintenant, x 

doit. HP tl'ouver entre 10-99 et 9.999; .. X lO!/!' ]llIÏHq~l'auCun nombre positif en 
dehors de cette plage de valeur ne peut être introduit dans le calculateur. Puis­
que r est une fonction croissante, r(x) se trouve entre: 

r(10-99) = 0.9999999999997975 ... 

et 

r(10100) = 1.000000000000~045 .... 

Ceci suggère que R (x), la valeur calculée de r(x}, sera 1 pour tous les arguments 
x valides du calculateur. En fait, à cause de l'arrondi: 

{ 

0.9999999999 pour 0 < x < l 
R(x)= 

1.000000000 pour 1 ~ x ~ 9.999999999 X 1099• 

Si 0 < x < 1, alors x';;;; 0.9999999999 dans un calculateur 10 chiffres. Nous 
serions en droit d'attendre IX E;;;; 10.9999999999, qui est 
0.999999999949999999998 ... , arrondi à nouveau à 0.9999999999. Par consé­
quent, si vous appuyez sur ~ en commençant arbitrairement par x < 1, tè 
résultat ne peut pas dépasser 0.9999999999. Ceci explique pourquoi nous 
obtenons R(x) = 0.9999999999 pour 0 < x< Ici-dessus. QuandR(x) est mis au 
carré 50 fois pour donner F(x) = S(R (x)), le ré$ultat est 1 pour x> 1, mais pour­
quoi F(x) = 0 pour 0 ';;x < 1 '! Quanù x < 1, 
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Cette valeur est si petite que la valeur calculée F(x) = S(fi(x)) est en dépasse­
ment inférieur de capacité à O. Aussi le HP-I5e n'est-il pas cassé; il fait de son 
mieux avec 10 chiffres significatifs ùe précision el ~ chiffres tl'expmmnts. 

Nous avons expliqué l'exemple 1 en ne sachant rien de plus SUl' le HP-HiC que le 
fait qu'il effectue chaque opération arithmétique ~ et [!:] aussi précisé­
ment que possible dans les limites de 10 chiffres sig-nificatiü; et de 2 chiffres 
d'exposant. Ce ùont nous avons besoin est la connaissanee mathémati<lue d('s 
fonctions r. r et s. Aim;i, la valeur r(10 10

0) cÏ-deHHuH a été évaluée eomme: 

r(10100) = (lOlOO)(I;})u) 

= exp (ln (0100)/25°) 

= exp (100 (ln 10)/25°) 

= exp (2.045 X lO-l:~) 

= 1 + (2.045 X 10-13) + 1/2(2.045 X 10-13)2 + ... 

en utilisant la série exp(z) = 1 + z + ~ Z2 + 1/6Z3 + ... 
De façon identique, le théorème hinominal a été u LiliH(~ pOUl': 

JO,9999999999 = (l-lO-lOfl:! 

Ces faits mathématiques se situent bien au-delà du type de connaissances 
ayant pu être considérées comme suffisantes pour traiter un calcul ne mettant 
en œuvre qu'une poignée de multiplicatiom; et de racines carl'éüs. L'exemple 1 
nous a montré comment les errcurH pouvaient rendre les eal('uIH diffieilcs à 
!lnalyser. C'est pourquoi un bon calculateur comme le IIP-IGe introduira pOUl' 

sa part aussi peu d'erreurs que possible. Dm; en'purs plus importanteH risque­
raient de transformer une tâche ùéjà difficile en un problème HanH issue. 

L'exemple 1 met en valeur deux conditions d'erreurs assez fréquentes: 

• Les erreurs d'arrondi ne faussent un ealeul que Hi un h'Tund nomhn~ d'entre 
elles s'accumulent . 

• lIn IH't.it nombr'(' d'prr('\Il's d'a J'rondi Ill' faUHSf'nt. lin ('n 1('111 qllP Hi "l1ps sont 

accompagnées par un effet de "compensation" quasi-totale. 
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En ce qui concerne la première de ces conditions, l'exemple 1 risque de mal évo­
luer si il est victime d'une seule erreur d'arrondi, celle qui donne R (x) = 1 ou 
O.~~~~HH.HHW9, en erreur sur muins J'une uuiLé au niveau de son dernier 
(lOil!ll1e) ehiffl'e sig-nificati f. 

En ce qui concerne la seconde condition, la "compensation" est ce qui se pro­
duit lorsque deux nombres très proches font l'objet d'une soustration. Par 
ex(\mplp, le ealtul de: 

c(x)~(l -cusx)/x:! 

en mode radians pOUl' de petites valeurs de x esL l'iSllUé. Si nuus avuns x = 1.2 X 
10-:; (~l des résultals arrondis à 10 ehiffres, 

cos x = 0.9999999999 

et 

1 - cos x = 0.0000000001 

la "compensation" laissant peut-être un chiffre significatif au n~mérateur. 
Ensuite: 

Donc 

C(x) = 0.6944 . 

Ce qui est faux puisque 0 ~ c(x) < ~ pour tout x i= O. Pour éviter la "compensa­
tion", exploitez l'égalité trigonométrique: cos x = 1 - 2 sin2 (x/2) pour suppri­
mer exactement le 1 et obtenir une meilleure formule de calculer 

c(x) =- . 1 (sin (x/2) )~ 
2 x/2 

Lorsque cette dernière expression est évaluée (en mode radians) pour x = 
1.2 X 10-r

" le rétmltat calculé C (x) = 0.5 est correct sur 10 chiffres significatifs. 
Cet exemple, tout en expliquant la notion de "compensation", sous-entend qu'il 
·s'ag-iL toujours d'une mauvaise chose. C'est une interprétation que nous étudie­
rons un peu plus loin. Pour le moment, souvenez-vous que l'exemple 1 ne con­
!.i"111 pas dt' sOllstr'ad.ion. dont, pas d" ·'("omppnsalion". et flue pourt:lnt }flS 

résultatH de ee problème sont eomplètement faussés par des erreurs d'arrondi. 
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Cet exemple 1 est quelque peu déconcertant: il ne contient nulle part des opé­

rations arithmétiques auxquelles imputer le résultat catastrophique; et 

aucune manipulation des formules, comme pour c(x), ne peut redresser les cho­

ses. L'exemple 1 n'est pas, hélas, un cas unique. Plus les calculateurs elles ordi­

nateurs sont puissants, plu::; ce::; erreurs in::;iùicu::;c::;::;e glis::;elll ouns les l:uh.·uIH. 

Pour vous aider à identifier l'ampleur des erreurs, nous allons, dans cette 

annexe, en examiner plusieurs types en commençant par les plus simples puis 

en étudiant celles qui affectent les calculs les plus sophistiqués du HP-15C. 

Hiérarchie des erreurs 
Certaines erreurs sont plus faciles à expliquer et à tolérer que d'autres. Par 

conséquent, nous avons classé les fonctions offertes par les touches du HP-15C 

par niveaux de difficulté à estimer leurs erreurs. Ces estimations sont plus des 

objectifs définis pour le calculateur à sa conception que des spécifications 

vous garantissant un degré assuré de précision. D'autre part ces objectifs de 

conception ont été testés de façon approfondis et peuvent être considérés 

comme tout à fait justes. 

Niveau 0: pas d'erreur 
C'est le cas des fonctions qui, même sur des entiers petits (inférieurs à 1010), ne 

provoquent pas d'erreurs. 

Exemples: 

,14 = 2 - 23 = - 8 

log(109
) = 9 

320 = 3,486,784,401 

6! = 720 

cos-1(0) = 90 (en mode degrés) 

ABS(4,684,660 + 4,684,659i) = 6,625,109 (en mode complexe) 

Également exactes sont les fonctions: IAssl, IFRACI, IINTI, IRNDI ainsi que 

les comparaisons (comme ~. Par contre les fonctions matricielles [8J, 

B, 11/xl, IMATRlxl 6 et IMATRIXI 9 (déterminant) sont des exceptions (voir 

page 192). 
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Niveau 00: dépassements de capacité. 
Les résultats plus proches de zéro que de 10-99 sont considérés comme nuls. 
Les résultats dépassant le seuil de + 9.999999999 X 1099 sont remplacés par ce 
seuil avec armement de l'indicateur 9 el clignotement de l'affichage. (Appuyez 
::;ur Ib-N] [6N] ou re-fi 9 ou El pour effacer l'indicateur 9 et arrêter le cligno­
tement.) De nombreuses fonctions dont les résultats ont plusieurs composan­
tes, tolèrent-Ies dépassements de capacité inférieurs ou supérieurs sur l'une de 
leurs composantes, sans répercussion sur les au tres. Des exemples de ces fonc­
tion:.; HO III : 1" AI, , .. pI, lUH calcul:.; HUI' nOmbl'PH complexes et la plupart des 
opérations matricielles. Les exceptions sont l'inversion de matrice (Il/xl et 
B), IMATAlxl9 (déterminant) et ILA.I. 

Niveau 1 : arrondis corrects ou presque 
Les opérations donnant des résultats "arrondis correctement" dont les erreurs 
sont inférieures à ~ unité de leu~ dernier (10ième) chiffre significatif, sont les 
suivantes: les opérations algébriques EEL B, [8J, B, ~, 11/xl et 00, les 
opérations œ et El complexes et matricielles (.,auf la division par une 
matrice) et la fonction 1 ..... H.MS 1. Ces résultats sont les meilleurs sur 10 chif­
fres significatifs à l'instar des constantes ~, 1 ~, 21 LN l, 10 1 LN 1 et 
1 1 ..... RAD 1. D'autres opérations admettent une erreur légèrement supérieure, 
bien que toujours inférieure à une unité sur le 10ième chiffre significatif du 
résultat: ILl%I, 1 ..... HI, I ..... RAOI, l ..... oEGI, Ipy,xl,et~; ILNI, ILOGI, [@ et 
(fA@] pour les arguments réels; 1 ..... pI, ISIN-'I, Icos 11, ITAN-1I, ISINH-11, 
[ë-o-s'Ffl] et [fAi\ft"fT) pour les arguments réels ou complexes; ~, ~ et 
~ pour les arguments complexes; les normes matricielles 1 MATRIX 17 et 
IMATRlxI8; et enfin 'SIN 1, 'COS 1 et 'TAN 1 pour les arguments réels en mode 
degrés ou en mode grades (mais pas en mode radians - voir Niveau 2, par 184). 

Une fonction qui tend vers l'infini ou qui tend vers 0 de façon exponentielle 
lorsque son argument approche + 00, peut supporter une erreur supérieure à 
une unité sur le 10ième chiffre significatif de son résultat, mais seulement si sa 
valeur est inférieure à 10-20 ou supérieure à 1020

; et bien que l'erreur relative 
devienne de plus en plus importante lorsque les résultats deviennent extrêmes 
(petits ou grands), l'erreur demeure inférieure à trois unités sur le dernier 
(lOième) chiffre significatif. Cette erreur sera expliquée plus loin. Les fonc­
tions ainsi affectées sont [Z], [Z], [!Il (pour x non entier), ISINH 1 et ICOSH 1 

pour des arguments réels. Le plus mauvais cas rencontré est 32U1 qui est cal­
culé égal à 7.968419664 X 1095

• Le dernier chiffre devrait être 6 au lieu de 4, 
comme dans le cas de 7.2933

•
5 calculé comme égal à 7.968419666 X 1028

• 
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La conclusion précédente sur les erreurs peut être résumée ainsi pour toutes 
les fonctions citées au niveau 1 : 

'route tentative de calcul d'une fonction {du niveau 1, donne comme résul­
tat une valeur F = (1 + e){donc l'erreur relative e, bien que non connue, est 
très petite: 

si F est arrondie correctement 
lei < 

pour toutes les autres fonctions F du niveau 1. 

Cette classification simple de toutes les fonctions du niveau 1 ne peut conser­
ver d'autres propriétés importantes de ces fonctions, des propriétés telles que: 

• Valeurs entières exactes: mentionnées au niveau O. 

