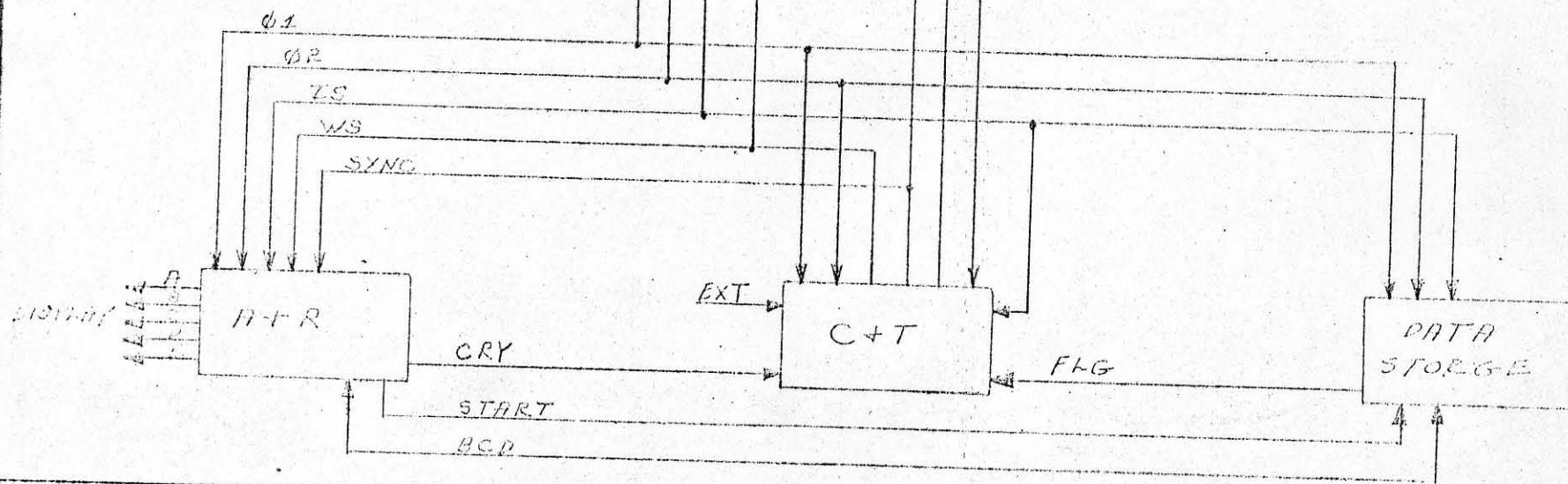


The Data Storage Circuit - 1820-0993
for Use with the HP-35 Processor

General Description

The data storage circuit contains ten 56 bit shift registers and miscellaneous logic on a 158 mil by 149 mil chip. The MOS process used is P-channel with ion implantation.

The availability of ten or more data storage registers for use by the A & R chip greatly increases the scope of problems solvable with the HP-35 Processor. Up to three Data Storage Chips can be tied directly to the A & R chip, which fixes a maximum of 30 registers. If a bi-directional buffer is placed between the A & R and the Data Storage Chips, then up to 25 units can be paralleled, giving a maximum of 250 registers.


Figure 1 illustrates how the Data Storage Chip fits into the processor circuits.

The timing between the Data Storage Chip(s) and the CPU is taken care of by the START line from the A & R chip and the "ROM is present" pulse that occurs on the ls line at bit time II.

Data is transferred to the Data Storage Chip from the A & R chip via the BCD line. This data is either read as a register address or as a data word to be stored. The BCD line is bi-directional and is also to transfer data words to the A & R chip.

W.M	REVISIONS	APPROVED	DATE

A-
Additional ROMs
and/or Data Storage
simply added to the
busing structure.

ENG. RESP. — DIV. _____

UNLESS OTHERWISE NOTED

— TOLERANCES —

0.00 \pm 0.02 0.000 \pm 0.005

ANGULAR \pm _____

MACHINED SURFACES

63

— DO NOT SCALE —

ITEM	QTY	DESCRIPTION	PART NO.	DWG. NO.	MATL. SPEC.
DRAWN					
J.A. REA		DATE			
		10-9-72			
ENGINEER			TITLE		
Don Morris		10-10-72	Processor with Data Storage		HEWLETT PACKARD
APPROVED					LABORATORY INSTRUMENTS
SUPERSEDES			FINISH	SCALE	NEXT ASSY.
					A-

