-PACKARD

f "HP-15C

| MANUEL
DES FONCTIONS MATHEMATIQUES
DE HAUT NIVEAU

HEWLETL'L




ws

Il M Ly

HEWLETT
Eﬁﬁ] PACKARD
W50

Miunuel des Fonetions Mathématiques
de Hautl Niveau

Janvielj 1983

© HEWLETT-PACKARD FRANCE, 1983
Texte protégé par la législation
en vigueur en matiére
de propriété littéraire
et dans tous les pays.

00015-90014 Imprimé a Singapour



.\
able des maticres

Introduction, oo 5
Chapitre 1 Vtilisation de jsouve o000 0 6
Recherche des racines d'une équation ........................ 6
Echantillonnage par [SOLVE] ......vvveeeeenene 7
Situations aprobléme ....................... e, 9
Equations faciles et équations difficiles ..................... 9
EQuations imprécises. ... 10
Equations & plusieurs racines .............................. 10
Utilisation de avec des polynémes .................... 10
Résolution d'un systéme d’équations ....................... .. 15
Recherche des extrémes locaux d'une fonction . ............... 17
Utilisationde ladérivée. ....................... .. ... ... 17
Utilisation d’une pente approchée .................. ... ... .. 20
Utilisation d’une estimation répétée ........................ 23
Applications...... ... .. i 26
Annuités et capitalisation............... ... ... ... ... .. ... 26

- Analyse de flux de trésorerie escomptés .................... 39
Chapitee 2: Uiilisation de [ 000 0 45
Intégration numérique avec [73] ... 45
Précision de la fonction aintégrer ................. ... ... ... 47
Fonctions relatives a des phénoménes physiques ............ 47
Erreurs d'arrondis dans les calculs internes. ................. 49
Reéduction de la duréeducaleul .......................... ... 49
Subdivision de I'intervalle d'intégration ................... .. 50
Transformation de variables............................. ... 54
Evaluation d'intégrales difficiles.............................. 55
Application. ... .. ..o 60
Chapitre 3 Caleuls en mode complese 0 65
Utilisation en mode complexe.............. et ee e 65
Modes trigonomeétriques. ...................o 68
Définitions des fonctions mathématiques ..................... 68
Opérations arithmétiques.................ooovninn oo, 69
Fonctions aunevaleur.................. ... ... ... .. 69

L e T Sy PRt S

.-



Table des matieres 3

Fonctions a plusieurs valeurs..................... oo ... 69
Utilisation de [SOLVE] et de [J;] en mode complexe ............ 73
Précision en mode complexe .................cuuieiii . 73
ApPlications ... ... ... 76

Stockage et rappel de nombres complexes

alaidedunematrice................oouueiinnn - 76

Calcul des niémes racines d'un nombre complexe........... 78

Résolution d'une équation pour ses racines complexes ...... 80

Intégralesdecontour..............ooouiu i, 85

Potentiels complexes .............oovuneiiii . 89

Chapitre 12 Operations matricielles oo o 0 0 96
Décomposition en matrices triangulaires ..................... 96

Matrices mal conditionnées et nombre de conditionnement.... 98
Précision des solutions numériques des systémes linéaires .... 103

Simplification d'équations difficiles .......................... 104
Mise al'échelle....... ... oo, 104
Préconditionnement .............. ... ... .. . 107

Méthode des moindres carrés ...............ovenononenn .. 110
Equations normales ................ooeieie ~...110
Factorisation orthogonale ................................. 113

Matrices singuliéres et presque singuliéres ................... 117

Applications ....... ... i 119
Construction de la matrice identité......................... 119
Correction de la solution par une itération .................. 119
Résolution d'un systéme d'équations non linéaires .. ........ 122
Résolution d'un grand systéme d’équations complexes ...... 128
Moindres carrés par les équations normales ................ 131

. Moindres carrés par les rangs successifs ................... 140
Valeurs propres d’une matrice réelle symétrique ............ 148
Vecteurs propres d'une matrice réelle symétrique ........... 154
Optimisation....... ... ... i i 160

Annexe ! Précision des caleuls numériques, ... oo 172

Interprétation des erreurs .................. . ... .. 172

Hiérarchiedes erreurs .............ooouuiunn i, 178

Niveau O:pasderreur..........oouuunmuneun 178

Niveau e : dépassements de capacité ........................ 179

Niveau 1: arrondis corrects oupresque ...................... 179

Niveau 1C: niveau 1 des complexes ..... e e, 183

Niveau 2: arrondis corrects pour introduction éventuellement
fauss@e. .. ... 184



.

TN L

Iy

4 | Table des n.atiéres

Fonctions trigonométriques d’angles réels en radians ... .... 184
Analyse récurrente de l'erreur................... ... 187
Analyse récurrente de I'erreur et singularités ................. 192
Enrésumé........... ... T 194
Analyse récurrente de I'erreur d’une inversion de matrice...... 200
L'analyse récurrente de I'erreur est-elle une bonne chose?..... 204
MACX. e 212

- — g e g

Y Sy

P



Introduction

Le HP-15C est le premier calculateur programmable offrant autant de fonc-
tions scientifiques disponibles 4 tout moment, ot que vous soyez:

¢ Calcul de racines d’équations.
e Calcul d'intégrales finies.
e Calculs sur nombres complexes.

¢ Calcul matriciel.

Le manuel d’utilisation du HP-15C vous explique comment effectuer toutes
ces opérations. Il contient de nombreux exemples illustrant 'utilisation de ces
fonctions. Le manuel d’utilisation du HP-15C est votre manuel de référence.
Le présent manuel, manuel des fonctions mathématiques de haut niveau du
HP-15C, compléte le manuel d’utilisation du HP-15C en décrivant comment
sont effectuées les fonctions étendues du calculateur HP-15C et en expliquant
comment interpréter les résultats. :

Ce manuel contient également de nombreux programmes (applications). Ces
programmes ont une double utilité. Premiérement, ils suggérent des méthodes
d’utilisation des fonctions étendues pour que vous puissiez mettre en ceuvre
ces fonctions plus efficacement dans vos applications. Deuxidmement, ces
programmes couvrant une vaste gamme d’applications, vous pouvez les utili-
ser tels quels éventuellement.

Remarque: Les explications données ici supposent que vous
connaissiez déja les principes généraux d’utilisation des fonc-
tions étendues et que les fonctions mathématiques décrites ici
vous sont familiéres.



Chapitre 1

, Utilisation de [SOLVE

L’algorithme [SOLVE] offre une méthode trés efficace de recherche desracines
d’une équation. Ce chapitre décrit la méthode numérique utilisée par [SOLVE

et donne des conseils pratiques sur l'utilisation de [SOLVE dans toute une
variété de cas.

Recherche des racines d’une équation

En général, aucune technique numérique ne garantit dans tous les cas la réso-
lution d’une équation méme si elle a des racines. Comme on utilise un nombre
fini de chiffres, la fonction calculée peut &tre différente de la fonction théori-
que dans certains intervalles de x ot il peut &tre impossible de représenter
exactemerit les racines ou de distinguer entre les zéros et les discontinuités de

P

la fonction utilisée. La fonction n’étant échantillonnée que sur un nombre fini

- de positions, il est aussi possible de coneclure & tort que I'équation n’a pas de
- racines.

Malgré ces limites inhérentes 4 toutes les méthodes humeériques de recherche

- desracines, une méthode efficace, comme celle de [SOLVE ,doit obéir aux prin-

cipes suivants:

¢ Siune racine réelle existe et peut étre représentée exactement par le cal-
culateur, elle sera calculée. Notez que la fonction calculée peut étre en
dépassement de capacité inférieur (et mise & zéro) pour certaines valeurs
de x autres que les vraies racines.

* Siune racine réelle existe mais ne peut &tre représentée exactement par
le calculateur, la valeur calculée ne doit &tre différente de la vraie racine
que sur le dernier chiffre significatif,

¢ Si aucune racine réelle nexiste, un message d'erreur doit &tre affiché.

Lalgorithme de [SOLVE] a été congu pour répondre & ces principes. En outre, il
“est facile & utiliser et mobilise peu de mémoire. Enfin, comme [SOLVE] dansun

programme peut détecter les situations de racines introuvables, vos program-

~mes conservent leurs automatismes que [SOLVE] trouve ou non une racine.

6
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CHAPITRE 1: Utilisation de’|SC_Ej | 7

Echantillonnage par| SOLVE

Le programme n’utilise que cingregistres de mémoire allouable surle
HP-15C. Ces cinq registres contiennent trois valeurs d’échantillonnage (a, b, et
c) et deux valeurs précédentes de la fonction (f{a) et f{b)) pendant que le sous-
programme de la fonction calcule flc).

L'efficacité de réside dansla fagon dont est définie la valeur suivante ¢
d’échantillonnage.

Normalement, [SOLVE] utilise la méthode de la sécante pour choisir 1a valeur *

suivante. Cette méthode utilise les valeurs de a, de b, de fla) et de f{b) pour
déterminer une valeur de ¢ pour laquelle fic) est proche de zéro.

f(x) ' /

Si ¢ n'est pas une racine mais si f(c) est plus prés de zéro que f{b), alors b est
changé en a, c est changé en b et le processus de détermination de ¢ recom-
_mence. Lorsque la représentation graphique de f(x) est régulidre et si les
valeurs initiales de a et de b sont proches d’'une racine simple, laméthode de la
sécante converge rapidement vers une racine. :

Cependant dans certaines conditions, la méthode sécante ne suggére pas de
valeur suivante capable d’arréter la recherche ou de la faire aboutir & une
valeur proche d’une racine: c'est le cas d’'un changement de signe ou d’une
amplitude plus petite. Dans ce cas, utilise une approche différente.

Si la sécante calculée est presque horizontale, modifie la méthode de
la sécante pour sassurerque | e—b | =100 | @ — b |.Ce procédé est trésimpor-
tant car il réduit parailleurs la tendance de la méthode de la sécante a s'égarer lors-
que les erreurs d’arrondis deviennent significatives i proximité d’'une racine.
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f(x)

e, Qg = — e

"

D b o - - ———

Si a déja trouvé des valeurs de a et de b telles que fla) et f{b) sont de
signe opposé, elle modifie la méthode de la sécante pour garantir que c se
trouve toujours dans Pintervalle contenant le changement de signe. Ceci
garantit que I'intervalle de recherche diminue avec chaque itération, donnant

toujours une racine lorsqu’elle existe.

f(x)

4

Si n'a pas rencontré de changement de signe et si une valeur cd’échan-
tillonnage ne donne pas une valeur flc) damplitude réduite, alors
ajuste une parabole aux valeurs a, b, et ¢ de la fonetion. [SOLVE] recherche
ensuite la valeur d a laquelle la parabole a son maximum ou son minimum,
transforme d en a, et continue lu recherche par la méthode de | sécante.
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Chapilre 1: Utilisation ue [SOLVE| 9

n‘abandonne la recherche d’une racine que si trois ajustements para-
boliques successifs ne donnent aucune diminution de Pamplitude de la fonetion
ou si d = b. Dans ces deux cas, le calculateur affiche Error 8. Comme b repré-
sente le point de plus petite amplitude de la fonction échantillonnée, b et f(b)
sont renvoyées respectivement dansles registres X et 7. Le registre Y contient
soit la valeur de a, soit la valeur de ¢. Avec cette information, vous pouvez déci-
der de la suite des opérations. Ou vous recommencez la recherche 13 ol vous
laviez laissée, ou vous orientez différemment la recherche, ou vous décidez
que f{d) est siproche de 0 que x = b est une racine, ou vous transformez 'équa-
tion en une autre équation, ou enfin vous concluez qu’il n’y a pas de racine.

Situations a probleme

Les explications suivantes sont utiles lorsque vous travaillez sur des proble-
mes pouvant mener a des résultats trompeurs. Des racines imprécises sont
obtenues lorsque les valeurs de la fonction calculée sont différentes des
valeurs de la fonction désirée. Vous pouvez la plupart du temps éviter cette dif-
ficulté, si vous savez comment identifier I'imprécision et la réduire.

Equations faciles et équations difficiles

Les deux équations f{x) = 0 et ¢®— 1= 0 ont les mémes racines réelles, mais
selon les cas, une sera toujours plus facile 3 résoudre numériquement que l'autre.
Par exemple, lorsque fix)=6x— x'—1,1a premiére équation est la plus facile.
Lorsque flx) =1n(6x — x%), 1a seconde est la plus facile. La différence dépend du
comportement du graphe de la fonqtion, particuliérement & proximité d’'une
racine. '

fix)=6x—x*—1 flx)=exp(6x —x*—1)—1
4 604
{ X [ } e X
0 2 O] 2
-4 —60-"-
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En général, toute équation est 'une d’une famille infinie d'équations équiva-
lentes ayant les mémes racines réelles. Et certaines de ces équations sont plus
faciles & résoudre que d’autres. Alors que peut échouer dans sa
recherche des racines de 'une de ces équations, il peut trés bien réussir avec
une autre.

Equations imprécises

SOLVE| ne calcule jamais une racine incorrecte, sauf si la fonction est calcu-
lée incorrectement. La précision du sous-programme de votre fonction affecte
la précision de la racine que vous recherchez.

Vous devez connaitre les causes éventuelles des différences entre valeur calcu-
lée de la fonction et valeur théorique de la fonction. ne peut pas
déduire de valeurs théoriques. La plupart du temps, vous devrez minimiser
les erreurs de calcul en écrivant soigneusement le sous-programme de votre
fonction.

Equations a plusieurs racines

Plus une équation a de racines, plus la recherche de toutes les racines d'une
équation est difficile. Et lorsque ces racines ont des valeurs trés proches les
unes des autres, une résolution précise de 'équation est pratiquement impos-
sible. Vous pouvez utiliser la méthode de la déflation pour éliminer des racines
(décrite dans le manuel d’utilisation du HP-15C).

Une équation a plusieurs racines est caractérisée par la fonction et parses pre-
mieres dérivées d'ordre supérieur qui sont égales 4 zéro  la valeur des racines.
Lorsque trouve une racine double, la deuxiéme moitié de ses chiffres
risque d’étre imprécise. Dans le cas d’une racine triple, les deux tiers des chif-
fres delaracine tendent i perdre leur sens. Une racine quadruple tend & perdre
environ les trois-quarts de ses chiffres.

Utilisation de| SOLVE |avec des polyndomes

Les polynémes comptent parmi les fonctions les plus faciles & évaluer. Clest
pourquoi ils sont traditionnellement utilisés pour approcher des fonctions de
modélisation de processus physiques ou des fonctions mathématiques beau-
coup plus complexes.

Un polynéme de degré n est de la forme:
ax"+a,_ 2" '+ .+a x+aq,

Cette fonction est égale 4 zéro pour pas plus de n valéurs réelles de x, appelées
les “zéros” du polyndme. Il est possible de déterminer une limite au nombre de
zéros positifs de cette fonction en comptant le nombre de fois oil changent
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les signes des coefficients en lisant le polyndme de gauche i droite. De méme, il
est possible de déterminer une limite au nombre de zéros négatifs en considé-
rant une nouvelle fonction obtenue par remplacement de x par — x dans le poly-
nome initial. Si le nombre réel de zéros positifs ou négatifs est inférieur a sa
limite, cette différence sera un nombre pair. (Ces relations sont appelées la
régle des signes de Descartes).

A titre d’exemple, considérons la fonction polynomiale suivante de degré 3:
fix) =x*—3x>—6x+8

Elle ne peut avoir plus de trois zéros réels. Elle a au plus deux zéros réels posi-
tifs (& cause des changements de signes entre le premier et le deuxiéme terme
et entre le troisiéme et le quatriéeme terme) et elle a au plus un zéro réel négatif
(car fi—x) = —x* — 3x® + 6x + 8).

Les fonctions polynomiales sont généralement évaluées de fagon plus com-
pact en utilisant des multiplications imbriquées. (On appelle ce procédé la
méthode d’Horner). Ainsi, la fonction précédente peut étre écrite sous la
forme:

flxy=[(x—3)x—6]x+ 8

Cette représentation du polynéme est plus facile 4 programmer et plus rapide
a exécuter que la forme de départ, pulsque [SOLVE], en particulier remplit la
pile avec la valeur de x. ,

Exemple: Durant I'hiver 1978, explorateur de l'arctique, Jean-Claude Cou-
lerre, isolé dans le grand Nord, s’amusa i scruter ’horizon au sud pour attendre
la réapparition du soleil. Coulerre savait que le soleil ne lui apparaitrait que
début mars, lorsqu’il atteindrait une déclinaison de 5° 18’ S. A quel jour et &
quelle heure cet explorateur a-t-il vu le soleil réapparaitre?

La date 4 laquelle le soleil a atteint une déclinaison de 5° 18’ S peut é&tre calcu-
lée en résolvant pour j 'équation suivante:

D =aj'+ a;j* + a,j? + a,j + a,

oll D est la déclinaison exprimée en degrés, o1 j est le nombre de jours i partir
du début du mois (jéme jour) et
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od a;= 4.2725X 10"

a; = - 1.9931 X 103
ay= 1.0229 X 10~*
a;= 3.7680 X 10~!
a, = - 8.1806.

Cette équation est valide pour 1= ;< 32, intervalle pour mars 1978.

Convertissez d’abord 5°18'S en degrés décimaux (5.18 lg] ), pour
obtenir — 5.3000 (en utilisant le mode d’affichage 4). (Pour mémoire, les
latitudes sud sont exprimées en nombres négatifs dans les calculs).

P

La solution du probléme est la valeur de j satisfaisant Pégalité suivante:
—5.3000 = a,;* + a,;° + @'+ a,j+ a,
Que I'on peut exprimer sous la forme:
0=a,j*+ a,/° + a,2 + a,j ~ 2.8806.

ou le dernier terme (constante) tient compte de la valeur de la déclinaison.

En utilisant la méthode Horner, la fonction & résoudre est représentée par:

M) = @i+ ay)j + a,)j + a,)j — 2.8806

Pour raccourcir le Sous-programme, vous pouvez stocker et rappeler les cons-
tantes 4 laide des registres correspondant aux exposants de J.

Appuyez sur Affichage

/ [] Pr Error Efface la mémoire
du calculateur”

[«+] 0.0000

(9] 000- Mode programme.

* Cette étape n'est citée ici que pour s'assurer qu'il y a suffisamment de mémoire disponible pour les
exemples donnés dans ce manuel.
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Appuyez sur Affichage

001-42,21,11

4 002- 45 g4

003~ 20

3 004- 45 3

005~ 40

006- 20

2 007- 45 2

008- 40

009~ 20

1 010- 45 1

011- 40

012- 20

RCL] O 013- 45 0 .

014- 40

[9] 015- 4332

En mode caleul, introduisez les cinqg coefficients

Appuyez sur Affichage _
[g] Mode calcul
4.2725 8 4.2725 -08

4 4.2725 -08 Coefficient de j*
1.9931

5 3 -1.9931 -05 Coefficient de ;3
1.0229 3 1.0229 " -03

2 0.0010 Coefficient de ;2
3.7680 1 3.7680 -01

1 0.3768 Coefficient de j
2.8806 0-2.8806 Constante

Puisque vous savez que la solution recherchée doit &tre comprise entre 1 et 32,
introduisez ces deux valeurs comme estim

SOLVE] pour rechercher les racines.

ations initiales. Ensuite, utilisez

Appuyez sur Affichage

1 [ENTER] 1.0000

32 32 -Estimations initiales.
7.5137 Racine recherchée

[R¥] 7.5137 Méme estimation précédente.
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Appuyez sur Affichage
[R¥] 0.0000 Valeur de la fonction.
7.5137 . Restaure la pile.

Le jour était donc le 7 mars. Convertissez maintenant la partie fractionnaire
résultat en heures décimales puis en heures, minutes, secondes.

Appuyez sur Affichage

0.5137 Partie fractionnaire du jour.
24 12.3293 Heures décimales.

- H.MS 12.1945 Heures, minutes, secondes

L'explorateur Coulerre a donc vu le soleil le 7mars 4 12 h 19 mn 45 s (temps
universel).

En examinant votre fonction f{j), vous voyez qu’elle peut avoir jusqu’a quatre
racines réelles - trois positives et une négative. Essayez de trouver d’autres
racines positives en utilisant [SOLVE| avec des estimations positives supé-
rieures.

Appuyez sur Affichage

1000 1100 1,100 Deux estimations positives
supérieures.

[A] Error 8 Aucune racine.

(=] 278.4497 Derniére estimation.

276.7942 Estimation précédente.

7.8948 Valeur non-racine.

lg] lg] 278.4497 Restauration de la pile.

SOLVE Error 8 Aucune racine.

[«+] 278.4398 Estimation peu différente.

278.4497 Estimation précédente.

7.8948 Méme valeur de la fonction.

Vous avez trouvé un minimum local positif 4 1a place d’'une racine. Maintenant,
essayez de trouver une racine négative.
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Appuyez sur Affichage

1000 -1,000.0000

1100 -1,100 - Deux estimations négatives.
[f] -108.9441 Racine négative.

[RY] -108.9441 Méme estimation précédente.
1.6000 -08 Valeur de la fonction.

Il n'est pas nécessaire d'aller plus loin : vous avez trouvé toutes les racines pos-
sibles. La racine négative a un sens puisqu’elle est en dehors de la plage de
valeurs pour lesquelles 'approximation de la déclinaison est valide. Le graphe
de la fonction confirme ces résultats.

f(x)

30

-201

Résolution d’'un systéme d'équations

 [SOLVE permet de trouver la valeur d’'une seule variable satisfaisant & une

seule équation. Dans le cas d’'un systéme d’équations & plusieurs variables,
vous pouvez cependant utiliser [SOLVE] pour rechercher une solution.

Dans le cas de certains systdmes d’équations, de la forme:

filxy, oy x) =0

fn(xlr weey xn) = 0

il est possible d’éliminer toutes les variables sauf une par manipulaﬁon algébri-
que. Autrement dit, vous pouvez utiliser les' équations pour dériver des
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!

expressions pour toutes les variables sauf une en termes de variable restante.
En utilisant ces expressions, vous pouvez ramener ce probléme a la résolution
d’'une équation simple 4 I'aide de . Les valeurs des autres variables i la
solution peuvent.étre calculées a I'aide des expressions dérivées.

Ceci est souvent utile pourla résolution d'une équation complexe i racine com-
plexe. Dans un tel probléme, 'équation complexe peut dtre représentée sous la
forme de deux équations réelles - I'une pour la partie réelle, 'autre pour la par-
tie imaginaire - 4 deux variables réelles (partie réclle et partie imaginaire de la
racine complexe).

Par exemple, I'équation complexe z+ 9 + 8¢™° = 0 n’a pas de racines z réelles,
mais a de nombreuses racines complexes de la forme z= x+ iy. Cette équation

peut étre exprimée sous la forme de deux équations réelles:

x+9+8ecosy=0
y —8e'siny=0.

Les manipulations suivantes peuvent &tre utilisées pour éliminer y de ces
équations. Comme le signe de y n’a aucune importance dans ces équations, sup-
posons que y > 0 pour que toute solution (x, y) donne une autre solution (x, -y).
Ré-écrire la seconde équation sous la forme:

x =1In(8(sin y)/y),
qui nécessite sin y > 0, pour que 2n7 < y < (2n + 1)z avec n entier=0, 1, ...
A partir de la premigre équation

y=cos !(-e*(x +9)/8) + 2nr
=(2n+ 1)7 — cos ! (e¥(x + 9)/8)

pour n == 0, 1, .., substituez cette expression dans la deuxi¢me équation:

_ -1/,x '
x+ln((2n+l)7r cos Y (e¥(x + 9)/8) ):u.
V 64— (e¥(x +9))?
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Vous pouvez ensuite utiliser [SOLVE] pour rechercherlaracine x de cette équa-
tion (pour toute valeur donnée de n, le nombre de la racine). Connaissant x,
vous pouvez calculer la valeur correspondante de y.

Une remarque finale sur cet exemple concerne le choix de 'estimation appro-
priée. Puisque l'argument du cosinus inverse doit étre compris entre— 1 et 1, x
doit 8tre inférieur & — 0.1059 (trouvé par tentatives ou en utilisant ).
Les estimations initiales pourraient &tre proches mais inférieures i cette
valeur: — 0.11 et — 0.2 par exemple.

(L'équation complexe utilisée dans cet exemple est résolue i 'aide d’'une procé-
dure itérative donnée dans I'exemple de la page 81. Une autre méthode de réso-
lution d’un systéme d'équations non linéaires est décrite page 122).

Recherche des extrémes locaux d’une fonction

Utilisation de la dérivée

La méthode classique de calcul des maxima et minima locaux d’un graphe uti-
lise la dérivée de la fonction. La dérivée est une fonction qui décrit la pente du
graphe. Les valeurs de x pour lesquelles la dérivée est égale i zéro représen-
tent des extrémes locaux possibles pour la fonction. (Bien que moins connues
pour les fonctions réguliéres, les valeurs de x ot la dérivée est infinie ou indéfi-
nie sont également des extr@mes possibles). Si vous parvenez i exprimer la
dérivée d’'une fonction, vous pouvez utiliser pour calculer & quelle
valeur cette dérivée est nulle pour savoir ot la fonction est susceptible de pré-
senter un maximum ou un minimum.

Exemple: Pour la conception d’une tour d’émission-radio, un ingénieur
recherche I'angle par rapport 4 la verticale (tour), pour lequel 'intensité rela-
tive du champ estla plus négative. L’intensité relative créée parla tour est don-
née par la formule suivante:

_ cos(2rmh cos 6) — cos(27h)
[1 — cos(2nh)]sin 6

ou E est I'intensité relative du champ, A la hauteur de 'antenne en longueurs
d’onde et @angle par rapport 4 1a verticale en radians. La hauteur de 'antenne
est de 0.6 longueurs d’'onde dans cet exemple.

L’angle désiré est celui auquel la dérivée de Vintensité pour 0 est égale i zéro.
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Pour réduire 'espace mémoire de programme et le temps d’exécution, stockez
les constantes suivantes dans des registres pour n’avoir qui les rappelerparla
suite:

ry=2nh constante stockée dans R,
ry = cos(27h) constante stockée dans R,
r,=1/[1— cos(2zh)] constante stockée dans R,

La dérivée de l'intensité E calculée pour 'angle 6 est donnée par:

ﬂ =rg Ensin(rocos 6) —

de

sinftan 6@

cos(rypcos 8) —ry ]

Enregistrez le sous-programme de calcul de la dérivée.

Appuyez sur Afﬁchage

Mode programme
CLEAR 000-

0 ~ 001-42,21, 0
002- 24
0 003- 45 0
[X] 004~ 20
005- 24
[Rci] 1 006- 45 1
B 007- 30
2y 008- 34
009- 23
B 010- 10
) 011- 34
: 012- 25
(=] 013- 10
014- 16
015- 34
016- 24
RCL] O 017- 45 0



Appuyez sur Affichage
X] 018- 20
019~ 23
RCL] O 020- 45 O
X] 021- 20
022- 40
2 023- 45 2
X] 024- .20
[o] RTN] 025- 4332

Chapitre 1: Utilisation de “‘JLVI:J

En mode Radians, calculez et stockez les trois constantes.

Affichage

6.2832
3.7699
-0.8090

1.8090
0.5528

Mode calcul.
Mode radians.

Constante de r,.
Constante de r,.

Constante de r,.

19

L'intensité relative du champ est maximale & 90° (1a perpendiculaire i la tour). .
Pour trouver le minimum, utilisez des angles plus proches de zéro comme esti-
mations initiales, par exemple les équivalents en rzdians de 10° et 60°.

Affichage

0.1745
1.0472
0.4899
-5.56279 -10
0.4899
28.0680

Estimations initiales.

Angle donnant la pente zéro.

Pente a Pangle spéecifié.

- Restaure la pile.

Angle en degrés.
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L'intensité relative du champ est la plus négative 4 un angle de 28.0680° par
rapport a la verticale.

dE
do

Utilisation d’'une pente approchée

La dérivée d’une fonction peut atre également calculée numériquement de
fagon approchée. Si vous échantillonnez une fonction sur deux points relative-
ment proches de x (respectivement x + A et x — A), vous pouvez utiliser la
pente de la sécante comme approximation de la pente en x:

s flx+23)—f(x— )

27

f(x)

f(x + A)

f(x — A)
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La précision de cette approximation dépend de I'écart A et de la nature de la
fonction. De petites valeurs de A donnent de meilleures approximations de la
dérivée, mais de trop petites valeurs risquent de provoquer une imprécision
avec les arrondis. Une valeur de x pour laquelle la pente est égale a zéro est un
extréme local possible de la fonction.

Exemple : Résoudre le probléme précédent sans utiliser 'équation dE/d@ de la
_dérivée.

Calculez I'angle auquel la dérivée (calculée numériquement) de I'intensité E
est égale 4 zéro.

En mode programme, introduisez deux sous-programmes : I'un pour estimerla
dérivée de I'intensité, lautre pour évaluer la fonction E de I'intensité. Dans le
sous-programme suivant, la pente est calculée entre 6 + 0.001 et 6 — 0.001
radians (plage correspondant 4 environ 0.1°).

Appuyez sur Affichage
[g] 000- Mode programme.
[fl [A] 001-42,21,11
EEX 002- 26
003- - 16
3 004- 3 Calcule E 4 64 0.001.
005~ 40
ENTER 006~ 36
007- 3212
xy) 008- 34
009- 26
010- 16
3 011- 3 Calcule E 4 6 —0.001.
-] 012- 30
013- 36
014- 3212
=] 015- 30
2 016- 2
017- 26
.[CHS 018- 16

3 019- 3
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Affichage

020~ 10
021- 4332
022-42,21,12
023- 24
024- 45 O
025~ 20
026- 24
027- 45 1
028- 30
029~ 34
030- 23
031- 10
032- 45 2
033- 20
034- 4332

Sous-programme pour E(6).

Dans I'exemple précédent, le calculateur avait été mis en mode radians et les
trois constantes stockées dans les registres Ry, R, et R,. Introduisez lesmémes
estimations initiales que précédemment et exécutez [SOLVE].

(9] [g] 0.4899

Affichage

0.1745
1.0472
0.4899
0.0000

[¢] [=DEG]

0.4899
28.0679

Mode calcul.

Estimations initiales.

Angle donné i la pente zéro.
Pente 4 I'angle spécifié.
Restaure la pile.

Utilise le sous-programme de la
fonction pour calculer
Pintensité minimale.

Rappelle la valeur de 6.

Angle en degrés.

Cette approximation numérique de la dérivée donne une intensité de champ
minimale de — 0.2043 & un angle de 28.0679°. (Ce résultat différe du précédent

de 0.0001°).
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Utilisation d’'une estimation répétée

Cette troisieme technique est utile lorsqu’il n’est pas facile de calculer la déri-
vée. C’est une méthode plus lente car elle nécessite l'utilisation répétitive de
. Par contre, vous n'avez pas besoin de chercher une bonne valeur de A
comme dans la méthode précédente. Pour rechercher un extréme local de la
fonction fix), définissez une nouvelle fonction.

gx)=f(x)—e

ol e est un nombre légérement supérieur a la valeur extréme estimée de la
fonction f(x). Si e est correctement choisi, g (x) sera proche de 0 & proximité de
Pextréme de f{x), mais ne sera pas égale i zéro. Utilisez pour analyser
g(x) prés de 'extréme. Le résultat désiré est Error 8.

* Si Error 8 est affiché, le nombre dans le registre X est une valeur de x
proche de Pextréme. Le nombre contenu dans le registre Z indique gros-
sierement la différence entre eet la valeur extréme de f{x). Modifiez e pour’
le rendre plus proche de la valeur extréme (mais pas égal a celle-ci). Puis
utilisez pour examiner la nouvelle valeur de g(x) prés de la valeur
de x précédemment trouvée. Répétez cette procédure jusqu’a ce que les
valeurs successives de x ne présentent plus d’écart significatif.

¢ Siune racine est trouvée pour g(x), cela signifie soit que le nombre e n'est
pas supérieur i la valeur extréme de f{x), soit que a trouvé une
autre région du graphe ol flx) est égale 4 e. Modifiez e pour qu’il soit
proche ~ mais pas situé au-dels - de la valeur extréme de f{x) et ré-exécu-
tez . Il peut étre également possible de modifier g(x) afin d’élimi-
ner la racine éloignée.

f(x) - f(x)

€ b= = -
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Exemple: Reprenez l'exemple précédent sans calculer la dérivée de intensité
relative du champ E.

Le sous-programme de calcul de E et les constantes nécessaires ont été intro-
duits lors de I'exemple précédent. '

Enmode programme, enregistrez un sous-programme qui soustrait un nombre
extréme estimé de I'intensité E. Le nombre extréme doit &tre stocké dans un
registre afin de pouvoir le modifier manuellement en cas de besoin.

Appuyez sur Affichage
: 000- Mode programme.
LBL] 1 001-42,21, 1 Label du sous-programme.
002- 3212 CalculdeE.
RCL] 9 003- 45 9
[3 004- 30 Soustraction de P'estimation
de I'extréme.
[g] [RTN] 005- 4332

En mode calcul, estimez la valeur d’intensité minimale en échantillonnant
manuellement la fonction.

Appuyez sur Affichage

lg] Mode calcul.
110 0.1745

-0.1029

30 0.5236 Echantillonne la fonction
| -0.2028 3100, 30°, 50°, ...
50 0.8727 :

[ENTER] 0.0405

ofe

:.——-Tg -;.-m:ﬂ_
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A partir de ces échantillons, faites un essai en utilisant une estimation de
— 0.25 pour l'extréme et des estimations initiales pour E|] (en radians)
proches de 10° et de 30°.

Appuyez sur Affichage
.25 [CHS] 9 -0.2500 Stocke l'estimation

de 'extréme.
2 0.2000
.6 0.6 Estimations initiales.
[SOLVE] 1 Error 8 Aucune racine trouvée.
[«] [STO] 4 0.4849 Stocke I'estimation de 6.
STO] 5 0.4698 Stocke l'estimation précédente

' de 6.

0.0457 Distance de l'extréme.
9 [X] 0.0411 Modifie 'estimation de -
9 0.0411 lextréme

(de 90 % de la distance).

. [RCL] 4 0.4849 Rappelle I'estimation de 6.
[ENTER] [ENTER] -0.2043 Calcule l'intensité E.
0.0000 Rappelle d’autres estimations

RCL| B 0.4698 de 0 en gardant la premiére

dans le registre Y.

SOLVE} 1 Error 8 Aucune racine trouvée.
0.4898 Estimation de 6.
(xxy] 0.4893 Estimation précédente de 6.
0.4898 Rappelle I'estimation de 6.
[ENTER] [ENTER] [f] [B] =0.2043 - Calcule I'intensité E.

xxy] 0.4898 Rappelle la valeur de 6.

[g] [=DEG 28.0660 * Angle en degrés.

(9] [DEG 28.0660 Restaure le mode degrés.

La seconde itération produit deux estimations de 8 qui ne différent qu’a la qua-
triéme position décimale. Les intensités E pour les deux itérations, sont égales
jusqu’a la quatriéme position décimale. En s’arrétant a ce niveau, on obtient
une intensité de champs minimale de —0.2043'4 un angle de 28.0660°. (Avecun
écart de 0.002° par rapport aux résultats des méthodes précédentes).
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Applications

Les applications suivantes illustrent comment vous pouvez utiliser
pour simplifier un calcul habituellement difficile : 1a recherche d’un taux d'inté-
rét qui ne peut étre calculé directement. D'autres applications utilisant la fone-
tion sont décrites aux chapitres 3 et 4.

Annuités et capitalisation

Ce programme permet de résoudre de nombreux problémes financiers dans
lesquels interviennent les facteurs d’argent, de temps et d'intérét. Pour ces
problémes, vous connaissez généralement la valeur de trois ou quatre des
variables suivantes et vous avez besoin de la valeur d’'une autre:

n Nombre de périodes de composition. (Par exemple, pour un prét sur
30 ans avec remboursements mensuels, n =12 X 300 = 360.)

i Taux d’intérét par période, exprimé en pourcentage. (Pour calculer i,
divisez le taux annuel par le nombre de périodes dans I'année. Autre-
ment dit, un taux annuel d’intéréts composés de 12% correspond i un
taux périodique de 1%).

PV Valeur actuelle (PRESENT VALUE) d'une série de versements
futurs ou d’un versement initial.

PMT Montant du remboursement (PAYMENT) périodique.

FVv Valeur future (FUTURE VALUE). Cest-a-dire le capital acquis (ou
remboursé) 4 la fin de 'opération ou la valeur composée d'une série de
versements antérieurs.
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Types de problémes d'annuités

et de capitalisation

Applications classiques
Combinaisons| Pour rem- Pour rem- Procédure
autorisées boursements | boursements initiale
en fin en début
de période de période
n, i, PV, PMT | Prét direct. Crédit bail. Utiliser
(Introduire Effets Annuité a
trois de ces escomptés. échoir. ouFv=0 '
valeurs et Hypothéques.
calculer la
quatrieme.)
n, i, PV, PMT, | Prét direct Crédit bail Aucune.
FV (Introduire avec rem- avec valeur
quatre de ces boursement résiduelle.
valeurs et libératoire. Annuité a
calculer la Effets a échoir.
cinquiéme.) escomptés.

" n, i PMT FV | Fonds d'amor- | Epargne Utiliser
(Introduire tissement. périodique. [REG]
trois de ces ' Assurance. ou PV=0.
valeurs et
calculer la
quatrieme.)

n, i, PV, FV Capitalisation. Utiliser
(Introduire Epargne. [
trois de ces ou PMT=0.
valeurs et

calculer la

quatriéme.)

Le programme accepte les remboursements effectués soit en fin (terme échu),
soit en début (terme & échoir) de période de composition. Les remboursements
effectués en fin de période (annuité ordinaire) sont courants pour les préts
directs et hypothécaires, alors que les remboursements en début de période
(annuité d'avance) sont courants en crédit-bail.
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Pour les remboursements effectués en fin de période, effacez lindicateur
binaire 0 (flag 0). Pour les remboursements effectués en début de période,
armez l'indicateur binaire 0. Si le probléme ne comporte pas de rembourse-
ments, 'état de cet indicateur est sans effet.

Ce programme utilise la convention suivante : les sommes d’argent versées
sont introduites et affichées comme des quantités négatives et les sommes
d'argent regues comme des quantités positives.

Tout probléeme financier peut &tre ainsi représenté sous forme d’'un dia-
gramme de flux (positifs ou négatifs) dans le temps. Ce diagramme est consti-

* tué d’'une ligne horizontale représentant le temps et divisée en intervalles

égaux correspondant aux périodes de composition (années ou mois). Les fla-

-ches verticales représentent les mouvements d’argent en obéissant & la con-
‘vention suivante : les fleches dirigées versle haut (positives) représentent 'ar-

gent reqy, les fleches dirigées vers le bas (négatives) représentent l'argent
versé. Exemple:

Argent recu

I .

Argent versé

La pression de [f] CLEAR est une méthode commode de ré-initialiser le
calculateur pour un nouveau probléme. Cependant, il n'est pas nécessaire d’ap-
puyer sur [f] CLEAR entre tous les problémes. Vous ne ré-introduirez
que les valeurs des variables différentes d’un probléme & l'autre. Si une
variable n’est pas utilisée dans un nouveau probléme, donnez lui simplement la
valeur 0. Par exemple, si PMT est utilisée dans un probléme mais pas dans le
suivant, introduisez simplement 0 comme valeur de PMT dans le second pro-
bleme.
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L'équation de base utilisée pour les calculs financiers est:

PMT A
V+ —
1/100

(1—(1+i/100+ Fv(a + 1/100)™ =
olli+40et

A= 1 pour les remboursements en fin de période.
1+ i/100 pour les remboursements en début de période.

Le programme présente les caractéristiques suivantes:

. est utilisée pour trouver i. Comme il s’agit d’une fonction itéra-
tive, le calcul de i est plus long que le calcul des autres variables. Certains
problémes peuvent &tre insolubles par cette technique. Si ne
trouve pas de racine, Error 4 est affiché.

e Lors du calcul de 'une des cing variables ci-dessous, certaines conditions
provoquent l'affichage de Error 4 :

n PMT = - PVi/(100 A)
(PMT A - FVif100)/(PMT A + PVi/100) < 0
1< —100

i SOLVE| ne peut trouver de racine
PV 1< —100

PMT n=0

i=0
1= =100

FV i< -=100

e Siunproblémeaun taux d’intérét défini égala 0,le programme généreun
message derreur: Error O (ou Error 4 pour le calcul de PMT).

s Lesproblemes ayant des valeurs de n ou de i extrémement grandes (supé-

rieures 4 10°) ou extrémement petites (inférieures 4 107%), risquent de don-
ner des résultats incorrects.

e Les problémes d'intéréts avec remboursements libératoires de signe
opposé aux rempoursements périodiques peuvent avoir mathématique-
ment plus d’une solution (ou pas de solution du tout). Ce programme peut
trés bien trouver l'une des solutions mais il ne donne pas les moyens de
rechercher ou méme d’indiquer d’autres possibilités.

Appuyez sur Affichage

(g} Mode programme.
CLEAR 000-
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Affichage

001-42,21,11
002- 44 1
003- 31
004- 32 1
005- 4336
006-45,20, 0
007- 45 5
008- 34
009- 30
010- 4336
011-45,40, 3
012- 4320
013- 22 0
014- 10
015~ 16
016-43.,30, 4
017- 22 0
018- 4312
019- 45 6
020- 4312
021- 10
022- 44 1
023- 4332
024-42,21,12
025- 44 2
026- 31
027- 48
028- 2
029- 36
030- 26

Programme pour n.
Stocke n.

Calcule n.

Calcule
FV—100 PMT A/i.

Calcule
PV + 100 PMT A/i.

Teste
PMT = - PVi/(100 A).

Teste x = 0.

Programme pour i.
Stocke i.
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Affichage

031- 16
032- 3
033-43, 5, 1
034-42,10, 3
035- 22 4
036- 22 o
037-42,21, 4
038- 26
039- 2
040- 20
041- 44 2
042~ 4332
043-42,21,13
044- 44 3
045- 31
046- 32 1
047- 32 2
048- 16
049- 44 3
050- 4332
051-42,21,14
052- 44 4
053- 31
054- 1
055~ 44 4
056~ 32 1
057- 45 3
058- 32 2
059- 34
060- 10
061- 16
062- 44 4 -
063- 4332

Arme l'indicateur 1 pour

31

le sous-programme .