• Symétrie du signe: sinh(-x) = - sinh(x), cosh(-x} = cosh(x), In(1/ x) = 

- In(x) (si 1/ x calculé exactement). 

• Monotonie: si {(x) ;;;;:. {(y) alors F(x) calculé;;;;:' F(y). 

Ces propriétés supplémentaire~ ont ùes implication~ important(~s; par 
exemple TAN(200) = TAN(2000) = TAN(2,OOOO) = ... = TAN (2 X 1099 °) = 
0.3639702343 (corn~ct). Mai8, lu (·ill'aet.{·l'isaiion simp]p eOl1st'l'vel\'sHPntip] dp 
ce qui est bon à savoir. 

Exemple 2 : Explication. 

La secrétaire a fait le calcul suivant: 

(1 + i/n)n-1 
total = (versement) X ~--=-, -..:...-_-

L/n 

où 

versement = 10 centimes 

i = 0.1125 

n = 60 X 60 X 24 X 365 = 31,526,000. 

Elle a calculé 376,877.67 FF sur son HP-15C mais le total donné par la banque 
est: 333,788.35 FF et ce dernier total PHt tout a fait eompatihle avee les résul­
tats obtenus sur de bons calculateurs financiers teb que le HP-l~C, le HP-:17E, 
les HP-38E/38C et le HP-92. A quel niveau s'est produite la diston;ion '? Pas de 
"cumpensation" grave, pas ùe grils cumul d'l'IT('llI'S, .JUSl.l' lI/H' l'r'I'('1I1' d'alTOlltli 

qui a grossi insidieusement. 
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i/n = 0.000000003567351598 

1 + i/n = 1.000000004 

après arrondi à 10 chiffres significatifs. C'est l'erreur d'arrondi la grande res­
ponsable. Ensuite, lorsqu'elle calcule (1 + i/n)n, la secrétaire va obtenir 
(1.000000004)31,536,00 = 1.134445516, résultat faux sur sa seconde position déci­
male. 

Comment calculer la valeur correcte? Uniquement en ne perdant pas tant de 
chiffres de i/n. Observez que: 

aussi pourrions-nous essayer de calculer ce logarithme de façon à ne pas 
perdr'e autant de chiffres. C'est possible sur le HP-15C. 

Pour calculer À.(x) = ln(l + x) précisément pour tout x> -1, même si 1 x 1 est 
très petit: 

1. Calculez u = 1 + x arrondi. 

2. gnsuite 

lx 
À(X) = 

ln(u) x/(u - 1) 

si u = 1" 

si u #: 1. 

Le programme suivant calcule ),.(x) = In(l + x). 

Appuyez sur Affichage 

[illl PjR 1 

ill CLEAR \PRGM 1 000-
illlLBLI ~ 001-42,21,11 Suppose x dans le registre X. 

IENTERI 002- 36 
lI~T@ 003- 36 
IEEXI 004- 26 Place 1 dans le registre X. 

œ 005- 40 Cakule u = 1 + x arronùi. 

lliJ[ill] 006- 4312 Calcule ln(u} (zéro pour u = 1). 

L~.~.YI 007- 34 R(lstaure x dans le reJCÏRtrc x; 
[illli-ST x 1 008- 4336 Rappellé u. 
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Appuyez sur 

IEEXI 
~ITESTI6 

El 
B 
[8J 
[[JIRTNI 
~ IP/RI 

Affichage 

009- 26 
010-43,30, 6 
011- 30 
012- 10 
013- 20 
014- 4332 

.Place 1 dans le registre X. 

Teste u '1= 1. 
Calcule u - 1 quand u '1= 1. 

Calcule xl (u - 1) ou 1/1. 

Calcule Â(x). 

La valeur calculée de u, arrondie correctement par le HP-15C est: u = (1 + e) 

(1 + x) où 1 el < 5 X 10-10
• Si u = 1, alors: 

1 xl = /1/(1 + e) - 11 s;; 5 X 10-10 

aw.isi, dans lequel cas lu série ùe Taylor Â(x) = x (1-}i x+ YJ x2 - • .,) now; indi<lue 

que la valeur correctement arrondie de Â(x) doit être juste x. Sinon, nous allons 

calculer x Â(u - l)/(u - 1) beaucoup plus précisément, au lieu de Â(x). Mais 

À(x)1 x = 1 - Y:z x + !la x2 
- ... varie très lentemen t, si lentement que l'erreur abso­

lue À(x)1 x- À{u-1)/{u-1) n'est pas pire que l'erreur absolue x- (u-1) = e(l 

+ x), et si x"': 1, cette erreur est négligeable par rapport à Â(x)1 x. Quand x> 1, 

alors u -1 est si proche de x que l'erreur est là aussi négligeable; Â(x) est cor- . 

recte sur 9 chiffres signifi~atifs. 

Comme fréquemment dans les analyses des erreurs, l'explication est beaucoup 

plus longue que la procédure simple expliquée, et cache une considération 

importante: les erreurs dans ln(u) et u -1 ont été ignorées lors de l'explication 

parce que nous savions qu'elle serait négligeable. Cette information et la pro­

cédure simple décrite ici, sont non applicables à d'autres calculateurs ou gros 

ordinateurs! Il existe des machines qui calculent In{u) et/ou 1 - u avec une 

erreur absolue minime, mais une erreur relative assez importante lorsque u 

est proche de 1; sur ces machines, les calculs précédents seront faux ou beau­

coup plus compliquées, souvent les deux. (Reportez-vous à l'explication figu­

rant à Niveau 2). 

Revenons aux honoraires de notre secrétaire. En utilisant la procédure simple 

déjà citée pour calculer À(i/n) = In(l + i/n) = 3.567351591 X 10-9
, elle obtiendra 

un résultat intermédiaire meilleur 

(1 + i/n)n = en À(i/n) = 1.119072257 

lequel génère un total correct. 
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Pour comprendre l'erreur pour 320
\ remarquez que ceci est calculé comme 

e2011n(3) = e220.82l.... Pour maintenir l'erreur relative finale à moins de une unité 
sur le 10ème chiffre significatif, 20lln(3) devrait être calculé avec une erreur 
absolue plutôt inférieure à 10-10

, ce qui entraînerait de garder au moins 14 chif­
fres significatifs pour ce résultat intermédIaire. Le calculateur garde 13 chif­
fres sibTJlificatifs pour certains calcul~ intermédiaires internes, mais un 14ième 
chiffre serait vraiment un luxe pour les quelques cas où sa présence serait 
souhaitable. 

Niveau 1C: Niveau 1 des complexes 
La plupart des fonctions arithmétiques sur nombres complexes ne peuvent 
pas garantir 9 ou 10 chiffres significatifs corrects dans chacune des parties 
imaginaire ou réelle, bien que le résultat soit conforme à notre conclusion sur 
les fonctions du niveau 1, pourvu que f, F, et e Roient interprétés comme des 
nombres complexes. En d'autres termes, toute fonction complexe f du niveau 
lC va générer un résultat complexe calculé F - (1 + e)f dont la petite erreur 
relative complexe e doit satisfaire 1 el < 10-9

• Les fonctions complexes du 
niveaulCsont [8], G,~, ILNI, ILOGI, ISIN-11, Icos '1, ITAN-11, ISINH-11, 
ICOSH '1 et ITANH-li. Par conséquent, une fonction telle que Â(z) -ln(l + z) 
peut être caléulée précisément pour tout z par le même programme que celui 
donné précédemment (et avec les mêmes explications). 

Pour comprendre pourquoi les parties réelle et imaginaire d'un résultat com­
plexe risquent de ne pas être correctes individuellement sur 9 ou 10 chiffres 
significatifs, considérez [8J, par exemple: (a + ib) X (c + id) - (ac - bd) + i(ad 
+ be} idéalement. Essayez ce calcul avec a= e= 9.999999998,b-:= 9.999999999 
et d = 9.999999997; la valeur exacte de la partie ré~~le du produit (ae - bd) 
devait donc être: 

(9.999999998)2 - (9~999999999)(9.999999997) 

= 99.999999980000000004 - 99.999999980000000003 

= 10-18 

qui nécessite au moins 20 chiffres significatifs pour le calcul intermédiaire. 
Comme le HP-15C ne garde que 13 chiffres significatifs pour ses résultats 
intermédiaires internes, il donne donc 0 au lieu de 10-18 pour la partie réelle; 
mais cette erreur est négligeable comparée à la partie imaginaire 199.9999999. 
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Niveau 2 : Arrondis corrects pour introduction 
éventuellement faussée 

Fonctions trigonométriques d'angles réels en radians 

Reprenez l'exemple 3 qui indique que la touche [!U du calculateur donne une 
approximation correcte de n avec 10 chiffres significatifs, mais cependant 
légèrement différente de n, si bien que 0 = sin(n) ~ sin ( ~) pour lequel le cal­
culateur donne: 

ISINI(G) = - 4.100000000 X 10-10
• 

Cette valeur calculée n'est pas tout à fait la même que la vraie valeur: 

sin ([!U) = - 4.10206761537356 ... X 10-- 111
• 

Que 1'éeart semble petit (erreur ahsolue infpripllJ'(! à 2.1 X 10-1:1) ou relative­
ment grand (résultat faux au quatrième chiffre significatif) pour un calcula­
teur à 10 chiffres significatifs, il mérite cependant d'être bien compris car 
il laisse présager d'autres erreurs qui, à première vue, sont beaucoup plus 
sérieuses. 

Considérons: 

1014 ~ = 314159265358979.323846264:t.. 

avec tiin(1014n) - 0 et 

1014 X ~ = 314159265400000 

avec ISIN 1 (1014 ~) = 0.7990550814, bien que le vrai 

sin (1014[!U) = - 0.78387 ... 

Le signe (faux) est une erreur trop sérieuse à ignorer; elle semble suggérer un 
défaut du calculateur. Pour comprendre cette erreur dans les fonctions trigo­
nométriques, il faut faire attention aux petites différences entre n et deux 
approximations de n: 

vrai n = 3.1415926535897932384626433 ... 

touche ~ = 3.141592654 
p interne = 3.141592653590 

(ajuste n à 10 chiffres) 
(ajuste n à 13 chiffres). 

Ensuite tout est dit dans la formule suivante pour la valeur calculée: ISIN 1 (x) 
- sin(xn/ p) avec ± 0.6 unités Hur son dernier (lOième) chiffre significatif. 

Plus généralement, si trig(x) est l'une des fonctions sin(x), cos(x) ou tan(x), éva­
luée en mode radians réel, le lIP-lfJC donne: 



Annexe: Précision des calculs numénques 185 

'TRIG 1 (x) = tribr(xn/p) 

Ù ± o.() unités prèH sur HUn 10ièmc chiffre significatif. 
Cette formule a des conséquences pratiques importantes: 

• PUh3QUC ni P"'" 1 - 2.0676 ... X 1 O-la 1 p a= 0.9999999999999342 ... , la valeur 
produite par ,TRIG 1 (x) ne diffère de trig(x) que de ce qui peut être attribué 
à deux perturbations: l'une sur le 10e chiffre significatif du trig(x) sorti, 
l'autre sur le 13c chiffre significatif du x introduit. 
Si x a été calculé et arrondi à 10 chiffres significatifs, l'erreur héritée de 
son 101' chiffre PHt pl'ohahll'nwnt,l'n el' qui l'onccrnl' ~a valeur, plus grande 
que la setonde perturbation ùe ITRIG 1 HUI' le 13c chiffre significatif de x, si 
hien que eette Reeonde pertw·bat.ion p(lut 01.f·(l iJ..'llOrée, à moins que x soit 
considéré comme cunnu ou calculé exactement. 