There are three instructions recognized by the Data Storage Chip, which are received directly from the ROMs via the Is line. These instructions are:

- ATDS: Address from C register to Data Storage
- DTDS: Data from C register to Data Storage
- DSTC: Read from D.S. into C register

The contents of the C register is continuously being displayed on the BCD line, except when one of the "Data into C register" instructions is executed. DSTC is one of these instructions. Therefore, it can be seen that the instructions ATDS and DTDS are ignored by the CPU (and the I/O chip if one is used) and are decoded and executed by any Data Storage Chip in the system. The instruction DSTC is executed by the A & R and any Data Storage Chip which has previously been enabled. The "enabling" of a chip is covered in the next section.

Register Addressing

When a data transfer command occurs, either DTDS or DSTC, the command will only be executed if and only if there exists at least one data storage register which has previously been enabled. Once enabled, a register will remain enabled until another ATDS is given which addresses a different register.

The numbering of each register is done in two portions. Internally, the registers are numbered 0,1, ... 8,9. The chips themselves are numbered 0,1,... 62, 63. The actual chip number, assigned to given unit, is determined externally to the chip. The coding for all 64 combinations is allowable for any chip, therefore there will not be a whole family of different chips to be used. The chip address inputs are:

- B1 Least significant bit
- B2
- B3
- B4
- A1
- A2 Most significant bit

If B1, B2, B3 and B4 is taken as a hexadecimal number, then only ten of the sixteen combinations are legal BCD characters. As far as the D.S. Chip is concerned, all are legal. Normal addresses are those utilizing the ten legal BCD codes for the number "B". The special addresses are the remaining unused combinations. Normal register addresses will be given by $0 \leq D_3 D_2 D_1 \leq 399$ where all three digits are legal BCD numbers.

If D₂ is restricted to the hexadecimal numbers ten through sixteen then 240 special addresses are available. These addresses are not readily generated by the HP-35 Processor.

In order to "tell a Data Storage Chip its address" it is necessary to enter the binary (or BCD) code of the appropriate chip number into the A and B inputs. For example, to establish the register addresses for a chip as 130 through 139 would mean that the chip should be identified as chip 13. The code (BCD) for 13 is 01 0011.

Therefore:

$$A_2 = 0 = 0 \text{ volts}$$

$$A_1 = 1 = 6 \text{ volts}$$

$$B_4 = 0 = 0 \text{ volts}$$

$$B_3 = 0 = 0 \text{ volts}$$

$$B_2 = 1 = 6 \text{ volts}$$

$$B_1 = 1 = 6 \text{ volts}$$

The address decoding logic of the Data Storage Chips is capable of handling floating point addresses. Under certain special conditions, these addresses need not be normalized.

In order for an address to be legally accepted by a Data Storage Chip the exponent must be +0, +1 or +2. Due to an error in logic design, an exponent of +3 must not be given, because the logic would then enable chip zero, register zero. Except for addresses with an exponent of +3, all illegal addresses will be indicated by the Data Storage Chip(s) as either an illegal address or the address of a register not found (see next section).

The sign of the mantissa is always ignored by the Data Storage Chips. Also, the addresses are truncated to the next lower whole number. For example, the numbers:

-3.79
3.1854
+3.00
-3.00

would, as addresses, enable register three.

If an exponent of zero is given, then only the most significant digits of the mantissa will be interrogated to determine a register number ranging from 0 → 9.

If an exponent of +1 is found, then the two most significant digits of the mantissa are interrogated to determine a register number in the range 0 → 99; being as 0 → 9 is included in this field, then these numbers are not strictly required to be normalized.

When an exponent of +2 is encountered in an address, the three most significant digits of the mantissa, are interrogated and checked for a number in the range 0 → 399. Obviously, the numbers in the range 0 → 99 would not have been normalized.

Data Storage Flags

When an address is given (ATDS) and that address is legal and exists (some register was actually enabled), then a flag is generated by the chip which contains the enabled register. This feature can be ignored by simply leaving the flag output unused. For one to three registers, these flag lines can be hooked directly to the flag input of the Control and Timing chip. If more than three Data Storage Chips are tied to the flag input of the C & T, then the flag output of the I/O chip (1820-0994) must be used. The I/O chip has a gated pull-down device that can turn-off the additional capacitance of the Data Storage Chips.