Calcule i. .

Programme pour PV.

Stocke PV,

Calcule PV.

Programme pour PMT.

Stocke PMT.

.Calcule PMT.



W

Appuyez sur

[f] [LBL] [E]

ST0O| 5

)
wn

BB
0} 1O W
i It I v+
el [H]
~N W

CH

o] & ] [

Of v
BlElE

I"zm
-_‘—I

S Bl -
= BB
w

—
“4
o] |O
o]

[]Eiii[:
ol |o
ﬁ -
o o |}
o =

IS

- O

STO

wn ] |O
~

2 o .upitre 1: Utilisation de | SOLVE]

Affichage

064-42,21,15
065- 44 5
066- 31
067- 32 1
068-45,40, 3
069-45,10, 7
070- 16
071- 44 5
072- 4332
073-42,21, 1
074-43, 4, 1
075- 1
076- 45 2
077- 4314
078-42,21, 3
079- 44 8
080- 1
081- 44 0
082- 40
083-43,30, 4
084- 22 O
085- 44 6
086-43, 6, 0
087- 44 0
088- 45 1
'089- 16
090- 14
091- 44 7
092- 1
093- 34
094- 30

Programme pour FV.
Stocke FV.

Calcule FV.

Arme l'indicateur 1 pour
le sous-programme 3.

Calcule i/100.
Sous-programme .

Teste i = 100.

Teste si les remboursements
sont en fin de période.

Calcule (1 4 /100)™.

Caleule 1 — (14 i/100)™,



S, Ry

N

Y R TR

Appuyez sur

Labels utilisés: A, B,C, D, E, 0, 1, 2, 3 et 4.
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Affichage

095- 4320
096- 22 O
098- 45 4
099-45,10, 8
100- 20
101-43, 6, 1
102- 4332

103-45,40, 3

104-4221 2
105- 45 5
106-45,20, 7
107- 40
108- 4332

Testei=0oun=20.

Teste la posilion
de P'indicateur 1.

Le sous-programme [SOLVE

continue.

Calcule FV (1 +i/100)™.

Le sous-programme |[SOLVE

est terminé.

Registres utilisés / Ry (4), R, (n), R, (i), R; (PV), Ry (PMT), R5 (FV), Rs, R; et Rs.

Pour utiliser le programme::
1. Appuyez sur 8 [f] [(i)] pour réserver les registres R, & Rs.
2. Appuyez sur pour valider le mode USER.

3. Si nécessaire, appuyez sur CLEAR pour effacer toutes les
variables. Vous navez pas besoin d’effacer les registres si vous avez I'in-

tention de spécifier toutes les valeurs.

4. Armez l'indicateur 0 en fonction du type de remboursement:

¢ Appuyez sur [g] 0 pour les remboursements en fin de période.
® Appuyez sur O pour les remboursements en début de

période.

5. Introduisez les valeurs connues des variables:

e Pour n, introduisez sa valeur et appuyez sur [A].

» Pour i, introduisez sa valeur et appuyez sur |B|.
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e Pour PV, introduisez sa valeur et appuyez sur [C|.
¢ Pour PMT, introduisez sa valeur et appuyez sur [D].
e Pour FV, introduisez sa valeur et appuyez sur (E].
6. Calculez I'inconnue:
e Pour calculer n, appuyez sur .
¢ Pour calculer i, appuyez sur (R/S].
¢ Pour calculer PV, appuyez sur [R/S].
Pour calculer PMT, appuyez sur [D] [R/S].

Pour calculer FV, appuyez sur [E] [R/S].

7. Pour résoudre un autre probléme, répétez les étapes 3 & 6 de la procé-
dure. Vérifiez qu'aucune variable nécessaire au calcul n’a la valeur zéro.

Exemple 1: Vous placez 155 FF sur un compte rémunéré par composition men-
suelle & 5,75 % d’intérét annuel. Quel capital aurez-vous dans 9 ans?

?
FV
j= 5.75
12
1 1 2 3 106 107 108
PV
-155
Appuyez sur Affichage
[g] Mode calcul.
CLEAR . Efface les variables financiéres.
2
Valide le mode USER.
[d] 0] Annuité ordinaire.

9 12 [X] 108.00 Introduit n = 9 X 12,

A ey . Py o
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Appuyez sur Affichage

5.75 125 [B] 0.48 . Introduit i = 5.75/12.

165 -165.00 Introduit PV = — 155
(argent versé).

(] [RsS] 269.74 Calcule FV.

Si vous aviez désiré un capital de 275 FF, a quel taux auriez-vous da placer
votre argent ?

Appuyez sur Affichage

275 [g] 275.00 Introduit FV == 275,

0.563 Calcule i.

12 [X] 6.39 Calcule le taux d’intérét annuel.

Exemple 2 : Vous prenez une hypothéque de 30.000 FF sur 30 ans 13 % d’inté-
rét. Quel sera votre remboursement mensuel ?

30,000
PV
;13
12
1 l 2 l 3 l l35813591360l
PMT
?

Appuyez sur Affichage
CLEAR Efface les variables.
30 12 [X] [A] 360.00 Introduit n = 30 X 12,
13 12 1.08 Introduit i =~ 13/12.
30000 30,000.00 Introduit PV == 30,000.

(D] -331.86 Calcule PMT (argent versé).
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Exemple 3 : Vous proposez de préter 3,600 FF remboursables en 36 mensuali-
tés de 100 FF pour un taux d’intérét annuel de 10 %. Quel sera le montant du
paiement libératoire accompagnant la 36¢ mensualité, pour solder votre
créance? '

?
Fv
100 t
t
1 2 3 34 35 36
10
j=
1
PV
-3600
Appuyez sur Affichage
CLEAR Efface les variables.
36 36.00 Introduit n = 36.
10 [ENTER] 12 [5] 0.83 Introduit i = 10/12.
3600 ~3600.00 Introduit PV = — 3600
: (argent versé).
100 [D] 100.00 Introduit PMT =100
(argent regu).
(€] 675.27 Calcule FV.

Le remboursement final sera 675.27 + 100 = 7 75.27 FF (paiement libératoire
+ 36° mensualité).

Exemple 4 : Pour un emprunt de 50 000 FF remboursable en 360 mensualités
au taux annuel de 14 %, trouvez le capital restant dii apres le 24° versement et
les intéréts payés entre les 12¢ et 24* versements.

Vous pouvez utiliser le programme pour calculer les intéréts payés sur un
groupe d’annuités et le capital restant da apres la derniére annuité du groupe.
Le montant des intéréts payés entre deux périodes est égal au montant des
remboursements effectués pendant cet intervalle moins le capital amorti sur
cet intervalle. Le capital amort] est ¢gal a la différence entre le capital restant
dd au début de la premire période de référence et le capital restant dfi 4 la fin
de la deuxiéme période de référence, ‘ :
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Tout d’abord, calculez le montant des mensualités:

Appuyez sur Affichage

CLEAR Efface les variables.
360 [A] 360.00 Introduit n = 360.

14 [ENTER] 12 [F 1.17 Introduit i = 14/12.
50000 ~50,000.00 Introduit PV = — 50,000.
(D] 592.44 Calcule PMT.

Maintenant, calculez le capital restant dt a la période 24 :

Appuyez sur . Affichage
24 [A] 24.00 Introduit 1 = 24.
(] 49,749.56 Calcule FV A la période 24.

Stockez ce résultat, puis calculez le capital restant da & la période 12 et le capi-
tal amorti entre les périodes 12 et 24:

Appuyez sur Affichage

49,749,56

12 12.00 Introduit n = 12.

[E] [R/S] 49,883.48 Calcule FV 4 la période 12.
1] 49,749.56 Rappelle FV i la période 24.

(=] 133.92 Capital amorti.

Le montant des intéréts payés est égal & la différence entre le montant de
12 mensualités et le capital amorti sur ces 12 mensualités:

Appuyez sur Affichage
4 592.44 Rappelle PMT.
12 [X] 7.109.23 Valeur des 12 mensualités.

[xzy) [ 6,975.31 Montant des intéréts payés.
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Exemple 5: Une société de crédit-bail envisage I'achat d’un mini-ordinateur
d’une valeur de 63,000 FF et désire en tirerunprofitannuel de 13 % enle louant
a un client pour une période de 5 ans. Au bout de 5 ans, cette société espére
revendre I'équipement au moins 10,000 FF. Quel devra-&tre le versement men-
suel du client pour que la société de crédit-bail réalise le profit de 13%? (Les
versements de crédit-bail étant en début de période, n'oubliez pas d’armer I'in-
dicateur 0 comme il se doit.) :

10,000
Fv
? i
PMT
12 3 58 59 60
_13
T2
PV
-63,000
Appuyez sur Affichage
CLEAR _ Efface les variables.
0 " Spécifie des versements
en début de période.,
5 12 [X] 60.00 Introduit n =5 X 12.
13 12 [£] 1.08 Introduit i = 13/12.
63000 -63,000.00 Introduit PV = — §3,000.
10000 [g] 10,000.00 Introduit FV = 10,000.
(D] 1,.300.16 Calcule PMT.

’gSi Pordinateur cofite 70,000 FF au montant de lachat, quels seront les verse-
ments ?

iAppuyez sur Affichage
70000 -70,000.00 Introduit PV = — 70,000.

D] 1.457.73 Calcule PMT.
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Si les versements étaient portés a 1,500 FF, quel sera le profit réalisé ?

Appuyez sur Affichage

1500 [D] 1,500.00 Introduit PMT == 1500.

1.18 Calcule i (mensuel).

12 [X] 14.12 Calcule le taux (profit) annuel.
14.12 Invalide le mode USER.

Analyse de flux de trésorerie escomptés

Ce programme effectue deux sortes d'analyses: la valeur actuelle nette NPV
(Net Present Value) et le taux de rentabilité interne IRR (Internal Rate of
Return). Il calcule soit NPV, soit JRR pour un maximum de 24 groupes de flux
de trésorerie. :

Les versements sont stockés dans la matrice C & deux colonnes. Chaque rang
de la matrice C représente chaque groupe de versements : le premier élément
est le montant du versement, le deuxiéme élément est le nombre de verse-
ments de ce montant (nombre de flux dans ce groupe). Le premier élément deC
doit &tre le montant de I'investissement initial. Les versements doivent &tre
faits & intervalles égaux ; s'il n’y a pas de versement sur plusieurs périodes, cha-
cun de ces versements aura la valeur zéro et le nombre de 0 représentera le
nombre de flux dans ce groupe.

Dés que tous ces flux sont stockés dans la matrice C, vous pouvezintroduire un
taux d'intérét donné et calculer la valeur actuelle nette (NPV) de I'investisse-
ment. De méme, vous pouvez calculer le taux de rentabilité interne (IKR).
L’IRR est le taux d'intérdt pour lequel la valeur actuelle d’une série de flux de
trésorerie est égale i I'investissement initial. Autrement dit, c’est le taux d'in-
térét pour lequel NPV==0. Ce taux de rentabilité interne est également appelé
rendement ou taux de rendement escompté. -

L'équation de NPV est:
( k —an
—(1+i/100)™ :
S op (AL ) 4 4 i100) '/ pour i>-100
=1 i/100 i#0
NVP=4", ‘ .
ZCF;'H,' pour i =10
/=1
ol Zn, est définie comme — 1.

<1



40 Che  re 1: Utilisation de [SOLVE|

Le programme utilise la convention de signe suivante : toute somme d’argent
regue (introduite ou affichée) est positive, toute somme d’argent versée (intro-
duite ou affichée) est négative.

Le programme présente les caractéristiques suivantes :

® Laséquence des flux (y compris I'investissement initial) doit contenir des
flux négatifs et des flux positifs. Autrement dit, il doit y avoir au moins un
changement de signe.

® Le flux présentant plusieurs changements de signes peuvent avoir plus
d’une solution. Ce programme n’en trouve qu’une et ne peut pas indiquer
les autres possibilités.

® Le calcul de IRR peut durer plusieurs minutes (5 mn ou plus). Sa durée

dépend du nombre de flux introduits.

¢ Le programme affiche Error 4 lorsqu’il ne trouve pas de solution pour
IRR ou lorsque lerendement i est inférieur ou égal 3 —100 % dans le calcul

de NPV.

Appuyez sur

[o] [P/R]

==
-~

B

,.
]

Oim_‘nim@'\)i

T|mnZ ) o

ol1Xi[= l_mm X

3 |= .
~ N

==

OOS

O—‘E
m
N

m|=]

X
—
o
—
-—

CLEAR

Affichage

000-
001-42,21,11
002~ 26
003- 2
004- 10
005- 32 2
006- 31
007-42,21,12
008- 1
009- 36
010- 26
011- 16
012- 3
013-42,10, 2
014- 22 1
015- 22 0

016-42,21, 1
017- 26

Mode programme.

Programme pour NPV,

Calcule IRR/100.

Programme pour IRR.

Branchement si pas de solution
IRR.
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Affichage
018- 2
019- 20
020- 31
021-42,21, 2
022-43, 5, 0
023- 44 2
024- 1
025- 44 4
026- 40
027-43,30, 4
028- 22 0
029- 44 3
030- 0
031- 44 5
032-42,16, 1
033-42,21, 3
034-43, 6, O
035- 22 7
036- 32 6
037~ 45 2
038- 4320
039- 22 4
040- 1
041- 40
042- 32 6
043- 16
044- 14
045- 44 4
046- 1
047- 34
048- 30
049-45,10, 2
050-45,20, 3
051- 22 5
052-42,21, 4
053- 34
054- 32 6 °

055-42,21, 5

Calcule NPV,

Calcule 1 + IRR/100.
Teste IRR = — 100.

4

Branchement si IRR = — 100.

Teste si tous les flux

sont utilisés.

Branchement si tous les flux

sont utilisés.

Teste IRR = 0.

Branchement si IRR = 0.
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Appuyez sur Affichage

056- = 20

5 057-44,40, 5

4 058- 45 4

X 3 059-44,20, 3

3 . 060- 22 3

-[LBL] 6 ; 061-42,21, 6 Rappelle I'élément flux.
RCL 062u 4513

063~ 4332

[g] 0 064-43, 4, 0 Arme I'indicateur si c’est
. le dernier élément.
065- 4332

7 066-42,21, 7

RCL| b 067- 45 5 Rappelle NPV,

068- 4332

Labels utilisés: A, Bet 04 7.
Registres utilisés: Ry & R;.
Matrice utilisée : C.

Pour utiliser le programme d'analyse des flux escomptés:

1.
2.

Appuyez sur 5 [f] [}l pour allouer les registres R, a R,
Appuyez sur pour valider le mode USER (sauf #'il est déja
validé).

Introduisez le nombre de groupes de flux et appuyez sur 2
[ pour dimensionner la matrice C.

Appuyez sur 1 pour initinliser les numéros de rang ot de
colonne & 1.

Pour chaque groupe de flux:

a) Introduisez la valeur des flux et appuyez sur [c].

b) Introduisez le nombre de flux dans le groupe et appuyez sur
[c].

Calculez le paramétre désiré:

o Pour calculer IRR, appuyez sur [B].

e Pour calculer NPV, introduisez le taux d'intérét périodique i en
pourcentage et appuyez sur [A]. Répétez celte procGdure pour
autant de taux d'intérét que vous le désirez. _

Répétez les étapes 34 6 de 1a procédure pour d’autres problemes de flux.
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Exemple 1: Un investisseur achete 80,000 FF un duplex qu'’il a I'intention de
revendre au bout de 7 ans. Au cours de la premiére année, il doit faire des
dépenses de réparations. A la fin de la septiéme année, le duplex est vendu
91,000 FF. Arrivera-t-il au rendement désiré de 9 % apres impéts, avec ’histori-
que ci-dessous des flux aprés impots ? '

91,000

8000 8000 2500 7500

RN

1{234567

-600

-80,000
Appuyez sur Affichage
(9] Mode caleul.
[FiX] 2
5 Ll 5.00 Réserve les registres Ry et R;.
6 [ENTER] 2 2
2.00
(f] [mMATRIX] 1 2.00
USER 2.00
80000 [cHs] [ST0] [c] —80.000.00 Investissement initial.
1 [sTO 1.00 :
600 [CHS -600.00
1 1.00
6500 [STO 6.600.00
1 [§T0] (g 1.00
8000 8,000.00
2 2.00
7500 [STO) 7.500.00
2 2.00
91000 91,000.00
1 1.00
9 9 Introduit le rendement

‘présumé.
-4,108.06 NPV.
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Puisque NPV (Valeur actuelle nette) est négative, linvestissement n'assure
pas la rentabilité désirée de 9 %. Calculez le taux de rentabilité interne (IRR).

Appuyez sur Affichage v ‘
' 8.04 IRR (au bout de 8 mn).

Le taux de rentabilité interne est donc inférieur 3 9 %.

Exemple 2: Il est prévu qu’un investissement de 620,000,000 FF produisent
les flux de rentrées annuelles suivants au cours des 15 années & venir:

100,000,000
. 5,000,000
M 2 Ui T T 12713 14 s
-620,000,000
Quel taux de rentabilité peut-on espérer?
Appuyez sur Affichage
3 2 2
2.00
MATRIX] 1 - 2.00
620000000 —620,000,000
-620,000,000.0
1 1.00
100000000 100,000,000.0
10 [STO] 10.00
5000000 5,000,000.00
5 5.00
[B]- 10.06 IRR.
[Fix] 4 10.0649

10.0649 Invalide le mode USER.
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Le HP-15C vous permet les intégrations numériques & aide de [T3|. Ce cha-
pitre explique comment utiliser efficacement [/3] et décrit des techniques per-
meltant de traiter des intégrales difficiles.

Intégration numérique avec

En général, 'intégration numérique sur ealculateur nest jamalis trés précise.
Mais la lonction | /3] vous demande d'une fagon commode de spécifier dans
quelle mesure Perreur est tolérable. Elle vous demande de définir le format
d'allichage en fonction de la précision voulue pour les chiffres de I'expression
f(x) i intégrer. En effet, vous spéciliez ainsi la largeur d'une bande 3 Iaire
située sous quelque graphe non spécifié figurant enticrement a Uintéricur dela
bande. Naturellement, cette estimation risque de varier en proportion avec la

surface de la bande; c'est pourquoi [77] estime aussi cette surface. Si on
appelle I Pintégrale désirée, '

I= Aire situde sous un graphe 2 surface
dessiné dans la bande de la bande

Le HP-15C place I'estimation de la premiére surface (aire) dans le registre X et
celle de la seconde (incertaine) dans le registre Y.

f(x)

45
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Par exemple, f(x) pourrait représenter une conséquence physique dont 'am-
plitude ne peut étre déterminée qu’a + 0.005. La valeur calculée pour f(x) a
donc une incertitude de 0.005. Un format d’affichage [FiX] 2 indique au calcula-
teur que les chiffres décimaux situés au-dela de la deuxiéme position décimale
n’ont aucune importance. Le calculateur ne doit pas perdre de temps a estimer
lintégrale avec une précision non garantie. Il va par contre vous donner une
idée précise de la plage de valeurs dans laquelle doit &tre I'intégrale.

Le HP-15C ne vous empéche pas de déclarer que f(x) est beaucoup plus précise
gu’elle ne I'est. Vous pouvez soit faire une étude approfondie de 'erreur avant
de spécifier le format d’affichage soit vous contenter d’une estimation. Vous
pouvez laisser le format d’affichage a 4oui 4 pour simplifier. Vous
obtiendrez une estimation de l'intégrale et de son imprécision, vous permet-
tant d’interpréter le résultat plus intelligemment que si vous aviez eu la
réponse sans aucune idée de sa précision ou de son imprécision.

L’algorithme de utilise la méthode de Romberg pour cumuler la valeur de
lintégrale. Plusieurs raffinements la rendent encore plus efficace.

Au lieu d'utiliser des échantillons réguliérement espacés, qui peuventapporter
une sorte de résonnance responsable de résultats trompeurs lorsque Fexpres-
sion & intégrer est périodique, [7;] utilise des échantillons espacésirréguliere-
ment. Cet espacement peut-8tre démontré par substitution par exemple, de:

3 1 .
| x=gu g
par 1 f‘ 3 1.,\3
= - . po— =31 = 2
. 1 _1_f(x)dx _lf(Qu 2u 2 (1—u") du

avee un échantillonnage u uniforme. Outre la suppression de la résonnance, la
substitution offre deux autres avantages. Premi¢rement, il n’est pas néces-
saire de dessiner un échantillon 4 I'une ou l'autre extrémité de Pintervalle d'in-
tégration (sauf lorsque l'intervalle est sipetit qu'il n’ya pas d’autre possibilité).
Il en résulte qu'une intégrale telle que: '
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3 sin x
f dx
0 x .

ne sera pas interrompue par une division par zéro & un point d’extrémité.
Deuxiémement, peut intégrer des fonctions se comportant comme
v Ix — al, dont la pente est infinie 4 un point d’extrémité. De telles fonctions
existent lorsqu’on calcule Paire délimitée par une courbe réguliére fermée.

Un autre raffinement est P'utilisation par de la précision étendue (13 chif-
fres significatifs) pour le cumul des sommes internes. Ceci permet le cumul de

milliers d’échantillons sans plus de pertes d’arrondis que dans le sous-pro-
gramme de la fonction.

Précision de la fonction a intégrer

La précision d'une intégrale calculée par dépend de la précision de la fone-
tion calculée par votre sous-programme. Cette précision, que vous spécifiez a
Paide du format d’affichage, dépend principalement de trois facteurs:

o La précision de constantes empiriques dans la fonction.

¢ Le degré auquel la fonction peut décrire un phénoméne physique avec
précision.

e Laportée des erreurs d’arrondis dans les calculs internes du calculateur.

Fonctions relatives a des phénomeénes physiques

Des fonctions comme cos (49 — sin 6) sont des fonctions mathématiques
pures. Dans ce contexte, cela signifie que les fonctions ne contiennent aucune
constante empirique et que ni les variables ni les limites de I'intégration ne
représentent des quantités physiques réelles. Pour de telles fonctions, vous
pouvez spécifier autant de chiffres que vous le désirez dans le format d’affi-
chage (jusqu’a 9) pour atteindre le niveau de précision désiré dans I'intégrale’.
Votre seul souci sera le compromis que vous souhaitez entre la précision dési-
rée et la durée du calcul.

*Pourvu que f(x) soit toujours caleulée avec précision, en dépit des erreurs d’arrondis, au nombre de
chiffres présents & Paffichagoe.
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Cependant, d’autres facteurs jouent un réle lorsque vous intégrez des fonc-
tions concernant un phénomeéne physique réel. Avec de telles fonctions,
demandez-vous simplement si la précision que vous désirez dans Uintégrale
estjustifiéeparlaprécision delafonction. Par exemple, sila fonction contient
des constantes empiriques spécifiées par exemple sur trois chiffres significa-
tifs seulement, cela n’aurait aucun sens de demander plus de trois chiffres dans
le format d’affichage.

Une autre considération importante, sans doute plus subtile, est que toute
fonction relative 4 un phénomeéne contient une imprécision inhérente a sa
naturejusqu’d un certain niveau, parce qu’elle n’est qu'un modélemathémati-
que d’un processus ou d’'un événement réel. Un modele mathématique est lui-
méme une approximation quiignore les effets de facteurs connus ou inconnus
supposés comme insignifiants au niveau ot les résultats sont utiles.

Un exemple de modéle mathématique est Ia fonction de distribution
normale

t oty = w?/24%
T — dx
o\ 2w

considérée comme tres utile pour dériver I'information relative a des mesures
physiques sur les organismes vivants, les dimensions de produits, les tempéra-
tures moyvennes, ete. De telles descriptions mathématiques sont soit dérivées
de considérations théoriques soit issues de I'expérience. Pour étre utilisables,
elles ont été construites sur certaines hypothtses comme celle par exemple de
I'ignorance des effets de facteurs relativement insignifiants. Par exemple, la
précision des résultats obtenus en utilisant la fonction de distribution normale
comme modele de distribution de certaines quantités, dépend de la taille de la
population considérée. Et la précision des résultats obtenus de I'équation
s = s,— Y2 gt* qui donne la hauteur d’un corps en chute libre, u,rnol ¢ la variation
de g (o.u,ele ‘duon de la gravité) avec l'altitude.

Ainsi, les descriptions mathématiques du monde physique ne peuvent fournir
des résultats que dans certaines limites de précision. Si vous avez calculé une
intégrale avec une précision apparente supérieure a celle avece laquelle le
modele décrit le comportement réel du processus ou de I'événement, vous n’au-
rez pas nécessairement raison si vous utilisez la valeur calculée dans toute sa
précision apparente.
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Erreur d’arrondi dans les calculs internes

Avec le HP-15C, comme avec tout systéme de calcul, les résultats calculés doi-
vent étre arrondis 4 un nombre fini de chiffres (10 surle HP-15C). A cause de cet
arrondi, les résultats calculés - particulierement les résultats d’évaluation
d’une fonction contenant plusieurs opérations mathématiques — peuvent ne
pas éire exacts sur les 10 chiffres affichés. N'oubliez pas que 'erreur d’arrondi
affecte 'évaluation de toute expression mathématique, et pas seulement !’ éva-
luation d’'une fonction & intégrer a aide de . (Consultez 'annexe pour des
explications supplémentaires.)

Sif(x) estune fonction décrivant un phénomene physique, son imprécision sur
les arrondis est insignifiante en comparaison de I'imprécision introduite par
les constantes empiriques, ete. Si f(x) est une fonction mathématique pure, sa
preécision ne dépend que de Ferreur darrondi. Généralement, il faut procéder a
une analyse compliquée pour déterminer précisément combien de chiffres
dune fonetion caleulée risquent d'dtee affeetés pae lorreur Carvondi. En prati-
que, ces effets sont déterminés par I'expérience plus que par I'analyse.

Dans certains cas,I'erreur d’arrondi peut provoquer des résultats bizarres, sur-
tout si vous comparez les résultats de caleuls d'intégrales qui sont mathémati-
quement équivalentes mais qui différent par une transformation de variables.
Cependant, il est improbable que vous vous trouviez dans ces cas dans les
applications classiques.

Réduction de la durée du calcul

La durée d'un caleul d'intégrale par [ /3] dépend du moment odl est réalisée une
cerlaine densité de points d'¢chantillonnage dans la région o la fonction est
intéressante. Le ealeul de Pintégrale d'une fonetion sera plus long si lintervalle
d'intégration contient surtout des régions ol la fonction n’est pas intéres-
sante. Heureusement, lorsque vous devez calculer une telle intégrale, vous
avez la possibilité de modifier le probléme pour réduire la durée du calecul.
Deux de ces techniques sont les suivantes: la subdivision de Vintervalle d'inté-
gration et la transformation des variables.
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Subdivision de l'intervalle d’intégration

Dans les régions ol la pente de f(x) varie beaucoup, une haute densité de
points d’échantillonnage est nécessaire pour fournir une approximation qui
change de fagon insignifiante d’'une itération a la suivante. Par contre, dans les
régions ol lapente de la fonction est i peu prés eonstante, une haute densité de
points d’échantillonnage n'est pas nécessaire. Ceci parce que I'évaluation de la
fonetion sur d'autres points d'échantillonnage ne donnerait pas beaucoup plus
de renseignements surla fonction, done n'affecterait pas considérablement les
disparités entre les approximations successives. Par conséquent, dans ce type
de région, une approximation de précision comparable pourrait dtre réalisée
avec beaucoup moins de points d’échantillonnage; donc en bien moins de
temps. Lorsque vous intégrez ce genre de fonctions, vous pouvez gagner du
temps en utilisant la procédure suivante:

1. Divisez l'intervalle d'intégration en sous-intervalles sur lesquels la fone-
tion est intéressante et en sous-intervalles sur lesquels la fonction n'est
pas intéressante.

2. Surles sous-intervalles danslesquels la fonetion est intéressante, ealeu-
lez I'intégrale dans le format d’affichage correspondant a la précision
que vous recherchez,

3. Surles sous-intervalles dans lesquels la fonction n’est pas intéressante
ou contribue a I'intégrale de fagon négligeable, calculez I'intégrale avec
moins de précision, c'est-d-dire en spécifiant moins de chiffres dans le
format d’affichage.

4. Pour obtenirI'intégrale sur la totalité de I'intervalle d’intégration, ajou-
tez les deux approximations précédentes i l'aide de la touche Z+].

Avant de subdiviser I'intervalle d'intégration, vérifiez si le calculateur passe
en dépassement de capacité inférieur lorsqu’il évalue la fonction autour de la
limite supérieure (ou inférieure) de I'intégration®. Puisqu’il n’y a aucune raison
d’évaluer la fonction a des valeurs de x pour lesquelles le calculateur est en
dépassement de capacité inférieur, la limite supérieure de I'intégration peut
étre réduite dans certains cas pour réduire la durée du calcul.

. . . . P N (] . 2
"Lorsqu’un calcul risque de résulter en un nombre inférieur 4 10 9 Jerésultat est remplacé par zéro,
Cest ce qu'on appelle un dépassement de capacité inférieur.
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N’oubliez pas que dés que vous avez introduit le sous-programme d’évaluation
f(x), vous pouvez calculer f(x) pour toute valeur de x en introduisant cette
valeur dans le registre X et en appuyant sur [ENTET [ENTER] [ENTER] [GSB]
suivi du label du sous-programme.

Sile culeuluteur passe en dépassemont de capaeité inférlour & le limite supd-
ricure de Tintégration, essayez de plus petits nombres jusqu'a ce que vous vous

rapprochiez du point ot le calculateur ne présente plus de depassement de
capacité inférieur.

Par exemple, pour 'approximation de

“dx .
f 0 xe

Introduisez un sous-programme qui caleule la fonction f(x) = xe *.

Appuyez sur Affichage

[P/R] Mode programme.

[f| CLEAR [PRGM] 000- Efface la mémoire programme.
Lf] [LBL]1 001-42,21, 1

[CHS] ' 002- 16

le] 003- 12

[ 004~ 20

(9] [RTN] 005- 4332

Mettez le calculateur en mode calcul et définissez le format d’affichage a
[SCi] 3. Essayez ensuite plusieurs valeurs de x pour rechercher ot le calcula-
teur présente un dépassement de capacité inférieur pour votre fonction. -

Appuyez sur Affichage
lg] Mode programme.
3 Met le format 3 3.
3. 1 03 Introduit 1000 dans le
- registre X ,
|[ENTER] [ENTER] [ENTER] 1.000 03 Met x dans la pile.
1 0.000 00 Le calculateur donne un
résultat nul pour X = 1000.
300 3.000 02 Nouvelle valeur de x,
plus petite.
[ENTER] [ENTER] 3.000 02
[GsB1 0.000 00 Résultat nul.
200 2.000 02 Nouvelle valeur de x,

plus petite,
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Appuyez sur Affichage

2.000 02

1 2.768 -85 Le calculateur donne un
résultat non nul pour x = 200;
essayez une nouvelle valeur

_ comprise entre 200 et 250.

225 2.250 02 '

[ENTER] 2.250 02

[GSB| 1 4.324 ~96 Le calculateur est proche

du résultat nul.

A ce niveau, vous pouvez utiliser [SOLVE E] pourlocaliserlapluspetite valeur de
x & laquelle il y a dépassement dc capacité inférieur.

Appuyes sur Alffichage
[R¥] 2.250 02 Descend la pile jusqu’a ce que

la derniere valeur essayée soit

dans les registres X et Y.
[SOLVE] 1 2.280 02 Vuleur minimale de x pour
laquelle il y a dépassement
inférieur (= 228).

;

Vous avez ainsi déterminé que vous ne pouvez intégrer qu’entre 0 et 228. Puis-
que l'expression & intégrer n’est intéressante que pour x < 10, divisez 3 ce
niveau l'intervalle d’'intégration. Le probléme devient le suivant:

oo 228 10 228
fo xe Ydx = f 0 xe *dx = f 0 xe Ydx + f 10 xe dx.

Appuyez sur Affichage
7 7.000 00  Alioue les registres statistiques.
CLEAR 0.000 00 Efface les registres
: statistiques.
O[ENTER 0.000 00 Introduit la limite inférieure

de l'intégration sur le premier
, sous-intervalle.
10 10 Introduit la limite supérieure de
'intégration sur le premier
sous-intervalle.
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[R¥] [R¥]

228

[7 [sci 0

7 731
[ [5¢1 3
7]
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Affichage
9.995 -01
1.000 00
1.841 -04
1.000 01
228

2 02
5 -04
5328 -04
7.568 -05

Intégrale sur (0,10) calculée
en 3.

Ajoute Yapproximation et son
incertitude dans les registres
Ry et R;.

Incertitude de 'approximation.

Descend la pile jusqu’a ce que
la limite supérieure de la
premiere intégrale apparaisse
dans le registre X.

Introduit la limite supérieure
de la seconde inlégrale dans
le registre X. La limite
supérieure de la premiére
intégrale monte dans le
registre Y, devenant ainsi la
limite inférieure de la seconde
intégrale.

Spécifie 0 comme format
d’affichage pour un calcul
rapide sur (10,228). Si
incertitude de 'approximation
devient trop imprécise, vous
pouvez répéter 'approximation
dans un format d’affichage plus
large.

. Intégrale sur (10,228) calculée

en [SCI] 0.

Remet le format d’zaffichage en

[5e1 3.

Vérifie I'incertitude de
Papproximation.

Puisqu’elle est inférieure &
Vincertitude de 'approximation
sur le premier sous-intervalle,

0O a donc fourni une

- approximation de précision

suffisante.
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Appuyez sur Affichage
(xzy) 5.328
2.000
1.000
x%y 2.598

Transformation de variables

-04

00

00

Place 'approximation et son
incertitude dans les registres
X et Y respectivement,avant de
les ajouter dans les registres
statistiques.

Ajoute 'approximation et
son incertitude,

Intégrale sur la totalité de
I'intervalle (0,228)

(rappelé de R,).

Incertitude de lintégrale

(de Rp).

Dans beaucoup de problémes ol une foncetion varie peu sur L plus grande par-
tie de lintervalle d'intégration, une transformation de variables appropriée
peut réduire la durée du ealeul de Pintégrale,

Par exemple, reprenons l'intégrale

oo
f xe*dx .
0
Faisons -
o =
Puis r==31lnu
du
et =-3—.

En substituant

u

oo e
fO xe *dx :—[e‘(’ (-3 In u)(us)(-3du)

u

0
:fl 9uln u du.

Introduisez le sous-programme d'¢valuation de la fonetion flu) = 9u’lne.
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Mode programme.

Introduisez les limites de Pintégration, et appuyez sur f] 3 pour culeuler

Appuyez sur Affichage

(9] [P/R] 000-

[f][LBL] 3 001-42,21, 3
(9] [EN] 002- 4312
003- 34
L] [#F] 004- 4311
005- 20
9 006- 9
(=] 007- 20
[g] [RTN 008- 4332
lintéprale,

Appuyez sur Affichage

Lol [P/R]

1 |ENTER] 1.000 00

0 0

1f] 3] 3 1.000 00
X%y 3.020 -04

Mode calcul.”

Introduit la limite inférieure de
I'intégration,

[ntroduit lu imite supérieure de
Iintégration,

Approximation a une intégrale
équivalente.

Incertitude de I'approximation.

L'approximation est en accord avec la valeur calculée dans le probléme précé-

dent pour la méme intégrale.

Evaluation d'intégrales difficiles

Certaines conditions peuvent prolonger la durée du caleul lors de 'évaluation
d’une intégrale ou provoquer des résultats imprécis. Ces conditions, décrites
dans le manuel d’utilisation du HP-15C, sont liées i la nature de'expression a

intégrer sur I'intervalle choisi.

Une catégorie d'intégrales difficiles & évaluer est constituée par les intégrales
impropres. Une intégrale impropre est une intégrale qui utilise * (I'infini) de

Fune des fagons suivantes:
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* Lune ou les deux limites de Vintégralion sont £ %, par exemplo:
o
f“e'“"du =V,

¢ L'expression & intégrer tend vers + o quelque part dans la plage d’inté-
gration, par exemple: ’
1

0 In(u) du = 1.

* L’éx_pression a intégrer oscille infiniment et rapidement quelque part
dans la plage d'intégration, par exemple:

5.

1
f() cos (In u) du = s,

Certaines intégrales sont des intégrales presque impropres lorsque

® L'expression & intégrer ou sa premidre dérivée change beaucoup dans un
sous-intervalle relativement éuroit de la plage d'in Legration, ou oscille [1ré-
quemment & travers cette plage.

Le HP-15C tente de traiter certaines des intégrales impropres du deuxiéme
type en n’échantillonnant pas 'expression i intégrer aux limites de I'intégra-
tion.

Comme les intégrales impropres (ou presque) ne sont pas courantes en prati-
que, vous pourrez les reconnaitre et prendre les mesures nécessaires pour les
évaluer précisément. Les exemples suivants illustrent quelques techniques
utiles.

Considérons I'expression

f = Y2 cost)

X
Cette fonction perd sa précision lorsque x devient petit. Ceci parce que cos

(x*) est arrondi 4 1, ce qui perd I'information sur la petitesse de x. Mais en utili-
sant ¥ = cos (x%), vous pouvez évaluer Pexpression & intégrer comme::

1 ifu=1
f(x) =q v-2inu

cos

ifu+#1.
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Bien que le branchement de programme pour u = 1 ajoute quatre étapes sup-
plémentaires & votre sous-programme, I'intégration prés de x =0 devient plus
précise. o

Voici un deuxiéme exemple d'intégrale:

K (f ] ._1._.)4..,

x—1 Inx

La dérivée de cette expression approche l'infini lorsque x s’approche de 0,
comme le montre Pillustation ci-dessous. Fn substituant x = u? la fonction se
comporte mieux, comme le montre la seconde illustration. Cette intégrale de
substitution peut étre facilement évaluée:

j‘ 1 ( 22 u )
- du.
0 \(u+1)u—1) Inu

Neremplacez pas (u+ 1) (u— 1) par (u” — 1) parce que lorsque u s'approche de 1,
la seconde expression perd 4 I'arrondi la moitié de ses chiffres significatifs et
introduit un pic dans le graphe prés de u = 1.

0.1+
2u? u

(u+1u=1)  Inu)

Comme autre exemple, considérons une fonction dont le graphe accuse une
branche infinie (*queue”) qui s’étale sur une région plusieurs fois plus grande
que la région occupée par le “corps” principal (ot le graphe est intéressant).
C'est I'exemple des fonctions suivantes:

1

-2
x)= ¢ or glx)=————m——,
ft x? + 10710
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Des branches infinies fines, comme celle de f(x) peuvent étre tronquées sans
grand dommage 4 la précision ou 4 la rapidité de I'intégration. Mais g(x) a une
branche infinie trop large pour &tre ignorée lorsqu’on calcule

f_ :g(x) dx

si t est large.

Pour ce type de fonction, une substitution comme x = a + b tan u est
excellente: a est dans le “corps” principal du graphe et b est une bonne repré-
sentation de sa largeur. En faisant cela pour f(x) ci-dessusaveca=0et b =1,
on obtient

. t tan-1z ,
j;) f(x)dx =f0 e a1 + tan?u)du,

qui est calculée directement méme si ¢ est aussi grand que 10'°. En adoptant la
méme substitution avec g(x), les valeurs prochesde a =0 et b=10° donnent de
bons résultats.

Cet exemple implique la subdivision de I'intervalle d’intégration. Bien qu’une
fonction puisse avoir des caractéristiques qui paraissent extrémes sur la tota-
lité de I'intervalle d'intégration, la fonction peut paraitre mieux se comporter
sur certaines portions de cetintervalle. La subdivision de l'intervalle d'intégra-

_tion fonctionne encore mieux lorsqu’elle est combinée avec des substitutions

appropriées. Considérons I'intégrale
=) 1 =]
fo dx/(1 + x5%) = fo dx/(1 + x5%) + fl dx/(1 + x8%)
1 1
=j;) dx/(1 + x5%) +j;) uS2du/(ub + 1)
1
= j;) (1 + 252 dx /(1 + xB9)
1
=1 +f0 (282 — x84 dx /(1 + x54)
1
=1+% fo (1= v v58du/(1+ 1)

Ces étapes operent les substitutions x =1/u et x = v"/® et font quelques mani-
pulations algébriques. Bien que I'intégrale d’origine soit impropre, la derniére
intégrale est facilement traitée par [3] . En fait, en séparant le terme constant
de I'intégrale, vous obtenez (en utilisant 8) une réponse avec 13 chiffres
significatifs:
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1.000401708155 + 1.2 X 1072,

Prenons comme dernier exemple le champ électrostatique pour une sond
ellipsoidale dont les demi-axes principaux sont a, b et c.

oo

_ dx

O (@ +x)W(a2+ x)(b° + 2) 2+ x)
poura=100,b=2etc=1". '

Transformez cetteintégrale impropre en une intégrale correcte en substituant
x=(a®—c)/(1— ud) — a?:

1 u
V=pfr Va - u?)/(u?+q) du

p=2/((a®— ¢V a® — b2) = 2.00060018 X 106
q=(b%—c?)/(a2— b2 =3.001200480 X 10-3
r=c/a=0.01.

Cependant, cette intégrale est presque impropre parce que q et r sont tous
deux trés proches de zéro. Mais en utilisant une intégrale de formulation
proche ressemblant suffisamment 3 la partie génante de V, la difficulté peut
étre levée. Essayez: :

. .
W=pfr du/\/u2+q=p1n(u+\/u2+q)Ill_
=pIn(1+1+q)/(r+r2+q))

=8.40181880708 X 1076,
Puis:

. ,
V= W+p./; (\/(1 —u2)_/(u2+q)—1/\/u2+q)du

1 2
w/ u

1=r  a+V1-u?)/u2+q

‘De Strattom, J.A., Electromagnetic Theory, McGraw-Hill, New York, 1941, p. 201-217.
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Le HP-15C traite directement cette intégrale. La valeur de /1= 22 lorsque u

tend vers 1 ne doit pas vous poser de probléme puisque les chiffres perdus par
les arrondis ne sont pas nécessaires.

i
|

if\pplication

«€ programme suivant calcule les valeurs de quatre fonctions spéciales pour
out argument x:

1 [* ., , o
P(x) =(—f_c‘° e /24y (fonction de distribution
2m normale)

1 % o, .
Qx)=1—P(x)= -——f e t/2q4 (fonction complémentaire
| 2wo X de distribution normale)

— 2 fx -2 3 ’
| erf(x) = 7 0 ¢ dt (fonction d’erreur)

2 (%
erfc(x)=1—erf(x)= T fx e“zdt (fonction complémentaire
T d’erreur)

e programme calcule ces fonctions en utilisant la transforrﬁation u=e? pour
1> 1.6. ‘

2 valeur de la fonction est renvoyée dans le registre X et l'incertitude de !’in-
grale est renvoyée dans le registre Y. (L'incertitude de la valeur de la fone-
'n est  peu pres du méme ordre de grandeur que le nombre contenu dans le
gistre Y.) L’'argument d’origine est dans le registre R,

¢ programme présente les caractéristiques suivantes:

» Leformat d'affichage spécifie la précision de I'expression a intégrer de lu
méme fagon qu'il le fait pour [73]. Cependant, si vous spécifiez un nombre
inutilement long de chiffres & afficher, le calcul sera prolongé.