• Totlte égalité trig-onométrique qui n'uti1iHe paR n explicitement, est satis­
faite uans la limite ue l'arrondi sur le 10 l

' chi.ffre significatif des valeurs cal­
culées dans l'égalité. Par exemple: 

sin2(x) + cos2(x) = 1, donc (ISIN 1 (X»2 + ('cos 1 (X»2 = 1 
sin(x)/c~s(x) = tan(x), donc ISINI(x)1 Icosl(x) = ITANI(x) 

avec chaque résultat calculé corl"(~ct Hur neuf chiffres pour tout x. Remar­
quez que L~@ (x) se perd s'iJ n'y a pas de valeur de x représentable exac­
l.C/l1t"llt U Vl!l! juste 10 l'hiffrcs sig"uiJ'icati l's. J~ t si ~x peut être calculé exac-
leHlent avec x donné: 

sin(2x) = 2sin(x) cos(x), si bien que ISINI(2x) = 2ISINI(x)lcOSI(x) 
sur neuf chiffres significatifs. Essayez la dernière égalité pour x = 52174 
radians: 

ISIN 1 (2x) = - 0.00001100815000, 

2IsINI(x)lcoSI(x) = - 0.00001100815000. 
Remarquez la similarité même si, pour cet x, sin(2x) = 2sin(x)cos(x) = 
- 0.0000110150176 ... est en désaccord avec ISIN! ~2x) à son quatrième 
chiffre significatif. Les mêmes égalités sont satisfaites par les valeurs 
ITRIG 1 (x) comme par les valeurs trig(x) même si ITRIG 1 (x) et trig(x) sont 
différentes. 

• Malgré les deux sortes d'erreurs dans ITRIG l, ses valeurs calculées conser­
vent la relation familière suivante, chaque fois que cela est possible: 
• Symétrie du signe: IcoS 1 (-x) = Icos I{x) 

[sIN-1 (--x) = -ISIN 1 (x) 
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• Monotonie: 

• Inégalité::; limitatives: 

si trig(x) ;;;. trig(y), 

alors ITRIGI(x) ~ ITRIGI(y) 

(pourvu que 1 x - yi < 3) 

[§~J (x)/ x';;;; 1 pour tout x "F 0 

ITANI(x)/x;;" 1 pour 0 < 1 xl < nl2 

-1 ~ ISINI(x) et IcOSI(x).s;;; 1 

pour tout x. 

Quel est la répercu::;::;ion de ce::; prolJriété::; pour lu::; calculH d'ingénieril~? Vous 

n avez pas besoin de vous en préoccuper! 

En général, les calculs d'ingénierie ne seront pa::; affecté::; par la différence 

entre p et n, parce que les conséquences de cette différence dans la formule 

défini::;::;anl ITRIG 1 (x) ci-ÙC8SUH Hont noyéCH par la différence entre 0 et n et 

par l'arrondi habituel inévitable de x ou de trig(x). Dans ces calcul::;, le ratio 

ni p = 0.9999999999999342 ... pourrait être remplacé par 1 sans effets visibles 

::;ur le comportement de ITRIGI. 

Exemple 5 : Phases lunaires. Si la distance entre la terre etla lune était connue 

avec précision, nous pourrions calculer la différence de pha::;e entre le::; signaux 

de radars transmis à puis reflétés par la lune. Dans ce calcul le décalage de 

phase introduit par p =1 n a moins d'effet que la modification de la distance 

terre-lune d'une valeur de l'ordre de l'épaisseur de cette page. De plus, le calcul 

de la force, de la direction et du taux de variation des signaux émis à proximité 

de la lune ou des signaux réfléchis à proximité de la terre, des calculs qui dépen­

dent de la validité permanente des égalités trigonométriques, ne sont pas 

affectés par le fait que p F 'Ir; par contre, ils reposent sur le fait que p est une 

constante (indépendante de x dans la formule pour ITRIG 1 (x)), et que cette 

constante est très proche de n. 

Les fonctions disponibles sur le clavier du HP-15C utilisant p, sont les fonc­

tions trigonométriques ISIN l, Icos 1 et ITAN 1 pour les arguments réels et com-

plexes; les fonctions hyperboliques ISINHI, IcosHI et ITANHI pour les argu­

ments complexes; les opérations complexes I?J, 110% 1 et IZJ ; et enfin la fonc­

tion 1 .. RI réelle et complexe. 

Il vous semble peut-être que nous avons fait beaucoup de bruit pour rien. 

Après une avalanche de formules et d'exemples, nous concluons que l'erreur 

causée par p 1= n est négligeable dans les calculs d'ingénierie et que vous n'avez 

pas à vous en préoccuper. Il.s'agit de notre part d'une forme d'honnêteté intel­

lectuelle: nous nous sommes posé les questions que se pose un analyste des 

erreurs; si ce dernier prend pour hypothèse que les petites erreurs sont négli­

geables, il prend un grand risque. 
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Analyse récurrente de l'erreur 

Jusqu'à la fin des années 50, la plupart des experts en informatique dramati­
saient les conséquences des erreurs d'arrondis. Pour justifier leur attitude, ils 
citaient ùe::; anuly~e~ ù'erreur ùu type ùe l"dh~ faite )Jur un chercheur réputé qui 
concluait que les matrices de dimensions 40 X 40 étaient pratiquement impos­
sibles à inverser numériquement du fait des arrondis. Cependant, cinq ans plus 
tard environ, on pouvait inverser sans problèmes des matrices 100 X 100 et de 
nosjourH, on est capable de résoudre des équations ayant des centaines de mil­
liers d'inconnues. Comment réconcilier notre époque et la conclusion tout à 
fait correcte de ce fameux chercheur? 

Nous comprenons mieux maintenant qu'autrefois pourquoi des formules diffé­
rentes servant à calculer le même résultat peuvent ùifférer terriblement au 
niveau de la dégradation imposée par les erreurs d'arrondis. Par exemple, nous 
('ompl"C'nnnH pourquoj 1c~H éC]uatinnA nOl"mah~H rl(~ .eertains prohlèmes de 
moindres carrés ne peuvent être qu'arithmétiquement résolus et avec une pré­
cision exceptionnelle; c'est ceci que le fameux chercheur a, en fait, prouvé. 
Nous connaissons également des nouvelles procédures (l'une d'elles figure 
page 140) pouvant résoudre les mêmes problèmes de moindres carrés sans 
plus de précision qu'il n'en faut pour représenter les données. Les nouvelles (et 
meilleures) procédures numériques ne sont pas évidentes et auraient pu ne 
jamais être découvertes sans les nouvelles (et meilleures) techniques d'analyse 
des erreurs par lesquelles nous avons appris à distinguer les formules hyper­
sensibles aux erreurs d'arrondis de celles qui ne le sont pas. L'une de ces nou­
velles (en 1957) techniques est appelée "Analyse récurrente de l'erreur" et vous 
l'avez déjà vue en œuvre à deux reprises: tout d'abord, elle a expliqué pourquoi 
la procédure de calcul de "-(x) est suffisamment précise pour chasser l'imprécb 
sion de l'exemple 2; ensuite, elle a expliqué pourquoi les fonctions ITRIG 1 du 
calculateur satisfont de façon très proche les mêmes égalités qui sont satisfai­
tes par des fonctions trig même dans le cas d'arguments x très grands (en 
radians) pour lesquels ITRIG 1 (x) et trig(x) peuvent être très différents. Les 
paragraphes suivants expliquent l'analyse récurrente de l'erreur. 

Considérons un système F destiné à transformer une entrée x en une sortie y = 
f(x). Par exemple, Fpeut être un amplificateur de signal, un filtre, un transduc­
teur, un système de contrôle, une raffinerie, le système économique d'un pays, 
un programme informatique ou un calculateur. L'entrèe et la sortie ne sont pas 
nécessairement des nombres; elles peuvent être des ensembles de nombres ou 
des matrices ou n'importe quel élément quantitatif. Si l'entrée x devait être 



188 An •. .;xe: Préci~ion du~ cillcul~; Ilurnèriqllt!!, 

contaminée par le bruit âx,.la sortiey+ ây = f(x+ âx) serait contaminée par le 

bruit ây = f{x + ÂX) - f(x). 

x-Q--y=f(X) 

Ax 

X~Y=f(X+.Ax) 
Pas de bruit Entrée avec bruit 

Certaines transformations 1 sont stables en présence du bruit d'entrée; elles 

gardent lly relativement petit tant que Âx est relativement petit. D'autreH 

transformations f peuvent être instables en présence du bruit parce que cer­

tains bruits d'entrée âx relativement petits provoquent des perturbations ây 

relativement importantes sur la sortie. En général, le bruit d'entrée âx sera 

modifié d'une certaine façon par la transformation considérée l, pour devenir à 

la sortie un bruit lly, et aucune réduction de ily n'est possible sans une diminu­

tion de llx ou une modification de 1. Ayant accepté 1 comme une spécification ùe 

performance ou comme un objectif de conception, nous devons être d'accord 

sur la façon dont 1 i.nfluence le bruit à son entrée. 

Le système réel F est différent de f désirée à cause du bruit et d'autres écarts 

internes à F. Avant de discuter des conséquences de ce bruit interne nous 

devons trouver une façon de le représenter, une notation particulière. La façon 

la plus simple est d'écrire: 

F (x) = ({+ of)(x) 

où la perturbation of représente le bruit interne de F. 

r--------ï 
1 1 
1 1 

x-_I_~.. ...._I~_y =F(x) 

1 F' L ________ .-J 

Une petite perturbation de sortie (Niveau 1) 

Nous espérons que le terme df est négligeable comparé à f. Si cet espoir est 

satisfait, nous classons F au niveau 1 pour les fins de notre exposé; ceci 
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signifie que le'bruit interne de F peut être expliqué comme une petite addition 
ôf à la sortie f désirée. 

Par exemple, F(x) = 1 LN 1 (x) est classée au niveau 1 parce que les dizaines de 
petites erreurs commises par HP-15C pendant son calcul de F(x) = (f+ ôf)(x) se 
chiffrent à une perturbation ôf(x) inf{~rieurc à 0.6 sur le dernier (lOe) chiffre 
significatif de la sortie désirée f(x) = ln(x). Mais F(x) = 1 SIN 1 (x) n'est pas du 
niveau I pour x radians parce que F(x) peut être trop différent de f(x) = sin(x); 
par exemple F(I014 ~) = 0.799 ... est de signe opposé à f(1014 ~) = 0.784 ... , si 
bien que l'équation F(x) = (f+ ôf)(x) ne peut être vrai que si ôfest de temps en 
temps plutôt supérieur à /, ce qui n'est pas bon. 

Les systèmes réels ressemblent plus souvent à ISINI qu'à ILN I.Le bruit dans la 
plupart des systèmes réels peut se cumuler occasionnellement pour engloutir 
la sortie désirée, au moins pour certaines entrées, et pourtant de tels systèmes 
ne méritent pas nécessairement d'être conùamnés. Généralement un système 
réel Ffonctionne de façon fiable parce que son bruit interne, bien que quelque­
fois important, n'a jamais de conséquences plus préjudiciables que celles qui 
pourraient être provoquées par quelque petite perturbation ôx sur le signal 
d'entrée x. De tels systèmes peuvent être représentés par: 

F(x) = (f + ôf)(x + ôf) 

où ôf est toujours petit comparé à f et où ôx est toujours inférieur (ou compa­
rable) au bruit Llx attendu pour contaminer x. Les deux termes ôfet ôx du bruit 
sont des bruits hypothétiques introduits pour expliquer diverses sources de 
bruits réellement attachées à F. Certains de ces bruits apparaissent comme 
des petites perturbations ôx tolérables pour l'entrée - d'où le terme "analyse 
arrière des erreurs". Un tel système F, dont le bruit peut être comptabilisé par 
deux petites perturbations tolérables, est donc classé au niveau 2 pour les fins 
de notre exposé. 

r---------------. 

x l ~ [ ô; l-T:_Y=F(X) 

1 F 1 L _______________ ~ 

Petites perturbations d'entrée et de sortie (Niveau 2) 
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Aucune différence n'apparaîtra à première vue entre le niveau 1 et le niveau 2 

pour les lecteurs habitués aux systèmes linéaires et aux petits sig"naux parce 

que les erreurs de ces systèmes peuvent se situer indifféremment au niveau tle 

la sortie ou de l'entrée. Cependant, d'autres systèmes plus classiques, numéri­

ques ou non linéaires, n'admettent pas une réattribution arbitraire du bruit de 

sortie au bruit d'entrée (ni vice-versa). 