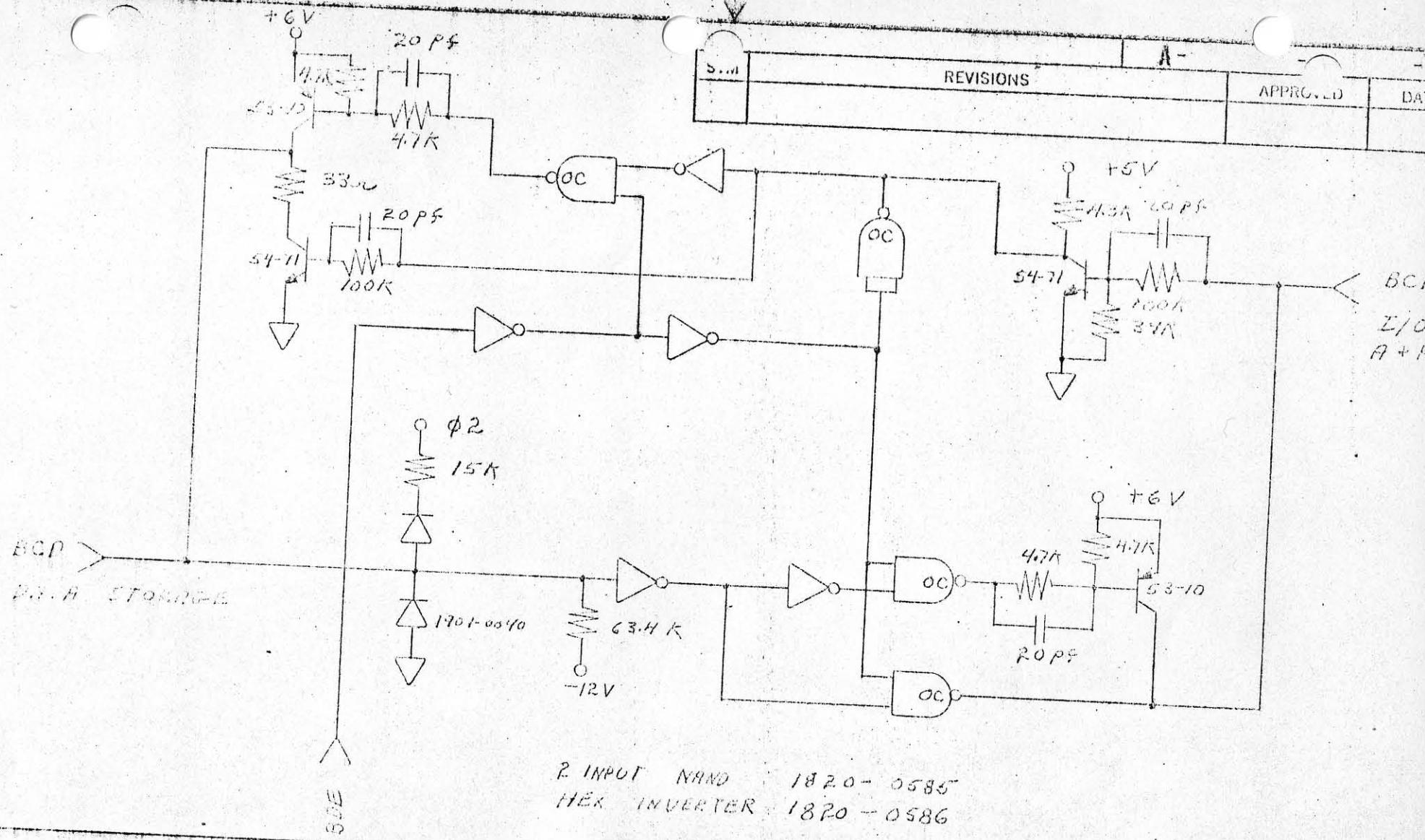
Use of a Bi-Directional Buffer

If more than three Data Storage Chips are to be used in a system, then the A & R chip BCD driver is unable to handle the capacitive load. In this case a bi-directional amplifier is required. A sample amplifier is shown in Figure 2. In order to control the "direction" of this amplifier a steering signal is required. This is supplied by the Data Storage Chips themselves, by the BDE output. Each chip will recognize the command DSTC independently of whether or not it was enabled.