» Des petites valeurs de fonetions, comme Q(20), P(20) et erfe(10) sont cal-
culées trés précisément aussi rapidement que de. valeurs moyennes.

—A -
3

A—

N e



(@ [F7R)
[{] CLEAR [PRGM]

N

GlElE
Oflwn| | O
N

-
o
N

N Sl =
EEIE
w =
=
N

H [+] ”EEE
— w
(o]

==
e
X
E! oN
[

@E
'-nm
.:p

—
e
(&)

I —
=
m!m'
i
(&)

1=
=
[_;

L] 4

EH CHE[E=E
ERERE
@
[m]

(<]

Affichage

000-
001-42,21,11
002- 44 2
003- 16
004- 22 2
005-42,21,12
006- 44 2
007-42,21, 2
008- 2
009- 11
010- 10
011- 3213
012- 2
013~ 10
014- 45 2
015- 44 0
016~ 33
017- 4332
018-42,21,13
019- 1
020- 32 4
021-43, 6, 1
022- 22 5
023- 1
024- 30
025-42,21, 5
026- 16
027- 4332
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028-42,21,15

029-

0

030-42,21, 4

031-43, 5, 1

Mode programme.

Programme pour P(x).
Stocke x dans R,.

Caleule — x.

Branchement pour calculer
P(x) = Q(-x).

Programme pour Q(x).
Stocke x dans R,.

Calcule erfe(x/v/2).

Calcule Q(x) =1/2.
erfc (x/v/2).

Stocke x dans R,

Valeur de la fonction.
Programme pour erfe(x).

Teste l'indicateur 1.
Branchement pour indicateur 1
armé.

Calcule erf(x) — 1 pour
indicateur 1 désarmé.

Calcule erfe (x).
Valeur de la fonction.
Programme pour erf(x).

Sous-programme pour erf(x)
ou erfe(x).
Efface I'indicateur 1.



Appuyez sur
[STO] 1

(xxy]
[sTO]O
(o] [ABS]
]

]
6

' [g] [TEST|8 -

[GTO] 6
0

[FCT] 0
(1 (73 0

f] [LBL] 3
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Affichage

032- 44 1
033~ 34
034- 44 0
035- 4316
036- 1
037~ 48
038- 6
039-43,30, 8
040- 22 6
041- 0
042~ 45 O
043-42,20, 0
044- 2
045- 20

046-42,21, 3

047- 4326
048- 11

049- 10

050- 4332

051-42,21, 6

052-43, 4, 1
053- 0
054- 45 O
055- 4311
056 16
057- 12
058-42,20, 1
059- 32 3
060- 45 O
061- 36
062- 4316
063- 10
064- 20

Stocke 0 pour erf(x)
et 1 pour erfe(x).

Calcule Ix! .

Teste lxi > L.G.
Branchement pour lx| > 1.6.

Rappelle x.
Integre e de 0 & x.

Sous-programme pour diviser
par v .

Sous-programme pour intégrer
quand lxi > 1.6.
Arme P'indicateur 1.

Calcule e
Intégre (-lnu)
de 0ae™.
Divise l'intégrale par vx.

-1/2

Calcule le signe de x.
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Appuyez sur
[RCL] 1

(9] [LST4]
Eﬂ
[+]

[CHS]
lg] [RTN]
f] [LBL] O

pe ]
3
P4

[=)[o]
E
o
e
-

o[l fo][a]
.mimi
2140
Z!

2R
o)
-
!.

Labels utilisés: A, B,C, E, 0,1, 2, 3,4, 5 et 6.
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Affichage
065- 45 1
066- 4336
067- 30
068- 40
069~ 16
070- 4332
071-42,21, 0
072- 4311
073- 16
074- 12
075~ 4332
076-42,21, 1
077- 4320
078- 4332
079- 4312
080- 16
081~ 11
082- 15
083- 4332

Registres utilisés: R, (x), R, R,.

Indicateur utilisé: 1.

Pour utiliser ce programme:

1. Introduire I'argument x & 'affichage.

2. Evaluer la fonction désirée:
s« Appuyez sur pour évaluer P(x).
e Appuyez sur pour évaluer Q(x).
« Appuyez sur [f] (€] pour évaluer erf(x).

Rappelle 1 pour erfe(x),
0 pour erf(x).

Ajuste l'intégrale pour le signe
de x et la fonction.

Soys-prog’ramme pour calculer
t
(4

Sous-programme pour calculer
(<Inw)V2,

« Appuyez sur [f] pour évaluer erfe(x).
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Exemple 1: Calculez Q(20), P(1.234) et erf(0.5) dans le format d’affichage
3.

Appuyez sur Affichage

[g] Mode calcul.

3 _ Format d’affichage.
20(1] 2.754 -89 Q(20).

1.234[7] 8.914  -01 P(1.234).

5[] 5.205 -01  erf(0.5).

Exemple 2: Pour une variable aléatoire X normalement distribuée, ayant
une moyenne de 2151 et un écart type de 1.085, calculez la probabilité
Prl2< X=<3].

=

2—-2.151 X—pu 3—2.151
< <
1.085 g 1.085

APr[2<XS3]=Pr|:

_p 3—2.151 _p 2—2.151
1.085 1.085

Appuyez sur Affichage

2[ENTER] 2.000 00

2.151[F -1510 -01

1.085(%] -1.392 -01

4.447 -01 Calcule PiX =<2}
3 4.447 -01 Stocke le résultat.
3[ENTER] 3.000 00

2.151[] 8.490 -01

1.085 (=] 7.825 -01

(1] [A] 7.830 -01 Calcule PHX =< 3]
[RCL| 3 4.447 -01 Rappelle PHX = 2]
(-] 3.384 -01 Calcule Pri2< X=3].

4 0.3384
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Chapitre 3
Calculs en Mode Complexe

L]

Certains problémes importants concernant des données réelles sont tres sou-
vent résolus par des calculs simples utilisant les nombres complexes. Ce cha-
pitre donne des explications précieuses sur les calculs en mode complexe et
illustre par de nombreux exemples la résolution de problémes sur des nombres
complexes.

Utilisation du Mode Complexe

Le mode complexe dans le HP-15C vous permet d’évaluer simplement des
expressions de nombres complexes. Généralement, dans le mode complexe, les
expressions mathématiques sont introduites de la méme fagon que dans le
mode “réel” normal. Par exemple, considérons un programme qui évalue le
polynéme P(x) =a,x"+ ... + a,x + a, pourla valeur x du registre X. En validant
le mode complexe, ce méme programme peut évaluer P(z2) oil z est complexe.
De méme, d’autres expressions comme la fonction GammaI'(x) dans I'exemple
suivant, peuvent &tre évaluées pour des arguments complexes dans le mode
complexe.

Exemple1: Ecrire un programme évaluant le calcul dapproximation par frac-
tions successives:

In(I'(x)=(x—Y)lnx —x + au+a_,_
x+a,
x+ay

pour les six premiéres valeurs de a:

a, = Ve ln(2m)
a;=1/12
a,=1/30

a; =>53/210

a,; = 193/371

a; = 1.011523068
a; = 1.517473649.

65
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Puisque cette approximation est valide a la fois pour les arguments réels et
pour les arguments complexes lorsque Re(2) > 0, ce programme fait une
approximation de In(I’(z)) en mode complexe (pour Izl suffisnamment large).
Quand lz| > 4 (et Re(2)> 0), Fapproximation comporte environ 9 ou 10 chiffres
exacts.

Introduisez le programme suivant

Appuyez sur Affichage
[g] Mode programme.
CLEAR 000~
i 001-42,21,11
6 002- 6
003- 4425 Stocke le compteur dans le
) registre d'Index. N
[xxy] - 004~ 34
[ENTER] 006~ 36
[ENTER] : 006- 36
[ENTER] 007 - 36 Remplit la pile avee 2.
[RCL) 6 008- 45 6 Rappelle a; '
(LBL] 1 009-42,21, 1 Boucle pour la fraction
continue.
010- 40
RCL] [{i) 011- 4524 Rappelle a,
(xxy] ' 012- 34 Restaure 2.
=] 013- 10
DSE] [1] 014-42, 5,25 Diminue le compteur.
1 015- 22 1
) 016- 45 0 Rappelle a;.
017~ 40
Gxxy) 018- 34 Restaure z.
B 019- 30

(g] 020- 4336 Ruppelle 2
(g] 021~ 4312 CalculeIn(2).
[g] [LST+ 022- 4336 Rappelle 2.

[l 023- 48

5 024- 5

=] 025- 30 Calcule 2-1/2.
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Affichage

026- 20

027- 40 Calcule In(I'(2)).
028- 4332

Stocke les constantes duns les registres £, 0 2 en respectunt 'ordre déter-

miné par leurs indices.

Appuyez sur

(9]

2[g]

(9] [LN] 2[+]

[5T0]0

12[173] [5T0] 1
30[i/«] [sTO] 2
53[ENTER] 210(=]
|s10|3

195 [ENTER] 371[+]
[sTO| 4
1.011523068([S70] 5
1.517473649[ST0] 6

Affichage

6.2832

0.9189
0.9189

0.0833
0.0333
0.2524
0.2524
0.5256
0.5256
1.0115
15175

Mode calcul.

Stocke a,.
Stocke a,.
Stocke a,.

S LUUke q;,.
Stocke ay.

Stocke as.
Stocke a.

Utilisez ce programme pour calculer In(I'(4.2)), puis comparez le résultat avec
In(3.2) calculé avec la fonction [af]. Calculez aussi In(I'(1 + 5i)).

Appuyez sur

4.2[7 [A]
[ [Fix] 9
3.2[1 [#]

@] [N
1 [ENTER]

5710

Affichage
2.0486

2.048555637

7.756689536

2.048555637
1.000000000

1.000000000

" Calcule In(T'(4.2)).

Affiche 10 chiffres.
Calcule
(3.2!'=TI(3.2+1).
Calecule In(3.2!).

Introduit la partie réelle

de 1+ 5i.

Forme le nombre complexe
14+ 5d



68 C. Jitre 3: Calculs en Mode Complexe

Appuyez sur Affichage |
[7] -6.130324145 Partie réelle de In(I'(1 + 51)).
3.815898575 Partie imaginaire de
. In(T"(1 + 5i)).
4 3.8159°

Le résultat complexe est calculé sans plus d'efforts qu’il ne faut pour intro-
duire la partie imaginaire de 'argument z. (Le résultat In(I"(1 + 5:)) comporte
10 chiffres exacts dans chacune de ses composantes.)

Modes trigonométriques

Bien que I'indicateur du mode trigonométrique reste affiché en mode com-
plexe, les fonctions complexes sont toujours calculées en radians. Liindica-
teur ne précise le mode (Degrés, Radians ou Grades) que pour les deux conver-

sions complexes: et [=R].

Si vous désirez évaluer re® ol 0 est en degrés, ne peut pas étre utilisée
directement parce que 0 doit &tre en radians. Si vous tentez une conversion de
degrés en radians, vous perdez un peu de précision surtout pour des valeurs
comme 180" pour lesquelles la mesure 7 en radians ne peut pas étre représen-
tée exactement avec 10 chiffres.

Cependant, en mode complexe la fonction calcule re® pour 6 avec préci-
sion dans n'importe quelle unité (indiquée par I'indicateur). Introduisez sim-
plement r et 6 dans le registre X complexe sous la forme r +i6, puis exécutez
pour calculer la valeur complexe:

re= rcos 0+ irsin 6.

(Le programme figurant sous le titre “Calcul des niémes racines d'un nombre
complexe” 3 la fin de ce chapitre, utilise cette fonction.)

Définitions des fonctions mathématiques

Laliste suivante définit le fonctionnement du HP-15C en mode complexe. Dans
ces définitions, un nombre complexe est noté sous la forme z = x + iy (forme
rectangulaire) ou z = re'® (forme polaire). On rencontre également la forme
lzl= v+ 3~



e .

b

-~

»§

Chapitre 3: Calculs en Moc _omplexe ~ 69

Opérations arithmétiques _
(a+ib)t(ctid)=(ate)+i(btd)
(a+ib)c+id)=(ac— bd)+ i(ad + be)
2=zXz
1/z=x/|2* — iy/|2|?

2] '5"22:21)(1/22

Fonctions a une valeur
e=e*(cosy+isiny)
102 = ezln 10

1 . .
sin 2 = —(e** — e7%?)

20 ]
cos 2 =h(e*? + e7'?)
tanz=sin z/cos z
sinh z = V(e? — €7%)
cosh z=1(e?+ e7?)

tanh z=sinh z/cosh z

Fonctions a plusieurs valeurs

En général, I'inverse d’une fonction f(z) - représenté par f!(z) - comporte plus
d’'une valeur pour tout argument z. Par exemple, cos™'(2) a un nombre infini de
valeurs pour chaque argument. Mais le HP-15C calcule seulement la valeur
principale, qui figure dans la partie de la plage de valeurs définie comme
branche principale de f'(z). Dans les explications ci-dessous, la fonction
inverse 4 une valeur (réduite 4 sa branche principale) est représentée en lettres
majuscules - par exemple, COS™(2) - pourla distinguer de la fonction inverse a
plusieurs valeurs - cos™!(2). ‘

Considérons par exemple, les niémes racines d’'un nombre complexe 2. Repré-
sentons z sous forme polaire: z = re®***" nour—-r<O<gmetk=0,+1,+ 2.
Ensuite, si n est un entier positif,

zl/n — rl/nei(eln + 2kn/n) rl,"nei“/nei:%kﬂ/n

Seuls £ =0, 1, .., n — 1 sont nécessaires puisque e/ répate ses valeurs par
cycles de n. L'équation définit les nidémes racines de z, et r'’ e avec— 1< 6
< nest la branche principale de 2", (Un programme de la page 78 calcule les
niémes racines de 2).
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Les illustrations suivantes montrent les branches principales des relations
inverses. Le graphique de gauche de chaqueillustration représente le domaine
tronqué de la fonction inverse. Le graphique de droite montre, dans les deux
cas, la plage de la branche principale.

Pour certaines relations inverses, la définition de la branche principale ne fait
pas consensus. Les branches principales utilisées par le HP-15C ont été soi-
gneusement choisies. Tout d’abord, elles sont analytiques dans les régions oli
les arguments des fonctions inverses (évaluées en mode réel) sont définis.
Autrement dit, le troncage est effectué 1a ou la fonction inverse correspon-
dante est indéfinie. Ensuite, la plupart des symétries importantes sont préser-
vées. Par exemple, SIN"}(-z) = - SIN"}(2) pour tout 2.

2z ' w=+\z

-]~ ~
pd N ™~
/ \ \
0 \ 0 \
m‘ I N
\ o N
\ / S
~ 7 <
~ 41 - Q
N
Vz =Vr e  pour -n<O<m
2 w=LN(2)
iT
P -~ t '
/7 N 1 |
/ I N \ : l
‘ E O] « \ ¥ 0§
4 , I i '
\ ~_1- / ]
\ ‘ '
7/ i
N o P X I
1~ LSS ILIALIS SN A LI SIS 1SS
—ir

LN(z)=Inr+i6 pour ~-v<O<mw
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2 w = COSH!(2)
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cosh™(z) =In|z + (2% — 1)"*]

Les branches principales des quatre derniers graphes illustrés ci-dessus, sont
obtenues 4 partir des équations corr ebponddnteb mais n'utilisent pab néces-
sairement les branches prineipales de In(2) et de v 2.

Les fonctions inverses restantes peuvent étre déterminées i partir des illus-
trations précédentes et des équations suivantes:

LOG(2) = LN(2)/LN(10)
SINH Y(2) = — iSIN"Y(i2)
TANH Y(2) = — iTAN"!(i2)

wF = AN

Pour déterminer toutes les valeurs d’une relation inverse, utilisez les expres-
sions suivantes pour dériver ces valeurs & parlir de la valeur principale calcu-
lée par le HP-15C. Dans ces expressions, k=0, 1, & 2, ...

2=tz
In(z) = LN(2) + i2kn
sin™{(2) = (— 1)*SIN"2) + kn
cos(2) = £ COS™Y(2) + 2kn
tan"!(z) = TANY(2) + k=

sinh™(2) = (— 1)*SINH Y(2) + ikn
cosh™(z) = & COSH™\(2) + i2kn

tanh™!(z) = TANH Y(2) + ikn

z i2nkz

w’ = w'e
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Utilisationde | SOLVE | etde[/;]enmode complexe

Les fonctions et [/;] utilisent des algorithmes qui échantillonnent
votre fonction a des valeurs de 'axe des réels. En mode complexe, les fonctions
[SOLVE] et ne fonctionnent qu'avec la pile réelle, meéme si le Sous-pro-
gramme de votre fonction est susceptible de comporter plusieurs calculs sur
nombres complexes.

Par exemple, [SOLVE] ne va pas rechercher les racines d'une fonetion com-
plexe, mais va échantillonner la fonction sur I'axe des réels et rechercher le
zérodela partie réelle de la fonetion. De ln méme fagon, calculeintégrale
de la partie réelle de la fonction sur un intervalle de Paxe des réels. Ces opéra-
tions sont utiles dans de nombreuses applications comme le caleul d’intégrales
de contour et de potentiels complexes. (Reportez-vous au paragraphe “Appli-
cations” & la fin de ce chapitre. ‘

Précision en mode complexe

Les nombres complexes ayant 4 la fois des composantes réelles et des compo-
sunles imaginaires, la précision des calculs en mode complexe prend une autre
dimension que celle des calculs en mode réel.

Avec des nombres réels, une approximation X est proche de x si la différence
relative E(X,x) =I(X - x)/ x| est petite. Ceci est lié directement au nombre de
chiffres significatifs exacts de 'approximation X. Autrement dit, si E(X,x) <
5X107" il y a au moins n chiffres significatifs. Pour les nombres complexes,
définissez E(Z,z) = l(Z - 2)/z|. Cependant ceci n’est pas directement lié au
nombre de chiffres exacts dans chaque composante de Z.

Par exemple, si E(X,x) et E(Y,y) sont toutes deux petites, E(Z,z) doit tre égale-
ment petite pour z = x + iy. Autrement dit, si E(X,x) < s et E(Y,y) < s, alors
E(Z,z) < s. Mais si nous considérons z=10""+iet Z =10, la composante ima-
ginaire de Z est loin d’8tre précise et pourtant E(Z,2) < 107%°. Méme si les com-
posantes imaginaires de z et de Z sont absolument différentes, z et Z peuvent
étre extrémement proches.

Il existe une interprétation géométrique simple de I’erreur relative en mode
complexe. Toute approximation Z de z satisfait E(Z,z) < s (ol s est un nombre
réel positif) si et seulement si Z se trouve dans le cercle de rayon s |zl centré en
z dans le plan complexe.
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Pour obtenir des approximations & composantes précises, il ne faut pas se con-
tenter d’erreurs relatives suffisamment petites. Par exemple, dans le pro-
bléme suivant, les calculs sont effectués avee quatre chiffres significatifs. Ce
probléme illustre les limites imposées par une précision finie dans un calcul
complexe.

2,=Z, =371+ 37.3i
29 = 22 = 375+ 37.3L

et

Z,X Z,
= 37.10 X 37.50 — 37.30 X 37.30) + i(37.10 X 37.30 + 37.30 X 37.50)
= (1391 — 1391) + i(1384. + 1399.) :
=0+ i(2783.)

2, 2;=—0.04 +2782,58 est la vraie valeur. Méme si Z, et Z,n'ont pas d’erreur,
la partie réelle de leur produit en quatre chiffres n’a pas de décimales significa-
tives correctes, bien que 'erreur relative du produit complexe soit inférieure 4
2X10™ "

Cet exemple illustre que la multiplication en mode complexe ne propage pas
ses erreurs en fonction de ses composantes. Mais méme sila multiplication de
nombres complexes a pour résultat des composantes exactes, les erreurs d’ar-
rondi d’un calcul en chaine risque de produire rapidement des composantes
sans précision. D’'un autre cdté, 'erreur relative (correspondant 4 la précision
du calcul), grossit trés lentement.
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Par exemple, avec la précision précédente de quatre chiffres:

2z, =(1-+1/3000) + i
Z,=1.003+:
2,=2Z,=1+4+1i

alers

Zy X Zy= (1003 + i) X (1+i)
=0.003 + 2.003:
=3.000 X 107* 4 2.003;

La valeur correcte i quatre chiffres est 3.333 X 10~ + 2.003i. Dans cet
exemple, Z, et Z, sont précis dans chacune de leurs composantes et le calcul
est exact. Mais le produit est imprécis: la composante réelle n’a qu’un seul
chiffre significatif. Une erreur d’arrondi résulte en une composante imprécise
bien que I'erreur complexe relative du produit reste petite.

Pour le HP-15C, les résultats d’'une opération complexe sont congus pour étre
précis parce que I'erreur complexe relative E (Z, z) reste petite. Généralement,
E(Z 2)<6X107.

Comme nous I'avons vu précédemment, cette erreur relative petite ne garantit
pas 10 chiffres précis dans chaque composante. Parce que 'erreur est relative
4 la grandeur Izl et que celle-ci n’est pas trés différente de la valeur de la plus
grande composante de 2, la composante la plus petite peut avoir moins de chif-
fres précis. Il existe une méthode rapide pour voir quels chiffres sont générale-
ment précis. Exprimez chaque composante en utilisant I'exposant le plus
grand. Sous cette forme, les 10 premiers chiffres environ de chaque compo-
sante sont précis. Par exemple, si

Z =1.234567890 X 1071 + ; (2.222222222 X 1073),

mettez Z sous la forme:

0.0000001234567890 X 107 + i (2.222222222 X 107%).

Les chiffres précis sont :

0.000000123 X 107 + i (2.222222222 X 1073).
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Applications

Gréice a son mode complexe, le HP-15C vous permet de résoudre des problémes
sortant du domaine des nombres réels. Dans les pages suivantes, plusieurs pro-
grammes illustrent l'utilité des calculs sur les nombres complexes avec le HP-
15C.

Stockage et rappel de nombres complexes a I'aide d’une matrice

Ce programme utilise la pile et la matrice C pour stocker et rappeler des nom-
bres complexes. 1l présente les caractéristiques suivantes:

e Sivous spécifiez un index supérieur aux dimensions de la matrice, le cal-
culateur affiche Erreur 3 et la pile est préte pour une nouvelle tentative.

® Silecalculateurn’est pas en mode complexe, le programme valide le mode
complexe et la partie imaginaire du nombre est mise & zéro.

® Lorsque vous stockez un nombre complexe, 'index est perdu, la pile des-
cend et le registre T est copié dans le registre Z.

® Le programme de stockage utilise la touche [D] (au-dessus de la touche
[STO]). Le programme de rappel utilise la touche [E] (au-dessus de la

touche [RCL]).

Appuyez sur Affichage

(9] Mode programme.

CLEAR 000-

[f] D] 001-42,21,14 Programme de stockage

[f 1 - 002-42,16, 1 R,=R,=1.

0 : " 003- 44 0 R,==*k

- 004~ 33

0 005- 0 Introduit 0 dans les registres X
réels et imaginaires.

006- 40 Fait descendre la pile avec

a + ib dans le registre X.
707u 44 13 Stocke a et incrémente les

indices (mode USER).
008- 4230



Appuyez sur

STO] [C]

(9] (AT
[ [0 (€]
STO0] O
ElEE
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Affichage
009- 4413,
010- 4230
011- 4332
012-42,21,15
013- 44 0
014- 4335
015- 2
016- 44 1
017- 33
018- 0
019- 40
020- 4513
021- 4230
022-42, 5, 1
023- 4335
024- 4513
025- 4332

Stocke b (pas en mode USER
ici).

Restaure a + ib dans les
registres X.

Programme de rappel.
Ry= k.
Invalide la pile.

R,=2.

Prépare la pile 4 une nouvelle
tentative en cas de Erreur 3.

Rappelle b (partie imaginaire).

Décrémente R; 4 1.

Invalide la pile et efface
les registres X réels.

Rappelle a (partie réelle).

Exemple: stockez 2+ 3iet 7+ 4i dans les éléments 1 et 2 en utilisant le pro-

_gramme précédent. Rappelez-les puis ajoutez-les. Dimensionnez la matrice C

a 5 X 2 pour qu’elle puisse contenir jusqu'a 5 nombres complexes.

Apres avoir introduit le programme précédent, -

Appuyez sur
(] [P/R]
5[ENTER] 2

2 [ENTER] 3[7] 1
1[1] (0]

Affichage

2

2.0000
2.0000
2.0000

Mode calcul.

Spécifie 5 rangs et 2 colonnes.
Dimensionne la matrice C.
Introduit 2 + 3..

Stocke le nombre dans C en
utilisant I'index 1.
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Appuyer sur Affichage
7 ol 7.0000 Introduit 7 + 4i.
2[1] [D] 7.0000 Stocke le nombre dans C en

: . utilisant I'index 2.
1[1] [E] 2.0000 Rappelle le premier nombre.
2[1] [E] 7.0000 Rappelle le deuxieme nombre.
' 9.0000 Partie réelle de la somme.
7.0000 Partie imaginaire de la somme.

Calcul des niémes racines d'un nombre complexe

Ce programme calcule les niémes racines d'un nombre complexe. Ces racines
sont 2, pour k=0, 1, 2, .., n— 1. Vous pouvez aussi utiliser le programme pour
calculer 2'", ou r n’est pas nécessairement entier. Le programme fonctionne
de la méme fagon sauf qu'il peut y avoir un nombre infini de racines z, pour
k=0,1,%2,. C

Appuyez sur Affichage
(9] Mode programme.
CLEAR 000-
001-42,21,11
xxy]. 002- 34 Place n dans le registre X,
o - z dans les registres Y.
I/x 003- 15 Calcule 1/n.
g LSTy 004- 4336 Extraitn.
iR¥ 005- 33
(9] 8 006-43, 4, 8 Active le mode complexe.
007- 14 Calcule 2",
ST0] 2 008- 44 2 Stocke la partie réelle de z,
c dans R,.
RexIm 009- 4230
STO| 3 : 010- 44 3 Stocke la partie imaginaire
‘ de z, dans R;.
3 011- 3
6 012- 6
0 013- 0
(g] 014- 4333
'[E] 015- 10 Calcule 360/n.
4 016- 44 4 Stocke 360/n dans R,
0 017- 0
018- 4425 Stocke 0 dansleregistre d'index.
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Appuyez sur Affichage
[f] [LBL]O 019-42,21, 0
[RCL] 4 . 020- 45 4 Rappelle 360/n.
021-45,20,25 Calcule 360 k/n en utilisant
le registre d'index.
022- 4230 ‘
(9] [CL4] 023- 4335
1 ' 024~ 1 Placel+i(k360/n) dans
le registre X.
[g] [DEG ' 025- 43 7 Mode degrés.
026- 42 1 Calcule ™30/
2 027- 45 2 Rappelle la partie réelle de z,.
3 028- 45 3 Rappellelapartieimaginaire de
_ 2,
ki 029- 4225 Reconstitue z,.
030- 20 Calcule 2,€*%Y" racine
numéro k.
031- 4525 Rappelle le nombre &.
[xzy] ' 032- 34 Place z, dans les registres X
‘ : et & dans le registre Y.
1 . 033- 1
[STO] (#F] [1 . .034-44,40,25 = Incrémente le nombre k dansle
: registre d’index.
. 035- 33 Restaure 2z, et kdans les -
registres X et Y.
R/S ; 036- 31 Arréte 'exécution. :
0 037- 22 0 Lance le calcul de la racine

- suivante (branchement).

Labels utilisés: A et O.
Registres utilisés: R, R, R, et registre d'index.

Pour utiliser ce programme:

1. Introduire I'ordre n dans le registre Y et le nombre complexe z dans les
registres X.

2. Appuyez sur [f] [A] pour calculer la racine principale, z,, qui est placée
dans les registres X (réel et imaginaire). Appuyez sur l @ en mamte-
nant ces touches enfoncées pour visualiser la partle imaginaire.
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3. Pour calculer des racines z, de numéro supérieur:

e Appuyez sur pour calculer chacune des racines successives.
Chaque racine z, est placée dans les registres X complexes et son
numéro k est placé dans le registre Y. Entre ces calculs de racines,
vous pouvez effectuer d’autres calculs sans affecter le déroulement
du programme (4 condition que R., Ry, R, et le remstre d’'index ne
soient pas modifiés).

o Stockez le numéro k de la racine dans le registre d'index (en utilisant
(1], puis pour calculer z,). La racine complexe et son
numéro sont placés respectivement dans les registres X et Y. (En
appuyant & nouveau sur , vous pouvez continuer & calculer des
racines de rang supérieur.)

Exemple : Utilisez le programmenp récédent pour calculm‘(l)““’". Caleulez 2 4
0 <]
et 25y pour cette expression.

Appuyez sur Affichage

(9] [P/R] Mode calcul.

100[ENTER] 1 1 Introduit n =100 et 2=1
(purement réel).

(A] 1.0000 Calcule z, (partie réelle).

[(}] { maintenu) 0.0000 Partie imaginaire de z,.

(R/S] 0.9980 Calcule 2, (partie réelle).

()] { maintenu) 0.0628 Partie imaginaire de z,.

50(ST0] [1] 50.0000 Stocke le numéro de la racine
dans le registre d’index.

-1.0000 Calcule z;, (partie réelle).

(hold) 0.0000 Partie imaginaire de z5.

Résolution d’une équation pour ses racines complexes

Une méthode classique de résolution numérique de I'équation f{z) = 0 est I'ité-
ration de Newton. Cette méthode commence par une approximation z, d'une
racine et calcule répétitivement:

2,01 =2, ~ [ (2)/f (2)

jusqu'a ce que z, converge.
k

L'exemple suivant montre comment [SOLVE] peut étre utilisée avec I'itération
de Newton pour estimer des racines complexes.
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(Une technique différente, n’utilisant pas le mode complexe, est indiquée page
16.). :

Exemple: La réponse d’un systéme contrdlé automatiquement aux petites
perturbations transitoires a été modélisée par I'équation différentielle com-
portant un terme de retard:

£w(t)+9w(t)+8w(t—1)==(j.

Dans quelle mesure ce systéme est-il stable? Autrement dit, avec quelle rapi-
dité les solutions de cette équation décroissent-elles?

Toute solution w(t) peut &tre exprimée sous la forme de la somme suivante:

w(t) = E c(2)e®
. k ‘ .
ou les coefficients constants ¢(z) sont choisis pour chaque racine z de I'équa-
tion caractéristique associée a I'équation différentielle comportant un terme

de retard:
2+ 9+ 8e7=0

Chaque racine z = x + iy donne & w(t) une composante e = e* (cos(yt) + i sin
(yt)) dont le taux de décroissance est plus rapide lorsque x (partie réelle de 2)
est plus négatif. La réponse & ce probléme entraine donc le calcul de toutes les
racines z de I'équation caractéristique. Or, cette équation ayant un nombre
infini de racines, dont aucune n’est réelle, le calcul de toutes ces racines risque
d’étre une tiche extrémement longue.

Cependant, on sait que les racines z peuvent &tre approchées pour de grands

entiers npar z= A(n)=—1n((2n+1/2) n/8) X i(2n+1/2) npour n=0,1, 2..
Plus n est grand, meilleure est 'approximation. C'est pourquoi, vous ne devez
calculer que les quelques racines mal approchées par A(n), ¢’est-a-dire les raci-
nes pour lesquelles |zl n’est pas trés grande.

Fn cas d'utilisation de l'itération de Newton, que doit &tre f(z) pour ce pro-
bleme? La fonction évidente f(z) = z+ 9+ 8 e™* n’est pas un bon choix parce
que lexponentielle croit rapidement pour de grandes valeurs négatives de
Re(2). Ceci ralentirait considérablement la convergence sauf si la premiére
estimation tentée se trouvait trés proche d’'une racine. En outre, cette fonction
f(2) $annule une infinité de fois si bien qu'il est difficile de déterminer quand
toutes les racines désirées ont été calculées. Par contre, en ré-écrivant cette
dquation sous la forme:

e=—28/(z+9)

et en utilisant les logarithmes, vous obtiendrez une équation équivalente.
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z2=1In(—8/(z+ 9)) £ i2nzrpourn=20,1, 2,...

Cette équation n’a que deux racines complexes z conjuguées pour chaque
entier n. Utilisez donc la fonction équivalente

fiz)=2z—1In(—8/(z+9)) £ i2nzpourn=10,1, 2,...
et appliquez litération de Newton _
21T 2, — (zk - hl (_ 8/(212 + 9)) + iZnTE)/(]. + 1/(2k + 9))

Comme premiere estimation d’essali, choisissez z, égale 4 A(n), 'approxima-
tion donnée précédemment. Un peu de manipulation algébrique utilisant le fait
que In(x i) = % in/2, méne 4 la formule suivante:

2y 41 =A(n) + (2, — A(n) + (2, + 9) In((Im(A(n))/ (2, + 9)))/(2, + 10)

Dans le programme ci-dessous, Re(A(n)) est stocké dans R, et Im(A(n)) dans
R,. Remarquez que seule 'une des deux racines conjuguées est calculée pour
chaque n.

Appuyez sur Affichage
Mode programme.
CLEAR ~ 000-
[LBLj _ 001-42,21,11 Programme pour A(n).
8 002-43, 5, 8 Spécifie le mode réel.
- 003- 36
004~ 40
[ 005- - 48
b 006- 5
007- 40
(2] 008-43 26
009- 20 Calceule (2n+ 1/2)7.
010~ 36
-[sT0]1 011- 44 1
8 012- 8
(=] 013- 10
9] 014- 4312
015~ 16 Calcule
— In((2n + 1/2)7/8).
[570]0 016- 44 0
r) 017~ 34
1 018- 4225 Reconstitue le nombre

complexe A(n).
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Affichage |

019- 4332
020-42,21,12
021- 36
022- 36
023- 45 1
024- 4230
025- 34
026- 9
027- 40
028- 10
029- 4336
030- - 34
031- 4312
032- 20
033- 34
034- 45 1
035- 4230
036-45,40, 0
037- 30
038- 43,36
039- 33
040- 40
041- 34
042- 1
043- 0
044- 40
045- 10
046- 40
047- 4332
048-42,21,13
049- 36
050- 12
051- 9
052- 4336
053- 40
054- 8
© 055- 34
056- 10
057- 40

Programme de calcul de 2, ,

Crée iIm(A(n).

Programme de calcul pour le
résidu le* + 8/(z + 9)L.
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) Appuyez sur Affichage
[g] 058- 4316 Calcule lef+ 8/(z+ 9)l.
[g] 059- 4332

Labels utilisés: A, B et C.
Registres utilisés: R, et R,.
Exécutez maintenant le pi'ogramme. Pour chaque racine, appuyez sur [B] jus-

qu’'a ce que la partie réelle affichée ne change plus. (Vous pourriez aussi bien
vérifier que la partie imaginaire ne change plus.)

Appuyez sur Affichage
(g] [P/R] : Mode caleul.
[USER] Active le mode USER.
o 1.6279 Affiche
' Re(A(0)) = Re (z,).
[B] -0.1487 Re(z,).
(B] : -0.1497 Re(z,).
-0.1497 Re(z2).
(1] [{i}] (hold) 2.8319 Im(2).
€ ' 1.0000 -10 Calcule le résidu.
(xxy] - =0.1497 Restaure z dans le registre X.

Enrépétant la méme procédure pour n=14 5, vous obtiendrez les résultats ci-
dessous (seule figure une des deux racines).

n A(n) Racine z, Résiduelle
0 1.6279 +i1.5708 -0.1497 + i2.8319 1X1071°
1 0.0184 + {7.8540 -0.4198 + i8.6361 6X107'°
2 -0.5694 +i14.1372  -0.7430+i14.6504 2X10°

3 -0.9371 +i20.4204 -1.0236+i20.7868 5Xx107'°
4 -1.2054 +i26.7035  -1.2553 +i26.9830 9Xx107'0
5 -1.4167 +i32.9867 -1.4486 +i33.2103 2Xx107°
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Lorsque 7 croit, la premiére estimation A(n) s’approche de la racine z désirée.
(Dés que vous avez terminé, appuyez sur . [USER] pour invalider le mode
USER). .

Puisque toutes les racines ont une partie réelle négative, le systéme est stable,
mais la plage de stabilité (la plus petite en grandeur parmi les différentes par-
ties réelles, c’est-a-dire: — 0.1497) est suffisamment petite pour étre surveillée
attentivement lorsque le systéme doit supporter beaucoup de bruits de ligne.

Intégrales de contour

Vous pouvez utiliser [/3] pour évaluer I'intégrale de contour f c flz)dz, ou C
est une courbe dans le plan complexe.

Tout d’abord, paramétrez la courbe C par z(t) = x(¢) + iy(t) pour t, < ¢t < ¢,
Poscz G(t) = f2(t))z(t). Puis:

tz .
j(;f(z)dZZJ;l G(t)dt
ty

ty
:j; Re(G()de +i | Im(G(o)dr.
1 1

Ces intégrales sont justement celles que [;] ¢value en mode complexe. Puis-
que G(t) est une fonction complexe d'une variable réelle ¢, va échantillon-
ner G(t) surlintervalle ¢, < ¢ =< ¢, et intégrer Re(G(t)) - résultat renvoyé dansle
registre X réel par votre fonction. Pour la partie imaginaire, intégrez une fone-
tion qui évalue G(2) et utilise [Re xIm] pour placer Im( G( ?)) dans le registre X
réel.

" Le programme général figurant ci-dessous évalue 1’1ntegrale complexe

I= f f(2)dz.

suivant une ligne droite allant de ¢ 4 b, ott @ et b sont des nombres complexes.
Le programme suppose que le sous-programme de calcul de votre fonction
complexe a le label “B”, qu'il évalue la fonction complexe fiz) et que les limites
d’intégration a et b sont respectivement dans les registres Y et X. Les compo-
santes complexes de I'intégrale I et I'incertitude AJ sont renvoyées dans les
registres X et Y. .

Appuyez sur ’ Affichage

(9] Mode programme.
CLEAR 000-
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Appuyez sur

[ [BL) A]
B
[570)4

[ [Rexim]
[5T0)5
[8] [C57=)
ETol6
570l 7

0

|

1

[fl [0
[sT0]2
[R¥]
[sT0]3
[R¥]

[ (11
[RcL]2
[
(x2)]
[RCL] 3
(f] [
TP

[o] [RTN] |
[f] [LBL]O

[GSB]1
[f] (Rezim]

(o] [RTN]
[l [LBL] 1

“Affichage
001-42,21,11
002- 34
003- 30
004- 44 4
005- 4230
006- 44 5
007- 4336
008- 44 6
009- 4230
010- 44 7
011- 0
012- 36
013- 1
014-42,20, 0
015- 44 2
016- 33
017- 44 3
018- 33
019-42,20, 1
020- 45 2
021- 4225
- 022- 34
023- 45 3
024- 4225
025- 34
026- 4332

027-42,21, 0

028-
029-

030-

32 1
42 30

43 32

031-42,21, 1

Calcule b - a.
Stocke Re(b — a) dans R,.

Stocke Im(b — a) dans R;.
Rappelle a.
Stocke Re(a) dans R,

Stocke Im(a) dans R,.

Calcule Im(J) et Im(AD).
Stocke Im(J) dans R,.

Stocke Im(AI) dans R,

Calcule Re(l) et Re (Al).
Rappelle Im(]).
Reconstitue I complexe.

Rappelle Im(AD).
Reconstitue Al complexe.
Restaure I dans le registre X.

Sous-programme de ealcul
de Im (f2)z(t)).
Calcule f(z)z(t).

Echange les parties
réelle et imaginaire.

Sous-programme de calcul
de fl2)z(¢).
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Appuyez sur Affichage

4 ' 032- 45 4

5 ' 033- 45 5

[ 034- 4225 Reconstitue le nombre
complexe b — a.

035~ 20 Calcule (b ~ a)t.

6 036- 45 6

7 037- 45 7

| 038- 4225 Reconstitue le nombre
complexe a.

039- 40 Calcule a + (b - a)t.

[GSB] 040- 3212 Calcule fla +(b — a)t).

4 041- 45 4

RCL] b 042- 45 5

0 043- 4225 Reconstitue le nombre
complexe 27t) = b — a.

044- 20 Calcule fiz)21¢).

045- 4332

" Labels utilisés: A, 0 et 1.

Registres utilisés: Ry, Rg, Ry, Ry, Rget Ry -

-
L

Pour utiliser ce programme:

L.

2.

Introduisez le sous-programme de calcul de votre fonction, avec le lab¢
“B” en mémoire programme.

Appuyez sur 7 [f] [(i)] pour réserver les registres R, & R;. (Votr
sous-programme peut nécessiter des registres supplémentaires.)

Définissez le format d’affichage pour .

Introduire les deux valeurs complexes définissant les extrémités de 1
droite le long de laquelle votre fonction sera intégrée. La limite inférieur
doit &tre dans les registres Y, la limite supérieure dans les registres X.

Appuyez sur pour calculer I'intégrale complexe de la droite. L.
valeur de I'intégrale est dans les registres X; la valeur de I'incertitud
est dans les registres Y.