Par exemple, la totalité de l'erreur dans Icos 1 peut-eHe être attribuée, en écri­

vant simplement 1 cos 1 (x) = cos(x + ôx), à une perturbation d'entrée ôx petite 

par rapport à l'entrée x? Non, quand x est très petit. Par exemple, quand x s'ap­

proche de 10-5 radians, cos(x) arrive très près de 0.99999999995 et doit être 

alors arrondi soit à 1 = cos(O) soit à 0.9999999999 = cos(1.414 X 10-5
). Par con­

séquent, Icos 1 (x) = cos(x + ôx) est vraie seulement si ôx est autorisée à de 

relativement grandes valeurs, presque aussi grandes que x quand x est très 

petit. Si nous souhaitons expliquer l'erreur dans Icos 1 en n'utilisant que ùes 

perturbations relativement petit.l's, il nOUH en faut au m'oinH deux: l'une, une 

perturbation ôx= (-6.58 ... X 10-14
) x, inférieure à l'arrondi de l'entrée; l'autre, 

ùans lu sortie, comparable à l'arrondi à ce niveau et telle que [ÇQ§] (x) = (cos + 
ôcos)(x + ôx) pour une certaine inconnue 1 ôcus 1 .0; (6 X 10 III) 1 COH 1. 

COlllllle [t-os], tout HYHt{"nw F du nivPllll 2 (,Ht. ('!U·lH'1{>I·iH(. pal' dp\lx fWtitPH 

tolérances seulement - appelon8-les cet 17 - qui l'éHument ee lIu'i1 VOUH Hlllïït. dp 

connaître I:\ur ce hruit intürnp du HYHtèmc, La tolérance e impose une con­

trainte t:!ur un bruit hypothétique à la Bortie, 1 ôfl ..;; el fi, et 17 contient un uruit 

d'entrée, 1 ô 1 .c; 1] 1 xl, qui peuvent apparaître dans une formule simple <.lu 

type: 

F(x) = (f + ôf)(x + ôx) pour 'ôf' ~ el fi et 1 ôx 1 s;;; 1] 1 xl. 

L'objectif de l'analyse récurrente de l'erreur est de s'assurer que la totalité du 

bruit interne de F peut réellement être ramenée à une formule aussi simple 

avec des petites tolérances e et 1] satisfaümntes. Au mieux, l'analyse r~currenle 

de l'erreur confirme que la valeur réalisée F(x) est à peine différente de la 

valeur idéale f(x + ôx) qui aurait été produite par une entrée x + ôx à peine 

différente de l'entrée x réelle, en donnant à l'expression "à peine" un sens quan­

titatif (e et 17). Mais l'analyse récurrente de l'erreur n'est valable que pour les 

systèmes F conçus avec soin pour assurer que toute source de bruit interne est 

équivalente au pire à une perturbation d'entrée ou de sortie petite de fa~~on 

. tolérable. Les premiers essais à la conception du système, particulièrement les 

programmes de calcul numérique, souffrent souvent de bruit interne d'une 

manière plus compliquée et plus désabTJ'éable, comme le montre l'exemple 

suivant. 
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Exemple 6: ta plus petite racine d'une équation quadratique. Les deux raci­
nes x et y de l'équation quadratique c - 2bz + az'!. = 0 sont réelles quand d = 
b'!. - ac n'est pas négative. Alors, la plus petite racine y peut être considérée 
comme une fonction y = {(a,' b, c) des coefficients de l'équation quadratique: 

{ 

(h \ -~I signe (b})/a 
/(lI.h.('1 

((' hl') 

si a =1- 0 

dans les autres cas. 

Bi cette formule était traduite dans un programme F(a, b, c) destiné à calculer 
f( a, b, c), chaque fois que ac serait si petit par rapport à b2 que la valeur calculée 
de d s'arrondirait à b2

, ce programme pourrait donner F = 0 même pour 1 1= O. 
Une telle erreur ne peut pas être expliquée par l'analyse récurrente de l'erreur 
parce qu'aucune perturbation relativement petite sur chaque coefficient a, b 
et c ne pourrait mener c vers zéro comme HIe faudrait pour mettre à zéro la 
plus petite racine y. D'autre part, la formule algébrique équivalente: 

l( CI. h .c,) 

{(' (h ' \ cl signe(b)) 

\11 
si diviseur 1= 0 

dans les autres cas. 

St! traduit dans un }ll'ogTamn1l' Fbl'alH'()lIP pills pl'{'cis, ùont let; erreurs ne ~wnt 
IHUi plus gênantes qu'une perturlmtion HUI' ll~ dCl'nier(lOO) chiffre tdgnificutif ùe 
c. L'un de ces prObTJ'ammes est lh;té page 20fi et doit être utilIsé dans les cas cou­
rants en ingénierie, où la plus petite racine y est demandée avec une brrande 
précision malgré le fait que l'autre racine, non désirée, de l'équation quadrati­
que soit relativement grande. 

Presque toutes les fonctions du lIP-HiC ont été connues pour que l'analyse 
récurrente ùe l'erreur tienne compte de façon satisfaisante de leurs erreurs. 
Les exceptions sont 1 SOLVE l, lli] et les touches statistiques ~, 1 L.R.I et ~ 
qui risquent des errances dans des cas difficiles. Sinon, toute fonction F du cal­
culat.eur destiné à produire f(x}, produit à la place une valeur F{x) pas plus éloi­
gnée de I{x) que si le premier x avait été perturbé à x+ ôx avec 1 ôx 1 --" 1 xl, 
et I(x+ ôx) avait été perturbée à (f+ ôf)(x+ ôx) avec 1 ôfl -- e 1 Il. Les toléran­
ces 1] et e varient un petit peu d'une fonction à une autre; en gras, ~ous pouvons 
dire que: 

1] = 0 et e < lO-! pour toutes les fonctions de niveau 1, 

1] < 1 O-~ et e < 6 X 10-)1) pOUl' les :tutn's fOlletions, réelles et complexes. 
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Dans le cas des opérations matricielles, les valeurs absolues 1 ôx l,Ix l, 1 dfl et 

1 fi doivent être remplacées par des normes matricielles Ilôxl~ IIxlL Ilôfll et Il fil 
respectivement, qui sont décrites dans le chapitre 4 et évaluées à l'aide de 

1 MATRIX 17 ou 1 MATRIX 18. Toutes les fonctions matricielles ne fibrurant pas au 

niveau 1, pmit';ent dunH le niv(,llu 2, avP(' nppl'oximativelTIemt: 

pour les opérations mairicielles autreH 

que le déterminant IMATRlxI9, B et Il/xl. 

pour le déterminant 1 MATRIX 19, ~ et El 
avec un diviseur matriciel. 

où n est la plus grande dimension de toute matrice impliquée dam; l'opération. 

Les implications d'une analyse récurrente de l'erreur ne semblent simples que 

lorsque la donnée x d'entrée arrive contaminée par un bruit Llx inévitable ct 

sans corrélation, comme cela est souvent le cas. Lorsque nous désirolll:; donc 

calculer f(x), ce que nous pouvom; eHpérer de mieux l'Ht d'obtenir' f(x + Llx), 

mais en fait nous obtenons F(x+ Llx) = (f+ ôf)(x+ Llx+ ôx), où 1 ôfl E; el fi et 

1 ôx 1 -- 71(X). 

Ce que nous obtenons est à peine pire que le meilleur à espérer, pourvu que les 

tolérances e et Tl soient suffisamment petites, surtout si 1 Llx 1 est susceptible 

d'être au moins aussi grande que 1] 1 xl. Naturellement, le meilleur à espérer 

peut être très mauvais, particulièrement si f possède une sinhrularité pluH 

proche de x que les tolérances sur les perturbations Llx ei ôx de x. 

Analyse récurrente de l'erreur et singularités 

Le mot "singularité" se réfère à la fois à une valeùr spéciale de l'argument x et à 

la façon dont f(x) s'égare lorsque x s'approche de cette valeur spéciale. Dans la 

plupart des cas, f(x) ou sa première dérivée f'(x) peuvent devenir infinies ou 

osciller violemment lorsque x s'approche de la singularité. Quelquefois, les sin­

gularités de ln 1 fi sont appelées singularités de f, incluant par là les zéros de f 

parmi ses sinbrularités; ceci est valable lorsque la précision relative d'un calcul 

de f est en litige, comme nous le verrons. En ce qui nous concerne, la significa­

tion de "singularité" peut rester un petit peu va~,rue. 

Ce que nous voulons habituellement faire avec les singularités est de les éviter 

ou de les neutraliser. Par exemple, la fonction: 

c(x)= { 

(1 - cos x)/ x 2 si x :j:. 0 

1/2 dans les autres cas 

! 
1 
1 

1 

1 

j 

1 

1 
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n'a pas de singularité pour x = 0 même si ses composantes 1- cos x et x2 (en 
fait, leurs logarithmes) se comportent singulièrement lorsque x s'approche de 
O. Les singularités des ·composantes ont des effets indésirables sur le pro­
gramme calculant c(x). La plupart ùe ces effets sont neutralisés par le choix 
d'unp mpi1l(,Ul'e formulp: 

Hi x/2 1= 0 {~ (Sin (X/2»)~ 
c(x) = 2 x/2 

1/2 uans les autres cas. 

Maintenant, la Hin~"..ularité peut être évitée en totalité en testant si x/2 = 0 uans 
le pr06rramme de calcul de c{x). 

L'analyse l'écurl'enle ùe l'erreur complique les sinhrularités d'une façon plus 
facile à illustrer avec la fonction Â(x) = ln( 1 + x) qui a servi à résoudre le pro­
blèmp de l'exemple 2. La procédure Ut.i1iHPC dans ec cas calculait u = 1 + x 
(arrondi) = 1 + x + Llx. Alors: 

{

X . 
À(x) = 

ln( u) x/(u -1) 

si u = 1 

dans les autres cas. 

Celte procédure expluite le fait que À.{x)/ x a une Sinb'1llarité susceptible d'être 
enlevée pour x = 0, ce qui signifie que Â(x)/ x varie de façon continue et s'ap­
proche de 1 lorsque x s'approche de O. Par conséquent, À.(x)/ x est relativement 
bien représenté par Â(x + Llx)/(x + Llx)'lorsque 1 Llx 1 < 10-9

, d'où: 

À(x) = x(À(x)/ x) = x(À(x + ~x)/(x + ~x» = x(ln(u)/(u-l», 

tous calculés précisément parce que 1 LN 1 est dans le niveau 1. Que pourrait-il 
se passer si 1 LN 1 était dans le niveau 2? 