BDE = 6 volts \geq DSTC

BDE = 0 volts \geq Data Storage is listening

Using Data Storage Instructions


The bit patterns for the three instructions are:

ATDS = 1001110000

DTDS = 1011110000

DSTC = 1011111000

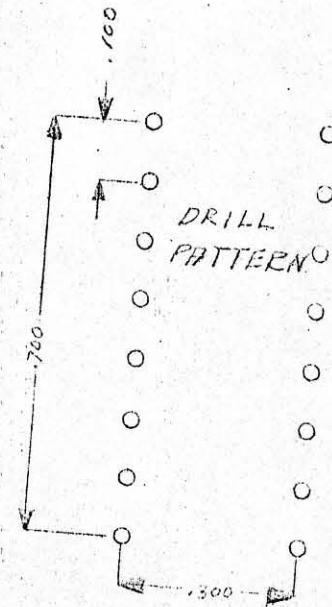
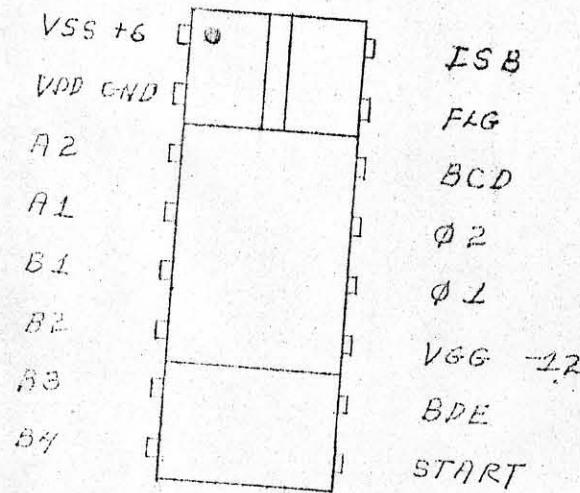
The desired address for a register should be placed in the C-register of the A & R, and then ATDS given. The enabled register will remain enabled until another ATDS is given. Neither of the data transfer instructions can follow an ATDS instruction directly, at least one other instruction must be executed. This instruction might or might not be a NOP.

2 INPUT NAND 1820-0585
HEX INVERTER 1820-0586

ENG. RESP. — DIV.

UNLESS OTHERWISE NOTED
— TOLERANCES —

$$0.888 \pm 0.02 \quad \quad 0.888 \pm 0.005$$



ANGULAR 4-

MACHINED SURFACES

--- DO NOT SCALE ---

ITEM	QTY	DESCRIPTION	PART NO.	DWG. NO.	MAT'L SPEC.
DRAWN J. A. REA	DATE 10-10-72	BCD BIDIRECTIONAL BUFFER		HEWLETT <i>hp</i> PACKARD	
ENGINEER Don Morris	10-10-72			LABORATORY INSTRUMENTS	
APPROVED				NEXT ASSY.	
SUPERSEDES		FINISH	SCALE		

SYM	REVISIONS	APPROVED

ENG. RESP. — DIV. _____

UNLESS OTHERWISE NOTED
— TOLERANCES —

0.00 \pm 0.02 0.000 \pm 0.005

ANGULAR \pm _____

MACHINED SURFACES

63

— DO NOT SCALE —

ITEM	QTY	DRAWN T. A. R.E.A.	DATE 10-9-72	DESCRIPTION DATA STORAG	TITLE 1020-0973	PART NO.	DWG. NO.	MAT'L. SPEC.
ENGINEER D. L. MCGOWAN			10-10-72					
APPROVED								
SUPERSEDES								

HEWLETT PACKARD

LABORATORY INSTRUMENTS

DATA STORAGE CIRCUIT

ELECTRICAL SPECIFICATIONS

Preliminary Spec's Only

Absolute Maximum Ratings

Supply Voltage V_{DD} V_{SS} -10.0V
 Supply Voltage V_{GG} V_{SS} -21.0V
 Voltage at any input or output V_{SS} +0.3V to V_{DD} -10V
 Operating free-air temperature range 0 °C to 65 °C
 Storage temperature range -55 °C to 125 °C
 Humidity 0 to 90%

	PARAMETER	MIN	MAX	UNIT	COMMENTS
Power Supply	V_{DD}	0.0	0.0	V.	
	V_{SS}	+5.0	+7.0	V.	Supply Voltages do not necessarily track
	V_{GG}	-10.0	-14.0	V.	
	I_{DD}	-	TBD	mA	→ 1.3 @ 70°; 1.8 @
	I_{GG}	-	TBD	mA	→ 2.4 @ 70°C; 2.73 @
	PT	*Total Chip Power	-	mW	At 0 °C with max voltages and max frequency
External Clock Description	$V_{\phi}(0)$	$V_{SS} - .8$	V_{SS}	V	
	$V_{\phi}(1)$	$V_{GG} + .7$	$V_{GG} + .7$	V	
	f	50	210	KC	
	tpw	625	1000	ns	See Timing Diagram
	td	625	1000	ns	Figure 1
	trt	50	150	ns	
	tft	50	150	ns	

*This spec is a design goal.