Comme deux intégrales sont évaluées, le programme va mettre plus long
temps que pour une intégrale réelle, bien que le programme n’ait pas i uti
liser le méme nombre de points d’échantillonnage pour les deux intégrales
L'intégrale la plus facile utilisera moins de calculs que la plus difficile.
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Exemple: Faites une approximation des intégrales

o0 . oC .
COS X . Sinx
T Y+ 1/x 27 ¥ 1"

Ces expressions décroissent trés lentement lorsque x tend vers infini. Elles
nécessitent donc un large intervalle d'intégration et un temps d’exécution
assez long. Vous pouvez réduire la durée de ce calcul en faisant passer le con-
tour d'intégration de 'axe des réels au plan des complexes. Selon la théorie des
variables complexes, ces intégrales peuvent étre combinées sous la forme:

1+IOO e[z
L=l e

Cette expression, lorsqu’elle est évaluée le long de la droite de coordonnées
x=1ety= 0, décroit rapidement lorsque y augmente, comme e,

Pour utiliser le programme précédent pour le calcul des deux intégrales en
meéme temps, écrivez un sous-programme évaluant:

2

e

f(z) = ST 15
Appuyez sur Affichage
046-42,21,12
047- 15
048- 4336
049- 40 Calculez+1/z.
B ' 050- 4336
1 051- 1
(] -+ 062~ 4230 Reconstitue 0+ i.
053- 20
. - 054- 12 Calcule .
) 055- 34
[=] 056- 10 Calcule fiz).
g 057- 4332

Faites une approximation de I'intégrale complexe en intégrant la fonction de
1+ 0721+ 6i, en format d’affichage [SCI] 2 pour obtenir trois chiffres signifi-
catifs. (L'intégrale n'affecte pas les trois premiers chiffres au-deld de 1 + 6i.)
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Appuyez sur r Affichage

[9] S " © Mode calcul.

[ 2 . Spécifie le format 2.

1 1.00 .= 00 Introduit la premiére limite,
1 4+ 0i, de I'intégration.

1 6 6

[ ' 1.00 00 Introduit la seconde limite,

. 1 + 61, de l'intégration.

-3.24 -01 Calcule I et affiche Re(]) = I,
(au bout de 9 minutes environ).

[(h] (maintenue) 3.82 -01 Affiche Im(J) = I,.

7.87 -04 Affiche Re(Al) = Al

[(i] {(maintenue) 1.23 -03 Affiche Im(Al) = AL.

4 0.0008.

Ce résultat I est calculé beaucoup plus rapidement que si I, et I, étaient calcu-
lées directement le long de 'axe des réels.

Potentiels complexes ,

La projection est utile dans des applications associées d une fonction complexe
potentielle. Les explications suivantes concernent un probléme d’écoulement
de fluide, mais il aurait pu aussi bien s'agir de problémes d’électricité statique
ou de flux de chaleur.

Considérons la fonction potentielle P(2). I.’équation Im(P(2)) = ¢ définit une
famille de courbes appelées les lignes de courant du flux. C'est-a-dire, pour
toute valeur de ¢, toute les valeurs de z qui satisfont 'équation sont dans une
ligne de flux correspondant i cette valeur de c. Pour calculer des points 2, sur
cette ligne de courant, spécifiez des valeurs pour x, et utilisez ensuite
pour trouver les valeurs correspondantes de y, utilisant 'équation:

Im(Px, + iy)) = ¢

Siles valeurs x, ne sont pas trop écartées, vous pouvez utilisery,_, comme esti-
mation initiale de y,. De cette fagon, vous pouvez travailler sur laligne de cou-
rant et calculer les points complexes z, = x, + iy,. En utilisant une procédure
identique, vous pouvez définir les courbes équipotentielles données par
Re(P(z)) = c.
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Le programme ci-dessous permet de calculer les valeurs de y, a partir de
valeurs de x, régulierement espacées. Vous devez prévoir un sous-programme
labellé “B” qui place Im(P(2)) dans le registre X réel. Le programme utilise les
entrées suivantes: valeur A du pas, le nombre n de points sur'axe des réels et
z,= x,+ iy,, point initial de la ligne de courant. Vous devez introduire n, het 2,
dans les registres Z, Y et X avant d’exécuter le programme.

Le programme calcule les valeurs de 2, et les stocke dans une matrice A sous la
forme a,, = x,_; et apy = ¥, pourk =1,2, ., n

Appuyez sur

[g] [P/R]
[f]CLEAR
(1] [LBL] [A]
[sTo] 4

(R¥]

2

[f] [oim] [A]

8 [

(sTO] [§

[7) (MATRIX] 1
[5T0] 2

(7 [USER] [5T0] (&)
|
MFexi)
[5T0] 3

1 [0SER)[ST0) (1

Affichage

000~
001-42,21,11
002- 33
003- 44 4
004- 33
005- 2

007-

43 35

008-44,16,11

009-

44 25

010-42,16, 1

011-
012~

013u

014-
015~

‘016u

017-

43 33
44 2
44 11

42 30
44 3
44 11

22 1

018-42,21, 0
019-45,16,11

Mode programme.

Stocke A dans R,.

Dimensionne la matrice A
anX2a

Met tous les éléments de A

a zéro.

Stocke zéro dans le registre
d’index.

Définit Ry=R, = 1.

Rappelle z, dans les registres X.
Stocke x; dans R..

Définit a;; = x,.

Stocke y, dans Rg.
Définit a,, = y,.

Branchement si la matrice A
n’est pas pleine (n > 1).

Rappelle le label de la
matrice A.



Appuyez sur
(9] [RTN]

[ [CBL] 1

{f] [Rexim]
[GSB] [B]

[STO] 6

[ (6] 2
1
570l (A @

[RCL] 4
[T 2
[5T0] 6
[ReD)3

[1 [SOLVE] 3
[GTo]4

1
[STO] (=] [1]
4

[STO] [+]4
[STO] [X] (1]
[GT0]2

[ (B0 4
[RCL] 6
[ (PS8

[f] [USER] [STO] .

[f] [USER]

Chapitre 3: Calculs ed Mode Co  Jlexe ~ 91°

026-42,21, 2
026- 1
027-44,40,25

028- 45 4

029- 4525
030- 20
031- 45 2
032- 40
033- 44 6
' 034- 45 3
035- 36

" "036-42,10, 3

037- 22 4
038- 1

039-44,30,25

- 043- 22 2
044-42,21, 4
045- 45 6
046- 4231
047u 4411

Restaure z,.

Calcule Im(P(z,)) (ou Re(P(2,))
pour lu courboe 6quipotentiolle),

Stocke ¢ duns R,
Bouclo de rechorcehe de y,,

Affichage
020- 4332
021-42,21, 1
022- 4230
023- 3212

- 024- 44 6

Incrémente le compteur & dans
le registre d'index.

Rappelle A.

Rappelle le compteur k.
Calcule &h.

Rappelle x,.

Calcule x, = x, + kh.

Stocke x, dans R,.

Rappelle Yi-1 de Ry,

Duplique y,_; pour une seconde
estimation.

- Recherche y,.

Branchement & une racine y,
possible.

Commence 3 réduire la valeur

_ du pas.
. vD{ecremente le compteur A
040- 4 -

041-44,10, 4 -
- 042-44,20,25

: Réduit h d’'un facteur 4.
~ Multiplie le compteur par 4.

Boucle arriére pour chercher
¥» & nouveau.

Continue & chercher y,.

Affiche x,.
Défimt a4 1,1 - Xge
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Appuyez sur’ . Affichage
[R¥] 048- 33
[PSE] : ¢ 049- 4231 Affichey,
[sTO) 3 "050-. 44 3 Stocke y, dans R,
1] [USER| [5TO] [A] 051u ° 4411 Définit gy, 1 3= s
[f] [USER] |
[cTO] 2 052~ 22 2 Branchementpourk+1<n
: (A n’est pas pleine).
[GTO]O 053- 22 0 Branchementpourk+1=n
A . (A est pleine).
3 054-42,21, 3 Sous-programme de la fonction
pour [SOLVE].
[RCL] 6 ' 055- 45 6 Rappelle x;.
(xxy] : 056- 34 Restaure lestimation en
- , : , , cours pour y,.
(1] 067- 4225 Crée 'estimation
: 2, = X3, Ty,
058- 3212 Calcule Im(P(z,)) (ou Re(P(z,))
pour des courbes
, ' équipotentielles).
[RCL] 5 ‘069~ 45 5 Rappellec.
= : 060- 30 Calcule Im(P(z,) —c.
- 061- 4332

Labels utilisés: A, B, 0,1, 2, 3 et 4.

Registres utilisés: Ry, Ry, Ro(xy), Ry(y), Ry(R), Rs(c), Re(x) et registre d'index
(k). .

Matrice utilisée: A.

Une caractéristique spéciale de ce programme est que si une valeur x, se
trouve au-deld du domaine delaligne de courant(si bien qu’il n’y a pas de racine

- 4 trouver pour [SOLVE]), la valeur du pas est diminuée pour que x, approche de

1a limite ot la ligne de courant revient. Cette caractéristique est utile pour la
détermination de la nature de la ligne de courant lorsque y, n’est pas une fonc-
tion monadique de x,. Si h est suffisamment petite, les valeurs de z, se trouve-
ront sur une branche de la ligne de courant et approcheront la limite. (Le
deuxiéme exemple ci-dessous illustre cette particularité.)
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b Pour utiliser ce programme: . ..l s

1. Introduisez votre sous-programme sous le label “B” duns la mémoire

programme. I] doit mettre Im(P(2)) dans le registre X réel si vous calcu-

lez des lignes de courant ou bien Re(P( z)) si vous calculez des courbes
équipotenticelles,

- 2. Appuyez sur 6[f] [DM] [[] pour réserver les registres R, 4 R, (et le
registre d’'index). (Votre sous-programme peut nécessiter des registres
supplémentaires.)

3. Introduisez les valeurs de n etde h danslesregistres X et Y en appuyant
. sur I_}[ENTEFﬂ,:h[ENTER] . )

4. Introduisez la valeur complexe de z, = x, + iy, dans les registres X en
appuyant sur x, [ENTER] ¥,[f] [

5.  Appuyezsur [f] [A] pouraflicherles valeurs suu,usschs de x, el y, pour
k=1,..,netfinalementlelabel dela matrice A. Les valeurs pourk 0,
" n sont stockées dans la matrice A.

6. Sivous désirez, rappelez des valeurs de la matrice A.

, Exemple: Calculez la ligne de cour; ant dupotentiel P(z) - 1/ z + z pabbant par le
b .- pointz=—2+4+0,1

Tout d’dbord, introduisez le sous-programme “B” pour calculer Im(P(2)).

_Appuyez sur ' l‘ Affichage
o 062-42,21,12
. 063- 36 Duplique 2.
iz . .. 064= .15 C
Co 088 40 . Calcule I/2z + 2.
[f)(Rex1m] ; 066- 42 30 Place Im(P(2)) dans
. * 'le registre X.
‘[IRTN © 067- 4332

Détermine la ligne de courant en utilisant zy=—240.1i,valeurdu pas: h=0.5
et nombre de points: n ek : .

Appuyez sur ’ Afﬁchage

A i Mode calcul.
9 [ENTER] 9.0000 ' Introduit n.

5 - 0.5000 Introduit h.
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Appuyez sur ' Affichuge

2[CHS| [ENTER] -2.0000
A1) ‘ -2.0000 Introduit 2,
(1] (A] . -1.6000 z
' 0.1343 Y
2.0000 Xy
0.1000 Yo -
' : A 9 2 Label de la matrice A.
8 A 9 2 Désactive le mode complexe.

La matrice A contient les valeurs suivantes de x, et de y,.

Xk Yk
-2.0 0.1000
-1.5 | 0.1343
-1.0 0.4484
-0.5 0.9161

0.0 | 1.0382

0.5 0.9161

1.0 | 0.4484

1.6 | 0.1343

2.0 | 0.1000

Les courbes équiponentielles de courant et de vitesse sont illustrées ci-des-
Sous. La ligne de courant dérivée est représentée par la courbe en gras.

% .
Re(P(z))=¢c
AY 4
\ !
% \_'“‘“"”’”

X

/

/
}
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Exemple: Pour le méme potentlel que celui de 'exemple précédent, P(z) =1/ z
+ 2, caleulez lu courbe équipotentielle de vntesse partant vers la gauche d par-
tir du point z =2 + i,

Tout: d'ubord, modifies le sous-programme “B” pour qu'il donne Re(P(2)) (en

enlevant l'instruction [Re §Im] de “B”). Essayez n= 6 et A=—0.5. (Remarquez
que A esl négative, ce qui spécifie que x, sera situé a gauche de xy).

Bien que les séquences des touches ne soient pas détailléesici, les résultats cal-
culés et stockés dans la matrice A sont donnés ci-dessous.

Xy Yk

2.0000 |1.0000
1.8750 |0.2362
1.8672 10.1342
1.8652 |0.0941
1.8647 [0.0811
1.8646 |0.0775

Lew résultats montront la nnture de ln brunche supéricuro de la courbe (courbe
en pointillés gras du graphe précédent). Notez que la valeur A du pas est auto-
matiquement diminuée pour suivre la courbe - pour éviter un arrét en cas
d’erreur - lorsqu’aucune valeur y n’est trouvée pour x < 1.86.



. Chapitre.4
Opérations matricielles

L’algébre matricielle est un outil trés puissant. Elle permet de formuler et de
résoudre de nombreux problémes complexes, simplifiant des calculs compli-
qués. Ce chapitre traite des opérations matricielles effectuées par le HP-15C
ainsi que l'utilisation du calcul matriciel dans diverses applications.

11 contient aussi un résumé de certains résultats de 'algébre linéaire mais ce
n’est qu'un rappel, il existe de nombreux ouvrages de référence.

Décomposition en matrices triangulaires

Le HP-15C peut résoudre des systémes d’équations linéaires, inverser des
matrices et calculer des déterminants. Pour effectuer tous ces calculs, le HP-
15C utilise une décomposition en matrices triangulaires.

Cette décomposition consiste & trouver deux matrices L et U telles que A =
LU. L est une matrice triangulaire inférieuret dont les éléments de la diago-
nale sont égaux 4 1 et dont les éléments situés sous la diagonale sont compris
entre — 1 et + 1. U est une matrice triangulaire supérieuret. Par exemple:

+ Une matrice triangulaire inférieure est une matrice dont tous les éléments situés au-dessus de la
diagonale sont nuls. Une matrice triangulaire supérieure est une matrice dont les éléments situés au-
dessous de la diagonale sont nuls.

96
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Certaines matrices ne peuvent pas &tre décomposées ainsi. Par exemple,
B [ 1 V' o B
A= ) LU

quelles que soient les matrices L et U. Cependant, aprés avoir effectué une per-
mutation sur les rangs, on peut toujours trouver une décomposition. Il existe
une matrice P telle que la matrice obtenue aprés permutation soit égale au pro-
duit PA. Aprés de(,omposmon on dolt donc avoir PA LU. Reprenons
Pexemple precedent ‘

0 1] o1 |—12 1 0l |1 2
PA= = = =LU.
\ 10 1 2 L01 0 1 0 1

La permutation des rangs peut aussi supprimer les’ erreurs d’arrondi qui I‘IS-
quent de se produlre lors de la decomposmon

Pour effectuer la decornposmon le HP-15C utilise la methode Doolittle avec
une grande précision arithmétique. Le résultat de la décomposition est stocké
sous la forme:

Il est inutile de stocker les éléments de la diagonale de L, puisqu’ils sont tous
égaux a 1. Les permutations sont aussi mises en mémoire dans cette matrice
de maniére codée et qui nous est invisible. La décomposition est indiquée dans
le traitement et son label contient deux tlrets i lafflchage

Lors du calcul du déterminant ou de la lesolutlon d’un systeme d’equatlons la
décomposition LU est automatiquement sauvegardée. I1 est parfois utile de se
servir de la forme décomposée de la matrice dans certains calculs; il ne faut
donc pas perdre 'information concernant la permutation : ne modifiez pas la
matrice dans laquelle sont stockés les éléments de la décomposition.
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"Pour calculer le déterminant de la matrice A, le HP-15C utilise I'équation
A=P'LUafinde pouvoir faire des permutations de rangs. Le déterminant est
alors égul & (—1)" que multiplie le produit des ¢léments de la diagonale de U ir
représente le nombre de permutations. Le HP-15C caleule ce produit avec son
signe, aprés décomposition de la matrice.

Il est beaucoup plus facile d’inverser une matrice triangulaire qu’une matrice
quelconque. Donc pour inverser la matrice A, le calculateur utilise la relation :

A7 =(PTLU) = UL P

I1 faut donc tout d’abord qu’il décompose la matrice A, qu'il inverse L et U, qu’il
caleule le produit UL ! puis qu'il échange les colonnes du résultat. Ces opéra-
tions s’effectuent surla matrice résultat. Si A est déja sous forme décomposée,
la phase de décomposition est supprimée. Grice § cette méthode, le HP-15C
peut inverser une matrice sans utiliser de registre intermédiaire.

Résoudre un systéme d’équations de la forme AX =B est beaucoup plus facile
dans le cas ol A est une matrice triangulaire que dans le cas général. En utili-
santlarelation PA =LU, le probléme devient LUX = PB pourX. Leslignesdela
matrice B vont donc subir les mémes permutations que celles de la matrice A.
Le calculateur commence par résoudre I'équation LY = PB pour Y (résolution
en descendant), puis I'équation UX = Y pour X (résolution en remontant). La
décomposition est toujours sauvegardée afin de pouvoir changer B sans intro-

- duire a nouveau les coefficients du systéme.

La décomposition en matrices triangulaires est une étape trés commode pour
le calcul de déterminants, I'inversion de matrices ou la résolution de systémes
linéaires. Elle peut &tre aussi utilisée 3 la place de la matrice initiale dans d’au-
tres calculs.

Matrices mal conditionnées
et nombre de conditionnement

Afin de pouvoir évaluer les erreurs dans les caleuls matriciels, il faut définir
une distance entre deux matrices.
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L'une des distunces possibles entre les matrices A et B est la norme de leur dif-
férence notée ||A-Bl|. Cette norme est aussi utilisée pour caleuler le nombre
de conditionnement d'une matrice qui indique I'erreur relative dans un caleul,
comparée i l'erreur relative sur la matrice.

Le HP-15C offre 3 normes. La norme Frobenius d’une matrice A est notée
lAll £; c’est 1a racine carrée de la somme des carrés des éléments de la matrice.
Cette norme est I'analogue de la norme euclidienne pour les vecteurs.

La seconde est la norme rang. Pour une matrice A de m X n, la norme rang est
la plus grande somme des valeurs absolues des éléments d’'une méme ligne, elle
est notée |Al|x:

n
A=, g,asxmj;wm.

La norme colonne est notée ||Al ¢, et se calcule selon la formule [|A [ = ||A7]| 5.
La norme colonne est égale 4 la plus grande somme des valeurs absolues des
éléments d’une colonne.

Prenons par exemple les matrices:

: 1. 2 3
A=] . et B=
4 5 9
Alors .
-1 01

A-B= .
; | o0oo 3

[A-Bl|z = ¥11 ~ 3.3 (norme Frobenius) -
|A-Bl|z = 3 (norme rang) et T
IA-B]|¢ = 4 (norme colonne).

Dans toute la suite, nous utiliserons la norme rang, mais des résultats similai-
res sont obtenus avec les autres normes.

Le nombre de conditionnement d'une matrice A est égal 4

K(A) = [All A~

Donc 1 <K(A) < quelle que soit la norme.
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Ce nombre est tres utile pour évaluer les erreurs ddnh les Ldlculb La matrice A
est dite mal conditionnée si K(A) est trés grand.

Si des erreurs d’arrondi ex1stent elles rlbquent de se répercuter dans toute la
suite des calculs. Supposons par exemple que X et B sont des vecteurs non nuls
tels que AX =B. Si A contient une erreur AA et sinous calculons B+ AB = (A+
AA)X, alors:

(laB] /1IBI}) <K( A)
(laAll711AlD

avec une égalité possible pour certaines valeurs de AA. Cela permet de majorer
Perreur sur A qui risque de se répercuter dans les calculs.

Gréce au nombre de conditionnement, il est possible d’évaluer I'erreur sur la
solution d’un systéme par rapport & lerreur sur les données en mémoire.
Reprenons I'exemple précédent : X et B sont des vecteurs non nuls satisfaisant

réquation AX = B. §'il existe des erreurs dans la matrice B (erreurs d’arrondi

par exemple), les erreurs étant représentées par AB, 'équation devient A(X +
AX) =B + AB et alors

daxl/Ixi

——— < K(A),
(aB| /Bl S KA

et 'égalité est possible pour certaines valeurs de AB.

Siil existe une erreur AA sur la matrice A, I'équation s’écrit (A + AA) (X + AX)
= B, si on note d(A, AA) = K(A) ]IAAH/HA” < 1, alors o

(lax|l /11X
dlaajl /1Al

Si A™'+ Z est la matrice inverse de A + AA
alors

< K(A)/(1—-d(AAA)).

Azl /A7)
=< K(A)/(1—-d(A,AA)).
(laa] /A SHA)/A-dl

Il existe encore des valeurs de AA qui provoquent I'égalité.

Toutes les relations indiquées ci-dessus prouvent bien que I'erreur sur le résul-
tat est facile & évaluer parrapport a 'erreur relative sur la matrice A i aide du
nombre K(A). Pour chaque inégalité il existe des matrices pour lesquelles
I'égalité est réalisée. Plus le nombre de conditionnement est grand plus
Perreur sur le résultat risque d’étre élevée.
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Des erreurs sur les données ~ parfois trés petites en valeur relative - peuvent
induire des solutions pour un systéme mal condjtionné, trés différentes de cel-
les du systéme d’origine. De méme, I'inverse d’'une matrice mal conditionnée
comportant des perturbations peut &tre assez différente.de l'inverse de la
matrice d’origine. Cette différence est ma,Joree par K(A), elle ne peut donc étre
élevée que si K(A) est grand. .

Dans le cas d’'une matrice non singuliére A, plus K(A) est grand plus la matrice
A est proche, au sens de la norme, d’'une matrice singulidre.

1/K(A) = min (|A-S]/]|Al})
et

/A = min (JA-S])

ou le minimum est pris sur toutes les matrices S singuliéres. Done, si K(A) est
grand ou si ||A™Y| est grand, alors la distance relative entre A et la matrice sin-
guliére S la plus proche est trés petite.

Prenons par exemple :

1 1
1 .9999999999
alors ,
-9,999,999,999 10'°

_l__
A o101 . -1010

et IlA I=2x 1010 Si il existe une erreur sur A notée AA telle que HAAI|
=5 X 10" et telle que A + AA soit une matrlce smguhere Sl

. 0,._-5.x '10-“
CAA= S
1o 5><.1o'll
|=5X10"et |
lAAl .

] 17.99999999995

A+AA=

27 1 .99999999995

A + AA est une matrice singuliére.
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La figure ci-dessous illustre parfaitement cette idée. La matrice A et la matrice
" S sont placées dans 'espace des matrices, par rapport 4 une surface représen-
tant les matrices singuliéres. Les distances sont mesurées grice i 1a norme.
Autour de A se trouvent des matrices pratiquement semblables & A (par
exemple, celles dont I'arrondi est le méme). Cette zone a pour rayon |AA||. La
distance entre la matrice A et la matrice singuli¢re S la plus procheest 1/[]A7Yl.

Dans le schéma de gauche, IIAAII <1/]A7Y. Si laAll<< 17]A7Y (ou K(A) |AA]/
lAll << 1), alors -

la variation relative sur A™ = Hvariation sur A7/ A7Y|
=~ (laAll/lA]K(A)
= |AAll/(1/]IAT)
= (rayon de la zone sphérique)/
(distance & la surface)

Dans le schéma de droite, [AA||> 1/]|A7Y|, il existe ainsi une matrice singuliére
quine peut pas étre distinguée de la matrice A, il n’est donc pas possible de cal-
culer l'inverse de A.
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Précision des solutions numériques |
des systémes linéaires

Nous venons de voir que les imprécisions sur les données sont répercutées sur
les solutions des systémes d’équations linéaires et I'inversion des matrices.
Mais méme quand les données sont exactes, des imprécisions sont introduites
par le calcul numérique des solutions et des inversions.

Prenons I'exemple de la résolution du systéme AX = B. La solution théorique
est X, mais & cause des erreurs d’arrondi, la solution calculée Z est plutdt la
solution du systéme (A + AA)Z = B. AA est telle que |JAA|| =< ¢ ||Al| odl e est un
nombre trés petit. Dans la plupart des cas, AA n’affecte que le 10° chiffre des
éléments de A.

La matrice résiduelle R = B — AZ est telle que [Rl| = ¢ ||A]|||IZ]l. Elle est done
faible en général. Cependant, si A est une matrice mal conditionnée, I'erreur
Z- X risque d’&tre élevée.

IZ-X < o A1) = « Kea) 2

Voici une régle simple permettant d’évaluer la précision de la solution
calculée:

décimaux corrects |} =

( nombre de chiffrés) ( - nombre de

_ =1y —
chiffres traités) log(YIIAIHIA ") log(10n)

nreprésentant la dimension de la matrice A. Dans le cas du HP-15C, le nombre
de chiffres précis traités est égal a 10.

- (nombre de chiffres corrects) = 9 — log (||Al|A7Y]) — log (n).
. Dans la plupart des applications, cette précision ‘suffit. Si vous avez besoin

d’'une précision supplémentaire, vous pouvez améliorer la solution Z i I'aide de
calculs itératifs (appelés aussi correction des résidus).

Par le calcul itératif, une solution est calculée puis sa précision est déterminée
a l'aide de la résiduelle et cette solution est modifiée.

Pour utiliser cette méthode, commencez par calculer une solution Z du sys-
téme AX = B. Z est ensuite considéré comme une valeur approchée de X telle
que E = X — Z, E vérifie le systtme AE = AX — AZ =R, ot R est la résiduelle
de Z.
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I1 faut ensu__¢ calculer la résiduelle et résoudre Péquation Ak R. La solution
calculée, appelée F, est alors considérée comme une valeur approchée de
E=X—17,elles’ajoute 3 Z et une nouvelle approx1matlon de X est obtenue F+
L~=~X—-ZD)+Z=X. - o SR

Pour que la précision de F+ Z soit meilleure quecelledeZ,il faut calculerR=B
— AZ avec une excellente précision. C'est ce que fait 1a fonction 6du
HP-15C. La matrice A sert i calculer Z et F; la décomposition faite pour le
calcul de Z est utilisée aussi pour F - ce qui réduit le temps de 'exécution. Le
processus déecrit ci-dessus peut étre utilisé de nouveau, mais en pratique on
constate qu'une excellente précision s’obtient dés le premier calcul. -

(Vous trouverez 4 la fin de ce chapitre un exemple de programme pour effec-
tuer une etape du calcul 1terat1f )

Simplification d’'équations difficiles

Un systéme d’équations du type EX = B est trés difficile a résoudre numérique-
ment dans le cas ol E est une matrice mal conditionnée (presque singuliére).
De plus, le calcul itératif risque de ne pas donner des résultats satisfaisants
dans ce cas. Cependant il existe des cas ol un simple petit effort suffit 4 simpli-
fier un probléme difficile. La mise i 'échelle et le préconditionnement du pro-
bleme sont deux méthodes de simplification du traitement.-

Mise a I'échelle

Un probléme mal mis 4 T'échelle peut conduire & des opérations erronées
comme par exemple I'inversion de matrices mal conditionnées ou la résolution
de systemes d’équations 4 'aide de matrice mal conditionnées. Cela peut facile-
ment étre évité. :

Prenonsl'exemple d'une matrice E obtenue 4 partir d’'une matrice A telle que E
= LAR ot L et R sont des matrices diagonales dont les éléments sont des puis-
sances entiéres de 10. On dit que E est dérivée de A par mise a l’échelle. L met a
Iéchelle des lignes de A et R les colonnes. E' = R'A™'L"}, il est donc possible
d’obtenir E™! soit 4 I'aide de A}, soit en inversant E.
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Prenons un c.emple: '
3x100 1 2|
A=l 1 .1 1
2 1 -1

Le HP-15C est capable de ‘calculer A™! avec une pi‘écision de 10 chiffres

-2 3 -1
Al= 3 —4 2
: -1--2 -1
Si. ,; |
o 0 o
‘L=R=| 0 102 ¢ L
v b0 T 0 10720
alors ’

‘ 3¢ 1o 2
E=|1:10%" 101
| 2 .10-40‘_ _10-40

E est donc trés procfne d’'une matrice singuliére S

3 12|
S={100
B 200

IE-Sll/ Bl = 1/8 X 107, Donc K(S) > 3 X 10, on peut done vérifier que
Iinverse calculée E™.
- |-ee7x10M i 1010
E-l=' 08569 « 8569x10° -4.284X10°
C 007155 -4.284X10° 2.142X10°
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est trés différent de la valeur vraie

-2X 10740 3 -1
E1l= 3 -4X10% 2x10%
-1 2Xx10% -10%

Enmultipliant la matrice inverse calculée parlamatrice E d’origine, on se rend
bien compte que le caleul est inexact.

C'est parce que la mise & I'échelle de E n’est pas judicieuse. Une matrice bien
mise 4 I'échelle comme A doit avoir des lignes et des colonnes comparables en
norme et ceci doit étre vrai pour la matrice inverse. C'est bien vérifié dans le
cas de E, mais pour E™ on voit que les normes de la premiére ligne et de la pre-
miére colonne sont trés petites comparées i celles des autres. Il faut done
mettre les lignes et colonnes 4 'échelle avant d’'inverser la matrice. Cela signi-
fie qu’il faut choisir les matrices diagonales L et R de telle sorte que LER et
(LER)™ = R'E" 'L soit assez bien mises & I'échelle.

En général on ne peut pas prévoir la valeur exacte de E™1. 11 faut donc examiner
la matrice E et la matrice calculée E™! pour se rendre compte si le choix des
matrices L et R est bon. Dans ce cas, la matrice calculée E™! indique que le
choix n’est pas trés bon et nous incite & prendre

10° 0 O
L=R=| 0 10° 0
0 0 10°

Ce qui donne:

3x1010 1 2
LER = 1 10780 10780 |
2 10730 10730

qui n'est toujours pas excellent mais qui est néanmoins meilleur. La matrice
inverse calculée est égale a

-2X10%0 3 -1
(LER)! = 3 -4 % 10% 2x10%
-1 2x10%0 -10%0
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Ce résultat est juste jusqu’au 10° chiffre, bien que vous ne puissiez pas le voir
immédiatement. On peut le vérifier en utilisant la relation :

(LER)™(LER) = (LER)(LER)™ = I (matrice identité)
égalité vérifiée jusqu’au 10° chiffre.

On peut alors calculer E™!

-2X1040 3 -1
E'=R(LER)L=| 3 -4x10% 2x10% |,
-1 2X 1040 -10%0

avec une précision de 10 chiffres.

Si il est difficile de vérifier la précision sur (LER)™, vous pouvez utiliser la
méthode de mise 4 I'échelle en prenant LER comme matrice E et de nouvelles
matrices de mise & I'échelle.

Cette méthode de mise a I'échelle sert aussi a résoudre des équations matriciel-
les du type EX = B.1l est possible de remplacer le systéme EX = B par (LER)Y
= LB a résoudre pour Y. Les matrices L et R doivent &tre choisies pour que la
matrice LER soit correctement & I'échelle. On calcule ensuite X grice 4 1a rela-

tion X = RY. '

Préconditionnement

Le préconditionnement est aussi une méthode pour transformer des systé-
mes difficiles EX = B en problémes plus simples, AX = D ayant la méme solu-
tion X. -

Prenons I'exemple d’'une matrice E mal conditionnée (presque singulidre).
Vous vous en rendrez facilement compte en calculant E™ et en remarquant
quel/|[E™Y|| est beaucoup plus petit que |[El| (ou en remarquant que K(E) est trés
grand). On constate alors que tout vecteur ligne u” posséde la propriété sui-
vante: [u”)]/|u"E"| est trés petit devant |[E||. En effet |u”E"Y| n’est pas beau-
coup plus petite que [u7]]|E7Y, et [|E7Y| est grande. Prenons un vecteur ligne u”
et calculons v7 = gqu”E™, le scalaire a est choisi de telle sorte que le vecteur
ligne r” obtenu en arrondissant chaque élément de v7 4 un entier compris entre
— 100 et 100, ne soit pas trés différent de v”.

Le vecteur-ligne r” posséde des éléments entiers tous inférieurs a 100. |r"Ej|
est donc petite comparée & |r”]||Ell. Et c’est ce que nous recherchons.
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Supposons que le kiéme élément de r” soit I'un des plus grands. Remplacons
alors le kieme rang de E par r’E et le kiéme rang de B par r"B. Si aucun arrondi
n’a été fait dans Pévaluation des nouveaux rangs, la nouvelle matrice A doit
8tre mieux conditionnée que la matrice E, mais le systéme a toujours la méme
solution X. ‘

Ce processus est trés efficace dans le cas ol E et A sont 2 la bonne échelle,
¢’est-a-dire lorsque tous les rangs de E et de A ont 4 peu prés la méme norme.
Cela se réalise en multipliant les rangs des systémes d’équations EX = B et
AX = D par les puissances convenables de 10. Si A ne diflére pus assez d'une
matrice singuliére, bien qu'elle soit bien mise a 'échelle, reprenez le processus
de préconditionnement.

Afin de mieux comprendre, prenons 'exemple du systéme EX = B dans lequel

— S - - -
Xy ¥y yy rl
Yy x vy yvy .10
, E=1y y x y y|,B=}|0
y ¥y y xy 0

x = 8000.00002 et y = —1999.99998. Si vous essayez de résoudre directement
ce systéme, voila les solutions que vous donnera le HP-15C.

(20146 1111 1)
2014.6 | 11111

X~ 20146 | et E'~20146(1 1 1 1 1
2014.6 11111

| 2014.6 11 11 1]
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puis

[71.00146 |
0.00146
EX~ | 0.00146
| 0.00146
| 0.00147 |

En faisant un test (utllu-umt [MATRIX] 7), vous découvrez que 1/|E7Y| ~
9.9 X107, ce qui est trés petit devant [[El] ~ 1.6 X 10* (¢'est-a-dire que le nombre
calculé est trés grand: [[E|||E7Y| = 1.6 X 10¥%).

Choisissons un vecteur ligne quelconque u’—(1,1,1,1,1) et calculons
wWE'=~10,073(1,1, 1,1, 1).

Sia=10" ' , '
' =au’E'~ 1.0073(1,1,1,1,1)
r’=(,1,111)

r"Ell ~ 5 X 10

[Tl ~ 8 X 10

Comme nous nous y attendions, k"]l est petite devant |7

Remplagons le premier rang de E par
1071'TE = (1000, 1000, 1000, 1000, 1000)

et le premier rang de B par 10r"B = 107, on obtlent alors une nouvelle équa-
tion matrlcnelle AX = D dans laquelle ’

1000 1000 1000 1000 10007 [107]
y x oy oy oy | 0
A=1| y  y x y y et D=1] 0
y -y y x y -1 0

Yy Yy Yy y  x ) L9
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rTE a2 été mis 4 'échelle 107 et ainsi toutes les lignes de E et de A ont des normes
comparables. En se servant du nouveau systéme, le HP-15C calcule la solution

[2000.000080 | [ 1w T
1 1999.999980 -107
X =11999.999980 |, avec AX = | -9 X 1076
1999.999980
- |1999.999980 i ]

Cette solution est différente de la solution trouvée précédemment, elle a une
précision de 10 chiffres.

Il arrive parfois que les éléments d’'une matrice presque singulicre E soient cal-
culés avec des arrondis, dans ce cas la matrice E™' n’est pas exacte méme si ses
éléments sont calculés sans erreurs arithmétiques. Le préconditionnement
n’est valable dans ce cas que si le rang modifié de la matrice A est obtenu avec
une grande précision. En d’autres termes, on peut dire qu'il ne faut transfor-
mer une formule i 'aide de la méthode de préconditionnement que sil'on est
slir de pouvoir en tirer des avantages.

Méthode des moindres carrés

Les opérations matricielles sont fréquemment utilisées dans des calculs de

moindres carrés. Dans ce type de calculs, on rencontre souvent une matrice X
de n X p contenant des données et un vecteur y i n éléments pour lesquels il
faut trouver un vecteur b & p éléments tel que 'expression suivante soit mini-
male:

n
Mz =23
~

ou r =y — Xb est appelé vecteur résiduel.

Equations normales
|l% = (v — Xb)"(y — Xb) = y"y — 2b"X"y + b"X"Xb.

La résolution de cette équation est équivélente i la recherche de la solution b
d’équations normales :
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X™Xb = X7y,

Mais les équations normales sont sujettes aux erreurs d’arrondi. (La factorisa-
tion orthogonale, expliquée page 113 est en effet tras sensible aux erreurs
d’arrondi.)

Un probléme comprenant un calcul de moindres carrés pondérés est en faitla
généralisation d’'un probléme de calcul de moindres carrés. Il s'agit de minimi-
ser 'expression P -
. N n

o WeE=Y) wie

E i=1
dans laquelle W est une matrice diagonale n X n, dont tous les éléments diago-
naux w,, W, ..., w, sont positifs.

‘ [Wll% = (y — Xb)"W"W(y — Xb)
toute solution b est aussi une solution des équations normales pondérées:

X’WWXb = X"WTWy.

Ce sont en fait les équations normales dans lesquelles X et y sont remplacées
par WX et Wy. Elles sont donc trés sensibles aux erreurs d’arrondi.

Dans un probléme de calcul de moindres carrés avee des contraintes linéai-
res, il faut trouver b tel que Péquation suivante soit minimisée :

2 = lly — Xbi)2
avec: . B
Cd=d (z cﬁb,-=d,-pour_i»=1,»2,‘...,m).

4 ji=1 R

Cela revient en fait & résoudre les équations normales augmentées

XTX CcT{|» XTy
C o 1| d

dans lesquelles I est un vecteur de Lagrange faisant partie de la solution mais
qui n’est pas utilisé par la suite. Les équations augmentées sont, elles aussi,
trés sensibles aux erreurs d’arrondi. Il est possible d’inclure des pondérations
en remplacant X et y par WX et Wy.
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)

Afin de bien prouver que les équations normales ne sont pas trés fiables pourla
résolution des problémes de moindres carrés prenons un exemple numérique:

B ] ]
100,000. -100,000. 0.1
0.1 0.1 0.1
X = et y=
0.2 0.0 0.1
00 0.2 : 0.1
- ) - I
Alors
KTX = 10,000,000,000.05 -9,999,999,999.99
-9,999,999,999.99 10,000,000,000.05
et
T 10,000.03
y —_—
-9,999.97

Cependant en arrondissant a 10 chiffres

101" -10"
TY ~
- XX~ _1010 1010 ’

ce qui donne le méme résultat que si les éléments de X étaient arrondis au
5° chiffre du plus grand élément:

[~ .
100,000 -100,000
0 0
X=[
0 0
0 0

Le HP-15C résout alors I'équation X”Xb = X"y (en perturbant légérement la’
matrice singuliére comme indiqué page 118) et donne

0.060001
0.060000
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avec

Cependant la solution correcte de la méthode des moindres carrés est

0.5000005
0.4999995

bien que les deux solutions satisfassent également aux équations normales.

Les équations normales ne doivent étre utilisées que quand les éléments de X
sont des entiers relativement faibles (disons entre— 3000 et 3000) ou quand on
sait qu'aucune perturbation sur une colonne x; de X, inférieure i [jx/|/10¢ ne
risque de rendre deux colonnes linéairement dépendantes.

Factorisation orthogonalie

La méthode de factorisation orthogonale ci-dessous permet de résoudre les
problémes de moindres carrés; elle est moins sensible aux erreurs d’arrondi
que la méthode des équations normales. I1 faut l'utiliser quand la méthode des
équations normales n’est pas satisfaisante.

Toute matrice n X p, X, peut se mettre sous la forme X = QU ou Q est une
matrice n X n orthogonale caractérisée par Q7 = Q' et U une matrice triangu-
laire supérieure n X p. La propriété essentielle d’une matrice orthogonale est .
qu’elle préserve la long‘ueur »

qulF @orQn
=r’QTQr
=rly

= 7.

Sir =y— Xb, il a la méme longueur que

Qr =Qy—QXb = Qy — Ub.
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~ Lamatrice triangulaire supérieure U et le produit Qy peuvent se mettre sous la
- forme:

| U | (p rangs) g | (p rangs)
U= et Qy=
0 | (n-p rangs) f | (n-p rangs)
i Alors A
l% = llQdl
= |Qy — Ubljz
= |ig — ObllF + [|£]I3
> |\flI%

| avec égalité quand g— Ob = 0. En d’autres termes, la solution d'un probléme
' de moindres currés est uussi solution de Ob = g; la valeur minimale de lu
. somme des carrés est alors égale & ||f||%. C'est la base de tous les programmes
' numériques de calcul des moindres carrés.

On peut résoudre un probléme de calcul de moindres carrés en deux étapes:

1. Effectuez une factorisation orthogonale de la matrice augmentée

nX(@p+1):
x ]

dans laquelle Q7 = Q! et mettez la matrice triangulaire supérieure sous
la forme

U g | (p rangs)
V=10 ¢ |(1rangs)

0 O |(n— prangs)
I‘ L(l colonne)
(p colonnes)

Il ne fau.t conserver que les (p + 1) rangs (et colonnes) de V. (Q est diffé-
rente de I'exemple précédent puisqu’ici elle comprend aussi la factorisa-
tiondey). :

PR ¥ —

"t

e

B 3

e

B T T e T L B B B e Tt B B |

B §



systéme suivant:
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2. Résolvez le systéme ci-dessous pour b: -

19) g b - 0
0 g -1 -q

(si ¢ = 0, remplacez-le par un nombre trés petit comme 107*). Dans la
matrice solution, - 1 apparait automatiquement sans calcul.

Siiln’y a aucune erreur d’arrondi, g = =% |y — Xb|| p; cela peut &tre 1égére-
ment différent si |l est trés petite, mettons inférieure a || /10°%. Si vous
désirez une meilleure approximation du [ly — Xbl|, Lalcule/. la a partu' de
X, de y et de la solution calculée b.

Dans le cas d'un calcul pondéré de moindres carrés, remplacez simplement X et

y par WX et Wy ol W est une matrice diagonale formée des coeff1c1ents de pon-
dération.