Si 1 LN 1 était dans le niveau 2, une analyse récurrente de l'erreur "réussie" mon­
trerait que, pour des arguments u proches de 1, 1 LN 1 (u) = In(u+ ôu) avec 1 ôu 1 

< 10-9
, Alors, la procédure ci-dessus produirait, non pas x(ln(u)/(u - 1)), 

mais: 

x(ln( u + <5u)/( u -1) = x À(x + ~X + <5u)/(x + ~x) 
x+Âx+<5u = x(À(x + ~x + <5u)/(x + ~x + <5u»----­

x+Ax, 

= x(À(x)/ x)(1 + <5u/(x + ~x» 

= À(x)(l + <5u/(x + .lx» . 
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. Quand I.x + Âx 1 n'est pas beaucoup plus grand que 10-u, la dernière expres­
sion peut être terriblement différente de À(x). Par conséquent, la procédure qui 
a servi à résoudre l'exemple 2 ne marchera pas sur.des machines pour lesquel­
les 1 LN 1 n'est pas de niveau 1. De telles machines existent, et avec elles, la pro­
cédure échoue pour certaines entrées inoffen~üves par ailleurs. Des échecs 
similaires se produisent sur des machines qui produisent (u + ô 'u) -1 au lieu de 
u - 1 lorsque leur fonction B est de niveau 2 et non pas de niveau 1. Et ces 
machines qui produisent ln{u+ ôu)/{u+ ô'u-l) au lieu de ln{u)/{u-l), parce 
que 1 LN 1 et El sont toutes deux de niveau 2, seraient doublement vulnérables 
si ce n'est pour un accident mal compris qui lie habituellement les deux erreurs 
récurrentes ou et ô'u de telle façon que seulement la moitié des chiffres signifi­
catifs de À calculé, et non pas tous, sont faux. 

En résumé 

Maintenant que la complexité introduite par l'analyse récurrente ùe l'erreur 
dans les singularités a été exposée, il est temps de résumer, de simplifier et de 
consolider ce qui a été dit jusqu'id. 

• De nombreuses procédures numériques produisent des résultats trop 
faux pour être justifiés par n'importe quelle analyse des erreurs, récur­
rente ou pas. 

• Quelques procédures numériques produisent des résultats seulement 
légèrement plus mauvais que ceux qui auraient été obtenus par résolu­
tion exacte d'un problème ne différant que légèrement du problème consi­
déré. Ces procédures, classées au niveau 2 en ce qui nous concerne, sont 
largement acceptées .comme satisfaisante du point de vue de l'analyse 
récurrente de l'erreur. 

• Les procédures du niveau 2 peuvent produire des résultat.s relativement 
écartés de ceux qui auraient été obtenus si aucune erreur n'avait été com­
mise, mais des erreurs importantes peuvent survenir uniquement pour 
des données relativement proches d'une singularité de la fonction en 
cours de calcul. 

• Les procédures du niveau 1 produisent des résultats relativement précis 
quelle que soit la proximité d'une singularité. De telles procédures sont 
rares mais préférables, parce que leurs résultats sont plus faciles à inter­
préter, particulièrement lorsque plusieurs variables sont impliquées. 

Un exemple simple illustre ces quatre points. 

Exemple 7: L'angle d'un triangle. La loi cosinus du triangle dit que: 

,2 = p2 + q'2 - 2 pq cos (J 

1 

1 

1 

1 
t 
1 

1 
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pour la figure ci-dessous. Les calculs scientifiques nécessitent souvent que 
l'angle () soit calculé à partir de valeurs, p, q et r des longueurs des côtés du 
triangle, Ce calcul est faisable pour que 0 < p ~ q + r, 0 < q .; p + r et 
o ~ r~ p + q, et ensuite: 

sinon, aucun triangle n'existe avec ces longueurs de côtés, ou bien 8 = 0/0 est 
indéterminé. 

La for'muIe précédente pour () définit une fonction () = {(p, q, r) et aussi d'une 
façon naturelle, un programme F(p, q, r) destiné à calculer cette fonction. Ce 
programme est appelé "A" ci-dessous, avec des résultats FA(P, q, r) tabulés 
pour certaines entrées p, q et r correspondant aux triangles très aplatis pour 
lesquels la formule souffre énormément de l'arrondi. L'absence de fiabilité de . 
cette formule est bien connue de même que celle de la formule algébrique équi­
valente, mais plus fiable: () = f(P, q, r) = 2 tan -1,1 abl{cs) où s = (P+ q+ r)/2, a 
= s - p, b = s - q et c = s - r. Un autre programme F(p, q, r) basé sur cette meil­
leure formle sera appelé "B" ci-dessous, avec des résultats FB(P, q, r} pour les 
entrées sélectionnées. Apparemment, FB n'est pas beaucoup plus fiable que 
FA- La plupart des résultats décevants pourraient être expliqués par l'analyse 
récurrente de l'erreur si nous supposons que les calculs donnentF(p, q, r} = f(P 
+ ôp, q + ôq, r + ôr) pour des perturbations inconnues mais petites satisfai­
sant 1 ôp 1 < 10-9 1 pl, etc. Même si cette explication était vraie, elle aurait des 
conséquences troublantes et désagréables parce que les angles des triangles 
très aplatis peuvent varier relativement beaucoup quand les côtés sont relati­
vement peu perturbés; {(P, q, r) est relativement instable pour les entrées mar­
ginales, 

En réalité l'explication précédente est fausse. Aucune analyse récuITente de 
l'erreur ne pourrait tenir compte des résultats tabulés pour FA etFB dans le cas 
1 ci-dessous à moins que des perturhationH ôp, ôq et ôr n'aient été autorisées 
pour corrompre le cinquième chiffre significatif de l'entrée, changeant 1 en 
1.0001 ou en 0.9999. Ceci fait trop de bruit à tolérer dans un calcul sur 10 chif­
fres. Un meilleur programme, et de loin, est Fe; il a le label "C" et est expliqué 
un peu plus loin. 



Annexe: t ;ision des calculs nurnenques 

1 trois dernières lignes de chaque compartiment du tableau ci-dessous, indi­

~nt les résultats de trois programmes "A", "B" et "C" basés sur trois formules 

;'érentes F(p, q, r), toutes algébriquement équivalentes à: 

(J = f(P, q, r) = cOS-1((p2 + q2 - r 2)/(2pq) 

Résultats différents de trois programmes: FA' Fs et Fe. 

. Cas 1 Cas 2 Cas 3 

Ip 1. 9.999999996 10 
1 

iq 1. 9.999999994 5.000000001 

r 1.00005 X 10-5 3 X 10-9 15. 

!F.l. O. O. 180. 

IFH 5.73072 X 10-4 Error 0 180. 

:Fe 5.72986 X 10-4 1.28117 X 10-8 179.9985965 
1 

Cas 4 Cas 5 Cas 6 

p 0.527864055 9.999999996 9.999999999 

q 9.472135941 3 X 10-9 9.999999999 
, 

r 9.999999996 9.999999994 20. 

FA ErrorO 48.18968509 180. 

FM Error 0 ErrorO 180. 

Fe 180. 48.18968510 ErrorO 

Cas 7 Cas 8 Cas 9 

p 1.00002 3.162277662 3.162277662 

q 1.00002 2.3 X 10-9 1.5555 X 10-6 

r 2.00004 3.162277661 3.162277661 

1 FA Error 0 90. 90. 
1 

: FB 180. 70.52877936 89.96318706 

Fe 180. 64.22853822 89.96315156 
1 

J • 

bur utiliser un programme, introduisez p 1 ENTER 1 q 1 ENTER 1 r, exécutez le pro-

ramme "A", "B" ou "CI' et attendez l'approximation F du programme à (J - f. 
!eulle programme "C" est fiable. 

1 

1 

1 
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Affichage 

000-
001-42,21,11 
002- 43 11 
003- 34 
004- 43 11 
005- 4336 
006- 4333 
007- 20 
008- 34 
009- 4336 
010- 43 11 
011- 40 
012- 4333 
013- 30 
014- 34 
015- 36 
016- 40 
017- 10 
018- 4324 
019- 4332 
020-42,21,12 
021- 44 1 
022- 36 
023- 43 33 
024-44,40, 1 
025- 43 33 
026-44,40, 1 
027- 2 
028-44,10, 1 
029- 33 
030-45,30, 1 
031- 34 
032-45,30, 1 
033- 20 
034- 11 
035- 34 
036-45,30, 1 
037 -45,20, 1 
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Appuyez sur Affichage 

ICHsl 038- 16 

[KJ 039- 11 

ml,+pJ 040- 43 1 

ŒtJ 041- 33 

0 042- 20 

!iJ[Àf"n 043- 4332 

II] 1 LBL I[ÇJ 044-42.21.13 

ISToIO 045- 44 0 

IR+I 046- 33 

Wlx~YI 047- 4310 

~ 048- 34 

ISToll 049- 44 1 

ISTolGo 050-44.40, 0 

~ 051- 34 

ISTol0O 052-44,40, 0 

G 053- 30 

mlR+ 1 054- 4333 

ISToI81. 055-44,30. 1 

WI LSTx ! 056- 4336 

IENTERI 057- 36 

1 RCLI[!]1 058-45,40, 1 

1.Ji 1 059- 11 

[[]lx~lo 060-42, 4, 0 

QXJ 061- 11 

ISTol0O 062-44,20, 0 

WlcLxl 063- 4335 

G 064- 40 

ŒiJ 065- 33 

G 066- 40 

ITJlx~ll 067-42, 4, 1 

WIR+1 068- 4333 

WILSTxl 069- 4336 

wlx~YI 070- 43 10 

1 GTO \.9 071- 22 .9 

ŒIJ 072- 33 

WITESTI2 073-43.30, 2 

cm 074- 11 

~. 075- 34 

1 GTO 1.8 076- 22 .8 

[I]ILBLI.9 077-42.21, .9 
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Appuyez sur Affichage 

078-43.30. 2 
079- 11 
080- 43 33 
081 -42.21 .. 8 
082- 30 
083-
084-
085-
086-
087-
088-
089-
090-
091-
092-
093-
094-' 

l' 
45 1 

11 
20 

45 0 
43 1 
4320 

10 
34 
36 
40 

4332 

Les résultats F c(P, q, r) sont corrects jusqu'à au moins neuf chiffres significa­
tifs. Ils sont obtenus à partir d'un programme "C" très fiable bien que plutôt 
plus long que les programmes "A" et "B" non fiables. La méthode pour le pro­
gramme "C" est la suivante. 

l. 

~. 

3. 

4. 

Si p < q, échange de registre pour que p;';;' q. 

Calcul ue b =, (p - q) + r, C = (p - r) + q et s = (p + r) + q. 

Calcul de: 

{

, - (p - q) 

a = q - (p - r) si r > q ~ 0 

Error 0 dans les autres cas (pas de triangle). 

Calcul de Fc(p, q, r) = 2 tan-1(-v'abI/CS) 

Cette procédure fournit F c(P, q, r) = () correct sur à peu près neuf chiffres signi­
ficatifs, un résultat certainement plus facile à utiliser et à interpréter que les 
résultats donnés par les autres formules mieux connues. Mais le travail interne 
de ~ette procédure est difficile à expliquer; en effet, cette procédure peut mal 
fonctionner sur certains calculateurs ou ordinateurs. 
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Cette procédure ne marche impeccablement que sur certaines machines 
comme le HP-15C, dont l'opération de soustraction est libre d'erreurs évitables 
et bénéficie ainsi de la propriété suivante: chaque fois que.y est compris entre 
xl2 et 2x, la soustraction n'introduit pas d'erreur d'arrondi dans la valeur calcu­
lée de x-y. Par conséquent, chaque fois que la compensation a pu laisser ùes 
erreurs relativement grandes, contaminant a, b ou c, la différence pertinente 
(p ~ q) ou (p - r) en vient à être libre d'erreur et la compensation devient avan­
tageuse! 

La compensation reste un problème sur les machines qui calculent (x + ôr)­
(y + ôy) au lieu de x - y même si ni ôx ni ôy n'atteint la valeur 1 sur le dernier 
chiffre significatif de x et de y respectivement. Ces machines donnent 
Fc(P, q, r) = f(P + ôp, q + ôq, r+ ôr) avec des perturbations ôp, ôq et ôr sur les 
chiffres de terminaison, qui semblent toujours ~égligeables du point de vue de 
l'analyse récurrente de l'erreur mais qui peuvent avoir des conséquences 
déconcertantes. Par exemple, seul l'un des triplets (p, q, r) ou (p +-ôp, q + ôq, r 
+ ôr), pas les deux, peut constituer les longueurs des côtés d'un triangle fai­
sable, !li bien que Fe pourrait générer un message ù'erreui' alors qu'il ne le 
devrait pas, ou vice-versa, sur ces machines. 