PARAMETER		MIN	MAX	UNIT	COMMENTS	
Input Description	V _{in} (0)	Input Voltage-Logic "0"	V _{ss} -1.0	V _{ss} +.3	V.	See Figure 2
	V _{in} (1)	Input Voltage-Logic "1"	-	V _{ss} -4.0	V.	
Note 1)	t _{in}	Time at which input data is valid (before the ϕ_1 clock)				See Timing Diagram Figure 1
		Inputs: Start ISB A ₁ , A ₂ B ₁ , B ₂ , B ₃ , B ₄ BCD	.250 0.0 3.0 3.0 0.0		μs	
	C _{in}	* Input Capacitance				
		Inputs: ϕ_1 ϕ_2 Start ISB A ₁ , A ₂ B ₁ , B ₂ , B ₃ , B ₄ BCD		20 20 6 5 5 5 10	pF	
Output Description	<u>FLG OUTPUT</u>					See Figure 3
See Note 3)	V _{out} (0)	Logical "0" output Voltage	Open Source		V	
	V _{out} (1)	Logical "1" output Voltage		V _{ss} -4.5	V	The "Flg" output is implemented using an open source buffer capable driving the load to an MOS "1" level but presenting a high impedance (floating output) during the "0" state.
	t _{dv} (1)	Time from Bit Time 2 at which "1" level data is valid		12	μs	
	I _{sink}	DC current load during the "1" state		1.0	mA	
	C _L	Capacitive load		300	pF	
	<u>BDE OUTPUT</u>					See Figure 4
	V _{TTL} (0) out	Logical "0" output Voltage	V _{DD} +2.4		V.	
	V _{TTL} (1) out	Logical "1" output Voltage	V _{DD} +.3		V.	The "BDE" output is implemented using a push pull low-power-TTL compatible output buffer.
	t _{dv}	Time at which output data is valid		2.5	μs	
	I _{sink}	DC current load during the "1" state		360	μA	V _{out} (0), t _{dv} , I _{source} and R _s values are valid only when device is operated with $5.6 \leq V_{ss} \leq 6.5V$.

* This spec is a design goal

PARAMETER		MIN	MAX	UNIT	COMMENTS
Output Description (continued)					
I _{source}	DC current load during the "0" state		50	μA	
C _L	Capacitance load		30	pf	
R _s	Buffer output resistance during a "0" state output	1.5	-	KΩ	
<u>BCD OUTPUT</u>					
V _{out(0)}	Logical "0" Output Voltage	V _{ss} -5			See Figure 5
V _{out(1)}	Logical "1" Output Voltage		V _{ss} -4.5		
t _{dv}	Time at which output is valid		3.3	μs	
C _L	Capacitive load		400	pf	The "BCD" output is implemented using a pre-charge load device capable of pre-charging to a "1" level all internal and pin capacitance and a driver capable of discharging a 400 pf load to an MOS "0" level.

TESTES:

1. All device pads will be provided with static discharge protection devices. In addition, inputs ISB, Start, A1, A2, B1, B2, B3 and B4 will be protected as per the requirements of Appendix C (Static Gate Protection Requirements).
2. All logic levels referred to within this document are negative logic levels:
 - "0" level = High Voltage
 - "1" level = Low Voltage
3. All output buffers will be provided with internal test points which when externally forced to V_{ss} will cause the buffer to go into a high output impedance state (floating output). Test pad size: 1 X 1 millinch (Gate protection cannot be provided on these test points.)
4. The logic design of the Data Storage Circuit requires that for proper input or output of data on the BCD line, instruction types I₂ or I₃ must not directly follow an I₁ instruction on the ISB line.