~ Pour un calcul de moindres carrés avec contraintes linéaires il faut admettre

que les conliaintes sontl négligeables, 1l est aussi impossible d’obtenir par
calcul numérique une solution parfaitement exacte a cause des erreurs d’ar-
rondi. Il faut déterminer la tolérance ¢ telle que les contraintes sont négligea-
bles quand |[Cb — d|| < t. En général ¢ > ||d|/10" permet une précision de 10
chiffres, dans certains cas une tolérance plus grande est nécessaire.

Quand t est choisie, sélectionnez le coefficient de pondération w vérifiant w >

—dj| > |l saufsi |ICb — d]| < ¢.
Il se peut cependant que les contraintes ne soient pas satlsfalsantes pour une
des deux raisons suivantes: :

® [l n'existe pas de b tel que |ICb — d|| < ¢.

® Les derniéres colonnes de C sont linéairement dépendantes.

Dans le premier cas, il faut déterminer si une solution existe pour les contrain-
tes seules. Quand [wC wd] est factorisé sous la forme Q[U gJ, résolvezenb le

i

(kB rangs)| U g b 0 | (p rangs)
(p+1—krangs)| 0 diag(q) -1 -q | (1 rang)

- en utilisant un nombre q trés petit et non nul. Si la solution calculée b satisfait

Cb = d ulors les contraintes ne sont pas négligcables.
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"Le second cas est beaucoup plus rare et peut étre évité. Il se présente quand au

moins un des éléments diagonaux de U est beaucoup plus petit que le plus
grand des éléments qui se trouvent au-dessus dans la méme colonne, oti U pro-
vient de la factorisation orthogonale wC = QU.

Afin d’éviter cette situation, il faut réordonner les colonnes de wC et de X ainsi
que les éléments (rangs) de b. Le nouvel ordre est facile & trouver si I'élément
perturbateur de U est aussi beaucoup plus petit que la plupart des éléments de
son rang. Il suffit alors d’échanger les colonnes correspondantes dans les don-
nées originales et de refactorisér les équations de contraintes pondérées.
Répétez cette procédure si nécessaire.

Prenons exemple suivant dans lequel la factorisation wC donne:

1.0 2.0 05-15 0.3
U=| 0 002 05 30 01],
0 0 25 15 -1.2

Le second élément diagonal est trés inférieur 4 2.0 qui se trouve juste au-des-
sus. Cela indique que la premiére et la deuxiéme colonne des contraintes d’ori-
gine sont pratiquement dépendantes. Cet é1ément est également trés inférieur
4 3.0 qui se trouve dans la méme ligne. La seconde et la quatriéme colonne des
données d’origine doivent étre échangées et il faut refaire la factorisation.

Il est bon de toujours vérifier si les contraintes sont négligeables. Le test sur
les éléments diagonaux de U peut se faire en méme temps.

Pour finir, il suffit d’utiliser U et g comme % premiers rangs puis d’ajouter les
rangs convenables de X et y. (Reportez-vous a la page 140.) Résolvez enfin le
probléme de moindres carrés sans contraintes en transformant

Sila solution calculée b satisfait |[Cb — d|| < ¢ alors elle minimise aussi 'expres-
sion |y — Xb|| avec la contrainte Cb =~ d.
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Matrices singulieres et presque smgulleres

Une matrice est dite singuliére si et seulement si son déterminant est nul. Le
déterminant d’'une matrice est égal & (— 1)" que multiplie le produit des élé-
ments diagonaux de U, dans lequel U est la matrice triangulaire supérieure de
la décomposition LU; et r le nombre de permutations sur les rangs avant la
décomposition. Donc une matrice est singuliére si un des éléments diagonaux
au moins de U est nul, sinon elle n’est pas singuliére.

Cependant, puisque le HP-15C utilise un nombre fini de chiffres pour ses cal-
culs, certaines matrices singuliéres et presque singuliéres ne peuvent pas étre
distinguées. Considérons par exemple la matrice

est singuliere. Si une utilise une précision de 10 chiffres, la matrice est décom-
posée sous la forme:’ ' ‘

1 o0l{3 3
3333333333 1| |0 10710

b

quin’est pasune matrice smg’ullere La matrice singuliére Bne peut pas se dis-
tinguer de la matrlce non singuliere

3 3
9999999999 1

puisque leurs décompositions LU sont identiqués; .

D’autre part la matrice

3 3 10 3 3
A= B a0 | =LU
1 .9999999999 Vs 1 0 -10
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n’est pas( singuliére. En utilisant une précision de 10 chiffres la matrice A se
décompose sous la forme

1 0 3 3
.3333333333 1 00

Ce qui indiquerait que la matrice A est singuliére. La matrice non singuliére A
ne peut pas étre distinguée de la matrice singuliére

3 3
.9999999999 .9999999999

puisqu’ils ont la méme décomposition LU.

En vous servant de votre HP-15C pour inverser une matrice ou pour résoudre
un systéme d’équations, vous vous rendrez compte que des matrices singulié-
res et des matrices presque singuliéres ont la méme décomposition LU. C’est
pour cela que le HP-15C s’assure toujours que le résultat des calculsn’a jamais
de pivot nul. Si c'est nécessaire, il modifie le pivot d’'une quantité inférieure a -
I'erreur d’arrondi. Ceci est trés important dans certaines applications comme
le calcul des vecteurs propres a l'aide de la méthode d’itération inverse (voir
page 155).

Les erreurs d’arrondi et les modifications intentionnelles permettent le calcul
d’'une décomposition ne comportant aucun pivot nul et correspondant a une
matrice non singulitre A + AA identique ou légérement différente de la
matrice A de départ. En général, 4 moins que tous les éléments d'une méme
colonne de A ne soient inférieurs & 10™ en valeur absolue, la norme colonne
AAll, est négligeable devant |Alf..

Le HP-15C calcule le déterminant d’'une matrice carrée comme étant le produit
des pivots calculés (éventuellement modifiés). Le déterminant caleulé est celui
de la matrice A+ AA décomposée dans la forme LU. Il n’est nul que si la valeur
absolue est inféricure a 107 (dépassement de eapacité inféricure).
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Applications

Voici quelques programmes illustrant l’utlhsatlon du calcul matriciel pour I
résolution de problémes complexes ,

Construction de la matrice identité

Ce programme est destiné 4 la création d'une matrice identité I, dans une
matrice dont le label se trouve dans le registre d'index. Ce programme suppose
que la matrice est déja dimensionnée n X n. Pour exécuter le programme utili
sez [GSB]8.La matnce finale contient des 1 sur la diagonale et des 0 partom
ailleurs.

Appuyer sur o Affichage

[9] : ' : Mode programme.
[FICLEAR[FRGM] .  000-
[LBL]8 001-42,21, 8
[ 1. 002-42,16, 1 Initialisei=j=1.
[IBLS . . 003-42,21, 9
RCLIO ~ - .~ 004- 45 0
ReO1  005- 45 1
[G[TESTI6 ~ -  006-43,30, 6 Testei*].
Clz . 007- 4335 -
[TEST]5 © :.008-43,30, 5 Testei=j.
X "~ 009- 26 Initialise 'élément 2 1sii =
sT0] (] 010u 4424 Saute le pas suivant pour
USER : - _— le dernier élément.
]9 . 011- 22 9
o 012- 4332 . .
(g] [P/R] .= Mode calcul.

Labels utilisés: 8 et 9.
Registres utilisés: Ry, R,, et registre d’index.

Correction de la solution par une itération

Le programme ci-dessous permet de résoudre en X le systéme AX = B, puis de
faire un calcul itératif 4 un niveau pour améliorer la précision de la solution. Ce
programme utilise quatre matrices:
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Labels utilisés: A.

120

Matrice A B C D

Entrée -| Matrice  Matrice
du de second
systeme membre
Sortie Matrice Solution Solution Décomposition
du systéme corrigée  non-corrigée LUde A
Appuyez sur Affichage
[u] [P/R] Mode progrunne,
CLEAR [PRGM] 000-
[7 [LBL] A 001-42,21,11
002-45,16,11
[ST0] [MATRIX] [D] 003-44,16,14 Stocke lu matrice du systeéme
- dans D.

[Ret] 004-45,16,12

RCL] [MATRIX] [D] 005-45,16,14
006-42,26,13
(=] 007- 10  Calcule la solution C

non-corrigee.

008-42,26,12
[MATRIX] 6 009-42,16, 6 Calcule la matrice résiduelle B,
RCL (D] 010-45,16,14

(] 011- 10 Calcule la correction B.
012-45,16,13
- 013- 40 Calcule la solution corrigée B.
014~ 4332

lg] o Mode calcul.

Matrices utilisées: A, B, Cet D.

Pour utiliser ce programme:
1. Dimensionnez la matrice A selon la matrice du systéme puis stockez les
coefficients dans A.
2. Dimensionnez la matrice B selon la matrice de second membre puis
stockez ces éléments dans B.
. 3. Appuyez sur pour calculer la solution corrigée qui se trouve
par la suite dans B.
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Exemple : En utilisant le programme de correction par la résiduelle, calculez
inverse de la matrice A. -

33 16 72
A=|-24 -10 -57
-8 -4 -17

Théoriquement:
“29/8 -8/3  =~J2
Al 8 ho2 hl/2
8/3 273 9
Pour déterminer Pinverse par calcul, il suffit de résoudre AX = B ot B est la
matrice identité 3 X 3.

Entrez tout d’abord le programme ci-dessus el, de retour en mode caleul,
entrez les coefficients de la matrice A (matrice du systéme) et de la matrice B
(matrice identité). Appuyez sur [A] pour exécuter le programme.

Rappelez les éléments de la solution non-corrigée C:
-9.666666881 -2.666666726 ; -32.00000071

C=| 8.000000167 2.500000046 25.50000055
2.666666’728 . 0.6666666836 9.000000203

Cette solution est correcte jusqu’au septieme chiffre. Cette précision vérifie
bien I'équation indiquée page 103.

(nombre de chiffres corrects) = 9 — log (lAlllicl) — log (3) =~ 4.8.

Rappelez ensuite les éléments de la solution corrigée, matrice B:

-9.666666667 -2.666666667 -32.00000000
B=| 8000000000 2.500000000 25.50000000
2.666666667 0.6666666667 9.000000000

Aprés une itération de correction, la précision est de 10 chiffres.
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- Résolution d’un systdme d’'équations non linéaires

Considérons un systéme de p équations non linéaires & p inconnues de la
forme: '

fi (%), %5y %) =0 pouri=1,2.,p

.pusons
Xy | fl(X) F”(X)...F“,(X)
: ) F. w
= x:z f(x) = fz(:x) et F(x)= gl(?() I’%p(X) ,
xp fp(x) Fpl(x)---Fpp(x)
. T | J

dans lequel

0 -
F,'j(x)z fi(x) pour i,j=1,2,..,p.

Le systéme peut alors se mettre sous la forme f(x) = 0. Dans la méthode de
Newton, il faut déterminer une solution initiale x'” de 'équation f(x) = 0 et cal-
culer

x® D =x®B) —(F(x®)y1f(x®)  fork=0,1,2,..
jusqu’a ce que x* Y converge.

Le programme ci-dessous effectue une itération de la méthode de Newton. 1l
effectue le calcul sous la forme
xth+ 1 = () _ gtk

dans laquelle d* est la solution du systéme linéaire p X p.
| F(x®)d® = f(x k),

~ Ce programme affiche pour chaque itération la longueur euclidienne de f(x'*))
et la correction d'®.

Exemple : Prenons une variable y ayant une distribution normale, d’écart-type
m et de variance v? inconnus. Construisons un test sans biais de 'hypothése v?
= v} sachant qu'il est possible que v® # v2 pour une valeur v? particuliére.

Pour un échantillon aléatoire de y constitué de y,, ¥, ..., ¥, Un test sans biais
rejette cette hypothése si:

8, < x,U5 ou s, > x,08
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"Z(y, ) “‘et" y= lzy,

i= i
pour certaines constuntes x, et x,. '

Si la taille du test est a (0 < @< 1), vous pouvez Lrouver x, el x; en résolvant le
systéme d’équations fi(x) = fy(x) = 0, o

'fl(x) =(n-1) ln(xg/xl) + Xy— Xy

Xy '
fox)= . (w/2)"exp(-w/2)dw — 2(1—a)l(m+1).
_ 1
Ici, x, > x, > 0, a et n sont connus (n > 1), et m=(n—1)/2—1.

Une bonne valeur initiale de (x,, x,) est:

(0)

0 = o2 — .2
’x =Xn-1a2 €0 X2 T Xn-11-as2

oil xd » est le pieme pourcent de la distribution du chi-carré avec d degrés de
liberté.

Pour cet exeniple,

1—(n—1)/2, (n—1)/x5—1

F(x)=|
(x,/2)"exp(-x,/2) (x9/2)"exp(-x9/2)

Introduisez le programme suivant:

Appuyez sur -+ Affichage
[g] ' *Mode programme.
CLEAR A 000- S
| 001-42,21,11
2 002- 2
' 003- . 36
[fl 004-42,23,13 Dimensionne 4 2 X 2
l : la matrice F.
005- 1
006-42,23,12 Dimensionne 32X 1

la matrice f.
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Affichage
007~

009-45,16,12
010-45,16,13
011-42,26,14

012- 10
013-42,26,11
014~ 30
015- 4336

016-42,16, 8
017-45,16,12
018-42,16, 8
019- 4332
020-42,21,12

021-42,16, 1

1 022u 4511
023- 44 4
024u 4511
025- 44 5
026- 44 5
027- 30

1 028- 45 5
029-45,10, 4
030- 4312
031- 45 2
032- 1
033- 30
034- 20
035- 40
036- 4412

037- 1

3212
- 008-45,16,11

Calcule fet F.

Calcule d™.

Calcule

kD = glb) d(d).

Calcule [|d¥]] 5.
Calcule |[f(x®)] s

Programme de calcul de f
et de F.

Stocke x{? dans R,.
Saute la ligne suivante pour
le dernier élément.

Stocke x3 dans Rs.

Calcule x; — x,.

Calcule In (x5/ x,).

Calcule (n — 1) In (x5/x,).
Calcule f,.
Stocke £, dans B.



Appuyez sur
2
1

B .

[ReL] [+]

[-]

[f] [USER] [ST0] [€]
[f] [USER]
[RCL] 2
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Affichage ‘
038~ 45 2
039- 1
040- 30
041-45,10, 4
042- 30
043u 4413
044- 45 2
045- 1
046- 30
047-45,10, 5
048- - 1
049- 30
050u - 4413
051- 45 4
052- 45 5
053-42,20,13
054- 45 3
- 055- 1
056- 30
057- 2
058- 20
059- 45 2
060- 3
061~ 30
062- 2
- 063- 10
064- 42 O
065- 20
066- 40
067- 4412
068- 45 4
069- 3213
070- 16
071u 4413

Calcule (n —1)/x,.

Calcule F,,.

Stocke F}, dans C.

Calcule (n — 1)/ x,.

Calcule Fy,.

Stocke F,, dans C.

Calcule I'intégrale.

Calcule 2(a — 1).

' vCalcule m.

Calcule I'(m + 1).

Calcule f,.
Stocke f, dans B.

Calcule F,,.

~ Chapitre 4: Opérations matri  les

Stocke F,, dans C.
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Appuyez sur

[REL]S
C

i
%)
clIC| i
w||n
!E.
[47]
-
O
[9]

i:n
33
zZ||z
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w
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-@Ewmwmggﬂomm

@ EW

Affichage

072- 45 5
073- 3213
074u 4413
075- 4332
076- 4332

077-42,21,13

078- 2
079- 10
080- 16
081- 12
082- 4336
083- 16
084- 45 2
085- 3
086- - 30
087- ‘2
088- 10
- 089- 14
090- 20
091- 4332

Labels utilisés: A,Bet C.- -
Registres utilisés: R, (rang), R, (colonne), R, (n), Rq (a), R, (x,"%) et Ry (x,™).
Matrices utilisées: A(x**1), B(fix**)), C(F(x™*)), et D(d'¥).

Exécutez maintenant le programme. Par exemple, choisissez les valeurs n =11
et @ = 0.05. Les valeurs initiales suggérées sont x,'"” = 3.25 et x,'” = 20.5. N'ou-
bliez pas que le format d’affichage affecte I'incertitude du calcul de I'intégrale.

Appuyez sur

8] [F7A]
5 7] (D] (]
11[570) 2

Affichage

5.0000
11.0000

Calcule F,,.
Stocke F,, dans C.

Saute cette ligne.

Programme d’évaluation de

I'expression & intégrer.

Calcule e *2

Calcule m.

Calcule (x/2)™e 2.

Mode calcul.
Réserve R; 4 R;.
Stocke n dans R.,.



.05[S70]3
2 [ENTER] 1
[ [MATAIX] 1
3.25 [570] [A]

20.5 [570] [A]
[ [5c 4
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;
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O
-
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- 0.0600

1

1.0000
1.0000
1.0000
3.2500

20.50000

2.0500
1.1677
1.0980

3.5519
2.1556

'+ Stocke a dans Ry, - -

. .Dimensionne Aa2x1,

01
00
00

00
01

Active le mode USER.

Stocke x'” de la distribution
du chi-carré.

Stocke xY de la distribution
du chi-carré.

Définit le format d’affichage.
Affiche la norme de f(x'?).

Affiche la norme de
la correction d‘©,

Rappelle x{.
Rappelle x5,

En répétant les quatre derniers pas de programmes, vous allez obtenir les
résultats suivants:

B fx®)e [ af vy g+
3.2500  20.500
o 1168 1.098 35519 21.556
1 1.105X 107 1.740x 10" 3.5169  21.726
2 1918X10°  2863X 10 35162 ~ 21.729
3 6.021 X 1077 9.5642 X 1077 3.56162 21.729

En réalité, vous n’aurez sans doute pas besoin de cette précision pour la plu-
part de vos problémes. Ici, la troisieme itération est suffisamment précise pour
construire le test statistique. (Appuyez sur {fl 4 pour ré-initialiser le for-

mat d'affichage et sur pour désactiver le mode USER.
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Résolution d’un grand systéme d’'équations complexes

Exemple : Trouvez la tension de sortie d’'une fréquence radian de w =15 X 10*
rad/seconde pour le réseau de filtres illustré ci-dessous.

L L c, C, ‘
ek

ns 7\ | |
k D 1, I /, § v,

v II::, R, L Ry

| . i 0

V =10 volts L =107 henry

K, =100 ohms C, =25 X 10™® farad
R, = 10° ohms C, =25 X 107 farad

R, = 10° ohms

Décrivez le circuit 4 l'aide de boucle de courant:

(Ritiwl—i/wC)  (i/wC)) 0 0 I, v
(i/wC)  (RytiwLl—i/wC)) (-Ry) 0 I, 0

0 (-Ry (Ry=i/wCytiwl)  (~iwl) L]l o

0

0 0 (~fwl) (Rytiwl—i/wC,) 1,

résolvez ce systéme complexe pour I}, I, I, et I,. Alors, V, = (R,) (I,). Comme ce
systeme est trop grand pour une résolution par la méthode standard, la
méthode suivante (décrite dans le manuel d’utilisation) est utilisée. Tout
d’abord, introduisez la matrice du systéme dans la matrice A sous forme com-
plexe et calculez son inverse. Remarquez que wL =150, que 1/wC; = 800/3 et
que 1/wC, = 8/3.

Appuyez sur Affichage

(] : Mode programme.
CLEAR 000- Efface la mémoire programme.



Appuyez sur

[9] [P/R]
O [f] [oM] [@]

[f] [MATRIX] O

4 [ENTER] 8
[f] [DIM] [A]

[f] [MATRIX] 1
[f] [USER]
100(sT0] [A]
150 [ENTER]

800 [ENTER] 3[3]
[ 570 (A

150 [ENTER]
8 [ENTER] 3[5]
[-] [ST0] [A]
[RCL] [MATRIX] [A]
MATRIX] 2

TO| |RESULT
1/x

HE

HI
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Affichage

0.0000
0.0000

8
8.0000

8.0000
8.0000

100.0000

150.0000
266.6667
116.6667

150.0000
2.6667
147.3333

>>> > >
00 00 0 0 b

NN )

128"

Mode calcul.

Dimensionne la mémoire pour
une matrice maximale.

Dimensionne toutes les
matrices & 0 X 0.

Dimensionne la matrice A
a4 X 8.

Active lea mode USER.

Stocke Re(ay)).

Stocke Im(a,,).

Stocke Im(a,,).

Transforme A€ en Af.
Transforme AF en A.

Calcule l'inverse de A
dans A.

Supprimez la deuxidme moitié des rangs de A pour avoir de la place pour

stocker la matrice de second membre B.

Appuyez sur S

~4[ENTER]8

4 [ENTER] 2
[f} OM] [B]

Affichage

8
8.0000

2
2.0000

Redimensionne la matrice A
a4 Xx8.

Dimensionne la matrice B
a4 X2
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. Appuyez sur

[f] MATRIX] 1

- 10[570] [g]

pr 1]
(9]
~

[MATAIX] [&]
RCL] [MATRIX] [2]

o
"“I
OT T T U >

ag
213
0 <
[N

A

ATRI

[=] [ (=]
E!ZE-EE
ol 3

el

UES

N D
oD O

H.—a
O] ®

RCL

MATRIX |4

[e] =

d

R x|
m
]
c
5

OO0

Affichage

2.0000
10.0000

.0000

4 8
4 2
8 1
8 2
8 2
4 2
2 4
2 8
1 8
8 1
4 2

Stocke Re(V). (Les autres
éléments sont 0.)

Transforme B¢ en B,
Transforme B” en B.

Calcule la solution dans C.
Calcule la transposée.
Transforme C en C.

Redimensionne la matrice C
alXxs.

Calcule la transposée.
Transforme C” en CC.

La matrice C contient les valeurs désirées de I,, I,, I et I, sous forme rectangu-
laire. Leurs formes polaires sont faciles & calculer.

Appuyez sur
1

[f] [sci] 4

[xxy)(e][>P]

[xxy]
[x2y](g](+P]
xxy)(g](=P]

Affichage

-04
-03
-03

01
-03
-02
-02

01
-03
-02
-02

Réinitialise Ry et R,.
Rappelle Re(1)).
Rappelle Im(Z,).

Affiche II,1.
Affiche Arg (I,) en degrés.

Affiche IL,1.

Affiche II1.
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Appuyez sur * Affichage

27 . -9:2337 01

. 5.3446 -05

- -2.2599 -06 =

G EI=F) © 5.3494 -05 Affiche II,].

Eoy) .-2.4212 00

(xxy)(EEX]5 [x] 5.3494 00 Calcule IV, | = (Rj) IL,I.
[FIX] 4 5.3494

- 5.3494 Désactive le mode USER.

La tension de sortie est 5.3494 £ -2.4212°,

Moindres carrés par les équations normales

Le probléme des moindres carrés sans contraintes est connu, en statistiques,
sous le nom de régression linéaire multiple. 11 utilise le modéle linéaire

b
y= 2 bx; +r.
j=1
Ici, by, .., b, sont les paramétres inconnus, x4, .., x, sont les variables indépen-

dantes (ou “explicatives”), y est la variable dépendante (ou “de réponse”) et r
est Perreur aléatoire ayant attendu la valeur E(r) = 0, variance o2

Pour n observations de y et de x, x5, ..., x,, ce probléme peut &tre exprimé sousla
forme: ' :

y=Xb+r

ol y est un vecteur de n éléments, X une matrice n X p et run vecteur de n élé-
ments composé des erreurs aléatoires inconnues statisfaisant 4 E(r) =0 et a
Cov(r) = E(rr") = ¢’I,.

Si le modele est correct et si X7X a une inverse, la solution calculée
b = (X"X)" X"y pour les moindres carrés a les propriétés suivantes:
. E(B) = b, si bien que b est une estimation de b.

s Cov(b) = E((b — b)7(b — b)) = 6%X”X)™, matrice covariance de Pestima-
tion b.
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Y

e E()=0,00r=y— Xbest le vecteur des résiduels.
e E ([[y—Xb”F =(n =~ p)d?, sibien que &°= ||t||2/(n - p) estune estimation b
de o® Vous pouvez estimer Cov(b) en remplacant o® par &%

La somme totale des carrés ||y]|% peut &tre découpée selon

oz = ¥y.

= (y — Xb + Xb)"(y — Xb + Xb)

= (y — Xb)7(y — Xb) — 2b”X"(y — Xb) + (Xb)"(Xb)
lly — Xbl|% + [IXbi|2

_ [ Somme des carrés Somme des carrés
des résidus de la régression / °

Quand le modéle est vrai,

E(|Xb||%/p) = o + [|Xb]%/p > o?
et
E(ly — Xb||2/(n — p)) =

“pourb # 0. Lorsque le modeéle simplifié y = rest vra1 ces deux valeurs atten-
dues sont egales ad

Vous pouvez tester 'hypothése que le modéle simplifié est vrai (contre 'hypo-
these que le modele d’origine est vrai) en calculant le ratio F':
_|Ixbllzp
ly —Xbllz/(n~p)

F va tendre 2 étre plus grand lorsque le modele d’origine est vrai (b # 0) que
lorsque le modéle simplifié est vrai (b = 0). Rejetez 'hypothése lorsque F est
suffisamment grand.

Siles erreurs aléatoires ont une distribution normale, le ratio F a une distribu-
tion F centrée avec p et (n — p) degrés de liberté sib = 0 et une distribution non
centrée si b # 0. Un test statistique de 'hypothése (avec une probabilité « de
rejet incorrect de 'hypothése) est de rejeter 'hypothése si le ratio F est supé-
rieur au 100 aiéme de la distribution centrée F avec p et (n — p) degrés de
liberté; sinon, acceptez 'hypothése.
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Le programme suivant ajuste le modéle linéaire 4 un ensemble de n points de
données x;,, X;, ..., X;, ¥; Par la méthode des moindres carrés. Les paramétres
by, by, ..., b, sont estimés par la solution b aux équations normales X"Xb = X7y.
Le programme estime aussi o° et la matrice covariance Cov(b) des paramétres.
La somme des carrés de la régression et des résidus (Reg SS et Res SS) et les
résidus sont également calculés.

Le programme a besoin de deux matrices:

Matrice A: n X p & rangs i (x;;, x5, ..., X))
pouri=1,2, .., n
Matrice B: n X 1 4 éléments i(y,) pouri =1, 2, .., n.

Le programme a pour résultats:
Matrice A : inchangée.

Matrice B: n X 1 contenant les résidus de l'ajustement

(i = byx;; —...— byx;,) pour i =1, 2, .., n ol b; est la valeur estimée
de bi'

Matrice C: matrice covariance p X p des valeurs estimées des para-
metres.

Matrice D: p X 1 contenant les valeurs estimées 51, - I;p des paramétres.
Registre T: contient une valeur estimée de az.\__
Registre Y: contient la somme des carrés de la régression (Reg SS).
Registre X: contient la somme des carrés des résidus (Res SS).

Le tableau d’analyse de la variance figurant ci-dessous, découpe la somme

totale des carrés (Tot SS) en somme de régression et somme de résidus. Vous
pouvez utiliser ce tableau pour calculer le ratio F.

Tableau d’analyse de la variance

Degrés de Somme des Carré .
Source liberté carrés moyon Ratio F
. M

Régression P Reg SS (Reg SS) (Reg MS)

p fRes MS)
Résidu n-p Res SS (Res SS)
; — (n—p)

Total . n Tot SS
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Le programme calcule la somme des carrés de la régression non-ajustée pour
la moyenne parce qu'’il ne doit pas y-avoir de constante dans le modéle. Pour
inclure une constante, introduisez dans le modéle une variable qui est identi-
quement égale 4 un. Le parameétre correspondant est alors la constante.

Pour calculer la somme des carrés de la régression ajustée ¢ la moyenne pour
un modeéle avec constante, utilisez d’abord le programme pour ajuster le
modele et pour trouver la somme des carrés de la régression non ajustée.
Ensuite, ajustez le modéle simplifié y = b, + ren éliminant toutes les variables
sauf celle qui est identiquement égale 4 un (b,, par exemple) et calculez la
somme des carrés de la régression pour ce modele: (Reg S8)¢. La somme des
carrés de la régression ajustée a la moyenne (Reg SS), est égale a: Reg SS —
(Reg S8)¢. Le tableau d’analyse de la variance devient donc:

»

Tableau d’analyse de la variance

. Degrés de Somme Carré .
Source liberté des carrés moyen Ratio £
r . M
Régression| p—1 (Reg SS), (Reg SS)s  (Reg MS),
Constante ‘ p—-1) (Res MS)
Constante 1 (Reg SS); (Res SS); '
Résidu n—-p Res SS [Res SS)
(n —p)
Total ' n Tot SS

Vous pouvez ensuite utiliser le ratio F pour tester si la totalité du modéle
s'ajuste beaucoup mieux aux points que le modele simplifié y = b, + r.

Vous souhaiterez peut-étre effectuer une série de régressions, en éliminant les
variables indépendantes entre chaque régression. Pour cela, classez les varia-
bles dans I'ordre inverse de leur élimination dans le modéle. Elles peuvent étre
éliminées par transposition de la matrice A, redimensionnement de A avec

- réduction du nombre de rangs puis seconde transposition de A.

Vous aurez besoin des valeurs des variables dépendantes originelles pour cha-
que régression. S’il n’y a pas assez de place pour stocker les données d’origine
dans la matrice E, vous pouvez faire le calcul 4 partir du résultat de la régres-
sion. Un sous-programme a été ajouté dans ce but.
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Ce programme a les caractéristiques suivantes:

o Sila totalité du programme est introduite dans la mémoire programme,
les tailles de n et p doivent satisfaire n= p et (n+ p) (p +1) = 56, c’est-a-
dire que:

si p est 1 2 3 4
alors n,,est: | 27 16 11 7

Ceci suppose que seuls les registres de stockage R, et R, ont été alloués. Si
le sous-programme “B” n’est pas introduit, alors n = p et (n + p)(p + 1)
< 58, c’est-a-dire que:

si p est 1 2 3 4
alors n,,,est: |28 17 11 7

o Méme sile sous-programme “B” utilise la fonction résiduelle avec sa préci-
sion étendue, les valeurs calculées de la variable dépendante peuvent ne
pas correspondre exactement aux données d’origine. La correspondante
sera cependant habituellement suffisante pour une estimation et des
tests statistiques. Si vous désirez une meilleure précision, vous pouvez
réintroduire les données d’origine dans la matrice B.

Appuyez sur Affichage
[9] Mode programme.
CLEAR 000- . ,
, 001-42,21,11 Programme d’ajustement
du modéle.
002-45,16,12
8 003-42,16, 8 :
004- 4311  Calcule Tot SS.
(A] 005-45,16,11 S
006- 36
007-42,26,13 _
[MATRIX] 5 008-42,16, 5 Calcule C = ATA.
[g] 009~ 4336
RCL] [MATRIX 010-45,16,12
i B 011-42,26,14
[f] 5 012-42,16, 5 Calcule D = ATB.

013- 34
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Labels utilisés: A et B.

~Chapiira 4 Opcrations matnicictle:,

Affichage

- 014- 10
© 015-45,16,11

016- 34
017-42,26,12
018-42,16, 6

019-42,16, 8
020- 4311
021-45,23,11
022- 30
023- 10
024- 36
025- 36

027-42,26,13
028- - 10

029- 4333
030-45,16,12
031-42,16, 8

032~ 4311
. 033- 30
034- 4336
035- 4332

036-42,21,12

037-45,16,11

 038-45,16,14

039- 16
040-42,26,12
041-42,16, 6
042-45,16,14
043- 16
044- 4332

Calcule les paramétres dans D.

Calcule les résidus de
I'ajustement dans B.

Calcule Res SS.

Calcule la valeur estimée de o

Calcule la matrice covariance

dans C.

Calcule Reg SS.
Donne Res SS.

Sous-programme de
reconstitution des valeurs
de la variable dépendante.

Calcule B= B + AD.
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Registres utilisés: R, et R,.

Mutrices utilisées: A, B, C et D.

Pour utiliser ce programme:

5:‘

10.

Appuyez sur 1 [()] pour réserver les registres R, et R,.

Dimensionnez la matrice A en fonction du nombre n d’observations et
du nombre p de paramétres en appuyant sur n[ENTER] p [f] [DIM] [A].

Dimensionnez la matrice B en fonction du nombre n d’observations (et
une colonne) en appuyant sur n[ENTER] 1 [f] [DIM] [B].

Appuyez sur [f] [MATRIX] 1 pour initialiser les registres R, et R,.
Appiyez sur pour activer le mode USER.

Pour chaque observation, stockez les valeurs des variables p dans un -
rang de la matrice A. Répétez cela pour les n observations.

Stockez les valeurs de la variable dépendante dans la matrice B.
Appuyez sur pbur calculer et afficher Res SS. Leregistre Y contient
Reg S8 et le registre T contient la valeur estimée de o2

Appuyez sur [D] pour observer chacune des valeurs estimées des
parametres p.

Si vous le désirez, appuyez sur [B] pour recalculer les données dela
variable dependante dans la matrice B.

Exemple : Comparez deux modeéles de régression sur la variation annuelle de
I'indice des prix a la consommation (IPC) en utilisant i« variation annuelle de
indice des prix 3 la production (IPP) et le taux de chdmage (TC):

y=b+bx,+bx;+r ct y=b+bx,+r

oll y, x, et x; représentent respectivement IPC, IPP et T'C (tous sous forme de
pourcentages). Utilisez les données suivantes:
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[A] [F] [FiX]®

13.561217504
587.9878252

Année IPC IPP TC
1969 5.4 3.9 3.5
1970 5.9 3.7 4.9
1971 4.3 3.3 5.9
1972 3.3 4.5 5.6
1973 6.2 13.1. . 4.9
1974 11.0 18.9 5.6
1975 9.1 9.2 8.5
1976 5.8 4.6 7.7
1977 6.5 6.1 7.0
1978 7.6 7.8 6.0
1979 11.5 19.3 5.8
Appuyez sur Affichage
[9] Mode calcul.
d 0
11 3 3
3.0000 Dimensionne A 4 11 X 3.
1 1 1
1.0000 Dimensionne B 411 X 1.
1 1.0000
USER 1.0000
1[STO ' 1.0000 Introduit les données
de la variable indépendante.
3.9(570] [A] 3.9000
3.5 3.5000
1 1.0000
19.3 19.3000
© 5.8[5T0] 5.8000
5.4 5.4000 Introduit les données
T de la variable dépendante.
5.9 ~5.9000
11.5[STO] [B] 11.5000

Res SS pour tout le modele.
Reg SS pour tout le modéle.
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Affichage

. 1.689021880
'~ -1.245864326

0.379758235
0.413552218
d 3 1

A 11 3
A 3 11
11

11.00000000

A 2 11
A 11 2
16.78680552

- 584.7131947

1.865200613

-+ 3.701730745

0.380094935

d 2 1
A 11 2
A 2 11
11

11.00000000

A - 1 11
A 1 1
68.08545454
533.4145457

6.808545454

6.963636364
6.963636364
6.9636

o? estimée.

‘b, estimée.

b, estimée.

b; estimée.

Recalcule les données
dépendantes.

Elimine la derniére colonne
de A.

Nouvelle matrice A.

Res SS pour le modele réduit.
Reg SS pour le modéle réduit.
o? estimée.

b, estimée.

b, estimée.

Recalcule les données
dépendantes.

Abandonne la colonne suivante
de A.

Nouvelle matrice A.
Res SS.

. Reg SS pour la constante.

o? estimée.
b, estimée.
Désactive le mode USER.

Reg S8 pour la variable IPP ajustée pour le terme constant est:
(Reg SS pour le modele réduit) — (Reg SS pour la constante) =

51.29864900.
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Reg SS pour la variable TC ajustée pour la variable IPP et le terme constant
est:

(Reg SS pour le modéle complet) — (Reg 8S pour le modeéle réduit)
= 3.274630500.

Etablissez maintenant le tableau d’analyse de la variance suivant:

Degrés Somfﬁe Carré .

Source de liberté des carrés moyen Ratio £
TCI'IPP, Constante 1 3.2746305 3.2746305 1.939
IPPIConstante 1 51.2986490 51.2986490 30.37
Constante ; 1 533.4145457 533.4145457 315.8
Résidu
(modele complet) 8 13.56121750 1.68902188
Total - 11 601.5000002

Le ratio F pour le taux de chdmage, ajusté pour la variation de I'indice des prix
a la production et la constante, n’est pas tres significatif statistiquement par-
lant au seuil significatif de 10% (a = 0.1). L'introduction du taux de chomage
dans le modéle n’améliore pas de fagon significative 'sjustement de 1PC.

Cependant, le ratio F pour I'indice des prix i la production ajusté pour la cons-
tante, est significatif au seuil de 0.1% (a = 0.001). L'introduction de IPP duns le
modele n’améliore pas de fagon significative 'ajustement de 1PC.

Moindres carrés par les rangs successifs

Ce programme utilise la factorisation orthogonale pour résoudre le probléeme
des moindres carrés. C'est-a-dire qu’il cherche les parameétres b,, ..., b, minimi-
sant la somme des carrés ||r||% = (y — Xb)"(y— Xb), les données du modéle étant
données.
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X1 X1z .. Xpp Y1
X91 X932 .. Xy o ¥
x=|"% " O et y=1|"
Xpt1 Xp2 e xnp Yn
b — b

Le programme traite les valeurs croissantes successives de n, bien que la solu-
tion b = b"™ n’ait un sens que pour n = p.

Il est possible de mettre en facteur la matrice [X y] de dimensions n X p+1)
ainsi augmentée dans QTV, oli Q est une matrice orthogonale),

U g . (p rangs)
V=10 gq | (1rang)
0O 0

(n 'f P — 1 rangs)

et U est une matrice triangulaire supérieure. Si cette factorisation résulte
de I'introduction de n rangs r,, = (X, X, o, Xps Yu) Pour m =1, 2, ..., n dans
[X yl, considérez comment avancer & n + 1 rang en ajoutant le rangr, ;. a
X yl: '

X y| |Q" o \%

Tyer | ] 0 1 Tyt

Les rangs zéro de V sont supprimés.
Multipliez la matrice (p + 2) X (p + 1)

U g | (prangs)
A=]0 gqg | (1rang)

r,+; | (lrang)
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parun produit de matrices orthogonales élémentaires, chacune d’elle différant
de la matrice identité I, , , dans seulement deux rangs et deux colonnes. Pour

k=12, .,p+ 1successivement, la kieme matrice orthogonale agit sur les

kiemes et derniers rangs pour supprimer le kiéme élément du dernier rang
pour modifier les éléments suivants de ce dernier rang. La kiéme matrice
orthogonale est de la forme

] \

- -

-8

c

oil ¢ = cos(6), s =sin(6), et 6=tan™ (a,+24/a:). Aprésquep+1 de ces facteurs
aient 6té appliqués & la matrice A, celle-ci devient:

U* g* | (p rangs)
A*=| 0 g*|(lrang)
. 0 0 }(1rang)

ol U* est également une matrice triangulaire supérieure. Vous pouvez obtenir
la solution b * " au systdme de p + 1 rangs incrémenté en résolvant:

U#* g# b(n +1) 0
0 gq* -1 -g*

En remplacant le dernier rang de A* parr, ., et en répétant la factorisation,
vous pouvez continuer 4 ajouter des rangs de données dans le systéme. Vous
pouvez ajouter indéfiniment des rangs sans augmenter I'espace de stockage
nécessaire.

Le programme suivant commence avecn =0 et A = 0. Vous introduisez les
rangsr,, au fur et 3 mesure pourm=1,2,..,p—1 respectivement. Vous obtenez
alors la solution b pour chaque introduction de nouveau rang.
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Vous pouvez également résoudre des problémes de moindres carrés pondérés
ainsi que des problémes de moindres carrés avec des contraintes linéaires i
I'aide de ce programme. Il vous suffit de procéder aux substitutions nécessai-
res décrites dans le paragraphe “Factorisation orthogonale”, plus haut dans ce

chapitre.

Appuyez sur

[o] [P/R]
[f]CLEAR
[f] [LBL] [A]

[STO]2
1
[STo]1

[ (B4
[ReL] o] [A]

| (= [0
(o] -
—i{rlO
w
-—\’-—o
[¢]
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REE
N

==
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o
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=

w
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e
2
b
=
X
—
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3
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E

)
(o]
-~

Affichage
000-
001-42,21,11
002- 44 2
003- 1
004~ 44 1

006-45,23,11

007- 34
008- 44 0
009-42,21, 5
010- 45 1
011- 31
012- 45 2
013- 20
014u 44 11
015- 22 5
016- 22 4

018-45,23,11

019- 34
020- 44 2
021-42,16, 1
022-42,21, 1

023-42, 5, 0
024- 45 2
025- 45 0O
026-45,43.11
027- 4511

Mode programme.
Programme d'introduction
d’un nouveau rang.

Stocke la pondération dans R,.

Stocke ! =1 dans R,.

Stocke & = p + 2 dans R,

RPN

Programme de mise 3 jour

de la matrice A.

Rappelle les dimensions p + 2
etp+1. -

Stocke p + 2 dans R,. -
Stocke k=1 =1.
Branchement 4 la mise 3 jour
du Ziéme rang.

Rappelle a, ; 5 ;.
Rappelle a,,.



144 Chapitre 4 : Opérations matricielies

Appuyez sur

[g] [TE5T) 2
8] [5710

= = [l ]

B2

|

=] |
(o]

=
)

15: ¢
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=
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e :DEH:U
c _O*@El = P
w
N
u [e] =
>]

= EHE &
iE
B
m
-
»
|
(@]
>

O
=
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e

[CF|8

| |»
Hq@
FOH
N -

Affichage

028-43,30, 2
029-43, 4, 0
030- 4316
031- 43 1
032- 4335
033- 1
034- 42 1
035-43, 6, O
036- 16
037- 4225
038- 33

039-42,21, 2

040- 4333
041- 4511
042- 45 2
043- 45 1
044-45,43,11
045- 4225
046- 20
047- 45 2
048- 45 1
049-44,43.,11
050- 4230
051u 44 11
052- 45 1
" 053- 45 0
054- 4310
055- 22 2
056-43, 5, 8
057- 44 1
058- 45 2

Teste a,, < 0.
Arme l'indicateur 0 pour un
élément diagonal négatif.

Calcule 6.

Calcule x = cos B et y = sin 6.

‘Définitx =cety=s.

Forme s + ic.

Sous-programme de rotation
du rang k.

Rappelle a,,.

Rappelle a, . 5.
Forme ay, —1a, 4 5, 1

Stocke le nouveau ay,.