Analyse récurrente de l'erreur d'une inversion de matrice 

La mesure habituelle de la grandeur d'une matrice X est une norme IIXI~ telle 
qu'elle est calculée par IMATRlxl7 ou par IMATRlxI8; nous utiliserons la 
norme antérieure, la norme des rangs: 

Ilxll =m~Llxijl 
l . ) . 

dans les explications suivantes. Cette norme a des propriétés similaires à cel­
les de la longueur d'un vecteur, ainsi que la propriété de multiplication: 

IIXYII ~ IIXIIIIYI~ 

Quand l'équation Ax = b est résolue numériquement avec une matrice A don­
née n X n et un v~cteur-colorine h, la solution calculée est un vectèur-colonne c 
qui satisfait à peu près la même équation que x, c'est-à-dire: 

(A + ôA)c = b 

avec \lôA\I < 10-9~IAI~ 
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Par conséquent, le résidu b - Ac = (dA)c est toujours relativement petit; très 
souvent, la norme résiduelle IIb- Acllest inférieure àllb-Ailloùiestobtenu à 
partir de la vraie solution x par arrondi de chacun de ses éléments à dix chiffres 
sibrnificatif;. Donc, c ne peut différer de x de façon significative que sillA -illest 
relativement grand par rapport à I/IiAII; 

IIx - cil = IIA-l(b - Ac)1! 
~ liA-III IIâAII IIcll 
~ lO-9n IIcll/a(A) 

où a(A) = 1/(IIAIIIIA -liD est l'inverse du nombre de condition et mesure à quelle 
proximité relative de A se situe la matrice singulière S la plus proche, puisque 

min liA - sil = a(A) IIAII. 
det(S)=O 

Ces relations et quelques-unes de leurs conséquences sont expliquées de façon 
approfondie au chapitre 4. 

Le calcul de A -1 est plus compliquée. Chaque colonne de la matrice inverse cal­
eu}{!c Il/xl (A) est la colonne correspondante d'une certaine matrice (A + 
dA)-l, mais chaque colonne a son propre petit dA. Par conséquent, aucun petit 
dA, avec IIdAl1 =a;;;; 10-9~IAII n'a besoin d'exister en satisfaisant à peu près: 

Un tel dA existe habituellement, mais pas toujours. Ceci ne contrarie pas la 
précédente affirmation que les opérations 11/xl et B matricielles sont de 
niveau 2; elles sont couvertes par la seconde affirmation du résumé de la page 
194. La précision de 11/xl (A) peut être décrite dans les termes d'inverses de 
toutes les matrices A +.1A si proches deA quell.1A"S;;; lo-9nJIAII; la pire de ces 
matrices (A + .1A)-l est au moins aussi loin de A -1 en norme que la matrice 
11/ x 1 (A) calculée. La figure ci-dessous illustre la situation. 

\ , 
1 

(A + .1Ar1 est là 

X 
- - 11/xl (A) est là 
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.(1 

, Quand A + ÂA se promène à travers les matrices avec IIÂAlI au moins aussi 
grande que l'arrondi dans IIAIL son inverse (A + ÂA)-l doit errer de façon au 
moins aussi éloignée de A -1 que la distance entre A -1 et la matrice [IE) (A) cal­
culée. Tous ces mouvements sont très petits sauf si A est trop proche d'une 
matrice sinf,ruIière, dans quel cas la matrice doit être pré-conùitionnée loin ùe 
la proximité d'une t:>inbrularité (voir chalJitre 4). 

Si parmi ces matrices A + ÂA voisines se dissimulent des matrices sinbrulières, 
plusieurs {A + ÂA)-l et Il/xl (A) risque d'être très différentes de A- I

. Cepen­
dant, la norme résiduelle sera toujours relativement petite: 

_IIA_{_A_+_A_' A_)_-l_-_I_II ~_IIA_A_II ~ lO-f)n 
liA Il Il (A + ~Arlll -..;: IIAII -..;: . 

Cette dernière inégalité ret:>te vraie (IUanU ~ (A) l'emplal'l~ (A + ÂA)-I. 

Si A est suffisamment loin d'une sinf,rularité, de façon que: 

alors: 

IIA-1 - (A + aArl1l II~AIIII(A + .lAf11i 
~-----~~--.;~.-..;.;..~---~-

II(A_+ ÂArl11 l-IILlAIIII(A + aArlli 
10-9n IIAIIII(A + AArl11 

~ . 
1-10-9n IlAIIII(A + aAflll 

Cette inégalité reste également vraie quant Il/xl (A) remplace (A + ÂA)-l, et 
alors tout ce qui est à droite peut être calculé, si bien que l'erreur dans Il/xl (A) 
ne peut excéder une quantité évaluable. En d'autres termes, le rayon du cercle 
en pointillés sur la figure'précédente peut être calculé. 

Les estimations ci-dessus peuvent sembler pessimistes. Cependant, pour mon­
trer pourquoi il n'existe généralement rien de mieux en plus vrai, considérons 
la matrice: 

0.00002 -50,000 50,000.03 -45 

0 50,000 x= -50,000.03 45 

0 0 0.00002 -50,000.03 

0 0 0 52,000 
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et 

50,000 50,000 p q 

x- 1 = o 0.00002 50,000.03 48,076.98077 .. . 

o 0 50,000 48,076.95192 .. . 

o 0 0 0.00001923076923 ... 

Idéalement, p = q = 0, mais l'approximation de X-1 par le HP-15C, c'est-à-dire 
11/ x 1 (X), a q = 9,643.269231, soit une erreur relative 

/lX-} -IIZ!J(X)II _ (' 
/Ix-III - O.09b4 ... , 

de près de 10 %. D'autre part, si X + 6X ne diffère de X que dans sa seconde 
co)ontw où - GO,OOO et GO,OOO Hont remplacés respectivement par 
- 50,000.000002 et 49,999.999998 (altérés sur le 11 C chiffre significatif), alors 
(X + ÔX)-I nc~ diffère beaueoup dp X- I qlW dam; la meHure oùp = 0 et q = 0 doi­
vent être remplacés par p = 10,000.00600 ... et q = 9,615.396154 ... d'où: 

IIx- l - (X + ~xrlll 
IIx-11l 0.196 ... ; 

L'erreur relative dans (X + ÂX)-l est pratiquement le double de l'erreur rela­
tive dans Il/xl (X). N'essayez pas de calculer (X + ÔX)-l directement, mais utili-
sez plutôt la formule: . 

(X - cbTrl = X-1 + X-1cbTX-1 / (1 - bTX-1c), 

qui est valide pour tout vecteur-colonne c et tout vecteur-rang bT, et particuliè­
rement pour 

Malgré que: 

1 

1 
c = et b T = [0 0.000002 0 0]. 

o 
o 

on peuL montrer qu'aucune perturbation très petite ÔX n'existe sur le dernier 
chiffre pour laquelle (X + ÔX)-I est identique à Il/xl (X) sur plus de cinq chif­
fres significatifs dans la norme. 
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Naturellement, aucune de ces horreurs ne se produirait si X n'était pas si sinbru­
Hère. Puisque IIXlIlx-111> 1010, une modification dans X s'élevant à moins d'une 
unité sur le 10e chiffre significatif de IIXll pourrait rendre X sinbrulière; une 
telle modification pourrait remplacer l'un des éléments 0.00002 de la diagonale 
de X par zéro. PuisqueXest si singulière, la précision de 11/xl (X) dans ce cas est 
plutôt plus importante que ce que l'un allemlait. Ce qui l'ail tlc ccl. PXPll1pll~ un 
cas particulier est une mauvaise échelle; X a été obtenue à partir d'une matrice 
tout à fait convenable: 

2. -5. 5.000003 -4.5 X 10-12 

x= a 5. -5.000003 4.5 X 10-12 

0 0 2. -5.000003 

a a 0 5.2 

en multipliant chaque rang et chaque colonne parune puissance de 10 soigneu­
sement choisie. La division compensatrice des colonnes et des rangs de la 
matrice non moins convenable: " 

0.5 0.5 p q 

X- 1 = 0 0.2 0.5000003 0.4807698077 ... 

0 0 0.5 0.4807695192 ... 

0 0 0 0.1923076923 ... 

a donné X-\ avec p = q = O. Le HP-15C calcule 11/ x 1 (X) = X- 1 sauf que q = 0 est 
remplacé par q = 9.6 X 10-11

, une modification mineure. Ceci illustre la façon 
dramatique dont l'échelle peut affecter la qualité perçue des résultats calculés. 
(Reportez-vous au chapitre 4 pour des explications détaillées sur l'échelle). 

L'analyse récurrente de l'erreur est-elle une bonne chose? 

La seule bonne chol:;e à dire sur l'analyse r(~eurrente de 1'enl'ur CHt qu'('I1(' pxp1i­
que les erreurs internes d'une façon Qui libère l'utilisateur d'un HYHtèmc de la 
nécessité d'une connaissance totale du fonctionnement interne du système. 
Étant données deux tolérances, l'une sur le bruit d'entrée ôx et l'autre sur le 
bruit de sortie ôl, l'utilisateur peut analyser les conséquences du bruit interne 
dans: 

F(x) = (1 + ôf)(x + ôx) 

en étudiant les propriétés de propagation du bruit du système idéal 1 sans réfé­
rence plus approfondie à la structure interne peut-être complexe de F. 



il 

II 

Annexe: t-'reCISlon des calculs "riumr'lues ~u:> " 

Mais l'analyse récurrente de l'erreur n'est pas une panacée; elle peut expliquer 
les erreurs mais pas les excuser. Parce qu'elle complique les calculs en cas de 
sinbrularités, nous avons essayé d'éviter d'y recourir chaque fois que nous le 
pouvions. Si nous avions su comment éliminer le besoin de recourir à l'analyse 
récurrente de l'erreur pour chaque fonction intégrée du calculateur, à un coût 
.·aiHonnablp na1.un·lIpmlmt, nOllH l'auriOl1H fait. POUl" simplifier lu vie de tout 10 
monde. Mais cette simplicité fait appel à trop de rapidité et de mémoire pour la 
technologie actuelle. L'exemple suivant illustre les compromis à réaliser. 

Exemple ·6 (suite). Le programme figurant ci-dessous résoud l'équation qua­
dratique réelle c - 2bz + az2 = 0 pour des racines réelles ou complexes. 

Pour utiliser ce programme, introduisez les constantes réelles dans la pile 
(c! ENTER 1 b! ENTER 1 a) et exécutez le programme "A". 

Les racines x et y vont apparaître dans les registres X et Y. Si ces racines sont 
complexes, l'indicateur C s'allume pour signaler que le mode complexe a été 
activé. Le programme utilise les labels "A" et ".9" et le registre d'index (mais 
aucun des registres 0 à .9); le programme peut donc être appelé immédiate­
ment par d'autres programmes en tant que sous-programme". Les programmes 
appelant (après désarmement de l'indicateur 8 si nécessaire) peuvent décou­
vrir si les racines sont réelles ou complexes par simple test de l'indicateurS qui 
n'est armé que si les racines sont complexes. 

Les racines x et y sont si ordonnées que 1 x 1 ~ 1 yi sauf peut-être lorsque 1 xl 
et 1 y 1 sont identiques sur plus de neuf chiffres significatifs. Les racines sont 
aus~i précises que si le coefficient c ayant ôté d'abord perturbé sur son IOe 

chiffre significatif, l'équation perturbée aurait été ré~olue exactement et ses 
racines arrondies à 10 chiffres significatifs. Par conséquent, les racines calcu­
lées sont identiques aux racines de la quadratique données sur au moins cinq 
chiffres Sib'llificatifs. Plus généralement, si le~ racines x et y sont semblables 
sur n chiffres sibl1lificatifs pour n positif~ 5, elles sont correctes sur au moins 
10- n chiffres significatifs sauf en cas ùe ùépm;sement de capacité supérieur 
ou inférieur. 