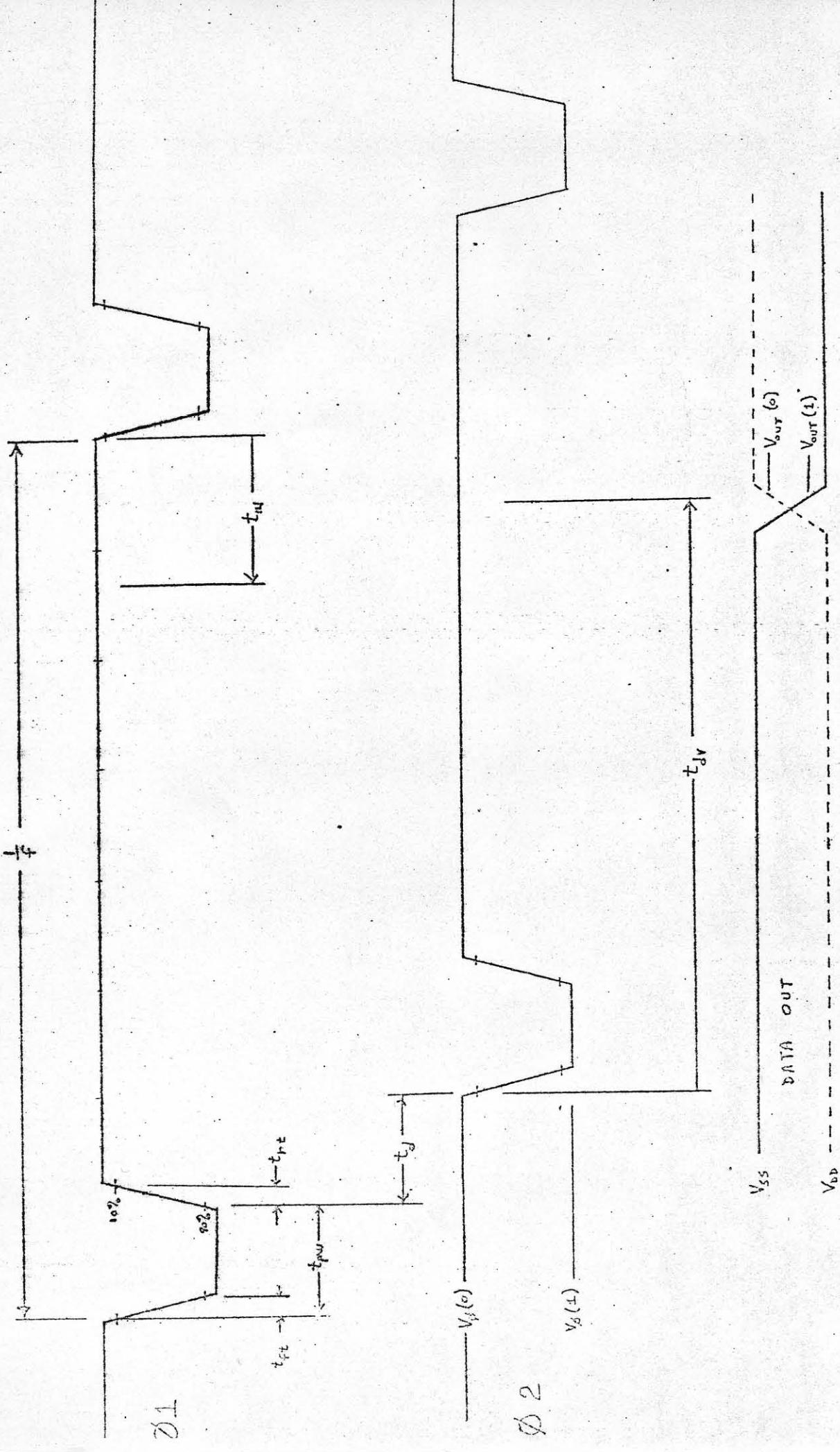


FIGURE I
TIMING DIAGRAM

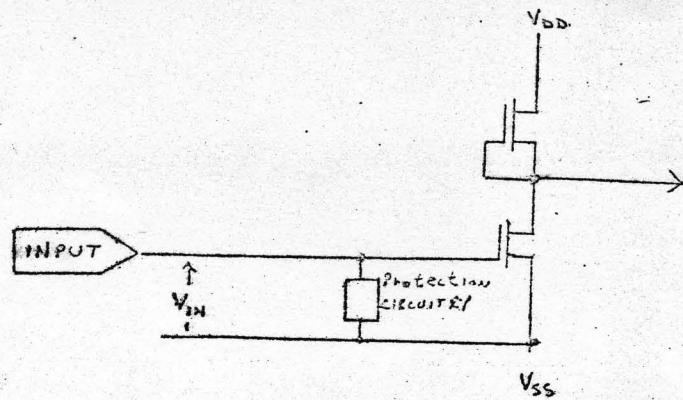


Figure 2
Typical Input Circuit

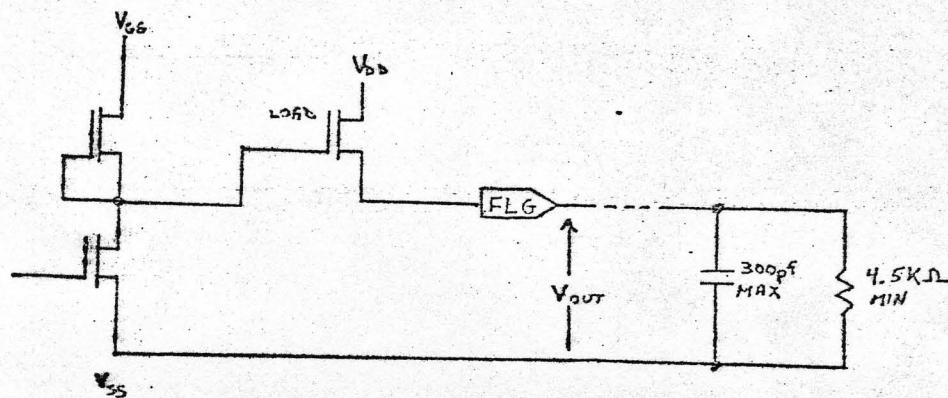


Figure 3
"FLG" Output Buffer