Stocke le nouveau a, 4 ; et
incrémente R, et R,.

Rappelle { (colonne).
Rappelle £ (rang).

Teste k< L

Boucle arriére jusqu’a ce que
la colonne soit remise a 1.
Désactive le mode complexe.
Stocke & dans R, (I).
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(8] [z=341
[8] [(RTN]
(GTO] 1

[f [LBL] [€]

[RCL] [DiM] [A]
[f] [DiM] [A]
(§T0jO
[STO]1

[l [o™] [c]

-—

0
[STO] [MATRIX] [C]

EEX

EEN
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Affichage

059- 4310
060- 4332
061- 22 1

062-42,21,13

063-45,23,11

064- 36
065-42,23,11
066- 44 0
067- 44 1
068- 1
069-42,23,13
070- 0
071-44,16,13
072- 26
073- 9
074- 9
075- 16
076- 4511
077- 4320
078- 33
079- 16
080- 45 0
081- 1

082-44,43,13

083-45,16,13
084-45,16.11

085-42,26,13
086~ 10
087- 45 0O
088~ 1

- 089~ 40
090- 45 0

091-42,23,11

092~ 1

Testep+2< k.

Retourne au dernier rang.
Boucle arrigre jusqu’au
dernier rang.

Programme de calcul de la
solution courante.

Elimine le dernier rang de A.
Stocke p + 1 dans R,
Stocke p+1dans R,.

Dimensionne la matrice C
ap+1)X1.

Définit la matrice C 4 0.

Forme 107%.

Rappelle g = Ay +1,p+1s
Teste ¢ = 0.

Utilise 107 si g = 0.

Définit ¢, 4, = — q.

Stocke A™'C dans C.

Dimensionne la matrice A
ipt+2 X(p+1).
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-y Appuyez sur Affichage
‘ = 093- 30

1 094- 1 |
095-42,23,13 Dimensionne la matrice C

[ apXL :

e 096- 4511 Rappelleq. :
[MATRIX] 1 097-42,16, 1 Définitk=1= 1.
098- 4332 |

Labels utilisés: A, B, Cet1a 5.

Registres utilisés: Ry, R, et R, (p + 2 et w).

Matrices utilisées : A (matrices de travail) et C (valeurs estimées des parame-
tres).

Indicateurs utilisés: 0 et 8.

Apres le stockage de ce programme, le HP-15C dispose de suffisamment de
mémoire pour travailler avee jusqu’a p = 4 paramétres. Si les programmes “A”
et “C” sont supprimés, vous pouvez travailler avec p = 5 parameétres. Dans 'un
et Pautre cas, il n’y a aucune limite au nombre de rangs que vous pouvez intro-
duire.

Pour utiliser ce programme:

1. Appuyez sur 2 [(i] pour réserver les registres R, & R,.
2. Appuyez sur pour activer le mode USER.

3. Introduisez (p+ 2) et (p + 1) dans la pile, puis appuyez sur [f]
pour dimensionner la matrice A. Ces dimensions dépendent du nombre p

de paramétres que vous utilisez.

Appuyez sur O MATRIX pour initialiser la matrice A.

Introduisez la pondération w, du rang courant et appuyez sur |A|. L’Af-
_ fichage doit afficher 1.0000 pour indiquer que le programme est prét
i pour le premier élément du rang. (Pour les problémes classiques de
moindres carrés, utilisez w, = 1 pour chaque rang.)

6. Introduisez les éléments du rang m de la matrice A en appuyant sur x,,

R/S]| Xme [R/S]. %mp [R/S] ¥m [R/S]. Aprés chaque €élément nouvelle-

ment introduit, laffichage doit afficher 'indice du prochain élément &

| introduire. (Si vous faites une faute en introduisant les éléments, reve-
i nez en arriere et répétez les étapes 5 et 6 pour le rang considéré.)

7. Appuyez sur [B] pour mettre i jour la factorisation pour ajouter lerang
introduit lors des deux étapes précédentes. '
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8. Eventuellement, appuyez sur ﬂ (9] [x%] pour calculer et affxcher la
somme des carrés des résidus g2 et pour calculer la solution b courante.
Appuyez ensuite p fois sur [RCL] [C] pour afficher b,, by, ..., b, successi-
vement. .

9. Répélez les élapes 5 a 8 pour chaque nouveau rang.

Exemple: Utilisez ce programme et les données IPC (indice des prix 2 la con- -
sommation) de 'exemple précédent pour ajuster le modéle

y=b,+ byx, + byx,+r,
ou ¥, x, et x; représentent respectivement IPC, IPP et TC (tous en pourcen-
tages).

Ce probléme mettant en ceuvre p = 3 paramdtres, la matrice A doit étre une
matrice 5 X 4. Les rangs de la matrice A sont (1, x,,5, X3, ¥,,) pourm=1,2, ..., 11.
Chaque rang est pondéré i w,, = 1.

Appuyez sur Aflfichage
(9] ' Mode calcul.
2 [f] [owm] [()] 2.0000 Réserve les registres Ry & R,.
‘ 2.0000 Active le mode USER.
(f] [MATRIX] O ‘ 2.0000 Efface la mémoire matrice.
5 4 4 |
[f 4.0000 Dimensionne la matrice A a
5 X 4.
0 0.0000 Stocke zéro dans tous les
éléments.
1 1.0000 Introduit’ la pondération du
rang 1.
1 2.0000 Introduit x,.
3.9 ‘ 3.0000 .- Introduit x,,.
3.5 4.0000 " Introduit x;3. -
5.4 1.0000 - Introduit y,.
5.0000 - - Met & jour la factorisation.
1 1.0000 Introduit la pondération du
) rang 11.
1 2.0000 Introduit x;, ;.
19.3 3.0000 Introduit x;; .
5.8 ' 4.0000 Introduit x,; 5.
11.5 ' 1.0000 Introduit y,;.

5.0000 Met & jour la factorisation.
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Appuyez sur

[ [Fix]9

Affichage
3.6759

3.675891055

. 13.51217505

" 1.245864306

0.379758235
0.413552221

Calcule les valeurs estimées
courantes et gq.

Calcule la somme des carrés
des résidus ¢° ‘
Affiche b

Affiche by".

Affiche bi".

Ces valeurs estimées concordent (sur 3 des neuf chiffres significatifs) avec les
résultats de Pexemple précédent qui utilise 'équation normale. En outre, vous
pouvez ajouter des données supplémentaires et mettre a jour les valeurs esti-
mées des parametres. Par exemple, ajoutez les données suivantes pour 'année
1968: IPC = 4.2, IPP = 2.5 et TC = 3.6.

Appuyez sur ;

1[4l

AFfichage
1.000000000

2.000000000
3.000000000
4.000000000
1.000000000
5.000000000
3.700256908
13.69190119

1.581596327
0.373826487
0.370971848
0.3710
0.3710

Introduit la pondération de
rang pour les nouveaux rangs.

Introduit x,,,.
Introduit x5
Introduit x;53.
Introduit y,.

‘Met 4 jour la factorisation.

Calcule la somme des carrés
des résidus.
Affiche b{'®.
Affiche by”.
Affiche by®.

Invalide le mode USER

Valeurs propres d’'une matrice réelle symétrique

Les valeurs propres d'une matrice carrée A sont les racines A, de son équation

caractéristique

det(A — A =

0.
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Quand A est réelle et symétrique (A = A7), ses valeurs propres 4; sont toutes
réelles et possédent des vecteurs propres ; orthogonaux. Alors

AJ quj
et
o 0 ifj=k
T o =
PR ifj=4

Les vecteurs propres (q,, q,, ...) constituent les colonnes d’une matrice orthogo-
nale Q qui satisfait:

QTAQ = diag (A, Ay, ..)
et
QT=q"
Une variation orthogonale des variables x = Qz, qui est équivalent i une rota-

tion des axes, fait varier 'équation d’une famille d’aires quadratiques (xTAx = ‘
constante) de la forme:

k o
2(QTAQ)z = Z)\jz? = constante.
J

Avec I'équation sous cette forme, vous pouvez reconnaitre de quelles sortes
d’aires il s'agit (ellipsoides, hyperboloides, paraboloides, cones, cylindres,
plans) puisque les demi-axes de l'aire se trouvent le long des nouveaux axes de
coordonnées.

Le programme ci-dessous commence avec une matrice A donnée quiest suppo-
sés symétrique (si elle’'ne I'est pas, elle est remplacee par (A + A7)/2 qui, elle,
est symétrique).

Etant donnée une matrice symétrique A, le programme construit une matrice
anti-symétrique (c’est-a-dire, pour laquelle B = — B7) en utilisant la formule :

b -_{tan(%tan"(Za,-j/(ai,- —ay) sii#Fjeta;#0
=

0 sii=joua;=0.

Ensuite, @ =2 (I+ B)™ —1I doit 8tre une matrice orthogonale dont les colonnes
sont une bonne approximation des valeurs propres de A ; plus sont petits tous
les éléments de B, meilleure est 'approximation. Q"AQ doit donc étre proche
d’'une matrice diagonale que A mais avec les mémes valeurs propres.
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Si QTAQ r’est pas suffisamment proche de la diagonale, elle est utilisée & la
place de A précédente pour répéter le processus.

De cette facon, des transformations orthogonales successives Q,,Q,, Qs, ... sont
effectuées sur A pour produire une suite A}, Ay, A, .., oU:

‘ Aj =(Q, Q... Qj)TAQ1Q2~-- Qf

avec chaque A; successive plus diagonale que celle qui la précéde.

Ce processus aboutit normalement & des matrices anti-symétriques dont les
éléments sont tous petits, A; convergeant rapidement vers une matrice diago-
nale A. Cependant, si certaines valeurs propres d’une matrice A sont trés pro-
ches les unes des autres mais trés écartées des autres valeurs, la convergeance
est lente ; heureusement cette situation est rare.

Le programme s’arréte aprés chaque itération pour afficher

Vs ZI éléments hors diagonale de A;1/]|Al|

<
qui mesure la facon dont A; est diagonale. Si cette mesure n’est pas négli-
geable, vous pouvez appuyer sur pour calculer A; . ; si elle est négli-
geable, alors les éléments diagonaux de A; sont proches des valeurs propres de
A. Le programme n’a besoin que d’une itération pour des matrices 1 X 1 ou
2 X 2 et rarement plus de six pour des matrices 3 X 3. Pour les matrices 4 X4,le
programme prend légérement plus de temps et utilise toute la mémoire dispo-
nible; 6 ou 7 itérations sont généralement suffisantes, mais si certaines
valeurs propres sont trés proches les unes des autres mais relativement loin
des autres valeurs, il faudra vraisemblablement entre 10 et 16 itérations.

Appuyez sur Affichage
[g] Mode programme.
[f]CLEAR 000-
[f] 001-42,21,11
RCL 002-45,16,11
003-44,16,12 Dimensionne B.
STO 004-44,16,13 Dimensionne C.
[MATRIX] 4 005-42,16, 4 Transpose A.
006-45,16,12
007- 4426
008- 40
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Affichage

009- 2
010- 10

012-42.,16, 8

013- 44 2
014- 4335
015- 44 3

016-44,16,13
017-42,16, 1
018-42,21, 0

019- 45 0
020- 45 1
021-43,30, 5
022- 22 3
023-43,30, 7
024- 22 1
025- 34
026-45,43,12
027- 16
- 028u 4412

1 029- 22 0

032- 4316
033-44.,40, 3
034- 4336
035~ 36
036- 40
037- 45 0
038- 36
039-45,43,11
040- 45 1

041~ 36

Calcule A = (A + A7)/2.
Calcule [|Al|5.
Stocke ||Al| ¢ dans R,.

. Initialise la somme des

éléments hors-diagonale.
Définit C = 0.

Définit Ry =R, = 1.
Programme de
construction de Q.

Teste rang = colonne.

Teste colonne > rang.

Programme pour colonne
> rang.

‘Calcule la;l.

Cumule la somme hors
diagonale.

Calcule 2a;;.

Rappelle a;;.

151
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Appuyez sur

[Ret] [g] [A]
[-]

[g] [TEST] 3
[GTo] 2

d

(9]
I
w

d

=
w
—
N

HE
r~
]

i FN
JEEFE *EED
o|[clic|i=
o |44
|0
wn
—‘
o
(=]

=le
—
w
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w

HEE“
cllc|io
(2108

o||3| ]
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(@115
~10

N:\U:U

3 |2
w
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N

B
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<
br
oo}
=
[0

ATRIX

O
—
£
2
2
x
[>]

E
MATRIX

===
ool
(]
(o
5
i ()

o
—
O
(=]

Affichage
042-45,43,11
043- 30
044-43,30, 3
045- 22 2
046- 16
047- 34
048- 16
049- 34
050-42,21, 2
051- 43 1
052- 4335
053~ 4
054- 10
055- 25
056u 4412
067- 22 0
058-42,21, 3
059- 1
060- 4413
061u 4412
062- 22 0
063- 45 3
064-45,10, 2
065- 31
066- 2
067-45,16,12
068- 10
069-45,16,13
070- 30
071-45,16,11

072-42,26,13
073-42,16, 5

Rappelle a;;.
Calcule a; — aj;
Teste x = 0.

Garde P'angle de rotation
compris entre — 90" et 90°.

Calcule I'angle de rotation.

Calcule by

Programme pour rang

= colonne.
Définit ¢; = 1.
Définit b; = 1.

Calcule le ratio des éléments
hors diagonale.
Affiche ce ratio.

Calcule
B = 2(I + antisymétrique) ™ — L.

Calcule C = BTA.
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Appuyez sur Affichage

RCL] [MATRIX ' 074-45,16,12

[RESULT] 075-42,26,11 _
076- 20 Calcule A = BTAB.
[GT0] [A] 077- 2211

Labels utilisés: A, 0, 1, 2 et 3.
Registres utilisés: R, R,, R, (somme hors diagonale) et Ry (J|A]l5). -
Matrices utilisées: A(A)), B(Q,) et C.

Pour utiliser ce programme
L. Appuyez sur 4[f] [DIM] [(i)] pour réserver les registres Ry a R,.
2. Appuyez sur bour activer le mode USER.

153

3. Dimensionne et introduit les éléments de la matrice A en utilisant

[f et [A]. Les dimensions peuvent aller jusqu'a 4 X 4, du

moment qu’il y a suffisamment de mémoire disponible pour les matrices

B et C ayant également les mémes dimensions.
Appuyez sur [A] pour caleuler et atficher le ratio hors diagonale.

geable cest-a-dire inférieur a 1078,

5. Appuyez plusieurs fois sur [R/S] jusqu’a ce que le ratio affiché soit négli-

6. Appuyez plusieurs fois sur pour obtenir les éléments de la

matrice A. Les éléments diagonaux sont des valeurs propres.

2

Exemple: Quelle aire quadratique est décrite par I'équation ci-dessous?

01 2 X1
xTAx=[x, x, x3] |1 2 3 X9
2 3 4 Xy

=2xxy+ 4x 125+ 223 + 6xyxy + 4x3

=17
Appuyez sur Affichage
(9] Mode calcul.
4f] M ~ 4.0000 Alloue la mémoire.

4.0000 Active le mode USER.
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Appuyez sur Affichage
3[ENTER] [f] [DIM] 3.0000
[MATRIX] 1 3.0000

_0[sT0] 0.0000
1 1.0000
3 3.0000
4[STO 4.0000
0.8660
0.2304
0.1039
0.0060
R/S 3.0463 -05
R/S 5.8257 -10
-0.8730

RCL -9.0006 -10
-2.0637 -09
RCL -9.0006 -10
9.3429 -11
RCL 1.0725 -09
-2.0637 -09
RCL 1.0725 -09
RCL 6.8730

USER 6.8730

Dimensionne la matrice A
a3 Xxa.

Définit R, et R, & 1.
Introduit a,;.

Introduit a,.

Introduit ay,.
Introduit ass.

Calcule le ratio — il est
trop grand.

2¢ tentative: trop grand.
3¢ tentative: trop grand.
4° tentative: trop grand.

~ 5° tentative: trop grand.

Ratio négligeable.
Rappelle a;, = A,.
Rappelle a,,.
Rappelle a,3.
Rappelle a,;.
Rappelle ay = As.
Rappelle ays.
Rappelle ay;.
Rappelle a,,.
Rappelle ay; = As.
Désactive le mode USER.

Dans le nouveau systéme d’axes, 'équation de I'aire quadratique est approxi-

mativement

, —0.87302% + 022 + 6.873025 = 1.
1l s'agit de 'équation d’un cyclindre hyperbolique.

Vecteurs propres d’'une matrice réelle symétrique

Comme nous 'avons vu dans I'application précédente, une matrice réelle symé-
trique A a des valeurs propres réelles A, A, ... et des vecteurs orthogonaux cor-

respondants q;, gy,
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Ce programme utilise l'itération inverse pour calculerun vecteur propre q; cor-
respondant a la valeur propre X, et tel que |jg ; = 1. Cette technique utilise un
vecteur initial 2 pour calculer par itération les vecteurs w' et z™ suivants 3
partir des équations (A — AW+ Y = g0

z(n+ D = sW(n+ 1)/”w(n+ l)“R

ol s indique le signe de la premigre composante de w** 1 ayant la valeur abso-
lue la plus grande. Les itérations continuent jusqu’a ce que z!™ converge. Ce
vecteur est un vecteur propre g, correspondant 3 la valeur propre A,.

Il n’est pas nécessaire que la valeur utilisée pour A, soit exacte¥ le vecteur
propre calculé est déterminé précisément en dépit de petites imprécisions
dans A,. Par ailleurs, vous n’ates pas obligé d’avoir une approximation de Ay
trop précise; le HP-15C peut caleuler le vecteur propre méme lorsque A — A,I
est mal conditionnée.

Cette technique exige que le vecteur z¥ ait une composante non nulle le long
du veeteur (propre) 4, inconnu. Puisqu’il n’y a pas d’autres restrictions sur z'9,
le programme utilise des composantes aléatoires pour z. A la fin de chaque

itération, le programme affiche |l * Y — ™|, pour montrer la rapidité de la
convergence.

Ce programme accepte une matrice A non symétrique 4 condition qu’elle ait
une forme canonique de Jordan en diagonale, c’est-d-dire qu’il existe une
matrice P non singuliere telle que P'AP = diag(a,, A,, ...). -

»

Appuyez sur Affichage
(9] Mode programme,
CLEAR 000- |
LBL 001-42,21,13 .
[STO]2 002- 44 2 Stocke les valeurs propres
dans R,.-
003-45,16,11 '
004-44,16,12 Stocke A dans B.
005-45,23,11
[ST0]0 006- 44 0
LBL]4 007-42,21, 4
[Rerjo 008- 45 0
1 009- 44 1
RCL 010- 4512
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Affichage

01 1 -45'30' 2
012- 4412

013-42, 5, 0
014- 22 4
015-45,23,11
016- 1
017-42,23,13
018-42,16, 1
019-42,21, 5

020- 4236
021u 4413
022- 22 5
023-42,21, 6

024-45,16,13
025-44,16,14

026- 4426
- 027-45,16,12
028- 10
029- 36
030-42,16, 7
031~ 10

032-42,16, 1
033-42,21, 7

034u 4513
035- 36
036~ 4316
037- 1
038-43,30, 6
039- 22 7
040-45,16,13
041- 4336
042- 10

Modifie les él1éments diagonaux

de B.

Dimensionne Ca n X 1.

Stocke les composantes

aléatoires dans C.

Programme d'itération pour

z(n) et w(n)_

Stocke 2™ dans D.

Calcule w ¥ dans C.
Calcule + z** ¥ dans C.
Programme de recherche

du signe du plus grand ¢lément.

(Cette ligne est sautée pour

le dernier élément.)

Teste |la,|| # 1.

Rappelle a; extréme.

Calcule z** Y dans C.



Chapitre 4: Opérations matricielles 157

Appuyez sur Affichage

[D] . 043-45,16,14

STO 044- 4426

=] 045- 30 Calcule 2"+ Y — M dang D.
7 046-42,16, 7 Calcule [z * 1 — 50,
[MATRIX] 1 047-42,16, 1 DéfinitR, =R, =1 pour

visualiser C.

R/S 048- 31  Affiche le paramétre de
convergence. '
6 049- 22 ¢

Labels utilisés: C, 4, 5, 6 et 7.

Registres utilisés: R,, R, et R, (valeur propre).

Matri

ces utilisées : A (matriee d'origine), B(A — Al), C(z!"t M et D(z"*h — z"),

Pour utiliser ce programme:

1.
2.
3.

Appuyez sur 2 [f] [()] pour réserver les registres RyRyetR, .
Appuyez sur pour activer le mode USER.
Dimensionne et introduit les éléments dans la matrice A en utilisant

(7] (O] (4], (7] [MATRIX] 1 et [STO] [A].

Appuyez sur la valeur propre et appuyez sur [C]. L'affichage montre le

paramétre de correction [zV — 2! .

Appuyez plusieurs fois sur Jusqu’a ce que le paramétre de correc-
tion soit trés petit (négligeable).

Appuyez plusieurs fois sur pour afficher les différentes com-
bosantes de gy, le vecteur propre.

Exemple: Pour la matrice A de I'exemple précédent

01 2
A=11 2 3
2 3 4

calculez les vecteurs propres q, q. et q,.
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Appuyez sur Affichage
Mode calcul.
2 [ti)] 2.0000 Réserve les registres R, 4 R,.
2.0000 Active le mode USER.
3[ENTER] [f] [DIM] 3.0000 Dimensionne la matrice A
’ 43X 3.
1 3.0000
0[sT0] [A] ' 0.0000 Introduit les éléments de A.
' 1[570) 1.0000
4 4.0000
8730 -0.8730 Introduit A, = — 0.8730
(approximation).
0.8982 |2V — 2.
0.0001 |lz'? — z).
2.4000 -09 [z —z%)"
1.0000 -10 [z~ 2.
R/S 0.0000 |lz® — 2)).°
1.0000
- 0.2254 } Vecteur propre pour A;.
-0.5492 '
0 0.8485 Utilise A, = 0
(approximation).
0.0000
RCL —-=0.56000
1.0000 } Vecteur propre pour A,.
-0.5000
6.8730 0.7371 Utilise A; = 6.8730
(approximation).
| 1.9372 -06
1.0000 -10
R/S 0.0000

*Les normes de correction vont varier en fonction de la racine courante des nombres aléatoires.

b
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Appuyez sur Affichage

0.3923

- 0.6961 Vecteur propre pour A,.
RCL 1.0000 | ,

USER 1.0000 Désactive le mode USER.

dans le programme précédent de calcul des valeurs propres. Puisque le pro-
gramme de calcul des valeurs propres modifie la matrice A, les valeurs propres
d’origine doivent dtre sauvegardées ot la matrice d'origine réintroduite dans la
matrice A avant 'exécution du programme des vecteurs propres. Le pro-
gramme suivant peut 8tre ajouté pour stocker les valeurs propres calculées

dans la matrice K.

Appuyez sur Affichage

[E] 127-42,21,15
128-45,23,11
0 129- 44 O
1 - 130- 1

[€] 131-42,23,15 DimensionneEa n X 1.
LBL]8 132-42,21, 8

RCL|O 133- 45 0

134- 36 N
RCL] [g] 135-45,43,11 Rappelle I'élément diagonal.
[RCL)O 136- 45 0

1 137- 1

(9] [E] 138-44,43,15 Stocke qg; dans e,

DSE] O 139-42, 5, 0

GT0|8 140- 22 8

[MATRIX] 1 141-42,16, 1 RedéfinitR, =R, = 1.

[9] [RTN 142- 4332

Mode calcul.

Labels utilisés: E et 8.

Registres utilisés: pas de registres supplémentaires.

Matrices utilisées: A (du programme précédent) et E (valeurs propres).

Pour utiliser les programmes valeurs propres, stockage des valeurs propres et
vecteurs propres en combinaison sur une matrice 3 X 3 maximum :

1. Exécutez le programme des valeurs propres comme indiqué précédem-
ment.
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Appuyez sur [E] pour stocker les valeurs propres.

Réintroduisez les éléments de la matrice d’origine dans A.
Rappelez la valeur propre désirée de la matrice E en utilisant [E].

U o o

Exécutez le programme de calcul des vecteurs propres comme indiqué
précédemment.

6. Répétez les étapes 4 et 5 pour chaque valeur propre.

Optimisation ,

Nous allons décrire ici une catégorie de problémes dans lesquels le but est de
trouver la valeur minimale ou maximale d'une fonction considérée. Le plus
souvent, il s’agit d’éliminer le comportement d’une fonction dans une région
particuliére.

Le programme suivant utilise la méthode du gradient la plus abrupte pour cal-
culer les minimums ou maximums locaux d’une fonetion réelle 4 deux ou plu-
sieurs variables. Cette méthode est une procédure itérative qui utilise le gra-
dient de la fonction pour déterminer des points d’échantillonnage successifs.
Quatre parameétres d’entrée contrdlent le plan d’échantillonnage.

Pour la fonction
: ﬂx) = ﬂxb x2s ey xn)
le gradient Vf de f est défini par

B =
af/axl

of /9x.
vix)= f,xz

Laf/axn

Les points critiques de f{x) sont les solutions de Vf(x) = 0. Un point critique
peut &tre un minimum local, un maximum local ou ni 'un ni 'autre.

Le gradient de f(x) évalué d un point x donne la direction de la croissance la plus
rapide, ¢’est-a-dire 1a facon dont il faudrait modifier x pour provoquer I'accrois-
sement le plus rapide de fix). Le gradient négatif donne la direction de la
décroissance la plus rapide. Le vecteur de direction est:

—Vfix) pour la recherche d'un minimum

S =
Vf(x) pour la recherche d’'un maximum.
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Dés que la direction est déterminée & partir du gradient, le programme
recherche la distance optimale d’éloignement de x; dans la direction indiquée
pars;, ¢'est-d-dire la distance donnant la meilleure amehoratlon dans fix) vers
un minimum ou un maximum.

Pour cela, le programme recherche la valeur optimale ¢; en calculant la pente
de la fonction

&j (t) = f(xj + tSj)

pour des valeurs croissantes de ¢ jusqu'a ce que la pente change de signe. Cette
procédure est appelée “recherche de limites” puisque le programme tente de
délimiter la valeur désirée ¢; dans un intervalle. Lorsque le programme trouve
un changement de signe, il réduit alors l'intervalle en le divisant par j+ 1 fois
pour avoir la meilleure valeur ¢, prés de t = 0. Cette procédure est appelée
“réduction d’intervalle”. Elle donne des valeurs pour ¢; d’autant plus précises
gue x; converge vers la solution désirée. (Ces deux processus font partie dela
“recherche le long d’'une ligne”. La nouvelle valeur de x est alors:
Xj+1 = Xj + tJSJ

Le programme utilise quatre paramétres qui définissent comment il progresse
vers la solution désirée. Bien qu’aucune méthode de recherche de ligne ne
puisse garantir unrésultat pour la valeur optimale de ¢, les deux premiers para-
métres vous apportent une souplesse considérable dans la fagon dont le pro-
gramme échantillonne t.

d Détermine la phase initiale u, de la recherche de limites. La premiére
valeur de t essayée est:

- d
G+ Dlsle

Ceci correspond i une distance de

u, =

d
j+1

||(Xj + us) — X,“F =

qui montre que d et le nombre d’itérations définissent & quelle distance de
la derniére valeur x le programme commence sa recherche de limites.

a Détermine les valeurs u,, us,... des phases suivantes de la recherche de limi-
tes. Ces valeurs de ¢ sont définies par

Ui+ = au;
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En fait, aest un facteur d’expansion, normalement supérieur a 1, générant
une suite croissante de valeurs de t.

e Détermine la tolérance acceptable sur la taille du gradient. Le processus
itératif s’arréte lorsque

”Vﬂxj)"F <e

N Détermine le nombre maximum d’itérations que le programme va tenter
dans chacune des deux procédures :larecherche de limites et la procédure
générale d’optimisation. Autrement dit, le programme s’arréte si la
recherche de limites ne trouve aucun changement de signe sur les Nitéra-
tions. Le programme s’arréte également si la norme du gradient est
encore trop grande 4 xy. Chacune de ces situations résulte en I'affichage
de Error 1. (Elles peuvent étre identifiées en appuyant sur [«]). Vous
pouvez continuer I'exécution du programme si vous le désirez.

Le programme a besoin d’un sous-programme d’évaluation de f(x) et de VA(x).
Ce sous-programme doit &tre appelé “E”, doit utiliser le vecteur x stocké dans
lamatrice A, doit retournerle gradient dans la matrice E et doit placer f{x) dans
le registre X.

En outre, le programme demande une estimation initiale x, du point critique
désiré. Ce vecteur doit &tre stocké dans la matrice A.

Le programme a les caractéristiques suivantes:

® Le programme recherche tout point x pour lequel Vf(x) = 0. Rien n’em-
‘péche la convergence vers un point-selle par exemple. En général, vous
devez utiliser d’autres moyens pour déterminer la nature du point critique
trouvé. (En plus, ce programme ne traite pas le probléme de localisation
d’'un maximum ou d’'un minimum sur la limite du domaine de f{x)).

e Vous pouvez ajuster les paramétres de convergence aprés avoir lancé le
programme. Dans la plupart des cas, ceci réduit beaucoup le temps néces-
saire 4 la convergence. Voici quelques suggestions:

e Sile programme introduit la phase de réduction de I'intervalle apres
Iéchantillonnage d’un seul point u,, 1a taille du pas initial risque d’&tre
trop grande. Essayez de réduire d pour avoir une recherche plus effi-
cace.

» Silesrésultats de la recherche des limites semble prometteurs (c’est-a-
dire si les pentes décroissent), mais commencent ensuite a croitre, la
recherche a peut-2tre manqué un point eritiquo. Essuyez de réduire o
pour générer un échantillonnage plus serré. Vous pouvez aussi avoir i
augmenter N,
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e Vous pouvez remplacer 4 laligne 102 par ou méme le suppri-
mer si les résultats intermédiaires ne vous intéressent pas.

¢ Pourune fonction & nvariables, le programme a besoin de 4n+1registres
réservés aux matrices.

Appuyez sur

[9] [P/R]
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Affichage

000-
001-42,21, 8

002-45,16,13
003-44,16,15
004-45,16,11
005-44,16,13
006-45,16,15
007-44,16,11

008- 4332
009-42,21, 7
010- 45 4
- 011-45,10, 6
012- 44 8
013- 3215

014-45,16,15
015-44,16,14
016-45,16,14

017-43, 6, 0
018- 16
019-42,16, 8 -
020- 4320
021- 4332
022- 15
023-45,20, 8
024- 44 1
025- 0
026- 44 .0
027- 45 5
028- 44 7

Mode programme.

Programme d’échange de
A et de C i I'aide de E.

Programme de recherche
le long d’'une ligne.

Stocke d/(j + 1) dans R,.

Dans le cas d'un minimum,
change le signe du gradient.
Calcule ||VAx)|.

Sortie si [|[VAx)| = 0.

Calcule u,.
Stocke u, dans R,.

Stocke le compteur dans R,.
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Affichage
029-42,21, 6

030- 45 .1
031- 32 3
032- 4231
033-43, 6, 0
034~ 16
036- 22 b5
037- 32 8
038- 45 .

1
039- 44 .0
040- 45 2
041-44,20.. 1

7

042-42, 5,

043- 22 6
044-45,16,11
045~ 4316
046- 22 6
047-42,21, 5
048- 45 6
049- 44 7
050-42,21, 4
051- 32 8
052- 45 .0
053-45,40, .1
054- 2
055- 10
056- 44 8
057- 32 3
058-43, 6, 0
059- 16

Début de la recherche des
limites

Affiche la pente.

Teste si changement de pente.
Branchement & la réduction
de l'intervalle.

Restaure la matrice d'origine
aA.

vSlm'k(' u, dans R,

Stocke u; .., dans R,.
Décrémente le compteur.
Branchement pour continuer.

Affiche Error 1 avec A dans
le registre X.

Branchement pour continuer.
Programme de réduction

de lintervalle.

Stocke j + 1 dans R..

Restaure la matrice d’origine
aA.

Calcule le milieu de I'intervalle.
Calcule la pente.

Change le signe dans
le ¢cas d’'un minimum.
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Affichage

060- 1.
061- 1
062- 4425
063- 33
065-42, 5,25
066- 45 8
067- 4424
068-42, 5, 7
069- 22 4
070- 4332

071-42,21, 3

072-45,16,14

073-42,26,13
074- 20
075-45,16,11
076- 40
077- 32 8
078~ 3215
079- 44 9

080-45,16,15
081-45,16,14
082-42,26,12
083-42,16, 5

084- 1
085- 36
086-45,43,12
087- 4332
088-42,21.11
089- 0
090- 44 6
091-42,21, 2

092- 1

Stocke le numéro du registre
de I'intervalle.

Stocke le milieu de I'intervalle
dans R, ou R,.
Décrémente le compteur.

Sortie quand le compteur
est a zéro.

Programme de calcul de la
pente. :

Calcule le point x; + ts;
Echange la matrice d’origine
et le nouveau point.

Calcule Vf(x) dans E.

Stocke fix) dans R,

Calcule la pente comme (V/)7s.

Sortie avec la pente dans
le registre X.
Programme principal.
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Appuyez sur '
6

[f] [FiX]O
[f] [MATRIX] 1

[fl [sci] 3
[RCL]9 -

R/S

o)
(@]
r

3
M

)
-

C ATRIX] [E]

8

Bl
OHE
A
Bz

x

=
o
0
m

||
HH
i Lo
o »

= [o
l o]
! Ol=
N |5
_l
©

CL] [MATRIX

(]
>
w
2]

Hi
_]
O
[o2]
N
[=]

]
@l
n
©

o)
K
wn

[GT0] [B]

Affichage

093-44,40, 6
094_421 8' 3
095- 32:7

096- 45 6
097-42, 7, 0
098- 4231
099-42,16. 1

100-42, 8, 3
101- 45 9
102- 31
103- 45 3

104-45,16,15
105-42,16, 8

106- 4310
107- 2212
108- 4231
109- 45 b5
110- 45 6
112- 22 2
113-45,16,13
114- 4316
116- 22 2
116-42,21,12
117_431 41 9
118- 31
119-

2212

Labels utilises: A, B, et 24 8.
Registres utilisés: R, 4 Ry, Ry, Ry, et registre Index.

Stocke j + 1 dans Ry

Branchement & la recherche
de courbe.

Pause avee j + 1 a laffichage.
Définit R, =R, =1
pour visualisation.

Rappelle f{x).
Arréte le programme.
Rappelle e.

Caleule |VAX).

Teste |[VAX)| < e
Branchement pour affichage
de la solution.

Affiche ||VAx)|.

Teste (j + 1) < N.
Branchement pour continuer
Pitération.

Affiche Error 1 avec C dans
le registre X.

Branchement pour continuer.
Programme d’affichage

de la solution.

Arme l'indicateur 9.

Arrét du programme avec
lvfix, + )l & Paffichage.
Branchement de boucle.
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Matrices utilisées: A, B, C, D et E.

Votre sous-programme “E” peut utiliser tous labels et 'registres non indiqués
ci-dessus, plusleregistre d’'index, la matrice Betla matnce E (qui doit contenir
votre gradient calculé). .

Pour utiliser le programme

1.
2.

Introduisez votre sous-programme dans la mémoire programme.

Appuyez sur 11 [(i)] pour réserver les registres Rya R,. (Votre
sous-programme paut nécessiter des registres supplémentaires).

Armez lindicateur 0 si vous recherchez un minimum local ; désarmez
I'indicateur 0 si vous recherchez un maximum local.

Dimensionnez la matrice A 4 nX 1, ol n est le nombre de variables.

Stockez les données nécessaires en mémoire :

® Stockez la valeur estimée initiale x, dans la matrice A.

¢ Stockez a dans R,.

¢ Stockez e dans R,.

¢ Stockez d dans R,.

® Stockez N dans R,

Appuyez sur pour visualiser les pentes au cours de la procé-
dure d’itération.

e Regardez le numéro de I'itération et la valeur de f(x).

e Si Error 1 apparatit, appuyez sur pour effacer le message. Allez

alors & I'étape 5 en modifiant les parametres a votre gré ou appuyez
sur pour obtenir une nouvelle itération de recherche de
limites ou une nouvelle itération d’optimisation. (Si le label de la
matrice A était a Paffichage lorsque I'erreur s’est produite, c’est que
le nombre d'itérations en recherche de limites était supérieur a4 N; si
le label de la matrice C était 4 I'affichage, c’est que le nombre d’itéra-
tions en optimisation était supérieur & N.)

Appuyez sur pour afficher la norme du gradient et pour lancer
l'itération suivante.

* Sila norme du gradient clignote 4 I'affichage, appuyez sur [«=] puis
rappelez les valeurs de x dans la matrice A
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%

e Sjle numéro de litération et la valeur de f(x) sont affichés, répétez
cette étape autant qu'il le faut pour obtenir la solution ou retournez a
étape 5 et modifiez les parametres a votre gré.

Exemple: Utilisez le programme d’optimisation pour trouver les dimensions
dela boite offrant le plus grand volume pour une somme de sa longueur et desa
périphérie (périmétre de sa section) égale 4 100 cm.

Pour ce probléme

I+ @2h+2w)=100
v=whl
v(w,h)=wh(100—2h —2w)
=100wh — 2wh* — 2hw?*

2h(B0—h - 2w)

Yu(w,h)=
2wbB0—w—2h)

La solution doit satisfaire w + h < 50, w >0eth> 0.

Tout d’abord introduisez un sous-programme pour calculer le gradient et le
volume.

Appuyez sur Affichage

B
G

L 120-42,21,15 Sous-programme de la fonction.
121-45,23,11
122-42,23,15
123-42,16, 1

124u 45 11

O
Er‘
=8

>

_.l
Ollclic
wnin
mj|m
||
o)
(@]
r
>]

7 = = = = 7] =
>
—
=
>
-

125- 44 .2 Stocke wdansR,.
126- 4415 Stocke w dans e,
127- 4511

128- 44 .3 Stocke hdans R

glee
=IE)E
w [B]m~

MATRIX] 1 129-42,16, 1
130- 4415 Stocke h dans e;.
131- 40
5 132- 5
0 133- 0
= 134~ 30
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Affichage

135- 16
136- 2
137- 20
138-42, 4, .2
139-44,20, .3
140- 45 .2

141-45,16,15
142-42,26,15

Calcule I = 2 (50 — h - w).

Stocke [ dans R,

Stocke wh dans R 5.

169

143- 20

RCL|.3 144- 45 .3

[+].3 145-45,40, .3

[-] 146- 30 Remplace ¢; par le; — 2wh,

les éléments du gradient.

[RCL].2 147- 45 .2

RCL] [X].3 148-45,20, .3 Calcule lwh.

[g] [RTN 149- 4332

Introduisez maintenant I'information nécessaire et exécutez le programme.

Appuyez sur Affichage

(9] Mode caleul.

13 [y 13.0000 Réserve Ry 4 R

[g] 0 13.0000 Trouve un maximum local.

13.0000 Active le mode USER.

[MATRIX] 1 13.0000 '

2 1 1 Introduit les dimensions
pour la matrice A.

1.0000 Dimensionne la matrice A
a2X1.

15 15.0000

15.0000 Stocke I'estimation initiale
l=w=15.

3[570]2 3.0000 Stocke a = 3.

0.1 3 0.1000 Stocke e = 0.1.

0.05[sT0]4 0.0500 Stocke d = 0.05.
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Appuyez sur Affichage
4 5 4.0000 . Stocke N=4.
4.415 04 Pente d u,.

4.243 04 Pente 3 u,.

3.718 04 Pente a ug.

2.045 04 Pentea u,.

Error 1

[«] A 2 1 Recherche de limites sans

succes.

Puisque les résultats semblent prometteurs (les dérivées décroissent), ajoutez
cinq autres échantillons a cette recherche et définissez N = 8 comme nombre
d’itérations restantes.

Appuyez sur Affichage

- 5[sT0]7 5.000 00 Met le compteur 4 5.
. 8[570]5 ' 8.000 00 Délinit N = 8.
‘ -3.849 04 Pentei u
o, T (changement de signe).
1. j+1.
: - oo 9.263 03 Volume 4 cette itération.
- [Rs]e - 3.480 01 Gradient.
: o 1121 03 Pentead u,.
9.431 02 Pente i u,.
4.126 02 Pente 3 u,.
-1.139 03 Pented y,
(changement de signe).
2. Jj+1.
9.259 03 Volume i cette itération.
R/S 5.479 —-01 Gradient. '

-6.127 -01 Pente i u,
(changement de signe).

3. J+1

9.259 03 Volume i cette itération.
7.726 ~02 Gradient inférieur 3 e.
[«] 7.726 -02 Arrédt du clignotement.
[FIX] 4 0.0773
16.6661 Rappelle & de a,.
RCL 16.6661" Rappelle w de a,.
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Appuyez sur Affichage

16.6661
0 16.6661 Désalloue la mémoire

madtricée.

La taille optimale de la boite est 16.6661 X 16.6661 X 33.3355 cm. (Une autre
méthode consiste A résoudre ce probléme en résolvant le systdme linéaire
représenté par Vo(w,h) = (.)



Annexe

Précision
des calculs numeériques

Iﬁterprétation des erreurs

Une erreur est toujours possible. Ce n'est d’ailleurs pas toujours une faute. L'er-
reur numérique représente simplement la différence entre ce que vous souhai-
tiez calculer et ce que vous avez calculé. Cette différence n’est préoccupante
que si elle est vraiment trop importante. Elle est généralement négligeable;
mais il arrive que lerreur soit désespérément grande, difficile & expliquer et
encore plus difficile & corriger. Cette annexe est consacrée aux erreurs, et sur-
tout & celles qui risquent d’8tre importantes — un cas assez rare. En voici quel-
gues exemples.

Exemple 1: Un Calculateur cassé. Puisque (v/x)* = x pour Lout x= 0, on esten
droit d'attendre que

f(2) = (. (Vo VTP P

T
50 50
racines carrés

soit aussi égale a x.