Appuyez sur Affichage 

[illl P/R 1 
[]CLEAR !PRGMI 000-
m ILBLI ~ 001-42,21, 11 
IENTERI 002- 36 
[ill[[j] 003- 4333 
[8J 004- 20 
[ij] ILSTxl 005- 4336 
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~ 006- 34 
[]][MJ 007- 4333 
1 STO IUJ 008- 4425 
[[][Z) 009- 43 11 

G 010- 30 
WITESTl1 011-43.30. 1 
1 GTO 1.9 012- 22 .9 
ICHSI 013- 16 
Ti"Q 014- 11 
O](iIJ[O 016-42, 4.26 
mcrEsIJ2 016-43,30,· 2 

IRellBCO 017-46.30,25 
WI TEST I3 018-43.30,. 3 
1 RCLIŒJO] 019-~6,40,26 
w[n:sTlo 020-43,30, 0 
G 021- 10 
m[LST,~J 022- 4336 
[]JŒl) 023- 4333 

Gl 024- 10 
W!RTNI 026- 4332 
ml LBL 1.9 026-42.21, .9 
r?J 027- 11 

ŒëIJm 028- 4526 
wŒ+J 029- 4333 
G 030- 10 
~ 031- 34 
wlLSTxJ 032-· 4336 
G 033- 10 
fI][] ·034- 4225 
IENTERI 035- 36 
1]]1 Re ~ lm 1 036- 4230 
ICHSI 037- 16 
fI]IRe~lml 038- 4230 
[TIIRTNI 039- 4332 
[TIIP/RI 

La méthode utilise d = b2 
- ac. 

Si d < 0, les racines font partie d'une paire complexe conjuguée: 

(b/ a) ± i-r::::ë1/ a. 
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Si d ~ 0, les racines sont des nombres x et y réels calculés par: 

s = b + .,fd signe (b) 

x = s/a 

{ 

c/s 
y= 

o 
si s'" 0 

si s -r o. 

Lo ellkul de s évite lino comlwnHution ueHtl·uetive. 

~uaJltl u...:,. 0 f h, lu plu~ gTuuùc l'uciul! x(4ui ucvruitôLre oo ) rencontre une I.Hvi­
sion pur ~61'o (Error 0) qui peuL être effacée en appuyant trois fois sur [Al] 
pou/" (!xhiucl' la lJlu~ lwUte racitwy correctement calculée. Mais quanu les trois 
cot\ffil'ientli diIiPUl'uislil!lll, le tllessug'e Error 0 shrnule qua las deux racines 
1'10,11 /l,.hit."/ti",IH, 

Les résultats de plusieurs cas sont rassemblés ci-dessous . 

c 

b 

a 

Racines 

c 

b 

a 

Racines 

Cas 1 

3 

2 

1 

Cas 2 

4 

o 
1 

Cas 3 

1 

10-13 

. _-----------
Cas 4 

654,321 

654,322 

654,323 

Réelles 

3 

Complexes 

o + 2i 

Réelles 

2 X 1013 

0.5 

Réelles 

0.9999984717 

0.9999984717 1 

Cas 5 

46,152,709 

735,246 

11,713 

Réelles 

62.77179203 

62.77179203 

Cas 6 

12,066,163 

987,644 

80,841 

Complexes 

12.21711755 ± iO.001377461 
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Les trois derniers cas montrent la sévérité de résultats de la perturbation sur le 
10~ chiffre significatif de tout coefficient de toute équation quadratique dont les 
racines coïncident presque. Les racines correctes dans ces eaH Hont les suivanteR: 

Cas 4: 1 et 0.9999969434 
CaH 5: (j2.7717920:1 ± iR.537!) X lo-a 
Cas 6: 12.21711755 ± iO.001374514. 

En dépit des erreurs sur le cinquième chiffre sib'11ificatif des résultats, le sous-
. programme "A" est suffisant pour presque toutes les applications d'équations 
quadratiques dans les domaines de l'ingénierie et,de la recherche. Ses résultats 
sont corrects sur neuf chiffres significatifs pour la plupart des données, avec c, 
b et a représentables exactement à l'aide de seulement cinq chiffres significa­
tifs; et les racines calculées sont correctes sur au moins cinq chiffres significa­
tifs dans tous les cas parce qu'elles ne peuvent pas être pires que si les données 
avaient été introduites avec des erreurs sur le 10c chiffre significatif. Néan­
moins, certains lecteurs vont se sentir mal à l'aise avec des résultats calculés 
sur 10 chiffres significatifs mais corrects sur 5 seulement. Ne serait-ce que 
pour simplifier leur compréhension de la relation entre les données d'entrée et 
les résultats sortis, ils peuvent encore préférer des racines correctes sur neuf 
chiffres significatifs dans tous les cas. 
Il existe des programmes qui, tout en tenant compte que delO chiffres signifi­
catifs pendant l'arithmétique, vont calculer correctement les racines de toute 
équation quadratique sur au moins neuf chiffres significatifs, quelle que soit la 
proximité de ces racines. Ces programmes calculés d = b2 

- ac par quelque 
subterfuge équivalent au traitement de 20 chiffres significatifs chaque fois 
que b2 et ac se "compensent" presque, mais ces programmes sont beaucoup 
plus longs et beaucoup plus lents que le petit sous-programme "A" donné pré­
cédemment. Le sous-programme "B" ci-dessous qui utilise l'un de ces subterfu­
ges·, est un programme très court qui garantit neuf chiffres significatifs cor­
rects sur un calculateur 10 chiffres. Il utilise les labels "B", ".7" et ".8", les regis­
tres Ro et R9 et le registre d'index. Pour l'utiliser, introduisez 
c 1 ENTER 1 b 1 ENTER 1 a,·exécutez le sous-programme "B" et attendez, comme pré­
cédemment, vos résultats. 

Appuyez sur Affichage 

rm Ip/RI 
rn CLEAR 1 PRGM 1 

rn ILBLI [[] 
ISTol rn 
ŒIJ 

000-
001-42,21,12 
002-
003-

4425 
33 

• Le programme "E" exploite une propriété intéressante dl'S louehes 1 ~lll.t 1 ~t ri par laquelle cer­
Lains (~alculs peuvent sc faire sur 13 ehiffl'('~ sig-nificatifs avant J'arrllnll ù 10 e 1 rn~s. 
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Appuyez sur Affichage 

ISTolo 004- 44 "() 

ISTols 005- 44 8 
Liil'J 006- 34 
[5TO Il 007- 44 1 
ISTOls 008- 44 9 
[]JI SCI) 2 009-42, 8, 2 
ITJI lBll.S 010-42,21, .8 
[OCLEAR [}J 011- 4232 
IRClla 012- 45 8 
ISTQJ7 013- 44 7 
IRCllGŒJ 014-45.10.25 
WIRNOI 015- 4334 
rRcC)Q] 016- 4525 
Wl~-I 017- 4349 

.IRClls 018- 45 9 
[Olx~17 019-42. 4. 7 
[!IïJ 020- 34 
IRcllS 021- 45 8 
WI~-I 022- 4349 
Œ!J 023- 33 
WI~-I 024- 4349 
IRCll7 025- 45 7 
WIABSI 026- 43 16 
IRClls 027- 45 9 
WIABSI 028- 43 16 
Wlx~YI 029- 4310 
IGTOIŒJ 030- 22 12 
1 ENTER 1 031- 36 
wlRtl 032- 4333 
ISTOls 033- 44 8 
IRCll7 034- 45 7 
ISTOls 035- 44 9 
WIABSI 036- 43 16 
IEEXI 037- 26 
2 038- 2 
0 039- 0 

0 040- 20 
1 Rell1 041- 45 1 
WIABsl 042- 43 16 
W~ 043- 43 10 
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Appuyez sur Affichage 

044- 22.8 
045-42,21,12 
046-42, 7, 9 
047- 45 8 
048- 43 11 
049- 44 7 
050- 4525 
051- 45 9 
052- 4349 
053- 45 7 
054-43,30, 2 
055- 22.7 
056- 11 
057-42., 4, 0 
058-43,30, 2 
059-45,30, 0 
060-43,30, 3 
061-45,40, 0 
062-42, 4, 1 
063-43,30, 0 
064-45,10, 1 
065- 45 1 
066-45,10,26 
067- 43 32 
068-42,21, .7 
069- 16 
070- 11 
071-45,10,25 
072- .36 
073- 16 
074- 46 0 
076- 46 25 
076- 10 
077- 34 
078- 4225 
079- 36 
080- 4333 
081- 42 25 
082- 43 32 



Annexe: PrécisIOn des calculs numÉ :..les - :lll-

La précision de ce programme est phénoménale: meilleure que neuf chiffres 
significatifs même pour la partie imaginaire de racines complexes pratique­
ment indistinctes (comme lorsque c = 4,877,lG3,849 et b = 4,877,262,613 et 
a = 4,877,361,379); si les racines sont des entiers, réels ou complexes, et si a = 
1, alors les racines sont calculées exactement (comme lorsque 
(' = 1.219.:~:~2.9B7 X 101. b = 111.111.G Pt. (J = n,Mais le programme CAt coû­
teux; il utilil:le plul:l de deux fois plus de mémoire pour le programme etles don­
nées que le sous-programme UA", et prend ueaucoup plus de temps pour réali­
:-WI" unt' pl'(\cision SUI' B ('!Jiff"PH Hhrnifil'ut.ifs Hli !inti de fi dans quelques cas où 
cela n'est pas toujours important parce que les coefficients de l'équation qua­
drat.ique peuvent diffidlement être ealeulés exaetement. Si l'un des coeffi­
cients c, b ou a est incertain de une unité sur son 10~ chiffre significatif, le sous­
programme "B" en fait trop. Le sous-programme "B" doit être considéré 
comme un outil de luxe à n'utiliser que dans des circonstances exceptionnelles, 
laissant au sous-programme "A" la gestion des traitements de tous les jours. 
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Index alphabétique 

Les numéros ùe page en gras renvoient aux pages princilJales. 