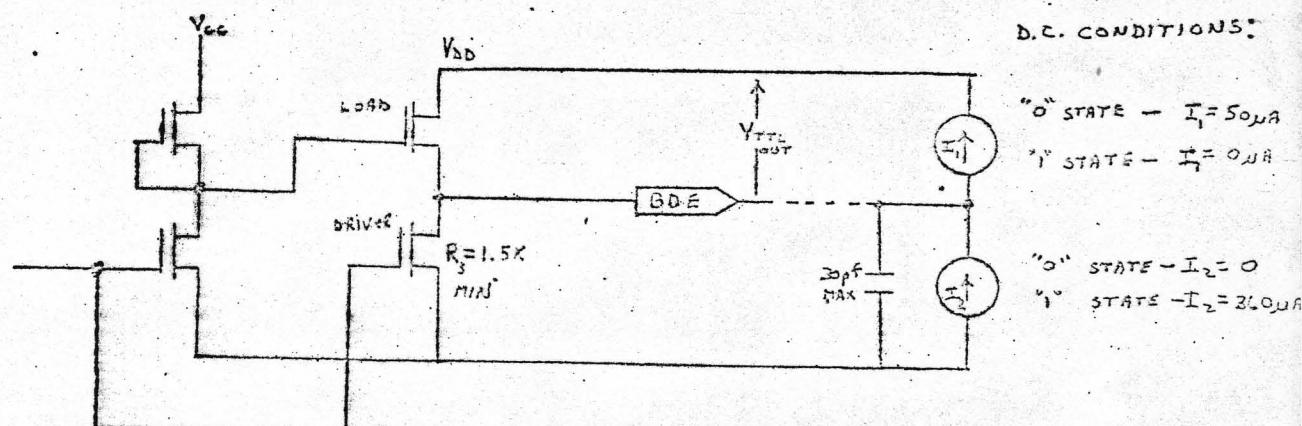


Figure 4
"BDE" Output Buffer

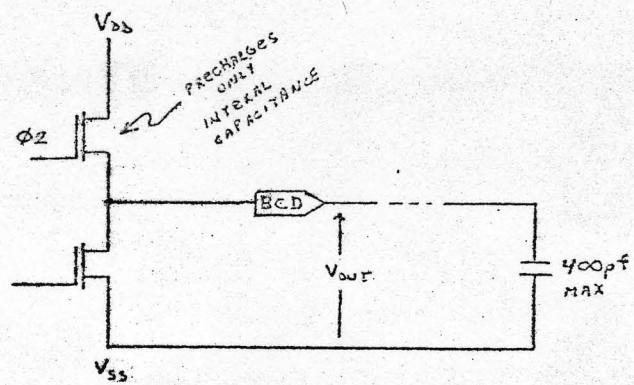


Figure 5
BCD Output Buffer

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.