Un programme de 100 pas peut évaluer 'expression f(x) pour tout x positif.
Lorsque x = 10, le HP-15C calcule le résultat 1. L'erreur 10 — 1 = 9 semble
énorme si 'on considére que seulement 100 opérations arithmétiques ont été
effectuées, chacune d’elle étant présumée correcte sur 10 chiffres. Or le pro-
gramme, au lieu de donner f(x) = x, renvoie:

1 pourx=1
flx)=
0 pour0<x<l,
Ce qui est faux. Ce calculateur doit-il &tre envoyé en réparation?
172
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Exemple 2 : Beaucoup d’argent. Une société s'attache les services d'une secré-
taire au tarif de 1 centime par seconde. Cette société vire les honoraires de
cette secrétaire sur un compte rémunéré i 11.25% par an, les intéréts étant
composés par seconde. A la fin de 'année, tous ces francs accumulés vont pré-
septer le total suivant: :

(1+im)"—1

Total = (versement) X -
i/n

ou versement = 0.01 F = 1 centime par seconde,
= 0.1125 = 11.25 % d’intérét annuel,
= 60 X 60 X 24 X 365 = nombre de secondes

(poundvs de composition) dans Iannde.

Utilisant son HP-15C, cette secrétaire trouve un total de 376,877.67 FF.Mais a
la [in de 'année son comple présente un erédit de 333,783.35 FF. Le consultant
peut-elle disposer de ce supplément (différence) de 43,094.32 FF.

Dans ces deux exemples, les différences sont dues a des erreurs d’arrondi qui
auraient pu &tre évitées. Nous montrerons comment.

La guerre contre les erreurs commence avec une réserve a 'encontre des bon-
nes intentions qui risquent de nous faire conlondre ce que nous voulons et ce
que nous obtenons. Pour éviter toute confusion, les résultats vrais et les résul-
tats calculés doivent étre affectés de noms différents méme si leur différence
est si petite que cela semble exagéré.

Exemple 3: Pi. La constante = = 3.1415926535897932384626433... En
appuyant sur la touche [z] du HP-15C vous obtenez une valeur différente:

= 3.141592654

qui correspond & 7 sur 10 chiffres significatifs. Mais # 7, aussine soyez pas
surpris si, en mode Radians, le calculateur ne donne pas sin [z] = 0.

Supposons que nous calculons x, mais obtenons X. (Convention utilisée systé-
matiquement dans cette annexe.) Llerreur est x — X, Llerreur absolue est
| x — X |. Lerreur relative est (x — X)/x pour x # 0.
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Exemple 4 : Un pont trop court. Les longueurs (en métres) des trois sections
d’un pont en encorbellement (pont cantilever) doivent &tre:

x=2333.76 y=195.07 2=333.76.

Les longueurs mesurées sont en fait:

X =333.69 Y =195.00 Z=333.72.

La différence totale est:
d=(x+y+2)—(X+Y+ Z) = 862.59 - 862.41 =0.18.

L’ingénieur responsable du pont compare la différence a la longueur totale
(x + y + 2) et considere que cette différence relative:

d/(x+y+z)=0.0002 = 2 dix milliémes

est négligeable. Mais le riveur, lui, trouve la différence absolue Idl =
0.18 métres beaucoup trop grande a son goit. Il faudra “allonger” la structure
du pont pour pouvoir poser les rivets. Tous deux considérent la méme diffé-
rence d, mais celleci est négligeable pour I'un alors qu'elle est inacceptable
pour l'autre.

Qu’elles soient grandes ou petites les erreurs sont de deux origines qui, si clles
sont comprises, permettent en général de les compenser ou de les tourner.
Pour comprendre les distorsions dans Possature d’un pont, il faut connaitre la
mécanique des structures et la théorie de I'élasticité. Pour comprendre les
erreurs introduites par le caleul, il suffit de connaitre son outil de calcul et ses
limitations. Ce sont des détails que la plupart d’entre vous désirent connaitre,
spécialement siles erreurs d’arrondi d’un calculateur bien congu sont toujours
minimales et apparaissent ainsi comme insignifiantes lorsqu’elles sont intro-
duites. Mais lorsque, & de rares occasions, ces erreurs s'accumulent au niveau
des calculs, elles doivent 8tre considérées malgré tout comme “importantes”.
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Exemple 1: Explication. Ici f(x) = s(r{x)), ou

r(x)= V.. Vv =240
. :
50
racines

et

s(r)=((...( )')2)2 _")2)2 — r(250).v
e
50

carrés

Les exposants sont %% = 8.8818 X 107 et 2%’ = 1.1259 X 10'°. Maintenant, x
doit se trouver entre 107% ¢t 9.999... X 10" puisqu’aucun nombre positif en
dehors de cette plage de valeur ne peut étre introduit dans le calculateur. Puis-
que r est une fonction croissante, r{x) se trouve entre:

r(107%%) = 0.9999999999997975 ...

et

r(10199%) = 1.0000000000002045 ... .

Ceci suggere que R (x),la valeur calculée de r(x), sera 1 pour tous les arguments
x valides du calculateur. En fait, & cause de I'arrondi:

R(x)=

0.9999999999 pour 0<x < 1
1.000000000  pour 1< x < 9.999999999 X 10%.

Si 0 < x< 1, alors x < 0.9999999999 dans un calculateur 10 chiffres. Nous
serions en droit dattendre vz < 0.9999999999, qui est
0.999999999949999999998..., arrondi 4 nouveau & 0.9999999999. Par consé-
quent, si vous appuyez sur en commencant arbitrairement par x< 1,té
résultat ne peut pas dépasser 0.9999999999. Ceci explique pourquoi nous
obtenons R(x) = 0.9999999999 pour 0 < x < 1 ci-dessus. Quand R(x) est mis au
carré 50 fois pour donner F'(x) = S(R (x)), le résultat est1 pour x= 1, mais pour- -
quoi F'(x) = 0 pour 0 <x< 1?7 Quand x< 1,

s(R(x)) < 5(0.9999999999) = (1 — 107"")¥" = ¢,14 X 10748,
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Cette valeur est si petite que la valeur calculée F(x) = S(R(x)) est en dépasse-
ment inférieur de capacité a 0. Aussi le HP-15C n’est-il pas cassé; il fait de son
mieux avec 10 chiffres significatifs de précision et 2 chiffres d'exposants.

Nous avons expliqué 'exemple 1 en ne sachant rien de plus surle HHP-15C que le
fait qu’il effectue chaque opération arithmétique et aussi précisé-
ment que possible dans les limites de 10 chiffres significatifs et de 2 chiflres
d’exposant. Ce dont nous avons besoin est la connaissance mathématique des
fonctions f, r et s. Ainsi, la valeur r(10'") ci<lessus a 6té évaluée comme:

L /1.')0’

,.(mlou) = (10100
= exp (In (10'%)/2%)
= exp (100 (In 10)/2%)
= exp (2.045 X 1071%)
=1+(2.045X10713) + %(2.045 X 107192 + ...

en utilisant la série exp(z) =1+ z + 2%+ Vs2* + ..

De facon identique, le théoréme binominal a é¢ utilisé pour:

/0.9999999999 = (1 — 10-19)*

=1— 110710 - 14107192~ ...

Ces faits mathématiques se situent bien au-deld du type de connaissances
ayant pu etre considérées comme suffisantes pour traiter un calcul ne mettant
en ceuvre qu'une poignée de multiplications et de racines carrées. L'exemple1
nous a montré comment les erreurs pouvaient rendre les caleuls difficiles A
analyser. C'est pourquoi un bon calculateur comme le HP-15C introduira pour
sa part aussi peu d’erreurs que possible. Des erreurs plus importantes risque-
raient de transformer une tache dgja difficile en un probléme sans issue.

L’exemple 1 met en valeur deux conditions d'erreurs assez [réquentes:

o Les erreurs d’arrondi ne faussent un caleul que siun grand nombre d’entre
elles s'accumulent.

o Un petit nombre d’erreurs drrondi ne faussent un ealeul quessi elles sont
accompagnées par un effet de “compensation” quasi-totale.
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En ce qui concerne la premiére de ces conditions, 'exemple 1 risque de mal évo-
luer si il est vietime d’'une seule erreur d’'arrondi, celle qui donne R(x) =1 ou
0.9999999999, en erreur sur moins d'une unilé au niveau de son dernier
(10ieme) chiflre significalif.

En ce qui concerne la seconde condition, la “compensation” est ce qui se pro-
duit lorsque deux nombres trés proches font 'objet d’'une soustration. Par
exemple, le caleul de:

c(x)=(l -cos x)/x*

en mude radians pour de petites valeurs de x estrisqué. Sinous avons x = 1.2 X
107" et des résultats arrondis & 10 chiffres,

cos x = (.9999999999
et
1 - cos x = 0.0000000001

la “compensation” laissant peut-8tre un chiffre significatif au numérateur.
Ensuite: ‘

x2=1.44 %1010,

Donc

C(x)=0.6944.

Ce qui est faux puisque 0= ¢(x) < /2 pour tout x # 0. Pour éviter la “compensa-
tion”, exploitez 'égalité trigonométrique: cos x =1— 2 sin % (x/2) pour suppri-
mer exactement le 1 et obtenir une meilleure formule de calculer

e(x)=— (-——————S‘“ (x/2) )
2 x/2

Lorsque cette derniére expression est évaluée (en mode radians) pour x =
1.2X 1077 le résultat calculé C (x) = 0.5 est correct sur 10 chiffres significatifs.
Cet exemple, tout en expliquant la notion de “compensation”, sous-entend qu'il
sagit toujours d’'une mauvaise chose. C'est une interprétation que nous étudie-
rons un peu plus loin. Pour le moment, souvenez-vous que I'exemple 1 ne con-
tient pas de sonstraction, done pas de “compensation”, et que pnurtant les
résultats de ce probléme sont complétement faussés par des erreurs d'arrondi.
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Cet exemple 1 est quelque peu déconcertant : il ne contient nulle part des opé-
rations arithmétiques auxquelles imputer le résultat catastrophique; et
aucune manipulation des formules, comme pour ¢(x), ne peut redresser les cho-
" ges. L'exemple 1 n’est pas, hélas, un cas unique. Plus les calculateurs et les ordi-
nateurs sont puissants, plus ces erreurs insidicuses se glissent duns les caleuls.

Pour vous aider & identifier 'ampleur des erreurs, nous allons, dans cette
annexe, en examiner plusieurs types en commencant par les plus simples puis
en étudiant celles qui affectent les calculs les plus sophistiqués du HP-15C.

Hiérarchie des erreurs

Certaines erreurs sont plus faciles a expliquer et & tolérer que d’autres. Par
conséquent, nous avons classé les fonctions offertes par les touches du HP-15C
par niveaux de difficulté & estimer leurs erreurs. Ces estimations sont plusdes
objectifs définis pour le calculateur & sa conception que des spécifications
vous garantissant un degré assuré de précision. D’autre part ces objectifs de
conception ont été testés de facon approfondis et peuvent &tre considérés
comme tout 2 fait justes.

Niveau O: pas d’erreur

Cest le cas des fonctions qui, méme sur des entiers petits (inférieurs 410'%, ne
provoquent pas d’erreurs. :

Exemples:
Vi=2 —2°=—38 320 = 3,486,784,401
log(10%) =9 6! = 720
cos (0) = 90 (en mode degrés)
ABS(4,684,660 + 4,684,6591) = 6,625,109 (en mode complexe)

Egalement exactes sont les fonctions: [ABS], [FRAC], , ainsi que

les comparaisons (comme |x < y|. Par contre les fonctions matricielles ],

=], D7zl 6 et 9 (déterminant) sont des exceptions (voir
page 192).
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Niveau o~ : dépassements de capacité.

Les résultats plus proches de zéro que de 107% sont considérés comme nuls.
Les résultats dépassant le seuil de & 9.999999999 X 10* sont remplacés par ce
seuil avec armement de Pindicateur 9 et clignotement de 'affichage. (Appuyez
sur [ON] [ON] ou [CF] 9 ou [+=] pour effacer Findicateur 9 et arrdter le cligno-
tement.) De nombreuses fonctions dont les résultats ont plusieurs composan-
tes, tolerentles dépassements de capacité inférieurs ou supérieurs sur Punede
leurs composantes, sans répercussion sur les autres. Des exemples de ces fonc-
tions sonl: [=R], [*=P], les ealeuls sur nombres complexes et la plupart des
opérations matricielles. Les exceptions sont l'inversion de matrice ([1/x] et

(=], 9 (déterminant) et [L.R.].

Niveau 1: arrondis corrects ou presque

Les opérations donnant des résultats “arrondis correctement” dont les erreurs
sont inférieures & % unité de leur dernier (10i2me) chiffre significatif, sont les
suivantes : les opérations algébriques [¥], [=], [X], [=], [/&l, et [%], les
opérations et [-] complexes et matricielles (sauf la division par une
matrice) et la fonction [+ H.MS). Ces résultats sont les meilleurs sur 10 chif-
fres significatifs & Iinstar des constantes [z], 1[¢], 2[IN], 10[LN] et
1 [=RAD]. D’autres opérations admettent une erreur légérement supérieure,
bien que toujours inférieure & une unité sur le 10iéme chiffre significatif du
résultat: [4%], [=H|, [ RAD], [+ DEG], [Py.x], et [Cx.x]; [IN], [LOG], et
[TANH] pour les arguments réels; [+ P], [SIN"T], [c0S~T], [TANTT], [SINHTT],
[COSR™] et [TANHT] pour les arguments réels ou complexes; [ABS], et
pour les arguments complexes; les normes matricielles 7 et
8: et enfin [SIN], [COS] et [TAN] pour les arguments réels en mode
degrés ou en mode grades (mais pas en mode radians - voir Niveau 2, par 184).

Une fonction qui tend vers l'infini ou qui tend vers 0 de fagon exponentielle
lorsque son argument approche = eo, peut supporter une erreur supérieure 4
une unité sur le 10iéme chiffre significatif de son résultat, mais seulement sisa
valeur est inférieure 2 1072° ou supérieure 4 10%°; et bien que 'erreur relative
devienne de plus en plusimportante lorsque les résultats deviennent extrémes
(petits ou grands), lerreur demeure inférieure & trois unités sur le dernier
(10ieme) chiffre significatif. Cette erreur sera expliquée plus loin. Les fone-
tions ainsi affectées sont [¢¥], [¥*], (pour x non entier), [SINH] et [COSH]
pour des arguments réels. Le plus mauvais cas rencontré est 32 qui est cal-
culé égal 4 7.968419664 X 10%. Le dernier chiffre devrait &tre 6 au lieu de 4,
comme dans le cas de 7.29°* calculé comme égal & 7.968419666 X 10%,
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La conclusion précédente sur les erreurs peut &tre résumée ainsi pour toutes
les fonctions citées au niveau 1:

Toute tentative de caleul d’une fonction fdu niveau 1, donne comme résul-
tatune valeur F = (1+ ¢)fdonc 'erreur relative ¢, bien que non connue, est
trés petite:

ol < 5X 107" si F est arrondie correctement
e
1X107° pour toutes les autres fonctions F du niveau 1.

Cette classification simple de toutes les fonctions du niveau 1 ne peut conser-
ver dautres propriétés importantes de ces fonctions, des propriétés telles que:

e Valeurs entieres exactes: mentionnées au niveau 0.

e Symétrie du signe: sinh(—x) = — sinh(x), cosh(—x) = cosh(x), In(1/x) =

— In(x) (si 1/x calculé exactement).

® Monotonie: si f(x) = f(y) alors F(x) calculé = F(y).
Ces propriétés supplémentaires ont des implications importantes; par
exemple TAN(20°) = TAN(200°) = TAN(2,000°) = .. = TAN (2 X 10%°) =
0.3639702348 (correct). Mais, la caractérisation simple conserve Pessentiel de
ce qui est bon & savoir.

Exemple 2: Explication.

La secrétaire a fait le calcul suivant:

1+i/n)"—1

total = (versement) X
i/n

N

ou
versement = 10 centimes
i =0.1125
n =60 X 60 X 24 X 365 = 31,526,000.

Elle a caleulé 876,877.67 FF sur son HP-15C mais le total donné par la banque
est: 333,783.35 FF et ce dernier total est tout a fait compatible avec les résul-
tats obtenus sur de bons calculateurs financiers tels que le HP-12C, le HP-37ls,
les HP-38E/38C et le HP-92. A quel niveau s'est produite la distorsion ?Pas de
“compensation” grave, pas de gros cumul derreurs. Juste une erreur darrondi
qui a grossi insidieusement.
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i/n = 0.000000003567351598
1+ i/n = 1.000000004

aprés arrondi & 10 chiffres significatifs. C'est erreur d’arrondi la grande res-
ponsable. Ensugte, lorsqu’elle calcule (1 + i/n)", la secrétaire va obtenir
(1.000000004)%%%6:90 =1,134445516, résultat faux sur sa seconde position déci-
male. '

Comment calculer la valeur correcte ? Uniquement en ne perdant pas tant de
chiffres de i/n. Observez que: '

(1 + i/n)n = " In(1 + i/n)’

aussi pourrions-nous essayer de calculer ce logarithme de fagon & ne pas
perdre autant de chiffres. C'est possible sur le HP-15C.

Pour calculer A(x) = In(1 + x) précisément pour tout x >—1, méme si | x| est
tres petit: '

1. Calculez u =1+ x arrondi.

2. Ensuite

x siu=1

Mx) = )
In(z) x/(u— 1) siu#1.

Le programme suivant calcule A(x) = In(1 + x).

Appuyez sur Affichage
(g]
CLEAR 000-
‘ 001-42,21,11 Suppose x dans le registre X.
002- 36
[ENTER] 003- 36
EEX 004- 26 Place 1 dans le registre X.
+] 005- 40 Cualcule u =1+ x arrondi.
006- 4312 Calcule In(u) (zéro pour u = 1).
[xxy] 007- 34 Restaure x dans le registre X.

[g] [LST4] 008- 4336 Rappelle u.
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Appuyez sur Affichage

009- 26 Place 1 dans le registre X.
6 010-43,30, 6 Testeu#1.

= 011- 30 Calcule » —1 quand u #1.
=] 012- 10 Calcule x/(z— 1) ou 1/1L
013- 20 Calcule A(x).

[9] 014- 4332

La valeur calculée de u, arrondie correctement par le HP-15C est: u = (1 + ¢€)
A+ x)od lel <5X107°.8iu=1, alors:

lxl = 11/(1+ ¢ — 11 <5X107"

aussi, duns lequel cas la série de Taylor Mx) =x(1—Yax+Y x>—..)nousindique
que la valeur correctement arrondie de A(x) doit &tre juste x. Sinon, nous allons
calculer x AMu — 1)/(u — 1) beaucoup plus précisément, au lieu de A(x). Mais
Mx)/x=1—Yx+%s x2— ... varie Lres lentement, si lentement que Perreur abso-
lue A(x)/ x— Alu—1)/(u—1) n'est pas pire que Perreur absolue x — (u—1)=¢(1
+ x), et si x=< 1, cette erreur est négligeable par rapport a A(x)/ x. Quand x> 1,
alors u — 1 est si proche de x que l'erreur est 12 aussi négligeable ; A(x) est cor- .
recte sur 9 chiffres significatifs.

Comme fréquemment dans les analyses des erreurs, 'explication est beaucoup
plus longue que la procédure simple expliquée, et cache une considération
importante : les erreurs dans In(u) et u—1ont été ignorées lors de l'explication
parce que nous savions qu'elle serait négligeable. Cette information et la pro-
cédure simple décrite ici, sont non applicables a d’autres calculateurs ou gros
ordinateurs! Il existe des machines qui calculent In(x) et/ou 1 — u avec une
erreur absolue minime, mais une erreur relative assez importante lorsque u
est proche de 1; sur ces machines, les calculs précédents seront faux ou beau-
coup plus compliquées, souvent les deux. (Reportez-vous & I'explication figu-
rant & Niveau 2).

Revenons aux honoraires de notre secrétaire. En utilisant la procédure simple
déja citée pour calculer A(i/n) = In(1+ i/n) = 3.567351591 X 107, elle obtiendra
un résultat intermédiaire meilleur

(14 ifn) = "™ = 1.119072257

lequel génére un total correct.
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Pour comprendre Perreur pour 3%, remarquez que ceci est calculé comme

g2011n3) — ;220821 Do maintenir Perreur relative finale 4 moins de une unité
sur le 10&éme chiffre significatif, 201 In(3) devrait &tre calculé avec une erreur
absolue plutdt inférieure 31071, ce qui entrainerait de garder au moins 14 chif-
fres significatifs pour ce résultat intermédiaire. Le calculateur garde 13 chif-
fres significatifs pour certains calculs intermédiaires internes, mais un 14iéme
chiffre serait vraiment un luxe pour les quelques cas ol sa présence serait
souhaitable. :

Niveau 1C: Niveau 1 des complexes

La plupart des fonctions arithmétiques sur nombres complexes ne peuvent
pas garantir 9 ou 10 chiffres significatifs corrects dans chacune des parties
imaginaire ou réelle, bien que le résultat soit conforme & notre conclusion sur
les fonctions du niveau 1, pourvu que f, F, et ¢ soient interprétés comme des
nombres complexes. En d’autres termes, toute fonction complexe f du niveau
1C va générer un résultat complexe calculé F = (1 + ¢)f dont la petite erreur
relative complexe ¢ doit satisfaire 1 el < 107°. Les fonctions complexes du
niveau 1C sont [X], [], [2], [LN], [LOG], [SIN~T], [COS~T], [TANTT], [SINHT],
[COSH-T] et [TANH-T]. Par conséquent, une fonction telle que A(z) = In(1 + 2)
peut &tre calculée précisément pour tout z par le méme programme que celui
donné précédemment (et avec les mémes explications). ‘

Pour comprendre pourquoi les parties réelle et imaginaire d'un résultat com-
plexe risquent de ne pas &tre correctes individuellement sur 9 ou 10 chiffres
significatifs, considérez [X], par exemple: (a +ib) X (¢ + id) = (ac — bd) + i(ad
+ be) idéalement. Essayez ce calcul aveca=c= 9.999999998, b=9.999999999
et d = 9.999999997; la valeur exacte de la partie réelle du produit (ac — bd)
devait done &tre:

(9.999999998)% — (9.999999999)(9.999999997)
= 99.999999980000000004 — 99.999999980000000003
=108

qui nécessite au moins 20 chiffres significatifs pour le calcul intermédiaire.
Comme le HP-15C ne garde que 13 chiffres significatifs pour ses résultats
intermédiaires internes, il donne donc 0 au lieu de 1078 pour la partie réelle;
mais cette erreur est négligeable comparée 4 la partie imaginaire 199.9999999.



184 A Tféxe: Precision des calculs numériques
Niveau 2: Arrondis corrects pour introduction
éventuellement faussée

Fonctions trigonométriques d'angles réels en radians

Reprenez 'exemple 3 qui indique que la touche du calculateur donne une
approximation correcte de 7 avec 10 chiffres significatifs, mais cependant
légérement différente de 7, si bien que 0 = sin(x) # sin ( [z]) pour lequel le cal-
culateur donne:

[SIN]([z]) = — 4.100000000 X 107"

Cette valeur calculée n'est pas tout a fail la méme que la vraic valeur:

sin ([z]) = — 4.10206761537356... X 10",
Que Péeart semble petit (erreur absolue inféricure 4 2.1 X 107"%) ou relative-
ment grand (résultat faux au quatriéme chiffre significatif) pour un calcula-
teur & 10 chiffres significatifs, il mérite cependant d’étre bien compris car
il laisse présager d'autres erreurs qui, & premiére vue, sont beaucoup plus
sérieuses.
Considérons:

10" 7 = 814159265358979.3238462643...
avec sin(10"7) = 0 et

10" X [z] = 314159265400000
avec (10" [z]) = 0.7990550814, bien que le vrai
sin (10" [z]) = — 0.78387...

Le signe (faux) est une erreur trop sérieuse i ignorer; elle semble suggérer un
défaut du calculateur. Pour comprendre cette erreur dans les fonctions trigo-
nométriques, il faut faire attention aux petites différences entre 7 et deux
approximations de z:

vrai 7 = 3.1415926535897932384626433...
touche = 3.141592654 (ajuste m 4 10 chiffres)
p interne = 3.141592653590 (ajuste & & 13 chiffres).

Ensuite tout est dit dans la formule suivante pour la valeur calculée: (x)
= sin(x7/p) avec & 0.6 unités sur son dernier (10iéme) chiffre significatif.

Plus généralement, si trig{x) est 'une des fonctions sin(x), cos(x) ou tan(x), éva-
luée en mode radians réel, le 11P-15C donne:;
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(%) = trig(x/p)

4 7 0.6 unités prés sur son 10iéme chillre significatif,

Cette formule a des conséquences pratiques importantes:

e Puisque n/p=1—2.0676... X l()‘"’/p =0.9999999999999342..., 1a valeur
produite par (x) ne différe de trig(x) que de ce qui peut &tre attribué
a deux perturbations: I'une sur le 10¢ chiffre significatif du trig(x) sorti,
Pautre sur le 13¢ chiffre significatif du x introduit.

Si x a été calculé et arrondi & 10 chiffres significatifs, Perreur héritée de
son 10° chiffre est probablement, en ce qui concerne sa valeur, plus grande
que la seconde perturbation de [TRIG] surle 13° chiffre significatif de x, si
bien que cette seconde perturbation peut &tre ignorée, A moins que x soit
considéré comme connu ou calculé exactement,

e Toute égalité trigonométrique qui n’utilise pas 7 explicitement, est satis-
faile dans la limite de Parrondi sur le 10° chiffre significatif des valeurs cal-
culées dans I'égalité. Par exemple:

sin*(x) + cos¥(x) = 1, donc ([SIN](x))® + ( (aN2=1
sin(x)/cos(x) = tan(x), donc (x)/ (x) = (x)
avec chaque résultat caleulé correct sur neuf chiffres pour tout x. Remar-
quez que [COS](x) se perd s'il n'y a pas de valeur de x représentable exac-
lementavee juste 10 chiffres significatifs, ISt si 2x peut étre calculé exac-
Lement avee x donné: : :
sin(2x) = 2sin(x) cos(x), si bien que (2x) = 2[SIN](x) (x)
sur neuf chiffres significatifs. Essayez la derniére égalité pour x = 52174
radians : _ :
(2x) =—0.00001100815000,
2[SIN](x) (x) =—0.00001100815000.

Remarquez la similarité méme si, pour cet x, sin(2x) = 2sin(x)cos(x) =
— 0.0000110150176... est en désaccord avec [SIN'/2x) 3 son quatridme
chiffre significatif. Les mémes égalités sont satisfaites par les valeurs

(x) comme par les valeurs trig(x) méme si (x) et trig(x) sont

différentes.

o Malgré les deux sortes d’erreurs dans [TRIG ,ses valeurs calculées conser-
vent la relation familiere suivante, chaque fois que cela est possible:

e Symétrie du signe: - [COS](—x) = [COS](x)
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e Monotonie: si trig(x) = trig(y),

alors [TRIG] (x) > [TRIG) ()
(pourvu que lx =yl < 3)

e Inégalités limitatives: [SiN])(x)/x < 1 pour tout x #0
[TAN] (x)/2 = 1 pour 0 <lx| < /2
—1 =< [SIN](x) et [COS](x) <1

pour tout x.

Quel est. la répercussion de ces propriétés pour les caleuls d'ingénierie ? Vous
n’avez pas besoin de vous en préoccuper!

En général, les calculs d'ingénierie ne seront pas affectés par la différence
entre p et m, parce que les conséquences de cette différence dans la formule
définissant (x) ci-dessus sont noyées par la différence entre [z] et met
par Varrondi habituel inévitable de x ou de trig(x). Dans ces calculs, le ratio
n/p= 0.9999999999999342... pourrait étre remplacé par 1 sans effets visibles
sur le comportement de [T RIG|.

Exemple 5 : Phases lunaires. Sila distance entrela terreetla lune était connue
avec précision, nous pourrions calculer la différence de phase entre les signaux
de radars transmis & puis reflétés par la lune. Dans ce calcul le décalage de
phase introduit parp ¥ 7 a moins d’effet que la modification de la distance
terre-lune d’une valeur de 'ordre de Pépaisseur de cette page. De plus, le caleul

~ de la foree, de la direction et du taux de variation des signaux émis & proximité
de la lune ou des signaux réfléchis a proximité dela terre, des calculs qui dépen-
dent de la validité permanente des égalités trigonométriques, ne sont pas
affectés par le fait que p # 7; par contre, ils reposent sur le fait que p estune
constante (indépendante de x dans la formule pour [TRIG](x)), et que cette
constante est trés proche de 7.

Les fonctions disponibles sur le clavier du HP-15C utilisant p, sont les fone-
tions trigonométriques [SIN], et pour les arguments réels et com-
‘plexes; les fonctions hyperboliques [SINH], et pour les argu-
ments complexes ; les opérations complexes [e*], et [y*] ; etenfinla fonc-
tion réelle et complexe.

Il vous semble peut-étre que nous avons fait beaucoup de bruit pour rien.
Aprés une avalanche de formules et d’exemples, nous concluons que lerreur
causéeparp # west négligeable dansles calculs d’ingénierie et que vous n'avez
pas & vous en préoccuper. 1l s'agit de notre part d’une forme d’honnéteté intel-
lectuelle : nous nous sommes posé les questions que se pose un analyste des
erreurs; si ce dernier prend pour hypothése que les petites erreurs sont négli-
geables, il prend un grand risque.

-
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Analyse récurrente de l'erreur

Jusqu'a la fin des années 50, la plupart des experts en informatique dramati-
saient les conséquences des erreurs d’arrondis. Pour justifier leur attitude, ils
citaient des analyses d'erreur du type de eelle faite parun chercheur réputé qui
concluait que les matrices de dimensions 40 X 40 étaient pratiquement impos-
sibles 4 inverser numériquement du fait des arrondis. Cependant, cinq ans plus
tard environ, on pouvait inverser sans problémes des matrices 100 X 100 et de
nos jours, on est capable de résoudre des équations ayant des centaines de mil-
liers d’inconnues. Comment réconcilier notre époque et la conclusion tout a
fait correcte de ce fameux chercheur? '

Nous comprenons mieux maintenant qu'autrefois pourquoi des formules diffé-
rentes servant a caleuler le méme résultat peuvent différer terriblement au
niveau de la dégradation imposée par les erreurs d'arrondis. Par exemple, nous
comprenons pourquoi les équations normales de certains problémes de
moindres carrés ne peuvent étre quarithmétiquement résolus et avecune pré-
cision exceptionnelle; c'est ceci que le fameux chercheur a, en fait, prouvé.
Nous connaissons également des nouvelles procédures (Fune delles figure
page 140) pouvant résoudre les mémes problémes de moindres carrés sans
plus de précision qu’il n’en faut pour représenter les données. Lesnouvelles (et
meilleures) procédures numériques ne sont pas évidentes et auraient pu ne
jamais étre découvertes sans les nouvelles (et meilleures) techniques d’analyse
des erreurs par lesquelles nous avons appris a distinguer les formules hyper-
sensibles aux erreurs d'arrondis de celles qui ne le sont pas. L'une de ces nou-
velles (en 1957) techniques est appelée “Analyse récurrente de 'erreur” et vous
I'avez déja vue en ceuvre 4 deux reprises : tout d’abord, elle a expliqué pourquoi
la procédure de calcul de A(x) est suffisamment précise pour chasser 'impréci-
sion de lexemple 2; ensuite, elle a expliqué pourquoi les fonctions du
calculateur satisfont de fagon trés proche les mémes égalités qui sont satisfai-
tes par des fonctions trig méme dans le cas d’arguments x trés grands (en
radians) pour lesquels (x) et trig(x) peuvent &tre trés différents. Les
paragraphes suivants expliquent 'analyse récurrente de Perreur.

Considérons un systéme F destiné i transformer une entrée x en une sortie y =
fix). Par exemple, F peut étre un amplificateur de signal, un filtre, un transduc-
teur, un systéme de contrdle, une raffinerie, le systéme économique d’'un pays,
un programme informatique ou un calculateur. L'entree et la sortie ne sont pas
nécessairement des nombres;; elles peuvent étre des ensembles de nombres ou
des matrices ou n'importe quel élément quantitatif. Si entrée x devait étre
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contaminée par le bruit Ax,]a sortie y+ Ay = f(x+ Ax) serait contaminée parle
bruit Ay = f(x + Ax) — f(x).

x—1 f y =flx) X + f y=f(x+»Ax)

Pas de bruit . Entrée avec bruit

Certaines transformations f sont stables en présence du bruit d'entrée; clles
gardent Ay relativement petit tant que Ax est relativement petit. D’autres
transformations f peuvent étre instables en présence du bruit parce que cer-
tains bruits d’entrée Ax relativement petits provoquent des perturbations Ay
relativement importantes sur la sortie. En général, le bruit d’entrée Ax sera
modifié d’'une certaine fagon parla transformation considérée f, pour devenira
la sortie un bruit Ay, et aucune réduction de Ay n'est possible sans une diminu-
tion de Ax ou une modification de f. Ayant accepté fcomme une spécification de
performance ou comme un objectif de conception, nous devons &tre d’accord
sur la fagon dont f influence le bruit a son entrée.

Le systéme réel F est différent de f désirée & cause du bruit et d’'autres écarts
internes a F. Avant de discuter des conséquences de ce bruit interne nous
devons trouver une fagon de le représenter, une notation particuliére. La fagon
la plus simple est d’écrire:

F(x) = (A 6f)(x)

ot la perturbation f représente le bruit interne de F.

Une petite perturbation de sortie (Niveau 1)

Nous espérons que le terme of est négligeable comparé a f. Si cet espoir est
satisfait, nous classons F au niveau 1 pour les fins de notre exposé; ceci
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signifie que le’brult interne de F peut étre expliqué comme une petite addition
0f a la sortie f désirée.

Par exemple, F(x) = (x) est classée au niveau 1 parce que les dizaines de
petites erreurs commises par HP-15C pendant son calcul de F (x) = (f+ 6/)(x) se
chiffrent 4 une perturbation 6f(x) inféricure a 0.6 sur le dernier (10°) chiffre
significatif de la sortie désirée f(x) = In(x). Mais F(x) = (x) n’est pas du
niveau 1 pour x radians parce que F (x) peut &tre trop différent de f(x) = sin(x);
par exemple F (10" [z]) = 0.799... est de signe opposé & (10" [z]) = 0.784..., si
bien que I'équation F(x) = (f+ 6f)(x) ne peut &tre vrai que si 6f est de temps en
temps plutot supérieur a f, ce qui n'est pas bon.

Les systémes réels ressemblent plus souvent a qua .Lebruitdansla
plupart des systémes réels peut se cumuler occasionnellement pour engloutir
la sortie désirée, au moins pour certaines entrées, et pourtant de tels systémes
ne méritent pas nécessairement d'8tre condamnés. Généralement un systéme
réel F' fonctionne de fagon fiable parce que son bruit interne, bien que quelque-
fois important, n’a jamais de conséquences plus préjudiciables que celles qui
pourraient &tre provoquées par quelque petite perturbation éx sur le signal
d’entrée x. De tels systémes peuvent &tre représentés par:

F(x) = (f+ 6f)x + of)

ol Jf est toujours petit comparé 4 fet ol 6x est toujours inférieur (ou compa-
rable) au bruit Ax attendu pour contaminer x. Les deux termes éfet 6x du bruit
sont des bruits hypothétiques introduits pour expliquer diverses sources de
bruits réellement attachées & F. Certains de ces bruits apparaissent comme
des petites perturbations éx tolérables pour 'entrée - d'oll le terme “analyse
arriére des erreurs”. Un tel systéme F, dont le bruit peut &tre comptabilisé par
deux petites perturbations tolérables, est donc classé au niveau 2 pour les fins
de notre exposé.

e ———— =

' 8x of P
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Petites perturbations d’entrée et de sortie (Niveau 2)
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Aucune différence n'apparaitra 3 premiére vue entre le niveau 1 et le niveau 2
pour les lecteurs habitués aux systémes linéaires et aux petits signaux parce
que les erreurs de ces systéemes peuvent se situer indifféremment au niveau de
la sortie ou de 'entrée. Cependant, d'autres systémes plus classiques, numéri-
ques ou non linéaires, nadmettent pas une réattribution arbitraire du bruit de
sortie au bruit d’entrée (ni vice-versa).

Par exemple, la totalité de I'erreur dans peut-elle étre attribuée, en écri-
vant simplement (x) = cos(x+ 6x), 3 une perturbation d’entrée dx petite
parrapporta Tentrée x ? Non, quand x est tres petit. Par exemple, quand x sap-
proche de 107 radians, cos(x) arrive tres prés de 0.99999999995 et doit étre
alors arrondi soit 2 1 = cos(0) soit 30.9999999999 = cos(1.414 X 107%.Par con-
séquent, (x) = cos(x + dx) est vraie seulement si 0x est autorisée a de
relativement grandes valeurs, presque aussi grandes que X quand x est trés
petit. Si nous souhaitons expliquer l'erreur dans en nutilisant que des
perturbations relativement petites, il nous en faut au moins deux: 'une, une
perturbation 6x= (—6.58 ... X 107" x, inférieure a I'arrondide 'entrée; Vautre,
dans la sortie, comparable & Parrondi i ce niveau et telle que [COS] (x) = (cos+
dcos)(x + x) pour une certaine inconnue 1dcos| =< (6 X 10 1 cosl.

Comme [COS], tout systeme F du nivenn 2 ost earaetérisé par deux petites
tolérances seulement - appelons-les eetn - quirésumentce qu'il vous suffitde
connaitre sur ce bruit interne du systéme. La tolérance € impose une con-
truinte sur un bruit hypothétique A lasortie, | 6f1 < el fl, ety conticntun bruit
dentrée, 161 < nlxl, qui peuvent apparaitre dans une formule simple du
type:

F(x) = (f+ 6f}(x+ éx)  pour 16fl <elfl et 16x] =17 fxl.

Llobjectif de 'analyse récurrente de erreur est de s’assurer que la totalité du
bruit interne de F peut réellement étre ramenée i une formule aussi simple
avec des petites tolérances eetn satisfaisantes. Aumieux, l'analyse récurrente
de Perreur confirme que la valeur réalisée F(x) est a peine différente de la
valeur idéale f(x+ 6x) qui aurait été produite par une entrée x + 6x @ peine
différente de l'entrée x réelle, en donnant a Pexpression “a peine” un sens quan-
titatif (e et 7). Mais 'analyse récurrente de lerreur n'est valable que pour les
systémes F congus avec soin pour assurer gue toute source de bruitinterne est
équivalente au pire a une perturbation d’entrée ou de sortie petite de fagon

" tolérable. Les premiers essais 3 la conception du systeme, particuliérementles

programmes de caleul numérigue, souffrent souvent de bruit interne d'une
maniére plus compliquée et plus désagréable, comme le montre lexemple
suivant.
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Exemple 6 : Ea plus petite racine d’'une équation quadratique. Les deux raci-
nes x et y de 'équation quadratique ¢ — 2bz + az* = 0 sont réelles quand d =
b* — ac n'est pas négative. Alors, la plus petite racine ¥ beut étre considérée
comme une fonction y = fla, b, ¢) des coefficients de 'équation quadratique:

b th \ dsigne (b))/a sia#0
a.n.¢

te by 2 dans les autres cas.

Si cette formule était traduite dans un programme F(a, b, ¢) destiné a calculer
f(a, b, ), chaque fois que ac serait sipetit par rapport  b* que la valeur calculée
de d s’arrondirait & b ce programme pourrait donner F = 0 méme pour f # 0.
Une telle erreur ne peut pas étre expliquée par analyse récurrente de lerreur
parce quaucune perturbation relativement petite sur chaque coefficient a, b
el ¢ ne pourrait mener ¢ vers zéro comme il le faudrait pour mettre  zéro la
plus petite racine y. D'autre part, la formule algébrique équivalente :

/(' th -\  signe (b)) si diviseur # 0

[ b n
\ 0 dans les autres cas.

se traduil dans un programme Fbeaucoup plus précis, dont les erreurs ne sont
pas plus génantes qu’une perturbation surle dernier (10°) chiffre significutif de
¢. [Jun de ces programmes est listé page 205 et doit étre utilisé dans les cas cou-
rants en ingénierie, ot la plus petite racine y est demandée avec une grande
précision malgré le fait que 'autre racine, non désirée, de 'équation quadrati-
que soit relativement grande.

Presque toutes les fonctions du HP-15C ont été connues pour que l'analyse
récurrente de lerreur tienne compte de facon satisfaisante de leurs erreurs.
Les exceptions sont [SOLVE], [J3] et les touches statistiques [s], et [5,r]
qui risquent des errances dans des cas difficiles. Sinon, toute fonction F du cal-
culateur destiné a produire f(x), produit a la place une valeur F(x) pas plus éloi-
gnée de f(x) que sile premier x avait 616 perturbé d x+ dx avee 1 6xl <n | xl,
et f(x+ 6x) avait 6té perturbée a (f+ 6f)(x+ dx) uvee | 6f1 < ¢ | fl . Les toléran-
ces 77 et e varient un petit peu d’'une fonction 4 une autre ; en gras, nous pouvons
dire que:

n=0ete<10™ pour toutes les fonctions de niveau 1,

n< 107%et e< 6 X 107" pour les autres fonctions, réelles et complexes.
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Dans le cas des opérations matricielles, les valeurs absolues 1 6x1, [ x1, 1 8f] et
IfI doivent &tre remplacées par des normes matricielles || 6x|, | x|, ||}l et || £l
respectivement, qui sont décrites dans le chapitre 4 et évaluées a l'aide de
7 ou 8. Toutes les fonctions matricielles ne figurant pas au

niveau 1, pussent dans le niveau 2, avee approximativement.:

n<10%nete< 107° pour les opérations matriciclles autres
que le déterminant [MATRIX]9, [+] et [(1/4].

n<10"pete< 107° pour le déterminant [MATRIX]9, [1/z] et [<]
avec un diviseur matriciel.

ot n est la plus grande dimension de toute matrice impliquée dans I'opération.

Les implications d’'une analyse récurrente de Perreur ne semblent simples que
lorsque la donnée x d’entrée arrive contaminée par un bruit Ax inévitable ct
sans corrélation, comme cela est souvent le cas. Lorsque nous désirons donc
calculer flx), ce que nous pouvons espérer de micux est dobtenir flx + Ax),
mais en fait nous obtenons F(x+ Ax) = (f+ 8f)(x+ Ax+ 6x),0u | 6f1 < €l flet
16x) = n(x).