A 
------- ------------_._--.-.-.-.. ---- _ .... -.-_. --~- -_. - -

Analyse récurrente de l'erreur, 187-211 
Analyse de flux de trésorerie escomptés, 39-44 
Analyse de la variance, 133-140 
Angle d'un triangle, 194-199 
Annuité à échoir, 27-28 
Anlluité urùinuire, 27 
Annuité, 26-39 

B 
Branche principale, 69,72 
Bruit d'entrée, 187-192 
Bruit de sortie, 188-192 

Calcul itératif, 103-104, 119-121 
Calculateur cassé, 172, 175-176 
Capitalisation, 26-39 
Cartographie, 89 
Champ d'intensité, 17-25 
Champ, 39 
Champs électrostatique, 59 
Changement de signe, 8 
Compensation, 176-178, 200, 207 
Composantes complexes, précision, 74 
Contour d'intégrale, 85-89 
Contraintes sur les moindres carrés, 111, 115-116, 143 
Courbe équipotentielle, 89-95 

]) 

Déclinaison, 11-15 
Décomposition en matrices triangulaires, 96-98, 117, 118 

Label, 97 
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Décroissance, 160 
Déflation, 10 
Degrés de liberté, 132 

Index alp'~'1étique . 213 

Dépassement de capacité inférieur, 50-51, 118, 179 
Dépassement de capacité supérieur, 179 
n('J'iv6e, 10, 17-20, 192 
Déterminant, 97-98, 118 
Diagramme de flux, 28,28-44 
Durée de calcul d'intégrale, 49-55 

Échantillon~ge, CiII, 46-47, 50, 56, 73 
f~chantill()nnag-e, [~9_~vËl, 7-9, 73 
l~dwlle d'un système, 107 
Échelle d'une matrice, 104-107, 204 
Équation à racines difficiles, 16-17, 80-85 
Équation caractéristique, 148 
Équation avec terme de retard, 81-85 
Équation financière, 29, 39 
Équation quadratique à racines complexes, 205-211 
Équations 

A plusieurs raeines, 10 
l~quivalents, 9-10 
Résolues sans précision, 10 
Sur système non linéaire, 122-128 

Équations complexes, résolution d'un grand système, 128-131 
Équations normales aUbrmentées, 111 
Équations normales pondérées, 111 
Error 0, 29, 196, 199, 207 
Error 1, 162, 167 
Error 4, 29, 40 
Error 8, 9, 23 
Erreur absolue, 173, 182 
Erreur d'arrondi, 47, 49,111,113,118,172-211 
Erreur relative complexe, 183 
Erreur, 173 

Absolue, 173, 182 
Conditions d'erreur, 172-178 
Dans les éléments d'une matrice, 100-101 
Hiérarchie, 178 
Relative, 173, 182, 183 
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Etitimation répétée, 23-25 
. ExtrèmeR d'une fonetion. 17·25 

F 

Factorisation' orthogonale, 113-116, 140-148 
Fonction Gamma, 65-68 
Fonction complémentaire d'erreur, 60-64 
Fonction complémentaire de distribution normale, 60-64 
Fonctions complexes à plusieurs valeurs, 69-72 
Fonction d'erreur, 60-64 

Complémentarité, 60-64 
Fonctions mathématiques complexes, 68-72 
Fonction potentielle complexe, 89, 95 
Fonctions trigonométriques, 184-186 
Format d'affichage, 45-46, 48 
Forme canonique de Jordan, 155 
Forme rectangulaire, 68 

G 

Gradient, 160, 162 

1 

Incertitude de matrice, 100 
Incertitude pour [ilJ, 45-46 
Indicat~ur C, 205 
Indicateur du mode trigonométrique, 68 
Indices des prix à,la consommation, 137-140,147-148 
Intégrale impropre, 55-60 
Intégration en mode complexe, 73 
Intégration numérique avec [ill, 45-64 
Intervalle d'intégration, subdivision, 50-54, 58 
Inverse d'une fonction, 69 
Inverse d'uneomatrice, 98,101-102,110, 118, 187 
Itération inverse, 155 

L 

Lignes de courant, 89-94 
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Matriee anti-symétriquc, 149 
Matrice augmentée, 141 
Matrice covariance, 131 
Matrice d'identité, 119 
Matrice mal conditionnée, 98-102, 107, 155 
Matrice non-singulière, 101-102, 117 
Matrice presque singulière, 107, 117-118, 201,.204 
Matrice singulière, 101-102, 117-118, 201 
Matrice symétrique, 148-149 
Matrice triangulaire inférieure, 96 
Matrice triangulaire supérieure, 96, 113, 114, 141 
Maxima d'une fonction, 17-25, 160 
Méthode Doolittle, 97 
Méthode Horner, Il, 12 
Méthode d'itération de Newton, 80-82, 122 
Méthode de Romberg, 46 
Racines 

Complexes, 16-17 
D'un nombre complexe, 69, 78-80 
D'une équation complexe, 80-85 
D'une équation quadratique, 191, 205-211 
Équations avec plusieurs, 10 
Imprécises, 9-10 
Multiples, 10 
Non trouvées, 9, 29, 92 

1 ndex alpha ... ~.:ique 215 

Recherchées par la méthode numérique, 6, 6-44 
Méthode de la sécante, 7 
Méthode numérique de recherche de racines, 6, 6-44 
Minima d'une fonction, 17-25, 160 
Mode complexe, 65-95 

ISOLVEI et lli), 73 
Algorithme, 6-9, 73 

Modèle linéaire, 131 
Modes trigonométriques, 68 
Moindres carrés pondérés, 111, 115, 143 
Moindres carrés, 110-116, 131-148, 187 

Contraintes linéaires, 111, 115-116, 143 
Pondérés, 111, 115, 143 

Monotonie, 180, 186 
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N 

Niveau 00, 179 
Niveau 0, 178 
Niveau l, 179-183, 190, 194 
Niveau le, 183 
Niveau 2, 184-211 
Nombre complexe, racines nièmes, 6-9, 78-80 
Nombre complexe, stockage et rappel, 76-78 
Nombre de conditionnement, 98-102, 107, 201 
Nombre de chiffres corrects, 103, 121 
N orme de Frobenius, 99 
Norme colonne, 99 

o 
Optimisation, 160-171 

p 

Pente, 20-22 
Permutation sur les rangs, 97, 117 
Phases lun~ires, 186 
Pi, 173, 184-186 

..Plus petite racine d'une équation quadratique, 191, 205-211 
Point critique, 160, 162, 163 
Point d'extrémité, intégrale échantillonnée à 46-47, 56 
Point-selle, 162 
Polynômes, 10-15 
Point trop court, 174 
Précision 

De l'expression à intégrer, 47-49 
Des calculs numériques, 172, 211 
Des résolutions de système linéaire, 103-104 
En mode complexe, 73-75 

Précision étendue, 47, 104, 208 
Pré conditionnement d'un système, 107-110 
Problèmes financiers, 26-44 

Q ---------_.------_._ ... -._- ..• - "'-"' .. _- .•....... _. __ ... _--_ .... _ .. __ .,. 

Queue d'une fonction (branche infinie), 57-58 
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H 
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Racines imprécises, 9-10 
Radians en mode complexe, 68 
RangR Ruccessifs, 140-148 
Rappel de nombres complexes, 76-78 
l{aLio F, 132-140 
Recherche de courbe, 161 
Recherche de limites, 161, 162 
Réduction d'intervalle, 161, 162 
Règle de signes de Descartes, 10-11 
Rébrression linéaire multiple, 131 
Remboursement libératoire, 27, 29, 36 
Remboursement, 26-39 
Résidu, 103-104, 110, 132, 201 
IU'Holu Lion <.l'équation !Jour <.lm; racinCH cotnplexcH, 80-85 
Résolution d'un système d'équations, 15-17, 98, 100-101, 118, 122-128 
Résolution d'un système d'équationH non-linéaires, 122-128 
Résolutions d'un système linéaire, précision, 103-104 
Résonance, 46 
Résultat "correctement" arrondis, 179-183 

Introduction faussée, 184-211 

s 
Séries de Taylor, 182 
Situations physiques, 47-49 
1 SOLVE l, 6-44 
Somme des carrés de la régression ajustée à la moyenne, 134 
Somme des carrés des résidus, 132-140 
Somme des carrés, 132, 140 
Sous-intervalles 
Substitution, 46 
Symétrie du signe, 180, 185 
Système d'équations mal conditionnées, 104-110 
Système incrémenté, 142 

T 

Tableau d'analyse de la variance, 133, 134, 140 
Taux d'intérêt, 26-44 
Taux de rendement escompté, 39 
'l'aux de rentabilité interne, 39-44 
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Test sans biais, 122-123 
,!'héorème binomial, 176 
Trànsformation de variables, 54-55 
Triangle, angle d'un, 194-199 

Valeur actuelle nette, 39-44 
Équation, 39 

Valeur actuelle, 26-44 
Valeur future, 26-39 
Valeur principale, 69-72 
Valeur propre, 148-160 

Stockage, 159-160 
Variables, transformation, 54 -55 
Vecteur propre, 149, 154-160 

z 
Zéro du polynôme, 10 



Hewlett-Packard France: 
Société Anonyme au capital de 124000000 F, régie par les articles 118 à 150 de la loi 

sur les sociétés commerciales. RCS, Corbeil Essonnes B 709805030 
Siège social Division commerciale d'Orsay: ZI de Courtabœuf 

91947 Les Ullis Cedex, tél. (619077825 
Bureau commercial d'Aix-en-Provence: ZI Mercure B 

Rue Berthelot, 13763 Les Milles Cedex, t~1. (421594102 
Bureau commercial d'Alençon: 

64, rue Murchand-Süilhlllt, 61000 Alençon, tél. 16 (3~1 290442 
Bureau commercial de Besançon: 

28, rue de la République, 25000 Besançon, tél. (81) 831622 
Bureau commercial·Blanc-Mesnil: 

Rue de la Commune de Paris, BP 300, 93153 Le Blanc-Mesnil, tél. (1) 8654452 
Bureau commercial de Bordeaux: 

Avenue du Président-Kennedy, 33700 Mérignac, tél. (56) 340084 
Bureau commercial de Brest: 

13, place Napoléon-III, 29000 Brest, tél. (98) 033835 
Bureau commercial d'Évry: . 

Tour Lorraine, Boulevard de France, 91035 Évry Cedex, tél. (6) 0779660 
Bureau commercial de Lille: 

Rue Van Gogh, Immeuble Péricentre, 59658 Villeneuve-d'ascq Cedex, tél. (20) 914125 
Bureau commercial de Lyon: 

Chemin des Mouilles, BP 162, 69130 Écully, tél. (7) 8338125 
Bureau commercial de Metz: 

Garolor, ZAC d'Ennecy, 57640 Vigy, tél. (8) 7712022 
Bureau commercial de Nantes: 

Immeuble "Les 3 B", Nouveau chemin de la garde, ZAC de Bois-Briand, 
44086 Nllnluli Cudux, tûl. (40) 503222 

Bureau commercial d'Orléans:: 
125, rue du Faubourg-Bannier, 45000 Orléans, tél. (38) 6801 63 

Bureau de Paris-Porte Maillot: 
15, boulevard de l'Amiral Bruix, 75782 Paris 16, tél. (1) 5021220 

Bureau commercial de Pau: 
124, boulevard Tourasse, 64000 Pau, tél. (59) 803802 

Bureau commercial de Rennes: 
2, allé~ de la Bourgonnette, 35100 Rennes, tél. (99) 514244 

Bureau commercial de Rouen: 
98, avenue de Bretagne, 76100 Rouen, tél. (35) 635766 

Bureau commercial de Strasbourg: 
4, rue Thomas-Mann, BP 56, 67033 Strasbourg Cedex, tél. (88) 285646 

Bureau commercial de Toulouse: 
Péricentre de Cépière, 20 chemin de la Cépière, 31081 Toulouse Cedex, tél. (61) 401112 

Bureau commercial de Valence: 
9, rue Baudin, 26000 Valence, tél. (75) 427616 

Hewlett-Packllrd Belgium S.A./N.V.: 
100, boulevard de la Woluwe, B-1200 Brussels, tél. (02) 7623200 

Hewlett-Packard Schweiz AG: 
Château bloc 19, CH-1219 Le Lignon-Genève, tél. (022) 960322 

Hewlett-Packard S.A., pour les pays du bassin méditerranéen, Afrique du Nord et Moyen-Orient: 
Atrina Center, 32 Kiffisias Avenue Paradissos-Amaroussion, Athènes Grèce, tél. 8080337/429/359/1741 

Hewlett-Packard Canada Ltd: 
17500 Trans Canada Highway South Service Road, Kirkland-Québec H9J2M5 Canada, tél. (514) 6974232 

Hewlett-Packard S.A., Direction pour l'Europe: 
150, route du Nant-d'Avril, P.O. Box - CH-1217 Meyrin 2, Genève Suisse 

00015-9001401-83-CP 

rli~ HEWLETT 
a!~ PACKARD 

Imprimé il Singapour 



 
 
 
 
 
 
 
 
 

Scan Copyright © 
The Museum of HP Calculators 

www.hpmuseum.org 
 

Original content used with permission. 
 

Thank you for supporting the Museum of HP 
Calculators by purchasing this Scan! 

 
Please to not make copies of this scan or 
make it available on file sharing services.