Ce que nous obtenons est 4 peine pire que le meilleur & espérer, pourvu que les
tolérances ¢ et 77 soient suffisamment petites, surtout si | Ax| est susceptible
d’atre au moins aussi grande que 77l x/|. Naturellement, le meilleur & espérer
peut &tre trés mauvais, particulierement si f posséde une singularité plus
proche de x que les tolérances sur les perturbations Ax et 6x de x.

Analyse récurrente de I'erreur et singularités

Le mot “singularité” se référe alafoisa une valeur spéciale de'argument xeta
la facon dont f(x) s'égare lorsque x s'approche de cette valeur spéciale. Dansla
plupart des cas, f(x) ou sa premiére dérivée f’(x) peuvent devenir infinies ou
osciller violemment lorsque x s'approche de 1a singularité. Quelquefois, les sin-
gularités de In| f! sont appelées singularités de f, incluant par 1a les zéros de f
parmi ses singularités ; ceciest valable lorsque la précision relative d'un caleul
de fest en litige, comme nous le verrons. En ce qui nous concerne, la significa-
tion de “singularité” peut rester un petit peu vague.

Ce que nous voulons habituellement faire avec les singularités est de les éviter
ou de les neutraliser. Par exemple, la fonction:

{(l—cosx)/x2 six#0
c(x)=

1/2 dans les autres cas

e
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n’a pas de singularité pour x = 0 méme si ses composantes 1 — cos x et x? (en
fait, leurs logarithmes) se comportent singuli¢rement lorsque x s'approche de
0. Les singularités des composantes ont des effets indésirables sur le pro-
gramme calculant ¢(x). La plupart de ces effets sont neutralisés par le choix
d’une meilleure formule: '

1 [sin(x/2) \? six/2#0
c(x)= 2 x/2
1/2 dans les autres cas.

Maintenant, la singularité peut étre évitée en tolalité en testant si x/2 = 0 dans
le programme de calcul de ¢(x).

L'analyse récurrente de Perreur complique les singularités d’'une fagon plus -
facile a illustrer avec la fonction A(x) = In(1 + x) qui a servi & résoudre le pro-
bléme de Pexemple 2. La procédure utilisée dans ce cas calculait u =1+ x
(arrondi) =1+ x + Ax. Alors:

siu=1
AMx)=
In(u) x/(u—1) (dans les autres cas.

Cette procédure exploite le fait que A(x)/x a une singularité susceptible d’atre
enlevée pour x = 0, ce qui signifie que A(x)/x varie de fagon continue et sap-
proche de 1 lorsque x s'approche de 0. Par conséquent, A(x)/ x est relativement
bien représenté par A(x + Ax)/(x + Ax) lorsque 1Ax| < 107°, d'ou:

Mx)=x(Mx)/ x)=x(Mx+ Ax)/(x+ Ax)) = x(In(u)/(u— 1)),
tous calculés précisément parce que est dans le niveau 1. Que pourrait-il

se passer si était dans le niveau 27

Si était dans le niveau 2, une analyse récurrente de Ferreur “réussie” mon-
trerait que, pour des arguments u proches de 1, (u) =In(u+ 6u) avec | Sul
< 107°. Alors, la procédure ci-dessus produirait, non pas x(In(u)/(u — 1)),
mais:

x(In(u+éu)/(u—1)=xAx+ Ax+6u)/(x+ Ax)

x+Ax+éu

=x(Mx+Ax+du)/(x+Ax+6u))
x+Ax .

=x(Mx)/ x¥1+su/(x+ Ax))
=AMxXl+ou/(x+ Ax)).
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" Quand | x+ Ax| n'est pas beaucoup plus grand que 10~ % la derniére expres-
sion peut étre terriblement différente de A(x). Par consequent la procédure qui
a servi a résoudre l'exemple 2 ne marchera pas sur des machines pour lesquel-
les n'est pas de niveau 1. De telles machines existent, et avec elles, la pro-
cédure échoue pour certaines entrées inoffensives par ailleurs. Des échecs
similaires se produisent sur des machines qui produisent (u+ 6’u)— 1 au lieude
u— 1 lorsque leur fonction [=] est de niveau 2 et non pas de niveau 1. Et ces
machines qui produisent In(z+ 6u)/(u+ 6’u—1) au lieu de In(x)/(u—1), parce
que et [=] sont toutes deux de niveau 2, seraient doublement vulnérables
si ce n’est pour un accident mal compris qui lie habituellement les deux erreurs
récurrentes 6u et 6’u de telle facon que seulement la moitié des chiffres signifi-
catifs de A calculé, et non pas tous, sont faux.

En résumé

Maintenant que la complexité introduite par 'analyse récurrente de lerreur
dans les singularités a été exposée, il est temps de résumer, de simplifier et de
consolider ce qui a été dit jusqu'ici.

e De nombreuses procédures numériques produisent des résultats trop
faux pour &tre justifiés par n'importe quelle analyse des erreurs, récur-
rente ou pas.

¢ Quelques procédures numériques produisent des résultats seulement
légérement plus mauvais que ceux qui auraient été obtenus par résolu-
tion exacte d’un probléme ne différant que légérement du probléme consi-
déré. Ces procédures, classées au niveau 2 en ce qui nous concerne, sont
largement acceptées comme satisfaisante du point de vue de Panalyse
récurrente de l'erreur. '

e Les procédures du niveau 2 peuvent produire des résultats relativement
écartés de ceux qui auraient été obtenus siaucune erreur n’avait été com-
mise, mais des erreurs importantes peuvent survenir uniquement pour
des données relativement proches d’une singularité de la fonction en
cours de calcul.

e Les procédures du niveau 1 produisent des résultats relativement précis
quelle que soit la proximité d’une singularité. De telles procédures sont
rares mais préférables, parce que leurs résultats sont plus faciles a inter-
préter, particuliérement lorsque plusieurs variables sont impliquées.

Un exemple simple illustre ces quatre points.
Exemple 7: L’angle d’un triangle. La loi cosinus du triangle dit que:

2 =p?+q*—2pqgcosb

e
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pour la figure ci-dessous. Les calculs scientifiques nécessitent souvent que
l'angle 0 soit calculé a partir de valeurs, p, ¢ et r des longueurs des cotés du
triangle. Ce caleul est faisable pour que 0< p < q+r0<g<p+ret
0=<r=<p+ q, et ensuite:

0<6=cos™ ((p* + ¢) — r)/(2pq)) < 180°:

sinon, aucun triangle n’existe avec ces longueurs de cotés, ou bien 0= 0/0 est
indéterminé.

La formule précédente pour 6 définit une fonction 6 = f(p, q, r) et aussi d’'une

fagon naturelle, un programme F (p, g, r) destiné a caleuler cette fonction. Ce

programme est appelé “A” ci-dessous, avec des résultats F4(p, q, r) tabulés

pour certaines entrées p, g et r correspondant aux triangles trés aplatis pour

lesquels la formule souffre énormément de Iarrondi. I/absence de fiabilité de .
cette formule est bien eonnue de méme que celle de la formule algébrique équi-

valente, mais plus fiable: 0 = f(p, g, r) =2 tan™'y/ ab/(cs)ous=(p+q+r)/2,a

=s—p,b=s—get¢=s—r.Unautre programme F(p, q, r)basé sur cette meil-

leure formle sera appelé “B” ci-dessous, avec des résultats Fg(p, q, r) pour les

entrées sélectionnées. Apparemment, F n'est pas beaucoup plus fiable que

F,. La plupart des résultats décevants pourraient étre expliqués par l'analyse

récurrente de I'erreur si nous supposons que les ealculs donnent F oan=fp

+ dp, g+ 6q, r+ 6r) pour des perturbations inconnues mais petites satisfai-

sant 18pl <107° Ipl, etc. Méme si cette explication était vraie, elle aurait des

conséquences troublantes et désagréables parce que les angles des triangles

trés aplatis peuvent varier relativement beaucoup quand les c6tés sont relati-
vement peu perturbés; f(p, g, r) est relativement instable pour les entrées mar-

ginales.

En réalité 'explication précédente est fausse. Aucune analyse récurrente de
lerreur ne pourrait tenir compte des résultats tabulés pour F, et Fydansle cas
1 ci-dessous 4 moins que des perturbations 0p, 8q ct 8r naient été autorisées
pour corrompre le cinquiéme chiffre significatif de 'entrée, changeant 1 en
1.0001 ou en 0.9999. Ceci fait trop de bruit & tolérer dans un calcul sur 10 chif-
fres. Un meilleur programme, et de loin, est F(;ilalelabel “C” et est expliqué
un peu plus loin.
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.trois dernieres lignes de chaque compartiment du tableau ci-dessous, indi-
ntles résultats de trois programmes «A” “B” et “C” basés sur trois formules

‘érentes F(p, g, ), toutes algébriquement équivalentes a:
6= f(p, g, ) = cos”((p* + ¢* — r*)/(2pQ)

Résultats différents de trois programmes: F, FgetF..

| - Cas 1 Cas 2 Cas 3

p 1 9.999999996 10

q 1 9.999999994 5.000000001
- 1.00005 X 107 3 X 107° 15.

F, o | 0. 180.

F,  5.73072X 107 " Error 0 180.

F,  5.72986X10™ 1.28117 X 10 179.9985965
Cas 4 Cas b Cas 6

p  0.527864055  9.999999996 9.999999999

g  9.472135941 3X107° 9.999999999

r 9.999999996  9.999999994 20.

F, Error O 48.18968509 180.

F, Error 0 Error 0 180.

F, 180. 48.18968510 Error O
Cas? Cas 8 Cas 9
p 1.00002 3.162277662 3.162277662
q 1.00002 2.3X107° 1.565565 X 107
s 2.00004 3.162277661 3.162277661
| F, Error O 90. 90.
Fy 180. 70.52877936 89.96318706
Fe 180. 64.22853822 89.96315156

jour utiliser un programme, introduisez p [ENTER| g [ENTER] r, exécutez le pro-
ramme “A” “B” ou “C” et attendez Papproximation F du programme a0=f
eul le programme “C” est fiable.




Appuyez sur

(JCLEAR
(O(LBL](A]
(967

@@@@

@H@H@E
3 B

Ii@@
—
m
D

ElE

(O(LBL](E]
(STO]1
(ENTER]
[o]lre]
(sTO](+]1
(o](R¢]
(sToJ(*]1
2

(s76](=)1
Ré

(ReL)(E)1
(ReL)(=]1

HEE

X

HEg

{RCL

(<]
RCL](x]1
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Affichage
000-
001-42,21,11
002- 43 11
003- 34
004- 43 11
005- 43 36
006- 43 33
007- 20
008- 34
009- 43 36
010- 4311
011- 40
012- 43 33
013- 30
014- 34
015- 36
016- 40
017- 10
018- 43 24
019- 43 32
020-42,21,12
021- 44 1
022- 36
023- 43 33
024-44,40, 1
025- 4333
026-44.40, 1
027- 2
028-44,10, 1
029- 33
030-45,30, 1
031- 34
032-45,30, 1
033- 20
034- 11
035- 34
036-45,30, 1
037-45,20, 1

197
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Appuyez sur Affichage

~ 038- 16
039- 11
(@ ][»P] 040- 43 1
(R¢] 041- 33
x] 042- 20
[¢])(RTN] 043- 4332
[{eu(c] 044-42,21,13
(sTo]O 045- 44 O
046- 33
<yl 047- 4310
xxy) 048- 34
[sTol1 049- 44 1
(sTo][*]O 050-44,40, O
[xzy] 051- 34
[sto](+]O 052-44,40, O
=] : 053- 30
(gl(re] 054- 4333
(sTol(-]1 . 055-44,30, 1
[o](LsTx] 056- 43 36
057- 36
[ReL)(#])1 058-45,40, 1
- 059~ 11
[xz]o 060-42, 4, 0
061- 1
(sT0](x]0 062-44,20, 0
(g](cLx] 063- 4335
064- 40
065- 33
. 066~ 40
airRL 067-42, 4, 1
(g])(R%] 068- 4333
[9](LSTx] 069- 4336
=<y 070- 4310
GT10].9 071- 22 9
072- 33
[g](7EST]2 073-43.30, 2
074- 1
2y 075- 34
(G10].8 076- 22 .8

077-42,21, .9

=
=
o)
-
(o]
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Appuyez sur Affichage

(o](TEsT) 2 078-43,30, 2
(5] 079- 11
(g](R¥] 080- 43 33
(){LsL) .8 081-42,21, .8
(-] 082- 30
Iy - 083- 1
(RCL]1 084- 45 1
085- 1
x] 086- 20
(RcL]O 087- 45 0
(g](=P] 088- 43 1
(g](x=0] 089- 4320
(=] 090- 10
091- 34
(ENTER] 092- 36
. 093- 40
(9](RTN] 094- 4332

(a](r/R]

Les résultats Fy(p, g, r) sont corrects jusqu’a au moins neuf chiffres significa-
tifs. Ils sont obtenus 4 partir d’'un programme “C” trés fiable bien que plutot
plus long que les programmes “A” et “B” non fiables. La méthode pour le pro-
gramme “C” est la suivante.

1. Sip< g, échange de registre pour que p = gq.
2. Caleuldeb=(p-qg+rc=p-rtqets=p+ri+gq.
3. Calcul de:
r=(p—q) sig=2r=0
a= yq—(p—r) sir>qg=0
Error 0 dans les autres cas (pas de triangle).

4. Calcul de F¢(p, q, r) = 2 tan"'(vab/Vcs)

Cette procédure fournit F(p, g, r) = 8 correct sur 4 peu prés neuf chiffres signi-
ficatifs, un résultat certainement plus facile i utiliser et a interpréter que les
résultats donnés parles autres formules mieux connues. Mais le travail interne
de cette procédure est difficile & expliquer; en effet, cette procédure peut mal
fonctionner sur certains calculateurs ou ordinateurs.
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Cette procédure ne marche impeccablement que sur certaines machines
comme le HP-15C, dont Popération de soustraction est libre d’erreurs évitables
et bénéficie ainsi de la propriété suivante : chaque fois que y est compris entre
x/2 et 2x, la soustraction n'introduit pas d’erreur d’arrondi dans la valeur calcu-
lée de x — y. Par conséquent, chaque fois que la compensation a pu laisser des
erreurs relativement grandes, contaminant a, b ou ¢, la différence pertinente
(p = q)ou(p —r)envienta étre libre d’erreur et la compensation devient avan-
tageuse!

La compensation reste un probléme sur les machines qui calculent (x + or)—
(y + 8y) au lieu de x —y méme si ni 8x ni 8y n'atteint la valeur 1 surle dernier
chiffre significatif de x et de y respectivement. Ces machines donnent
Fip, q,)=f(p+ dp, ¢+ g, r+ 6r) avec des perturbations dp, dq et orsur les
chiffres de terminaison, qui semblent toujours négligeables du point de vue de
analyse récurrente de lerreur mais qui peuvent avoir des conséquences
déconcertantes. Par exemple, seul I'un des triplets (p, g, r) ou (p+6p, g+ bq, r
+ 6r), pas les deux, peut constituer les longueurs des cotés d’un triangle fai-
sable, si bien que F; pourrait générer un message d'erreur alors qu’il ne le
devrait pas, ou vice-versa, sur ces machines.

Analyse récurrente de l'erreur d’'une inversion de matrice

La mesure habituelle de la grandeur d’'une matrice X est une norme [ X|} telle

quelle est calculée par [MATRIX]7 ou par [MATRIX]8; nous utiliserons la

norme antérieure, la norme des rangs:
IX]| = max ) _|x;|
l _I .

dans les explications suivantes. Cette norme a des propriétés similaires a cel-
les de la longueur d’un vecteur, ainsi que la propriété de multiplication:

XY =< XYl

Quand Péquation Ax = b est résolue numériquement avec une matrice A don-
née n X n et un vecteur-colonne b, la solution calculée est un vecteur-colonne ¢
qui satisfait & peu pres la méme équation que X, cest-d-dire:

(A+ 6A)e=Db

avec ||6A|| < 107°nl|Al}
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Par conséquent, le résidu b— Ac=(6A)c est toujours relativement petit; trés
souvent, la norme résiduelle||b— Ac||est inférieure i||b— AX||od X est obtenu &
partir de la yraie solution x par arrondi de chacun de ses éléments 4 dix chiffres
significatifs. Donc, ¢ ne peut différer de x de facon 31gn1flcat1ve que 31l|A 1Ilest:
relativement grand par rapport & 1//|A|;

x— el =[lA"b— Ac)|
<A Al llef
<107%n|c|| /a(A)

ot 6(A)=1/(|AllA™*|) est 'inverse du nombre de condition et mesure & quelle
proximité relative de A se situe la matrice singuliére S la plus proche, puisque

min [|A -S| =qd(A)|A].
det(S)=0 »

Ces relations et quelques-unes de leurs conséquences sont expliquées de facon
approfondie au chapitre 4.

Le calcul de A™" est plus compliquée. Chaque colonne de la matrice inverse cal-
culée [17x](A) est la colonne correspondante d’une certaine matrice (A +
8A)™!, mais chaque colonne a son propre petit 6A. Par conséquent, aucun petit
OA, avec|[SA||=< 10‘9n“A|| n’a besoin d’exister en satisfaisant a peu prés:

(A +8A) — O7=)(A)| < 107 || GZ=)A)

Un tel 6A existe habituellement, mais pas toujours. Ceci ne contrarie pas la
précédente affirmation que les opérations et [+] matricielles sont de
niveau 2; elles sont couvertes par la seconde affirmation du résumé de la page
194. La précision de (A) peut é&tre décrite dans les termes d’'inverses de
toutes les matrices A + AA siproches de A que||AA||< 107°4||A|; 1a pire de ces
matrices (A + AA)™! est au moins aussi loin de A™! en norme que la matrice
[1/x](A) calculée. La figure ci-dessous illustre la situation.

(A+ AA) lestla

A + AA est ici [1/x](A) est 13
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"Quand A + AA se promé&ne 4 travers les matrices avec lAA]l au moins aussi
grande que l'arrondi dans ||A|L son inverse (A + AA) doit errer de facon au
moins aussi éloignée de A~ que la distance entre A™' et la matrice (A) cal-
culée. Tous ces mouvements sont trés petits sauf si A est trop ploche d'une
matrice singuliere, dans quel cas la matrice doit &tre pré-conditionnée loin de
la proximité d’une singularité (voir chapitre 4).

Siparmi ces matrlces A+ AA voisines se dissimulent des matrices blnguhex es,
plusieurs (A + AA)™' et [1/z](A) risque d’étre trés différentes de A™". Cepen-
dant, la norme résiduelle sera toujours relativement petite:

lAA +aA)" -1 _ aA|
lallia+aAy'] — Al

<10%n

Cette derniere inégalité reste vraie quand (A) remplace (A + AA)7L

Si A est suffisamment loin d'une singularité, de fa¢on que:

1/)(A + AA) Y| > 1070 Al = | aA],
alors:
A —A+aArt] __ [aA] A + AT
A+ Ay 1-laAl A +aA)|
| 107 | Al [lA + aA)|
S1-10%n]Al A +aA)

Cette inégalité reste également vraie quant [1/x](A) remplace (A + AA)Y,
alors tout ce qui est & droite peut &tre calculé, si bien que I'erreur dans (A)
ne peut excéder une quantité évaluable. En d’autres termes, le rayon du cercle
en pointillés sur la figure précédente peut &tre calculé.

Les estimations ci-dessus peuvent sembler pessimistes. Cependant, pour mon-
trer pourquoi il n'existe généralement rien de mieux en plus vraj, considérons
la matrice: -

—

10.00002 -50,000 50,000.03 -45

X = 0 50,000 -50,000.03 45
0 0 0.00002 -50,000.03

0 0
| 0 52,000
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et .
r.50,000 50,000 p q . ]
N 0 0.00002 50,000.03 48,076.98077...
0 0 50,000  48,076.95192..
0 0 0 0.00001923076923...

Idéalement, p = ¢ = 0, mais 'approximation de X! par le HP-15C, c’est-d-dire
[1/x](X), a ¢ = 9,643.269231, soit une erreur relative

X! - 7=)(X)||
X4l

=0.0964...,

de prés de 10%. D’autre part, si X + AX ne differe de X que dans sa seconde
colonne ot — 50,000 ct 50,000 sonl remplacés respectivement par
— 50,000.000002 et 49,999.999998 (altérés sur le 11° chiffre significatif), alors
(X+ AX) " nediffere beaucoup de X! que dans la mesure oll p =0 et g =0 doi-
vent étre remplacés par p = 10,000.00600... et ¢ = 9,615.396154... d’oil :

X! — (X + aX) |
X1

L'erreur relative dans (X + AX)™! est pratiquement le double de l’erreur rela-
tive dans (X). Nessayez pas de caleuler (X+ AX) ™ directement, mais utili-
sez plut6t la formule:

(X —eb))1=X"1+X"1eb?X1 /(1 -bTX"¢),

=0.196...;

qui est valide pour tout vecteur-colonne c et tout vecteur-rang b, et particulie-
rement pour
]
1

1
e=| ]| et b”=[0 0.000002 0 0].

10

Malgré que:
X! =X < IX7T - X+ aX)!|,

on peul montrer gu'aucune perturbation trés petite 6X n’existe sur le dernier
chiffre pour laquelle (X + 6X)™! est identique a (X) sur plus de cing chif-
fres significatifs dans la norme.
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- Naturellement, aucune de ces horreurs ne se produirait si X n’était pas sisingu-

liere. Puisque || X I X~*[I> 10°, une modification dans X s'’élevant a moins d’une
unité sur le 10° chiffre significatif de ||X|, pourrait rendre X singuliére; une
telle modification pourrait remplacer 'un des éléments 0.00002 de la diagonale
de X par zéro. Puisque X est si singuliere, la précisionde (X)dans cecasest
plutdt plus importante que ce que Pon attendait. Ce gui fait de cet exemple un
cas particulier est une mauvaise échelle :X a été obtenue & partir d'une matrice
tout a fait convenable:

“ |2 -5, 5.000003 45X 1072 | 5
z-|° & -5.000003 4.5X 107"

0o 0 2 -5.000003

0 0 0 5.2 |

en multipliant chaque rang et chaque colonne parune puissance de 10 soigneu-
sement choisie. La division compensatrice des colonnes et des rangs de la
matrice non moins convenable:

05 05 p

.

q
%1 = 0 0.2 0.5000003 0.4807698077...
0 0 05 0.4807695192...

Lo

0

0

0.1923076923...

adonné X}, avec p = ¢ = 0.Le HP-15C calcule (X) =X "' sauf que g = O est
remplacé par ¢ = 9.6 X 10", une modification mineure. Ceci illustre la facon
dramatique dont 'échelle peut affecterla qualité percue des résultats calculés.
(Reportez-vous au chapitre 4 pour des explications détaillées sur I'échelle).

L'analyse récurrente de l'erreur est-elle une bonne chose?

La scule bonne chose a dire sur Panalyse récurrente de Ferreur est qu'elle expli-
que les erreurs internes d’'une fagon qui libere l'utilisateur d’un systéme de la
nécessité d’'une connaissance totale du fonctionnement interne du systeme.
Ftant données deux tolérances, I'une sur le bruit d’entrée d6x et lautre sur le
bruit de sortie 8f, Putilisateur peut analyser les conséquences du bruit interne

~ dans:

F(x) = (f+ 6f)(x + dx)

en étudiant les propriétés de propagation du bruit du systéme idéal fsans réfé-
rence plus approfondie & la structure interne peut-8tre complexe de F.



Mais l'analyse récurrente de l'erreur nest pas une panacée ; elle peut expliquer
les erreurs mais pas les excuser. Parce qu'elle complique les calculs en cas de
singularités, nous avons essayé d’éviter d’y recourir chaque fois que nous le
pouvions. Si nous avions su comment éliminer le besoin de recourir 4 'analyse
récurrente de I'erreur pour chaque fonction intégrée du calculateur, 4 un cofit
riaisonnable naturcllement, nous Paurions fait pour simplifier la vie de tout le
monde. Mais cette simplicité fait appel a trop de rapidité et de mémoire pour la
technologie actuelle. L'exemple suivant illustre les compromis & réaliser.

Exemple 6 (suite). Le prog’ramme figurant ci-dessous résoud 'équation qua-
dratique réelle ¢ — 2bz + a2z® = 0 pour des racines réelles ou complexes.

Pour utiliser ce programme, introduisez les constantes réelles dans la pile
(c[ENTER] b [ENTER] a) et exécutez le programme “A”.

Les racines x et y vont apparaitre dans les registres X et Y. Si ces racines sont
complexes, 'indicateur C s’allume pour signaler que le mode complexe a été
activé. Le programme utilise les labels “A” et “.9” et le registre d’'index (mais
aucun des registres 0 4 .9); le programme peut donc étre appelé immédiate-
ment par d’'autres programmes en tant que sous-programme. Les programmes
appelant (aprés désarmement de I'indicateur 8 si nécessaire) peuvent décou-
vrir siles racines sont réelles ou complexes par simple test de 'indicateur 8 qui
n'est armé que si les racines sont complexes.

Les racines x et y sont si ordonnées que | x| = | y| sauf peut-étre lorsque | x|
et ly! sont identiques sur plus de neuf chiffres significatifs. Les racines sont
aussi précises que si le coefficient ¢ ayant ¢té d’abord perturbé sur son 10°
chiffre significatif, 'équation perturbée aurait été résolue exactement et ses
racines arrondies a 10 chiffres significatifs. Par conséquent, les racines calcu-
lées sont identiques aux racines de la quadratique données sur au moins cing
chiffres significatifs. Plus généralement, si les racines x et y sont semblables
sur n chiffres significatifs pour n positif = 5, elles sont correctes sur au moins
10 — n chiffres significatifs sauf en cas de dcpdsscment de capacité supérieur
- ou inférieur.

Appuyez sur Affichage

[g]

[{|CLEAR 000-
001-42,21,11
002- 36
(9] 003- 4333
004~ 20
(o] [LST= 005- 4336

Annexe: Precision des calculs nume ques 2UD
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2
* Appuyez sur Affichage
xy) 006- 34
ERGEY 007- 4333
008- 4425
a1 009- 4311
] 010- 30
(g](TESTIN 011-43,30, 1
(GT0].9 012- 22 .9
CHS 013- 16
&) 014- 11
alran| 016-42, 4,26
[g](rEST)2 016-43,30, 2
[RedEM 017-45,30,25
(¢)(TEST)3 018-43,30, 3
([Reu)(+)0 019-456,40,26
(v](TEST]O 020-43,30, O
021- 10
[o)[isTx 022- 4336
(g)(Be) 023- 4333
(¥ 024- 10
(g](RIN] 026- 4332
(f(eL].9 026-42.,21, .9
(5] 027~ 11
[Red)M 028- 45256
(e](re] 029- 4333
030- 10
Gzy) 031~ 34
(g](LSTx] '032-- 4336
=] 033- 10
[N .034- 4225
035- 36
036- 4230
037- 16
[f)(Rex1m] 038- 4230
(g](RTN] 039- 4332

La méthode utilise d = b — ac.
Si d < 0, les racines font partie d’'une paire complexe conjuguée:

(b/a) £ ivV—-d/a.
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Si d = 0, les racines sont des nombres x et y réels calculés par:

s = b + +/d signe (b)

= s/a

c/s sis=*0
0 ‘si s = 0.

Le enleul de s évite une compensation destructive.

Quanda =0 # b, la plus grande racine x (qui devrait 8Lre o) rencontre une divi-
sion par zéro (Error 0) qui peut dtre effacée cn appuyant trois fois sur [R¥]
pour exhiber la plus petite racine y correctement caleulée. Mais quand les trois
coclTicients dispuraissent, le messuge Error O signule que les deux racines
sont arbitenivos,

Les résultats de plusieurs cas sont rassemblés ci-dessous.

et et . e e s o e

(Sas 1 Casz

‘Cas3 . Cas 4
c 3 1 654,321
b 2 1 654,322
a 1 1073 654,323
Racines Réelles Complexes Réelles . Réelles |
3 0+ 2i 2X 10"  0.9999984717
1 0.5 0.9999984717
Cas 5 Cas 6
c 46,152,709 12,066,163
b 735,246 987.644
a 11,713 80,841
Racines Réelles Complexes
62.77179203 12.21711755 £ i0.001377461
62.77179203
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Les trois derniers cas montrent la sévérité de résultats de la perturbation sur le
10° chiffre significatif de tout coefficient de toute équation quadratique dont les
racines coincident presque. Les racines correctes dans ces cas sont les suivantes:

Cas 4:1 et 0.9999969434

Cas 5: 62.77179203 % i8.5375 X 107°

Cas 6:12.21711755 % i0.001374514.
En dépit des erreurs sur le cinquieme chiffre significatif des résultats, le sous-
programme “A” est suffisant pour presque toutes les applications d’équations
quadratiques dansles domaines de 'ingénierie et de la recherche. Ses résultats
sont corrects sur neuf chiffres significatifs pour la plupart des données, avece,
b et a représentables exactement 4 'aide de seulement cinq chiffres significa-
tifs; et les racines calculées sont correctes sur au moins cing chiffres significa-
tifs dans tous les cas parce qu'elles ne peuvent pas &tre pires que siles données
avaient été introduites avec des erreurs sur le 10° chiffre significatif. Néan-
moins, certains lecteurs vont se sentir mal 4 l'aise avec des résultats calculés
sur 10 chiffres significatifs mais corrects sur 5 seulement. Ne serait-ce que
pour simplifier leur compréhension de la relation entre les données d’entrée et
les résultats sortis, ils peuvent encore préférer des racines correctes sur neuf
chiffres significatifs dans tous les cas.
1l existe des programmes qui, tout en tenant compte que de 10 chiffres signifi-
catifs pendant Parithmétique, vont calculer correctement les racines de toute
équation quadratique sur au moins neuf chiffres significatifs, quelle que soit la
proximité de ces racines. Ces programmes calculés d = b% — ac par quelque
subterfuge équivalent au traitement de 20 chiffres significatifs chaque fois
que b? et ac se “compensent” presque, mais ces programmes sont beaucoup
plus longs et beaucoup plus lents que le petit sous-programme “A” donné pré-
cédemment. Le sous-programme “B” ci-dessous qui utilise 'un de ces subterfu-
ges®, est un programme trés court qui garantit neuf chiffres significatifs cor-
rects sur un calculateur 10 chiffres. Il utilise les labels “B”, “.7” et “.8”, les regis-
tres R, et Ry et le registre d'index. Pour Tlutiliser, introduisez
c[ENTER] b [ENTER] a, exécutez le sous-programme “B” et attendez, comme pré-
cédemment, vos résultats.

Appuyez sur Affichage

(]

CLEAR 000-

001-42,21,12

002- 4425

003- 33 ,

* Le programme “B” exploite une propriété intéressante des touches ot par laquelle cer-
tains caleuls peuvent se faire sur 13 chiffres significatifs avant Parrondi & 10 ehiffres.



Appuyez sur

(s10J0
(sT0)8
(sTo]1
(sTo]9
[Oscy2
[(CeL).8

(fJCLEAR

([BlG=)
[o)re]
108
(REL)7
570)9
(o)(a8S]

EEX

o
27"
2

g
%P
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Affichage

004- 44 0
005- 44 8
006- 34
007- 44 1
008- 44 9
009-42, 8, 2
010-42,21, .8
011- 4232
012- 45 8
013- 44 7
014-45,10,25
015- 43 34
016- 4525
017- 4349
018- 45 9
019-42, 4, 7
020~ 34
021- 45 8
022- 4349
023- 33
. 024- 4349
025- 45 7
026- 4316
027- 45 9
028- 4316
029- 4310
030~ 2212
031- 36
032- 4333
033- 44 8
034- 45 7
035- 44 9
036- 4316
037~ 26
038- 2
039- 0
040- 20
041- 45 1
042- 4316
043- 4310
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Appuyez sur

(cTol 8
[(ceL](B)
(MFx]9
[Rcu)8
(LT
(s10]7
(RCi]9

(e)[EST)2
(G10].7
([{xx]o
(e](EST]2
(Red[=]o
(9)7EST)3
[(RcO#]o
(=]
(eJESTIO
(Reu](=])1
[RcL]1
(Red=[M
[f(eu.7

CHS

72|
Z)[+)
=)

8

BEER

w
~
o]

Affichage
044- 22 .8
045-42,21,12
046-42, 7, 9
047- 45 8
048- 43 11
049- 44 7
050- 4525
051- 45 9
052- 4349
053- 45 7
054-43,30, 2
055- 22 .7
056- 1
057-42, 4, 0
058-43,30, 2
- 059-45,30, 0
060-43,30, 3
061-45,40, O
062-42, 4, 1
063-43,30, O
064-45,10, 1
065- 45 1
~ 066-45,10,25
067- 4332
068-42,21, .7
069- 16
070- 11
071-45,10,25
072- .36
073- 16
074- 45 O
0756- 4525
076- 10
077- 34
078- 4225
079- 36
080- 4333
081- 4225
082- 4332
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La précision de ce programme est phénoménale : meilleure que neuf chiffres
significatifs méme pour la partie imaginaire de racines complexes pratique-
ment indistinetes (comme lorsque ¢ = 4,877,163,849 et b = 4,877,262,613 et
a =4,877,361,379); siles racines sont des entiers, réels ou complexes, etsia =
1, alors les racines sont calculées exactement (comme lorsque
e =1219332937X 10, b=111,1115 ct.a = 1). Mais le programme est col-
teux; il utilise plus de deux fois plus de mémoire pour le programme et les don-
nées que le sous-programme “A” et prend beaucoup plus de temps pour réali-
ser une précision sur 9 chiffres significatifs au licu de 5 dans quelques cas ol
cela n'est pas toujours important parce que les coefficients de 'équation qua-
dratique peuvent difficilement @tre caleulés exactement. Si Pun des coeffi-
cients ¢, b ou a est incertain de une unité sur son 10¢ chiffre significatif, le sous-
programme “B” en fait trop. Le sous-programme “B” doit &tre considéré
comme un outil de luxe a n’utiliser que dans des circonstances exceptionnelles,

laissant au sous-programme “A” la gestion des traitements de tous les jours.
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Les numéros de page en gras renvoient aux pages principales,

A

Analyse récurrente de lerreur, 187-211
Analyse de flux de trésorerie escomptés, 39-44
Analyse de la variance, 133-140

Angle d’un triangle, 194-199

Annuité a échoir, 27-28

Annuité ordinaire, 27

Annuité, 26-39

B

Branche principale, 69, 72
Bruit d’entrée, 187-192
Bruit de sortie, 188-192

C

" Calcul itératif, 103-104, 119-121
Caleculateur cassé, 172, 175-176
Capitalisation, 26-39
Cartographie, 89
Champ d’intensité, 17-25
Champ, 39
Champs électrostatique, 59
Changement de signe, 8
Compensation, 176-178, 200, 207
Composantes complexes, précision, 74
Contour d’intégrale, 85-89
Contraintes sur les moindres carrés, 111, 115-116, 143
Courbe équipotentielle, 89-95

D

Déclinaison, 11-15

Décomposition en matrices triangulaires, 96-98, 117, 118
Label, 97 ’

212



™ Index alp” Yétique
Décroissance, 160

Déflation, 10

Degrés de liberté, 132

Dépassement de eapacité inférieur, 50-51, 118, 179

Dépassement de capacité supérieur, 179

Dérivée, 10, 17-20, 192

Déterminant, 97-98, 118

Diagramme de flux, 28, 28-44

Durée de calcul d’intégrale, 49-55

\
D
4

- 213

Echantillonnage, [77), 46-47, 50, 56, 73
Echantillonnage, [SOLVE], 7-9, 73
lichelle d'un systeme, 107
Echelle d'une matrice, 104-107, 204
Equation a racines difficiles, 16-17, 80-85
Equation caractéristique, 148
Equation avec terme de retard, 81-85
Equation financiére, 29, 39
Equation quadratique a racines complexes, 205-211
Equations

A plusieurs racines, 10

Equivalents, 9-10

Résolues sans précision, 10

Sur systéme non linéaire, 122-128
Equations complexes, résolution d’'un grand systéme, 128-131
Equations normales augmentées, 111
Equations normales pondérées, 111
Error 0, 29, 196, 199, 207
Error 1, 162, 167
Error 4, 29, 40
Error 8, 9, 23
Erreur absolue, 173, 182
Erreur darrondi, 47, 49, 111, 113, 118, 172-211
Erreur relative complexe, 183
Erreur, 173

Absolue, 173, 182

Conditions d’erreur, 172-178

Dans les éléments d’'une matrice, 100-101

Hiérarchie, 178

Relative, 173, 182, 183
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Estimation répétée, 23-25
.Extrémes d’une fonction, 17-25

I
Factorisation orthogonale, 113-116, 140-148
Fonetion Gamma, 65-68
Fonction complémentaire d’erreur, 60-64 A
Fonction complémentaire de distribution normale, 60-64
Fonctions complexes a plusieurs valeurs, 69-72
Fonction d’erreur, 60-64

Complémentarité, 60-64
Fonctions mathématiques complexes, 68-72
Fonction potentielle complexe, 89, 95
Fonctions trigonométriques, 184-186
Format d’affichage, 4546, 48
Forme canonique de Jordan, 155
Forme rectangulaire, 68

G

Gradient, 160, 165—~

i

Incertitude de matrice, 100

Incertitude pour [J;], 45-46

Indicateur C, 205

Indicateur du mode trigonométrique, 68

Indices des prix 4 la consommation, 137-140, 147-148
Intégrale impropre, 55-60

Intégration en mode complexe, 73

Intégration numérique avec [73], 45-64
Intervalle d’intégration, subdivision, 50-54, 58
Inverse d’une fonction, 69

Inverse d’'une.matrice, 98, 101-102, 110, 118, 187
Itération inverse, 155

ll

Lignes d; -cblzral;t‘,‘ 89-94
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Matrice anti-symétrique, 149
Matrice augmentée, 141
Matrice covariance, 131
Matrice d’identité, 119
Matrice mal conditionnée, 98-102, 107, 155
Matrice non-singulidre, 101-102, 117
Matrice presque singuliére, 107, 117-118, 201, 204
Matrice singulidre, 101-102, 117-118, 201
Matrice symétrique, 148-149
Matrice triangulaire inférieure, 96
Matrice triangulaire supérieure, 96, 113, 114, 141
Maxima d’une fonction, 17-25, 160
Méthode Doolittle, 97
Méthode Horner, 11, 12
Méthode d’itération de Newton, 80 82, 122
Méthode de Romberg, 46
Racines
Complexes, 16-17
D’un nombre complexe, 69, 78-80
D’une équation complexe, 80-85
D’une équation quadratique, 191, 205-211
Equations avec plusieurs, 10
Imprécises, 9-10
Multiples, 10
Non trouvées, 9, 29, 92
Recherchées par la méthode numérique, 6, 6-44
Méthode de la sécante, 7
Méthode numérique de recherche de racines, 6, 6-44
Minima d’une fonction, 17-25, 160 :
Mode complexe, 65-95
[SOLVE] et 3], 73
Algorithme, 6-9, 73
Modeéle linéaire, 131
Modes trigonométriques, 68
Moindres carrés pondérés, 111, 115, 143
Moindres carrés, 110-116, 131-148, 187
Contraintes linéaires, 111, 115-116, 143
Pondérés, 111, 115, 143
Monotonie, 180, 186
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N

Niveau oo, 179

Niveau 0, 178

Niveau 1, 179-183, 190, 194

Niveau 1C, 183

Niveau 2, 184-211

Nombre complexe, racines niemes, 69, 78-80
Nombre complexe, stockage et rappel, 76-78
Nombre de conditionnement, 98-102, 107, 201
Nombre de chiffres corrects, 103, 121
Norme de Frobenius, 99 .

Norme colonne, 99

0
Optimisation, 160-171

l)

Pente, 20-22
Permutation sur les rangs, 97, 117
Phases lunaires, 186
Pi, 173, 184-186
wPlus petite racine d’'une équation quadratique, 191, 205-211
Point eritique, 160, 162, 163
Point d’extrémité, intégrale échantillonnée i 46-47, 56
Point-selle, 162
Polyndomes, 10-15
Point trop court, 174
Précision -
De l'expression i intégrer, 47-49
Des calculs numériques, 172, 211
Des résolutions de systéme linéaire, 103-104
En mode complexe, 73-76
Précision étendue, 47, 104, 208
Préconditionnement d’un systéme, 107-110
Problémes financiers, 26-44

qQ

Queue d’une fonction (branche infinie), 57-58
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R

RILCEVIVY

Rd(,ln(.b imprécises, 9- 10

Radians en mode complexe, 68
Rangs successifs, 140-148

Rappel de nombres complexes, 76-78
Ralio £, 132-140

Recherche de courbe, 161

Recherche de limites, 161, 162
Réduction d’intervalle, 161, 162
Régle de signes de Descartes, 10-11
Régression linéaire multiple, 131
Remboursement libératoire, 27, 29, 36
Remboursement, 26-39

Résidu, 103-104, 110, 132, 201

Résolution d'équation pour des racines complexes, 80-85

Résolution d'un systéme d’équations, 15-17, 98, 100-101, 118, 122-128

Résolution d’'un systéme d'équations non-linéaires, 122-128
Résolutions d’un systéme linéaire, précision, 103-104
Résonance, 46 A
Résultat “correctement” arrondis, 179-183

Introduction faussée, 184-211

S

‘Séries de Taylor, 182

Situations physiques, 47-49

[SOLVE], 6-44 |
Somme des carrés de la régression ajustée 4 la moyenne, 134
Somme des carrés des résidus, 132-140

Somme des carrés, 132, 140

Sous-intervalles

Substitution, 46

Symétrie du signe, 180, 185 :

Systéme d’équations mal condltxonnees 104 110

Systéme incrémenté, 142

rI‘

Tableau d’analyse de la variance, 133, 134, 140
Taux d'intérét, 26-44

Taux de rendement escompté, 39

Taux de rentabilité interne, 39-44



\

205 T uphabet que

w
Test sans biais, 122-123
Théoréme binomial, 176
Transformation de variables, 54-55
Triangle, angle d’'un, 194-199

Valeur actuelle nette, 3944
Equation, 39

Valeur actuelle, 26-44

Valeur future, 26-39

Valeur principale, 69-72

Valeur propre, 148-160
Stockage, 159-169

Variables, transformation, 54-55

Vecteur propre, 149, 154-160

Z

Zéro du polyn(“)mé; 10
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